
K20498

The amount of data in everyday life has been exploding. This data increase
has been especially signi�cant in scienti�c �elds, where substantial amounts
of data must be captured, communicated, aggregated, stored, and analyzed.
Cloud Computing with e-Science Applications explains how cloud
computing can improve data management in data-heavy �elds such as
bioinformatics, earth science, and computer science.

The book begins with an overview of cloud models supplied by the
National Institute of Standards and Technology (NIST), and then:

• Discusses the challenges imposed by big data on scienti�c data
infrastructures, including security and trust issues

• Covers vulnerabilities such as data theft or loss, privacy concerns,
infected applications, threats in virtualization, and cross-virtual
machine attack

• Describes the implementation of work�ows in clouds, proposing an
architecture composed of two layers—platform and application

• Details infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS),
and software-as-a-service (SaaS) solutions based on public, private,
and hybrid cloud computing models

• Demonstrates how cloud computing aids in resource control, vertical
and horizontal scalability, interoperability, and adaptive scheduling

Featuring signi�cant contributions from research centers, universities,
and industries worldwide, Cloud Computing with e-Science Applications
presents innovative cloud migration methodologies applicable to a variety of
�elds where large data sets are produced. The book provides the scienti�c
community with an essential reference for moving applications to the cloud.

Cloud Computing with e-Science Applications

Information Technology

Cloud Computing
w i t h

e-Science Applications
EDITED BY OLIVIER TERZO • LORENZO MOSSUCCA

C l o u d C om p u t i n g w i t h e - S c i e n c e A p p l i c a t i o n s
TERZO • M

OSSUCCA

Cloud Computing
w i t h

e-Science Applications

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

Boca Raton London New York

Cloud Computing
w i t h

e-Science Applications
E D I T E D B Y

OL IV I ER TERZO
I S M B , T U R I N , I T A LY

LORENZO MOSSUCCA
I S M B , T U R I N , I T A LY

CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2015 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Version Date: 20141212

International Standard Book Number-13: 978-1-4665-9116-5 (eBook - PDF)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher cannot
assume responsibility for the validity of all materials or the consequences of their use. The authors and
publishers have attempted to trace the copyright holders of all material reproduced in this publication
and apologize to copyright holders if permission to publish in this form has not been obtained. If any
copyright material has not been acknowledged please write and let us know so we may rectify in any
future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information stor-
age or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copy-
right.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222
Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that pro-
vides licenses and registration for a variety of users. For organizations that have been granted a photo-
copy license by the CCC, a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation without intent to infringe.

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at
http://www.crcpress.com

v

Contents

Preface .. vii
Acknowledgments .. xiii
About the Editors ..xv
List of Contributors .. xvii

 1 Evaluation Criteria to Run Scientific Applications in the Cloud1
Eduardo Roloff, Alexandre da Silva Carissimi,
and Philippe Olivier Alexandre Navaux

 2 Cloud-Based Infrastructure for Data-Intensive e-Science
Applications: Requirements and Architecture 17
Yuri Demchenko, Canh Ngo, Paola Grosso, Cees de Laat,
and Peter Membrey

 3 Securing Cloud Data .. 41
Sushmita Ruj and Rajat Saxena

 4 Adaptive Execution of Scientific Workflow Applications
on Clouds ...73
Rodrigo N. Calheiros, Henry Kasim, Terence Hung, Xiaorong Li,
Sifei Lu, Long Wang, Henry Palit, Gary Lee, Tuan Ngo,
and Rajkumar Buyya

 5 Migrating e-Science Applications to the Cloud:
Methodology and Evaluation ... 89
Steve Strauch, Vasilios Andrikopoulos, Dimka Karastoyanova,
and Karolina Vukojevic-Haupt

 6 Closing the Gap between Cloud Providers and Scientific Users 115
David Susa, Harold Castro, and Mario Villamizar

 7 Assembling Cloud-Based Geographic Information Systems:
A Pragmatic Approach Using Off-the-Shelf Components................. 141
Muhammad Akmal, Ian Allison, and Horacio González–Vélez

 8 HCloud, a Healthcare-Oriented Cloud System
with Improved Efficiency in Biomedical Data Processing 163
Ye Li, Chenguang He, Xiaomao Fan, Xucan Huang, and Yunpeng Cai

vi Contents

 9 RPig: Concise Programming Framework by Integrating R
with Pig for Big Data Analytics ... 193
MingXue Wang and Sidath B. Handurukande

 10 AutoDock Gateway for Molecular Docking Simulations
in Cloud Systems .. 217
Zoltán Farkas, Péter Kacsuk, Tamás Kiss, Péter Borsody, Ákos Hajnal,
Ákos Balaskó, and Krisztián Karóczkai

 11 SaaS Clouds Supporting Biology and Medicine 237
Philip Church, Andrzej Goscinski, Adam Wong, and Zahir Tari

 12 Energy-Aware Policies in Ubiquitous Computing Facilities 267
Marina Zapater, Patricia Arroba, José Luis Ayala Rodrigo,
Katzalin Olcoz Herrero, and José Manuel Moya Fernandez

vii

Preface

The interest in cloud computing in both industry and research domains is
continuously increasing to address new challenges of data management, com-
putational requirements, and flexibility based on needs of scientific commu-
nities, such as custom software environments and architectures. It provides
cloud platforms in which users interact with applications remotely over the
Internet, bringing several advantages for sharing data, for both applications
and end users. Cloud computing provides everything: computing power,
computing infrastructure, applications, business processes, storage, and
interfaces, and can provide services wherever and whenever needed.

Cloud computing provides four essential characteristics: elasticity; scal-
ability; dynamic provisioning of applications, storage, and resources; and
billing and metering of service usage in a pay-as-you-go model. This flexibil-
ity of management and resource optimization is also what attracts the main
scientific communities to migrate their applications to the cloud.

Scientific applications often are based on access to large legacy data sets and
application software libraries. Usually, these applications run in dedicated
high performance computing (HPC) centers with a low-latency interconnec-
tion. The main cloud features, such as customized environments, flexibility,
and elasticity, could provide significant benefits.

Since every day the amount of data is exploding, this book describes how
cloud computing technology can help such scientific communities as bio-
informatics, earth science, and many others, especially in scientific domains
where large data sets are produced. Data in more scenarios must be captured,
communicated, aggregated, stored, and analyzed, which opens new chal-
lenges in terms of tool development for data and resource management, such
as a federation of cloud infrastructures and automatic discovery of services.

Cloud computing has become a platform for scalable services and deliv-
ery in the field of services computing. Our intention is to put the empha-
sis on scientific applications using solutions based on cloud computing
 models—public, private, and hybrid—with innovative methods, including
data capture, storage, sharing, analysis, and visualization for scientific algo-
rithms needed for a variety of fields. The intended audience includes those
who work in industry, students, professors, and researchers from informa-
tion technology, computer science, computer engineering, bioinformatics,
science, and business fields.

Actually, applications migration in the cloud is common, but a deep analy-
sis is important to focus on such main aspects as security, privacy, flexibility,
resource optimization, and energy consumption.

This book has 12 chapters; the first two are on exposing a proposal strategy
to move applications in the cloud. The other chapters are a selection of some

viii Preface

applications used on the cloud, including simulations on public transport,
biological analysis, geographic information system (GIS) applications, and
more. Various chapters come from research centers, universities, and indus-
tries worldwide: Singapore, Australia, China, Hong Kong, India, Brazil,
Colombia, the Netherlands, Germany, the United Kingdom, Hungary, Spain,
and Ireland. All contributions are significant; most of the research leading to
results has received funding from European and regional projects.

After a brief overview of cloud models provided by the National Institute
of Standards and Technology (NIST), Chapter 1 presents several criteria to
meet user requirements in e-science fields. The cloud computing model has
many possible combinations; the public cloud offers an alternative to avoid
the up-front cost of buying dedicated hardware. Preliminary analysis of user
requirements using specific criteria will be a strong help for users for the
development of e-science services in the cloud.

Chapter 2 discusses the challenges that are imposed by big data on sci-
entific data infrastructures. A definition of big data is shown, presenting
the main application fields and its characteristics: volume, velocity, variety,
value, and veracity. After identifying research infrastructure requirements,
an e-science data infrastructure is introduced using cloud technology to
answer future big data requirements. This chapter focuses on security and
trust issues in handling data and summarizes specific requirements to access
data. Requirements are defined by the European Research Area (ERA) for
infrastructure facility, data-processing and management functionalities,
access control, and security.

One of the important aspects in the cloud is certainly security due to the
use of personal and sensitive information, especially derived mainly by
social network and health information. Chapter 3 presents a set of impor-
tant vulnerability issues, such as data theft or loss, privacy issues, infected
applications, threats in virtualization, and cross-virtual machine attack.
Many techniques are used to protect against cloud service providers, such as
homomorphic encryption, access control using attributes based on encryp-
tion, and data auditing through provable data possession and proofs of
irretrievability. The chapter underlines points that are still open, such as
security in the mobile cloud, distributed data auditing for clouds, and secure
multiparty computation on the cloud.

Many e-science applications can be modeled as workflow applications,
defined as a set of tasks dependent on each other. Cloud technology and
platforms are a possible solution for hosting these applications. Chapter 4
discusses implementation aspects for execution of workflows in clouds. The
proposal architecture is composed of two layers: platform and application.
The first one, described as scientific workflow, enables operations such as
dynamic resource provisioning, automatic scheduling of applications, fault
tolerance, security, and privacy in data access. The second one defines data
analytic applications enabling simulation of the public transport system of
Singapore and the effect of unusual events in its network. This application

ixPreface

provides evaluation of the effect of incidents in the flow of passengers in
that country.

Chapter 5 presents the main aspects for the cloud characterization and
design on a large amount of data and intensive computational context .
A new version of migration methodology derived by Laszewski and Nauduri
algorithms is introduced. Then, it discusses the realization of a free cloud
data migration tool for the migration of the database in the cloud and the
refactoring of the application architecture. This tool provides two main
functionalities: storage for cloud data and cloud data services. It allows sup-
porting target adapters for several data stores and services such as Amazon
RDS, MongoDB, Mysql, and so on. The chapter concludes with an evalua-
tion of migration of the SimTech Scientific Workflow Management System to
Amazon Web Services. Results of this research have mainly received fund-
ing from the project 4CaaSt (from the European Union’s Seventh Framework
Programme) and from the German Research Foundation within the Cluster
of Excellence in Simulation Technology at the University of Stuttgart.

Chapter 6 presents a proposal developed under the e-Clouds project for
a scientific software-as-a-service (SaaS) marketplace based on the utiliza-
tion of the resource provided by a public infrastructure-as-a-service (IaaS)
infrastructure, allowing various users to access on-demand applications.
It automatically manages the complexity of configuration required by public
IaaS providers by delivering a ready environment for using scientific appli-
cations, focusing on the different patterns applied for cloud resources while
hiding the complexity for the end user. Data used for testing architecture
comes from the Alexander von Humboldt Institute for Biological Resources.

A systematic way of building a web-based geographic information system
is presented in Chapter 7. Key elements of this methodology are a database
management system (DBMS), base maps, a web server with related storage,
and a secure Internet connection. The application is designed for analyz-
ing the main causes of road accidents and road state and quality in specific
regions. Local organizations can use this information to organize preventive
measures for reducing road accidents. Services and applications have been
deployed in the main public cloud platforms: Microsoft Windows Azure
platform and Amazon Web Service. This work has been partly funded by
the Horizon Fund for Universities of the Scottish Funding Council.

The physical and psychological pressures on people are increasing con-
stantly, which raises the potential risks of many chronic diseases, such as
high blood pressure, diabetes, and coronary disease. Cloud computing has
been applied to several real-life scenarios, and with the rapid progress in
its capacity, more and more applications are provided as a service mode
(e.g., security as a service, testing as a service, database as a service, and even
everything as a service). Health care service is one such important applica-
tion field. In Chapter 8, a ubiquitous health care system, named HCloud,
is described; it is a smart information system that can provide people with
some basic health monitoring and physiological index analysis services

x Preface

and provide an early warning mechanism for chronic diseases. This plat-
form is composed of physiological data storage, computing, data mining,
and several features. In addition, an online analysis scheme combined with
the MapReduce parallel framework is designed to improve the platform’s
capabilities. The MapReduce paradigm has features of code simplicity, data
splitting , and automatic parallelization compared with other distributed
parallel systems, improving efficiency of physiological data processing and
achieving increased linear speed.

With the explosive growth in the use of information and communication
technology, applications that involve deep analytics in a big data scenario
need to be shifted to a scalable context. A noticeable effort has been made
to move the data management systems into MapReduce parallel processing
environments. Chapter 9 presents RPig, an integrated framework with R
and Pig for scalable machine learning and advanced statistical functional-
ities, which makes it feasible to use high-level languages to develop analytic
jobs easily in concise programming. RPig benefits from the deep statistical
analysis capability of R and parallel data-processing capability of Pig.

Parameter sweep applications are frequent in scientific simulations and
in other types of scientific applications. Cloud computing infrastructures
are suitable for these kinds of applications due to their elasticity and ease
of scaling up on demand. They run the same application with a very large
number of parameters; hence, execution time could take very long on a
single computing resource. Chapter 10 presents the AutoDock program for
 modeling intermolecular interactions. It provides a suite of automated dock-
ing tools designed to predict how small molecules, such as substrates or drug
candidates, bind to a receptor of known three-dimensional (3D) structure .
The proposed solutions are tailored to a specific grid or cloud environment.
Three different parameter sweep workflows were developed and supported
by the European Commission’s Seventh Framework Programme under
 projects SCI-BUS and ER-Flow.

There are also disadvantages to using applications in the cloud, such as usabil-
ity issues in IaaS clouds, limited language support in platform-as-a-service
clouds, and lack of specialized services in SaaS clouds. For resolving
known issues, Chapter 11 proposes the development of research clouds for
high-performance computing as a service (HPCaaS) to enable researchers to
take on the role of cloud service developer. It consists of a new cloud model,
HPCaaS, which automatically configures cloud resources for HPC. An SaaS
cloud framework to support genomic and medical research is presented that
allows simplifying the procedures undertaken by service providers, particu-
larly during service deployment. By identifying and automating common
procedures, the time and knowledge required to develop cloud services is
minimized. This framework, called Uncino, incorporates methodologies
used by current e-science and research clouds to simplify the develop-
ment of SaaS applications; the prototype is compatible with Amazon EC2,

xiPreface

 demonstrating how cloud platforms can simplify genomic drug discovery
via access to cheap, on-demand HPC facilities.

e-Science applications such as the ones found in Smart Cities, e-Health,
or Ambient Intelligence require constant high computational demands to
 capture, process, aggregate, and analyze data. Research is focusing on the
energy consumption of the sensor deployments that support this kind of
application. Chapter 12 proposes global energy optimization policies that
start from the architecture design of the system, with a deeper focus on data
center infrastructures (scheduling and resource allocation) and take into
account the energy relationship between the different abstraction layers ,
leveraging the benefits of heterogeneity and application awareness. Data
centers are not the only computing resources involving energy inefficiency;
distributed computing devices and wireless communication layers also are
included. To provide adequate energy management, the system is tightly
coupled with an energy analysis and an optimization system.

xiii

Acknowledgments

We would like to express our gratitude to all the professors and researchers
who contributed to this, our first, book and to all those who provided support,
talked things over, or read, wrote, and offered comments.

We thank all authors and their organizations that allowed sharing relevant
studies of scientific applications in cloud computing and thank advisory
board members Fatos Xhafa, Hamid R. Arabnia, Vassil Alexandrov, Pavan
Balaji, Harold Enrique Castro Barrera, Rajdeep Bhowmik, Michael Gerhards,
Khalid Mohiuddin, Philippe Navaux, Suraj Pandey, and Ioan Raicu for pro-
viding important comments to improve the book.

We wish to thank our research center, Istituto Superiore Mario Boella, which
allowed us to become researchers in the cloud computing field, especially our
director, Dr. Giovanni Colombo; our deputy director of the research area,
Dr. Paolo Mulassano; our colleagues from research unit IS4AC (Infrastructure
and System for Advanced Computing): Pietro Ruiu, Giuseppe Caragnano,
Klodiana Goga, and Antonio Attanasio, who supported us in the reviews.

A special thanks to our publisher, Nora Konopka, for allowing this book
to be published and all persons from Taylor & Francis Group who provided
help and support at each step of the writing.

We want to offer a sincere thank you to all the readers and all persons who
will promote this book.

Olivier Terzo and Lorenzo Mossucca

xv

About the Editors

Olivier Terzo is a senior researcher at Istituto Superiore Mario Boella (ISMB).
After receiving a university degree in electrical engineering technology
and industrial informatics at the University Institute of Nancy (France),
he received an MSc degree in computer engineering and a PhD in electronic
engineering and communications from the Polytechnic of Turin (Italy).

From 2004 to 2009, Terzo was a researcher in the e-security laboratory,
mainly with a focus on P2P (peer-to-peer) protocols, encryption on embed-
ded devices, security of routing protocols, and activities on grid comput-
ing infrastructures. From 2010 to 2013, he was the head of the Research Unit
Infrastructures and Systems for Advanced Computing (IS4AC) at ISMB.

Since 2013, Terzo has been the head of the Research Area: Advanced
Computing and Electromagnetics (ACE), dedicated to the study and imple-
mentation of computing infrastructure based on virtual grid and cloud com-
puting and to the realization of theoretical and experimental activities of
antennas, electromagnetic compatibility, and applied electromagnetics.

His research interest focuses on hybrid private and public cloud distributed
infrastructure, grid, and virtual grid; mainly, his activities involve applica-
tion integration in cloud environments. He has published about 60 papers in
conference proceedings and journals, and as book chapters.

Terzo is also involved in workshop organization and the program commit-
tee of the CISIS conference; is an associate editor of the International Journal
of Grid and Utility Computing (IJGUC); International Program Committee
(IPC) member of the International Workshop on Scalable Optimisation in
Intelligent Networking; and peer reviewer in International Conference on
Networking and Services (ICNS) and International Conference on Complex
Intelligent and Software Intensive Systems (CISIS) conferences.

Dr. Lorenzo Mossucca studied computer engineering at the Polytechnic of
Turin. From 2007, he has worked as a researcher at the ISMB in IS4AC.

His research interests include studies of distributed databases, distributed
infrastructures, and grid and cloud computing. For the past few years, he
has focused his research on migration of scientific applications to the cloud,
particularly in the bioinformatics and earth sciences fields.

He has published about 30 papers in conference proceedings, journals, and
posters and as chapters.

He is part of the Technical Program Committee and is a reviewer for many
international conferences, including the International Conference on Complex,
Intelligent, and Software Intensive Systems, International Conference on
Networking and Services, and Institute of Electrical and Electronics Engineers
(IEEE) International Symposium on Parallel and Distributed Processing with
Applications and journals such as IEEE Transactions on Services Computing,
International Journal of Services Computing, International Journal of High Performance
Computing and Networking, and International Journal of Cloud Computing.

xvii

List of Contributors

Muhammad Akmal
Pisys Limited
Aberdeen, United Kingdom

Ian Allison
Robert Gordon University
Aberdeen, United Kingdom

Vasilios Andrikopoulos
Institute of Architecture of

Application Systems (IAAS)
University of Stuttgart
Stuttgart, Germany

Patricia Arroba
Electronic Engineering Department
Universidad Politécnica de Madrid
Madrid, Spain

José Luis Ayala Rodrigo
Departamento de Arquitectura

de Computadores y Automática
(DACYA)

Universidad Complutense de Madrid
Madrid, Spain

Ákos Balaskó
Institute for Computer Science and

Control of the Hungarian Academy
of Sciences (MTA SZTAKI)

Budapest, Hungary

Péter Borsody
University of Westminster
London, United Kingdom

Rajkumar Buyya
Cloud Computing and Distributed

Systems Lab
Department of Computing

and Information Systems
University of Melbourne
Melbourne, Australia

Yunpeng Cai
Shenzhen Institutes of Advanced

Technology
Chinese Academy of Sciences
Beijing, China

Rodrigo N. Calheiros
Cloud Computing and Distributed

Systems Lab
Department of Computing and

Information Systems
University of Melbourne
Melbourne, Australia

Harold Castro
Communications and Information

Technology Group (COMIT)
Department of Systems and

Computing Engineering
Universidad de los Andes
Bogotá, Colombia

Philip Church
School of IT
Deakin University
Highton, Australia

xviii List of Contributors

Alexandre da Silva Carissimi
Federal University of Rio Grande

do Sul
Porto Alegre, Brazil

Cees de Laat
System and Network Engineering

Group
University of Amsterdam,

Netherlands

Yuri Demchenko
System and Network Engineering

Group
University of Amsterdam
Amsterdam, Netherlands

Xiaomao Fan
Shenzhen Institutes of Advanced

Technology
Chinese Academy of Sciences
Beijing, China

Zoltán Farkas
Institute for Computer Science and

Control of the Hungarian Academy
of Sciences (MTA SZTAKI)

Budapest, Hungary

José Manuel Moya Fernandez
Electronic Engineering Department
Universidad Politécnica de Madrid
Madrid, Spain

Horacio Gonzalez-Velez
National College of Ireland
Dublin, Ireland

Andrzej Goscinski
School of IT
Deakin University
Geelong, Australia

Paola Grosso
System and Network Engineering

Group
University of Amsterdam,

Netherlands

Ákos Hajnal
Institute for Computer Science and

Control of the Hungarian Academy
of Sciences (MTA SZTAKI)

Budapest, Hungary

Sidath B. Handurukande
Network Management Lab
Ericsson
Athlone, Ireland

Chenguang He
Shenzhen Institutes of Advanced

Technology
Chinese Academy of Sciences
Beijing, China

Katzalin Olcoz Herrero
Departamento de Arquitectura

de Computadores y Automática
(DACYA)

Universidad Complutense de Madrid
Madrid, Spain

Xucan Huang
Shenzhen Institutes of Advanced

Technology
Chinese Academy of Sciences
Beijing, China

Terence Hung
Institute of High Performance

Computing
A*STAR Institute
Singapore

Péter Kacsuk
Institute for Computer Science and

Control of the Hungarian Academy
of Sciences (MTA SZTAKI)

Budapest, Hungary

xixList of Contributors

Dimka Karastoyanova
Institute of Architecture

of Application Systems (IAAS)
University of Stuttgart
Stuttgart, Germany

Krisztián Karóczkai
Institute for Computer Science and

Control of the Hungarian Academy
of Sciences (MTA SZTAKI)

Budapest, Hungary

Henry Kasim
Institute of High Performance

Computing
A*STAR Institute
Singapore

Tamás Kiss
University of Westminster
London, United Kingdom

Gary Lee
Institute of High Performance

Computing
A*STAR Institute
Singapore

Xiaorong Li
Institute of High Performance

Computing
A*STAR Institute
Singapore

Ye Li
Shenzhen Institutes of Advanced

Technology
Chinese Academy of Sciences
Beijing, China

Sifei Lu
Institute of High Performance

Computing
A*STAR Institute
Singapore

Peter Membrey
Hong Kong Polytechnic University
Hong Kong

Philippe Olivier Alexandre
Navaux
Federal University of Rio Grande

do Sul
Porto Alegre, Brazil

Canh Ngo
System and Network Engineering

Group
University of Amsterdam
Amsterdam, Netherlands

Tuan Ngo
Department of Infrastructure

Engineering
University of Melbourne
Melbourne, Australia

Henry Novianus Palit
Petra Christian University
Surabaya, Indonesia

Eduardo Roloff
Federal University of Rio Grande

do Sul
Porto Alegre, Brazil

Sushmita Ruj
R. C. Bose Center for Cryptology

and Security
Indian Statistical Institute
Kolkata, India

Rajat Saxena
School of Computer Science

and Engineering
Indian Institute of Technology
Indore, India

xx List of Contributors

Steve Strauch
Institute of Architecture

of Application Systems (IAAS)
University of Stuttgart
Stuttgart, Germany

David Susa
Communications and Information

Technology Group (COMIT)
Department of Systems

and Computing Engineering
Universidad de los Andes
Bogotá, Colombia

Zahir Tari
School of Computer Science and IT
RMIT University
Melbourne, Australia

Mario Villamizar
Communications and Information

Technology Group (COMIT)
Department of Systems

and Computing Engineering
Universidad de los Andes
Bogotá, Colombia

Karolina Vukojevic-Haupt
Institute of Architecture

of Application Systems (IAAS)
University of Stuttgart
Stuttgart, Germany

Long Wang
Institute of High Performance

Computing
A*STAR Institute
Singapore

MingXue Wang
Network Management Lab
Ericsson
Athlone, Ireland

Adam Wong
George Washington University
Ashburn, Virginia, USA

Marina Zapater
CEI Campus Moncloa UCM-UPM
Madrid, Spain

1

1
Evaluation Criteria to Run Scientific
Applications in the Cloud

Eduardo Roloff, Alexandre da Silva Carissimi,
and Philippe Olivier Alexandre Navaux

CONTENTS

Summary ..2
1.1 Introduction ..2
1.2 Cloud Service Models ...2

1.2.1 Software as a Service ...3
1.2.2 Platform as a Service ...4
1.2.3 Infrastructure as a Service ..4

1.3 Cloud Implementation Models ..4
1.3.1 Private Cloud ..5
1.3.2 Community Cloud ...5
1.3.3 Public Cloud ...5
1.3.4 Hybrid Cloud ..6
1.3.5 Summary of the Implementation Models7

1.4 Considerations about Public Providers ..7
1.4.1 Data Confidentiality ..7
1.4.2 Administrative Concerns ...8
1.4.3 Performance ..8

1.5 Evaluation Criteria ...9
1.6 Analysis of Cloud Providers .. 10

1.6.1 Amazon Web Services .. 10
1.6.2 Rackspace .. 10
1.6.3 Microsoft Windows Azure ... 11
1.6.4 Google App Engine ... 11

1.7 Cost Efficiency Evaluation .. 12
1.7.1 Cost Efficiency Factor .. 12
1.7.2 Break-Even Point .. 13

1.8 Evaluation of Providers: A Practical Example ... 14
1.9 Conclusions ... 16
References ... 16

2 Cloud Computing with e-Science Applications

Summary

In this chapter, we will present a brief explanation of the services and imple-
mentation of models of cloud computing in order to promote a discussion of
the strong and weak points of each. Our aim is to select the best combination
of the models as a platform for executing e-science applications.

Additionally, the evaluation criteria will be introduced so as to guide the
user in making the correct choice from the available options. After that, the
main public cloud providers, and their chief characteristics, are discussed.

One of the most important aspects of choosing a public cloud provider
is the cost of its services, but its performance also needs to be taken into
account. For this reason, we have introduced the cost efficiency evaluation
to support the user in assessing both price and performance when choosing
a provider. Finally, we provide a concrete example of applying the cost effi-
ciency evaluation using a real-life situation and including our conclusions.

1.1 Introduction

To create a service to execute scientific applications in the cloud, the user
needs to choose an adequate cloud environment [1, 2]. The cloud computing
model has several possible combinations between the service and imple-
mentation models, and these combinations need to be analyzed. The public
cloud providers offer an alternative to avoid the up-front costs of buying
machines, but it is necessary to evaluate them using certain criteria to verify
if they meet the needs of the users. This chapter provides a discussion about
these aspects to help the user in the process of building an e-Science service
in the cloud.

1.2 Cloud Service Models

According to the National Institute of Standards and Technology (NIST)
definition [3], there are three cloud service models, represented in Figure 1.1.
They present several characteristics that need to be known by the user. All
three models have strong and weak points that influence the adequacy for
use to create an e-Science service.

The characteristics of the service models are presented and discussed in
this section.

3Evaluation Criteria to Run Scientific Applications in the Cloud

1.2.1 Software as a Service

The software-as-a-service (SaaS) model is commonly used to deliver e-science
services to users. This kind of portal is used to run standard scientific appli-
cations, and no customization is allowed. Normally, a provider ports an
application to its cloud environment and then provides access for the users to
use the applications on a regular pay-per-use model. The user of this model
is the end user, such as a biologist, and there is usually no need to modify
the application.

One example of a provider porting a scientific application and then pro-
viding the service to the community is the Azure BLAST [2] project. In this
 project, Microsoft ports the Basic Local Alignment Search Tool (BLAST) of the
National Center for Biotechnology Information (NCBI) to Windows Azure.
BLAST is a suite of programs used by bioinformatics laboratories to ana-
lyze genomics data. Another case of this use are the Cyclone Applications,
which consist of twenty applications offered as a service by Silicon Graphics
Incorporated (SGI). SGI provides a broad range of applications that cover sev-
eral research topics, but there is no possibility to customize and adapt them.

The big problem with SaaS as the environment to build e-science services
is the absence of the ability for customization. Research groups are con-
stantly improving their applications, adding new features, or improving
their performance, and they need an environment to deliver the modifica-
tions. In addition, there are several applications that are used for only a few
research groups, and this kind of application does not attract the interest
of the cloud providers to port them. In this case, this model can be used to
deliver an e-science service but not as an environment to build it.

ApplicationSaaS

PaaS

IaaS

Datacenter (facilities)

FIGURE 1.1
Service models.

4 Cloud Computing with e-Science Applications

1.2.2 Platform as a Service

The platform-as-a-service (PaaS) model presents more flexibility than the
SaaS model. Using this model, it is possible to develop a new, fully custom-
ized application and then execute it in the provider’s cloud environment.
It is also possible to modify an existing application to be compatible with
the provider’s model of execution; in the majority of cases, this is a realistic
scenario for scientific applications [4]. The majority of the services provided
in this model consist of an environment to execute web-based applications.
This kind of application processes a large number of simultaneous requests
from different users. The regular architecture of these applications is com-
posed of a web page, which interacts with the user; a processing layer,
which implements the business model; and a database, used for data per-
sistence. Each user request is treated uniquely in the system and has no
relationship with other requests. Due to this, it is impossible to create a
system to perform distributed computing. However, the processing layer
of this model can be used if the service does not have a huge demand for
processing power.

In the PaaS model, the provider defines the programming languages and
the operating system that can be used; this is a limitation for general-purpose
scientific application development.

1.2.3 Infrastructure as a Service

The infrastructure-as-a-service (IaaS) model is the most flexible service
model of cloud computing. The model delivers raw computational resources
to the user, normally in the form of virtual machines (VMs). It is possible
to choose the size of the VM, defining the number of cores and the amount
of memory. The user can even choose the operating system and install any
desired software in the VM. The user can allocate any desired quantity of
VMs and build a complete parallel system. With this flexibility, it is possible
to use IaaS for applications that need a large amount of resources by the con-
figuration of a cluster in the cloud.

1.3 Cloud Implementation Models

The service models, presented in the previous section, can be delivered
using four different implementation models: private cloud, community
cloud, public cloud, and hybrid cloud. Each one has strong and weak points.
The four models can be used to build an e-science service, and they are
analyzed to present their main characteristics to help the user decide which
one to choose.

5Evaluation Criteria to Run Scientific Applications in the Cloud

1.3.1 Private Cloud

A private cloud is basically the same as owning and maintaining a tradi-
tional cluster, where the user has total control over the infrastructure and
can configure the machines according to need. One big issue in a private
scenario is the absence of instant scalability, as the capacity of execution
is limited to the physical hardware available. Moreover, the user needs to
have access to facilities to maintain the machines and is responsible for the
energy consumption of the system. Another disadvantage is the hardware
maintenance; for example, if a machine has physical problems, the user is
responsible for fixing or replacing it. A case for which the private cloud is
recommended is if the application uses confidential or restricted data; in this
 scenario, the access control to the data is guaranteed by the user’s policies.
The weakness of this model is the absence of elasticity and the need for up-
front costs. Building a private cloud for scientific applications can be consid-
ered the same as buying a cluster system.

1.3.2 Community Cloud

In a community cloud, the users are members of one organization, and this
organization has a set of resources that are connected to resources in other
organizations. A user from one of the organizations can use the resources
of all other organizations. The advantage of this model is the provision
of access to a large set of resources without charging because the remote
resources belong to other organizations that form the community and not
to a provider. In other words, the pay-per-use model may not be applicable
to this type of cloud. One disadvantage of the model is the limited number
of resources; they are limited to the number of machines that are part of the
community cloud. The interconnection between all the members constitutes
a bottleneck for the application’s execution. If the application needs more
machines than are available in single site (a single member), the machines
need to be allocated among two or more members.

All the community members need to use the same cloud platform; this
demands an effort to configure all the machines, and it is necessary to
have personnel to maintain the machines. The community model is recom-
mended for research groups that are geographically distributed and want to
share the resources among them.

1.3.3 Public Cloud

In a public cloud, the infrastructure is provided by a company, the provider.
The advantage in this case is the access to an unlimited number of computa-
tional resources, where the user can allocate and deallocate them according
to demand. The pay-per-use billing model is also an advantage because the
user has to spend money only while using the resources. Access to up-to-date

6 Cloud Computing with e-Science Applications

hardware without the up-front costs and the absence of maintenance costs
complete the list of advantages of the public model. The main disadvan-
tages relate to data privacy because, in this model, the underlying hardware
belongs to a provider, and all the maintenance procedures are made by the
provider’s personnel. The data privacy issue can be addressed by a contract
regarding data access, but for certain types of users, such as banks, this is
insufficient. The user has access to virtualized hardware controlled by a
hypervisor and does not have control over the underlying resources, such
as physical machines and network infrastructure. In this model, the user
has access only to a virtual environment; sometimes, this can be insufficient.
Certain applications need specific hardware configurations to reach accept-
able performance levels, and these configurations cannot be made in a public
cloud environment. The recommended scenario to use this model is if the
user needs to execute an application during a limited time period, and this
is an advantage for an e-science service. Moreover, in case of an application
executing only a few hours a day, the user can allocate the machines, execute
the application, and deallocate the machines; the user just needs to pay for
the time used. Even if the application will run during almost the entire day,
without a predefined end date, it is necessary to determine the cost-benefit
ratio of using a public cloud instead of buying physical machines.

1.3.4 Hybrid Cloud

A hybrid cloud can be used to extend the computational power available
on a user-owned infrastructure with a connection to an external provider.
This model is recommended if the user needs to increase the capacity of
the user’s infrastructure without the acquisition of new hardware. The
main advantage of it is the instant access to computational power without
up-front costs. In certain scenarios, it is possible to configure the system to
allocate resources in the cloud automatically, with the system allocating and
 deallocating machines according to demand. This model is applicable if the
user already has a set of machines and needs to increase them temporarily,
for example, for a specific project.

The weakness of this model is related to data transfer because the local
cloud is connected to the public cloud through a remote connection, nor-
mally an Internet connection; in this case, the bandwidth is limited by this
connection. In an application that has a large amount of communication, the
connection between the user and provider will be the bottleneck and can
affect the overall performance. Another important issue is the cloud plat-
form used by the cloud provider. It is necessary that the user’s system use the
same platform, or at least a compatible one. This means that the user needs
to reconfigure all the local machines to follow the cloud model. The concerns
about data confidentiality are the same as in the public model.

7Evaluation Criteria to Run Scientific Applications in the Cloud

1.3.5 Summary of the Implementation Models

Summarizing the characteristics presented in this section, we can conclude
that all deployment models can be used to create high-performance comput-
ing (HPC) environments in the cloud. The appropriate model depends on the
needs of the user and the user’s available funds. All the models have advan-
tages and disadvantages, and it is clear that there is no ideal model for all the
usage scenarios. Table 1.1 summarizes the main advantage and dis advantage
of each cloud implementation model.

1.4 Considerations about Public Providers

The private and community models are well known by users due to their
similarity to clusters and grids. The hybrid and public models are really
new paradigms of computing. As the hybrid model is a combination of local
machines and a public provider, we can conclude that the new paradigm is
the public cloud. In the rest of this chapter, we perform an analysis of the
public cloud model.

When choosing a public cloud provider, the user needs to consider relevant
aspects of his service. Some of these concerns are explained here. However, the
user needs to perform an analysis of the necessary service level for his service.

1.4.1 Data Confidentiality

Data confidentiality is one of the main concerns regarding public cloud
providers. In addition, relevant aspects about data manipulation need to
be considered:

• Segregation: The provider needs to guarantee data segregation
between clients because most of them use shared resources. It is
necessary to ensure that the user’s data can only be accessed by
authorized users.

TABLE 1.1

Comparison of Implementation Models

Advantage Drawback

Private Privacy Scalability
Community Shared cost Scalability
Public Scalability Privacy
Hybrid Scalability Interconnection

8 Cloud Computing with e-Science Applications

• Recovery and backup procedures: The user needs to evaluate the
backup procedures of the provider. All the backup tapes need to be
encrypted to maintain data confidentiality. Also, the recovery pro-
cedures need to be well documented and tested on a regular basis.

• Transfer: It is necessary that the provider implements secure data
transfer between the user and provider. Also, standard transfer
mechanisms should be provided to the user to implement in the
user’s applications.

1.4.2 Administrative Concerns

Most of the administrative concerns need to be covered in the contract
between the user and the provider and need to be well described. It is neces-
sary to choose a provider with an adequate service-level agreement (SLA).
Normally, the SLA is standard for all the users, but in the case of special
needs, it is possible to negotiate with the provider. Also, the penalties if the
SLA is not correctly delivered can be added to the contract. In most cases,
changes in the standard SLA incur extra costs.

The provider must deliver a monitoring mechanism to the user to verify
system health and the capacity of its allocated resources. Reporting tools are
necessary to evaluate all the quality and usage levels.

The billing method is another important point of attention; it is necessary to
know how the provider charges the user. In many cases, the smallest unit to
charge a VM is 1 hour, even if it was used just for 5 minutes. Some providers
present costs related to data transfer to outside the cloud. The storage price
is another concern; some providers have free storage, up to a certain amount,
and others charge in different manners. All the costs incurred in the opera-
tion need to be known by the user and controlled by the provider.

The provider’s business continuity is also an aspect to take into account.
This is an administrative and technical concern. In the case of the provider’s
end of the business, it is necessary that the user have guaranteed access to his
or her own data. Also, the user needs the capability to move data to another
provider without much effort; this is an important interoperability aspect.

1.4.3 Performance

A typical public cloud computing environment is a hosted service available
on the Internet. The user needs to be continuously connected to the cloud
provider with the agreed speed, both for data transfer from and to the pro-
vider and for regular access to the provider’s cloud manager. The Internet
connection speed and availability are an issue even for performance and
reliability with a cloud computing service.

The major issues regarding performance in cloud computing is the virtu-
alization and network interconnection. If the hypervisor does not have good

9Evaluation Criteria to Run Scientific Applications in the Cloud

resource management, it is possible that the physical resources are under- or
overused. In this case, a user can allocate a VM instance of a certain size
and when the VM is moved to other resources of the provider’s infrastruc-
ture, the processing performance decreases or increases. Also, the network
interconnection of the VM is a concern; as the network resources are pooled
among all the users, the network performance is not guaranteed. This is an
important topic for applications that use a large number of instances.

1.5 Evaluation Criteria

To provide a comprehensive evaluation of cloud computing as an environ-
ment for e-science services, for both technical and economic criteria, it is
necessary to evaluate three aspects.

• Deployment: This aspect is related to the deployment capability
of providers to build e-science environments in the cloud and the
 capability to execute the workload.

• Performance: This is the performance evaluation of the cloud com-
pared to a traditional machine.

• Economic: The economic evaluation is performed to determine if it
is better to use a cloud or to buy regular machines.

The deployment capability of cloud computing relates to the configuration
procedures needed to create an environment for e-science. The setup proce-
dures to create, configure, and execute an application and then deallocate the
environment are important aspects of cloud computing in science. The charac-
teristics that should be evaluated are related to procedures and available tools
to configure the environment. Features related to network configuration, time
needed to create and configure VMs, and the hardware and software flexibil-
ity are also important. Criteria related to configuration procedures defined in
our study are the following:

• Setup procedures: They consist of the user procedures to create and
configure the environment in the cloud provider.

• Hardware and software configurations: These configurations are
the available VMs size (number of cores and memory) and the capa-
bility to run different operating systems.

• Network: This criterion is related to the features offered by the pro-
vider to user access, as well as the interconnection between the VMs
in the cloud.

10 Cloud Computing with e-Science Applications

• Application porting procedures: This consists of the adaptation
that needs to be performed in the application for it to be executed
in the cloud. The evaluation covers changes in both the source code
and the execution environment.

To evaluate the performance of the cloud, it is necessary to compare it with
a traditional system, which is a system whose performance the user knows
and will be used as the basis for comparison. For a fair comparison, both the
base and cloud systems need to present similar characteristics, mainly the
number of cores of each system. The purpose is to have a direct comparison
between a known system, the base system, and a new system, the cloud.

1.6 Analysis of Cloud Providers

1.6.1 Amazon Web Services

Amazon web services are one of the most widely known cloud providers.
Many different kinds of services are offered, including storage, platform, and
hosting services. Two of the most-used services of Amazon are the Amazon
Elastic Compute Cloud (EC2) and Amazon Simple Storage Service (S3).

Amazon EC2 is an IaaS model and may be considered the central part of
Amazon’s cloud platform. It was designed to make web scaling easier for
users. The interaction with the user is done through a web interface that
permits obtaining and configuring any desired computing capacity with
little difficulty. Amazon EC2 does not use regular configurations for the cen-
tral processing unit (CPU) of instances available. Instead, it uses an abstrac-
tion called elastic compute units (ECUs). According to Amazon, each ECU
 provides the equivalent CPU capacity of a 1.0- to 1.2-GHz 2007 Opteron or
2007 Xeon processor. Amazon S3 is also an IaaS model and consists of a stor-
age solution for the Internet. It provides storage through web service inter-
faces, such as REST and SOAP. There is no particular defined format of the
stored objects; they are simple files. Inside the provider, the stored objects
are organized into buckets, which are an Amazon proprietary method. The
names of these buckets are chosen by the user, and they are accessible using
a hypertext transfer protocol (HTTP) uniform resource locator (URL), with
a regular web browser. This means that Amazon S3 can be easily used to
replace static web hosting infrastructure. One example of an Amazon S3
user is the Dropbox service, provided as SaaS for the final user, with the user
having a certain amount of storage in the cloud to store any desired file.

1.6.2 Rackspace

Rackspace was founded in 1998 as a typical hosting company with several
levels of user support. The company developed the cloud services offered

11Evaluation Criteria to Run Scientific Applications in the Cloud

during company growth, and in 2009 they launched the Cloud Servers, which
is a service of VMs and cloud files, an Internet-based service of storage.

The provider has data centers distributed in several regions: the United
States, Europe, Australia, and Hong Kong. It is one of the major contributors
of the Open Stack cloud project.

The product offered is the Open Cloud, which is an IaaS model. Several
computing instances are provided that the user can launch and manage
using a web-based control panel.

1.6.3 Microsoft Windows Azure

Microsoft started its initiative in cloud computing with the release of
Windows Azure in 2008, which initially was a PaaS to develop and run
applications written in the programming languages supported by the .NET
framework. Currently, the company owns products that cover all types of
service models. Online Services is a set of products that are provided as SaaS,
while Windows Azure provides both PaaS and IaaS.

Windows Azure PaaS is a platform developed to provide the user the
capability to develop and deploy a complete application into Microsoft’s
infrastructure. To have access to this service, the user needs to develop an
application following the provided framework.

The Azure framework has support for a wide range of programming
 languages, including all .NET languages, Python, Java, and PHP. A generic
framework is provided, in which the user can develop in any programming
language that is supported by the Windows operating system (OS).

Windows Azure IaaS is a service developed to provide the user access to
VMs running on Microsoft’s infrastructure. The user has a set of base images
of Windows and Linux OS, but other images can be created using Hyper-V.
The user can also configure an image directly into Azure and capture it to
use locally or to deploy to another provider that supports Hyper-V.

1.6.4 Google App Engine

Google App Engine (GAE) is a service that enables users to build and deploy
their web applications on Google’s infrastructure. The service model is PaaS,
and the users of it are commonly developers. The users need to develop their
application using the framework provided.

Currently, the languages supported are Python, Java, and Go. However,
the provider intends to include more languages in the future.

The user develops and deploys the application using some of the avail-
able tool kits, and all the execution is managed by Google’s staff. The
high-availability and location distribution are automatically defined. Google
is responsible for the elasticity, which is transparent to the user; this means
that if one application receives many requests, the provider increases the
resources, and the opposite also happens.

12 Cloud Computing with e-Science Applications

1.7 Cost Efficiency Evaluation

When the user decides to use a public cloud provider, it is necessary to
 calculate the cost efficiency [5] of this service and if it is better to use it or buy
a cluster. To determine this, two calculations can be used, the cost efficiency
factor and the break-even point [6].

1.7.1 Cost Efficiency Factor

To calculate the cost efficiency factor for different systems, two values are
required. The first one is the cost of the cloud systems. This cost, in the
great majority of cloud providers, is expressed as cost per hour. The sec-
ond value is the overhead factor. To determine this factor, it is necessary
to execute the same workload in all the candidate systems and in the base
system.

The overhead factor OF is the execution time in the candidate system ETCS
divided by the execution time in the base system ETBS. The following equa-
tion represents this calculation:

 O
ET
ET

F
CS

Bs
=

As an example, we want to compare a traditional server against a machine
in the cloud. We define that the traditional server is the base system. We
need to execute the same problem on both systems and then calculate the
overhead factor. Assuming that the server takes 30 minutes to calculate and
the cloud takes 60 minutes, applying the overhead factor equation, the result
is 2 for the cloud. As the traditional system is the base system, its overhead
factor is 1.

Using the overhead factor, it is possible to determine the cost efficiency
factor CEF. The cost efficiency factor is defined as the product between the
cost per hour CHC and the calculated overhead factor, resulting in the follow-
ing equation:

 CE C OF HC F= ×

For example, using the calculated overhead factor 2 and assuming a cost
per hour of $5.00 of a cloud machine, the resulting cost efficiency is $10.00
per hour. The cost efficiency gives the price to perform the same amount of
work in the target system that the base system performs in 1 hour because
the cost used in our equation is the cost per hour. If the result is less than
the cost per hour of the base system, the candidate system presents a higher
cost-benefit ratio than the base system. The cost efficiency factor also can

13Evaluation Criteria to Run Scientific Applications in the Cloud

be used to verify the scalability of the candidate system. If the number of
machines increases and the cost efficiency factor is constant, the candidate
system has the same scalability rate as the base system.

1.7.2 Break-Even Point

The break-even point, represented in Figure 1.2, represents the point at which
the cost to use both the base and the candidate systems is the same, on a
yearly basis. In a cloud computing environment, with its pay-per-use model,
this metric is important. It represents the number of days in a year when it
is cheaper to use a cloud instead of buying a server. Figure 1.2 represents
the break-even point and is represented by the vertical bold line. If the user
needs to use the system for fewer days than the break-even point (left side of
the line), it is better to use a cloud, but if the usage is higher, it is more cost
efficient to buy a server.

To calculate the break-even point, it is necessary to obtain the yearly cost
of the base system. The yearly cost BSYC represents the cost to maintain
the system during a year; it is composed of the acquisition cost Acq$ of the
machines themselves plus the maintenance costs Ymn$. To obtain the cost
of the machines on a yearly basis, it is necessary to determine the usable
 lifetime LT of the machine, normally 3 to 5 years. It is necessary to divide the
acquisition costs of the machines by the usage time; this calculation results
in the cost per year of the machines. In the yearly cost, it is also necessary
to include the maintenance, personnel, and facilities costs of the machines.
The following equation calculates the yearly cost:

 BS
Acq
LT

YmnYC = +$
$

Using this value and the cost efficiency factor, we can determine the
break-even point. The cost efficiency factor represents the cost on an hourly

Use a cloud Buy a server

Jan/1º Dec/31Break Even Point

FIGURE 1.2
Break-even point.

14 Cloud Computing with e-Science Applications

basis; to obtain the number of days, the yearly cost is divided by the cost
efficiency factor times 24. The following equation represents the break-even
point calculation:

 BEP
BS

CE
YC

F
=

× 24

where BEP represents the break-even point, BSYC represents the calculated
yearly cost of the base system, CEF represents the cost efficiency factor, and
24 is the number of hours in a day. The result of this equation is expressed
in number of days after which it becomes more cost efficient to use a server
cluster instead of a cloud. It is important to remember that the number of
days expressed by this equation is for continuous usage, 24 hours per day,
but real-world usage is normally less than that. In a practical approach, if the
server is used for fewer days per year than the break-even point, it is cheaper
to use the cloud instead.

1.8 Evaluation of Providers: A Practical Example

To provide a better understanding of the proposed methodology, we will
evaluate a hypothetical scenario. For this scenario, we need to execute the
weather forecast for a region on a daily basis; the application is already
developed in the Unix environment. Consider that we actually use a cluster
to execute the application; now, this cluster needs to be changed because the
supplier does not provide maintenance for it. We want to compare the acqui-
sition of a new cluster to a public cloud provider to verify which presents the
best solution in our case.

The first step is to verify if the application can be executed on both sys-
tems; because of the Unix execution model, it is compatible with the new
cluster and with the cloud since both have a compatible operating system.
The cloud provides adequate tools to create a cluster-like environment to
execute parallel applications, and the delivery procedures are performed
using standard network protocols, such as FTP (file transfer protocol). The
conclusion is that the application can be executed both on the new cluster
and in the cloud.

The second step is related to the performance of the solutions; it is neces-
sary to execute the same workload on both and then calculate the overhead,
in terms of execution time, of the solutions. The workload in our example is
the weather forecast application itself, with real input data, and we assume
the cluster as the base system and the cloud as the candidate system. The
execution time for the cluster was 4 hours (240 minutes), and the execution

15Evaluation Criteria to Run Scientific Applications in the Cloud

time for the cloud was 6 hours (360 minutes). Applying the overhead factor
equation, we have the following result:

360
240

1 5= .

which means that the overhead factor to execute the same calculation in the
cloud, compared to the cluster, is 1.5. In other words, the time to execute
the same application with the same data in the cloud takes 50% more time
than the cluster. The weather forecast needs to be executed daily in less than
12 hours; therefore, both solutions present adequate execution time.

The third and final step is related to the economic evaluation of both
solutions. The first input for this calculation is the price of both solutions.
The acquisition cost of the cluster is $1.3 million, and it will be used dur-
ing its lifetime of 10 years. To maintain the cluster, it is necessary to con-
tract a maintenance specialist for $3,000 per month, or $36,000 per year.
Moreover, the energy consumption of this system is $1,000 per month or
$12,000 per year. With all these costs, we can use the yearly cost equation;
the results are

$, ,

$, $,
1 300 000

10
48 000 178 000+ =

This result means that the cost per year with the cluster is $178,000; this
value will be used in the break-even point assessment. Another component
of the break-even point is the cost efficiency factor, assuming a cost per hour
of $50.00 for the cloud machine. Using the calculated overhead factor of 1.5,
the resulting cost efficiency factor for the cloud is 75.00 ($/hour). Using both
the yearly cost and the cost efficiency factor, we can determine the break-
even point with the following calculation:

178 000
75 24

98 88
,

.
×

= ()days

but this result is related to full usage for 24 hours a day. The real usage of
the cloud will be 6 hours a day, which is the time required to perform the
weather forecast for our city. Then, we can adjust the break-even point calcu-
lation for 6 hours; the new result is

178 000
75 6

395 55
,

.
×

= ()days

This result is interpreted to mean that the number of days when the cloud
has a better cost-benefit ratio than the cluster is 395 days in a year. We can
conclude that the use of a cloud instead of a cluster is cheaper.

16 Cloud Computing with e-Science Applications

1.9 Conclusions

In the discussion in this chapter, with the focus on economic viability, we can
conclude that the cloud computing model is a competitive alternative to be used
for e-science applications. The recommended configuration is the public imple-
mentation model, by which the user pays according to the use of the application.

Moreover, due to the cost efficiency evaluation model presented, it is pos-
sible to determine when using a cloud is better in terms of cost-benefit ratio
than to buy a physical server. This metric can be used during the decision
process regarding which platform will be used to create the e-science service.

References

 1. C. Ward, N. Aravamudan, K. Bhattacharya, K. Cheng, R. Filepp, R. Kearney,
B. Peterson, L. Shwartz, and C. Young. Workload migration into clouds—
challenges, experiences, opportunities. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, July 2010, pp. 164–171.

 2. W. Lu, J. Jackson, and R. Barga. Azureblast: a case study of developing science
applications on the cloud. In Proceedings of the 19th ACM International Symposium
on High Performance Distributed Computing, ser. HPDC ’10. New York: ACM, 2010,
pp. 413–420.

 3. P. Mell and T. Grance. The NIST Definition of Cloud Computing. Tech. Rep.
2011. http://www.mendeley.com/research/the-nist-definition-about-cloud-
computing/.

 4. E. Roloff, F. Birck, M. Diener, A. Carissimi, and P. O. A. Navaux. Evaluating high
performance computing on the Windows Azure platform. In Proceedings of the
2012 IEEE 5th International Conference on Cloud Computing (CLOUD 2012), 2012,
pp. 803–810.

 5. D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. Anderson. Cost-benefit
 analysis of cloud computing versus desktop grids. In Parallel Distributed Process-
ing, 2009. IPDPS 2009. IEEE International Symposium on, May 2009, pp. 1–12.

 6. E. Roloff, M. Diener, A. Carissimi, and P. O. A. Navaux. High performance com-
puting in the cloud: deployment, performance and cost efficiency. In Proceedings
of the 2012 IEEE 4th International Conference on Cloud Computing Technology and
Science (CLOUDCOM), 2012, pp. 371–378.

17

2
Cloud-Based Infrastructure for
Data-Intensive e-Science Applications:
Requirements and Architecture

Yuri Demchenko, Canh Ngo, Paola Grosso,
Cees de Laat, and Peter Membrey

CONTENTS

Summary .. 18
2.1 Introduction .. 18
2.2 Big Data Definition .. 20

2.2.1 Big Data in e-Science, Industry, and Other Domains 20
2.2.2 The Big Data Definition .. 21
2.2.3 Five Vs of Big Data ... 21

2.2.3.1 Volume .. 21
2.2.3.2 Velocity ...23
2.2.3.3 Variety ...23
2.2.3.4 Value ..23
2.2.3.5 Veracity ... 24

2.3 Research Infrastructures and Infrastructure Requirements 24
2.3.1 Paradigm Change in Modern e-Science 24
2.3.2 Research Communities and Specific SDI Requirements 26
2.3.3 General SDI Requirements ... 27

2.4 Scientific Data Management ... 27
2.4.1 Scientific Information and Data in Modern e-Science................ 27
2.4.2 Data Life Cycle Management in Scientific Research 29

2.5 Scientific Data Infrastructure Architecture Model 31
2.6 Cloud-Based Infrastructure Services for SDI ..33
2.7 Security Infrastructure for Big Data ...34

2.7.1 Security and Trust in Cloud-Based Infrastructure34
2.7.2 General Requirements for a Federated Access Control

Infrastructure ...35
2.8 Summary and Future Development ...36
References ... 37

18 Cloud Computing with e-Science Applications

Summary

This chapter discusses the challenges that are imposed by big data on the
modern and future e-scientific data infrastructure (SDI). The chapter dis-
cusses the nature and definition of big data, including such characteristics
as volume, velocity, variety, value, and veracity. The chapter refers to dif-
ferent scientific communities to define requirements on data management,
access control, and security. The chapter introduces the scientific data life
cycle management (SDLM) model, which includes all the major stages and
reflects specifics in data management in modern e-science. The chapter
 proposes the generic SDI architectural model that provides a basis for build-
ing inter operable data or project-centric SDI using modern technologies and
best practices. The chapter discusses how the proposed models SDLM and
SDI can be naturally implemented using modern cloud-based infrastructure
 services and analyses security and trust issues in cloud-based infrastructure
and summarizes requirements to access control and access control infra-
structure that should allow secure and trusted operation and use of the SDI.

2.1 Introduction

The emergence of data-intensive science is a result of modern science comput-
erization and an increasing range of observations, experimental data collected
from specialist scientific instruments, sensors, and simulation in every field
of science. Modern science requires wide and cross-border research collabo-
ration. The e-science scientific data infrastructure (SDI) needs to provide an
environment capable of both dealing with the ever-increasing heterogeneous
data production and providing a trusted collaborative environment for dis-
tributed groups of researchers and scientists. In addition, SDI needs on the
one hand to provide access to existing scientific information, including that
in libraries, journals, data sets, and specialist scientific databases and on the
other hand to provide linking between experimental data and publications.

Industry is also experiencing wide and deep technology refactoring to
become data intensive and data powered. Cross-fertilization between emerg-
ing data-intensive/-driven e-science and industry will bring new data-intensive
technologies that will drive new data-intensive/-powered applications.

Further successful technology development will require the definition of
the SDI and overall architecture framework of data-intensive science. This
will provide a common vocabulary and allow concise technology evaluation
and planning for specific applications and collaborative projects or groups.

Big data technologies are becoming a current focus and a new “ buzzword”
both in science and in industry. Emergence of big data or data-centric

19Cloud-Based Infrastructure for Data-Intensive e-Science Applications

technologies indicates the beginning of a new form of continuous technology
advancement that is characterized by overlapping technology waves related
to different aspects of human activity from production and consumption to
collaboration and general social activity. In this context, data-intensive science
plays a key role.

Big data are becoming related to almost all aspects of human activity, from
just recording events to research, design, production, and digital services or
products delivery, to the final consumer. Current technologies, such as cloud
computing and ubiquitous network connectivity, provide a platform for auto-
mation of all processes in data collection, storing, processing, and visualization.

Modern e-science infrastructures allow targeting new large-scale problems
whose solution was not possible previously (e.g., genome, climate, global
warming). e-Science typically produces a huge amount of data that need to be
supported by a new type of e-infrastructure capable of storing, distributing,
processing, preserving, and curating these data [1, 2]: We refer to these new
infrastructures as the SDI.

In e-science, the scientific data are complex multifaceted objects with com-
plex internal relations. They are becoming an infrastructure of their own
and need to be supported by corresponding physical or logical infrastruc-
tures to store, access, process, visualize, and manage these data.

The emerging SDI should allow different groups of researchers to work
on the same data sets, build their own (virtual) research and collaborative
environ ments, safely store intermediate results, and later share the discov-
ered results. New data provenance, security, and access control mechanisms
and tools should allow researchers to link their scientific results with the
initial data (sets) and intermediate data to allow future reuse/repurposing of
data (e.g., with the improved research technique and tools).

This chapter analyzes new challenges imposed on modern e-science infra-
structures by the emerging big data technologies; it proposes a general
approach and architecture solutions that constitute a new scientific data life
cycle management (SDLM) model and the generic SDI architecture model
that provides a basis for heterogeneous SDI component interoperability and
integration, in particular based on cloud infrastructure technologies.

The chapter is primarily focused on SDI; however, it provides analysis of
the nature of big data in e-science, industry, and other domains; analyses their
commonalities and differences; and discusses possible cross-fertilization
between two domains.

The chapter refers to ongoing research on defining the big data infrastruc-
ture for e-science initially presented elsewhere [3, 4] and significantly extends
it with new results and a wider scope to investigate relations between big data
technologies in e-science and industry. With a long tradition of working with
a constantly increasing volume of data, modern science can offer industry
scientific analysis methods, while industry can bring big data technologies
and tools to wider public access.

20 Cloud Computing with e-Science Applications

The chapter is organized as follows: Section 2.2 looks into the definition
and nature of big data in e-science, industry, business, and social networks,
also analyzing the main drivers for big data technology development.
Section 2.3 gives an overview of the main research communities and sum-
marizes requirements for future SDI. Section 2.4 discusses challenges to data
management in big data science, including a discussion of SDLM. Section 2.5
introduces the proposed e-SDI architecture model that is intended to answer
the future big data challenges and requirements. Section 2.6 discusses SDI
implementation using cloud technologies. Section 2.6 discusses security and
trust-related issues in handling data and summarizes specific requirements
to access the control infrastructure for modern and future SDIs.

2.2 Big Data Definition

2.2.1 Big Data in e-Science, Industry, and Other Domains

Science traditionally has dealt with challenges to handle large volumes of
data in complex scientific research experiments. Scientific research typically
includes a collection of data in passive observation or active experiments
that aim to verify one or another scientific hypotheses. Scientific research
and discovery methods typically are based on the initial hypothesis and a
model that can be refined based on the collected data. The refined model
may lead to a new, more advanced and precise experiment or reevaluation of
the previous data. Another distinctive feature of modern scientific research
is that it suggests wide cooperation between researchers to challenge com-
plex problems and run complex scientific instruments.

In industry, private companies will not share data or expertise. When
dealing with data, companies will always intend to keep control over their
information assets. They may use shared third-party facilities, like clouds,
but special measures need to be taken to ensure data protection, including
data sanitization. Also, companies might use shared facilities only for proof
of concept and do production data processing at private facilities. In this
respect, we need to accept that science and industry cannot be done in the
same way; consequently, this will be reflected in how they can interact and
how the big data infrastructure and tools can be built.

With the proliferation of digital technologies into all aspects of business
activities and emerging big data technologies, the industry is entering a
new playing field when it needs to use scientific methods to benefit from
the possibility of collecting and mining data for desirable information, such
as market prediction, customer behavior predictions, social groups activity
predictions, and so on.

21Cloud-Based Infrastructure for Data-Intensive e-Science Applications

A number of discussions and blog articles [5–7] suggested that the big
data technologies need to adopt scientific discovery methods that include
iterative model improvement and collection of improved data and reuse of
 collected data with an improved model.

According to a blog article by Mike Gualtieri from Forrester [7]: “Firms
increasingly realize that [big data] must use predictive and descriptive ana-
lytics to find nonobvious information to discover value in the data. Advanced
analytics uses advanced statistical, data mining and machine learning algo-
rithms to dig deeper to find patterns that you can’t see using traditional BI
tools, simple queries, or rules.”

2.2.2 The Big Data Definition

Despite the fact that the term big data has become a new buzzword, there is
no consistent definition for big data or detailed analysis of this new emerg-
ing technology. Most discussions until now have been in the blogosphere,
where the most significant big data characteristics have been identified and
been commonly accepted [8–10]. In this section, we summarize available
definitions and propose a consolidated view of the generic big data features
that would help us define requirements to support big data infrastructure,
particularly the SDI.

As a starting point, we can refer to a simple definition [9]: “Big Data: a mas-
sive volume of both structured and unstructured data that is so large that
it’s difficult to process using traditional database and software techniques.”
A related definition of the data-intensive science is given in the book The Fourth
Paradigm: Data-Intensive Scientific Discovery by the computer scientist Jim Gray
[10]: “The techniques and technologies for such data-intensive science are so
different that it is worth distinguishing data-intensive science from compu-
tational science as a new, fourth paradigm for scientific exploration” (p. xix).

2.2.3 Five Vs of Big Data

In a number of discussions and articles, big data are attributed to have such
native generic characteristics as volume, velocity, and variety, also referred
to as the “3 Vs of big data.” After being stored and entered into the process-
ing stages or workflow, big data acquire new properties, value and veracity,
which together constitute the five Vs of big data: volume, velocity, variety,
value, and veracity [4]. Figure 2.1 illustrates the features related to the 5 Vs,
which are analyzed next.

2.2.3.1 Volume

Volume is the most important and distinctive feature of big data that
imposes additional and specific requirements for all traditional technologies

22 Cloud Computing with e-Science Applications

and tools currently used. In e-science, growth of the data amount is caused
by advancements in both scientific instruments and SDI. In many areas, the
trend is actually to include data collections from all observed events, activi-
ties, and sensors, which became possible and is important for social activities
and social sciences.

Big Data volume includes such features as size, scale, amount, and dimen-
sion for tera- and exascale data recording either data-rich processes or data
collected from many transactions and stored in individual files or databases.
All need to be accessible, searchable, processed, and manageable.

Two examples from e-science also provide different characteristics of data
and different processing requirements:

• The Large Hadron Collider (LHC) [11, 12] produces on average 5 PB
(petabytes) of data a month that are generated in a number of short
collisions that make them unique events. The collected data are
 filtered, stored, and extensively searched for single events that may
confirm a scientific hypothesis.

• The LOFAR (Low-Frequency Array) [13] is a radio telescope that
 collects about 5 PB every hour; however, the data are processed by a
correlator, and only correlated data are stored.

In industry, global services providers such as Google [14], Facebook [15],
and Twitter [16] are producing, analyzing, and storing data in huge amounts

Streams

Hypothetical

Accountability
Availability
Origin, Reputation
Authenticity
Trustworthiness

Probabilistic

Unstructured
Structured

Variety

Veracity

5 Vs of
Big Data

Value

VelocityVolume

Tables, Files
Transactions
Records/Arch
Terabytes

Multi-factor Correlations
Events
Statistical

Processes
Real/near-time
Batch

FIGURE 2.1
Five Vs of big data.

23Cloud-Based Infrastructure for Data-Intensive e-Science Applications

as regular activity/production services. Although some of their tools and
processes are proprietary, they actually prove the feasibility of solving big
data problems at the global scale and significantly push the development of
the Open Source big data tools.

2.2.3.2 Velocity

Big data are often generated at high speed, including data generated by
arrays of sensors or multiple events; these data need to be processed in
real time or near real time, in a batch, or as streams (e.g., for visualization).
As an example, the LHC ATLAS detector [12] uses about 80 readout channels
and collects up to 1 PB of unfiltered data per second, which are reduced to
approximately 100 MB per second. This should record up to 40 million colli-
sion events per second.

Industry can also provide numerous examples when data registration,
processing, or visualization imposes similar challenges.

2.2.3.3 Variety

Variety deals with the complexity of big data and information and seman-
tic models behind these data. This results in data collected as structured,
unstructured, semistructured, and mixed data. Data variety imposes new
requirements for data storage and database design, which should have
dynamic adaptation to the data format, particularly scaling up and down.

Biodiversity research [17] provides a good example of the data variety that
is a result of the collection and processing of information from a wide range
of sources and the relation of the collected information to species popula-
tion, genomic data, climate, satellite information, and more. Another example
can be urban environment monitoring (also called “smart cities” [18]), which
requires operating, monitoring, and evolving numerous processes, individuals,
and associations.

Adopting data technologies in traditionally non-computer-oriented areas
such as psychology and behavior research, history, and archeology will gen-
erate especially rich data sets.

2.2.3.4 Value

Value is an important feature of the data that is defined by the added
value that the collected data can bring to the intended process, activity, or
 predictive analysis/hypothesis. Data value will depend on the events or
 processes the data represent, such as processes that are stochastic, probabi-
listic, regular, or random. Depending on this, requirements may be imposed
to collect all data, store the data for a longer period (for some possible event
of interest), and so on. In this respect, data value is closely related to the
data volume and variety. The stock exchange financial data provide a good

24 Cloud Computing with e-Science Applications

example of high-volume data that have high value for real-time market trend
 monitoring, but decreasing value with time and market volatility [19].

2.2.3.5 Veracity

The veracity dimension of big data includes two aspects: data consistency
(or certainty), which can be defined by statistical reliability of the data, and
data trustworthiness, which is defined by a number of factors, among them
data origin and collection and processing methods, including trusted infra-
structure and facility.

Big data veracity ensures that the data used are trusted, authentic, and pro-
tected from unauthorized access and modification. The data must be secured
during their whole life cycle, from collection from trusted sources to pro-
cessing on trusted computing facilities and storage on protected and trusted
storage facilities.

The following aspects define and need to be addressed to ensure data veracity:

• Integrity of data and linked data (e.g., for complex hierarchical data,
distributed data)

• Data authenticity and (trusted) origin
• Identification of both data and source
• Computer and storage platform trustworthiness
• Availability and timeliness
• Accountability and reputation

Data veracity relies entirely on the security infrastructure deployed and
available from the big data infrastructure [20].

2.3 Research Infrastructures and Infrastructure Requirements

This section refers to and provides a short overview of different scientific
communities, in particular as defined by the European Research Area (ERA)
[21], to define requirements for the infrastructure facility, data-processing and
management functionalities, user management, access control, and security.

2.3.1 Paradigm Change in Modern e-Science

Modern e-science is moving to the data-intensive technologies that are
becoming a new technology driver and require rethinking a number of
infrastructure architecture and operational models, components, solutions,
and processes to address the following general challenges [2, 4]:

25Cloud-Based Infrastructure for Data-Intensive e-Science Applications

• Exponential growth of data volume produced by different research
instruments or collected from sensors

• Need to consolidate e-infrastructures as persistent research platforms
to ensure research continuity and cross-disciplinary collaboration,
deliver/offer persistent services, with an adequate governance model

The recent advancements in the general computer and big data technolo-
gies facilitate the paradigm change in modern e-science that is characterized
by the following features:

• Automation of all e-science processes, including data collection,
 storing, classification, indexing, and other components of the general
data curation and provenance

• Transformation of all processes, events, and products into digital form
by means of multidimensional, multifaceted measurements, moni-
toring, and control; digitizing existing artifacts and other content

• Possibility of reusing the initial and published research data with
possible data repurposing for secondary research

• Global data availability and access over the network for a cooperative
group of researchers, including wide public access to scientific data

• Existence of necessary infrastructure components and management
tools that allow fast infrastructures and services composition, adap-
tation and provisioning on demand for specific research projects
and tasks

• Advanced security and access control technologies that ensure
secure operation of the complex research infrastructures and scien-
tific instruments and allow creating a trusted secure environment
for cooperating groups and individual researchers

The future SDI should support the whole data life cycle and explore the
benefit of data storage/preservation, aggregation, and provenance on a large
scale and during long or unlimited periods of time. It is important that this
infrastructure ensure data security (integrity, confidentiality, availability,
and accountability) and data ownership protection. With current needs to
process big data that require powerful computation, there should be a pos-
sibility of enforcing data/data set policy so that they can be processed on
trusted systems or comply with other requirements. Researchers must trust
the SDI to process their data on SDI facilities and be assured that their stored
research data are protected from nonauthorized access. Privacy issues also
arise from the distributed remote character of SDI, which can span multiple
countries with different local policies. This should be provided by the cor-
responding access control and accounting infrastructure (ACAI), which is an
important component of SDI [20, 22].

26 Cloud Computing with e-Science Applications

2.3.2 Research Communities and Specific SDI Requirements

A short overview of some research infrastructures and communities, par-
ticularly the ones defined for the ERA [21], allows a better understanding
of specific requirements for the future SDIs that are capable of addressing
big data challenges. Existing studies of European e-infrastructures analyzed
the scientific communities’ practices and requirements; examples of these
 studies are those undertaken by the SIENA Project [23], EIROforum Federated
Identity Management Workshop [24], European Grid Infrastructure (EGI)
Strategy Report [25], and UK Future Internet Strategy Group Report [26].

The high-energy physics (HEP) community represents a large number of
researchers, unique expensive instruments, and a huge amount of data that
are generated and need to be processed continuously. This community already
has the operational Worldwide LHC Computing Grid (WLCG) [11] infrastruc-
ture to manage and access data, protect their integrity, and support the whole
scientific data life cycle. WLCG development was an important step in the
evolution of European e-infrastructures that currently serve multiple scientific
communities in Europe and internationally. The EGI cooperation [27] man-
ages European and worldwide infrastructure for HEP and other communities.

