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The amount of data in everyday life has been exploding. This data increase 
has been especially signi�cant in scienti�c �elds, where substantial amounts 
of data must be captured, communicated, aggregated, stored, and analyzed. 
Cloud Computing with e-Science Applications explains how cloud 
computing can improve data management in data-heavy �elds such as 
bioinformatics, earth science, and computer science. 

The book begins with an overview of cloud models supplied by the 
National Institute of Standards and Technology (NIST), and then:

• Discusses the challenges imposed by big data on scienti�c data 
infrastructures, including security and trust issues

• Covers vulnerabilities such as data theft or loss, privacy concerns, 
infected applications, threats in virtualization, and cross-virtual 
machine attack

• Describes the implementation of work�ows in clouds, proposing an 
architecture composed of two layers—platform and application

• Details infrastructure-as-a-service (IaaS), platform-as-a-service (PaaS), 
and software-as-a-service (SaaS) solutions based on public, private, 
and hybrid cloud computing models

• Demonstrates how cloud computing aids in resource control, vertical 
and horizontal scalability, interoperability, and adaptive scheduling     

Featuring signi�cant contributions from research centers, universities, 
and industries worldwide, Cloud Computing with e-Science Applications 
presents innovative cloud migration methodologies applicable to a variety of 
�elds where large data sets are produced. The book provides the scienti�c 
community with an essential reference for moving applications to the cloud.
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Preface

The interest in cloud computing in both industry and research domains is 
continuously increasing to address new challenges of data management, com-
putational requirements, and flexibility based on needs of scientific commu-
nities, such as custom software environments and architectures. It provides  
cloud platforms in which users interact with applications remotely over the 
Internet, bringing several advantages for sharing data, for both applications 
and end users. Cloud computing provides everything: computing power, 
computing infrastructure, applications, business processes,  storage, and 
interfaces, and can provide services wherever and whenever needed.

Cloud computing provides four essential characteristics: elasticity; scal-
ability; dynamic provisioning of applications, storage, and resources; and 
billing and metering of service usage in a pay-as-you-go model. This flexibil-
ity of management and resource optimization is also what attracts the main 
scientific communities to migrate their applications to the cloud.

Scientific applications often are based on access to large legacy data sets and 
application software libraries. Usually, these applications run in dedicated 
high performance computing (HPC) centers with a low-latency interconnec-
tion. The main cloud features, such as customized environments, flexibility, 
and elasticity, could provide significant benefits.

Since every day the amount of data is exploding, this book describes how 
cloud computing technology can help such scientific communities as bio-
informatics, earth science, and many others, especially in scientific domains 
where large data sets are produced. Data in more scenarios must be captured, 
communicated, aggregated, stored, and analyzed, which opens new chal-
lenges in terms of tool development for data and resource management, such 
as a federation of cloud infrastructures and automatic discovery of services.

Cloud computing has become a platform for scalable services and deliv-
ery in the field of services computing. Our intention is to put the empha-
sis on scientific applications using solutions based on cloud computing 
 models—public, private, and hybrid—with innovative methods, including 
data capture, storage, sharing, analysis, and visualization for scientific algo-
rithms needed for a variety of fields. The intended audience includes those 
who work in industry, students, professors, and researchers from informa-
tion technology, computer science, computer engineering, bioinformatics, 
science, and business fields.

Actually, applications migration in the cloud is common, but a deep analy-
sis is important to focus on such main aspects as security, privacy, flexibility, 
resource optimization, and energy consumption.

This book has 12 chapters; the first two are on exposing a proposal strategy 
to move applications in the cloud. The other chapters are a selection of some 
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applications used on the cloud, including simulations on public transport, 
biological analysis, geographic information system (GIS) applications, and 
more. Various chapters come from research centers, universities, and indus-
tries worldwide: Singapore, Australia, China, Hong Kong, India, Brazil, 
Colombia, the Netherlands, Germany, the United Kingdom, Hungary, Spain, 
and Ireland. All contributions are significant; most of the research leading to 
results has received funding from European and regional projects.

After a brief overview of cloud models provided by the National Institute 
of Standards and Technology (NIST), Chapter 1 presents several criteria to 
meet user requirements in e-science fields. The cloud computing model has 
many possible combinations; the public cloud offers an alternative to avoid 
the up-front cost of buying dedicated hardware. Preliminary analysis of user 
requirements using specific criteria will be a strong help for users for the 
development of e-science services in the cloud.

Chapter 2 discusses the challenges that are imposed by big data on sci-
entific data infrastructures. A definition of big data is shown, presenting 
the main application fields and its characteristics: volume, velocity, variety, 
value, and veracity. After identifying research infrastructure requirements, 
an e-science data infrastructure is introduced using cloud technology to 
answer future big data requirements. This chapter focuses on security and 
trust issues in handling data and summarizes specific requirements to access 
data. Requirements are defined by the European Research Area (ERA) for 
infrastructure facility, data-processing and management functionalities, 
access control, and security.

One of the important aspects in the cloud is certainly security due to the 
use of personal and sensitive information, especially derived mainly by 
social  network and health information. Chapter 3 presents a set of impor-
tant vulnerability issues, such as data theft or loss, privacy issues, infected 
applications, threats in virtualization, and cross-virtual machine attack. 
Many techniques are used to protect against cloud service providers, such as 
homomorphic encryption, access control using attributes based on encryp-
tion, and data auditing through provable data possession and proofs of 
irretrievability. The chapter underlines points that are still open, such as 
security in the mobile cloud, distributed data auditing for clouds, and secure 
multiparty computation on the cloud.

Many e-science applications can be modeled as workflow applications, 
defined as a set of tasks dependent on each other. Cloud technology and 
platforms are a possible solution for hosting these applications. Chapter 4 
discusses implementation aspects for execution of workflows in clouds. The 
proposal architecture is composed of two layers: platform and application. 
The first one, described as scientific workflow, enables operations such as 
dynamic resource provisioning, automatic scheduling of applications, fault 
tolerance, security, and privacy in data access. The second one defines data 
analytic applications enabling simulation of the public transport system of 
Singapore and the effect of unusual events in its network. This application 
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provides evaluation of the effect of incidents in the flow of passengers in 
that country.

Chapter 5 presents the main aspects for the cloud characterization and 
design on a large amount of data and intensive computational context . 
A new version of migration methodology derived by Laszewski and Nauduri 
algorithms is introduced. Then, it discusses the realization of a free cloud 
data migration tool for the migration of the database in the cloud and the 
refactoring of the application architecture. This tool provides two main 
functionalities: storage for cloud data and cloud data services. It allows sup-
porting target adapters for several data stores and services such as Amazon 
RDS, MongoDB, Mysql, and so on. The chapter concludes with an evalua-
tion of migration of the SimTech Scientific Workflow Management System to 
Amazon Web Services. Results of this research have mainly received fund-
ing from the project 4CaaSt (from the European Union’s Seventh Framework 
Programme) and from the German Research Foundation within the Cluster 
of Excellence in Simulation Technology at the University of Stuttgart.

Chapter 6 presents a proposal developed under the e-Clouds project for 
a scientific software-as-a-service (SaaS) marketplace based on the utiliza-
tion of the resource provided by a public infrastructure-as-a-service (IaaS) 
infrastructure, allowing various users to access on-demand applications. 
It automatically manages the complexity of configuration required by public 
IaaS providers by delivering a ready environment for using scientific appli-
cations, focusing on the different patterns applied for cloud resources while 
hiding the complexity for the end user. Data used for testing architecture 
comes from the Alexander von Humboldt Institute for Biological Resources.

A systematic way of building a web-based geographic information system 
is presented in Chapter 7. Key elements of this methodology are a database 
management system (DBMS), base maps, a web server with related storage, 
and a secure Internet connection. The application is designed for analyz-
ing the main causes of road accidents and road state and quality in specific 
regions. Local organizations can use this information to organize preventive 
measures for reducing road accidents. Services and applications have been 
deployed in the main public cloud platforms: Microsoft Windows Azure 
platform and Amazon Web Service. This work has been partly funded by 
the Horizon Fund for Universities of the Scottish Funding Council.

The physical and psychological pressures on people are increasing con-
stantly, which raises the potential risks of many chronic diseases, such as 
high blood pressure, diabetes, and coronary disease. Cloud computing has 
been applied to several real-life scenarios, and with the rapid progress in 
its capacity, more and more applications are provided as a service mode 
(e.g., security as a service, testing as a service, database as a service, and even 
everything as a service). Health care service is one such important applica-
tion field. In Chapter 8, a ubiquitous health care system, named HCloud, 
is described; it is a smart information system that can provide people with 
some basic health monitoring and physiological index analysis services 
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and provide an early warning mechanism for chronic diseases. This plat-
form is composed of physiological data storage, computing, data mining, 
and several features. In addition, an online analysis scheme combined with 
the MapReduce parallel framework is designed to improve the platform’s 
capabilities. The MapReduce paradigm has features of code simplicity, data 
splitting , and automatic parallelization compared with other distributed 
parallel systems, improving efficiency of physiological data processing and 
achieving increased linear speed.

With the explosive growth in the use of information and communication 
technology, applications that involve deep analytics in a big data scenario 
need to be shifted to a scalable context. A noticeable effort has been made 
to move the data management systems into MapReduce parallel processing 
environments. Chapter 9 presents RPig, an integrated framework with R 
and Pig for scalable machine learning and advanced statistical functional-
ities, which makes it feasible to use high-level languages to develop analytic 
jobs easily in concise programming. RPig benefits from the deep statistical 
analysis capability of R and parallel data-processing capability of Pig.

Parameter sweep applications are frequent in scientific simulations and 
in other types of scientific applications. Cloud computing infrastructures 
are suitable for these kinds of applications due to their elasticity and ease 
of  scaling up on demand. They run the same application with a very large 
number of parameters; hence, execution time could take very long on a 
single computing resource. Chapter 10 presents the AutoDock program for 
 modeling intermolecular interactions. It provides a suite of automated dock-
ing tools designed to predict how small molecules, such as substrates or drug 
candidates, bind to a receptor of known three-dimensional (3D) structure . 
The proposed solutions are tailored to a specific grid or cloud environment. 
Three different parameter sweep workflows were developed and supported 
by the European Commission’s Seventh Framework Programme under 
 projects SCI-BUS and ER-Flow.

There are also disadvantages to using applications in the cloud, such as usabil-
ity issues in IaaS clouds, limited language support in platform-as-a-service 
clouds, and lack of specialized services in SaaS clouds. For resolving 
known issues, Chapter 11 proposes the development of research clouds for 
high-performance computing as a service (HPCaaS) to enable researchers to 
take on the role of cloud service developer. It consists of a new cloud model, 
HPCaaS, which automatically configures cloud resources for HPC. An SaaS 
cloud framework to support genomic and medical research is presented that 
allows simplifying the procedures undertaken by service providers, particu-
larly during service deployment. By identifying and automating common 
procedures, the time and knowledge required to develop cloud services is 
minimized. This framework, called Uncino, incorporates methodologies 
used by current e-science and research clouds to simplify the develop-
ment of SaaS applications; the prototype is compatible with Amazon EC2, 
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 demonstrating how cloud platforms can simplify genomic drug discovery 
via access to cheap, on-demand HPC facilities.

e-Science applications such as the ones found in Smart Cities, e-Health, 
or Ambient Intelligence require constant high computational demands to 
 capture, process, aggregate, and analyze data. Research is focusing on the 
energy consumption of the sensor deployments that support this kind of 
application. Chapter 12 proposes global energy optimization policies that 
start from the architecture design of the system, with a deeper focus on data 
center infrastructures (scheduling and resource allocation) and take into 
account the energy relationship between the different abstraction layers , 
leveraging the benefits of heterogeneity and application awareness. Data 
centers are not the only computing resources involving energy inefficiency; 
distributed computing devices and wireless communication layers also are 
included. To provide adequate energy management, the system is tightly 
coupled with an energy analysis and an optimization system.
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2 Cloud Computing with e-Science Applications

Summary

In this chapter, we will present a brief explanation of the services and imple-
mentation of models of cloud computing in order to promote a discussion of 
the strong and weak points of each. Our aim is to select the best combination 
of the models as a platform for executing e-science applications.

Additionally, the evaluation criteria will be introduced so as to guide the 
user in making the correct choice from the available options. After that, the 
main public cloud providers, and their chief characteristics, are discussed.

One of the most important aspects of choosing a public cloud provider 
is the cost of its services, but its performance also needs to be taken into 
account. For this reason, we have introduced the cost efficiency evaluation 
to support the user in assessing both price and performance when choosing 
a provider. Finally, we provide a concrete example of applying the cost effi-
ciency evaluation using a real-life situation and including our conclusions.

1.1  Introduction

To create a service to execute scientific applications in the cloud, the user 
needs to choose an adequate cloud environment [1, 2]. The cloud  computing 
model has several possible combinations between the service and imple-
mentation models, and these combinations need to be analyzed. The public 
cloud providers offer an alternative to avoid the up-front costs of buying 
machines, but it is necessary to evaluate them using certain criteria to verify 
if they meet the needs of the users. This chapter provides a discussion about 
these aspects to help the user in the process of building an e-Science service 
in the cloud.

1.2  Cloud Service Models

According to the National Institute of Standards and Technology (NIST) 
definition [3], there are three cloud service models, represented in Figure 1.1. 
They present several characteristics that need to be known by the user. All 
three models have strong and weak points that influence the  adequacy for 
use to create an e-Science service.

The characteristics of the service models are presented and discussed in 
this section.
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1.2.1  Software as a Service

The software-as-a-service (SaaS) model is commonly used to deliver e-science 
services to users. This kind of portal is used to run standard scientific appli-
cations, and no customization is allowed. Normally, a provider ports an 
application to its cloud environment and then provides access for the users to 
use the applications on a regular pay-per-use model. The user of this model 
is the end user, such as a biologist, and there is usually no need to modify 
the application.

One example of a provider porting a scientific application and then pro-
viding the service to the community is the Azure BLAST [2] project. In this 
 project, Microsoft ports the Basic Local Alignment Search Tool (BLAST) of the 
National Center for Biotechnology Information (NCBI) to Windows Azure. 
BLAST is a suite of programs used by bioinformatics laboratories to ana-
lyze genomics data. Another case of this use are the Cyclone Applications, 
which consist of twenty applications offered as a service by Silicon Graphics 
Incorporated (SGI). SGI provides a broad range of applications that cover sev-
eral research topics, but there is no possibility to customize and adapt them.

The big problem with SaaS as the environment to build e-science  services 
is the absence of the ability for customization. Research groups are con-
stantly improving their applications, adding new features, or improving 
their performance, and they need an environment to deliver the modifica-
tions. In addition, there are several applications that are used for only a few 
research groups, and this kind of application does not attract the interest 
of the cloud providers to port them. In this case, this model can be used to 
deliver an e-science service but not as an environment to build it.

ApplicationSaaS

PaaS

IaaS

Datacenter (facilities)

FIGURE 1.1
Service models.
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1.2.2  Platform as a Service

The platform-as-a-service (PaaS) model presents more flexibility than the 
SaaS model. Using this model, it is possible to develop a new, fully custom-
ized application and then execute it in the provider’s cloud environment. 
It is also possible to modify an existing application to be compatible with 
the provider’s model of execution; in the majority of cases, this is a realistic 
scenario for scientific applications [4]. The majority of the services provided 
in this model consist of an environment to execute web-based applications. 
This kind of application processes a large number of simultaneous requests 
from different users. The regular architecture of these applications is com-
posed of a web page, which interacts with the user; a processing layer, 
which implements the business model; and a database, used for data per-
sistence. Each user request is treated uniquely in the system and has no 
relationship with other requests. Due to this, it is impossible to create a 
system to perform distributed computing. However, the processing layer 
of this model can be used if the service does not have a huge demand for 
processing power.

In the PaaS model, the provider defines the programming languages and 
the operating system that can be used; this is a limitation for general-purpose 
scientific application development.

1.2.3  Infrastructure as a Service

The infrastructure-as-a-service (IaaS) model is the most flexible service 
model of cloud computing. The model delivers raw computational resources 
to the user, normally in the form of virtual machines (VMs). It is possible 
to choose the size of the VM, defining the number of cores and the amount 
of memory. The user can even choose the operating system and install any 
desired software in the VM. The user can allocate any desired quantity of 
VMs and build a complete parallel system. With this flexibility, it is possible 
to use IaaS for applications that need a large amount of resources by the con-
figuration of a cluster in the cloud.

1.3  Cloud Implementation Models

The service models, presented in the previous section, can be delivered 
using four different implementation models: private cloud, community 
cloud, public cloud, and hybrid cloud. Each one has strong and weak points. 
The four  models can be used to build an e-science service, and they are 
analyzed to present their main characteristics to help the user decide which 
one to choose.
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1.3.1  Private Cloud

A private cloud is basically the same as owning and maintaining a tradi-
tional cluster, where the user has total control over the infrastructure and 
can configure the machines according to need. One big issue in a private 
scenario is the absence of instant scalability, as the capacity of execution 
is limited to the physical hardware available. Moreover, the user needs to 
have access to facilities to maintain the machines and is responsible for the 
energy consumption of the system. Another disadvantage is the hardware 
maintenance; for example, if a machine has physical problems, the user is 
responsible for fixing or replacing it. A case for which the private cloud is 
recommended is if the application uses confidential or restricted data; in this 
 scenario, the access control to the data is guaranteed by the user’s policies. 
The weakness of this model is the absence of elasticity and the need for up-
front costs. Building a private cloud for scientific applications can be consid-
ered the same as buying a cluster system.

1.3.2  Community Cloud

In a community cloud, the users are members of one organization, and this 
organization has a set of resources that are connected to resources in other 
organizations. A user from one of the organizations can use the resources 
of all other organizations. The advantage of this model is the provision 
of access to a large set of resources without charging because the remote 
resources belong to other organizations that form the community and not 
to a provider. In other words, the pay-per-use model may not be applicable 
to this type of cloud. One disadvantage of the model is the limited number 
of resources; they are limited to the number of machines that are part of the 
community cloud. The interconnection between all the members constitutes 
a bottleneck for the application’s execution. If the application needs more 
machines than are available in single site (a single member), the machines 
need to be allocated among two or more members.

All the community members need to use the same cloud platform; this 
demands an effort to configure all the machines, and it is necessary to 
have personnel to maintain the machines. The community model is recom-
mended for research groups that are geographically distributed and want to 
share the resources among them.

1.3.3  Public Cloud

In a public cloud, the infrastructure is provided by a company, the provider. 
The advantage in this case is the access to an unlimited number of computa-
tional resources, where the user can allocate and deallocate them according 
to demand. The pay-per-use billing model is also an advantage because the 
user has to spend money only while using the resources. Access to up-to-date 
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hardware without the up-front costs and the absence of maintenance costs 
complete the list of advantages of the public model. The main disadvan-
tages relate to data privacy because, in this model, the underlying hardware 
belongs to a provider, and all the maintenance procedures are made by the 
provider’s personnel. The data privacy issue can be addressed by a contract 
regarding data access, but for certain types of users, such as banks, this is 
insufficient. The user has access to virtualized hardware controlled by a 
hypervisor and does not have control over the underlying resources, such 
as physical machines and network infrastructure. In this model, the user 
has access only to a virtual environment; sometimes, this can be insufficient. 
Certain applications need specific hardware configurations to reach accept-
able performance levels, and these configurations cannot be made in a public 
cloud environment. The recommended scenario to use this model is if the 
user needs to execute an application during a limited time period, and this 
is an advantage for an e-science service. Moreover, in case of an application 
executing only a few hours a day, the user can allocate the machines, execute 
the application, and deallocate the machines; the user just needs to pay for 
the time used. Even if the application will run during almost the entire day, 
without a predefined end date, it is necessary to determine the cost-benefit 
ratio of using a public cloud instead of buying physical machines.

1.3.4  Hybrid Cloud

A hybrid cloud can be used to extend the computational power available 
on a user-owned infrastructure with a connection to an external provider. 
This model is recommended if the user needs to increase the capacity of 
the user’s infrastructure without the acquisition of new hardware. The 
main advantage of it is the instant access to computational power without 
up-front costs. In certain scenarios, it is possible to configure the system to 
allocate resources in the cloud automatically, with the system allocating and 
 deallocating machines according to demand. This model is applicable if the 
user already has a set of machines and needs to increase them temporarily, 
for example, for a specific project.

The weakness of this model is related to data transfer because the local 
cloud is connected to the public cloud through a remote connection, nor-
mally an Internet connection; in this case, the bandwidth is limited by this 
connection. In an application that has a large amount of communication, the 
connection between the user and provider will be the bottleneck and can 
affect the overall performance. Another important issue is the cloud plat-
form used by the cloud provider. It is necessary that the user’s system use the 
same platform, or at least a compatible one. This means that the user needs 
to reconfigure all the local machines to follow the cloud model. The concerns 
about data confidentiality are the same as in the public model.
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1.3.5  Summary of the Implementation Models

Summarizing the characteristics presented in this section, we can conclude 
that all deployment models can be used to create high-performance comput-
ing (HPC) environments in the cloud. The appropriate model depends on the 
needs of the user and the user’s available funds. All the models have advan-
tages and disadvantages, and it is clear that there is no ideal model for all the 
usage scenarios. Table 1.1 summarizes the main advantage and  dis advantage 
of each cloud implementation model.

1.4  Considerations about Public Providers

The private and community models are well known by users due to their 
similarity to clusters and grids. The hybrid and public models are really 
new paradigms of computing. As the hybrid model is a combination of local 
machines and a public provider, we can conclude that the new paradigm is 
the public cloud. In the rest of this chapter, we perform an analysis of the 
public cloud model.

When choosing a public cloud provider, the user needs to consider relevant 
aspects of his service. Some of these concerns are explained here. However, the 
user needs to perform an analysis of the necessary service level for his service.

1.4.1  Data Confidentiality

Data confidentiality is one of the main concerns regarding public cloud 
providers. In addition, relevant aspects about data manipulation need to 
be considered:

• Segregation: The provider needs to guarantee data segregation 
between clients because most of them use shared resources. It is 
necessary to ensure that the user’s data can only be accessed by 
authorized users.

TABLE 1.1

Comparison of Implementation Models

Advantage Drawback

Private Privacy Scalability
Community Shared cost Scalability
Public Scalability Privacy
Hybrid Scalability Interconnection
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• Recovery and backup procedures: The user needs to evaluate the 
backup procedures of the provider. All the backup tapes need to be 
encrypted to maintain data confidentiality. Also, the recovery pro-
cedures need to be well documented and tested on a regular basis.

• Transfer: It is necessary that the provider implements secure data 
transfer between the user and provider. Also, standard transfer 
mechanisms should be provided to the user to implement in the 
user’s applications.

1.4.2  Administrative Concerns

Most of the administrative concerns need to be covered in the contract 
between the user and the provider and need to be well described. It is neces-
sary to choose a provider with an adequate service-level agreement (SLA). 
Normally, the SLA is standard for all the users, but in the case of special 
needs, it is possible to negotiate with the provider. Also, the penalties if the 
SLA is not correctly delivered can be added to the contract. In most cases, 
changes in the standard SLA incur extra costs.

The provider must deliver a monitoring mechanism to the user to verify 
system health and the capacity of its allocated resources. Reporting tools are 
necessary to evaluate all the quality and usage levels.

The billing method is another important point of attention; it is necessary to 
know how the provider charges the user. In many cases, the smallest unit to 
charge a VM is 1 hour, even if it was used just for 5 minutes. Some providers  
present costs related to data transfer to outside the cloud. The storage price 
is another concern; some providers have free storage, up to a certain amount, 
and others charge in different manners. All the costs incurred in the opera-
tion need to be known by the user and controlled by the provider.

The provider’s business continuity is also an aspect to take into account. 
This is an administrative and technical concern. In the case of the provider’s 
end of the business, it is necessary that the user have guaranteed access to his 
or her own data. Also, the user needs the capability to move data to another 
provider without much effort; this is an important interoperability aspect.

1.4.3  Performance

A typical public cloud computing environment is a hosted service available 
on the Internet. The user needs to be continuously connected to the cloud 
provider with the agreed speed, both for data transfer from and to the pro-
vider and for regular access to the provider’s cloud manager. The Internet 
connection speed and availability are an issue even for performance and 
reliability with a cloud computing service.

The major issues regarding performance in cloud computing is the virtu-
alization and network interconnection. If the hypervisor does not have good 
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resource management, it is possible that the physical resources are under- or 
overused. In this case, a user can allocate a VM instance of a certain size 
and when the VM is moved to other resources of the provider’s infrastruc-
ture, the processing performance decreases or increases. Also, the network 
interconnection of the VM is a concern; as the network resources are pooled 
among all the users, the network performance is not guaranteed. This is an 
important topic for applications that use a large number of instances.

1.5  Evaluation Criteria

To provide a comprehensive evaluation of cloud computing as an environ-
ment for e-science services, for both technical and economic criteria, it is 
necessary to evaluate three aspects.

• Deployment: This aspect is related to the deployment capability 
of providers to build e-science environments in the cloud and the 
 capability to execute the workload.

• Performance: This is the performance evaluation of the cloud com-
pared to a traditional machine.

• Economic: The economic evaluation is performed to determine if it 
is better to use a cloud or to buy regular machines.

The deployment capability of cloud computing relates to the configuration 
procedures needed to create an environment for e-science. The setup proce-
dures to create, configure, and execute an application and then  deallocate the 
environment are important aspects of cloud computing in science. The charac-
teristics that should be evaluated are related to procedures and available tools 
to configure the environment. Features related to network configuration, time 
needed to create and configure VMs, and the hardware and software flexibil-
ity are also important. Criteria related to configuration procedures defined in 
our study are the following:

• Setup procedures: They consist of the user procedures to create and 
configure the environment in the cloud provider.

• Hardware and software configurations: These configurations are 
the available VMs size (number of cores and memory) and the capa-
bility to run different operating systems.

• Network: This criterion is related to the features offered by the pro-
vider to user access, as well as the interconnection between the VMs 
in the cloud.
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• Application porting procedures: This consists of the adaptation 
that needs to be performed in the application for it to be executed 
in the cloud. The evaluation covers changes in both the source code 
and the execution environment.

To evaluate the performance of the cloud, it is necessary to compare it with 
a traditional system, which is a system whose performance the user knows 
and will be used as the basis for comparison. For a fair comparison, both the 
base and cloud systems need to present similar characteristics, mainly the 
number of cores of each system. The purpose is to have a direct comparison 
between a known system, the base system, and a new system, the cloud.

1.6  Analysis of Cloud Providers

1.6.1  Amazon Web Services

Amazon web services are one of the most widely known cloud providers. 
Many different kinds of services are offered, including storage, platform, and 
hosting services. Two of the most-used services of Amazon are the Amazon 
Elastic Compute Cloud (EC2) and Amazon Simple Storage Service (S3).

Amazon EC2 is an IaaS model and may be considered the central part of 
Amazon’s cloud platform. It was designed to make web scaling easier for 
users. The interaction with the user is done through a web interface that 
permits obtaining and configuring any desired computing capacity with 
little difficulty. Amazon EC2 does not use regular configurations for the cen-
tral processing unit (CPU) of instances available. Instead, it uses an abstrac-
tion called elastic compute units (ECUs). According to Amazon, each ECU 
 provides the equivalent CPU capacity of a 1.0- to 1.2-GHz 2007 Opteron or 
2007 Xeon processor. Amazon S3 is also an IaaS model and consists of a stor-
age solution for the Internet. It provides storage through web service inter-
faces, such as REST and SOAP. There is no particular defined format of the 
stored objects; they are simple files. Inside the provider, the stored objects 
are organized into buckets, which are an Amazon proprietary method. The 
names of these buckets are chosen by the user, and they are accessible using 
a hypertext transfer protocol (HTTP) uniform resource locator (URL), with 
a regular web browser. This means that Amazon S3 can be easily used to 
replace static web hosting infrastructure. One example of an Amazon S3 
user is the Dropbox service, provided as SaaS for the final user, with the user 
having a certain amount of storage in the cloud to store any desired file.

1.6.2  Rackspace

Rackspace was founded in 1998 as a typical hosting company with several 
levels of user support. The company developed the cloud services offered 
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during company growth, and in 2009 they launched the Cloud Servers, which 
is a service of VMs and cloud files, an Internet-based service of storage.

The provider has data centers distributed in several regions: the United 
States, Europe, Australia, and Hong Kong. It is one of the major contributors 
of the Open Stack cloud project.

The product offered is the Open Cloud, which is an IaaS model. Several 
computing instances are provided that the user can launch and manage 
using a web-based control panel.

1.6.3  Microsoft Windows Azure

Microsoft started its initiative in cloud computing with the release of 
Windows Azure in 2008, which initially was a PaaS to develop and run 
applications written in the programming languages supported by the .NET 
framework. Currently, the company owns products that cover all types of 
service models. Online Services is a set of products that are provided as SaaS, 
while Windows Azure provides both PaaS and IaaS.

Windows Azure PaaS is a platform developed to provide the user the 
capability to develop and deploy a complete application into Microsoft’s 
infrastructure. To have access to this service, the user needs to develop an 
application following the provided framework.

The Azure framework has support for a wide range of programming 
 languages, including all .NET languages, Python, Java, and PHP. A generic 
framework is provided, in which the user can develop in any programming 
language that is supported by the Windows operating system (OS).

Windows Azure IaaS is a service developed to provide the user access to 
VMs running on Microsoft’s infrastructure. The user has a set of base images 
of Windows and Linux OS, but other images can be created using Hyper-V. 
The user can also configure an image directly into Azure and capture it to 
use locally or to deploy to another provider that supports Hyper-V.

1.6.4  Google App Engine

Google App Engine (GAE) is a service that enables users to build and deploy 
their web applications on Google’s infrastructure. The service model is PaaS, 
and the users of it are commonly developers. The users need to develop their 
application using the framework provided.

Currently, the languages supported are Python, Java, and Go. However, 
the provider intends to include more languages in the future.

The user develops and deploys the application using some of the avail-
able tool kits, and all the execution is managed by Google’s staff. The 
high-availability and location distribution are automatically defined. Google 
is responsible for the elasticity, which is transparent to the user; this means 
that if one application receives many requests, the provider increases the 
resources, and the opposite also happens.
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1.7  Cost Efficiency Evaluation

When the user decides to use a public cloud provider, it is necessary to 
 calculate the cost efficiency [5] of this service and if it is better to use it or buy 
a cluster. To determine this, two calculations can be used, the cost efficiency 
factor and the break-even point [6].

1.7.1  Cost Efficiency Factor

To calculate the cost efficiency factor for different systems, two values are 
required. The first one is the cost of the cloud systems. This cost, in the 
great majority of cloud providers, is expressed as cost per hour. The sec-
ond value is the overhead factor. To determine this factor, it is necessary 
to execute the same workload in all the candidate systems and in the base 
system.

The overhead factor OF is the execution time in the candidate system ETCS 
divided by the execution time in the base system ETBS. The following equa-
tion represents this calculation:

 O
ET
ET

F
CS

Bs
=

As an example, we want to compare a traditional server against a machine 
in the cloud. We define that the traditional server is the base system. We 
need to execute the same problem on both systems and then calculate the 
overhead factor. Assuming that the server takes 30 minutes to calculate and 
the cloud takes 60 minutes, applying the overhead factor equation, the result 
is 2 for the cloud. As the traditional system is the base system, its overhead 
factor is 1.

Using the overhead factor, it is possible to determine the cost efficiency 
factor CEF. The cost efficiency factor is defined as the product between the 
cost per hour CHC and the calculated overhead factor, resulting in the follow-
ing equation:

 CE C OF HC F= ×

For example, using the calculated overhead factor 2 and assuming a cost 
per hour of $5.00 of a cloud machine, the resulting cost efficiency is $10.00 
per hour. The cost efficiency gives the price to perform the same amount of 
work in the target system that the base system performs in 1 hour because 
the cost used in our equation is the cost per hour. If the result is less than 
the cost per hour of the base system, the candidate system presents a higher 
cost-benefit ratio than the base system. The cost efficiency factor also can 
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be used to verify the scalability of the candidate system. If the number of 
machines increases and the cost efficiency factor is constant, the candidate 
system has the same scalability rate as the base system.

1.7.2  Break-Even Point

The break-even point, represented in Figure 1.2, represents the point at which 
the cost to use both the base and the candidate systems is the same, on a 
yearly basis. In a cloud computing environment, with its pay-per-use model, 
this metric is important. It represents the number of days in a year when it 
is cheaper to use a cloud instead of buying a server. Figure 1.2 represents 
the break-even point and is represented by the vertical bold line. If the user 
needs to use the system for fewer days than the break-even point (left side of 
the line), it is better to use a cloud, but if the usage is higher, it is more cost 
efficient to buy a server.

To calculate the break-even point, it is necessary to obtain the yearly cost 
of the base system. The yearly cost BSYC represents the cost to maintain 
the system during a year; it is composed of the acquisition cost Acq$ of the 
machines themselves plus the maintenance costs Ymn$. To obtain the cost 
of the machines on a yearly basis, it is necessary to determine the usable 
 lifetime LT of the machine, normally 3 to 5 years. It is necessary to divide the 
acquisition costs of the machines by the usage time; this calculation results 
in the cost per year of the machines. In the yearly cost, it is also necessary 
to include the maintenance, personnel, and facilities costs of the machines. 
The following equation calculates the yearly cost:

 BS
Acq
LT

YmnYC = +$
$

Using this value and the cost efficiency factor, we can determine the 
break-even point. The cost efficiency factor represents the cost on an hourly 

Use a cloud Buy a server

Jan/1º Dec/31Break Even Point

FIGURE 1.2
Break-even point.
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basis; to obtain the number of days, the yearly cost is divided by the cost 
efficiency factor times 24. The following equation represents the break-even 
point calculation:

 BEP
BS

CE
YC

F
=

× 24

where BEP represents the break-even point, BSYC represents the calculated 
yearly cost of the base system, CEF represents the cost efficiency factor, and 
24 is the number of hours in a day. The result of this equation is expressed 
in number of days after which it becomes more cost efficient to use a server 
cluster instead of a cloud. It is important to remember that the number of 
days expressed by this equation is for continuous usage, 24 hours per day, 
but real-world usage is normally less than that. In a practical approach, if the 
server is used for fewer days per year than the break-even point, it is cheaper 
to use the cloud instead.

1.8  Evaluation of Providers: A Practical Example

To provide a better understanding of the proposed methodology, we will 
evaluate a hypothetical scenario. For this scenario, we need to execute the 
weather forecast for a region on a daily basis; the application is already 
developed in the Unix environment. Consider that we actually use a cluster 
to execute the application; now, this cluster needs to be changed because the 
supplier does not provide maintenance for it. We want to compare the acqui-
sition of a new cluster to a public cloud provider to verify which presents the 
best solution in our case.

The first step is to verify if the application can be executed on both sys-
tems; because of the Unix execution model, it is compatible with the new 
cluster and with the cloud since both have a compatible operating system. 
The cloud provides adequate tools to create a cluster-like environment to 
execute  parallel applications, and the delivery procedures are performed 
using standard network protocols, such as FTP (file transfer protocol). The 
conclusion is that the application can be executed both on the new cluster 
and in the cloud.

The second step is related to the performance of the solutions; it is neces-
sary to execute the same workload on both and then calculate the overhead, 
in terms of execution time, of the solutions. The workload in our example is 
the weather forecast application itself, with real input data, and we assume 
the cluster as the base system and the cloud as the candidate system. The 
execution time for the cluster was 4 hours (240 minutes), and the execution 
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time for the cloud was 6 hours (360 minutes). Applying the overhead factor 
equation, we have the following result:

 
360
240

1 5= .

which means that the overhead factor to execute the same calculation in the 
cloud, compared to the cluster, is 1.5. In other words, the time to execute 
the same application with the same data in the cloud takes 50% more time 
than the cluster. The weather forecast needs to be executed daily in less than 
12 hours; therefore, both solutions present adequate execution time.

The third and final step is related to the economic evaluation of both 
solutions. The first input for this calculation is the price of both solutions. 
The acquisition cost of the cluster is $1.3 million, and it will be used dur-
ing its lifetime of 10 years. To maintain the cluster, it is necessary to con-
tract a maintenance specialist for $3,000 per month, or $36,000 per year. 
Moreover, the energy consumption of this system is $1,000 per month or 
$12,000 per year. With all these costs, we can use the yearly cost equation; 
the results are
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This result means that the cost per year with the cluster is $178,000; this 
value will be used in the break-even point assessment. Another component 
of the break-even point is the cost efficiency factor, assuming a cost per hour 
of $50.00 for the cloud machine. Using the calculated overhead factor of 1.5, 
the resulting cost efficiency factor for the cloud is 75.00 ($/hour). Using both 
the yearly cost and the cost efficiency factor, we can determine the break-
even point with the following calculation:
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but this result is related to full usage for 24 hours a day. The real usage of 
the cloud will be 6 hours a day, which is the time required to perform the 
weather forecast for our city. Then, we can adjust the break-even point calcu-
lation for 6 hours; the new result is
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,
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This result is interpreted to mean that the number of days when the cloud 
has a better cost-benefit ratio than the cluster is 395 days in a year. We can 
conclude that the use of a cloud instead of a cluster is cheaper.
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1.9  Conclusions

In the discussion in this chapter, with the focus on economic viability, we can 
conclude that the cloud computing model is a competitive alternative to be used 
for e-science applications. The recommended configuration is the public imple-
mentation model, by which the user pays according to the use of the application.

Moreover, due to the cost efficiency evaluation model presented, it is pos-
sible to determine when using a cloud is better in terms of cost-benefit ratio 
than to buy a physical server. This metric can be used during the decision 
process regarding which platform will be used to create the e-science service.
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Summary

This chapter discusses the challenges that are imposed by big data on the 
modern and future e-scientific data infrastructure (SDI). The chapter dis-
cusses the nature and definition of big data, including such characteristics 
as volume, velocity, variety, value, and veracity. The chapter refers to dif-
ferent scientific communities to define requirements on data management, 
access control, and security. The chapter introduces the scientific data life 
cycle management (SDLM) model, which includes all the major stages and 
reflects specifics in data management in modern e-science. The chapter 
 proposes the generic SDI architectural model that provides a basis for build-
ing inter operable data or project-centric SDI using modern technologies and 
best  practices. The chapter discusses how the proposed models SDLM and 
SDI can be naturally implemented using modern cloud-based infrastructure 
 services and analyses security and trust issues in cloud-based infrastructure 
and summarizes requirements to access control and access control infra-
structure that should allow secure and trusted operation and use of the SDI.

2.1  Introduction

The emergence of data-intensive science is a result of modern science comput-
erization and an increasing range of observations, experimental data  collected 
from specialist scientific instruments, sensors, and simulation in every field 
of science. Modern science requires wide and cross-border research collabo-
ration. The e-science scientific data infrastructure (SDI) needs to provide an 
environment capable of both dealing with the ever-increasing heterogeneous 
data production and providing a trusted collaborative environment for dis-
tributed groups of researchers and scientists. In addition, SDI needs on the 
one hand to provide access to existing scientific information, including that 
in libraries, journals, data sets, and specialist scientific databases and on the 
other hand to provide linking between experimental data and publications.

Industry is also experiencing wide and deep technology refactoring to 
become data intensive and data powered. Cross-fertilization between emerg-
ing data-intensive/-driven e-science and industry will bring new data-intensive 
technologies that will drive new data-intensive/-powered applications.

Further successful technology development will require the definition of 
the SDI and overall architecture framework of data-intensive science. This 
will provide a common vocabulary and allow concise technology evaluation 
and planning for specific applications and collaborative projects or groups.

Big data technologies are becoming a current focus and a new “ buzzword” 
both in science and in industry. Emergence of big data or data-centric 



19Cloud-Based Infrastructure for Data-Intensive e-Science Applications

technologies indicates the beginning of a new form of continuous technology 
advancement that is characterized by overlapping technology waves related 
to different aspects of human activity from production and consumption to 
collaboration and general social activity. In this context, data-intensive  science 
plays a key role.

Big data are becoming related to almost all aspects of human activity, from 
just recording events to research, design, production, and digital services or 
products delivery, to the final consumer. Current technologies, such as cloud 
computing and ubiquitous network connectivity, provide a platform for auto-
mation of all processes in data collection, storing, processing, and visualization.

Modern e-science infrastructures allow targeting new large-scale problems 
whose solution was not possible previously (e.g., genome, climate, global 
warming). e-Science typically produces a huge amount of data that need to be 
supported by a new type of e-infrastructure capable of storing, distributing, 
processing, preserving, and curating these data [1, 2]: We refer to these new 
infrastructures as the SDI.

In e-science, the scientific data are complex multifaceted objects with com-
plex internal relations. They are becoming an infrastructure of their own 
and need to be supported by corresponding physical or logical infrastruc-
tures to store, access, process, visualize, and manage these data.

The emerging SDI should allow different groups of researchers to work 
on the same data sets, build their own (virtual) research and collaborative 
environ ments, safely store intermediate results, and later share the discov-
ered results. New data provenance, security, and access control mechanisms 
and tools should allow researchers to link their scientific results with the 
initial data (sets) and intermediate data to allow future reuse/repurposing of 
data (e.g., with the improved research technique and tools).

This chapter analyzes new challenges imposed on modern e-science infra-
structures by the emerging big data technologies; it proposes a general 
approach and architecture solutions that constitute a new scientific data life 
cycle management (SDLM) model and the generic SDI architecture model 
that provides a basis for heterogeneous SDI component interoperability and 
integration, in particular based on cloud infrastructure technologies.

The chapter is primarily focused on SDI; however, it provides analysis of 
the nature of big data in e-science, industry, and other domains; analyses their 
commonalities and differences; and discusses possible cross-fertilization 
between two domains.

The chapter refers to ongoing research on defining the big data infrastruc-
ture for e-science initially presented elsewhere [3, 4] and significantly extends 
it with new results and a wider scope to investigate relations between big data 
technologies in e-science and industry. With a long tradition of working with 
a constantly increasing volume of data, modern science can offer industry 
scientific analysis methods, while industry can bring big data technologies 
and tools to wider public access.
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The chapter is organized as follows: Section 2.2 looks into the definition 
and nature of big data in e-science, industry, business, and social networks, 
also analyzing the main drivers for big data technology development. 
Section 2.3 gives an overview of the main research communities and sum-
marizes requirements for future SDI. Section 2.4 discusses challenges to data 
management in big data science, including a discussion of SDLM. Section 2.5 
introduces the proposed e-SDI architecture model that is intended to answer 
the future big data challenges and requirements. Section 2.6 discusses SDI 
implementation using cloud technologies. Section 2.6 discusses security and 
trust-related issues in handling data and summarizes specific requirements 
to access the control infrastructure for modern and future SDIs.

2.2  Big Data Definition

2.2.1  Big Data in e-Science, Industry, and Other Domains

Science traditionally has dealt with challenges to handle large volumes of 
data in complex scientific research experiments. Scientific research typically 
includes a collection of data in passive observation or active experiments 
that aim to verify one or another scientific hypotheses. Scientific research 
and discovery methods typically are based on the initial hypothesis and a 
model that can be refined based on the collected data. The refined model 
may lead to a new, more advanced and precise experiment or reevaluation of 
the previous data. Another distinctive feature of modern scientific research 
is that it suggests wide cooperation between researchers to challenge com-
plex  problems and run complex scientific instruments.

In industry, private companies will not share data or expertise. When 
dealing with data, companies will always intend to keep control over their 
information assets. They may use shared third-party facilities, like clouds, 
but special measures need to be taken to ensure data protection, including 
data sanitization. Also, companies might use shared facilities only for proof 
of concept and do production data processing at private facilities. In this 
respect, we need to accept that science and industry cannot be done in the 
same way; consequently, this will be reflected in how they can interact and 
how the big data infrastructure and tools can be built.

With the proliferation of digital technologies into all aspects of business 
activities and emerging big data technologies, the industry is entering a 
new playing field when it needs to use scientific methods to benefit from 
the possibility of collecting and mining data for desirable information, such 
as market prediction, customer behavior predictions, social groups activity 
predictions, and so on.
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A number of discussions and blog articles [5–7] suggested that the big 
data technologies need to adopt scientific discovery methods that include 
iterative model improvement and collection of improved data and reuse of 
 collected data with an improved model.

According to a blog article by Mike Gualtieri from Forrester [7]: “Firms 
increasingly realize that [big data] must use predictive and descriptive ana-
lytics to find nonobvious information to discover value in the data. Advanced 
analytics uses advanced statistical, data mining and machine learning algo-
rithms to dig deeper to find patterns that you can’t see using traditional BI 
tools, simple queries, or rules.”

2.2.2  The Big Data Definition

Despite the fact that the term big data has become a new buzzword, there is 
no consistent definition for big data or detailed analysis of this new emerg-
ing technology. Most discussions until now have been in the blogosphere, 
where the most significant big data characteristics have been identified and 
been commonly accepted [8–10]. In this section, we summarize available 
definitions and propose a consolidated view of the generic big data features 
that would help us define requirements to support big data infrastructure, 
particularly the SDI.

As a starting point, we can refer to a simple definition [9]: “Big Data: a mas-
sive volume of both structured and unstructured data that is so large that 
it’s difficult to process using traditional database and software techniques.” 
A related definition of the data-intensive science is given in the book The Fourth 
Paradigm: Data-Intensive Scientific Discovery by the computer scientist Jim Gray 
[10]: “The techniques and technologies for such data-intensive science are so 
different that it is worth distinguishing data-intensive science from compu-
tational science as a new, fourth paradigm for scientific exploration” (p. xix).

2.2.3  Five Vs of Big Data

In a number of discussions and articles, big data are attributed to have such 
native generic characteristics as volume, velocity, and variety, also referred 
to as the “3 Vs of big data.” After being stored and entered into the process-
ing stages or workflow, big data acquire new properties, value and veracity, 
which together constitute the five Vs of big data: volume, velocity, variety, 
value, and veracity [4]. Figure 2.1 illustrates the features related to the 5 Vs, 
which are analyzed next.

2.2.3.1  Volume

Volume is the most important and distinctive feature of big data that 
imposes additional and specific requirements for all traditional technologies 
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and tools currently used. In e-science, growth of the data amount is caused 
by advancements in both scientific instruments and SDI. In many areas, the 
trend is actually to include data collections from all observed events, activi-
ties, and sensors, which became possible and is important for social activities 
and social sciences.

Big Data volume includes such features as size, scale, amount, and dimen-
sion for tera- and exascale data recording either data-rich processes or data 
collected from many transactions and stored in individual files or databases. 
All need to be accessible, searchable, processed, and manageable.

Two examples from e-science also provide different characteristics of data 
and different processing requirements:

• The Large Hadron Collider (LHC) [11, 12] produces on average 5 PB 
(petabytes) of data a month that are generated in a number of short 
collisions that make them unique events. The collected data are 
 filtered, stored, and extensively searched for single events that may 
confirm a scientific hypothesis.

• The LOFAR (Low-Frequency Array) [13] is a radio telescope that 
 collects about 5 PB every hour; however, the data are processed by a 
correlator, and only correlated data are stored.

In industry, global services providers such as Google [14], Facebook [15], 
and Twitter [16] are producing, analyzing, and storing data in huge amounts 
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as regular activity/production services. Although some of their tools and 
processes are proprietary, they actually prove the feasibility of solving big 
data problems at the global scale and significantly push the development of 
the Open Source big data tools.

2.2.3.2  Velocity

Big data are often generated at high speed, including data generated by 
arrays of sensors or multiple events; these data need to be processed in 
real time or near real time, in a batch, or as streams (e.g., for visualization). 
As an example, the LHC ATLAS detector [12] uses about 80 readout channels 
and collects up to 1 PB of unfiltered data per second, which are reduced to 
approximately 100 MB per second. This should record up to 40 million colli-
sion events per second.

Industry can also provide numerous examples when data registration, 
processing, or visualization imposes similar challenges.

2.2.3.3  Variety

Variety deals with the complexity of big data and information and seman-
tic models behind these data. This results in data collected as structured, 
unstructured, semistructured, and mixed data. Data variety imposes new 
requirements for data storage and database design, which should have 
dynamic adaptation to the data format, particularly scaling up and down.

Biodiversity research [17] provides a good example of the data variety that 
is a result of the collection and processing of information from a wide range 
of sources and the relation of the collected information to species popula-
tion, genomic data, climate, satellite information, and more. Another example 
can be urban environment monitoring (also called “smart cities” [18]), which 
requires operating, monitoring, and evolving numerous processes, individuals, 
and associations.

Adopting data technologies in traditionally non-computer-oriented areas 
such as psychology and behavior research, history, and archeology will gen-
erate especially rich data sets.

2.2.3.4  Value

Value is an important feature of the data that is defined by the added 
value that the collected data can bring to the intended process, activity, or 
 predictive analysis/hypothesis. Data value will depend on the events or 
 processes the data represent, such as processes that are stochastic, probabi-
listic, regular, or random. Depending on this, requirements may be imposed 
to collect all data, store the data for a longer period (for some possible event 
of interest), and so on. In this respect, data value is closely related to the 
data volume and variety. The stock exchange financial data provide a good 
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example of high-volume data that have high value for real-time market trend 
 monitoring, but decreasing value with time and market volatility [19].

2.2.3.5  Veracity

The veracity dimension of big data includes two aspects: data consistency 
(or certainty), which can be defined by statistical reliability of the data, and 
data trustworthiness, which is defined by a number of factors, among them 
data origin and collection and processing methods, including trusted infra-
structure and facility.

Big data veracity ensures that the data used are trusted, authentic, and pro-
tected from unauthorized access and modification. The data must be secured 
during their whole life cycle, from collection from trusted sources to pro-
cessing on trusted computing facilities and storage on protected and trusted 
storage facilities.

The following aspects define and need to be addressed to ensure data veracity:

• Integrity of data and linked data (e.g., for complex hierarchical data, 
distributed data)

• Data authenticity and (trusted) origin
• Identification of both data and source
• Computer and storage platform trustworthiness
• Availability and timeliness
• Accountability and reputation

Data veracity relies entirely on the security infrastructure deployed and 
available from the big data infrastructure [20].

2.3  Research Infrastructures and Infrastructure Requirements

This section refers to and provides a short overview of different scientific 
communities, in particular as defined by the European Research Area (ERA) 
[21], to define requirements for the infrastructure facility, data-processing and 
management functionalities, user management, access control, and security.

2.3.1  Paradigm Change in Modern e-Science

Modern e-science is moving to the data-intensive technologies that are 
becoming a new technology driver and require rethinking a number of 
infrastructure architecture and operational models, components, solutions, 
and processes to address the following general challenges [2, 4]:



25Cloud-Based Infrastructure for Data-Intensive e-Science Applications

• Exponential growth of data volume produced by different research 
instruments or collected from sensors

• Need to consolidate e-infrastructures as persistent research platforms 
to ensure research continuity and cross-disciplinary collaboration, 
deliver/offer persistent services, with an adequate governance model

The recent advancements in the general computer and big data technolo-
gies facilitate the paradigm change in modern e-science that is characterized 
by the following features:

• Automation of all e-science processes, including data collection, 
 storing, classification, indexing, and other components of the general 
data curation and provenance

• Transformation of all processes, events, and products into digital form 
by means of multidimensional, multifaceted measurements, moni-
toring, and control; digitizing existing artifacts and other content

• Possibility of reusing the initial and published research data with 
possible data repurposing for secondary research

• Global data availability and access over the network for a cooperative 
group of researchers, including wide public access to scientific data

• Existence of necessary infrastructure components and management 
tools that allow fast infrastructures and services composition, adap-
tation and provisioning on demand for specific research projects 
and tasks

• Advanced security and access control technologies that ensure 
secure operation of the complex research infrastructures and scien-
tific instruments and allow creating a trusted secure environment 
for cooperating groups and individual researchers

The future SDI should support the whole data life cycle and explore the 
benefit of data storage/preservation, aggregation, and provenance on a large 
scale and during long or unlimited periods of time. It is important that this 
infrastructure ensure data security (integrity, confidentiality, availability, 
and accountability) and data ownership protection. With current needs to 
process big data that require powerful computation, there should be a pos-
sibility of enforcing data/data set policy so that they can be processed on 
trusted systems or comply with other requirements. Researchers must trust 
the SDI to process their data on SDI facilities and be assured that their stored 
research data are protected from nonauthorized access. Privacy issues also 
arise from the distributed remote character of SDI, which can span multiple 
countries with different local policies. This should be provided by the cor-
responding access control and accounting infrastructure (ACAI), which is an 
important component of SDI [20, 22].
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2.3.2  Research Communities and Specific SDI Requirements

A short overview of some research infrastructures and communities, par-
ticularly the ones defined for the ERA [21], allows a better understanding 
of specific requirements for the future SDIs that are capable of addressing 
big data challenges. Existing studies of European e-infrastructures analyzed 
the scientific communities’ practices and requirements; examples of these 
 studies are those undertaken by the SIENA Project [23], EIROforum Federated 
Identity Management Workshop [24], European Grid Infrastructure (EGI) 
Strategy Report [25], and UK Future Internet Strategy Group Report [26].

The high-energy physics (HEP) community represents a large number of 
researchers, unique expensive instruments, and a huge amount of data that 
are generated and need to be processed continuously. This community already 
has the operational Worldwide LHC Computing Grid (WLCG) [11] infrastruc-
ture to manage and access data, protect their integrity, and support the whole 
scientific data life cycle. WLCG development was an important step in the 
evolution of European e-infrastructures that currently serve multiple scientific 
communities in Europe and internationally. The EGI cooperation [27] man-
ages European and worldwide infrastructure for HEP and other communities.

Material science and analytical and low-energy physics (proton, neutron, 
laser facilities) are characterized by short projects and experiments and con-
sequently a highly dynamic user community. A highly dynamic supporting 
infrastructure and advanced data management infrastructure to allow wide 
data access and distributed processing are needed.

The environmental and earth science community and projects target 
regional or national and global problems. Huge amounts of data are  collected 
from land, sea, air, and space and require an ever-increasing amount of stor-
age and computing power. This SDI requires reliable fine-grained access 
control to huge data sets, enforcement of regional issues, and policy-based 
data filtering (data may contain national security-related information) while 
tracking data use and maintaining data integrity.

Biological and medical sciences (also defined as life sciences) have a gen-
eral focus on health, drug development, new species identification, and new 
instrument development. They generate a massive amount of data and new 
demands for computing power, storage capacity, and network performance 
for distributed processes, data sharing, and collaboration. Biomedical data 
(health care, clinical case data) are privacy-sensitive data and must be han-
dled according to the European policy on processing of personal data [27].

Biodiversity research [17] involves research data and research specialists 
from at least biology and environmental research and may include data about 
climate, weather, and satellite observation. This primarily presents chal-
lenges for not only integrating different sources of information with different 
data models and processing a huge amount of collected information but also 
may require fast data processing in case of natural disasters. The projects 
LifeWatch [28] and ENVRI (Common Operations of Environmental Research 
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Infrastructure) [29] present good examples of which research approaches and 
what kind of data are used.

Social science and humanities communities and projects are characterized 
by multilateral and often global collaborations between researchers who 
need to be engaged into collaborative groups or communities and supported 
by collaborative infrastructure to share data and discovery/research results 
and cooperatively evaluate results. The current trend to digitize all currently 
collected physical artifacts will create in the near future a huge amount of 
data that must be widely and openly accessible.

2.3.3  General SDI Requirements

From the overview, we can extract the following general infrastructure 
requirements for SDI for emerging big data science:

• Support for long-running experiments and a large volume of hetero-
geneous data generated at high speed

• On-demand infrastructure provisioning to support data sets and 
 scientific workflows and mobility of data-centric scientific applications

• Provision of high-performance computing facilities to allow com-
plex data analytics with evolving research models

• Support for distributed and mobile sensor networks for observation 
data collection and advance information visualization

• Support for virtual scientists’ communities, addressing dynamic user 
groups creation and management, federated identity management

• Support for the whole data life cycle management, particularly advanced 
data provenance, data archiving, and consistent data identification

• Multitier interlinked data distribution and replication
• Provision of a trusted environment for data storage and processing
• Support for data integrity, confidentiality, accountability
• Policy binding to data to protect privacy, confidentiality, and intel-

lectual property rights (IPR)

2.4  Scientific Data Management

2.4.1  Scientific Information and Data in Modern e-Science

Emergence of computer-aided research methods is transforming the way 
research is done and scientific data are used. The following types of sci-
entific data are defined and illustrated in a form of scientific data pyramid 
(see Figure 2.2) [22]:
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• Raw data collected from observations and from experiments (what 
actually is done according to an initial research model or hypothesis).

• Structured data and data sets that went through data filtering and pro-
cessing (supporting some particular formal model, which is typically 
refined from the initial model). These data are already stored in repos-
itories and may be shared with collaborative groups of researchers.

• Published data that support one or another scientific hypothesis, 
research result, or statement. These data are typically linked to sci-
entific publications as supplemental materials; they may be located 
on the publisher’s platform or authors’ institution platform and have 
open or licensed access.

• Data linked and embedded into publications to support wide 
research consolidation, integration, and openness.

Once the data are published, it is essential to allow other scientists to be 
able to validate and reproduce the data in which they are interested and 
possibly contribute new results. Capturing information about the processes 
involved in transformation from raw data until the generation of published 
data becomes an important aspect of scientific data management. Scientific 
data provenance becomes an issue that also needs to be taken into consider-
ation by SDI providers [30].

Another aspect to take into consideration is to guarantee reusability of pub-
lished data within the scientific community. Understanding the  semantics of 
the published data becomes an important issue to allow for reusability; this 
traditionally has been done manually. However, as we anticipate an unprec-
edented scale of published data that will be generated in big data science, 

Data
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Structured Data
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FIGURE 2.2
Scientific data pyramid.
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attaching a clear data semantic becomes a necessary condition for efficient 
reuse of published data. Learning from best practices in the semantic web 
community on how to provide reusable published data will be one consider-
ation that will be addressed by SDI.

Big data are typically distributed both on the collection side and on the pro-
cessing/access side: Data need to be collected (sometimes in a time-sensitive 
way or with other environmental attributes), distributed, or replicated. 
Linking distributed data is one of the problems to be addressed by SDI.

The European Commission’s initiative to support open access to scientific 
data from publicly funded projects suggests introduction of the following 
mechanisms to allow linking publications and data [31]:

• PID: persistent data ID [32]
• ORCID: Open Researcher and Contributor Identifier [33].

2.4.2  Data Life Cycle Management in Scientific Research

e-Science enabled by computers and information technology (IT) allows 
multipurpose data collection and use and advanced data processing. A pos-
sibility to store the initial data sets and all intermediate results will allow for 
future data use, in particular data repurposing and secondary research, as 
the technology and scientific methods develop.

Emergence of computer-aided research methods is transforming the way 
research is performed and scientific data are processed or used. This is also 
reflected in the changed SDLM shown in Figure 2.3 and discussed next.

We refer to the extensive study of the SDLM models [34]. The traditional 
scientific data life cycle includes a number of stages (see Figure 2.3a):

• Research project or experiment planning

• Data collection

• Data integration and processing

• Research result publication

• Discussion, feedback
• Archiving (or discarding)

The new SDLM model requires data storage and preservation at all stages, 
which should allow data reuse or repurposing and secondary research on 
the processed data and published results. However, this is possible only if 
the full data identification, cross-reference, and linkage are implemented 
in the SDI. Data integrity, access control, and accountability must be sup-
ported during the entire data life cycle. Data curation is an important 
component of the discussed SDLM and must also be done in a secure and 
trustworthy way.
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The following support data security and access control to scientific data 
during their life cycle: data acquisition (experimental data), initial data filter-
ing, specialist processing, research data storage and secondary data mining, 
data and research information archiving.

2.5  Scientific Data Infrastructure Architecture Model

The proposed generic SDI architecture model provides a basis for building 
interoperable data or project-centric SDI using modern technologies and 
best practices. Figure 2.4 shows the multilayer SDI architecture for e-science 
(e-SDI) that contains the following layers:

Layer D1: Network infrastructure layer represented by either the general-
purpose Internet infrastructure or dedicated network infrastructure

Layer D2: Data centers and computing resources/facilities
Layer D3: Infrastructure virtualization layer represented by the cloud/grid 

infrastructure services and middleware supporting specialized scien-
tific platform deployment and operation
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Layer D4: (Shared) scientific platforms and instruments specific for dif-
ferent research areas.

Layer D5: Access and delivery layer that represents the general Federated 
Access and Delivery Infrastructure (FADI) that includes infrastruc-
ture components for interconnecting, integrating, and operating com-
plex scientific infrastructure to support project-oriented collaborative 
groups of researchers

Layer D6: Scientific applications, subject-specific databases, and 
user portals/clients

Note: The D prefix denotes the relation to the data infrastructure.
We also define the three cross-layer planes: operational support and man-

agement system, security plane, and metadata and life cycle management.
The dynamic character of SDI and its support of distributed multifaceted 

communities are guaranteed by the following dedicated layers: D3, the infra-
structure virtualization layer that typically uses modern cloud technologies, 
and D5, the FADI layer that incorporates related federated infrastructure 
management and access technologies [21, 35, 36]. Introduction of the FADI 
layer reflects current practices in building and managing complex SDIs (and 
enterprise infrastructures) and allows independently managed infrastruc-
tures to share resources and support interorganizational cooperation.

Network infrastructure is presented as a separate lower layer in e-SDI, but 
dedicated network infrastructure provisioning is also relevant to the FADI 
layer. Network aspects in big data are becoming even more important than 
for computer grids and clouds. We can identify two main challenges that big 
data transport will impose on the underlying layer of the SDI:

• Timely delivery to bring all data where required with the smallest 
possible latency

• Cost reduction to optimize the amount of network equipment 
required (either via purchasing it or on a pay-per-use basis) without 
scarifying the quality of service (QoS)

For many SDIs, the basic best-effort Internet is the only available network 
transport architecture. In these cases, given the constraints imposed by this 
shared medium, it will be difficult to fully provide the low latency and guar-
anteed delivery required for big data processing. Performance may be lower, 
but it will be manageable. Fewer SDIs will rely on circuit-based networks, for 
which the timely delivery of data will be guaranteed but the costs for operat-
ing or using the network path will be significantly higher.

We see a third possibility for dealing with big data at the lowest layer of the 
SDI. Emerging protocols for network programmability (e.g., OpenFlow and 
in general software-defined networks) provide interesting solutions. By fully 
controlling the network equipment, both time and costs can be optimized.
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Although the dilemma of moving data to computing facilities or moving 
computing to the data location can be solved in some particular cases, process-
ing highly distributed data on MPP (massively parallel processing) infrastruc-
tures will require a special design of the internal MPP network infrastructure.

2.6  Cloud-Based Infrastructure Services for SDI

Figure 2.5 illustrates the typical e-science or enterprise collaborative infra-
structure that is created on demand and includes enterprise proprietary 
and cloud-based computing and storage resources, instruments, control 
and monitoring system, visualization system, and users represented by user 
 clients and typically residing in real or virtual campuses. The main goal 
of the enterprise or scientific infrastructure is to support the enterprise or 
 scientific workflow and operational procedures related to process monitor-
ing and data processing. Cloud technologies simplify the building of such 
infrastructure and provision it on demand. Figure  2.5 illustrates how an 
example enterprise or scientific workflow can be mapped to cloud-based ser-
vices and later deployed and operated as an instant intercloud infrastructure. 
It contains cloud infrastructure segments IaaS (infrastructure as a service) 
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(VR3–VR5) and PaaS (platform as a service) (VR6, VR7); separate virtualized 
resources or services (VR1, VR2); two interacting campuses, A and B; and 
interconnecting them to a network infrastructure that in many cases may 
need to use dedicated network links for guaranteed performance.

Efficient operation of such infrastructure will require both overall infra-
structure management and individual services and infrastructure segments 
to interact between themselves. This task is typically out of the scope of the 
existing cloud service provider models but will be required to support per-
ceived benefits of the future cloud-based e-SDI. These topics are a subject for 
us in other research on the intercloud architecture framework (ICAF) [37–39]. 
The ICAF provides a common basis for building adaptive and on-demand 
provisioned multiprovider cloud-based infrastructure services.

Besides the general cloud-based infrastructure services (storage, compute, 
infrastructure/virtual machine [VM] management), the following specific 
applications and services are required to support big data and other data-centric 
applications [40]:

• Cluster services
• Hadoop-related services and tools
• Specialist data analytics tools (logs, events, data mining, etc.)
• Databases/servers SQL, NoSQL
• MPP databases
• Big data management tools
• Registries, indexing/search, semantics, namespaces
• Security infrastructure (access control, policy enforcement, confi-

dentiality, trust, availability, privacy)
• Collaborative environment (groups management)

Big data analytics tools are currently offered by the major cloud services  
providers, such as Amazon Elastic MapReduce and Dynamo [41], Microsoft 
Azure HDInsight [42], IBM Big Data Analytics [43]. HPCC Systems by 
LexisNexis [44], Scalable Hadoop, and data analytics tools services are 
offered by a few companies that position themselves as big data companies, 
such as Cloudera [45] and a few others [46].

2.7  Security Infrastructure for Big Data

2.7.1  Security and Trust in Cloud-Based Infrastructure

Ensuring data veracity in big data infrastructure and applications requires 
deeper analysis of all factors affecting data security and trustworthiness 
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during their whole life cycle. Figure 2.6 illustrates the main actors and their 
relations when processing data on a remote system. User or customer and 
service provider are the two actors concerned with their own data and con-
tent security and each other’s system/platform trustworthiness: The user 
wants to be sure that his or her data are secure when processed or stored on 
the remote system.

Figure 2.6 illustrates the complexity of trust and security relations even 
in a simple use case of the direct user/provider interaction. In clouds, data 
security and the trust model need to be extended to a distributed, multi-
domain, and multiprovider environment. In the general case of a multi-
provider and multitenant e-science cooperative environment, the e-SDI 
security infrastructure should support on-demand created and dynamically 
configured user groups and associations, potentially reusing existing expe-
rience in managing virtual organizations (VOs) and VO-based access control 
in computer grids [47, 48].

Data-centric security models, when used in a generically distributed and 
multiprovider e-SDI environment, will require policy binding to data and a 
fine-grained data access policy that should allow flexible policy  definition 
based on the semantic data model. Based on our experience, the XACML 
(eXtensible Access Control Mark-up Language) policy language can provide 
a good basis for such functionality [49, 50]. However, support of the data life 
cycle and related provenance information will require additional research 
in policy definition and underlying trust management models.

2.7.2  General Requirements for a Federated 
Access Control Infrastructure

To support both secure data processing and project based collaboration 
of researchers, the future SDI should be supported by a corresponding 
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Federated Access Control Infrastructure (FACI) that would ensure  normal 
infrastructure operation and assets and information protection and allow 
user authentication and policy enforcement in the distributed multi-
organization environment. The future SDI should support the entire data life 
cycle and explore the benefits of data storage/preservation, aggregation, and 
provenance on a large scale and during a long or unlimited period of time; 
accordingly, the future FACI should support all stages of the data life cycle, 
including policy attachment to data to ensure persistency of the data policy 
enforcement during continuous online and offline processes.

The required FACI should support the following features of the future SDI:

• Empower researchers (and garner their trust) to do their data pro-
cessing on shared facilities of large data centers with guaranteed 
data and information security.

• Motivate/assure researchers that they can share or open their 
research environment to other researchers by providing tools for 
instantiation of customized preconfigured infrastructures to allow 
other researchers to work with existing or their own data sets.

• Protect data policy, ownership, linkage (with other data sets and newly 
produced scientific/research data) when providing (long term) data 
archiving. Data preservation technologies should themselves ensure 
data readability and accessibility with the changing technologies.

2.8  Summary and Future Development

The information presented in this chapter provides a snapshot of the 
fast-developing big data and data analytics technologies that merge modern 
e-science research methods and experience of dealing with the large-scale 
problems, on one hand, and modern industry speed of technology develop-
ment and global scale of implementation and services availability on the 
other. At this stage, we summarized and presented rethinking on some 
widely used definitions related to big data; further research will require a 
more formal approach and taxonomy of the general big data use cases in 
both science and industry.

As a part of general infrastructure research, we will continue research on 
the infrastructure issues in big data, targeting a more detailed and technol-
ogy-oriented definition of SDI and related security infrastructure definition. 
Special attention will be given to defining the whole cycle of the provi-
sioning of SDI services on demand, specifically tailored to support instant 
 scientific workflows using cloud IaaS and PaaS platforms. This research will 
also be supported by development of the corresponding cloud architecture 
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framework and ICAF to support the big data e-science processes and infra-
structure operation. Particular focus will be made on the federated cloud 
and intercloud service provisioning model.

Although the currently proposed SDLM definition has been accepted as 
the European Commission Study recommendation [21], the further defini-
tion of the related metadata, procedures, and protocols as well as SDLM 
extension to the general big data life cycle is required.

The research presented is planned to contribute to the two standardiza-
tion bodies related to the emerging big data technology with which authors 
are actively involved: the Research Data Alliance (RDA) [51] and the recently 
established NIST Big Data Working Group (NBD-WG) [52].
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Summary

Clouds are increasingly being used to store personal and sensitive information 
such as health records and important documents. We address the problem of 
storing sensitive information in the cloud so that the cloud service provider 
cannot tamper with the stored data. We present three problems: computing on 
encrypted data, access control of stored data, and auditing techniques for integ-
rity verification. The first problem uses a cryptographic primitive called homo-
morphic encryption; the second problem uses attribute-based encryption (ABE), 
and the third uses provable data possession (PDP) and proof of retrievability (PoR). 
We survey recent results and discuss some open problems in this domain.

3.1  Introduction

Security is an important aspect of cloud computing because much informa-
tion is sensitive. For example, private clouds are increasingly being used 
for storing medical records. There are also proposals for digitizing health 
records and storing them in public clouds. This not only will enable patients 
to access their information from anywhere in the world but also will enable 
other patients to seek suggestions depending on their symptoms and 
 diseases. The patient’s name and vital details can be hidden so that other 
patients can access their records without knowing the identity of the patient. 
This will benefit researchers, doctors, and other patients. Since health infor-
mation is sensitive, proper measures should be taken to secure the data.

Another area of interest is social networks. The data are stored in clouds 
and can be accessed from anywhere using the Internet. With the growing 
interest in Facebook, Twitter, LinkedIn, and other social and professional 
networks, there is a need to protect the privacy of individuals. Privacy pro-
tection and access control are central to social networking. Security and 
 privacy issues have been addressed [19, 21].

The following are the important security vulnerabilities in the cloud:

 1. Data theft or loss: The cloud servers are distrusted in terms of both 
security and reliability. The cloud servers are prone to Byzantine 
attacks, in which they might fail in arbitrary ways. The cloud ser-
vice provider (CSP) might also corrupt the data, sell data, or violate 
service-level agreements (SLAs). Administration errors may cause 
data loss during backup and restore and data migration.

 2. Privacy issues: The CSP must make sure that the customer’s  personal 
information is protected from other users.

 3. Infected application: Applications running on the cloud can be 
 malicious and corrupt servers, user devices, and other applications.
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 4. Threats in virtualization: There are many inherent security issues 
in virtualization. Since clouds make extensive use of virtualization 
techniques, they are prone to vulnerabilities in virtualization.

 5. Cross-VM (virtual machine) attack via side channels: A cross-VM 
attack exploits the multitenancy of the VM that enables VMs belong-
ing to different customers to coreside on the same physical device.

Thus, the cloud should provide:

 1. Availability: User data should be accessible from anywhere at any time.
 2. Reliability: User data should be backed up so that even in case of 

failure, the data are available.
 3. Integrity: Data should be available to the user as is, without any 

modification by the CSP or a malicious user.
 4. Confidentiality: The cloud provider should not be able to read or 

modify data stored by the user.
 5. Privacy: A user’s data can be stored without knowing the actual 

identity of the data.
 6. Accountability: The cloud should be accountable for any operation 

(alteration or deletion) made on the data and should not be able to 
refute the action.

3.1.1  Organization of the Chapter

In this chapter, we do not discuss virtualization security. We focus on 
secure computing using homomorphic encryption, access control using 
attribute-based encryption (ABE), and data auditing using provable data 
possession (PDP) and proofs of retrievability (PoR). For each of these secu-
rity aspects, we first discuss the underlying cryptographic technique and 
then present how it is used to ensure cloud data security. We then present 
the state of the art. Section 3.2 presents homomorphic encryption for secure 
computation; Section 3.3 presents access control techniques using ABE. 
Data auditing is presented in Section 3.4. We conclude with some open prob-
lems in Section 3.5.

3.2  Homomorphic Encryption 
for Secure Computation in the Cloud

The cloud is being increasingly used in scientific computation. In many 
 situations, the computation can be on sensitive data. For example, two com-
peting companies, X and Y, have outsourced computation to the cloud. 
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The cloud must not be able to read the data from X and disclose the informa-
tion to Y. It is thus important to hide the data from the cloud, such that the 
cloud operates on the encrypted data and returns the result without even 
knowing what data were involved. To ensure that the cloud is not able to 
read the data while performing computations on it, many homomorphic 
 encryption techniques have been suggested [12, 33]. Using homomorphic 
encryption, the cloud receives ciphertext of the data, performs computations 
on the ciphertexts, and returns the encoded value of the result. The user 
is able to decode the result, but the cloud does not know what data were 
involved. In such circumstances, it must be possible for the user to verify that 
the cloud returned correct results.

Several encryption techniques exist that support different homomor-
phisms, such as multiplicative homomorphism (RSA [30]), additive homo-
morphism (Paillier [28], Boneh-Goh-Nissim [5]), or the recently proposed 
fully homomorphic scheme [12], which can support complicated functions. 
We give a brief description of how the Paillier homomorphic encryption 
technique works.

3.2.1  Paillier Homomorphic Encryption Scheme

Given two numbers M1 and M2, a user might want the cloud to calculate 
the result M1 + M2 without the cloud knowing the values of M1 and M2. The 
 protocol consists of three algorithms:

 1. Key generation: This algorithm generates the public keys and global 
parameters, given a security parameter. Let N = p1p2, where p1 and p2 
are primes. Choose g N∈ ∗� 2, such that g has an order that is a multi-
ple of N. Let λ(N) = lcm(p1 − 1, p2 − 1), where lcm represents the least 
common multiple. Then, the public key is PK = (N, g), and the secret 
key is SK = (λ(N)).

 2. Encryption: Let M N∈�  be a message. Select a random number 
r ZN∈ ∗ . The ciphertext c is given by

 c E M g r NM N= ( ) = mod 2  (3.1)

 3. Decryption: To decrypt c, M can be calculated as

 M D c
L c N

L g N
N

N

N
= ( ) =

( )
( )

( )

( )

λ

λ

mod

mod
mod

2

2
,  (3.2)

where the L function takes input from the set {u < N2|u = 1 mod N} and 
 computes L(u) = (u − 1)/N.
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Additive homomorphism is demonstrated in the following way: Suppose 
c E M g rM N

1 1 1
1= ( ) =  and c E M g rM N

2 2 2
2= ( ) =  are two ciphertexts for M1 , 

M N2 ∈� . Then, c c N g r r NM M N
1 2

2
1 2

21 2mod( ) = ( )( )+ mod . On decryption, we 
have D(c1.c2 mod N2) = M1 + M2 mod N. Thus, the sum of the plaintexts can 
be obtained from the ciphertext without the cloud knowing the values of M1 
and M2. We note that rN is used only to make the homomorphic computation 
nondeterministic; the same message can be encrypted into different cipher-
texts to prevent dictionary attacks.

Boneh, Goh, and Nissim [5] proposed a scheme capable of performing multi-
ple additions and only one multiplication at the same time. Before explaining 
their homomorphic encryption technique, we define bilinear pairing.

3.2.2  Bilinear Pairing

For bilinear pairing, let G be a cyclic group of prime order p generated by g. 
Let GT be a group of order p. We can define the map e: G × G → GT. The map 
satisfies the following properties:

 1. e(ua, ub) = e(u, v)ab for all u, v ∈ G and a b p, ∈� .
 2. Nondegenerate: e(g, g) ≠ 1.
 3. e is efficiently computable.

3.2.3  Homomorphic Encryption Using Bilinear Pairings

• Gen(κ) → (pk, sk): Given a security parameter κ, Gen(κ) chooses two 

distinct 
κ
2

-bit primes, p1 and p2, and sets n = p1p2. A positive integer 

T < p2 is selected. Two multiplicative groups G, GT of order n are 
selected, and a bilinear pairing e: (G × G) → GT is defined. Random 

generators g, u ∈ G are defined and h up= 2  is set, such that h is a 
generator of the subgroup of order p1. The public key is pk = (n, g, h, 
G, GT, e), and the private key is sk = p1.

• Enc(m, pk) → c: Given a message m∈ and public key pk, Enc(pk, m) 
chooses random r ∈ R and calculates the ciphertext

 c g h nm r= mod

• Dec(c, sk) → m: Given a ciphertext c ∈ C and a private key sk, Dec(sk, c) 
calculates

 = = ( )c c g np p m
mod

and using Pollard’s lambda [38] method calculates the discrete logarithm of 
c′ in the base gp.
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Since h is the generator of the subgroup of order p, we have hp = 1 mod n. 
Thus, c′ is calculated as

 

=

= ( )

= ( )

= ( )

c c n

g h n

g n

g n

p

m r p

m p

p m

mod

mod

mod

mod

 (3.3)

The message m is bounded by T, allowing it to be recovered in time O T( )  
using Pollard’s lambda method [38].

The homomorphic property of the scheme is demonstrated in the follow-
ing way: Let c g hm r

1
1 1=  and c g hm r

2
2 2= ; then,

 c c g h nm m r r
1 2

1 2 1 2= + + mod

is a valid encryption of m1 + m2,

 c g n g h nk m k r
1

1 1mod mod= +

is a valid encryption of m1 + k, and

 c n g h nk km r k
1

1 1mod mod=

is a valid encryption of km1. Subtraction of encrypted messages and con-
stants can be done using c c n1 2

1− mod  and c1g−k mod n, respectively.
Multiplication of messages is done in the following way: Let g1 = e(g, g) 

and h1 = e(g, h) since g generates G, h = gα, for some α. Given ciphertexts c1, c2, 
we choose random r ∈ R; a ciphertext to compute the product m1m2 is given by

 

e c c h e g h g h h

e g g g g

r m r m r r

m r m r

1 2 1 1
1 1 2 2

1 1 2

, ,

,

( ) = ( )
= α α 22

1 1 2 2

1 2 1 2 2 1

1

1

1 1

( )
= ( )
=

+ +

+

h

e g g h

g h

r

m r m r r

m m m r m r

α α,

++ +

=

αr r r

m m rg h

1 2

1 2
1 1

 (3.4)

r′ = m1r2 + m2r1 + αr1r2 + r.
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3.2.4  Fully Homomorphic Encryption

Gentry [12, 13] proposed fully homomorphic encryption, which is capable of 
evaluating any function on encrypted data. However, the schemes are 
impractical for implementation by cloud users since the decryption takes 
place at the user end. Gentry and Halevi [14] showed that even for weak 
security parameters, one homomorphic operation would take at least 30 sec-
onds on a high-performance machine (and 30 minutes for the high-security 
parameter) [16]. Since there are many such operations, the overall time taken 
is too expensive for practical use in clouds.

Recently, Naehrig et al. [26] argued that fully homomorphic encryption 
might not be required for data privacy while computing in the cloud. Their 
main thesis was that only a few operations are required and a fully homomor-
phic property is not necessary for practical purposes. They not only proposed 
a somewhat homomorphic encryption scheme but also optimized the pairing 
operations to achieve the same level of security. Using their techniques, key 
generation runs in 250 ms and encryption takes 24 ms, whereas decryption 
takes 1,526 ms on a simple personal computer (PC) with an Intel Core 2 Duo 
processor running at 2.1 GHz, with 3 MB L2 cache and 1 GB of memory.

This technique can be used for medical data, financial purposes, and social 
networks, for which privacy is important. The implementation of this tech-
nique for practical purposes is still open.

3.3  Fine-Grained Access Control

We consider the following problem for which stored data can be accessed 
by certain groups of users and is unaccessible to other users of the net-
work. Common examples are that of Dropbox or Google Docs: Users store 
files and other documents and delegate selective access to other users. 
Another important application is that of health care, with medical records 
of patients stored in the clouds, such that authorized users can access them 
and  unauthorized users cannot. Clouds store sensitive information about 
patients to enable access to medical professionals, hospital staff, researchers , 
and policy  makers. For example, a patient might want to share certain medi-
cal data with only the doctors and nurses of certain hospitals but not the 
hospital staff or researchers. Social networking is yet another domain where 
users can store and share selective information with a selective group of 
friends and acquaintances but not others. Assigning selective access rights 
to individuals is called fine-grained access control.

Access control techniques are mainly of three types: user-based access 
control (UBAC), role-based access control (RBAC), and attribute-based access 
control (ABAC). In UBAC, the access control list (ACL) contains the list of 
authorized users. This is not feasible in clouds where there are many users. 
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Sometimes, the list of users is unknown. In RBAC (introduced in [11]), users 
are classified based on their individual roles. Data can be accessed by users 
who have matching roles, which are defined by the system. For example, in 
the case of medical records, the personal information regarding insurance 
and address might be available only to the hospital staff but not to the doc-
tors and nurses. ABAC is wider in scope; users are given attributes, and the 
data have an attached access policy. Only users with a valid set of attributes, 
satisfying the access policy, can access the data. For instance, in the example, 
medical records are accessed by only the neurologist or psychiatrist in only 
one hospital but no others. Some advantages and disadvantages of RBAC 
and ABAC have been discussed [22]. Most of the work in ABAC makes use of 
a cryptographic primitive known as the ABE.

ABAC in clouds has been studied by several researchers [e.g., 24, 31, 32, 
39, 41, 42]. Some of these focused on storage of health records [e.g., 24, 41]. 
Using ABE, the records are encrypted under some access policy and stored 
in the cloud. Users are given sets of attributes and corresponding keys by a 
key distribution center (KDC). The keys are computed using key generation 
algorithms in ABE. Only when the users have a matching set of attributes 
can they decrypt the information stored in the cloud.

Online social networking is yet another domain where users (members) 
store their personal information, pictures, music, and videos and share 
them with selected groups of users (friends/acquaintances) or commu-
nities to which they belong. All such information is stored in clouds and 
given to users who satisfy matching criteria. Access control in online social 
 networking has been studied [18]. Most of these schemes use simple cipher-
text policy attribute-based encryption (CP-ABE) to achieve access control, 
assuming that there is only one trusted KDC.

Before we discuss how access control is achieved in clouds, we briefly talk 
about ABE.

3.3.1  Attribute-Based Encryption

Attribute-based encryption was proposed by Sahai and Waters [34]. In ABE, 
a user is given a set of attributes by an attribute authority (AA) along with 
a unique identity. Identity-based encryption (IBE), proposed by Shamir [37], 
is a public key encryption technique that eliminates the need for certification 
authorities and has been extensively studied. Each user in an IBE  protocol 
has a unique identity, and the public key is the unique information about 
the user. IBE is a special case of ABE. There are two main variants of ABE. 
Key-policy ABE (KP-ABE, proposed by Goyal et al. [15]), is ABE in which 
the sender has attributes and encrypts data with the attributes that it has. 
The receiver has access policies and receives secret keys from the AA, which 
are constructed using the access policy. On receiving an encrypted message, 
the receiver can decrypt if it has matching attributes. Ciphertext-policy ABE 
(CP-ABE; proposed by Bethencourt et al. [4]) is the reverse of KP-ABE; the 
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sender has the access policy built into it. The receiver has attributes, and its 
secret keys are constructed using the attributes it has. A receiver can decrypt 
messages if its set of attributes satisfies the access policy of the sender. 
The access policies in these protocols are monotonic access structures that 
have AND, OR, or general t-out-of-n threshold structures. Nonmonotonic 
access structures have been studied by Ostrovsky et al. [27].

We discuss the CP-ABE technique because it has been largely used for 
access control in clouds.

3.3.2  Ciphertext-Policy Attribute-Based Encryption

The CP-ABE consists of the following algorithms: setup, which initializes the 
public key PK and master secret key MK parameters; encrypt, which encrypts 
the message M using the public parameters PK and the access  policy A and 
outputs a ciphertext CT; key generation, which generates the secret key SK 
of the users using the master secret key MK and a set of attributes S that 
describe the key. The decrypt algorithm takes as input the public param-
eters PK and a ciphertext CT, which contains an access policy A. If the set of 
attributes satisfies the access policy, then the decrypt algorithm returns the 
message M. The access policy is represented as an access tree, with attributes 
at the leaves and AND, OR, and t-out-of-n threshold gates at the intermedi-
ate nodes. Note that AND and OR are special cases of threshold structures 
where t = n and t = 1, respectively.

The details of the protocol are as follows:

Setup: This algorithm chooses a bilinear group G of prime order p and 
generator g. Let α β, ∈� p  be chosen at random. A hash function H(.) 
is defined as H: {0, 1}* → G, which maps binary strings to elements 
of G. The public key is given by

 PK G g h g e g g= = ( )( ), , , , .β α

  The master key is given by MK = (β, gα).

Encrypt(PK,M,A): The encryption algorithm takes as input the mes-
sage M, the public key PK, and the access policy A and returns 
the ciphertext CT. The algorithm chooses a polynomial Px for each 
node x in the tree. The degree of the root node R is set to kR − 1, 
where kR is the threshold of the root. For any node, the degree of 
the  polynomial is dx = kx − 1, where kx is the threshold of the node. 
The  polynomial PR(0) = s, where s is randomly chosen in � p. For 
each node x, Px(0) = Pparent(x)(index(x)), where parent(x) is the parent 
of x. All other coefficients of the polynomial are chosen at random 
from � p.
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  Let Y be the set of leaf nodes of A. The ciphertext is given by

 CT C Me g g C h C g C H att y
s s

y
P

y
P

y= = ( ) = = = ( )( )( )A, , , , ,
α 0 yy 0( )( )

KeyGen(MK, S): Let S be the set of attributes of the receiver. The AA 
chooses r p∈�  at random and rj p∈� , ∀j ∈ S. The secret key SK is 
given by

 SK D g j S D g H j D gr
j

r r
j

rj j= = ∀ ∈ = ( ) =( )+( )α β , : ,

Decrypt(CT, SK, S): Let i = att(x) be a leaf node. If i ∈ S, then

 DecryptNode CT SK x
e D C
e D C

i x

i x
, ,

,
,

( ) =
( )
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 (3.5)
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rPx,
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  If i ∉ S, then DecryptNode(CT, SK, x) = NULL.

We consider the case when x is a nonleaf node; the following steps are carried 
out: Let Sx be the set of child nodes of x. If there are no such sets, then return 

NULL. Else, Fx is calculated. Lagrange’s coefficient is ∆ , ,i S j S j ix
x j
i j

( ) =
−

−
∈Π .

 F F wherei index z S index zx z S z xx
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The algorithm begins by calling the function on the root node R of the tree 
A. If the tree is satisfied by S, then

 DecryptNode CT SK r e g g e g g
rP rsr, , , ,( ) = ( ) = ( )( )0

The algorithm then calculates M as

 ( ) ( )( ) = ( )+C e C D DecryptNode CT SK r C e h gs r, , , , ( )/α β ee g g M
rs

,( )( ) =

These protocols assume that the AA is honest. This is an unrealistic 
assumption because, in a distributed system, authorities can fail or become 
corrupt. To counter this problem, Chase [8] proposed a multiauthority ABE 
in which there are several authorities that distribute attributes and secret 
keys to users. The multiple-AA coordinate using a trusted authority. Chase 
and Chow [9] devised a multiauthority ABE protocol that required no trusted 
authority. However, the main problem was that a user required at least one 
attribute from each of the authorities, which might not be practical. Recently, 
Lewko and Waters [23] proposed a completely decentralized ABE by which 
users could have any zero or more attributes from the authorities and not 
require a trusted server.

We next present the distributed ABAC scheme presented in Reference 31.

3.3.3  Distributed Access Control in Clouds

Initially, for DACC the parameters of the scheme and the size of the group 
are decided. The size of the group is chosen to be high, for example, 232 + 1. 
AA Aj selects the set of attributes Lj. An owner Uu who wants to store infor-
mation in the cloud chooses a set of attributes Iu that are specific to the data 
it wants to encrypt. These attributes may belong to different KDCs. It then 
decides on the access structure and converts the access tree to a linear secret 
sharing scheme (LSSS) matrix R using the algorithm given in Reference 31. 
Depending on the attributes it possesses and the keys it receives from the 
KDC, it encrypts and sends the data and the access matrix. Each user is given 
a set of attributes when the user registers for services from owners. The attri-
butes are not given by the cloud but by the KDCs. An ssh protocol (secure 
shell protocol [1]) is used to securely transfer the attribute information. KDCs 
give secret keys to users. When a user wants to access some information, the 
user asks the cloud for the data record. The cloud gives an encrypted copy 
of the data. If a user has a valid set of attributes, then the user calculates the 
data using the secret key that it possesses.

Encryption proceeds in two steps. The Boolean access tree is first con-
verted to an LSSS matrix. In the second step, the message is encrypted and 
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sent to the cloud along with the LSSS matrix. A secure channel like ssh can 
be used for the transmission.

We consider the example from Reference 31 of a network in which owners 
want to store their data in encrypted form in the cloud and give selective 
access to users. In a health care scenario, owners can be the patients who 
store their records in the cloud, and doctors, nurses, researchers, and insur-
ance companies can retrieve them. There are attribute authorities, which 
are servers scattered in different countries, that generate secret keys for the 
users. AAs can be government organizations that give different credentials 
to users. These servers can be maintained by separate companies, so that 
they do not collude with each other. This differs from the concept of a cloud. 
A particular cloud is maintained by one company; thus, if authorities are a 
part of the cloud, then they can collude and find the secret keys of all the 
users. Figure  3.1 shows the overall model of our cloud environment. The 
users and owners are denoted by ni; the AAs are servers that distribute attri-
butes and secret keys SK to users and owners. AAs are not part of the cloud. 
The owner encrypts a message and stores the ciphertext C in the cloud.

Suppose an owner Uu wants to store a record M. Uu defines the access struc-
ture A, which helps it to decide the authorized set of users who can access 
the record M. It then creates an m × h matrix R (m is the number of attributes 
in the access structure) and defines a mapping function π of its rows with the 
attributes. π is a permutation, such that π:{1, 2, … , m} → W. The encryption 
algorithm takes as input the data M that need to be encrypted, the group G, 
the LSSS matrix R, and the permutation function π, which maps the attributes 
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PK2, SK2B
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PK2, SK2A

PK1, SK1BPK1, S
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User nA

CT
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FIGURE 3.1
Distributed access control in clouds.
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in the LSSS to the actual set of attributes. For each message M, the ciphertext 
C is calculated per Equations (3.16) and (3.17). Ciphertext C is then stored in 
the cloud.

When a user Uu requests a ciphertext from the cloud, the cloud transfers 
the requested ciphertext C using the ssh protocol. The decryption algorithm 
returns plaintext message M if the user has a valid set of attributes.

System initialization: Select a prime p, generator g of G, groups G and GT 
of order p, a map e: G × G → GT, and a hash function H : {0, 1}* → G 
that maps the identities of users to G. Each AA Aj ∈A  has a set of 
attributes Lj. The attributes disjoint (Li ∩ Lj = φ for i ≠ j). Each AA 
also chooses two random exponents α i i qy, ∈� . The secret key of 
AA Aj is

 SK j y i Li i j= ∈{ }α , , .  (3.13)

  The public key of AA Aj is published:

 PK j e g g g i Li iy
j= ( ) ∈{ }, , , .

α
 (3.14)

Key generation and distribution by KDCs: User Uu receives a set of attri-
butes I[j, u] from AA Aj and corresponding secret key ski,u for each 
i ∈ I[j, u]:

 sk g H ui u
yi i

, ,= ( )α  (3.15)

 where αi, yi ∈ SK[j]. Note that all keys are delivered to the user 
securely using the user’s public key, such that only that user can 
decrypt it using its secret key.

Encryption by sender: The sender decides about the access tree and 
encrypts message M as follows:

 1. Choose a random seed s q∈�  and a random vector v q
h∈� , with 

s  as its first entry; h is the number of leaves in the access tree 
(equal to the number of rows in the corresponding matrix R).

 2. Calculate λx = Rx · v, where Rx is a row of R.

 3. Choose a random vector w q
h∈�  with 0 as the first entry.

 4. Calculate ωx = Rx · w

 5. For each row Rx of R, choose a random ρx q∈� .

 6. The following parameters are calculated:
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 where π(x) is mapping from Rx to the attribute i that is located at 
the corresponding leaf of the access tree.

 7. The ciphertext C is sent by the sender (it also includes the access 
tree via R matrix):

 C R C C C C xx x x= ∀{ }, , , , , ,, , ,π 0 1 2 3  (3.17)

Decryption by receiver: Receiver Uu takes as input ciphertext C, secret 
keys {ski,u}, group G, and outputs message M. It obtains the access 
matrix R and maps π from C. It then executes the following steps:

 1. Uu calculates the set of attributes {π(x): x ∈ X} ∩ Ii that are com-
mon to itself and the access matrix. X is the set of rows of R.

 2. For each of these attributes, it checks if there is a subset X′ of rows 
of R, such that the vector (1, 0, … , 0) is their linear combination. 
If  not, decryption is impossible. If yes, it calculates constants 

cx q∈� , such that c Rx x
x X∈∑ = …( )1 0 0, , , .

 3. Decryption proceeds as follows:

 (a) For each x ∈ X′, dec x
C e H u C

e sk C
x x

x u x

( ) =
( )( )

( )( )

1 3

2

, ,

, ,

,

,π

 (b) Uu computes M C dec xx X= ( )∈0 Π .

None of the above techniques can authenticate users or protect the privacy 
of the user. It is just not enough to store the contents securely in the cloud; 
it might also be necessary to ensure the anonymity of the user. However, 
the user should be able to prove to the other users that he or she is a valid 
user who stored the information without revealing the identity. For exam-
ple, a user would like to store some sensitive information but does not want 
to be recognized. The user’s privacy needs to be protected when the user 
needs to store confidential information but does not reveal his or her identity. 
For example, if a user wants to store a controversial record about the employ-
ers, then he or she might want to remain anonymous. The cloud, on the 
other hand, must be able to authenticate the user as an authorized person. 
Ruj et al. [32] proposed an authentication mechanism that also protects the 
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privacy of the user. Users cannot just read from already stored data but can 
be given the right to modify the data. Attribute-based signatures (ABSs) [25] 
are used for this purpose. In ABSs, users have a claim predicate associated 
with a message. The claim predicate helps to identify the user as an autho-
rized one without revealing the user’s identity. Other users or the cloud can 
verify the user and the validity of the message stored. An ABS can be com-
bined with ABE to achieve authenticated access control without disclosing 
the identity of the user to the cloud (see Table 3.1).

Attribute-based encryption involves expensive operations, which might 
be burdensome on resource-constrained devices like smartphones and the 
like. To address this problem, Green et al. [16] proposed a technique to out-
source the decryption to a proxy, such that the operations performed by the 
user can be done efficiently and the complex computations are delegated to 
the proxy. The proxy, however, cannot decrypt the information.

We present a comparison in Table 3.1 of access control schemes used in 
the literature. Some schemes are centralized (have a single KDC), and some 
are decentralized (have multiple KDCs). We look for the type of operations 
supported, that is, x-Write-y-Reads (denoted x-W-y-R). Some schemes have 
authentication and some do not. Only the Green et al. [16] scheme outsources 
decryption. We also check if revocation of users is permitted or not.

3.4  Data Auditing

A big challenge is to ensure that the integrity of the data is preserved. Cloud 
servers are prone to Byzantine failure, in which they can fail in arbitrary ways. 
Generally, the cloud protects data integrity by making redundant copies of 
data. To reduce storage space, the CSP might not offer the same degree of 
redundancy as presented in the SLA. The CSP might also discard rarely used 
data, without informing the client, just to save storage space. Thus, data audit-
ing is needed to verify that the cloud has not tampered with the stored data.

Data auditing is mostly done in a probabilistic way, in which a few blocks 
are chosen and verified. The commonly used techniques are as follows:

 1. Provable data possession (PDP): Allows the client to verify that the 
cloud has stored the original data faithfully without retrieving it.

 2. Proofs of retrievability (PoR): The cloud should be able to prove that 
it has stored the client’s data correctly, and the client is able to extract 
the data from the cloud.

We note that the difference between PDP and PoR techniques is that PDP 
techniques only produce a proof for recoverable data possession, but PoR 
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schemes check the possession of data and can recover data in case of data 
access failure or data loss. Usually, a PDP scheme can be transformed into a 
PoR scheme by adding erasure or error-correcting codes.

The early definitions of PoR [20] and PDP [2] used the definitions in a gen-
eral client server setting; however, we define it in the context of the cloud. We 
discuss each of these models and present some third-party (public) auditing 
techniques in which anyone can verify the data that a client has stored.

3.4.1  Provable Data Possession Techniques

The PDP schemes involve a challenge/response protocol between the client 
(verifier) and the CSP (prover). It consists of two main steps:

• The client (verifier) first allows the CSP (prover) to store files.
• Later, the client can verify if the CSP possesses the data by challenging 

the CSP.

The PDP techniques generate probabilistic proofs of possession by sampling 
random sets of blocks from the server; this drastically reduces input/output 
(I/O) costs. In PDP techniques, the client maintains a constant amount of 
metadata to verify the proof. The challenge/response protocol transmits a 
low, constant amount of data that minimize network communication. Thus, 
the PDP schemes for remote data checking support large data sets in widely 
distributed storage systems.

Ateniese et al. [2] were the first to define PDP schemes formally. Later, they 
[3] proposed a very lightweight and provable secure data possession scheme 
in the random oracle model. This scheme is based entirely on symmetric key 
cryptography. The main idea of this scheme is that, before outsourcing, a 
client precomputes a certain number of short possession verification tokens, 
each token covering some set of data blocks. The actual data are then handed 
over to the CSP. Subsequently, when the client wants to obtain a proof of data 
possession, the client challenges the data storage server with a set of random 
block indices. In turn, the data server must compute a short integrity check 
over the specified blocks (corresponding to the indices) and return it to the 
client. For the proof to hold, the returned integrity check must match the 
corresponding value precomputed by the client. However, in their scheme, 
the client has the choice of either keeping the precomputed tokens locally 
or outsourcing them in encrypted form to the server. In the latter case, the 
client’s storage overhead is constant regardless of the size of the outsourced 
data. The scheme is also efficient in terms of storage, computation overheads, 
dynamic support for data operations, and bandwidth. Sebé et al. [35] pre-
sented a scheme that used asymmetric key cryptography (RSA modules) for 
integrity verification.

Erway et al. [10] presented a fully dynamic provable data possession 
(DPDP), which extends the PDP model to support provable updates to stored 
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data. They used rank-based authenticated skip lists (Figure 3.2) and aggre-
gate signatures [6]. Before discussing the scheme, we discuss authenticated 
skip lists and aggregate signatures.

Skip lists [29] are a probabilistic alternative to balanced trees. Balancing 
a data structure probabilistically is easier than explicitly maintaining the 
balance and is easy to implement. Skip lists are also space efficient. In a skip 
list, each node v stores two pointers, denoted rgt(v) and dwn(v), that are used 
for searching. l(v) is the level of the node v; l = 0 denotes the leaf nodes. 
An authenticated skip list that uses a collision-resistant hash function can be 
used to check the integrity of file blocks.

3.4.2  Rank-Based Skip Lists

Let F be a file consisting of n blocks m1, m2, … , mn. At the ith bottom-level 
node of the skip list, the signature x(mi) of block mi is stored. Block mi is stored 
separately at the cloud. Each node v of the skip list stores the number of 
nodes at the bottom level that can be reached from v. This value is called the 
rank of v and is denoted by r(v).

The top leftmost node of a skip list is referred to as the start node. For a 
node v, low(v) and high(v) denote the indices of the leftmost and rightmost 
nodes at the bottom level reachable from v, respectively. Clearly, for the start 
node S of the skip list, r(S) = n, low(S) = 1, and high(S) = n. Using the ranks 
stored at the nodes, the ith node of the bottom level can be reached by tra-
versing a path that begins at the start node as follows: For the current node v, 
assume that low(v) and high(v) are known.

Let w = rgt(v) and z = dwn(v).The following values are set:

 
high w high v low w high v r w

high z lo

( ) = ( ) ( ) = ( ) − ( ) +

( ) =
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2 1 1 1 1 1 1 1 1 1 12 2

3433w2 w1

FIGURE 3.2
Example of rank-based skip list.
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To reach the ith bottom node, we start from v = S, where S is the start node 
while (ith bottom node is not reached):

 {
  if i ∈ [low(w), high(w)]
   v = w is set //the right pointer is followed
  else
   v = z is set //the down pointer is followed
 }

For each node v of the rank-based authenticated skip list, a label f(v) is 
defined as follows:

 f v

v null

h l v r v f dwn v f rgt v( ) =

=

( ) ( ) ( )( ) ( )( )( )
0 if

i, , , ff

if

l v

h l v r v x v f rgt v l v

( ) >

( ) ( ) ( ) ( )( )( ) ( ) =

0

0, , ,

The next two algorithms have been described [10], but we present them 
here for completeness.

Algorithm 1 Path Generation:
PathGen(i) → {x(vi), Π}

1: Let v1, ..., vk be the verification path for block i
2: return signature x(vi) of block i and the table 

Π = (A(v1), ..., A(vk)) corresponding to block i

Algorithm 2 Skip List Verification: 
verify(Π, x(vi), sigsk(H(f(S)))) → {TRUE, FALSE}

1: Let Π = (A1, ..., Ak),
2: where Aj = (dj, lj, qj, gj),1 ≤ j ≤ k
3: λ1 = 0; ρ1 = 1 + q1; δ1 = d1; ζ1 = 0;
4: γ1 = h(λ1, ρ1, x(vi), g1);
5: for j = 2, ..., k do
6: λj = lj; ρj = ρj − 1 + qj; δj = dj;
7: if δj = = rgt then
8:  γj = h(λj, ρj, gj, γj − 1);
9:  ζj = ζj − 1;
10: else if δj = = dwn then
11:  γj = h(λj, ρj, γj − 1, gj);
12:  ζj = ζj − 1 + qj;
13 end if
14: end for
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15: if e(sigsk(H(f(S))),g) ≠ e(H(γk),v) then
16: return FALSE
17: else if ρk − ζk ≠ i then
18: return FALSE
19: else
20: return TRUE
21: end if

3.4.3  Skip List Verification

First, we describe the algorithm PathGen(i) [10] to generate a verification path 
for block i. The verification path is the reverse search path; for example, let 
vk, vk−1, … , v1 be the search path for block i, then v1, v2, … , vk is the verification 
path for block i. For each node vj, j = 1, … , k, Boolean d(vj) and values q(vj) and 
g(vj) are defined as follows, where r(null) is set to 0:

 d v
rgt j or j and v rgt v

dwn j and v d
j

j j

j

( ) =
= > = ( )
> =

−

−

1 1

1

1

1 wwn vj( )

 q v

r rgt v j

j and l v

r dwn v j
j

j
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j

( ) =

( )( ) =

> ( ) =

( )( ) >

1

1 1 0

1, ll v and d v rgt

r rgt v j l v and d v
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j j j
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1 0
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, dd d v dwnj( ) =

The PathGen(i) algorithm returns the sequence Π(i) = (A(v1), … , A(vk)) where 
A(v) = (d(v), l(v), q(v), g(v)) for the block i with signature x(i). Table 3.2 shows 
the sequence Π(v6) as the sample verification path. Due to the properties of 
the skip list, data in the verification path have an expected size O(log n) with 
high probability.

To verify the skip list, the verifier requests the signature generated by the 
client by signing the start node of the skip list and the path table Π for any 
random block. Then, the verifier runs the skip list verification algorithm 
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(Algorithm 2) to verify the integrity of the skip list using the table Π and the 
signature of the start node S, which is sigsk(H( f(S))), sent by the cloud server.

Algorithm 2 iteratively computes tuples (λj, ρj, δj, γj) for each node vj on 
the verification path plus a sequence of integers ζj. At each iteration of the 
for-loop, the tuple (λj, ρj, δj, γj) associated with a node vj of the verification path 
represents the following:

•	 λj = l(vj), that is, the level of vj;
•	 ρj = r(vj), that is, the rank of vj;
•	 δj indicates whether we arrived at vj from right or below;
•	 γj = f(vj), that is, the label of vj;
•	 ζj is equal to the sum of the ranks of all the nodes that are to the right 

of nodes of the path seen so far but are not on the verification path.

3.4.4  Bilinear Aggregate Signatures

We have used BLS (Boneh, Lynn, and Shacham) aggregate signatures in our 
scheme to achieve public auditability and blockless verification.

3.4.4.1  BLS Signature Scheme

Boneh, Lynn, and Shacham [6] gave a simple, deterministic signature 
scheme in which the signatures are very short. The signer’s secret key is 
x q∈� , the public key is y = gx, and g is the generator of the multiplicative 
group G of order q. Let H : {0, 1}* → G be a hash function. The signature 
scheme is given by

Sign(m): the signature σ on message m is σ = (H(m))x ∈ G.
Verify(σ, m): accept if e(g, σ) = e(gx, H(m)).

3.4.4.2  Aggregate Signature Scheme

Aggregate signatures [6] are used if we have different signers who want to 
sign different messages but we only want to produce one signature. This is 

TABLE 3.2

PathGen Table for the Sixth Block of the File F Stored 
in the Skip List in Figure 3.2

Node v v6 v5 w1 w3 w4 w6 w7

D(v) rgt rgt dwn dwn rgt rgt dwn
l(v) 0 0 1 2 2 2 3
Q(v) 0 1 1 6 3 1 1
G(v) 0 x(v5) f(v7) f(w5) f(w2) f(v1) f(v14)
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useful for instances such as batch auditing or certificate chains. The signer i 
has secret key xi and public key y gi

xi=  and wants to sign message mi; 
we assume that all messages are distinct.

Sign(m1, …, mn): First, each signer computes its signature: σ i i
xH m i= ( ) , 

1 ≤ i ≤ n. The aggregate signature σ σ=
=

∏ i

i

n

1

.

Verify(m, σ): Accept if e g e y H mi i

i

n

, ,σ( ) = ( )( )
=

∏
1

.

3.4.5  Data Auditing Using Aggregate Signatures

We present the basic algorithms used in the data-auditing protocol.

KeyGen(1k) → (pk, sk): This probabilistic algorithm is run by the client. 
It takes a security parameter 1k and returns public key pk and secret 
key sk.

SigGen(sk, F) → (Φ, sigsk(H( f(S)))): This algorithm is run by the client. 
It takes as input private key sk and file F, which is an ordered collec-
tion of blocks mi, and outputs a signature set Φ = {σi}i = 1,2,…,n. It also 
outputs metadata: the signature sigsk(H( f(S))) of the start node S of a 
rank-based authenticated skip list. In our construction, the level zero 
nodes of the rank-based authenticated skip list contain hashes H(mi).

SSigssk(·): It is a signing function that uses signing key ssk to sign a string.
GenProof(F, Φ, Ψ) → (P): This algorithm is run by the server. It takes 

as input a file F, its signatures Φ, and a challenge Ψ (discussed fur-
ther in the chapter). It outputs a data integrity proof P for the blocks 
specified by the challenge Ψ.

VerifyProof(pk, Ψ, P) → {TRUE, FALSE}: This algorithm can be run by a 
verifier on the receipt of P. It takes as input public key pk, the chal-
lenge Ψ, and proof P returned by the server and outputs TRUE if the 
integrity of the file is verified as correct and FALSE otherwise.

ExecUpdate(F, Φ, update) → (F′, Φ′, Pupdate): This algorithm is run by the 
server. It takes as input a file F, its signatures Φ, and a data operation 
request “update” from the client. It outputs updated file F′, updated 
signatures Φ′, and a proof Pupdate for the operation.

VerifyUpdate(pk, sigsk(H(f(S))), update, Pupdate) → {(TRUE, FALSE, sigsk(H(S′)))}: 
This algorithm is run by the client. It takes as input public key pk, 
the signature sigsk(H( f(S))), operation request “update,” and the proof 
Pupdate from the server. If verification succeeds, it outputs a signature 
sigsk(H(S′)) for the new start node S′ or FALSE otherwise.
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3.4.6  Third-Party Auditing of Cloud Data

We assume that file F (potentially encoded using Reed-Solomon codes) is 
divided into n blocks m1, m2, … , mn, where mi q∈�  and q is a large prime. 
Let e: G × G → GT be a bilinear map and H: {0, 1}* → G be a hash function that 
converts binary strings to elements of G and is viewed as a random oracle. 
Let g be the generator of G.

The data-auditing scheme consists of the following steps:

• Setup: This step initializes the system and generates public and 
secret keys.

 1. The client generates a random signing key pair (ssk, spk) by 
invoking KeyGen(1k). Then, the client chooses a random α ∈�q  
and computes v = gα. The secret key is sk = {α, ssk}, and the public 
key is pk = {v, spk}.

 2. SigGen(·) is invoked to preprocess the file F and to generate 
metadata before sending the file to the cloud server. Given 
F = (m1, m2, … , mn), the client chooses a random element u ∈ G. 
SigGen(sk, F) is invoked to preprocess the file F and to generate 
metadata before sending the file to the cloud server. Let t = file
name||n||u||SSigssk(filename||n||u) be the file tag for F. Then, the 
client computes signature σi for each block mi(i = 1, 2, … , n) as 
σ

α
i i

mH m u i= ( )( ). . We denote the set of signatures by Φ = {σi}1≤i≤n.

 3. The client generates the rank-based skip list, where the bottom 
level nodes contain the hashes of mi, 1 ≤ i ≤ n denoted by H(mi).

 4. The client signs the hash H( f(S)), where S is the start node and f(S) 
is the label of the start node. The client signs using the private 
key α: sigsk(H( f (S))) ← (H( f (S)))α.

 5. The client sends {F, t, Φ, sigsk(H( f (S)))} to the cloud server.

 6. The client now deletes {F, Φ, sigsk(H( f (S)))}.

• Integrity verification protocol: Once the client has stored the data on 
the cloud storage server, the verification protocol can be initiated. 
The client can also perform the integrity verification on the data 
using a similar process or the task can be delegated to a third-party 
auditor (TPA).

 1. The TPA first uses spk to verify the signature on t. If the verifica-
tion fails, TPA returns FALSE; otherwise, it recovers u from t.

 2. The TPA chooses a random value r ∈ [1, n] and requests the cloud 
server to send the table Π(r). The cloud server runs Algorithm 1 
to calculate Π(r).
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 3. After receiving Π(r), the TPA runs Algorithm 2 to verify the skip 
list stored on the cloud server and retrieves f (S), where f (S) is the 
label of the start node.

 4. Now, the TPA determines a suitable c (the number of blocks to be 
verified) according to the desired probability of error detection 
and ω.

 5. The TPA generates a challenge Ψ, picks a random c-element sub-
set I = {s1, s2, … , sc} of set [1, n], where we assume s1 ≤ … ≤ sc. Then, 
a random element νi ⊆ � p. The challenge Ψ specifies the positions 
of the blocks to be checked. The TPA sends Ψ = ( ){ } ≤ ≤

i i s i sc
, ν

1
 to 

the prover (server).
 6. After this, the server generates the proof P for each of the chal-

lenges sent by the TPA. On receiving a challenge Ψ = ( ){ } ≤ ≤
i i s i sc
, ν

1
, 

the server computes ν= ∈
=
∑ i i q

i s

s

m
c

�
1

 and σ σν= ∈
=
∏ i

i s

s

i

c

G
1

, where 

both the data blocks and the corresponding signature blocks are 
aggregated into a single block, respectively. The server also sends 
the signatures of the requested blocks as the set i s i sc

{ } ≤ ≤1
. The 

server then sends the proof P i s i sc
= { }{ }≤ ≤σ, ,

1
 to the TPA.