Material science and analytical and low-energy physics (proton, neutron,
laser facilities) are characterized by short projects and experiments and con-
sequently a highly dynamic user community. A highly dynamic supporting
infrastructure and advanced data management infrastructure to allow wide
data access and distributed processing are needed.

The environmental and earth science community and projects target
regional or national and global problems. Huge amounts of data are collected
from land, sea, air, and space and require an ever-increasing amount of stor-
age and computing power. This SDI requires reliable fine-grained access
control to huge data sets, enforcement of regional issues, and policy-based
data filtering (data may contain national security-related information) while
tracking data use and maintaining data integrity.

Biological and medical sciences (also defined as life sciences) have a gen-
eral focus on health, drug development, new species identification, and new
instrument development. They generate a massive amount of data and new
demands for computing power, storage capacity, and network performance
for distributed processes, data sharing, and collaboration. Biomedical data
(health care, clinical case data) are privacy-sensitive data and must be han-
dled according to the European policy on processing of personal data [27].

Biodiversity research [17] involves research data and research specialists
from at least biology and environmental research and may include data about
climate, weather, and satellite observation. This primarily presents chal-
lenges for not only integrating different sources of information with different
data models and processing a huge amount of collected information but also
may require fast data processing in case of natural disasters. The projects
LifeWatch [28] and ENVRI (Common Operations of Environmental Research

27Cloud-Based Infrastructure for Data-Intensive e-Science Applications

Infrastructure) [29] present good examples of which research approaches and
what kind of data are used.

Social science and humanities communities and projects are characterized
by multilateral and often global collaborations between researchers who
need to be engaged into collaborative groups or communities and supported
by collaborative infrastructure to share data and discovery/research results
and cooperatively evaluate results. The current trend to digitize all currently
collected physical artifacts will create in the near future a huge amount of
data that must be widely and openly accessible.

2.3.3 General SDI Requirements

From the overview, we can extract the following general infrastructure
requirements for SDI for emerging big data science:

• Support for long-running experiments and a large volume of hetero-
geneous data generated at high speed

• On-demand infrastructure provisioning to support data sets and
 scientific workflows and mobility of data-centric scientific applications

• Provision of high-performance computing facilities to allow com-
plex data analytics with evolving research models

• Support for distributed and mobile sensor networks for observation
data collection and advance information visualization

• Support for virtual scientists’ communities, addressing dynamic user
groups creation and management, federated identity management

• Support for the whole data life cycle management, particularly advanced
data provenance, data archiving, and consistent data identification

• Multitier interlinked data distribution and replication
• Provision of a trusted environment for data storage and processing
• Support for data integrity, confidentiality, accountability
• Policy binding to data to protect privacy, confidentiality, and intel-

lectual property rights (IPR)

2.4 Scientific Data Management

2.4.1 Scientific Information and Data in Modern e-Science

Emergence of computer-aided research methods is transforming the way
research is done and scientific data are used. The following types of sci-
entific data are defined and illustrated in a form of scientific data pyramid
(see Figure 2.2) [22]:

28 Cloud Computing with e-Science Applications

• Raw data collected from observations and from experiments (what
actually is done according to an initial research model or hypothesis).

• Structured data and data sets that went through data filtering and pro-
cessing (supporting some particular formal model, which is typically
refined from the initial model). These data are already stored in repos-
itories and may be shared with collaborative groups of researchers.

• Published data that support one or another scientific hypothesis,
research result, or statement. These data are typically linked to sci-
entific publications as supplemental materials; they may be located
on the publisher’s platform or authors’ institution platform and have
open or licensed access.

• Data linked and embedded into publications to support wide
research consolidation, integration, and openness.

Once the data are published, it is essential to allow other scientists to be
able to validate and reproduce the data in which they are interested and
possibly contribute new results. Capturing information about the processes
involved in transformation from raw data until the generation of published
data becomes an important aspect of scientific data management. Scientific
data provenance becomes an issue that also needs to be taken into consider-
ation by SDI providers [30].

Another aspect to take into consideration is to guarantee reusability of pub-
lished data within the scientific community. Understanding the semantics of
the published data becomes an important issue to allow for reusability; this
traditionally has been done manually. However, as we anticipate an unprec-
edented scale of published data that will be generated in big data science,

Data
Identification
and Linking

Publications
and Linked

Data

Published Data

Structured Data

Raw Data

FIGURE 2.2
Scientific data pyramid.

29Cloud-Based Infrastructure for Data-Intensive e-Science Applications

attaching a clear data semantic becomes a necessary condition for efficient
reuse of published data. Learning from best practices in the semantic web
community on how to provide reusable published data will be one consider-
ation that will be addressed by SDI.

Big data are typically distributed both on the collection side and on the pro-
cessing/access side: Data need to be collected (sometimes in a time-sensitive
way or with other environmental attributes), distributed, or replicated.
Linking distributed data is one of the problems to be addressed by SDI.

The European Commission’s initiative to support open access to scientific
data from publicly funded projects suggests introduction of the following
mechanisms to allow linking publications and data [31]:

• PID: persistent data ID [32]
• ORCID: Open Researcher and Contributor Identifier [33].

2.4.2 Data Life Cycle Management in Scientific Research

e-Science enabled by computers and information technology (IT) allows
multipurpose data collection and use and advanced data processing. A pos-
sibility to store the initial data sets and all intermediate results will allow for
future data use, in particular data repurposing and secondary research, as
the technology and scientific methods develop.

Emergence of computer-aided research methods is transforming the way
research is performed and scientific data are processed or used. This is also
reflected in the changed SDLM shown in Figure 2.3 and discussed next.

We refer to the extensive study of the SDLM models [34]. The traditional
scientific data life cycle includes a number of stages (see Figure 2.3a):

• Research project or experiment planning

• Data collection

• Data integration and processing

• Research result publication

• Discussion, feedback
• Archiving (or discarding)

The new SDLM model requires data storage and preservation at all stages,
which should allow data reuse or repurposing and secondary research on
the processed data and published results. However, this is possible only if
the full data identification, cross-reference, and linkage are implemented
in the SDI. Data integrity, access control, and accountability must be sup-
ported during the entire data life cycle. Data curation is an important
component of the discussed SDLM and must also be done in a secure and
trustworthy way.

30 Cloud Computing with e-Science Applications

A
rc

hi
vi

ng
or

D
isc

ar
di

ng

D
isc

us
sio

n/
fe

ed
ba

ck

Pu
bl

ish
in

g
re

se
ar

ch
re

su
lts

D
at

a
In

te
gr

at
io

n
an

d
pr

oc
es

sin
g

Tr
ad

iti
on

al
 D

at
a L

ife
cy

cl
e M

od
el

D
at

a
co

lle
ct

io
n

Pr
oj

ec
t/

Ex
pe

rim
en

t
Pl

an
ni

ng

(a
)

Pr
oj

ec
t/

Ex
pe

rim
en

t
Pl

an
ni

ng

D
at

a
Re

-p
ur

po
se

D
at

a
di

sc
ov

er
y

Re
se

ar
ch

er

D
at

a C
ol

lec
tio

n
an

d
fil

te
rin

g
D

at
a a

na
ly

sisD
at

a a
rc

hi
vi

ng

D
at

a C
ur

at
io

n
(in

cl
ud

in
g

re
tir

em
en

t a
nd

 cl
ea

n
up

)

D
at

a R
e-

pu
rp

os
e

D
at

a
sh

ar
in

g/
D

at
a

pu
bl

ish
in

g

O
pe

n
Pu

bl
ic

U
se

En
d

of
 p

ro
je

ctD
at

a
ar

ch
iv

in
g

D
at

a
re

cy
cl

in
g

D
B

St
ru

ct
ur

ed
Sc

ie
nt

ifi
c

D
at

a

Ra
w

 D
at

a
Ex

pe
rim

en
ta

l
D

at
a

D
at

a l
in

ka
ge

to
 p

ap
er

(b
)

FI
G

U
R

E
2.

3
(a

) S
ci

en
ti

fic
 d

at
a

li
fe

 c
yc

le
 m

an
ag

em
en

t i
n

tr
ad

it
io

na
l s

ci
en

ce
. (

b)
 S

ci
en

ti
fic

 d
at

a
li

fe
 c

yc
le

 m
an

ag
em

en
t i

n
e-

sc
ie

nc
e.

31Cloud-Based Infrastructure for Data-Intensive e-Science Applications

The following support data security and access control to scientific data
during their life cycle: data acquisition (experimental data), initial data filter-
ing, specialist processing, research data storage and secondary data mining,
data and research information archiving.

2.5 Scientific Data Infrastructure Architecture Model

The proposed generic SDI architecture model provides a basis for building
interoperable data or project-centric SDI using modern technologies and
best practices. Figure 2.4 shows the multilayer SDI architecture for e-science
(e-SDI) that contains the following layers:

Layer D1: Network infrastructure layer represented by either the general-
purpose Internet infrastructure or dedicated network infrastructure

Layer D2: Data centers and computing resources/facilities
Layer D3: Infrastructure virtualization layer represented by the cloud/grid

infrastructure services and middleware supporting specialized scien-
tific platform deployment and operation

Network infrastructure

Compute
Resources

Shared Scientific Platform and Instruments
(specific for scientific area, also Grid based)

Cloud/Grid Infrastructure
Virtualization and Management
Middleware

O
pe

ra
tio

n
Su

pp
or

t a
nd

 M
an

ag
em

en
t S

er
vi

ce
 (O

SM
S)

Se
cu

rit
y a

nd
 A

A
I

M
et

ad
at

a a
nd

 L
ife

cy
cl

e M
an

ag
em

en
t

U
se

r
po

rt
al

s

Sc
ie

nt
ifi

c
Sc

ie
nt

ifi
c

Sc
ie

nt
ifi

c
Ap

pl
ic

Sc
ie

nt
ifi

c
D

at
as

et

Storage
Resources

Middleware
security

Layer B1
Network

Infrastructure

Layer B2
Datacenter and

Computing Facility

Layer B3
Infrastructure
Virtualisation

Layer B4
Scientific Platform
and Instruments

Layer B5
Access and

Delivery Layer

Layer B6
Scientific

Applications

Scientific/User Applications

Federated Access and Delivery Infrastructure (FADI)
Policy Management and collaborative Groups Support

Layers

FIGURE 2.4
The proposed SDI architecture model.

32 Cloud Computing with e-Science Applications

Layer D4: (Shared) scientific platforms and instruments specific for dif-
ferent research areas.

Layer D5: Access and delivery layer that represents the general Federated
Access and Delivery Infrastructure (FADI) that includes infrastruc-
ture components for interconnecting, integrating, and operating com-
plex scientific infrastructure to support project-oriented collaborative
groups of researchers

Layer D6: Scientific applications, subject-specific databases, and
user portals/clients

Note: The D prefix denotes the relation to the data infrastructure.
We also define the three cross-layer planes: operational support and man-

agement system, security plane, and metadata and life cycle management.
The dynamic character of SDI and its support of distributed multifaceted

communities are guaranteed by the following dedicated layers: D3, the infra-
structure virtualization layer that typically uses modern cloud technologies,
and D5, the FADI layer that incorporates related federated infrastructure
management and access technologies [21, 35, 36]. Introduction of the FADI
layer reflects current practices in building and managing complex SDIs (and
enterprise infrastructures) and allows independently managed infrastruc-
tures to share resources and support interorganizational cooperation.

Network infrastructure is presented as a separate lower layer in e-SDI, but
dedicated network infrastructure provisioning is also relevant to the FADI
layer. Network aspects in big data are becoming even more important than
for computer grids and clouds. We can identify two main challenges that big
data transport will impose on the underlying layer of the SDI:

• Timely delivery to bring all data where required with the smallest
possible latency

• Cost reduction to optimize the amount of network equipment
required (either via purchasing it or on a pay-per-use basis) without
scarifying the quality of service (QoS)

For many SDIs, the basic best-effort Internet is the only available network
transport architecture. In these cases, given the constraints imposed by this
shared medium, it will be difficult to fully provide the low latency and guar-
anteed delivery required for big data processing. Performance may be lower,
but it will be manageable. Fewer SDIs will rely on circuit-based networks, for
which the timely delivery of data will be guaranteed but the costs for operat-
ing or using the network path will be significantly higher.

We see a third possibility for dealing with big data at the lowest layer of the
SDI. Emerging protocols for network programmability (e.g., OpenFlow and
in general software-defined networks) provide interesting solutions. By fully
controlling the network equipment, both time and costs can be optimized.

33Cloud-Based Infrastructure for Data-Intensive e-Science Applications

Although the dilemma of moving data to computing facilities or moving
computing to the data location can be solved in some particular cases, process-
ing highly distributed data on MPP (massively parallel processing) infrastruc-
tures will require a special design of the internal MPP network infrastructure.

2.6 Cloud-Based Infrastructure Services for SDI

Figure 2.5 illustrates the typical e-science or enterprise collaborative infra-
structure that is created on demand and includes enterprise proprietary
and cloud-based computing and storage resources, instruments, control
and monitoring system, visualization system, and users represented by user
 clients and typically residing in real or virtual campuses. The main goal
of the enterprise or scientific infrastructure is to support the enterprise or
 scientific workflow and operational procedures related to process monitor-
ing and data processing. Cloud technologies simplify the building of such
infrastructure and provision it on demand. Figure 2.5 illustrates how an
example enterprise or scientific workflow can be mapped to cloud-based ser-
vices and later deployed and operated as an instant intercloud infrastructure.
It contains cloud infrastructure segments IaaS (infrastructure as a service)

Cloud laaS Provider

Resource/
Service

Provider

Resource/
Service

Provider

User
Group A

Campus A
Visuali-
zation

CE

User

Cloud PaaS Provider

Enterprise/Project-based
Intercloud Infrastructure

User
Group BCloud 2 PaaS

Campus BVisuali-
zation

Visual
Present

Data
Archive

Special
Proc 1

Special
Proc 2

Instrum.
Data

Input
Data

Enterprise/Scientific workflow

Storage
Data

Data
Filtering

User

VR7

VR6

VR5

VR4

VR2

VR1

VR3

CE

Cloud 1 laaS

FIGURE 2.5
From scientific workflow to cloud-based infrastructure.

34 Cloud Computing with e-Science Applications

(VR3–VR5) and PaaS (platform as a service) (VR6, VR7); separate virtualized
resources or services (VR1, VR2); two interacting campuses, A and B; and
interconnecting them to a network infrastructure that in many cases may
need to use dedicated network links for guaranteed performance.

Efficient operation of such infrastructure will require both overall infra-
structure management and individual services and infrastructure segments
to interact between themselves. This task is typically out of the scope of the
existing cloud service provider models but will be required to support per-
ceived benefits of the future cloud-based e-SDI. These topics are a subject for
us in other research on the intercloud architecture framework (ICAF) [37–39].
The ICAF provides a common basis for building adaptive and on-demand
provisioned multiprovider cloud-based infrastructure services.

Besides the general cloud-based infrastructure services (storage, compute,
infrastructure/virtual machine [VM] management), the following specific
applications and services are required to support big data and other data-centric
applications [40]:

• Cluster services
• Hadoop-related services and tools
• Specialist data analytics tools (logs, events, data mining, etc.)
• Databases/servers SQL, NoSQL
• MPP databases
• Big data management tools
• Registries, indexing/search, semantics, namespaces
• Security infrastructure (access control, policy enforcement, confi-

dentiality, trust, availability, privacy)
• Collaborative environment (groups management)

Big data analytics tools are currently offered by the major cloud services
providers, such as Amazon Elastic MapReduce and Dynamo [41], Microsoft
Azure HDInsight [42], IBM Big Data Analytics [43]. HPCC Systems by
LexisNexis [44], Scalable Hadoop, and data analytics tools services are
offered by a few companies that position themselves as big data companies,
such as Cloudera [45] and a few others [46].

2.7 Security Infrastructure for Big Data

2.7.1 Security and Trust in Cloud-Based Infrastructure

Ensuring data veracity in big data infrastructure and applications requires
deeper analysis of all factors affecting data security and trustworthiness

35Cloud-Based Infrastructure for Data-Intensive e-Science Applications

during their whole life cycle. Figure 2.6 illustrates the main actors and their
relations when processing data on a remote system. User or customer and
service provider are the two actors concerned with their own data and con-
tent security and each other’s system/platform trustworthiness: The user
wants to be sure that his or her data are secure when processed or stored on
the remote system.

Figure 2.6 illustrates the complexity of trust and security relations even
in a simple use case of the direct user/provider interaction. In clouds, data
security and the trust model need to be extended to a distributed, multi-
domain, and multiprovider environment. In the general case of a multi-
provider and multitenant e-science cooperative environment, the e-SDI
security infrastructure should support on-demand created and dynamically
configured user groups and associations, potentially reusing existing expe-
rience in managing virtual organizations (VOs) and VO-based access control
in computer grids [47, 48].

Data-centric security models, when used in a generically distributed and
multiprovider e-SDI environment, will require policy binding to data and a
fine-grained data access policy that should allow flexible policy definition
based on the semantic data model. Based on our experience, the XACML
(eXtensible Access Control Mark-up Language) policy language can provide
a good basis for such functionality [49, 50]. However, support of the data life
cycle and related provenance information will require additional research
in policy definition and underlying trust management models.

2.7.2 General Requirements for a Federated
Access Control Infrastructure

To support both secure data processing and project based collaboration
of researchers, the future SDI should be supported by a corresponding

Security

User Client
trusts provider’s
System/Platform

User Client/
System

User

Data

User Trust Domain A
Trust between

domains A and B Provider Trust Domain B
Data stored
in Provider
Domain

Platform/
System

Provider

Data

Application
(Operation)

Data stored at
user facilities

Trust(worthiness)

Data

FIGURE 2.6
Security and trust in data services and infrastructure.

36 Cloud Computing with e-Science Applications

Federated Access Control Infrastructure (FACI) that would ensure normal
infrastructure operation and assets and information protection and allow
user authentication and policy enforcement in the distributed multi-
organization environment. The future SDI should support the entire data life
cycle and explore the benefits of data storage/preservation, aggregation, and
provenance on a large scale and during a long or unlimited period of time;
accordingly, the future FACI should support all stages of the data life cycle,
including policy attachment to data to ensure persistency of the data policy
enforcement during continuous online and offline processes.

The required FACI should support the following features of the future SDI:

• Empower researchers (and garner their trust) to do their data pro-
cessing on shared facilities of large data centers with guaranteed
data and information security.

• Motivate/assure researchers that they can share or open their
research environment to other researchers by providing tools for
instantiation of customized preconfigured infrastructures to allow
other researchers to work with existing or their own data sets.

• Protect data policy, ownership, linkage (with other data sets and newly
produced scientific/research data) when providing (long term) data
archiving. Data preservation technologies should themselves ensure
data readability and accessibility with the changing technologies.

2.8 Summary and Future Development

The information presented in this chapter provides a snapshot of the
fast-developing big data and data analytics technologies that merge modern
e-science research methods and experience of dealing with the large-scale
problems, on one hand, and modern industry speed of technology develop-
ment and global scale of implementation and services availability on the
other. At this stage, we summarized and presented rethinking on some
widely used definitions related to big data; further research will require a
more formal approach and taxonomy of the general big data use cases in
both science and industry.

As a part of general infrastructure research, we will continue research on
the infrastructure issues in big data, targeting a more detailed and technol-
ogy-oriented definition of SDI and related security infrastructure definition.
Special attention will be given to defining the whole cycle of the provi-
sioning of SDI services on demand, specifically tailored to support instant
 scientific workflows using cloud IaaS and PaaS platforms. This research will
also be supported by development of the corresponding cloud architecture

37Cloud-Based Infrastructure for Data-Intensive e-Science Applications

framework and ICAF to support the big data e-science processes and infra-
structure operation. Particular focus will be made on the federated cloud
and intercloud service provisioning model.

Although the currently proposed SDLM definition has been accepted as
the European Commission Study recommendation [21], the further defini-
tion of the related metadata, procedures, and protocols as well as SDLM
extension to the general big data life cycle is required.

The research presented is planned to contribute to the two standardiza-
tion bodies related to the emerging big data technology with which authors
are actively involved: the Research Data Alliance (RDA) [51] and the recently
established NIST Big Data Working Group (NBD-WG) [52].

References

 1. Thanos, C. Global Research Data Infrastructures: towards a 10-year vision
for global research data infrastructures. Final Roadmap, March 2012. http://
www.grdi2020.eu/Repository/FileScaricati/6bdc07fb-b21d-4b90-81d4-
d909fdb96b87.pdf.

 2. Riding the wave: how Europe can gain from the rising tide of scientific data.
Final report of the High Level Expert Group on Scientific Data. October 2010.
http://cordis.europa.eu/fp7/ict/e-infrastructure/docs/hlg-sdi-report.pdf.

 3. Demchenko, Y., Z. Zhao, P. Grosso, A. Wibisono, and C. de Laat. Addressing
big data challenges for scientific data infrastructure. Presented at the 4th IEEE
Conference on Cloud Computing Technologies and Science (CloudCom2012),
December 3–6, 2012, Taipei, Taiwan.

 4. Demchenko, Y., P. Membrey, P. Grosso, and C. de Laat. Addressing big data
issues in scientific data infrastructure. Presented at the First International
Symposium on Big Data and Data Analytics in Collaboration (BDDAC 2013).
Part of the 2013 International Conference on Collaboration Technologies and
Systems (CTS 2013), May 20–24, 2013, San Diego, CA, USA.

 5. Reflections on Big Data, Data Science and Related Subjects. Blog by Irving
Wladawsky-Berger. http://blog.irvingwb.com/blog/2013/01/reflections-on-
big-data-data-science-and-related-subjects.html.

 6. Gantz, J., and D. Reinsel. Extracting value from chaos. IDC IVIEW. June 2011.
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-
chaos-ar.pdf.

 7. The Forrester Wave: Big Data Predictive Analytics Solutions, Q1 2013. Mike
Gualtieri, January 13, 2013. http://www.forrester.com/pimages/rws/reprints/
document/85601/oid/1-LTEQDI.

 8. Dumbill, E. What is big data? An introduction to the big data landscape. http://
strata.oreilly.com/2012/01/what-is-big-data.html.

 9. The Big Data Long Tail. Blog post by Jason Bloomberg on January 17, 2013.
http://www.devx.com/blog/the-big-data-long-tail.html.

38 Cloud Computing with e-Science Applications

 10. Hey, T., S. Tansley, and K. Tolle, eds. The Fourth Paradigm: Data-Intensive Scientific
Discovery. Microsoft Corporation, October 2009. http://research.microsoft.com/
en-us/collaboration/fourthparadigm/.

 11. Worldwide Large Hadron Collider Grid (WLCG). http://wlcg.web.cern.ch/.
 12. ATLAS Experiment. http://atlas.ch/.
 13. Low-Frequency Array (LOFAR). http://www.lofar.org/.
 14. Google BigQuery. https://cloud.google.com/products/big-query.
 15. Perry, T. S. The making of Facebook’s graph search. August 6, 2013. http://

spectrum.ieee.org/telecom/internet/the-making-of-facebooks-graph-search.
 16. Cole, J. How Twitter stores 250 million tweets a day using MySQL. December

19, 2011. http://highscalability.com/blog/2011/12/19/how-twitter-stores-250-
million-tweets-a-day-using-mysql.html.

 17. Biodiversity. http://www.globalissues.org/issue/169/biodiversity.
 18. Keys to Innovation—Integrated Solutions Enabling Seamless Multi modality for

End Users. European Innovation Partnership for Smart Cities and Communities.
http://www.eu-smartcities.eu/sites/all/files/SMP%20KI%20-%20Enabling%20
seamless%20multimodality%20for%20end%20users.pdf.

 19. Membrey, P., K. C. C. Chan, and Y. Demchenko. A disk based stream oriented
approach for storing big data. Presented at the First Inter national Symposium
on Big Data and Data Analytics in Collaboration (BDDAC 2013). Part of the
2013 Inter national Conference on Collaboration Technologies and Systems
(CTS 2013), May 20–24, 2013, San Diego, CA, USA.

 20. Demchenko, Y., P. Membrey, C. Ngo, C. de Laat, and D. Gordijenko. Big secu-
rity for big data: addressing security challenges for the big data infrastructure.
Proceedings of the Secure Data Management (SDM’13) Workshop. Part of
VLDB2013 Conference, August 26–30, 2013, Trento, Italy.

 21. European Research Area. http://ec.europa.eu/research/era/index_en.htm.
 22. European Union. A Study on Authentication and Authorisation Platforms for

Scientific Resources in Europe. Final Report. Internal identification SMART-Nr
2011/0056. Brussels: European Commission, 2012. http://cordis.europa.eu/
fp7/ict/e-infrastructure/docs/aaa-study-final-report.pdf.

 23. Federated Identity Management for Research Collaborations. Final version. Reference
CERN-OPEN-2012-006. https://cdsweb.cern.ch/record/1442597.

 24. SIENA European Roadmap on Grid and Cloud Standards for e-Science and Beyond. SIENA
Project report. http://www.sienainitiative.eu/Repository/Filescaricati/8ee3587a-
f255-4e5c-aed4-9c2dc7b626f6.pdf.

 25. Seeking new horizons: EGI’s role for 2020. http://www.egi.eu/blog/2012/03/09/
seeking_new_horizons_egis_role_for_2020.html.

 26. UK Future Internet Strategy Group. Future Internet Report. May 2011. https://
connect.innovateuk.org/c/document_library/get_file?folderId=861750&name
=DLFE-33761.pdf.

 27. European Data Protection Directive. http://ec.europa.eu/justice/data- protection/
index_en.htm.

 28. LifeWatch—e-Science European Infrastructure for Biodiversity and Ecosystem
Research. http://www.lifewatch.eu/.

 29. ENVRI, Common Operations of Environmental Research Infrastructure. http://
envri.eu/.

39Cloud-Based Infrastructure for Data-Intensive e-Science Applications

 30. Koopa, D., E. Santos, P. Mates, et al. A provenance-based infrastructure to sup-
port the life cycle of executable papers. Procedia Computer Science. 2011. http://
vgc.poly.edu/~juliana/pub/vistrails-executable-paper.pdf.

 31. European Commission. Open access: opportunities and challenges. European
Commission for UNESCO. http://ec.europa.eu/research/science-society/
document_library/pdf_06/open-access-handbook_en.pdf.

 32. OpenAIR—Open Access Infrastructure for Research in Europe. http://www.
openaire.eu/.

 33. Open Researcher and Contributor ID. http://about.orcid.org/.
 34. Data life cycle models and concepts. CEOS Version 1.2, 4 April 2012 [online]

http://wgiss.ceos.org/dsig/whitepapers/Data%20Lifecycle%20Models%20
and%20Concepts%20v12.docx.

 35. EGI Federated Cloud Task Force. http://www.egi.eu/infrastructure/cloud/
cloudtaskforce.html.

 36. eduGAIN—federated access to network services and applications. http://
www.edugain.org.

 37. Demchenko, Y., M. Makkes, R. Strijkers, C. Ngo, and C. de Laat. Intercloud archi-
tecture framework for heterogeneous multi-provider cloud based infrastruc-
ture services provisioning. International Journal of Next-Generation Computing
(IJNGC), 4(2), July 2013.

 38. Makkes, M., C. Ngo, Y. Demchenko, R. Strijkers, R. Meijer, and C. de Laat. Defining
intercloud federation framework for multi-provider cloud services integration.
Presented at the Fourth International Conference on Cloud Computing, GRIDs,
and Virtualization (Cloud Computing 2013), May 27–June 1, 2013, Valencia, Spain.

 39. Cloud Reference Framework. Internet draft, version 0.7. October 7, 2014 [online]
http://www.ietf.org/id/draft-khasnabish-cloud-reference-framework-07.txt.

 40. Turk, M. A chart of the big data ecosystem, take 2. 2012. http:// mattturck.
com/2012/10/15/a-chart-of-the-big-data-ecosystem-take-2/.

 41. Amazon Big Data. http://aws.amazon.com/big-data/.
 42. Microsoft Azure Big Data. http://www.windowsazure.com/en-us/home/

scenarios/big-data/.
 43. IBM Big Data Analytics. http://www-01.ibm.com/software/data/infosphere/

bigdata-analytics.html.
 44. Middleton, A. M. HPCC Systems: Introduction to HPCC (High Performance Computer

Cluster). LexisNexis Risk Solutions. May 24, 2011. http://cdn.hpccsystems.com/
whitepapers/wp_introduction_HPCC.pdf.

 45. Cloudera Impala Big Data Platform. http://www.cloudera.com/content/
cloudera/en/home.html.

 46. 10 hot big data startups to watch in 2013. January 10, 2013. http:// beautifuldata.
net/2013/01/10-hot-big-data-startups-to-watch-in-2013/.

 47. Demchenko, Y., L. Gommans, C. de Laat, M. Steenbakkers, V. Ciaschini, and
V. Venturi. VO-based dynamic security associations in collaborative grid enviro-
nment. Proceedings of the 2007 International Symposium on Collaborative
Technologies and Systems (CTS 2006), May 14–17, 2006, Las Vegas.

 48. Demchenko, Y., C. de Laat, O. Koeroo, and D. Groep. Re-thinking grid security
architecture. In Proceedings of IEEE Fourth eScience 2008 Conference, December
7–12, 2008, Indianapolis, IN, USA. Washington, DC: IEEE Computer Society, 2008,
pp. 79–86.

40 Cloud Computing with e-Science Applications

 49. Demchenko, Y., L. Gommans, and C. de Laat. Using SAML and XACML for
complex resource provisioning in grid based applications. In Proceedings of the
IEEE Workshop on Policies for Distributed Systems and Networks (POLICY
2007), Bologna, Italy, June 13–15, 2007.

 50. Demchenko, Y., C. M. Cristea, and C. de Laat. XACML policy profile for multi-
domain network resource provisioning and supporting authorisation infra-
structure. IEEE International Symposium on Policies for Distributed Systems
and Networks (POLICY 2009), July 20–22, 2009, London.

 51. Research Data Alliance (RDA). http://rd-alliance.org/.
 52. NIST Big Data Working Group (NBD-WG). http://bigdatawg.nist.gov/home.php.

41

3
Securing Cloud Data

Sushmita Ruj and Rajat Saxena

CONTENTS

Summary ..42
3.1 Introduction ..42

3.1.1 Organization of the Chapter ..43
3.2 Homomorphic Encryption for Secure Computation in the Cloud43

3.2.1 Paillier Homomorphic Encryption Scheme44
3.2.2 Bilinear Pairing ..45
3.2.3 Homomorphic Encryption Using Bilinear Pairings45
3.2.4 Fully Homomorphic Encryption ... 47

3.3 Fine-Grained Access Control ...47
3.3.1 Attribute-Based Encryption ...48
3.3.2 Ciphertext-Policy Attribute-Based Encryption 49
3.3.3 Distributed Access Control in Clouds .. 51

3.4 Data Auditing ...55
3.4.1 Provable Data Possession Techniques .. 57
3.4.2 Rank-Based Skip Lists ...58
3.4.3 Skip List Verification ...60
3.4.4 Bilinear Aggregate Signatures ... 61

3.4.4.1 BLS Signature Scheme .. 61
3.4.4.2 Aggregate Signature Scheme .. 61

3.4.5 Data Auditing Using Aggregate Signatures 62
3.4.6 Third-Party Auditing of Cloud Data ..63
3.4.7 Proof-of-Retrievability Schemes ..64

3.5 Conclusion and Future Work ... 67
3.5.1 Security in Mobile Clouds ..68
3.5.2 Distributed Data Auditing for Clouds ..68
3.5.3 Secure Multiparty Computation on Clouds68

References ...68

42 Cloud Computing with e-Science Applications

Summary

Clouds are increasingly being used to store personal and sensitive information
such as health records and important documents. We address the problem of
storing sensitive information in the cloud so that the cloud service provider
cannot tamper with the stored data. We present three problems: computing on
encrypted data, access control of stored data, and auditing techniques for integ-
rity verification. The first problem uses a cryptographic primitive called homo-
morphic encryption; the second problem uses attribute-based encryption (ABE),
and the third uses provable data possession (PDP) and proof of retrievability (PoR).
We survey recent results and discuss some open problems in this domain.

3.1 Introduction

Security is an important aspect of cloud computing because much informa-
tion is sensitive. For example, private clouds are increasingly being used
for storing medical records. There are also proposals for digitizing health
records and storing them in public clouds. This not only will enable patients
to access their information from anywhere in the world but also will enable
other patients to seek suggestions depending on their symptoms and
 diseases. The patient’s name and vital details can be hidden so that other
patients can access their records without knowing the identity of the patient.
This will benefit researchers, doctors, and other patients. Since health infor-
mation is sensitive, proper measures should be taken to secure the data.

Another area of interest is social networks. The data are stored in clouds
and can be accessed from anywhere using the Internet. With the growing
interest in Facebook, Twitter, LinkedIn, and other social and professional
networks, there is a need to protect the privacy of individuals. Privacy pro-
tection and access control are central to social networking. Security and
 privacy issues have been addressed [19, 21].

The following are the important security vulnerabilities in the cloud:

 1. Data theft or loss: The cloud servers are distrusted in terms of both
security and reliability. The cloud servers are prone to Byzantine
attacks, in which they might fail in arbitrary ways. The cloud ser-
vice provider (CSP) might also corrupt the data, sell data, or violate
service-level agreements (SLAs). Administration errors may cause
data loss during backup and restore and data migration.

 2. Privacy issues: The CSP must make sure that the customer’s personal
information is protected from other users.

 3. Infected application: Applications running on the cloud can be
 malicious and corrupt servers, user devices, and other applications.

43Securing Cloud Data

 4. Threats in virtualization: There are many inherent security issues
in virtualization. Since clouds make extensive use of virtualization
techniques, they are prone to vulnerabilities in virtualization.

 5. Cross-VM (virtual machine) attack via side channels: A cross-VM
attack exploits the multitenancy of the VM that enables VMs belong-
ing to different customers to coreside on the same physical device.

Thus, the cloud should provide:

 1. Availability: User data should be accessible from anywhere at any time.
 2. Reliability: User data should be backed up so that even in case of

failure, the data are available.
 3. Integrity: Data should be available to the user as is, without any

modification by the CSP or a malicious user.
 4. Confidentiality: The cloud provider should not be able to read or

modify data stored by the user.
 5. Privacy: A user’s data can be stored without knowing the actual

identity of the data.
 6. Accountability: The cloud should be accountable for any operation

(alteration or deletion) made on the data and should not be able to
refute the action.

3.1.1 Organization of the Chapter

In this chapter, we do not discuss virtualization security. We focus on
secure computing using homomorphic encryption, access control using
attribute-based encryption (ABE), and data auditing using provable data
possession (PDP) and proofs of retrievability (PoR). For each of these secu-
rity aspects, we first discuss the underlying cryptographic technique and
then present how it is used to ensure cloud data security. We then present
the state of the art. Section 3.2 presents homomorphic encryption for secure
computation; Section 3.3 presents access control techniques using ABE.
Data auditing is presented in Section 3.4. We conclude with some open prob-
lems in Section 3.5.

3.2 Homomorphic Encryption
for Secure Computation in the Cloud

The cloud is being increasingly used in scientific computation. In many
 situations, the computation can be on sensitive data. For example, two com-
peting companies, X and Y, have outsourced computation to the cloud.

44 Cloud Computing with e-Science Applications

The cloud must not be able to read the data from X and disclose the informa-
tion to Y. It is thus important to hide the data from the cloud, such that the
cloud operates on the encrypted data and returns the result without even
knowing what data were involved. To ensure that the cloud is not able to
read the data while performing computations on it, many homomorphic
 encryption techniques have been suggested [12, 33]. Using homomorphic
encryption, the cloud receives ciphertext of the data, performs computations
on the ciphertexts, and returns the encoded value of the result. The user
is able to decode the result, but the cloud does not know what data were
involved. In such circumstances, it must be possible for the user to verify that
the cloud returned correct results.

Several encryption techniques exist that support different homomor-
phisms, such as multiplicative homomorphism (RSA [30]), additive homo-
morphism (Paillier [28], Boneh-Goh-Nissim [5]), or the recently proposed
fully homomorphic scheme [12], which can support complicated functions.
We give a brief description of how the Paillier homomorphic encryption
technique works.

3.2.1 Paillier Homomorphic Encryption Scheme

Given two numbers M1 and M2, a user might want the cloud to calculate
the result M1 + M2 without the cloud knowing the values of M1 and M2. The
 protocol consists of three algorithms:

 1. Key generation: This algorithm generates the public keys and global
parameters, given a security parameter. Let N = p1p2, where p1 and p2
are primes. Choose g N∈ ∗� 2, such that g has an order that is a multi-
ple of N. Let λ(N) = lcm(p1 − 1, p2 − 1), where lcm represents the least
common multiple. Then, the public key is PK = (N, g), and the secret
key is SK = (λ(N)).

 2. Encryption: Let M N∈� be a message. Select a random number
r ZN∈ ∗ . The ciphertext c is given by

 c E M g r NM N= () = mod 2 (3.1)

 3. Decryption: To decrypt c, M can be calculated as

 M D c
L c N

L g N
N

N

N
= () =

()
()

()

()

λ

λ

mod

mod
mod

2

2
, (3.2)

where the L function takes input from the set {u < N2|u = 1 mod N} and
 computes L(u) = (u − 1)/N.

45Securing Cloud Data

Additive homomorphism is demonstrated in the following way: Suppose
c E M g rM N

1 1 1
1= () = and c E M g rM N

2 2 2
2= () = are two ciphertexts for M1 ,

M N2 ∈� . Then, c c N g r r NM M N
1 2

2
1 2

21 2mod() = ()()+ mod . On decryption, we
have D(c1.c2 mod N2) = M1 + M2 mod N. Thus, the sum of the plaintexts can
be obtained from the ciphertext without the cloud knowing the values of M1
and M2. We note that rN is used only to make the homomorphic computation
nondeterministic; the same message can be encrypted into different cipher-
texts to prevent dictionary attacks.

Boneh, Goh, and Nissim [5] proposed a scheme capable of performing multi-
ple additions and only one multiplication at the same time. Before explaining
their homomorphic encryption technique, we define bilinear pairing.

3.2.2 Bilinear Pairing

For bilinear pairing, let G be a cyclic group of prime order p generated by g.
Let GT be a group of order p. We can define the map e: G × G → GT. The map
satisfies the following properties:

 1. e(ua, ub) = e(u, v)ab for all u, v ∈ G and a b p, ∈� .
 2. Nondegenerate: e(g, g) ≠ 1.
 3. e is efficiently computable.

3.2.3 Homomorphic Encryption Using Bilinear Pairings

• Gen(κ) → (pk, sk): Given a security parameter κ, Gen(κ) chooses two

distinct
κ
2

-bit primes, p1 and p2, and sets n = p1p2. A positive integer

T < p2 is selected. Two multiplicative groups G, GT of order n are
selected, and a bilinear pairing e: (G × G) → GT is defined. Random

generators g, u ∈ G are defined and h up= 2 is set, such that h is a
generator of the subgroup of order p1. The public key is pk = (n, g, h,
G, GT, e), and the private key is sk = p1.

• Enc(m, pk) → c: Given a message m∈ and public key pk, Enc(pk, m)
chooses random r ∈ R and calculates the ciphertext

 c g h nm r= mod

• Dec(c, sk) → m: Given a ciphertext c ∈ C and a private key sk, Dec(sk, c)
calculates

 = = ()c c g np p m
mod

and using Pollard’s lambda [38] method calculates the discrete logarithm of
c′ in the base gp.

46 Cloud Computing with e-Science Applications

Since h is the generator of the subgroup of order p, we have hp = 1 mod n.
Thus, c′ is calculated as

=

= ()

= ()

= ()

c c n

g h n

g n

g n

p

m r p

m p

p m

mod

mod

mod

mod

 (3.3)

The message m is bounded by T, allowing it to be recovered in time O T()
using Pollard’s lambda method [38].

The homomorphic property of the scheme is demonstrated in the follow-
ing way: Let c g hm r

1
1 1= and c g hm r

2
2 2= ; then,

 c c g h nm m r r
1 2

1 2 1 2= + + mod

is a valid encryption of m1 + m2,

 c g n g h nk m k r
1

1 1mod mod= +

is a valid encryption of m1 + k, and

 c n g h nk km r k
1

1 1mod mod=

is a valid encryption of km1. Subtraction of encrypted messages and con-
stants can be done using c c n1 2

1− mod and c1g−k mod n, respectively.
Multiplication of messages is done in the following way: Let g1 = e(g, g)

and h1 = e(g, h) since g generates G, h = gα, for some α. Given ciphertexts c1, c2,
we choose random r ∈ R; a ciphertext to compute the product m1m2 is given by

e c c h e g h g h h

e g g g g

r m r m r r

m r m r

1 2 1 1
1 1 2 2

1 1 2

, ,

,

() = ()
= α α 22

1 1 2 2

1 2 1 2 2 1

1

1

1 1

()
= ()
=

+ +

+

h

e g g h

g h

r

m r m r r

m m m r m r

α α,

++ +

=

αr r r

m m rg h

1 2

1 2
1 1

 (3.4)

r′ = m1r2 + m2r1 + αr1r2 + r.

47Securing Cloud Data

3.2.4 Fully Homomorphic Encryption

Gentry [12, 13] proposed fully homomorphic encryption, which is capable of
evaluating any function on encrypted data. However, the schemes are
impractical for implementation by cloud users since the decryption takes
place at the user end. Gentry and Halevi [14] showed that even for weak
security parameters, one homomorphic operation would take at least 30 sec-
onds on a high-performance machine (and 30 minutes for the high-security
parameter) [16]. Since there are many such operations, the overall time taken
is too expensive for practical use in clouds.

Recently, Naehrig et al. [26] argued that fully homomorphic encryption
might not be required for data privacy while computing in the cloud. Their
main thesis was that only a few operations are required and a fully homomor-
phic property is not necessary for practical purposes. They not only proposed
a somewhat homomorphic encryption scheme but also optimized the pairing
operations to achieve the same level of security. Using their techniques, key
generation runs in 250 ms and encryption takes 24 ms, whereas decryption
takes 1,526 ms on a simple personal computer (PC) with an Intel Core 2 Duo
processor running at 2.1 GHz, with 3 MB L2 cache and 1 GB of memory.

This technique can be used for medical data, financial purposes, and social
networks, for which privacy is important. The implementation of this tech-
nique for practical purposes is still open.

3.3 Fine-Grained Access Control

We consider the following problem for which stored data can be accessed
by certain groups of users and is unaccessible to other users of the net-
work. Common examples are that of Dropbox or Google Docs: Users store
files and other documents and delegate selective access to other users.
Another important application is that of health care, with medical records
of patients stored in the clouds, such that authorized users can access them
and unauthorized users cannot. Clouds store sensitive information about
patients to enable access to medical professionals, hospital staff, researchers ,
and policy makers. For example, a patient might want to share certain medi-
cal data with only the doctors and nurses of certain hospitals but not the
hospital staff or researchers. Social networking is yet another domain where
users can store and share selective information with a selective group of
friends and acquaintances but not others. Assigning selective access rights
to individuals is called fine-grained access control.

Access control techniques are mainly of three types: user-based access
control (UBAC), role-based access control (RBAC), and attribute-based access
control (ABAC). In UBAC, the access control list (ACL) contains the list of
authorized users. This is not feasible in clouds where there are many users.

48 Cloud Computing with e-Science Applications

Sometimes, the list of users is unknown. In RBAC (introduced in [11]), users
are classified based on their individual roles. Data can be accessed by users
who have matching roles, which are defined by the system. For example, in
the case of medical records, the personal information regarding insurance
and address might be available only to the hospital staff but not to the doc-
tors and nurses. ABAC is wider in scope; users are given attributes, and the
data have an attached access policy. Only users with a valid set of attributes,
satisfying the access policy, can access the data. For instance, in the example,
medical records are accessed by only the neurologist or psychiatrist in only
one hospital but no others. Some advantages and disadvantages of RBAC
and ABAC have been discussed [22]. Most of the work in ABAC makes use of
a cryptographic primitive known as the ABE.

ABAC in clouds has been studied by several researchers [e.g., 24, 31, 32,
39, 41, 42]. Some of these focused on storage of health records [e.g., 24, 41].
Using ABE, the records are encrypted under some access policy and stored
in the cloud. Users are given sets of attributes and corresponding keys by a
key distribution center (KDC). The keys are computed using key generation
algorithms in ABE. Only when the users have a matching set of attributes
can they decrypt the information stored in the cloud.

Online social networking is yet another domain where users (members)
store their personal information, pictures, music, and videos and share
them with selected groups of users (friends/acquaintances) or commu-
nities to which they belong. All such information is stored in clouds and
given to users who satisfy matching criteria. Access control in online social
 networking has been studied [18]. Most of these schemes use simple cipher-
text policy attribute-based encryption (CP-ABE) to achieve access control,
assuming that there is only one trusted KDC.

Before we discuss how access control is achieved in clouds, we briefly talk
about ABE.

3.3.1 Attribute-Based Encryption

Attribute-based encryption was proposed by Sahai and Waters [34]. In ABE,
a user is given a set of attributes by an attribute authority (AA) along with
a unique identity. Identity-based encryption (IBE), proposed by Shamir [37],
is a public key encryption technique that eliminates the need for certification
authorities and has been extensively studied. Each user in an IBE protocol
has a unique identity, and the public key is the unique information about
the user. IBE is a special case of ABE. There are two main variants of ABE.
Key-policy ABE (KP-ABE, proposed by Goyal et al. [15]), is ABE in which
the sender has attributes and encrypts data with the attributes that it has.
The receiver has access policies and receives secret keys from the AA, which
are constructed using the access policy. On receiving an encrypted message,
the receiver can decrypt if it has matching attributes. Ciphertext-policy ABE
(CP-ABE; proposed by Bethencourt et al. [4]) is the reverse of KP-ABE; the

49Securing Cloud Data

sender has the access policy built into it. The receiver has attributes, and its
secret keys are constructed using the attributes it has. A receiver can decrypt
messages if its set of attributes satisfies the access policy of the sender.
The access policies in these protocols are monotonic access structures that
have AND, OR, or general t-out-of-n threshold structures. Nonmonotonic
access structures have been studied by Ostrovsky et al. [27].

We discuss the CP-ABE technique because it has been largely used for
access control in clouds.

3.3.2 Ciphertext-Policy Attribute-Based Encryption

The CP-ABE consists of the following algorithms: setup, which initializes the
public key PK and master secret key MK parameters; encrypt, which encrypts
the message M using the public parameters PK and the access policy A and
outputs a ciphertext CT; key generation, which generates the secret key SK
of the users using the master secret key MK and a set of attributes S that
describe the key. The decrypt algorithm takes as input the public param-
eters PK and a ciphertext CT, which contains an access policy A. If the set of
attributes satisfies the access policy, then the decrypt algorithm returns the
message M. The access policy is represented as an access tree, with attributes
at the leaves and AND, OR, and t-out-of-n threshold gates at the intermedi-
ate nodes. Note that AND and OR are special cases of threshold structures
where t = n and t = 1, respectively.

The details of the protocol are as follows:

Setup: This algorithm chooses a bilinear group G of prime order p and
generator g. Let α β, ∈� p be chosen at random. A hash function H(.)
is defined as H: {0, 1}* → G, which maps binary strings to elements
of G. The public key is given by

 PK G g h g e g g= = ()(), , , , .β α

 The master key is given by MK = (β, gα).

Encrypt(PK,M,A): The encryption algorithm takes as input the mes-
sage M, the public key PK, and the access policy A and returns
the ciphertext CT. The algorithm chooses a polynomial Px for each
node x in the tree. The degree of the root node R is set to kR − 1,
where kR is the threshold of the root. For any node, the degree of
the polynomial is dx = kx − 1, where kx is the threshold of the node.
The polynomial PR(0) = s, where s is randomly chosen in � p. For
each node x, Px(0) = Pparent(x)(index(x)), where parent(x) is the parent
of x. All other coefficients of the polynomial are chosen at random
from � p.

50 Cloud Computing with e-Science Applications

 Let Y be the set of leaf nodes of A. The ciphertext is given by

 CT C Me g g C h C g C H att y
s s

y
P

y
P

y= = () = = = ()()()A, , , , ,
α 0 yy 0()()

KeyGen(MK, S): Let S be the set of attributes of the receiver. The AA
chooses r p∈� at random and rj p∈� , ∀j ∈ S. The secret key SK is
given by

 SK D g j S D g H j D gr
j

r r
j

rj j= = ∀ ∈ = () =()+()α β , : ,

Decrypt(CT, SK, S): Let i = att(x) be a leaf node. If i ∈ S, then

 DecryptNode CT SK x
e D C
e D C

i x

i x
, ,

,
,

() =
()
()

 (3.5)

 =
()()

()()
()

()

e g H i g

e g H i

r r P

r P

i x

i x

,

,

0

0
 (3.6)

 = () ()
e g g

rPx,
0

 (3.7)

 If i ∉ S, then DecryptNode(CT, SK, x) = NULL.

We consider the case when x is a nonleaf node; the following steps are carried
out: Let Sx be the set of child nodes of x. If there are no such sets, then return

NULL. Else, Fx is calculated. Lagrange’s coefficient is ∆ , ,i S j S j ix
x j
i j

() =
−

−
∈Π .

 F F wherei index z S index zx z S z xx
t Sx= = () = (∈

()Π , , ,0)) ∈{ }: z Sx (3.8)

 = ()()∈
() ()

Πz S
rP

x

z
t Sx

e g g,
,0 0

 (3.9)

 = ()∈
()()()

()

Πz S
rP index z

x
parent z

t Sx

e g g,
, 0

 (3.10)

 = ()∈
() ()

Πz S
rP i

x

z t Sxe g g, , 0
 (3.11)

 = () ()
e g g

rPx,
0

 (3.12)

51Securing Cloud Data

The algorithm begins by calling the function on the root node R of the tree
A. If the tree is satisfied by S, then

 DecryptNode CT SK r e g g e g g
rP rsr, , , ,() = () = ()()0

The algorithm then calculates M as

 () ()() = ()+C e C D DecryptNode CT SK r C e h gs r, , , , ()/α β ee g g M
rs

,()() =

These protocols assume that the AA is honest. This is an unrealistic
assumption because, in a distributed system, authorities can fail or become
corrupt. To counter this problem, Chase [8] proposed a multiauthority ABE
in which there are several authorities that distribute attributes and secret
keys to users. The multiple-AA coordinate using a trusted authority. Chase
and Chow [9] devised a multiauthority ABE protocol that required no trusted
authority. However, the main problem was that a user required at least one
attribute from each of the authorities, which might not be practical. Recently,
Lewko and Waters [23] proposed a completely decentralized ABE by which
users could have any zero or more attributes from the authorities and not
require a trusted server.

We next present the distributed ABAC scheme presented in Reference 31.

3.3.3 Distributed Access Control in Clouds

Initially, for DACC the parameters of the scheme and the size of the group
are decided. The size of the group is chosen to be high, for example, 232 + 1.
AA Aj selects the set of attributes Lj. An owner Uu who wants to store infor-
mation in the cloud chooses a set of attributes Iu that are specific to the data
it wants to encrypt. These attributes may belong to different KDCs. It then
decides on the access structure and converts the access tree to a linear secret
sharing scheme (LSSS) matrix R using the algorithm given in Reference 31.
Depending on the attributes it possesses and the keys it receives from the
KDC, it encrypts and sends the data and the access matrix. Each user is given
a set of attributes when the user registers for services from owners. The attri-
butes are not given by the cloud but by the KDCs. An ssh protocol (secure
shell protocol [1]) is used to securely transfer the attribute information. KDCs
give secret keys to users. When a user wants to access some information, the
user asks the cloud for the data record. The cloud gives an encrypted copy
of the data. If a user has a valid set of attributes, then the user calculates the
data using the secret key that it possesses.

Encryption proceeds in two steps. The Boolean access tree is first con-
verted to an LSSS matrix. In the second step, the message is encrypted and

52 Cloud Computing with e-Science Applications

sent to the cloud along with the LSSS matrix. A secure channel like ssh can
be used for the transmission.

We consider the example from Reference 31 of a network in which owners
want to store their data in encrypted form in the cloud and give selective
access to users. In a health care scenario, owners can be the patients who
store their records in the cloud, and doctors, nurses, researchers, and insur-
ance companies can retrieve them. There are attribute authorities, which
are servers scattered in different countries, that generate secret keys for the
users. AAs can be government organizations that give different credentials
to users. These servers can be maintained by separate companies, so that
they do not collude with each other. This differs from the concept of a cloud.
A particular cloud is maintained by one company; thus, if authorities are a
part of the cloud, then they can collude and find the secret keys of all the
users. Figure 3.1 shows the overall model of our cloud environment. The
users and owners are denoted by ni; the AAs are servers that distribute attri-
butes and secret keys SK to users and owners. AAs are not part of the cloud.
The owner encrypts a message and stores the ciphertext C in the cloud.

Suppose an owner Uu wants to store a record M. Uu defines the access struc-
ture A, which helps it to decide the authorized set of users who can access
the record M. It then creates an m × h matrix R (m is the number of attributes
in the access structure) and defines a mapping function π of its rows with the
attributes. π is a permutation, such that π:{1, 2, … , m} → W. The encryption
algorithm takes as input the data M that need to be encrypted, the group G,
the LSSS matrix R, and the permutation function π, which maps the attributes

KDC 2

KDC 1

PK2, SK2B

User nB

PK2, SK2A

PK1, SK1BPK1, S
K1A

User nA

CT

CT

FIGURE 3.1
Distributed access control in clouds.

53Securing Cloud Data

in the LSSS to the actual set of attributes. For each message M, the ciphertext
C is calculated per Equations (3.16) and (3.17). Ciphertext C is then stored in
the cloud.

When a user Uu requests a ciphertext from the cloud, the cloud transfers
the requested ciphertext C using the ssh protocol. The decryption algorithm
returns plaintext message M if the user has a valid set of attributes.

System initialization: Select a prime p, generator g of G, groups G and GT
of order p, a map e: G × G → GT, and a hash function H : {0, 1}* → G
that maps the identities of users to G. Each AA Aj ∈A has a set of
attributes Lj. The attributes disjoint (Li ∩ Lj = φ for i ≠ j). Each AA
also chooses two random exponents α i i qy, ∈� . The secret key of
AA Aj is

 SK j y i Li i j= ∈{ }α , , . (3.13)

 The public key of AA Aj is published:

 PK j e g g g i Li iy
j= () ∈{ }, , , .

α
 (3.14)

Key generation and distribution by KDCs: User Uu receives a set of attri-
butes I[j, u] from AA Aj and corresponding secret key ski,u for each
i ∈ I[j, u]:

 sk g H ui u
yi i

, ,= ()α (3.15)

 where αi, yi ∈ SK[j]. Note that all keys are delivered to the user
securely using the user’s public key, such that only that user can
decrypt it using its secret key.

Encryption by sender: The sender decides about the access tree and
encrypts message M as follows:

 1. Choose a random seed s q∈� and a random vector v q
h∈� , with

s as its first entry; h is the number of leaves in the access tree
(equal to the number of rows in the corresponding matrix R).

 2. Calculate λx = Rx · v, where Rx is a row of R.

 3. Choose a random vector w q
h∈� with 0 as the first entry.

 4. Calculate ωx = Rx · w

 5. For each row Rx of R, choose a random ρx q∈� .

 6. The following parameters are calculated:

54 Cloud Computing with e-Science Applications

C Me g g

C e g g e g g x

C g

s

x

x

x x x

0

1

2

= ()

= () () ∀

=

,

, , ,,

,

()λ α ρ

ρ

π

xx

x x x

x

C g g xx
y

∀

= ∀3,
() ,π ρ ω

 (3.16)

 where π(x) is mapping from Rx to the attribute i that is located at
the corresponding leaf of the access tree.

 7. The ciphertext C is sent by the sender (it also includes the access
tree via R matrix):

 C R C C C C xx x x= ∀{ }, , , , , ,, , ,π 0 1 2 3 (3.17)

Decryption by receiver: Receiver Uu takes as input ciphertext C, secret
keys {ski,u}, group G, and outputs message M. It obtains the access
matrix R and maps π from C. It then executes the following steps:

 1. Uu calculates the set of attributes {π(x): x ∈ X} ∩ Ii that are com-
mon to itself and the access matrix. X is the set of rows of R.

 2. For each of these attributes, it checks if there is a subset X′ of rows
of R, such that the vector (1, 0, … , 0) is their linear combination.
If not, decryption is impossible. If yes, it calculates constants

cx q∈� , such that c Rx x
x X∈∑ = …()1 0 0, , , .

 3. Decryption proceeds as follows:

 (a) For each x ∈ X′, dec x
C e H u C

e sk C
x x

x u x

() =
()()

()()

1 3

2

, ,

, ,

,

,π

 (b) Uu computes M C dec xx X= ()∈0 Π .

None of the above techniques can authenticate users or protect the privacy
of the user. It is just not enough to store the contents securely in the cloud;
it might also be necessary to ensure the anonymity of the user. However,
the user should be able to prove to the other users that he or she is a valid
user who stored the information without revealing the identity. For exam-
ple, a user would like to store some sensitive information but does not want
to be recognized. The user’s privacy needs to be protected when the user
needs to store confidential information but does not reveal his or her identity.
For example, if a user wants to store a controversial record about the employ-
ers, then he or she might want to remain anonymous. The cloud, on the
other hand, must be able to authenticate the user as an authorized person.
Ruj et al. [32] proposed an authentication mechanism that also protects the

55Securing Cloud Data

privacy of the user. Users cannot just read from already stored data but can
be given the right to modify the data. Attribute-based signatures (ABSs) [25]
are used for this purpose. In ABSs, users have a claim predicate associated
with a message. The claim predicate helps to identify the user as an autho-
rized one without revealing the user’s identity. Other users or the cloud can
verify the user and the validity of the message stored. An ABS can be com-
bined with ABE to achieve authenticated access control without disclosing
the identity of the user to the cloud (see Table 3.1).

Attribute-based encryption involves expensive operations, which might
be burdensome on resource-constrained devices like smartphones and the
like. To address this problem, Green et al. [16] proposed a technique to out-
source the decryption to a proxy, such that the operations performed by the
user can be done efficiently and the complex computations are delegated to
the proxy. The proxy, however, cannot decrypt the information.

We present a comparison in Table 3.1 of access control schemes used in
the literature. Some schemes are centralized (have a single KDC), and some
are decentralized (have multiple KDCs). We look for the type of operations
supported, that is, x-Write-y-Reads (denoted x-W-y-R). Some schemes have
authentication and some do not. Only the Green et al. [16] scheme outsources
decryption. We also check if revocation of users is permitted or not.

3.4 Data Auditing

A big challenge is to ensure that the integrity of the data is preserved. Cloud
servers are prone to Byzantine failure, in which they can fail in arbitrary ways.
Generally, the cloud protects data integrity by making redundant copies of
data. To reduce storage space, the CSP might not offer the same degree of
redundancy as presented in the SLA. The CSP might also discard rarely used
data, without informing the client, just to save storage space. Thus, data audit-
ing is needed to verify that the cloud has not tampered with the stored data.

Data auditing is mostly done in a probabilistic way, in which a few blocks
are chosen and verified. The commonly used techniques are as follows:

 1. Provable data possession (PDP): Allows the client to verify that the
cloud has stored the original data faithfully without retrieving it.

 2. Proofs of retrievability (PoR): The cloud should be able to prove that
it has stored the client’s data correctly, and the client is able to extract
the data from the cloud.

We note that the difference between PDP and PoR techniques is that PDP
techniques only produce a proof for recoverable data possession, but PoR

56 Cloud Computing with e-Science Applications

TA
B

LE
 3

.1

C
om

pa
ri

so
n

of
 O

u
r

Sc
he

m
e

w
it

h
E

xi
st

in
g

A
cc

es
s

C
on

tr
ol

 S
ch

em
es

S
ch

em
e

R
ef

er
en

ce
 N

o.
C

en
tr

al
iz

ed
/

D
ec

en
tr

al
iz

ed
W

ri
te

/R
ea

d

A
cc

es
s

Ty
p

e
of

A

cc
es

s
C

on
tr

ol
P

ri
va

cy
-P

re
se

rv
in

g
A

u
th

en
ti

ca
ti

on
D

ec
ry

p
ti

on

O
u

ts
ou

rc
in

g?
U

se
r

R
ev

oc
at

io
n

?

24
C

en
tr

al
iz

ed
1-

W
-M

-R
A

B
E

N
o

au
th

en
ti

ca
ti

on
N

o
N

o
41

C
en

tr
al

iz
ed

1-
W

-M
-R

A
B

E
N

o
au

th
en

ti
ca

ti
on

N
o

N
o

31
D

ec
en

tr
al

iz
ed

1-
W

-M
-R

A
B

E
N

o
au

th
en

ti
ca

ti
on

N
o

Ye
s

16
C

en
tr

al
iz

ed
1-

W
-M

-R
A

B
E

N
o

au
th

en
ti

ca
ti

on
N

o
N

o
42

C
en

tr
al

iz
ed

M
-W

-M
-R

A
B

E
A

ut
he

nt
ic

at
io

n
N

o
N

o
32

D
ec

en
tr

al
iz

ed
M

-W
-M

-R
A

B
E

A
ut

he
nt

ic
at

io
n

N
o

Ye
s

16
C

en
tr

al
iz

ed
1-

W
-M

-R
A

B
E

N
o

A
ut

he
nt

ic
at

io
n

Ye
s

Ye
s

57Securing Cloud Data

schemes check the possession of data and can recover data in case of data
access failure or data loss. Usually, a PDP scheme can be transformed into a
PoR scheme by adding erasure or error-correcting codes.

The early definitions of PoR [20] and PDP [2] used the definitions in a gen-
eral client server setting; however, we define it in the context of the cloud. We
discuss each of these models and present some third-party (public) auditing
techniques in which anyone can verify the data that a client has stored.

3.4.1 Provable Data Possession Techniques

The PDP schemes involve a challenge/response protocol between the client
(verifier) and the CSP (prover). It consists of two main steps:

• The client (verifier) first allows the CSP (prover) to store files.
• Later, the client can verify if the CSP possesses the data by challenging

the CSP.

The PDP techniques generate probabilistic proofs of possession by sampling
random sets of blocks from the server; this drastically reduces input/output
(I/O) costs. In PDP techniques, the client maintains a constant amount of
metadata to verify the proof. The challenge/response protocol transmits a
low, constant amount of data that minimize network communication. Thus,
the PDP schemes for remote data checking support large data sets in widely
distributed storage systems.

Ateniese et al. [2] were the first to define PDP schemes formally. Later, they
[3] proposed a very lightweight and provable secure data possession scheme
in the random oracle model. This scheme is based entirely on symmetric key
cryptography. The main idea of this scheme is that, before outsourcing, a
client precomputes a certain number of short possession verification tokens,
each token covering some set of data blocks. The actual data are then handed
over to the CSP. Subsequently, when the client wants to obtain a proof of data
possession, the client challenges the data storage server with a set of random
block indices. In turn, the data server must compute a short integrity check
over the specified blocks (corresponding to the indices) and return it to the
client. For the proof to hold, the returned integrity check must match the
corresponding value precomputed by the client. However, in their scheme,
the client has the choice of either keeping the precomputed tokens locally
or outsourcing them in encrypted form to the server. In the latter case, the
client’s storage overhead is constant regardless of the size of the outsourced
data. The scheme is also efficient in terms of storage, computation overheads,
dynamic support for data operations, and bandwidth. Sebé et al. [35] pre-
sented a scheme that used asymmetric key cryptography (RSA modules) for
integrity verification.

Erway et al. [10] presented a fully dynamic provable data possession
(DPDP), which extends the PDP model to support provable updates to stored

58 Cloud Computing with e-Science Applications

data. They used rank-based authenticated skip lists (Figure 3.2) and aggre-
gate signatures [6]. Before discussing the scheme, we discuss authenticated
skip lists and aggregate signatures.

Skip lists [29] are a probabilistic alternative to balanced trees. Balancing
a data structure probabilistically is easier than explicitly maintaining the
balance and is easy to implement. Skip lists are also space efficient. In a skip
list, each node v stores two pointers, denoted rgt(v) and dwn(v), that are used
for searching. l(v) is the level of the node v; l = 0 denotes the leaf nodes.
An authenticated skip list that uses a collision-resistant hash function can be
used to check the integrity of file blocks.

3.4.2 Rank-Based Skip Lists

Let F be a file consisting of n blocks m1, m2, … , mn. At the ith bottom-level
node of the skip list, the signature x(mi) of block mi is stored. Block mi is stored
separately at the cloud. Each node v of the skip list stores the number of
nodes at the bottom level that can be reached from v. This value is called the
rank of v and is denoted by r(v).

The top leftmost node of a skip list is referred to as the start node. For a
node v, low(v) and high(v) denote the indices of the leftmost and rightmost
nodes at the bottom level reachable from v, respectively. Clearly, for the start
node S of the skip list, r(S) = n, low(S) = 1, and high(S) = n. Using the ranks
stored at the nodes, the ith node of the bottom level can be reached by tra-
versing a path that begins at the start node as follows: For the current node v,
assume that low(v) and high(v) are known.

Let w = rgt(v) and z = dwn(v).The following values are set:

high w high v low w high v r w

high z lo

() = () () = () − () +

() =

, 1

ww v r z low z low v() + () − () = ()1,

v14v13v12v11v10v9v8v7v6v5v4v3v2v1
10

1

2

3

w6

w7

w4 w3 w5
9 6 2

14

13 12

2 1 1 1 1 1 1 1 1 1 12 2

3433w2 w1

FIGURE 3.2
Example of rank-based skip list.

59Securing Cloud Data

To reach the ith bottom node, we start from v = S, where S is the start node
while (ith bottom node is not reached):

 {
 if i ∈ [low(w), high(w)]
 v = w is set //the right pointer is followed
 else
 v = z is set //the down pointer is followed
 }

For each node v of the rank-based authenticated skip list, a label f(v) is
defined as follows:

 f v

v null

h l v r v f dwn v f rgt v() =

=

() () ()() ()()()
0 if

i, , , ff

if

l v

h l v r v x v f rgt v l v

() >

() () () ()()() () =

0

0, , ,

The next two algorithms have been described [10], but we present them
here for completeness.

Algorithm 1 Path Generation:
PathGen(i) → {x(vi), Π}

1: Let v1, ..., vk be the verification path for block i
2: return signature x(vi) of block i and the table

Π = (A(v1), ..., A(vk)) corresponding to block i

Algorithm 2 Skip List Verification:
verify(Π, x(vi), sigsk(H(f(S)))) → {TRUE, FALSE}

1: Let Π = (A1, ..., Ak),
2: where Aj = (dj, lj, qj, gj),1 ≤ j ≤ k
3: λ1 = 0; ρ1 = 1 + q1; δ1 = d1; ζ1 = 0;
4: γ1 = h(λ1, ρ1, x(vi), g1);
5: for j = 2, ..., k do
6: λj = lj; ρj = ρj − 1 + qj; δj = dj;
7: if δj = = rgt then
8: γj = h(λj, ρj, gj, γj − 1);
9: ζj = ζj − 1;
10: else if δj = = dwn then
11: γj = h(λj, ρj, γj − 1, gj);
12: ζj = ζj − 1 + qj;
13 end if
14: end for

60 Cloud Computing with e-Science Applications

15: if e(sigsk(H(f(S))),g) ≠ e(H(γk),v) then
16: return FALSE
17: else if ρk − ζk ≠ i then
18: return FALSE
19: else
20: return TRUE
21: end if

3.4.3 Skip List Verification

First, we describe the algorithm PathGen(i) [10] to generate a verification path
for block i. The verification path is the reverse search path; for example, let
vk, vk−1, … , v1 be the search path for block i, then v1, v2, … , vk is the verification
path for block i. For each node vj, j = 1, … , k, Boolean d(vj) and values q(vj) and
g(vj) are defined as follows, where r(null) is set to 0:

 d v
rgt j or j and v rgt v

dwn j and v d
j

j j

j

() =
= > = ()
> =

−

−

1 1

1

1

1 wwn vj()

 q v

r rgt v j

j and l v

r dwn v j
j

j

j

j

() =

()() =

> () =

()() >

1

1 1 0

1, ll v and d v rgt

r rgt v j l v and d v

j j

j j j

() > () =

()() > () >

0

1 0, (() = dwn

 g v

f rgt v j

x v j and l v

f dwn v
j

j

j j

j

() =

()() =

() > () =

()()

1

1 0

jj l v and d v rgt

f rgt v j l v an

j j

j j

> () > () =

()() > () >

1 0

1 0

,

, dd d v dwnj() =

The PathGen(i) algorithm returns the sequence Π(i) = (A(v1), … , A(vk)) where
A(v) = (d(v), l(v), q(v), g(v)) for the block i with signature x(i). Table 3.2 shows
the sequence Π(v6) as the sample verification path. Due to the properties of
the skip list, data in the verification path have an expected size O(log n) with
high probability.

To verify the skip list, the verifier requests the signature generated by the
client by signing the start node of the skip list and the path table Π for any
random block. Then, the verifier runs the skip list verification algorithm

61Securing Cloud Data

(Algorithm 2) to verify the integrity of the skip list using the table Π and the
signature of the start node S, which is sigsk(H(f(S))), sent by the cloud server.

Algorithm 2 iteratively computes tuples (λj, ρj, δj, γj) for each node vj on
the verification path plus a sequence of integers ζj. At each iteration of the
for-loop, the tuple (λj, ρj, δj, γj) associated with a node vj of the verification path
represents the following:

•	 λj = l(vj), that is, the level of vj;
•	 ρj = r(vj), that is, the rank of vj;
•	 δj indicates whether we arrived at vj from right or below;
•	 γj = f(vj), that is, the label of vj;
•	 ζj is equal to the sum of the ranks of all the nodes that are to the right

of nodes of the path seen so far but are not on the verification path.

3.4.4 Bilinear Aggregate Signatures

We have used BLS (Boneh, Lynn, and Shacham) aggregate signatures in our
scheme to achieve public auditability and blockless verification.

3.4.4.1 BLS Signature Scheme

Boneh, Lynn, and Shacham [6] gave a simple, deterministic signature
scheme in which the signatures are very short. The signer’s secret key is
x q∈� , the public key is y = gx, and g is the generator of the multiplicative
group G of order q. Let H : {0, 1}* → G be a hash function. The signature
scheme is given by

Sign(m): the signature σ on message m is σ = (H(m))x ∈ G.
Verify(σ, m): accept if e(g, σ) = e(gx, H(m)).

3.4.4.2 Aggregate Signature Scheme

Aggregate signatures [6] are used if we have different signers who want to
sign different messages but we only want to produce one signature. This is

TABLE 3.2

PathGen Table for the Sixth Block of the File F Stored
in the Skip List in Figure 3.2

Node v v6 v5 w1 w3 w4 w6 w7

D(v) rgt rgt dwn dwn rgt rgt dwn
l(v) 0 0 1 2 2 2 3
Q(v) 0 1 1 6 3 1 1
G(v) 0 x(v5) f(v7) f(w5) f(w2) f(v1) f(v14)

62 Cloud Computing with e-Science Applications

useful for instances such as batch auditing or certificate chains. The signer i
has secret key xi and public key y gi

xi= and wants to sign message mi;
we assume that all messages are distinct.