 7. After receiving the proof P to the corresponding challenge Ψ, the 
TPA verifies the integrity by checking

 e g e H m u vi

i s

s
i

c

σ ν, ,
?

( )= ( ) ⋅
=
∏

1

If this equation holds, then TPA returns TRUE, FALSE, otherwise.

A similar technique is used during an update.
Zhu et al. [43] (MULTI-PDP or multiple PDP) addressed the construction of 

an efficient PDP scheme for distributed cloud storage to support the dynamic 
scalability of service and data migration. For this, they consider the coexis-
tence of multi ple CSPs to cooperatively store and maintain the client’s data. 
This scheme is based on a homomorphic verifiable response and hash index 
hierarchy. Security for this scheme is based on a multiprover zero-knowledge 
proof system, which can satisfy knowledge soundness, zero-knowledge, and 
completeness properties.

3.4.7  Proof-of-Retrievability Schemes

The idea of PoR schemes is to verify a small number of blocks, chosen at 
random, instead of the whole file. If there are errors, then the file can be 
retrieved using error-correcting codes.
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The scheme of Reference 20 uses sentinels, which are check blocks and 
are randomly embedded in the file. The file is then encrypted, such that it 
is impossible to detect the positions of the sentinels. The client sends a set 
of sentinel positions and asks the CSP to return the value of the sentinels. 
If the CSP has modified or deleted the data, then, with a high probability, it is 
impossible to return the values of the sentinels. In this approach, encryption 
renders the sentinels indistinguishable from other file blocks.

If the number of sentinels queried is small, it might not be possible to cor-
rectly detect the errors, but with the error-correcting codes, it is possible to 
recover the file. If the number of sentinels queried is large, then the user 
might not be able to retrieve the file correctly but will be able to detect that 
tampering of the file has occurred.

The scheme has six basic functions [20]: The function “Respond” is the only 
function executed by CSP P. All other functions are executed by the  verifier 
(client) V. The set of verifier-executed functions modifies some  persistent 
state α. π presents the complete collection of system parameters.

 1. Keygen [π] → κ: The function Keygen generates a secret key κ.
 2. Encode F F, , ,κ α ηη( ) → ( )� : The function Encode generates a file 

handle η that is unique to a given verifier invocation. The function 
also transforms file F into an (enlarged) file �Fη  and provides the pair 

�Fη η,( )  as an output.
 3. Extract(η, κ, α)[π] → F: It determines a sequence of challenges that V 

sends to P and processes the resulting responses. If successful, the 
function recovers and outputs Fη.

 4. Challenge(η, κ, α)[π] → c: Challenge takes the secret key κ and a 
 handle η and accompanying state α as input, along with system 
parameters. The function outputs a challenge value c for the file η.

 5. Respond(c, η → r): The function Respond is used by P to generate a 
response to a challenge c. This challenge can originate with either 
the Challenge or the Extract function.

 6. Verify((r,η)κ,α → b∈(0,1): The function verify determines whether r 
is a valid response to challenge c. The function outputs a “1” bit if 
verification succeeds and “0” otherwise.

A basic unit of storage is an l-bit block. The error-correcting code operates 
over l-bit symbols, a cipher operates on l-bit blocks, and the sentinels have 
l bits. The file consists of b blocks (b is a multiple of k) and is F = ( f1, f2, … , fb). 
The function Encode consists of the following steps:

 1. Error correction: To each k blocks an (n, k, d)-error-correcting code is 
applied, and the resulting file is = …( )F f f fb1 2, , , , with b′ = bn/k.

 2. Encryption: A symmetric cipher is used, and F′ is converted to F″. 
The cipher is so chosen that each block can be separately decrypted.
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 3. Sentinel created: s Sentinels are created and appended to F″ to yield F′′′.
 4. Permutation: The b′ + s blocks of the file F′′′ are permuted to yield �F .

The prover (CSP) produces a concise proof that the archive retains and 
reliably transmits the entire file or data object F. To ensure that the archive 
has retained F, the verifier (client) V challenges the prover by specifying the 
positions of a collection of sentinels in �F  and asking to return the asso-
ciated sentinel values. This phase includes Extract, Challenge, Respond, 
and Verify functions. If the sentinels are returned correctly, then the file 
has not been tampered with; if there are errors, then the error-correcting 
code is used to retrieve the message. A drawback of this PoR scheme is the 
preprocessing/encoding of F required prior to storage with the prover.

Shacham et al. [36] utilized two new economic and efficient homomorphic 
authenticators. These authenticators are the primary encryption or hashing. 
They also need larger storage requirements on the prover and provides proof 
of security against impulsive adversaries.

Bowers et al. [7] introduced HAIL (high-availability and integrity layer), 
a general conceptual framework for PoRs that is an improvement [20, 36]. 
It claims lower storage requirements and a higher level of security assurance 
with minimal computational overhead and tolerates higher error rates than 
scheme [20]. It is robust against an active, mobile adversary, that is, one that 
may progressively corrupt the full set of servers. This work describes design 
challenges encountered for practical implementation of PoR protocols. HAIL 
is a distributed cryptanalytic system that allows a set of servers to prove 
to a client that a stored file is intact and retrievable. Building blocks of the 
HAIL system are the universal hash function, message authentication codes 
(MACs), and integrity-protected error-correcting codes (IP-ECC). The advan-
tage of the HAIL adversary security model is that it ensures distributed file 
system availability against a strong, mobile adversary.

The drawbacks of the PoR and PDP schemes are as follows:

• The effectiveness of these schemes rests primarily on the preprocess-
ing steps that the user conducts before outsourcing the data file. This 
introduces significant computation and communication complexity.

• Most of these techniques do not support privacy preservation and 
dynamic data operations.

• Most of these schemes focus on only static and archive data.
• None of these schemes considers batch auditing.

Public verifiability is needed in many cases when others should be able to 
verify the data. A trusted TPA might have expertise and technical capabili-
ties that the clients do not have. Data audits by a trusted third party (TTP) 
involve an independent authenticated entity to conduct a data audit.

Wang et al. [40] determined the difficulties and potential security issues 
of direct extensions for fully dynamic data updates and then constructed 
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a verification scheme that takes these issues into account. Specifically, to 
achieve efficient data dynamics, they improved the present proof of stor-
age models by manipulating the classic Merkle hash tree construction for 
block tag authentication. They explored a bilinear aggregate signature to 
support efficient handling of multiple auditing tasks and extend output into 
a multiuser setting, where TPA can perform multiple auditing tasks simul-
taneously. This theme achieves batch auditing wherever multiple delegated 
auditing tasks from totally different users are often performed at the same 
time by the TPA.

Hao et al. [17] described a remote data integrity-checking protocol that 
supports public verifiability, data dynamics, and privacy against verifiers 
without any TPA. They used RSA-based homomorphic verifiable tags for 
their protocol construction.

Table  3.3 shows the comparative analysis of different data-auditing 
schemes. We indicate if the scheme is probabilistic or deterministic, whether 
public verifiability is satisfied, if the scheme can support dynamic data, and 
if the scheme is privacy preserving. We compare the detection probability in 
each case. Here, c is the number of blocks sampled, and p is the probability 
that a block is corrupted.

3.5  Conclusion and Future Work

In this chapter, we discussed a few security issues in cloud computing. 
Most of the techniques help us to protect against dishonest CSPs. Cloud 

TABLE 3.3

Comparison of Data-Auditing Schemes

Scheme
Public 

Verifiability Data Dynamics
Privacy 

Preserving
Detection 

Probability

PDP
Ateniese et al. [2] Yes Append only No 1 − (1 − p)c

Ateniese et al. [3] No Yes No 1 − (1 − p)c

Sebé et al. [35] No No No 1 − (1 − p)c

Erway et al. [10] No Yes No 1 − (1 − p)c

PoR
Juels and Kaliski [20] No No No 1 − (1 − p)c

Shacham and Waters [36] No No No 1 − (1 − p)c

HAIL: Bowers et al. [7] No No No 1 − (1 − p)c

Wang et al. [40] Yes Yes Yes 1 − (1 − p)cs

Hao et al. [17] Yes Yes Yes 1 − (1 − p)cs
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security also involves other aspects, for example, virtualization security, 
not addressed here.

There are many security challenges that need to be addressed.

3.5.1  Security in Mobile Clouds

Most of the cryptographic techniques are computation intensive. This might 
not be a good option for mobile devices, which are energy constrained. 
So,  efficient encryption and decryption protocols need to be devised to 
enable security on mobile devices. One way is to outsource some of the 
encryption and decryption operations to a third party or a proxy server.

3.5.2  Distributed Data Auditing for Clouds

In most of the related work on data auditing, the auditor is assumed to be 
a trusted party. However, this is a strong assumption. Thus, distributed 
auditing looks attractive. This will make the auditing process more robust. 
Assigning all auditing jobs to one TTP can also slow the whole system. Thus, 
a distributed auditing service not only will balance the load but also will 
provide trustworthy service. Users with idle resources can contribute toward 
distributed data auditing.

3.5.3  Secure Multiparty Computation on Clouds

Secure multiparty computation is a cryptographic paradigm in which n users 
compute a function securely, keeping their inputs private. The users send 
their inputs in such a way that only the function can be computed, without 
knowing the individual input. These computations are extremely involved 
and are good candidates for computation on clouds. However, a single server 
is prone to single-point failure. For this reason, distributed computing on 
clouds is an attractive option. Secure multiparty computation in clouds is a 
promising area of research.
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Summary

Many e-science applications can be modeled as workflow applications. In this 
programming model, scientific applications are described as a set of tasks 
that have dependencies between them. Clouds are natural candidates for 
hosting such applications. This is because some of their core characteristics, 
such as rapid elasticity, resource pooling, and pay per use, are well suited to 
the nature of scientific applications that experience variable demand, spikes 
in resource (i.e., of the central processing unit [CPU] or disk) utilization, and 
sometimes, urgency for generation of results. As current workflow manage-
ment systems (WfMSs) cannot support efficient and automated execution of 
workflow in clouds that support adaptive execution, fault tolerance, and data 
privacy, in this chapter we detail the requirements of a WfMS that supports 
these requirements, its architecture, and an application scenario involving 
simulation of Singapore’s public transport system.
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4.1  Introduction

Many e-science applications can be modeled as workflow applications. In 
this programming model, scientific applications are described as a set of 
tasks that have dependencies between them. Normally, this dependency is 
expressed in the form of input and output (I/O) files. It means that, before 
one task can execute, it needs the tasks it depends on to have completed 
their execution and the files they generate to already be available as input. 
Well-known application domains where workflow applications are used 
include astrophysics, bioinformatics, and disaster modeling and prediction, 
among others.

Scientists have been successfully executing this type of application on 
supercomputers, clusters, and grids. Recently, with the advent of clouds, 
 scientists started investigating the suitability of this infrastructure for work-
flow applications.

Clouds are natural candidates for hosting workflow applications. This is 
because some of their core characteristics, such as rapid elasticity, resource 
pooling, and pay per use, are well suited to the nature of scientific applica-
tions that experience variable demand, spikes in resource (i.e., of the central 
processing unit [CPU], disk) utilization, and sometimes, urgency for genera-
tion of results. Furthermore, recent offerings of high-performance cloud com-
puting instances make it even more compelling for scientists to adopt clouds 
as the platform of choice for hosting their scientific workflow applications.

The execution of workflow applications is a demanding task. Tasks, some-
times in the order of hundreds, need to have their execution coordinated. 
They have to be submitted for execution in a specific virtual machine (VM), 
and the required input files need to be made accessible for the application. 
This may require the transfer of huge amounts of data between computing 
hosts. Reception of user input, data transfers, task executions, and VMs can 
fail; in this case, some action has to be carried out to reestablish the execution 
of the application. Examples of such actions are retrying the data  transfer, 
rescheduling the task, or starting a new VM to execute the remaining tasks. 
These activities are carried out by software called workflow management 
 systems (WfMSs). Examples of well-know, WfMSs are Pegasus [1], Taverna [2], 
Triana [3], and Cloudbus Workflow Engine [4].

At the same pace that infrastructures and platforms evolve, so do the sci-
entific applications using such infrastructures and platforms. The amount of 
data generated by scientific experiments is reaching the order of terabytes per 
day, and huge capacity is required to process this data to enable scientific dis-
coveries. Therefore, WfMSs also need to evolve to support huge data sets and 
the complex analytics required to extract useful insights from the generated 
data. Even more important, if data are continuously generated, WfMSs need 
to support real-time capabilities. This has to be achieved at the same time that 
other nonfunctional requirements, such as data privacy, are enabled.
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Although this information is truth regardless of the specific infrastruc-
ture hosting the workflow application, even more complexity is added to 
the system when the applications are executed in clouds. This is because 
extra capabilities are required to enable the WfMS to select the right number 
of resources of the right type so that the computational task is performed 
within a user-defined time frame and budget.

As current WfMSs cannot support efficient and automated execution of 
workflow in clouds that support adaptive execution, fault tolerance, and data 
privacy, we developed extensions to a workflow engine [4] to support such 
features. In this chapter, we detail the requirements of such a system, its 
architecture, and the application scenario explored, along with an evaluation 
of the system and a discussion of lessons learned during its development.

4.2  Workflow Applications

The workflow programming model is undoubtedly one of the most promi-
nent programming models in e-science, being used in a range of domains, 
including bioinformatics, astrophysics, and disaster modeling, to name a 
few. In this model, one application (job) is composed of a number of tasks 
that have execution dependencies between them. Typically, the dependency 
is related to I/O: One task depends on the output of another (or other) task(s) 
as its input; therefore, it cannot be executed until such data are available 
(normally, after the execution of the original task is completed).

Variations of the model exist in which the workflow also contains condi-
tional branches (i.e., particular tasks that compose the workflow may or may 
not be executed depending on the results of previous tasks), loops (for which 
execution of specific sections of the workflow is repeated), and when tasks 
are allowed to start execution before predecessors complete execution.

Without loss in generality, a workflow application can be formally rep-
resented by a directed acyclic graph (DAG) whose vertices represent tasks 
and the directed edges represent the dependencies between tasks: An edge 
A  →  B indicates that task B depends on task A for its execution. Such a 
 representation of workflow applications is also known as DAG. A simple 
workflow is depicted in Figure 4.1.

Traditionally, workflow applications have been extensively deployed in 
high-performance infrastructures such as supercomputers and clusters [5]. 
When deployed on such infrastructures, emphasis was given in reducing the 
execution time of the workflow by optimizing the utilization of the resources 
available for the workflow. When grids became available, they were also 
used for workflow execution [6, 7]. This added complexity to the schedul-
ing process because it was possible that resources available for execution 
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were distributed, and thus data movement across wide distances might be 
necessary. Even in this case, focus was still on execution time minimization.

Cloud computing adds a new dimension for workflow execution related 
to the financial cost of using a virtually infinite amount of resources for 
workflow execution. This means that the only limitations to the available 
resources, and consequently the improvements in execution time, are the 
available budget for workflow execution and the structure of the workflow itself, 
which determines the maximum amount of tasks that can be executed in 
parallel in the infrastructure. Clouds also brought other challenges for work-
flow management and execution. They are discussed in the next section.

4.3  Requirements for Adaptive Execution 
of Workflows on Clouds

Although modern WfMSs already support clouds as the platform support-
ing the execution of workflow applications, many desirable features are still 
absent in the WfMSs. This is because current WfMSs for clouds are derived 
from projects in the area of grid computing. Therefore, many of their fea-
tures are optimized for grids and thus are unable to obtain the most key 
aspects of clouds, such as rapid elasticity.

In this sense, clouds add extra complexity to WfMSs because the amount of 
resources that WfMSs can provision for executing the workflow is virtually 
infinite, as long as there is budget available to spend on the workflow execu-
tion process. Thus, different from existing algorithms and approaches that 
operated with the goal of obtaining the most from the resources available for 
the application, cloud-enabled WfMSs can assume that the main restriction 
of the system is the budget rather than resources, and its goal is balancing 
utilization, cost, and reduction of execution time [8].

FIGURE 4.1
Graphical representation of a simple scientific workflow.
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Li et al. [8] also identified the following requirements for cloud-enabled 
workflows:

 1. Dynamic resource provisioning and deadlines: This is the  capability 
of acquiring and releasing resources as required to accommodate 
the tasks of the workflow and to enable their completion within a 
user-specified deadline. This is an important feature because it 
enables execution of mission-critical workflow applications that need 
to be completed before the deadline for the computation to have 
value. An example of such mission-critical workflows is disaster 
management workflows. Consider, for example, the architecture 
depicted in Figure 4.2. A disaster management workflow application 
suite may support management of many types of natural dis asters, 
such as floods, cyclones, and bushfires. When one such disaster 
strikes, the corresponding management application needs to be 
executed in public and private clouds to provide information that 
will be used by disaster mitigation and rescue teams. If the applica-
tion takes too long to execute, the teams will not have time to act 
based on the information provided, which results in wasted time 
(and money) invested in the execution of the workflow in the cloud 
and even further losses in terms of lives and property damage that 
would have been prevented if the rescue and mitigation teams had 
access to the information in appropriate time.

 2. Adaptive task/workflow/user scheduling: This relates to the capability 
of reacting to conditions faced during workflow execution to main-
tain the balance between cost, utilization, and execution time. In the 
context of this requirement, a change in conditions means adapting 
to changes in user requirements at runtime (e.g., increased/reduced 
budget, increased/reduced application deadline).

 3. Fault tolerance: This is the capacity to automatically react to changes 
in the available number of resources or tasks to be processed 
because of failures and the capability to adapt to situations if the 
performance delivered by cloud resources is below that contracted 
or historically observed.

 4. Security-conscious data migration and data privacy: Given that the data 
being processed by the WfMS can be sensitive, mechanisms for pro-
tection of the data, either during transfer or once stored in a public 
cloud, must be available. The applied method should also enable 
auditing of accesses and modifications in the data.

 5. Application management: This requirement involves the capability to 
collect and process information about the system status and moni-
tor the platform and the application in real time. This requirement 
also includes a capacity for presentation of comprehensive informa-
tion to users about the resources (utilization, performance, etc.) and 
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tasks so the cost-benefit analysis of utilization of the cloud can be 
undertaken and the utilization of cloud computing for workflows 
can be justified.

These requirements were addressed while we developed an adaptive 
 system for execution of a workflow for agent-based simulation in hybrid 
clouds. The application is detailed next.

4.4  Case Study

A city is sustainable only if it can accommodate economic and population 
growth while ensuring the well-being of its people and environment [9]. There-
fore, reaching sustainability becomes harder when the growth of a population 
is high or when the growth occurs in areas of high density, such as Singapore.

Singapore’s land area has increased from 581 km2 in the 1960s to 716 km2 
in 2012; its population in the same period has grown from 1.6 million to 
5.3 million  [10]. To maintain reasonably good economic growth, the Singapore 
government has projected a need for the population to reach 6.9 million by 
2030. However, the land area is only slated to grow to about 800 km2 in the 
same period. The disparity in the growth rate of population versus land area 
means that there is increasing strain on space and the service infrastruc-
ture. It is crucial for the planning agencies to adopt a scientific approach to 
understanding the urban fabric and how it can adapt to social, economic, 
and environmental changes.

One key aspect to improve the quality of living of city inhabitants is public 
transport. There is a need for efficient transport covering the biggest exten-
sion of the city as possible and running with enough frequency so people are 
motivated to use it rather than using cars. In this sense, Singapore’s public 
transport network is ranked among the best in the world. Its Mass Rapid 
Transit (MRT) train network comprises 102 stations distributed over four 
main lines, with a total of almost 150 km of rail lines. It currently serves 
around 2.5 million commuters per day, which represents more than 75% of 
the total public transport users [11].

The number of commuters and the high frequency of trains (running in 
intervals as short as 90 seconds) make it a complex system. Furthermore, 
even a minimal disruption in the operation of one train can cascade over 
several lines, affecting hundreds of thousands of commuters.

This complex and sensitive system will be subject to even further pressure 
as the population increases. Therefore, tools are needed to help  planners 
evaluate the effects that disruptions would have over the whole system.
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This fact motivated us to adopt a data-driven approach to understanding the 
dynamics of the public transport system in Singapore. To achieve that, a scal-
able complex system modeling for a sustainable city (S3) has been develop ed 
to study how the city will behave under different planning scenarios.

The goal of S3 is to provide insights to users on what-if scenarios for a 
day-to-day public transport system by leveraging on a synthetic journey 
function that generates agent-based models for public transport dynamics 
simulation. This insight will provide information on the future public trans-
port infrastructure preparedness to handle the growing population and the 
preparedness for emergencies in cases of breakdowns in the public trans-
port system.

Scaling areas that we address in this context are (1) the extract- transform-
load (ETL) or preprocessing that is required to train the synthetic journey 
function that generates the agent-based model; (2) the agent-based generation 
required to generate millions of agents that represent the increasing popula-
tion and public transport infrastructure; and (3) the large-scale agent-based 
simulation that is required to handle, track, and process each of the agents 
and to support complex interactions between agents to provide insight on 
what-if scenarios for the public transportation system in Singapore.

We tackled the large-scale computation requirements by designing 
agent-based complex system modeling supported by an adaptive cloud 
WfMS  [12] for workflow scheduling and handling big data and dynamic 
resource  scaling on public and private clouds.

The S3 application has three phases: preprocessing, data analysis, and 
agent-based simulation. Figure  4.3 shows our S3 application architecture, 
which comprises an adaptive cloud WfMS, ETL or preprocessing algorithm, 
data analysis algorithm, and agent-based simulation.

ETL or preprocessing. The synthetic data set for the application is 
based on the studies of trends and random sampling of daily  public 
commuters’ activities in Singapore. It consists of 1-second time gran-
ularities for 7 days’ duration with approximately 3 million  journeys 
per day. Based on the synthetic data set, we extract and transform the 
data for travel duration for each origin-station to destinations-station 
(OD-pair) of 90 x 90 by three different route choices. The order of 
complexity in this phase is O(n2), where n represents the number 
of stations.

Data analysis. The objective of this phase is to understand commuter 
demand and, based on data analysis results, create or improve the 
journey function of all possible OD pairs, possible routes for each 
OD pair, and temporal travel demand. The order of complexity in 
this phase is also O(n2), where n represents the number of stations.
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Agent-based simulation. In this phase, we simulate the actions and 
interactions of autonomous agents. This agent-based simulation con-
sists of agent granularity, adaptive agent process, decision-making 
heuristics, and agent interactions. Agent granularity refers to the 
number of agents specified at various scales. The adaptive agents pro-
cess refers to the action that an agent takes when a situation occurs 
(redefining the decision-making  heuristics). Decision-making heuris-
tics refer to rules or behaviors of an agent. Agent interaction refers to 
the complexity of communications or inter actions between agents.

There are three types of agents in the S3 application: commuters, stations, 
and trains. Each of these agents has its own attributes, adaptive agent pro-
cess, decision-making process, and agent interactions, as summarized in 
Table 4.1. The order of complexity in this phase is O(n3) due to the interac-
tions between agents on simulation time interval or O(tn2), where n repre-
sents the number of agents and t represents the simulation time steps.

Data requirements. The size and quantity of the data set that is generated 
is large. The size of the data can easily take up a few gigabytes each day. 
For example, the data set consists of 7 days of public transportation 
journeys for each individual, with approximately 3 million journeys 
per day. As for the agent-based simulation, we simulate the growing 
population as 6.9 million. This translates into approximately 14 mil-
lion journeys (travel and return) performed for each simulated day.

Computation requirements. For agent-based simulation, millions of 
agents are created to simulate the future infrastructure and dynam-
ics of the transportation system in Singapore. In total, the system 
manages 7 million agents that have their own attributes, adaptive 
agent process, decision-making process, and interactions with other 
agents. Furthermore, there is complexity of agent interactions and 
tracking for the simulation interval at 1-second granularity.

TABLE 4.1

Agent-Based Simulation Characteristics

Commuter Agents Station Agents Train Agents

Agent granularity 6.9 million agents 90 agents Approximately 200 
agents

Attributes 12 attributes 9 attributes 16 attributes
Adaptive agent 
process

1 adaptive process — 2 adaptive processes

Decision-making 
heuristics

5 decision-making 
heuristics

2 decision-making 
heuristics

5 decision-making 
heuristics

Agent interactions • Station
• Train

• Commuter
• Train

• Commuter
• Station
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To support not only these requirements for data and computation but also 
the requirements listed in the previous section, we proposed and developed 
a workflow middleware whose architecture is described next.

4.5  System Architecture

The requirements presented previously are addressed by software middle-
ware comprising a WfMS augmented with capabilities for data analytics 
integrated as a second layer above the WfMS. The overall organization of 
the system is depicted in Figure 4.3. It shows the S3 application architecture, 
which consists of the adaptive cloud WfMS, the ETL or preprocessing algo-
rithm, the data analysis algorithm, and the agent-based simulation.

Cloud WfMS system. The cloud WfMS is responsible for workflow 
scheduling, big data handling, and dynamic resource scaling on 
hybrid clouds. The Cloud WfMS comprises the workflow engine, 
task dispatcher, and resource management. The workflow sched-
uling coordinates the execution of tasks, handles communication 
between components, implements the scheduling algorithm, and 
manages the execution of applications on distributed resources. The 
task dispatcher component submits tasks to resources for execu-
tion. The resource management component interacts with the cloud 
infrastructure to enable resource allocation.

Preprocessing and data analysis. This component is responsible 
for managing preprocessing and data analysis activities that 
are required to train the synthetic journey function that gener-
ates the synthetic journey. It tackles the scalability challenge by 
dynamically scaling up the number of VM instances; thus, the pre-
processing processes are executed in parallel. Since this is a compu-
tationally intensive task with a long duration and the total number 
of origin-station and destination-station pairs is large (composed 
of more than 8,000 pairs), VM instances are pooled from a hybrid 
cloud where each VM instance processes the travel duration for 
each origin-station and destination-station pair.

Agent-based simulation. There are three phases of agent-based simu-
lation: agent creation, attribute definition, and simulation execution. 
Our module is able to scale the process of agent-based generation 
in orders of magnitude of up to millions of agents. Further in this 
chapter , we demonstrate the process for 6.9 million commuter agents, 
90 station agents, and 200 train agents. The activities of the process 
of simulation execution are (1) time series simulation with 1-second 
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intervals; (2) tracking of each agent, which includes checking and 
updating each agent’s state; (3) a decision-making process for each 
agent (e.g., dispatch the train at simulation time t); (4) adaptive agent 
process that allows agents to adapt to different situations (e.g., when 
a train arrives at a station, commuter agents need to board or leave 
the train); (5) interactions between agents (e.g., communication 
between train agents and station agents when the train arrives at the 
station, communication between commuter agents and train agents 
when the commuter boards the train) and management of tasks and 
data flows on the hybrid cloud utilizing the cloud WfMS.

A discussion of the implementation aspects of the architecture and its 
 performance is presented next.

4.6  Discussion and Lessons Learned

The agent-based simulation is based on three phases: create agents, define 
attributes, and run the simulation. To test the scalability of the model, 
we evaluated two different setups. The first one uses the ZeroMQ (ZMQ) 
technology [13] in our hybrid cloud. ZMQ is a low-latency asynchronous 
message-passing library that is used in scalable distributed or concurrent 
applications. The second one is a hybrid cloud test bed. The private cloud 
component of the hybrid cloud is composed of 64 cores (hyperthreaded) and 
a 2.2-GHz processor with 128 GB of memory. On top of this infrastructure, 
we deployed 50 VMs, with each VM an Ubuntu 12.04 with 1 core and 4 GB of 
memory. The public cloud is composed of 1,000 Amazon EC2 small instances 
(1 core with 1 ECU and 1.7 GB of memory).

Scaling of the “create agents” and “define attributes” phases is achieved 
through the division of the workload, with each process handling a group 
of agents. For example, in a simulation with 7 million commuters running 
on an infrastructure containing 1,000 VMs, creation of commuter agents was 
split among the VMs in such a way that each VM handled the creation of 
7,000 agents.

On the “run simulation” phase, we experienced the execution of the sim-
ulation on a time-based simulation with 1-second intervals and tracking, 
checking, and updating of each agent’s states. The scale method in this case 
delegates each VM to handle a group of agents. When the ZMQ push-pull 
method is used, one of the VMs acts as the head node that is in charge of 
distributing the tasks to all the worker VMs and controlling the timekeep-
ing process of the simulation. The timekeeping process consists of sending a 
message to each worker to inform them of the current simulation time so that 
workers can start the simulation of events scheduled for such a given time.
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However, we noticed that the time-based simulation has limited scalabil-
ity. When executed in a private cloud of 50 VMs, it took 35,248 seconds  to 
complete the 2 million commuters’ agent-based simulation. This  happened 
because there were dependencies in t + 1 with time t (i.e., simulation at time 
t needs to be completed before simulation of time t + 1 starts). Because of this 
issue, we replaced the time-based simulation with an event-based simulation.

In event-based simulation, the model handles the agents’ interactions, such 
as boarding of commuters, unboarding of commuters, train arrivals at sta-
tions, and train departures from stations. On the back end, the workload is 
distributed via a similar method to other phases (each process handles a 
group of agents). With this new technique, the execution time of the simula-
tion in the same private cloud was completed in 1,818 seconds for the same 
2-million-commuter agent-based simulation, an improvement of 19 times 
over the original technique.

We further scaled the agent-based simulation by executing it on 1,000 VMs. 
In this case, the agent-based simulation completed in 434 seconds for simula-
tion of 2 million commuters and 963 seconds for 7 million commuters. This 
demonstrated that the three phases of our approach are scalable and suitable 
for execution on elastic cloud platforms.

To summarize, we gave preference to the cloud-enabled WfMS over the 
ZMQ system because of the following reasons: (1) It enabled more efficient 
management of the highly distributed data required by the agent-based 
simulation workflow; (2) it better automated the workflow process for data 
 analytics with multiobjective optimization of performance and budget; 
and (3) it enabled dynamic resource allocation for adaptive services with 
fault tolerance.

4.7  Related Work

Given the importance of workflow applications for the scientific community, 
many scientific workflow platforms were developed to explore scientific 
computational platforms such as grids. As cloud platforms became popular 
among the scientific community, WfMSs where enhanced to support them.

Pegasus [1] offers a set of tools for different aspects of execution and man-
agement of workflow applications and platforms. It implements application 
programming interfaces (APIs) for diverse programming languages, supports 
submission of workflows via web portals, and integrates with external tools. On 
its back end, it supports multi ple cloud providers and scientific infrastructures.

Taverna [2] is another widely adopted workflow engine that can explore 
both grid and cloud platforms. Applications running on the platform can 
be deployed in many modes, including “server mode,” by which it supports 
requests from many users to execute remote workflow applications.
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The Cloudbus Workflow Engine incorporates a market-oriented utility 
computing model that supports grids, desktops, and clouds. It supports the 
concept of InterCloud for allocation and management of resources for execu-
tion of workflow applications [1].

Kim et al. [14] proposed a WfMS able to deploy workflows in hybrid infra-
structures composed of TeraGrid nodes and Amazon EC2 resources. Our 
proposed system, on the other hand, can also leverage resources from  private 
and public cloud providers.

Gogouvitis et al. [15] proposed a WfMS for deploying workflow applica-
tions on virtualized environments that is able to utilize resources from 
 public clouds. However, it has no dynamic provisioning capabilities to speed 
application execution and to meet real-time application performance require-
ments as does our approach.

Fernandez et al. [16] proposed a cloud WfMS that applies a concept called 
chemical programming for the application scheduling. The system, however, 
does not offer dynamic resource provisioning capabilities and autonomic 
self-healing features.

CometCloud [17] is a more recent tool that implements an infrastructure 
for autonomic management of workflow applications on clouds.

4.8  Conclusions and Future Work

Clouds became a powerful platform for e-research as they enable scientists to 
have access to elastic, cost-effective, and virtually infinite computing power. 
Because clouds provide their users the view of infinite computing capac-
ity, the real limitations on the scalability of the applications lie in the avail-
able budget for cloud usage and limitations in the applications themselves. 
Therefore, it is important that scientific application developers enable their 
applications to get the most from the cloud.

In this chapter, we discussed recent trends for execution of workflows in clouds. 
The architecture we presented is composed of a platform layer and an applica-
tion layer. The platform layer enables operations such as dynamic resource pro-
visioning, autonomic scheduling of applications, fault tolerance, security, and 
privacy in data access. The features enabled by this layer can be explored by 
virtually any application that can be described as scientific workflow.

In the application layer, we discussed a data analytics application enabling 
simulation of the public transport system of Singapore and the effect of 
abnormal events in the transport network. The application consists of an 
agent-based simulation of the public transport system of Singapore, and it 
allows evaluation of effects of incidents (such as train delays) in the flow of 
passengers in the country.
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As future work, we plan to extend our platform to support a disaster deci-
sion support system (DDSS). The principles presented in this chapter will 
be further expanded so the DDSS will provide a dashboard for the strategic, 
tactical, and operational decisions arising during disaster mitigation. It will 
be integrated with a range of modeling and simulation tools to provide opti-
mization models with up-to-date situational awareness and predictions to 
provide recommendations to authorities. This extension will support not 
only workflow applications but also other programming models suitable 
for clouds, such as MapReduce. Ideally, the platform will support not only 
applications that are entirely described as one of these models but also com-
plex applications that are composed of diverse subcomponents that may be 
 developed as different programming models.

References

 1. Deelman, E., Singh, G., Su, M., et al. 2005. Pegasus: a framework for mapping com-
plex scientific workflows onto distributed systems. Scientific Computing 13:219–237.

 2. Oinn, T., Greenwood, M., Addis, M., et al. 2006. Taverna: lessons in creating 
a workflow environment for the life sciences. Concurrency and Computation: 
Practice and Experience 18:1067–1100.

 3. Taylor, I., Shields, M., Wang, I., et al. 2007. The Triana Workflow Environment: 
Architecture and Applications. In Workflows for E-Science, ed. I. J. Taylor, 
E. Deelman, D. B. Gannon, et al., 320–339. London: Springer.

 4. Pandey, S., Karunamoorthy, D., and Buyya, R. 2011. Workflow engine for 
clouds. In Cloud Computing: Principles and Paradigms, ed. R. Buyya, J. Broberg, 
and A. Goscinski, 321–344. New York: Wiley.

 5. Kwok, Y., and Ahmad, I. 1999. Static scheduling algorithms for allocating 
directed task graphs to multiprocessors. ACM Computing Surveys 3:406–471.

 6. Yu, J., Buyya, R., and Ramamohanarao, K. 2008. Workflow scheduling algorithms 
for grid computing. In Metaheuristics for Scheduling in Distributed Computing 
Environments, ed. F. Xhafa and A. Abraham, 173–214. Berlin: Springer.

 7. Hirales-Carbajal, A., Tchernykh, A., Yahyapour, R., et al. 2012. Multiple work-
flow scheduling strategies with user run time estimates on a grid. Journal of Grid 
Computing 10:325–346.

 8. Li, X., Calheiros, R., Lu, S., et al. 2012. Design and development of an adap-
tive workflow-enabled spatial-temporal analytics framework. In Proceedings of 
the 2012 IEEE International Workshop on Scalable Computing for Big Data Analytics 
(SC-BDA 2012), 862–867. Piscataway, NJ: IEEE Computer Society.

 9. Bryan, L. 2010. The social and psychological issues of high-density city space. 
In Designing High-Density Cities for Social and Environmental Sustainability, ed. 
E. Ng, 285–292. London: Earthscan.

 10. Singapore Department of Statistics. 2013. Singapore in figures 2013. http://www.
singstat.gov.sg/Publications/publications_and_papers/reference/sif2013.pdf.



88 Cloud Computing with e-Science Applications

 11. Singapore Land Transport and Authority. 2013. Singapore land transport in brief 
2013. http://www.lta.gov.sg/content/dam/ltaweb/corp/PublicationsResearch/
files/FactsandFigures/Stats_in_Brief_2013.pdf.

 12. Rahman, M., Li, X., and Veeravalli, B. 2012. Hybrid heuristic for scheduling data 
analytics workflow applications in hybrid cloud environments. In Proceedings of 
the 2011 IEEE Symposium on Parallel and Distributed Processing Workshops and PhD 
Forum (IPDPSW’11), 966–974. Piscataway, NJ: IEEE Computer Society.

 13. Hintjens, P. 2013. ZeroMQ: Messaging for Many Applications. Sebastopol, CA: O’Reilly.
 14. Kim, H., el-Khamra, Y., Rodero, I., et al. 2011. Autonomic management of applica-

tion workflows on hybrid computing infrastructure. Scientific Computing 19:75–89.
 15. Gogouvitis, S., Konstanteli, K., Waldschmidt, S., et al. 2012. Workflow manage-

ment for soft real-time interactive applications in virtualized environments. 
Future Generation Computer Systems, 28:193–209.

 16. Fernandez, H., Tedeschi, C., and Priol, T. 2011. A chemistry-inspired workflow 
management system for scientific applications in clouds. In Proceedings of the 
Seventh International Conference on e-Science (e-Science’11), 39–46. Piscataway, NJ: 
IEEE Computer Society.

 17. Kim, H., el-Khamra, Y., Rodero, I., et al. 2011. Autonomic management of appli-
cation workflows on hybrid computing infrastructure. Scientific Programming 
19:75–89.



89

5
Migrating e-Science Applications 
to the Cloud: Methodology and Evaluation

Steve Strauch, Vasilios Andrikopoulos, Dimka Karastoyanova, 
and Karolina Vukojevic-Haupt

CONTENTS

Summary ................................................................................................................90
5.1 Introduction ..................................................................................................90
5.2 Motivating Scenario .................................................................................... 92
5.3 Related Work ................................................................................................94
5.4 Migration Methodology and Tool Support .............................................. 97

5.4.1 Requirements.................................................................................... 97
5.4.1.1 Functional Requirements ................................................. 97
5.4.1.2 Nonfunctional Requirements ..........................................98

5.4.2 Migration Methodology ..................................................................98
5.4.2.1 Step 1: Select Migration Scenario .................................. 100
5.4.2.2 Step 2: Describe Desired Cloud Data Hosting 

Solution ............................................................................. 101
5.4.2.3 Step 3: Select Cloud Data Store or Data Service ......... 102
5.4.2.4 Step 4: Describe Source Data Store or Data Service .... 103
5.4.2.5 Step 5: Identify Patterns to Solve Potential 

Migration Conflicts ......................................................... 103
5.4.2.6 Step 6: Refactor Application Architecture ................... 103
5.4.2.7 Step 7: Migrate Data ........................................................ 104

5.4.3 Realization ...................................................................................... 104
5.5 Evaluation ................................................................................................... 106
5.6 Conclusions ................................................................................................. 109
List of Abbreviations........................................................................................... 111
Acknowledgments .............................................................................................. 111
Bibliography ........................................................................................................ 111



90 Cloud Computing with e-Science Applications

Summary

Migrating an existing application to the cloud is a complex and multi-
dimensional problem requiring in many cases adapting the application in 
significant ways. Taking a look in particular into the database layer of the 
application, this involves dealing with differences in the granularity of inter-
actions, refactoring of the application to cope with remote data sources, and 
addressing data confidentiality concerns. In this chapter we introduce an 
application migration methodology that incorporates these aspects, and a 
decision support, application refactoring and data migration tool which sup-
ports application developers in realizing this methodology. We evaluate the 
proposed methodology and enabling tool using a case study conducted in 
the context of an e-science project.

5.1  Introduction

e-Science is an active field of research striving to enable faster scientific dis-
covery and groundbreaking research in different scientific domains by means 
of information technology (IT). It is considered a new paradigm for science 
and is referred to as the fourth paradigm (Hey et al., 2009) or data-intensive 
science; it unifies theory, experiments, and simulation for data exploration 
for the purpose of scientific discovery. Existing literature shows that myriad 
available software systems, like Kepler, Triana, Taverna, Pegasus, and so on, 
support only some of the experiment life cycle phases and are applicable 
only for specific scientific domains (Taylor et al., 2006).

Due to its interdisciplinary nature, e-science exhibits a high degree of 
complexity, mainly due to the technical challenges and interoperability defi-
ciencies of the existing software, the large amounts of data produced and 
consumed by the computational tools and systems, and the computational 
intensity and distributed characteristics of the IT environment observed in 
scientific computing. One major issue in current research is the integration of 
existing software and tools, across domains and organizational structures, 
for enabling the collaborative modeling of more complex scientific experi-
ments and their execution. The most prominent approach for integrating 
software systems for the purpose of performing scientific experiments is 
workflow technology. Workflows are defined in terms of control flow among 
tasks comprising an experiment and the data exchanged among them 
(i.e., data flow). Moreover, the tasks in a workflow stand for a concrete unit of 
work that can be implemented by a computational, configuration, or visual-
ization tool or by human users.
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The available scientific workflow systems can be classified in two groups 
based on the fundamental features of the workflows they realize. There are 
data-driven scientific workflow systems, such as Kepler, Triana, Taverna, and 
Pegasus (Taylor et al., 2006), which stem from research in scientific comput-
ing. In such workflows, the focus is on modeling experiments in terms of how 
scientific data are processed (i.e., the tasks in a workflow are data-processing 
tasks), distributed, and placed on computing nodes in terms of computing 
jobs. There are also control flow-based scientific workflow systems, such as 
SimTech Scientific Workflow Management System (SWfMS; http://www.
iaas.uni-stuttgart.de/forschung/projects/simtech/projects.php) and Trident 
(http://research.microsoft.com/en-us/collaboration/tools/trident.aspx), 
which support workflows with emphasis on the control flow among compu-
tational tasks, while the data consumed and produced by the software sys-
tems follow the control flow. In these workflows, the computational tasks are 
implemented by individual software systems, which in turn may distribute 
the computation over multiple computing nodes; however, this is kept trans-
parent for the workflow system. The enacting environment, also called the 
workflow management system or workflow engine, is mainly dealing with 
orchestrating the software systems as well as human users. Such workflows 
have been developed as extensions to the available workflow technology from 
business applications.

These two different types of scientific workflow systems exhibit very dif-
ferent qualities of service characteristics, such as scalability, robustness, 
interoperability, reusability, and flexibility (De Roure, Goble, and Stevens, 
2009; Görlach et al., 2011; Sonntag and Karastoyanova, 2010). The systems 
based on the conventional workflow technology from the business domain 
exhibit better quality-of-service characteristics. This can be explained mainly 
by the differences in the workflow metamodels and by the longer develop-
ment, improvements, and evolution of workflow systems that took place 
in the field of enterprise application management (or the level of maturity 
reached by the workflow technology in this domain).

In recent years, cloud computing has gained significant acceptance in 
both the enterprise application management and scientific computing for 
its promise to reduce infrastructure costs and provide virtually unlimited 
computational power and data storage (Armbrust et al., 2009)—requirements 
of particular importance for businesses and of even greater importance to 
scientists and research organizations. While research in this field is active 
in providing novel concepts, techniques, and principles toward building 
cloud-native applications, there is a significant effort to cloud enable existing 
applications to reuse existing systems and therefore investments. Typically, 
cloud-enabling applications are related to the migration of whole systems or 
parts of them on a public or private cloud environment (Andrikopoulos et al., 
2013; Deelman et al., 2008). Current research in migration methodologies and 
techniques, both specific to the e-science domain and outside it, is presented 
in Section 5.3.
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In this work, we present a vendor- and technology-independent method-
ology for migrating the database layer of applications and refactoring the 
application architecture as positioned in existing methodologies for migra-
tion of applications (see Section 5.4). The methodology is applicable to appli-
cations in different application domains and is agnostic to the types of data 
sources. It fulfills requirements also presented in this work, which we have 
identified in collaboration with software engineers and domain experts in 
several research projects. We use this methodology to migrate the database 
layer of a scientific workflow management system (SimTech SWfMS), which 
we developed in the scope of our research activities in the SimTech project. 
The architecture and implementation details of the system, as well as the 
motivation for the database layer migration, are first presented in Section 5.2. 
The migration of the SimTech SWfMS has been done using the Cloud Data 
Migration Support Tool—a proof-of-concept implementation of the method-
ology. Both the introduced methodology and the supporting tool have been 
evaluated, and our findings are presented in Section 5.5. Our concluding 
remarks and plans for future work are presented in Section 5.6.

5.2  Motivating Scenario

As a motivating scenario from the e-science field, we use the integrated and 
interactive SWfMS developed in the context of the SimTech project (Sonntag, 
Hahn, and Karastoyanova, 2012; Sonntag and Karastoyanova, 2010). The 
SimTech SWfMS is a distributed system based on conventional workflow 
technology adapted to the needs of scientific workflows. The main compo-
nents of the SimTech SWfMS are a modeling and monitoring tool, a workflow 
engine, an enterprise service bus, an auditing system, a messaging system, 
several database management systems, and an application server running 
the simulation services.

We present the architecture of the SimTech SWfMS in Figure 5.1. The user 
interacts with the system using the modeling and monitoring tool. SimTech 
SWfMS provides a graphical user interface to model, execute, and monitor 
scientific workflows. When the user initiates the execution of a workflow, 
the tool automatically deploys the workflow model on the workflow engine, 
which makes the simulation workflow available for use. The workflow can 
be instantiated as many times as needed. The instantiation of a scientific 
workflow is the beginning of the execution phase of the workflow life cycle.

The workflows executed by the workflow engine describe the ordered 
execution of different tasks such as data preparation, computation, or visu-
alization. In our case, these tasks are realized by web services hosted on an 
application server. During the execution of a workflow, the workflow engine 
navigates along the predefined control flow and also interacts with these 
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web services through the service bus; that is, it sends a request for invocation 
of a web service and receives the results back from the web services. The ser-
vice bus is also responsible for service discovery and selection if informa-
tion about concrete services to be used is not available during the workflow 
deployment step.

The workflow engine also produces fine granular workflow execution 
events and publishes them to the messaging system. These events are con-
sumed by the modeling and monitoring tool as well as by the auditing appli-
cation. The modeling and monitoring tool uses the execution information 
to enable the live monitoring of running workflows. The auditing applica-
tion captures the same execution information and saves it into a database to 
enable provenance and later analysis.

The actual workflow that serves as an example in the following is a kinetic 
Monte Carlo simulation (KMS) that invokes several web services as part of the 
simulation of solid bodies. These web services are implemented by modules 
of the OPAL application (Sonntag et al., 2011). During their operation, the 
OPAL web services access a MySQL database for both read and write opera-
tions. The example simulation of solid bodies is long running and requires 
significant computing power. Speeding up the simulation was a challenge 
that led to the decision to make use of cloud infrastructures, with the goal to 
acquire additional computational resources and data storage for the time of 
executing the simulation. This was indeed the major motivation for migrating 
the simulation workflow system or parts of it to the cloud.

Since the example simulation produces big amounts of data, one of our deci-
sions was to temporarily migrate the database layer of the OPAL web services 
into the cloud, thus realizing the migration scenario cloud bursting (Strauch 
et al., 2013b), with Amazon Relational Database Service (RDS) as the migra-
tion target. However, migrating only the database layer to Amazon would 
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Main components of the SimTech SWfMS architecture.
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result in extensive data transfer between the OPAL services on the premises 
and the database off the premises, therefore creating a potential bottleneck. 
Considering this, we decided also to migrate the business logic of the applica-
tion to the cloud. Consequently, the modeling and monitoring tool was kept on 
the  premises, while the remaining parts of the SimTech SWfMS were moved to 
an off-premises infrastructure. As a result, we not only avoid bottlenecks but 
also reduce costs since for most cloud providers data transfer inside the cloud 
is significantly cheaper than data transfer from and to the cloud.

The challenges we faced during this process were the following:

• which part of the system to migrate,
• what is the target system to migrate on,
• if and how to adapt the existing system to operate correctly after 

the migration,
• and most important, the lack of automated support with respect to 

these decisions.

To address these challenges, in this work we present a methodology that 
incorporates decision and refactoring support for migration of the database 
layer of applications to the cloud. For this purpose, in the following section 
we focus on investigating available methodologies and decision support 
 systems (DSSs) for such scenarios.

5.3  Related Work

The state of the art we investigate in this section covers three aspects. First, we 
review existing literature on recommendations, benefits, and use cases with 
respect to the usage of cloud computing for e-science. Second, we investi-
gate available vendor-specific and vendor-independent methodologies and 
guidelines for migrating either the database layer or the whole application 
to the cloud. Then, we consider available recommendations and DSSs with 
respect to migration to the cloud.

Mudge et al. reported an increase in speed by a factor of five on execution 
times when they migrated an e-science application from the domain of geo-
physics from on premises to the cloud, considering services from Amazon 
AWS and Microsoft Windows Azure (Mudge et al., 2011). Cala et al. used 
cloud computing to satisfy the demand for increased computation power 
and need for storing large volumes of data by migrating an existing e-science 
application for predicting chemical activity to Microsoft Windows Azure 
(Cala et al., 2013). The migration scenarios we are using in our methodol-
ogy not only cover enterprise use cases but also cover scientific scenarios, 
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as we have collaborated with industry partners and domain experts from 
the e-science domain while identifying them. Zinn et al. migrated an exist-
ing application based on scientific workflows from the domain of astronomy 
to Microsoft Windows Azure (Zinn et al., 2010). The existing application 
we migrate to the cloud for the purpose of evaluating our approach is also 
based on scientific workflows. Deelman et al. evaluated the cost of running 
e-science applications in the cloud, focusing on the trade-off between dif-
ferent workflow execution modes and provisioning plans, and came to the 
conclusion that the costs highly depend on the selected deployment strategy 
(Deelman et al., 2008). We do not explicitly consider costs but provide recom-
mendations and guidelines with respect to the deployment strategy.

Amazon proposes a phase-driven approach consisting of six phases for 
migration of an application to its cloud infrastructure (Varia, 2010). The 
data migration phase is subdivided into a selection of the concrete Amazon 
AWS service and the actual migration of the data. Amazon provided recom-
mendations regarding which of their data and storage services best fit for 
storing a specific type of data; for example Amazon Simple Storage Service 
(Amazon S3, http://aws.amazon.com/s3/) is ideal for storing large write-once, 
read-many types of objects. As the methodology proposed by Amazon 
focuses on Amazon AWS data and storage services only, we abstracted from 
this methodology and integrated the guidelines in our proposal. In addi-
tion to several product-specific guidelines and recommendations (Microsoft, 
2013a, 2013b), Microsoft provided a Windows Azure SQL Database Migration 
Wizard (http://sqlazuremw.codeplex.com) and the synchronization service 
Windows Azure SQL Data Sync (http://www.windowsazure.com/en-us/
manage/services/sql-databases/getting-started-w-sql-data-sync/). We reused 
some of these tools, tutorials, and wizards and refer to them during the data 
migration phase.

For the App Engine, Google is offering the tool Bulk Loader (http://bulk 
loadersample.appspot.com), which supports both the import of CSV and 
XML files into the App Engine Data Store and the export as CSV, XML, or 
text files. The potentially required transformations of the data during the 
import are customizable in configuration files. In addition, Google supports 
the user when choosing the appropriate data store or service and during its 
configuration (Google, 2013b). Moreover, they provide guidelines to migrate 
the whole application to Google App Engine (Google, 2013a). We refer to 
the tools during the migration phase and abstract from the vendor-specific 
guidelines and recommendations to integrate them in our tool.

Salesforce provides data import support to their infrastructure via a 
web user interface or the desktop application Apex Data Loader (http://
sforce-app-dl.sourceforge.net). Another option to migrate and integrate 
with cloud providers such as Salesforce is to hire external companies that 
specialize in migration and integration, such as Informatica Cloud (http://
www.  informaticacloud.com). In addition to the tools or external support, 
Salesforce provides data migration guidelines (salesforce.com, 2013). We 
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consider the non-Salesforce-specific steps for our proposed methodology. 
As discussed extensively in Section 5.4, Laszewski and Nauduri also pro-
posed a vendor-specific methodology for the migration to Oracle products 
and  services by providing a detailed methodology, guidelines, and recom-
mendations focusing on relational databases (Laszewski and Nauduri, 2011). 
We  base our proposal on their methodology, by abstracting from it and 
adapting and extending it.

Apart from the vendor-specific migration methodologies and guidelines, 
there are also proposals independent from a specific cloud provider. Reddy 
and Kumar proposed a methodology for data migration that consists of the 
following phases: design, extraction, cleansing, import, and verification. 
Moreover, they categorized data migration into storage migration, database 
migration, application migration, business process migration, and digital 
data retention (Reddy and Kumar, 2011). In our proposal, we focus on the 
storage and database migration as we address the database layer. Morris 
specifies four golden rules of data migration with the conclusion that the 
IT staff does not often know about the semantics of the data to be migrated, 
which causes a lot of overhead effort (Morris, 2012). With our proposal of 
a step-by-step methodology, we provide detailed guidance and recom-
mendations on both data migration and required application refactoring to 
minimize this overhead. Tran et al. adapted the function point method to 
estimate the costs of cloud migration projects and classified the applications 
potentially migrated to the cloud (Tran et al., 2011). As our assumption is that 
the decision to migrate to the cloud has already been taken, we do not con-
sider aspects such as costs. We abstract from the classification of applications 
to define the cloud data migration scenarios and reuse distinctions, such as 
complete or partial migration to refine a chosen migration scenario.

As we discuss the prototypical realization of a tool providing support 
and guidelines while deciding for a concrete cloud data store or service, the 
migration, and the refactoring of the application architecture accordingly, in 
the following we also investigate the state of the art on decision support sys-
tems (DSSs) (Power, 2002) in the area of cloud computing. Khajeh-Hosseini 
et al. introduced two tools that support the user when migrating an appli-
cation to infrastructure-as-a-service (IaaS) cloud services (Khajeh-Hosseini 
et al., 2011). The first one enables the cost estimation based on a UML deploy-
ment model of the application in the cloud. The second tool helps to identify 
advantages and potential risks with respect to the cloud migration. None of 
these tools is publicly available. We do not consider the estimation of costs 
or the identification of risks as our assumption is that the decision for migra-
tion to the cloud has already been taken. We consider aspects such as costs, 
 business resiliency, effort, and so on to be considered before following our 
methodology and using the tool (Andrikopoulos et al., 2013). Menzel and 
Ranjan developed CloudGenius, a DSS for the selection of an IaaS cloud 
provider focusing on the migration of web servers to the cloud based on 
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 virtualization technology (Menzel and Ranjan, 2012). As we provide support 
for the migration of the database layer, we focus on another type of middle-
ware technology. Our approach is also not limited to a specific cloud service 
 delivery model and migration by using virtualization technology.

5.4  Migration Methodology and Tool Support

As discussed, in this section we introduce a step-by-step methodology for 
the migration of the database layer to the cloud and the refactoring of the 
application architecture. Before we introduce the methodology, we investi-
gate the requirements to be fulfilled by such a methodology.

5.4.1  Requirements

The functional and nonfunctional requirements we present in this section aim 
to provide decision support and guidelines for both migrating an applica-
tion database layer to the cloud and refactoring of the application architec-
ture. The presented requirements have been identified during our work on 
 various research projects, especially during our collaboration with industry 
partners and IT specialists from the e-science domain.

5.4.1.1  Functional Requirements

The following functional requirements (FRs) must be fulfilled by any meth-
odology for migration of the database layer to the cloud and refactoring of 
the application architecture:

FR1 Support of Data Stores and Data Services: The methodology must support the data 
migration for both fine- and coarse-grained types of interactions (e.g., through SQL 
and service APIs, respectively).

FR2 On-Premises and Off-Premises Support: The methodology has to support data stores and 
data services that are either hosted on the premises or off the premises and using both 
cloud and noncloud technologies.

FR3 Independence from Database Technology: The methodology has to support both established 
relational database management systems (Codd, 1970) and NoSQL data stores 
(Sadalage and Fowler, 2012) that have emerged in recent years.

FR4 Management and Configuration: Any tool supporting such a methodology must provide 
management and configuration capabilities for data stores, data services, and 
migration projects bundling together different migration actions. This includes, for 
example, the registration of a new data store, including its configuration data 
(e.g., database schemas, database system end point uniform resource locators [URLs], 
etc.). It must also support the creation of new migration projects for documentation 
of the decisions and actions taken during migration.
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FR5 Support for Incompatibility Identification and Resolution: Any potential incompatibilities 
(e.g., between SQL versions supported by different data services) must be identified, 
and guidance must be provided on how to overcome them. For this purpose, the 
methodology has to incorporate the specification of functional and nonfunctional 
requirements for both the (source) database layer used before the migration and the 
target data store or data service.

FR6 Support for Various Migration Scenarios: As the data migration depends on the context 
and the concrete use case (e.g., backup, archiving, or cloud bursting), the methodology 
has to support various migration scenarios.

FR7 Support for Refactoring of the Application Architecture: The amount of refactoring of the 
application architecture during the migration of the database layer to the cloud depends 
on many aspects, such as the supported functionalities of the target data store or data 
service, use case, and so on. It is therefore required that the methodology provides 
guidance and recommendations on how to refactor the application architecture.

5.4.1.2  Nonfunctional Requirements

In addition to the required functionalities, a methodology for migra-
tion of the database layer to the cloud and refactoring of the application 
architecture should also respect the following properties of nonfunctional 
 requirements (NFRs):

NFR1 Security: Both data export from a source data store and data import to a target data 
store require confidential information such as data store location and access 
credentials. Any tool supporting the methodology should therefore consider 
necessary authorization, authentication, integrity, and confidentiality mechanisms 
and enforce user-wide security policies when required.

NFR2 Reusability: As the migration of data can be seen as either the migration of only the 
database layer or as part of the migration of the whole application, the methodology 
has to be reusable with respect to the integration into a methodology for migration 
of the whole application to the cloud, such as the one proposed by Varia for Amazon 
(Varia, 2010).

NFR3 Extensibility: The methodology should be extensible to incorporate further aspects that 
have an impact on the data migration to the cloud, such as regulatory compliance. 
For example, in the United States, the cloud service provider is responsible for 
ensuring compliance to regulations (Louridas, 2010), but in the European Union, it is 
the cloud customer that is ultimately responsible for investigating whether the 
provider realizes the Data Protection Directive (Cate, 1994).

5.4.2  Migration Methodology

The step-by-step methodology we introduce in this section refines and 
adapts the migration methodology proposed by Laszewski and Nauduri 
(2011) to address the identified requirements. The methodology (Laszewski 
and Nauduri, 2011) consists of seven distinct phases (Figure  5.2). During 
the Assessment phase, information relevant for project management, such as 
drivers for migration, migration tools, and migration options, is collected 
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to assess the impact of the database migration on the IT ecosystem. The 
Analysis-and-Design phase investigates the implementation details on the 
target database (e.g., potentially different data types and transaction man-
agement mechanisms being used). The goal of this phase is the creation of a 
plan to overcome potential incompatibilities between the source and target 
data store while avoiding changes in the business logic of the application. 
The Migration phase deals with the migration of the data from the source 
data store to the target data store in a testing environment, including tasks 
such as database schema migration, database stored procedures migration, 
and data migration. After the migration, both the database and the applica-
tion have to be tested in the Test phase. This includes, for example, tasks 
such as data verification and testing the interaction of the application with 
the new target data store. As applications are in general highly optimized 
for a particular database, after the migration to another target data store the 
performance might be poor. Thus, optimizations based on the new target 
store used are applied in the Optimization phase to improve the performance. 
The  goal of the Deployment phase is to deploy the final system, including 
actually migrating the database, to the production environment.

At first glance, the methodology of Laszewski and Nauduri addresses most 
of the requirements discussed previously. However, it discusses its phases 
on a high level that is not suitable for direct application, requiring further 
refinement in practice. Furthermore, it fails to satisfy some of the most 

Assessment

Analysis &
Design 

Migration

Test

Optimization

Deployment

Support

Legend
Phases refined and adapted

Phases not addressed 

FIGURE 5.2
Migration methodology as proposed by Laszewski and Nauduri in 2011, with supported 
phases highlighted. (Redrawn from Laszewski, T., and P. Nauduri (2011). Migrating to the Cloud: 
Oracle Client/Server Modernization. New York: Elsevier.)



100 Cloud Computing with e-Science Applications

important requirements that we identified. More specifically, as the method-
ology focuses on Oracle solutions, it only considers the relational database 
management system of Oracle as the target data store and the following rela-
tional data stores as the source databases for the migration: Microsoft SQL 
Server (http://www.microsoft.com/en-us/sqlserver), Sybase (http://www.
sybase.com), IBM DB2 (http://www.ibm.com/software/data/db2), and IBM 
Informix (http://www.ibm.com/software/data/informix/). All of these data-
bases are data stores supporting fine-grained interactions through SQL. It 
is unclear whether the methodology also supports data services because no 
information can be found on this aspect in Laszewski and Nauduri’s work 
(2011) (FR1). The methodology is not independent from the database technol-
ogy as it focuses on a small set of relational databases and does not support 
NoSQL approaches (FR3). Moreover, the methodology is limited to the pure 
outsourcing of the database layer to the cloud and does not consider the con-
text and specifics of migration scenarios such as cloud bursting, backup, and 
archiving (FR6). As concrete migration scenarios are not considered, their 
specifics and the context cannot be considered for the guidance and recom-
mendation toward refactoring of the application architecture. In addition, the 
guidance and recommendations for the required adaptations of the applica-
tion architecture during the migration are limited since the migration meth-
odology (Laszewski and Nauduri, 2011) considers only one vendor-specific 
relational target data store and a small subset of vendor-specific relational 
data stores as the source data store (FR7). The vendor specificity also has the 
consequence that the methodology does not consider the reusability aspect 
with respect to the integration or combination of this methodology with other 
existing proposals for migration to the cloud (NFR2).

To address these deficiencies, in the following we propose a vendor- and 
database technology-independent step-by-step methodology that refines 
and adapts the one proposed by Laszewski and Nauduri (2011). Figure 5.2 
provides an overview of the phases of the methodology proposed that we 
adapted and refined. Figure 5.3 provides an overview of our proposal con-
sisting of seven steps. All steps are semiautomatic, in the sense that a human 
(e.g., the application developer in charge of the migration) has to provide 
input and follow the recommendations and guidelines provided by the 
methodology. Figure  5.3 also shows the mapping between the proposed 
methodology and the one in Laszewski and Nauduri’s 2011 work. As can 
be seen, no direct support for the Test and Optimization phases is provided 
by our proposal since there are no identified requirements explicitly requir-
ing these phases. The impact of not supporting these phases is evaluated in 
Section 5.5. The steps of the methodology are discussed next.

5.4.2.1  Step 1: Select Migration Scenario

The first step in our proposed methodology is the selection of the migration  
scenario . For this purpose, we use the 10 Cloud Data Migration Scenarios 
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identified by Strauch et al. (2013b): database layer outsourcing; use of highly 
scalable data stores; geographical replication; sharding; cloud bursting; 
working on data copy; data synchronization; backup; archiving; and data 
import from the cloud (FR6). These migration scenarios cover both migration 
directions between on the premises and off the premises (FR2).

Based on the selection of the migration scenario, a migration strategy is 
 formulated by considering properties such as live or nonlive migration, com-
plete or partial migration, and permanent or temporary migration to the 
cloud. During this step, potential conflicts between the migration scenario 
selected and the refined migration strategy should be explicitly addressed by 
proposing solutions to the user (e.g., the choice of a different migration sce-
nario). An example of a conflict is the selection of the migration scenario cloud 
bursting and the choice of a permanent migration to the cloud in the strategy. 
The purpose of this migration scenario is by definition to migrate the database 
layer to the cloud to cover peak loads and migrate it back afterward; choosing 
permanent migration as part of the strategy  therefore  cannot be satisfied.

5.4.2.2  Step 2: Describe Desired Cloud Data Hosting Solution

The specification of functional and nonfunctional requirements with 
respect to the target data store or data service is the focus of the second step. 
We  define the cloud data hosting solution as the concrete configuration of a 
cloud data store or cloud data service in terms of a set of concrete functional 
and nonfunctional properties (FR1). Therefore, we derived an initial set of 
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properties grouped into different categories based on the analysis of current 
data store and data service offerings of established cloud providers such as 
Amazon, Google, and Microsoft. Table  5.1 provides an excerpt of the cat-
egories and corresponding properties we considered. These categories cover 
both relational and NoSQL solutions (FR3, FR5).

5.4.2.3  Step 3: Select Cloud Data Store or Data Service

The concrete target data store or data service for the migration is selected in 
step 3 by mapping the properties of the cloud data hosting solution specified 

TABLE 5.1

Excerpt of Categories and Properties for Specification of Requirements of Cloud Data 
Hosting Solutions

Categories Properties Available Options

Scalability Degree of automation Manual, automated
Type Horizontal, vertical
Degree Virtually unlimited, limited
Time to launch new instance None, duration in minutes

Availability Replication Yes, no
Replication type Master-slave, master-master
Replication method Synchronous, asynchronous
Replication location Same data center

Different data center (same region)
Automatic failover Yes, no
Degree 99.9%, 99.999%

Security Storage encryption Yes, no
Transfer encryption Yes, no
Firewall Yes, no
Authentication Yes, no
Confidentiality Yes, no
Integrity Yes, no
Authorization Yes, no

Interoperability Data portability None, import, export
One-way synchronization

Data exchange XML, JSON, proprietary
Format
Storage access SOA, REST-API, SQL, proprietary
ORM JPA, JDO, LINQ
Migration and deployment support Yes, no
Supported IDE Eclipse, NetBeans, IntelliJ IDEA
Developer SDKs Java, .Net, PHP, Ruby

Storage Storage type RDBMS, NoSQL
CAP Consistency model Strong, weak, eventual

Availability in case of partitioning Available, not available
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in the previous step to the set of available data stores and data services that 
have been categorized according to the same nonfunctional and functional 
properties. Implementing this step requires data stores and data services to 
be previously specified according to the set of functional and nonfunctional 
properties either directly by the cloud providers or by the users of the meth-
odology. The management and configuration capabilities required for this 
specification, however, can be used at a later time to also make new cloud 
data stores and data services available (FR4).

5.4.2.4  Step 4: Describe Source Data Store or Data Service

As it is not sufficient to consider only where the data has to be migrated, in 
step 4 the functional and nonfunctional properties of the source data store or data 
service are also described to identify and solve potential migration conflicts, 
such as the database technology used or whether the location is on or off the 
premises (FR5).

5.4.2.5  Step 5: Identify Patterns to Solve Potential Migration Conflicts

The use of cloud technology leads to challenges such as incompatibilities 
with the database layer previously used or the accidental disclosing of criti-
cal data (e.g., by moving them to the public cloud). Incompatibilities in the 
database layer may refer to inconsistencies between the functionalities of an 
existing traditional database layer and the characteristics of an equivalent 
cloud data hosting solution. Therefore, in the fifth step conflicts are identi-
fied by checking the compatibility of the properties of the target data store 
selected in step 3 with the properties of the source data store or service used 
before the migration (FR5). As a way to address these conflicts, in previous 
work (Strauch et al., 2013c) we have defined a set of cloud data patterns as the 
best practices to deal with them that can be reused here.

5.4.2.6  Step 6: Refactor Application Architecture

As the migration of the database layer also has an impact on the remaining 
application layers (presentation and business logic; Fowler et al., 2002), the 
methodology should provide guidelines and hints on what should be con-
sidered for the refactoring of the application. Special focus should be given 
to the adaptation of the network, the data access layer, and the business logic 
layer of the application, depending on the outcomes of the previous steps 
(FR7). Networking adaptation might require, for example, the reconfigura-
tion of open ports in the enterprise firewall. Although the cloud data store 
might be fully compatible with the data store previously used, the migration 
requires at least a change to the database connection string in the data access 
layer. The impact of the database layer migration to the cloud on the business 
logic layer depends on several aspects, such as the migration scenario and 
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the incompatibilities of the source and target data store. In case of switching 
from a relational database to a NoSQL data service, the business logic needs 
to be significantly adapted as the characteristics of these two technologies 
are different, for example, with respect to transaction support, relational 
database schema versus schema-free or schema-less NoSQL solution, and 
quality of services (Sadalage and Fowler, 2012).

5.4.2.7  Step 7: Migrate Data

The final step, migrating the data, entails the configuration of the connections 
to the source and target data stores or services by requiring input on the 
location, credentials, and so on from the user. This step should also  provide 
adapters for the corresponding source and target stores, bridging possible 
incompatibilities between them, or reuse of the data export and import tools 
offered by the different cloud providers. As the last step is dealing with 
potentially confidential information, to prevent other users from accessing 
the data, a tool supporting the proposed methodology has to support the 
required security mechanisms (NFR1).

5.4.3  Realization

In this section, we introduce the realization of a Cloud Data Migration Tool 
for the migration of the database layer to the cloud and the refactoring of 
the application architecture (Strauch et al., 2013a). More specifically, to sup-
port the proposed methodology, the Cloud Data Migration Tool provides 
two main functionalities. On the one hand, it provides a repository for cloud 
data stores and cloud data services and allows browsing through it, even 
without user registration. In addition, it implements the required manage-
ment functionality to add new entries in the repository by specifying their 
functional and nonfunctional properties. On the other hand, the tool guides 
the user through the first six steps of the proposed methodology through a 
DSS. For the last step of migrating the data, the tool is equipped with adapt-
ers that allow the automatic export of data from the source data store and 
their import in the target data store. Currently, the tool has source  adapters 
for PostgreSQL (http://www.postgresql.org) and Oracle MySQL (http://
www.mysql.com). We provide target adapters for a number of cloud data 
stores and data services, such as Amazon RDS (http://aws.amazon.com/
rds/) and 10gen MongoDB (http://www.mongodb.org), MySQL in Amazon 
EC2 instances (http://aws.amazon.com/ec2/), Google Cloud SQL (http://
cloud.google.com/products/cloud-sql/), and Amazon SimpleDB (http://aws.
amazon.com/simpledb/). In addition to the adapters, the user is referred to 
various guidelines and tutorials provided by the different cloud providers 
(e.g.,  Google, 2013c). This is especially useful if no appropriate adapter is 
available for a particular data store or service.
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Figure  5.4 provides an overview of the main page of the Cloud Data 
Migration Tool publicly available for free use (http://www.cloud-data-
migration.com). As the user has to provide confidential data following the 
guidelines and recommendations of the tool (e.g., access credentials to the 
source and target data stores or services for data export and import in the last 
step), the user has to register with user, password, and e-mail address. After 
a migration project is finalized, the user can print a report of the decisions 
made during the migration, the identified conflicts, and their resolutions for 
the purpose of documentation and support. Currently, we are supporting 
the migration from one source data store to one target data store or service, 
and one migration project has to be created per migration. Extending the tool 
in order to support more than one target data stores per migration project is 
ongoing work.

The Cloud Data Migration Tool is realized as a Java 6 web application and 
follows a three-layer architecture. The presentation layer is realized using 

FIGURE 5.4
Screenshot of the realization of the cloud data migration tool.
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HTML (hypertext markup language), JavaScript, JSP, and CSS. The busi-
ness logic layer is implemented in Java. For the object-relational mapping, 
we use Java Data Objects version 3.1 and its implementation DataNucleus 
version 3.0 (http://www.datanucleus.org). For online hosting of the tool we 
use Google Cloud SQL as the data layer and run the whole application in 
Google’s App Engine. A stand-alone, offline version of the tool also exists, 
allowing the user to run the tool locally. In this case, MySQL 5.5 is used for 
the data layer and Apache Tomcat version 7 as the servlet container. Further 
information is available on the website of the Cloud Data Migration Tool 
(http://www.cloud-data-migration.com).

5.5  Evaluation

In this section, we evaluate both the methodology introduced in Section 5.4.2 
and the Cloud Data Migration Tool supporting this methodology presented 
in the previous section. For this purpose, we used the motivating scenario 
discussed in Section 5.2 as a case study involving the migration of the 
 database layer of the SimTech SWfMS to the cloud.

As our investigation of the literature did not result in a method that spe-
cifically aims at the evaluation of migration methodologies, we focused our 
analysis on related evaluation methods and standards for software processes 
and software quality. Al-Qutaish and Berander et al. provided an over-
view of available software quality models and standards (Al-Qutaish, 2010; 
Berander et al., 2005). Based on their findings, we selected the International 
Organization for Standardization/International Electrotechnical Com-
mission (ISO/IEC) 9126 standard provided for the evaluation of the Cloud 
Data Migration Tool, as its quality attribute model includes the metrics we 
considered most relevant, such as understandability and operability (Jung, 
Kim, and Chung, 2004). For the evaluation of software processes, there are 
multiple guidelines (e.g., Shull, Carver, and Travassos, 2001; Sommerville, 
1996) and standardized best practices, such as Capability Maturity Model 
Integration (CMMI) (CMMI Product Team, 2010) and the Continual Service 
Improvement (CSI) module of the IT Infrastructure Library (ITIL) (Case and 
Spalding, 2011). We based our evaluation of the migration methodology on 
the ITIL CSI process but adapted it to consider the technical aspects of the 
methodology by considering appropriate metrics for software processes pro-
vided by Daniel (2004). A simplified representation of the resulting process 
is shown in Figure 5.5.

In the first step, a strategy for the realization of the process was deter-
mined. In this case, our strategy was to use the Cloud Data Migration Tool 
discussed in the previous section in conjunction with a specific migration 
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scenario and investigate whether it supported the scenario in an effective 
and efficient manner. In the second step, which data will be collected needed 
to be defined. These data were the basis for the subsequent process steps. 
In our evaluation, we collected both qualitative and quantitative data. With 
respect to the former, we recorded the user-identified problems that occurred 
during the execution of the SimTech SWfMS migration as the means to eval-
uate the software quality of the Cloud Data Migration Tool. Such problems 
are gathered only in a qualitative manner (i.e., we were not interested in the 
number of problems that occurred but in a comprehensive description and 
classification of these problems). This approach increased the effort to gather 
the data but in turn enabled a more detailed and potentially more meaning-
ful analysis. In terms of quantitative data, we recorded the time required for 
executing the various migration phases. To be able to compare our proposal 
with the one by Laszewski and Nauduri (2011), we chose to use their phases 
as the metric of the efficiency of our proposed approach. In this manner, we 
could attribute time elapsed to higher-level activities in addition to evaluat-
ing the impact of not incorporating the testing and optimization phases in 
our proposal.

To enable structured gathering and recording of problems that occurred, 
we defined a set of attributes related to them. Table 5.2 shows an example of 
such a problem that was identified during our evaluation and the information 
we collected for it. Every problem has a unique identifier (ID) and a descrip-
tive Name. The attribute Class is used to classify the problem in predefined 
categories. We derived these categories from ISO/IEC 9126-1, which defines 

Step 1
Identify the strategy
for improvement

Step 6
Present and use the
information

Step 7
Implement
improvement

Step 2
Define what you will
measure

Step 3
Gather the data

Step 4
Process the data

Step 5
Analyze the
information and data

Wisdom

Knowledge Information

Data

Do

Check

Act

Plan

FIGURE 5.5
CSI seven-step process used for the evaluation. (Adapted from Case, G., and G. Spalding (2011). 
ITIL Continual Service Improvement. London: TSO, The Stationery Office.)
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a quality model for software by subdividing software quality in different 
characteristics and subcharacteristics (Jung, Kim, and Chung, 2004). In our 
evaluation, we focused on the characteristics functionality and usability  of the 
examined tool, in particular on the subcharacteristics suitability  (for the for-
mer) and understandability and operability (for the latter), which are the  possible 
values for the Class attribute. The problem identified in Table 5.2, for example, 
is classified under the operability subcharacteristic of usability. The attribute 
Severity describes the severity of a problem with respect to the impact on the 
migration result. The allowed values are low, middle, high, or critical. A detailed 
description of a problem is given with the attribute Description. The attribute 
Error Handling describes how the user has proceeded to find a solution for 
the problem that occurred. Solution describes how the problem was fixed. 
To eliminate the cause of the problem, adaptations of the tool may be needed; 
these are described by the attribute Adaptation.

In the third step, the actual gathering of data was performed. Using the 
Cloud Data Migration Tool, we migrated the database layer used by the 
OPAL web services to the cloud. The selected use case can be mapped to 
the migration scenario Cloud Bursting (Strauch et al., 2013b), with Amazon 
RDS as the migration target. Throughout all phases of the migration, we 
recorded any occurring problems, as shown in Table  5.2. In addition, we 
measured the time spent per migration phase supported by our step-by-step 
 methodology (i.e.,  Assessment; Analysis and Design; and Migration, 
Deployment, and Support), as well as the time spent on testing. No optimi-
zation activity was implemented as part of the case study. In the fourth step 
of the evaluation, the previously gathered data were processed to organize 
and structure for  further analysis. As we had already gathered the data in a 
structured and uniform manner (as described in step 2), further processing 
was not necessary.

TABLE 5.2

Documentation of an Identified Problem

ID B7

Name Connection failed
Class Tool (operability)
Severity High
Description Although correct users with the required administrative roles existed 

in the MySQL database in the cloud, the application could not connect 
to the database.

Error handling We were going through all the security (user and privilege) settings 
in the MySQL Workbench.

Solution We set max queries, max updates, max connections to a value greater than zero 
for each user.

Adaptation The user should obtain information about the limitations for the different 
accounts (users).



109Migrating e-Science Applications to the Cloud

In the fifth step, the analysis of the gathered and processed data took place. 
Altogether, we recorded seven problems. Five of the recorded problems had 
a high priority; the remaining two had middle priority. Two of the occurred 
problems were due to bugs in the graphical user interface of the tool, one 
with middle and one with high priority. Two problems were caused by miss-
ing features, also one with middle and one with high priority. The rest of the 
problems, all with high priority, were caused by lack of appropriate informa-
tion available to the user, as in the example of Table 5.2. The analysis of the 
identified problems with respect to their priority and the cause of the prob-
lems showed that the main weakness of the Cloud Data Migration Tool was a 
lack of information provided to the user. Further improvements toward this 
direction are therefore required in the future.

The analysis of the time spent per migration phase is summarized in 
Figure 5.6. As shown in the figure, half of the time was actually spent in the 
Test phase, which as explained in Section 5.4 is not directly supported by 
our methodology (and therefore also not by the Cloud Data Migration Tool). 
While this identifies a deficiency in our proposal, it can also be attributed at 
least in part to the acceleration of the other phases by the use of the Cloud 
Data Migration Tool. In any case, what can be identified is a clear need for the 
incorporation of the remaining two phases (Test and Optimization) in our 
methodology and as a result their support by the Cloud Data Migration Tool.

Finally, for the implementation of steps 6 and 7 of the ITIL CSI process 
(presentation and use of the information and implement improvements, 
respectively), we are currently in the process of incorporating the lessons 
learned by this case study in further research work.

5.6  Conclusions

The popularity of cloud computing has led to significant research in 
cloud-enabling applications, that is, migrating whole systems or only parts 

10%
10%

50%

30%
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Analysis & Design
Test 

Migration,
deployment &
support

FIGURE 5.6
Amount of time spent per migration phase.
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of them to the cloud. The e-science domain, especially the scientific workflow 
community, has reported concrete benefits from utilizing cloud infrastruc-
tures for isolated use cases. In this respect, there is a clear need for a method-
ology supporting the migration of e-science applications to the cloud. There 
are two key aspects that characterize e-science applications: large amounts 
of data and intensive computational tasks to be performed on these data. 
In this work, we focused on the former, discussing how to support the migra-
tion of the database layer of e-science applications (and beyond) to the cloud.

Supporting the migration of the database layer of an application to the 
cloud involves not only considering the requirements on the appropriate 
data source or service imposed by the application but also the possible need 
for adapting the application to cope with incompatibilities. In the  previous 
 sections, we presented a step-by-step methodology that considers both 
aspects of the migration. To construct this methodology, we first identified 
a series of functional and nonfunctional requirements from both e-science 
and business domains. We then adapted the methodology discussed by 
Laszewski and Nauduri (2011) to satisfy the identified requirements, result-
ing in our proposal for a seven-step end-to-end methodology for the migra-
tion of the database layer to the cloud and for the application refactoring 
required as part of this process.

Then, we discussed the realization of our proposal as a publicly  available 
and free Cloud Data Migration Tool. The tool provides two  fundamental 
functionalities: decision support in selecting an appropriate data store or 
 service and refactoring support during the actual migration of the data. Users 
of the tool can currently create migration projects, define their requirements 
in terms of the migrated database layer to the cloud, describe their current 
database layer, and receive recommendations, hints, and guidelines on where 
and how to migrate their data. Conflict resolution is based on previously 
identified cloud data patterns, and data adapters are provided, allowing for 
the automatic migration of data to recommended data stores and services. 
We  evaluated our proposal by migrating the SimTech SWfMS to Amazon 
Web Services solutions and showed that, while useful, our  methodology and 
tool need further improvements.

In particular, according to our evaluation, our proposal needs to be extended 
to provide explicit support for the testing phase of the migration. The Cloud 
Data Migration Tool must be extended to provide sandboxing capabilities 
and both functional testing for bug fixing and performance benchmarking 
tools for different application workloads. These capabilities can also be used 
toward supporting the optimization of the database layer after its migration. 
Additional functionalities that are currently being implemented to the Cloud 
Data Migration Tool, as identified in the previous sections, include address-
ing the impact of the migration to compliance, supporting more than one 
source or target data stores or services and multiple migrations per project, 
increasing the number of adapters available in the tool, as well as improving 
the usability of the tool for scientists.



111Migrating e-Science Applications to the Cloud

List of Abbreviations

API Application Programming Interface
CSS Cascading Style Sheets

IDE Integrated Development Environment
JDO Java Data Objects
JPA Java Persistence API
JSON JavaScript Object Notation 

JSP JavaServer Pages
LINQ Language Integrated Query
NoSQL Not Only Structured Query Language
ORM Object-Relational Mapping

RDBMS Relational Database Management System
REST Representational State Transfer
SDK Software Development Kit
SOA Service-Oriented Architecture
SQL Structured Query Language

UML Unified Modeling Language
XML Extensible Markup Language
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Summary

Cloud computing emerges as an alternative to traditional grid/cluster 
approaches. Particularly, software-as-a-service model can be an option to 
address the computational needs of small- and medium-size research groups, 
with little or no knowledge and resources to deal with the complexities of 
technology. Although there are still many problems to be solved and a long 
way to go before the solution is optimal, the e-Clouds project manages to 
hide the configuration required by public infrastructure-as-a-service (Iaas) 
providers by delivering ready-to-use scientific applications that take advan-
tage of the cloud world.

6.1  Introduction

Everyday scientific work requires growing computational capacity to pro-
vide reliable and in-time results. The traditional approach to address these 
needs includes the acquisition, configuration, and maintenance of a large 
number of dedicated servers, introducing some constraints primarily asso-
ciated with the elevated costs and complex information technology (IT) 
 management. These high-performance platform requirements are a barrier 
to entry for small- and medium-size research groups.

Public cloud infrastructures present themselves as an alternative to tradi-
tional cluster and grid solutions [1]. Cloud providers offer a large set of infra-
structure and application services to resemble the flexibility of private data 
centers, with the benefit of a pay-per-use model. This allows users to run a 
wide variety of applications, including enterprise, social, and mobile ones. 
The question is then: How to adapt this model for scientific requirements? 
As we show, almost everything required by a scientific application is avail-
able in the cloud. The main challenge is then that, despite the low prices and 
flexible set of resources, the complex deployment and execution procedures 
are an obstacle for researchers to adopt the technology.
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This chapter describes the proposal developed under the e-Clouds  project, 
which is designed to be a software-as-a-service (SaaS) marketplace for sci-
entific applications running on top of a public cloud infrastructure. It will 
include a description of the most important aspects of e-Clouds architec-
ture, emphasizing the different patterns applied for using cloud resources 
while hiding the complexity for the end user. A detailed presentation of the 
problems faced during development and testing of the first version is also 
included. A research group from the Alexander von Humboldt Institute for 
Biological Resources (Bogota, Columbia) is used as a case study for testing 
some of the ideas outlined and defining the future work for the project.

6.2  What Do Scientific Apps Require?

The concept of cloud computing was mainly developed by having in mind the 
usual enterprise web applications. Scientific applications have a particular set 
of requirements and characteristics. These new requirements demand a fun-
damentally different approach to problem solving. The next sections discuss 
the most important things to consider when relating science and computing.

6.2.1  Flexibility

There is a huge market of general-purpose scientific apps that cover the 
day-to-day tasks for the different disciplines. Despite that important offer, 
research work often forces technology to adapt, not the other way around. 
This is the reason why scientific applications need to be flexible regarding 
the kind of processing they support, the input data they receive, and the 
outputs they produce. Based on this, multiple file formats must be supported 
and a large number of configuration parameters become optional.

Flexibility poses a challenge when porting applications to a cloud platform, 
especially when offering them in an SaaS model. An attractive cloud pro-
posal must then include at least the most common configuration options and 
a minimum degree of personalization. The way that this can be achieved can 
vary greatly between applications; this not only increases the overall com-
plexity but also imposes some restrictions on the solution model.

6.2.2  Platform Maintenance

It is important to consider the wide offer of scientific apps and the multi-
ple platforms in which they can run. This means that part of the migra-
tion to a cloud solution requires deciding under which configuration an 
application will run, including operating systems, compilers, and a set of 
external libraries, among others. This process becomes more complex when 
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considering version management and personalized installations that are 
sometimes required.

6.2.3  High-Performance Computing

In a general definition, high performance in a scientific context means 
 processing large data sets with large-scale resources. This imposes some 
challenges for the design of a cloud computing solution for researchers, 
including special attention to the details of the software and infrastructure 
offered by cloud providers.

Even though there is an important variety regarding hardware and soft-
ware available, in general, cloud providers do not offer a platform designed 
specifically for scientific computation. A platform like this would require 
proper configuration of processing capability, high-throughput storage 
devices, and operating systems with optimized libraries for making calculus. 
Amazon Web Services (AWS) is actually making big efforts toward this by 
offering its EC2 (Elastic Compute Cloud) Cluster Compute and Cluster GPU 
instances. These instance types are specially designed for parallel applica-
tions that require a large amount of network communication. As their actual 
offer, cluster instances can be configured with up to 244 GB of RAM mem-
ory, 10 Gbps of input/output (I/O) performance, 88 processing units, and 
NVIDIA Tesla GPUs (graphics processing units) with “Fermi” architecture.

6.2.4  Data Communication

Although the available computing power is comparable to that found on 
grid/cluster infrastructures, cloud providers still have a long road to face to 
achieve the performance of these solutions. This seems to be especially true 
when talking about communications, which according to Jackson et al.  [2] 
are the bottleneck for scientific cloud executions. Parallelization schemes often 
require data sharing between processes executing on different machines. 
Cloud infrastructure providers usually do not offer a dedicated data link or 
any guarantees regarding network throughput. This means that a scientific 
app running in a cloud has some limitations regarding the amount of data to 
communicate while maintaining the required performance.

6.2.5  Costs

Scale economy is the biggest driver for cloud computing. The low costs at 
which providers can acquire and maintain large data centers at geographi-
cally separate locations are the reason behind the success of the technology [3]. 
The idea of having access to thousands of servers just with a credit card and 
with no initial acquisition costs is simply amazing.

Small- and medium-size research groups almost always work with a 
small budget. An in-house infrastructure solution means that a great por-
tion of the money that was destined to buy investigation equipment and 
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finance their work now sits in a room full of servers that are not always 
used. Also, although some researchers are comfortable working with cluster 
configuration, parallelization, and computer programming, that is not the 
case for all of them. This lack of expertise means they have to pay a quali-
fied professional to handle all the initial configuration and maintenance of 
their infrastructure.

6.2.6  Security and Reliability

One of the main concerns for these large-scale infrastructures is security. 
It is a common practice to share computing resources among scientists inside 
the same research group and with outsiders. Despite this shared environ-
ment, research work needs to remain confidential during its development, 
sometimes because of applicable legislation, until the scientist decides it is 
camera ready. Having this in mind, words like authorization, authentication, 
confidentiality, and accountability appear right away.

Together with a secure environment, scientific executions require a highly 
reliable platform. This is especially true when considering that some com-
putations can take weeks or even months to complete. Losing a month of 
work just because of a server failure is simply not an option. This means 
that a platform for scientific executions must have adequate mechanisms to 
 support these requirements.

6.3  Related Work

Approaches such as desktop grids and volunteer computing systems like 
BOINC [4], OurGrid [5], Integrate [6], and UnaGrid [7] have laid the bases to 
allow scientists to take advantage of large computing capabilities. Throughout 
these kinds of solutions, researchers are able to access high-performance 
platforms to run their workloads. However, the technical effort required to 
run a defined workload under such conditions is generally too high for an 
individual researcher with a tight schedule.

Recent developments in cloud computing solutions have aroused the inter-
est of the scientific community. Much effort has been expended to achieve 
traditional cluster/grid performance in cloud environments. Some com-
parisons between cloud and grid have been made to show the benefits and 
 challenges presented by both technologies [8–10], in some cases combin-
ing them through a hybrid approach [11]. Results from important research 
projects such as the Magellan report [12] have shown that cloud comput-
ing can fit scientific requirements under certain circumstances. Despite this, 
the technical complexity of the configuration process is still high.

Projects like the NGS Portal [13] have strived to integrate domain experts’ 
knowledge into preconfigured application templates that are ready to run. 
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Some important developments for private cloud infrastructures and scientific 
workflow integration, such as Opal2 [14] and SciCumulus [15], have been made. 
Under this approach, a researcher is responsible for wrapping a scientific appli-
cation in a preconfigured virtual machine (VM) or script. Although packaged 
VMs can be deployed automatically according to user requirements, admini-
stration problems arise right away when the number of supported applica-
tions increases and constant updates are necessary. This can be the case, for 
example, with the Scientific Computing as a Service (SCaaS) project [16].

There is also some work on an infrastructural level. Infrastructure-as-a-
service (IaaS) solutions like OpenNebula [17, Eucalyptus [18], PiCloud [19], 
and Nimbus [20] offer a configuration environment especially designed for 
common scientific requirements. In this case, scientists who want to use 
these kinds of solutions need to be able to properly install and configure 
their own applications. There are also some upper-level commercial offer-
ings like Cyclone [21] or SBGenomics [22], for which users can have access, 
in a SaaS model, to some commonly used applications like Hmmer [23], 
BLAST (Basic  Local Alignment Search Tool) [24], or Gromacs [25]. These 
 projects were built with some general needs in mind, making customization 
a  complex process that depends on personal contact with the suppliers.

Different projects have focused on benchmarking conventional scientific 
solutions and workflows in both private and public cloud environments. 
Some studies have shown, for example, that a typical configuration in an 
IaaS provider like Amazon EC2 can be significantly slower than a modern 
high-performance system, especially when it comes to communication [2]. 
Despite this, it has been shown that research teams will adopt cloud com-
puting over the next few years; in the meanwhile, cloud providers will likely 
improve their offering over important factors like costs, networking, admin-
istration, and elasticity [26].

Finally, it is worth mentioning some SaaS solutions that developed inter-
esting models at an enterprise level. Among the most important ones, sales-
force [27], ZOHO [28], and SuccessFactors [29] allow a wide variety of users 
to access complete business functionalities with low effort and at minimum 
costs. This way, small- and medium-size companies can benefit from solid 
solutions that fit their budget. The e-Clouds proposal is based on an integra-
tion of the ideas developed under some of these projects to meet the scientific 
requirements mentioned previously.

6.4  e-Clouds Architecture

6.4.1  Overview

e-Clouds is an effort to create an easy-to-use SaaS marketplace for scientific 
applications. As part of the initial proposal, the e-Clouds team will be in 



121Closing the Gap between Cloud Providers and Scientific Users

charge of supporting all the IT-related tasks, including designing and main-
taining the platform execution. The target customers are researchers who 
will process their data in the e-Clouds platform. For the first version of the 
project, researchers will be able to store their data on e-Clouds and perform 
executions using a set of defined applications.

Initial tests of the proposal have been performed with research groups 
from the Humboldt Institute for Biological Resources [30]. Feedback received 
is being incorporated into a second version of the project, while looking for 
other research groups as early adopters. Throughout the following sections, 
some examples are shown by using a study case with a custom version of 
the Maxent software [31] for species habitat modeling. Maxent receives a file 
with the coordinates where the species actually live, and it generates a com-
plete map that predicts alternative environments for this same species. Some 
ecosystem variables are fed into the system as map layers, together with a 
species definition to be processed. The output is a predictive model of the 
species geographic distribution by using a maximum entropy method. This 
process is commonly used in analytical biology mainly for conservation and 
species management.

The general architecture for the e-Clouds solution is presented in Figure 6.1. 
As presented, three basic components make up the proposal: the infrastruc-
ture provider (a public IaaS), the back end for jobs scheduling and control, 
and the front end that supports administration and user interaction. All the 
information regarding the users and their activities in the platform is stored 
inside a relational database. The communication between these components 
is made through a queuing service and the database records.

At first, a user registers in the e-Clouds web portal, pending approval. 
After an administrator approves the registration, the user will be able to 
access a private workspace through a username/password combination. 
When logged into the application, a user can manage his or her data (files 
and folders), launch and monitor the status of executions, and check his or 
her current account balance according to the costs of storage, computing, and 
communications.

A resource manager (RM) in the back end is in charge of controlling the 
cloud infrastructure according to the defined events or user actions. When 
a user launches, cancels, or modifies an execution, the web portal sends a 
request to the RM, which effectively takes the corresponding actions using 
the IaaS API. All actions inside the platform are stored as events in the 
database as they can have an impact on the execution total costs and serve 
for accountability.

The supporting platform for e-Clouds is based on three main elements: 
a standard Linux machine image, a reliable queuing service, and a scalable 
storage service. The Linux machine is specially crafted to execute certain 
boot steps when launched. Particularly, a machine, once started, is required 
to download the latest update of an agent program. This agent is in charge 
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of executing and monitoring the jobs assigned to its particular machine 
inside the cluster.

6.4.2  e-Clouds Back End

6.4.2.1  Data Management

A key to achieving high performance in scientific workload executions is 
 efficient management of data. For e-Clouds’ particular case, it is possible 
to  differentiate between four types of data: user files, transactional data, 
internode messages, and local data. The first two data types are required 
to be somehow persistent over time. The other two are associated with a 
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defined execution, and they are only valid in the context of that execution. 
A description of the proposal to handle each data type is included in the 
following sections.

e-Clouds users can store, manage, and share their personal files within 
the platform. This includes the ability to organize them in a file system, with 
a directory structure, and generating publicly accessible URLs ( uniform 
resource locators) for each one. To address these needs, the files reside in the 
storage service provided by the public IaaS, and the corresponding meta-
data are stored in a relational database. Every execution input and output 
file will be stored as part of the e-Clouds file system.

6.4.2.2  Resource Manager

Resource manager is the piece of software in charge of job scheduling 
and cluster control. It has the responsibility of starting and stopping new 
machines on demand, taking into account the pending jobs. It assigns a 
 certain amount of workload to each machine in an effort to minimize the 
total costs and time. In addition to the management functions, the RM serves 
as a central communication channel between the front end and any machine 
in a cluster.

6.4.2.3  Queues for Asynchronous and Scalable Communications

Due to the dynamic and flexible scaling of the cloud infrastructure, commu-
nication between cluster nodes and other e-Clouds components is achieved 
using queues. These queues will be accessible from all components in the 
architecture and will offer a reliable and scalable asynchronous messaging 
system. An important benefit obtained with the use of queues is the possibil-
ity to buffer user jobs.

6.4.2.4  Agent in Processing Machines

The agent is a control program that resides in every machine that runs as 
part of an e-Clouds execution. It is in charge of managing the local job execu-
tions and communications of a machine with the RM. As part of its responsi-
bilities, it handles app installation and configuration, launches assigned jobs, 
and monitors the overall execution progress, communicating any updates.

6.4.2.5  Billing

A billing system is included to provide information about the cost of the 
resources consumed. An event-based approach is taken to calculate resource 
usage for the current period. This means that the system is capable of track-
ing each event that somehow has an impact on the total costs and records the 
pertinent information. Metrics such as machine hours, data transfer to and 
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from external sources, and the amount of stored information are part of the 
accounting process. The conversion logic between the IaaS provider and the 
e-Clouds pricing schema is also included.

6.4.3  e-Clouds Front End

6.4.3.1  For Researchers

Researchers and e-Clouds administrators can access a complete set of ser-
vices via a web user interface. The web portal is the point of entry for users; 
it allows them to administer their personal workspace. In particular, reg-
istered users are able to submit and monitor jobs, upload and delete files 
and folders, check execution results, and track their periodic use of e-Clouds 
resources. The web portal aims to provide a simple tool for the e-Clouds user 
by hiding the underlying complexity of cloud administration.

6.4.3.2  For e-Clouds Administrators

The web portal mentioned also includes an administration panel for the 
e-Clouds team. Administrative users are able to manage users, stored files, 
and security permissions and check the event log to track the overall system 
activity. New applications are configured through the web administration 
panel by describing their basic characteristics, including inputs, outputs, and 
associated restrictions. The administration panel adapts dynamically to the 
application description and presents the relevant options to the end user.

6.5  e-Clouds Implementation

Throughout the next sections, the most important implementation details 
are presented. They cover each of the architectural decisions mentioned and 
include the particular technologies used.

6.5.1  e-Clouds Front End

The e-Clouds front end is designed to hide the underlying complexity of infra-
structure configuration while allowing users to control the most important 
aspects of a scientific workload execution. To effectively achieve this, the web 
portal was built with the Ruby on Rails framework, which is certainly gain-
ing popularity among developers. Traditional web application functionalities, 
including user management, file handling, and visual design, are built on top 
of some popular third-party libraries (gems). For example, the administration 
panel was developed using the Active Admin gem [32], which allows a fast 
buildup of dashboards and control features based on the model definition.
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6.5.2  e-Clouds Back End

6.5.2.1  Data Management

6.5.2.1.1  User Files and Simple Storage Service Files Storage

Amazon’s Simple Storage Service (S3) is, as its name implies, an easy-to-use 
web-accessible storage solution. S3 users can manage files with sizes rang-
ing from 1 byte up to 5 TB through simple object access protocol (SOAP) and 
representational state transfer (REST) APIs. Downloading is possible through 
the hypertext transfer protocol (HTTP) and Bit Torrent protocol. The informa-
tion stored in S3 will be replicated by default to AWS content distribution net-
works in multiple continents, with a guarantee of 99.999999999% durability.

As part of the e-Clouds initial version, users are able to store and manage 
their own files. These files can be used as inputs for a defined application 
execution or they can also be the results (outputs) of this same application 
execution. Having this in mind, a user should be able to handle his or her 
data much in the same way as with a local computer. This means the ability 
to organize files into folders and create, delete, download, and check their 
associated metadata.

AWS S3 service does not provide a complete directory structure that can 
be used to fulfill the requirements stated. This means that e-Clouds plat-
form should provide an abstraction layer that allows a user to effectively 
manage data. As shown in Figure 6.2, a simple objects model relating files, 
 directories, and users was created to solve this problem.

File

User

–  key: String
–  Name: String

–  Name: String

Directory

class Class Model

–  Size: Double

0 . .*

0 . . 11

0 . .*

1 . .*

1

–  URL: String

FIGURE 6.2
File system model.
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As part of the model, directories are logical entities that provide file organi-
zation. Each directory can have files or subdirectories (children) associated. 
Files are stored in S3 inside defined buckets and folders. Each file object is 
aware of its physical location in S3 and also knows its parent directory. This 
way, the web application is capable of handling an organized file structure, 
and it is also possible to manage a first level of authorization by associating 
a file to a single user (its owner). In addition to the data model, a file browser 
set of views was necessary to facilitate user interaction.

6.5.2.1.2  Transactional Data

As part of the e-Clouds solution, there is a central database management sys-
tem for storing data related to transactions. This includes but is not limited to 
basic data such as user profile, security associations, resources usage, S3 files 
metadata, applications, and of course, user executions. Besides application 
and execution information, the database contains what is expected to be in a 
standard web application. Database connections can only be established by 
the web portal and the RM to enhance security and make the administration 
(updates, tests, etc.) easier.

6.5.2.1.3  Local Storage

The main purpose of local storage is to store execution-related data in each 
cluster machine. It is primarily used as low-latency (and -cost) storage for 
installation files, libraries, input files, and execution results. All information 
that resides in local storage is considered ephemeral, so every time an execu-
tion finishes, output files and logs should be uploaded to S3 and indexed in 
the transactional data. Everything else that is on local storage will be erased 
once a machine shuts down.

6.5.2.2  Queue Messaging

Reliable message queues are the main communication channel between 
the different components that make up e-Clouds. At this first version, AWS 
Simple Queue Service (SQS) is used. Figure 6.3 shows how the information 
flows between the queues and the corresponding communicating entities. 
It is important to note that there are two main, always on, queues: presched-
uling and scheduling queues. Also, there is one additional queue for each 
user execution, and it is used mainly for job assignment. It is created when 
execution is launched and destroyed when it finishes.

The prescheduling queue communicates messages that come from the web 
portal, to and from the RM. The scheduling queue has the initial  messages 
that go from the RM to all the machines in a cluster and receives state updates 
from these same machines. At last, execution-specific queues are used to 
assign pending jobs to the associated machines.
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6.5.2.3  App Install and Configuration

Scientific application installation and configuration are the core back-end 
processes for the e-Clouds project. As the project’s main objective is to sup-
port multiple heterogeneous apps for different disciplines, it is a challenge to 
establish a uniform general process for this. The proposed solution is based 
on Linux shell scripting and an object model including application commands, 
inputs, and parameters.

An execution starts with a standard x64 Debian-based Linux machine 
image. Depending on the application selected by the user, a specific script 
is downloaded and executed on a clean machine based on the image men-
tioned. This way, the complexity of multiple virtual images administration 
becomes a simple script management process, and e-Clouds is not charged 
by the cloud provider for storing preconfigured images.

6.5.2.3.1  Shell Scripts

As the deployment platform relies on a Linux-based image, shell commands 
are a simple choice for application installation and configuration. Each time 
a new app is uploaded, a shell script is required; this way, the installation 
process is automated, but the complexity of this process is separated from 
the other e-Clouds components. A basic checklist of what a script like this 
should have to be e-Clouds compatible would be the following:

Operating system and environment: This initial step involves config-
uring the requirements at the operating system level. This means 
creating the required users, files, folders, and so on; configuring the 
environment variables; and setting up general security.

External dependencies: This step installs the different application 
dependencies. This might include libraries, compilers, and other 
applications. It is important to consider the specific versions that are 
required so that the application works correctly.

Installation files: It is of course necessary to download and process 
all the installation files that make up the application itself. In some 
cases, this means downloading source code and compiling it each 
time. Again, it is important to consider version management to 
obtain the expected results.

Data files: These files can be considered as part of the installation files. 
In scientific applications, it is common practice to have large databases 
that contain information to be used within executions. Although these 
files’ versions might change, they are usually static and common to all 
executions, so they cannot be set by the user as actual inputs.

In Figure 6.4, a sample script for installing the custom version of Maxent 
is shown. As shown, it uses the Ubuntu package manager (apt-get) to install 
some packages. Also, it processes some files using R language functions [33].
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6.5.2.3.2  Parameter Description

A simple model to describe application inputs was proposed as part of the 
e-Clouds solution (Figure 6.5). In this model, an application can have many 
inputs associated, and these inputs will be instantiated with a value for every 
execution. Scientific applications can have basically two input types, a string 
or a file. A third special input type is an e-Clouds directory so that all files 
within that directory are considered inputs and multiple jobs are generated.

At the presentation layer, a user is able to assign input values for a specific 
execution in three basic ways:

• Enter a string in a defined text field.
• Select a file from its workspace.
• Select a directory with at least one file from its workspace.

Once an execution is launched, application inputs are used to generate 
an execution command by concatenating all the values set by the user and 
the predefined ones, preceded by the appropriate prefixes. An example of 
such a command can be found in Figure 6.6. As seen, each input file must 

«<<instance>>»

0 . . *

0 . . *

0 . . *1

1

1

Input

Execution

Application

class Class Model

– Type:  File, Directory, String
– Value:  <<instance>>

– Description: String
– Name: String

– Name: String
– user: User

– Version: Double

FIGURE 6.5
Application inputs and executions model.

FIGURE 6.6
Execution command example.
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first be downloaded from its physical location in S3 so that it can be used 
locally by each machine in a cluster. The exact file name is part of the final 
execution command.

6.5.2.4  Scheduling

One of e-Clouds’ main principles is to take advantage of the scientists’ experi-
ence, especially when it comes to estimating the execution time for a certain 
workload. Based on this, the general scheduling process is as follows:

 1. When a new application is configured to be part of e-Clouds, 
the uploader defines an estimation of the average execution time 
and suggested machine technical specifications. This will be the 
default configuration to run a scientific workload with that appli-
cation. It is important to note that the uploading process must be 
accompanied by a domain expert with previous experience on the 
particular application.

 2. Each time a researcher launches a new execution, the researcher is 
able to change the default values mentioned. This takes into account 
the researcher’s knowledge regarding the amount of work he or 
she is sending. The value specified for the execution time is not a 
limitation, or a guarantee, of the real time the execution could take 
to finish. Also, the researcher is able to specify, based on the cloud 
offer, under which machine specifications he wants to run his own 
execution. This way, he is able to obtain from the e-Clouds  platform 
a gross estimate of the execution’s total cost.

 3. Once an execution is launched, the scheduler takes into consider-
ation the application inputs and the current configuration to decide 
the appropriate cluster configuration. In a general way, the basic 
decision process is shown in Figure 6.7.

The overall scheduling process is designed to optimize the resource use so 
that the total cost is minimized. To illustrate this, suppose an IaaS provider 
charges per hour or partial hour of computing use. An e-Clouds user starts 
an execution of a certain application with five different file inputs that are 
totally independent from each other. The current estimation indicates that 
the average processing time for each file will be 15 minutes. Considering 
this, the selected approach for task division is

• Launching two processing nodes.

• Processing files 1 to 3 in node A and files 4 and 5 in node B.

• Total processing time will be 45 minutes, which is the maximum 
between node A and node B total time.
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It is important to note that the total execution time could be reduced in 
this case by launching one machine per file, but that decision would imply a 
considerable cost increase.

6.5.3  e-Clouds IaaS Provider

One of the main goals for e-Clouds is to support multiple underlying infra-
structure providers. This means that the user would be able to choose 
between different alternatives and select the one that best fits personal 
needs. Because there are no well-defined standards among cloud suppliers, 
this platform independence requires some extra development work from 
the e-Clouds team and is why this first version release supports just one of 
them. Taking all this into account and with the objective of launching a first 
 version as soon as possible, the e-Clouds team selected AWS and Heroku for 
the initial testing.

Amazon Web Services has consolidated as one of the biggest and most 
complete public clouds offering IaaS. Its low prices and the flexible resource 
configuration are ideal for an initial testing of the e-Clouds ideas. Also, 
because of its large number of users and success cases, there is complete 
documentation available regarding performance benchmarking and testing 
under high-performance scenarios [34, 35].

Heroku is a cloud platform as a service (PaaS) offer for fast and simple 
deployment of web applications [36]. It actually supports Ruby, Node.js, 
Clojure, Java, Python, and Scala applications. As part of its proposal, Heroku 
has a free usage tier specially designed for developers. This free tier allows 
users to run testing environments in a basic configuration of one web server 
and an SQL database. Deployment can be easily done through a Git reposi-
tory configuration and a set of command line tools.

As shown in Figure 6.8, e-Clouds web portal and RM are initially deployed 
in Heroku for ease. This includes the presentation layer developed under 
Ruby on Rails and the relational database running in PostgreSQL. On  the 
other hand, AWS is used to run scientific workloads, store user files, and com-
municate information through reliable queues. A more detailed description of 
each one of these components can be found further in this chapter.

6.5.4  Monetization

As in any cloud solution, there is a cost transference between the infrastruc-
ture usage and the service delivered. During this initial phase, e-Clouds 
only charges each individual user by the different resources the user effec-
tively consumed, including storage, computing hours, and communication. 
Although the total cost of an execution depends on these three basic factors, 
the charging model for each of them is slightly different.
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6.5.4.1  Storage Cost

The user pays at the end of each month for the maximum amount of data that 
he stored during that period of time. For simplicity, the minimum charging 
unit is the gigabyte, so everything below that just rounds up. The formula for 
calculating total storage cost is then really simple:

 Total storage cost = (Maximum # of gigabytes stored) * (Cost per gigabyte)

6.5.4.2  Computational Cost

Following some providers’ trend (including AWS), the computational 
resources are charged on an hourly basis. This means that for every hour or 
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partial hour that a machine is working on a particular execution, the user 
who launched that execution will have to pay a fixed amount. The hourly 
rate varies according to machine technical specifications, namely, more 
power means more money. Considering this, the formula for charging com-
putational resource usage is the following:

Total computational cost = (Total # of machine hours per execution) 
* (Hourly rate depending on machine size)

6.5.4.3  Additional Costs

The e-Clouds proposal includes an additional fixed rate for data communica-
tion and queue resource usage. This includes the cost for traffic to and from 
the machines and the costs associated with queue service. Every user should 
pay the same fixed rate for each new execution launched on e-Clouds. This 
way, the total additional cost would be calculated using the following formula:

 Total additionals = (# of executions) * (Fixed rate for an execution)

There are two main reasons behind the decision for leaving these addi-
tional costs as a fixed rate. The first one is that, for most cloud providers, 
 communication costs are almost insignificant compared to those of stor-
age and computing. This is not true for all cases, but experience with some 
 scientific applications showed that it somehow follows in general. The  second 
reason for this management decision is that it can be complex to account for 
all communication processes that happen in a machine. This complexity has 
an impact not only on the e-Clouds daily operation but also on the develop-
ment of new functionalities.

6.6  Results

Several tests were created to obtain an idea of the cost and time relationship 
under an AWS platform. Different instance types were used to check the per-
formance under different technical scenarios. In particular, in AWS jargon, 
the following instance types were used: c1.medium (2 Cores 2,5 EC2 Units, 
1.7 GB RAM, moderate I/O performance) and c1.xlarge (8 Cores 2,5  EC2 
Units, 7 GB RAM). The instance selection resembles the machine specifica-
tions of a private cluster where some analyses were executed.

Maxent software is a simple .jar file that runs just like any other Java appli-
cation. It displays a graphical interface with some options so that the user can 
define certain values that are relevant to the maximum entropy modeling 
approach. A custom version of Maxent was used to perform the tests. It was 



136 Cloud Computing with e-Science Applications

built using an R script, so that parameter configuration can be automatic 
when calling the original Maxent file, focusing on the special requirements 
of the Humboldt Institute and including some Java VM fine-tuning. This 
version is already configured as an e-Clouds application, accessible by all 
users. As shown in Figure 6.6, it depends on the packages dismo,  maptools, 
sp, and rJava.

Three files are received by this application as parameters; the first is an 
input R script, which contains the R commands needed to analyze the data. 
The second is a stack file that contains different layers with characteristics 
of Colombia, such as temperature, humidity, altitude, and so on in a raw 
“.asc” data format. The third file contains the coordinates where a certain 
species has been spotted in Colombia, in a defined comma-separated value 
format. All the input files needed were previously uploaded to the S3-based 
e-Clouds file system under a user account. The outputs of the application dif-
fer based on the configuration, but usually include visual maps that show the 
resulting model for a particular species and can be exported to file  formats 
(e.g., pdf or HTML).