Sign(m1, …, mn): First, each signer computes its signature: σ i i
xH m i= () ,

1 ≤ i ≤ n. The aggregate signature σ σ=
=

∏ i

i

n

1

.

Verify(m, σ): Accept if e g e y H mi i

i

n

, ,σ() = ()()
=

∏
1

.

3.4.5 Data Auditing Using Aggregate Signatures

We present the basic algorithms used in the data-auditing protocol.

KeyGen(1k) → (pk, sk): This probabilistic algorithm is run by the client.
It takes a security parameter 1k and returns public key pk and secret
key sk.

SigGen(sk, F) → (Φ, sigsk(H(f(S)))): This algorithm is run by the client.
It takes as input private key sk and file F, which is an ordered collec-
tion of blocks mi, and outputs a signature set Φ = {σi}i = 1,2,…,n. It also
outputs metadata: the signature sigsk(H(f(S))) of the start node S of a
rank-based authenticated skip list. In our construction, the level zero
nodes of the rank-based authenticated skip list contain hashes H(mi).

SSigssk(·): It is a signing function that uses signing key ssk to sign a string.
GenProof(F, Φ, Ψ) → (P): This algorithm is run by the server. It takes

as input a file F, its signatures Φ, and a challenge Ψ (discussed fur-
ther in the chapter). It outputs a data integrity proof P for the blocks
specified by the challenge Ψ.

VerifyProof(pk, Ψ, P) → {TRUE, FALSE}: This algorithm can be run by a
verifier on the receipt of P. It takes as input public key pk, the chal-
lenge Ψ, and proof P returned by the server and outputs TRUE if the
integrity of the file is verified as correct and FALSE otherwise.

ExecUpdate(F, Φ, update) → (F′, Φ′, Pupdate): This algorithm is run by the
server. It takes as input a file F, its signatures Φ, and a data operation
request “update” from the client. It outputs updated file F′, updated
signatures Φ′, and a proof Pupdate for the operation.

VerifyUpdate(pk, sigsk(H(f(S))), update, Pupdate) → {(TRUE, FALSE, sigsk(H(S′)))}:
This algorithm is run by the client. It takes as input public key pk,
the signature sigsk(H(f(S))), operation request “update,” and the proof
Pupdate from the server. If verification succeeds, it outputs a signature
sigsk(H(S′)) for the new start node S′ or FALSE otherwise.

63Securing Cloud Data

3.4.6 Third-Party Auditing of Cloud Data

We assume that file F (potentially encoded using Reed-Solomon codes) is
divided into n blocks m1, m2, … , mn, where mi q∈� and q is a large prime.
Let e: G × G → GT be a bilinear map and H: {0, 1}* → G be a hash function that
converts binary strings to elements of G and is viewed as a random oracle.
Let g be the generator of G.

The data-auditing scheme consists of the following steps:

• Setup: This step initializes the system and generates public and
secret keys.

 1. The client generates a random signing key pair (ssk, spk) by
invoking KeyGen(1k). Then, the client chooses a random α ∈�q
and computes v = gα. The secret key is sk = {α, ssk}, and the public
key is pk = {v, spk}.

 2. SigGen(·) is invoked to preprocess the file F and to generate
metadata before sending the file to the cloud server. Given
F = (m1, m2, … , mn), the client chooses a random element u ∈ G.
SigGen(sk, F) is invoked to preprocess the file F and to generate
metadata before sending the file to the cloud server. Let t = file
name||n||u||SSigssk(filename||n||u) be the file tag for F. Then, the
client computes signature σi for each block mi(i = 1, 2, … , n) as
σ

α
i i

mH m u i= ()(). . We denote the set of signatures by Φ = {σi}1≤i≤n.

 3. The client generates the rank-based skip list, where the bottom
level nodes contain the hashes of mi, 1 ≤ i ≤ n denoted by H(mi).

 4. The client signs the hash H(f(S)), where S is the start node and f(S)
is the label of the start node. The client signs using the private
key α: sigsk(H(f (S))) ← (H(f (S)))α.

 5. The client sends {F, t, Φ, sigsk(H(f (S)))} to the cloud server.

 6. The client now deletes {F, Φ, sigsk(H(f (S)))}.

• Integrity verification protocol: Once the client has stored the data on
the cloud storage server, the verification protocol can be initiated.
The client can also perform the integrity verification on the data
using a similar process or the task can be delegated to a third-party
auditor (TPA).

 1. The TPA first uses spk to verify the signature on t. If the verifica-
tion fails, TPA returns FALSE; otherwise, it recovers u from t.

 2. The TPA chooses a random value r ∈ [1, n] and requests the cloud
server to send the table Π(r). The cloud server runs Algorithm 1
to calculate Π(r).

64 Cloud Computing with e-Science Applications

 3. After receiving Π(r), the TPA runs Algorithm 2 to verify the skip
list stored on the cloud server and retrieves f (S), where f (S) is the
label of the start node.

 4. Now, the TPA determines a suitable c (the number of blocks to be
verified) according to the desired probability of error detection
and ω.

 5. The TPA generates a challenge Ψ, picks a random c-element sub-
set I = {s1, s2, … , sc} of set [1, n], where we assume s1 ≤ … ≤ sc. Then,
a random element νi ⊆ � p. The challenge Ψ specifies the positions
of the blocks to be checked. The TPA sends Ψ = (){ } ≤ ≤

i i s i sc
, ν

1
 to

the prover (server).
 6. After this, the server generates the proof P for each of the chal-

lenges sent by the TPA. On receiving a challenge Ψ = (){ } ≤ ≤
i i s i sc
, ν

1
,

the server computes ν= ∈
=
∑ i i q

i s

s

m
c

�
1

 and σ σν= ∈
=
∏ i

i s

s

i

c

G
1

, where

both the data blocks and the corresponding signature blocks are
aggregated into a single block, respectively. The server also sends
the signatures of the requested blocks as the set i s i sc

{ } ≤ ≤1
. The

server then sends the proof P i s i sc
= { }{ }≤ ≤σ, ,

1
 to the TPA.

 7. After receiving the proof P to the corresponding challenge Ψ, the
TPA verifies the integrity by checking

 e g e H m u vi

i s

s
i

c

σ ν, ,
?

()= () ⋅
=
∏

1

If this equation holds, then TPA returns TRUE, FALSE, otherwise.

A similar technique is used during an update.
Zhu et al. [43] (MULTI-PDP or multiple PDP) addressed the construction of

an efficient PDP scheme for distributed cloud storage to support the dynamic
scalability of service and data migration. For this, they consider the coexis-
tence of multi ple CSPs to cooperatively store and maintain the client’s data.
This scheme is based on a homomorphic verifiable response and hash index
hierarchy. Security for this scheme is based on a multiprover zero-knowledge
proof system, which can satisfy knowledge soundness, zero-knowledge, and
completeness properties.

3.4.7 Proof-of-Retrievability Schemes

The idea of PoR schemes is to verify a small number of blocks, chosen at
random, instead of the whole file. If there are errors, then the file can be
retrieved using error-correcting codes.

65Securing Cloud Data

The scheme of Reference 20 uses sentinels, which are check blocks and
are randomly embedded in the file. The file is then encrypted, such that it
is impossible to detect the positions of the sentinels. The client sends a set
of sentinel positions and asks the CSP to return the value of the sentinels.
If the CSP has modified or deleted the data, then, with a high probability, it is
impossible to return the values of the sentinels. In this approach, encryption
renders the sentinels indistinguishable from other file blocks.

If the number of sentinels queried is small, it might not be possible to cor-
rectly detect the errors, but with the error-correcting codes, it is possible to
recover the file. If the number of sentinels queried is large, then the user
might not be able to retrieve the file correctly but will be able to detect that
tampering of the file has occurred.

The scheme has six basic functions [20]: The function “Respond” is the only
function executed by CSP P. All other functions are executed by the verifier
(client) V. The set of verifier-executed functions modifies some persistent
state α. π presents the complete collection of system parameters.

 1. Keygen [π] → κ: The function Keygen generates a secret key κ.
 2. Encode F F, , ,κ α ηη() → ()� : The function Encode generates a file

handle η that is unique to a given verifier invocation. The function
also transforms file F into an (enlarged) file �Fη and provides the pair

�Fη η,() as an output.
 3. Extract(η, κ, α)[π] → F: It determines a sequence of challenges that V

sends to P and processes the resulting responses. If successful, the
function recovers and outputs Fη.

 4. Challenge(η, κ, α)[π] → c: Challenge takes the secret key κ and a
 handle η and accompanying state α as input, along with system
parameters. The function outputs a challenge value c for the file η.

 5. Respond(c, η → r): The function Respond is used by P to generate a
response to a challenge c. This challenge can originate with either
the Challenge or the Extract function.

 6. Verify((r,η)κ,α → b∈(0,1): The function verify determines whether r
is a valid response to challenge c. The function outputs a “1” bit if
verification succeeds and “0” otherwise.

A basic unit of storage is an l-bit block. The error-correcting code operates
over l-bit symbols, a cipher operates on l-bit blocks, and the sentinels have
l bits. The file consists of b blocks (b is a multiple of k) and is F = (f1, f2, … , fb).
The function Encode consists of the following steps:

 1. Error correction: To each k blocks an (n, k, d)-error-correcting code is
applied, and the resulting file is = …()F f f fb1 2, , , , with b′ = bn/k.

 2. Encryption: A symmetric cipher is used, and F′ is converted to F″.
The cipher is so chosen that each block can be separately decrypted.

66 Cloud Computing with e-Science Applications

 3. Sentinel created: s Sentinels are created and appended to F″ to yield F′′′.
 4. Permutation: The b′ + s blocks of the file F′′′ are permuted to yield �F .

The prover (CSP) produces a concise proof that the archive retains and
reliably transmits the entire file or data object F. To ensure that the archive
has retained F, the verifier (client) V challenges the prover by specifying the
positions of a collection of sentinels in �F and asking to return the asso-
ciated sentinel values. This phase includes Extract, Challenge, Respond,
and Verify functions. If the sentinels are returned correctly, then the file
has not been tampered with; if there are errors, then the error-correcting
code is used to retrieve the message. A drawback of this PoR scheme is the
preprocessing/encoding of F required prior to storage with the prover.

Shacham et al. [36] utilized two new economic and efficient homomorphic
authenticators. These authenticators are the primary encryption or hashing.
They also need larger storage requirements on the prover and provides proof
of security against impulsive adversaries.

Bowers et al. [7] introduced HAIL (high-availability and integrity layer),
a general conceptual framework for PoRs that is an improvement [20, 36].
It claims lower storage requirements and a higher level of security assurance
with minimal computational overhead and tolerates higher error rates than
scheme [20]. It is robust against an active, mobile adversary, that is, one that
may progressively corrupt the full set of servers. This work describes design
challenges encountered for practical implementation of PoR protocols. HAIL
is a distributed cryptanalytic system that allows a set of servers to prove
to a client that a stored file is intact and retrievable. Building blocks of the
HAIL system are the universal hash function, message authentication codes
(MACs), and integrity-protected error-correcting codes (IP-ECC). The advan-
tage of the HAIL adversary security model is that it ensures distributed file
system availability against a strong, mobile adversary.

The drawbacks of the PoR and PDP schemes are as follows:

• The effectiveness of these schemes rests primarily on the preprocess-
ing steps that the user conducts before outsourcing the data file. This
introduces significant computation and communication complexity.

• Most of these techniques do not support privacy preservation and
dynamic data operations.

• Most of these schemes focus on only static and archive data.
• None of these schemes considers batch auditing.

Public verifiability is needed in many cases when others should be able to
verify the data. A trusted TPA might have expertise and technical capabili-
ties that the clients do not have. Data audits by a trusted third party (TTP)
involve an independent authenticated entity to conduct a data audit.

Wang et al. [40] determined the difficulties and potential security issues
of direct extensions for fully dynamic data updates and then constructed

67Securing Cloud Data

a verification scheme that takes these issues into account. Specifically, to
achieve efficient data dynamics, they improved the present proof of stor-
age models by manipulating the classic Merkle hash tree construction for
block tag authentication. They explored a bilinear aggregate signature to
support efficient handling of multiple auditing tasks and extend output into
a multiuser setting, where TPA can perform multiple auditing tasks simul-
taneously. This theme achieves batch auditing wherever multiple delegated
auditing tasks from totally different users are often performed at the same
time by the TPA.

Hao et al. [17] described a remote data integrity-checking protocol that
supports public verifiability, data dynamics, and privacy against verifiers
without any TPA. They used RSA-based homomorphic verifiable tags for
their protocol construction.

Table 3.3 shows the comparative analysis of different data-auditing
schemes. We indicate if the scheme is probabilistic or deterministic, whether
public verifiability is satisfied, if the scheme can support dynamic data, and
if the scheme is privacy preserving. We compare the detection probability in
each case. Here, c is the number of blocks sampled, and p is the probability
that a block is corrupted.

3.5 Conclusion and Future Work

In this chapter, we discussed a few security issues in cloud computing.
Most of the techniques help us to protect against dishonest CSPs. Cloud

TABLE 3.3

Comparison of Data-Auditing Schemes

Scheme
Public

Verifiability Data Dynamics
Privacy

Preserving
Detection

Probability

PDP
Ateniese et al. [2] Yes Append only No 1 − (1 − p)c

Ateniese et al. [3] No Yes No 1 − (1 − p)c

Sebé et al. [35] No No No 1 − (1 − p)c

Erway et al. [10] No Yes No 1 − (1 − p)c

PoR
Juels and Kaliski [20] No No No 1 − (1 − p)c

Shacham and Waters [36] No No No 1 − (1 − p)c

HAIL: Bowers et al. [7] No No No 1 − (1 − p)c

Wang et al. [40] Yes Yes Yes 1 − (1 − p)cs

Hao et al. [17] Yes Yes Yes 1 − (1 − p)cs

68 Cloud Computing with e-Science Applications

security also involves other aspects, for example, virtualization security,
not addressed here.

There are many security challenges that need to be addressed.

3.5.1 Security in Mobile Clouds

Most of the cryptographic techniques are computation intensive. This might
not be a good option for mobile devices, which are energy constrained.
So, efficient encryption and decryption protocols need to be devised to
enable security on mobile devices. One way is to outsource some of the
encryption and decryption operations to a third party or a proxy server.

3.5.2 Distributed Data Auditing for Clouds

In most of the related work on data auditing, the auditor is assumed to be
a trusted party. However, this is a strong assumption. Thus, distributed
auditing looks attractive. This will make the auditing process more robust.
Assigning all auditing jobs to one TTP can also slow the whole system. Thus,
a distributed auditing service not only will balance the load but also will
provide trustworthy service. Users with idle resources can contribute toward
distributed data auditing.

3.5.3 Secure Multiparty Computation on Clouds

Secure multiparty computation is a cryptographic paradigm in which n users
compute a function securely, keeping their inputs private. The users send
their inputs in such a way that only the function can be computed, without
knowing the individual input. These computations are extremely involved
and are good candidates for computation on clouds. However, a single server
is prone to single-point failure. For this reason, distributed computing on
clouds is an attractive option. Secure multiparty computation in clouds is a
promising area of research.

References

 1. Secure shell protocol. http://tools.ietf.org/html/rfc4252.
 2. Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea

Kissner, Zachary N. J. Peterson, and Dawn Xiaodong Song. Provable data
 possession at untrusted stores. In Peng Ning, Sabrina De Capitani di Vimercati,
and Paul F. Syverson, editors, ACM Conference on Computer and Communications
Security, pages 598–609. New York: ACM, 2007.

 3. Giuseppe Ateniese, Roberto Di Pietro, Luigi V. Mancini, and Gene Tsudik.
Scalable and efficient provable data possession. IACR Cryptology ePrint Archive,
2008:114, 2008.

69Securing Cloud Data

 4. John Bethencourt, Amit Sahai, and Brent Waters. Ciphertext-policy attribute-based
encryption. In IEEE Symposium on Security and Privacy, pages 321–334. Washington,
DC: IEEE Computer Society, 2007.

 5. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on
ciphertexts. In Joe Kilian, editor, TCC, volume 3378 of Lecture Notes in Computer
Science, pages 325–341. New York: Springer, 2005.

 6. Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil
pairing. In Colin Boyd, editor, ASIACRYPT, volume 2248 of Lecture Notes in
Computer Science, pages 514–532. New York: Springer, 2001.

 7. Kevin D. Bowers, Ari Juels, and Alina Oprea. HAIL: a high-availability and
integrity layer for cloud storage. IACR Cryptology ePrint Archive, 2008:489, 2008.

 8. Melissa Chase. Multi-authority attribute based encryption. In TCC, volume 4392
of Lecture Notes in Computer Science, pages 515–534. New York: Springer, 2007.

 9. Melissa Chase and Sherman S. M. Chow. Improving privacy and security in
multi-authority attribute-based encryption. In Ehab Al-Shaer, Somesh Jha, and
Angelos D. Keromytis, editors, ACM Conference on Computer and Communications
Security, pages 121–130. New York: ACM, 2009.

 10. C. Christopher Erway, Alptekin Küpçü, Charalampos Papamanthou, and
Roberto Tamassia. Dynamic provable data possession. In Ehab Al-Shaer,
Somesh Jha, and Angelos D. Keromytis, editors, ACM Conference on Computer
and Communications Security, pages 213–222. New York: ACM, 2009.

 11. David F. Ferraiolo and D. Richard Kuhn. Role-based access controls. In 15th
National Computer Security Conference, 1992.

 12. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor, STOC, pages 169–178. New York: ACM, 2009.

 13. Craig Gentry. Toward basing fully homomorphic encryption on worst-case
hardness. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Computer
Science, pages 116–137. New York: Springer, 2010.

 14. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic
encryption scheme. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632
of Lecture Notes in Computer Science, pages 129–148. New York: Springer, 2011.

 15. Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based
encryption for fine-grained access control of encrypted data. In Ari Juals,
Rebecca Wright, and Sabrina De Capitani di Vimercati, editors, ACM Conference
on Computer and Communications Security, pages 89–98. New York: ACM, 2006.

 16. Matthew Green, Susan Hohenberger, and Brent Waters. Outsourcing the decryp-
tion of abe ciphertexts. In David Wagner, editor, USENIX Security Symposium.
Berkeley, CA: USENIX Association, 2011.

 17. Zhuo Hao, Sheng Zhong, and Nenghai Yu. A privacy-preserving remote data
integrity checking protocol with data dynamics and public verifiability. IEEE
Trans. Knowl. Data Eng., 23(9):1432–1437, 2011.

 18. Sonia Jahid, Prateek Mittal, and Nikita Borisov. Easier: encryption-based access
control in social networks with efficient revocation. In Bruce S. N. Cheung,
Lucas Chi Kwong Hui, Ravi S. Sandhu, and Duncan S. Wong, editors, ASIACCS,
pages 411–415. New York: ACM, 2011.

 19. Wayne Jansen and Timothy Grance. Guidelines on Security and Privacy in Public
Cloud Computing. NIST Special Publication 800-144. Gaithersburg, MD: NIST, 2011.

70 Cloud Computing with e-Science Applications

 20. Ari Juels and Burton S. Kaliski Jr. Pors: proofs of retrievability for large files.
In Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors ,
ACM Conference on Computer and Communications Security, pages 584–597.
New York: ACM, 2007.

 21. Seny Kamara and Kristin Lauter. Cryptographic cloud storage. In Radu Sion,
Reza Curtmola, Sven Dietrich, Aggelos Kiayias, Josep M. Miret, Kazue Sako,
and Francesc Sebé, editors, Financial Cryptography Workshops, volume 6054
of Lecture Notes in Computer Science, pages 136–149. New York: Springer, 2010.

 22. D. Richard Kuhn, Edward J. Coyne, and Timothy R. Weil. Adding attributes to
role-based access control. IEEE Computer, 43(6):79–81, 2010.

 23. Allison B. Lewko and Brent Waters. Decentralizing attribute-based encryption.
In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lecture Notes in
Computer Science, pages 568–588. New York: Springer, 2011.

 24. Ming Li, Shucheng Yu, Kui Ren, and Wenjing Lou. Securing personal health
records in cloud computing: patient-centric and fine-grained data access con-
trol in multi-owner settings. In Sushil Jajodia and Jianying Zhou, editors,
SecureComm, pages 89–106, Singapore, 2010.

 25. Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. Attribute-based sig-
natures: achieving attribute-privacy and collusion-resistance. IACR Cryptology
ePrint Archive, 2008:328, 2008.

 26. Michael Naehrig, Kristin Lauter, and Vinod Vaikuntanathan. Can homomorphic
encryption be practical? In Christian Cachin and Thomas Ristenpart, editors,
CCSW, pages 113–124. New York: ACM, 2011.

 27. Rafail Ostrovsky, Amit Sahai, and Brent Waters. Attribute-based encryption
with non-monotonic access structures. In Peng Ning, Sabrina De Capitani
di Vimercati, and Paul F. Syverson, editors, ACM Conference on Computer and
Communications Security, pages 195–203. New York: ACM, 2007.

 28. Pascal Paillier. Public-key cryptosystems based on composite degree residuosity
classes. In Jacques Stern, editor, EUROCRYPT, volume 1592 of Lecture Notes in
Computer Science, pages 223–238. New York: Springer, 1999.

 29. W. Pugh. Skip lists: a probablistic alternative to balanced trees. Commun. ACM,
33(6):668–676, 1990.

 30. R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy
homomorphisms. In Richard Lipton, David Dobkin, and Anita Jones, editors,
Foundations of Secure Computation, Orlando, FL, 1978.

 31. Sushmita Ruj, Amiya Nayak, and Ivan Stojmenovic. DACC: distributed access
control in clouds. In Huaimin Wang, Stephen R. Tate, and Yang Xiang, editors,
Proceedings of IEEE TrustCom, pages 91–98, Changsha, China, 2011.

 32. Sushmita Ruj, Milos Stojmenovic, and Amiya Nayak. Privacy preserving
access control with authentication for securing data in clouds. In CCGRID,
pages 556–563. New York: IEEE, 2012.

 33. Ahmad-Reza Sadeghi, Thomas Schneider, and Marcel Winandy. Token-based
cloud computing. In Alessandro Acquisti, Sean W. Smith, and Ahmad-Reza
Sadeghi, editors, TRUST, volume 6101 of Lecture Notes in Computer Science,
pages 417–429. New York: Springer, 2010.

 34. Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In Ronald
Cramer, editor, EUROCRYPT, volume 3494 of Lecture Notes in Computer Science,
pages 457–473. New York: Springer, 2005.

71Securing Cloud Data

 35. Francesc Sebé, Josep Domingo-Ferrer, Antoni Martínez-Ballesté, Yves Deswarte,
and Jean-Jacques Quisquater. Efficient remote data possession checking in critical
information infrastructures. IEEE Trans. Knowl. Data Eng., 20(8):1034–1038, 2008.

 36. Hovav Shacham and Brent Waters. Compact proofs of retrievability. IACR
Cryptol. ePrint Arch., 2008:73, 2008.

 37. Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO,
pages 47–53, 1984.

 38. Douglas Stinson. Cryptography: Theory and Practice. Boca Raton, FL: CRC Press, 2005.
 39. Guojun Wang, Qin Liu, and Jie Wu. Hierarchical attribute-based encryption for

fine-grained access control in cloud storage services. In Ehab Al-Shaer, Angelos
D. Keromytis, and Vitaly Shmatikov, editors, ACM Conference on Computer and
Communications Security, pages 735–737. New York: ACM, 2010.

 40. Qian Wang, Cong Wang, Kui Ren, Wenjing Lou, and Jin Li. Enabling public
auditability and data dynamics for storage security in cloud computing. IEEE
Trans. Parallel Distrib. Syst., 22(5):847–859, 2011.

 41. Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. Attribute based data
sharing with attribute revocation. In Bruce S. N. Cheung, Lucas Chitturi, Ravi
Sandhu, and Duncan Wong, editors, ACM ASIACCS, pages 261–270, Hong
Kong: ACM, 2010.

 42. Fangming Zhao, Takashi Nishide, and Kouichi Sakurai. Realizing fine-grained
and flexible access control to outsourced data with attribute-based crypto-
systems. In Feng Bao and Jian Weng, editors, ISPEC, volume 6672 of Lecture
Notes in Computer Science, pages 83–97. New York: Springer, 2011.

 43. Yan Zhu, Hongxin Hu, Gail-Joon Ahn, and Mengyang Yu. Cooperative provable
data possession for integrity verification in multicloud storage. IEEE Trans.
Parallel Distrib. Syst., 23(12):2231–2244, 2012.

73

4
Adaptive Execution of Scientific
Workflow Applications on Clouds

Rodrigo N. Calheiros, Henry Kasim, Terence Hung, Xiaorong Li, Sifei Lu,
Long Wang, Henry Palit, Gary Lee, Tuan Ngo, and Rajkumar Buyya

Summary

Many e-science applications can be modeled as workflow applications. In this
programming model, scientific applications are described as a set of tasks
that have dependencies between them. Clouds are natural candidates for
hosting such applications. This is because some of their core characteristics,
such as rapid elasticity, resource pooling, and pay per use, are well suited to
the nature of scientific applications that experience variable demand, spikes
in resource (i.e., of the central processing unit [CPU] or disk) utilization, and
sometimes, urgency for generation of results. As current workflow manage-
ment systems (WfMSs) cannot support efficient and automated execution of
workflow in clouds that support adaptive execution, fault tolerance, and data
privacy, in this chapter we detail the requirements of a WfMS that supports
these requirements, its architecture, and an application scenario involving
simulation of Singapore’s public transport system.

CONTENTS

Summary ..73
4.1 Introduction .. 74
4.2 Workflow Applications ...75
4.3 Requirements for Adaptive Execution of Workflows on Clouds 76
4.4 Case Study .. 79
4.5 System Architecture ..83
4.6 Discussion and Lessons Learned ..84
4.7 Related Work ..85
4.8 Conclusions and Future Work ...86
References ... 87

74 Cloud Computing with e-Science Applications

4.1 Introduction

Many e-science applications can be modeled as workflow applications. In
this programming model, scientific applications are described as a set of
tasks that have dependencies between them. Normally, this dependency is
expressed in the form of input and output (I/O) files. It means that, before
one task can execute, it needs the tasks it depends on to have completed
their execution and the files they generate to already be available as input.
Well-known application domains where workflow applications are used
include astrophysics, bioinformatics, and disaster modeling and prediction,
among others.

Scientists have been successfully executing this type of application on
supercomputers, clusters, and grids. Recently, with the advent of clouds,
 scientists started investigating the suitability of this infrastructure for work-
flow applications.

Clouds are natural candidates for hosting workflow applications. This is
because some of their core characteristics, such as rapid elasticity, resource
pooling, and pay per use, are well suited to the nature of scientific applica-
tions that experience variable demand, spikes in resource (i.e., of the central
processing unit [CPU], disk) utilization, and sometimes, urgency for genera-
tion of results. Furthermore, recent offerings of high-performance cloud com-
puting instances make it even more compelling for scientists to adopt clouds
as the platform of choice for hosting their scientific workflow applications.

The execution of workflow applications is a demanding task. Tasks, some-
times in the order of hundreds, need to have their execution coordinated.
They have to be submitted for execution in a specific virtual machine (VM),
and the required input files need to be made accessible for the application.
This may require the transfer of huge amounts of data between computing
hosts. Reception of user input, data transfers, task executions, and VMs can
fail; in this case, some action has to be carried out to reestablish the execution
of the application. Examples of such actions are retrying the data transfer,
rescheduling the task, or starting a new VM to execute the remaining tasks.
These activities are carried out by software called workflow management
 systems (WfMSs). Examples of well-know, WfMSs are Pegasus [1], Taverna [2],
Triana [3], and Cloudbus Workflow Engine [4].

At the same pace that infrastructures and platforms evolve, so do the sci-
entific applications using such infrastructures and platforms. The amount of
data generated by scientific experiments is reaching the order of terabytes per
day, and huge capacity is required to process this data to enable scientific dis-
coveries. Therefore, WfMSs also need to evolve to support huge data sets and
the complex analytics required to extract useful insights from the generated
data. Even more important, if data are continuously generated, WfMSs need
to support real-time capabilities. This has to be achieved at the same time that
other nonfunctional requirements, such as data privacy, are enabled.

75Adaptive Execution of Scientific Workflow Applications on Clouds

Although this information is truth regardless of the specific infrastruc-
ture hosting the workflow application, even more complexity is added to
the system when the applications are executed in clouds. This is because
extra capabilities are required to enable the WfMS to select the right number
of resources of the right type so that the computational task is performed
within a user-defined time frame and budget.

As current WfMSs cannot support efficient and automated execution of
workflow in clouds that support adaptive execution, fault tolerance, and data
privacy, we developed extensions to a workflow engine [4] to support such
features. In this chapter, we detail the requirements of such a system, its
architecture, and the application scenario explored, along with an evaluation
of the system and a discussion of lessons learned during its development.

4.2 Workflow Applications

The workflow programming model is undoubtedly one of the most promi-
nent programming models in e-science, being used in a range of domains,
including bioinformatics, astrophysics, and disaster modeling, to name a
few. In this model, one application (job) is composed of a number of tasks
that have execution dependencies between them. Typically, the dependency
is related to I/O: One task depends on the output of another (or other) task(s)
as its input; therefore, it cannot be executed until such data are available
(normally, after the execution of the original task is completed).

Variations of the model exist in which the workflow also contains condi-
tional branches (i.e., particular tasks that compose the workflow may or may
not be executed depending on the results of previous tasks), loops (for which
execution of specific sections of the workflow is repeated), and when tasks
are allowed to start execution before predecessors complete execution.

Without loss in generality, a workflow application can be formally rep-
resented by a directed acyclic graph (DAG) whose vertices represent tasks
and the directed edges represent the dependencies between tasks: An edge
A → B indicates that task B depends on task A for its execution. Such a
 representation of workflow applications is also known as DAG. A simple
workflow is depicted in Figure 4.1.

Traditionally, workflow applications have been extensively deployed in
high-performance infrastructures such as supercomputers and clusters [5].
When deployed on such infrastructures, emphasis was given in reducing the
execution time of the workflow by optimizing the utilization of the resources
available for the workflow. When grids became available, they were also
used for workflow execution [6, 7]. This added complexity to the schedul-
ing process because it was possible that resources available for execution

76 Cloud Computing with e-Science Applications

were distributed, and thus data movement across wide distances might be
necessary. Even in this case, focus was still on execution time minimization.

Cloud computing adds a new dimension for workflow execution related
to the financial cost of using a virtually infinite amount of resources for
workflow execution. This means that the only limitations to the available
resources, and consequently the improvements in execution time, are the
available budget for workflow execution and the structure of the workflow itself,
which determines the maximum amount of tasks that can be executed in
parallel in the infrastructure. Clouds also brought other challenges for work-
flow management and execution. They are discussed in the next section.

4.3 Requirements for Adaptive Execution
of Workflows on Clouds

Although modern WfMSs already support clouds as the platform support-
ing the execution of workflow applications, many desirable features are still
absent in the WfMSs. This is because current WfMSs for clouds are derived
from projects in the area of grid computing. Therefore, many of their fea-
tures are optimized for grids and thus are unable to obtain the most key
aspects of clouds, such as rapid elasticity.

In this sense, clouds add extra complexity to WfMSs because the amount of
resources that WfMSs can provision for executing the workflow is virtually
infinite, as long as there is budget available to spend on the workflow execu-
tion process. Thus, different from existing algorithms and approaches that
operated with the goal of obtaining the most from the resources available for
the application, cloud-enabled WfMSs can assume that the main restriction
of the system is the budget rather than resources, and its goal is balancing
utilization, cost, and reduction of execution time [8].

FIGURE 4.1
Graphical representation of a simple scientific workflow.

77Adaptive Execution of Scientific Workflow Applications on Clouds

Li et al. [8] also identified the following requirements for cloud-enabled
workflows:

 1. Dynamic resource provisioning and deadlines: This is the capability
of acquiring and releasing resources as required to accommodate
the tasks of the workflow and to enable their completion within a
user-specified deadline. This is an important feature because it
enables execution of mission-critical workflow applications that need
to be completed before the deadline for the computation to have
value. An example of such mission-critical workflows is disaster
management workflows. Consider, for example, the architecture
depicted in Figure 4.2. A disaster management workflow application
suite may support management of many types of natural dis asters,
such as floods, cyclones, and bushfires. When one such disaster
strikes, the corresponding management application needs to be
executed in public and private clouds to provide information that
will be used by disaster mitigation and rescue teams. If the applica-
tion takes too long to execute, the teams will not have time to act
based on the information provided, which results in wasted time
(and money) invested in the execution of the workflow in the cloud
and even further losses in terms of lives and property damage that
would have been prevented if the rescue and mitigation teams had
access to the information in appropriate time.

 2. Adaptive task/workflow/user scheduling: This relates to the capability
of reacting to conditions faced during workflow execution to main-
tain the balance between cost, utilization, and execution time. In the
context of this requirement, a change in conditions means adapting
to changes in user requirements at runtime (e.g., increased/reduced
budget, increased/reduced application deadline).

 3. Fault tolerance: This is the capacity to automatically react to changes
in the available number of resources or tasks to be processed
because of failures and the capability to adapt to situations if the
performance delivered by cloud resources is below that contracted
or historically observed.

 4. Security-conscious data migration and data privacy: Given that the data
being processed by the WfMS can be sensitive, mechanisms for pro-
tection of the data, either during transfer or once stored in a public
cloud, must be available. The applied method should also enable
auditing of accesses and modifications in the data.

 5. Application management: This requirement involves the capability to
collect and process information about the system status and moni-
tor the platform and the application in real time. This requirement
also includes a capacity for presentation of comprehensive informa-
tion to users about the resources (utilization, performance, etc.) and

78 Cloud Computing with e-Science Applications

Cy
cl

on
e

M
an

ag
em

en
t

Bu
sh

fir
e

M
an

ag
em

en
t

En
ac

t A
da

pt
iv

e
W

or
kfl

ow
s

Fi
nd

/In
te

rr
og

at
e/

Pr
ep

ar
e D

at
a

Pr
ep

ar
e

W
or

kfl
ow

s
D

at
a E

xp
os

ur
e

an
d

A
na

ly
sis

Cl
ou

d
St

or
ag

e

Pu
bl

ic
 an

d
Pr

iv
at

e C
lo

ud
s

In
te

rm
ed

ia
te

St
or

ag
e

In
te

ra
ct

iv
e 3

D
G

IS
 V

isu
al

iz
at

io
n

Sy

st
em

 S
ta

tu
s

In
fo

rm
at

io
n

D
is

as
te

r M
an

ag
em

en
t W

or
kfl

ow
 A

pp
lic

at
io

ns
 S

ui
t

D
at

a
m

ov
em

en
t

se
rv

ic
es

D
at

a

Fl
oo

d
M

an
ag

em
en

t

FI
G

U
R

E
4.

2
A

rc
h

it
ec

tu
re

 fo
r

w
or

kfl
ow

-e
na

bl
ed

 d
is

as
te

r
m

an
ag

em
en

t a
pp

lic
at

io
n

s.

79Adaptive Execution of Scientific Workflow Applications on Clouds

tasks so the cost-benefit analysis of utilization of the cloud can be
undertaken and the utilization of cloud computing for workflows
can be justified.

These requirements were addressed while we developed an adaptive
 system for execution of a workflow for agent-based simulation in hybrid
clouds. The application is detailed next.

4.4 Case Study

A city is sustainable only if it can accommodate economic and population
growth while ensuring the well-being of its people and environment [9]. There-
fore, reaching sustainability becomes harder when the growth of a population
is high or when the growth occurs in areas of high density, such as Singapore.

Singapore’s land area has increased from 581 km2 in the 1960s to 716 km2
in 2012; its population in the same period has grown from 1.6 million to
5.3 million [10]. To maintain reasonably good economic growth, the Singapore
government has projected a need for the population to reach 6.9 million by
2030. However, the land area is only slated to grow to about 800 km2 in the
same period. The disparity in the growth rate of population versus land area
means that there is increasing strain on space and the service infrastruc-
ture. It is crucial for the planning agencies to adopt a scientific approach to
understanding the urban fabric and how it can adapt to social, economic,
and environmental changes.

One key aspect to improve the quality of living of city inhabitants is public
transport. There is a need for efficient transport covering the biggest exten-
sion of the city as possible and running with enough frequency so people are
motivated to use it rather than using cars. In this sense, Singapore’s public
transport network is ranked among the best in the world. Its Mass Rapid
Transit (MRT) train network comprises 102 stations distributed over four
main lines, with a total of almost 150 km of rail lines. It currently serves
around 2.5 million commuters per day, which represents more than 75% of
the total public transport users [11].

The number of commuters and the high frequency of trains (running in
intervals as short as 90 seconds) make it a complex system. Furthermore,
even a minimal disruption in the operation of one train can cascade over
several lines, affecting hundreds of thousands of commuters.

This complex and sensitive system will be subject to even further pressure
as the population increases. Therefore, tools are needed to help planners
evaluate the effects that disruptions would have over the whole system.

80 Cloud Computing with e-Science Applications

This fact motivated us to adopt a data-driven approach to understanding the
dynamics of the public transport system in Singapore. To achieve that, a scal-
able complex system modeling for a sustainable city (S3) has been develop ed
to study how the city will behave under different planning scenarios.

The goal of S3 is to provide insights to users on what-if scenarios for a
day-to-day public transport system by leveraging on a synthetic journey
function that generates agent-based models for public transport dynamics
simulation. This insight will provide information on the future public trans-
port infrastructure preparedness to handle the growing population and the
preparedness for emergencies in cases of breakdowns in the public trans-
port system.

Scaling areas that we address in this context are (1) the extract- transform-
load (ETL) or preprocessing that is required to train the synthetic journey
function that generates the agent-based model; (2) the agent-based generation
required to generate millions of agents that represent the increasing popula-
tion and public transport infrastructure; and (3) the large-scale agent-based
simulation that is required to handle, track, and process each of the agents
and to support complex interactions between agents to provide insight on
what-if scenarios for the public transportation system in Singapore.

We tackled the large-scale computation requirements by designing
agent-based complex system modeling supported by an adaptive cloud
WfMS [12] for workflow scheduling and handling big data and dynamic
resource scaling on public and private clouds.

The S3 application has three phases: preprocessing, data analysis, and
agent-based simulation. Figure 4.3 shows our S3 application architecture,
which comprises an adaptive cloud WfMS, ETL or preprocessing algorithm,
data analysis algorithm, and agent-based simulation.

ETL or preprocessing. The synthetic data set for the application is
based on the studies of trends and random sampling of daily public
commuters’ activities in Singapore. It consists of 1-second time gran-
ularities for 7 days’ duration with approximately 3 million journeys
per day. Based on the synthetic data set, we extract and transform the
data for travel duration for each origin-station to destinations-station
(OD-pair) of 90 x 90 by three different route choices. The order of
complexity in this phase is O(n2), where n represents the number
of stations.

Data analysis. The objective of this phase is to understand commuter
demand and, based on data analysis results, create or improve the
journey function of all possible OD pairs, possible routes for each
OD pair, and temporal travel demand. The order of complexity in
this phase is also O(n2), where n represents the number of stations.

81Adaptive Execution of Scientific Workflow Applications on Clouds

Sy
nt

he
tic

da
ta

 se
t

ET
L

or
 P

re
-

pr
oc

es
sin

g
D

at
a A

na
ly

sis

A
ge

nt
-B

as
ed

 S
im

ul
at

io
n

Se
t u

p
RT

S
ne

tw
or

k
st

ru
ct

ur
e

30
00

 ag
en

ts
90

 ag
en

ts

Cr
ea

te
 st

at
io

ns
Cr

ea
te

co
m

m
ut

er
s

Co
m

m
ut

er
s d

ec
id

e:
jo

ur
ne

y a
nd

 ro
ut

e

D
on

e
En

d

Ch
ec

k
an

d
up

da
te

 st
at

io
ns

Fo
rw

ar
d

tr
ai

n,
ch

ec
k

st
at

us

fo
r t

r i
n

tr
av

el
lin

g
tr

ai
ns

Bo
ar

d/
al

ig
ht

pa
ss

en
ge

rs

t =
 6

04
80

0
se

co
nd

s

fo
r t

 in
ra

ng
e (

op
en

, c
lo

se
)

Ch
ec

k
an

d
up

da
te

co
m

m
ut

er
s

D
isp

at
ch

 tr
ai

n

D
isp

at
ch

ne
w

 tr
ai

n?
Ye

s

Ye
s

N
o

N
otr

 o
n

st
at

io
n?

fo
r I

 in
 tr

ai
n

lin
es

Se
t u

p
O

D
 p

air
s a

nd
po

ss
ib

le
ro

ut
es

Cr
ea

te
 tr

ai
ns

6.
9

m
ill

io
ns

 ag
en

ts
Cr

ea
te

 ag
en

ts

Sy
nt

he
tic

jo
ur

ne
y f

un
ct

io
n

Cl
ou

d
W

or
kfl

ow
 M

an
ag

em
en

t S
ys

te
m

FI
G

U
R

E
4.

3
S3 :

ar
ch

it
ec

tu
re

, c
on

ce
pt

s,
 a

nd
 te

ch
no

lo
gi

es
.

82 Cloud Computing with e-Science Applications

Agent-based simulation. In this phase, we simulate the actions and
interactions of autonomous agents. This agent-based simulation con-
sists of agent granularity, adaptive agent process, decision-making
heuristics, and agent interactions. Agent granularity refers to the
number of agents specified at various scales. The adaptive agents pro-
cess refers to the action that an agent takes when a situation occurs
(redefining the decision-making heuristics). Decision-making heuris-
tics refer to rules or behaviors of an agent. Agent interaction refers to
the complexity of communications or inter actions between agents.

There are three types of agents in the S3 application: commuters, stations,
and trains. Each of these agents has its own attributes, adaptive agent pro-
cess, decision-making process, and agent interactions, as summarized in
Table 4.1. The order of complexity in this phase is O(n3) due to the interac-
tions between agents on simulation time interval or O(tn2), where n repre-
sents the number of agents and t represents the simulation time steps.

Data requirements. The size and quantity of the data set that is generated
is large. The size of the data can easily take up a few gigabytes each day.
For example, the data set consists of 7 days of public transportation
journeys for each individual, with approximately 3 million journeys
per day. As for the agent-based simulation, we simulate the growing
population as 6.9 million. This translates into approximately 14 mil-
lion journeys (travel and return) performed for each simulated day.

Computation requirements. For agent-based simulation, millions of
agents are created to simulate the future infrastructure and dynam-
ics of the transportation system in Singapore. In total, the system
manages 7 million agents that have their own attributes, adaptive
agent process, decision-making process, and interactions with other
agents. Furthermore, there is complexity of agent interactions and
tracking for the simulation interval at 1-second granularity.

TABLE 4.1

Agent-Based Simulation Characteristics

Commuter Agents Station Agents Train Agents

Agent granularity 6.9 million agents 90 agents Approximately 200
agents

Attributes 12 attributes 9 attributes 16 attributes
Adaptive agent
process

1 adaptive process — 2 adaptive processes

Decision-making
heuristics

5 decision-making
heuristics

2 decision-making
heuristics

5 decision-making
heuristics

Agent interactions • Station
• Train

• Commuter
• Train

• Commuter
• Station

83Adaptive Execution of Scientific Workflow Applications on Clouds

To support not only these requirements for data and computation but also
the requirements listed in the previous section, we proposed and developed
a workflow middleware whose architecture is described next.

4.5 System Architecture

The requirements presented previously are addressed by software middle-
ware comprising a WfMS augmented with capabilities for data analytics
integrated as a second layer above the WfMS. The overall organization of
the system is depicted in Figure 4.3. It shows the S3 application architecture,
which consists of the adaptive cloud WfMS, the ETL or preprocessing algo-
rithm, the data analysis algorithm, and the agent-based simulation.

Cloud WfMS system. The cloud WfMS is responsible for workflow
scheduling, big data handling, and dynamic resource scaling on
hybrid clouds. The Cloud WfMS comprises the workflow engine,
task dispatcher, and resource management. The workflow sched-
uling coordinates the execution of tasks, handles communication
between components, implements the scheduling algorithm, and
manages the execution of applications on distributed resources. The
task dispatcher component submits tasks to resources for execu-
tion. The resource management component interacts with the cloud
infrastructure to enable resource allocation.

Preprocessing and data analysis. This component is responsible
for managing preprocessing and data analysis activities that
are required to train the synthetic journey function that gener-
ates the synthetic journey. It tackles the scalability challenge by
dynamically scaling up the number of VM instances; thus, the pre-
processing processes are executed in parallel. Since this is a compu-
tationally intensive task with a long duration and the total number
of origin-station and destination-station pairs is large (composed
of more than 8,000 pairs), VM instances are pooled from a hybrid
cloud where each VM instance processes the travel duration for
each origin-station and destination-station pair.

Agent-based simulation. There are three phases of agent-based simu-
lation: agent creation, attribute definition, and simulation execution.
Our module is able to scale the process of agent-based generation
in orders of magnitude of up to millions of agents. Further in this
chapter , we demonstrate the process for 6.9 million commuter agents,
90 station agents, and 200 train agents. The activities of the process
of simulation execution are (1) time series simulation with 1-second

84 Cloud Computing with e-Science Applications

intervals; (2) tracking of each agent, which includes checking and
updating each agent’s state; (3) a decision-making process for each
agent (e.g., dispatch the train at simulation time t); (4) adaptive agent
process that allows agents to adapt to different situations (e.g., when
a train arrives at a station, commuter agents need to board or leave
the train); (5) interactions between agents (e.g., communication
between train agents and station agents when the train arrives at the
station, communication between commuter agents and train agents
when the commuter boards the train) and management of tasks and
data flows on the hybrid cloud utilizing the cloud WfMS.

A discussion of the implementation aspects of the architecture and its
 performance is presented next.

4.6 Discussion and Lessons Learned

The agent-based simulation is based on three phases: create agents, define
attributes, and run the simulation. To test the scalability of the model,
we evaluated two different setups. The first one uses the ZeroMQ (ZMQ)
technology [13] in our hybrid cloud. ZMQ is a low-latency asynchronous
message-passing library that is used in scalable distributed or concurrent
applications. The second one is a hybrid cloud test bed. The private cloud
component of the hybrid cloud is composed of 64 cores (hyperthreaded) and
a 2.2-GHz processor with 128 GB of memory. On top of this infrastructure,
we deployed 50 VMs, with each VM an Ubuntu 12.04 with 1 core and 4 GB of
memory. The public cloud is composed of 1,000 Amazon EC2 small instances
(1 core with 1 ECU and 1.7 GB of memory).

Scaling of the “create agents” and “define attributes” phases is achieved
through the division of the workload, with each process handling a group
of agents. For example, in a simulation with 7 million commuters running
on an infrastructure containing 1,000 VMs, creation of commuter agents was
split among the VMs in such a way that each VM handled the creation of
7,000 agents.

On the “run simulation” phase, we experienced the execution of the sim-
ulation on a time-based simulation with 1-second intervals and tracking,
checking, and updating of each agent’s states. The scale method in this case
delegates each VM to handle a group of agents. When the ZMQ push-pull
method is used, one of the VMs acts as the head node that is in charge of
distributing the tasks to all the worker VMs and controlling the timekeep-
ing process of the simulation. The timekeeping process consists of sending a
message to each worker to inform them of the current simulation time so that
workers can start the simulation of events scheduled for such a given time.

85Adaptive Execution of Scientific Workflow Applications on Clouds

However, we noticed that the time-based simulation has limited scalabil-
ity. When executed in a private cloud of 50 VMs, it took 35,248 seconds to
complete the 2 million commuters’ agent-based simulation. This happened
because there were dependencies in t + 1 with time t (i.e., simulation at time
t needs to be completed before simulation of time t + 1 starts). Because of this
issue, we replaced the time-based simulation with an event-based simulation.

In event-based simulation, the model handles the agents’ interactions, such
as boarding of commuters, unboarding of commuters, train arrivals at sta-
tions, and train departures from stations. On the back end, the workload is
distributed via a similar method to other phases (each process handles a
group of agents). With this new technique, the execution time of the simula-
tion in the same private cloud was completed in 1,818 seconds for the same
2-million-commuter agent-based simulation, an improvement of 19 times
over the original technique.

We further scaled the agent-based simulation by executing it on 1,000 VMs.
In this case, the agent-based simulation completed in 434 seconds for simula-
tion of 2 million commuters and 963 seconds for 7 million commuters. This
demonstrated that the three phases of our approach are scalable and suitable
for execution on elastic cloud platforms.

To summarize, we gave preference to the cloud-enabled WfMS over the
ZMQ system because of the following reasons: (1) It enabled more efficient
management of the highly distributed data required by the agent-based
simulation workflow; (2) it better automated the workflow process for data
 analytics with multiobjective optimization of performance and budget;
and (3) it enabled dynamic resource allocation for adaptive services with
fault tolerance.

4.7 Related Work

Given the importance of workflow applications for the scientific community,
many scientific workflow platforms were developed to explore scientific
computational platforms such as grids. As cloud platforms became popular
among the scientific community, WfMSs where enhanced to support them.

Pegasus [1] offers a set of tools for different aspects of execution and man-
agement of workflow applications and platforms. It implements application
programming interfaces (APIs) for diverse programming languages, supports
submission of workflows via web portals, and integrates with external tools. On
its back end, it supports multi ple cloud providers and scientific infrastructures.

Taverna [2] is another widely adopted workflow engine that can explore
both grid and cloud platforms. Applications running on the platform can
be deployed in many modes, including “server mode,” by which it supports
requests from many users to execute remote workflow applications.

86 Cloud Computing with e-Science Applications

The Cloudbus Workflow Engine incorporates a market-oriented utility
computing model that supports grids, desktops, and clouds. It supports the
concept of InterCloud for allocation and management of resources for execu-
tion of workflow applications [1].

Kim et al. [14] proposed a WfMS able to deploy workflows in hybrid infra-
structures composed of TeraGrid nodes and Amazon EC2 resources. Our
proposed system, on the other hand, can also leverage resources from private
and public cloud providers.

Gogouvitis et al. [15] proposed a WfMS for deploying workflow applica-
tions on virtualized environments that is able to utilize resources from
 public clouds. However, it has no dynamic provisioning capabilities to speed
application execution and to meet real-time application performance require-
ments as does our approach.

Fernandez et al. [16] proposed a cloud WfMS that applies a concept called
chemical programming for the application scheduling. The system, however,
does not offer dynamic resource provisioning capabilities and autonomic
self-healing features.

CometCloud [17] is a more recent tool that implements an infrastructure
for autonomic management of workflow applications on clouds.

4.8 Conclusions and Future Work

Clouds became a powerful platform for e-research as they enable scientists to
have access to elastic, cost-effective, and virtually infinite computing power.
Because clouds provide their users the view of infinite computing capac-
ity, the real limitations on the scalability of the applications lie in the avail-
able budget for cloud usage and limitations in the applications themselves.
Therefore, it is important that scientific application developers enable their
applications to get the most from the cloud.

In this chapter, we discussed recent trends for execution of workflows in clouds.
The architecture we presented is composed of a platform layer and an applica-
tion layer. The platform layer enables operations such as dynamic resource pro-
visioning, autonomic scheduling of applications, fault tolerance, security, and
privacy in data access. The features enabled by this layer can be explored by
virtually any application that can be described as scientific workflow.

In the application layer, we discussed a data analytics application enabling
simulation of the public transport system of Singapore and the effect of
abnormal events in the transport network. The application consists of an
agent-based simulation of the public transport system of Singapore, and it
allows evaluation of effects of incidents (such as train delays) in the flow of
passengers in the country.

87Adaptive Execution of Scientific Workflow Applications on Clouds

As future work, we plan to extend our platform to support a disaster deci-
sion support system (DDSS). The principles presented in this chapter will
be further expanded so the DDSS will provide a dashboard for the strategic,
tactical, and operational decisions arising during disaster mitigation. It will
be integrated with a range of modeling and simulation tools to provide opti-
mization models with up-to-date situational awareness and predictions to
provide recommendations to authorities. This extension will support not
only workflow applications but also other programming models suitable
for clouds, such as MapReduce. Ideally, the platform will support not only
applications that are entirely described as one of these models but also com-
plex applications that are composed of diverse subcomponents that may be
 developed as different programming models.

References

 1. Deelman, E., Singh, G., Su, M., et al. 2005. Pegasus: a framework for mapping com-
plex scientific workflows onto distributed systems. Scientific Computing 13:219–237.

 2. Oinn, T., Greenwood, M., Addis, M., et al. 2006. Taverna: lessons in creating
a workflow environment for the life sciences. Concurrency and Computation:
Practice and Experience 18:1067–1100.

 3. Taylor, I., Shields, M., Wang, I., et al. 2007. The Triana Workflow Environment:
Architecture and Applications. In Workflows for E-Science, ed. I. J. Taylor,
E. Deelman, D. B. Gannon, et al., 320–339. London: Springer.

 4. Pandey, S., Karunamoorthy, D., and Buyya, R. 2011. Workflow engine for
clouds. In Cloud Computing: Principles and Paradigms, ed. R. Buyya, J. Broberg,
and A. Goscinski, 321–344. New York: Wiley.

 5. Kwok, Y., and Ahmad, I. 1999. Static scheduling algorithms for allocating
directed task graphs to multiprocessors. ACM Computing Surveys 3:406–471.

 6. Yu, J., Buyya, R., and Ramamohanarao, K. 2008. Workflow scheduling algorithms
for grid computing. In Metaheuristics for Scheduling in Distributed Computing
Environments, ed. F. Xhafa and A. Abraham, 173–214. Berlin: Springer.

 7. Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., et al. 2012. Multiple work-
flow scheduling strategies with user run time estimates on a grid. Journal of Grid
Computing 10:325–346.

 8. Li, X., Calheiros, R., Lu, S., et al. 2012. Design and development of an adap-
tive workflow-enabled spatial-temporal analytics framework. In Proceedings of
the 2012 IEEE International Workshop on Scalable Computing for Big Data Analytics
(SC-BDA 2012), 862–867. Piscataway, NJ: IEEE Computer Society.

 9. Bryan, L. 2010. The social and psychological issues of high-density city space.
In Designing High-Density Cities for Social and Environmental Sustainability, ed.
E. Ng, 285–292. London: Earthscan.

 10. Singapore Department of Statistics. 2013. Singapore in figures 2013. http://www.
singstat.gov.sg/Publications/publications_and_papers/reference/sif2013.pdf.

88 Cloud Computing with e-Science Applications

 11. Singapore Land Transport and Authority. 2013. Singapore land transport in brief
2013. http://www.lta.gov.sg/content/dam/ltaweb/corp/PublicationsResearch/
files/FactsandFigures/Stats_in_Brief_2013.pdf.

 12. Rahman, M., Li, X., and Veeravalli, B. 2012. Hybrid heuristic for scheduling data
analytics workflow applications in hybrid cloud environments. In Proceedings of
the 2011 IEEE Symposium on Parallel and Distributed Processing Workshops and PhD
Forum (IPDPSW’11), 966–974. Piscataway, NJ: IEEE Computer Society.

 13. Hintjens, P. 2013. ZeroMQ: Messaging for Many Applications. Sebastopol, CA: O’Reilly.
 14. Kim, H., el-Khamra, Y., Rodero, I., et al. 2011. Autonomic management of applica-

tion workflows on hybrid computing infrastructure. Scientific Computing 19:75–89.
 15. Gogouvitis, S., Konstanteli, K., Waldschmidt, S., et al. 2012. Workflow manage-

ment for soft real-time interactive applications in virtualized environments.
Future Generation Computer Systems, 28:193–209.

 16. Fernandez, H., Tedeschi, C., and Priol, T. 2011. A chemistry-inspired workflow
management system for scientific applications in clouds. In Proceedings of the
Seventh International Conference on e-Science (e-Science’11), 39–46. Piscataway, NJ:
IEEE Computer Society.

 17. Kim, H., el-Khamra, Y., Rodero, I., et al. 2011. Autonomic management of appli-
cation workflows on hybrid computing infrastructure. Scientific Programming
19:75–89.

89

5
Migrating e-Science Applications
to the Cloud: Methodology and Evaluation

Steve Strauch, Vasilios Andrikopoulos, Dimka Karastoyanova,
and Karolina Vukojevic-Haupt

CONTENTS

Summary ..90
5.1 Introduction ..90
5.2 Motivating Scenario .. 92
5.3 Related Work ..94
5.4 Migration Methodology and Tool Support .. 97

5.4.1 Requirements.. 97
5.4.1.1 Functional Requirements ... 97
5.4.1.2 Nonfunctional Requirements ..98

5.4.2 Migration Methodology ..98
5.4.2.1 Step 1: Select Migration Scenario 100
5.4.2.2 Step 2: Describe Desired Cloud Data Hosting

Solution ... 101
5.4.2.3 Step 3: Select Cloud Data Store or Data Service 102
5.4.2.4 Step 4: Describe Source Data Store or Data Service 103
5.4.2.5 Step 5: Identify Patterns to Solve Potential

Migration Conflicts ... 103
5.4.2.6 Step 6: Refactor Application Architecture 103
5.4.2.7 Step 7: Migrate Data .. 104

5.4.3 Realization .. 104
5.5 Evaluation ... 106
5.6 Conclusions ... 109
List of Abbreviations... 111
Acknowledgments .. 111
Bibliography .. 111

90 Cloud Computing with e-Science Applications

Summary

Migrating an existing application to the cloud is a complex and multi-
dimensional problem requiring in many cases adapting the application in
significant ways. Taking a look in particular into the database layer of the
application, this involves dealing with differences in the granularity of inter-
actions, refactoring of the application to cope with remote data sources, and
addressing data confidentiality concerns. In this chapter we introduce an
application migration methodology that incorporates these aspects, and a
decision support, application refactoring and data migration tool which sup-
ports application developers in realizing this methodology. We evaluate the
proposed methodology and enabling tool using a case study conducted in
the context of an e-science project.

5.1 Introduction

e-Science is an active field of research striving to enable faster scientific dis-
covery and groundbreaking research in different scientific domains by means
of information technology (IT). It is considered a new paradigm for science
and is referred to as the fourth paradigm (Hey et al., 2009) or data-intensive
science; it unifies theory, experiments, and simulation for data exploration
for the purpose of scientific discovery. Existing literature shows that myriad
available software systems, like Kepler, Triana, Taverna, Pegasus, and so on,
support only some of the experiment life cycle phases and are applicable
only for specific scientific domains (Taylor et al., 2006).

Due to its interdisciplinary nature, e-science exhibits a high degree of
complexity, mainly due to the technical challenges and interoperability defi-
ciencies of the existing software, the large amounts of data produced and
consumed by the computational tools and systems, and the computational
intensity and distributed characteristics of the IT environment observed in
scientific computing. One major issue in current research is the integration of
existing software and tools, across domains and organizational structures,
for enabling the collaborative modeling of more complex scientific experi-
ments and their execution. The most prominent approach for integrating
software systems for the purpose of performing scientific experiments is
workflow technology. Workflows are defined in terms of control flow among
tasks comprising an experiment and the data exchanged among them
(i.e., data flow). Moreover, the tasks in a workflow stand for a concrete unit of
work that can be implemented by a computational, configuration, or visual-
ization tool or by human users.

91Migrating e-Science Applications to the Cloud

The available scientific workflow systems can be classified in two groups
based on the fundamental features of the workflows they realize. There are
data-driven scientific workflow systems, such as Kepler, Triana, Taverna, and
Pegasus (Taylor et al., 2006), which stem from research in scientific comput-
ing. In such workflows, the focus is on modeling experiments in terms of how
scientific data are processed (i.e., the tasks in a workflow are data-processing
tasks), distributed, and placed on computing nodes in terms of computing
jobs. There are also control flow-based scientific workflow systems, such as
SimTech Scientific Workflow Management System (SWfMS; http://www.
iaas.uni-stuttgart.de/forschung/projects/simtech/projects.php) and Trident
(http://research.microsoft.com/en-us/collaboration/tools/trident.aspx),
which support workflows with emphasis on the control flow among compu-
tational tasks, while the data consumed and produced by the software sys-
tems follow the control flow. In these workflows, the computational tasks are
implemented by individual software systems, which in turn may distribute
the computation over multiple computing nodes; however, this is kept trans-
parent for the workflow system. The enacting environment, also called the
workflow management system or workflow engine, is mainly dealing with
orchestrating the software systems as well as human users. Such workflows
have been developed as extensions to the available workflow technology from
business applications.

These two different types of scientific workflow systems exhibit very dif-
ferent qualities of service characteristics, such as scalability, robustness,
interoperability, reusability, and flexibility (De Roure, Goble, and Stevens,
2009; Görlach et al., 2011; Sonntag and Karastoyanova, 2010). The systems
based on the conventional workflow technology from the business domain
exhibit better quality-of-service characteristics. This can be explained mainly
by the differences in the workflow metamodels and by the longer develop-
ment, improvements, and evolution of workflow systems that took place
in the field of enterprise application management (or the level of maturity
reached by the workflow technology in this domain).

In recent years, cloud computing has gained significant acceptance in
both the enterprise application management and scientific computing for
its promise to reduce infrastructure costs and provide virtually unlimited
computational power and data storage (Armbrust et al., 2009)—requirements
of particular importance for businesses and of even greater importance to
scientists and research organizations. While research in this field is active
in providing novel concepts, techniques, and principles toward building
cloud-native applications, there is a significant effort to cloud enable existing
applications to reuse existing systems and therefore investments. Typically,
cloud-enabling applications are related to the migration of whole systems or
parts of them on a public or private cloud environment (Andrikopoulos et al.,
2013; Deelman et al., 2008). Current research in migration methodologies and
techniques, both specific to the e-science domain and outside it, is presented
in Section 5.3.

92 Cloud Computing with e-Science Applications

In this work, we present a vendor- and technology-independent method-
ology for migrating the database layer of applications and refactoring the
application architecture as positioned in existing methodologies for migra-
tion of applications (see Section 5.4). The methodology is applicable to appli-
cations in different application domains and is agnostic to the types of data
sources. It fulfills requirements also presented in this work, which we have
identified in collaboration with software engineers and domain experts in
several research projects. We use this methodology to migrate the database
layer of a scientific workflow management system (SimTech SWfMS), which
we developed in the scope of our research activities in the SimTech project.
The architecture and implementation details of the system, as well as the
motivation for the database layer migration, are first presented in Section 5.2.
The migration of the SimTech SWfMS has been done using the Cloud Data
Migration Support Tool—a proof-of-concept implementation of the method-
ology. Both the introduced methodology and the supporting tool have been
evaluated, and our findings are presented in Section 5.5. Our concluding
remarks and plans for future work are presented in Section 5.6.

5.2 Motivating Scenario

As a motivating scenario from the e-science field, we use the integrated and
interactive SWfMS developed in the context of the SimTech project (Sonntag,
Hahn, and Karastoyanova, 2012; Sonntag and Karastoyanova, 2010). The
SimTech SWfMS is a distributed system based on conventional workflow
technology adapted to the needs of scientific workflows. The main compo-
nents of the SimTech SWfMS are a modeling and monitoring tool, a workflow
engine, an enterprise service bus, an auditing system, a messaging system,
several database management systems, and an application server running
the simulation services.

We present the architecture of the SimTech SWfMS in Figure 5.1. The user
interacts with the system using the modeling and monitoring tool. SimTech
SWfMS provides a graphical user interface to model, execute, and monitor
scientific workflows. When the user initiates the execution of a workflow,
the tool automatically deploys the workflow model on the workflow engine,
which makes the simulation workflow available for use. The workflow can
be instantiated as many times as needed. The instantiation of a scientific
workflow is the beginning of the execution phase of the workflow life cycle.

The workflows executed by the workflow engine describe the ordered
execution of different tasks such as data preparation, computation, or visu-
alization. In our case, these tasks are realized by web services hosted on an
application server. During the execution of a workflow, the workflow engine
navigates along the predefined control flow and also interacts with these

93Migrating e-Science Applications to the Cloud

web services through the service bus; that is, it sends a request for invocation
of a web service and receives the results back from the web services. The ser-
vice bus is also responsible for service discovery and selection if informa-
tion about concrete services to be used is not available during the workflow
deployment step.

The workflow engine also produces fine granular workflow execution
events and publishes them to the messaging system. These events are con-
sumed by the modeling and monitoring tool as well as by the auditing appli-
cation. The modeling and monitoring tool uses the execution information
to enable the live monitoring of running workflows. The auditing applica-
tion captures the same execution information and saves it into a database to
enable provenance and later analysis.

The actual workflow that serves as an example in the following is a kinetic
Monte Carlo simulation (KMS) that invokes several web services as part of the
simulation of solid bodies. These web services are implemented by modules
of the OPAL application (Sonntag et al., 2011). During their operation, the
OPAL web services access a MySQL database for both read and write opera-
tions. The example simulation of solid bodies is long running and requires
significant computing power. Speeding up the simulation was a challenge
that led to the decision to make use of cloud infrastructures, with the goal to
acquire additional computational resources and data storage for the time of
executing the simulation. This was indeed the major motivation for migrating
the simulation workflow system or parts of it to the cloud.

Since the example simulation produces big amounts of data, one of our deci-
sions was to temporarily migrate the database layer of the OPAL web services
into the cloud, thus realizing the migration scenario cloud bursting (Strauch
et al., 2013b), with Amazon Relational Database Service (RDS) as the migra-
tion target. However, migrating only the database layer to Amazon would

Application Server

Database

Auditing Messaging
System

Workflow
Engine

Service i OPAL…

Modeling &
Monitoring

Tool

Use

Scientist

Legend

Message flow

Function call

Database
Enterprise
Service Bus

FIGURE 5.1
Main components of the SimTech SWfMS architecture.

94 Cloud Computing with e-Science Applications

result in extensive data transfer between the OPAL services on the premises
and the database off the premises, therefore creating a potential bottleneck.
Considering this, we decided also to migrate the business logic of the applica-
tion to the cloud. Consequently, the modeling and monitoring tool was kept on
the premises, while the remaining parts of the SimTech SWfMS were moved to
an off-premises infrastructure. As a result, we not only avoid bottlenecks but
also reduce costs since for most cloud providers data transfer inside the cloud
is significantly cheaper than data transfer from and to the cloud.

The challenges we faced during this process were the following:

• which part of the system to migrate,
• what is the target system to migrate on,
• if and how to adapt the existing system to operate correctly after

the migration,
• and most important, the lack of automated support with respect to

these decisions.

To address these challenges, in this work we present a methodology that
incorporates decision and refactoring support for migration of the database
layer of applications to the cloud. For this purpose, in the following section
we focus on investigating available methodologies and decision support
 systems (DSSs) for such scenarios.

5.3 Related Work

The state of the art we investigate in this section covers three aspects. First, we
review existing literature on recommendations, benefits, and use cases with
respect to the usage of cloud computing for e-science. Second, we investi-
gate available vendor-specific and vendor-independent methodologies and
guidelines for migrating either the database layer or the whole application
to the cloud. Then, we consider available recommendations and DSSs with
respect to migration to the cloud.

Mudge et al. reported an increase in speed by a factor of five on execution
times when they migrated an e-science application from the domain of geo-
physics from on premises to the cloud, considering services from Amazon
AWS and Microsoft Windows Azure (Mudge et al., 2011). Cala et al. used
cloud computing to satisfy the demand for increased computation power
and need for storing large volumes of data by migrating an existing e-science
application for predicting chemical activity to Microsoft Windows Azure
(Cala et al., 2013). The migration scenarios we are using in our methodol-
ogy not only cover enterprise use cases but also cover scientific scenarios,

95Migrating e-Science Applications to the Cloud

as we have collaborated with industry partners and domain experts from
the e-science domain while identifying them. Zinn et al. migrated an exist-
ing application based on scientific workflows from the domain of astronomy
to Microsoft Windows Azure (Zinn et al., 2010). The existing application
we migrate to the cloud for the purpose of evaluating our approach is also
based on scientific workflows. Deelman et al. evaluated the cost of running
e-science applications in the cloud, focusing on the trade-off between dif-
ferent workflow execution modes and provisioning plans, and came to the
conclusion that the costs highly depend on the selected deployment strategy
(Deelman et al., 2008). We do not explicitly consider costs but provide recom-
mendations and guidelines with respect to the deployment strategy.

Amazon proposes a phase-driven approach consisting of six phases for
migration of an application to its cloud infrastructure (Varia, 2010). The
data migration phase is subdivided into a selection of the concrete Amazon
AWS service and the actual migration of the data. Amazon provided recom-
mendations regarding which of their data and storage services best fit for
storing a specific type of data; for example Amazon Simple Storage Service
(Amazon S3, http://aws.amazon.com/s3/) is ideal for storing large write-once,
read-many types of objects. As the methodology proposed by Amazon
focuses on Amazon AWS data and storage services only, we abstracted from
this methodology and integrated the guidelines in our proposal. In addi-
tion to several product-specific guidelines and recommendations (Microsoft,
2013a, 2013b), Microsoft provided a Windows Azure SQL Database Migration
Wizard (http://sqlazuremw.codeplex.com) and the synchronization service
Windows Azure SQL Data Sync (http://www.windowsazure.com/en-us/
manage/services/sql-databases/getting-started-w-sql-data-sync/). We reused
some of these tools, tutorials, and wizards and refer to them during the data
migration phase.

For the App Engine, Google is offering the tool Bulk Loader (http://bulk
loadersample.appspot.com), which supports both the import of CSV and
XML files into the App Engine Data Store and the export as CSV, XML, or
text files. The potentially required transformations of the data during the
import are customizable in configuration files. In addition, Google supports
the user when choosing the appropriate data store or service and during its
configuration (Google, 2013b). Moreover, they provide guidelines to migrate
the whole application to Google App Engine (Google, 2013a). We refer to
the tools during the migration phase and abstract from the vendor-specific
guidelines and recommendations to integrate them in our tool.

Salesforce provides data import support to their infrastructure via a
web user interface or the desktop application Apex Data Loader (http://
sforce-app-dl.sourceforge.net). Another option to migrate and integrate
with cloud providers such as Salesforce is to hire external companies that
specialize in migration and integration, such as Informatica Cloud (http://
www. informaticacloud.com). In addition to the tools or external support,
Salesforce provides data migration guidelines (salesforce.com, 2013). We

96 Cloud Computing with e-Science Applications

consider the non-Salesforce-specific steps for our proposed methodology.
As discussed extensively in Section 5.4, Laszewski and Nauduri also pro-
posed a vendor-specific methodology for the migration to Oracle products
and services by providing a detailed methodology, guidelines, and recom-
mendations focusing on relational databases (Laszewski and Nauduri, 2011).
We base our proposal on their methodology, by abstracting from it and
adapting and extending it.

Apart from the vendor-specific migration methodologies and guidelines,
there are also proposals independent from a specific cloud provider. Reddy
and Kumar proposed a methodology for data migration that consists of the
following phases: design, extraction, cleansing, import, and verification.
Moreover, they categorized data migration into storage migration, database
migration, application migration, business process migration, and digital
data retention (Reddy and Kumar, 2011). In our proposal, we focus on the
storage and database migration as we address the database layer. Morris
specifies four golden rules of data migration with the conclusion that the
IT staff does not often know about the semantics of the data to be migrated,
which causes a lot of overhead effort (Morris, 2012). With our proposal of
a step-by-step methodology, we provide detailed guidance and recom-
mendations on both data migration and required application refactoring to
minimize this overhead. Tran et al. adapted the function point method to
estimate the costs of cloud migration projects and classified the applications
potentially migrated to the cloud (Tran et al., 2011). As our assumption is that
the decision to migrate to the cloud has already been taken, we do not con-
sider aspects such as costs. We abstract from the classification of applications
to define the cloud data migration scenarios and reuse distinctions, such as
complete or partial migration to refine a chosen migration scenario.