Earlier, to execute the application, clusters were deployed in the university 
campus consisting of VMs using two cores of an Intel Core i7 processor and 
8 GB of memory. In that execution, the files were stored in a network-attached 
storage. Similar jobs had been executed using the same input files used for 
the tests in e-Clouds. With these clusters, the average execution time for each 
job was 18 minutes.

As previously explained, the execution parameters are based on an initial 
time estimation made by the application configurator. The selection of these 
parameters affects other parameters, such as the total cost of the execution 
and the total time that it takes to finish. A user is capable of including the 
user’s own estimation, based on the user’s knowledge of the application and 
the data to be processed. The system recalculates the total costs and time 
when the parameters are changed.

Two different approaches were used: The first one seeks to minimize the 
total cost of the execution, and the other seeks to minimize the execution 
time. Previous estimations of the required time for a particular job execution 
to completion were made. The total execution time is calculated by multi-
plying the number of jobs by the expected time per job in minutes. Table 6.1 
shows the results of the execution times and costs using different numbers 
of species.

The average installation time refers to the time spent on the application 
installation process. This process is only carried out once per machine 
and execution. The results show that the application install can be done on 
demand without significantly affecting the total time. It can also be seen that 
the times obtained from the earlier executions under private cluster environ-
ments are similar to the execution in AWS. It is important to note that, using 
a storage system like S3, it scales up adequately since the execution time is 
not affected by the number of machines.
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Finally, it can be seen that the approach in which the total execution time 
was reduced has a significantly higher cost than the other one without reduc-
ing the total time in the same proportion. This means that it can be better to 
wait a little bit longer for an execution to complete, seeking to improve the 
final costs.

6.7  Conclusions and Future Work

Scientific cloud computing is still at an early age. Nevertheless, the academic 
community and commercial providers are making important efforts in this 
regard. New projects combining public clouds and traditional cluster/grid 
approaches will appear over the next few years. Of course, as cloud provid-
ers increase their capabilities to overcome the actual obstacles, new problems 
and challenges will appear. This is true not only from a technical perspective 
but also from an economical and cultural point of view.

A proposal for a scientific SaaS marketplace has been presented through-
out the chapter. The most important architectural elements were described 
in addition to a brief overview of the work done so far in the e-Clouds 
 project. The solution presented was based on the utilization of the resources 
provided by a public IaaS infrastructure, allowing small- and medium-size 
groups to access on demand ready-to-use applications while obtaining the 
benefit of the scale economies.

The work done so far covers the fundamental aspects of a solution of 
such a nature. The design decisions taken so far have aimed toward a func-
tional and simple solution to the requirements mentioned at the beginning 

TABLE 6.1

Initial Test Results

Approach 1: Reduce Total 
Execution Time Approach 2: Reduce Costs

Number of Species 2 4 8 16 32 2 4 8 16 32
Number of VMs 1 2 2 4 8 1 2 2 4 8
VM type c1.xlarge c1.medium
Cost per hour (US dollars) 0.66 0.17
Average install time (min) 2.27 2.32 2.13 2.17 2.08 2.52 2.72 2.50 2.25 2.33
Average time per job (min) 10.50 10.85 10.59 10.08 10.10 15.50 15.65 14.30 14.10 14.65
Total execution time (min) 24.77 29.10 49.63 47.12 55.08 38.95 38.58 66.78 66.90 73.90
Used computing hours 1 2 2 4 8 1 2 3 6 10
Processing costs (US dollars) 0.66 1.32 1.32 2.64 5.28 0.17 0.33 0.50 0.99 1.65
Cost per species (US dollars) 0.33 0.33 0.17 0.17 0.17 0.08 0.08 0.06 0.06 0.05
Jobs per VM 2 2 4 4 4 2 2 4 4 4
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of this chapter. Additional work needs to be done to cover potential flaws 
and support scientific applications that are more complex. Further testing is 
required to adapt the solution to changing requirements and diverse research 
groups’ needs.

Future plans for the e-Clouds project include the implementation of new 
features to favor collaboration among researchers and results validation 
[37]. This way, the platform can become part of scientific day-to-day work. 
In addition, new applications with different technical requirements will be 
tested, including large-scale and long-lasting executions. In this respect, 
there is some pending development regarding reliability and error handling.

Although the RM is capable of handling a minimum degree of parallelism, 
several improvements in both the front and back end need to be done to sup-
port the execution of highly parallel applications (using a message passing 
interface or graphics processing units) with effective resource management. 
Together with this, additional work is required to support application work-
flows transparently. Some already existing alternatives are being considered 
to support these requirements.

Finally, further optimization of resource scheduling is required to apply 
data-mining techniques to estimate execution time and cost and take advan-
tage of the residual time of clusters and VMs. Although there is an impor-
tant challenge in proposing a general solution, some opportunistic ideas are 
applicable to the e-Clouds scenario.
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7
Assembling Cloud-Based Geographic 
Information Systems: A Pragmatic Approach 
Using Off-the-Shelf Components

Muhammad Akmal, Ian Allison, and Horacio González–Vélez

Summary

In this chapter, we present a novel systematic way of building a web-based 
geographic information system (GIS) running on cloud services. The 
proposed architecture aims to provide a design pattern for building a 
cloud-based GIS using simple and readily available low-cost tools with great 
overall system efficiency. The result of running the GIS using this para-
digm is arguably reliable and available at low cost and with some platform 
independence. It has required significantly less time and effort to deploy 
when compared with standard cloud development. We present a case study 
based on road accidents using Microsoft Windows Azure and Amazon Web 
Services. In this case study, a GIS was created that helped in improvements 
of road conditions by identifying road accident hot spots in real time and 
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on the real map. Later, authorities can use this information to implement 
 preventive measures to reduce road accidents. This GIS can be implemented 
for any town, city, county, or region in the world as long as its satellite maps 
are available on Microsoft Bing Maps.

7.1  Introduction

In its canonical definition of cloud computing [10], the National Institute of 
Standards and Technology contended that “cloud computing is a model for 
enabling convenient, on-demand network access to a shared pool of configu-
rable computing resources (e.g., networks, servers, storage, applications, and 
services) that can be rapidly provisioned and released with minimal man-
agement effort or service provider interaction.”

Cloud computing is considered to be a new value-added paradigm for net-
work computing, where higher efficiency, massive scalability, and speed rely 
on effective software development [1]. Having also capitalized on emerg-
ing business trends, such as capital asset control, carbon management, and 
total cost of ownership, its uniqueness lies in its simplicity: It has promised 
that every consumer, small business, and large organization will access any 
information technology (IT) platform as a utility [5].

Despite some initial security concerns and technical issues, an increasing 
number of businesses are considering moving their applications and services 
into “the Cloud.”* Consequently, mainstream information communication 
technology (ICT) powerhouses such as Amazon, Microsoft, IBM, Apple, and 
Google are heavily investing in the provision and support of public cloud 
infrastructures. Although significant effort has been devoted to migrate 
generic web-based applications into the Cloud, scant research and develop-
ment have been put into creating a generic design pattern for a geographic 
information system (GIS) pattern in the Cloud.

To address this need, this chapter presents a systematic model to develop 
and deploy cloud-enabled GIS applications based on a pattern-based archi-
tecture. The proposed architecture uses SQL Azure geospatial database, 
Microsoft Silverlight, Microsoft Bing Maps,  .NET Framework 4, Windows 
Communication Foundation-Rich Internet Applications (WCF-RIA). Services 
and the resulting application have been fully deployed in two mainstream 
public cloud platforms, namely, Microsoft Windows Azure Platform and 
Amazon Web Services. It is therefore arguable that the lessons learned and 

* In line with convention, we have capitalized “Cloud” when referring to the holistic global 
interconnected infrastructure as opposed to any specific infrastructure provided.



143Assembling Cloud-Based Geographic Information Systems

indeed the software components and techniques are applicable to the vast 
majority of public and private cloud infrastructures.

Contribution

By assembling software components on public cloud infrastructures, 
our approach is arguably extensible and open. Furthermore, as part of 
the recent trends of increasing reproducibility of software engineer-
ing contributions, we are publishing the entire software environments 
together with this  chapter such that any cloud developer can use them.

7.2  Background

Incorporating geospatial and descriptive data, GISs are a holistic integration 
of hardware, software, and standardized formats for capturing/encoding, 
managing, analyzing, and displaying all forms of geographically referenced 
data [8]. GISs have long been used beyond the boundaries of geography, and 
they are typically an aggregation of nonhomogeneous architectural plat-
forms, applications, and processing needs due to a heterogeneous universe 
of users in science, business, and society in general [16].

Formerly, organizations had to buy dedicated GIS software packages to 
use and manipulate data over their network. Currently, web-based GIS soft-
ware packages are readily available, and many organizations use web-based 
GISs to increase their availability of information for public and internal use. 
However, one of the biggest problems with large GISs is that all data are not 
necessarily available from the start, and systems are commonly rolled out 
following geographic area patterns rather than system usage or resources.

Moreover, large GIS projects usually start from a small amount of data but 
expand rapidly as data increase, requiring expansion of installed resources. 
Ergo, system resources are not consumed in predictable patterns as differ-
ent users may follow seasonal or incident-driven usage patterns. In time, as 
more data are collected, systems cover additional geographical areas, and 
this leads to the need to increase other resources required by the system. 
A canonical example is Google Maps. It can be seen that the street view is 
not available for every place in the world, but these views are growing with 
time as Google collects data.

The operations performed on geospatial data within a database require 
significant computational resources for processing, typically surpassing the 
standard departmental infrastructures of small- and medium-size enter-
prises. For example, the selection of locations (points) that reside inside a 
given region (polygon) is particularly computationally demanding as the 
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region is typically represented by a significant polygon with thousands of 
points to be verified.

An increase in data size requires not only more storage but also other 
computational resources. For example, more data require more processing. 
As the area covered by the system and the number of people using the system 
increase, the capacity of the whole infrastructure must increase due to the 
inherent computational complexity. By providing elasticity and on-demand 
consumption, any feasible approach should allow the system to scale down 
when the user count is low and, conversely, should cope well with any usage 
peaks. Cloud computing ought to help overcome this scalability problem 
efficiently, with a service model that enables on-demand resource access by 
aggregating configurable computational resources that can be rapidly provi-
sioned and released.

Although such a model seems to be tailored for data-driven environments 
such as a GIS, programming, manipulating, and processing geospatial data 
typically requires the inclusion of complex data structures and demand-
ing mathematical transformations. Even though standard web program-
ming techniques have evolved to be applied in cloud environments, only a 
few proven pattern-based programming paradigms have been successfully 
applied in the Cloud. So, it should be clear that seamless cloud deployment 
entails a substantial amount of work, and current GIS tools are typically 
associated with a GIS software developer while cloud ones can be locked to 
a given cloud provider. Arguably, to have different GISs in the Cloud there 
has to be an orchestration of infrastructure and applications that can show 
tangible financial and computing benefits.

Different authors have started to evaluate the distinct possibilities in this 
area. Some argued for the need for the next generation of cloud infrastruc-
ture to be supported through traditional multitier architectures [2], while 
others have pursued the provision of innovative object-oriented data models 
and algorithms to retrieve data in a distributed environment [19]. But, the 
vast majority of the relevant approaches encourage the creation of generic 
GIS web services on top of map image files and geographic information 
in general, accessed as a web service through the Google App Engine  [3], 
MapReduce-BigTable [20], a private cloud [4], or simply the Internet  [23]. 
Having reported initial performance figures on a par with similar 
server-based web services, the last two approaches are clearly not associated 
with public Cloud deployments, but all four are definitely representative of 
the growing trend for the provision of GISs as a service.

From a more general GIS perspective, recent works have advocated the 
 creation of spatial cloud computing—a subarea in which the spatiotemporal 
principles of geoassembling cloud-based GIS spatial sciences, and by exten-
sion a well-designed GIS, can be effectively represented in the Cloud given 
the continuous nature of GIS constraints [11, 15, 21, 22]. As part of this growing 
trend, there have been few comparative analyses of GISs in grids and clouds 
[14], and on different public infrastructures [24], using ad hoc GIS deployments 
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enabling performance-oriented environments. Nevertheless, the creation of 
standards and methodologies for the creation of web-enabled open-source 
systems in the geographical sciences remains an active research area [7, 17].

From an industrial perspective, Esri, a leading GIS vendor, has produced 
a case study for its own proprietary software without much to say on how 
to take advantage of platform as a service/software as a service (PaaS/SaaS) 
for building GIS in an open, generic way [6]. GIS Cloud Limited seems to be 
the only platform provider for building GIS in the cloud [9], but one can only 
build using their application programming interface (API) and supported 
tools and languages.

Arguably, additional research needs to be devoted to the efficient use of 
Cloud-enabled GISs to develop specific applications quickly using off-the-shelf 
components such as public maps and web services. Such a need has been 
recently highlighted by different authors as part of the emerging trends in 
interdisciplinary geographic processing on clouds [12, 13, 18].

7.3  Methodology

The key elements required to build a typical web-based GIS are as follows:

• a database management system (DBMS);
• base maps;
• a web server with some storage, high-speed network connection 

between the machines; and
• a secured Internet connection to provide service over the Internet.

Additional elements can be added, such as a mechanism to reduce failures 
(e.g., replication servers or storage disk mirrors), load-balancing systems, and 
a backup mechanism.

The DBMS ought to support geospatial data types, allow spatial indexes, 
and perform various operations on geospatial data using built-in functions. 

RESEARCH GAP

It is therefore clear that there is a research gap in this area and the meth-
odology proposed in the book chapter can be used to build GISs in the 
cloud, on either infrastructure as a service (IaaS) or PaaS using map 
services such as Bing Maps and Google Maps and deploying through 
the use of software  patterns. The remainder of this chapter provides a 
systematic way to assemble a GIS in the cloud using public Cloud pro-
viders and off-the-shelf components that follow accepted best practices 
in software engineering.



146 Cloud Computing with e-Science Applications

The web server should be able to support tools and APIs used to build the web 
application. For example, if the web application is built in .NET Framework, 
then an Apache-based web server might not work, and a web server based 
on the Internet Information Services (IIS) will be used.

Our cloud-based GIS architecture relies on the fact that cloud comput-
ing is an incremental approach to web-based systems. Figure  7.1 depicts 
the block diagram of the proposed architecture of a cloud-based GIS. It is 
 obvious from the figure that the web server, database server, and  storage will 
reside in the Cloud deployed as PaaS or IaaS. Each architectural  component 
is explained next.

Client: This is a computer/device with an Internet connection and a 
browser with the map plug-in (player) installed on it. For instance, 
if the map plug-in is developed using Microsoft Silverlight, then the 
Silverlight player needs to be installed on the client.

Map Plug-in: A map plug-in is a specialized web-based map con-
trol that is capable of displaying base maps and supports display-
ing multiple layers of map objects, such as, polygons, locations, or 
lines. Since the idea of this project is to use Google or Microsoft 
Bing Maps as a base map because these are the most comprehensive 
maps available for the whole world, this could be a Google or Bing 
Maps control.

Cloud
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Map Plugin

Web Server
Web Application

Web Service
(Connect Clients with Entity Data Model) 

Cloud Storage Database Server(s)/Cluster
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FIGURE 7.1
Block diagram for our cloud-based GIS architecture.
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Web Server/Hosted Service: This is a web server in the Cloud with 
all necessary APIs installed on it. Depending on the cloud service 
provider and service provisioning model, this server differs from a 
“normal” web server. This cloud web server, ideally, must be hori-
zontally and vertically scalable in the Cloud.

Storage Account: Deploys a cloud-based storage repository that will be 
used to store web applications.

Entity Framework Model: This creates a logical view of the database 
according to the business logic of the system and gives an abstract view 
of the database to the application, hence providing added security.

Web Services: A problem with rich Internet applications is coordinat-
ing the application logic between the middle tier and the presenta-
tion tier. Effective user experience requires the client to be aware 
of the application logic that resides on the server. But, it is cumber-
some to develop and maintain the application logic on both the 
presentation tier and the middle tier. Our web service solves this 
problem by providing services that make the application logic on the 
server seamlessly available to the client. That is to say, it allows the 
client-side map plug-in to directly interact with the database in an 
easy, controlled, and secured way.

Database Server: The geospatial relational database of the application 
resides on this server. It has to be a powerful machine as most of the 
geospatial data manipulation is performed at this level. The actual 
DBMS can be Oracle, SQL server, or SQL Azure as all support geo-
spatial databases.

Figure 7.1 also demonstrates that the process begins with the client when 
it sends an HTTP request for the application web page to the web server. The 
server responds and reads an appropriate web page from the storage, processes 
it, and then sends it to the client. Normally, this page will have a map control 
embedded in it that displays the base maps directly from Google or Bing.

Moreover, if a user interacts with the web page, for instance, by selecting 
a particular area on the map and searching for something within this area, 
the map control and the code behind generate a code-based geospatial query 
and send it to the web service that deals with database-related requests. 
The web service then passes it to the Entity Framework Model, which then 
converts the query into an SQL query tailored to the database server, which 
then processes it and sends back the results to the Entity Framework Model. 
The model finally invokes the web service communication with the client to 
display the relevant area on the map.

The key challenge is the spatial data representation between the client, the web 
service, and the database. The database can only keep spatial data in geometry 
or geography format, which is not directly produced by Google or Bing map 
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controls. In addition, the Entity Framework Model in the web application does 
not typically support geometry or geography data types. To address this issue, 
there has to be a data representation or format for spatial data that can be easily 
exchanged between the DBMS geometry/geography data types, the map con-
trol objects, and the appropriate data types in the Entity Framework Model. The 
Open GIS Consortium’s WKT (well-known text) and WKB (well-known binary) 
spatial data formats have been defined to enable such data exchange [19].

Figure 7.2 shows the representation of spatial data in different formats at 
different stages of the system, designed to deal with the data incompatibility 
problem. It is clear from the figure that the spatial data in the database will 
be held in the geometry format as it is easy to convert it into WKT format 
using built-in SQL functions.

The Entity Framework Model presents the spatial data in WKT format 
to the application and text, and it is stored as a string in the entities. The 
web service also deals with spatial data in WKT. One of the most important 
 elements here is the WKT to the map object parser, which converts WKT 
data into appropriate map objects and vice versa. There is no direct way to 
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FIGURE 7.2
Data representation in the system. Note that our system exchanges data using the Open 
GIS Consortium’s WKT (Well Known Text) format. (Redrawn from Yonggang Wang, Sheng 
Wang, and Daliang Zhou. In Cloud Computing, vol. 5931 of Lecture Notes in Computer Science, 
pages 322–331. Berlin: Springer-Verlag, 2009.)
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convert a WKT geometry representation into map control objects. To over-
come this problem, an API has been created that takes a WKT representation 
of geometry objects (polygons, line, point, etc.) and returns the equivalent 
appropriate map control objects. Moreover, the conversion of geometry data 
into WKT in the database may require use of views in the database, but this 
definitely compromises the performance and, if not done carefully, can cause 
the application to crash.

To prove the concept discussed in this methodology, a proof-of-concept 
(demo) application has been created in Microsoft Azure Cloud using a PaaS 
deployment. An image of this implementation has also been ported to the 
Amazon EC2 Cloud using an IaaS deployment. Although in this chapter we 
present full details related to the Azure implementation, it is highlighted 
that the Amazon deployment details are of a similar nature and are also 
introduced when relevant.

7.4  Implementation

Our application is a web-based GIS specifically designed to analyze the 
main causes of road accidents and dangerous road conditions in a specific 
region. This GIS application has been built in such a way that it can be 
seamlessly customized for any place in the world as long as its detailed 
maps are available on Bing. The main objectives of the demo application 
are to

• display a real map of the region where it will be used;

• provide a web-based graphical user interface to enable users to 
search road accidents in a selected region;

• interact with structured data for any part of the world where digital 
road maps are available;

• illustrate the reduction of effort for the implementation, manage-
ment, and maintenance of cloud infrastructure; and

• demonstrate scalable and reliable behavior.

Titled the Road Accidents GIS, our demo application takes advantage of 
fundamental cloud computing capabilities such as scaling, redundancy, 
and reduced system management and administration employing different 
Microsoft technologies, such as Bing Maps, Silverlight, SQL Azure, WCF-RIA 
Services, and .NET. Figure 7.3 shows an overview of its implementation in 
Microsoft Azure.
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It is noted that the key GIS components described in Section 7.3 have been 
instantiated under the standard Microsoft Azure platform as follows:

 1. The map plug-in is deployed as a Silverlight plug-in, and a Microsoft 
Silverlight Bing Maps control has been used to display the maps.

 2. The web server has been deployed as an Azure web role, which is 
actually a ready-made web server specially tuned for scaling. The 
web service has been distributed with the WCF-RIA services, which 
incorporate the business logic running in the web role (as the .NET 
Entity Framework Model) to the client.

 3. SQL Azure has been used—instead of a separate database server—and 
only blob storage is used to store the application.

It is important to mention that all the images used in the interface need to 
be either embedded in the web application as a resource or kept in the Azure 
storage; their complete URLs used in the application are kept as image paths. 
Additional architectural components have been instantiated in the follow-
ing manner:

Client: Computer or device with either MAC operating system (OS) X 
10.5 or later running on an Intel machine or Windows XP or later 
OS. It must have a compatible browser with the Microsoft Silverlight 
plug-in installed.

Client
Browser

Silverlight
Bing Map

Plugin

Windows Azure (Cloud)

Hosted Service

Storage Services
(Blob, queue, and tables)

SQL Azure Database
Or

SQL Server/Cluster
(On virtual machines)

Web Role/
Web Server

Silverlight
Web

Application

WCR RIA
Services 

Internet

1 – H
ttp Request

3 – Spatial Q
uery

6 – Spatial Results

2 – H
ttp Response 

4 – SQL
Query 

5 – SQL
Result 

FIGURE 7.3
Architecture of our cloud-based GIS application in Azure.
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Web Server/Hosted Service: This is a logical container that pres-
ents all machines (web/worker/virtual machine roles) running an 
application in Azure. The application can be elastically scaled up 
or down and accessed as a service hosted in Azure. In Azure, a 
hosted service has been taken as a web server that differs from a 
normal web server to constitute a PaaS infrastructure. In Amazon 
EC2, this is a machine instance with Apache or, potentially, IIS 
under an IaaS deployment.

Storage Account: The application uses the blob storage in Azure and 
the Elastic Block Storage in EC2.

Entity Framework Model and Web Services: WCF-RIA domain ser-
vices provide data access to the Silverlight client according to the 
application logic running on the web server.

Database Server: SQL Azure has been used to support geospatial data-
bases in Azure.

As described in Section 7.3, the client sends an HTTP request to the server. 
The server then processes it and sends a web page to the client, which then 
displays a Silverlight map on the screen as shown in Figure 7.4.

Specifically, the user selects a region type—which in turn requires region 
spatial data to be requested from the database and displayed on the map. 
To accomplish this, the client-side application generates a LINQ (Language 

FIGURE 7.4
Main screen of our cloud-based GIS application in Azure.
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Integrated [code-based] Query) and sends it to the WCF-RIA service, which 
then sends its equivalent SQL query to SQL Azure. The server then processes 
the query and sends back results to the WCF-RIA services, which then send 
enumerable entity objects to the client. Subsequently, Bing Maps object parser 
converts WKT region data into maps objects to be displayed on the map. 
Finally, the user selects the region and some accident search criteria to execute 
a search; as a result, the same process is performed to display the accident loca-
tions as pushpins on the map. The overall interaction is presented in Figure 7.4.

Note that, in this particular application, finding an accident in a region 
requires selection of points in a polygon. This is done using the STContains 
geometry function of SQL Azure, which determines if a geometry object, 
more specifically a spatial reference system identifier (SRID), is within 
a region. This function returns 1 if an object s, represented by an SRID, 
is inside a region and 0 otherwise, as shown in Figure 7.5. This functionality 
is particularly suitable for the Cloud as it enables demanding processing to 
be remotely commissioned.

7.4.1  Scaling and Fault Tolerance

Figure 7.6 represents a case in which three instances of our GIS applica-
tion are running in the public Azure cloud. The three web roles repre-
sent three separate web servers running three copies of GIS applications 
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Same SRID with location inside region

Different SRID with location inside region

Same SRID with location outside region

FIGURE 7.5
Example of s selection of points in a polygon.
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in the cloud. It is important to mention that each web role is an extra-small 
machine in Azure, which has a shared core, 768 MB memory, and 5 MB 
bandwidth. Azure allows measurement and monitoring of various perfor-
mance parameters of the web roles such as the system load and, based on 
this information, scaling rules can be created. By using monitoring infor-
mation, scaling rules, and Azure REST APIs, the number of web roles can 
be increased automatically (horizontal scaling). In some cases, if increasing 
the number of instances does not balance the load, the size of the web 
role machine can be increased (vertical scaling). Vertical scaling requires 
redeployment of the application, which is time consuming and may cause 
interruption to the service. Automatic scaling has not been implemented 
in our application.

Figure 7.6 shows a load balancer that evenly divides the workload among 
web roles, a common practice in any web-based architecture that poses a 
 particular hurdle in Azure. Running multiple independent copies of the 
application on independent machines leads us to a problem if the session 
state variables are used in the application, as there is a possibility that 
 different requests by the same client go to different web roles, as shown 
in Figure 7.7.

From this point, if an application is using session state variables, then 
 sessions stored on one web role are not in the knowledge of other web 
roles. As there is even a possibility that a single client will be served by a 
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different web role for each request it makes, this will cause the application 
to  malfunction. There are various ways to solve this problem but the quick-
est and easiest is to use the Azure AppFabric cache to hold the session state 
outside the web roles. Also, this cache can be used for in-memory buffering 
of static contents of the application, hence improving the performance.

As far as the hosted service is concerned, it is up to the certain subscriber 
how many web role instances the subscriber wants to create. Microsoft 
requires at least two web roles to ensure 99.9% uptime. In this case, three 
web role instances are running the application. In case of failure of a web 
role, other web roles take over and keep serving requests. As soon as Azure 
detects the failure, it replaces the faulty web role.

As Azure keeps by default three copies of storage and databases in three 
different domains of Microsoft data centers, there is no need to keep a backup 
database server or storage infrastructure. Once a fault is detected within 
a database, Azure automatically disconnects the faulty copy, acquires a new 
database instance from the Cloud, and synchronizes it with the remaining 
copies. As a result, when a failure occurs, it can have some effect on perfor-
mance until the new database instance is ready. The same is true for storage.

7.5  Evaluation

For evaluation purposes, the applicative database has been populated with 
150,000 demonstration road accident records for Scotland. To functionally 
test the system, a set of tasks has been devised to search the records in the 
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Save session
[“age”] = 16

[age] = ?
Session
Saved

Client

Load Balancer

Instance 1 Instance 2

FIGURE 7.7
Session state problem with multiple web roles.



155Assembling Cloud-Based Geographic Information Systems

AB postcode area region corresponding to Aberdeen for each of the follow-
ing 16 possibilities:

16 Search Possibilities: AB postcode

 1. Date range
 2. Date range and cause
 3. Date range and time
 4. Date range, cause, and time
 5. Date range and number of persons
 6. Date range, cause, and number of persons
 7. Date range, time, and number of persons
 8. Date range, time, number of persons, and cause
 9. Date range and number of vehicles
 10. Date range, cause, and number of vehicles
 11. Date range, time, and number of vehicles
 12. Date range, cause, time, and number of vehicles
 13. Date range, number of persons, and number of vehicles
 14. Date range, cause, number of persons, and number of vehicles
 15. Date range, time, number of persons, and number of vehicles
 16. Date range, cause, time, number of persons, and number of vehicles

We have selected such a narrow area and specific criteria because, as the 
search criteria become more specific, it decreases the number of accident 
locations in the result but requires more processing from the SQL Azure.

Then, each of these tasks has been carried out on the application with 
known selected field values, and the output was compared with previously 
known expected results. Any errors found were corrected in the code and 
then all the tests were performed repeatedly until all the results met the 
expected output.

7.5.1  Performance Testing

Performance testing is a key test as this application will arguably be run-
ning in a stressful environment and there will be a substantially large data-
base for the system. In some unlikely cases when a user searches for longer 
date ranges, the result comprises thousands of records, potentially gigabytes 
of data. Then, since search results are downloaded from SQL Azure into 
the client, there is a possibility that the application can freeze or crash if 
the Internet speed is slow or the Internet connection is fluctuating between 
 connected and disconnected states.

To perform stress testing, accidents in the AB postcode area have been 
searched for a 10-year range between January 1, 2001, and September 30, 
2011, and without any other condition. This has put the application under 
extreme stress as in the normal case, producing 6,642 records for a single 
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search (over 40% of the entire database). It was observed that when the 
number of resultant accident records was too high for a region (e.g., greater 
than 6,000), then on some occasions the application crashed and showed the 
error request time-out. After some research, it was realized that this was 
happening because of the default keep-alive time of the WCF-RIA service. 
For a WCF-RIA service request, the default keep-alive time on the client 
machine is 1 minute, and if a query response from the SQL server takes 
more than a minute, then the WCF-RIA service causes this error because 
the client side assumes that the connection with the domain service on the 
web server is broken.

After resolving this issue, this stress test has been performed repeatedly 
but from 10 different client machines at the same time. Although the response 
time was slow (up to 5 minutes), the overall architecture has worked,  proving 
that the system is stable under stress conditions. For a small date range and 
with some conditions, the search is typically nimble, with response time 
within a couple of seconds.

Hence, our demo has worked in its most basic form, but there is a lot of room 
for improvement using the cloud computing capabilities. As an  example, 
if a user requires extensive access to historical data (e.g., all the accidents that 
happened in the last 20 years), the result will be a region cluttered with thou-
sands of accident location pins showing the problematic areas, which may be 
slightly difficult to read on a low-resolution screen.

7.5.2  Processing Time

A key performance parameter is how much time it takes to display a 
response/result on the client machine after sending a search request. This is 
dependent on the size of the accident search results, the client’s Internet speed, 
processing required by the map objects parser, and processing required on 
SQL Azure. To analyze the processing time, a search is performed that returns 
records of all the accidents in a given postcode area (AB) in the database. This 
search actually executes a query in SQL Azure as shown in Listing 7.1.

Listing 7.1

SQL query in Azure

SELECT [RID] [AccID] [AccDate] [AccTime] [Cause] [Longitude] 
[Latitude] [AccInjuredPersons] [AccVehicles]
FROM [AccidentManagement][dbo][viewPolyAccidents]
WHERE RegionID = AB

To check how much time SQL Azure takes to execute this query, the query 
has been executed 10 times via the SQL Server Management Studio. The aver-
age execution time was 76 seconds. When a similar search was performed 
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10 times on the same workstation via the accident application, it took variable 
times between 83 and 91 seconds, and the average time was 84 seconds . Here, 
it is clear that SQL Azure took most of the time, which means the rest of the 
 processing in the application was fast, taking approximately 7 (84 − 77) seconds.

In both cases, the query returned 6,642 accident records, and the size of 
data returned by server was 543 KB. At that time, the application never 
crashed. It is important to mention that the Internet connection used was 
a 10-Mbps broadband connection with a DSL (digital subscriber line) test 
downloading speed of 3.84 Mbps and upload speed of 0.94 Mbps.

7.6  Conclusion and Future Work

This chapter addressed the need for generic design patterns for GIS cloud-
enabled deployment. The proposed architecture utilizes the SQL Azure 
geospatial database in conjunction with other Microsoft technologies and 
services. This architecture is designed to be open and extensible.

Considering the original nature of the problem, it is noted that GIS deploy-
ment on clouds is per se a complex issue. It requires the seamless integration 
of distinct GIS capabilities to search, access, and utilize geospatial data with 
the cloud computing capabilities to configure, deploy, and manage computing 
infrastructure to permit the computability of intensive models and databases.

The chapter has provided a proposed methodology and architecture to 
enable systematic assembly of GISs in the cloud. This approach provides 
a viable solution to build stable and complex GISs in the cloud that can 
perform under extreme conditions, but there are a few minor issues, such 
as SQL server scaling and the need for a more robust and comprehensive 
API to convert WKT geospatial data into Bing, Google Maps, and other 
base maps objects. It is also interesting that an application built using this 
 methodology can be implemented on IaaS and PaaS service models because 
it is implemented in PaaS and all the resources used in case of PaaS can be 
replicated in IaaS.

Further work should be carried out to evolve this paradigm for building 
GIS-oriented cost models for cloud computing where resources, computa-
tional and geographical, are correctly represented and priced. Additional 
areas to be tackled to further develop our concept are the following:

• Building a more comprehensive WKT geometry to map object 
parser APIs for all geometry types for different base maps, such as 
Google and Bing Maps.

• Currently, Bing Maps do not provide an object to represent 
multipolygons. We propose development of an API that allows 
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developers to directly parse WKT multipolygons into a custom-built 
multipolygon object that can be directly displayed over Bing Maps 
Silverlight Control.

• We also propose further developing this concept using Google Maps 
and Java as Bing Maps does not have road maps for as many places 
as Google Maps.

• We propose further development of the Regional Accident Database 
project with geocoding—to find latitude and longitude from 
SRIDs—and capabilities such as location awareness to automati-
cally select, as an example, all the accidents within a 5-mile radius 
of a selected location to be fed to a traffic warning system. This case 
study itself can be helpful to reduce road accidents.

• We propose added functionality to the system, such as having the 
system automatically analyze the road accident data and display a 
priority-based report that highlights the accident zones and tells us 
which zone needs the most attention.

Glossary

Client: This is a computer or device with an Internet connection and a 
browser with the map plug-in (player) installed on it. For instance, 
if the map plug-in is developed using Microsoft Silverlight, then the 
Silverlight player needs to be installed on the client.

The Cloud: Similar to Internet conventions, the capitalization of Cloud has 
been used when referring to the holistic global interconnected infra-
structure as opposed to any specific generic infrastructure provided 
by a certain entity.

Database Server: Refers to the database services provided to the differ-
ent software components. The geospatial relational database of the 
application resides on this server. It has to be underpinned by a pow-
erful hardware configuration as most of the geospatial data manipu-
lation will be performed here. In terms of software, the system can 
have Oracle, SQL server, or SQL Azure as all of these DBMSs sup-
port geospatial databases.

Entity Framework Model: Set of technologies in Microsoft .NET to develop 
data-oriented software applications. It allows the creation of a logi-
cal view of the database according to the business logic of the  system 
and gives an abstracted view of the database to the application, 
hence providing added security.
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Map Plug-in: A map plug-in is a specialized web-based map control that is 
capable of displaying base maps and supports a display of multiple 
layers of map objects, such as polygons, locations, or lines. Since the 
idea of this project is to use Google or Microsoft Bing maps as base 
maps because these are the most comprehensive maps available for 
the whole world, this could be a Google or Bing maps control.

SRID: The Spatial Reference System Identifier (SRID) contains standardized 
spatial coordinate system definitions for GIS.

Storage Account: Deploys a cloud-based storage repository that will be used 
to store web applications.

Web Server/Hosted Service: This is a web server in the cloud with all neces-
sary APIs installed on it. Depending on the cloud services provider 
and service provisioning model, this server may differ from a nor-
mal web server. Ideally, this web server must be horizontally and 
vertically scalable in the cloud.

Web Services: Comprise software to enable the communication between 
devices on the web with an XML (extensible markup language) 
interface. A problem with rich Internet applications is coordinating 
application logic between the middle tier and the presentation tier. 
The best user experience requires the web services client to be aware 
of the application logic that resides on the server. In our case, the 
web service allows the client-side map plug-in to interact with the 
database in an easy, controlled, and secured way.
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Summary

As an emerging state-of-the-art technology, cloud computing has been 
applied to an extensive range of real-life situations. Health care service is 
one of such important application fields. We developed a ubiquitous health 
care system, named HCloud, after comprehensive evaluation of requirements 
of health care applications. It is provided based on a cloud computing plat-
form with characteristics of loose coupling algorithm modules and powerful 
 parallel computing capabilities that compute the details of those indicators 
for the purpose of preventive health care service. First, raw physiological sig-
nals are collected from the body sensors by wired or wireless connections 
and then transmitted through a gateway to the cloud platform, where storage 
and analysis of the health status are performed through data-mining tech-
nologies. Last, results and suggestions can be fed back to the users instantly 
for implementing personalized services that are delivered via a heteroge-
neous network. The proposed system can support huge physiological data 
storage; process heterogeneous data for various health care applications, such 
as automated electrocardiogram (ECG) analysis; and provide an early warn-
ing mechanism for chronic diseases. The architecture of the HCloud platform 
for physiological data storage, computing, data mining, and feature selections 
is described. Also, an online analysis scheme combined with a Map-Reduce 
parallel framework is designed to improve the platform’s capabilities. 
Performance evaluation based on testing and experiments under various 
conditions have demonstrated the effectiveness and usability of this system.

8.1  Introduction

As the pace of life grows ever faster these days, the physical and psychologi-
cal pressures on people are increasing ceaselessly, which raises the potential 
risks for many chronic diseases, such as high blood pressure (HBP), diabetes, 
and coronary disease. The large proportion of other adults who are suffer-
ing from “subhealthy” status (also called “the third state,” which is between 
health and disease) are mainly engaged in brain work under high mental 
pressure. A total of 75% of the world’s population are jeopardized by this 
negative situation [1]. The majority of them are white-collar workers and 
social elites, and they pay increasing attention to their health while hoping 
to obtain preventive health examinations periodically. Particularly, the aging 
issue worldwide is becoming more serious, and we need measures to improve 
the quality of life and launch chronic disease surveillance for elderly people. 
However, it is well known that public medical resources are usually insuffi-
cient and imbalanced in geographical distribution. According to a report of 
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the World Health Organization (WHO), in recent years the regional aver-
age in Africa of those who can use an improved sanitation facility is about 
only 34% of the population; it is 94% in Europe [2]. So, to meet the needs of 
subhealthy groups, the aging population, and other people who need such 
 services, a health care system that can provide self-monitoring of healthy 
status, provide early warning of disease, and even deliver analysis reports 
instantly is proposed and the option is becoming increasingly popular.

A health care system is a smart information system that can provide people 
with some basic health monitoring and physiological index analysis  services. 
It is hard to share with isolated professional medical services such as PACs 
(picture archiving and communication systems), EHRs (electronic health 
records), and HISs (hospital information systems) without Internet-based 
technologies. Not long ago, this kind of system usually was implemented 
with a traditional MIS (management information system) mode, which is 
not capable of implementing sufficient health care services on a uniform 
platform, even though it may exploit several isolated Internet technolo-
gies. Currently, cloud computing, as an emerging state-of-the-art informa-
tion technology (IT) platform, can provide economical and on-demand 
services for customers. It provides characteristics of high performance and 
transparent features to end users that can fulfill the flexibility and scalabil-
ity of service-oriented systems. Such a system can meet the infrastructure 
demand for the health care system. With the rapid progress of cloud capac-
ity, increasing applications and services are provided as anything as a ser-
vice (XaaS) mode (e.g., security as a service, testing as a service, database 
as a service, and even everything as a service) [3]. Google Docs, Amazon S3 
(Simple Storage Service), Ping Identity, and Microsoft Azure are popular 
products for online office application service, storage service, security ser-
vice, and private platform service, respectively. Linthicum [4] investigated the 
services-oriented architecture (SOA) techniques applied in enterprise appli-
cation integration (EAI) and the refining of the National Institute of Science 
and Technology (NIST) models with the XaaS concept. Another alternative 
cloud model is the Jericho Cloud Cube [5], which focuses on the collabora-
tion-oriented architecture (COA) to ensure secure business collaboration in 
deperimeterized environments. The Distributed Management Task Force 
(DMTF) proposes a cloud architecture [6] that consists of a set of interfaces 
with specific definitions. Samba develops logical data models (LDMs) [7] for 
analyzing cloud architectural requirements to facilitate traceability between 
business requirements and cloud architecture implementations.

In our work, we propose a cloud-based system for preventive health care, 
named HCloud [8, 9], which implements both the analysis of physiological 
signal data and the early warning mechanisms for diseases. Unlike pre-
vious works, we take advantage of cloud storage for the large number of 
multimodal physiological signal data with heterogeneous characteristics. 
Implementations of cloud storage for physiological data, as well as comput-
ing for data mining and feature selections, are presented here. Performance 
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evaluations based on the testing demonstrated the effectiveness and usabil-
ity of the system.

This remainder of the chapter is organized as follows: The application 
scenarios, architecture, and key components of HCloud are described in 
Section 8.2, which also provides the details of the data analysis services in 
HCloud. Section 8.3 gives the details of the Map-Reduce paradigm immersed 
in the platform, as well as the health care services that HCloud can provide. 
Section 8.4 provides information on performance testing and evaluation; 
a conclusion is drawn in Section 8.5.

8.2  The HCloud Platform

In recent years, researchers have made some useful attempts to implement an 
efficient health care system with the power of cloud computing. For example, 
Zhang et al. [10] proposed a cloud security model based on EHRs that belongs 
to an MIS. Narayanan et al. [11] discussed access control to the health care 
system by considering role task management. Chang et al. [12] proposed an 
ecosystem approach to solve patient-centric health care and evidence-based 
medicine. However, previous works mainly focused on the storage, access, 
and management of private health information, which are quite primitive 
applications regardless of the computational power of the cloud platforms. 
It is expected that a cloud-based system not only stores the information but 
also performs basic analysis of health status and provides useful advice or 
warnings to patients, which is the purpose of our work.

8.2.1  Challenges to the Cloud Platform for Health Care

Cloud computing inherited the features of high-performance parallel com-
puting, distributed computing, and grid computing and further develop ed 
these techniques to achieve location transparency to the end user and 
improve user experiences. In addition, a general cloud platform must face 
some challenges in health care service areas, as discussed next.

8.2.1.1  Heterogeneous Physiological Data Access

One challenging task for the health care cloud system is to handle the multi-
modal and nonstationary characteristics of special physiological signals, 
such as those for HBP, electrocardiography (ECG), and photoplethysmogra-
phy (PPG). It is quite an inefficient job for a cloud system to store the numeric 
small-size physiological signal data on the ordinary distributed file system. 
Most of the distributed file systems are more suitable for large-size file stor-
age than for small-size storage because there are bottlenecks for small-size 
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files to access metadata on the local file system, which may result in syn-
chronous problems (e.g., on the GlusterFS [13]). So, physiological signals with 
various formats should be well managed and processed to provide efficient 
instant services to individuals, and a consistent storage system is needed to 
adapt to this situation.

8.2.1.2  Multiscale File Storage and Integration

There are mainly two categories of application data in the system. One is 
trivial and has a small amount of data for temporal signals, such as the afore-
mentioned physiological signal data; the other has huge-scale graphic data 
generated by drawing server clusters. Those large numbers of semistruc-
tured or unstructured health records, as well as massive trivial files, are all 
adapted to NoSQL [14] (not only in SQL) databases instead of traditional rela-
tional ones, which has natural advantages for easily expanding horizontally. 
The key idea of NoSQL is that it employs a loosely coupled data model and 
has neither a fixed table schema nor joint operations. Hence, it is appropriate 
for the high-performance requirement when accessing large files, especially 
for those without fixed structure.

8.2.1.3  Adaptive Algorithms for Different Targets

In consideration of the various characteristics of body health and aspects 
of a monitoring system, we need different algorithms for different signal 
processing and data mining. Note that the analysis routines should be  easily 
configurable and adaptive to concurrent requests from users. Therefore, a 
flexible algorithm scheme should be developed for the sake of on-demand 
services. To cope with the irregularity of the data structure, a self-defined 
message head would be utilized to identify the call of various routines. 
Moreover, many real-time tasks should be addressed, and high concurrent 
mechanisms will be the major concern, although a general cloud may not 
need to face too many real-time transactions.

8.2.1.4  Visualization of Health Analysis

Another challenging task is the visualization of analysis results, which are 
usually computationally intensive with a large amount of graphic data for 
drawing. Careful considerations should be taken into account for efficient 
storage of and access to the huge graphic data generated by the analysis 
results. The system should be capable of handling the different types of data 
visualization adaptively. These fundamental characteristics are very differ-
ent from the features of grid computing, which aimed at special applica-
tions and were difficult to operate for unprofessional users (e.g., in scientific 
 exploration projects).
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8.2.1.5  Data Convergence of Biosensors and Cloud

The method of service delivery is another important factor that affects the 
usability of the system. The user of the health cloud system should be pro-
vided with some easy-to-use data collectors, which is unlike general cloud 
users, who are only concerned about their data in the cloud. Necessary facili-
ties should also be equipped with a friendly interface to transmit data to the 
cloud. For instance, a mobile phone is an appropriate front-end device [15] 
and always acts as a gateway into the system. However, seamless data fusion 
from signals collected for data processing in the cloud should be a concern.

8.2.2  Architecture of the HCloud Platform

The HCloud will face thousands of potential customers, including physi-
cians and home users who care about their own health status. After  analysis 
of the requirements of the application, an entire information flow of the 
HCloud analysis procedures is depicted as Figure 8.1.

The workflow of the proposed platform comprises three main steps. First, 
raw physiological signals are collected from the body sensors by wired or 
wireless means. Then, they are transmitted to the cloud platform to store and 
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FIGURE 8.1
Overview of HCloud system.
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analyze the health status by means of data-mining technology. Finally, results 
can be fed back instantly and suggestions made to the users. Meanwhile, 
physicians in the community or a hospital can obtain their patient’s health 
information from the Internet and provide some suggestions to the patients 
on daily dietary, exercise, and medication needs. If a patient’s physiologi-
cal index is abnormal after testing, the health care cloud system would give 
out warning information to the patient as well as send the message to their 
 family members and physicians.

Also, there are two main activities of users: uploading the raw data and 
browsing the diagnosis results. Uploading activities are divided into two 
steps: The first is to transmit physiological data, which are collected by 
 sensors, to the gateway through short-distance transmission by wired USB or 
wireless Bluetooth means. The second is to deliver the data from the  gateway 
to the cloud servers through Internet protocol (IP) networks. A set-top box 
(for USB) or mobile phone (for Bluetooth) plays the important role of the 
gateway to relay data. In HCloud, apart from the mobile phone, a TV set is 
another friendly interface for the aging population. So, with the assistance of 
a set-top box, services would be delivered through a TV cable ubiquitously. 
Figures 8.2a and 8.2b show a mobile phone and a top-set box as gateways for 
data transmission, respectively, and Figure 8.2c is a scenario for home use.

(a)

(b) (c)

FIGURE 8.2
Mobile, set-top box, and home use scenario.



170 Cloud Computing with e-Science Applications

8.2.3  Functionalities of Components in HCloud

As mentioned, HCloud is planned in the near future to serve hundreds of 
city-dwelling families via Internet health monitoring and will support thou-
sands of potential customers, including physicians and whoever cares about 
their health. So, a higher number of concurrent transactions and shorter 
response time are requirements of our system, as is large-scale graphic 
drawing for visualized results, which need to be stored and accessed effi-
ciently to provide instant services to individuals.

Therefore, the six-layer architecture of the private HCloud platform is 
proposed with the philosophy of inheriting the software as a service (SaaS) 
of the NIST model and introducing the in-source/outsource concept into 
development. Each layer’s content and function are interpreted as service 
inter action, service presentation, session cache, cloud engine, medical data 
mining, and cloud storage, respectively, as shown in Figure 8.3.

• Service interaction is a top layer; users can interoperate with the ter-
minals, such as 3G mobile phone, set-top box, and browser on a com-
puter, to collect and upload original physiological data as well as 
download analysis results from the cloud servers.

• Service presentation can be regarded as an interface with various 
kinds of services, such as the wireless application protocol (WAP), 
web, or image provider. A load balance mechanism is introduced 
to the system on this layer so that the web/WAP servers can work 
cooperatively as a cluster to maintain optimal performance. The 
server cluster shares users’ requests to the website together to meet 
the high concurrence requirement of health care services and to 
 better ensure quality of service (QoS). In addition, some runtime 
information is reserved at this level.

• The session cache stores the user’s sessions on one hand, which main-
tains the authentication and certification status the first time when 
the user accesses the services (i.e., information of service inter action 
through the presentation layer). To share the sessions among all 
web/WAP servers, this platform uses a separate session server to 
save the session data, which can solve the problem of session status 
sharing when there is load balancing. On the other hand, a memory 
cache is adopted to expedite access to the results data. Cache serv-
ers are specialized servers used to save users’ pages, documents, 
profiles, and so on temporarily. This kind of server can reduce the 
capacity of network exchange because displaying graphs of physi-
ological signals would take a long time. This platform will draw 
the images when users access the service the first time and save 
the graphs in the graph servers while registering the session keys 
in the cache server. If the users want to browse a previously gener-
ated image, the image will be loaded from the graph servers directly 
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without redrawing. In fact, this session’s architecture is a big hashed 
key/value table.

• A cloud engine is a dispatcher to make components cooperate with 
each other to make the cloud run using a message-driven mode via 
a message queue (MQ) cluster. The functionalities of the queue man-
agement are provided by this layer, which is regarded as a critical 
core for scheduling tasks. A message is the unit of data transmitted 
between two modules. The MQ is a container to save the message 
during the transmission process. By introducing a message queue 
into the platform, the coupling between different modules can be 
significantly reduced.
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• Medical data mining is a cluster of algorithms, including data prepro-
cessing, data analysis, mining algorithms, and visualization pro-
cessing. This layer can handle the data transmitted from the front 
end and generate the results back to the database. Other algorithms 
can also be easily plugged in if needed. These data-mining clusters 
are made up of servers executing data-mining algorithms. These 
algorithms can process the raw physiological signal data transmit-
ted from the front end and generate the resulting data to write back 
to the cloud storage, launching a message into MQ middleware 
to indicate the subscriber to deal with. The tasks executed by the 
mining servers include data preprocessing, analysis, mining model 
tasks, and medical image drawing.

• Cloud storage provides data resources for the entire health cloud plat-
form, including user information, vital signs, health records, and 
graphic data for processing. Physiological data collected from body 
area networks and massive graphic data for distributed processing 
of such data-intensive tasks are the primary contents. The cloud stor-
age organizes various types of storage devices together by network 
and provides data storage and business access for outside applica-
tions, with the aid of cluster applications and grid or distributed file 
system technologies. A service sequence diagram of the HCloud can 
be represented as in Figure 8.4.
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FIGURE 8.4
Service sequence map of HCloud.
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8.2.4  Key Components Implementation in HCloud

There are three key components addressed here:

• The MQ is a kind of component that provides an asynchronous 
 communication protocol to achieve independence between the mes-
sage sender and the receiver. The queue is utilized for storing the 
event message generated by a sender (publisher), and all of the lis-
teners (subscribers) who are interested in this kind of event can fetch 
this message to process a predefined routine. All communication 
parties should follow the same protocol (e.g., advanced MQ protocol) 
and utilize an available MQ API [16] to operate the queue. It is not nec-
essary that two parties must know each other exists. After a message 
is inserted into a queue, it will be preserved and not deleted from 
the MQ until the corresponding subscriber reconnects to the system. 
Messages can be exchanged on the process, application, or even inter-
cloud level. The queue resides in the cloud just as an engine to drive 
the system. In addition, different message heads identify the analysis 
algorithm and indicate the subsequent behaviors  of the cloud.

• The plug-in algorithm framework is developed with respect to the extend-
ability of various services, which is based on the publish/subscribe 
mechanism to provide customized functions conveniently, not only 
for health care but also for other services. The whole system can 
reduce the module coupling by adopting this algorithm. For instance, 
various data-mining algorithms, such as analysis of peripheral vas-
cular function, instantaneous heart rate, chaotic characteristics of 
the power spectral density, and so on, should be adopted to perform 
automatically according to different analyzed signals. Every differ-
ent function can subscribe to the different themes of the message, 
which is classified by a message head. In other words, using such 
Publish/Subscribe mechanisms, different mining functions can be 
called on by listening to the corresponding types of message the func-
tion is interested in. Accordingly, we designed an abstract core class 
named the CoreStubClass, including a private attribute analysisKind 
and an abstract method handleRequest(int). This class communicates 
with Message via MQ, and the other kinds of concrete implementation 
classes extended the CoreInterface (e.g., SignalFilterCore, ECGAnalysisCore 
and other data-mining classes). Figure 8.5 shows the class framework of 
the plug-in algorithm.

• Distributed storage is the basis of cloud storage. The structural model 
of cloud storage is composed of four layers: the storage layer, the 
platform management layer, the application interface, and the access 
layer, as shown in Figure 8.6.

The core layer is the platform management layer, which ensures the reli-
able storage and efficient access of the large amounts of semistructured or 
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unstructured health documents, as well as miscellaneous signal files, with 
the power of NoSQL databases and distributed file systems. A NoSQL 
database is easy to integrate into distributed file systems. For instance, the 
Hadoop Distributed File System (HDFS) and Google’s Cluster File System 
(GlusterFS) all have friendly interfaces to NoSQL databases such as Cassandra, 
MongoDB, and HBase. Moreover, sharding is another major characteristic of 
this  distributed database to gain increased availability. Redundancy among 
these pieces of shards and different views of the same data provide consis-
tency to a large extent. This mechanism can guarantee the integration of 
global data and transparency to users. For large and distributed storage, 
this architecture provides more convenience for data retrieval with better 
 scalability as well as stability and persistency.
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FIGURE 8.6
Four-layer concept model of cloud storage. (Redrawn from Fan, X., He, C., Cai, Y. and Li, Y., in 
IEEE CloudCom 2012, Taipei, December 3–6, 2012, 705–710.)
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A parallel computing framework based on the Map-Reduce framework should 
be combined with the data stored in the NoSQL database (e.g., MongoDB) to 
deliver complex analytics, and data processing for such physiological data 
processing is always bound to the CPU (central processing unit). The map 
function can be designed to handle part of the data, while the reduce func-
tion is to merge the output produced by the map function and then output 
all of the filtered results. According to our six-layer HCloud, MQ can be uti-
lized as a scheduler to cooperate with the Map-Reduce scheme. Generally, 
data analysis flow on this scheme can be described as in Table 8.1. Please 
note that this algorithm is a recursive procedure. The constant SIZE is a 
threshold according to the different scales of physiological data processing, 
which indicates the Map-Reduce procedure is to merge with the size of data 
scale. It will not be finished  until all files are generated by the threshold of 
SIZE. Hadoop and the Map-Reduce programming paradigm already have 
a substantial base in the bioinformatics community [17] (e.g., monitoring of 
long-term ECG for individuals). The next section introduces the details of the 
ECG data process with this paradigm.

TABLE 8.1

Algorithm of MQonMapReduce
Input: iSize,oSize
Output: Boolean
 BEGIN

  initial a thread
  while (message from MQ is Null)
   if (message is DONE) return true;
    // DONE is a particular message from MQ
   else
    loop;
   load Mapper(message)

    // parallel Map function for data processing and
    analysis according to different message

   iSize←sizeof (files of input directory)
    //compute the total size of files under input directory

   if iSize>SIZE
    MQonMapReduce(iSize, oSize);
     //immerge trivial input files to a larger one
   else {

    oSize←sizeof(output directory)
     //compute the total size of files under output directory
    if oSize>SIZE
     MQonMapReduce(iSize, oSize);
      //immerge trivial output files to a larger one
    else

     send a message DONE to MQ;
      // process of all data are accomplished; }
 END
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8.3  Provision of Health Care Information

The physiological indices of a person may show abnormality when his or 
her health status is trapped in a bad state. Hence, it is necessary for the 
user to obtain an early warning of this health status. HCloud can provide 
 further semiautomatic or automatic analysis of physiological data by means 
of  statistics and pattern recognition as well as data-mining methods. This 
section introduces the online analyses of ECG with the Map-Reduce scheme 
and presentation of the results via the cloud platform, as well as presenta-
tion of the other physiological signals (e.g., of the PPG and HBP), which can 
provide convenient, customized health care service. An actual mobile health 
system is described in Figure 8.7.