As we discuss the prototypical realization of a tool providing support
and guidelines while deciding for a concrete cloud data store or service, the
migration, and the refactoring of the application architecture accordingly, in
the following we also investigate the state of the art on decision support sys-
tems (DSSs) (Power, 2002) in the area of cloud computing. Khajeh-Hosseini
et al. introduced two tools that support the user when migrating an appli-
cation to infrastructure-as-a-service (IaaS) cloud services (Khajeh-Hosseini
et al., 2011). The first one enables the cost estimation based on a UML deploy-
ment model of the application in the cloud. The second tool helps to identify
advantages and potential risks with respect to the cloud migration. None of
these tools is publicly available. We do not consider the estimation of costs
or the identification of risks as our assumption is that the decision for migra-
tion to the cloud has already been taken. We consider aspects such as costs,
 business resiliency, effort, and so on to be considered before following our
methodology and using the tool (Andrikopoulos et al., 2013). Menzel and
Ranjan developed CloudGenius, a DSS for the selection of an IaaS cloud
provider focusing on the migration of web servers to the cloud based on

97Migrating e-Science Applications to the Cloud

 virtualization technology (Menzel and Ranjan, 2012). As we provide support
for the migration of the database layer, we focus on another type of middle-
ware technology. Our approach is also not limited to a specific cloud service
 delivery model and migration by using virtualization technology.

5.4 Migration Methodology and Tool Support

As discussed, in this section we introduce a step-by-step methodology for
the migration of the database layer to the cloud and the refactoring of the
application architecture. Before we introduce the methodology, we investi-
gate the requirements to be fulfilled by such a methodology.

5.4.1 Requirements

The functional and nonfunctional requirements we present in this section aim
to provide decision support and guidelines for both migrating an applica-
tion database layer to the cloud and refactoring of the application architec-
ture. The presented requirements have been identified during our work on
 various research projects, especially during our collaboration with industry
partners and IT specialists from the e-science domain.

5.4.1.1 Functional Requirements

The following functional requirements (FRs) must be fulfilled by any meth-
odology for migration of the database layer to the cloud and refactoring of
the application architecture:

FR1 Support of Data Stores and Data Services: The methodology must support the data
migration for both fine- and coarse-grained types of interactions (e.g., through SQL
and service APIs, respectively).

FR2 On-Premises and Off-Premises Support: The methodology has to support data stores and
data services that are either hosted on the premises or off the premises and using both
cloud and noncloud technologies.

FR3 Independence from Database Technology: The methodology has to support both established
relational database management systems (Codd, 1970) and NoSQL data stores
(Sadalage and Fowler, 2012) that have emerged in recent years.

FR4 Management and Configuration: Any tool supporting such a methodology must provide
management and configuration capabilities for data stores, data services, and
migration projects bundling together different migration actions. This includes, for
example, the registration of a new data store, including its configuration data
(e.g., database schemas, database system end point uniform resource locators [URLs],
etc.). It must also support the creation of new migration projects for documentation
of the decisions and actions taken during migration.

98 Cloud Computing with e-Science Applications

FR5 Support for Incompatibility Identification and Resolution: Any potential incompatibilities
(e.g., between SQL versions supported by different data services) must be identified,
and guidance must be provided on how to overcome them. For this purpose, the
methodology has to incorporate the specification of functional and nonfunctional
requirements for both the (source) database layer used before the migration and the
target data store or data service.

FR6 Support for Various Migration Scenarios: As the data migration depends on the context
and the concrete use case (e.g., backup, archiving, or cloud bursting), the methodology
has to support various migration scenarios.

FR7 Support for Refactoring of the Application Architecture: The amount of refactoring of the
application architecture during the migration of the database layer to the cloud depends
on many aspects, such as the supported functionalities of the target data store or data
service, use case, and so on. It is therefore required that the methodology provides
guidance and recommendations on how to refactor the application architecture.

5.4.1.2 Nonfunctional Requirements

In addition to the required functionalities, a methodology for migra-
tion of the database layer to the cloud and refactoring of the application
architecture should also respect the following properties of nonfunctional
 requirements (NFRs):

NFR1 Security: Both data export from a source data store and data import to a target data
store require confidential information such as data store location and access
credentials. Any tool supporting the methodology should therefore consider
necessary authorization, authentication, integrity, and confidentiality mechanisms
and enforce user-wide security policies when required.

NFR2 Reusability: As the migration of data can be seen as either the migration of only the
database layer or as part of the migration of the whole application, the methodology
has to be reusable with respect to the integration into a methodology for migration
of the whole application to the cloud, such as the one proposed by Varia for Amazon
(Varia, 2010).

NFR3 Extensibility: The methodology should be extensible to incorporate further aspects that
have an impact on the data migration to the cloud, such as regulatory compliance.
For example, in the United States, the cloud service provider is responsible for
ensuring compliance to regulations (Louridas, 2010), but in the European Union, it is
the cloud customer that is ultimately responsible for investigating whether the
provider realizes the Data Protection Directive (Cate, 1994).

5.4.2 Migration Methodology

The step-by-step methodology we introduce in this section refines and
adapts the migration methodology proposed by Laszewski and Nauduri
(2011) to address the identified requirements. The methodology (Laszewski
and Nauduri, 2011) consists of seven distinct phases (Figure 5.2). During
the Assessment phase, information relevant for project management, such as
drivers for migration, migration tools, and migration options, is collected

99Migrating e-Science Applications to the Cloud

to assess the impact of the database migration on the IT ecosystem. The
Analysis-and-Design phase investigates the implementation details on the
target database (e.g., potentially different data types and transaction man-
agement mechanisms being used). The goal of this phase is the creation of a
plan to overcome potential incompatibilities between the source and target
data store while avoiding changes in the business logic of the application.
The Migration phase deals with the migration of the data from the source
data store to the target data store in a testing environment, including tasks
such as database schema migration, database stored procedures migration,
and data migration. After the migration, both the database and the applica-
tion have to be tested in the Test phase. This includes, for example, tasks
such as data verification and testing the interaction of the application with
the new target data store. As applications are in general highly optimized
for a particular database, after the migration to another target data store the
performance might be poor. Thus, optimizations based on the new target
store used are applied in the Optimization phase to improve the performance.
The goal of the Deployment phase is to deploy the final system, including
actually migrating the database, to the production environment.

At first glance, the methodology of Laszewski and Nauduri addresses most
of the requirements discussed previously. However, it discusses its phases
on a high level that is not suitable for direct application, requiring further
refinement in practice. Furthermore, it fails to satisfy some of the most

Assessment

Analysis &
Design

Migration

Test

Optimization

Deployment

Support

Legend
Phases refined and adapted

Phases not addressed

FIGURE 5.2
Migration methodology as proposed by Laszewski and Nauduri in 2011, with supported
phases highlighted. (Redrawn from Laszewski, T., and P. Nauduri (2011). Migrating to the Cloud:
Oracle Client/Server Modernization. New York: Elsevier.)

100 Cloud Computing with e-Science Applications

important requirements that we identified. More specifically, as the method-
ology focuses on Oracle solutions, it only considers the relational database
management system of Oracle as the target data store and the following rela-
tional data stores as the source databases for the migration: Microsoft SQL
Server (http://www.microsoft.com/en-us/sqlserver), Sybase (http://www.
sybase.com), IBM DB2 (http://www.ibm.com/software/data/db2), and IBM
Informix (http://www.ibm.com/software/data/informix/). All of these data-
bases are data stores supporting fine-grained interactions through SQL. It
is unclear whether the methodology also supports data services because no
information can be found on this aspect in Laszewski and Nauduri’s work
(2011) (FR1). The methodology is not independent from the database technol-
ogy as it focuses on a small set of relational databases and does not support
NoSQL approaches (FR3). Moreover, the methodology is limited to the pure
outsourcing of the database layer to the cloud and does not consider the con-
text and specifics of migration scenarios such as cloud bursting, backup, and
archiving (FR6). As concrete migration scenarios are not considered, their
specifics and the context cannot be considered for the guidance and recom-
mendation toward refactoring of the application architecture. In addition, the
guidance and recommendations for the required adaptations of the applica-
tion architecture during the migration are limited since the migration meth-
odology (Laszewski and Nauduri, 2011) considers only one vendor-specific
relational target data store and a small subset of vendor-specific relational
data stores as the source data store (FR7). The vendor specificity also has the
consequence that the methodology does not consider the reusability aspect
with respect to the integration or combination of this methodology with other
existing proposals for migration to the cloud (NFR2).

To address these deficiencies, in the following we propose a vendor- and
database technology-independent step-by-step methodology that refines
and adapts the one proposed by Laszewski and Nauduri (2011). Figure 5.2
provides an overview of the phases of the methodology proposed that we
adapted and refined. Figure 5.3 provides an overview of our proposal con-
sisting of seven steps. All steps are semiautomatic, in the sense that a human
(e.g., the application developer in charge of the migration) has to provide
input and follow the recommendations and guidelines provided by the
methodology. Figure 5.3 also shows the mapping between the proposed
methodology and the one in Laszewski and Nauduri’s 2011 work. As can
be seen, no direct support for the Test and Optimization phases is provided
by our proposal since there are no identified requirements explicitly requir-
ing these phases. The impact of not supporting these phases is evaluated in
Section 5.5. The steps of the methodology are discussed next.

5.4.2.1 Step 1: Select Migration Scenario

The first step in our proposed methodology is the selection of the migration
scenario . For this purpose, we use the 10 Cloud Data Migration Scenarios

101Migrating e-Science Applications to the Cloud

identified by Strauch et al. (2013b): database layer outsourcing; use of highly
scalable data stores; geographical replication; sharding; cloud bursting;
working on data copy; data synchronization; backup; archiving; and data
import from the cloud (FR6). These migration scenarios cover both migration
directions between on the premises and off the premises (FR2).

Based on the selection of the migration scenario, a migration strategy is
 formulated by considering properties such as live or nonlive migration, com-
plete or partial migration, and permanent or temporary migration to the
cloud. During this step, potential conflicts between the migration scenario
selected and the refined migration strategy should be explicitly addressed by
proposing solutions to the user (e.g., the choice of a different migration sce-
nario). An example of a conflict is the selection of the migration scenario cloud
bursting and the choice of a permanent migration to the cloud in the strategy.
The purpose of this migration scenario is by definition to migrate the database
layer to the cloud to cover peak loads and migrate it back afterward; choosing
permanent migration as part of the strategy therefore cannot be satisfied.

5.4.2.2 Step 2: Describe Desired Cloud Data Hosting Solution

The specification of functional and nonfunctional requirements with
respect to the target data store or data service is the focus of the second step.
We define the cloud data hosting solution as the concrete configuration of a
cloud data store or cloud data service in terms of a set of concrete functional
and nonfunctional properties (FR1). Therefore, we derived an initial set of

Assessment

Analysis & Design

Migration\Deployment\Support

Select Migration
Scenario

Describe Desired
Cloud Data

Hosting Solution

Select Cloud Data
Store or Data

Service

Describe Source
Data Store or Data

Service

Identify Patterns
to Solve Potential

Migration
Conflicts

Refactor
Application

Architecture
Migrate Data

FIGURE 5.3
Methodology for migration of the database layer to the cloud and refactoring of the application
architecture.

102 Cloud Computing with e-Science Applications

properties grouped into different categories based on the analysis of current
data store and data service offerings of established cloud providers such as
Amazon, Google, and Microsoft. Table 5.1 provides an excerpt of the cat-
egories and corresponding properties we considered. These categories cover
both relational and NoSQL solutions (FR3, FR5).

5.4.2.3 Step 3: Select Cloud Data Store or Data Service

The concrete target data store or data service for the migration is selected in
step 3 by mapping the properties of the cloud data hosting solution specified

TABLE 5.1

Excerpt of Categories and Properties for Specification of Requirements of Cloud Data
Hosting Solutions

Categories Properties Available Options

Scalability Degree of automation Manual, automated
Type Horizontal, vertical
Degree Virtually unlimited, limited
Time to launch new instance None, duration in minutes

Availability Replication Yes, no
Replication type Master-slave, master-master
Replication method Synchronous, asynchronous
Replication location Same data center

Different data center (same region)
Automatic failover Yes, no
Degree 99.9%, 99.999%

Security Storage encryption Yes, no
Transfer encryption Yes, no
Firewall Yes, no
Authentication Yes, no
Confidentiality Yes, no
Integrity Yes, no
Authorization Yes, no

Interoperability Data portability None, import, export
One-way synchronization

Data exchange XML, JSON, proprietary
Format
Storage access SOA, REST-API, SQL, proprietary
ORM JPA, JDO, LINQ
Migration and deployment support Yes, no
Supported IDE Eclipse, NetBeans, IntelliJ IDEA
Developer SDKs Java, .Net, PHP, Ruby

Storage Storage type RDBMS, NoSQL
CAP Consistency model Strong, weak, eventual

Availability in case of partitioning Available, not available

103Migrating e-Science Applications to the Cloud

in the previous step to the set of available data stores and data services that
have been categorized according to the same nonfunctional and functional
properties. Implementing this step requires data stores and data services to
be previously specified according to the set of functional and nonfunctional
properties either directly by the cloud providers or by the users of the meth-
odology. The management and configuration capabilities required for this
specification, however, can be used at a later time to also make new cloud
data stores and data services available (FR4).

5.4.2.4 Step 4: Describe Source Data Store or Data Service

As it is not sufficient to consider only where the data has to be migrated, in
step 4 the functional and nonfunctional properties of the source data store or data
service are also described to identify and solve potential migration conflicts,
such as the database technology used or whether the location is on or off the
premises (FR5).

5.4.2.5 Step 5: Identify Patterns to Solve Potential Migration Conflicts

The use of cloud technology leads to challenges such as incompatibilities
with the database layer previously used or the accidental disclosing of criti-
cal data (e.g., by moving them to the public cloud). Incompatibilities in the
database layer may refer to inconsistencies between the functionalities of an
existing traditional database layer and the characteristics of an equivalent
cloud data hosting solution. Therefore, in the fifth step conflicts are identi-
fied by checking the compatibility of the properties of the target data store
selected in step 3 with the properties of the source data store or service used
before the migration (FR5). As a way to address these conflicts, in previous
work (Strauch et al., 2013c) we have defined a set of cloud data patterns as the
best practices to deal with them that can be reused here.

5.4.2.6 Step 6: Refactor Application Architecture

As the migration of the database layer also has an impact on the remaining
application layers (presentation and business logic; Fowler et al., 2002), the
methodology should provide guidelines and hints on what should be con-
sidered for the refactoring of the application. Special focus should be given
to the adaptation of the network, the data access layer, and the business logic
layer of the application, depending on the outcomes of the previous steps
(FR7). Networking adaptation might require, for example, the reconfigura-
tion of open ports in the enterprise firewall. Although the cloud data store
might be fully compatible with the data store previously used, the migration
requires at least a change to the database connection string in the data access
layer. The impact of the database layer migration to the cloud on the business
logic layer depends on several aspects, such as the migration scenario and

104 Cloud Computing with e-Science Applications

the incompatibilities of the source and target data store. In case of switching
from a relational database to a NoSQL data service, the business logic needs
to be significantly adapted as the characteristics of these two technologies
are different, for example, with respect to transaction support, relational
database schema versus schema-free or schema-less NoSQL solution, and
quality of services (Sadalage and Fowler, 2012).

5.4.2.7 Step 7: Migrate Data

The final step, migrating the data, entails the configuration of the connections
to the source and target data stores or services by requiring input on the
location, credentials, and so on from the user. This step should also provide
adapters for the corresponding source and target stores, bridging possible
incompatibilities between them, or reuse of the data export and import tools
offered by the different cloud providers. As the last step is dealing with
potentially confidential information, to prevent other users from accessing
the data, a tool supporting the proposed methodology has to support the
required security mechanisms (NFR1).

5.4.3 Realization

In this section, we introduce the realization of a Cloud Data Migration Tool
for the migration of the database layer to the cloud and the refactoring of
the application architecture (Strauch et al., 2013a). More specifically, to sup-
port the proposed methodology, the Cloud Data Migration Tool provides
two main functionalities. On the one hand, it provides a repository for cloud
data stores and cloud data services and allows browsing through it, even
without user registration. In addition, it implements the required manage-
ment functionality to add new entries in the repository by specifying their
functional and nonfunctional properties. On the other hand, the tool guides
the user through the first six steps of the proposed methodology through a
DSS. For the last step of migrating the data, the tool is equipped with adapt-
ers that allow the automatic export of data from the source data store and
their import in the target data store. Currently, the tool has source adapters
for PostgreSQL (http://www.postgresql.org) and Oracle MySQL (http://
www.mysql.com). We provide target adapters for a number of cloud data
stores and data services, such as Amazon RDS (http://aws.amazon.com/
rds/) and 10gen MongoDB (http://www.mongodb.org), MySQL in Amazon
EC2 instances (http://aws.amazon.com/ec2/), Google Cloud SQL (http://
cloud.google.com/products/cloud-sql/), and Amazon SimpleDB (http://aws.
amazon.com/simpledb/). In addition to the adapters, the user is referred to
various guidelines and tutorials provided by the different cloud providers
(e.g., Google, 2013c). This is especially useful if no appropriate adapter is
available for a particular data store or service.

105Migrating e-Science Applications to the Cloud

Figure 5.4 provides an overview of the main page of the Cloud Data
Migration Tool publicly available for free use (http://www.cloud-data-
migration.com). As the user has to provide confidential data following the
guidelines and recommendations of the tool (e.g., access credentials to the
source and target data stores or services for data export and import in the last
step), the user has to register with user, password, and e-mail address. After
a migration project is finalized, the user can print a report of the decisions
made during the migration, the identified conflicts, and their resolutions for
the purpose of documentation and support. Currently, we are supporting
the migration from one source data store to one target data store or service,
and one migration project has to be created per migration. Extending the tool
in order to support more than one target data stores per migration project is
ongoing work.

The Cloud Data Migration Tool is realized as a Java 6 web application and
follows a three-layer architecture. The presentation layer is realized using

FIGURE 5.4
Screenshot of the realization of the cloud data migration tool.

106 Cloud Computing with e-Science Applications

HTML (hypertext markup language), JavaScript, JSP, and CSS. The busi-
ness logic layer is implemented in Java. For the object-relational mapping,
we use Java Data Objects version 3.1 and its implementation DataNucleus
version 3.0 (http://www.datanucleus.org). For online hosting of the tool we
use Google Cloud SQL as the data layer and run the whole application in
Google’s App Engine. A stand-alone, offline version of the tool also exists,
allowing the user to run the tool locally. In this case, MySQL 5.5 is used for
the data layer and Apache Tomcat version 7 as the servlet container. Further
information is available on the website of the Cloud Data Migration Tool
(http://www.cloud-data-migration.com).

5.5 Evaluation

In this section, we evaluate both the methodology introduced in Section 5.4.2
and the Cloud Data Migration Tool supporting this methodology presented
in the previous section. For this purpose, we used the motivating scenario
discussed in Section 5.2 as a case study involving the migration of the
 database layer of the SimTech SWfMS to the cloud.

As our investigation of the literature did not result in a method that spe-
cifically aims at the evaluation of migration methodologies, we focused our
analysis on related evaluation methods and standards for software processes
and software quality. Al-Qutaish and Berander et al. provided an over-
view of available software quality models and standards (Al-Qutaish, 2010;
Berander et al., 2005). Based on their findings, we selected the International
Organization for Standardization/International Electrotechnical Com-
mission (ISO/IEC) 9126 standard provided for the evaluation of the Cloud
Data Migration Tool, as its quality attribute model includes the metrics we
considered most relevant, such as understandability and operability (Jung,
Kim, and Chung, 2004). For the evaluation of software processes, there are
multiple guidelines (e.g., Shull, Carver, and Travassos, 2001; Sommerville,
1996) and standardized best practices, such as Capability Maturity Model
Integration (CMMI) (CMMI Product Team, 2010) and the Continual Service
Improvement (CSI) module of the IT Infrastructure Library (ITIL) (Case and
Spalding, 2011). We based our evaluation of the migration methodology on
the ITIL CSI process but adapted it to consider the technical aspects of the
methodology by considering appropriate metrics for software processes pro-
vided by Daniel (2004). A simplified representation of the resulting process
is shown in Figure 5.5.

In the first step, a strategy for the realization of the process was deter-
mined. In this case, our strategy was to use the Cloud Data Migration Tool
discussed in the previous section in conjunction with a specific migration

107Migrating e-Science Applications to the Cloud

scenario and investigate whether it supported the scenario in an effective
and efficient manner. In the second step, which data will be collected needed
to be defined. These data were the basis for the subsequent process steps.
In our evaluation, we collected both qualitative and quantitative data. With
respect to the former, we recorded the user-identified problems that occurred
during the execution of the SimTech SWfMS migration as the means to eval-
uate the software quality of the Cloud Data Migration Tool. Such problems
are gathered only in a qualitative manner (i.e., we were not interested in the
number of problems that occurred but in a comprehensive description and
classification of these problems). This approach increased the effort to gather
the data but in turn enabled a more detailed and potentially more meaning-
ful analysis. In terms of quantitative data, we recorded the time required for
executing the various migration phases. To be able to compare our proposal
with the one by Laszewski and Nauduri (2011), we chose to use their phases
as the metric of the efficiency of our proposed approach. In this manner, we
could attribute time elapsed to higher-level activities in addition to evaluat-
ing the impact of not incorporating the testing and optimization phases in
our proposal.

To enable structured gathering and recording of problems that occurred,
we defined a set of attributes related to them. Table 5.2 shows an example of
such a problem that was identified during our evaluation and the information
we collected for it. Every problem has a unique identifier (ID) and a descrip-
tive Name. The attribute Class is used to classify the problem in predefined
categories. We derived these categories from ISO/IEC 9126-1, which defines

Step 1
Identify the strategy
for improvement

Step 6
Present and use the
information

Step 7
Implement
improvement

Step 2
Define what you will
measure

Step 3
Gather the data

Step 4
Process the data

Step 5
Analyze the
information and data

Wisdom

Knowledge Information

Data

Do

Check

Act

Plan

FIGURE 5.5
CSI seven-step process used for the evaluation. (Adapted from Case, G., and G. Spalding (2011).
ITIL Continual Service Improvement. London: TSO, The Stationery Office.)

108 Cloud Computing with e-Science Applications

a quality model for software by subdividing software quality in different
characteristics and subcharacteristics (Jung, Kim, and Chung, 2004). In our
evaluation, we focused on the characteristics functionality and usability of the
examined tool, in particular on the subcharacteristics suitability (for the for-
mer) and understandability and operability (for the latter), which are the possible
values for the Class attribute. The problem identified in Table 5.2, for example,
is classified under the operability subcharacteristic of usability. The attribute
Severity describes the severity of a problem with respect to the impact on the
migration result. The allowed values are low, middle, high, or critical. A detailed
description of a problem is given with the attribute Description. The attribute
Error Handling describes how the user has proceeded to find a solution for
the problem that occurred. Solution describes how the problem was fixed.
To eliminate the cause of the problem, adaptations of the tool may be needed;
these are described by the attribute Adaptation.

In the third step, the actual gathering of data was performed. Using the
Cloud Data Migration Tool, we migrated the database layer used by the
OPAL web services to the cloud. The selected use case can be mapped to
the migration scenario Cloud Bursting (Strauch et al., 2013b), with Amazon
RDS as the migration target. Throughout all phases of the migration, we
recorded any occurring problems, as shown in Table 5.2. In addition, we
measured the time spent per migration phase supported by our step-by-step
 methodology (i.e., Assessment; Analysis and Design; and Migration,
Deployment, and Support), as well as the time spent on testing. No optimi-
zation activity was implemented as part of the case study. In the fourth step
of the evaluation, the previously gathered data were processed to organize
and structure for further analysis. As we had already gathered the data in a
structured and uniform manner (as described in step 2), further processing
was not necessary.

TABLE 5.2

Documentation of an Identified Problem

ID B7

Name Connection failed
Class Tool (operability)
Severity High
Description Although correct users with the required administrative roles existed

in the MySQL database in the cloud, the application could not connect
to the database.

Error handling We were going through all the security (user and privilege) settings
in the MySQL Workbench.

Solution We set max queries, max updates, max connections to a value greater than zero
for each user.

Adaptation The user should obtain information about the limitations for the different
accounts (users).

109Migrating e-Science Applications to the Cloud

In the fifth step, the analysis of the gathered and processed data took place.
Altogether, we recorded seven problems. Five of the recorded problems had
a high priority; the remaining two had middle priority. Two of the occurred
problems were due to bugs in the graphical user interface of the tool, one
with middle and one with high priority. Two problems were caused by miss-
ing features, also one with middle and one with high priority. The rest of the
problems, all with high priority, were caused by lack of appropriate informa-
tion available to the user, as in the example of Table 5.2. The analysis of the
identified problems with respect to their priority and the cause of the prob-
lems showed that the main weakness of the Cloud Data Migration Tool was a
lack of information provided to the user. Further improvements toward this
direction are therefore required in the future.

The analysis of the time spent per migration phase is summarized in
Figure 5.6. As shown in the figure, half of the time was actually spent in the
Test phase, which as explained in Section 5.4 is not directly supported by
our methodology (and therefore also not by the Cloud Data Migration Tool).
While this identifies a deficiency in our proposal, it can also be attributed at
least in part to the acceleration of the other phases by the use of the Cloud
Data Migration Tool. In any case, what can be identified is a clear need for the
incorporation of the remaining two phases (Test and Optimization) in our
methodology and as a result their support by the Cloud Data Migration Tool.

Finally, for the implementation of steps 6 and 7 of the ITIL CSI process
(presentation and use of the information and implement improvements,
respectively), we are currently in the process of incorporating the lessons
learned by this case study in further research work.

5.6 Conclusions

The popularity of cloud computing has led to significant research in
cloud-enabling applications, that is, migrating whole systems or only parts

10%
10%

50%

30%
Assessment
Analysis & Design
Test

Migration,
deployment &
support

FIGURE 5.6
Amount of time spent per migration phase.

110 Cloud Computing with e-Science Applications

of them to the cloud. The e-science domain, especially the scientific workflow
community, has reported concrete benefits from utilizing cloud infrastruc-
tures for isolated use cases. In this respect, there is a clear need for a method-
ology supporting the migration of e-science applications to the cloud. There
are two key aspects that characterize e-science applications: large amounts
of data and intensive computational tasks to be performed on these data.
In this work, we focused on the former, discussing how to support the migra-
tion of the database layer of e-science applications (and beyond) to the cloud.

Supporting the migration of the database layer of an application to the
cloud involves not only considering the requirements on the appropriate
data source or service imposed by the application but also the possible need
for adapting the application to cope with incompatibilities. In the previous
 sections, we presented a step-by-step methodology that considers both
aspects of the migration. To construct this methodology, we first identified
a series of functional and nonfunctional requirements from both e-science
and business domains. We then adapted the methodology discussed by
Laszewski and Nauduri (2011) to satisfy the identified requirements, result-
ing in our proposal for a seven-step end-to-end methodology for the migra-
tion of the database layer to the cloud and for the application refactoring
required as part of this process.

Then, we discussed the realization of our proposal as a publicly available
and free Cloud Data Migration Tool. The tool provides two fundamental
functionalities: decision support in selecting an appropriate data store or
 service and refactoring support during the actual migration of the data. Users
of the tool can currently create migration projects, define their requirements
in terms of the migrated database layer to the cloud, describe their current
database layer, and receive recommendations, hints, and guidelines on where
and how to migrate their data. Conflict resolution is based on previously
identified cloud data patterns, and data adapters are provided, allowing for
the automatic migration of data to recommended data stores and services.
We evaluated our proposal by migrating the SimTech SWfMS to Amazon
Web Services solutions and showed that, while useful, our methodology and
tool need further improvements.

In particular, according to our evaluation, our proposal needs to be extended
to provide explicit support for the testing phase of the migration. The Cloud
Data Migration Tool must be extended to provide sandboxing capabilities
and both functional testing for bug fixing and performance benchmarking
tools for different application workloads. These capabilities can also be used
toward supporting the optimization of the database layer after its migration.
Additional functionalities that are currently being implemented to the Cloud
Data Migration Tool, as identified in the previous sections, include address-
ing the impact of the migration to compliance, supporting more than one
source or target data stores or services and multiple migrations per project,
increasing the number of adapters available in the tool, as well as improving
the usability of the tool for scientists.

111Migrating e-Science Applications to the Cloud

List of Abbreviations

API Application Programming Interface
CSS Cascading Style Sheets

IDE Integrated Development Environment
JDO Java Data Objects
JPA Java Persistence API
JSON JavaScript Object Notation

JSP JavaServer Pages
LINQ Language Integrated Query
NoSQL Not Only Structured Query Language
ORM Object-Relational Mapping

RDBMS Relational Database Management System
REST Representational State Transfer
SDK Software Development Kit
SOA Service-Oriented Architecture
SQL Structured Query Language

UML Unified Modeling Language
XML Extensible Markup Language

Acknowledgments

The research leading to these results received funding from the European
Union’s Seventh Framework Program (FP7/2007–2013) projects 4CaaSt
(http://www.4caast.eu; grant agreement no. 258862) and ALLOW Ensembles
(http://www.allow-ensembles.eu; grant agreement no. 600792) and from
the German Research Foundation (DFG) within the Cluster of Excellence in
Simulation Technology (http://www.simtech.uni-stuttgart.de; EXC 310/1)
at the University of Stuttgart.

Bibliography

Al-Qutaish, R. E. (2010). Quality models in software engineering literature: an analytical
and comparative study. Journal of American Science 6(3), 166–175.

112 Cloud Computing with e-Science Applications

Andrikopoulos, V., T. Binz, F. Leymann, and S. Strauch (2013). How to adapt applica-
tions for the cloud environment. Computing 95(6), 493–535.

Armbrust, M., A. Fox, R. Griffith, et al. (2009). Above the Clouds: A Berkeley View of Cloud
Computing. Technical Report UCB/EECS-2009-28. Berkeley: EECS Department,
University of California, Berkeley.

Berander, P., L.-O. Damm, J. Eriksson, et al. (2005). Software Quality Attributes and
Trade-Offs. Technical report. Karlskrona, Sweden: Blekinge Institute of Technology.

Cala, J., H. Hiden, S. Woodman, and P. Watson (2013). Cloud computing for fast pre-
diction of chemical activity. Future Generation Computer Systems 29(7), 1860–1869.

Case, G., and G. Spalding (2011). ITIL Continual Service Improvement. London: TSO,
The Stationery Office.

Cate, F. (1994). The EU Data Protection Directive, information privacy, and the public
interest. Iowa Law Review 80, 431.

CMMI Product Team (2010). CMMI for Development, Version 1.3 (CMU/SEI-2010-
TR-033). Software Engineering Institute, Carnegie Mellon University. http://
www.sei.cmu.edu/library/abstracts/reports/10tr033.cfm.

Codd, E. F. (1970). A relational model of data for large shared data banks.
Communications of the ACM 13(6), 377–387.

Daniel, G. (2004). Software Quality Assurance: From Theory to Implementation. Upper
Saddle River, NJ: Pearson Education.

Deelman, E., G. Singh, M. Livny, B. Berriman, and J. Good (2008). The cost of doing
science on the cloud: the montage example. In Proceedings of the 2008 ACM/IEEE
Conference on Supercomputing, pp. 50:1–50:12. New York: IEEE Press.

De Roure, D., C. Goble, and R. Stevens (2009). The design and realisation of the My
Experiment Virtual Research Environment for Social Sharing of Workflows.
Future Generation Computer Systems 25, 561–567.

Fowler, M., et al. (2002, November). Patterns of Enterprise Application Architecture.
Boston: Addison-Wesley Professional.

Google (2013a). Google App Engine—migrating to the high replication datastore.
http://developers.google.com/appengine/docs/adminconsole/migration.

Google (2013b). Google App Engine—uploading and downloading data. http://
developers.google.com/appengine/docs/python/tools/uploadingdata?hl=en.

Google (2013c). Google Cloud SQL—importing and exporting data. http://developers.
google.com/cloud-sql/docs/import_export.

Görlach, K., M. Sonntag, D. Karastoyanova, F. Leymann, and M. Reiter (2011). Conven-
tional workflow technology for scientific simulation. In Guide to e-Science,
pp. 323–352. New York: Springer.

Hey, A. J., S. Tansley, K. M. Tolle, et al. (2009). The Fourth Paradigm: Data-Intensive
Scientific Discovery. Redmond, WA: Microsoft Research.

Jung, H.-W., S.-G. Kim, and C.-S. Chung (2004). Measuring software product quality:
a survey of ISO/IEC 9126. IEEE Software 21(5), 88–92.

Khajeh-Hosseini, A., I. Sommerville, J. Bogaerts, and P. Teregowda (2011). Decision
support tools for cloud migration in the enterprise. In Proceedings of CLOUD’11,
pp. 541–548. New York: IEEE Press.

Laszewski, T., and P. Nauduri (2011). Migrating to the Cloud: Oracle Client/Server Modern-
ization. New York: Elsevier.

Louridas, P. (2010). Up in the air: moving your applications to the cloud. IEEE Software
27(4), 6–11.

113Migrating e-Science Applications to the Cloud

Menzel, M., and R. Ranjan (2012). CloudGenius: decision support for web server
cloud migration. In Proceedings of WWW’12, pp. 979–988. New York: ACM.

Microsoft (2013a). Develop and deploy with Windows Azure SQL Database. http://
social.technet.microsoft.com/wiki/contents/articles/994.develop-and-deploy-
with-windows-azure-sql-database.aspx.

Microsoft (2013b). Guidelines and limitations (Windows Azure SQL Database).
http://msdn.microsoft.com/en-us/library/windowsazure/ff394102.aspx.

Morris, J. (2012). Practical Data Migration, 2nd ed. London: BCS, The Chartered
Institute for IT.

Mudge, J., P. Chandrasekhar, G. Heinson, and S. Thiel (2011). Evolving inversion
methods in geophysics with cloud computing—a case study of an escience
 collaboration. In Proceedings of e-Science’11, pp. 119–125. Stockholm, Sweden: IEEE.

Power, D. (2002). Decision Support Systems: Concepts and Resources for Managers.
Quorum Books.

Reddy, V. G., and G. S. Kumar (2011). Cloud computing with a data migration. Journal
of Current Computer Science and Technology 1 (06).

Sadalage, P. J., and M. Fowler (2012). NoSQL Distilled: A Brief Guide to the Emerging
World of Polyglot Persistence. Boston: Addison-Wesley.

salesforce.com (2013). Salesforce helpdata importing overview. http://help.
 salesforce .com/HTViewHelpDoc?id=importing.htm&language=en_US.

Shull, F., J. Carver, and G. H. Travassos (2001). An empirical methodology for intro-
ducing software processes. SIGSOFT Software Engineering Notes 26(5), 288–296.

Sommerville, I. (1996). Software process models. ACM Computing Surveys 28(1), 269–271.
Sonntag, M., M. Hahn, and D. Karastoyanova (2012, September). Mayflower—

explorative modeling of scientific workflows with BPEL. In Proceedings of CEUR
Workshop’12, pp. 1–5. New York: Springer.

Sonntag, M., S. Hotta, D. Karastoyanova, D. Molnar, and S. Schmauder (2011). Using
services and service compositions to enable the distributed execution of legacy
simulation applications. In Towards a Service-Based Internet, pp. 242–253. New
York: Springer.

Sonntag, M., and D. Karastoyanova (2010). Next generation interactive scientific
experimenting based on the workflow technology. In Proceedings of MS’10,
Alhajj, R. S., Leung, V. C. M., Saif, M., and Thring, R., editors. pp. 349–356. Banff,
Alberta, Canada.

Strauch, S., V. Andrikopoulos, T. Bachmann, D. Karastoynova, S. Passow, and
K. Vukojevic-Haupt (2013a, December). Decision support for the migration
of the application database layer to the cloud. In Proceedings of CloudCom’13.
Washington, DC: IEEE Computer Society Press.

Strauch, S., V. Andrikopoulos, T. Bachmann, and F. Leymann (2013b). Migrating appli-
cation data to the cloud using cloud data patterns. In Proceedings of CLOSER’13,
pp. 36–46. London: SciTePress.

Strauch, S., V. Andrikopoulos, U. Breitenbücher, S. G. Sáez, O. Kopp, and F. Leymann
(2013c). Using patterns to move the application data layer to the cloud. In Proceedings
of PATTERNS’13, pp. 26–33. Melbourne: Xpert Publishing Services (XPS).

Taylor, I. J., E. Deelman, and D. B. Gannon (eds.) (2006). Workflows for e-Science:
Scientific Workflows for Grids. New York: Springer.

Tran, V. T. K., K. Lee, A. Fekete, A. Liu, and J. Keung (2011). Size estimation of cloud
migration projects with cloud migration point (CMP). In Proceedings of ESEM’11,
pp. 265–274. New York: IEEE.

114 Cloud Computing with e-Science Applications

Varia, J. (2010). Migrating your existing applications to the AWS cloud. A phase-driven
approach to cloud migration. Amazon Web Services Blog. http://aws.amazon .com/
blogs/aws/new-whitepaper-migrating-your-existing-applications-to-the-aws-
cloud/.

Zinn, D., Q. Hart, B. Ludascher, and Y. Simmhan (2010). Streaming satellite data to
cloud workflows for on-demand computing of environmental data products.
In Proceedings of WORKS’10, pp. 1–8. New Orleans, LA: IEEE.

115

6
Closing the Gap between
Cloud Providers and Scientific Users

David Susa, Harold Castro, and Mario Villamizar

CONTENTS

Summary .. 116
6.1 Introduction .. 116
6.2 What Do Scientific Apps Require? .. 117

6.2.1 Flexibility .. 117
6.2.2 Platform Maintenance ... 117
6.2.3 High-Performance Computing .. 118
6.2.4 Data Communication .. 118
6.2.5 Costs ... 118
6.2.6 Security and Reliability .. 119

6.3 Related Work .. 119
6.4 e-Clouds Architecture ... 120

6.4.1 Overview ... 120
6.4.2 e-Clouds Back End ... 122

6.4.2.1 Data Management ... 122
6.4.2.2 Resource Manager .. 123
6.4.2.3 Queues for Asynchronous and Scalable

Communications ... 123
6.4.2.4 Agent in Processing Machines 123
6.4.2.5 Billing .. 123

6.4.3 e-Clouds Front End .. 124
6.4.3.1 For Researchers ... 124
6.4.3.2 For e-Clouds Administrators .. 124

6.5 e-Clouds Implementation ... 124
6.5.1 e-Clouds Front End .. 124
6.5.2 e-Clouds Back End ... 125

6.5.2.1 Data Management ... 125
6.5.2.2 Queue Messaging .. 126
6.5.2.3 App Install and Configuration 128
6.5.2.4 Scheduling ... 131

6.5.3 e-Clouds IaaS Provider ... 133

116 Cloud Computing with e-Science Applications

Summary

Cloud computing emerges as an alternative to traditional grid/cluster
approaches. Particularly, software-as-a-service model can be an option to
address the computational needs of small- and medium-size research groups,
with little or no knowledge and resources to deal with the complexities of
technology. Although there are still many problems to be solved and a long
way to go before the solution is optimal, the e-Clouds project manages to
hide the configuration required by public infrastructure-as-a-service (Iaas)
providers by delivering ready-to-use scientific applications that take advan-
tage of the cloud world.

6.1 Introduction

Everyday scientific work requires growing computational capacity to pro-
vide reliable and in-time results. The traditional approach to address these
needs includes the acquisition, configuration, and maintenance of a large
number of dedicated servers, introducing some constraints primarily asso-
ciated with the elevated costs and complex information technology (IT)
 management. These high-performance platform requirements are a barrier
to entry for small- and medium-size research groups.

Public cloud infrastructures present themselves as an alternative to tradi-
tional cluster and grid solutions [1]. Cloud providers offer a large set of infra-
structure and application services to resemble the flexibility of private data
centers, with the benefit of a pay-per-use model. This allows users to run a
wide variety of applications, including enterprise, social, and mobile ones.
The question is then: How to adapt this model for scientific requirements?
As we show, almost everything required by a scientific application is avail-
able in the cloud. The main challenge is then that, despite the low prices and
flexible set of resources, the complex deployment and execution procedures
are an obstacle for researchers to adopt the technology.

6.5.4 Monetization ... 133
6.5.4.1 Storage Cost ... 134
6.5.4.2 Computational Cost .. 134
6.5.4.3 Additional Costs .. 135

6.6 Results ... 135
6.7 Conclusions and Future Work ... 137
References ... 138

117Closing the Gap between Cloud Providers and Scientific Users

This chapter describes the proposal developed under the e-Clouds project,
which is designed to be a software-as-a-service (SaaS) marketplace for sci-
entific applications running on top of a public cloud infrastructure. It will
include a description of the most important aspects of e-Clouds architec-
ture, emphasizing the different patterns applied for using cloud resources
while hiding the complexity for the end user. A detailed presentation of the
problems faced during development and testing of the first version is also
included. A research group from the Alexander von Humboldt Institute for
Biological Resources (Bogota, Columbia) is used as a case study for testing
some of the ideas outlined and defining the future work for the project.

6.2 What Do Scientific Apps Require?

The concept of cloud computing was mainly developed by having in mind the
usual enterprise web applications. Scientific applications have a particular set
of requirements and characteristics. These new requirements demand a fun-
damentally different approach to problem solving. The next sections discuss
the most important things to consider when relating science and computing.

6.2.1 Flexibility

There is a huge market of general-purpose scientific apps that cover the
day-to-day tasks for the different disciplines. Despite that important offer,
research work often forces technology to adapt, not the other way around.
This is the reason why scientific applications need to be flexible regarding
the kind of processing they support, the input data they receive, and the
outputs they produce. Based on this, multiple file formats must be supported
and a large number of configuration parameters become optional.

Flexibility poses a challenge when porting applications to a cloud platform,
especially when offering them in an SaaS model. An attractive cloud pro-
posal must then include at least the most common configuration options and
a minimum degree of personalization. The way that this can be achieved can
vary greatly between applications; this not only increases the overall com-
plexity but also imposes some restrictions on the solution model.

6.2.2 Platform Maintenance

It is important to consider the wide offer of scientific apps and the multi-
ple platforms in which they can run. This means that part of the migra-
tion to a cloud solution requires deciding under which configuration an
application will run, including operating systems, compilers, and a set of
external libraries, among others. This process becomes more complex when

118 Cloud Computing with e-Science Applications

considering version management and personalized installations that are
sometimes required.

6.2.3 High-Performance Computing

In a general definition, high performance in a scientific context means
 processing large data sets with large-scale resources. This imposes some
challenges for the design of a cloud computing solution for researchers,
including special attention to the details of the software and infrastructure
offered by cloud providers.

Even though there is an important variety regarding hardware and soft-
ware available, in general, cloud providers do not offer a platform designed
specifically for scientific computation. A platform like this would require
proper configuration of processing capability, high-throughput storage
devices, and operating systems with optimized libraries for making calculus.
Amazon Web Services (AWS) is actually making big efforts toward this by
offering its EC2 (Elastic Compute Cloud) Cluster Compute and Cluster GPU
instances. These instance types are specially designed for parallel applica-
tions that require a large amount of network communication. As their actual
offer, cluster instances can be configured with up to 244 GB of RAM mem-
ory, 10 Gbps of input/output (I/O) performance, 88 processing units, and
NVIDIA Tesla GPUs (graphics processing units) with “Fermi” architecture.

6.2.4 Data Communication

Although the available computing power is comparable to that found on
grid/cluster infrastructures, cloud providers still have a long road to face to
achieve the performance of these solutions. This seems to be especially true
when talking about communications, which according to Jackson et al. [2]
are the bottleneck for scientific cloud executions. Parallelization schemes often
require data sharing between processes executing on different machines.
Cloud infrastructure providers usually do not offer a dedicated data link or
any guarantees regarding network throughput. This means that a scientific
app running in a cloud has some limitations regarding the amount of data to
communicate while maintaining the required performance.

6.2.5 Costs

Scale economy is the biggest driver for cloud computing. The low costs at
which providers can acquire and maintain large data centers at geographi-
cally separate locations are the reason behind the success of the technology [3].
The idea of having access to thousands of servers just with a credit card and
with no initial acquisition costs is simply amazing.

Small- and medium-size research groups almost always work with a
small budget. An in-house infrastructure solution means that a great por-
tion of the money that was destined to buy investigation equipment and

119Closing the Gap between Cloud Providers and Scientific Users

finance their work now sits in a room full of servers that are not always
used. Also, although some researchers are comfortable working with cluster
configuration, parallelization, and computer programming, that is not the
case for all of them. This lack of expertise means they have to pay a quali-
fied professional to handle all the initial configuration and maintenance of
their infrastructure.

6.2.6 Security and Reliability

One of the main concerns for these large-scale infrastructures is security.
It is a common practice to share computing resources among scientists inside
the same research group and with outsiders. Despite this shared environ-
ment, research work needs to remain confidential during its development,
sometimes because of applicable legislation, until the scientist decides it is
camera ready. Having this in mind, words like authorization, authentication,
confidentiality, and accountability appear right away.

Together with a secure environment, scientific executions require a highly
reliable platform. This is especially true when considering that some com-
putations can take weeks or even months to complete. Losing a month of
work just because of a server failure is simply not an option. This means
that a platform for scientific executions must have adequate mechanisms to
 support these requirements.

6.3 Related Work

Approaches such as desktop grids and volunteer computing systems like
BOINC [4], OurGrid [5], Integrate [6], and UnaGrid [7] have laid the bases to
allow scientists to take advantage of large computing capabilities. Throughout
these kinds of solutions, researchers are able to access high-performance
platforms to run their workloads. However, the technical effort required to
run a defined workload under such conditions is generally too high for an
individual researcher with a tight schedule.

Recent developments in cloud computing solutions have aroused the inter-
est of the scientific community. Much effort has been expended to achieve
traditional cluster/grid performance in cloud environments. Some com-
parisons between cloud and grid have been made to show the benefits and
 challenges presented by both technologies [8–10], in some cases combin-
ing them through a hybrid approach [11]. Results from important research
projects such as the Magellan report [12] have shown that cloud comput-
ing can fit scientific requirements under certain circumstances. Despite this,
the technical complexity of the configuration process is still high.

Projects like the NGS Portal [13] have strived to integrate domain experts’
knowledge into preconfigured application templates that are ready to run.

120 Cloud Computing with e-Science Applications

Some important developments for private cloud infrastructures and scientific
workflow integration, such as Opal2 [14] and SciCumulus [15], have been made.
Under this approach, a researcher is responsible for wrapping a scientific appli-
cation in a preconfigured virtual machine (VM) or script. Although packaged
VMs can be deployed automatically according to user requirements, admini-
stration problems arise right away when the number of supported applica-
tions increases and constant updates are necessary. This can be the case, for
example, with the Scientific Computing as a Service (SCaaS) project [16].

There is also some work on an infrastructural level. Infrastructure-as-a-
service (IaaS) solutions like OpenNebula [17, Eucalyptus [18], PiCloud [19],
and Nimbus [20] offer a configuration environment especially designed for
common scientific requirements. In this case, scientists who want to use
these kinds of solutions need to be able to properly install and configure
their own applications. There are also some upper-level commercial offer-
ings like Cyclone [21] or SBGenomics [22], for which users can have access,
in a SaaS model, to some commonly used applications like Hmmer [23],
BLAST (Basic Local Alignment Search Tool) [24], or Gromacs [25]. These
 projects were built with some general needs in mind, making customization
a complex process that depends on personal contact with the suppliers.

Different projects have focused on benchmarking conventional scientific
solutions and workflows in both private and public cloud environments.
Some studies have shown, for example, that a typical configuration in an
IaaS provider like Amazon EC2 can be significantly slower than a modern
high-performance system, especially when it comes to communication [2].
Despite this, it has been shown that research teams will adopt cloud com-
puting over the next few years; in the meanwhile, cloud providers will likely
improve their offering over important factors like costs, networking, admin-
istration, and elasticity [26].

Finally, it is worth mentioning some SaaS solutions that developed inter-
esting models at an enterprise level. Among the most important ones, sales-
force [27], ZOHO [28], and SuccessFactors [29] allow a wide variety of users
to access complete business functionalities with low effort and at minimum
costs. This way, small- and medium-size companies can benefit from solid
solutions that fit their budget. The e-Clouds proposal is based on an integra-
tion of the ideas developed under some of these projects to meet the scientific
requirements mentioned previously.

6.4 e-Clouds Architecture

6.4.1 Overview

e-Clouds is an effort to create an easy-to-use SaaS marketplace for scientific
applications. As part of the initial proposal, the e-Clouds team will be in

121Closing the Gap between Cloud Providers and Scientific Users

charge of supporting all the IT-related tasks, including designing and main-
taining the platform execution. The target customers are researchers who
will process their data in the e-Clouds platform. For the first version of the
project, researchers will be able to store their data on e-Clouds and perform
executions using a set of defined applications.

Initial tests of the proposal have been performed with research groups
from the Humboldt Institute for Biological Resources [30]. Feedback received
is being incorporated into a second version of the project, while looking for
other research groups as early adopters. Throughout the following sections,
some examples are shown by using a study case with a custom version of
the Maxent software [31] for species habitat modeling. Maxent receives a file
with the coordinates where the species actually live, and it generates a com-
plete map that predicts alternative environments for this same species. Some
ecosystem variables are fed into the system as map layers, together with a
species definition to be processed. The output is a predictive model of the
species geographic distribution by using a maximum entropy method. This
process is commonly used in analytical biology mainly for conservation and
species management.

The general architecture for the e-Clouds solution is presented in Figure 6.1.
As presented, three basic components make up the proposal: the infrastruc-
ture provider (a public IaaS), the back end for jobs scheduling and control,
and the front end that supports administration and user interaction. All the
information regarding the users and their activities in the platform is stored
inside a relational database. The communication between these components
is made through a queuing service and the database records.

At first, a user registers in the e-Clouds web portal, pending approval.
After an administrator approves the registration, the user will be able to
access a private workspace through a username/password combination.
When logged into the application, a user can manage his or her data (files
and folders), launch and monitor the status of executions, and check his or
her current account balance according to the costs of storage, computing, and
communications.

A resource manager (RM) in the back end is in charge of controlling the
cloud infrastructure according to the defined events or user actions. When
a user launches, cancels, or modifies an execution, the web portal sends a
request to the RM, which effectively takes the corresponding actions using
the IaaS API. All actions inside the platform are stored as events in the
database as they can have an impact on the execution total costs and serve
for accountability.

The supporting platform for e-Clouds is based on three main elements:
a standard Linux machine image, a reliable queuing service, and a scalable
storage service. The Linux machine is specially crafted to execute certain
boot steps when launched. Particularly, a machine, once started, is required
to download the latest update of an agent program. This agent is in charge

122 Cloud Computing with e-Science Applications

of executing and monitoring the jobs assigned to its particular machine
inside the cluster.

6.4.2 e-Clouds Back End

6.4.2.1 Data Management

A key to achieving high performance in scientific workload executions is
 efficient management of data. For e-Clouds’ particular case, it is possible
to differentiate between four types of data: user files, transactional data,
internode messages, and local data. The first two data types are required
to be somehow persistent over time. The other two are associated with a

Public laaS Infrastructure

Cloud Blod Storage System
e-Clouds

Repository
App

Repository

Virtual Cluster
Researcher A

Pre-scheduling

e-Clouds
Web Portal

e-Clouds Resource
Manager

e-Clouds
Database

LAN/Internet

Scheduling

Computing Services

Communication Services (Queues)

e-Clouds Servers

Researcher
A

Researcher
B

e-Clouds Team

CA

CA

CA

CA

CA

CA

CA

CA

Virtual Cluster
Researcher B

Data
Repository

e-Clouds
Agent (AG)

App1

App 2

App N User N

User B

User A

Base
Virtual

Machine

FIGURE 6.1
e-Clouds general architecture.

123Closing the Gap between Cloud Providers and Scientific Users

defined execution, and they are only valid in the context of that execution.
A description of the proposal to handle each data type is included in the
following sections.

e-Clouds users can store, manage, and share their personal files within
the platform. This includes the ability to organize them in a file system, with
a directory structure, and generating publicly accessible URLs (uniform
resource locators) for each one. To address these needs, the files reside in the
storage service provided by the public IaaS, and the corresponding meta-
data are stored in a relational database. Every execution input and output
file will be stored as part of the e-Clouds file system.

6.4.2.2 Resource Manager

Resource manager is the piece of software in charge of job scheduling
and cluster control. It has the responsibility of starting and stopping new
machines on demand, taking into account the pending jobs. It assigns a
 certain amount of workload to each machine in an effort to minimize the
total costs and time. In addition to the management functions, the RM serves
as a central communication channel between the front end and any machine
in a cluster.

6.4.2.3 Queues for Asynchronous and Scalable Communications

Due to the dynamic and flexible scaling of the cloud infrastructure, commu-
nication between cluster nodes and other e-Clouds components is achieved
using queues. These queues will be accessible from all components in the
architecture and will offer a reliable and scalable asynchronous messaging
system. An important benefit obtained with the use of queues is the possibil-
ity to buffer user jobs.

6.4.2.4 Agent in Processing Machines

The agent is a control program that resides in every machine that runs as
part of an e-Clouds execution. It is in charge of managing the local job execu-
tions and communications of a machine with the RM. As part of its responsi-
bilities, it handles app installation and configuration, launches assigned jobs,
and monitors the overall execution progress, communicating any updates.

6.4.2.5 Billing

A billing system is included to provide information about the cost of the
resources consumed. An event-based approach is taken to calculate resource
usage for the current period. This means that the system is capable of track-
ing each event that somehow has an impact on the total costs and records the
pertinent information. Metrics such as machine hours, data transfer to and

124 Cloud Computing with e-Science Applications

from external sources, and the amount of stored information are part of the
accounting process. The conversion logic between the IaaS provider and the
e-Clouds pricing schema is also included.

6.4.3 e-Clouds Front End

6.4.3.1 For Researchers

Researchers and e-Clouds administrators can access a complete set of ser-
vices via a web user interface. The web portal is the point of entry for users;
it allows them to administer their personal workspace. In particular, reg-
istered users are able to submit and monitor jobs, upload and delete files
and folders, check execution results, and track their periodic use of e-Clouds
resources. The web portal aims to provide a simple tool for the e-Clouds user
by hiding the underlying complexity of cloud administration.

6.4.3.2 For e-Clouds Administrators

The web portal mentioned also includes an administration panel for the
e-Clouds team. Administrative users are able to manage users, stored files,
and security permissions and check the event log to track the overall system
activity. New applications are configured through the web administration
panel by describing their basic characteristics, including inputs, outputs, and
associated restrictions. The administration panel adapts dynamically to the
application description and presents the relevant options to the end user.

6.5 e-Clouds Implementation

Throughout the next sections, the most important implementation details
are presented. They cover each of the architectural decisions mentioned and
include the particular technologies used.

6.5.1 e-Clouds Front End

The e-Clouds front end is designed to hide the underlying complexity of infra-
structure configuration while allowing users to control the most important
aspects of a scientific workload execution. To effectively achieve this, the web
portal was built with the Ruby on Rails framework, which is certainly gain-
ing popularity among developers. Traditional web application functionalities,
including user management, file handling, and visual design, are built on top
of some popular third-party libraries (gems). For example, the administration
panel was developed using the Active Admin gem [32], which allows a fast
buildup of dashboards and control features based on the model definition.

125Closing the Gap between Cloud Providers and Scientific Users

6.5.2 e-Clouds Back End

6.5.2.1 Data Management

6.5.2.1.1 User Files and Simple Storage Service Files Storage

Amazon’s Simple Storage Service (S3) is, as its name implies, an easy-to-use
web-accessible storage solution. S3 users can manage files with sizes rang-
ing from 1 byte up to 5 TB through simple object access protocol (SOAP) and
representational state transfer (REST) APIs. Downloading is possible through
the hypertext transfer protocol (HTTP) and Bit Torrent protocol. The informa-
tion stored in S3 will be replicated by default to AWS content distribution net-
works in multiple continents, with a guarantee of 99.999999999% durability.

As part of the e-Clouds initial version, users are able to store and manage
their own files. These files can be used as inputs for a defined application
execution or they can also be the results (outputs) of this same application
execution. Having this in mind, a user should be able to handle his or her
data much in the same way as with a local computer. This means the ability
to organize files into folders and create, delete, download, and check their
associated metadata.

AWS S3 service does not provide a complete directory structure that can
be used to fulfill the requirements stated. This means that e-Clouds plat-
form should provide an abstraction layer that allows a user to effectively
manage data. As shown in Figure 6.2, a simple objects model relating files,
 directories, and users was created to solve this problem.

File

User

– key: String
– Name: String

– Name: String

Directory

class Class Model

– Size: Double

0 . .*

0 . . 11

0 . .*

1 . .*

1

– URL: String

FIGURE 6.2
File system model.

126 Cloud Computing with e-Science Applications

As part of the model, directories are logical entities that provide file organi-
zation. Each directory can have files or subdirectories (children) associated.
Files are stored in S3 inside defined buckets and folders. Each file object is
aware of its physical location in S3 and also knows its parent directory. This
way, the web application is capable of handling an organized file structure,
and it is also possible to manage a first level of authorization by associating
a file to a single user (its owner). In addition to the data model, a file browser
set of views was necessary to facilitate user interaction.

6.5.2.1.2 Transactional Data

As part of the e-Clouds solution, there is a central database management sys-
tem for storing data related to transactions. This includes but is not limited to
basic data such as user profile, security associations, resources usage, S3 files
metadata, applications, and of course, user executions. Besides application
and execution information, the database contains what is expected to be in a
standard web application. Database connections can only be established by
the web portal and the RM to enhance security and make the administration
(updates, tests, etc.) easier.

6.5.2.1.3 Local Storage

The main purpose of local storage is to store execution-related data in each
cluster machine. It is primarily used as low-latency (and -cost) storage for
installation files, libraries, input files, and execution results. All information
that resides in local storage is considered ephemeral, so every time an execu-
tion finishes, output files and logs should be uploaded to S3 and indexed in
the transactional data. Everything else that is on local storage will be erased
once a machine shuts down.

6.5.2.2 Queue Messaging

Reliable message queues are the main communication channel between
the different components that make up e-Clouds. At this first version, AWS
Simple Queue Service (SQS) is used. Figure 6.3 shows how the information
flows between the queues and the corresponding communicating entities.
It is important to note that there are two main, always on, queues: presched-
uling and scheduling queues. Also, there is one additional queue for each
user execution, and it is used mainly for job assignment. It is created when
execution is launched and destroyed when it finishes.

The prescheduling queue communicates messages that come from the web
portal, to and from the RM. The scheduling queue has the initial messages
that go from the RM to all the machines in a cluster and receives state updates
from these same machines. At last, execution-specific queues are used to
assign pending jobs to the associated machines.

127Closing the Gap between Cloud Providers and Scientific Users

M
ac

hi
ne

A
ge

nt
_C

lu
st

er
A

Cl
us

te
rA

_Q
ue

ue
Sc

he
du

lin
gQ

ue
ue

Re
so

ur
ce

M
an

ag
er

Pr
es

ch
ed

ul
in

gQ
ue

ue
W

eb
Po

rt
al St

ar
tE

xe
cu

tio
n

(p
ar

am
s)

ge
tP

en
di

ng
Ex

ec
ut

io
ns

()

St
ar

tE
xe

cu
tio

n
(p

ar
am

s)

ge
tA

ss
ig

ne
dJ

ob
s(

)

sd
 F

lo
w

St
ar

tJo
bE

xe
cu

tio
n(

pa
ra

m
s)

ev
en

N
ot

ifi
ca

tio
n(

)

ge
tM

es
sa

ge
s(

)

FI
G

U
R

E
6.

3
Q

ue
ue

 c
om

m
u

n
ic

at
io

n
se

qu
en

ce
.

128 Cloud Computing with e-Science Applications

6.5.2.3 App Install and Configuration

Scientific application installation and configuration are the core back-end
processes for the e-Clouds project. As the project’s main objective is to sup-
port multiple heterogeneous apps for different disciplines, it is a challenge to
establish a uniform general process for this. The proposed solution is based
on Linux shell scripting and an object model including application commands,
inputs, and parameters.

An execution starts with a standard x64 Debian-based Linux machine
image. Depending on the application selected by the user, a specific script
is downloaded and executed on a clean machine based on the image men-
tioned. This way, the complexity of multiple virtual images administration
becomes a simple script management process, and e-Clouds is not charged
by the cloud provider for storing preconfigured images.

6.5.2.3.1 Shell Scripts

As the deployment platform relies on a Linux-based image, shell commands
are a simple choice for application installation and configuration. Each time
a new app is uploaded, a shell script is required; this way, the installation
process is automated, but the complexity of this process is separated from
the other e-Clouds components. A basic checklist of what a script like this
should have to be e-Clouds compatible would be the following:

Operating system and environment: This initial step involves config-
uring the requirements at the operating system level. This means
creating the required users, files, folders, and so on; configuring the
environment variables; and setting up general security.

External dependencies: This step installs the different application
dependencies. This might include libraries, compilers, and other
applications. It is important to consider the specific versions that are
required so that the application works correctly.

Installation files: It is of course necessary to download and process
all the installation files that make up the application itself. In some
cases, this means downloading source code and compiling it each
time. Again, it is important to consider version management to
obtain the expected results.

Data files: These files can be considered as part of the installation files.
In scientific applications, it is common practice to have large databases
that contain information to be used within executions. Although these
files’ versions might change, they are usually static and common to all
executions, so they cannot be set by the user as actual inputs.

In Figure 6.4, a sample script for installing the custom version of Maxent
is shown. As shown, it uses the Ubuntu package manager (apt-get) to install
some packages. Also, it processes some files using R language functions [33].

129Closing the Gap between Cloud Providers and Scientific Users

FI
G

U
R

E
6.

4
C

u
st

om
 H

u
m

bo
ld

t M
ax

en
t s

cr
ip

t.

130 Cloud Computing with e-Science Applications

6.5.2.3.2 Parameter Description

A simple model to describe application inputs was proposed as part of the
e-Clouds solution (Figure 6.5). In this model, an application can have many
inputs associated, and these inputs will be instantiated with a value for every
execution. Scientific applications can have basically two input types, a string
or a file. A third special input type is an e-Clouds directory so that all files
within that directory are considered inputs and multiple jobs are generated.

At the presentation layer, a user is able to assign input values for a specific
execution in three basic ways:

• Enter a string in a defined text field.
• Select a file from its workspace.
• Select a directory with at least one file from its workspace.

Once an execution is launched, application inputs are used to generate
an execution command by concatenating all the values set by the user and
the predefined ones, preceded by the appropriate prefixes. An example of
such a command can be found in Figure 6.6. As seen, each input file must

«<<instance>>»

0 . . *

0 . . *

0 . . *1

1

1

Input

Execution

Application

class Class Model

– Type: File, Directory, String
– Value: <<instance>>

– Description: String
– Name: String

– Name: String
– user: User

– Version: Double

FIGURE 6.5
Application inputs and executions model.

FIGURE 6.6
Execution command example.

131Closing the Gap between Cloud Providers and Scientific Users

first be downloaded from its physical location in S3 so that it can be used
locally by each machine in a cluster. The exact file name is part of the final
execution command.

6.5.2.4 Scheduling

One of e-Clouds’ main principles is to take advantage of the scientists’ experi-
ence, especially when it comes to estimating the execution time for a certain
workload. Based on this, the general scheduling process is as follows:

 1. When a new application is configured to be part of e-Clouds,
the uploader defines an estimation of the average execution time
and suggested machine technical specifications. This will be the
default configuration to run a scientific workload with that appli-
cation. It is important to note that the uploading process must be
accompanied by a domain expert with previous experience on the
particular application.

 2. Each time a researcher launches a new execution, the researcher is
able to change the default values mentioned. This takes into account
the researcher’s knowledge regarding the amount of work he or
she is sending. The value specified for the execution time is not a
limitation, or a guarantee, of the real time the execution could take
to finish. Also, the researcher is able to specify, based on the cloud
offer, under which machine specifications he wants to run his own
execution. This way, he is able to obtain from the e-Clouds platform
a gross estimate of the execution’s total cost.

 3. Once an execution is launched, the scheduler takes into consider-
ation the application inputs and the current configuration to decide
the appropriate cluster configuration. In a general way, the basic
decision process is shown in Figure 6.7.

The overall scheduling process is designed to optimize the resource use so
that the total cost is minimized. To illustrate this, suppose an IaaS provider
charges per hour or partial hour of computing use. An e-Clouds user starts
an execution of a certain application with five different file inputs that are
totally independent from each other. The current estimation indicates that
the average processing time for each file will be 15 minutes. Considering
this, the selected approach for task division is

• Launching two processing nodes.

• Processing files 1 to 3 in node A and files 4 and 5 in node B.

• Total processing time will be 45 minutes, which is the maximum
between node A and node B total time.

132 Cloud Computing with e-Science Applications

Ca
lc

ul
at

e n
um

be
r o

f
re

qu
ire

d
m

ac
hi

ne
s

an
d

as
sig

n
ea

ch
 o

ne
a j

ob

G
et

 es
tim

at
ed

tim
e

an
d

m
ac

hi
ne

G
et

 C
hi

ld
re

n
Fi

le
s

Ye
s

N
o

Cr
ea

te
 Jo

b
A

ny
 In

pu
ts

 le
ft?

Is
 D

ire
ct

or
y?

G
et

 U
se

r I
np

ut
s

Ye
s

St
ar

t

BP
M

N
 B

PM
N

N
o

En
d

FI
G

U
R

E
6.

7
Sc

he
du

li
ng

 in
it

ia
l p

ro
ce

ss
.

133Closing the Gap between Cloud Providers and Scientific Users

It is important to note that the total execution time could be reduced in
this case by launching one machine per file, but that decision would imply a
considerable cost increase.

6.5.3 e-Clouds IaaS Provider

One of the main goals for e-Clouds is to support multiple underlying infra-
structure providers. This means that the user would be able to choose
between different alternatives and select the one that best fits personal
needs. Because there are no well-defined standards among cloud suppliers,
this platform independence requires some extra development work from
the e-Clouds team and is why this first version release supports just one of
them. Taking all this into account and with the objective of launching a first
 version as soon as possible, the e-Clouds team selected AWS and Heroku for
the initial testing.

Amazon Web Services has consolidated as one of the biggest and most
complete public clouds offering IaaS. Its low prices and the flexible resource
configuration are ideal for an initial testing of the e-Clouds ideas. Also,
because of its large number of users and success cases, there is complete
documentation available regarding performance benchmarking and testing
under high-performance scenarios [34, 35].

Heroku is a cloud platform as a service (PaaS) offer for fast and simple
deployment of web applications [36]. It actually supports Ruby, Node.js,
Clojure, Java, Python, and Scala applications. As part of its proposal, Heroku
has a free usage tier specially designed for developers. This free tier allows
users to run testing environments in a basic configuration of one web server
and an SQL database. Deployment can be easily done through a Git reposi-
tory configuration and a set of command line tools.

As shown in Figure 6.8, e-Clouds web portal and RM are initially deployed
in Heroku for ease. This includes the presentation layer developed under
Ruby on Rails and the relational database running in PostgreSQL. On the
other hand, AWS is used to run scientific workloads, store user files, and com-
municate information through reliable queues. A more detailed description of
each one of these components can be found further in this chapter.

6.5.4 Monetization

As in any cloud solution, there is a cost transference between the infrastruc-
ture usage and the service delivered. During this initial phase, e-Clouds
only charges each individual user by the different resources the user effec-
tively consumed, including storage, computing hours, and communication.
Although the total cost of an execution depends on these three basic factors,
the charging model for each of them is slightly different.

134 Cloud Computing with e-Science Applications

6.5.4.1 Storage Cost

The user pays at the end of each month for the maximum amount of data that
he stored during that period of time. For simplicity, the minimum charging
unit is the gigabyte, so everything below that just rounds up. The formula for
calculating total storage cost is then really simple:

 Total storage cost = (Maximum # of gigabytes stored) * (Cost per gigabyte)

6.5.4.2 Computational Cost

Following some providers’ trend (including AWS), the computational
resources are charged on an hourly basis. This means that for every hour or

Amazon Web Services (AWS)

Simple Storage Service (S3)

AG AG

AG AG

AG AG

e-Clouds
Bucket

App
Bucket

Blast

Maxent

Virtual Cluster
User A

Small instances

Virtual Cluster
User B

Small instances

Pre-scheduling Scheduling

Heroku

Amazon Elastic Clound (EC2)

e-Clouds Server

Web Portal
Resource Manager

Database

Amazon Simple Queue Service (SQS)

User A User B

e-Clouds Team

Data
Buckets

e-Clouds
Agent (AG)

Bucket
User A

Bucket
User B

Base
Virtual

Machine

FIGURE 6.8
e-Clouds actual deployment.

135Closing the Gap between Cloud Providers and Scientific Users

partial hour that a machine is working on a particular execution, the user
who launched that execution will have to pay a fixed amount. The hourly
rate varies according to machine technical specifications, namely, more
power means more money. Considering this, the formula for charging com-
putational resource usage is the following:

Total computational cost = (Total # of machine hours per execution)
* (Hourly rate depending on machine size)

6.5.4.3 Additional Costs

The e-Clouds proposal includes an additional fixed rate for data communica-
tion and queue resource usage. This includes the cost for traffic to and from
the machines and the costs associated with queue service. Every user should
pay the same fixed rate for each new execution launched on e-Clouds. This
way, the total additional cost would be calculated using the following formula:

 Total additionals = (# of executions) * (Fixed rate for an execution)

There are two main reasons behind the decision for leaving these addi-
tional costs as a fixed rate. The first one is that, for most cloud providers,
 communication costs are almost insignificant compared to those of stor-
age and computing. This is not true for all cases, but experience with some
 scientific applications showed that it somehow follows in general. The second
reason for this management decision is that it can be complex to account for
all communication processes that happen in a machine. This complexity has
an impact not only on the e-Clouds daily operation but also on the develop-
ment of new functionalities.

6.6 Results

Several tests were created to obtain an idea of the cost and time relationship
under an AWS platform. Different instance types were used to check the per-
formance under different technical scenarios. In particular, in AWS jargon,
the following instance types were used: c1.medium (2 Cores 2,5 EC2 Units,
1.7 GB RAM, moderate I/O performance) and c1.xlarge (8 Cores 2,5 EC2
Units, 7 GB RAM). The instance selection resembles the machine specifica-
tions of a private cluster where some analyses were executed.