8.3.1  Online Analysis of ECG Data

The ECG is a transthoracic (across the thorax or chest) interpretation of the 
electrical activity of the heart over a period of time, as detected by electrodes 
attached to the outer surface of the skin and recorded by a device external 
to the body [18, 19]. It is utilized to measure the rate and regularity of heart-
beats as well as the size and position of the chambers, which can diagnose 
atrial premature beats (APBs), arrhythmia, myocardial ischemia, and so on. 
Apart from simple records and general instructions, the system also pro-
vides detailed ECG physiological indexes for medical experts who need to 
obtain complete user information for diagnosis. The most common forms 
of arrhythmia, such as bigeminy, premature beats, bradycardia, and the 
 frequency of occurrence are autoanalyzed by related algorithms.
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8.3.1.1  ECG Data Features

ECG data is collected from the human body with the frequency range 
between 0.05 and 100 Hz, and its amplitude is only several millivolts. Hence, 
disturbances from the environment always must be a concern, to avoid 
baseline wander of signals, and then QRS wave detection will be performed 
after signal denoising. The ECG data process can be divided into four phases: 
 filtering baseline wander, denoising, detecting the QRS wave, and other 
postprocess phases, as shown in Figure 8.8.

For the long-term (24-hour) ECG data, data can be up to 12 MB at a  sampling 
frequency of 150 Hz. An integer coefficient digital filter transfer formula 
 specific to the ECG signals is as follows.
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where x(n) is the original input signal, and y(n) is the output signal (i.e.,  filtering 
baseline wander data). After testing the execution speed of the serial pro-
gram with the raw data, the results showed that filtering the baseline  wander 
phase took about 70% of the entire ECG processing time in our existing 
HCloud platform [20], which was the bottleneck of our ECG analysis algo-
rithm, as Table 8.2 shows. If a single machine or serial programming is merely 
adopted, the user experience would be worse. Therefore, it is considered to 
be the first part of computing in parallel on the Map-Reduce framework.

8.3.1.2  Parallel Programming of the ECG Data Process

According to the analysis presented, the computing overload of the ECG 
data process is mainly at the phase of filtering the baseline wander. So, 
filtering  the baseline wander should be parallelized first. Raw data from the 

OthersDetecting the
QRS WaveDenoisingFiltering Baseline

Wander

FIGURE 8.8
Four phases of ECG data processing.
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client should be uploaded to MongoDB server by the remote user. To obtain 
these input data by the demon running on the Hadoop platform, they should 
first be downloaded from MongoDB locally and then uploaded to HDFS 
for further analysis and processing. In this scenario, data are pulled from 
MongoDB and processed within Hadoop via one or more Map-Reduce jobs. 
Output from these Map-Reduce jobs can then be written back to MongoDB 
for later querying and ad hoc analysis. Communication between client and 
platform is implemented by RabbitMQ, which is a popular MQ middleware. 
Assuming that the data contain 24-hour ECG signals, you might consider 
designing three map functions, each for 8 hours of the data, and then com-
puting in parallel. Replications of processed data on HDFS are output files. 
The whole procedure is shown in Figure 8.9.

Each split represents a segment of data in the filtering baseline wander 
 parallel programming. Each phase has key value pairs as input and output, 
in which the key stands for the data fragmentation flag, while the value stands 
for the ECG raw data or processed data (i.e., in the form of <split-flag, ECG 
raw data>, and <flag, 24-hours processed signal>, respectively). Since the default 
implementation of the interface InputFormat in Hadoop is TextInputFormat, 

HDFS
replication

part 1reduce

reduce
merge

copy
Map

Map

Map

Split()

Split 1

Split 28-hour ECG

8-hour ECG

8-hour ECG
sort

part 0 HDFS
replication

Output HDFS

Input HDFS24-hour
Raw Data

FIGURE 8.9
The Map-Reduce for filtering baseline wander.

TABLE 8.2

Running Time of Each Part in Single Machine (Bold Indicates Longest)

Raw Data/
Measuring Time 
(hours)

Runtime (seconds)

Filtering 
Baseline 
Wander Denoising

Detecting the 
QRS Wave Others Total Time

00007732/21.5 194.281000 7.829000 59.406000 179.515000 441.046000
00016412/13 117.110000 4.734000 11.734000 5.079000 138.657000
0039720/3 26.672000 1.078000 1.469000 2.656000 31.875000
01297217/12 104.000000 4.344000 6.500000 32.156000 147.015000
01334816/14.5 124.797000 5.234000 12.594000 27.094000 169.719000
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which is not suitable for our application (ECG data are in byte format), we 
override InputFormat and define a format whose keys are represented by 
TextWritable and the values are the file contents, represented by BytesWritable.

Figure 8.10 shows a case of process results or original data and output data 
on HDFS.

8.3.1.3  Summary Report of ECG Status

After analysis of ECG data, the graphic-processing clusters can generate the 
graphic data, and the visualization of results would be provided to the end 
user. Many can be stored in the cluster for later requests, and all temporary 
pictures can be drawn at the client so that the computational load on the server 
decreases. All in all, the HCloud system can store large heterogeneous ECG 
data and compute the corresponding physiological indices within 5 seconds. 
If  one of the physiological indices becomes abnormal, it generates disease 
warnings on time and sends messages to physicians. At the same time, it mines 
the deep regularity or characters from the long-term historical ECG data, which 
can help physicians better monitor an individual’s health state. The system also 
provides detailed ECG physiological indices for medical experts, including 
normal-to-normal (NN) intervals, standard deviation of NN intervals (SDNN), 
standard deviation of the averages of NN intervals in all 5-minute segments of 
the entire recording (SDANN), heart rate  variability (HRV) triangular indices, 
the triangular interpolation of the NN interval  histogram (TINN), and so on.

Figure 8.11 is a simple summary text report of an ECG in the health care 
cloud system and shows the measurement duration, in how many seconds 
the abnormal ECG also can be obtained, as Figure 8.12a shows. On the other 
hand, HCloud generated the Poincaré image of one’s heart movement while 
measuring ECG signals each time to represent the heart’s chaos characteris-
tics, as shown in Figure 8.12b.

Through spectrum analysis, we can draw a conclusion that everyone’s 
heart movement has a chaos status. Chaos features represent the health 
 status of the heart. They can illustrate the capability of the heart to adapt to 
 different situations or body conditions at different times. The image shape is 
always heart-like if one is in good health. The more irregular the heart move-
ment is, the more dangerous life is.

8.3.2  Other Physiological Diagnostic Data

Other important physiological information should be manually set into 
the system to build a traceable case history for health status (e.g., medical 
inspection data as an output of a blood glucose meter or urine analyzer from 
authorities, e.g., a qualified administration, a professional institution, a hos-
pital, etc.). A follow-up survey of physiological data with diagnostic value 
is also presented. For instance, the general body information and health 
knowledge database are established and further instructions are given to 
customers. These services are optional to the end users.
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FIGURE 8.12
(a) Abnormal ECG. (b) Chaos analysis.

FIGURE 8.11
ECG summary report. (Redrawn from Fan, X., He, C., Cai, Y. and Li, Y., in IEEE CloudCom 2012, 
Taipei, December 3–6, 2012, 705–710.)
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8.3.2.1  Calculation of PPG Data

A PPG is an optically obtained plethysmogram, which represents a volu-
metric measurement of an organ. It is often obtained using a pulse oximeter 
that illuminates the skin and measures changes in light absorption [21–23]. It is 
used to monitor conditions related to breathing, hypovolemia, and other cir-
culatory situations. The HCloud system provides the heart function indices, 
which evaluate the heart’s blood pumping capability, and peripheral vascu-
lar function, which assesses for HBP and arteriosclerosis. Two assessments of 
PPG are delivered to users: heart function and peripheral vascular function. 
Meanwhile, the system provides a detailed PPG index on heart function for 
the physician, including average pulse rate (PR), cardiac output (CO), stroke 
 volume (SV), blood oxygen saturation, and cardiac index (CI). To make users 
and the physician understand the heart function parameters intuitively, this 
system provides each index specification as well as the index of heart function 
histogram, as shown in Figure 8.13a. It is known that the index of peripheral 
vascular  function can reflect the health status of the peripheral vascular system, 
which can help a physician assess serious degrees of HBP and  arteriosclerosis. 
On the other hand, this health care cloud platform provides users the wave-
form characteristic (K), blood viscosity (V), peripheral resistance (TPR), sclero-
sis index (SI), degree of vascular conformity (AC), and pulse wave transit time 
(PWTT). At the same time, it plots the peripheral vascular histogram and gives 
specifications, as shown in Figure 8.13b. From those indices, a PPG diagnostic 
report can be generated by the system for the end user.

8.3.2.2  Presentation of HBP Signals

High blood pressure or hypertension is a chronic medical condition in 
which the blood pressure in the arteries is elevated, which causes the heart 
to work harder than normal to circulate blood through the blood vessels. 
Blood pressure involves two measurements: systolic and diastolic. These 
measurements depend on whether the heart muscle is contracting (systole) 
or relaxing in the interval between beats (diastole). Normal blood  pressure 
at rest is within the range of 100–140 mm Hg systolic (top reading) and 
60–90 mm Hg diastolic (bottom reading) [24]. HBP is said to be present if the 
blood pressure reading is persistently at or above 140/90 mm Hg, which can 
cause problems with the metabolism of fat and sugar, as well as changes of 
the heart, brain, kidneys, and retina. An HBP report is provided in HCloud 
to provide detailed data on the systolic and diastolic blood pressure and 
inform users whether they suffer from HBP. Over the long term, it can 
reflect that the degree of control of HBP may be associated with the health 
status of the user and prompt the user to change his or her lifestyle. Due to 
the absence of obvious clinical symptoms in some patients with HBP, it is 
known as the “invisible killer” [25]. Fortunately, HCloud can draw a curve of 
HBP for a long-term trend of threatening status.
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FIGURE 8.13
PPG data indicies report: (a) heart function index; (b) peripheral vascular index. (Redrawn 
from Fan, X., He, C., Cai, Y. and Li, Y., in IEEE CloudCom 2012, Taipei, December 3–6, 2012, 
705–710.)
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It is extremely important for people to be aware of HBP so there can be 
early prevention and timely treatment. In our system, the HBP report is 
provided to provide detailed data on systolic and diastolic blood pressure 
and inform users whether their blood pressure is high or not. Figure 8.14 
shows the distribution of the range of HBP in one period, which helps users 
 monitor their HBP status. At the same time, it can help a doctor know the 
general health state of a patient. A trend chart of HBP (Figure 8.15) shows 
which phase blood pressure pills will affect.
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8.4  Performance Testing and Evaluations

8.4.1  Case Design and Simulation

To evaluate the performance of HCloud, we designed two cases to simulate 
the most-used scenarios: uploading information and browsing results. The 
testing environment included 10 personal computers (PCs) as clients with 
CentOS 6.0 OS (operating system), Core 2.8-GHz CPU, and 2 G memory  for 
each PC. Five virtual machines were also established to enhance the utiliza-
tion of the physical host in five physical machines. Each virtual machine 
had the same configuration (Core 2.8-GHz CPU, 1 G RAM). All of the 
testing  clients , using the Tsung testing tool [26], would simulate high concur-
rent access in the real world to perform stress and load testing. In actual 
application , people can press buttons on a remote to process the uploading 
procedure via an upload interface on a TV as shown in Figure 8.16.

The first test verified the capability of the platform for uploading data. 
One hundred concurrent users were generated by simulation and uploaded 
data to the servers continuously for 10 minutes. Among these 100 users, 
60 uploaded ECG data, 30 uploaded PPG data, and the last 10 uploaded blood 
pressure values. Each of the ECG and PPG record’s length was 2 minutes . As 
the test results show in Figure 8.17 and Table 8.3, we can summarize that the 
test produced a total of 158,780 requests and nearly 30,000 concurrent connec-
tions were maintained at the end of the test; each single server traffic spike 
was 5 Mb/s. Only one response failed during the test. The next test verified  
the concurrent capability of the web servers. Three hundred simulated users 
were generated to browse the web page at the same time, with  each visit 

FIGURE 8.16
Presentation of a user’s upload interface on a TV. (Redrawn from Fan, X., He, C., Cai, Y. and 
Li, Y., in IEEE CloudCom 2012, Taipei, December 3–6, 2012, 705–710.)



186 Cloud Computing with e-Science Applications

lasting 30 minutes. Among these 300 users, 100 browsed the left navigate list, 
100 visited each icon, and 100 browsed the main content links. In the testing 
results shown in Figure 8.18 and Table 8.4, we summarize that the testing 
generated 550,636 requests, the number of concurrent connections exceeded 
20,000, and each single server traffic spike was approximately 30 Mb/s in 
this situation.

8.4.2  Results Evaluation

The connection status and throughput in the simulation provide a view of 
the system performance. Further details and evaluation are depicted in this 
segment as follows: Table 8.5 shows the details of requests that happened 
for uploading and browsing. A new HTTP request generated within a given 
interval of 0.02 seconds represents that a new user connection happened, 
and a session will be created according to the probability presented in the 
testing configuration file. The mean response time and count (for page, 
request, etc.) for the entire test are computed, generating 163,011 and 573,683 
concurrent requests for the two activities, respectively, as shown in Mean 
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FIGURE 8.17
Inbound and outbound traffic of the network for uploading. (Redrawn from Fan, X., He, C., 
Cai, Y. and Li, Y., in IEEE CloudCom 2012, Taipei, December 3–6, 2012, 705–710.)

TABLE 8.3

Uploading Activity Statistic for HTTP Request

HTTP Status Code
200

(Response Is OK)
302

(Redirect Is OK)

500
(Internal 

Server Error)

Highest rate (bytes/second) 581.4 1.8 0.1
Total number 158,780 162 1
Finish_users_count (the total number of concurrent connections): 28,170
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TABLE 8.4

Browsing Activity Statistic for HTTP Request

HTTP Status Code 200
(Response Is OK)

302
(Found)

Highest rate (bytes/second) 2,568 99.9
Total number 550,636 22,810
Finish_users_count: 23,233

TABLE 8.5

Overall Performance Statistics for Activities

Name connect page request session

Uploading Activity
Highest rate (bytes/second) 118.9 243.6 604.7 103.6
Mean time (seconds) 0.12 0.40 0.16 1.22
Count 32,225 64,771 163,011 28,170

Browsing Activity
Highest rate (bytes/second) 121.9 896.4 2611.1 98.4
Mean time  (seconds) 0.3 0.25 0.08 14.98
Count 23,633 206,381 573,683 23,233

Source: Redrawn from He, C., Fan, X., and Li, Y., IEEE Transactions on 
Biomedical Engineering 60, no. 1 (January 2013): 230–234.

Note: Connect, duration of the connection establishment; page, response 
time for each set of requests; request, response time for each 
request; session, duration of a user’s session.
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Time and Count rows. A response time less than 1 second is tolerable for the 
user’s experience. The actual number of concurrent users was nearly 30,000 
during the experiment, as the Finish_users_count column of Table  8.3 and 
Table 8.4 shows. So, it is acceptable to actual applications.

By comparison, Table  8.7 shows the reading performance of Amazon’s 
S3 with different page sizes (writing data to S3 takes about three times as 
long as reading data) [27]. Ignoring the slight differences of hardware, the 
usability of our system is satisfied in terms of Bandwidth, which is at least 
double that in S3 (compare the last row of Table 8.6 with that of Table 8.7). 
Response Time is also better, obviously. Overall, it demonstrates that this 
document-oriented cloud storage architecture is more appropriate for the 
health care services environment with a large number of trivial files rather 
than non-document-oriented ones such as S3. Furthermore, due to platform 
capabilities of linear extendibility, we simply increase the number of servers 
if there is the potential for more users’ requests in the future.

8.4.3  Comparison of Computing Overhead

From Section 8.4.2, we can find that the response time is acceptable to our 
applications from the point of view of accessing HTTP. Actually, the main 
tasks of HCloud are physiological data processing and computing, as dis-
cussed previously, which can affect the performance of the whole system. 
We also take the ECG raw data process as an example. Using a typical parallel 

TABLE 8.6

Network Traffic and Performance Statistics for Activities

Receive/Sent Activity
Bandwidth 

(KB/seconds) Total (MB)

size_rcv (size of responses) Uploading 835.84 224.58
Browsing 26,277.12 6,113.28

size_sent (size of requests) Uploading 2,999.04 803.37
Browsing 522.24 108.54

Source: Redrawn from He, C., Fan, X., and Li, Y., IEEE Transactions on 
Biomedical Engineering 60, no. 1 (January 2013): 230–234.

TABLE 8.7

Statistics for Reading Performance of Amazon S3

Page Size (KB) 10 100 1,000

Response time (seconds) 0.14 0.45 3.87
Bandwidth (KB/seconds) 71.4 222.2 258.4

Source: Brantner, M., Florescu, D., Graf, D., Kossmann, D., and Kraska, T., 
in Proceedings of the 2008 ACM SIGMOD International Conference 
on Management of Data, Vancouver, B.C., Canada, June 9–12, 2008, 
251–263.
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framework message passing interface (MPI) program model, CPU time spent 
filtering baseline wander is compared with that of Hadoop. In comparison, 
a single machine computing overhead is depicted in Figure 8.19.

On Hadoop, with the increase of data, the running time is essentially the 
same. On a single machine, the time changes linearly with the amount of data. 
For example, with 32 hours of data, the performance is improved 11 times. For 
three nodes, the performance is improved by 82%. So, this platform achieves 
higher performance than ordinary solutions, as shown in Figure 8.20.

8.5  Conclusion

The HCloud system incorporates multiple advanced technologies, such 
as a precise and convenient data acquisition solution and a high-efficiency 
data storage and analysis method, for monitoring the health status of users 
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at any time and in any place. Through the system, anyone can have knowl-
edge regarding personal health information and even be told the risk of some 
chronic diseases in the future. With our system, some acute attacks can be dis-
covered in time, and chronic diseases such as hypertension can be prevented 
before their onset. This chapter proposed a private cloud platform architec-
ture associated with technologies such as MQ, load balance,  session cache, 
and cloud storage. This platform can integrate semistructured, unstructured, 
and heterogeneous physiological signal data well and can support huge data 
storage and heterogeneous data processing for various health care applica-
tions, such as automated ECG analysis, PPG analysis, and HBP analysis. 
It is also a low-cost solution that can reduce module coupling by adopting 
component technology. Moreover, the proposed system can provide an early 
warning mechanism for people with chronic diseases and help physicians 
obtain patients’ health information. The Map-Reduce paradigm has the fea-
tures of code simplicity, data locality, and automatic parallelization compared 
with other distributed parallel systems. More important, integrated with the 
HCloud is improved efficiency of physiological data processing and achieve-
ment of linear speed-up. Based on the performance evaluation and feedback 
from user experiences, HCloud can cope with the issues of high concurrent 
requests in ubiquitous health care service and dispose of the analysis of 
 massive physiological signal tasks quickly, as well as having robust, instant, 
and efficient features that can meet user demands for preventive health care.
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Summary

In many domains, such as telecommunications, various scenarios necessi-
tate the processing of large amounts of data using statistical and machine 
learning algorithms for deep analytics. A noticeable effort has been made 
to move the data management systems into MapReduce parallel processing 
environments, such as Hadoop, and Pig. Nevertheless, these systems lack 
the necessary statistical and machine learning algorithms and therefore can 
only be used for simple data analysis. Frameworks such as Mahout, on top 
of Hadoop, support machine learning, but their implementations are at the 
early stage. For example, Mahout does not provide support vector machine 
(SVM) algorithms, and it is difficult to use. On the other hand, traditional 
statistical software tools, such as R, containing comprehensive statisti-
cal algorithms for advanced analysis, are widely used. But, such software 
can only run on a single computer; therefore, it is not scalable for big data. 
In this chapter, we present RPig, an integrated framework with R and Pig for 
 scalable machine learning and advanced statistical functionalities, which 
makes it feasible to use high-level languages to develop analytic jobs  easily 
in concise programming. Using application scenarios from the telecommu-
nications domain, we show the use of RPig. With comparable evaluation 
results, we demonstrate advantages of RPig, such as less develop ment effort 
compared with related work.

9.1  Introduction

With the explosive growth in the use of information communication tech-
nology (ICT), applications that involve deep analytics need to be shifted to 
scalable solutions for big data. Our work is motivated by the big data ana-
lytic capabilities of network management systems, such as network traffic 
analysis, in the telecommunications (telecom) domain. More specifically, the 
work is an extension of Apache Pig/Hadoop frameworks, which are com-
monly used to build cost-effective big data systems in industry. The design, 
the developed software implementation, and the solution we describe here 
are general and applicable to other domains.

To build a scalable system, one approach is to use distributed parallel com-
puting models, such as MapReduce [1], that allow adding more (computer) 
nodes into the system to scale horizontally. MapReduce has been recently 
applied to many data management systems (DMSs), such as Hadoop and Pig. 
These systems target the storage and querying of data for top-layer appli-
cations. However, they lack the necessary statistical and machine learning 
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algorithms and therefore can only be used for simple data analysis. For 
advanced or deep analysis, Mahout [2] contains a limited number of machine 
learning algorithms implemented in the MapReduce model. Because of the 
large number and complexity of machine learning and statistical algorithms, 
the redesign and redevelopment of these algorithms in the MapReduce 
model are difficult tasks. Various algorithms are still missing in Mahout 
in comparison with matured statistical and machine learning frameworks. 
For  example, support vector machines (SVMs), one commonly used algo-
rithm, is still under development in Mahout. On the other hand, traditional 
statistical software, such as R, has a rich and extensive set of machine learn-
ing and statistical processing functionalities for advanced analysis, but it is 
not distributed and not scalable on its own. In general, it only runs within a 
single computer and requires all data to be loaded into memory for process-
ing. Some solutions have been proposed to scale out this traditional statisti-
cal software, such as RHadoop [3], but limitations still exist. For example, 
some require writing key-value paired map and reduce functions, leading 
to difficulties in use and longer development time. More details of related 
work are described in Section 9.6. Our approach addresses the problem by 
integrating traditional and matured statistical software (R) with a scalable 
DMS (Pig) to scale out deep analytics.

In this chapter, we present RPig, an integrated framework with R and Pig 
for scalable machine learning and advanced statistical functionalities, which 
makes it feasible to use high-level languages to develop analytic jobs  easily 
in concise programming. RPig takes advantage of both the deep  statistical 
analysis capability of R and parallel data-processing capability of Pig. Both 
data storage and processing for deep data analysis are distributed and 
 scalable. The framework has the following main advantages:

• The statistical and machine learning functions of R can be easily 
wrapped and directly used with Pig statements. This allows devel-
oping advanced parallel analytic jobs with two high-level languages 
R and Pig (Latin) without needing to learn new languages or appli-
cation programming interfaces (APIs) or rewrite complex statistical 
algorithms. The development effort can be significantly reduced for 
the user.

• The framework is able to parallelize both R and Pig executions auto-
matically at the execution stage. The necessary low-level operations, 
such as data conversion and fault handling, are handled by the 
framework itself. The framework offers automatic parallel execution 
for advanced data analysis.

In the rest of the chapter, we describe two scenarios that we encounter 
in Section 9.2 that neither R nor Pig can handle independently. Section 9.3 
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describes the foundation frameworks: R, Hadoop, and Pig. The overall RPig 
framework and its components are explained in Section 9.4. Experiments 
and results are in Section 9.5. Finally, we talk about related work and give 
our conclusion (Sections 9.6 and 9.7, respectively).

9.2  Motivating Scenarios

To demonstrate the need and usefulness of our RPig framework, we describe 
two example use cases in the context of network management systems where 
scalable statistical processing is necessary.

9.2.1  Intensive Scenario with Both Input/Output and 
Central Processing Unit with Exponential Moving Average

In this first use case, a vast amount of events are collected from a given 
mobile network and stored as event log files. An event is a report about a 
particular service client (e.g., Viber voice over Internet protocol [VoIP] service 
client) and contains information such as

ID|period_start|period_end|IMSI|IMEISV|RAT|... 
|packets_downlink|packets_uplink|...

The exponential moving average (EMA) is a simple forecasting algorithm 
based on historical sample data. Using the EMA, an analytic feature of a 
network management system can forecast the amount of traffic of selected 
service clients in the next time window when a request is sent. Because of 
the vast number of events, it is impossible for R to load all data into memory 
for a simple EMA calculation. However, Pig does not have the EMA function, 
which R has.

This problem can be addressed by RPig, which allows log files to be effi-
ciently loaded, preprocessed (filtering, aggregating, etc.) by Pig in parallel , 
and then directly passes the data to R for a final EMA calculation. In this 
case, it is both an input/output (I/O) and central processing unit (CPU) 
intensive scenario as it requires loading and preprocessing massive log files 
from hard disks.

9.2.2  A CPU-Intensive Scenario with SVM

The SVM machine learning algorithms can be used for advanced classifica-
tion and regression analysis. Unknown data can be predicted by an SVM 
model, which is built from training data in the training phase.
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An increasing amount of phone calls are made by various VoIP clients, such 
as Viber and Skype. One approach for monitoring the service quality of VoIP 
is using network-level key performance indicators (N-KPIs) at the Internet 
protocol (IP) layer, such as packet loss or jitter, to predict the mean opinion 
score (MOS), which is a standard speech quality measurement parameter [4]. 
An SVM-based regression algorithm is used in this case, but it is a complex 
algorithm, usually involving long computation times on a relatively small 
amount of data in the training phase. RPig enables us to define and execute 
the SVM algorithms in the MapReduce model for both SVM training and 
prediction phases without writing any key-value pair MapReduce functions. 
As a result, the performance becomes scalable to cluster size, and develop-
ment effort is reduced.

This use case deals with a complex machine learning algorithm, which is 
CPU intensive rather than I/O intensive. R’s in-memory computation takes 
most of the overall computation time with a few data in an analysis job. 
RPig supports parallelism for various requirements in different scenarios.

9.3  Background

Big data [5] are data in volumes so large and complex that they become 
 difficult to process using on-hand database management tools or traditional 
data-processing applications. Since Google published its MapReduce tech-
nology and Apache started the Hadoop project in 2004 and 2005, MapReduce 
and Hadoop have become a generic and foundational approach for develop-
ing scalable, cost-effective, flexible, fault-tolerant big data systems [6]. Many 
frameworks, such as Pig and Hive, have been developed based on Hadoop, 
adding features on it. As Hadoop systems are more widely adopted in 
industry, the requirements of the real-world problems are driving the 
Hadoop ecosystem to become even richer. For example, Oozie and Azkaban 
provide workflow and scheduling management. Impala and Shark aim at 
low-latency real-time queries. Our work, RPig, is one of many frameworks, 
such as Mahout and DataFu [7], targeting deep analytics. In the following 
sections, we briefly describe the frameworks on which the RPig is based.

9.3.1  R and R Packages

R is a programming language and software environment widely used for sta-
tistical computing and deep data analysis, such as classification, and regression. 
R is extensible through R packages. There are thousands of R packages that 
implement massive specialized machine learning and  statistical algorithms.
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R’s data model contains simple data structure types, such as scalars,  vectors, 
and lists, and special compound data structure types: Factors are used to 
describe items that can have a finite number of values; data frames are matrices 
and may contain different data types (numeric, factor, etc.). All data struc-
tures of R are R objects, which also include other statistical specific models 
or functions and so on.

The following code snippet shows a simple example of EMA calculation 
using R. TTR is an R package implementing various moving average calcula-
tions. The temp is a series for EMA calculation with 20 periods to average over.

Library(TTR); results <- EMA(temp, 20)

9.3.2  Hadoop and MapReduce

Hadoop offers the Hadoop Distributed File System (HDFS) to manage data stor-
age and a distributed parallel programming framework based on  MapReduce 
[5] for data processing. Computations are defined in Map and Reduce functions, 
which have key-value pairs for input. A map function takes one pair of data, 
which can be processed in parallel Map(k1,v1)→list(k2,v2). A reduce func-
tion aggregates related results of map functions (k2, list(v2))→list(v3). 
Programs need to be written as map and reduce programs to enable parallel 
computing through Hadoop MapReduce Java APIs.

9.3.3  Pig and Pig Latin

Pig is built on top of Hadoop and gives a high-level data flow language 
called Pig (Latin) [8] for expressing data queries and processing. It is similar 
to SQL of a relational database management system (RDBMS), but it is pro-
cedural style and gives more control and optimization over the flow of the 
data. Pig scripts are compiled into sequences of MapReduce jobs by Pig, and 
they are executed in the Hadoop MapReduce environment.

The Pig data model contains scalar types that have a single atomic value 
(integer, long, etc.), and three complex types that can contain other types: 
Tuple is a data record consisting of a sequence of “fields,” which can be any 
data type; Bag is a set of tuples, similar to a “table”; Map is a map of a string 
key to a value, which can be any data type.

Pig provides a set of operators for data processing. For example: LOAD and 
STORE can be used for reading and writing data from HDFS. Processing 
every tuple of a data set can use the FOREACH operator. Many operators 
are similar to SQL, such as JOIN, GROUP BY, and UNION for standard data 
operations. As with many SQL implementations, Pig supports user-defined 
functions (UDFs), which allows performing tasks written in low-level lan-
guage (Java or Python) to extend Pig. The following Pig script shows how to 
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aggregate traffic consumption (both up/downlink) on selected VoIP clients 
(e.g., Skype, Viber) in a time window on events described in Section 9.2.1.

Events = LOAD ‘$load_par’ USING PigStorage(‘|’) AS 
(ID, period_s:LONG,...,);

Events = FILTER Events BY (client = = ‘Viber’ OR...);
Traffics = FOREACH (GROUP Events BY (period_s, period_e, client)) 

GENERATE FLATTEN (group), (SUM(Events.downlink)+SUM(Events.
uplink)) AS links:DOUBLE;

9.4  The Framework

An initial version of the RPig framework [9] was implemented as a proof-of-
concept prototype. The framework provides the RPig script for users to write 
analytic jobs. The RPig script inherits Pig script syntaxes as the language 
skeleton but allows defining inline R scripts as R functions. An R function 
element will be interpreted as an input payload of a predefined Pig extended 
function or Pig UDF, which handles the payload at the execution stage. This 
design gives us a quick implementation by only using the Pig UDF APIs 
without going through the Pig source code. However, it is not an optimal 
approach for integrating Pig and R. RPig script has its own constructs, and 
it needs to generate additional Pig supporting statements in execution. The 
initial version also has the large performance overhead of the data exchange 
between R and Pig.

To improve the performance of RPig and to integrate R and Pig in an 
 optimal way, we completely redesigned and rewrote the source code to over-
come the aforementioned disadvantages of the initial version. By doing so, 
we have brought the research prototype to an early production stage. Some of 
the main advantages of the current version over the initial proof-of-concept 
version are the following:

• There is seamless integration with Apache Pig by having a built-in 
R script extension similar to other Pig script extensions, such as 
Python and JavaScript.

• Only standard R and Pig language syntaxes are used without any 
new language constructs. It allows the use of any existing R and 
Pig script integrated development environment (IDEs).

• There is support for two types of R engines. R UDFs can be executed 
on the Java virtual machine (JVM) or a stand-alone R engine.

• Much faster performance is provided. Optimized data conversion 
and verbosity XML (extensible markup language) messages are not 
involved as the intermediate data format.
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In the following sections, we describe the current version of the framework 
in detail.

9.4.1  The R Script Engine Extension

To integrate R and Pig and take advantage of both, the R language is expected 
to be supported to define Pig UDFs for specifying custom processing in 
Pig data flows. Pig already supports a number of languages, such as Python 
and JavaScript for UDFs. They are implemented as different script engine 
extensions in Pig. That is, an R script engine extension (RScriptEngine) is 
required for our case. It wraps the R engine in the back end, which can inter-
pret R scripts at runtime (Figure 9.1). The user defines R functions as UDFs in 
an R script and makes Pig aware of the R script by using the Pig REGISTER 
statement in a data flow (step 1 of Figure 9.1). An RScriptEngine will be 
initialized, and it will register the defined R functions. The RScriptEngine 
will be shipped within Pig-generated MapReduce programs to all Hadoop 
task nodes during execution (step 2 of Figure  9.1). RScriptEngine can 
execute the registered R functions in the back-end R engine by providing a 
bridge function for interactions between Pig and R (step 3 of Figure 9.1).

The back-end script engine is usually selected from the Java implementations 
of the script language. For example, Jython and Rhino are used for Python and 
JavaScript back-end engines, respectively. This enables running the script lan-
guages on the JVM where Hadoop and Pig are running. Hence, no additional 
back-end script engine is required to be installed on every host along with the 
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JVM. However, this is not a case for the R language since there is no mature 
JVM-based R interpreter. Some preliminary implementations are available, 
such as Renjin [10], but it is incompatible with most R packages except for some 
basic libraries. As a result, two types of back-end R engine are supported in 
our implementation (JVM based and stand-alone R). JVM-based R can be used 
for some basic statistical functions (e.g., standard deviation) without requiring 
the installation of a script engine on all nodes. Stand-alone R is able to use any 
R functions and packages. However, the R must be preinstalled on all hosts.

9.4.2  Data-Type Conversions

It is necessary for data to be passed back and forth between Pig and R 
 during the R function executions. Since the two languages Pig and R have 
very different data models, the data must go through a conversion pro-
cess, which is one of the main responsibilities of the R bridge function. The 
data-type  conversion is done automatically based on the set of predefined 
rules  discussed next.

9.4.2.1  From Pig to R

• Simple data type

• int: integer; long/float/double: double; chararray/
datetime: character bytearray: raw; boolean: logical 
(e.g., null: NULL); datatime: POSIXlt,POSIXt;

• Complex data type

• tuple: list, e.g. (19,2): list(19,2); dataBag: nested list, 
e.g. {(19,2), (18,1)}: list(list(19,2), list(18,1)); map: named list, e.g., 
[apache#pig]: list(key = “apache”, value = “pig”)

• Anything else raises an exception

Any nested data objects in Pig, such as nested tuples, will be converted to 
nested lists in R. Due to the different purposes of the two languages, there 
is no exact semantic match between all data types in their data models. For 
 example, the map[key#value] type of Pig is hardly used in statistical com-
puting, so we convert it to a named list(key = key, value = value), 
which is an ordered collection in R. Users can still convert the converted 
R object to other R data types via R operations (inside R functions) if neces-
sary. For example, it would be possible to convert a nested list to a data frame 
or a matrix.

9.4.2.2  From R to Pig

When the data must be sent back to Pig after R execution, a user-defined output 
schema of the R function is needed. This allows the user to specify what they 
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expected from the R output and remove ambiguity during the conversion. 
For example, the logical value in R could be True, False, or NA (Not Available), 
but the Pig Boolean type can only be either True or False. By using the output 
schema, the logical value can be converted to a Boolean value. Alternatively, 
the user may specify an int or chararray value and no semantic information is 
lost. The following rules are used for type conversion from R to Pig:

• Simple data type

• (schema: int) numeric/integer/logical/factor: int 
(T:1; F:0; NA:128); (schema: float/double) numeric/double: 
double; (schema:  chararray) character/logical/factor: 
chararray; (schema:  bytearray) raw: bytearray; (schema: 
boolean) logical: boolean (T: T, F/NA: F); NULL: null; 
(schema: datetime) POSIXlt/POSIXt: datetime

• Complex data type

• (schema: tuple) numeric array/character array/ logical 
array/factors/list: tuple, e.g. structure(c(1L, 2L,  1L), 
.Label = c(“a”, “b”), class = “ factor”): (a, b, a); (schema: bag) nested 
list: bag; (schema: map) list: map

• Anything else raises an exception.

9.4.3  Execution and Monitor

At the parallel execution stage, the defined R functions or UDFs are trans-
formed into map functions that are automatically generated by  taking 
advantage of Pig. They are executed in parallel in different Hadoop task 
nodes. Each R or map task will take a piece of split data and execute 
 independently on an R engine on one task node. If the Hadoop cluster is 
configured with more than one map task capacity per node, each map or 
R  function will have an isolated session. When a task is completed and 
a result is returned, the data stored in the R session will be cleared, and 
the process will be killed by the RPig framework. As a consequence, no 
R session will be kept alive after the R execution is complete, and all data 
that need to be saved or persisted from R must be saved in HDFS through 
Pig operations. This design was chosen because an R session only exists in 
a single task node, which is replaceable by any other task node in a Hadoop 
cluster at any time. The R session cannot be retrieved by other nodes at 
a later time. Pig stores data, including temporary data generated between 
MapReduce jobs during processing, in HDFS to guarantee that data can be 
retrieved later from every node of the cluster. The results of all R functions 
will be collected through Reduce tasks for continuous processing. Users do 
not need to develop key-value pair map and reduce functions within RPig. 
They only need to assign the number of map and reduce tasks in parallel 
execution through Hadoop and Pig configuration.
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With regard to fault tolerance, the fault handling happens in two different 
layers, the node layer and the R engine layer. The underlying Hadoop frame-
work provides failure handling on nodes of the cluster. If a node fails during 
the execution of an RPig job, Hadoop will restart the task of the failed node 
in an alternate node. Within a node task, the RPig framework allows the user 
to define the fault policy to handle errors from an R engine execution on an R 
function . For example, by default func _ name.fault.ignore←T. This policy 
ignores any exceptions and continues. Also, func _ name.fault.retry←1. 
This allows at most one retry when an exception occurs. If an R execution 
fails during the map task, then a remedy action defined in a failure policy of 
the named R function will be applied, and the failure event will be logged by 
the RPig framework. The user still can use R’s tryCatch() function within 
an R function to define the fault-handling mechanisms within the R session, 
but the fault policy of RPig allows the user to restart the R function in a brand 
new R session.

R functions may run exceedingly slowly on occasion, and the user would 
expect a way to monitor the UDF execution time and terminate its execution 
if it runs too long. RPig offers the facility for monitoring long-running 
R  functions. For example, func _ name.monitoredUDF.duration←10 
will terminate the named R function if it runs for more than 10 seconds and 
return the default value of null.

9.4.4  Implementation

There are several libraries used for the RPig implementation. Renjin [10] is 
used for the JVM-based R engine. Since the stand-alone R is implemented in 
C and Fortan and Pig is written in Java, Rsession [11] is adopted as the Java 
interface of R to use the Pig APIs. Pig offers Java annotation-based imple-
mentation for a monitored Java UDF. To build the same function for R UDFs, 
we need to create a new Java class with annotations for each R function at 
runtime. The Javassist [12] is used for defining a new class at runtime and to 
modify a class file when the JVM loads it.

9.5  Use Case and Experiment

In this section, we describe the usage of RPig with the examples we discussed 
in Section 9.2. To provide valuable comparative experimental results, we 
also describe and experiment with one alternative framework or implemen-
tation for each use case. Although the use cases here are from the telecom 
domain, the design and the solution we describe are general and applicable 
to other domains.

Our experiments are conducted in Amazon Elastic MapReduce (EMR), for 
which we have all nodes with the same configuration (m1.medium instance, 
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Hadoop 1.0.3, R 2.14.1). One node from the Master Instance Group has the 
extended Pig 0.11 with the RPig feature deployed to generate MapReduce 
programs. The rest of the nodes are from the Core Instance Group, provid-
ing both data storage and MapReduce task execution services. As R requires 
data to be loaded in memory, each node is configured to have a maximum 
capacity of one map task and one reduce task, so an R session could take 
the maximum memory available in a single node. We also assign a larger 
 heap-size limit to the child JVMs of map tasks as these are where R statistical 
functions are executed. The reduce task is allocated a lower value.

9.5.1  Summary Statistics with Quantiles

Before going to complex examples that use different R packages, we would like 
to show a simple quantiles statistic task to give a “hello world” example in the 
first case. Quantiles are used to summarize a set of observations by giving the 
boundary values between the divided distributions. For example, a large num-
ber of values for a network parameter observed over time can be summarized 
in a few numbers, or quantiles, for reporting or comparing with thresholds.

9.5.1.1  Design and Implementation

DataFu [7] is a collection of useful Pig add-ons (UDFs) developed by LinkedIn 
for data mining and statistics, and it is used for the comparison study in this 
use case. DataFu is used in many off-line workflows for data-derived prod-
ucts like “People You May Know” and “Skills” at LinkedIn. The following 
shows the main lines of implementation using DataFu.*

DEFINE Quantile datafu.pig.stats.Quantile(‘0.5’,’0.75’,’1.0’);
— Computing the quantiles for each network nodes
Quantiles = FOREACH B {sorted = ORDER values BY val; GENERATE 

id, Quantile(sorted); };

DataFu uses the DEFINE statement to specify a Quantile UDF function 
with string parameters for the function constructor. (‘0.5’,’0.75’,’1.0’) 
yields the 50th and 75th percentiles and the max. The function takes a sorted 
bag as the input.

The following shows the RPig version for the same computational task.

REGISTER ‘RFuncs.r’ using rsession as RFuncs; — or using 
‘renjin’ for JVM R

%DECLARE q_probs ‘0.5, 0.75, 1’;%declare q_type ‘2’;
Quantiles = FOREACH A GENERATE id, RFuncs.Quantile(values, 

‘$q_probs’, ‘$q_type’);

* Detailed explanation of the DataFu quantile example is available at http://engineering.linkedin.
com/open-source/introducing-datafu-open-source-collection-useful-apache-pig-udfs.
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In addition to these Pig statements, the following R UDF is defined in the 
RFuncs.r script.

Quantile.outputSchema ← “q:double”;
Quantile ← function (x, probs, type) {
 probs ← as.numeric(unlist(strsplit(probs, split = “,”)))
   # parse the parameter value
 q ← quantile(unlist(x), probs = probs, names = T, type = type);
   # call the R quantile() function
 return (as.list(q)); }

The Quantile UDF is a simple wrapper for the quantile() function of the 
R stats library. x is a numeric vector whose sample quantiles are desired. 
Its value is converted from the Pig input tuple by the framework. The func-
tion parameters (probs, type) value can be supplied in different ways, 
for example, a Declare statement that is used in the example or a Parameter 
File and so on.

To summarize this use case of RPig, any original R function can be easily  
wrapped and exposed as a Pig R UDF. The necessary input parameter of 
the original R function can be exposed by the UDF to make the function 
more generic for reusability. Still, all the input data for a single function call 
will be executed in one R engine, and some partitioning might be necessary 
(e.g., group by “week”) if the data are too large.

9.5.1.2  Result and Discussion

In this use case of computing quantiles, both DataFu and RPig only require 
a few lines of Pig (and R) code as the user does not need to write the quan-
tile algorithm. However, the RPig implementation of the function is much 
more flexible regarding the data input and output formats than DataFu. The 
DataFu quantile function only takes a sorted input bag, and each numeric 
value is a tuple inside the bag. We have to preformat the raw data before 
calling the function in this case. In contrast, the RPig version can handle any 
format of bag or tuple input. Numeric values can be either in one tuple/bag 
or separated tuple/bags since the data always will be flattened into numeric 
vectors in the R function before computing quantiles.

Figure 9.2 shows the performance comparison with a fixed 20-node Hadoop 
cluster. Each row of input data contains more than 10K double  values for one 
network node, and that makes around 1 GB raw data for every 10K rows. 
The RPig version implementation with the JVM R engine (Renjin 0.7.0) has 
the slowest performance. It becomes very slow when input data size becomes 
larger, and it consumes almost all available memory for the map task. It might 
relate to the internal memory management problem of Renjin since it is only 
in a very early stage. The RPig with stand-alone R has the best performance. 
DataFu (v 0.0.10) is in the second since it needs to preformat and sort the data 



206 Cloud Computing with e-Science Applications

through Pig operations, and these take more time before calling the quantile 
function.

DataFu has some convenience bag (e.g., enumerating bags) and utility 
functions, but the availability of statistical functions in DataFu is extremely 
limited. It only includes common statistics tasks (e.g., quantile, variance), 
PageRank, and the like algorithms that are relevant to the LinkedIn use 
cases. Even for the quantile function, DataFu only implements the type R-2 
estimation, which is one of several algorithms for estimating quantiles. RPig 
allows the use of nine quantile algorithms implemented in R, selected by the 
type parameter in the example. With RPig, it is easy to wrap and expose any 
statistical function of R as a Pig UDF. The statistical functions available in 
RPig are as many and as comprehensive as in the original R.

In summary, RPig provides extensive statistical and machine learning 
algorithms by wrapping any original R function in a Pig UDF, and the UDF 
is flexible with input and output data formats and gives the best perfor-
mance (with stand-alone R) in the this case. In contrast, DataFu is ready to 
use without needing additional installation of a script engine since it runs on 
the JVM, but the number of functions is extremely limited.

9.5.2  Forecasting with EMA

9.5.2.1  Design and Implementation

EMA is used for forecasting data traffic on selected VoIP service clients for 
a use case described in Section 9.2. Since EMA is a light algorithm, and the 
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aggregated data Traffics (from Section 9.3.3) is already small enough in 
this case, we can group all the data together and send them to one R engine 
using RPig. The following shows the Pig statements:

Results = FOREACH (GROUP Traffics ALL) GENERATE RFuncs.ema_all 
($1, n);

ema_all() is a defined R function processing the grouped data, as in the 
following:

ema_all.outputSchema ← toString(lapply(seq(1,11), function(x) 
{paste(“map[tuple(double)]”, sep = “”)}))

ema_all ← function(x, n) {
 xDf ← as.data.frame(do.call(rbind, x[[1]]))
     # convert to a data frame
 ...  # sorted the data and initial variables
 library(‘TTR’)
 for(i in 1:length(clients)){
   t ← xDf[xDf[,c(3)] = =clients[i], c(4)]
  results ← append(results,list(list(as.character(clients[i]), 

EMA(t,n))))}
return (results)}

In this case, the data passed to R is a nested list (x), which contains 
aggregated traffic data for all service clients in different time windows, 
( x x x x x x1

1
2
1

3
1

1
2

2
2

3
2, , , , , ,( ) ( ) … .). The first line of the R script converts the nested 

list to a data frame called xDf, so the input data can be easily sorted and 
selected as a data table. A sorted numeric list containing traffic data of pre-
vious time windows for each service client is selected and is used as input 
for the R EMA() function of the TTR package. Results of all service clients 
as a nested list results will be subsequently converted to a Pig map data 
structure specified by the output schema. The name of the service client is 
the key of the map, and the forecasted result is the value of the map. In this 
case, the Pig statement is used as the query language for accessing the data 
from the HDFS file system, and then the converted data will be sent to R for 
analytic tasks. Afterward, the data analytic result is printed on screen or 
stored in HDFS through Pig statements. Hence, RPig can be used as a way 
for R programmers  to read and write data and files in HDFS.

To summarize this use case of RPig, the Pig operations are used as pre-
processing steps to extract and summarize only the necessary information 
needed for R processing. When the summarized data are small enough to 
be handled in R in a single node, then we can use any statistical algorithm 
implementations of R directly on the summarized data similar to the tradi-
tional single-machine approach of R.
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9.5.2.2  Result and Discussion

The necessary data must be converted and loaded into R first when an R 
function is involved in a Pig data flow, and we consider this as performance 
overhead. Minimizing this overhead was one of our main tasks after the 
initial version of RPig development. As a consequence, the initial version of 
RPig was used for a comparison study in this case. The code implementation 
for this use case based on the initial version can be found in Reference 9, and 
it is similar to the implementation using the current version.

Figure 9.3a shows the results with 20 fixed nodes. The data size represents 
the initial raw data size loaded in Pig. With both versions of the implemen-
tations (both with stand-alone R engines), the performance decreased with 
increasing data size, as expected. In this scenario, the performance mainly 
depends on Pig/Hadoop, which needs to handle a large amount of raw data, 
where R only plays a small part in the overall process. We can see the current 
version has better overall performance, and the improvement becomes larger 
when more data are involved. Figure 9.3b shows the improvement in detail 
when sending data from Pig to R in a single node. In this case, summarized 
data with more than a half million data tuples and four data fields in each 
tuple will take 20 seconds in the initial version but only takes 10 seconds 
in current version. Overhead is reduced 50% in the current version. This is 
achieved by sending data directly to R through the socket connection and 
many code optimizations in the current version. The initial version of RPig 
streams the data to the disk as an R source file, then makes R load the source 
file. Still, when more data need to be exchanged between R and Pig, then 
the overhead becomes larger. This overhead can be considered as a trade-off 
between user development effort and processing efficiency. We only have 
10 lines of R code in the R functions in this use case, but we or the user had 
to write around 100 lines of Java code for the EMA Pig UDF without using 
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R for the same calculation. In another example, DataFu has around 200 lines 
of Java code for the Quantile function in the first use case. This shows the 
significant reduction of coding and code maintenance effort with RPig.

In summary, RPig offers concise programming for data analytics by  utilizing 
existing implementations of algorithms in R. However, the necessary data 
required must be converted and loaded into R; this causes the performance 
overhead. As a result, data should always be minimized as much as possible 
before exchanging data between Pig and R to reduce overhead. The current 
RPig has a significant performance improvement over the initial implemen-
tation; it has reduced the overhead of data exchange by 50%.

9.5.3  Prediction with SVM

9.5.3.1  Design and Implementation

Because an SVM model is constructed based on determined support  vectors 
in SVM algorithms, an SVM training data set can be represented by data 
samples as support vectors. The remaining data of the data set that do not 
directly contribute to the final SVM model can be viewed as redundant, even 
though minor inaccuracies may occur in some cases [13, 14]. Therefore, if we 
have two map functions, one (mapsv) is for extracting samples marked as 
support vectors from a data set, another (mapsvm _ m) is for having an SVM 
model from a data set, and a generic reduce function (reduce) is only to aggre-
gate a list of results from map functions, then the SVM training phase to 
obtain a model for a data set D can be defined in the MapReduce model as 
the following.

Training Phase:
repeat a number of times if required:
 split D to {D1,D2,...,Dn}
 D ← in parallel execution: reduce(mapsv(D1),mapsv(D2),...mapsv(Dn))
Model ← reduce(mapsvm_m(D))

Since support vectors are often only a small data subset of the original input 
data set mapsv(D)<D, and map and reduce functions are executed in paral-
lel in Hadoop, building an SVM model from a data subset would be much 
faster than building the original data set. Hence, the overall SVM training is 
expected to be scalable with the size of the cluster. A parallel algorithm can 
also be structured as multiple rounds of map and reduce. Collected samples 
as support vectors can be treated as a new data set; hence, the mapsv can also 
be applied repeatedly to further reduce the data size if it is required.

In the prediction phase, it takes the trained model and network KPIs at 
the IP layer, such as packet loss, as input, then gives a predicted MOS value 
instantly. In this case, we want to do MOS value prediction in parallel for a 
large amount of VoIP call sessions S, then a map function mappredict can be 
defined to take a subset of call sessions to increase the scalability.
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Training Phase:
split S to {S1,S2,...,Sn}
results ← in parallel execution:
 reduce((mappredict(Model,S1),mappredict(Model,S2),..., 

mappredict(Model,S2))

As analyzed, we have the following script for our scenario: We first describe 
the training phase implementation. The following code fragment shows the 
step of extracting support vectors from a split data set StatisticEvents _ s 
in the MapReduce model:

SV = FOREACH StatisticEvents_s GENERATE FLATTEN(RFuncs.svm_sv($1));
 svm_sv.outputSchema ← “bag{tuple(double, double)}”;
 svm_sv ← function(x) {
  xDf ← as.data.frame(do.call(rbind, x[[1]]))
   # data frame of training dataset
  ... # extracting the support vector sv
  return (list(sv))
 }

The R function svm _ sv is an implementation of the map mapsv  function. 
Extracting support vectors is the same as building an SVM model. It  covers 
cross validation, parameter tuning, and so on for complete SVM train-
ing. However, instead of obtaining a final SVM model, we only fetch out 
the samples as support vectors after the SVM training. In our case, using a 
radial-kernel-based SVM regression, SVM computation can be represented 
to solve the following optimization problem:
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where xi, xj are the input data set, gamma is a parameter. In R, we use the 
e1071 package to supply the SVM implementation mentioned. We first use 
a tuning function to find the best parameter over a parameter range, and 
then we train an SVM. The following R code fragment shows the part of 
extracting sv:

tuned ← tune.svm(V2 ~., data = xDf, gamma = 10^(–2:2), 
 kernel = ‘radial’) # turn the parameter

svmModel <- svm(xDf[2], xDf[1], kernel = ‘radial’, 
gamma = tuned$best.parameters$gamma, cross = 10)

sv ← xDf[c(svmModel$index),]
sv ← apply(sv, 1, function(x){as.list(x)})
 # put each row to a list
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Here, sv is extracted samples as support vectors from the input date frame 
xDf. However, the data frame of R is a column-oriented structure. All of the 
values of a column are grouped together, then the values of the next column 
are in a second group, and so on. Data tables stored in Hadoop and Pig are 
the same as the commonly used CSV (comma-separated value) format, which 
is primarily row oriented. If we want to use the Pig SPLIT operator to split 
the collected support vectors to repeat the sv extracting process again, we 
need to convert the collected data representation to be row oriented. Hence, 
we use the apply() function to put each row to a list. Finally, all lists will be 
put as tuples into a bag sent back to Pig. We flatten the bag in Pig and convert 
the data back to the “table” format to continue processing.

In the last step of the training phase, we group the finalized data sets or 
support vectors SV and send them to one R engine to obtain a final SVM 
model and then store the model for the prediction phase. The MapReduce 
model is still applied, but only one map and one reduce function will be 
 created at this stage.

Model = FOREACH (GROUP SV ALL) GENERATE R.svm_m(*);
svm_m.outputSchema ← “model:bytearray”;
svm_m ← function(x) {
 ... # get the svmModel
 return (serialize(svmModel, NULL)) }

The R UDF svm _ m is almost the same as the previous svm _ sv but 
returns an SVM model svmModel this time. The serialized model will be 
saved as a bytearray or original R object in HDFS, so we can use the model 
directly in R for prediction later. In the SVM prediction phase, the SVM 
model can be directly loaded into R from Pig in parallel execution for a huge 
number of VoIP call sessions.

RHadoop [3] is a popular open-source project from Revolution Analytics 
that allows users to manage and analyze data with Hadoop in R. The 
rmr2 is an R package from RHadoop; it offers the user the ability to write 
MapReduce functions in R. We implemented parallel SVM design with 
rmr2 for the comparative study in this case. The following shows the 
MapReduce implementation to obtain support vectors SV: We use this 
function as the example to show the difference in implementation with 
regard to the RPig version. The SV has exactly the same value as the RPig 
implementation we described.

svDfs ← mapreduce(input = inputPath,
 map = function(dummy, input) {
   ... # extracting the support vector sv
  keyval(1, list(sv)) },
 reduce = function(k, sv){
  val ← do.call(“rbind”, sv); keyval(1, val) }
)
SV ←from.dfs(svDfs)$val



212 Cloud Computing with e-Science Applications

The map function extracts the support vectors of every data subset and out-
puts a key-value pair, the value part is the support vectors sv. All outputs 
of the map functions have the same key value, integer 1, so the extracted sv 
of different data subsets will be collected and aggregated together by the 
reduce function. The final result SV can be retrieved for the value part of the 
key-value pair output of the reduce function.

To summarize this use case with RPig, parallel or iterative statistical algo-
rithms for distributed data sources are expressed as parallel R executions in a 
Pig data flow. Input data are treated as a number of distributed data sources with 
no centralized information during parallel R executions for each data source; 
aggregated results of distributed R executions as stepping stones are  relative 
to a final result of a final centralized R execution. Pig operations are used to 
distribute the data and tasks for parallel processing with multiple R engines as 
Map tasks. This approach allows parallel R executions to reduce the processing 
time. However, statistical errors may be caused by the iterative and incremental 
statistical algorithms as a trade-off and are acceptable in most cases [13, 14].

9.5.3.2  Result and Discussion

Both RPig and RHadoop allow a parallel SVM implementation in the 
MapReduce model. RPig just uses the FOREACH statement to parallelize 
the tasks as the Map functions. RHadoop allows the user to code the entire 
analytic job in R, but the user has to design the key-value pairs based on Map 
and Reduce functions. This creates complexity for the user in code design 
and development compared to RPig, especially when multiple MapReduce 
functions are necessary for complex analytic jobs. In the example described 
for obtaining SV, we wrote 16 lines of Pig and R code using RPig, but needed 
21 lines of R code for RHadoop because of writing the key-value pair func-
tions (Figure 9.4a). This again shows the concise programming of RPig.

A relatively small size data is used in this case since it is very CPU intensive 
as described previously. We split the data containing 12K training samples 
into 16 pieces to obtain support vectors and then we obtained the final SVM 
model at the end of the training. The performance of the SVM training phase 
with respect to the cluster size is shown in Figure 9.4b. RPig has almost iden-
tical performance compared to the RHadoop (rmr2 v2.2.2) implementations. 
There is a reduction of processing time as the cluster size increases, but the 
decrease in processing time is not exactly linear as there is a higher commu-
nication cost with a larger cluster.

In summary, RPig is able to scale out machine learning functionalities 
for deep analytics. We demonstrated this through an SVM use case. RPig is 
less complex to use and requires less development effort for writing parallel 
machine learning algorithms compared to RHadoop or others (e.g., RHIPE 
[15]), which require designing and writing key-value-paired Map and Reduce 
functions manually.
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9.6  Related Work

9.6.1  Related to R

With the emergence of big data analytics, many researchers are addressing 
the scalability issues of R. The existing approaches can be classified in three 
different categories:

 1. Scaling memory size: All data used in R calculations, such as lists 
and data frames, need to be loaded into memory; however, a single 
computer only has a limited memory size that restricts a large data 
set from being loaded into R. RevoScaleR [16] and bigmemory [17] 
are R packages that allow R to use a hard disk as external memory 
for calculations. This approach allows R to handle a data size much 
 bigger than its memory size since the size of the hard disk is gener-
ally much larger than the memory size of a computer.

 2. Scaling storage size: Terabyte-level big data are generally stored in dis-
tributed file systems, such as Hadoop clusters. To enable R to directly 
read/write data in these large-scale data warehouses, interfaces 
between these warehouses and R are developed, such as Ricardo 
[18], which offers a bridge between R and Hadoop HDFS. Comparing 
Ricardo to R bridging work on traditional RDBMS such as RJDBC [19] 
and RMySQL [20], SQL is replaced by a query language (Jaql), which 
can be executed in the MapReduce model in Ricardo. These approaches 
allow R to directly access data from database or file systems, but the 
R  script execution remains in a single computer. For parallel data 
analysis, it requires reimplementing most of a statistic algorithm in the 
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query language. In other words, we have to reimplement the SVM() 
function of R in Jaql for our second use case to parallelize the process.

 3. Scaling CPU power: Approaches for scaling out CPU power for R 
can be divided into MapReduce- and non-MapReduce-based imple-
mentations. MapReduce-based approaches are generally running 
on top of Hadoop. For example, both RHIPE [15] and RHadoop [3] 
extend R to allow writing key-value pair map and reduce functions 
within an R script. The MapReduce jobs of R can be submitted to a 
Hadoop cluster for parallel executions. However, these frameworks 
require users to manually design complex key-value pair-based map 
and reduce functions, making them difficult to use and inefficient 
for analysis job development. In our case with RPig, the key-value 
pair-based map and reduce functions are automatically generated 
by leveraging the Pig framework. The user only needs to define R 
functions for a single task node; the execution of the R functions is 
parallelized automatically based on Pig data flows. RHive [21] has 
the same concept as our work. It is an R extension facilitating distrib-
uted computing via HiveQL/SQL queries. However, it is restricted 
for the Hive data warehouse. And, considering the natural differ-
ences between Pig and SQL language, RHive is an alternative to 
RPig, but it cannot be a replacement.

Many approaches utilize non-MapReduce-based parallel frameworks, 
such as Open MPI [22], and packages such as Rmpi [23] and snow [24] pro-
vide bridge interfaces between R and MPI. CloudRmpi [25] supports man-
agement of an EC2 cluster and access to an R session on the master MPI node. 
Elastic-R [26] allows users to send data to any R engine in an R engine pool. 
However, the solutions do not support parallel data read/write as Hadoop; 
hence, they are not suitable for I/O-intensive scenarios. Furthermore, these 
solutions are difficult to use as the user must code send/receive message 
functions for master and slave nodes through complex MPI API.

9.6.2  Other Related Solutions

Some approaches try to build new systems without using traditional statistical 
frameworks, such as R. For example, Mahout [2] is a framework built on top 
of Hadoop with MapReduce-based machine learning algorithms. However, 
Mahout is only at an early stage; many commonly used algorithms, such as 
SVM, are not available yet. Second, it does not provide a high-level language, 
such as R and Pig; instead, complex Java APIs are provided. As a result, 
developing analytic jobs in Mahout is complex and  difficult. SystemML [27] 
proposes a new declarative machine learning (DML) language for machine 
learning on MapReduce. However, DML is not as flexible as R language; 
it does not support object-oriented features, advanced data types (such as 
lists and arrays), and so on in comparison with R. More important, SystemML 
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is the same as other newly developed frameworks, such as MLbase [28] and 
Cloudera ML [29], and also lacks commonly used statistic and machine 
learning algorithm implementations.

9.7  Conclusion

R provides comprehensive machine learning and statistical algorithms. 
However, the R execution environment is not distributed and is not con-
sidered scalable. In contrast, Pig supports parallel data processing using 
high-level language; but it does not provide implementations of common 
statistical algorithms; it lacks the necessary features for advanced statistical 
analysis. In this chapter, we presented an integrated RPig framework that 
takes advantage of both R and Pig, allowing scalable deep analysis while 
minimizing the development effort with concise programming.

We have described the design and implementation of an RPig framework. 
Based on the use case scenarios, we have demonstrated the use of our frame-
work. We have shown experimental results related to scalability and coding 
effort reduction with examples. We also did a comparison study in each use 
case experiment to show the difference or improvement over related work. 
Our future work will create an R package that would allow calling Pig in R.
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10
AutoDock Gateway for Molecular 
Docking Simulations in Cloud Systems

Zoltán Farkas, Péter Kacsuk, Tamás Kiss, Péter Borsody, 
Ákos Hajnal, Ákos Balaskó, and Krisztián Karóczkai

10.1  Introduction

Parameter sweep applications are frequent in scientific simulations and in 
other types of scientific applications. They require running the same applica-
tion with a very large number of parameters; hence, their execution time could 
be long on a single computing resource. As a result, collecting resources on 
demand from distributed computing infrastructures (DCIs), such as clouds 
or grids, is a highly desired feature of any computing environ ment that is 
offered for scientists to run such applications. Cloud computing infrastruc-
tures are especially suitable for such applications due to their elasticity and 
easy scaling up on demand.

CONTENTS

10.1 Introduction ................................................................................................ 217
10.2 WS-PGRADE Workflows and Parameter Sweep Application ............. 218
10.3 AutoDock Workflow ..................................................................................220

10.3.1 The AutoDock Application ........................................................... 221
10.3.2 AutoDock Workflows ....................................................................222

10.4 Migrating the AutoDock Workflows to the Cloud ................................ 224
10.4.1 Cloud-Based Execution in WS-PGRADE ................................... 224
10.4.2 Robot Certificates in WS-PGRADE/gUSE ..................................226
10.4.3 Cloud-Based AutoDock Workflows ............................................227

10.5 AutoDock Gateway ....................................................................................228
10.6 Execution Experiences and Performance ............................................... 231
10.7 Related Research ........................................................................................ 233
10.8 Conclusions .................................................................................................234
Acknowledgment ................................................................................................234
References .............................................................................................................234



218 Cloud Computing with e-Science Applications

Molecular docking simulations are a widely utilized application area in 
which parameter sweep scenarios are desired. Molecular docking simulation 
packages, for example, AutoDock [1], are applied by various disciplines, such as 
molecular biology, computational chemistry, or even psychology, and require 
a large number of cloud resources to increase the speed of computation.

To collect the required number of cloud resources, end users like  biologists 
and chemists would have to learn the cloud interfaces. However, instead of 
learning such information technology (IT) systems, they would rather like to 
concentrate on their own scientific field and research. To hide this low-level 
 technology from them, high-level user interfaces like science  gateways are 
required. WS-PGRADE [2] was designed with this idea to provide high-level 
graphical workflow abstraction for users to hide the low-level details of access-
ing the underlying cloud infrastructures. WS-PGRADE provides workflow tem-
plates that tremendously simplify the creation of parameter sweep (and other 
types of workflow) applications and takes care of accessing the required type 
and number of cloud resources. To achieve this, WS-PGRADE was integrated 
with the CloudBroker Platform (CBP), which enables accessing heterogeneous 
cloud resources, including Amazon EC2, IBM SmartCloud, Eucalyptus  [3], 
OpenStack [4], and OpenNebula [5] clouds. Moreover, WS-PGRADE also sup-
ports the development of intuitive and customized end-user interfaces to com-
pletely hide the underlying complexity from the scientist.

This chapter demonstrates how parameter sweep application scenarios, 
such as AutoDock-based molecular docking experiments, on cloud computing 
infrastructures can be efficiently supported by the WS-PGRADE framework 
that is the core technology of the European Union FP7 project SCI-BUS  [6], 
which is aimed at developing various science gateways for a large set of dif-
ferent scientific user communities.

10.2  WS-PGRADE Workflows and Parameter Sweep Application

WS-PGRADE workflows are represented as directed acyclic graphs 
(DAGs), for which nodes denote computational tasks (or some other work-
flow), and directed arcs denote data dependency between the different 
nodes. Figure 10.1 shows a workflow with six nodes, where different data 
dependencies are defined. When submitting this workflow, the first two 
nodes (Copy_A and Copy_B), as they have no prerequisites, are able to run 
immediately on the targeted computing infrastructure. Once Copy_A has 
finished and produced the necessary input for the Invert_A node, this job 
is ready for submission. Similarly, once Copy_B and Invert_A have both 
finished, WS-PGRADE can start processing the Multi_B node. That is, once 
all the  preceding nodes of a given workflow node have finished successfully, 
the given node is run by WS-PGRADE.
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In a nonparametric workflow, every node is run only once. However, it is 
possible to construct parameter sweep workflows in which a node of the 
workflow is submitted multiple times using different input data for the 
different submissions. Figure 10.2 shows an example construct for a param-
eter sweep workflow.

Figure 10.2 has been split into three parts: the generator phase at the top, 
the processing (parameter sweep) phase in the middle, and the resulting 
 collecting phase at the bottom. In the generator phase, WS-PGRADE runs 
special nodes in the workflow, the generator nodes. The task of these nodes is 
to produce the parameter space for the computation, for example, by splitting 
one big input data set into smaller chunks. The generator nodes produce the 
different inputs for the actual computation. In the processing phase, the nodes 
process all the inputs created by the generator nodes. If there were multi ple 
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generator nodes (as shown in Figure 10.2), then it is possible to specify how 
to pair the different inputs, using either cross or dot products of the files pro-
duced by the different generator nodes. Finally, if all of the node instances 
have finished in the processing phase, the collector nodes receive the results 
of the computations and can process them (e.g., they can search for the best 
result or can produce some sort of statistics). Note that these phases can be 
overlapped or repeated within a workflow; that is, generators and collectors 
can be placed into a workflow at any part of the graph without restrictions.

The configuration of workflow nodes can be performed through a  simple 
interface, as shown in Figure  10.3. It is possible to define the execution 
resource, the application, different resource-specific settings, the command 
line arguments, and the data used and produced by the job.

Once the configuration of the whole workflow has finished, it can be sub-
mitted. From this point, WS-PGRADE/gUSE is responsible for taking care of 
the nodes’ execution.

10.3  AutoDock Workflow

This section explains how to use the generic parameter sweep creation 
and execution technology described in the previous section for a concrete 

FIGURE 10.3
Configuration of a WS-PGRADE workflow node.
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application, namely, AutoDock. In fact, three different variants of AutoDock 
parameter sweep workflows have been developed, and they are described.

10.3.1  The AutoDock Application

Traditionally, in vitro studies have been used to investigate the binding of 
receptors to their ligands and enzymes to their substrates. These wet labo-
ratory experiments are both time consuming and expensive to carry out. 
An in-silico system based on computer simulations can facilitate the model-
ing of receptor-ligand interactions prior to the wet laboratory experiments 
and enable scientists to better focus the in-vitro experiments using only 
the most promising molecules. With the advances in computer technology, 
it is now feasible to screen hundreds of thousands of compounds against a 
single receptor to identify new inhibitors or therapeutic agents. However, 
the  modeling programs are not user friendly, and the relationship between 
results obtained by molecular modeling and by in-vitro studies and the 
newer biosensors still needs to be established.

AutoDock is one example of a program that allows in-silico modeling 
of intermolecular interactions. AutoDock is a suite of automated docking 
tools. It is designed to predict how small molecules, such as substrates or 
drug candidates, bind to a receptor of known three-dimensional (3D) struc-
ture. AutoDock currently comprises two discrete generations of software: 
AutoDock4 and AutoDock Vina.

AutoDock 4 is typically used to accurately model the molecular dock-
ing of a single ligand to a single receptor. In this instance, the process is 
composed of three discrete stages. First, a low-complexity sequential pre-
processing stage defines a random starting location in 3D space (termed the 
docking space) for both the ligand and the receptor. This is achieved using 
a tool within AutoDockTools (ADT) called AutoGrid. The locations, which 
are characterized by atomic energy levels at each point within the docking 
space, act as a single common input to a second stage. The second stage can 
comprise many parallel jobs, each receiving a copy of the ligand and receptor 
starting locations that form the input to a genetic algorithm. The algorithm 
acts to randomly rotate/reposition the ligand and then determine likely 
docking/binding sites based on energy levels, which are calculated from 
the original starting locations. This process can be considered a parameter 
sweep, where the varied input parameter is the initial random rotation of the 
ligand. Finally, a single low-complexity sequential postprocessing stage can 
be used to identify the most likely binding sites by comparing energies from 
all jobs of the preceding stage (where minimized energies represent likely 
docking sites).

AutoDock Vina provides several enhancements over AutoDock4, increas-
ing average simulation accuracy while also being up to two orders of 
 magnitude faster. Autodock Vina is particularly useful for virtual screening, 
whereby a large set of ligands can be compared for docking suitability with a 
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single receptor. In this instance, parallelism is achieved by first breaking the 
set of all ligands into equal-size disjoint subsets. Each compute job then uses a 
different subset as an input. The ligands in each subset are simulated/docked 
sequentially on the compute node using the single receptor; a postprocessing 
stage can be used to compare the results from all compute jobs.

Researchers from the School of Life Sciences at the University of West-
minster in London have set up a novel screening system [7] to analyze 
well-characterized protein-ligand interactions, for example, studying the 
interrogation of enzymes and receptors of the protozoan Trichomonas  vaginalis 
(TV). TV is an important organism, with 180,000 million women affected 
worldwide. It is also a proven cofactor for the acquisition of human immuno-
deficiency virus (HIV). Currently, only one drug is available, metroni dazole, 
and resistance has been reported. The cloning and publication of the TV 
genome offers new options for drug/inhibitor detection utilizing bioinfor-
matics and molecular modeling tools.

Westminster researchers constructed an in silico small molecule library of 
about 300,000 structures. Given a receptor file and the approximated position 
and size for the active site, the whole library was planned to be screened against 
the chosen receptor using the AutoDock Vina (http://vina.scripps.edu/) 
molecular docking tool. Once operational, the system could easily be utilized 
for other similar virtual screening experiments.

10.3.2  AutoDock Workflows

Three different parameter sweep workflows were developed (in the frame-
work of the EU FP7 ER-Flow project [8]) based on the AutoDock4 and 
AutoDock Vina applications and the previously described scenarios: the 
AutoDock workflow, the AutoDock without AutoGrid workflow, and the 
AutoDock Vina workflow.

The AutoDock workflow requires PDB (Program Database) input files 
(these are widely available in public databases), automatically converts these 
files into PDBQT format (which is required by the AutoDock application), 
calculates the docking space running the AutoGrid application, and docks 
a small ligand molecule on a larger receptor molecule structure in a Monte 
Carlo simulation. Finally, it returns the required number of lowest-energy-
level solutions. The workflow uses version 4.2.3 of the AutoDock docking 
simulation package. Users of this workflow are expected to provide input 
files for AutoGrid (molecules in PDB format), grid parameter file (GPF), dock-
ing parameter file (DPF), the number of simulations to be carried out, and 
the number of required results. The workflow is shown in Figure 10.4. This 
workflow is ideal for researchers who are less familiar with the AutoDock 
suite and command line tools and require a high level of automation when 
executing their experiments.

On the other hand, the AutoDock without AutoGrid workflow requires 
the scientist to run scripts from the AutoGrid application on his or her own 
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computer prior to the execution of the workflow. Although this requires 
 specific expertise, it also gives much more flexibility to the end user when 
preparing the input molecule and the docking space. As a consequence, 
this workflow requires PDBQT input files and the output of the AutoGrid 
application, and (similar to the previous workflow) it docks a small ligand 
 molecule on a larger receptor molecule structure in a Monte Carlo simu-
lation using 4.2.3 of the AutoDock docking simulation package. Users of 
this workflow are expected to provide a docking parameter file, a ZIP file 
containing input files for AutoDock that were generated using version 4.2.3 
of AutoGrid and the former docking parameter file, the number of simula-
tions to be carried out, and the number of required results. This workflow is 
shown in Figure 10.5.

Finally, the AutoDock Vina workflow performs virtual screening of mole-
cules using version 1.1.2 of AutoDock Vina. It docks a library of small ligands 
on a selected receptor molecule. Users of this workflow are expected to pro-
vide a configuration file for AutoDock Vina, an input receptor molecule in 
PDBQT file format, a ZIP file containing a number of ligands in PDBQT file 
format, the number of simulations to carry out, and the number of required 
results. The workflow is shown in Figure 10.6.
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As can be seen in the figures, all of the workflows follow the generator 
node–parameter sweep node–collector node semantics. The generator nodes 
are executed locally, on the portal server. The parameter sweep nodes are 
executed in a targeted distributed computing resource, which in the first 
version of the gateway was the EDGeS@home volunteer desktop grid (DG). 
It is important to note that, for performance optimization, the AutoDock and 
AutoDock without AutoGrid workflows are submitting one single  metajob 
to the desktop grid server. This means that the actual parameter sweep 
expansion will happen on the DG server and not on the portal side (i.e., from 
the portal’s point of view, these workflows are not real parameter sweep 
workflows, but from the point of view of the whole processing, they are, as 
a number of workflow node instances will be generated on the DG server). 
The collector nodes are executed locally, on the portal server.

The task of the generator nodes is to set up the parameter space for 
the  middle nodes. In the case of the AutoDock and AutoDock without 
AutoGrid workflows, this node is simply generating a metajob description 
for the DG server, whereas in the case of the AutoDock Vina workflow, the 
generator node distributes the ligands provided by the user in a ZIP file 
into as many packages as the number of simulations set by the user during 
the workflow’s configuration.

The middle node of the workflows is responsible for the actual parameter 
sweep processing. As mentioned, in the case of the AutoDock and AutoDock 
without AutoGrid workflows, the parameter sweep expansion happens on 
the DG server, whereas in the case of the AutoDock Vina workflow, this 
 happens on the portal server, and parameter sweep job instances will be 
submitted to the DG server.

Finally, the task of the collector nodes is to evaluate the results of the 
parameter sweep executions and collect the best dockings for the user.

10.4  Migrating the AutoDock Workflows to the Cloud

This section presents how the AutoDock workflows have been migrated to a 
cloud infrastructure, including all the necessary features of WS-PGRADE/gUSE 
and the migration process.

10.4.1  Cloud-Based Execution in WS-PGRADE

WS-PGRADE offers access to a number of DCIs, including clusters, grids, 
DGs, and clouds. Access to cloud systems is solved with the help of the CBP 
[9]. The CBP offers unified access to most major cloud infrastructures, such as 
Amazon EC2, IBM, Eucalyptus, OpenStack, and OpenNebula, at three dif-
ferent levels: the web interface, a RESTful web service, and a Java application 
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programming interface (API). The web interface and the REST API offer 
access to most of the CBP functionalities, with the first one offered for users 
and the second one offered for developers for integrating CBP features into 
their products. Finally, the Java API offers a convenient tool for accessing the 
majority of CBP features from Java applications. WS-PGRADE uses the Java 
API of CBP to access the different cloud services.

The integration of WS-PGRADE and CBP aims to hide details of the cloud 
infrastructure used. As shown in Figure 10.3, after the users have selected 
to use a cloud infrastructure for their workflow node, all they have to do 
is select an application already deployed in the cloud (or indicate that they 
would like to run their own application and upload it) and select a cloud 
resource for the computation, for example, Amazon EC2 or OpenNebula. 
Once the workflow has been configured and submitted, execution of the 
selected applications with the provided data is arranged in the background 
by WS-PGRADE/gUSE and the CBP.

The integration architecture of WS-PGRADE/gUSE and CBP is shown in 
Figure 10.7.

The top of Figure  10.7 represents WS-PGRADE and gUSE. Based on 
WS-PGRADE, a number of customized science gateways (Proteomic, Seis-
mology, Rendering, etc.) can be created that can hide the workflow con-
cept of WS-PGRADE through a simplified user interface. WS-PGRADE 
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itself interacts with the CBP through two different portlets: the Workflow 
 portlet (for creating, configuring, and running workflows) and the Authenti-
cation portlet (for specifying the CBP credentials to be used by the user). 
The CBP credential set by the user in the Authentication portlet is used by 
WS-PGRADE/gUSE to communicate with the CBP service on behalf of the 
user (please note that the requirement toward users to specify CBP creden-
tials can be eliminated by assigning robot certificates to existing workflows).

Once the workflow has been configured and submitted with the help of the 
Workflow portlet, the set of back-end components (gUSE) are responsible for 
arranging the workflow’s execution. The Workflow Interpreter (WFI) is used 
to schedule nodes of the workflow for execution, and the DCI Bridge is used 
to actually make the different job instances run in the selected DCI (cloud, in 
our case). Both WS-PGRADE and gUSE components are using the CBP Java 
API to access the CBP service. Once the individual job instances have been 
sent to the CBP by the DCI Bridge, the CBP is responsible for arranging the 
jobs’ execution on the selected cloud service.

10.4.2  Robot Certificates in WS-PGRADE/gUSE

As presented previously, accessing the services of the CBP to run jobs on 
cloud infrastructures assumes that the user possesses proper CBP creden-
tials. In addition to CBP, there are many DCIs that have such requirements 
(e.g., gLite, ARC, or UNICORE). If gateway providers would like to expose 
workflows for their users with nodes configured to use such infrastructures, 
then users will face the difficulty of managing the proper credentials for actu-
ally submitting the workflows. To eliminate this need, WS-PGRADE/gUSE 
has been extended with the robot certificate extension that enables workflow 
developers to assign predefined credentials for jobs that require some sort of 
authentication with the DCI to which they are targeted.

Figure  10.8 shows the interface for setting a CBP robot credential for a 
workflow node set to run on a cloud infrastructure.

After the computing resource has been set, the Create association…  button 
has to be clicked, and the CBP (or some other DCI-specific, depending 
on the  target DCI) credentials have to be set in the pop-up window that 
appears. From this point, it is impossible to modify the target infrastructure 
and the executable of the workflow node as long as the given association is 
not removed.

Once a workflow with nodes set to use DCIs requiring authentication but 
with proper robot certificates assigned to these nodes is exported to the 
local repository, users not possessing the required credentials will be able 
to import and actually run the workflow with the robot certificates assigned. 
The use of robot certificates will be completely hidden from the user; the 
only thing the user will see is that the workflow can be submitted and is 
running properly.
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10.4.3  Cloud-Based AutoDock Workflows

We are going to present the way to migrate an existing workflow to the cloud 
based on the AutoDock Vina application.

The migration of the generator and collector nodes was required to follow 
the following steps:

• Reconfigure the nodes to run on the cloud: For this the node’s con-
figuration window (see Figure 10.3) had to be opened; and the node’s 
type had to be set to cloudbroker; the name to platform; the resource, 
region and instance type to MTA SZTAKI.

• Assign robot certificates to the nodes: As accessing the cloud resources 
requires CBP credentials but it is not feasible to ask every end user of 
the customized gateway to have a valid CBP credential , a CBP robot 
credential had to be set for the nodes. A dedicated account for the 
AutoDock users in the CBP with access granted to the MTA SZTAKI 
OpenNebula cloud infrastructure has been  created, and this account 
has been set during the nodes’ configuration as seen in Figure 10.8.

The migration of the parameter sweep node was a bit more difficult, as this 
node of the original workflow was set to run on a volunteer DG. In the case 
of DG applications, the executable resides on the DG server and may consist 
of multiple files (one “main” executable and supporting files), such as for the 
Vina DG application. The DG application is only referenced by name in the 
WS-PGRADE workflow’s configuration.

To migrate such an application to the cloud, all executable files of the DG 
application need to be collected from the DG server and the workflow must 
be reconfigured to submit these files from the portal server. In the case of 
a multi file application, there are two options: either the workflow node 
has to be configured to run the main executable and additional input files 

FIGURE 10.8
Robot certificate association.
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representing the supporting files that have to be added to the workflow node 
or a single self-extracting archive can be created based on all the executable 
files. Simply, this self-extracting archive should be specified as the applica-
tion to run for the workflow node.

In the case of the Vina application, we followed the second approach, with 
the help of the makeself UNIX tool [10]. Figure  10.9 illustrates this multiple 
executable file problem and the solution. The executables belonging to the 
DG AutoDock Vina application are bundled into a single self-extracting shell 
script that can be used as the executable for the Vina node in the Vina work-
flow when configuring the node to run on the cloud.

10.5  AutoDock Gateway

This section explains how to provide user-friendly gateway interface for the 
end-user scientists who are not interested even in the workflows. They just 
want to use the AutoDock workflows as black box applications and param-
eterize and run them in an efficient and fast way in the connected cloud 
 systems. In the previous sections, we showed how to use WS-PGRADE/gUSE 
to develop and configure the workflows to run in clouds. In this section, 
we show a unique feature of our gateway technology. This is the end-user 
view of the WS-PGRADE gateway that can be easily created without any 
further programming by simply reconfiguring the gateway. In this view, the 
end-user scientists cannot see the workflows, only their parameter options, 
through which they can specify their required input parameters. Then, the 
gateway automatically executes the AutoDock workflows in the connected 
clouds in an optimal way.

Once the AutoDock workflows are ready, it is simple to create an end-user 
mode portal for them. Only two steps have to be performed: create templates 
of the workflows and set the end-user mode as default on the portal.

The template is a special workflow type in WS-PGRADE/gUSE, contain-
ing all the properties of a workflow and restrictions on which properties 
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can be modified and which cannot. Those properties that can be modified 
may have a short description, which can be assigned during the template’s 
configuration. In Figure 10.10, the AutoDock workflow’s receptor.pdb input 
file (belonging to the AutoGrid job) is configured: We have set the Upload 
property to free, meaning that the users will be able to upload their own files 
to be used as receptor.pdb by the AutoGrid job. Other properties are closed, 
meaning the users will not be able to modify (or even see) them. Once a tem-
plate is ready, it can be exported to the internal repository, so that other users 
of the portal may run them.

Once all the templates are ready and have been exported into the internal 
repository of WS-PGRADE, the portal can be set into the end-user mode. 
In  this mode, new users will receive only the End User role. The setting 
can be performed in Liferay’s Control Panel, and the process is described 
in the WS-PGRADE/gUSE Admin Manual [11] in detail. Once this is set, any 
new user registering to the portal will be an end user and will see only a 
restricted set of portlets. Figure  10.11 shows the portlets available for end 
users in the case of the AutoDock portal: Only workflow importing and 
configuration/execution are possible; workflow creation, storage  browsing, 
and other advanced features are hidden from the end users. Of course, the 
visibility of the different portlets can be fine-tuned; this process is also 
described in the WS-PGRADE/gUSE Admin Manual.

Execution of workflows in the end-user mode is really simple: First, 
the desired workflow has to be imported (select End User/Import as in 
Figure 10.11 and select the desired workflow as shown in Figure 10.12).

Once the workflow is imported, it can be configured (see End User/Configure 
in Figure 10.11) by clicking on the “Configure” button in the workflow list.

After the workflow’s configuration, the workflow can be executed, and the 
execution can be monitored. Figures  10.13 to 10.15 show the configuration 

FIGURE 10.10
Template configuration.
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FIGURE 10.12
Select the workflow to import.

FIGURE 10.13
Configuration of a workflow in the end-user mode.

FIGURE 10.11
End-user mode on the AutoDock Portal.
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of workflow parameters, the list of workflows imported, and the details of 
a workflow’s execution in the end-user mode, respectively. As can be seen, 
a  progress bar is presented about the workflow’s execution, so users can 
 follow their experiments’ progress visually.

10.6  Execution Experiences and Performance

This section describes how the AutoDock workflows are actually executed 
on cloud systems. Performance measurements show the possible optimi-
zations of the gateway back-end mechanism and the CBP to minimize the 
execution time.

The selected application to perform the performance measurement was 
the AutoDock Vina workflow, with the input set size of 8,500 ligands. The 
measurements have been performed by distributing this input set among 25, 
100, 250, and 1,000 jobs. Each scenario has been executed on the DG and the 
cloud. Although we performed the measurements in the different scenarios , 
we are only presenting our experiences with the 1,000-job scenario as the 
others showed similar results. The measurements were conducted on the 
SZTAKI Cloud with 25 virtual machines allocated for the experiments 
and the EDGeS@home DG with variable and unpredictable active clients 
(about 2,000 to 3,000 at a time) available.

FIGURE 10.14
List of workflows imported.

FIGURE 10.15
Workflow progress monitoring in the end-user mode.
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Figure 10.16 shows the case when the inputs were split into 1,000 jobs. 
The x axis of the figure represents the elapsed time, and the y axis repre-
sents the number of (running and finished) jobs. As can be seen, it took 
more than twice as long to process the jobs on the DG as on the cloud. 
In  the case of both the DG and the cloud execution, we can see a short 
“ running up” period, followed by a steep processing phase; finally, the last 
jobs’  processing slows.

The job processing figure of the DG case is a bit steeper; thus, processing 
jobs on this DCI (with 2,000 to 3,000 active clients) is a bit faster than in 
the cloud (with 25 processors). However, in the case of the volunteer DG, 
we can clearly observe the tail effect, which means that the last 10%–20% 
of the jobs required nearly as long an execution time as the first 80%–90% 
of the jobs. The tail effect is missing in the case of the cloud execution; 
hence, the overall execution time is much shorter on the cloud. Notice that 
the tail effect is a well-known problem of volunteer computing, and there 
are several ways of eliminating it [12, 13]. One of the possible solutions is 
exactly the support of large volunteer DGs with relatively small dedicated 
clouds that run the last 10%–20% of the jobs concurrently with the DG. 
It has been presented [12] that with such a technique the tail effect can be 
reduced significantly.
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10.7  Related Research

This section compares our research with others’ targeting similar objectives 
in distributed computing (such as grid or cloud) environments. This section 
clearly shows our major contributions to this field.

There are several research projects investigating how biomolecular appli-
cations, particularly molecular docking simulations, can be run on distrib-
uted computing platforms. Some examples of DCI-based molecular docking 
simulations are detailed in this section. Most of these experiments are on 
grid computing resources with rare exceptions currently for the utilization 
of clouds.

Tantar et al. [14] gave an overview of current efforts on how large-scale 
parallel computing is applied to molecular simulations. The authors are also 
involved in the Docking@Grid project [15] that aims to define the optimal 
deployment architecture for grid-based molecular docking simulations and 
provide the accurate definition of the molecular energy surface.

The WISDOM project [16] is an international initiative to enable a virtual 
screening pipeline on a grid infrastructure. WISDOM was the first large-scale 
in-silico docking experiment on public grid infrastructure. The project has 
developed its own meta-middleware that utilizes the EGI (European Grid 
Infrastructure) production infrastructure and is capable of submitting and 
executing a large number of jobs on EGI resources. Although the WISDOM 
production environment is capable of submitting any kind of application, 
the flagship application of the project is AutoDock.

Tantoso et al. [17] described a similar approach for Globus-based grids. 
A web interface has been developed by the authors to execute experiments 
using AutoDock3.05 on target grid resources. A small workflow automates the 
process, which includes the preparation of the receptor, creation of parameter 
files, calculation of grid energy, and finally the actual docking of the molecules.

Cloud-based molecular docking environments are currently hard to find 
in the literature. The only example we know about was written by Kiss et al. 
[18]; the authors described the implementation of similar molecular docking 
experiments on Windows Azure-based clouds. However, that implementa-
tion was closely coupled with the Azure infrastructure, and the user inter-
face is less flexible, making further improvements difficult.

There are also examples for the utilization of higher-level user interfaces 
for molecular simulations, all based on grid computing infrastructure. The 
Australian BioGrid portal [19] uses the DOCK [20] molecular docking software 
for the simulations. This work is part of the Virtual Laboratory Project that aims 
to utilize grid technologies for solving large-scale compute and data-intensive 
applications in the area of molecular biology. The project uses the Nimrod 
Toolkit and the World Wide Grid test bed [21] to conduct the experiments.
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The European Chemomentum project developed a collaborative environ-
ment based on the UNICORE grid middleware technology to support a 
wide range of applications in the area of natural and life sciences [22]. Among 
other applications, the project targeted the AutoDock docking software. 
The Chemomentum environment also supports the creation and execution 
of workflows on UNICORE resources.

10.8  Conclusions

As we showed in the section on related research, other AutoDock solutions 
are tailored to the specific grid or cloud environment. The advantage of our 
solution comes from its flexibility. First, it is easy to generate various AutoDock 
gateway workflows for different types of users having different IT expertise 
and different biological simulation targets. Second, these workflows can be 
easily reconfigured to run in various DCIs, including clusters, supercomput-
ers, grids, DGs and clouds. In the current chapter, we showed the case when 
the workflows running originally on DGs were migrated into cloud resources. 
Even in the cloud environment, it is extremely easy to reconfigure the work-
flows to run them in various clouds, such as Amazon, IBM, OpenNebula, 
and OpenStack, due to the integration of WS-PGRADE/gUSE with CBP. This 
 flexibility, of course, can be applied for workflows developed in other fields of 
science, making the WS-PGRADE/gUSE gateway technology widely usable 
in many different areas of science and commercial activities as demonstrated 
by the various science gateways developed in the EU FP7 project SCI-BUS.
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Summary

Cloud computing has started to change the way research in science, in particu-
lar biology and medicine, is being carried out. By utilizing different cloud mod-
els, biological and medical researchers can take advantage of scalable resources 
that can be accessed on demand. However, there are also dis advantages in 
using the cloud, for example, usability issues in infrastructure-as-a- service 
(IaaS) clouds, limited language support in platform-as-a-service (PaaS) 
clouds, and lack of specialized services in software-as-a-service (SaaS) clouds. 
To resolve known issues, we propose the development of research clouds 
for high-performance computing as a service (HPCaaS) to enable research-
ers to take the role of cloud service developer. A prototype of our proposed 
cloud framework has been developed and a case study provided that dem-
onstrates how HPCaaS research clouds can simplify genomic drug discovery 
via access to cheap, on-demand high performance computing (HPC) facilities. 
Cloud-based technologies—in all of their many varieties—have completely 
transformed enterprise information technology (IT). These technologies have 
revolutionized how users access computational resources, empowering users 
with on-demand access to computational resources exposed as services, their 
high scalability, and availability, and providing services through easy-to-use 
web forms. With the world moving to web-based tools to support business 
activities such as share trading and e-commerce, as well as daily life activities 
such as online shopping and banking, it is no wonder that computational biol-
ogists and pharmaceutical companies are also moving toward cloud-based 
e-science (web-based online science) to conduct their research (Subramanian 
2012). This chapter presents an SaaS cloud framework to support genomic and 
medical research. By first investigating how HPC is delivered on clouds, the 
problems encountered by researchers utilizing the cloud to run HPC applica-
tions are identified. To solve these issues, a research cloud framework is pro-
posed that incorporates aspects of currently used e-science and cloud solutions 
that support research (in biology and medicine). This framework simplifies 
cloud access and cloud resource management while allowing researchers to 
take the role of a cloud service developer. A prototype of our proposed cloud 
framework, called Uncinus, was then implemented and validated through a 
case study that demonstrates how research clouds can simplify personalized 
medicine via access to cheap, on-demand HPC facilities.

11.1  Introduction

In recent years, a number of cloud-enabled tools have been developed to sup-
port e-science, aiming to support collaboration between scientists, make the 
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use of computer systems easier, and decrease the time for data analysis. Tools 
developed specifically for computational biology research include scientific 
workflow systems such as Galaxy (Goecks et al. 2010); web  portals for analyz-
ing and sharing genomic data such as expression-package (EXP-PAC) (Church, 
Goscinski, and Lefèvre 2012); and dedicated sequence-processing software 
such as Bowtie (Langmead et al. 2009). Running these scientific applications, 
in many cases, requires a huge amount of computational power to execute 
complex algorithms or to process big data. High-performance computing 
(HPC) can provide computer facilities that perform the large and complex 
simulations and database searches required for research within reasonable 
time frames. However, using HPC scientific systems and applications is dif-
ficult for many scientists who are not computing specialists. It is also a natural 
expectation of these discipline specialists to be provided with packages/tools 
that do not require deep knowledge of programming and system manage-
ment and allow them to use their specialist backgrounds; these packages or 
tools should be similar to already available easy-to-use software packages.

HPC requires powerful and expensive computational hardware, data stor-
age, advanced middleware, and sophisticated distributed discipline-oriented 
applications. The process of managing HPC resources requires in-depth 
system administration skills, for which many scientists are not prepared. 
Furthermore, due to their high initial purchase price and maintenance costs, 
HPC resources are only affordable for rich institutions. As a result, these 
resources are shared by many researchers, which leads to long waiting times 
for application execution. Thus, many researchers cannot access HPC infra-
structures when needed; they often scale down their applications to reduce 
waiting times. It is these barriers that have hindered many researchers in 
achieving innovative discoveries for which they must rely on HPC resources.

A response to the problem faced by discipline specialists lies in cloud 
computing (Goscinski, Brock, and Church 2011). Clouds promise to relieve 
the pressure put on the demand of affordable, scalable, and on-demand 
HPC resources that can provide users faster turnaround times on their 
experiments. Providing users faster turnaround times on their experiments 
using clouds has been one of the major issues promised to be addressed in a 
new version of A Grid and Virtualized Environment (AGAVE) (2012). Public 
cloud vendors, including Amazon’s Elastic Compute Cloud (EC2) (Amazon 
2010), have provided solutions specifically designed for running HPC appli-
cations. EC2 is an excellent example of an infrastructure-as-a-service (IaaS) 
cloud offering raw processing and storage services. Other vendors provide 
 platform-as-a-service (PaaS) clouds where users can access an integrated 
software platform for building HPC applications themselves as well as run-
ning HPC applications on cloud resources. Examples include Microsoft’s 
Azure (Chappell 2009) and Google’s AppEngine (Gibbs 2008). Furthermore, 
these clouds also provide the ability to scale on demand as the users’ require-
ments change, accelerating the discovery of new knowledge in various 
fields of research. Clouds can also provide software on demand; examples 
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of software-as-a-service (SaaS) clouds include science cloud, a drug discov-
ery information management technology (Accelrys 2011). Thus, discipline 
specialists now have access to on-demand, scalable, and pay-as-you-go HPC 
facilities. However, while clouds alleviate the costs of procuring required 
information technology (IT) resources, the cost and time of learning how to 
prepare an HPC cloud and its applications remain a problem to many users.

The rest of this chapter is divided as follows: Section 11.2 investigates how 
HPC applications are delivered on clouds. The types of HPC applications 
that suit clouds are examined, as well as how these applications can be pro-
vided to researchers.

Section 11.3 presents a framework for publishing cloud resources and cloud 
applications. This framework incorporates methodologies used by current 
e-science and research clouds to simplify the development of SaaS applications.

Section 11.4 describes an implementation of the proposed framework. The 
outcome of this section is Uncinus, a prototype research cloud that supports 
the publication of software and cloud resources.

Section 11.5 consists of a case study in which Uncinus is used to analyze 
genomic cancer data. By building a genetic profile of cancer tissues, the can-
cer subtype was identified, which has ramifications in providing personal-
ized treatment for cancer. Through this case study, it is shown how medical 
software can be published, exposed, and deployed on cloud resources with-
out the need for complex deployment procedures.

Finally, in Section 11.6 a conclusion of the work carried out and an analysis 
of achieved results are presented.

11.2  Delivering HPC on Clouds

To deliver HPC on the cloud, an understanding of the cloud, software to 
be run, and cluster management is required. Using this knowledge, the 
user must profile the HPC application to be run and select the right cloud 
resources. This resource selection process has a large effect on the time and 
cost of running HPC applications in the cloud. Once resources have been 
selected, the cloud must be configured to enable HPC applications. Most 
cloud resources that support HPC are provided at the IaaS level (in the 
form of virtual machines). The user must be able to configure these virtual 
machines into the form of a cluster, installing middleware and schedulers 
and deploying HPC applications. The complexity of enabling HPC on the 
cloud is beyond the scope of most biology and medical researchers. However, 
solutions exist in the form of e-science applications and research clouds that 
aim to lessen the computing knowledge required to carry out research on 
HPC resources and the cloud.
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11.2.1  Supporting HPC Applications in the Cloud

Traditionally, clouds have been created for business, not to support HPC. 
However, these days, clouds can support some HPC workloads. Clouds are 
oriented to support high-scalability computing (HSC) rather than HPC, 
although with the improvement of communication performance they are 
becoming a major tool for HPC. Like clusters and grids, clouds also capi-
talize on distributed resources for applications. A question could be asked 
regarding what kind of HPC applications could be executed on a cloud. 
An answer to this question is provided in Figure 11.1 (Mell and Grance 2009). 
This figure also specifies the scope of our research in terms of workload and 
HPC/HSC clouds.

Some public cloud vendors, including the Amazon’s EC2 (Amazon 2012) 
have provided solutions specifically designed for running HPC applications. 
EC2 is an excellent example of an IaaS cloud in that computing infrastructures 
such as computers, storage devices, and networks are provided to users. There 
are also private and community IaaS clouds in Australia, including NeCTAR 
(Kirby 2012), that provide on-demand computing resources to academics and 
researchers to run HPC applications. Thus, discipline specialists now have 
on-demand access to HPC facilities that they need with flexible pay-as-you-go 
pricing methods. HPC clouds give users the opportunity to test and run their 
parallel applications in the cloud at a price and performance level within 
what would otherwise be unviable budget constraints. They also provide the 
 ability to scale on demand as the users’ requirements change, accelerating the 
discovery of new knowledge in various fields of research. Thus, clouds can 
provide discipline specialists faster turnaround times on their experiments.

While the benefits of cloud computing are numerous, delivering HPC on 
cloud resources is complicated. Currently, before researchers are able to fully 
utilize HPC clouds, they must understand how clouds are designed. Time 
must be taken to select cloud resources and enable HPC on the cloud. Selection 
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Workflows and HPC/HSC systems.
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of the cloud resources has a huge effect on runtime of an HPC application 
(Church and Goscinski 2011). Non-HPC-enabled clouds are the ideal  platform 
for running embarrassingly parallel applications (e.g.,   common genetic 
 analysis applications such as mpiBLAST). Embarrassingly parallel  applica-
tions can take full advantage of cloud scalability to reduce the time and cost of 
analysis. However, performance studies (Goscinski, Brock, and Church 2011; 
Expósito et al. 2013) have shown that, when running communication-bound 
applications, clouds should make use of hypervisors with low overhead and 
high-speed interconnection.

Once cloud resources have been selected, additional steps must be carried 
out to enable the use of clouds as a distributed computing system. The steps 
taken are dependent on the cloud service model. At the IaaS level, this involves 
construction of a virtual cluster, compilation, and deployment of distributed 
software. These tasks were previously the job of system administrators and 
are beyond the scope of most discipline (even computing) researchers. PaaS 
is aimed at developers, providing users with a development environment 
and automating the deployment of resources. The problem of this approach 
is that the user has limited access to development tools and programming 
languages, thereby limiting the scientific applications that can be deployed. 
At the SaaS level, the user is able to access HPC applications through graphi-
cal interfaces; however, the user is reliant on whichever cloud services have 
been made available. In specialist research areas such as gene expression 
profiling and drug discovery, such software would have expensive licenses 
or not be readily available.

In summary, the complex process of selecting cloud resources and con-
figuring the cloud is beyond the scope of most noncomputing researchers. 
However, a number of solutions exist to simplify the use of HPC applications 
and cloud resources.

11.2.2  Solutions Supporting Research on the Cloud

An analysis of the current state of projects and development of computing-
based packages and tools to support researchers leads to two major areas: 
(1) e-science tools based on web application programming interfaces (APIs) 
and grids (clusters or clusters of clusters) and (2) research clouds, in particu-
lar research applications exposed as cloud services (SaaS). Through e-science 
tools, researchers can run complex software without directly interacting with 
computing resources; examples include HubZero, P-GRADE, and AGAVE.

HubZero (McLennan and Kennell 2010) is an open-source software plat-
form for creating dynamic websites that support scientific research and educa-
tional activities and promote scientific collaboration using primarily the grid 
infrastructure. By using HubZero, a scientific gateway (website) containing 
discipline-specific resources, including software applications as well as data 
repositories, can be formed, and users of the scientific gateway can contribute 
by putting their own applications and data into the gateway for sharing.



243SaaS Clouds Supporting Biology and Medicine

The P-GRADE Grid Portal (Kacsuk 2011) is a web-based, service-rich environ-
ment for the development, execution, and monitoring of workflows and 
workflow-based parameter studies on various grid platforms. P-GRADE 
Portal hides low-level grid access mechanisms by high-level graphical inter-
faces, making even non-grid expert users capable of defining and executing 
distributed applications on multi-institutional computing infrastructures. 
Workflows and workflow-based parameter studies defined in the P-GRADE 
Portal are portable between grid platforms without learning new systems or 
reengineering program code.

AGAVE (2012) is a software development tool, developed by the Texas 
Advanced Computing Center (TACC). AGAVE seeks to make the separation 
of science and computing a bit easier by providing a set of REST APIs for 
performing distributed and grid computing. AGAVE excels in its ability to 
provide a holistic view of distributed heterogeneous systems that may span 
organizational domains into a single, cohesive platform on which modern 
web applications can be built. The next version of AGAVE promises to include 
new types of systems, such as public and private clouds, to give users faster 
turnaround times on their experiments.

While e-science applications are easy to use and thus appealing to research-
ers, they are time consuming and require specialized knowledge to develop. 
Similar to e-science applications, SaaS allows researchers to access complex 
software with minimal computing knowledge. Development of SaaS is per-
formed through research clouds that focus on simplifying access to cloud 
resources while leaving software development and exposure to a service 
provider. Examples of research clouds include Aneka, extensions to Globus 
and Nimrod, and the HPC Hybrid Deakin (H2D) cloud.

Aneka (Calheiros et al. 2012) is a framework for development, deployment, 
and management of cloud applications. Through a middleware approach, 
it  provides modules to monitor cloud resources. Development in Aneka 
makes use of predefined programming methods (Task, Threads, MapReduce, 
and Parameter Sweep), each with different scheduling and execution method-
ologies. Aneka relies on a software engineer to develop and expose services.

Recent work from the University of Chicago (Liu et al. 2012) deployed a 
bioinformatics workflow across local and Amazon EC2 resources. Combining 
the features of Galaxy and Globus allows for a robust research cloud that sup-
ports automated graphical user interface (GUI) generation, software sharing, 
and workflow deployment. During workflow deployment, data were trans-
ferred through a web interface and resources selected manually through 
 creation of a topology file.

Work by Bethwaite et al. (2010) extended the Nimrod tool family to support 
the Amazon EC2 cloud, allowing access to grid and cloud resources. Four 
methods of scheduling are available based on user requirements: limited by 
budget (time), unlimited budget (time optimal), limited by time (cost), and 
limited by budget and time (none). Nimrod scheduling divides resources 
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into slots based on the processor cores per instance and number of cores 
required per job.

The last solution is the H2D cloud (Brock and Goscinski 2012), which pro-
vides services to discover compute resources and deploy data and appli-
cations. This cloud platform is capable of utilizing both local and remote 
computational services for single large, embarrassingly parallel applications. 
In this solution, compute resources are published to a dynamic broker ser-
vice that monitors the state of available compute resources.

By providing scientific software at the SaaS level, it is possible to mini-
mize the computational knowledge requirements needed to access cloud 
resources. SaaS eliminates the time-consuming tasks of software deploy-
ment and hardware setup/management, in particular resource selection and 
allocation; however, due to the specialized nature of state-of-the-art research, 
there is limited incentive for attracting cloud software service providers.

11.2.3  Conclusion

While originally their purpose was to support business applications, cloud 
providers have moved to support HPC applications. These HPC clouds 
have large amounts of memory, computing power, and high-speed network 
interconnections. By using these clouds, users can access HPC resources on 
demand without the need for supporting staff or purchasing expensive hard-
ware. However, to deliver HPC on the clouds, a complicated setup process 
must be undertaken. Care must be taken to select cloud resources that suit 
the HPC application being run. Cloud resources must then be configured 
to allow HPC applications to be run; often, this involves the construction 
and management of a virtual machine cluster. The computing knowledge 
required to configure, access, and use cloud resources makes clouds unsuit-
able for the majority of researchers.

To support research on clouds, access to resources and complex software 
must be provided to researchers with limited computing background. Two 
areas that have shown success in bridging the knowledge gap between com-
puting and research are e-science and research clouds. The approach taken 
by e-science applications and research clouds relies on the abstraction of 
computing resources from the application logic. While the tools generated 
from these approaches appeal to researchers, they are not an ideal solution 
for specialized research. The development of e-science applications requires 
a multidisciplinary skill set, while the research cloud approach relies on 
financially motivated providers.

The investment required to develop services for specialized research areas 
(with a limited market) is not attractive for service providers looking to make 
a profit. Therefore, the solution is to devise a research cloud that enables 
researchers to take the role of cloud developer. This research cloud should 
implement scheduling and execution as well as enhanced features relating 
to service composition and resource discovery. Such a cloud can incorporate 
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the features found in e-science packages: the application sharing supported 
by HubZero, P-GRADE’s low-level abstraction methodology, and AGAVE’s 
separation of scientific logic from computing. A potential cloud solution was 
investigated through the development of a research cloud framework.

11.3  A Research Cloud Framework

Known issues can be resolved by developing a unified cloud framework that 
allows researchers to easily deploy and expose HPC scientific applications 
in public clouds as services (Wong and Goscinski 2013). Each of these SaaS 
cloud services is such that it abstracts both the complex deployment effort 
and the tedious command line execution style of HPC scientific applications 
into just a web form for scientists to comfortably perform computational 
research in the clouds.

The basis of our cloud solutions is a framework (see Figure 11.2) that aims 
to deliver HPC applications to scientists as SaaS cloud services. This frame-
work enables two different processes: cloud software development and 
cloud service publication. During cloud software development, each HPC 
application is described by a set of attributes and their associated values. 
Three major attributes of an application service are (1) a virtual machine 
image where a targeted HPC application has been properly installed and 
configured, (2) a web form where parameters for the HPC application 
would be collected and then passed to the API of the HPC application, and 
(3) a host location for service invocation, (e.g., SaaS resources). During cloud 
service publication, these attributes are published to an HPC application 
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FIGURE 11.2
An overview of HPC cloud framework.
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services registry. The HPC application services are proposed to be stored in 
such a manner that their discovery and selection are easy. This implies that 
the invocation advice and at least two attributes of an application service, 
its host location (SaaS cloud) and its web form, must be published. It is pro-
posed to employ a dynamic broker (Brock and Goscinski 2009; Goscinski 
and Brock 2010) of resources and services to publish application services, 
thus allowing other end users to learn of the newly deployed application.

11.3.1  Framework Scope

In response to the major problems faced by discipline specialists in using 
HPC clouds (see Section 11.2), three services are proposed: (1) automation of 
HPC application deployment, (2) automation of HPC application service and 
web form generation, and (3) HPC application service registry and formation 
and application of a wiki-like knowledge base for interface regeneration and 
HPC application customization. These research areas and the relationships 
among them form our cloud framework.

11.3.1.1  Automation of HPC Application Deployment

To enable SaaS development by biology and medical researchers, there is a 
need to automate aspects of the HPC application deployment. Supporting 
this application deployment process requires at least two levels of abstrac-
tion: (1) low-level deployment that consists of methods to install and config-
ure an HPC application in a virtual machine and (2) high-level deployment 
that consists of methods to save an image of the preconfigured virtual 
machine and construct an API of the HPC application that together form a 
deployable unit.

Low-level deployment focuses on automating the installation and configu-
ration of any software application on any computer system. The most com-
mon approach taken to automate low-level deployment is seen in package 
management systems such as the Advanced Packaging Tool (APT) for the 
Debian GNU/Linux distribution and its variants (Calinou 2012). These tools 
automate the retrieval, configuration, and installation of software packages, 
either from binary files or by compiling source code. However, such methods 
are focused on single machines and are not designed for remote installation on 
HPC clusters . To enable automated deployment of HPC applications on clouds 
requires secure access to remote resources and automated resource selection.

High-level deployment focuses on automating virtual machine construc-
tion and configuration. Methods encapsulate an HPC application into a 
virtual  machine image and an API of the HPC application; this will form 
a deployable unit that can be exposed and easily accessed by users as an 
SaaS cloud service. To support high-level deployment in the cloud, there is a 
need for tools that can set up an HPC execution environment consisting of 
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software library dependencies, compilers, schedulers, and HPC middleware 
in a virtual machine environment. Compatibility with low-level deployment 
will allow for services to be built from the virtual machine level, with soft-
ware configured and deployed on top of standard virtual machine templates.

11.3.1.2  Automation of HPC Application Service and Web Form Generation

To turn deployed applications and virtual machines into services, they 
need to be exposed through a graphical interface. The development of inter-
faces allows for the abstraction of both the application deployment and the 
command line execution style of HPC cloud applications. To simplify this 
process, a mechanism is required to automatically transform any HPC appli-
cation, IaaS cloud execution ready, into an easy-to-use service to be executed 
in SaaS clouds (Brock and Goscinski 2009).

In the framework, each application is described by a set of attributes and 
their associated values. The three major attributes of an exposed application 
service are (1) the location of the virtual machine image where a  targeted 
HPC application has been properly installed and configured, (2) input and 
output parameters for the HPC application, and (3) service invocation infor-
mation (e.g., an SaaS cloud service, which was selected by the user and infor-
mation on how to invoke it). Using the application attributes described, an 
interface can be derived. Application parameters can be used to form the 
controls to specify input and collect results. Through these controls, users 
must be able to upload data and invoke services. Uploading and download-
ing data make use of the virtual machine location, while invoke services 
require execution scripts, taken from the service invocation information.

11.3.1.3  Storage of Application Deployment Information

Combining the automation of application deployment and automation of 
interface generation allows for the construction of HPC application services. 
To enable sharing of HPC application services between researchers, this 
framework requires the construction of an HPC application services registry. 
Each HPC application service is proposed to be published and stored in such 
a manner that their discovery and selection are easy. This implies that the 
invocation information and at least two attributes of an application service, 
its host location (SaaS cloud) and its web form, must be published.

To enable publication of resources and applications, development of a 
dynamic broker is proposed (Goscinski and Brock 2010; Brock and Goscinski 
2012); this will allow other end users to learn of the newly deployed services. 
Deployed and exposed HPC applications as SaaS cloud services should be 
easily discoverable and selectable by users. The proposed use of a registry 
will allow users to discover and select the required services. By storing appli-
cation information, it is possible to build a repository of common analysis 
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processes and workflows. This repository can have significant impact on 
time required of service providers and end users, as deployment information 
is stored and reused. Depending on the type of service published to the reg-
istry, different attributes are required. Publication of resources requires the 
location (DNS, domain name system), and cloud access information (secure 
shell [SSH] keys, location, and file system layout). Publication of applications 
requires the input/output details of the application, invocation information, 
and hardware requirements (operating system [OS], RAM, central process-
ing unit [CPU], network, etc.).