Maxent software is a simple .jar file that runs just like any other Java appli-
cation. It displays a graphical interface with some options so that the user can
define certain values that are relevant to the maximum entropy modeling
approach. A custom version of Maxent was used to perform the tests. It was

136 Cloud Computing with e-Science Applications

built using an R script, so that parameter configuration can be automatic
when calling the original Maxent file, focusing on the special requirements
of the Humboldt Institute and including some Java VM fine-tuning. This
version is already configured as an e-Clouds application, accessible by all
users. As shown in Figure 6.6, it depends on the packages dismo, maptools,
sp, and rJava.

Three files are received by this application as parameters; the first is an
input R script, which contains the R commands needed to analyze the data.
The second is a stack file that contains different layers with characteristics
of Colombia, such as temperature, humidity, altitude, and so on in a raw
“.asc” data format. The third file contains the coordinates where a certain
species has been spotted in Colombia, in a defined comma-separated value
format. All the input files needed were previously uploaded to the S3-based
e-Clouds file system under a user account. The outputs of the application dif-
fer based on the configuration, but usually include visual maps that show the
resulting model for a particular species and can be exported to file formats
(e.g., pdf or HTML).

Earlier, to execute the application, clusters were deployed in the university
campus consisting of VMs using two cores of an Intel Core i7 processor and
8 GB of memory. In that execution, the files were stored in a network-attached
storage. Similar jobs had been executed using the same input files used for
the tests in e-Clouds. With these clusters, the average execution time for each
job was 18 minutes.

As previously explained, the execution parameters are based on an initial
time estimation made by the application configurator. The selection of these
parameters affects other parameters, such as the total cost of the execution
and the total time that it takes to finish. A user is capable of including the
user’s own estimation, based on the user’s knowledge of the application and
the data to be processed. The system recalculates the total costs and time
when the parameters are changed.

Two different approaches were used: The first one seeks to minimize the
total cost of the execution, and the other seeks to minimize the execution
time. Previous estimations of the required time for a particular job execution
to completion were made. The total execution time is calculated by multi-
plying the number of jobs by the expected time per job in minutes. Table 6.1
shows the results of the execution times and costs using different numbers
of species.

The average installation time refers to the time spent on the application
installation process. This process is only carried out once per machine
and execution. The results show that the application install can be done on
demand without significantly affecting the total time. It can also be seen that
the times obtained from the earlier executions under private cluster environ-
ments are similar to the execution in AWS. It is important to note that, using
a storage system like S3, it scales up adequately since the execution time is
not affected by the number of machines.

137Closing the Gap between Cloud Providers and Scientific Users

Finally, it can be seen that the approach in which the total execution time
was reduced has a significantly higher cost than the other one without reduc-
ing the total time in the same proportion. This means that it can be better to
wait a little bit longer for an execution to complete, seeking to improve the
final costs.

6.7 Conclusions and Future Work

Scientific cloud computing is still at an early age. Nevertheless, the academic
community and commercial providers are making important efforts in this
regard. New projects combining public clouds and traditional cluster/grid
approaches will appear over the next few years. Of course, as cloud provid-
ers increase their capabilities to overcome the actual obstacles, new problems
and challenges will appear. This is true not only from a technical perspective
but also from an economical and cultural point of view.

A proposal for a scientific SaaS marketplace has been presented through-
out the chapter. The most important architectural elements were described
in addition to a brief overview of the work done so far in the e-Clouds
 project. The solution presented was based on the utilization of the resources
provided by a public IaaS infrastructure, allowing small- and medium-size
groups to access on demand ready-to-use applications while obtaining the
benefit of the scale economies.

The work done so far covers the fundamental aspects of a solution of
such a nature. The design decisions taken so far have aimed toward a func-
tional and simple solution to the requirements mentioned at the beginning

TABLE 6.1

Initial Test Results

Approach 1: Reduce Total
Execution Time Approach 2: Reduce Costs

Number of Species 2 4 8 16 32 2 4 8 16 32
Number of VMs 1 2 2 4 8 1 2 2 4 8
VM type c1.xlarge c1.medium
Cost per hour (US dollars) 0.66 0.17
Average install time (min) 2.27 2.32 2.13 2.17 2.08 2.52 2.72 2.50 2.25 2.33
Average time per job (min) 10.50 10.85 10.59 10.08 10.10 15.50 15.65 14.30 14.10 14.65
Total execution time (min) 24.77 29.10 49.63 47.12 55.08 38.95 38.58 66.78 66.90 73.90
Used computing hours 1 2 2 4 8 1 2 3 6 10
Processing costs (US dollars) 0.66 1.32 1.32 2.64 5.28 0.17 0.33 0.50 0.99 1.65
Cost per species (US dollars) 0.33 0.33 0.17 0.17 0.17 0.08 0.08 0.06 0.06 0.05
Jobs per VM 2 2 4 4 4 2 2 4 4 4

138 Cloud Computing with e-Science Applications

of this chapter. Additional work needs to be done to cover potential flaws
and support scientific applications that are more complex. Further testing is
required to adapt the solution to changing requirements and diverse research
groups’ needs.

Future plans for the e-Clouds project include the implementation of new
features to favor collaboration among researchers and results validation
[37]. This way, the platform can become part of scientific day-to-day work.
In addition, new applications with different technical requirements will be
tested, including large-scale and long-lasting executions. In this respect,
there is some pending development regarding reliability and error handling.

Although the RM is capable of handling a minimum degree of parallelism,
several improvements in both the front and back end need to be done to sup-
port the execution of highly parallel applications (using a message passing
interface or graphics processing units) with effective resource management.
Together with this, additional work is required to support application work-
flows transparently. Some already existing alternatives are being considered
to support these requirements.

Finally, further optimization of resource scheduling is required to apply
data-mining techniques to estimate execution time and cost and take advan-
tage of the residual time of clusters and VMs. Although there is an impor-
tant challenge in proposing a general solution, some opportunistic ideas are
applicable to the e-Clouds scenario.

References

 1. Rehr, J. J., F. D. Vila, J. P. Gardner, L. Svec, and M. Prange. Scientific Computing
in the Cloud. IEEE, 12, no. 3 (2010): 34–43.

 2. Jackson, K, et al. Performance analysis of high performance computing appli-
cations on the Amazon Web Services Cloud. 2010 IEEE Second International
Conference on Cloud Computing Technology and Science (CloudCom), 2010: 159–168.

 3. Wang, Lei, Jianfeng Zhan, Weisong Shi, and Yi Liang. In cloud, can scientific
communities benefit from the economies of scale? IEEE Transactions on Parallel
and Distributed Systems 23, no. 2 (2012): 296–303.

 4. Anderson, David. BOINC: a system for public-resource computing and storage.
In Fifth IEEE/ACM International Workshop on Grid, Pittsburgh: ACM, 2004, 4–10.

 5. Andrade, Nazareno, Walfredo Cirne, Francisco Brasileiro, and Paulo Roisenberg.
OurGrid: an approach to easily assemble grids with equitable resource sharing.
Lecture Notes in Computer Science 2862/2003 (2003): 61–86.

 6. Goldchleger, Andrei, Fabio Kon, Alfredo Goldman, Marcelo Finger, and Germano
Capistrano Bezerra. InteGrade: object-oriented grid middleware leveraging
the idle computing power of desktop machines. Concurrency and Computation:
Practice and Experience 16, no. 5 (2004): 449–459.

139Closing the Gap between Cloud Providers and Scientific Users

 7. Castro, H., Rosales, E., Villamizar, M., and Miller, A. UnaGrid—on demand
opportunistic desktop grid. In 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing. Melbourne: IEEE, 2010, 661–666.

 8. Foster, Ian, Yong Zhao, Ioan Raicu, and Shiyong Lu. Cloud computing and
grid computing 360-degree compared. In GCE ‘08 Grid Computing Environments
Workshop, 2008, 1–10.

 9. Yu, Bing, Jing Tian, Shilong Ma, Shengwei Yi, and Dan Yu. Gird or cloud?
Survey on scientific computing. In 2011 IEEE International Conference on Cloud
Computing and Intelligence Systems (CCIS), 2011, 244–249.

 10. Zhang, Shuai, Shufen Zhang, Xuebin Chen, and Xiuzhen Huo. The comparison
between cloud computing and grid computing. In 2010 International Conference
on Computer Application and System Modeling, 2010, V11-72–V11-75.

 11. Calatrava, Amanda, Germán Moltó, and Vicente Hernández. Combining grid
and cloud resources for hybrid scientific computing executions. Presented at
Third IEEE International Conference on Cloud Computing Technology and
Science, 2011.

 12. Office of Advanced Scientific Computing Research (ASCR). The Magellan Report
on Cloud Computing for Science. Washington, DC: US Department of Energy, 2011.

 13. National e-Infrastructure Service (NES). NGS Portal. n.d. http://www.ngs.ac.uk/
use/tools/ngsportal (accessed June 4, 2013).

 14. Krishnan, S., L. Clementi, Ren Jingyuan, P. Papadopoulos, and W. Li. Design
and evaluation of Opal2: a toolkit for scientific software as a service. In 2009
World Conference on Services. New York: IEEE, 2009, 709–716.

 15. de Oliveira, Daniel, Fernanda Baião, and Marta Mattoso. SciCumulus: A light-
weight cloud middleware to explore many task computing paradigm in scien-
tific workflows. 2010 IEEE Third International Conference on Cloud Computing,
2010, 378–385.

 16. Prasad Saripalli, Curt Oldenburg, Ben Walters, and N. Radheshyam. Implemen-
tation and usability evaluation of a cloud platform for scientific computing as
a service (SCaaS). In Fourth IEEE International Conference on Utility and Cloud
Computing (UCC), 2011, 345–354.

 17. OpenNebula. OpenNebula. n.d. http://opennebula.org/about:contact.
 18. Eucalyptus. Eucalyptus. n.d. http://www.eucalyptus.com/eucalyptus-cloud.
 19. PiCloud. PiCloud. n.d. http://www.picloud.com/company/(accessed January

2, 2013).
 20. Hoffa, C., et al. On the use of cloud computing for scientific workflows. In IEEE

Fourth International Conference on eScience (eScience 2008), Indianapolis, IN, 2008,
7–12.

 21. Silicon Graphics International. January 2012. http://www.sgi.com/products/
hpc_cloud/cyclone/.

 22. Seven Bridges Genomics. Home page. n.d. https://www.sbgenomics.com
(accessed June 4, 2013).

 23. Howard Hughes Medical Institute. HMMER project. n.d. http://hmmer.janelia.
org/about (accessed June 4, 2013).

 24. National Library of Medicine. Blast Project. n.d. http://blast.ncbi.nlm.nih.gov/
(accessed June 4, 2013).

 25. Gromacs. Home page. n.d. http://www.gromacs.org/.

140 Cloud Computing with e-Science Applications

 26. Yang, Chia-Lee, Bang-Ning Hwang, and Benjamin J.C Yuan. Key consider-
ation factors of adopting cloud computing for science. In IEEE 4th International
Conference on Cloud Computing Technology and Science, 2012.

 27. Fisher, Steve. The architecture of the Apex Platform, salesforce.com’s platform
for building on-demand applications. In 29th International Conference on Software
Engineering—Companion, 2007, 3.

 28. Zoho Corporation. Home page. January 2012. http://www.zoho.com/.
 29. SuccessFactors. Home page. January 2012. http://www.successfactors.com/.
 30. Instituto Alexander Von Humboldt. Home page. January 2013. http://www.

humboldt.org.co/iavh/.
 31. Phillips, Steven J., Dudikc Miroslav, and Robert E. Schapire. Maxent software

for species habitat modeling. In Proceedings of the Twenty-First International
Conference on Machine Learning, 2004, 655–662.

 32. VersaPay, Gregbell. ActiveAdmin. n.d. http://activeadmin.info/ (accessed June
4, 2013).

 33. The R project. Home page. January 2013. http://www.r-project.org/.
 34. Deelman, Ewa, et al. Data sharing options for scientific workflows on Amazon

EC2. SC10 Conference, 2010.
 35. Xiaoyong, Bai. High performance computing for finite element in cloud. In 2011

International Conference on Future Computer Sciences and Application. New York:
IEEE, 2011, 51–53.

 36. Heroku. Home page. January 2013. http://www.heroku.com/.
 37. Kumbhare, Alok Gautam, Yogesh Simmhan, and Viktor Prasanna. Designing

a secure storage repository for sharing scientific datasets using public clouds.
In DataCloud-SC’11, 2011.

141

7
Assembling Cloud-Based Geographic
Information Systems: A Pragmatic Approach
Using Off-the-Shelf Components

Muhammad Akmal, Ian Allison, and Horacio González–Vélez

Summary

In this chapter, we present a novel systematic way of building a web-based
geographic information system (GIS) running on cloud services. The
proposed architecture aims to provide a design pattern for building a
cloud-based GIS using simple and readily available low-cost tools with great
overall system efficiency. The result of running the GIS using this para-
digm is arguably reliable and available at low cost and with some platform
independence. It has required significantly less time and effort to deploy
when compared with standard cloud development. We present a case study
based on road accidents using Microsoft Windows Azure and Amazon Web
Services. In this case study, a GIS was created that helped in improvements
of road conditions by identifying road accident hot spots in real time and

CONTENTS

Summary .. 141
7.1 Introduction .. 142
7.2 Background ... 143
7.3 Methodology .. 145
7.4 Implementation .. 149

7.4.1 Scaling and Fault Tolerance .. 152
7.5 Evaluation ... 154

7.5.1 Performance Testing .. 155
7.5.2 Processing Time ... 156

7.6 Conclusion and Future Work ... 157
Glossary .. 158
Acknowledgments .. 159
References ... 159

142 Cloud Computing with e-Science Applications

on the real map. Later, authorities can use this information to implement
 preventive measures to reduce road accidents. This GIS can be implemented
for any town, city, county, or region in the world as long as its satellite maps
are available on Microsoft Bing Maps.

7.1 Introduction

In its canonical definition of cloud computing [10], the National Institute of
Standards and Technology contended that “cloud computing is a model for
enabling convenient, on-demand network access to a shared pool of configu-
rable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.”

Cloud computing is considered to be a new value-added paradigm for net-
work computing, where higher efficiency, massive scalability, and speed rely
on effective software development [1]. Having also capitalized on emerg-
ing business trends, such as capital asset control, carbon management, and
total cost of ownership, its uniqueness lies in its simplicity: It has promised
that every consumer, small business, and large organization will access any
information technology (IT) platform as a utility [5].

Despite some initial security concerns and technical issues, an increasing
number of businesses are considering moving their applications and services
into “the Cloud.”* Consequently, mainstream information communication
technology (ICT) powerhouses such as Amazon, Microsoft, IBM, Apple, and
Google are heavily investing in the provision and support of public cloud
infrastructures. Although significant effort has been devoted to migrate
generic web-based applications into the Cloud, scant research and develop-
ment have been put into creating a generic design pattern for a geographic
information system (GIS) pattern in the Cloud.

To address this need, this chapter presents a systematic model to develop
and deploy cloud-enabled GIS applications based on a pattern-based archi-
tecture. The proposed architecture uses SQL Azure geospatial database,
Microsoft Silverlight, Microsoft Bing Maps, .NET Framework 4, Windows
Communication Foundation-Rich Internet Applications (WCF-RIA). Services
and the resulting application have been fully deployed in two mainstream
public cloud platforms, namely, Microsoft Windows Azure Platform and
Amazon Web Services. It is therefore arguable that the lessons learned and

* In line with convention, we have capitalized “Cloud” when referring to the holistic global
interconnected infrastructure as opposed to any specific infrastructure provided.

143Assembling Cloud-Based Geographic Information Systems

indeed the software components and techniques are applicable to the vast
majority of public and private cloud infrastructures.

Contribution

By assembling software components on public cloud infrastructures,
our approach is arguably extensible and open. Furthermore, as part of
the recent trends of increasing reproducibility of software engineer-
ing contributions, we are publishing the entire software environments
together with this chapter such that any cloud developer can use them.

7.2 Background

Incorporating geospatial and descriptive data, GISs are a holistic integration
of hardware, software, and standardized formats for capturing/encoding,
managing, analyzing, and displaying all forms of geographically referenced
data [8]. GISs have long been used beyond the boundaries of geography, and
they are typically an aggregation of nonhomogeneous architectural plat-
forms, applications, and processing needs due to a heterogeneous universe
of users in science, business, and society in general [16].

Formerly, organizations had to buy dedicated GIS software packages to
use and manipulate data over their network. Currently, web-based GIS soft-
ware packages are readily available, and many organizations use web-based
GISs to increase their availability of information for public and internal use.
However, one of the biggest problems with large GISs is that all data are not
necessarily available from the start, and systems are commonly rolled out
following geographic area patterns rather than system usage or resources.

Moreover, large GIS projects usually start from a small amount of data but
expand rapidly as data increase, requiring expansion of installed resources.
Ergo, system resources are not consumed in predictable patterns as differ-
ent users may follow seasonal or incident-driven usage patterns. In time, as
more data are collected, systems cover additional geographical areas, and
this leads to the need to increase other resources required by the system.
A canonical example is Google Maps. It can be seen that the street view is
not available for every place in the world, but these views are growing with
time as Google collects data.

The operations performed on geospatial data within a database require
significant computational resources for processing, typically surpassing the
standard departmental infrastructures of small- and medium-size enter-
prises. For example, the selection of locations (points) that reside inside a
given region (polygon) is particularly computationally demanding as the

144 Cloud Computing with e-Science Applications

region is typically represented by a significant polygon with thousands of
points to be verified.

An increase in data size requires not only more storage but also other
computational resources. For example, more data require more processing.
As the area covered by the system and the number of people using the system
increase, the capacity of the whole infrastructure must increase due to the
inherent computational complexity. By providing elasticity and on-demand
consumption, any feasible approach should allow the system to scale down
when the user count is low and, conversely, should cope well with any usage
peaks. Cloud computing ought to help overcome this scalability problem
efficiently, with a service model that enables on-demand resource access by
aggregating configurable computational resources that can be rapidly provi-
sioned and released.

Although such a model seems to be tailored for data-driven environments
such as a GIS, programming, manipulating, and processing geospatial data
typically requires the inclusion of complex data structures and demand-
ing mathematical transformations. Even though standard web program-
ming techniques have evolved to be applied in cloud environments, only a
few proven pattern-based programming paradigms have been successfully
applied in the Cloud. So, it should be clear that seamless cloud deployment
entails a substantial amount of work, and current GIS tools are typically
associated with a GIS software developer while cloud ones can be locked to
a given cloud provider. Arguably, to have different GISs in the Cloud there
has to be an orchestration of infrastructure and applications that can show
tangible financial and computing benefits.

Different authors have started to evaluate the distinct possibilities in this
area. Some argued for the need for the next generation of cloud infrastruc-
ture to be supported through traditional multitier architectures [2], while
others have pursued the provision of innovative object-oriented data models
and algorithms to retrieve data in a distributed environment [19]. But, the
vast majority of the relevant approaches encourage the creation of generic
GIS web services on top of map image files and geographic information
in general, accessed as a web service through the Google App Engine [3],
MapReduce-BigTable [20], a private cloud [4], or simply the Internet [23].
Having reported initial performance figures on a par with similar
server-based web services, the last two approaches are clearly not associated
with public Cloud deployments, but all four are definitely representative of
the growing trend for the provision of GISs as a service.

From a more general GIS perspective, recent works have advocated the
 creation of spatial cloud computing—a subarea in which the spatiotemporal
principles of geoassembling cloud-based GIS spatial sciences, and by exten-
sion a well-designed GIS, can be effectively represented in the Cloud given
the continuous nature of GIS constraints [11, 15, 21, 22]. As part of this growing
trend, there have been few comparative analyses of GISs in grids and clouds
[14], and on different public infrastructures [24], using ad hoc GIS deployments

145Assembling Cloud-Based Geographic Information Systems

enabling performance-oriented environments. Nevertheless, the creation of
standards and methodologies for the creation of web-enabled open-source
systems in the geographical sciences remains an active research area [7, 17].

From an industrial perspective, Esri, a leading GIS vendor, has produced
a case study for its own proprietary software without much to say on how
to take advantage of platform as a service/software as a service (PaaS/SaaS)
for building GIS in an open, generic way [6]. GIS Cloud Limited seems to be
the only platform provider for building GIS in the cloud [9], but one can only
build using their application programming interface (API) and supported
tools and languages.

Arguably, additional research needs to be devoted to the efficient use of
Cloud-enabled GISs to develop specific applications quickly using off-the-shelf
components such as public maps and web services. Such a need has been
recently highlighted by different authors as part of the emerging trends in
interdisciplinary geographic processing on clouds [12, 13, 18].

7.3 Methodology

The key elements required to build a typical web-based GIS are as follows:

• a database management system (DBMS);
• base maps;
• a web server with some storage, high-speed network connection

between the machines; and
• a secured Internet connection to provide service over the Internet.

Additional elements can be added, such as a mechanism to reduce failures
(e.g., replication servers or storage disk mirrors), load-balancing systems, and
a backup mechanism.

The DBMS ought to support geospatial data types, allow spatial indexes,
and perform various operations on geospatial data using built-in functions.

RESEARCH GAP

It is therefore clear that there is a research gap in this area and the meth-
odology proposed in the book chapter can be used to build GISs in the
cloud, on either infrastructure as a service (IaaS) or PaaS using map
services such as Bing Maps and Google Maps and deploying through
the use of software patterns. The remainder of this chapter provides a
systematic way to assemble a GIS in the cloud using public Cloud pro-
viders and off-the-shelf components that follow accepted best practices
in software engineering.

146 Cloud Computing with e-Science Applications

The web server should be able to support tools and APIs used to build the web
application. For example, if the web application is built in .NET Framework,
then an Apache-based web server might not work, and a web server based
on the Internet Information Services (IIS) will be used.

Our cloud-based GIS architecture relies on the fact that cloud comput-
ing is an incremental approach to web-based systems. Figure 7.1 depicts
the block diagram of the proposed architecture of a cloud-based GIS. It is
 obvious from the figure that the web server, database server, and storage will
reside in the Cloud deployed as PaaS or IaaS. Each architectural component
is explained next.

Client: This is a computer/device with an Internet connection and a
browser with the map plug-in (player) installed on it. For instance,
if the map plug-in is developed using Microsoft Silverlight, then the
Silverlight player needs to be installed on the client.

Map Plug-in: A map plug-in is a specialized web-based map con-
trol that is capable of displaying base maps and supports display-
ing multiple layers of map objects, such as, polygons, locations, or
lines. Since the idea of this project is to use Google or Microsoft
Bing Maps as a base map because these are the most comprehensive
maps available for the whole world, this could be a Google or Bing
Maps control.

Cloud

Client
Browser

Map Plugin

Web Server
Web Application

Web Service
(Connect Clients with Entity Data Model)

Cloud Storage Database Server(s)/Cluster
(Support Spatial Databases)

Internet

1–Http Request

3–Spatial Query

4–
SQ

L
Q

ue
ry

2–Http Response

Entity Data Model

5 –
SQ

L
Re

su
lt

6–Spatial Result

FIGURE 7.1
Block diagram for our cloud-based GIS architecture.

147Assembling Cloud-Based Geographic Information Systems

Web Server/Hosted Service: This is a web server in the Cloud with
all necessary APIs installed on it. Depending on the cloud service
provider and service provisioning model, this server differs from a
“normal” web server. This cloud web server, ideally, must be hori-
zontally and vertically scalable in the Cloud.

Storage Account: Deploys a cloud-based storage repository that will be
used to store web applications.

Entity Framework Model: This creates a logical view of the database
according to the business logic of the system and gives an abstract view
of the database to the application, hence providing added security.

Web Services: A problem with rich Internet applications is coordinat-
ing the application logic between the middle tier and the presenta-
tion tier. Effective user experience requires the client to be aware
of the application logic that resides on the server. But, it is cumber-
some to develop and maintain the application logic on both the
presentation tier and the middle tier. Our web service solves this
problem by providing services that make the application logic on the
server seamlessly available to the client. That is to say, it allows the
client-side map plug-in to directly interact with the database in an
easy, controlled, and secured way.

Database Server: The geospatial relational database of the application
resides on this server. It has to be a powerful machine as most of the
geospatial data manipulation is performed at this level. The actual
DBMS can be Oracle, SQL server, or SQL Azure as all support geo-
spatial databases.

Figure 7.1 also demonstrates that the process begins with the client when
it sends an HTTP request for the application web page to the web server. The
server responds and reads an appropriate web page from the storage, processes
it, and then sends it to the client. Normally, this page will have a map control
embedded in it that displays the base maps directly from Google or Bing.

Moreover, if a user interacts with the web page, for instance, by selecting
a particular area on the map and searching for something within this area,
the map control and the code behind generate a code-based geospatial query
and send it to the web service that deals with database-related requests.
The web service then passes it to the Entity Framework Model, which then
converts the query into an SQL query tailored to the database server, which
then processes it and sends back the results to the Entity Framework Model.
The model finally invokes the web service communication with the client to
display the relevant area on the map.

The key challenge is the spatial data representation between the client, the web
service, and the database. The database can only keep spatial data in geometry
or geography format, which is not directly produced by Google or Bing map

148 Cloud Computing with e-Science Applications

controls. In addition, the Entity Framework Model in the web application does
not typically support geometry or geography data types. To address this issue,
there has to be a data representation or format for spatial data that can be easily
exchanged between the DBMS geometry/geography data types, the map con-
trol objects, and the appropriate data types in the Entity Framework Model. The
Open GIS Consortium’s WKT (well-known text) and WKB (well-known binary)
spatial data formats have been defined to enable such data exchange [19].

Figure 7.2 shows the representation of spatial data in different formats at
different stages of the system, designed to deal with the data incompatibility
problem. It is clear from the figure that the spatial data in the database will
be held in the geometry format as it is easy to convert it into WKT format
using built-in SQL functions.

The Entity Framework Model presents the spatial data in WKT format
to the application and text, and it is stored as a string in the entities. The
web service also deals with spatial data in WKT. One of the most important
 elements here is the WKT to the map object parser, which converts WKT
data into appropriate map objects and vice versa. There is no direct way to

Cloud Computing with E-science Applications

Client
Map Control

(Interactive map objects layers)

WKT to Map Plugin Object Parser
(Converts WKT geometric objects such as points and polygons into

appropriate map plugin objects)

Cloud
Web Server (s)

Database Server(s) /Cluster
(Spatial Data as Geometry)

Web Service
(Spatial Data as WKT)

Entity Framework Model
(Spatial Data in WKT, represented as string objects in the models)

FIGURE 7.2
Data representation in the system. Note that our system exchanges data using the Open
GIS Consortium’s WKT (Well Known Text) format. (Redrawn from Yonggang Wang, Sheng
Wang, and Daliang Zhou. In Cloud Computing, vol. 5931 of Lecture Notes in Computer Science,
pages 322–331. Berlin: Springer-Verlag, 2009.)

149Assembling Cloud-Based Geographic Information Systems

convert a WKT geometry representation into map control objects. To over-
come this problem, an API has been created that takes a WKT representation
of geometry objects (polygons, line, point, etc.) and returns the equivalent
appropriate map control objects. Moreover, the conversion of geometry data
into WKT in the database may require use of views in the database, but this
definitely compromises the performance and, if not done carefully, can cause
the application to crash.

To prove the concept discussed in this methodology, a proof-of-concept
(demo) application has been created in Microsoft Azure Cloud using a PaaS
deployment. An image of this implementation has also been ported to the
Amazon EC2 Cloud using an IaaS deployment. Although in this chapter we
present full details related to the Azure implementation, it is highlighted
that the Amazon deployment details are of a similar nature and are also
introduced when relevant.

7.4 Implementation

Our application is a web-based GIS specifically designed to analyze the
main causes of road accidents and dangerous road conditions in a specific
region. This GIS application has been built in such a way that it can be
seamlessly customized for any place in the world as long as its detailed
maps are available on Bing. The main objectives of the demo application
are to

• display a real map of the region where it will be used;

• provide a web-based graphical user interface to enable users to
search road accidents in a selected region;

• interact with structured data for any part of the world where digital
road maps are available;

• illustrate the reduction of effort for the implementation, manage-
ment, and maintenance of cloud infrastructure; and

• demonstrate scalable and reliable behavior.

Titled the Road Accidents GIS, our demo application takes advantage of
fundamental cloud computing capabilities such as scaling, redundancy,
and reduced system management and administration employing different
Microsoft technologies, such as Bing Maps, Silverlight, SQL Azure, WCF-RIA
Services, and .NET. Figure 7.3 shows an overview of its implementation in
Microsoft Azure.

150 Cloud Computing with e-Science Applications

It is noted that the key GIS components described in Section 7.3 have been
instantiated under the standard Microsoft Azure platform as follows:

 1. The map plug-in is deployed as a Silverlight plug-in, and a Microsoft
Silverlight Bing Maps control has been used to display the maps.

 2. The web server has been deployed as an Azure web role, which is
actually a ready-made web server specially tuned for scaling. The
web service has been distributed with the WCF-RIA services, which
incorporate the business logic running in the web role (as the .NET
Entity Framework Model) to the client.

 3. SQL Azure has been used—instead of a separate database server—and
only blob storage is used to store the application.

It is important to mention that all the images used in the interface need to
be either embedded in the web application as a resource or kept in the Azure
storage; their complete URLs used in the application are kept as image paths.
Additional architectural components have been instantiated in the follow-
ing manner:

Client: Computer or device with either MAC operating system (OS) X
10.5 or later running on an Intel machine or Windows XP or later
OS. It must have a compatible browser with the Microsoft Silverlight
plug-in installed.

Client
Browser

Silverlight
Bing Map

Plugin

Windows Azure (Cloud)

Hosted Service

Storage Services
(Blob, queue, and tables)

SQL Azure Database
Or

SQL Server/Cluster
(On virtual machines)

Web Role/
Web Server

Silverlight
Web

Application

WCR RIA
Services

Internet

1 – H
ttp Request

3 – Spatial Q
uery

6 – Spatial Results

2 – H
ttp Response

4 – SQL
Query

5 – SQL
Result

FIGURE 7.3
Architecture of our cloud-based GIS application in Azure.

151Assembling Cloud-Based Geographic Information Systems

Web Server/Hosted Service: This is a logical container that pres-
ents all machines (web/worker/virtual machine roles) running an
application in Azure. The application can be elastically scaled up
or down and accessed as a service hosted in Azure. In Azure, a
hosted service has been taken as a web server that differs from a
normal web server to constitute a PaaS infrastructure. In Amazon
EC2, this is a machine instance with Apache or, potentially, IIS
under an IaaS deployment.

Storage Account: The application uses the blob storage in Azure and
the Elastic Block Storage in EC2.

Entity Framework Model and Web Services: WCF-RIA domain ser-
vices provide data access to the Silverlight client according to the
application logic running on the web server.

Database Server: SQL Azure has been used to support geospatial data-
bases in Azure.

As described in Section 7.3, the client sends an HTTP request to the server.
The server then processes it and sends a web page to the client, which then
displays a Silverlight map on the screen as shown in Figure 7.4.

Specifically, the user selects a region type—which in turn requires region
spatial data to be requested from the database and displayed on the map.
To accomplish this, the client-side application generates a LINQ (Language

FIGURE 7.4
Main screen of our cloud-based GIS application in Azure.

152 Cloud Computing with e-Science Applications

Integrated [code-based] Query) and sends it to the WCF-RIA service, which
then sends its equivalent SQL query to SQL Azure. The server then processes
the query and sends back results to the WCF-RIA services, which then send
enumerable entity objects to the client. Subsequently, Bing Maps object parser
converts WKT region data into maps objects to be displayed on the map.
Finally, the user selects the region and some accident search criteria to execute
a search; as a result, the same process is performed to display the accident loca-
tions as pushpins on the map. The overall interaction is presented in Figure 7.4.

Note that, in this particular application, finding an accident in a region
requires selection of points in a polygon. This is done using the STContains
geometry function of SQL Azure, which determines if a geometry object,
more specifically a spatial reference system identifier (SRID), is within
a region. This function returns 1 if an object s, represented by an SRID,
is inside a region and 0 otherwise, as shown in Figure 7.5. This functionality
is particularly suitable for the Cloud as it enables demanding processing to
be remotely commissioned.

7.4.1 Scaling and Fault Tolerance

Figure 7.6 represents a case in which three instances of our GIS applica-
tion are running in the public Azure cloud. The three web roles repre-
sent three separate web servers running three copies of GIS applications

Cloud Computing with E-science Applications

Same SRID with location inside region

Different SRID with location inside region

Same SRID with location outside region

FIGURE 7.5
Example of s selection of points in a polygon.

153Assembling Cloud-Based Geographic Information Systems

in the cloud. It is important to mention that each web role is an extra-small
machine in Azure, which has a shared core, 768 MB memory, and 5 MB
bandwidth. Azure allows measurement and monitoring of various perfor-
mance parameters of the web roles such as the system load and, based on
this information, scaling rules can be created. By using monitoring infor-
mation, scaling rules, and Azure REST APIs, the number of web roles can
be increased automatically (horizontal scaling). In some cases, if increasing
the number of instances does not balance the load, the size of the web
role machine can be increased (vertical scaling). Vertical scaling requires
redeployment of the application, which is time consuming and may cause
interruption to the service. Automatic scaling has not been implemented
in our application.

Figure 7.6 shows a load balancer that evenly divides the workload among
web roles, a common practice in any web-based architecture that poses a
 particular hurdle in Azure. Running multiple independent copies of the
application on independent machines leads us to a problem if the session
state variables are used in the application, as there is a possibility that
 different requests by the same client go to different web roles, as shown
in Figure 7.7.

From this point, if an application is using session state variables, then
 sessions stored on one web role are not in the knowledge of other web
roles. As there is even a possibility that a single client will be served by a

Client

Windows Azure (Cloud)

A
pp

Fa
br

ic
 C

ac
he

(S
es

sio
n

&
 S

ta
tic

Co
nt

en
ts

)

Hosted Service

A
zu

re
 C

lo
ud

 S
to

ra
ge

(R
ed

un
da

nt
) C

op
y

3
C

op
y

2
C

op
y

1

Web Role 1

Web Role 2

Web Role 3

Lo
ad

 B
al

an
ce

r

Internet

SQL Azure Database
Gateway Load Balancer

DB Copy 1 DB Copy 2 DB Copy 3

Database Synchronisation

FIGURE 7.6
Implementation of cloud-based GIS application in Azure.

154 Cloud Computing with e-Science Applications

different web role for each request it makes, this will cause the application
to malfunction. There are various ways to solve this problem but the quick-
est and easiest is to use the Azure AppFabric cache to hold the session state
outside the web roles. Also, this cache can be used for in-memory buffering
of static contents of the application, hence improving the performance.

As far as the hosted service is concerned, it is up to the certain subscriber
how many web role instances the subscriber wants to create. Microsoft
requires at least two web roles to ensure 99.9% uptime. In this case, three
web role instances are running the application. In case of failure of a web
role, other web roles take over and keep serving requests. As soon as Azure
detects the failure, it replaces the faulty web role.

As Azure keeps by default three copies of storage and databases in three
different domains of Microsoft data centers, there is no need to keep a backup
database server or storage infrastructure. Once a fault is detected within
a database, Azure automatically disconnects the faulty copy, acquires a new
database instance from the Cloud, and synchronizes it with the remaining
copies. As a result, when a failure occurs, it can have some effect on perfor-
mance until the new database instance is ready. The same is true for storage.

7.5 Evaluation

For evaluation purposes, the applicative database has been populated with
150,000 demonstration road accident records for Scotland. To functionally
test the system, a set of tasks has been devised to search the records in the

Read session
[“age”]

Save session
[“age”] = 16

[age] = ?
Session
Saved

Client

Load Balancer

Instance 1 Instance 2

FIGURE 7.7
Session state problem with multiple web roles.

155Assembling Cloud-Based Geographic Information Systems

AB postcode area region corresponding to Aberdeen for each of the follow-
ing 16 possibilities:

16 Search Possibilities: AB postcode

 1. Date range
 2. Date range and cause
 3. Date range and time
 4. Date range, cause, and time
 5. Date range and number of persons
 6. Date range, cause, and number of persons
 7. Date range, time, and number of persons
 8. Date range, time, number of persons, and cause
 9. Date range and number of vehicles
 10. Date range, cause, and number of vehicles
 11. Date range, time, and number of vehicles
 12. Date range, cause, time, and number of vehicles
 13. Date range, number of persons, and number of vehicles
 14. Date range, cause, number of persons, and number of vehicles
 15. Date range, time, number of persons, and number of vehicles
 16. Date range, cause, time, number of persons, and number of vehicles

We have selected such a narrow area and specific criteria because, as the
search criteria become more specific, it decreases the number of accident
locations in the result but requires more processing from the SQL Azure.

Then, each of these tasks has been carried out on the application with
known selected field values, and the output was compared with previously
known expected results. Any errors found were corrected in the code and
then all the tests were performed repeatedly until all the results met the
expected output.

7.5.1 Performance Testing

Performance testing is a key test as this application will arguably be run-
ning in a stressful environment and there will be a substantially large data-
base for the system. In some unlikely cases when a user searches for longer
date ranges, the result comprises thousands of records, potentially gigabytes
of data. Then, since search results are downloaded from SQL Azure into
the client, there is a possibility that the application can freeze or crash if
the Internet speed is slow or the Internet connection is fluctuating between
 connected and disconnected states.

To perform stress testing, accidents in the AB postcode area have been
searched for a 10-year range between January 1, 2001, and September 30,
2011, and without any other condition. This has put the application under
extreme stress as in the normal case, producing 6,642 records for a single

156 Cloud Computing with e-Science Applications

search (over 40% of the entire database). It was observed that when the
number of resultant accident records was too high for a region (e.g., greater
than 6,000), then on some occasions the application crashed and showed the
error request time-out. After some research, it was realized that this was
happening because of the default keep-alive time of the WCF-RIA service.
For a WCF-RIA service request, the default keep-alive time on the client
machine is 1 minute, and if a query response from the SQL server takes
more than a minute, then the WCF-RIA service causes this error because
the client side assumes that the connection with the domain service on the
web server is broken.

After resolving this issue, this stress test has been performed repeatedly
but from 10 different client machines at the same time. Although the response
time was slow (up to 5 minutes), the overall architecture has worked, proving
that the system is stable under stress conditions. For a small date range and
with some conditions, the search is typically nimble, with response time
within a couple of seconds.

Hence, our demo has worked in its most basic form, but there is a lot of room
for improvement using the cloud computing capabilities. As an example,
if a user requires extensive access to historical data (e.g., all the accidents that
happened in the last 20 years), the result will be a region cluttered with thou-
sands of accident location pins showing the problematic areas, which may be
slightly difficult to read on a low-resolution screen.

7.5.2 Processing Time

A key performance parameter is how much time it takes to display a
response/result on the client machine after sending a search request. This is
dependent on the size of the accident search results, the client’s Internet speed,
processing required by the map objects parser, and processing required on
SQL Azure. To analyze the processing time, a search is performed that returns
records of all the accidents in a given postcode area (AB) in the database. This
search actually executes a query in SQL Azure as shown in Listing 7.1.

Listing 7.1

SQL query in Azure

SELECT [RID] [AccID] [AccDate] [AccTime] [Cause] [Longitude]
[Latitude] [AccInjuredPersons] [AccVehicles]
FROM [AccidentManagement][dbo][viewPolyAccidents]
WHERE RegionID = AB

To check how much time SQL Azure takes to execute this query, the query
has been executed 10 times via the SQL Server Management Studio. The aver-
age execution time was 76 seconds. When a similar search was performed

157Assembling Cloud-Based Geographic Information Systems

10 times on the same workstation via the accident application, it took variable
times between 83 and 91 seconds, and the average time was 84 seconds . Here,
it is clear that SQL Azure took most of the time, which means the rest of the
 processing in the application was fast, taking approximately 7 (84 − 77) seconds.

In both cases, the query returned 6,642 accident records, and the size of
data returned by server was 543 KB. At that time, the application never
crashed. It is important to mention that the Internet connection used was
a 10-Mbps broadband connection with a DSL (digital subscriber line) test
downloading speed of 3.84 Mbps and upload speed of 0.94 Mbps.

7.6 Conclusion and Future Work

This chapter addressed the need for generic design patterns for GIS cloud-
enabled deployment. The proposed architecture utilizes the SQL Azure
geospatial database in conjunction with other Microsoft technologies and
services. This architecture is designed to be open and extensible.

Considering the original nature of the problem, it is noted that GIS deploy-
ment on clouds is per se a complex issue. It requires the seamless integration
of distinct GIS capabilities to search, access, and utilize geospatial data with
the cloud computing capabilities to configure, deploy, and manage computing
infrastructure to permit the computability of intensive models and databases.

The chapter has provided a proposed methodology and architecture to
enable systematic assembly of GISs in the cloud. This approach provides
a viable solution to build stable and complex GISs in the cloud that can
perform under extreme conditions, but there are a few minor issues, such
as SQL server scaling and the need for a more robust and comprehensive
API to convert WKT geospatial data into Bing, Google Maps, and other
base maps objects. It is also interesting that an application built using this
 methodology can be implemented on IaaS and PaaS service models because
it is implemented in PaaS and all the resources used in case of PaaS can be
replicated in IaaS.

Further work should be carried out to evolve this paradigm for building
GIS-oriented cost models for cloud computing where resources, computa-
tional and geographical, are correctly represented and priced. Additional
areas to be tackled to further develop our concept are the following:

• Building a more comprehensive WKT geometry to map object
parser APIs for all geometry types for different base maps, such as
Google and Bing Maps.

• Currently, Bing Maps do not provide an object to represent
multipolygons. We propose development of an API that allows

158 Cloud Computing with e-Science Applications

developers to directly parse WKT multipolygons into a custom-built
multipolygon object that can be directly displayed over Bing Maps
Silverlight Control.

• We also propose further developing this concept using Google Maps
and Java as Bing Maps does not have road maps for as many places
as Google Maps.

• We propose further development of the Regional Accident Database
project with geocoding—to find latitude and longitude from
SRIDs—and capabilities such as location awareness to automati-
cally select, as an example, all the accidents within a 5-mile radius
of a selected location to be fed to a traffic warning system. This case
study itself can be helpful to reduce road accidents.

• We propose added functionality to the system, such as having the
system automatically analyze the road accident data and display a
priority-based report that highlights the accident zones and tells us
which zone needs the most attention.

Glossary

Client: This is a computer or device with an Internet connection and a
browser with the map plug-in (player) installed on it. For instance,
if the map plug-in is developed using Microsoft Silverlight, then the
Silverlight player needs to be installed on the client.

The Cloud: Similar to Internet conventions, the capitalization of Cloud has
been used when referring to the holistic global interconnected infra-
structure as opposed to any specific generic infrastructure provided
by a certain entity.

Database Server: Refers to the database services provided to the differ-
ent software components. The geospatial relational database of the
application resides on this server. It has to be underpinned by a pow-
erful hardware configuration as most of the geospatial data manipu-
lation will be performed here. In terms of software, the system can
have Oracle, SQL server, or SQL Azure as all of these DBMSs sup-
port geospatial databases.

Entity Framework Model: Set of technologies in Microsoft .NET to develop
data-oriented software applications. It allows the creation of a logi-
cal view of the database according to the business logic of the system
and gives an abstracted view of the database to the application,
hence providing added security.

159Assembling Cloud-Based Geographic Information Systems

Map Plug-in: A map plug-in is a specialized web-based map control that is
capable of displaying base maps and supports a display of multiple
layers of map objects, such as polygons, locations, or lines. Since the
idea of this project is to use Google or Microsoft Bing maps as base
maps because these are the most comprehensive maps available for
the whole world, this could be a Google or Bing maps control.

SRID: The Spatial Reference System Identifier (SRID) contains standardized
spatial coordinate system definitions for GIS.

Storage Account: Deploys a cloud-based storage repository that will be used
to store web applications.

Web Server/Hosted Service: This is a web server in the cloud with all neces-
sary APIs installed on it. Depending on the cloud services provider
and service provisioning model, this server may differ from a nor-
mal web server. Ideally, this web server must be horizontally and
vertically scalable in the cloud.

Web Services: Comprise software to enable the communication between
devices on the web with an XML (extensible markup language)
interface. A problem with rich Internet applications is coordinating
application logic between the middle tier and the presentation tier.
The best user experience requires the web services client to be aware
of the application logic that resides on the server. In our case, the
web service allows the client-side map plug-in to interact with the
database in an easy, controlled, and secured way.

Acknowledgments

This work has been partly funded by the Horizon Fund for Universities of
the Scottish Funding Council under the project Creating High-Value Cloud
Services: Services to the Cloud (April 2011–March 2014).

References

 1. Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
H. Katz, Andy Konwinski, Gunho Lee, David A. Patterson, Ariel Rabkin, Ion
Stoica, and Matei Zaharia. A view of cloud computing. Communications of the
ACM, 53(4):50–58, 2010.

 2. Muzafar Ahmad Bhat, Razeef Mohd Shah, and Bashir Ahmad. Cloud computing:
a solution to geographical information systems (GIS). International Journal on
Computer Science and Engineering, 3(2):594–600, February 2011.

160 Cloud Computing with e-Science Applications

 3. J. D. Blower. GIS in the cloud: implementing a web map service on Google App
Engine. In Lindi Liao, editor, Proceedings of the 1st International Conference and
Exhibition on Computing for Geospatial Research & Application, COM.Geo ’10, pages
1–4. Washington: ACM, 2010.

 4. Claudius M. Bürger, Stefan Kollet, Jens Schumacher, and Detlef Bösel.
Introduction of a web service for cloud computing with the integrated hydro-
logic simulation platform ParFlow. Computers & Geosciences, 48:334–336, 2012.

 5. Rajkumar Buyya, Chee Shin Yeo, Srikumar Venugopal, James Broberg, and
Ivona Brandic. Cloud computing and emerging IT platforms: vision, hype, and
reality for delivering computing as the 5th utility. Future Generation Computer
Systems, 25(6):599–616, 2009.

 6. David Chappell. GIS in the Cloud. White paper. San Francisco: Chappel and
Associates, September 2010.

 7. Daoyi Chen, Shahriar Shams, César Carmona-Moreno, and Andrea Leone.
Assessment of open source GIS software for water resources management in
developing countries. Journal of Hydro-environment Research, 4(3):253–264, 2010.

 8. Paul J. Curran. Geographic information systems. Area, 16(2):153–158, 1984.
 9. GIS Cloud. Home page. http://www.giscloud.com/ (accessed December 1, 2012).
 10. Timothy Granc and Peter Mell. The NIST Definition of Cloud Computing. Special

Publication 800-145. Gaithersburg, MD: Information Technology Laboratory,
National Institute of Standards and Technology, September 2011.

 11. Qunying Huang, Zhenlong Li, Jizhe Xia, Yunfeng Jiang, Chen Xu, Kai Liu,
Manzhu Yu, and Chaowei Yang. Accelerating geocomputation with cloud
computing. In Xuan Shi, Volodymyr Kindratenko, and Chaowei Yang, editors,
Modern Accelerator Technologies for Geographic Information Science, pages 41–51.
New York: Springer-Verlag, 2013.

 12. Hassan A. Karimi and Duangduen Roongpiboonsopit. Are clouds ready for geo-
processing? In Ivan Ivanov, Marten van Sinderen, and Boris Shishkov, editors,
Cloud Computing and Services Science, Service Science: Research and Innovations
in the Service Economy, pages 295–312. New York: Springer, 2012.

 13. Zaheer Khan, David Ludlow, Richard McClatchey, and Ashiq Anjum. An archi-
tecture for integrated intelligence in urban management using cloud computing.
Journal of Cloud Computing, 1(1):1–14, 2012.

 14. Ick-Hoi Kim and Ming-Hsiang Tsou. Enabling digital earth simulation models
using cloud computing or grid computing—two approaches supporting
high-performance GIS simulation frameworks. International Journal of Digital
Earth, 6(4):383–403, 2013.

 15. Zhihui Liu. Typical characteristics of cloud GIS and several key issues of cloud
spatial decision support system. In M. Surendra Prasad Babu, editor, Proceedings
of the 4th International Conference on Software Engineering and Service Science,
ICSESS, pages 668–671, Beijing: IEEE, 2013.

 16. L. D. Murphy. Geographic information systems: are they decision support
 systems? In Proceedings of the 28th Hawaii International Conference on System
Sciences, HICSS ’95, vol. 4, pages 131–140. Maui: IEEE, 1995.

 17. Markus Neteler, M. Hamish Bowman, Martin Landa, and Markus Metz. GRASS
GIS: a multi-purpose open source GIS. Environmental Modelling & Software,
31:124–130, 2012.

 18. Wang Tao. Interdisciplinary urban GIS for smart cities: advancements and
opportunities. Geo-spatial Information Science, 16(1):25–34, 2013.

161Assembling Cloud-Based Geographic Information Systems

 19. Yonggang Wang, Sheng Wang, and Daliang Zhou. Retrieving and index-
ing spatial data in the cloud computing environment. In Martin Gilje Jaatun,
Gansen Zhao, and Chunming Rong, editors, Proceedings of the First International
Conference on Cloud Computing, CloudCom 2009, vol. 5931 of Lecture Notes in
Computer Science, pages 322–331. Berlin: Springer-Verlag, 2009.

 20. Yang Xiaoqiang and Deng Yuejin. Exploration of cloud computing technolo-
gies for geographic information services. In Yu Liu and Aijun Chen, editors,
Proceedings of the 18th International Conference on Geoinformatics 2010, pages 1–5.
Beijing: IEEE, 2010.

 21. Chaowei Yang, Michael Goodchild, Qunying Huang, Doug Nebert, Robert
Raskin, Yan Xu, Myra Bambacus, and Daniel Fay. Spatial cloud computing: how
can the geospatial sciences use and help shape cloud computing? International
Journal of Digital Earth, 4(4):305–329, 2011.

 22. Chaowei Yang and Qunying Huang. Spatial Cloud Computing: A Practical Approach.
Boca Raton, FL: CRC Press, 2013.

 23. Chaowei Yang, David W. Wong, Ruixin Yang, Menas Kafatos, and Qi Li.
Performance-improving techniques in web-based GIS. International Journal of
Geographical Information Science, 19(3):319–342, 2005.

 24. Peng Yue, Hongxiu Zhou, Jianya Gong, and Lei Hu. Geoprocessing in cloud
computing platforms—a comparative analysis. International Journal of Digital Earth,
6(4):1–22, 2012.

163

8
HCloud, a Healthcare-Oriented
Cloud System with Improved Efficiency
in Biomedical Data Processing

Ye Li, Chenguang He, Xiaomao Fan, Xucan Huang, and Yunpeng Cai

CONTENTS

Summary .. 164
8.1 Introduction .. 164
8.2 The HCloud Platform .. 166

8.2.1 Challenges to the Cloud Platform for Health Care 166
8.2.1.1 Heterogeneous Physiological Data Access 166
8.2.1.2 Multiscale File Storage and Integration 167
8.2.1.3 Adaptive Algorithms for Different Targets 167
8.2.1.4 Visualization of Health Analysis 167
8.2.1.5 Data Convergence of Biosensors and Cloud 168

8.2.2 Architecture of the HCloud Platform ... 168
8.2.3 Functionalities of Components in HCloud 170
8.2.4 Key Components Implementation in HCloud 173

8.3 Provision of Health Care Information .. 176
8.3.1 Online Analysis of ECG Data .. 176

8.3.1.1 ECG Data Features .. 177
8.3.1.2 Parallel Programming of the ECG Data Process 177
8.3.1.3 Summary Report of ECG Status 179

8.3.2 Other Physiological Diagnostic Data .. 179
8.3.2.1 Calculation of PPG Data... 182
8.3.2.2 Presentation of HBP Signals .. 182

8.4 Performance Testing and Evaluations .. 185
8.4.1 Case Design and Simulation .. 185
8.4.2 Results Evaluation ... 186
8.4.3 Comparison of Computing Overhead .. 188

8.5 Conclusion .. 189
References ... 190

164 Cloud Computing with e-Science Applications

Summary

As an emerging state-of-the-art technology, cloud computing has been
applied to an extensive range of real-life situations. Health care service is
one of such important application fields. We developed a ubiquitous health
care system, named HCloud, after comprehensive evaluation of requirements
of health care applications. It is provided based on a cloud computing plat-
form with characteristics of loose coupling algorithm modules and powerful
 parallel computing capabilities that compute the details of those indicators
for the purpose of preventive health care service. First, raw physiological sig-
nals are collected from the body sensors by wired or wireless connections
and then transmitted through a gateway to the cloud platform, where storage
and analysis of the health status are performed through data-mining tech-
nologies. Last, results and suggestions can be fed back to the users instantly
for implementing personalized services that are delivered via a heteroge-
neous network. The proposed system can support huge physiological data
storage; process heterogeneous data for various health care applications, such
as automated electrocardiogram (ECG) analysis; and provide an early warn-
ing mechanism for chronic diseases. The architecture of the HCloud platform
for physiological data storage, computing, data mining, and feature selections
is described. Also, an online analysis scheme combined with a Map-Reduce
parallel framework is designed to improve the platform’s capabilities.
Performance evaluation based on testing and experiments under various
conditions have demonstrated the effectiveness and usability of this system.

8.1 Introduction

As the pace of life grows ever faster these days, the physical and psychologi-
cal pressures on people are increasing ceaselessly, which raises the potential
risks for many chronic diseases, such as high blood pressure (HBP), diabetes,
and coronary disease. The large proportion of other adults who are suffer-
ing from “subhealthy” status (also called “the third state,” which is between
health and disease) are mainly engaged in brain work under high mental
pressure. A total of 75% of the world’s population are jeopardized by this
negative situation [1]. The majority of them are white-collar workers and
social elites, and they pay increasing attention to their health while hoping
to obtain preventive health examinations periodically. Particularly, the aging
issue worldwide is becoming more serious, and we need measures to improve
the quality of life and launch chronic disease surveillance for elderly people.
However, it is well known that public medical resources are usually insuffi-
cient and imbalanced in geographical distribution. According to a report of

165HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

the World Health Organization (WHO), in recent years the regional aver-
age in Africa of those who can use an improved sanitation facility is about
only 34% of the population; it is 94% in Europe [2]. So, to meet the needs of
subhealthy groups, the aging population, and other people who need such
 services, a health care system that can provide self-monitoring of healthy
status, provide early warning of disease, and even deliver analysis reports
instantly is proposed and the option is becoming increasingly popular.

A health care system is a smart information system that can provide people
with some basic health monitoring and physiological index analysis services.
It is hard to share with isolated professional medical services such as PACs
(picture archiving and communication systems), EHRs (electronic health
records), and HISs (hospital information systems) without Internet-based
technologies. Not long ago, this kind of system usually was implemented
with a traditional MIS (management information system) mode, which is
not capable of implementing sufficient health care services on a uniform
platform, even though it may exploit several isolated Internet technolo-
gies. Currently, cloud computing, as an emerging state-of-the-art informa-
tion technology (IT) platform, can provide economical and on-demand
services for customers. It provides characteristics of high performance and
transparent features to end users that can fulfill the flexibility and scalabil-
ity of service-oriented systems. Such a system can meet the infrastructure
demand for the health care system. With the rapid progress of cloud capac-
ity, increasing applications and services are provided as anything as a ser-
vice (XaaS) mode (e.g., security as a service, testing as a service, database
as a service, and even everything as a service) [3]. Google Docs, Amazon S3
(Simple Storage Service), Ping Identity, and Microsoft Azure are popular
products for online office application service, storage service, security ser-
vice, and private platform service, respectively. Linthicum [4] investigated the
services-oriented architecture (SOA) techniques applied in enterprise appli-
cation integration (EAI) and the refining of the National Institute of Science
and Technology (NIST) models with the XaaS concept. Another alternative
cloud model is the Jericho Cloud Cube [5], which focuses on the collabora-
tion-oriented architecture (COA) to ensure secure business collaboration in
deperimeterized environments. The Distributed Management Task Force
(DMTF) proposes a cloud architecture [6] that consists of a set of interfaces
with specific definitions. Samba develops logical data models (LDMs) [7] for
analyzing cloud architectural requirements to facilitate traceability between
business requirements and cloud architecture implementations.

In our work, we propose a cloud-based system for preventive health care,
named HCloud [8, 9], which implements both the analysis of physiological
signal data and the early warning mechanisms for diseases. Unlike pre-
vious works, we take advantage of cloud storage for the large number of
multimodal physiological signal data with heterogeneous characteristics.
Implementations of cloud storage for physiological data, as well as comput-
ing for data mining and feature selections, are presented here. Performance

166 Cloud Computing with e-Science Applications

evaluations based on the testing demonstrated the effectiveness and usabil-
ity of the system.

This remainder of the chapter is organized as follows: The application
scenarios, architecture, and key components of HCloud are described in
Section 8.2, which also provides the details of the data analysis services in
HCloud. Section 8.3 gives the details of the Map-Reduce paradigm immersed
in the platform, as well as the health care services that HCloud can provide.
Section 8.4 provides information on performance testing and evaluation;
a conclusion is drawn in Section 8.5.

8.2 The HCloud Platform

In recent years, researchers have made some useful attempts to implement an
efficient health care system with the power of cloud computing. For example,
Zhang et al. [10] proposed a cloud security model based on EHRs that belongs
to an MIS. Narayanan et al. [11] discussed access control to the health care
system by considering role task management. Chang et al. [12] proposed an
ecosystem approach to solve patient-centric health care and evidence-based
medicine. However, previous works mainly focused on the storage, access,
and management of private health information, which are quite primitive
applications regardless of the computational power of the cloud platforms.
It is expected that a cloud-based system not only stores the information but
also performs basic analysis of health status and provides useful advice or
warnings to patients, which is the purpose of our work.

8.2.1 Challenges to the Cloud Platform for Health Care

Cloud computing inherited the features of high-performance parallel com-
puting, distributed computing, and grid computing and further develop ed
these techniques to achieve location transparency to the end user and
improve user experiences. In addition, a general cloud platform must face
some challenges in health care service areas, as discussed next.

8.2.1.1 Heterogeneous Physiological Data Access

One challenging task for the health care cloud system is to handle the multi-
modal and nonstationary characteristics of special physiological signals,
such as those for HBP, electrocardiography (ECG), and photoplethysmogra-
phy (PPG). It is quite an inefficient job for a cloud system to store the numeric
small-size physiological signal data on the ordinary distributed file system.
Most of the distributed file systems are more suitable for large-size file stor-
age than for small-size storage because there are bottlenecks for small-size

167HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

files to access metadata on the local file system, which may result in syn-
chronous problems (e.g., on the GlusterFS [13]). So, physiological signals with
various formats should be well managed and processed to provide efficient
instant services to individuals, and a consistent storage system is needed to
adapt to this situation.

8.2.1.2 Multiscale File Storage and Integration

There are mainly two categories of application data in the system. One is
trivial and has a small amount of data for temporal signals, such as the afore-
mentioned physiological signal data; the other has huge-scale graphic data
generated by drawing server clusters. Those large numbers of semistruc-
tured or unstructured health records, as well as massive trivial files, are all
adapted to NoSQL [14] (not only in SQL) databases instead of traditional rela-
tional ones, which has natural advantages for easily expanding horizontally.
The key idea of NoSQL is that it employs a loosely coupled data model and
has neither a fixed table schema nor joint operations. Hence, it is appropriate
for the high-performance requirement when accessing large files, especially
for those without fixed structure.

8.2.1.3 Adaptive Algorithms for Different Targets

In consideration of the various characteristics of body health and aspects
of a monitoring system, we need different algorithms for different signal
processing and data mining. Note that the analysis routines should be easily
configurable and adaptive to concurrent requests from users. Therefore, a
flexible algorithm scheme should be developed for the sake of on-demand
services. To cope with the irregularity of the data structure, a self-defined
message head would be utilized to identify the call of various routines.
Moreover, many real-time tasks should be addressed, and high concurrent
mechanisms will be the major concern, although a general cloud may not
need to face too many real-time transactions.

8.2.1.4 Visualization of Health Analysis

Another challenging task is the visualization of analysis results, which are
usually computationally intensive with a large amount of graphic data for
drawing. Careful considerations should be taken into account for efficient
storage of and access to the huge graphic data generated by the analysis
results. The system should be capable of handling the different types of data
visualization adaptively. These fundamental characteristics are very differ-
ent from the features of grid computing, which aimed at special applica-
tions and were difficult to operate for unprofessional users (e.g., in scientific
 exploration projects).

168 Cloud Computing with e-Science Applications

8.2.1.5 Data Convergence of Biosensors and Cloud

The method of service delivery is another important factor that affects the
usability of the system. The user of the health cloud system should be pro-
vided with some easy-to-use data collectors, which is unlike general cloud
users, who are only concerned about their data in the cloud. Necessary facili-
ties should also be equipped with a friendly interface to transmit data to the
cloud. For instance, a mobile phone is an appropriate front-end device [15]
and always acts as a gateway into the system. However, seamless data fusion
from signals collected for data processing in the cloud should be a concern.

8.2.2 Architecture of the HCloud Platform

The HCloud will face thousands of potential customers, including physi-
cians and home users who care about their own health status. After analysis
of the requirements of the application, an entire information flow of the
HCloud analysis procedures is depicted as Figure 8.1.

The workflow of the proposed platform comprises three main steps. First,
raw physiological signals are collected from the body sensors by wired or
wireless means. Then, they are transmitted to the cloud platform to store and

Algorithms
Cluster

Cloud
Storage

Message Queue
Cluster

Session
Cache

3G Mobile
Client

Healthcare
Cloud Platform

Data Mining
Cluster

Medical Image
Cluster

Browser

Data mining

Connecting
Data transmission

WEB, WAP, API

3G Cellular
Network

Internet

Healthcare Services

FIGURE 8.1
Overview of HCloud system.

169HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

analyze the health status by means of data-mining technology. Finally, results
can be fed back instantly and suggestions made to the users. Meanwhile,
physicians in the community or a hospital can obtain their patient’s health
information from the Internet and provide some suggestions to the patients
on daily dietary, exercise, and medication needs. If a patient’s physiologi-
cal index is abnormal after testing, the health care cloud system would give
out warning information to the patient as well as send the message to their
 family members and physicians.

Also, there are two main activities of users: uploading the raw data and
browsing the diagnosis results. Uploading activities are divided into two
steps: The first is to transmit physiological data, which are collected by
 sensors, to the gateway through short-distance transmission by wired USB or
wireless Bluetooth means. The second is to deliver the data from the gateway
to the cloud servers through Internet protocol (IP) networks. A set-top box
(for USB) or mobile phone (for Bluetooth) plays the important role of the
gateway to relay data. In HCloud, apart from the mobile phone, a TV set is
another friendly interface for the aging population. So, with the assistance of
a set-top box, services would be delivered through a TV cable ubiquitously.
Figures 8.2a and 8.2b show a mobile phone and a top-set box as gateways for
data transmission, respectively, and Figure 8.2c is a scenario for home use.

(a)

(b) (c)

FIGURE 8.2
Mobile, set-top box, and home use scenario.

170 Cloud Computing with e-Science Applications

8.2.3 Functionalities of Components in HCloud

As mentioned, HCloud is planned in the near future to serve hundreds of
city-dwelling families via Internet health monitoring and will support thou-
sands of potential customers, including physicians and whoever cares about
their health. So, a higher number of concurrent transactions and shorter
response time are requirements of our system, as is large-scale graphic
drawing for visualized results, which need to be stored and accessed effi-
ciently to provide instant services to individuals.

Therefore, the six-layer architecture of the private HCloud platform is
proposed with the philosophy of inheriting the software as a service (SaaS)
of the NIST model and introducing the in-source/outsource concept into
development. Each layer’s content and function are interpreted as service
inter action, service presentation, session cache, cloud engine, medical data
mining, and cloud storage, respectively, as shown in Figure 8.3.

• Service interaction is a top layer; users can interoperate with the ter-
minals, such as 3G mobile phone, set-top box, and browser on a com-
puter, to collect and upload original physiological data as well as
download analysis results from the cloud servers.

• Service presentation can be regarded as an interface with various
kinds of services, such as the wireless application protocol (WAP),
web, or image provider. A load balance mechanism is introduced
to the system on this layer so that the web/WAP servers can work
cooperatively as a cluster to maintain optimal performance. The
server cluster shares users’ requests to the website together to meet
the high concurrence requirement of health care services and to
 better ensure quality of service (QoS). In addition, some runtime
information is reserved at this level.

• The session cache stores the user’s sessions on one hand, which main-
tains the authentication and certification status the first time when
the user accesses the services (i.e., information of service inter action
through the presentation layer). To share the sessions among all
web/WAP servers, this platform uses a separate session server to
save the session data, which can solve the problem of session status
sharing when there is load balancing. On the other hand, a memory
cache is adopted to expedite access to the results data. Cache serv-
ers are specialized servers used to save users’ pages, documents,
profiles, and so on temporarily. This kind of server can reduce the
capacity of network exchange because displaying graphs of physi-
ological signals would take a long time. This platform will draw
the images when users access the service the first time and save
the graphs in the graph servers while registering the session keys
in the cache server. If the users want to browse a previously gener-
ated image, the image will be loaded from the graph servers directly

171HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

without redrawing. In fact, this session’s architecture is a big hashed
key/value table.

• A cloud engine is a dispatcher to make components cooperate with
each other to make the cloud run using a message-driven mode via
a message queue (MQ) cluster. The functionalities of the queue man-
agement are provided by this layer, which is regarded as a critical
core for scheduling tasks. A message is the unit of data transmitted
between two modules. The MQ is a container to save the message
during the transmission process. By introducing a message queue
into the platform, the coupling between different modules can be
significantly reduced.

Services Interaction Layer

Services Presentation Layer

Cloud Engine

Mobile Devices

Wap, Web, Ftp Provided

Hit

No

No
Pl

ug
-in

 M
ul

ti-
A

lg
or

ith
m

s
fo

r D
at

a M
in

in
g

U
se

r S
es

sio
n

&
 M

em
or

y C
ac

he

M
ed

ic
al

 D
at

a
M

in
in

g L
ay

er

Se
ss

io
n

Ca
ch

e L
ay

er

Yes

Yes

Upload

Until User Exits

Until Message Queue Is Empty

Distributed Database Cluster

Cloud Storage Layer

FIGURE 8.3
Six layers of a health care cloud platform. (Redrawn from He, C., Fan, X., and Li, Y., IEEE
Transactions on Biomedical Engineering 60, no. 1 (January 2013): 230–234.)

172 Cloud Computing with e-Science Applications

• Medical data mining is a cluster of algorithms, including data prepro-
cessing, data analysis, mining algorithms, and visualization pro-
cessing. This layer can handle the data transmitted from the front
end and generate the results back to the database. Other algorithms
can also be easily plugged in if needed. These data-mining clusters
are made up of servers executing data-mining algorithms. These
algorithms can process the raw physiological signal data transmit-
ted from the front end and generate the resulting data to write back
to the cloud storage, launching a message into MQ middleware
to indicate the subscriber to deal with. The tasks executed by the
mining servers include data preprocessing, analysis, mining model
tasks, and medical image drawing.

• Cloud storage provides data resources for the entire health cloud plat-
form, including user information, vital signs, health records, and
graphic data for processing. Physiological data collected from body
area networks and massive graphic data for distributed processing
of such data-intensive tasks are the primary contents. The cloud stor-
age organizes various types of storage devices together by network
and provides data storage and business access for outside applica-
tions, with the aid of cluster applications and grid or distributed file
system technologies. A service sequence diagram of the HCloud can
be represented as in Figure 8.4.

Image Store
Database

Image Generate
Server

Message Queue
Server

�e Analysis
Result

sd MQ Act

Analysis
Server

Get the raw data()

Analyze()

Process the analysis
done() Generate the

image

Image done()

Analysis done message()

Database

Store the analysis result()

Save the result image()

Save the done status

FIGURE 8.4
Service sequence map of HCloud.

173HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

8.2.4 Key Components Implementation in HCloud

There are three key components addressed here:

• The MQ is a kind of component that provides an asynchronous
 communication protocol to achieve independence between the mes-
sage sender and the receiver. The queue is utilized for storing the
event message generated by a sender (publisher), and all of the lis-
teners (subscribers) who are interested in this kind of event can fetch
this message to process a predefined routine. All communication
parties should follow the same protocol (e.g., advanced MQ protocol)
and utilize an available MQ API [16] to operate the queue. It is not nec-
essary that two parties must know each other exists. After a message
is inserted into a queue, it will be preserved and not deleted from
the MQ until the corresponding subscriber reconnects to the system.
Messages can be exchanged on the process, application, or even inter-
cloud level. The queue resides in the cloud just as an engine to drive
the system. In addition, different message heads identify the analysis
algorithm and indicate the subsequent behaviors of the cloud.

• The plug-in algorithm framework is developed with respect to the extend-
ability of various services, which is based on the publish/subscribe
mechanism to provide customized functions conveniently, not only
for health care but also for other services. The whole system can
reduce the module coupling by adopting this algorithm. For instance,
various data-mining algorithms, such as analysis of peripheral vas-
cular function, instantaneous heart rate, chaotic characteristics of
the power spectral density, and so on, should be adopted to perform
automatically according to different analyzed signals. Every differ-
ent function can subscribe to the different themes of the message,
which is classified by a message head. In other words, using such
Publish/Subscribe mechanisms, different mining functions can be
called on by listening to the corresponding types of message the func-
tion is interested in. Accordingly, we designed an abstract core class
named the CoreStubClass, including a private attribute analysisKind
and an abstract method handleRequest(int). This class communicates
with Message via MQ, and the other kinds of concrete implementation
classes extended the CoreInterface (e.g., SignalFilterCore, ECGAnalysisCore
and other data-mining classes). Figure 8.5 shows the class framework of
the plug-in algorithm.

• Distributed storage is the basis of cloud storage. The structural model
of cloud storage is composed of four layers: the storage layer, the
platform management layer, the application interface, and the access
layer, as shown in Figure 8.6.

The core layer is the platform management layer, which ensures the reli-
able storage and efficient access of the large amounts of semistructured or

174 Cloud Computing with e-Science Applications

unstructured health documents, as well as miscellaneous signal files, with
the power of NoSQL databases and distributed file systems. A NoSQL
database is easy to integrate into distributed file systems. For instance, the
Hadoop Distributed File System (HDFS) and Google’s Cluster File System
(GlusterFS) all have friendly interfaces to NoSQL databases such as Cassandra,
MongoDB, and HBase. Moreover, sharding is another major characteristic of
this distributed database to gain increased availability. Redundancy among
these pieces of shards and different views of the same data provide consis-
tency to a large extent. This mechanism can guarantee the integration of
global data and transparency to users. For large and distributed storage,
this architecture provides more convenience for data retrieval with better
 scalability as well as stability and persistency.

Network Access, User Authetication, Rights Management } Access
Layer

API, Application, Web Service . . . } Application
Interface

Distributed
File System,

Grid Computing

Content Distribu-
tion, Deletion of
Replcated Data,

Data Compression

Data Encryption,
Data Backup,
Data Disaster

Tolerance
} Platform

Management
Layer

Virtualization, Centralized Management, Monitoring, ...

} Storage
Layer

Storage Devices

FIGURE 8.6
Four-layer concept model of cloud storage. (Redrawn from Fan, X., He, C., Cai, Y. and Li, Y., in
IEEE CloudCom 2012, Taipei, December 3–6, 2012, 705–710.)

......

+handleRequest (in msg: Message)+handleRequest (in msg: Message)

OtherCorePPGAnalysisCore

+handleRequest (in msg: Message)

ECGAnalysisCore

+handleRequest (in msg: Message)

SignalFilterCore

+handleRequest (in msg: Message) : void

<<interface>>
CoreInterface

+getMsg () : Message

Message
msgID : int

FIGURE 8.5
Plug-in algorithm framework. (Redrawn from He, C., Fan, X., and Li, Y., IEEE Transactions on
Biomedical Engineering 60, no. 1 (January 2013): 230–234.)

175HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

A parallel computing framework based on the Map-Reduce framework should
be combined with the data stored in the NoSQL database (e.g., MongoDB) to
deliver complex analytics, and data processing for such physiological data
processing is always bound to the CPU (central processing unit). The map
function can be designed to handle part of the data, while the reduce func-
tion is to merge the output produced by the map function and then output
all of the filtered results. According to our six-layer HCloud, MQ can be uti-
lized as a scheduler to cooperate with the Map-Reduce scheme. Generally,
data analysis flow on this scheme can be described as in Table 8.1. Please
note that this algorithm is a recursive procedure. The constant SIZE is a
threshold according to the different scales of physiological data processing,
which indicates the Map-Reduce procedure is to merge with the size of data
scale. It will not be finished until all files are generated by the threshold of
SIZE. Hadoop and the Map-Reduce programming paradigm already have
a substantial base in the bioinformatics community [17] (e.g., monitoring of
long-term ECG for individuals). The next section introduces the details of the
ECG data process with this paradigm.

TABLE 8.1

Algorithm of MQonMapReduce
Input: iSize,oSize
Output: Boolean
 BEGIN

 initial a thread
 while (message from MQ is Null)
 if (message is DONE) return true;
 // DONE is a particular message from MQ
 else
 loop;
 load Mapper(message)

 // parallel Map function for data processing and
 analysis according to different message

 iSize←sizeof (files of input directory)
 //compute the total size of files under input directory

 if iSize>SIZE
 MQonMapReduce(iSize, oSize);
 //immerge trivial input files to a larger one
 else {

 oSize←sizeof(output directory)
 //compute the total size of files under output directory
 if oSize>SIZE
 MQonMapReduce(iSize, oSize);
 //immerge trivial output files to a larger one
 else

 send a message DONE to MQ;
 // process of all data are accomplished; }
 END

176 Cloud Computing with e-Science Applications

8.3 Provision of Health Care Information

The physiological indices of a person may show abnormality when his or
her health status is trapped in a bad state. Hence, it is necessary for the
user to obtain an early warning of this health status. HCloud can provide
 further semiautomatic or automatic analysis of physiological data by means
of statistics and pattern recognition as well as data-mining methods. This
section introduces the online analyses of ECG with the Map-Reduce scheme
and presentation of the results via the cloud platform, as well as presenta-
tion of the other physiological signals (e.g., of the PPG and HBP), which can
provide convenient, customized health care service. An actual mobile health
system is described in Figure 8.7.

8.3.1 Online Analysis of ECG Data

The ECG is a transthoracic (across the thorax or chest) interpretation of the
electrical activity of the heart over a period of time, as detected by electrodes
attached to the outer surface of the skin and recorded by a device external
to the body [18, 19]. It is utilized to measure the rate and regularity of heart-
beats as well as the size and position of the chambers, which can diagnose
atrial premature beats (APBs), arrhythmia, myocardial ischemia, and so on.
Apart from simple records and general instructions, the system also pro-
vides detailed ECG physiological indexes for medical experts who need to
obtain complete user information for diagnosis. The most common forms
of arrhythmia, such as bigeminy, premature beats, bradycardia, and the
 frequency of occurrence are autoanalyzed by related algorithms.

SMS Service

Healthcare Cloud
Computing Platform

Set-Top Box
Portable Multi-
para Instrument

Mini Holter

Urinalysis
Analyser

BG Meter

Handset 3in1
Collector

BP Gauge

Home Gateway

SmartPhone, IPAD

Laptop

HCloud

3G

Internet

Netw
or

k

Bro
ad

ca
st

& T
V Inquire by Website

Inquire by
Smartphone/IPAD

Inquire by TV

FIGURE 8.7
Architecture for an actual mobile health system.

177HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

8.3.1.1 ECG Data Features

ECG data is collected from the human body with the frequency range
between 0.05 and 100 Hz, and its amplitude is only several millivolts. Hence,
disturbances from the environment always must be a concern, to avoid
baseline wander of signals, and then QRS wave detection will be performed
after signal denoising. The ECG data process can be divided into four phases:
 filtering baseline wander, denoising, detecting the QRS wave, and other
postprocess phases, as shown in Figure 8.8.

For the long-term (24-hour) ECG data, data can be up to 12 MB at a sampling
frequency of 150 Hz. An integer coefficient digital filter transfer formula
 specific to the ECG signals is as follows.

 H z = z() − ×
−
−

−
−

−
87

90

3

2
1

30
1
1

z
z

 (8.1)

Then, the filtering baseline wander iteration function will be derived from
Equation (8.1):

y n x n x n y n

y n y n y n

1 1

2 1 1

90 3

90

() = () − −() + −()

() = () − −() + yy n

y n x n
y n

2

2

3

87
900

−()

() = −() −
()

 (8.2)

where x(n) is the original input signal, and y(n) is the output signal (i.e., filtering
baseline wander data). After testing the execution speed of the serial pro-
gram with the raw data, the results showed that filtering the baseline wander
phase took about 70% of the entire ECG processing time in our existing
HCloud platform [20], which was the bottleneck of our ECG analysis algo-
rithm, as Table 8.2 shows. If a single machine or serial programming is merely
adopted, the user experience would be worse. Therefore, it is considered to
be the first part of computing in parallel on the Map-Reduce framework.

8.3.1.2 Parallel Programming of the ECG Data Process

According to the analysis presented, the computing overload of the ECG
data process is mainly at the phase of filtering the baseline wander. So,
filtering the baseline wander should be parallelized first. Raw data from the

OthersDetecting the
QRS WaveDenoisingFiltering Baseline

Wander

FIGURE 8.8
Four phases of ECG data processing.

178 Cloud Computing with e-Science Applications

client should be uploaded to MongoDB server by the remote user. To obtain
these input data by the demon running on the Hadoop platform, they should
first be downloaded from MongoDB locally and then uploaded to HDFS
for further analysis and processing. In this scenario, data are pulled from
MongoDB and processed within Hadoop via one or more Map-Reduce jobs.
Output from these Map-Reduce jobs can then be written back to MongoDB
for later querying and ad hoc analysis. Communication between client and
platform is implemented by RabbitMQ, which is a popular MQ middleware.
Assuming that the data contain 24-hour ECG signals, you might consider
designing three map functions, each for 8 hours of the data, and then com-
puting in parallel. Replications of processed data on HDFS are output files.
The whole procedure is shown in Figure 8.9.

Each split represents a segment of data in the filtering baseline wander
 parallel programming. Each phase has key value pairs as input and output,
in which the key stands for the data fragmentation flag, while the value stands
for the ECG raw data or processed data (i.e., in the form of <split-flag, ECG
raw data>, and <flag, 24-hours processed signal>, respectively). Since the default
implementation of the interface InputFormat in Hadoop is TextInputFormat,

HDFS
replication

part 1reduce

reduce
merge

copy
Map

Map

Map

Split()

Split 1

Split 28-hour ECG

8-hour ECG

8-hour ECG
sort

part 0 HDFS
replication

Output HDFS

Input HDFS24-hour
Raw Data

FIGURE 8.9
The Map-Reduce for filtering baseline wander.

TABLE 8.2

Running Time of Each Part in Single Machine (Bold Indicates Longest)

Raw Data/
Measuring Time
(hours)

Runtime (seconds)

Filtering
Baseline
Wander Denoising

Detecting the
QRS Wave Others Total Time

00007732/21.5 194.281000 7.829000 59.406000 179.515000 441.046000
00016412/13 117.110000 4.734000 11.734000 5.079000 138.657000
0039720/3 26.672000 1.078000 1.469000 2.656000 31.875000
01297217/12 104.000000 4.344000 6.500000 32.156000 147.015000
01334816/14.5 124.797000 5.234000 12.594000 27.094000 169.719000

179HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

which is not suitable for our application (ECG data are in byte format), we
override InputFormat and define a format whose keys are represented by
TextWritable and the values are the file contents, represented by BytesWritable.

Figure 8.10 shows a case of process results or original data and output data
on HDFS.

8.3.1.3 Summary Report of ECG Status

After analysis of ECG data, the graphic-processing clusters can generate the
graphic data, and the visualization of results would be provided to the end
user. Many can be stored in the cluster for later requests, and all temporary
pictures can be drawn at the client so that the computational load on the server
decreases. All in all, the HCloud system can store large heterogeneous ECG
data and compute the corresponding physiological indices within 5 seconds.
If one of the physiological indices becomes abnormal, it generates disease
warnings on time and sends messages to physicians. At the same time, it mines
the deep regularity or characters from the long-term historical ECG data, which
can help physicians better monitor an individual’s health state. The system also
provides detailed ECG physiological indices for medical experts, including
normal-to-normal (NN) intervals, standard deviation of NN intervals (SDNN),
standard deviation of the averages of NN intervals in all 5-minute segments of
the entire recording (SDANN), heart rate variability (HRV) triangular indices,
the triangular interpolation of the NN interval histogram (TINN), and so on.

Figure 8.11 is a simple summary text report of an ECG in the health care
cloud system and shows the measurement duration, in how many seconds
the abnormal ECG also can be obtained, as Figure 8.12a shows. On the other
hand, HCloud generated the Poincaré image of one’s heart movement while
measuring ECG signals each time to represent the heart’s chaos characteris-
tics, as shown in Figure 8.12b.

Through spectrum analysis, we can draw a conclusion that everyone’s
heart movement has a chaos status. Chaos features represent the health
 status of the heart. They can illustrate the capability of the heart to adapt to
 different situations or body conditions at different times. The image shape is
always heart-like if one is in good health. The more irregular the heart move-
ment is, the more dangerous life is.

8.3.2 Other Physiological Diagnostic Data

Other important physiological information should be manually set into
the system to build a traceable case history for health status (e.g., medical
inspection data as an output of a blood glucose meter or urine analyzer from
authorities, e.g., a qualified administration, a professional institution, a hos-
pital, etc.). A follow-up survey of physiological data with diagnostic value
is also presented. For instance, the general body information and health
knowledge database are established and further instructions are given to
customers. These services are optional to the end users.

180 Cloud Computing with e-Science Applications

FI
G

U
R

E
8.

10
O

ri
gi

na
l i

np
ut

 d
at

a
an

d
 o

ut
pu

t d
at

a
af

te
r

pr
oc

es
si

ng
.

181HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

(a)

1.25–1.25–2.5
–2

–1

0

1

2

0 2.5

(m
v)

(mv)

(b)

FIGURE 8.12
(a) Abnormal ECG. (b) Chaos analysis.

FIGURE 8.11
ECG summary report. (Redrawn from Fan, X., He, C., Cai, Y. and Li, Y., in IEEE CloudCom 2012,
Taipei, December 3–6, 2012, 705–710.)

182 Cloud Computing with e-Science Applications

8.3.2.1 Calculation of PPG Data

A PPG is an optically obtained plethysmogram, which represents a volu-
metric measurement of an organ. It is often obtained using a pulse oximeter
that illuminates the skin and measures changes in light absorption [21–23]. It is
used to monitor conditions related to breathing, hypovolemia, and other cir-
culatory situations. The HCloud system provides the heart function indices,
which evaluate the heart’s blood pumping capability, and peripheral vascu-
lar function, which assesses for HBP and arteriosclerosis. Two assessments of
PPG are delivered to users: heart function and peripheral vascular function.
Meanwhile, the system provides a detailed PPG index on heart function for
the physician, including average pulse rate (PR), cardiac output (CO), stroke
 volume (SV), blood oxygen saturation, and cardiac index (CI). To make users
and the physician understand the heart function parameters intuitively, this
system provides each index specification as well as the index of heart function
histogram, as shown in Figure 8.13a. It is known that the index of peripheral
vascular function can reflect the health status of the peripheral vascular system,
which can help a physician assess serious degrees of HBP and arteriosclerosis.
On the other hand, this health care cloud platform provides users the wave-
form characteristic (K), blood viscosity (V), peripheral resistance (TPR), sclero-
sis index (SI), degree of vascular conformity (AC), and pulse wave transit time
(PWTT). At the same time, it plots the peripheral vascular histogram and gives
specifications, as shown in Figure 8.13b. From those indices, a PPG diagnostic
report can be generated by the system for the end user.

8.3.2.2 Presentation of HBP Signals

High blood pressure or hypertension is a chronic medical condition in
which the blood pressure in the arteries is elevated, which causes the heart
to work harder than normal to circulate blood through the blood vessels.
Blood pressure involves two measurements: systolic and diastolic. These
measurements depend on whether the heart muscle is contracting (systole)
or relaxing in the interval between beats (diastole). Normal blood pressure
at rest is within the range of 100–140 mm Hg systolic (top reading) and
60–90 mm Hg diastolic (bottom reading) [24]. HBP is said to be present if the
blood pressure reading is persistently at or above 140/90 mm Hg, which can
cause problems with the metabolism of fat and sugar, as well as changes of
the heart, brain, kidneys, and retina. An HBP report is provided in HCloud
to provide detailed data on the systolic and diastolic blood pressure and
inform users whether they suffer from HBP. Over the long term, it can
reflect that the degree of control of HBP may be associated with the health
status of the user and prompt the user to change his or her lifestyle. Due to
the absence of obvious clinical symptoms in some patients with HBP, it is
known as the “invisible killer” [25]. Fortunately, HCloud can draw a curve of
HBP for a long-term trend of threatening status.

183HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

–100
–90
–80
–70
–60
–50
–40
–30
–20
–10

10
12%

–1.02%

–20.8%
–5.6%

CO
SO

SV Cl SPl
PR

0(%)

20
30
40
50
60
70
80
90

100

(a)

–100
–90
–80
–70
–60
–50
–40
–30
–20
–10

10

TPR
–9.3%

5.13%

V
SI

ACK
0(%)

20
30
40
50
60
70
80
90

100

(b)

FIGURE 8.13
PPG data indicies report: (a) heart function index; (b) peripheral vascular index. (Redrawn
from Fan, X., He, C., Cai, Y. and Li, Y., in IEEE CloudCom 2012, Taipei, December 3–6, 2012,
705–710.)

184 Cloud Computing with e-Science Applications

It is extremely important for people to be aware of HBP so there can be
early prevention and timely treatment. In our system, the HBP report is
provided to provide detailed data on systolic and diastolic blood pressure
and inform users whether their blood pressure is high or not. Figure 8.14
shows the distribution of the range of HBP in one period, which helps users
 monitor their HBP status. At the same time, it can help a doctor know the
general health state of a patient. A trend chart of HBP (Figure 8.15) shows
which phase blood pressure pills will affect.

>55
33%

>30
33%

> 55
30–55
< 30

> 140
90–140
< 90

> 90
60–90
< 60

30–55
33%

PP(mmHg)

DBP(mmHg)SBP(mmHg)

Pie Chart of Pulse Pressure

60–90
33%

>90
0%

>60
67%

>140
0%

90–140
33%

<90
67%

SBP

Pie Chart of Diastolic Pressure

Pie Chart of Pulse Pressure

Instructions

DBP

??

FIGURE 8.14
Pie chart for HBP index.

30

60

90

120

140

160

180

272421181512963
30

60

90

120

m
m

H
g

150

180

210

FIG 8.15
Trend chart for HBP.

185HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

8.4 Performance Testing and Evaluations

8.4.1 Case Design and Simulation

To evaluate the performance of HCloud, we designed two cases to simulate
the most-used scenarios: uploading information and browsing results. The
testing environment included 10 personal computers (PCs) as clients with
CentOS 6.0 OS (operating system), Core 2.8-GHz CPU, and 2 G memory for
each PC. Five virtual machines were also established to enhance the utiliza-
tion of the physical host in five physical machines. Each virtual machine
had the same configuration (Core 2.8-GHz CPU, 1 G RAM). All of the
testing clients , using the Tsung testing tool [26], would simulate high concur-
rent access in the real world to perform stress and load testing. In actual
application , people can press buttons on a remote to process the uploading
procedure via an upload interface on a TV as shown in Figure 8.16.

The first test verified the capability of the platform for uploading data.
One hundred concurrent users were generated by simulation and uploaded
data to the servers continuously for 10 minutes. Among these 100 users,
60 uploaded ECG data, 30 uploaded PPG data, and the last 10 uploaded blood
pressure values. Each of the ECG and PPG record’s length was 2 minutes . As
the test results show in Figure 8.17 and Table 8.3, we can summarize that the
test produced a total of 158,780 requests and nearly 30,000 concurrent connec-
tions were maintained at the end of the test; each single server traffic spike
was 5 Mb/s. Only one response failed during the test. The next test verified
the concurrent capability of the web servers. Three hundred simulated users
were generated to browse the web page at the same time, with each visit

FIGURE 8.16
Presentation of a user’s upload interface on a TV. (Redrawn from Fan, X., He, C., Cai, Y. and
Li, Y., in IEEE CloudCom 2012, Taipei, December 3–6, 2012, 705–710.)

186 Cloud Computing with e-Science Applications

lasting 30 minutes. Among these 300 users, 100 browsed the left navigate list,
100 visited each icon, and 100 browsed the main content links. In the testing
results shown in Figure 8.18 and Table 8.4, we summarize that the testing
generated 550,636 requests, the number of concurrent connections exceeded
20,000, and each single server traffic spike was approximately 30 Mb/s in
this situation.

8.4.2 Results Evaluation

The connection status and throughput in the simulation provide a view of
the system performance. Further details and evaluation are depicted in this
segment as follows: Table 8.5 shows the details of requests that happened
for uploading and browsing. A new HTTP request generated within a given
interval of 0.02 seconds represents that a new user connection happened,
and a session will be created according to the probability presented in the
testing configuration file. The mean response time and count (for page,
request, etc.) for the entire test are computed, generating 163,011 and 573,683
concurrent requests for the two activities, respectively, as shown in Mean

240 k

10.2.2.208 R210 - Traffic - eth 0 - day (5 min avg)

220 k
200 k
180 k
160 k
140 k

bi
ts

/s
ec

120 k
100 k

80 k
60 k
40 k
20 k

0
10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00

Outgoing
Incoming
Total Traffic

Max:
Max:

In:

225.01 kb/s
136.27 kb/s
542.25 MB

36.55 kb/s
52.77 kb/s

375.59 MB

55.54 kb/s
52.72 kb/s

917.84 MB

Avg:
Avg:
Out:

Last:
Last:
Combined:

04:00 06:00 08:00

FIGURE 8.17
Inbound and outbound traffic of the network for uploading. (Redrawn from Fan, X., He, C.,
Cai, Y. and Li, Y., in IEEE CloudCom 2012, Taipei, December 3–6, 2012, 705–710.)

TABLE 8.3

Uploading Activity Statistic for HTTP Request

HTTP Status Code
200

(Response Is OK)
302

(Redirect Is OK)

500
(Internal

Server Error)

Highest rate (bytes/second) 581.4 1.8 0.1
Total number 158,780 162 1
Finish_users_count (the total number of concurrent connections): 28,170

187HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

2.4 M

10.2.2.208 R210 - Traffic - eth 0 - day (5 min avg)

2.2 M
2.0 M
1.8 M
1.6 M
1.4 M

bi
ts

/s
ec

1.2 M
1.0 M
0.8 M
0.6 M
0.4 M
0.2 M

10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00 02:00
Outgoing
Incoming

Total Traffic

Max:
Max:

In:

2.30 mb/s
1.13 Mb/s
7.96 GB

1.41 Mb/s
713.52 kb/s

15.01 GB

1.11 Mb/s
586.81 kb/s

22.97 GB

Avg:
Avg:
Out:

Last:
Last:
Combined:

04:00 06:00 08:00

FIGURE 8.18
Inbound and outbound traffic of the network for browsing. (Redrawn from Fan, X., He, C.,
Cai, Y. and Li, Y., in IEEE CloudCom 2012, Taipei, December 3–6, 2012, 705–710.)

TABLE 8.4

Browsing Activity Statistic for HTTP Request

HTTP Status Code 200
(Response Is OK)

302
(Found)

Highest rate (bytes/second) 2,568 99.9
Total number 550,636 22,810
Finish_users_count: 23,233

TABLE 8.5

Overall Performance Statistics for Activities

Name connect page request session

Uploading Activity
Highest rate (bytes/second) 118.9 243.6 604.7 103.6
Mean time (seconds) 0.12 0.40 0.16 1.22
Count 32,225 64,771 163,011 28,170

Browsing Activity
Highest rate (bytes/second) 121.9 896.4 2611.1 98.4
Mean time (seconds) 0.3 0.25 0.08 14.98
Count 23,633 206,381 573,683 23,233

Source: Redrawn from He, C., Fan, X., and Li, Y., IEEE Transactions on
Biomedical Engineering 60, no. 1 (January 2013): 230–234.

Note: Connect, duration of the connection establishment; page, response
time for each set of requests; request, response time for each
request; session, duration of a user’s session.

188 Cloud Computing with e-Science Applications

Time and Count rows. A response time less than 1 second is tolerable for the
user’s experience. The actual number of concurrent users was nearly 30,000
during the experiment, as the Finish_users_count column of Table 8.3 and
Table 8.4 shows. So, it is acceptable to actual applications.

By comparison, Table 8.7 shows the reading performance of Amazon’s
S3 with different page sizes (writing data to S3 takes about three times as
long as reading data) [27]. Ignoring the slight differences of hardware, the
usability of our system is satisfied in terms of Bandwidth, which is at least
double that in S3 (compare the last row of Table 8.6 with that of Table 8.7).
Response Time is also better, obviously. Overall, it demonstrates that this
document-oriented cloud storage architecture is more appropriate for the
health care services environment with a large number of trivial files rather
than non-document-oriented ones such as S3. Furthermore, due to platform
capabilities of linear extendibility, we simply increase the number of servers
if there is the potential for more users’ requests in the future.

8.4.3 Comparison of Computing Overhead

From Section 8.4.2, we can find that the response time is acceptable to our
applications from the point of view of accessing HTTP. Actually, the main
tasks of HCloud are physiological data processing and computing, as dis-
cussed previously, which can affect the performance of the whole system.
We also take the ECG raw data process as an example. Using a typical parallel

TABLE 8.6

Network Traffic and Performance Statistics for Activities

Receive/Sent Activity
Bandwidth

(KB/seconds) Total (MB)

size_rcv (size of responses) Uploading 835.84 224.58
Browsing 26,277.12 6,113.28

size_sent (size of requests) Uploading 2,999.04 803.37
Browsing 522.24 108.54

Source: Redrawn from He, C., Fan, X., and Li, Y., IEEE Transactions on
Biomedical Engineering 60, no. 1 (January 2013): 230–234.

TABLE 8.7

Statistics for Reading Performance of Amazon S3

Page Size (KB) 10 100 1,000

Response time (seconds) 0.14 0.45 3.87
Bandwidth (KB/seconds) 71.4 222.2 258.4

Source: Brantner, M., Florescu, D., Graf, D., Kossmann, D., and Kraska, T.,
in Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, Vancouver, B.C., Canada, June 9–12, 2008,
251–263.

189HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

framework message passing interface (MPI) program model, CPU time spent
filtering baseline wander is compared with that of Hadoop. In comparison,
a single machine computing overhead is depicted in Figure 8.19.

On Hadoop, with the increase of data, the running time is essentially the
same. On a single machine, the time changes linearly with the amount of data.
For example, with 32 hours of data, the performance is improved 11 times. For
three nodes, the performance is improved by 82%. So, this platform achieves
higher performance than ordinary solutions, as shown in Figure 8.20.

8.5 Conclusion

The HCloud system incorporates multiple advanced technologies, such
as a precise and convenient data acquisition solution and a high-efficiency
data storage and analysis method, for monitoring the health status of users

20 MB

on MPI
on Hadoop

16 MB12 MB8 MB4 MB
0

2

4
6 5.37

1.828

5.365
4.968

5.36

9.75

5.34 5.5

10.703
11.765

8

10

12
14

FIGURE 8.19
CPU time spent on Hadoop and MPI.

32 hours

24

292

146

25

74

23

on single
machine

on Handoop

16 hours8 hours
0

50

100

150

200

250

300

FIGURE 8.20
Running time on Hadoop and a single machine.

190 Cloud Computing with e-Science Applications

at any time and in any place. Through the system, anyone can have knowl-
edge regarding personal health information and even be told the risk of some
chronic diseases in the future. With our system, some acute attacks can be dis-
covered in time, and chronic diseases such as hypertension can be prevented
before their onset. This chapter proposed a private cloud platform architec-
ture associated with technologies such as MQ, load balance, session cache,
and cloud storage. This platform can integrate semistructured, unstructured,
and heterogeneous physiological signal data well and can support huge data
storage and heterogeneous data processing for various health care applica-
tions, such as automated ECG analysis, PPG analysis, and HBP analysis.
It is also a low-cost solution that can reduce module coupling by adopting
component technology. Moreover, the proposed system can provide an early
warning mechanism for people with chronic diseases and help physicians
obtain patients’ health information. The Map-Reduce paradigm has the fea-
tures of code simplicity, data locality, and automatic parallelization compared
with other distributed parallel systems. More important, integrated with the
HCloud is improved efficiency of physiological data processing and achieve-
ment of linear speed-up. Based on the performance evaluation and feedback
from user experiences, HCloud can cope with the issues of high concurrent
requests in ubiquitous health care service and dispose of the analysis of
 massive physiological signal tasks quickly, as well as having robust, instant,
and efficient features that can meet user demands for preventive health care.

References

 1. Ding, H., He, J., and Wang, W., The sub-health evaluation based on the modern
diagnostic technique of traditional Chinese medicine, in the Proceedings of the
First International Workshop on Education, Technology and Computer Science, ETCS
’09, Editors Hu, Z. and Liu, Q., Wuhan, China: Printing House, March 7–8, 2009,
269–273.

 2. World Health Organization (WHO), World health statistic 2011. http://www.
who.int/whosis/whostat/2011/en/ (accessed April 5, 2013).

 3. Robison, S., The next wave: everything as a service. 2007. http://www.
hp.comlhpinfo/execteam/articles/robison/08eaas.html (accessed April 5, 2013).

 4. Linthicum, D. S., Cloud Computing and SOA Convergence in Your Enterprise:
A Step-by-Step Guide. Boston: Addison-Wesley, 2009.

 5. Jericho Cloud Cube. http://www.jerichoforum.org/cloud_cube_model_v1.0.pdf
(accessed November 2, 2012).

 6. DMTF, Interoperable Clouds. White paper. November 2009. http://www.dmtf.org/
sites/default/files/standards/ (accessed April 5, 2013).

 7. Samba, A., Logical data models for cloud computing architectures, IT Professional
14, no. 1 (2012): 19–26.

191HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency

 8. Fan, X., He, C., Cai, Y. and Li, Y., HCloud: a novel application-oriented cloud
platform for preventive healthcare, IEEE CloudCom 2012, Taipei, December 3–6,
2012, 705–710.

 9. He, C., Fan, X., and Li, Y., Toward ubiquitous healthcare services with a novel
efficient cloud platform, IEEE Transactions on Biomedical Engineering 60, no. 1
(January 2013): 230–234.

 10. Zhang, R., and Liu, L., Security models and requirements for healthcare appli-
cation clouds, The 2010 IEEE 3rd International Conference on Cloud Computing
(CLOUD), July 5–10, 2010, Miami, FL, USA, 268–275.

 11. Narayanan, H., and Gunes, M., Ensuring access control in cloud provisioned
healthcare systems, IEEE Consumer Communications and Networking Conference
(CCNC), Jan. 8–11, 2011, Las Vegas, NV, USA, 247–251.

 12. Chang, H. H., Chow, P. B., Ramakrishnan, S., et al., An ecosystem approach for
healthcare services cloud, IEEE International Conference on e-Business Engineering,
Oct. 21–23, 2009, Macau, China, 608–612.

 13. GlusterFS. http://www.gluster.org/about (accessed April 5, 2013).
 14. Stonebraker, M., SQL databases v. NoSQL databases, Communications of the ACM

53, no. 4 (April 2010): 10–11.
 15. Scully, C. G., Lee, J., Meyer, J., Gorbach, A. M., Granquist-Fraser, D., Mendelson, Y.,

and Chon, K. H., Physiological parameter monitoring from optical recordings
with a mobile phone, IEEE Transactions on Biomedical Engineering, 59, no. 2
(February 2010): 303–306.

 16. MQ API Guide. http://www.rabbitmq.com/api-guide.html (accessed April
5, 2013).

 17. Ronald C Taylor, An overview of the Hadoop/MapReduce/Hbase frame-
work and its current applications in bioinformatics, editor, Ronald C. Taylor,
in Proceedings of the 11th Annual Bioinformatics Open Source Conference, July 9–10,
2010, Boston, MA, USA.

 18. Aswini Kumar, ECG-simplified. http://www.lifehugger.com/doc/120/ecg-100-
steps (accessed April 5, 2013).

 19. Fen Miao, Xiuli Miao, Weihua Shangguan, and Ye Li, MobiHealthcare System:
Body Sensor Network Based M-Health System for Healthcare Application,
E-Health Telecommunication Systems and Networks, 1(1), 2012, 12–18.

 20. Huang, X., Li, T., Dai, H., and Li, Y., The parallel processing of ECG signal based
on Hadoop framework, in Proceedings of the 9th International School and Symposium
on Medical Devices and Biosensors and the 8th International School and Symposium on
Biomedical and Health Engineering (MDBS-BHE 2013), Hong Kong, June 27–30, 2013.

 21. Luo, Z. H., Zhang, S., and Yang, Y. M., Engineering Analysis for Pulse Wave and
Its Application in Clinical Practice. Beijing: Science Press, 2006.

 22. Shelley, K., and Shelley, S., Pulse oximeter waveform: photoelectric plethysmog-
raphy, in Clinical Monitoring, C. Lake, R. Hines, and C. Blitt, eds. Philadelphia:
Saunders, 2001, 420–428.

 23. Shamir, M., Eidelman, L. A., Floman, Y., Kaplan, L., and Pi-zov, R., Pulse oximetry
plethysmographic waveform during changes in blood volume, British Journal of
Anaesthesiology, 82 (1999): 178–181.

 24. Carretero, O. A., and Oparil, S., Essential hypertension. Part I: definition and
etiology, Circulation 101, no. 3 (2000): 329–335.

192 Cloud Computing with e-Science Applications

 25. Chobanian, A. V., Bakris, G. L., Black, H. R., et al., Seventh report of the Joint
National Committee on Prevention, Detection, Evaluation, and Treatment of
High Blood Pressure, Hypertension 42, no. 6 (2003): 1206–1252.

 26. Tsung user’s menu. http://tsung.erlang-projects.org/ (accessed April 5, 2013).
 27. Brantner, M., Florescu, D., Graf, D., Kossmann, D., and Kraska, T., Building a

database on S3, in Proceedings of the 2008 ACM SIGMOD International Conference
on Management of Data, Vancouver, Canada, June 9–12, 2008, ACM, 251–263.

193

9
RPig: Concise Programming Framework by
Integrating R with Pig for Big Data Analytics

MingXue Wang and Sidath B. Handurukande

CONTENTS
Summary .. 194
9.1 Introduction .. 194
9.2 Motivating Scenarios ... 196

9.2.1 Intensive Scenario with Both Input/Output and
Central Processing Unit with Exponential Moving Average 196

9.2.2 A CPU-Intensive Scenario with SVM ... 196
9.3 Background ... 197

9.3.1 R and R Packages ... 197
9.3.2 Hadoop and MapReduce .. 198
9.3.3 Pig and Pig Latin .. 198

9.4 The Framework .. 199
9.4.1 The R Script Engine Extension...200
9.4.2 Data-Type Conversions ... 201

9.4.2.1 From Pig to R ... 201
9.4.2.2 From R to Pig ... 201

9.4.3 Execution and Monitor .. 202
9.4.4 Implementation .. 203

9.5 Use Case and Experiment... 203
9.5.1 Summary Statistics with Quantiles .. 204

9.5.1.1 Design and Implementation ..204
9.5.1.2 Result and Discussion .. 205

9.5.2 Forecasting with EMA .. 206
9.5.2.1 Design and Implementation .. 206
9.5.2.2 Result and Discussion ..208

9.5.3 Prediction with SVM ... 209
9.5.3.1 Design and Implementation .. 209
9.5.3.2 Result and Discussion .. 212

9.6 Related Work .. 213
9.6.1 Related to R ... 213
9.6.2 Other Related Solutions .. 214

9.7 Conclusion .. 215
References ... 215

194 Cloud Computing with e-Science Applications

Summary

In many domains, such as telecommunications, various scenarios necessi-
tate the processing of large amounts of data using statistical and machine
learning algorithms for deep analytics. A noticeable effort has been made
to move the data management systems into MapReduce parallel processing
environments, such as Hadoop, and Pig. Nevertheless, these systems lack
the necessary statistical and machine learning algorithms and therefore can
only be used for simple data analysis. Frameworks such as Mahout, on top
of Hadoop, support machine learning, but their implementations are at the
early stage. For example, Mahout does not provide support vector machine
(SVM) algorithms, and it is difficult to use. On the other hand, traditional
statistical software tools, such as R, containing comprehensive statisti-
cal algorithms for advanced analysis, are widely used. But, such software
can only run on a single computer; therefore, it is not scalable for big data.
In this chapter, we present RPig, an integrated framework with R and Pig for
 scalable machine learning and advanced statistical functionalities, which
makes it feasible to use high-level languages to develop analytic jobs easily
in concise programming. Using application scenarios from the telecommu-
nications domain, we show the use of RPig. With comparable evaluation
results, we demonstrate advantages of RPig, such as less develop ment effort
compared with related work.

9.1 Introduction

With the explosive growth in the use of information communication tech-
nology (ICT), applications that involve deep analytics need to be shifted to
scalable solutions for big data. Our work is motivated by the big data ana-
lytic capabilities of network management systems, such as network traffic
analysis, in the telecommunications (telecom) domain. More specifically, the
work is an extension of Apache Pig/Hadoop frameworks, which are com-
monly used to build cost-effective big data systems in industry. The design,
the developed software implementation, and the solution we describe here
are general and applicable to other domains.

To build a scalable system, one approach is to use distributed parallel com-
puting models, such as MapReduce [1], that allow adding more (computer)
nodes into the system to scale horizontally. MapReduce has been recently
applied to many data management systems (DMSs), such as Hadoop and Pig.
These systems target the storage and querying of data for top-layer appli-
cations. However, they lack the necessary statistical and machine learning

195RPig

algorithms and therefore can only be used for simple data analysis. For
advanced or deep analysis, Mahout [2] contains a limited number of machine
learning algorithms implemented in the MapReduce model. Because of the
large number and complexity of machine learning and statistical algorithms,
the redesign and redevelopment of these algorithms in the MapReduce
model are difficult tasks. Various algorithms are still missing in Mahout
in comparison with matured statistical and machine learning frameworks.
For example, support vector machines (SVMs), one commonly used algo-
rithm, is still under development in Mahout. On the other hand, traditional
statistical software, such as R, has a rich and extensive set of machine learn-
ing and statistical processing functionalities for advanced analysis, but it is
not distributed and not scalable on its own. In general, it only runs within a
single computer and requires all data to be loaded into memory for process-
ing. Some solutions have been proposed to scale out this traditional statisti-
cal software, such as RHadoop [3], but limitations still exist. For example,
some require writing key-value paired map and reduce functions, leading
to difficulties in use and longer development time. More details of related
work are described in Section 9.6. Our approach addresses the problem by
integrating traditional and matured statistical software (R) with a scalable
DMS (Pig) to scale out deep analytics.

In this chapter, we present RPig, an integrated framework with R and Pig
for scalable machine learning and advanced statistical functionalities, which
makes it feasible to use high-level languages to develop analytic jobs easily
in concise programming. RPig takes advantage of both the deep statistical
analysis capability of R and parallel data-processing capability of Pig. Both
data storage and processing for deep data analysis are distributed and
 scalable. The framework has the following main advantages:

• The statistical and machine learning functions of R can be easily
wrapped and directly used with Pig statements. This allows devel-
oping advanced parallel analytic jobs with two high-level languages
R and Pig (Latin) without needing to learn new languages or appli-
cation programming interfaces (APIs) or rewrite complex statistical
algorithms. The development effort can be significantly reduced for
the user.

• The framework is able to parallelize both R and Pig executions auto-
matically at the execution stage. The necessary low-level operations,
such as data conversion and fault handling, are handled by the
framework itself. The framework offers automatic parallel execution
for advanced data analysis.

In the rest of the chapter, we describe two scenarios that we encounter
in Section 9.2 that neither R nor Pig can handle independently. Section 9.3

196 Cloud Computing with e-Science Applications

describes the foundation frameworks: R, Hadoop, and Pig. The overall RPig
framework and its components are explained in Section 9.4. Experiments
and results are in Section 9.5. Finally, we talk about related work and give
our conclusion (Sections 9.6 and 9.7, respectively).

9.2 Motivating Scenarios

To demonstrate the need and usefulness of our RPig framework, we describe
two example use cases in the context of network management systems where
scalable statistical processing is necessary.

9.2.1 Intensive Scenario with Both Input/Output and
Central Processing Unit with Exponential Moving Average

In this first use case, a vast amount of events are collected from a given
mobile network and stored as event log files. An event is a report about a
particular service client (e.g., Viber voice over Internet protocol [VoIP] service
client) and contains information such as

ID|period_start|period_end|IMSI|IMEISV|RAT|...
|packets_downlink|packets_uplink|...

The exponential moving average (EMA) is a simple forecasting algorithm
based on historical sample data. Using the EMA, an analytic feature of a
network management system can forecast the amount of traffic of selected
service clients in the next time window when a request is sent. Because of
the vast number of events, it is impossible for R to load all data into memory
for a simple EMA calculation. However, Pig does not have the EMA function,
which R has.

This problem can be addressed by RPig, which allows log files to be effi-
ciently loaded, preprocessed (filtering, aggregating, etc.) by Pig in parallel ,
and then directly passes the data to R for a final EMA calculation. In this
case, it is both an input/output (I/O) and central processing unit (CPU)
intensive scenario as it requires loading and preprocessing massive log files
from hard disks.

9.2.2 A CPU-Intensive Scenario with SVM

The SVM machine learning algorithms can be used for advanced classifica-
tion and regression analysis. Unknown data can be predicted by an SVM
model, which is built from training data in the training phase.

197RPig

An increasing amount of phone calls are made by various VoIP clients, such
as Viber and Skype. One approach for monitoring the service quality of VoIP
is using network-level key performance indicators (N-KPIs) at the Internet
protocol (IP) layer, such as packet loss or jitter, to predict the mean opinion
score (MOS), which is a standard speech quality measurement parameter [4].
An SVM-based regression algorithm is used in this case, but it is a complex
algorithm, usually involving long computation times on a relatively small
amount of data in the training phase. RPig enables us to define and execute
the SVM algorithms in the MapReduce model for both SVM training and
prediction phases without writing any key-value pair MapReduce functions.
As a result, the performance becomes scalable to cluster size, and develop-
ment effort is reduced.

This use case deals with a complex machine learning algorithm, which is
CPU intensive rather than I/O intensive. R’s in-memory computation takes
most of the overall computation time with a few data in an analysis job.
RPig supports parallelism for various requirements in different scenarios.

9.3 Background

Big data [5] are data in volumes so large and complex that they become
 difficult to process using on-hand database management tools or traditional
data-processing applications. Since Google published its MapReduce tech-
nology and Apache started the Hadoop project in 2004 and 2005, MapReduce
and Hadoop have become a generic and foundational approach for develop-
ing scalable, cost-effective, flexible, fault-tolerant big data systems [6]. Many
frameworks, such as Pig and Hive, have been developed based on Hadoop,
adding features on it. As Hadoop systems are more widely adopted in
industry, the requirements of the real-world problems are driving the
Hadoop ecosystem to become even richer. For example, Oozie and Azkaban
provide workflow and scheduling management. Impala and Shark aim at
low-latency real-time queries. Our work, RPig, is one of many frameworks,
such as Mahout and DataFu [7], targeting deep analytics. In the following
sections, we briefly describe the frameworks on which the RPig is based.

9.3.1 R and R Packages

R is a programming language and software environment widely used for sta-
tistical computing and deep data analysis, such as classification, and regression.
R is extensible through R packages. There are thousands of R packages that
implement massive specialized machine learning and statistical algorithms.

198 Cloud Computing with e-Science Applications

R’s data model contains simple data structure types, such as scalars, vectors,
and lists, and special compound data structure types: Factors are used to
describe items that can have a finite number of values; data frames are matrices
and may contain different data types (numeric, factor, etc.). All data struc-
tures of R are R objects, which also include other statistical specific models
or functions and so on.

The following code snippet shows a simple example of EMA calculation
using R. TTR is an R package implementing various moving average calcula-
tions. The temp is a series for EMA calculation with 20 periods to average over.

Library(TTR); results <- EMA(temp, 20)

9.3.2 Hadoop and MapReduce

Hadoop offers the Hadoop Distributed File System (HDFS) to manage data stor-
age and a distributed parallel programming framework based on MapReduce
[5] for data processing. Computations are defined in Map and Reduce functions,
which have key-value pairs for input. A map function takes one pair of data,
which can be processed in parallel Map(k1,v1)→list(k2,v2). A reduce func-
tion aggregates related results of map functions (k2, list(v2))→list(v3).
Programs need to be written as map and reduce programs to enable parallel
computing through Hadoop MapReduce Java APIs.

9.3.3 Pig and Pig Latin

Pig is built on top of Hadoop and gives a high-level data flow language
called Pig (Latin) [8] for expressing data queries and processing. It is similar
to SQL of a relational database management system (RDBMS), but it is pro-
cedural style and gives more control and optimization over the flow of the
data. Pig scripts are compiled into sequences of MapReduce jobs by Pig, and
they are executed in the Hadoop MapReduce environment.

The Pig data model contains scalar types that have a single atomic value
(integer, long, etc.), and three complex types that can contain other types:
Tuple is a data record consisting of a sequence of “fields,” which can be any
data type; Bag is a set of tuples, similar to a “table”; Map is a map of a string
key to a value, which can be any data type.

Pig provides a set of operators for data processing. For example: LOAD and
STORE can be used for reading and writing data from HDFS. Processing
every tuple of a data set can use the FOREACH operator. Many operators
are similar to SQL, such as JOIN, GROUP BY, and UNION for standard data
operations. As with many SQL implementations, Pig supports user-defined
functions (UDFs), which allows performing tasks written in low-level lan-
guage (Java or Python) to extend Pig. The following Pig script shows how to

199RPig

aggregate traffic consumption (both up/downlink) on selected VoIP clients
(e.g., Skype, Viber) in a time window on events described in Section 9.2.1.

Events = LOAD ‘$load_par’ USING PigStorage(‘|’) AS
(ID, period_s:LONG,...,);

Events = FILTER Events BY (client = = ‘Viber’ OR...);
Traffics = FOREACH (GROUP Events BY (period_s, period_e, client))

GENERATE FLATTEN (group), (SUM(Events.downlink)+SUM(Events.
uplink)) AS links:DOUBLE;

9.4 The Framework

An initial version of the RPig framework [9] was implemented as a proof-of-
concept prototype. The framework provides the RPig script for users to write
analytic jobs. The RPig script inherits Pig script syntaxes as the language
skeleton but allows defining inline R scripts as R functions. An R function
element will be interpreted as an input payload of a predefined Pig extended
function or Pig UDF, which handles the payload at the execution stage. This
design gives us a quick implementation by only using the Pig UDF APIs
without going through the Pig source code. However, it is not an optimal
approach for integrating Pig and R. RPig script has its own constructs, and
it needs to generate additional Pig supporting statements in execution. The
initial version also has the large performance overhead of the data exchange
between R and Pig.

To improve the performance of RPig and to integrate R and Pig in an
 optimal way, we completely redesigned and rewrote the source code to over-
come the aforementioned disadvantages of the initial version. By doing so,
we have brought the research prototype to an early production stage. Some of
the main advantages of the current version over the initial proof-of-concept
version are the following:

• There is seamless integration with Apache Pig by having a built-in
R script extension similar to other Pig script extensions, such as
Python and JavaScript.

• Only standard R and Pig language syntaxes are used without any
new language constructs. It allows the use of any existing R and
Pig script integrated development environment (IDEs).

• There is support for two types of R engines. R UDFs can be executed
on the Java virtual machine (JVM) or a stand-alone R engine.

• Much faster performance is provided. Optimized data conversion
and verbosity XML (extensible markup language) messages are not
involved as the intermediate data format.

200 Cloud Computing with e-Science Applications

In the following sections, we describe the current version of the framework
in detail.

9.4.1 The R Script Engine Extension

To integrate R and Pig and take advantage of both, the R language is expected
to be supported to define Pig UDFs for specifying custom processing in
Pig data flows. Pig already supports a number of languages, such as Python
and JavaScript for UDFs. They are implemented as different script engine
extensions in Pig. That is, an R script engine extension (RScriptEngine) is
required for our case. It wraps the R engine in the back end, which can inter-
pret R scripts at runtime (Figure 9.1). The user defines R functions as UDFs in
an R script and makes Pig aware of the R script by using the Pig REGISTER
statement in a data flow (step 1 of Figure 9.1). An RScriptEngine will be
initialized, and it will register the defined R functions. The RScriptEngine
will be shipped within Pig-generated MapReduce programs to all Hadoop
task nodes during execution (step 2 of Figure 9.1). RScriptEngine can
execute the registered R functions in the back-end R engine by providing a
bridge function for interactions between Pig and R (step 3 of Figure 9.1).

The back-end script engine is usually selected from the Java implementations
of the script language. For example, Jython and Rhino are used for Python and
JavaScript back-end engines, respectively. This enables running the script lan-
guages on the JVM where Hadoop and Pig are running. Hence, no additional
back-end script engine is required to be installed on every host along with the

TaskTracker

JobTracker

MapReduce
program MapReduce

program

(3)

(2)

(1)

Pig/Hadoop ...

Pig/Hadoop

R script engine
extension
(Bridge)

R script engine
extension
(Bridge)

R script

Pig
script

Analyst/
developer

R
on JVM

R
Stand-alone

TaskTracker

(3)

Pig/Hadoop
R script engine

extension
(Bridge)

R
on JVM

R
Stand-alone

FIGURE 9.1
The framework overview.

201RPig

JVM. However, this is not a case for the R language since there is no mature
JVM-based R interpreter. Some preliminary implementations are available,
such as Renjin [10], but it is incompatible with most R packages except for some
basic libraries. As a result, two types of back-end R engine are supported in
our implementation (JVM based and stand-alone R). JVM-based R can be used
for some basic statistical functions (e.g., standard deviation) without requiring
the installation of a script engine on all nodes. Stand-alone R is able to use any
R functions and packages. However, the R must be preinstalled on all hosts.

9.4.2 Data-Type Conversions

It is necessary for data to be passed back and forth between Pig and R
 during the R function executions. Since the two languages Pig and R have
very different data models, the data must go through a conversion pro-
cess, which is one of the main responsibilities of the R bridge function. The
data-type conversion is done automatically based on the set of predefined
rules discussed next.

9.4.2.1 From Pig to R

• Simple data type

• int: integer; long/float/double: double; chararray/
datetime: character bytearray: raw; boolean: logical
(e.g., null: NULL); datatime: POSIXlt,POSIXt;

• Complex data type

• tuple: list, e.g. (19,2): list(19,2); dataBag: nested list,
e.g. {(19,2), (18,1)}: list(list(19,2), list(18,1)); map: named list, e.g.,
[apache#pig]: list(key = “apache”, value = “pig”)

• Anything else raises an exception

Any nested data objects in Pig, such as nested tuples, will be converted to
nested lists in R. Due to the different purposes of the two languages, there
is no exact semantic match between all data types in their data models. For
 example, the map[key#value] type of Pig is hardly used in statistical com-
puting, so we convert it to a named list(key = key, value = value),
which is an ordered collection in R. Users can still convert the converted
R object to other R data types via R operations (inside R functions) if neces-
sary. For example, it would be possible to convert a nested list to a data frame
or a matrix.

9.4.2.2 From R to Pig

When the data must be sent back to Pig after R execution, a user-defined output
schema of the R function is needed. This allows the user to specify what they

202 Cloud Computing with e-Science Applications

expected from the R output and remove ambiguity during the conversion.
For example, the logical value in R could be True, False, or NA (Not Available),
but the Pig Boolean type can only be either True or False. By using the output
schema, the logical value can be converted to a Boolean value. Alternatively,
the user may specify an int or chararray value and no semantic information is
lost. The following rules are used for type conversion from R to Pig:

• Simple data type

• (schema: int) numeric/integer/logical/factor: int
(T:1; F:0; NA:128); (schema: float/double) numeric/double:
double; (schema: chararray) character/logical/factor:
chararray; (schema: bytearray) raw: bytearray; (schema:
boolean) logical: boolean (T: T, F/NA: F); NULL: null;
(schema: datetime) POSIXlt/POSIXt: datetime

• Complex data type

• (schema: tuple) numeric array/character array/ logical
array/factors/list: tuple, e.g. structure(c(1L, 2L, 1L),
.Label = c(“a”, “b”), class = “ factor”): (a, b, a); (schema: bag) nested
list: bag; (schema: map) list: map

• Anything else raises an exception.

9.4.3 Execution and Monitor

At the parallel execution stage, the defined R functions or UDFs are trans-
formed into map functions that are automatically generated by taking
advantage of Pig. They are executed in parallel in different Hadoop task
nodes. Each R or map task will take a piece of split data and execute
 independently on an R engine on one task node. If the Hadoop cluster is
configured with more than one map task capacity per node, each map or
R function will have an isolated session. When a task is completed and
a result is returned, the data stored in the R session will be cleared, and
the process will be killed by the RPig framework. As a consequence, no
R session will be kept alive after the R execution is complete, and all data
that need to be saved or persisted from R must be saved in HDFS through
Pig operations. This design was chosen because an R session only exists in
a single task node, which is replaceable by any other task node in a Hadoop
cluster at any time. The R session cannot be retrieved by other nodes at
a later time. Pig stores data, including temporary data generated between
MapReduce jobs during processing, in HDFS to guarantee that data can be
retrieved later from every node of the cluster. The results of all R functions
will be collected through Reduce tasks for continuous processing. Users do
not need to develop key-value pair map and reduce functions within RPig.
They only need to assign the number of map and reduce tasks in parallel
execution through Hadoop and Pig configuration.

203RPig

With regard to fault tolerance, the fault handling happens in two different
layers, the node layer and the R engine layer. The underlying Hadoop frame-
work provides failure handling on nodes of the cluster. If a node fails during
the execution of an RPig job, Hadoop will restart the task of the failed node
in an alternate node. Within a node task, the RPig framework allows the user
to define the fault policy to handle errors from an R engine execution on an R
function . For example, by default func _ name.fault.ignore←T. This policy
ignores any exceptions and continues. Also, func _ name.fault.retry←1.
This allows at most one retry when an exception occurs. If an R execution
fails during the map task, then a remedy action defined in a failure policy of
the named R function will be applied, and the failure event will be logged by
the RPig framework. The user still can use R’s tryCatch() function within
an R function to define the fault-handling mechanisms within the R session,
but the fault policy of RPig allows the user to restart the R function in a brand
new R session.

R functions may run exceedingly slowly on occasion, and the user would
expect a way to monitor the UDF execution time and terminate its execution
if it runs too long. RPig offers the facility for monitoring long-running
R functions. For example, func _ name.monitoredUDF.duration←10
will terminate the named R function if it runs for more than 10 seconds and
return the default value of null.

9.4.4 Implementation

There are several libraries used for the RPig implementation. Renjin [10] is
used for the JVM-based R engine. Since the stand-alone R is implemented in
C and Fortan and Pig is written in Java, Rsession [11] is adopted as the Java
interface of R to use the Pig APIs. Pig offers Java annotation-based imple-
mentation for a monitored Java UDF. To build the same function for R UDFs,
we need to create a new Java class with annotations for each R function at
runtime. The Javassist [12] is used for defining a new class at runtime and to
modify a class file when the JVM loads it.

9.5 Use Case and Experiment

In this section, we describe the usage of RPig with the examples we discussed
in Section 9.2. To provide valuable comparative experimental results, we
also describe and experiment with one alternative framework or implemen-
tation for each use case. Although the use cases here are from the telecom
domain, the design and the solution we describe are general and applicable
to other domains.

Our experiments are conducted in Amazon Elastic MapReduce (EMR), for
which we have all nodes with the same configuration (m1.medium instance,

204 Cloud Computing with e-Science Applications

Hadoop 1.0.3, R 2.14.1). One node from the Master Instance Group has the
extended Pig 0.11 with the RPig feature deployed to generate MapReduce
programs. The rest of the nodes are from the Core Instance Group, provid-
ing both data storage and MapReduce task execution services. As R requires
data to be loaded in memory, each node is configured to have a maximum
capacity of one map task and one reduce task, so an R session could take
the maximum memory available in a single node. We also assign a larger
 heap-size limit to the child JVMs of map tasks as these are where R statistical
functions are executed. The reduce task is allocated a lower value.

9.5.1 Summary Statistics with Quantiles

Before going to complex examples that use different R packages, we would like
to show a simple quantiles statistic task to give a “hello world” example in the
first case. Quantiles are used to summarize a set of observations by giving the
boundary values between the divided distributions. For example, a large num-
ber of values for a network parameter observed over time can be summarized
in a few numbers, or quantiles, for reporting or comparing with thresholds.

9.5.1.1 Design and Implementation

DataFu [7] is a collection of useful Pig add-ons (UDFs) developed by LinkedIn
for data mining and statistics, and it is used for the comparison study in this
use case. DataFu is used in many off-line workflows for data-derived prod-
ucts like “People You May Know” and “Skills” at LinkedIn. The following
shows the main lines of implementation using DataFu.*

DEFINE Quantile datafu.pig.stats.Quantile(‘0.5’,’0.75’,’1.0’);
— Computing the quantiles for each network nodes
Quantiles = FOREACH B {sorted = ORDER values BY val; GENERATE

id, Quantile(sorted); };

DataFu uses the DEFINE statement to specify a Quantile UDF function
with string parameters for the function constructor. (‘0.5’,’0.75’,’1.0’)
yields the 50th and 75th percentiles and the max. The function takes a sorted
bag as the input.

The following shows the RPig version for the same computational task.

REGISTER ‘RFuncs.r’ using rsession as RFuncs; — or using
‘renjin’ for JVM R

%DECLARE q_probs ‘0.5, 0.75, 1’;%declare q_type ‘2’;
Quantiles = FOREACH A GENERATE id, RFuncs.Quantile(values,

‘$q_probs’, ‘$q_type’);

* Detailed explanation of the DataFu quantile example is available at http://engineering.linkedin.
com/open-source/introducing-datafu-open-source-collection-useful-apache-pig-udfs.

205RPig

In addition to these Pig statements, the following R UDF is defined in the
RFuncs.r script.

Quantile.outputSchema ← “q:double”;
Quantile ← function (x, probs, type) {
 probs ← as.numeric(unlist(strsplit(probs, split = “,”)))
 # parse the parameter value
 q ← quantile(unlist(x), probs = probs, names = T, type = type);
 # call the R quantile() function
 return (as.list(q)); }

The Quantile UDF is a simple wrapper for the quantile() function of the
R stats library. x is a numeric vector whose sample quantiles are desired.
Its value is converted from the Pig input tuple by the framework. The func-
tion parameters (probs, type) value can be supplied in different ways,
for example, a Declare statement that is used in the example or a Parameter
File and so on.

To summarize this use case of RPig, any original R function can be easily
wrapped and exposed as a Pig R UDF. The necessary input parameter of
the original R function can be exposed by the UDF to make the function
more generic for reusability. Still, all the input data for a single function call
will be executed in one R engine, and some partitioning might be necessary
(e.g., group by “week”) if the data are too large.

9.5.1.2 Result and Discussion

In this use case of computing quantiles, both DataFu and RPig only require
a few lines of Pig (and R) code as the user does not need to write the quan-
tile algorithm. However, the RPig implementation of the function is much
more flexible regarding the data input and output formats than DataFu. The
DataFu quantile function only takes a sorted input bag, and each numeric
value is a tuple inside the bag. We have to preformat the raw data before
calling the function in this case. In contrast, the RPig version can handle any
format of bag or tuple input. Numeric values can be either in one tuple/bag
or separated tuple/bags since the data always will be flattened into numeric
vectors in the R function before computing quantiles.

Figure 9.2 shows the performance comparison with a fixed 20-node Hadoop
cluster. Each row of input data contains more than 10K double values for one
network node, and that makes around 1 GB raw data for every 10K rows.
The RPig version implementation with the JVM R engine (Renjin 0.7.0) has
the slowest performance. It becomes very slow when input data size becomes
larger, and it consumes almost all available memory for the map task. It might
relate to the internal memory management problem of Renjin since it is only
in a very early stage. The RPig with stand-alone R has the best performance.
DataFu (v 0.0.10) is in the second since it needs to preformat and sort the data

206 Cloud Computing with e-Science Applications

through Pig operations, and these take more time before calling the quantile
function.

DataFu has some convenience bag (e.g., enumerating bags) and utility
functions, but the availability of statistical functions in DataFu is extremely
limited. It only includes common statistics tasks (e.g., quantile, variance),
PageRank, and the like algorithms that are relevant to the LinkedIn use
cases. Even for the quantile function, DataFu only implements the type R-2
estimation, which is one of several algorithms for estimating quantiles. RPig
allows the use of nine quantile algorithms implemented in R, selected by the
type parameter in the example. With RPig, it is easy to wrap and expose any
statistical function of R as a Pig UDF. The statistical functions available in
RPig are as many and as comprehensive as in the original R.

In summary, RPig provides extensive statistical and machine learning
algorithms by wrapping any original R function in a Pig UDF, and the UDF
is flexible with input and output data formats and gives the best perfor-
mance (with stand-alone R) in the this case. In contrast, DataFu is ready to
use without needing additional installation of a script engine since it runs on
the JVM, but the number of functions is extremely limited.

9.5.2 Forecasting with EMA

9.5.2.1 Design and Implementation

EMA is used for forecasting data traffic on selected VoIP service clients for
a use case described in Section 9.2. Since EMA is a light algorithm, and the

90k

DataFu
RPig (JVM R)
RPig (standalone R)

45k33k22k
0

500

1000

1500

Se
co

nd
s

2000

Data Size (rows)

FIGURE 9.2
The performance comparison on DataFu and RPig.

207RPig

aggregated data Traffics (from Section 9.3.3) is already small enough in
this case, we can group all the data together and send them to one R engine
using RPig. The following shows the Pig statements:

Results = FOREACH (GROUP Traffics ALL) GENERATE RFuncs.ema_all
($1, n);

ema_all() is a defined R function processing the grouped data, as in the
following:

ema_all.outputSchema ← toString(lapply(seq(1,11), function(x)
{paste(“map[tuple(double)]”, sep = “”)}))

ema_all ← function(x, n) {
 xDf ← as.data.frame(do.call(rbind, x[[1]]))
 # convert to a data frame
 ... # sorted the data and initial variables
 library(‘TTR’)
 for(i in 1:length(clients)){
 t ← xDf[xDf[,c(3)] = =clients[i], c(4)]
 results ← append(results,list(list(as.character(clients[i]),

EMA(t,n))))}
return (results)}

In this case, the data passed to R is a nested list (x), which contains
aggregated traffic data for all service clients in different time windows,
(x x x x x x1

1
2
1

3
1

1
2

2
2

3
2, , , , , ,() () … .). The first line of the R script converts the nested

list to a data frame called xDf, so the input data can be easily sorted and
selected as a data table. A sorted numeric list containing traffic data of pre-
vious time windows for each service client is selected and is used as input
for the R EMA() function of the TTR package. Results of all service clients
as a nested list results will be subsequently converted to a Pig map data
structure specified by the output schema. The name of the service client is
the key of the map, and the forecasted result is the value of the map. In this
case, the Pig statement is used as the query language for accessing the data
from the HDFS file system, and then the converted data will be sent to R for
analytic tasks. Afterward, the data analytic result is printed on screen or
stored in HDFS through Pig statements. Hence, RPig can be used as a way
for R programmers to read and write data and files in HDFS.

To summarize this use case of RPig, the Pig operations are used as pre-
processing steps to extract and summarize only the necessary information
needed for R processing. When the summarized data are small enough to
be handled in R in a single node, then we can use any statistical algorithm
implementations of R directly on the summarized data similar to the tradi-
tional single-machine approach of R.

208 Cloud Computing with e-Science Applications

9.5.2.2 Result and Discussion

The necessary data must be converted and loaded into R first when an R
function is involved in a Pig data flow, and we consider this as performance
overhead. Minimizing this overhead was one of our main tasks after the
initial version of RPig development. As a consequence, the initial version of
RPig was used for a comparison study in this case. The code implementation
for this use case based on the initial version can be found in Reference 9, and
it is similar to the implementation using the current version.

Figure 9.3a shows the results with 20 fixed nodes. The data size represents
the initial raw data size loaded in Pig. With both versions of the implemen-
tations (both with stand-alone R engines), the performance decreased with
increasing data size, as expected. In this scenario, the performance mainly
depends on Pig/Hadoop, which needs to handle a large amount of raw data,
where R only plays a small part in the overall process. We can see the current
version has better overall performance, and the improvement becomes larger
when more data are involved. Figure 9.3b shows the improvement in detail
when sending data from Pig to R in a single node. In this case, summarized
data with more than a half million data tuples and four data fields in each
tuple will take 20 seconds in the initial version but only takes 10 seconds
in current version. Overhead is reduced 50% in the current version. This is
achieved by sending data directly to R through the socket connection and
many code optimizations in the current version. The initial version of RPig
streams the data to the disk as an R source file, then makes R load the source
file. Still, when more data need to be exchanged between R and Pig, then
the overhead becomes larger. This overhead can be considered as a trade-off
between user development effort and processing efficiency. We only have
10 lines of R code in the R functions in this use case, but we or the user had
to write around 100 lines of Java code for the EMA Pig UDF without using

2002520151050

200

400

600

800

1000

45

40

35

RPig (initial)
RPig (current)

RPig (initial)
RPig (current)

30

25

20

15

10

5

0

1200

Se
co

nd
s

Se
co

nd
s

400 600
Tuples (K)Data Size (GB)

800 1000 1200

(a) (b)

FIGURE 9.3
(a) Overall performance comparison. (b) Overhead comparison on data exchange (Pig to R).

209RPig

R for the same calculation. In another example, DataFu has around 200 lines
of Java code for the Quantile function in the first use case. This shows the
significant reduction of coding and code maintenance effort with RPig.

In summary, RPig offers concise programming for data analytics by utilizing
existing implementations of algorithms in R. However, the necessary data
required must be converted and loaded into R; this causes the performance
overhead. As a result, data should always be minimized as much as possible
before exchanging data between Pig and R to reduce overhead. The current
RPig has a significant performance improvement over the initial implemen-
tation; it has reduced the overhead of data exchange by 50%.

9.5.3 Prediction with SVM

9.5.3.1 Design and Implementation

Because an SVM model is constructed based on determined support vectors
in SVM algorithms, an SVM training data set can be represented by data
samples as support vectors. The remaining data of the data set that do not
directly contribute to the final SVM model can be viewed as redundant, even
though minor inaccuracies may occur in some cases [13, 14]. Therefore, if we
have two map functions, one (mapsv) is for extracting samples marked as
support vectors from a data set, another (mapsvm _ m) is for having an SVM
model from a data set, and a generic reduce function (reduce) is only to aggre-
gate a list of results from map functions, then the SVM training phase to
obtain a model for a data set D can be defined in the MapReduce model as
the following.

Training Phase:
repeat a number of times if required:
 split D to {D1,D2,...,Dn}
 D ← in parallel execution: reduce(mapsv(D1),mapsv(D2),...mapsv(Dn))
Model ← reduce(mapsvm_m(D))

Since support vectors are often only a small data subset of the original input
data set mapsv(D)<D, and map and reduce functions are executed in paral-
lel in Hadoop, building an SVM model from a data subset would be much
faster than building the original data set. Hence, the overall SVM training is
expected to be scalable with the size of the cluster. A parallel algorithm can
also be structured as multiple rounds of map and reduce. Collected samples
as support vectors can be treated as a new data set; hence, the mapsv can also
be applied repeatedly to further reduce the data size if it is required.

In the prediction phase, it takes the trained model and network KPIs at
the IP layer, such as packet loss, as input, then gives a predicted MOS value
instantly. In this case, we want to do MOS value prediction in parallel for a
large amount of VoIP call sessions S, then a map function mappredict can be
defined to take a subset of call sessions to increase the scalability.

210 Cloud Computing with e-Science Applications

Training Phase:
split S to {S1,S2,...,Sn}
results ← in parallel execution:
 reduce((mappredict(Model,S1),mappredict(Model,S2),...,

mappredict(Model,S2))

As analyzed, we have the following script for our scenario: We first describe
the training phase implementation. The following code fragment shows the
step of extracting support vectors from a split data set StatisticEvents _ s
in the MapReduce model:

SV = FOREACH StatisticEvents_s GENERATE FLATTEN(RFuncs.svm_sv($1));
 svm_sv.outputSchema ← “bag{tuple(double, double)}”;
 svm_sv ← function(x) {
 xDf ← as.data.frame(do.call(rbind, x[[1]]))
 # data frame of training dataset
 ... # extracting the support vector sv
 return (list(sv))
 }

The R function svm _ sv is an implementation of the map mapsv function.
Extracting support vectors is the same as building an SVM model. It covers
cross validation, parameter tuning, and so on for complete SVM train-
ing. However, instead of obtaining a final SVM model, we only fetch out
the samples as support vectors after the SVM training. In our case, using a
radial-kernel-based SVM regression, SVM computation can be represented
to solve the following optimization problem:

min exp
, *

* * *

α α
α α γ α α ε α α

1
2

2
−() − −() −() + −()T

y y x xi j i j

ii

n

i i

i

n

i i

y

C i

= =
∑ ∑+ −()

≤ ≤ =

1 1

0

α α

α α

*

*, , ~subject to 11 0
1

, , , ~ .*… n i

i

n

α α−() =
=
∑

where xi, xj are the input data set, gamma is a parameter. In R, we use the
e1071 package to supply the SVM implementation mentioned. We first use
a tuning function to find the best parameter over a parameter range, and
then we train an SVM. The following R code fragment shows the part of
extracting sv:

tuned ← tune.svm(V2 ~., data = xDf, gamma = 10^(–2:2),
 kernel = ‘radial’) # turn the parameter

svmModel <- svm(xDf[2], xDf[1], kernel = ‘radial’,
gamma = tuned$best.parameters$gamma, cross = 10)

sv ← xDf[c(svmModel$index),]
sv ← apply(sv, 1, function(x){as.list(x)})
 # put each row to a list

211RPig

Here, sv is extracted samples as support vectors from the input date frame
xDf. However, the data frame of R is a column-oriented structure. All of the
values of a column are grouped together, then the values of the next column
are in a second group, and so on. Data tables stored in Hadoop and Pig are
the same as the commonly used CSV (comma-separated value) format, which
is primarily row oriented. If we want to use the Pig SPLIT operator to split
the collected support vectors to repeat the sv extracting process again, we
need to convert the collected data representation to be row oriented. Hence,
we use the apply() function to put each row to a list. Finally, all lists will be
put as tuples into a bag sent back to Pig. We flatten the bag in Pig and convert
the data back to the “table” format to continue processing.

In the last step of the training phase, we group the finalized data sets or
support vectors SV and send them to one R engine to obtain a final SVM
model and then store the model for the prediction phase. The MapReduce
model is still applied, but only one map and one reduce function will be
 created at this stage.

Model = FOREACH (GROUP SV ALL) GENERATE R.svm_m(*);
svm_m.outputSchema ← “model:bytearray”;
svm_m ← function(x) {
 ... # get the svmModel
 return (serialize(svmModel, NULL)) }

The R UDF svm _ m is almost the same as the previous svm _ sv but
returns an SVM model svmModel this time. The serialized model will be
saved as a bytearray or original R object in HDFS, so we can use the model
directly in R for prediction later. In the SVM prediction phase, the SVM
model can be directly loaded into R from Pig in parallel execution for a huge
number of VoIP call sessions.

RHadoop [3] is a popular open-source project from Revolution Analytics
that allows users to manage and analyze data with Hadoop in R. The
rmr2 is an R package from RHadoop; it offers the user the ability to write
MapReduce functions in R. We implemented parallel SVM design with
rmr2 for the comparative study in this case. The following shows the
MapReduce implementation to obtain support vectors SV: We use this
function as the example to show the difference in implementation with
regard to the RPig version. The SV has exactly the same value as the RPig
implementation we described.

svDfs ← mapreduce(input = inputPath,
 map = function(dummy, input) {
 ... # extracting the support vector sv
 keyval(1, list(sv)) },
 reduce = function(k, sv){
 val ← do.call(“rbind”, sv); keyval(1, val) }
)
SV ←from.dfs(svDfs)$val

212 Cloud Computing with e-Science Applications

The map function extracts the support vectors of every data subset and out-
puts a key-value pair, the value part is the support vectors sv. All outputs
of the map functions have the same key value, integer 1, so the extracted sv
of different data subsets will be collected and aggregated together by the
reduce function. The final result SV can be retrieved for the value part of the
key-value pair output of the reduce function.

To summarize this use case with RPig, parallel or iterative statistical algo-
rithms for distributed data sources are expressed as parallel R executions in a
Pig data flow. Input data are treated as a number of distributed data sources with
no centralized information during parallel R executions for each data source;
aggregated results of distributed R executions as stepping stones are relative
to a final result of a final centralized R execution. Pig operations are used to
distribute the data and tasks for parallel processing with multiple R engines as
Map tasks. This approach allows parallel R executions to reduce the processing
time. However, statistical errors may be caused by the iterative and incremental
statistical algorithms as a trade-off and are acceptable in most cases [13, 14].

9.5.3.2 Result and Discussion

Both RPig and RHadoop allow a parallel SVM implementation in the
MapReduce model. RPig just uses the FOREACH statement to parallelize
the tasks as the Map functions. RHadoop allows the user to code the entire
analytic job in R, but the user has to design the key-value pairs based on Map
and Reduce functions. This creates complexity for the user in code design
and development compared to RPig, especially when multiple MapReduce
functions are necessary for complex analytic jobs. In the example described
for obtaining SV, we wrote 16 lines of Pig and R code using RPig, but needed
21 lines of R code for RHadoop because of writing the key-value pair func-
tions (Figure 9.4a). This again shows the concise programming of RPig.

A relatively small size data is used in this case since it is very CPU intensive
as described previously. We split the data containing 12K training samples
into 16 pieces to obtain support vectors and then we obtained the final SVM
model at the end of the training. The performance of the SVM training phase
with respect to the cluster size is shown in Figure 9.4b. RPig has almost iden-
tical performance compared to the RHadoop (rmr2 v2.2.2) implementations.
There is a reduction of processing time as the cluster size increases, but the
decrease in processing time is not exactly linear as there is a higher commu-
nication cost with a larger cluster.