11.3.2  Using the Framework

In the proposed framework, when a user wants to conduct a scientific dis-
covery by executing HPC applications on clouds, the user first contacts the 
HPC application service registry. The outcome of the service discovery and 
the user’s preference of the HPC application service for the targeted HPC 
application can lead to two different scenarios for the user.

In the first scenario, particularly in the case of a discipline researcher who 
does not have programming and system administration skills, the HPC 
application service of the user’s interest is found. On selection of the cloud 
service, resources are selected, and the application deployment service sets 
up and configures the cloud. While this is happening, the automated inter-
face generation service constructs a user-friendly discipline-specific inter-
face for the requested HPC application service. Access to the cloud service is 
conducted through the generated interface.

In the second scenario, the HPC application service of the user’s interest 
is not found. The user, who has programming and system administration 
skills, would have to deploy a new targeted HPC application in an IaaS cloud. 
The proposed automatic HPC application deployment system can automate 
parts of this process. The outcome of this process would be either a virtual 
machine image that contains a copy of the properly installed and configured 
HPC application or a software service (consisting of input/output, invocation 
information, and hardware requirements) that can be deployed on a virtual 
machine. At this stage, the cloud service published in the HPC application 
service registry is readily accessible in an IaaS cloud. The new cloud service 
generated by the automatic HPC application deployment system is stored for 
future use in the HPC application service registry. In the next stage, the user 
can employ the automatic HPC application service and web form generation 
system to automate the formation of an HPC application service exposing the 
corresponding HPC application. The HPC application service is abstracted 
by a virtual machine image and a user-friendly discipline-specific interface 
that is published in the HPC application service registry and could allow the 
user to easily access the targeted HPC application in an SaaS cloud.
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11.4  Research Cloud Prototype

A prototype of the proposed cloud framework was developed by integrating 
three components: (1) Amazon EC2 (public IaaS cloud), which provides HPC 
infrastructure; (2) an HPC service software library (Church, Wong, Brock, 
and Goscinski 2012) for accessing HPC resources from an IaaS cloud; and 
(3)  an application broker as a web-based platform (Uncinus) for accessing 
and exposing HPC applications.

11.4.1  Prototype Overview

The overview of the prototype design demonstrating the relationships 
among the Amazon EC2 service, the HPC software library, and the applica-
tion broker, is shown in Figure 11.3. Also shown in Figure 11.3 is our view 
of the cloud service stack where different cloud services would be found. 
At the bottom (IaaS) layer, the Amazon EC2 was used to provide cloud 
infrastructure services. Supported HPC applications are installed in virtual 
machines, and their images are saved and stored in Amazon EC2.

In the middle (high-performance computing as a service, HPCaaS) layer, 
an HPC software library was developed to expose and access Amazon EC2 
services. The software library provides users a higher level of HPC  services, 
such as constructing and managing computer clusters. A web form exposes 
the operations of the HPC software library, allowing the user to start cloud 
jobs (selecting the type and amount of resources that are required) and 
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FIGURE 11.3
Implementation overview of HPC cloud framework.
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terminate resources when jobs are complete. This HPC software library 
interface is made available through the application broker.

On the top (SaaS) layer, a service for supporting HPC application deploy-
ment was developed as follows: First, an API of the HPC application was 
constructed. This API acts as a program stub for its corresponding HPC 
application, which, when deployed, is installed in a virtual machine on the 
Amazon EC2 cloud. Second, a web form exposing the HPC application ser-
vice is generated. This HPC application service can then be published to the 
applications broker to be exposed as a software service. It should be noted 
that each HPC application service would access the HPC services in the 
HPCaaS layer and the HPC application installed and stored in a VM image 
at the bottom IaaS layer through its web form.

The components that make up the framework are described in more detail 
in the following sections. Section 11.4.2 presents the operation of Amazon EC2, 
which provides cloud infrastructure services to the research cloud prototype. 
Section 11.4.3 describes the construction of the HPCaaS model and how it is 
able to abstract Amazon EC2 resources. Section 11.4.4 describes the construc-
tion of a research cloud called Uncinus; this cloud provides an application 
broker to deploy and expose applications. Uncinus also exposes the services 
provided by the IaaS and HPCaaS layers through easy-to-use web interfaces.

11.4.2  Amazon EC2: The Public IaaS Cloud Service Provider

Amazon EC2 provides various computer instance types specifically designed 
for running HPC applications. Our work has utilized the elastic compute 
cloud services and the elastic block store services to deploy and run HPC 
applications. The simplest way to use the EC2 services is by accessing the 
Management Console (Amazon Web Services [AWS] 2013). After logging on 
to the AWS Management Console, a user can carry out HPC activities with 
EC2 by performing the tasks of

 1. Selecting the desired Amazon Machine Image (AMI) and launching 
computer instances;

 2. Installing and configuring software;
 3. Establishing connection to the computer instances, running applica-

tions, and handling data transfer;
 4. Terminating computer instances and releasing resources.

This approach of accessing a public HPC cloud service is quite ad hoc 
and could be tedious for discipline scientists who have little background in 
HPC. On top of the work in launching, connecting, and terminating AWS 
computer instances, discipline scientists are also forced to deal with many 
details to set up and configure an HPC cluster and install middleware and 
software applications before the system is available for any actual scientific 
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investigation. For this reason, we have developed the HPCaaS model and 
implemented its software libraries, which provide high-level functions for 
obtaining HPC resource from IaaS clouds.

11.4.3  The HPCaaS Model: Providing an HPC Service

We have proposed an enhanced cloud service model by including the 
HPCaaS layer (see Figure 11.3), to abstract HPC resources, including both the 
hardware (networks, storage, and servers [physical/virtual]) and the software  
( operating systems, middleware, and user-level HPC applications). This 
implies that these HPC resources can be exposed to the cloud community 
as service software libraries. These software libraries are (1) a set of  virtual 
machine images with prebuilt HPC applications and (2) a set of program 
scripts that can be used to create, manage, and terminate a computer  cluster. 
They support accessing HPC applications and transferring data between 
users and the computer cluster.

11.4.3.1  Providing an HPC Service Library for Amazon EC2

For each of the IaaS cloud service providers, the corresponding HPCaaS 
 services are grouped together and packaged as a service library. In this case, 
the HPC service software library for Amazon EC2 is implemented. Currently, 
we have provided its implementation on the Linux platform.

11.4.3.2  Management and Application Access Scripts

To implement the cluster management and HPC-application accessing 
scripts of the HPC service software library, the EC2 command line tools 
(Kay 2012) are used. The only dependencies are Perl and CURL, which are 
normally included in many Linux distributions. Due to the use of the EC2 
command line tools, the HPCaaS model is compatible with Amazon-like 
clouds that support the same API. Examples of such clouds include private 
clouds OpenStack (OpenStack Project 2012), Eucalyptus (Nurmi et al. 2009), 
and research cloud NeCTAR (Kirby 2012).

Through the command line tools, we have implemented a set of bash shell 
scripts to handle features such as HPC cluster creation and termination, 
HPC-application job submission, and retrieval of results of HPC-application 
execution (Wong and Goscinski 2012). A list of selected bash scripts is shown 
in Table 11.1.

11.4.3.3  AMIs with Prebuilt HPC Applications

When accessing any HPC application in the proposed cloud framework, 
an HPC cluster must be created and started on EC2, where two pieces of 
information are required: (1) an AMI for creating instance(s) and (2) the 
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total number of instances for the HPC cluster. The former contains all infor-
mation necessary to boot instances of software, such as operating system, 
middleware, and a specific HPC application. The latter quantifies the size 
of the HPC cluster, which in turn defines the maximum computing power 
to be provided.

Although there is a large collection of public AMIs available from Amazon 
and the EC2 community, it is the responsibility of an HPCaaS service pro-
vider to provide a customized AMI for each HPC application it supports. 
In our example, all AMIs provided in the HPCaaS service library for Amazon 
EC2 run the Ubuntu Linux operating system, the OpenMPI middleware, 
and Linux-based open-source HPC applications. These AMIs have been 
made publicly  accessible. Users can access them by referencing the AMI IDs. 
Consequently, the construction of an HPC cluster and the installation and 
configuration of an HPC application has been abstracted into selecting an 
AMI from Amazon to use.

11.4.4  Uncinus: An Application Broker and HPCaaS Cloud Solution

Uncinus integrates the HPCaaS libraries into a web platform, allowing 
researchers access to Amazon EC2 resources configured for HPC. To imple-
ment the features described in the framework, a number of services are 
provided. These services fall into the SaaS and HPCaaS layer previously 
described (see Figure 11.4). The SaaS layer provides application broker func-
tionality through the Application to Interface Parser (AIP) and Resource 
Deployment Recorder (RDR); these services write data to the mySQL data-
base management system (DBMS). The HPCaaS layer provides the function-
ality to configure cloud resources for HPC and deploy applications. Cloud 
resources configured for HPC are provided by the Cloud Resource Allocation 
(CRA) service, while application deployment is supported through the 
Secure Data Transfer (SDT) service. The CRA service incorporates the access 
scripts developed as part of the HPCaaS model (see Section 11.4.3.2) and as 
such interacts with Amazon EC2 using the Amazon API.

TABLE 11.1

Selected Management and Application Access Scripts

Shell Script Description

awsConnect 
[-n number]

Connect to Amazon EC2 and start n number of Cluster Compute instants 
(an EC2 cluster)

awsReady Check readiness of the EC2 cluster created for accepting instructions
awsTerminate Terminate the EC2 cluster created
awsRun Run an HPC application in an EC2 cluster
awsTransfer Transfer file(s) to an EC2 cluster
awsCheck Check readiness of the result
awsCollect Collect result files from Amazon to a local host for postprocessing
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The application broker allows an application service provider to  publish AMIs 
or applications. To publish an AMI, a machine image identifier,  username, and 
working directories need to be provided. When publishing applications, 
the machine image identifier in which to install the package, installation 
instructions, any required installation files, a list of input arguments, and 
output controls need to be provided. The RDR stores these data in a mySQL 
database on behalf of the cloud service provider. The AIP service translates 
the input arguments recorded by the broker into equivalent web controls, 
allowing for dynamic interface generation. End users accessing the Uncinus 
system can select from the published AMIs and application modules to cus-
tomize their cloud deployment.

The HPCaaS model communicates with Amazon EC2 to provide cloud 
resources to the user. When a user starts a cloud job, the CRA module  creates 
the necessary private keys and security groups before requesting resources 
from Amazon EC2. Once the CRA can successfully access the virtual 
machine, the SDT module is used to deploy application modules to the virtual 
machine instance.

11.4.4.1  Features of Uncinus

Uncinus combines the HPCaaS model with an application broker to pro-
vide the features of the framework detailed in Section 11.3. Automated 
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application deployment is provided by the HPCasS layer through the 
CRA and SDT services. Automated interface generation is provided by 
the SaaS layer through the AIP service. Application deployment storage 
is also provided through the SaaS layer using the RDR service. The auto-
mated application deployment services are implemented through use of 
the HPCaaS model and the RDR service. When deploying cloud resources, 
the cluster management and HPC-application accessing scripts developed 
as part of the HPCaaS model are utilized. Uncinus exposes these scripts 
through a graphical interface, allowing for users to select the number and 
type of cloud resources required. When deploying application resources, 
the HPCaaS model configures cloud resources and the RDR service carries 
out software deployment. Supporting application deployment is an attri-
bute resource selection method. This resource selection method uses pub-
lished application requirements to identify the optimal cloud resources to 
carry out the requested software service.

Automated interface generation is provided through the AIP service, 
which translates published deployment data into web interfaces. For an 
interface to be automatically generated, each input and output argument 
must be given a type. To support the typing of program arguments, the AIP 
service is designed around an XML-like language. Through this language, 
a user can define a number of common input and output types, including

• <upload>—Secure transfer of data files; the service provider can 
specify the file name.

• <text>—A text-based argument, which is substituted into the execu-
tion script when the service is invoked.

• <config>—Exposes a configuration file through a text control, allow-
ing for direct manipulation of services. This type of control is often 
used to expose and configure tools, such as databases and web servers.

• <webpage>—Exposes existing web interfaces; used when deploying 
web server applications on the cloud.

When a service is invoked through Uncinus, input arguments and  outputs 
are passed to the AIP service. The resulting web form contains controls,  created 
based on the typing information.

Application deployment storage is implemented by linking the RDR  service 
with a relational database, resulting in the deployment of an application 
 broker. This broker supports publication of not only applications but also 
cloud resources as services. The publication process differs depending on 
the type of service that is deployed. Publication of applications as a ser-
vice requires installation information, execution information, and applica-
tion requirements to be specified. Publication of cloud resources is simpler 
than software, requiring only the cloud location and deployment informa-
tion. Users  publish and access applications as services through a series of 
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web interfaces, the  appearance and operation of which are described in 
Section 11.4.4.2.

11.4.4.2  Accessing Uncinus

Access to Uncinus features are provided through easy-to-use web interfaces. 
Through these interfaces, users can publish software and cloud resources as 
a service and access published services through the broker, which incorpo-
rates automated application deployment.

The interface used to publish applications is seen in Figure 11.5. Using this 
interface, a service provider begins by assigning a descriptive name to the 
application service (Application Name); this name is used during application 
discovery. For each application, the broker stores the installation procedures 
(Install Script) and running procedures (Running Script) to be undertaken on 
remote compute resource(s). Files required by the application service are also 
stored by the broker (Files); stored files could be source code, binaries, or appli-
cation data. Stored files can be accessed during the installation and execu-
tion procedures. Service providers must provide the broker with information 
on how to invoke the application service (AppLocation). Information about 
how input parameters (Arguments) and expected program output (Results) 
are displayed is stored as XML. Optionally, additional usage information 
about the application (Manual) can be published. Finally, each application 

FIGURE 11.5
Uncinus application publication interface.
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service must define hardware requirements and the amount of resources 
utilized during execution. The broker stores the required operating system 
(Operating System); CPU utilization, consisting of number of nodes, cores, 
and clock speed (CPU); and memory utilization in gigabytes (RAM). On suc-
cessful publication, the service can be flagged for public viewing (Published).

The interface used to publish virtual machines is shown in Figure  11.6. 
Using the provided interface, the service provider specifies the location of 
the virtual machine instance using an identifier given by the cloud provider 
(Amazon ID). The instance types that each virtual machine supports are also 
provided (Instance Types); from the instance type, cost and the hardware 
specification of each virtual machine can be determined.

The interface used to invoke services is shown in Figure 11.7. Through 
this interface, a user is able to give a descriptive name to a job for iden-
tification purposes. Users then select from published resources to create 
a pool of hardware; any number of published virtual machines can be 
added to the pool. Optionally, users can also select from a list of public 
(and their private) software services (Application Modules). Once cloud 
resources and application modules are selected, the service can be invoked 
by clicking the “Submit Job” button. During the deployment process, the 
selected pool of resources is allocated and made ready for HPC execution. 
If a software service has been selected, resources are selected and config-
ured for the application. The user is then directed to the graphical inter-
face generated using the automated interface generation parser, exposing 
the service controls.

FIGURE 11.6
Uncinus virtual machine image publication interface.
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11.5  Case Studies

Using the prototype, a case study was carried out that demonstrates how 
cloud platforms can simplify genomic drug discovery via access to cheap, 
on-demand HPC facilities. An EXP-PAC (Church, Goscinski, and Lefèvre 
2012) image was created, deployed, and exposed through our cloud frame-
work prototype. Using EXP-PAC, genetic cancer tumor data is analyzed and 
annotated. These annotated data are used to create a gene expression profile. 
The generated gene expression profile is an initial step in the identification of 
the cancer subtype and possible treatment methods (Beltran and Rubin 2013).

11.5.1  Cloud Deployment

To deploy software as services using the HPCaaS model described, cloud 
images must be created and then exposed through Uncinus. Cloud images 
are derived from preexisting templates and stored by the cloud provider 
(in this case, Amazon EC2). Each image is given a unique identifier by 
Amazon, which is then published to Uncinus. On invoking the published 
virtual machine service, Uncinus communicates with the Amazon cloud, 

FIGURE 11.7
Uncinus service selection interface.
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requesting the stored image and the required number and type of resources. 
This deployment procedure was carried out for EXP-PAC.

To set up the EXP-PAC cloud image, a complex deployment procedure is 
carried out (see Figure 11.8). First, an Ubuntu server AMI is selected from 
the Amazon EC2 web interface and launched. Second, as this image is not 
from a trusted source, steps must be taken to ensure the image has not 
been compromised. Antivirus scans are performed, and the Ubuntu image 
is updated to ensure there are no vulnerabilities. Next, using the Ubuntu 
software repository, LAMP is installed; this software package contains the 
principal components (APACHE, PHP, and mySQL) to build a viable general-
purpose web server. PHP and APACHE are configured, increasing the POST 
and upload data limit to support large data upload and analysis. EXP-PAC is 
then placed into the web server directory and configured to use the mySQL 
database. To enable the HPC features of EXP-PAC, openMPI and bioconduc-
tor are also deployed on this server. The Amazon cloud image is then stored 
in its modified form for future use.

Publication of the EXP-PAC virtual machine image to Uncinus was per-
formed through a web interface (see Figure 11.9). The virtual machine publi-
cation interface allows users to specify information about the published cloud 
image that is used during deployment. The attributes required to  publish a 
virtual machine image are the AMI ID of the cloud image, a description of 
the published cloud image, the supported instance types of the image, log-in 
information, the home directory, and the OS utilized by the cloud image.

11.5.2  Workflow Execution

Once software has been deployed on the cloud, users can execute exposed 
applications through published interfaces. To utilize the HPC  normalization 
methods provided by EXP-PAC, this case study was run on four cluster 
 compute instances (64-bit, dual-quad core; 23 GB RAM).

Breast cancer tumor RNAseq data (GSM721140) was downloaded from 
the National Center for Biotechnology Information (NCBI). These data con-
tained 44.8 million sequence fragments, which were mapped (aligned) to the 
human reference genome. To be analyzed, a number of preprocessing steps 
were carried out on the data. First, SAMtools (Li et al. 2009) was used to 
 convert the downloaded data to a human-readable format. The converted 
data were imported into HTSeq (Anders 2010) (run in union mode, non-
stranded), by which sequence fragments that matched known genes were 
sorted and counted. The output of HTSeq was a list of genes and the amount 
of times they appeared in the tumor.

In addition to the list of expressed genes, it was necessary to identify the 
amount of mutations that had occurred in each gene. A mutation score was 
given to each sequence by counting the bases that differed from the reference 
genome. This process resulted in the creation of two data sets, a count of present 
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FIGURE 11.8
EXP-PAC Amazon machine image setup.
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genes and a file containing mutation scores for each gene. These data sets were 
normalized and uploaded into EXP-PAC using web interfaces (see Figure 11.10).

Using the work of the Cancer Genome Atlas Network (2012), a list of genes 
was defined for each subtype of cancer: luminal A, luminal B, basal-like, 
and human epidermal growth factor receptor 2 enriched (HER2E) (see 
Table 11.2). The luminal A and B signatures overlap, both involving the muta-
tions of tumor protein 53 (TP53), Phosphatidylinositol 3-kinase (PIK3CA), 
and mitogen- activated protein kinase kinase kinase 1 (MAP3K1). However, 
luminal A can be identified through the mutation of GATA binding factor 3 
(GATA3) and Forkhead Box protein (FOXA1), which are unique to this cancer 
 subtype. Basal-like tumors have high levels of mutation in the TP53, retino-
blastoma 1 (RB1), and breast cancer 1 early onset (BRACA1) genes. HER2E 

FIGURE 11.10
EXP-PAC data upload interface.

FIGURE 11.9
EXP-PAC publication process.
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differs from other subtypes by having a high level of PIK3CA mutations and 
lower frequency of phosphatase and tensin homolog (PTEN) mutations.

As there are significant overlaps in the gene signatures of these cancer sub-
types, to improve the accuracy of analysis, nonmutated genes can be utilized. 
The genes in Table 11.3 are known to be expressed in a nonmutated form in 
cancer tumors. By utilizing the list of mutated and highly expressed genes, it 
is possible to improve the accuracy of diagnosis.

The mutated gene list (see Table  11.2) and highly expressed gene list 
(see Table 11.3) were loaded into EXP-PAC. Using these lists, queries were 
performed on the breast cancer data set (see Figure 11.11). For each breast 
cancer subtype, mutated genes were identified by performing a keyword 
search for genes in the mutated gene list and looking for results with high 
mutation scores. Highly expressed genes were identified through a keyword 
search of gene symbols, this time looking for genes that appeared more than 
once. To ensure that displayed genes were present in the tumor data, the 
intensity filter was set to return genes with an intensity greater than 0.

Results (see Table 11.4) showed that, out of the genes known to undergo 
mutation during breast cancer, only TP53 was expressed in a mutated 
form. Mutated genes common to other subtypes were not present, which is 
indicative of a basal-like breast cancer tumor. Examining the expression of 

TABLE 11.2

List of Mutated Genes Indicative of Each 
Breast Cancer Subtype

Luminal A Luminal B Basal-like HER2E

TP53 TP53 TP53 TP53
PIK3CA PIK3CA RB1 PIK3CA
MAP3K1 MAP3K1 BRCA1 PIK3R1
GATA3 PTEN
FOXA1

TABLE 11.3

List of Highly Expressed Genes Indicative of 
Each Breast Cancer Subtype

Luminal A/B Basal-like HER2E

ESR1 PIK3CA FGFR4
XBP1 KRAS EGFR
MYB EGFR HER2
RB1 FGFR1 GRB7

FGFR2 GATA3
KIT BCL2
MET ESR1
PDGFRA
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nonmutated genes known to be present in basal-like breast cancer tumors 
(see  Table  11.5) further validated this finding. Four of eight known basal-
like indicative genes were shown to be present in the GSM721140 data 
set. Two genes, V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog 
(KRAS) and epidermal growth factor receptor (EGRF), were shown to be 
highly regulated, while fibroblast growth factor receptor 2 (FGFR2) and 
mesenchymal-epithelial transition factor (MET) were present.

TABLE 11.4

Mutated Genes Present in the 
GSM721140 Data Set

Gene Symbol Counts Mutation Score

TP53 4 3
PIK3CA 0 0
MAP3K1 0 0
GATA3 0 0
FOXA1 0 0
PTEN 0 0

TABLE 11.5

Basal-like Indicative Genes Present 
in the GSM721140 Data Set

Gene Symbol Counts Mutation Score

KRAS 7 2
EGRF 2 0
FGFR2 1 0
MET 1 1

FIGURE 11.11
EXP-PAC query interface.
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11.6  Conclusion

Cloud computing can benefit biology and medical studies by support-
ing  collaboration with other scientists and providing cheap access to large 
amounts of HPC resources. However, utilizing these HPC cloud resources 
requires users to undertake a complex setup procedure that consists of cloud 
resource selection, configuring cloud resources for HPC, and application 
deployment. Researchers looking to take advantage of cloud computing to 
carry out HPC analysis require an understanding of cloud architecture, soft-
ware to be run, and cluster management, which is beyond the scope of most 
researchers. While e-science and research cloud solutions simplify access 
and execution of applications on HPC resources, they do not solve the dif-
ficulties in developing and exposing analysis tools. As such, researchers still 
require enough computing knowledge to utilize and manage large amounts 
of HPC cloud computing resources, or they become reliant on financially 
motivated cloud service providers. In response to this problem, the  following 
question was asked: How can a researcher with limited computing knowl-
edge become a cloud service provider?

An SaaS cloud framework was developed with the aim to simplify the pro-
cedures undertaken by service providers, in particular during service deploy-
ment and exposure. By identifying and automating common procedures, the 
time and knowledge required to develop cloud services is minimized. Three 
procedures were identified and became the focus of automation: applica-
tion deployment, interface generation, and service storage. By automating 
application deployment, the computing knowledge required by biology and 
medical researchers to access cloud software is reduced. By automatically 
deriving an interface from the inputs and outputs of a service, the program-
ming requirements to expose software as a service are reduced. Finally, by 
providing service storage, the time taken for analysis is reduced (through the 
reuse of deployment information).

Implementation of the SaaS cloud framework was realized in the form of 
Uncinus, a research cloud prototype compatible with Amazon EC2. Fulfilling 
the requirements of automated application deployment required that cloud 
resources be configured for HPC. To support this functionality, a new cloud 
model called HPC as a service (HPCaaS) was proposed that automatically 
configures cloud resources for HPC. To support automatic interface genera-
tion, an XML-based language was developed, as was a parser to translate 
inputs and outputs to web interfaces. To fulfill service storage requirements, 
an application broker was built for clouds that supported publication of cloud 
resources and software services. By implementing features of the framework, 
Uncinus benefits biological and medical researchers by simplifying the pro-
cess of developing and deploying software on cloud resources configured 
for HPC. Cloud services can be built by publishing attributes (input/output, 
computational requirements, etc.) through easy-to-use web interfaces.
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Using Uncinus, a case study was carried out that utilized personalized 
genomics analysis to perform diagnosis of a patient’s breast cancer tumor 
to identify targeted drug treatment strategies. During this study, genomic 
analysis tools were installed onto a cloud resource. This cloud resource was 
then published, deployed, and exposed though Uncinus with minimal user 
interaction. This case study clearly demonstrated how the automated pro-
cedures (proposed by the framework) allow biology and medical research-
ers to access and deploy cloud services. Through the cloud, researchers take 
advantage of flexible pricing and on-demand resources that can provide 
faster turnaround times on their experiments. In the case of embarrassingly 
parallel applications, such as the presented personal genomics case study, 
clouds can fully utilize scalability to analyze thousands of cancer genomes 
at once (something not possible on HPC clusters).

A research cloud solution, like the one presented and implemented in 
this chapter, allows biology and medical researchers to apply the power 
of the cloud to their research. This solution was developed by abstracting 
Amazon EC2 resources from application logic and identifying and automat-
ing common methods used in service deployment. In this way, SaaS clouds 
can be developed that simplify the process of using HPC cloud computing 
for research.
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Summary

Next-generation e-science applications such as the ones found in smart cities, 
e-health, or ambient intelligence, require constantly increasing high com-
putational demands to capture, process, aggregate, and analyze data and 
offer services to users. Research has traditionally paid much attention to the 
energy consumption of the sensor deployments that support this kind of 
application. However, computing facilities are the ones presenting a higher 
economic and environmental impact due to their very high power consump-
tion. In this chapter, we provide a vision of the increasing energy problem 
in computing facilities with a focus on cloud computing, under the new 
computational paradigms, and propose solutions from a global, multilayer 
perspective, describing a novel system architecture, power models, and 
optimization algorithms. This chapter is organized as follows: Section 12.1 
i ntroduces the topic; Section 12.2 briefly describes the related work. 
Section 12.3 describes a novel system architecture for the global energy opti-
mization of next-generation e-science applications. Section 12.4 describes 
the power models developed for the architecture, and Sections 12.5 and 12.6 
briefly describe some optimization techniques. Finally, Section 12.7 summa-
rizes the most important aspects.

12.1  Introduction

Data centers are easily found in every sector of the worldwide economy. 
They provide the required infrastructure for the execution of a wide range 
of applications and services, including social and business networking, 
web mail, web search, electronic banking, Internet marketing, distributed 
storage, high-performance computing (HPC), and so on. The increasing 
demand for higher computer resources has recently facilitated the rapid 
proliferation and growth of data center facilities. In recent years, popu-
lation-monitoring applications (such as e-health applications or ambient 
intelligence), e-science, and applications for smart cities have experienced 
significant development, mainly because of the advances in the miniatur-
ization of processors and the proliferation of embedded systems in many 
different objects and applications (e.g., communications, industrial, auto-
motive, defense, and health care environments). Next-generation systems 
consist of a large set of nodes, distributed among the population. Data 
obtained by these sensor nodes are communicated to the embedded pro-
cessing elements by means of wireless connections. Huge sets of data must 
be processed, stored, and analyzed. To deal efficiently with such compu-
tationally intensive tasks, the use of cloud services is devised since cloud 
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computing is emerging as the dominant computer platform for scalable 
online services.

Thus, the wireless body sensor networks (WBSNs) will be connected not 
only at the node level but also through a personal digital assistant (PDA) 
or smartphone to the cloud. Part of the data processing and storage will be 
local to the node, while another part will be communicated and processed 
in the cloud, depending on the application, on the state of the batteries, 
and on security or privacy requirements of the information. This comput-
ing environ ment where the mobile client utilizes mobile network services 
to communicate with the cloud through the Internet is usually known as 
mobile cloud computing (MCC) [1].

Recent research has focused on developing energy efficiency policies at 
the data center level. Some policies have been detected but not successfully 
proposed as they lack consideration of the global power consumption of 
the system. They do not take into account that the agents involved in the 
problem  are heterogeneous. Therefore, the energy cost of performing part of 
the processing in any of the different abstraction layers, from the node to the 
data center, should be evaluated.

Our proposal develops global energy optimization policies that start from 
the design of the architecture of the system, with a deeper focus on data 
center  infrastructures, and take into account the energy relationship between 
the different abstraction layers, leveraging the benefits of heterogeneity and 
application awareness.

12.2  Related Work

For decades, data centers have only focused on performance, defined as 
speed. Examples include the TOP500 list of the world’s fastest super computers 
(http://www.top500.org), which calculates speed as floating-point operations 
per second (FLOPS), and the annual Gordon Bell Awards for Performance 
and Price/Performance at the Supercomputing Conference (http://www.
supercomp.org). However, raw speed has increased tremendously over the 
past decade without relative and proportional energy efficiency. In 2007, 
although there had been a 10,000-fold increase in speed since 1992, perfor-
mance per watt was only improved 300-fold and performance per square 
foot only 65-fold [2].

This huge performance improvement is mainly due to increases in three 
different dimensions: the number of transistors per processor, the operating  
frequency of each processor, and the number of processors per system. 
Collectively, these factors yield an exponential increase in power consump-
tion of data centers that is not sustainable. The focus on just speed has 
let other evaluation metrics go unchecked. Data centers consume a huge 
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amount of electrical power and generate a tremendous amount of heat. To 
support these technologies, during 2008 world power consumption exceeded 
US$30 billion [3] when an average data center consumed as much energy as 
25,000 households [4]. About 15% of these costs are due to removing the heat 
generated throughout the infrastructure [5]. The situation is critical since 
the numbers are growing. In 2010, the worldwide data center consumption 
reached 1.5% of global energy, having increased by 56% since 2005 [6].

To this end, major players in the data center and high-end computing 
markets often negotiate energy deals with electricity suppliers to build or 
upgrade power substations, near or immediately next to, their computing 
facilities. Alternatively, when not enough power infrastructures can be built 
at or near computing facilities, many companies move their computing facili-
ties to the power source (e.g., Google [7], and Microsoft [8]).

In addition to the economic impact of excessive energy consumption, the 
environmental impact has affected the data center community. The heat 
and the carbon footprint emanating from cooling systems are dramatically 
harming the environment. According to Mullins [9], US data centers use 
about 59 billion kWh of electricity, exceeding US$4.1 billion and generating 
864 million metric tons of CO2 emissions released into the atmosphere.

Both research and industry have recently proposed several approaches to 
tackle the power consumption issue in data center facilities. Industry has 
begun to shift the goal from performance to energy, reporting not only 
FLOPS but also FLOPS per watt and measuring the average power consump-
tion when executing the LINPACK (HPL) benchmark [10]. Today, metrics 
such as being in the Green500 list [2] are beginning to be of importance. Also, 
reference companies around the world, such as Google, IBM, or Amazon, are 
implementing measures to make their data centers more efficient and begin-
ning to measure the power usage effectiveness (PUE) of their facilities.

PUE is one of the most representative metrics and consists of the facility’s 
total power consumption divided by the computational power. PUE close to 
1 means the data center is using most of the power for the computing infra-
structure instead of it being lost or devoted to cooling devices. Average PUE 
for 2011 was around 1.83%, which does not represent a sufficient reduction 
for sustainable infrastructures. According to Amazon data center estima-
tions [11], expenses related to operational costs of the servers reach 53% of 
the budget, while energy costs add up to 42%, which are broken down into 
cooling (19%) and power consumption of the infrastructure (23%). Therefore, 
the cooling problem needs to be approached to restrain the upward trend [3] 
and to prevent these technologies reaching beyond the limit of sustainability.

Researchers have done a massive amount of work to address these issues 
and provide energy-aware computing environments. From the data room 
perspective, previous work addressed the power consumption problem by 
means of optimizing cooling costs at the resource manager level by assign-
ing longer tasks to servers with lower inlet temperature [5]. From the infor-
mation technology (IT) perspective, research has proposed solutions to 
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reduce the computational power of servers by means of energy-efficient 
scheduling techniques [12, 13], resource allocation, and workload assignment 
mechanisms [14, 15]. For cloud computing applications, virtualization tech-
nology has provided a promising way to manage application performance 
by dynamically reallocating resources to virtual machines (VMs). Several 
management algorithms have been proposed to control the application per-
formance for virtualized servers [16] and to solve the VM-server mapping 
problem for power savings [17].

In our proposal, scheduling and resource allocation take into account the 
global energy consumption, which includes the cooling consumption of the 
data center and the consumption of the rest of the system: node and PDA or 
smartphone. So, it is possible to take advantage of the heterogeneity of the 
system and download only some part of the computation to the data center, 
while the rest is performed in the PDA.

12.3  Proposed Novel Paradigm

12.3.1  Devised Computer Paradigm

Next-generation applications are usually composed of a large number of 
 sensors, wirelessly connected to the cloud through a mobile processing 
device. Data centers provide cloud-based data services that can closely match 
the demand of processing capacity, according to data size and complexity of 
the analysis algorithms. By sharing data center resources for multiple appli-
cations, it is possible to reduce the need for resources, maintaining high utili-
zation rates and reducing energy requirements. To provide adequate energy 
management, this heterogeneous distributed computing system is tightly 
coupled with an energy analysis and optimization system, which continu-
ously adapts the amount of processing that is performed in the different 
 layers of the distributed system and the resources assigned to each task.

12.3.2  Energy Optimization System

Figure 12.1 shows the proposed system architecture for the energy optimi-
zation of cloud computing in e-science applications. Detailed functions of 
constituents in the system are summarized as follows:

• Application support network: Applications require a  heterogeneous 
network comprising sensor nodes, data centers, and some kind of inter-
connection network to drive data from sensors to data  centers. Each 
element has different computation capacity, functional  requirements, 
power consumption characteristics, and so on.
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• Sensing infrastructure: Global energy optimization requires a clear 
understanding of the current state of the network, the characteris-
tics of the different resources, and of the analysis to be performed. 
Therefore, additional hardware (HW) or software (SW) sensors 
should be added to the  system to obtain insight.

• Data analysis and sensor configuration: Not every sensor has the 
same importance to understand the power consumption character-
istics of the different components. After a careful analysis, the sens-
ing infrastructure has to be configured to provide only the relevant 
data at the required rate for the power model to be useful and to 
minimize the energy overhead.

• Storage and inference system: The data provided by the sensing 
infrastructure has to be stored and statistically analyzed in search 
of recurrent behaviors that could lead to simple but accurate enough 
power models to be used for proactive optimizations. Although the 
data provided by the sensors is low level, simple inference tech-
niques can be used to raise the level of abstraction, for example, 
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to  understand the energy demand characteristics of the different 
analysis applications or the power consumption characteristics of 
different resources.

• Power model: Complex power models are not adequate for online 
optimization, as different alternatives should be quickly evaluated 
against the power model to proactively configure the whole system 
for minimum energy consumption. These power models can be 
trained with actual data from sensors to improve the quality and to 
adapt to variations in the heterogeneous application support network.

• Optimization: Based on the current state of the system, the historic 
data, and the energy characteristics of application and resources, 
many optimization algorithms can be executed to enhance one or 
more aspects of the population-monitoring system. Heterogeneity 
can be analyzed to always assign tasks to the most adequate 
resources; resources not being used can be turned off; cooling 
energy can be taken into account when assigning tasks to resources; 
and, at the same time, when a group of nodes is detected to behave 
anomalously, they can be discarded to provide some kind of 
self-healing mechanism.

• Decision-making system: There are so many aspects that can be opti-
mized (at different levels of abstraction and in different scopes), that 
it would not be feasible to consider all of them in a single optimiza-
tion algorithm. Many partial optimization algorithms may propose 
actions in the network; some of them could even be incompatible 
with other decisions. We propose the use of a reputation system [18] 
to compose the decisions provided by multiple optimization algo-
rithms and to adapt to changes in the system by changing the weight 
of different optimizations.

• Actuation support: Finally, decisions should be executed. Software 
agents in all levels of the application support network are in charge 
of reconfiguring their behavior whenever an optimization decision 
is made.

12.4  Energy and Power Models

To apply energy optimization techniques at all levels, but most importantly to 
the cloud computing facility, we need to develop power and energy models of 
the resources of the data center that can be applied to predict the energy con-
sumption of the workload to be executed. In this section, we describe the most 
important contributors to the energy consumption in data centers, and we 
present some of the most relevant energy- and power-modeling techniques.
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12.4.1  Overall Power and Energy Consumption Breakdown

The main contributors to the energy consumption in a data center are the 
computing power (also known as IT power), which is the power drawn by 
servers to execute a certain workload, and the cooling power needed to keep 
the servers within a certain temperature range that ensures safe operation. 
Together, both factors account for more than 85% of the total power con-
sumption of the data center, with the other 15% the power consumption due 
to lightning, generators, UPS (uninterruptible power supply) systems, and 
PDUs (power distribution units) [6].

 P P P PDC IT cooling others= + +

The IT power is dominated by the power consumption of the enterprise 
servers in the data center. The power consumption of an enterprise server 
can be further divided into three different contributors: (1) the dynamic or 
active power, (2) the static or leakage power, and (3) the cooling power due 
to the server fans:

 P P P Pserver static dynamic fan= + +

Dynamic power is the power due to the switching of the transistors in elec-
tronic devices; that is, it is the power used to perform calculations. Leakage 
power is the unwanted result of subthreshold current in the transis tors and 
does not contribute to the microcontroller function. Fan power is becoming 
a more important contributor by the day to overall server power [19].

Cooling power is one of the major contributors to the overall data center 
power budget, consuming over 30% of the overall electricity bill in typical 
data centers [20].

12.4.2  Computing (IT) Power Modeling

12.4.2.1  Static Power Consumption: Leakage Power Modeling

Dynamic consumption has historically dominated the power budget. But, 
when the integration technology scales below the 100-nm boundary, static 
consumption becomes much more significant, being around 30%–50% [21] 
of the total power under nominal conditions. This issue is intensified by the 
influence of temperature on the leakage current behavior. There are various 
leakage sources in devices, such as gate leakage or junction leakage, but at 
present, subthreshold leakage is the most important contribution in mod-
ern designs. Therefore, it is important to consider the strong impact of static 
power as well as its temperature dependence and the additional effects influ-
encing their performance. The current consumption of an MOS device due to 
leakage current is the one shown in the following equation:
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When V mVDS > 100 , the contribution of the second exponential is negli-
gible [22], so the previous formula can be rewritten as follows:
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where technology-dependent parameters can be grouped together in a con-
stant B.

Based on the leakage current equation, we describe the leakage power for 
a particular machine m as the next equation:
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As can be seen, leakage has a strong dependence on temperature. Even 
though power models have traditionally disregarded leakage, recent studies 
are beginning to take it into account. Some cloud computing solutions, such 
as those in Reference 23, have considered the dependence of power consump-
tion on temperature due to fan speed as well as the induced leakage current. 
Moreover, taking into account the leakage-cooling trade-offs at the server 
level by finding an optimum point between the fan power and the leakage 
power has proven to yield up to 10% energy savings at the server level [24].

In the case of cloud computing, it is especially interesting to take into 
account the temperature of the different computing resources. The pool 
of resources that builds the entire cloud infrastructure allows the utiliza-
tion of those resources most appropriate to the operating situation. Thus, 
depending on the type of application and the thermal state of the machine, 
an efficient allocation can be performed that minimizes the static consump-
tion of the computing infrastructure by keeping the unused resources in a 
low-power state.

12.4.2.2  Dynamic Power Modeling

Dynamic power consumption varies depending on the characteristics of 
the particular workload to be executed, as well as on the platform where 
the workload is executed. The same workload can present different energy 
behavior depending on the target platform, as shown in Figure 12.2, obtained 
from Reference 25.

To understand and take advantage of these differences, dynamic power has 
to be modeled. Dynamic power modeling of enterprise servers has recently 
been tackled via the use of performance counters [26, 27]. Performance 
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counters are a set of special-purpose registers built into modern central pro-
cessing units (CPUs) to store the counts of hardware-related events. Because 
they are integrated into the architecture, polling these counters has a negli-
gible overhead in the performance of the workload being profiled. Modern 
servers come with a high number of performance counters that can be 
polled. By collecting performance counters together with information on the 
power consumption of the server, power consumption can be modeled and 
thus predicted. Servers are also shipped with a large amount of sensors to 
collect temperature, fan speed, or power consumption data. These data can 
be gathered via the Intelligent Platform Management Interface (IPMI) tool 
(http://ipmitool.sourceforge.net) with negligible overhead. Information of 
the performance counters can be correlated with power and then regressed 
to obtain a model for dynamic energy. The performance counters that influ-
ence the model vary depending on the system architecture and allow an 
explanation for the differences in power consumption of the same workload 
in different servers.

12.4.3  Data Center Cooling Power and Data Room Modeling Techniques

In a typical air-cooled data center room, servers are mounted in racks, 
arranged in alternating cold/hot aisles, with the server inlets facing cold 
air and the outlets creating hot aisles. The computer room air conditioning 
(CRAC) units pump cold air into the data room and extract the generated 
heat (see Figure 12.3).
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The efficiency of this cycle is generally measured by the coefficient of 
performance (COP). The COP is a dimensionless value defined as the ratio 
between the cooling energy produced by the air-conditioning units (i.e., the 
amount of heat removed) and the energy consumed by the cooling units 
(i.e., the amount of work to remove that heat).

 COP
Output Cooling Energy
Input Electrical Energ

=
yy

Higher values of the COP indicate a higher efficiency. The maximum theo-
retical COP for an air-conditioning system is described by Carnot’s theorem 
as in the next equation:

 COP
T

T T
MAX

C

H C
=

−

where TC  is the cold temperature (i.e., the temperature of the indoor space 
to be cooled), and TH  is the hot temperature (i.e., the outdoor temperature ; 
both temperatures in celsius). As the room temperature and the heat exhaust 
temperature increase, approaching the outdoor temperature, the COP 
increases and the cooling efficiency improves. According to this, one of the 
techniques to reduce the cooling power is to increase the COP by increasing 
the data room temperature.

However, as we increase room temperature, CPU temperature increases 
and so does leakage power. Therefore, there is a trade-off between the reduc-
tion in cooling power and the increase in server leakage power. Previous 
approaches [29] showed how two different working regions can be found 
depending on the impact of ambient temperature in leakage power and 
thus in the total power consumption of enterprise servers. For the lower 
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range of ambient temperatures, the impact of the temperature-dependent 
leakage is negligible, whereas for a higher-temperature range leakage needs 
to be considered.

To ensure the reliability of the IT equipment, CPU temperatures should 
not increase above a certain threshold. The ASHRAE (American Society of 
Heating, Refrigerating, and Air-Conditioning Engineers) [29] organization 
publishes metrics on the maximum inlet air temperature for a server, the red-
line temperature, as well as the appropriate temperature and humidity con-
ditions of the data room environment to ensure that reliability is not affected.

Data room modeling is still an open issue, as the only feasible ways to 
model the thermal behavior of the data room and be able to predict the inlet 
temperature of the servers is either by deploying temperature sensors in the 
data room that take measurements or by performing time-consuming and 
expensive computational fluid dynamics (CFD) simulations. CFD simula-
tions use numerical methods to analyze the data room and model its behav-
ior. However, these simulations do not often match the real environments 
and must be rerun every time the data center topology changes.

12.5  Ubiquitous Green Allocation Algorithms

Resource management is a well-known concept in the data center world and 
is used to allocate in a spatiotemporal way the workload to be executed in 
the data center, optimizing a particular goal. Traditionally, these techniques 
have focused on maximizing performance by assigning tasks to computa-
tional resources in the most efficient way. However, the increasing energy 
demand of data center facilities has shifted the optimization goals toward 
maximizing energy efficiency. Works proposing allocation algorithms have 
traditionally applied greedy algorithms [30], Markov chain algorithms [31], 
mixed-integer linear programming (MILP), or mixed-integer nonlinear pro-
gramming (MINLP) [32] to generate the best task allocation. Most of these 
approaches do not propose a precise objective function or accurate math-
ematical formulation of the optimization problem. Although some of these 
solutions behave well in homogeneous data-center-level scenarios, they do 
not consider the heterogeneity inherent in smart environment applications. 
Moreover, MILP solutions do not scale well for larger scenarios with a high 
number of servers and large workloads to allocate.

Only very recently industry and research started to agree on the impor-
tance of environmental room monitoring [33] to improve energy efficiency. 
Other research [34] presented the data center as a distributed cyberphysi-
cal system (CPS) in which both computational and physical parameters 
can be measured with the goal of minimizing energy consumption from a 
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jointly computational and cooling perspective. However, these works do not 
generally apply their solutions in a real scenario.

Our proposal considers not only the heterogeneity that comes from the 
use of different servers inside a data center facility but also the use of the 
heterogeneous elements that compose the MCC scenario outside the facil-
ity. We leverage the use of nonoptimal lightweight distributed allocation 
algorithms based on the use of satisfiability modulo theory (SMT) formulas 
outside the facility. We combine this allocation with MILP-based problems 
in the data center facility and envision the use of genetic algorithms (GAs) to 
solve larger resource management problems. We apply these algorithms to 
real data collected from a completely monitored data room, obtaining inlet 
and outlet server temperature values, CPU temperatures, server fan speed, 
server power consumption, and cooling power. Figure 12.4 shows the tem-
perature and power traces obtained from an AMD Sunfire V20Z server when 
executing tasks of the SPEC CPU 2006 benchmark [35].

12.5.1  SMT Solvers

An SMT solver decides the satisfiability of complex formulas in theories such 
as arithmetic and uninterpreted functions with equality. An SMT solver is a 

0 10 20 30 40 50

30

40

50

60

Te
m

pe
ra

tu
re

 (d
eg

)

(a) Temperature parameters for AMD server
Whole SPEC CPU execution

Time (103 sec)
0 10 20 30 40 50

Time (103 sec)

CPU0 Inlet Outlet

120
140
160
180
200
220
240

Po
w

er
 (W

)

(b) Power consumption for AMD server
Whole SPEC CPU execution

Server Power

0 500 1000 1500 2000 2500 3000
20

30

40

50

60

Te
m

pe
ra

tu
re

 (d
eg

)

(c) Temperature parameters for AMD server
Zoom in one benchmark

Time (sec)
0 500 1000 1500 2000 2500 3000

Time (sec)

CPU0 Inlet Outlet

150

200

250

Po
w

er
 (W

)
(d) Power consumption for AMD server

Zoom in one benchmark

Server Power

X: 50
Y: 48

FIGURE 12.4
Temperature and power values for AMD server under SPEC CPU 2006 workload.



280 Cloud Computing with e-Science Applications

tool that allows checking whether a certain formula satisfies a condition. SMT 
solvers are fast and lightweight and thus can be used in nodes with limited 
resources in a distributed way. Our proposal leverages the idea developed in 
Reference 36 and proposes that each node of the network, to decide whether 
to execute a task or offload it to the data center, should run the SMT solver. 
The SMT solver calculates which tasks of the workload satisfy the conditions 
to be executed at the node and the amount of tasks that can be executed.

12.5.2  Mixed-Integer Linear Programming

Regarding IT power only, the proposed resource allocation algorithms aim 
to minimize the overall energy consumption of the data center by assign-
ing tasks in a spatiotemporal way to the most appropriate processors. 
Mathematically, let us denote by M a set of machines, by P a set of processors, 
and by T a set of tasks that must be executed. Each processor p belongs to one 
machine m, denoted as pm. Each machine m consumes an idle power of ≠m . 
Every task t has a duration and consumes a certain amount of energy over 
idle depending on the target processor, σtp and etp , respectively. The problem 
consists of finding the most appropriate allocation of tasks t in processors p 
to minimize the energy consumption, as expressed in the next equation:

 Min k e
t T p P

tp tp

m M

m
max

∈ ∈ ∈
∑ ∑+

,

· ·π τ

where ktp  is a binary variable that is set to 1 if the task t is executed in pro-
cessor p. τmax  is the time instant at which all the tasks have been executed. 
As can be seen, the first part of the formula accounts for the dynamic energy 
consumption, whereas the second part accounts for static power consump-
tion of the servers.

The optimization is subjected to the following constraints:
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The factor γ pm is a time offset that represents the amount of time that a pro-
cessor is occupied (executing previous tasks) when the new job set arrives. 
In this way, the system can take into account the initial use of processors.

12.5.3  Genetic Algorithms

The previous MILP solution is valid for a data center room with a lim-
ited amount of computational resources and an optimization objective 
that can be expressed as a linear problem. However, when scaling in the 
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number of resources and tasks to allocate, GAs behave much better in terms 
of performance.

One of the benefits of using a GA is the possibility of tackling a large set 
of constraints (the maximum temperature of the servers, the available CPU 
capacity, the required instructions per task, etc.). In this way, the GA defines 
a vector of n decision variables, a vector of m objectives function, a number 
of constraints not satisfied, the total energy, and the feasible region in the 
decision space. The algorithm allows unfeasible solutions, but only when no 
other alternatives are found.

For the chromosome encoding, each gene represents a decision variable. 
Because many decision variables are integers, the chromosome uses integer 
encoding. Thus, some decision variables (like the CPU capacity) are scaled to 
the integer interval and transformed to a percentage when used in the multi-
objective function for evaluation. The evolutionary solver starts with a random 
population of chromosomes. After that the algorithm involves the population 
applying (1) the non-dominated sorting genetic algorithm (NSGA-II) standard 
tournament operator, (2)  a single-point crossover operator with probability 
of 0.9, (3) an integer flip mutation operator, and (4) the multiobjective evalua-
tion. Steps 1 to 4 are applied for a variable number of iterations or generations.

Using this approach, it is possible to obtain optimal energy savings,  realistic 
with the current technology, in much shorter time than traditional  algorithms 
and targeting much more complex environments.

12.6  Resource Selection and Configuration

Cloud computing presents a compelling opportunity to reduce data center 
power bills. The economic advantages of shifting to a cloud infrastruc-
ture are enormous, and current challenges in cloud adoption will be over-
come soon, leading a major shift to cloud computing. In this computational 
 context, the goal of techniques like “resource selection” and “configuration” 
is to offer new services more efficiently by properly selecting and configur-
ing the available resources. The algorithms described in the previous section 
can be jointly applied with the cloud-specific techniques proposed in this 
section—virtualization, consolidation, and managing the operating server 
set—to substantially increase energy savings.

12.6.1  Virtualization

Virtualization allows the management of the data center as a pool of 
resources, providing live migration and dynamic load balancing, as well as 
the fast incorporation of new resources and power consumption savings. 
In addition, a single node can accommodate simultaneously various VMs 
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(based on different operating system environments) that can be dynami-
cally started and stopped according to the system workload and that share 
 physical resources.

Some research work has tried to address the VM provisioning challenge 
by predicting the workload profile with neural networks and using heuris-
tics to assign the workload [37]. However, to obtain the most energy-efficient 
setup, the MILP and GA previously described can be used to dynamically 
assign VMs to physical servers, also deciding the amount of VMs needed to 
execute a certain workload.

12.6.2  Consolidation

Historically, data centers have been oversized, using a small fraction of 
their computing resources. Consolidation uses virtualization to share 
resources and reduces energy consumption by increasing resource utiliza-
tion. This technique allows multiple instances of operating systems to run 
concurrently on a single physical node, avoiding wasted physical resources. 
Consolidation allows reducing the number of operating servers to process 
the same workload, minimizing the static consumption, which leads us to 
operating server set and turn-off policies.

Workload allocation algorithms should also take into account the possi-
bility of consolidation. As the number of decision variables and the design 
space grow larger, GA-based solutions become more suitable for the purpose 
of efficient VM assignment and consolidation.

12.6.3  Operating Server Set and Turn-off Policies

This technique consists of modifying the active server set by switching off 
idle hosts when occupancy decreases. Another advantage of cloud comput-
ing is that in many applications, such as data mining and web searching, 
using MapReduce provides outsourcing of the workload. MapReduce, pop-
ularized by Google [38], is widely used in application-level energy-aware 
strategies due to simplified data processing for massive data sets to increase 
data center productivity [39]. When a MapReduce application is submitted, 
it is separated into multiple Map and Reduce operations so its allocation may 
influence task performance. This factor allows leveraging server resources 
by distributing the workload to achieve the optimal minimum consumption.

One of the issues to consider when implementing this type of policy is the 
characterization of the use of the data center by customers. The demand for 
resources reaching the data center is variable and usually follows seasonal 
patterns depending on the time of day or certain periods of the year. In addi-
tion, the data center must be prepared to support peak demand.

Also, the quality of service (QoS) contracted by customers must be satisfied 
in matters of availability and both execution and response time constraints.
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Moreover, the cost of the machine turned on or off to suit the operational 
farm-to-user demand also must be taken into account. This cost involves two 
important factors:

• Energy: Consumption of machines when turned off and on again is 
significant [40]. The energy saved during the period in which servers 
are switched off should be compensated by this offset energetic cost.

• Delay: The server turn on takes a certain time, so the incoming 
demand and its variations have to be anticipated. Backup physical 
machines should be available to host peak requirements.

Currently, one common technique is to apply low-power modes to inactive 
servers to save static energy [41]. This policy helps minimize delays when 
activating new machines under peak demand, reducing consumption of idle 
servers. Many servers offer sleep or hibernate states, such as standby modes, 
that consume less than active modes with different setup times. Finally, it is 
necessary to take into account these additional costs in resource configura-
tion policies to minimize energy globally.

This technique can be combined with dynamic voltage and frequency 
scaling (DVFS). Dynamic consumption can also be reduced by acting on the 
low-power modes of the machines at runtime, but only if this policy does 
not violate QoS requirements contracted by users. Modifying the  frequency, 
voltage, or both varies the response time, affecting the completion of services 
and applications. Decreasing the frequency or operating voltage reduces 
dynamic power consumption during the execution of a workload. Also, 
during idle periods, the static consumption is minimized at low voltages  
and frequencies.

Therefore, if QoS restrictions are not strict, energy savings in the computing 
part can be increased by the efficient application of the presented techniques.

12.7  Conclusions

Cloud computing, MCC, or even modern HPC start with data centers. While 
we can dream of a world in which anyone is allowed to sell their excess 
computing capacity as virtualized resources to anyone else or where the 
ubiquitous sensing of information is processed by a center kilometers away 
from the source, the fact of the matter is that today the cloud finds strong 
energy constraints because of the energy-hungry computing “factories.” 
However, data centers are not the only computing resources that contrib-
ute to the energy inefficiency. Distributed computing devices and wireless 
 communication layers are also responsible for this.
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Energy efficiency in the cloud requires that the envisioned optimization 
techniques take into account the different layers of the computing paradigm, 
as well as the characteristics of the application and processed data. By pro-
viding horizontal and vertical optimization approaches, we can ensure that 
the total energy consumption reaches acceptable limits.

In this chapter, we reviewed several alternatives that, as opposed to tradi-
tional approaches, consider the total energy consumption of the whole set of 
resources that appear in cloud computing. These techniques provide a multi-
layer approach to tackle the problem of energy consumption and obtain 
 bigger savings than any previous mechanism.
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