In summary, RPig is able to scale out machine learning functionalities
for deep analytics. We demonstrated this through an SVM use case. RPig is
less complex to use and requires less development effort for writing parallel
machine learning algorithms compared to RHadoop or others (e.g., RHIPE
[15]), which require designing and writing key-value-paired Map and Reduce
functions manually.

213RPig

9.6 Related Work

9.6.1 Related to R

With the emergence of big data analytics, many researchers are addressing
the scalability issues of R. The existing approaches can be classified in three
different categories:

 1. Scaling memory size: All data used in R calculations, such as lists
and data frames, need to be loaded into memory; however, a single
computer only has a limited memory size that restricts a large data
set from being loaded into R. RevoScaleR [16] and bigmemory [17]
are R packages that allow R to use a hard disk as external memory
for calculations. This approach allows R to handle a data size much
 bigger than its memory size since the size of the hard disk is gener-
ally much larger than the memory size of a computer.

 2. Scaling storage size: Terabyte-level big data are generally stored in dis-
tributed file systems, such as Hadoop clusters. To enable R to directly
read/write data in these large-scale data warehouses, interfaces
between these warehouses and R are developed, such as Ricardo
[18], which offers a bridge between R and Hadoop HDFS. Comparing
Ricardo to R bridging work on traditional RDBMS such as RJDBC [19]
and RMySQL [20], SQL is replaced by a query language (Jaql), which
can be executed in the MapReduce model in Ricardo. These approaches
allow R to directly access data from database or file systems, but the
R script execution remains in a single computer. For parallel data
analysis, it requires reimplementing most of a statistic algorithm in the

Size of clusterFramework
16

RPig
RHadoop

Pig code
R code20

15

10

Li
ne

s (
Sh

or
te

r i
s b

et
te

r)

5

0
RPig RHadoop (rmr2) 1284

600

700

800

900

1000

Se
co

nd
s

(a) (b)

FIGURE 9.4
(a) Lines of code comparison. (b) Scalability on SVM training.

214 Cloud Computing with e-Science Applications

query language. In other words, we have to reimplement the SVM()
function of R in Jaql for our second use case to parallelize the process.

 3. Scaling CPU power: Approaches for scaling out CPU power for R
can be divided into MapReduce- and non-MapReduce-based imple-
mentations. MapReduce-based approaches are generally running
on top of Hadoop. For example, both RHIPE [15] and RHadoop [3]
extend R to allow writing key-value pair map and reduce functions
within an R script. The MapReduce jobs of R can be submitted to a
Hadoop cluster for parallel executions. However, these frameworks
require users to manually design complex key-value pair-based map
and reduce functions, making them difficult to use and inefficient
for analysis job development. In our case with RPig, the key-value
pair-based map and reduce functions are automatically generated
by leveraging the Pig framework. The user only needs to define R
functions for a single task node; the execution of the R functions is
parallelized automatically based on Pig data flows. RHive [21] has
the same concept as our work. It is an R extension facilitating distrib-
uted computing via HiveQL/SQL queries. However, it is restricted
for the Hive data warehouse. And, considering the natural differ-
ences between Pig and SQL language, RHive is an alternative to
RPig, but it cannot be a replacement.

Many approaches utilize non-MapReduce-based parallel frameworks,
such as Open MPI [22], and packages such as Rmpi [23] and snow [24] pro-
vide bridge interfaces between R and MPI. CloudRmpi [25] supports man-
agement of an EC2 cluster and access to an R session on the master MPI node.
Elastic-R [26] allows users to send data to any R engine in an R engine pool.
However, the solutions do not support parallel data read/write as Hadoop;
hence, they are not suitable for I/O-intensive scenarios. Furthermore, these
solutions are difficult to use as the user must code send/receive message
functions for master and slave nodes through complex MPI API.

9.6.2 Other Related Solutions

Some approaches try to build new systems without using traditional statistical
frameworks, such as R. For example, Mahout [2] is a framework built on top
of Hadoop with MapReduce-based machine learning algorithms. However,
Mahout is only at an early stage; many commonly used algorithms, such as
SVM, are not available yet. Second, it does not provide a high-level language,
such as R and Pig; instead, complex Java APIs are provided. As a result,
developing analytic jobs in Mahout is complex and difficult. SystemML [27]
proposes a new declarative machine learning (DML) language for machine
learning on MapReduce. However, DML is not as flexible as R language;
it does not support object-oriented features, advanced data types (such as
lists and arrays), and so on in comparison with R. More important, SystemML

215RPig

is the same as other newly developed frameworks, such as MLbase [28] and
Cloudera ML [29], and also lacks commonly used statistic and machine
learning algorithm implementations.

9.7 Conclusion

R provides comprehensive machine learning and statistical algorithms.
However, the R execution environment is not distributed and is not con-
sidered scalable. In contrast, Pig supports parallel data processing using
high-level language; but it does not provide implementations of common
statistical algorithms; it lacks the necessary features for advanced statistical
analysis. In this chapter, we presented an integrated RPig framework that
takes advantage of both R and Pig, allowing scalable deep analysis while
minimizing the development effort with concise programming.

We have described the design and implementation of an RPig framework.
Based on the use case scenarios, we have demonstrated the use of our frame-
work. We have shown experimental results related to scalability and coding
effort reduction with examples. We also did a comparison study in each use
case experiment to show the difference or improvement over related work.
Our future work will create an R package that would allow calling Pig in R.

References
 1. Dean, J., and S. Ghemawat, MapReduce: simplified data processing on large

clusters. Communications of the ACM, 2008, 51(1): 107–113.
 2. Apache Mahout. Home page. http://mahout.apache.org/.
 3. RHadoop. https://github.com/RevolutionAnalytics/RHadoop/wiki/.
 4. Handurukande, S., et al. Magneto approach to QoS monitoring. In IFIP/IEEE

International Symposium on Integrated Network Management. 2011.
 5. White, T., Hadoop: The Definitive Guide. 2nd ed. Sebastopol, CA: O’Reilly Media,

2011.
 6. Eaton, C., et al., Understanding Big Data: Analytics for Enterprise Class Hadoop and

Streaming Data. New York: McGraw-Hill, 2012.
 7. DataFu. http://data.linkedin.com/opensource/datafu.
 8. Olston, C., et al. Pig Latin: a not-so-foreign language for data processing. In

ACM International Conference on Management of Data. 2008.
 9. Wang, M., S. B. Handurukande, and M. Nassar. RPig: a scalable framework for

machine learning and advanced statistical functionalities. In IEEE International
Conference on Cloud Computing Technology and Science. New York: IEEE, 2012.

 10. Renjin. Home page. http://www.renjin.org/.
 11. rsession. http://code.google.com/p/rsession/.

216 Cloud Computing with e-Science Applications

 12. Chiba, S., and M. Nishizawa. An easy-to-use toolkit for efficient Java Bytecode
translators. In International Conference on Generative Programming and Component
Engineering. 2003.

 13. Syed, b.N.A., et al. Incremental learning with support vector machines. In
International Knowledge Discovery and Data Mining Conference. 1999.

 14. Graf, H. P., et al., Parallel support vector machines: the cascade SVM. Advances
in Neural Information Processing Systems, 2004, 17: 521–528.

 15. Guha, S., Computing Environment for the Statistical Analysis of Large and
Complex Data, doctoral dissertation, Purdue University, 2010.

 16. Rickert, J., Big Data Analysis with Revolution R Enterprise. White paper. Mountain
View, CA: Revolution Analytics, 2011.

 17. bigmemory. http://cran.r-project.org/web/packages/bigmemory/index.html.
 18. Das, S., et al. Ricardo: integrating R and Hadoop. In ACM International conference

on Management of Data. 2010.
 19. RJDBC. http://www.rforge.net/RJDBC/index.html.
 20. RMySQL. http://cran.r-project.org/web/packages/RMySQL/.
 21. RHive. Available from: https://github.com/nexr/RHive.
 22. Open MPI. http://www.open-mpi.org/.
 23. Rmpi. http://www.stats.uwo.ca/faculty/yu/Rmpi/.
 24. snow. http://cran.r-project.org/web/packages/snow/index.html.
 25. cloudRmpi. http://norbl.com/cloudrmpi/cloudRmpi.html.
 26. Chine, K., Open science in the cloud: towards a universal platform for scien-

tific and statistical computing. In Handbook of Cloud Computing, B. Furht and
A. Escalante, editors. New York: Springer, 2010, pp. 453–474.

 27. Ghoting, A., et al. SystemML: declarative machine learning on MapReduce.
In IEEE International Conference on Data Engineering. 2011.

 28. Kraska, T., et al., MLbase: A Distributed Machine Learning System. In The
Conference on Innovative Data Systems Research. 2013.

 29. Cloudera ML. https://github.com/cloudera/ml.

217

10
AutoDock Gateway for Molecular
Docking Simulations in Cloud Systems

Zoltán Farkas, Péter Kacsuk, Tamás Kiss, Péter Borsody,
Ákos Hajnal, Ákos Balaskó, and Krisztián Karóczkai

10.1 Introduction

Parameter sweep applications are frequent in scientific simulations and in
other types of scientific applications. They require running the same applica-
tion with a very large number of parameters; hence, their execution time could
be long on a single computing resource. As a result, collecting resources on
demand from distributed computing infrastructures (DCIs), such as clouds
or grids, is a highly desired feature of any computing environ ment that is
offered for scientists to run such applications. Cloud computing infrastruc-
tures are especially suitable for such applications due to their elasticity and
easy scaling up on demand.

CONTENTS

10.1 Introduction .. 217
10.2 WS-PGRADE Workflows and Parameter Sweep Application 218
10.3 AutoDock Workflow ..220

10.3.1 The AutoDock Application ... 221
10.3.2 AutoDock Workflows ..222

10.4 Migrating the AutoDock Workflows to the Cloud 224
10.4.1 Cloud-Based Execution in WS-PGRADE 224
10.4.2 Robot Certificates in WS-PGRADE/gUSE226
10.4.3 Cloud-Based AutoDock Workflows ..227

10.5 AutoDock Gateway ..228
10.6 Execution Experiences and Performance ... 231
10.7 Related Research .. 233
10.8 Conclusions ...234
Acknowledgment ..234
References ...234

218 Cloud Computing with e-Science Applications

Molecular docking simulations are a widely utilized application area in
which parameter sweep scenarios are desired. Molecular docking simulation
packages, for example, AutoDock [1], are applied by various disciplines, such as
molecular biology, computational chemistry, or even psychology, and require
a large number of cloud resources to increase the speed of computation.

To collect the required number of cloud resources, end users like biologists
and chemists would have to learn the cloud interfaces. However, instead of
learning such information technology (IT) systems, they would rather like to
concentrate on their own scientific field and research. To hide this low-level
 technology from them, high-level user interfaces like science gateways are
required. WS-PGRADE [2] was designed with this idea to provide high-level
graphical workflow abstraction for users to hide the low-level details of access-
ing the underlying cloud infrastructures. WS-PGRADE provides workflow tem-
plates that tremendously simplify the creation of parameter sweep (and other
types of workflow) applications and takes care of accessing the required type
and number of cloud resources. To achieve this, WS-PGRADE was integrated
with the CloudBroker Platform (CBP), which enables accessing heterogeneous
cloud resources, including Amazon EC2, IBM SmartCloud, Eucalyptus [3],
OpenStack [4], and OpenNebula [5] clouds. Moreover, WS-PGRADE also sup-
ports the development of intuitive and customized end-user interfaces to com-
pletely hide the underlying complexity from the scientist.

This chapter demonstrates how parameter sweep application scenarios,
such as AutoDock-based molecular docking experiments, on cloud computing
infrastructures can be efficiently supported by the WS-PGRADE framework
that is the core technology of the European Union FP7 project SCI-BUS [6],
which is aimed at developing various science gateways for a large set of dif-
ferent scientific user communities.

10.2 WS-PGRADE Workflows and Parameter Sweep Application

WS-PGRADE workflows are represented as directed acyclic graphs
(DAGs), for which nodes denote computational tasks (or some other work-
flow), and directed arcs denote data dependency between the different
nodes. Figure 10.1 shows a workflow with six nodes, where different data
dependencies are defined. When submitting this workflow, the first two
nodes (Copy_A and Copy_B), as they have no prerequisites, are able to run
immediately on the targeted computing infrastructure. Once Copy_A has
finished and produced the necessary input for the Invert_A node, this job
is ready for submission. Similarly, once Copy_B and Invert_A have both
finished, WS-PGRADE can start processing the Multi_B node. That is, once
all the preceding nodes of a given workflow node have finished successfully,
the given node is run by WS-PGRADE.

219AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

In a nonparametric workflow, every node is run only once. However, it is
possible to construct parameter sweep workflows in which a node of the
workflow is submitted multiple times using different input data for the
different submissions. Figure 10.2 shows an example construct for a param-
eter sweep workflow.

Figure 10.2 has been split into three parts: the generator phase at the top,
the processing (parameter sweep) phase in the middle, and the resulting
 collecting phase at the bottom. In the generator phase, WS-PGRADE runs
special nodes in the workflow, the generator nodes. The task of these nodes is
to produce the parameter space for the computation, for example, by splitting
one big input data set into smaller chunks. The generator nodes produce the
different inputs for the actual computation. In the processing phase, the nodes
process all the inputs created by the generator nodes. If there were multi ple

SEQSEQSEQ

SEQSEQ

Copy_A Copy_B

SEQ

A_mul_XMultip_BInvert_A Subtr-B
2

1

022 101

1

11

0 0

0
0

FIGURE 10.1
Sample WS-PGRADE workflow.

Coll

0

3

1 1
2 00

0

Job 2Job 1

Gen 1 Gen 2

0

FIGURE 10.2
Sample parameter sweep WS-PGRADE workflow.

220 Cloud Computing with e-Science Applications

generator nodes (as shown in Figure 10.2), then it is possible to specify how
to pair the different inputs, using either cross or dot products of the files pro-
duced by the different generator nodes. Finally, if all of the node instances
have finished in the processing phase, the collector nodes receive the results
of the computations and can process them (e.g., they can search for the best
result or can produce some sort of statistics). Note that these phases can be
overlapped or repeated within a workflow; that is, generators and collectors
can be placed into a workflow at any part of the graph without restrictions.

The configuration of workflow nodes can be performed through a simple
interface, as shown in Figure 10.3. It is possible to define the execution
resource, the application, different resource-specific settings, the command
line arguments, and the data used and produced by the job.

Once the configuration of the whole workflow has finished, it can be sub-
mitted. From this point, WS-PGRADE/gUSE is responsible for taking care of
the nodes’ execution.

10.3 AutoDock Workflow

This section explains how to use the generic parameter sweep creation
and execution technology described in the previous section for a concrete

FIGURE 10.3
Configuration of a WS-PGRADE workflow node.

221AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

application, namely, AutoDock. In fact, three different variants of AutoDock
parameter sweep workflows have been developed, and they are described.

10.3.1 The AutoDock Application

Traditionally, in vitro studies have been used to investigate the binding of
receptors to their ligands and enzymes to their substrates. These wet labo-
ratory experiments are both time consuming and expensive to carry out.
An in-silico system based on computer simulations can facilitate the model-
ing of receptor-ligand interactions prior to the wet laboratory experiments
and enable scientists to better focus the in-vitro experiments using only
the most promising molecules. With the advances in computer technology,
it is now feasible to screen hundreds of thousands of compounds against a
single receptor to identify new inhibitors or therapeutic agents. However,
the modeling programs are not user friendly, and the relationship between
results obtained by molecular modeling and by in-vitro studies and the
newer biosensors still needs to be established.

AutoDock is one example of a program that allows in-silico modeling
of intermolecular interactions. AutoDock is a suite of automated docking
tools. It is designed to predict how small molecules, such as substrates or
drug candidates, bind to a receptor of known three-dimensional (3D) struc-
ture. AutoDock currently comprises two discrete generations of software:
AutoDock4 and AutoDock Vina.

AutoDock 4 is typically used to accurately model the molecular dock-
ing of a single ligand to a single receptor. In this instance, the process is
composed of three discrete stages. First, a low-complexity sequential pre-
processing stage defines a random starting location in 3D space (termed the
docking space) for both the ligand and the receptor. This is achieved using
a tool within AutoDockTools (ADT) called AutoGrid. The locations, which
are characterized by atomic energy levels at each point within the docking
space, act as a single common input to a second stage. The second stage can
comprise many parallel jobs, each receiving a copy of the ligand and receptor
starting locations that form the input to a genetic algorithm. The algorithm
acts to randomly rotate/reposition the ligand and then determine likely
docking/binding sites based on energy levels, which are calculated from
the original starting locations. This process can be considered a parameter
sweep, where the varied input parameter is the initial random rotation of the
ligand. Finally, a single low-complexity sequential postprocessing stage can
be used to identify the most likely binding sites by comparing energies from
all jobs of the preceding stage (where minimized energies represent likely
docking sites).

AutoDock Vina provides several enhancements over AutoDock4, increas-
ing average simulation accuracy while also being up to two orders of
 magnitude faster. Autodock Vina is particularly useful for virtual screening,
whereby a large set of ligands can be compared for docking suitability with a

222 Cloud Computing with e-Science Applications

single receptor. In this instance, parallelism is achieved by first breaking the
set of all ligands into equal-size disjoint subsets. Each compute job then uses a
different subset as an input. The ligands in each subset are simulated/docked
sequentially on the compute node using the single receptor; a postprocessing
stage can be used to compare the results from all compute jobs.

Researchers from the School of Life Sciences at the University of West-
minster in London have set up a novel screening system [7] to analyze
well-characterized protein-ligand interactions, for example, studying the
interrogation of enzymes and receptors of the protozoan Trichomonas vaginalis
(TV). TV is an important organism, with 180,000 million women affected
worldwide. It is also a proven cofactor for the acquisition of human immuno-
deficiency virus (HIV). Currently, only one drug is available, metroni dazole,
and resistance has been reported. The cloning and publication of the TV
genome offers new options for drug/inhibitor detection utilizing bioinfor-
matics and molecular modeling tools.

Westminster researchers constructed an in silico small molecule library of
about 300,000 structures. Given a receptor file and the approximated position
and size for the active site, the whole library was planned to be screened against
the chosen receptor using the AutoDock Vina (http://vina.scripps.edu/)
molecular docking tool. Once operational, the system could easily be utilized
for other similar virtual screening experiments.

10.3.2 AutoDock Workflows

Three different parameter sweep workflows were developed (in the frame-
work of the EU FP7 ER-Flow project [8]) based on the AutoDock4 and
AutoDock Vina applications and the previously described scenarios: the
AutoDock workflow, the AutoDock without AutoGrid workflow, and the
AutoDock Vina workflow.

The AutoDock workflow requires PDB (Program Database) input files
(these are widely available in public databases), automatically converts these
files into PDBQT format (which is required by the AutoDock application),
calculates the docking space running the AutoGrid application, and docks
a small ligand molecule on a larger receptor molecule structure in a Monte
Carlo simulation. Finally, it returns the required number of lowest-energy-
level solutions. The workflow uses version 4.2.3 of the AutoDock docking
simulation package. Users of this workflow are expected to provide input
files for AutoGrid (molecules in PDB format), grid parameter file (GPF), dock-
ing parameter file (DPF), the number of simulations to be carried out, and
the number of required results. The workflow is shown in Figure 10.4. This
workflow is ideal for researchers who are less familiar with the AutoDock
suite and command line tools and require a high level of automation when
executing their experiments.

On the other hand, the AutoDock without AutoGrid workflow requires
the scientist to run scripts from the AutoGrid application on his or her own

223AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

computer prior to the execution of the workflow. Although this requires
 specific expertise, it also gives much more flexibility to the end user when
preparing the input molecule and the docking space. As a consequence,
this workflow requires PDBQT input files and the output of the AutoGrid
application, and (similar to the previous workflow) it docks a small ligand
 molecule on a larger receptor molecule structure in a Monte Carlo simu-
lation using 4.2.3 of the AutoDock docking simulation package. Users of
this workflow are expected to provide a docking parameter file, a ZIP file
containing input files for AutoDock that were generated using version 4.2.3
of AutoGrid and the former docking parameter file, the number of simula-
tions to be carried out, and the number of required results. This workflow is
shown in Figure 10.5.

Finally, the AutoDock Vina workflow performs virtual screening of mole-
cules using version 1.1.2 of AutoDock Vina. It docks a library of small ligands
on a selected receptor molecule. Users of this workflow are expected to pro-
vide a configuration file for AutoDock Vina, an input receptor molecule in
PDBQT file format, a ZIP file containing a number of ligands in PDBQT file
format, the number of simulations to carry out, and the number of required
results. The workflow is shown in Figure 10.6.

1 2 3
4
0

Auto Grid

Auto Dock

5

0

0 1 2

Collector

1

2

3

6 7

FIGURE 10.4
AutoDock workflow.

3 1

Generator

Auto Dock

5

0

0 1 2

Collector

1

2

3

6 7

FIGURE 10.5
AutoDock workflow without AutoGrid.

4 5

3
Generator

Public
Autodock
Vina112

2

0

1 0

Collector.sh

2

1

3

0 1

FIGURE 10.6
AutoDock Vina workflow.

224 Cloud Computing with e-Science Applications

As can be seen in the figures, all of the workflows follow the generator
node–parameter sweep node–collector node semantics. The generator nodes
are executed locally, on the portal server. The parameter sweep nodes are
executed in a targeted distributed computing resource, which in the first
version of the gateway was the EDGeS@home volunteer desktop grid (DG).
It is important to note that, for performance optimization, the AutoDock and
AutoDock without AutoGrid workflows are submitting one single metajob
to the desktop grid server. This means that the actual parameter sweep
expansion will happen on the DG server and not on the portal side (i.e., from
the portal’s point of view, these workflows are not real parameter sweep
workflows, but from the point of view of the whole processing, they are, as
a number of workflow node instances will be generated on the DG server).
The collector nodes are executed locally, on the portal server.

The task of the generator nodes is to set up the parameter space for
the middle nodes. In the case of the AutoDock and AutoDock without
AutoGrid workflows, this node is simply generating a metajob description
for the DG server, whereas in the case of the AutoDock Vina workflow, the
generator node distributes the ligands provided by the user in a ZIP file
into as many packages as the number of simulations set by the user during
the workflow’s configuration.

The middle node of the workflows is responsible for the actual parameter
sweep processing. As mentioned, in the case of the AutoDock and AutoDock
without AutoGrid workflows, the parameter sweep expansion happens on
the DG server, whereas in the case of the AutoDock Vina workflow, this
 happens on the portal server, and parameter sweep job instances will be
submitted to the DG server.

Finally, the task of the collector nodes is to evaluate the results of the
parameter sweep executions and collect the best dockings for the user.

10.4 Migrating the AutoDock Workflows to the Cloud

This section presents how the AutoDock workflows have been migrated to a
cloud infrastructure, including all the necessary features of WS-PGRADE/gUSE
and the migration process.

10.4.1 Cloud-Based Execution in WS-PGRADE

WS-PGRADE offers access to a number of DCIs, including clusters, grids,
DGs, and clouds. Access to cloud systems is solved with the help of the CBP
[9]. The CBP offers unified access to most major cloud infrastructures, such as
Amazon EC2, IBM, Eucalyptus, OpenStack, and OpenNebula, at three dif-
ferent levels: the web interface, a RESTful web service, and a Java application

225AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

programming interface (API). The web interface and the REST API offer
access to most of the CBP functionalities, with the first one offered for users
and the second one offered for developers for integrating CBP features into
their products. Finally, the Java API offers a convenient tool for accessing the
majority of CBP features from Java applications. WS-PGRADE uses the Java
API of CBP to access the different cloud services.

The integration of WS-PGRADE and CBP aims to hide details of the cloud
infrastructure used. As shown in Figure 10.3, after the users have selected
to use a cloud infrastructure for their workflow node, all they have to do
is select an application already deployed in the cloud (or indicate that they
would like to run their own application and upload it) and select a cloud
resource for the computation, for example, Amazon EC2 or OpenNebula.
Once the workflow has been configured and submitted, execution of the
selected applications with the provided data is arranged in the background
by WS-PGRADE/gUSE and the CBP.

The integration architecture of WS-PGRADE/gUSE and CBP is shown in
Figure 10.7.

The top of Figure 10.7 represents WS-PGRADE and gUSE. Based on
WS-PGRADE, a number of customized science gateways (Proteomic, Seis-
mology, Rendering, etc.) can be created that can hide the workflow con-
cept of WS-PGRADE through a simplified user interface. WS-PGRADE

OpenStack
S3

OpenStack
S3 Adapter

Rados
Adapter

Rados S3Amazon
S3

S3
Adapter

CloudBroker Platform

Java APIREST API Web Interface

BlastAutodockGromacs Blender

OpenStack
Adapter

Amazon EC2
Adapter

App ...

Job
Management

gUSE

Job submission

Workflow
submission

Authentication
data fetch

Authentication
portlet

WS-PGRADE

Configuration data fetch

Proteomics Seismology Simulation AstrophysicsRendering

Workflow
portlet

Repostiory

WFI DCI Bridge

OpenNebula
Adapter

Amazon
EC2

OpenNebula
Cloud

OpenStack
Cloud

FIGURE 10.7
Architecture of the WS-PGRADE/gUSE and CBP integration.

226 Cloud Computing with e-Science Applications

itself interacts with the CBP through two different portlets: the Workflow
 portlet (for creating, configuring, and running workflows) and the Authenti-
cation portlet (for specifying the CBP credentials to be used by the user).
The CBP credential set by the user in the Authentication portlet is used by
WS-PGRADE/gUSE to communicate with the CBP service on behalf of the
user (please note that the requirement toward users to specify CBP creden-
tials can be eliminated by assigning robot certificates to existing workflows).

Once the workflow has been configured and submitted with the help of the
Workflow portlet, the set of back-end components (gUSE) are responsible for
arranging the workflow’s execution. The Workflow Interpreter (WFI) is used
to schedule nodes of the workflow for execution, and the DCI Bridge is used
to actually make the different job instances run in the selected DCI (cloud, in
our case). Both WS-PGRADE and gUSE components are using the CBP Java
API to access the CBP service. Once the individual job instances have been
sent to the CBP by the DCI Bridge, the CBP is responsible for arranging the
jobs’ execution on the selected cloud service.

10.4.2 Robot Certificates in WS-PGRADE/gUSE

As presented previously, accessing the services of the CBP to run jobs on
cloud infrastructures assumes that the user possesses proper CBP creden-
tials. In addition to CBP, there are many DCIs that have such requirements
(e.g., gLite, ARC, or UNICORE). If gateway providers would like to expose
workflows for their users with nodes configured to use such infrastructures,
then users will face the difficulty of managing the proper credentials for actu-
ally submitting the workflows. To eliminate this need, WS-PGRADE/gUSE
has been extended with the robot certificate extension that enables workflow
developers to assign predefined credentials for jobs that require some sort of
authentication with the DCI to which they are targeted.

Figure 10.8 shows the interface for setting a CBP robot credential for a
workflow node set to run on a cloud infrastructure.

After the computing resource has been set, the Create association… button
has to be clicked, and the CBP (or some other DCI-specific, depending
on the target DCI) credentials have to be set in the pop-up window that
appears. From this point, it is impossible to modify the target infrastructure
and the executable of the workflow node as long as the given association is
not removed.

Once a workflow with nodes set to use DCIs requiring authentication but
with proper robot certificates assigned to these nodes is exported to the
local repository, users not possessing the required credentials will be able
to import and actually run the workflow with the robot certificates assigned.
The use of robot certificates will be completely hidden from the user; the
only thing the user will see is that the workflow can be submitted and is
running properly.

227AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

10.4.3 Cloud-Based AutoDock Workflows

We are going to present the way to migrate an existing workflow to the cloud
based on the AutoDock Vina application.

The migration of the generator and collector nodes was required to follow
the following steps:

• Reconfigure the nodes to run on the cloud: For this the node’s con-
figuration window (see Figure 10.3) had to be opened; and the node’s
type had to be set to cloudbroker; the name to platform; the resource,
region and instance type to MTA SZTAKI.

• Assign robot certificates to the nodes: As accessing the cloud resources
requires CBP credentials but it is not feasible to ask every end user of
the customized gateway to have a valid CBP credential , a CBP robot
credential had to be set for the nodes. A dedicated account for the
AutoDock users in the CBP with access granted to the MTA SZTAKI
OpenNebula cloud infrastructure has been created, and this account
has been set during the nodes’ configuration as seen in Figure 10.8.

The migration of the parameter sweep node was a bit more difficult, as this
node of the original workflow was set to run on a volunteer DG. In the case
of DG applications, the executable resides on the DG server and may consist
of multiple files (one “main” executable and supporting files), such as for the
Vina DG application. The DG application is only referenced by name in the
WS-PGRADE workflow’s configuration.

To migrate such an application to the cloud, all executable files of the DG
application need to be collected from the DG server and the workflow must
be reconfigured to submit these files from the portal server. In the case of
a multi file application, there are two options: either the workflow node
has to be configured to run the main executable and additional input files

FIGURE 10.8
Robot certificate association.

228 Cloud Computing with e-Science Applications

representing the supporting files that have to be added to the workflow node
or a single self-extracting archive can be created based on all the executable
files. Simply, this self-extracting archive should be specified as the applica-
tion to run for the workflow node.

In the case of the Vina application, we followed the second approach, with
the help of the makeself UNIX tool [10]. Figure 10.9 illustrates this multiple
executable file problem and the solution. The executables belonging to the
DG AutoDock Vina application are bundled into a single self-extracting shell
script that can be used as the executable for the Vina node in the Vina work-
flow when configuring the node to run on the cloud.

10.5 AutoDock Gateway

This section explains how to provide user-friendly gateway interface for the
end-user scientists who are not interested even in the workflows. They just
want to use the AutoDock workflows as black box applications and param-
eterize and run them in an efficient and fast way in the connected cloud
 systems. In the previous sections, we showed how to use WS-PGRADE/gUSE
to develop and configure the workflows to run in clouds. In this section,
we show a unique feature of our gateway technology. This is the end-user
view of the WS-PGRADE gateway that can be easily created without any
further programming by simply reconfiguring the gateway. In this view, the
end-user scientists cannot see the workflows, only their parameter options,
through which they can specify their required input parameters. Then, the
gateway automatically executes the AutoDock workflows in the connected
clouds in an optimal way.

Once the AutoDock workflows are ready, it is simple to create an end-user
mode portal for them. Only two steps have to be performed: create templates
of the workflows and set the end-user mode as default on the portal.

The template is a special workflow type in WS-PGRADE/gUSE, contain-
ing all the properties of a workflow and restrictions on which properties

Vina executable

Gitbox script

Gitbox wrapper executable

Self-extracting shell script

Makeself
packaging

Cloud executable

Vina executable

Gitbox script

Gitbox wrapper executable

Vina Application

Desktop grid application

FIGURE 10.9
Multiexecutable desktop grid application bundled into a self-extracting shell script.

229AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

can be modified and which cannot. Those properties that can be modified
may have a short description, which can be assigned during the template’s
configuration. In Figure 10.10, the AutoDock workflow’s receptor.pdb input
file (belonging to the AutoGrid job) is configured: We have set the Upload
property to free, meaning that the users will be able to upload their own files
to be used as receptor.pdb by the AutoGrid job. Other properties are closed,
meaning the users will not be able to modify (or even see) them. Once a tem-
plate is ready, it can be exported to the internal repository, so that other users
of the portal may run them.

Once all the templates are ready and have been exported into the internal
repository of WS-PGRADE, the portal can be set into the end-user mode.
In this mode, new users will receive only the End User role. The setting
can be performed in Liferay’s Control Panel, and the process is described
in the WS-PGRADE/gUSE Admin Manual [11] in detail. Once this is set, any
new user registering to the portal will be an end user and will see only a
restricted set of portlets. Figure 10.11 shows the portlets available for end
users in the case of the AutoDock portal: Only workflow importing and
configuration/execution are possible; workflow creation, storage browsing,
and other advanced features are hidden from the end users. Of course, the
visibility of the different portlets can be fine-tuned; this process is also
described in the WS-PGRADE/gUSE Admin Manual.

Execution of workflows in the end-user mode is really simple: First,
the desired workflow has to be imported (select End User/Import as in
Figure 10.11 and select the desired workflow as shown in Figure 10.12).

Once the workflow is imported, it can be configured (see End User/Configure
in Figure 10.11) by clicking on the “Configure” button in the workflow list.

After the workflow’s configuration, the workflow can be executed, and the
execution can be monitored. Figures 10.13 to 10.15 show the configuration

FIGURE 10.10
Template configuration.

230 Cloud Computing with e-Science Applications

FIGURE 10.12
Select the workflow to import.

FIGURE 10.13
Configuration of a workflow in the end-user mode.

FIGURE 10.11
End-user mode on the AutoDock Portal.

231AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

of workflow parameters, the list of workflows imported, and the details of
a workflow’s execution in the end-user mode, respectively. As can be seen,
a progress bar is presented about the workflow’s execution, so users can
 follow their experiments’ progress visually.

10.6 Execution Experiences and Performance

This section describes how the AutoDock workflows are actually executed
on cloud systems. Performance measurements show the possible optimi-
zations of the gateway back-end mechanism and the CBP to minimize the
execution time.

The selected application to perform the performance measurement was
the AutoDock Vina workflow, with the input set size of 8,500 ligands. The
measurements have been performed by distributing this input set among 25,
100, 250, and 1,000 jobs. Each scenario has been executed on the DG and the
cloud. Although we performed the measurements in the different scenarios ,
we are only presenting our experiences with the 1,000-job scenario as the
others showed similar results. The measurements were conducted on the
SZTAKI Cloud with 25 virtual machines allocated for the experiments
and the EDGeS@home DG with variable and unpredictable active clients
(about 2,000 to 3,000 at a time) available.

FIGURE 10.14
List of workflows imported.

FIGURE 10.15
Workflow progress monitoring in the end-user mode.

232 Cloud Computing with e-Science Applications

Figure 10.16 shows the case when the inputs were split into 1,000 jobs.
The x axis of the figure represents the elapsed time, and the y axis repre-
sents the number of (running and finished) jobs. As can be seen, it took
more than twice as long to process the jobs on the DG as on the cloud.
In the case of both the DG and the cloud execution, we can see a short
“ running up” period, followed by a steep processing phase; finally, the last
jobs’ processing slows.

The job processing figure of the DG case is a bit steeper; thus, processing
jobs on this DCI (with 2,000 to 3,000 active clients) is a bit faster than in
the cloud (with 25 processors). However, in the case of the volunteer DG,
we can clearly observe the tail effect, which means that the last 10%–20%
of the jobs required nearly as long an execution time as the first 80%–90%
of the jobs. The tail effect is missing in the case of the cloud execution;
hence, the overall execution time is much shorter on the cloud. Notice that
the tail effect is a well-known problem of volunteer computing, and there
are several ways of eliminating it [12, 13]. One of the possible solutions is
exactly the support of large volunteer DGs with relatively small dedicated
clouds that run the last 10%–20% of the jobs concurrently with the DG.
It has been presented [12] that with such a technique the tail effect can be
reduced significantly.

200000

Running - DG
Finished - DG

Running - Cloud
Finished - Cloud

180000160000140000120000100000800006000040000200000
0

200

400N
um

be
r o

f J
ob

s

600

800

1000

Time (seconds)

FIGURE 10.16
Processing Vina inputs in 1,000 jobs.

233AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

10.7 Related Research

This section compares our research with others’ targeting similar objectives
in distributed computing (such as grid or cloud) environments. This section
clearly shows our major contributions to this field.

There are several research projects investigating how biomolecular appli-
cations, particularly molecular docking simulations, can be run on distrib-
uted computing platforms. Some examples of DCI-based molecular docking
simulations are detailed in this section. Most of these experiments are on
grid computing resources with rare exceptions currently for the utilization
of clouds.

Tantar et al. [14] gave an overview of current efforts on how large-scale
parallel computing is applied to molecular simulations. The authors are also
involved in the Docking@Grid project [15] that aims to define the optimal
deployment architecture for grid-based molecular docking simulations and
provide the accurate definition of the molecular energy surface.

The WISDOM project [16] is an international initiative to enable a virtual
screening pipeline on a grid infrastructure. WISDOM was the first large-scale
in-silico docking experiment on public grid infrastructure. The project has
developed its own meta-middleware that utilizes the EGI (European Grid
Infrastructure) production infrastructure and is capable of submitting and
executing a large number of jobs on EGI resources. Although the WISDOM
production environment is capable of submitting any kind of application,
the flagship application of the project is AutoDock.

Tantoso et al. [17] described a similar approach for Globus-based grids.
A web interface has been developed by the authors to execute experiments
using AutoDock3.05 on target grid resources. A small workflow automates the
process, which includes the preparation of the receptor, creation of parameter
files, calculation of grid energy, and finally the actual docking of the molecules.

Cloud-based molecular docking environments are currently hard to find
in the literature. The only example we know about was written by Kiss et al.
[18]; the authors described the implementation of similar molecular docking
experiments on Windows Azure-based clouds. However, that implementa-
tion was closely coupled with the Azure infrastructure, and the user inter-
face is less flexible, making further improvements difficult.

There are also examples for the utilization of higher-level user interfaces
for molecular simulations, all based on grid computing infrastructure. The
Australian BioGrid portal [19] uses the DOCK [20] molecular docking software
for the simulations. This work is part of the Virtual Laboratory Project that aims
to utilize grid technologies for solving large-scale compute and data-intensive
applications in the area of molecular biology. The project uses the Nimrod
Toolkit and the World Wide Grid test bed [21] to conduct the experiments.

234 Cloud Computing with e-Science Applications

The European Chemomentum project developed a collaborative environ-
ment based on the UNICORE grid middleware technology to support a
wide range of applications in the area of natural and life sciences [22]. Among
other applications, the project targeted the AutoDock docking software.
The Chemomentum environment also supports the creation and execution
of workflows on UNICORE resources.

10.8 Conclusions

As we showed in the section on related research, other AutoDock solutions
are tailored to the specific grid or cloud environment. The advantage of our
solution comes from its flexibility. First, it is easy to generate various AutoDock
gateway workflows for different types of users having different IT expertise
and different biological simulation targets. Second, these workflows can be
easily reconfigured to run in various DCIs, including clusters, supercomput-
ers, grids, DGs and clouds. In the current chapter, we showed the case when
the workflows running originally on DGs were migrated into cloud resources.
Even in the cloud environment, it is extremely easy to reconfigure the work-
flows to run them in various clouds, such as Amazon, IBM, OpenNebula,
and OpenStack, due to the integration of WS-PGRADE/gUSE with CBP. This
 flexibility, of course, can be applied for workflows developed in other fields of
science, making the WS-PGRADE/gUSE gateway technology widely usable
in many different areas of science and commercial activities as demonstrated
by the various science gateways developed in the EU FP7 project SCI-BUS.

Acknowledgment

The research leading to these results has been supported by the European
Commission’s Seventh Framework Programme (FP7/2007-2013) under grant
agreements 283481 (SCI-BUS) and 312579 (ER-Flow).

References

 1. Morris, G. M., D. S. Goodsell, et al. Automated docking using a Lamarckian
genetic algorithm and an empirical binding free energy function. Journal of
Computational Chemistry 19(14): 1639–1662, 1998.

235AutoDock Gateway for Molecular Docking Simulations in Cloud Systems

 2. P. Kacsuk. P-GRADE portal family for grid infrastructures. Concurrency and
Computation: Practice and Experience 23(3): 235–245, 2011.

 3. Eucalyptus. Home page. http://www.eucalyptus.com/.
 4. OpenStack. Home page. http://www.openstack.org/.
 5. OpenNebula. Home page. http://opennebula.org/.
 6. SCI-BUS. Home page. http://www.sci-bus.eu/.
 7. Heindl, H., et al. High throughput screening for ligands and inhibitors of carbo-

hydrate modifying enzymes. Proceedings of the 2nd Glyco-Bioinformatics
Beilstein-Institut Symposium, June 27–July 1, 2011, Potsdam, Germany.
http://www.beilstein-institut.de/glycobioinf2011/Proceedings/Greenwell/
Greenwell.pdf.

 8. EF-Flow. Home page. http://www.erflow.eu/.
 9. CloudBroker Platform. Home page. https://platform.cloudbroker.com/.
 10. Makeself. Make self-extractable archives on Unix. 2008. http://megastep.org/

makeself/.
 11. Gottdank, T. Administrator manual and cookbook. 2013. https://sourceforge.

net/projects/guse/files/3.5.8/Documentation/gUSE_Admin_Manual.pdf.
 12. Delamare, S., G. Fedak, D. Kondo, and O. Lodygensky. SpeQuloS: A QoS Service

for BoT Applications Using Best Effort Distributed Computing Infrastructures.
Technical report.

 13. Pataki, M., and A. C. Marosi. Searching for translated plagiarism with the help
of desktop grids. Journal of Grid Computing 11(1): 149–166, 2013. doi:10.1007/
s10723-012-9224-5. http://dx.doi.org/10.1007/s10723-012-9224-5.

 14. Tantar, A.-A., et al. Docking and biomolecular simulations on computer
grids: status and trends. Current Computer-Aided Drug Design 4(3): 235–249,
2008. doi:http://dx.doi.org/10.2174/157340908785747438.

 15. Docking@Grid Project. http://dockinggrid.gforge.inria.fr/index.html (accessed
July 1, 2013).

 16. Jacq, N., et al. Grid-enabled virtual screening against malaria. Journal of Grid
Computing 6(1): 29–43, 2008. doi:10.1007/s10723-007-9085-5.

 17. Tantoso, E., et al. Molecular docking, an example of grid enabled applications.
New Generation Computing 22(2): 189–190, 2004. doi:10.1007/BF03040958.

 18. Kiss, T., et al. Large scale virtual screening experiments on Windows Azure-based
cloud resources. Concurrency and Computation, accepted for publication, sched-
uled for October 2013.

 19. Gibbins, H., et al. The Australian BioGrid portal: empowering the molecular
 docking research community. Proceedings of the 3rd APAC Conference and Exhi-
bition on Advanced Computing, Grid Applications and eResearch, September
2005, Gold Coast, Australia. http://eprints.qut.edu.au/3780/1/3780.pdf.

 20. Ewing A. (ed.). DOCK Version 4.0 Reference Manual. San Francisco: University
of California at San Francisco (UCSF). 1998. http://www.cmpharm.ucsf.edu/
kuntz/dock.html.

 21. Buyya, R., et al. The Virtual Laboratory: a toolset to enable distributed molec-
ular modelling for drug design on the World-Wide Grid. Concurrency and
Computation: Practice and Experience 15(1): 1–25, 2003. doi:10.1002/cpe.704.

 22. Chemomentum Project. http://www.chemomentum.org/c9m.

237

11
SaaS Clouds Supporting Biology
and Medicine

Philip Church, Andrzej Goscinski, Adam Wong, and Zahir Tari

CONTENTS

Summary ..238
11.1 Introduction .. 238
11.2 Delivering HPC on Clouds ... 240

11.2.1 Supporting HPC Applications in the Cloud 241
11.2.2 Solutions Supporting Research on the Cloud 242
11.2.3 Conclusion .. 244

11.3 A Research Cloud Framework ... 245
11.3.1 Framework Scope ... 246

11.3.1.1 Automation of HPC Application Deployment 246
11.3.1.2 Automation of HPC Application Service

and Web Form Generation ... 247
11.3.1.3 Storage of Application Deployment Information 247

11.3.2 Using the Framework .. 248
11.4 Research Cloud Prototype .. 249

11.4.1 Prototype Overview .. 249
11.4.2 Amazon EC2: The Public IaaS Cloud Service Provider250
11.4.3 The HPCaaS Model: Providing an HPC Service 251

11.4.3.1 Providing an HPC Service Library for Amazon EC2 ... 251
11.4.3.2 Management and Application Access Scripts 251
11.4.3.3 AMIs with Prebuilt HPC Applications 251

11.4.4 Uncinus: An Application Broker and HPCaaS Cloud Solution ... 252
11.4.4.1 Features of Uncinus .. 253
11.4.4.2 Accessing Uncinus ..255

11.5 Case Studies .. 257
11.5.1 Cloud Deployment ... 257
11.5.2 Workflow Execution ..258

11.6 Conclusion .. 263
References ...264

238 Cloud Computing with e-Science Applications

Summary

Cloud computing has started to change the way research in science, in particu-
lar biology and medicine, is being carried out. By utilizing different cloud mod-
els, biological and medical researchers can take advantage of scalable resources
that can be accessed on demand. However, there are also dis advantages in
using the cloud, for example, usability issues in infrastructure-as-a- service
(IaaS) clouds, limited language support in platform-as-a-service (PaaS)
clouds, and lack of specialized services in software-as-a-service (SaaS) clouds.
To resolve known issues, we propose the development of research clouds
for high-performance computing as a service (HPCaaS) to enable research-
ers to take the role of cloud service developer. A prototype of our proposed
cloud framework has been developed and a case study provided that dem-
onstrates how HPCaaS research clouds can simplify genomic drug discovery
via access to cheap, on-demand high performance computing (HPC) facilities.
Cloud-based technologies—in all of their many varieties—have completely
transformed enterprise information technology (IT). These technologies have
revolutionized how users access computational resources, empowering users
with on-demand access to computational resources exposed as services, their
high scalability, and availability, and providing services through easy-to-use
web forms. With the world moving to web-based tools to support business
activities such as share trading and e-commerce, as well as daily life activities
such as online shopping and banking, it is no wonder that computational biol-
ogists and pharmaceutical companies are also moving toward cloud-based
e-science (web-based online science) to conduct their research (Subramanian
2012). This chapter presents an SaaS cloud framework to support genomic and
medical research. By first investigating how HPC is delivered on clouds, the
problems encountered by researchers utilizing the cloud to run HPC applica-
tions are identified. To solve these issues, a research cloud framework is pro-
posed that incorporates aspects of currently used e-science and cloud solutions
that support research (in biology and medicine). This framework simplifies
cloud access and cloud resource management while allowing researchers to
take the role of a cloud service developer. A prototype of our proposed cloud
framework, called Uncinus, was then implemented and validated through a
case study that demonstrates how research clouds can simplify personalized
medicine via access to cheap, on-demand HPC facilities.

11.1 Introduction

In recent years, a number of cloud-enabled tools have been developed to sup-
port e-science, aiming to support collaboration between scientists, make the

239SaaS Clouds Supporting Biology and Medicine

use of computer systems easier, and decrease the time for data analysis. Tools
developed specifically for computational biology research include scientific
workflow systems such as Galaxy (Goecks et al. 2010); web portals for analyz-
ing and sharing genomic data such as expression-package (EXP-PAC) (Church,
Goscinski, and Lefèvre 2012); and dedicated sequence-processing software
such as Bowtie (Langmead et al. 2009). Running these scientific applications,
in many cases, requires a huge amount of computational power to execute
complex algorithms or to process big data. High-performance computing
(HPC) can provide computer facilities that perform the large and complex
simulations and database searches required for research within reasonable
time frames. However, using HPC scientific systems and applications is dif-
ficult for many scientists who are not computing specialists. It is also a natural
expectation of these discipline specialists to be provided with packages/tools
that do not require deep knowledge of programming and system manage-
ment and allow them to use their specialist backgrounds; these packages or
tools should be similar to already available easy-to-use software packages.

HPC requires powerful and expensive computational hardware, data stor-
age, advanced middleware, and sophisticated distributed discipline-oriented
applications. The process of managing HPC resources requires in-depth
system administration skills, for which many scientists are not prepared.
Furthermore, due to their high initial purchase price and maintenance costs,
HPC resources are only affordable for rich institutions. As a result, these
resources are shared by many researchers, which leads to long waiting times
for application execution. Thus, many researchers cannot access HPC infra-
structures when needed; they often scale down their applications to reduce
waiting times. It is these barriers that have hindered many researchers in
achieving innovative discoveries for which they must rely on HPC resources.

A response to the problem faced by discipline specialists lies in cloud
computing (Goscinski, Brock, and Church 2011). Clouds promise to relieve
the pressure put on the demand of affordable, scalable, and on-demand
HPC resources that can provide users faster turnaround times on their
experiments. Providing users faster turnaround times on their experiments
using clouds has been one of the major issues promised to be addressed in a
new version of A Grid and Virtualized Environment (AGAVE) (2012). Public
cloud vendors, including Amazon’s Elastic Compute Cloud (EC2) (Amazon
2010), have provided solutions specifically designed for running HPC appli-
cations. EC2 is an excellent example of an infrastructure-as-a-service (IaaS)
cloud offering raw processing and storage services. Other vendors provide
 platform-as-a-service (PaaS) clouds where users can access an integrated
software platform for building HPC applications themselves as well as run-
ning HPC applications on cloud resources. Examples include Microsoft’s
Azure (Chappell 2009) and Google’s AppEngine (Gibbs 2008). Furthermore,
these clouds also provide the ability to scale on demand as the users’ require-
ments change, accelerating the discovery of new knowledge in various
fields of research. Clouds can also provide software on demand; examples

240 Cloud Computing with e-Science Applications

of software-as-a-service (SaaS) clouds include science cloud, a drug discov-
ery information management technology (Accelrys 2011). Thus, discipline
specialists now have access to on-demand, scalable, and pay-as-you-go HPC
facilities. However, while clouds alleviate the costs of procuring required
information technology (IT) resources, the cost and time of learning how to
prepare an HPC cloud and its applications remain a problem to many users.

The rest of this chapter is divided as follows: Section 11.2 investigates how
HPC applications are delivered on clouds. The types of HPC applications
that suit clouds are examined, as well as how these applications can be pro-
vided to researchers.

Section 11.3 presents a framework for publishing cloud resources and cloud
applications. This framework incorporates methodologies used by current
e-science and research clouds to simplify the development of SaaS applications.

Section 11.4 describes an implementation of the proposed framework. The
outcome of this section is Uncinus, a prototype research cloud that supports
the publication of software and cloud resources.

Section 11.5 consists of a case study in which Uncinus is used to analyze
genomic cancer data. By building a genetic profile of cancer tissues, the can-
cer subtype was identified, which has ramifications in providing personal-
ized treatment for cancer. Through this case study, it is shown how medical
software can be published, exposed, and deployed on cloud resources with-
out the need for complex deployment procedures.

Finally, in Section 11.6 a conclusion of the work carried out and an analysis
of achieved results are presented.

11.2 Delivering HPC on Clouds

To deliver HPC on the cloud, an understanding of the cloud, software to
be run, and cluster management is required. Using this knowledge, the
user must profile the HPC application to be run and select the right cloud
resources. This resource selection process has a large effect on the time and
cost of running HPC applications in the cloud. Once resources have been
selected, the cloud must be configured to enable HPC applications. Most
cloud resources that support HPC are provided at the IaaS level (in the
form of virtual machines). The user must be able to configure these virtual
machines into the form of a cluster, installing middleware and schedulers
and deploying HPC applications. The complexity of enabling HPC on the
cloud is beyond the scope of most biology and medical researchers. However,
solutions exist in the form of e-science applications and research clouds that
aim to lessen the computing knowledge required to carry out research on
HPC resources and the cloud.

241SaaS Clouds Supporting Biology and Medicine

11.2.1 Supporting HPC Applications in the Cloud

Traditionally, clouds have been created for business, not to support HPC.
However, these days, clouds can support some HPC workloads. Clouds are
oriented to support high-scalability computing (HSC) rather than HPC,
although with the improvement of communication performance they are
becoming a major tool for HPC. Like clusters and grids, clouds also capi-
talize on distributed resources for applications. A question could be asked
regarding what kind of HPC applications could be executed on a cloud.
An answer to this question is provided in Figure 11.1 (Mell and Grance 2009).
This figure also specifies the scope of our research in terms of workload and
HPC/HSC clouds.

Some public cloud vendors, including the Amazon’s EC2 (Amazon 2012)
have provided solutions specifically designed for running HPC applications.
EC2 is an excellent example of an IaaS cloud in that computing infrastructures
such as computers, storage devices, and networks are provided to users. There
are also private and community IaaS clouds in Australia, including NeCTAR
(Kirby 2012), that provide on-demand computing resources to academics and
researchers to run HPC applications. Thus, discipline specialists now have
on-demand access to HPC facilities that they need with flexible pay-as-you-go
pricing methods. HPC clouds give users the opportunity to test and run their
parallel applications in the cloud at a price and performance level within
what would otherwise be unviable budget constraints. They also provide the
 ability to scale on demand as the users’ requirements change, accelerating the
discovery of new knowledge in various fields of research. Thus, clouds can
provide discipline specialists faster turnaround times on their experiments.

While the benefits of cloud computing are numerous, delivering HPC on
cloud resources is complicated. Currently, before researchers are able to fully
utilize HPC clouds, they must understand how clouds are designed. Time
must be taken to select cloud resources and enable HPC on the cloud. Selection

Cloud-
HSC

Cloud-
HPC

Grid

HPC

Embarrassingly
Parallel

MPI + high
latency

MPI

FIGURE 11.1
Workflows and HPC/HSC systems.

242 Cloud Computing with e-Science Applications

of the cloud resources has a huge effect on runtime of an HPC application
(Church and Goscinski 2011). Non-HPC-enabled clouds are the ideal platform
for running embarrassingly parallel applications (e.g., common genetic
 analysis applications such as mpiBLAST). Embarrassingly parallel applica-
tions can take full advantage of cloud scalability to reduce the time and cost of
analysis. However, performance studies (Goscinski, Brock, and Church 2011;
Expósito et al. 2013) have shown that, when running communication-bound
applications, clouds should make use of hypervisors with low overhead and
high-speed interconnection.

Once cloud resources have been selected, additional steps must be carried
out to enable the use of clouds as a distributed computing system. The steps
taken are dependent on the cloud service model. At the IaaS level, this involves
construction of a virtual cluster, compilation, and deployment of distributed
software. These tasks were previously the job of system administrators and
are beyond the scope of most discipline (even computing) researchers. PaaS
is aimed at developers, providing users with a development environment
and automating the deployment of resources. The problem of this approach
is that the user has limited access to development tools and programming
languages, thereby limiting the scientific applications that can be deployed.
At the SaaS level, the user is able to access HPC applications through graphi-
cal interfaces; however, the user is reliant on whichever cloud services have
been made available. In specialist research areas such as gene expression
profiling and drug discovery, such software would have expensive licenses
or not be readily available.

In summary, the complex process of selecting cloud resources and con-
figuring the cloud is beyond the scope of most noncomputing researchers.
However, a number of solutions exist to simplify the use of HPC applications
and cloud resources.

11.2.2 Solutions Supporting Research on the Cloud

An analysis of the current state of projects and development of computing-
based packages and tools to support researchers leads to two major areas:
(1) e-science tools based on web application programming interfaces (APIs)
and grids (clusters or clusters of clusters) and (2) research clouds, in particu-
lar research applications exposed as cloud services (SaaS). Through e-science
tools, researchers can run complex software without directly interacting with
computing resources; examples include HubZero, P-GRADE, and AGAVE.

HubZero (McLennan and Kennell 2010) is an open-source software plat-
form for creating dynamic websites that support scientific research and educa-
tional activities and promote scientific collaboration using primarily the grid
infrastructure. By using HubZero, a scientific gateway (website) containing
discipline-specific resources, including software applications as well as data
repositories, can be formed, and users of the scientific gateway can contribute
by putting their own applications and data into the gateway for sharing.

243SaaS Clouds Supporting Biology and Medicine

The P-GRADE Grid Portal (Kacsuk 2011) is a web-based, service-rich environ-
ment for the development, execution, and monitoring of workflows and
workflow-based parameter studies on various grid platforms. P-GRADE
Portal hides low-level grid access mechanisms by high-level graphical inter-
faces, making even non-grid expert users capable of defining and executing
distributed applications on multi-institutional computing infrastructures.
Workflows and workflow-based parameter studies defined in the P-GRADE
Portal are portable between grid platforms without learning new systems or
reengineering program code.

AGAVE (2012) is a software development tool, developed by the Texas
Advanced Computing Center (TACC). AGAVE seeks to make the separation
of science and computing a bit easier by providing a set of REST APIs for
performing distributed and grid computing. AGAVE excels in its ability to
provide a holistic view of distributed heterogeneous systems that may span
organizational domains into a single, cohesive platform on which modern
web applications can be built. The next version of AGAVE promises to include
new types of systems, such as public and private clouds, to give users faster
turnaround times on their experiments.

While e-science applications are easy to use and thus appealing to research-
ers, they are time consuming and require specialized knowledge to develop.
Similar to e-science applications, SaaS allows researchers to access complex
software with minimal computing knowledge. Development of SaaS is per-
formed through research clouds that focus on simplifying access to cloud
resources while leaving software development and exposure to a service
provider. Examples of research clouds include Aneka, extensions to Globus
and Nimrod, and the HPC Hybrid Deakin (H2D) cloud.

Aneka (Calheiros et al. 2012) is a framework for development, deployment,
and management of cloud applications. Through a middleware approach,
it provides modules to monitor cloud resources. Development in Aneka
makes use of predefined programming methods (Task, Threads, MapReduce,
and Parameter Sweep), each with different scheduling and execution method-
ologies. Aneka relies on a software engineer to develop and expose services.

Recent work from the University of Chicago (Liu et al. 2012) deployed a
bioinformatics workflow across local and Amazon EC2 resources. Combining
the features of Galaxy and Globus allows for a robust research cloud that sup-
ports automated graphical user interface (GUI) generation, software sharing,
and workflow deployment. During workflow deployment, data were trans-
ferred through a web interface and resources selected manually through
 creation of a topology file.

Work by Bethwaite et al. (2010) extended the Nimrod tool family to support
the Amazon EC2 cloud, allowing access to grid and cloud resources. Four
methods of scheduling are available based on user requirements: limited by
budget (time), unlimited budget (time optimal), limited by time (cost), and
limited by budget and time (none). Nimrod scheduling divides resources

244 Cloud Computing with e-Science Applications

into slots based on the processor cores per instance and number of cores
required per job.

The last solution is the H2D cloud (Brock and Goscinski 2012), which pro-
vides services to discover compute resources and deploy data and appli-
cations. This cloud platform is capable of utilizing both local and remote
computational services for single large, embarrassingly parallel applications.
In this solution, compute resources are published to a dynamic broker ser-
vice that monitors the state of available compute resources.

By providing scientific software at the SaaS level, it is possible to mini-
mize the computational knowledge requirements needed to access cloud
resources. SaaS eliminates the time-consuming tasks of software deploy-
ment and hardware setup/management, in particular resource selection and
allocation; however, due to the specialized nature of state-of-the-art research,
there is limited incentive for attracting cloud software service providers.

11.2.3 Conclusion

While originally their purpose was to support business applications, cloud
providers have moved to support HPC applications. These HPC clouds
have large amounts of memory, computing power, and high-speed network
interconnections. By using these clouds, users can access HPC resources on
demand without the need for supporting staff or purchasing expensive hard-
ware. However, to deliver HPC on the clouds, a complicated setup process
must be undertaken. Care must be taken to select cloud resources that suit
the HPC application being run. Cloud resources must then be configured
to allow HPC applications to be run; often, this involves the construction
and management of a virtual machine cluster. The computing knowledge
required to configure, access, and use cloud resources makes clouds unsuit-
able for the majority of researchers.

To support research on clouds, access to resources and complex software
must be provided to researchers with limited computing background. Two
areas that have shown success in bridging the knowledge gap between com-
puting and research are e-science and research clouds. The approach taken
by e-science applications and research clouds relies on the abstraction of
computing resources from the application logic. While the tools generated
from these approaches appeal to researchers, they are not an ideal solution
for specialized research. The development of e-science applications requires
a multidisciplinary skill set, while the research cloud approach relies on
financially motivated providers.

The investment required to develop services for specialized research areas
(with a limited market) is not attractive for service providers looking to make
a profit. Therefore, the solution is to devise a research cloud that enables
researchers to take the role of cloud developer. This research cloud should
implement scheduling and execution as well as enhanced features relating
to service composition and resource discovery. Such a cloud can incorporate

245SaaS Clouds Supporting Biology and Medicine

the features found in e-science packages: the application sharing supported
by HubZero, P-GRADE’s low-level abstraction methodology, and AGAVE’s
separation of scientific logic from computing. A potential cloud solution was
investigated through the development of a research cloud framework.

11.3 A Research Cloud Framework

Known issues can be resolved by developing a unified cloud framework that
allows researchers to easily deploy and expose HPC scientific applications
in public clouds as services (Wong and Goscinski 2013). Each of these SaaS
cloud services is such that it abstracts both the complex deployment effort
and the tedious command line execution style of HPC scientific applications
into just a web form for scientists to comfortably perform computational
research in the clouds.

The basis of our cloud solutions is a framework (see Figure 11.2) that aims
to deliver HPC applications to scientists as SaaS cloud services. This frame-
work enables two different processes: cloud software development and
cloud service publication. During cloud software development, each HPC
application is described by a set of attributes and their associated values.
Three major attributes of an application service are (1) a virtual machine
image where a targeted HPC application has been properly installed and
configured, (2) a web form where parameters for the HPC application
would be collected and then passed to the API of the HPC application, and
(3) a host location for service invocation, (e.g., SaaS resources). During cloud
service publication, these attributes are published to an HPC application

HPC Application

HPC Application
Service and Web-
form Generation

Publishing

SaaS Cloud

IaaS Cloud

Accessing Yes

No

Service
Discovery

HPC Application
Service Registry

Deploying

HPC Application

HPC Resources

HPC Application Service

Virtual
Machine Image Web Form

User

FIGURE 11.2
An overview of HPC cloud framework.

246 Cloud Computing with e-Science Applications

services registry. The HPC application services are proposed to be stored in
such a manner that their discovery and selection are easy. This implies that
the invocation advice and at least two attributes of an application service,
its host location (SaaS cloud) and its web form, must be published. It is pro-
posed to employ a dynamic broker (Brock and Goscinski 2009; Goscinski
and Brock 2010) of resources and services to publish application services,
thus allowing other end users to learn of the newly deployed application.

11.3.1 Framework Scope

In response to the major problems faced by discipline specialists in using
HPC clouds (see Section 11.2), three services are proposed: (1) automation of
HPC application deployment, (2) automation of HPC application service and
web form generation, and (3) HPC application service registry and formation
and application of a wiki-like knowledge base for interface regeneration and
HPC application customization. These research areas and the relationships
among them form our cloud framework.

11.3.1.1 Automation of HPC Application Deployment

To enable SaaS development by biology and medical researchers, there is a
need to automate aspects of the HPC application deployment. Supporting
this application deployment process requires at least two levels of abstrac-
tion: (1) low-level deployment that consists of methods to install and config-
ure an HPC application in a virtual machine and (2) high-level deployment
that consists of methods to save an image of the preconfigured virtual
machine and construct an API of the HPC application that together form a
deployable unit.

Low-level deployment focuses on automating the installation and configu-
ration of any software application on any computer system. The most com-
mon approach taken to automate low-level deployment is seen in package
management systems such as the Advanced Packaging Tool (APT) for the
Debian GNU/Linux distribution and its variants (Calinou 2012). These tools
automate the retrieval, configuration, and installation of software packages,
either from binary files or by compiling source code. However, such methods
are focused on single machines and are not designed for remote installation on
HPC clusters . To enable automated deployment of HPC applications on clouds
requires secure access to remote resources and automated resource selection.

High-level deployment focuses on automating virtual machine construc-
tion and configuration. Methods encapsulate an HPC application into a
virtual machine image and an API of the HPC application; this will form
a deployable unit that can be exposed and easily accessed by users as an
SaaS cloud service. To support high-level deployment in the cloud, there is a
need for tools that can set up an HPC execution environment consisting of

247SaaS Clouds Supporting Biology and Medicine

software library dependencies, compilers, schedulers, and HPC middleware
in a virtual machine environment. Compatibility with low-level deployment
will allow for services to be built from the virtual machine level, with soft-
ware configured and deployed on top of standard virtual machine templates.

11.3.1.2 Automation of HPC Application Service and Web Form Generation

To turn deployed applications and virtual machines into services, they
need to be exposed through a graphical interface. The development of inter-
faces allows for the abstraction of both the application deployment and the
command line execution style of HPC cloud applications. To simplify this
process, a mechanism is required to automatically transform any HPC appli-
cation, IaaS cloud execution ready, into an easy-to-use service to be executed
in SaaS clouds (Brock and Goscinski 2009).

In the framework, each application is described by a set of attributes and
their associated values. The three major attributes of an exposed application
service are (1) the location of the virtual machine image where a targeted
HPC application has been properly installed and configured, (2) input and
output parameters for the HPC application, and (3) service invocation infor-
mation (e.g., an SaaS cloud service, which was selected by the user and infor-
mation on how to invoke it). Using the application attributes described, an
interface can be derived. Application parameters can be used to form the
controls to specify input and collect results. Through these controls, users
must be able to upload data and invoke services. Uploading and download-
ing data make use of the virtual machine location, while invoke services
require execution scripts, taken from the service invocation information.

11.3.1.3 Storage of Application Deployment Information

Combining the automation of application deployment and automation of
interface generation allows for the construction of HPC application services.
To enable sharing of HPC application services between researchers, this
framework requires the construction of an HPC application services registry.
Each HPC application service is proposed to be published and stored in such
a manner that their discovery and selection are easy. This implies that the
invocation information and at least two attributes of an application service,
its host location (SaaS cloud) and its web form, must be published.

To enable publication of resources and applications, development of a
dynamic broker is proposed (Goscinski and Brock 2010; Brock and Goscinski
2012); this will allow other end users to learn of the newly deployed services.
Deployed and exposed HPC applications as SaaS cloud services should be
easily discoverable and selectable by users. The proposed use of a registry
will allow users to discover and select the required services. By storing appli-
cation information, it is possible to build a repository of common analysis

248 Cloud Computing with e-Science Applications

processes and workflows. This repository can have significant impact on
time required of service providers and end users, as deployment information
is stored and reused. Depending on the type of service published to the reg-
istry, different attributes are required. Publication of resources requires the
location (DNS, domain name system), and cloud access information (secure
shell [SSH] keys, location, and file system layout). Publication of applications
requires the input/output details of the application, invocation information,
and hardware requirements (operating system [OS], RAM, central process-
ing unit [CPU], network, etc.).

11.3.2 Using the Framework

In the proposed framework, when a user wants to conduct a scientific dis-
covery by executing HPC applications on clouds, the user first contacts the
HPC application service registry. The outcome of the service discovery and
the user’s preference of the HPC application service for the targeted HPC
application can lead to two different scenarios for the user.

In the first scenario, particularly in the case of a discipline researcher who
does not have programming and system administration skills, the HPC
application service of the user’s interest is found. On selection of the cloud
service, resources are selected, and the application deployment service sets
up and configures the cloud. While this is happening, the automated inter-
face generation service constructs a user-friendly discipline-specific inter-
face for the requested HPC application service. Access to the cloud service is
conducted through the generated interface.

In the second scenario, the HPC application service of the user’s interest
is not found. The user, who has programming and system administration
skills, would have to deploy a new targeted HPC application in an IaaS cloud.
The proposed automatic HPC application deployment system can automate
parts of this process. The outcome of this process would be either a virtual
machine image that contains a copy of the properly installed and configured
HPC application or a software service (consisting of input/output, invocation
information, and hardware requirements) that can be deployed on a virtual
machine. At this stage, the cloud service published in the HPC application
service registry is readily accessible in an IaaS cloud. The new cloud service
generated by the automatic HPC application deployment system is stored for
future use in the HPC application service registry. In the next stage, the user
can employ the automatic HPC application service and web form generation
system to automate the formation of an HPC application service exposing the
corresponding HPC application. The HPC application service is abstracted
by a virtual machine image and a user-friendly discipline-specific interface
that is published in the HPC application service registry and could allow the
user to easily access the targeted HPC application in an SaaS cloud.

249SaaS Clouds Supporting Biology and Medicine

11.4 Research Cloud Prototype

A prototype of the proposed cloud framework was developed by integrating
three components: (1) Amazon EC2 (public IaaS cloud), which provides HPC
infrastructure; (2) an HPC service software library (Church, Wong, Brock,
and Goscinski 2012) for accessing HPC resources from an IaaS cloud; and
(3) an application broker as a web-based platform (Uncinus) for accessing
and exposing HPC applications.

11.4.1 Prototype Overview

The overview of the prototype design demonstrating the relationships
among the Amazon EC2 service, the HPC software library, and the applica-
tion broker, is shown in Figure 11.3. Also shown in Figure 11.3 is our view
of the cloud service stack where different cloud services would be found.
At the bottom (IaaS) layer, the Amazon EC2 was used to provide cloud
infrastructure services. Supported HPC applications are installed in virtual
machines, and their images are saved and stored in Amazon EC2.

In the middle (high-performance computing as a service, HPCaaS) layer,
an HPC software library was developed to expose and access Amazon EC2
services. The software library provides users a higher level of HPC services,
such as constructing and managing computer clusters. A web form exposes
the operations of the HPC software library, allowing the user to start cloud
jobs (selecting the type and amount of resources that are required) and

HPC
Application

HPC
Software
Library

HPC
Application

API

HPC Application Service

Web Form

Web Form
Exposed as

Tools

Tools

Exposed as

Application
Broker

SaaS Layer

IaaS Layer

HPCaaS Layer

Cloud Service Stack

VM
Image

Amazon EC2 Service

HPC Service

FIGURE 11.3
Implementation overview of HPC cloud framework.

250 Cloud Computing with e-Science Applications

terminate resources when jobs are complete. This HPC software library
interface is made available through the application broker.

On the top (SaaS) layer, a service for supporting HPC application deploy-
ment was developed as follows: First, an API of the HPC application was
constructed. This API acts as a program stub for its corresponding HPC
application, which, when deployed, is installed in a virtual machine on the
Amazon EC2 cloud. Second, a web form exposing the HPC application ser-
vice is generated. This HPC application service can then be published to the
applications broker to be exposed as a software service. It should be noted
that each HPC application service would access the HPC services in the
HPCaaS layer and the HPC application installed and stored in a VM image
at the bottom IaaS layer through its web form.

The components that make up the framework are described in more detail
in the following sections. Section 11.4.2 presents the operation of Amazon EC2,
which provides cloud infrastructure services to the research cloud prototype.
Section 11.4.3 describes the construction of the HPCaaS model and how it is
able to abstract Amazon EC2 resources. Section 11.4.4 describes the construc-
tion of a research cloud called Uncinus; this cloud provides an application
broker to deploy and expose applications. Uncinus also exposes the services
provided by the IaaS and HPCaaS layers through easy-to-use web interfaces.

11.4.2 Amazon EC2: The Public IaaS Cloud Service Provider

Amazon EC2 provides various computer instance types specifically designed
for running HPC applications. Our work has utilized the elastic compute
cloud services and the elastic block store services to deploy and run HPC
applications. The simplest way to use the EC2 services is by accessing the
Management Console (Amazon Web Services [AWS] 2013). After logging on
to the AWS Management Console, a user can carry out HPC activities with
EC2 by performing the tasks of

 1. Selecting the desired Amazon Machine Image (AMI) and launching
computer instances;

 2. Installing and configuring software;
 3. Establishing connection to the computer instances, running applica-

tions, and handling data transfer;
 4. Terminating computer instances and releasing resources.

This approach of accessing a public HPC cloud service is quite ad hoc
and could be tedious for discipline scientists who have little background in
HPC. On top of the work in launching, connecting, and terminating AWS
computer instances, discipline scientists are also forced to deal with many
details to set up and configure an HPC cluster and install middleware and
software applications before the system is available for any actual scientific

251SaaS Clouds Supporting Biology and Medicine

investigation. For this reason, we have developed the HPCaaS model and
implemented its software libraries, which provide high-level functions for
obtaining HPC resource from IaaS clouds.

11.4.3 The HPCaaS Model: Providing an HPC Service

We have proposed an enhanced cloud service model by including the
HPCaaS layer (see Figure 11.3), to abstract HPC resources, including both the
hardware (networks, storage, and servers [physical/virtual]) and the software
(operating systems, middleware, and user-level HPC applications). This
implies that these HPC resources can be exposed to the cloud community
as service software libraries. These software libraries are (1) a set of virtual
machine images with prebuilt HPC applications and (2) a set of program
scripts that can be used to create, manage, and terminate a computer cluster.
They support accessing HPC applications and transferring data between
users and the computer cluster.

11.4.3.1 Providing an HPC Service Library for Amazon EC2

For each of the IaaS cloud service providers, the corresponding HPCaaS
 services are grouped together and packaged as a service library. In this case,
the HPC service software library for Amazon EC2 is implemented. Currently,
we have provided its implementation on the Linux platform.

11.4.3.2 Management and Application Access Scripts

To implement the cluster management and HPC-application accessing
scripts of the HPC service software library, the EC2 command line tools
(Kay 2012) are used. The only dependencies are Perl and CURL, which are
normally included in many Linux distributions. Due to the use of the EC2
command line tools, the HPCaaS model is compatible with Amazon-like
clouds that support the same API. Examples of such clouds include private
clouds OpenStack (OpenStack Project 2012), Eucalyptus (Nurmi et al. 2009),
and research cloud NeCTAR (Kirby 2012).

Through the command line tools, we have implemented a set of bash shell
scripts to handle features such as HPC cluster creation and termination,
HPC-application job submission, and retrieval of results of HPC-application
execution (Wong and Goscinski 2012). A list of selected bash scripts is shown
in Table 11.1.

11.4.3.3 AMIs with Prebuilt HPC Applications

When accessing any HPC application in the proposed cloud framework,
an HPC cluster must be created and started on EC2, where two pieces of
information are required: (1) an AMI for creating instance(s) and (2) the

252 Cloud Computing with e-Science Applications

total number of instances for the HPC cluster. The former contains all infor-
mation necessary to boot instances of software, such as operating system,
middleware, and a specific HPC application. The latter quantifies the size
of the HPC cluster, which in turn defines the maximum computing power
to be provided.

Although there is a large collection of public AMIs available from Amazon
and the EC2 community, it is the responsibility of an HPCaaS service pro-
vider to provide a customized AMI for each HPC application it supports.
In our example, all AMIs provided in the HPCaaS service library for Amazon
EC2 run the Ubuntu Linux operating system, the OpenMPI middleware,
and Linux-based open-source HPC applications. These AMIs have been
made publicly accessible. Users can access them by referencing the AMI IDs.
Consequently, the construction of an HPC cluster and the installation and
configuration of an HPC application has been abstracted into selecting an
AMI from Amazon to use.

11.4.4 Uncinus: An Application Broker and HPCaaS Cloud Solution

Uncinus integrates the HPCaaS libraries into a web platform, allowing
researchers access to Amazon EC2 resources configured for HPC. To imple-
ment the features described in the framework, a number of services are
provided. These services fall into the SaaS and HPCaaS layer previously
described (see Figure 11.4). The SaaS layer provides application broker func-
tionality through the Application to Interface Parser (AIP) and Resource
Deployment Recorder (RDR); these services write data to the mySQL data-
base management system (DBMS). The HPCaaS layer provides the function-
ality to configure cloud resources for HPC and deploy applications. Cloud
resources configured for HPC are provided by the Cloud Resource Allocation
(CRA) service, while application deployment is supported through the
Secure Data Transfer (SDT) service. The CRA service incorporates the access
scripts developed as part of the HPCaaS model (see Section 11.4.3.2) and as
such interacts with Amazon EC2 using the Amazon API.

TABLE 11.1

Selected Management and Application Access Scripts

Shell Script Description

awsConnect
[-n number]

Connect to Amazon EC2 and start n number of Cluster Compute instants
(an EC2 cluster)

awsReady Check readiness of the EC2 cluster created for accepting instructions
awsTerminate Terminate the EC2 cluster created
awsRun Run an HPC application in an EC2 cluster
awsTransfer Transfer file(s) to an EC2 cluster
awsCheck Check readiness of the result
awsCollect Collect result files from Amazon to a local host for postprocessing

253SaaS Clouds Supporting Biology and Medicine

The application broker allows an application service provider to publish AMIs
or applications. To publish an AMI, a machine image identifier, username, and
working directories need to be provided. When publishing applications,
the machine image identifier in which to install the package, installation
instructions, any required installation files, a list of input arguments, and
output controls need to be provided. The RDR stores these data in a mySQL
database on behalf of the cloud service provider. The AIP service translates
the input arguments recorded by the broker into equivalent web controls,
allowing for dynamic interface generation. End users accessing the Uncinus
system can select from the published AMIs and application modules to cus-
tomize their cloud deployment.

The HPCaaS model communicates with Amazon EC2 to provide cloud
resources to the user. When a user starts a cloud job, the CRA module creates
the necessary private keys and security groups before requesting resources
from Amazon EC2. Once the CRA can successfully access the virtual
machine, the SDT module is used to deploy application modules to the virtual
machine instance.

11.4.4.1 Features of Uncinus

Uncinus combines the HPCaaS model with an application broker to pro-
vide the features of the framework detailed in Section 11.3. Automated

Amazon EC2

Secure Data
Transfer

Compute
Resource
Allocator

Argument to
Interface

Parser

mySQL DBMS

Uncinus Interfaces

Resource
Deployment

Recorder

SSHAmazon API

IaaS Layer

HPCaaS
Layer

SaaS
Layer

Graphical
Interface

FIGURE 11.4
Uncinus software overview.

254 Cloud Computing with e-Science Applications

application deployment is provided by the HPCasS layer through the
CRA and SDT services. Automated interface generation is provided by
the SaaS layer through the AIP service. Application deployment storage
is also provided through the SaaS layer using the RDR service. The auto-
mated application deployment services are implemented through use of
the HPCaaS model and the RDR service. When deploying cloud resources,
the cluster management and HPC-application accessing scripts developed
as part of the HPCaaS model are utilized. Uncinus exposes these scripts
through a graphical interface, allowing for users to select the number and
type of cloud resources required. When deploying application resources,
the HPCaaS model configures cloud resources and the RDR service carries
out software deployment. Supporting application deployment is an attri-
bute resource selection method. This resource selection method uses pub-
lished application requirements to identify the optimal cloud resources to
carry out the requested software service.

Automated interface generation is provided through the AIP service,
which translates published deployment data into web interfaces. For an
interface to be automatically generated, each input and output argument
must be given a type. To support the typing of program arguments, the AIP
service is designed around an XML-like language. Through this language,
a user can define a number of common input and output types, including

• <upload>—Secure transfer of data files; the service provider can
specify the file name.

• <text>—A text-based argument, which is substituted into the execu-
tion script when the service is invoked.

• <config>—Exposes a configuration file through a text control, allow-
ing for direct manipulation of services. This type of control is often
used to expose and configure tools, such as databases and web servers.

• <webpage>—Exposes existing web interfaces; used when deploying
web server applications on the cloud.

When a service is invoked through Uncinus, input arguments and outputs
are passed to the AIP service. The resulting web form contains controls, created
based on the typing information.

Application deployment storage is implemented by linking the RDR service
with a relational database, resulting in the deployment of an application
 broker. This broker supports publication of not only applications but also
cloud resources as services. The publication process differs depending on
the type of service that is deployed. Publication of applications as a ser-
vice requires installation information, execution information, and applica-
tion requirements to be specified. Publication of cloud resources is simpler
than software, requiring only the cloud location and deployment informa-
tion. Users publish and access applications as services through a series of

255SaaS Clouds Supporting Biology and Medicine

web interfaces, the appearance and operation of which are described in
Section 11.4.4.2.

11.4.4.2 Accessing Uncinus

Access to Uncinus features are provided through easy-to-use web interfaces.
Through these interfaces, users can publish software and cloud resources as
a service and access published services through the broker, which incorpo-
rates automated application deployment.

The interface used to publish applications is seen in Figure 11.5. Using this
interface, a service provider begins by assigning a descriptive name to the
application service (Application Name); this name is used during application
discovery. For each application, the broker stores the installation procedures
(Install Script) and running procedures (Running Script) to be undertaken on
remote compute resource(s). Files required by the application service are also
stored by the broker (Files); stored files could be source code, binaries, or appli-
cation data. Stored files can be accessed during the installation and execu-
tion procedures. Service providers must provide the broker with information
on how to invoke the application service (AppLocation). Information about
how input parameters (Arguments) and expected program output (Results)
are displayed is stored as XML. Optionally, additional usage information
about the application (Manual) can be published. Finally, each application

FIGURE 11.5
Uncinus application publication interface.

256 Cloud Computing with e-Science Applications

service must define hardware requirements and the amount of resources
utilized during execution. The broker stores the required operating system
(Operating System); CPU utilization, consisting of number of nodes, cores,
and clock speed (CPU); and memory utilization in gigabytes (RAM). On suc-
cessful publication, the service can be flagged for public viewing (Published).

The interface used to publish virtual machines is shown in Figure 11.6.
Using the provided interface, the service provider specifies the location of
the virtual machine instance using an identifier given by the cloud provider
(Amazon ID). The instance types that each virtual machine supports are also
provided (Instance Types); from the instance type, cost and the hardware
specification of each virtual machine can be determined.

The interface used to invoke services is shown in Figure 11.7. Through
this interface, a user is able to give a descriptive name to a job for iden-
tification purposes. Users then select from published resources to create
a pool of hardware; any number of published virtual machines can be
added to the pool. Optionally, users can also select from a list of public
(and their private) software services (Application Modules). Once cloud
resources and application modules are selected, the service can be invoked
by clicking the “Submit Job” button. During the deployment process, the
selected pool of resources is allocated and made ready for HPC execution.
If a software service has been selected, resources are selected and config-
ured for the application. The user is then directed to the graphical inter-
face generated using the automated interface generation parser, exposing
the service controls.

FIGURE 11.6
Uncinus virtual machine image publication interface.

257SaaS Clouds Supporting Biology and Medicine

11.5 Case Studies

Using the prototype, a case study was carried out that demonstrates how
cloud platforms can simplify genomic drug discovery via access to cheap,
on-demand HPC facilities. An EXP-PAC (Church, Goscinski, and Lefèvre
2012) image was created, deployed, and exposed through our cloud frame-
work prototype. Using EXP-PAC, genetic cancer tumor data is analyzed and
annotated. These annotated data are used to create a gene expression profile.
The generated gene expression profile is an initial step in the identification of
the cancer subtype and possible treatment methods (Beltran and Rubin 2013).

11.5.1 Cloud Deployment

To deploy software as services using the HPCaaS model described, cloud
images must be created and then exposed through Uncinus. Cloud images
are derived from preexisting templates and stored by the cloud provider
(in this case, Amazon EC2). Each image is given a unique identifier by
Amazon, which is then published to Uncinus. On invoking the published
virtual machine service, Uncinus communicates with the Amazon cloud,

FIGURE 11.7
Uncinus service selection interface.

258 Cloud Computing with e-Science Applications

requesting the stored image and the required number and type of resources.
This deployment procedure was carried out for EXP-PAC.

To set up the EXP-PAC cloud image, a complex deployment procedure is
carried out (see Figure 11.8). First, an Ubuntu server AMI is selected from
the Amazon EC2 web interface and launched. Second, as this image is not
from a trusted source, steps must be taken to ensure the image has not
been compromised. Antivirus scans are performed, and the Ubuntu image
is updated to ensure there are no vulnerabilities. Next, using the Ubuntu
software repository, LAMP is installed; this software package contains the
principal components (APACHE, PHP, and mySQL) to build a viable general-
purpose web server. PHP and APACHE are configured, increasing the POST
and upload data limit to support large data upload and analysis. EXP-PAC is
then placed into the web server directory and configured to use the mySQL
database. To enable the HPC features of EXP-PAC, openMPI and bioconduc-
tor are also deployed on this server. The Amazon cloud image is then stored
in its modified form for future use.

Publication of the EXP-PAC virtual machine image to Uncinus was per-
formed through a web interface (see Figure 11.9). The virtual machine publi-
cation interface allows users to specify information about the published cloud
image that is used during deployment. The attributes required to publish a
virtual machine image are the AMI ID of the cloud image, a description of
the published cloud image, the supported instance types of the image, log-in
information, the home directory, and the OS utilized by the cloud image.

11.5.2 Workflow Execution

Once software has been deployed on the cloud, users can execute exposed
applications through published interfaces. To utilize the HPC normalization
methods provided by EXP-PAC, this case study was run on four cluster
 compute instances (64-bit, dual-quad core; 23 GB RAM).

Breast cancer tumor RNAseq data (GSM721140) was downloaded from
the National Center for Biotechnology Information (NCBI). These data con-
tained 44.8 million sequence fragments, which were mapped (aligned) to the
human reference genome. To be analyzed, a number of preprocessing steps
were carried out on the data. First, SAMtools (Li et al. 2009) was used to
 convert the downloaded data to a human-readable format. The converted
data were imported into HTSeq (Anders 2010) (run in union mode, non-
stranded), by which sequence fragments that matched known genes were
sorted and counted. The output of HTSeq was a list of genes and the amount
of times they appeared in the tumor.

In addition to the list of expressed genes, it was necessary to identify the
amount of mutations that had occurred in each gene. A mutation score was
given to each sequence by counting the bases that differed from the reference
genome. This process resulted in the creation of two data sets, a count of present

259SaaS Clouds Supporting Biology and Medicine

FIGURE 11.8
EXP-PAC Amazon machine image setup.

260 Cloud Computing with e-Science Applications

genes and a file containing mutation scores for each gene. These data sets were
normalized and uploaded into EXP-PAC using web interfaces (see Figure 11.10).

Using the work of the Cancer Genome Atlas Network (2012), a list of genes
was defined for each subtype of cancer: luminal A, luminal B, basal-like,
and human epidermal growth factor receptor 2 enriched (HER2E) (see
Table 11.2). The luminal A and B signatures overlap, both involving the muta-
tions of tumor protein 53 (TP53), Phosphatidylinositol 3-kinase (PIK3CA),
and mitogen- activated protein kinase kinase kinase 1 (MAP3K1). However,
luminal A can be identified through the mutation of GATA binding factor 3
(GATA3) and Forkhead Box protein (FOXA1), which are unique to this cancer
 subtype. Basal-like tumors have high levels of mutation in the TP53, retino-
blastoma 1 (RB1), and breast cancer 1 early onset (BRACA1) genes. HER2E

FIGURE 11.10
EXP-PAC data upload interface.

FIGURE 11.9
EXP-PAC publication process.

261SaaS Clouds Supporting Biology and Medicine

differs from other subtypes by having a high level of PIK3CA mutations and
lower frequency of phosphatase and tensin homolog (PTEN) mutations.

As there are significant overlaps in the gene signatures of these cancer sub-
types, to improve the accuracy of analysis, nonmutated genes can be utilized.
The genes in Table 11.3 are known to be expressed in a nonmutated form in
cancer tumors. By utilizing the list of mutated and highly expressed genes, it
is possible to improve the accuracy of diagnosis.

The mutated gene list (see Table 11.2) and highly expressed gene list
(see Table 11.3) were loaded into EXP-PAC. Using these lists, queries were
performed on the breast cancer data set (see Figure 11.11). For each breast
cancer subtype, mutated genes were identified by performing a keyword
search for genes in the mutated gene list and looking for results with high
mutation scores. Highly expressed genes were identified through a keyword
search of gene symbols, this time looking for genes that appeared more than
once. To ensure that displayed genes were present in the tumor data, the
intensity filter was set to return genes with an intensity greater than 0.

Results (see Table 11.4) showed that, out of the genes known to undergo
mutation during breast cancer, only TP53 was expressed in a mutated
form. Mutated genes common to other subtypes were not present, which is
indicative of a basal-like breast cancer tumor. Examining the expression of

TABLE 11.2

List of Mutated Genes Indicative of Each
Breast Cancer Subtype

Luminal A Luminal B Basal-like HER2E

TP53 TP53 TP53 TP53
PIK3CA PIK3CA RB1 PIK3CA
MAP3K1 MAP3K1 BRCA1 PIK3R1
GATA3 PTEN
FOXA1

TABLE 11.3

List of Highly Expressed Genes Indicative of
Each Breast Cancer Subtype

Luminal A/B Basal-like HER2E

ESR1 PIK3CA FGFR4
XBP1 KRAS EGFR
MYB EGFR HER2
RB1 FGFR1 GRB7

FGFR2 GATA3
KIT BCL2
MET ESR1
PDGFRA

262 Cloud Computing with e-Science Applications

nonmutated genes known to be present in basal-like breast cancer tumors
(see Table 11.5) further validated this finding. Four of eight known basal-
like indicative genes were shown to be present in the GSM721140 data
set. Two genes, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog
(KRAS) and epidermal growth factor receptor (EGRF), were shown to be
highly regulated, while fibroblast growth factor receptor 2 (FGFR2) and
mesenchymal-epithelial transition factor (MET) were present.

TABLE 11.4

Mutated Genes Present in the
GSM721140 Data Set

Gene Symbol Counts Mutation Score

TP53 4 3
PIK3CA 0 0
MAP3K1 0 0
GATA3 0 0
FOXA1 0 0
PTEN 0 0

TABLE 11.5

Basal-like Indicative Genes Present
in the GSM721140 Data Set

Gene Symbol Counts Mutation Score

KRAS 7 2
EGRF 2 0
FGFR2 1 0
MET 1 1

FIGURE 11.11
EXP-PAC query interface.

263SaaS Clouds Supporting Biology and Medicine

11.6 Conclusion

Cloud computing can benefit biology and medical studies by support-
ing collaboration with other scientists and providing cheap access to large
amounts of HPC resources. However, utilizing these HPC cloud resources
requires users to undertake a complex setup procedure that consists of cloud
resource selection, configuring cloud resources for HPC, and application
deployment. Researchers looking to take advantage of cloud computing to
carry out HPC analysis require an understanding of cloud architecture, soft-
ware to be run, and cluster management, which is beyond the scope of most
researchers. While e-science and research cloud solutions simplify access
and execution of applications on HPC resources, they do not solve the dif-
ficulties in developing and exposing analysis tools. As such, researchers still
require enough computing knowledge to utilize and manage large amounts
of HPC cloud computing resources, or they become reliant on financially
motivated cloud service providers. In response to this problem, the following
question was asked: How can a researcher with limited computing knowl-
edge become a cloud service provider?

An SaaS cloud framework was developed with the aim to simplify the pro-
cedures undertaken by service providers, in particular during service deploy-
ment and exposure. By identifying and automating common procedures, the
time and knowledge required to develop cloud services is minimized. Three
procedures were identified and became the focus of automation: applica-
tion deployment, interface generation, and service storage. By automating
application deployment, the computing knowledge required by biology and
medical researchers to access cloud software is reduced. By automatically
deriving an interface from the inputs and outputs of a service, the program-
ming requirements to expose software as a service are reduced. Finally, by
providing service storage, the time taken for analysis is reduced (through the
reuse of deployment information).

Implementation of the SaaS cloud framework was realized in the form of
Uncinus, a research cloud prototype compatible with Amazon EC2. Fulfilling
the requirements of automated application deployment required that cloud
resources be configured for HPC. To support this functionality, a new cloud
model called HPC as a service (HPCaaS) was proposed that automatically
configures cloud resources for HPC. To support automatic interface genera-
tion, an XML-based language was developed, as was a parser to translate
inputs and outputs to web interfaces. To fulfill service storage requirements,
an application broker was built for clouds that supported publication of cloud
resources and software services. By implementing features of the framework,
Uncinus benefits biological and medical researchers by simplifying the pro-
cess of developing and deploying software on cloud resources configured
for HPC. Cloud services can be built by publishing attributes (input/output,
computational requirements, etc.) through easy-to-use web interfaces.

264 Cloud Computing with e-Science Applications

Using Uncinus, a case study was carried out that utilized personalized
genomics analysis to perform diagnosis of a patient’s breast cancer tumor
to identify targeted drug treatment strategies. During this study, genomic
analysis tools were installed onto a cloud resource. This cloud resource was
then published, deployed, and exposed though Uncinus with minimal user
interaction. This case study clearly demonstrated how the automated pro-
cedures (proposed by the framework) allow biology and medical research-
ers to access and deploy cloud services. Through the cloud, researchers take
advantage of flexible pricing and on-demand resources that can provide
faster turnaround times on their experiments. In the case of embarrassingly
parallel applications, such as the presented personal genomics case study,
clouds can fully utilize scalability to analyze thousands of cancer genomes
at once (something not possible on HPC clusters).

A research cloud solution, like the one presented and implemented in
this chapter, allows biology and medical researchers to apply the power
of the cloud to their research. This solution was developed by abstracting
Amazon EC2 resources from application logic and identifying and automat-
ing common methods used in service deployment. In this way, SaaS clouds
can be developed that simplify the process of using HPC cloud computing
for research.

References

Accelrys. 2014. Accelrys Science Cloud, https://www.sciencecloud.com.
AGAVE. 2012, December. http://sourceforge.net/projects/agaveapi.
Amazon. 2010. Amazon Elastic Compute Cloud: Getting Started Guide. Edited by AWS.

Amazon, www.amazon.com/dp/B007Q4H6KK.
Amazon. 2012. Amazon EC2 instance types. http://aws.amazon.com/ec2/instance-

types/.
Amazon Web Services. 2013. AWS Management Console—Amazon Web Services

2013. http://aws.amazon.com/console/.
Anders, Simon. 2010. HTSeq: analysing high-throughput sequencing data with Python.

http://www-huber.embl.de/users/anders/HTSeq/doc/overview.html.
Beltran, Himisha, and Mark A. Rubin. 2013. New strategies in prostate cancer:

translating genomics into the clinic. Clinical Cancer Research 19(3):517–523.
Bethwaite, Blair, David Abramson, Fabian Bohnert, Slavisa Garic, Colin Enticott, and

Tom Peachey. 2010. Mixing grids and clouds: high-throughput science using
the Nimrod Tool family. In Cloud Computing, edited by N. Antonopoulos and
L. Gillam. London: Springer, 219–237.

Brock, M., and A. Goscinski. 2009. Attributed publication and selection for web
 service-based distributed systems. Paper presented at 2009 World Conference
on Services-I, July 6–10, 2009, Los Angeles, CA.

265SaaS Clouds Supporting Biology and Medicine

Brock, M., and A. Goscinski. 2012. Execution of compute intensive applications on
hybrid clouds (case study with mpiBLAST). Paper presented at 2012 Sixth
International Conference on Complex, Intelligent and Software Intensive
Systems (CISIS), July 4–6, 2012, Palermo, Italy.

Calheiros, Rodrigo N., Christian Vecchiola, Dileban Karunamoorthy, and Rajkumar
Buyya. 2012. The Aneka platform and QoS-driven resource provisioning for
elastic applications on hybrid Clouds. Future Generation Computer Systems
28(6):861–870.

Calinou. 2012. Apt-Debian wiki. https://wiki.debian.org/Apt.
Cancer Genome Atlas Network. 2012. Comprehensive molecular portraits of human

breast tumours. Nature 490(7418):61–70.
Chappell, David. 2009. Introducing Windows Azure. San Francisco: David Chappell

and Associates.
Church, P. C., and A. Goscinski. 2011. IaaS clouds vs. clusters for HPC: a perfor-

mance study. Paper presented at the Second International Conference on Cloud
Computing, GRIDs, and Virtualization, at Rome, Italy.

Church, Philip C., Andrzej Goscinski, and Christophe Lefèvre. 2012. EXP-PAC: pro-
viding comparative analysis and storage of next generation gene expression
data. Genomics 100(1):8–13.

Church, P., A. Wong, M. Brock, and A. Goscinski. 2012. Toward exposing and
accessing HPC applications in a SaaS cloud. Paper presented at 2012 IEEE
19th International Conference on Web Services (ICWS), June 24–29, 2012,
Honolulu, HI.

Expósito, Roberto R., Guillermo L. Taboada, Sabela Ramos, Juan Touriño, and Ramón
Doallo. 2013. Performance analysis of HPC applications in the cloud. Future
Generation Computer Systems 29(1):218–229.

Gibbs, Kevin. 2008, April. Google App Engine Campfire One transcript. http://code.
google.com/appengine/articles/cf1-text.html.

Goecks, Jeremy, Anton Nekrutenko, James Taylor, and the Galaxy Team. 2010. Galaxy:
a comprehensive approach for supporting accessible, reproducible, and trans-
parent computational research in the life sciences. Genome Biology 11(8):R86.

Goscinski, Andrzej, and Michael Brock. 2010. Toward dynamic and attribute based
publication, discovery and selection for cloud computing. Future Generation
Computer Systems 26(7):947–970.

Goscinski, Andrzej, Michael Brock, and Philip Church. 2011, June. High performance
computing clouds. In Cloud Computing: Methodology, System, and Applications,
edited by L. Wang, R. Ranjan, J. Chen, and B. Benatallah. Boca Raton, FL: CRC
Press, Taylor & Francis Group.

Kacsuk, Peter. 2011. P-GRADE portal family for grid infrastructures. Concurrency and
Computation: Practice and Experience 23(3):235–245.

Kay, Timothy. 2012. Simple command-line access to Amazon EC2. http://aws.
amazon.com/developertools/739 (accessed March 2012).

Kirby, Judd. 2012. NeCTAR—Australian Research Cloud. 2012. http://www.nectar.
org.au/.

Langmead, Ben, Michael Schatz, Jimmy Lin, Mihai Pop, and Steven Salzberg. 2009.
Searching for SNPs with cloud computing. Genome Biology 10(11):R134.

266 Cloud Computing with e-Science Applications

Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis,
and R. Durbin. 2009. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25(16):2078–2079.

Liu, B., B. Sotomayor, R. Madduri, K. Chard, and I. Foster. 2012. Deploying bioinfor-
matics workflows on clouds with Galaxy and Globus Provision. In The Third
International Workshop on Data Intensive Computing in the Clouds, Salt Lake City, UT.

McLennan, M., and R. Kennell. 2010. HUBzero: a platform for dissemination and
 collaboration in computational science and engineering. Computing in Science
and Engineering 12(2):48–53.

Mell, Peter, and Tim Grance. 2009. The NIST definition of cloud computing. National
Institute of Standards and Technology 53(6):50.

Nurmi, Daniel, Rich Wolski, Chris Grzegorczyk, Graziano Obertelli, Sunil Soman,
Lamia Youseff, and Dmitrii Zagorodnov. 2009. The Eucalyptus open-source
cloud-computing system. In Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid. New York: IEEE Computer Society,
124–131.

OpenStack Project. 2012. OpenStack—Open source software for building private and
public clouds. http://www.openstack.org/.

Subramanian, Bhuvaneashwar. 2012. The disruptive influence of cloud computing
and its implications for adoption in the pharmaceutical and life sciences
 industry. Journal of Medical Marketing: Device, Diagnostic and Pharmaceutical
Marketing 12(3):192–203.

Wong, Adam K. L., and Andrzej M. Goscinski. 2012. A VMD plugin for NAMD
 simulations on Amazon EC2. Procedia Computer Science 9(0):136–145.

Wong, Adam K. L., and Andrzej M. Goscinski. 2013. A unified framework for the
deployment, exposure and access of HPC applications as services in clouds.
Future Generation Computer Systems 29(6):1333–1344.

267

12
Energy-Aware Policies in
Ubiquitous Computing Facilities

Marina Zapater, Patricia Arroba, José Luis Ayala Rodrigo,
Katzalin Olcoz Herrero, and José Manuel Moya Fernandez

CONTENTS

Summary .. 268
12.1 Introduction .. 268
12.2 Related Work .. 269
12.3 Proposed Novel Paradigm .. 271

12.3.1 Devised Computer Paradigm .. 271
12.3.2 Energy Optimization System ... 271

12.4 Energy and Power Models.. 273
12.4.1 Overall Power and Energy Consumption Breakdown............. 274
12.4.2 Computing (IT) Power Modeling .. 274

12.4.2.1 Static Power Consumption: Leakage Power
Modeling .. 274

12.4.2.2 Dynamic Power Modeling ... 275
12.4.3 Data Center Cooling Power and Data Room Modeling

Techniques .. 276
12.5 Ubiquitous Green Allocation Algorithms .. 278

12.5.1 SMT Solvers .. 279
12.5.2 Mixed-Integer Linear Programming ..280
12.5.3 Genetic Algorithms ...280

12.6 Resource Selection and Configuration ... 281
12.6.1 Virtualization ... 281
12.6.2 Consolidation ... 282
12.6.3 Operating Server Set and Turn-off Policies 282

12.7 Conclusions ...283
References ...284

268 Cloud Computing with e-Science Applications

Summary

Next-generation e-science applications such as the ones found in smart cities,
e-health, or ambient intelligence, require constantly increasing high com-
putational demands to capture, process, aggregate, and analyze data and
offer services to users. Research has traditionally paid much attention to the
energy consumption of the sensor deployments that support this kind of
application. However, computing facilities are the ones presenting a higher
economic and environmental impact due to their very high power consump-
tion. In this chapter, we provide a vision of the increasing energy problem
in computing facilities with a focus on cloud computing, under the new
computational paradigms, and propose solutions from a global, multilayer
perspective, describing a novel system architecture, power models, and
optimization algorithms. This chapter is organized as follows: Section 12.1
i ntroduces the topic; Section 12.2 briefly describes the related work.
Section 12.3 describes a novel system architecture for the global energy opti-
mization of next-generation e-science applications. Section 12.4 describes
the power models developed for the architecture, and Sections 12.5 and 12.6
briefly describe some optimization techniques. Finally, Section 12.7 summa-
rizes the most important aspects.

12.1 Introduction

Data centers are easily found in every sector of the worldwide economy.
They provide the required infrastructure for the execution of a wide range
of applications and services, including social and business networking,
web mail, web search, electronic banking, Internet marketing, distributed
storage, high-performance computing (HPC), and so on. The increasing
demand for higher computer resources has recently facilitated the rapid
proliferation and growth of data center facilities. In recent years, popu-
lation-monitoring applications (such as e-health applications or ambient
intelligence), e-science, and applications for smart cities have experienced
significant development, mainly because of the advances in the miniatur-
ization of processors and the proliferation of embedded systems in many
different objects and applications (e.g., communications, industrial, auto-
motive, defense, and health care environments). Next-generation systems
consist of a large set of nodes, distributed among the population. Data
obtained by these sensor nodes are communicated to the embedded pro-
cessing elements by means of wireless connections. Huge sets of data must
be processed, stored, and analyzed. To deal efficiently with such compu-
tationally intensive tasks, the use of cloud services is devised since cloud

269Energy-Aware Policies in Ubiquitous Computing Facilities

computing is emerging as the dominant computer platform for scalable
online services.

Thus, the wireless body sensor networks (WBSNs) will be connected not
only at the node level but also through a personal digital assistant (PDA)
or smartphone to the cloud. Part of the data processing and storage will be
local to the node, while another part will be communicated and processed
in the cloud, depending on the application, on the state of the batteries,
and on security or privacy requirements of the information. This comput-
ing environ ment where the mobile client utilizes mobile network services
to communicate with the cloud through the Internet is usually known as
mobile cloud computing (MCC) [1].

Recent research has focused on developing energy efficiency policies at
the data center level. Some policies have been detected but not successfully
proposed as they lack consideration of the global power consumption of
the system. They do not take into account that the agents involved in the
problem are heterogeneous. Therefore, the energy cost of performing part of
the processing in any of the different abstraction layers, from the node to the
data center, should be evaluated.

Our proposal develops global energy optimization policies that start from
the design of the architecture of the system, with a deeper focus on data
center infrastructures, and take into account the energy relationship between
the different abstraction layers, leveraging the benefits of heterogeneity and
application awareness.

12.2 Related Work

For decades, data centers have only focused on performance, defined as
speed. Examples include the TOP500 list of the world’s fastest super computers
(http://www.top500.org), which calculates speed as floating-point operations
per second (FLOPS), and the annual Gordon Bell Awards for Performance
and Price/Performance at the Supercomputing Conference (http://www.
supercomp.org). However, raw speed has increased tremendously over the
past decade without relative and proportional energy efficiency. In 2007,
although there had been a 10,000-fold increase in speed since 1992, perfor-
mance per watt was only improved 300-fold and performance per square
foot only 65-fold [2].

This huge performance improvement is mainly due to increases in three
different dimensions: the number of transistors per processor, the operating
frequency of each processor, and the number of processors per system.
Collectively, these factors yield an exponential increase in power consump-
tion of data centers that is not sustainable. The focus on just speed has
let other evaluation metrics go unchecked. Data centers consume a huge

270 Cloud Computing with e-Science Applications

amount of electrical power and generate a tremendous amount of heat. To
support these technologies, during 2008 world power consumption exceeded
US$30 billion [3] when an average data center consumed as much energy as
25,000 households [4]. About 15% of these costs are due to removing the heat
generated throughout the infrastructure [5]. The situation is critical since
the numbers are growing. In 2010, the worldwide data center consumption
reached 1.5% of global energy, having increased by 56% since 2005 [6].

To this end, major players in the data center and high-end computing
markets often negotiate energy deals with electricity suppliers to build or
upgrade power substations, near or immediately next to, their computing
facilities. Alternatively, when not enough power infrastructures can be built
at or near computing facilities, many companies move their computing facili-
ties to the power source (e.g., Google [7], and Microsoft [8]).

In addition to the economic impact of excessive energy consumption, the
environmental impact has affected the data center community. The heat
and the carbon footprint emanating from cooling systems are dramatically
harming the environment. According to Mullins [9], US data centers use
about 59 billion kWh of electricity, exceeding US$4.1 billion and generating
864 million metric tons of CO2 emissions released into the atmosphere.

Both research and industry have recently proposed several approaches to
tackle the power consumption issue in data center facilities. Industry has
begun to shift the goal from performance to energy, reporting not only
FLOPS but also FLOPS per watt and measuring the average power consump-
tion when executing the LINPACK (HPL) benchmark [10]. Today, metrics
such as being in the Green500 list [2] are beginning to be of importance. Also,
reference companies around the world, such as Google, IBM, or Amazon, are
implementing measures to make their data centers more efficient and begin-
ning to measure the power usage effectiveness (PUE) of their facilities.

PUE is one of the most representative metrics and consists of the facility’s
total power consumption divided by the computational power. PUE close to
1 means the data center is using most of the power for the computing infra-
structure instead of it being lost or devoted to cooling devices. Average PUE
for 2011 was around 1.83%, which does not represent a sufficient reduction
for sustainable infrastructures. According to Amazon data center estima-
tions [11], expenses related to operational costs of the servers reach 53% of
the budget, while energy costs add up to 42%, which are broken down into
cooling (19%) and power consumption of the infrastructure (23%). Therefore,
the cooling problem needs to be approached to restrain the upward trend [3]
and to prevent these technologies reaching beyond the limit of sustainability.

Researchers have done a massive amount of work to address these issues
and provide energy-aware computing environments. From the data room
perspective, previous work addressed the power consumption problem by
means of optimizing cooling costs at the resource manager level by assign-
ing longer tasks to servers with lower inlet temperature [5]. From the infor-
mation technology (IT) perspective, research has proposed solutions to

271Energy-Aware Policies in Ubiquitous Computing Facilities

reduce the computational power of servers by means of energy-efficient
scheduling techniques [12, 13], resource allocation, and workload assignment
mechanisms [14, 15]. For cloud computing applications, virtualization tech-
nology has provided a promising way to manage application performance
by dynamically reallocating resources to virtual machines (VMs). Several
management algorithms have been proposed to control the application per-
formance for virtualized servers [16] and to solve the VM-server mapping
problem for power savings [17].

In our proposal, scheduling and resource allocation take into account the
global energy consumption, which includes the cooling consumption of the
data center and the consumption of the rest of the system: node and PDA or
smartphone. So, it is possible to take advantage of the heterogeneity of the
system and download only some part of the computation to the data center,
while the rest is performed in the PDA.

12.3 Proposed Novel Paradigm

12.3.1 Devised Computer Paradigm

Next-generation applications are usually composed of a large number of
 sensors, wirelessly connected to the cloud through a mobile processing
device. Data centers provide cloud-based data services that can closely match
the demand of processing capacity, according to data size and complexity of
the analysis algorithms. By sharing data center resources for multiple appli-
cations, it is possible to reduce the need for resources, maintaining high utili-
zation rates and reducing energy requirements. To provide adequate energy
management, this heterogeneous distributed computing system is tightly
coupled with an energy analysis and optimization system, which continu-
ously adapts the amount of processing that is performed in the different
 layers of the distributed system and the resources assigned to each task.

12.3.2 Energy Optimization System

Figure 12.1 shows the proposed system architecture for the energy optimi-
zation of cloud computing in e-science applications. Detailed functions of
constituents in the system are summarized as follows:

• Application support network: Applications require a heterogeneous
network comprising sensor nodes, data centers, and some kind of inter-
connection network to drive data from sensors to data centers. Each
element has different computation capacity, functional requirements,
power consumption characteristics, and so on.

272 Cloud Computing with e-Science Applications

• Sensing infrastructure: Global energy optimization requires a clear
understanding of the current state of the network, the characteris-
tics of the different resources, and of the analysis to be performed.
Therefore, additional hardware (HW) or software (SW) sensors
should be added to the system to obtain insight.

• Data analysis and sensor configuration: Not every sensor has the
same importance to understand the power consumption character-
istics of the different components. After a careful analysis, the sens-
ing infrastructure has to be configured to provide only the relevant
data at the required rate for the power model to be useful and to
minimize the energy overhead.

• Storage and inference system: The data provided by the sensing
infrastructure has to be stored and statistically analyzed in search
of recurrent behaviors that could lead to simple but accurate enough
power models to be used for proactive optimizations. Although the
data provided by the sensors is low level, simple inference tech-
niques can be used to raise the level of abstraction, for example,

Application Support Network

WBSN

Personal Servers
(cell phones)

Data Centers

Se
ns

in
g

A
ct

ua
tio

n
su

pp
or

t

Knowledge
Storage and

Inference
System

Energy Optimization

Energy-aware resource
management

Energy-aware resource
configuration

Decision
Making
System

(Reputation
System)

Power Model

...

Data Analysis
and Sensor

Configuration

FIGURE 12.1
Overview of the proposed energy analysis and optimization system.

273Energy-Aware Policies in Ubiquitous Computing Facilities

to understand the energy demand characteristics of the different
analysis applications or the power consumption characteristics of
different resources.

• Power model: Complex power models are not adequate for online
optimization, as different alternatives should be quickly evaluated
against the power model to proactively configure the whole system
for minimum energy consumption. These power models can be
trained with actual data from sensors to improve the quality and to
adapt to variations in the heterogeneous application support network.

• Optimization: Based on the current state of the system, the historic
data, and the energy characteristics of application and resources,
many optimization algorithms can be executed to enhance one or
more aspects of the population-monitoring system. Heterogeneity
can be analyzed to always assign tasks to the most adequate
resources; resources not being used can be turned off; cooling
energy can be taken into account when assigning tasks to resources;
and, at the same time, when a group of nodes is detected to behave
anomalously, they can be discarded to provide some kind of
self-healing mechanism.

• Decision-making system: There are so many aspects that can be opti-
mized (at different levels of abstraction and in different scopes), that
it would not be feasible to consider all of them in a single optimiza-
tion algorithm. Many partial optimization algorithms may propose
actions in the network; some of them could even be incompatible
with other decisions. We propose the use of a reputation system [18]
to compose the decisions provided by multiple optimization algo-
rithms and to adapt to changes in the system by changing the weight
of different optimizations.

• Actuation support: Finally, decisions should be executed. Software
agents in all levels of the application support network are in charge
of reconfiguring their behavior whenever an optimization decision
is made.

12.4 Energy and Power Models

To apply energy optimization techniques at all levels, but most importantly to
the cloud computing facility, we need to develop power and energy models of
the resources of the data center that can be applied to predict the energy con-
sumption of the workload to be executed. In this section, we describe the most
important contributors to the energy consumption in data centers, and we
present some of the most relevant energy- and power-modeling techniques.

274 Cloud Computing with e-Science Applications

12.4.1 Overall Power and Energy Consumption Breakdown

The main contributors to the energy consumption in a data center are the
computing power (also known as IT power), which is the power drawn by
servers to execute a certain workload, and the cooling power needed to keep
the servers within a certain temperature range that ensures safe operation.
Together, both factors account for more than 85% of the total power con-
sumption of the data center, with the other 15% the power consumption due
to lightning, generators, UPS (uninterruptible power supply) systems, and
PDUs (power distribution units) [6].

 P P P PDC IT cooling others= + +

The IT power is dominated by the power consumption of the enterprise
servers in the data center. The power consumption of an enterprise server
can be further divided into three different contributors: (1) the dynamic or
active power, (2) the static or leakage power, and (3) the cooling power due
to the server fans:

 P P P Pserver static dynamic fan= + +

Dynamic power is the power due to the switching of the transistors in elec-
tronic devices; that is, it is the power used to perform calculations. Leakage
power is the unwanted result of subthreshold current in the transis tors and
does not contribute to the microcontroller function. Fan power is becoming
a more important contributor by the day to overall server power [19].

Cooling power is one of the major contributors to the overall data center
power budget, consuming over 30% of the overall electricity bill in typical
data centers [20].

12.4.2 Computing (IT) Power Modeling

12.4.2.1 Static Power Consumption: Leakage Power Modeling

Dynamic consumption has historically dominated the power budget. But,
when the integration technology scales below the 100-nm boundary, static
consumption becomes much more significant, being around 30%–50% [21]
of the total power under nominal conditions. This issue is intensified by the
influence of temperature on the leakage current behavior. There are various
leakage sources in devices, such as gate leakage or junction leakage, but at
present, subthreshold leakage is the most important contribution in mod-
ern designs. Therefore, it is important to consider the strong impact of static
power as well as its temperature dependence and the additional effects influ-
encing their performance. The current consumption of an MOS device due to
leakage current is the one shown in the following equation:

275Energy-Aware Policies in Ubiquitous Computing Facilities

 I I e e whereIleak s

V V
nkT q

V
kT q

s

GS th ds

= − =
−

· ·/ /1 22
2

· · · · ·n C
W
L

kT
q

ox

When V mVDS > 100 , the contribution of the second exponential is negli-
gible [22], so the previous formula can be rewritten as follows:

 I I e B T eleak s

V V
nkT q

V V
nkT q

GS th GS th

= =
− −

· · ·/ /2

where technology-dependent parameters can be grouped together in a con-
stant B.

Based on the leakage current equation, we describe the leakage power for
a particular machine m as the next equation:

 P I V B T e Vleak m leak m DD m

V V
nkT q

DD m

GS th

, , ,
/

,· · · ·= =
−

2

As can be seen, leakage has a strong dependence on temperature. Even
though power models have traditionally disregarded leakage, recent studies
are beginning to take it into account. Some cloud computing solutions, such
as those in Reference 23, have considered the dependence of power consump-
tion on temperature due to fan speed as well as the induced leakage current.
Moreover, taking into account the leakage-cooling trade-offs at the server
level by finding an optimum point between the fan power and the leakage
power has proven to yield up to 10% energy savings at the server level [24].

In the case of cloud computing, it is especially interesting to take into
account the temperature of the different computing resources. The pool
of resources that builds the entire cloud infrastructure allows the utiliza-
tion of those resources most appropriate to the operating situation. Thus,
depending on the type of application and the thermal state of the machine,
an efficient allocation can be performed that minimizes the static consump-
tion of the computing infrastructure by keeping the unused resources in a
low-power state.

12.4.2.2 Dynamic Power Modeling

Dynamic power consumption varies depending on the characteristics of
the particular workload to be executed, as well as on the platform where
the workload is executed. The same workload can present different energy
behavior depending on the target platform, as shown in Figure 12.2, obtained
from Reference 25.

To understand and take advantage of these differences, dynamic power has
to be modeled. Dynamic power modeling of enterprise servers has recently
been tackled via the use of performance counters [26, 27]. Performance

276 Cloud Computing with e-Science Applications

counters are a set of special-purpose registers built into modern central pro-
cessing units (CPUs) to store the counts of hardware-related events. Because
they are integrated into the architecture, polling these counters has a negli-
gible overhead in the performance of the workload being profiled. Modern
servers come with a high number of performance counters that can be
polled. By collecting performance counters together with information on the
power consumption of the server, power consumption can be modeled and
thus predicted. Servers are also shipped with a large amount of sensors to
collect temperature, fan speed, or power consumption data. These data can
be gathered via the Intelligent Platform Management Interface (IPMI) tool
(http://ipmitool.sourceforge.net) with negligible overhead. Information of
the performance counters can be correlated with power and then regressed
to obtain a model for dynamic energy. The performance counters that influ-
ence the model vary depending on the system architecture and allow an
explanation for the differences in power consumption of the same workload
in different servers.

12.4.3 Data Center Cooling Power and Data Room Modeling Techniques

In a typical air-cooled data center room, servers are mounted in racks,
arranged in alternating cold/hot aisles, with the server inlets facing cold
air and the outlets creating hot aisles. The computer room air conditioning
(CRAC) units pump cold air into the data room and extract the generated
heat (see Figure 12.3).

0

0.2

0.4

0.6

0.8

1
pe

rlb
en

ch

bz
ip

2

gc
c

m
cf

go
bm

k

hm
m

er

sje
ng

lib
qu

an
tu

m

h2
64

re
f

om
ne

tp
p

as
ta

r

xa
la

nc
bm

k

En
er

gy
 (K

W
h)

SpecCpuInt2006 − Energy variation per task

Intel Xeon
AMD Opteron
Sparc64 V

FIGURE 12.2
Energy consumption for SPEC CPU 2006 executed in various servers.

277Energy-Aware Policies in Ubiquitous Computing Facilities

The efficiency of this cycle is generally measured by the coefficient of
performance (COP). The COP is a dimensionless value defined as the ratio
between the cooling energy produced by the air-conditioning units (i.e., the
amount of heat removed) and the energy consumed by the cooling units
(i.e., the amount of work to remove that heat).

 COP
Output Cooling Energy
Input Electrical Energ

=
yy

Higher values of the COP indicate a higher efficiency. The maximum theo-
retical COP for an air-conditioning system is described by Carnot’s theorem
as in the next equation:

 COP
T

T T
MAX

C

H C
=

−

where TC is the cold temperature (i.e., the temperature of the indoor space
to be cooled), and TH is the hot temperature (i.e., the outdoor temperature ;
both temperatures in celsius). As the room temperature and the heat exhaust
temperature increase, approaching the outdoor temperature, the COP
increases and the cooling efficiency improves. According to this, one of the
techniques to reduce the cooling power is to increase the COP by increasing
the data room temperature.

However, as we increase room temperature, CPU temperature increases
and so does leakage power. Therefore, there is a trade-off between the reduc-
tion in cooling power and the increase in server leakage power. Previous
approaches [29] showed how two different working regions can be found
depending on the impact of ambient temperature in leakage power and
thus in the total power consumption of enterprise servers. For the lower

Floor plenum
Perforated tilePerforated tile

CRAC
Unit

CRAC
Unit

Hot
Aisle

Cold
Aisle

Hot
Aisle

Hot
Aisle

Hot/Cold air mixes
causing recirculation

Server
inlet

Cold
Aisle

Server
inlet

Server
outlet

FIGURE 12.3
Diagram of an air-cooled data center room.

278 Cloud Computing with e-Science Applications

range of ambient temperatures, the impact of the temperature-dependent
leakage is negligible, whereas for a higher-temperature range leakage needs
to be considered.

To ensure the reliability of the IT equipment, CPU temperatures should
not increase above a certain threshold. The ASHRAE (American Society of
Heating, Refrigerating, and Air-Conditioning Engineers) [29] organization
publishes metrics on the maximum inlet air temperature for a server, the red-
line temperature, as well as the appropriate temperature and humidity con-
ditions of the data room environment to ensure that reliability is not affected.

Data room modeling is still an open issue, as the only feasible ways to
model the thermal behavior of the data room and be able to predict the inlet
temperature of the servers is either by deploying temperature sensors in the
data room that take measurements or by performing time-consuming and
expensive computational fluid dynamics (CFD) simulations. CFD simula-
tions use numerical methods to analyze the data room and model its behav-
ior. However, these simulations do not often match the real environments
and must be rerun every time the data center topology changes.

12.5 Ubiquitous Green Allocation Algorithms

Resource management is a well-known concept in the data center world and
is used to allocate in a spatiotemporal way the workload to be executed in
the data center, optimizing a particular goal. Traditionally, these techniques
have focused on maximizing performance by assigning tasks to computa-
tional resources in the most efficient way. However, the increasing energy
demand of data center facilities has shifted the optimization goals toward
maximizing energy efficiency. Works proposing allocation algorithms have
traditionally applied greedy algorithms [30], Markov chain algorithms [31],
mixed-integer linear programming (MILP), or mixed-integer nonlinear pro-
gramming (MINLP) [32] to generate the best task allocation. Most of these
approaches do not propose a precise objective function or accurate math-
ematical formulation of the optimization problem. Although some of these
solutions behave well in homogeneous data-center-level scenarios, they do
not consider the heterogeneity inherent in smart environment applications.
Moreover, MILP solutions do not scale well for larger scenarios with a high
number of servers and large workloads to allocate.

Only very recently industry and research started to agree on the impor-
tance of environmental room monitoring [33] to improve energy efficiency.
Other research [34] presented the data center as a distributed cyberphysi-
cal system (CPS) in which both computational and physical parameters
can be measured with the goal of minimizing energy consumption from a

279Energy-Aware Policies in Ubiquitous Computing Facilities

jointly computational and cooling perspective. However, these works do not
generally apply their solutions in a real scenario.

Our proposal considers not only the heterogeneity that comes from the
use of different servers inside a data center facility but also the use of the
heterogeneous elements that compose the MCC scenario outside the facil-
ity. We leverage the use of nonoptimal lightweight distributed allocation
algorithms based on the use of satisfiability modulo theory (SMT) formulas
outside the facility. We combine this allocation with MILP-based problems
in the data center facility and envision the use of genetic algorithms (GAs) to
solve larger resource management problems. We apply these algorithms to
real data collected from a completely monitored data room, obtaining inlet
and outlet server temperature values, CPU temperatures, server fan speed,
server power consumption, and cooling power. Figure 12.4 shows the tem-
perature and power traces obtained from an AMD Sunfire V20Z server when
executing tasks of the SPEC CPU 2006 benchmark [35].

12.5.1 SMT Solvers

An SMT solver decides the satisfiability of complex formulas in theories such
as arithmetic and uninterpreted functions with equality. An SMT solver is a

0 10 20 30 40 50

30

40

50

60

Te
m

pe
ra

tu
re

 (d
eg

)

(a) Temperature parameters for AMD server
Whole SPEC CPU execution

Time (103 sec)
0 10 20 30 40 50

Time (103 sec)

CPU0 Inlet Outlet

120
140
160
180
200
220
240

Po
w

er
 (W

)

(b) Power consumption for AMD server
Whole SPEC CPU execution

Server Power

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

Te
m

pe
ra

tu
re

 (d
eg

)

(c) Temperature parameters for AMD server
Zoom in one benchmark

Time (sec)
0 500 1000 1500 2000 2500 3000

Time (sec)

CPU0 Inlet Outlet

150

200

250

Po
w

er
 (W

)
(d) Power consumption for AMD server

Zoom in one benchmark

Server Power

X: 50
Y: 48

FIGURE 12.4
Temperature and power values for AMD server under SPEC CPU 2006 workload.

280 Cloud Computing with e-Science Applications

tool that allows checking whether a certain formula satisfies a condition. SMT
solvers are fast and lightweight and thus can be used in nodes with limited
resources in a distributed way. Our proposal leverages the idea developed in
Reference 36 and proposes that each node of the network, to decide whether
to execute a task or offload it to the data center, should run the SMT solver.
The SMT solver calculates which tasks of the workload satisfy the conditions
to be executed at the node and the amount of tasks that can be executed.

12.5.2 Mixed-Integer Linear Programming

Regarding IT power only, the proposed resource allocation algorithms aim
to minimize the overall energy consumption of the data center by assign-
ing tasks in a spatiotemporal way to the most appropriate processors.
Mathematically, let us denote by M a set of machines, by P a set of processors,
and by T a set of tasks that must be executed. Each processor p belongs to one
machine m, denoted as pm. Each machine m consumes an idle power of ≠m .
Every task t has a duration and consumes a certain amount of energy over
idle depending on the target processor, σtp and etp , respectively. The problem
consists of finding the most appropriate allocation of tasks t in processors p
to minimize the energy consumption, as expressed in the next equation:

 Min k e
t T p P

tp tp

m M

m
max

∈ ∈ ∈
∑ ∑+

,

· ·π τ

where ktp is a binary variable that is set to 1 if the task t is executed in pro-
cessor p. τmax is the time instant at which all the tasks have been executed.
As can be seen, the first part of the formula accounts for the dynamic energy
consumption, whereas the second part accounts for static power consump-
tion of the servers.

The optimization is subjected to the following constraints:

p P

tpk
∈

∑ = 1 ,
t T

tp tp pm
maxk m

∈
∑ + ≤·σ γ τ

The factor γ pm is a time offset that represents the amount of time that a pro-
cessor is occupied (executing previous tasks) when the new job set arrives.
In this way, the system can take into account the initial use of processors.

12.5.3 Genetic Algorithms

The previous MILP solution is valid for a data center room with a lim-
ited amount of computational resources and an optimization objective
that can be expressed as a linear problem. However, when scaling in the

281Energy-Aware Policies in Ubiquitous Computing Facilities

number of resources and tasks to allocate, GAs behave much better in terms
of performance.

One of the benefits of using a GA is the possibility of tackling a large set
of constraints (the maximum temperature of the servers, the available CPU
capacity, the required instructions per task, etc.). In this way, the GA defines
a vector of n decision variables, a vector of m objectives function, a number
of constraints not satisfied, the total energy, and the feasible region in the
decision space. The algorithm allows unfeasible solutions, but only when no
other alternatives are found.

For the chromosome encoding, each gene represents a decision variable.
Because many decision variables are integers, the chromosome uses integer
encoding. Thus, some decision variables (like the CPU capacity) are scaled to
the integer interval and transformed to a percentage when used in the multi-
objective function for evaluation. The evolutionary solver starts with a random
population of chromosomes. After that the algorithm involves the population
applying (1) the non-dominated sorting genetic algorithm (NSGA-II) standard
tournament operator, (2) a single-point crossover operator with probability
of 0.9, (3) an integer flip mutation operator, and (4) the multiobjective evalua-
tion. Steps 1 to 4 are applied for a variable number of iterations or generations.

Using this approach, it is possible to obtain optimal energy savings, realistic
with the current technology, in much shorter time than traditional algorithms
and targeting much more complex environments.

12.6 Resource Selection and Configuration

Cloud computing presents a compelling opportunity to reduce data center
power bills. The economic advantages of shifting to a cloud infrastruc-
ture are enormous, and current challenges in cloud adoption will be over-
come soon, leading a major shift to cloud computing. In this computational
 context, the goal of techniques like “resource selection” and “configuration”
is to offer new services more efficiently by properly selecting and configur-
ing the available resources. The algorithms described in the previous section
can be jointly applied with the cloud-specific techniques proposed in this
section—virtualization, consolidation, and managing the operating server
set—to substantially increase energy savings.

12.6.1 Virtualization

Virtualization allows the management of the data center as a pool of
resources, providing live migration and dynamic load balancing, as well as
the fast incorporation of new resources and power consumption savings.
In addition, a single node can accommodate simultaneously various VMs

282 Cloud Computing with e-Science Applications

(based on different operating system environments) that can be dynami-
cally started and stopped according to the system workload and that share
 physical resources.

Some research work has tried to address the VM provisioning challenge
by predicting the workload profile with neural networks and using heuris-
tics to assign the workload [37]. However, to obtain the most energy-efficient
setup, the MILP and GA previously described can be used to dynamically
assign VMs to physical servers, also deciding the amount of VMs needed to
execute a certain workload.

12.6.2 Consolidation

Historically, data centers have been oversized, using a small fraction of
their computing resources. Consolidation uses virtualization to share
resources and reduces energy consumption by increasing resource utiliza-
tion. This technique allows multiple instances of operating systems to run
concurrently on a single physical node, avoiding wasted physical resources.
Consolidation allows reducing the number of operating servers to process
the same workload, minimizing the static consumption, which leads us to
operating server set and turn-off policies.

Workload allocation algorithms should also take into account the possi-
bility of consolidation. As the number of decision variables and the design
space grow larger, GA-based solutions become more suitable for the purpose
of efficient VM assignment and consolidation.

12.6.3 Operating Server Set and Turn-off Policies

This technique consists of modifying the active server set by switching off
idle hosts when occupancy decreases. Another advantage of cloud comput-
ing is that in many applications, such as data mining and web searching,
using MapReduce provides outsourcing of the workload. MapReduce, pop-
ularized by Google [38], is widely used in application-level energy-aware
strategies due to simplified data processing for massive data sets to increase
data center productivity [39]. When a MapReduce application is submitted,
it is separated into multiple Map and Reduce operations so its allocation may
influence task performance. This factor allows leveraging server resources
by distributing the workload to achieve the optimal minimum consumption.

One of the issues to consider when implementing this type of policy is the
characterization of the use of the data center by customers. The demand for
resources reaching the data center is variable and usually follows seasonal
patterns depending on the time of day or certain periods of the year. In addi-
tion, the data center must be prepared to support peak demand.

Also, the quality of service (QoS) contracted by customers must be satisfied
in matters of availability and both execution and response time constraints.

283Energy-Aware Policies in Ubiquitous Computing Facilities

Moreover, the cost of the machine turned on or off to suit the operational
farm-to-user demand also must be taken into account. This cost involves two
important factors:

• Energy: Consumption of machines when turned off and on again is
significant [40]. The energy saved during the period in which servers
are switched off should be compensated by this offset energetic cost.

• Delay: The server turn on takes a certain time, so the incoming
demand and its variations have to be anticipated. Backup physical
machines should be available to host peak requirements.

Currently, one common technique is to apply low-power modes to inactive
servers to save static energy [41]. This policy helps minimize delays when
activating new machines under peak demand, reducing consumption of idle
servers. Many servers offer sleep or hibernate states, such as standby modes,
that consume less than active modes with different setup times. Finally, it is
necessary to take into account these additional costs in resource configura-
tion policies to minimize energy globally.

This technique can be combined with dynamic voltage and frequency
scaling (DVFS). Dynamic consumption can also be reduced by acting on the
low-power modes of the machines at runtime, but only if this policy does
not violate QoS requirements contracted by users. Modifying the frequency,
voltage, or both varies the response time, affecting the completion of services
and applications. Decreasing the frequency or operating voltage reduces
dynamic power consumption during the execution of a workload. Also,
during idle periods, the static consumption is minimized at low voltages
and frequencies.

Therefore, if QoS restrictions are not strict, energy savings in the computing
part can be increased by the efficient application of the presented techniques.

12.7 Conclusions

Cloud computing, MCC, or even modern HPC start with data centers. While
we can dream of a world in which anyone is allowed to sell their excess
computing capacity as virtualized resources to anyone else or where the
ubiquitous sensing of information is processed by a center kilometers away
from the source, the fact of the matter is that today the cloud finds strong
energy constraints because of the energy-hungry computing “factories.”
However, data centers are not the only computing resources that contrib-
ute to the energy inefficiency. Distributed computing devices and wireless
 communication layers are also responsible for this.

284 Cloud Computing with e-Science Applications

Energy efficiency in the cloud requires that the envisioned optimization
techniques take into account the different layers of the computing paradigm,
as well as the characteristics of the application and processed data. By pro-
viding horizontal and vertical optimization approaches, we can ensure that
the total energy consumption reaches acceptable limits.

In this chapter, we reviewed several alternatives that, as opposed to tradi-
tional approaches, consider the total energy consumption of the whole set of
resources that appear in cloud computing. These techniques provide a multi-
layer approach to tackle the problem of energy consumption and obtain
 bigger savings than any previous mechanism.

References

 1. Dinh, H. T., Lee, C., Niyato, D., and Wang, P. 2011. A survey of mobile cloud
computing: architecture, applications, and approaches. Wireless Communications
and Mobile Computing, 13(18), 1587–1611.

 2. Feng, W., and Scogland, T. 2009. The Green500 list: year one. In IEEE International
Symposium on Parallel and Distributed Processing (IPDPS), 1–7, IEEE Computer
Society, Washington, D.C., USA.

 3. Raghavendra, R., Ranganathan, P., Talwar, V., Wang, Z., and Zhu, X. 2008.
No “power struggles”: coordinated multi-level power management for the data
center. ACM SIGARCH Computer Architecture News, 36(1), 48–59, 2008.

 4. Kaplan, J. M., Forrest, W., and Kindler, N. 2008. Revolutionizing Data Center
Energy Efficiency. Technical Report. New York: McKinsey & Company.

 5. Bash, C., and Forman, G. 2007. Cool job allocation: measuring the power savings
of placing jobs at cooling-efficient locations in the data center. USENIX Annual
Technical Conference, 29, USENIX Association, Berkeley, CA, USA.

 6. Koomey, J. 2011. Growth in Data Center Electricity Use 2005 to 2010. Oakland, CA:
Analytics Press.

 7. Ahmed, M. 2008. Google search finds seafaring solution. The Times, Sept. 15.
 8. Vance, A. 2006. Microsoft’s data center offensive sounds offensive. The Register,

March 3.
 9. Mullins, R. 2007. HP Service Helps Keep Data Centers Cool. Technical report.

Boston: IDG News Service.
 10. Dongarra, J. J., Luszczek, P., and Petitet, A. 2003. The LINPACK benchmark:

past, present and future. Concurrency and Computation: Practice and Experience
15(9):803–820, John Wiley & Sons, Ltd., Geoffrey C. Fox and David W. Walker,
eds.

 11. Hamilton, J. 2009. Cooperative expendable micro-slice servers (CEMS): low
cost, low power servers for internet-scale services. Conference on Innovative Data
Systems Research (CIDR’09), Asilomar, CA, Jan. 4–7.

285Energy-Aware Policies in Ubiquitous Computing Facilities

 12. Diaz, C. O., Guzek, M., Pecero, J. E., Bouvry, P., and Khan, S. U. 2011. Scalable
and energy-efficient scheduling techniques for large-scale systems. International
Conference on Communications and Information Technology (ICCIT 2011), IEEE
Computer Society, Washington, D.C., USA, 641–647.

 13. Kliazovich, D., Bouvry, P., and Khan, S.-U. 2013. Dens: data center energy-efficient
network-aware scheduling. Cluster Computing, 16, 65–75, Springer US.

 14. Goiri, I., and Berral, J. L. 2012. Energy-efficient and multifaceted resource man-
agement for profit driven virtualized data centers. FGCS 28:718–731.

 15. Quan, D. M., Mezza, F., Sannelli, D., and Giafreda, R. 2012. T-alloc: a practical
energy efficient resource allocation algorithm for traditional data centers. FGCS
28:791–800.

 16. Kusic, D., Kephart, J. O., Hanson, J. E., Kandasamy, N., and Jiang, G. 2009.
Power and performance management of virtualized computing environments
via lookahead control. Cluster Computing 12:1–15.

 17. Wang, Y., and Wang, X. 2010. Power optimization with performance assur-
ance for multi-tier applications in virtualized data centers. Parallel Processing
Workshops, IEEE Computer Society, Washington, D.C., 512–519.

 18. Banković, Z., et al. 2011. Bio-inspired enhancement of reputation systems for
intelligent environments. Information Sciences 222:99–112.

 19. Madhusudan, I., and Schmidt, R. 2009. Analytical modeling for thermodynamic
characterization of data center cooling systems. Journal of Electronic Packaging 131:2.

 20. Breen, T. J., et al. 2010. From chip to cooling tower data center modeling: Part I,
Influence of server inlet temperature and temperature rise across cabinet.
Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 12th IEEE
Intersociety Conference, 1–10.

 21. Narendra, S. G., and Chandrakasan, A. P. 2006. Leakage in Nanometer CMOS
Technologies. Heidelberg: Springer.

 22. Rabaey, J. M. 2009. Low Power Design Essentials. New York: Springer.
 23. Li, S., Abdelzaher, T., and Yuan, M. 2011. TAPA: temperature aware power

allocation in data center with Map-Reduce. Green Computing Conference and
Workshops (IGCC), 1–8.

 24. Zapater, M., et al. 2013. Leakage and temperature aware server control for
improving energy efficiency in data centers. Proceedings of the Conference on
Design, Automation and Test in Europe, 266–269.

 25. Zapater, M., Ayala, J. L., and Moya, J. M. 2012. Leveraging heterogeneity for
energy minimization in data centers. Cluster, Cloud and Grid Computing (CCGrid),
752–757.

 26. Li, T., and Lizy, K. J. 2003. Run-time modeling and estimation of operating
 system power consumption. ACM SIGMETRICS, 160–171.

 27. Bircher, W. L., and Lizy, K. J. 2012. Complete system power estimation using
processor performance events. IEEE Transactions on Computers 61(4):563–577.

 28. Arroba, P., Zapater, M., Ayala, J. L., Moya, J. M., Olcoz, K., and Hermida, R. 2013.
On the leakage-power modeling for optimal server operation. Jornadas SARTECO.

 29. ASHRAE Technical Commitee. 2011. Thermal Guidelines for Data Processing
Environments. Technical Report. Atlanta, GA: American Society of Heating,
Refrigerating and Air-Conditioning Engineers.

 30. Nathuji, R., Canturk I., and Gorbatov, E. 2007. Exploiting platform heterogene-
ity for power efficient data centers. Autonomic Computing (ICAC’07), 5–5.

286 Cloud Computing with e-Science Applications

 31. Zheng, X., and Yu, C. 2010. Markov model based power management in server
clusters. Green Computing and Communications (GreenCom), 96–102.

 32. Bodenstein, C., Schryen G., and Neumann, D. 2011. Reducing datacenter energy
usage through efficient job allocation. European Council of International Schools
(ECIS 2011), 108.

 33. Bell, G. C. 2013. Wireless Sensors Improve Data Center Efficiency. DOE/Technical
Case Study Bulletin, US Dept. of Energy, Washington, D.C., USA.

 34. Abbasi, Z., et al. 2013. Evolutionary green computing solutions for distributed
cyber physical systems. In Evolutionary Based Solutions for Green Computing,
ed. Khan, S. U., Kołodziej, J., Li, J., and Zomaya, A. Y. New York: Springer, 1–28.

 35. Henning, J. L. 2006. SPEC CPU2006 benchmark descriptions. ACM SIGARCH
Computer Architecture News 34(4): 1–17.

 36. Zapater, M., Sanchez, C., et al. 2012. Ubiquitous green computing techniques for
high demand applications in smart environments. Sensors 12(8):10659–10677.

 37. Garg, S. K., Gopalaiyengar, S. K., and Buyya, R. 2011. SLA-based resource
provisioning for heterogeneous workloads in a virtualized cloud datacenter.
International Conference on Algorithms and Architectures for Parallel Processing,
371–384.

 38. MapReduce.org. 2011. What is MapReduce? http://www.mapreduce.org/
what-is-mapreduce.php (accessed March 9, 2012).

 39. Chen, Y., Keys, L., and Katz, R. H. 2009. Towards Energy Efficient MapReduce.
Technical Report. Berkeley: EECS Department, University of California.

 40. Gandhi, A., Harchol-Balter, M., Adan, I. 2010. Server farms with setup costs.
Performance Evaluation 67(11):1123–1138.

 41. Gandhi, A., Gupta, V., Harchol-Balter, M., and Kozuch, M. A. 2010. Optimality
analysis of energy-performance trade-off for server farm management. Performance
Evaluation 67(11):1155–1171.

K20498

The amount of data in everyday life has been exploding. This data increase
has been especially signi�cant in scienti�c �elds, where substantial amounts
of data must be captured, communicated, aggregated, stored, and analyzed.
Cloud Computing with e-Science Applications explains how cloud
computing can improve data management in data-heavy �elds such as
bioinformatics, earth science, and computer science.

The book begins with an overview of cloud models supplied by the
National Institute of Standards and Technology (NIST), and then:

• Discusses the challenges imposed by big data on scienti�c data
infrastructures, including security and trust issues

• Covers vulnerabilities such as data theft or loss, privacy concerns,
infected applications, threats in virtualization, and cross-virtual
machine attack

• Describes the implementation of work�ows in clouds, proposing an
architecture composed of two layers—platform and application

• Details infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS),
and software-as-a-service (SaaS) solutions based on public, private,
and hybrid cloud computing models

• Demonstrates how cloud computing aids in resource control, vertical
and horizontal scalability, interoperability, and adaptive scheduling

Featuring signi�cant contributions from research centers, universities,
and industries worldwide, Cloud Computing with e-Science Applications
presents innovative cloud migration methodologies applicable to a variety of
�elds where large data sets are produced. The book provides the scienti�c
community with an essential reference for moving applications to the cloud.

Cloud Computing with e-Science Applications

Information Technology

Cloud Computing
w i t h

e-Science Applications
EDITED BY OLIVIER TERZO • LORENZO MOSSUCCA

C l o u d C ompu t i n g w i t h e - S c i e n c e A p p l i c a t i o n s
TERZO • M

OSSUCCA

	Front Cover
	Contents
	Preface
	Acknowledgments
	About the Editors
	List of Contributors
	Chapter 1: Evaluation Criteria to Run Scientific Applications in the Cloud
	Chapter 2: Cloud-Based Infrastructure for Data-Intensive e-Science Applications: Requirements and Architecture
	Chapter 3: Securing Cloud Data
	Chapter 4: Adaptive Execution of Scientific Workflow Applications on Clouds
	Chapter 5: Migrating e-Science Applications to the Cloud: Methodology and Evaluation
	Chapter 6: Closing the Gap between Cloud Providers and Scientific Users
	Chapter 7: Assembling Cloud-Based Geographic Information Systems: A Pragmatic Approach Using Off-the-Shelf Components
	Chapter 8: HCloud, a Healthcare-Oriented Cloud System with Improved Efficiency in Biomedical Data Processing
	Chapter 9: RPig: Concise Programming Framework by Integrating R with Pig for Big Data Analytics
	Chapter 10: AutoDock Gateway for Molecular Docking Simulations in Cloud Systems
	Chapter 11: SaaS Clouds Supporting Biology and Medicine
	Chapter 12: Energy-Aware Policies in Ubiquitous Computing Facilities
	Back Cover

