
ptg8286219



ptg8286219

Developing and
Hosting
Applications 
on the Cloud



ptg8286219

This page intentionally left blank 



ptg8286219

IBM WebSphere

Deployment and Advanced
Configuration

Roland Barcia, Bill Hines, Tom Alcott, and Keys Botzum

Developing and
Hosting
Applications 
on the Cloud

Alex Amies, Harm Sluiman, Qiang Guo Tong, 

Guo Ning Liu

IBM Press
Pearson plc
Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid
Cape Town • Sydney • Tokyo • Singapore • Mexico City

Ibmpressbooks.com

Ibmpressbooks.com


ptg8286219

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed
for incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

© Copyright 2012 by International Business Machines Corporation. All rights reserved.

Note to U.S. Government Users: Documentation related to restricted right. Use, duplication, or disclosure
is subject to restrictions set forth in GSA ADP Schedule Contract with IBM Corporation.

IBM Press Program Managers: Steven M. Stansel, Ellice Uffer
Cover design: IBM Corporation

Editor-in-Chief: Dave Dusthimer
Marketing Manager: Stephane Nakib
Acquisitions Editor: Mary Beth Ray
Publicist: Heather Fox
Managing Editor: Kristy Hart
Designer: Alan Clements
Project Editor: Betsy Harris
Copy Editor: Krista Hansing Editorial Services, Inc.
Senior Indexer: Cheryl Lenser
Compositor: Nonie Ratcliff
Proofreader: Language Logistics, LLC
Manufacturing Buyer: Dan Uhrig

Published by Pearson plc
Publishing as IBM Press

IBM Press offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact

U. S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com. 

For sales outside the United States, please contact

International Sales
international@pearsoned.com.

corpsales@pearsontechgroup.com
international@pearsoned.com


ptg8286219

The following terms are trademarks or registered trademarks of International Business Machines
Corporation in the United States, other countries, or both: IBM, the IBM Press logo, IBM SmartCloud,
Rational, Global Technology Services, Tivoli, WebSphere, DB2, AIX, System z, Rational Team Concert,
Jazz, Build Forge, AppScan, Optim, IBM Systems Director, and developerWorks. A current list of IBM
trademarks is available on the web at “copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml. 

Windows and Microsoft are trademarks of Microsoft Corporation in the United States, other countries, or
both. Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle
and/or its affiliates. Linux is a registered trademark of Linus Torvalds in the United States, other countries,
or both. UNIX is a registered trademark of The Open Group in the United States and other countries. Intel,
Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel
SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its
subsidiaries in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

All rights reserved. This publication is protected by copyright, and permission must be obtained from the
publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or
by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission to use
material from this work, please submit a written request to Pearson Education, Inc., Permissions
Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax your request to
(201) 236-3290.

ISBN-13: 978-0-13-306684-5
ISBN-10: 0-13-306684-3

www.ibm.com/legal/copytrade.shtml


ptg8286219
This book is dedicated to all the members of the IBM® SmartCloud™

Enterprise development team whose hard work and professionalism 
has made this large and challenging project a reality.



ptg8286219

vii

Contents

Preface xiii

Introduction 1

Part I: Background Information

Chapter 1 Infrastructure as a Service Cloud Concepts 7
Workloads 8
Use Cases 10

Actors 10
Web Site Hosting 10
Short-Term Peak Workloads 11
Proof-of-Concept 12
Extra Capacity 14
Open Source/Enterprise Collaboration 15
Storage System for Security Videos 15
Business Scenario: IoT Data Hosting Provider 16

Virtualization 17
Infrastructure as a Service Clouds 22
Other Cloud Layers 24
Virtual Machine Instances 26
Virtual Machine Images 26
Storage 27

Block Storage 27
File-Based Storage 28

Network Virtualization 29
IP Addresses 30
Network Virtualization 30

Desktop Virtualization 32



ptg8286219

Part II: Developing Cloud Applications

Chapter 2 Developing on the Cloud 35
Linux, Apache, MySQL, and PHP 35
Windows 40
Java 2 Enterprise Edition 40

Java SDK 41
WebSphere Application Server 41
Relational Database 47
Data Persistence 49
Messaging 54
Scheduled Events 58

Business Scenario: Developing the IoT Data Portal 59
Integration of Application Lifecycle Management Tools with Clouds 67

Rational Application Developer 69
Rational Team Concert 72
Build and Deployment Automation 75

Business Scenario: Application Lifecycle Management Tools 84

Chapter 3 Developing with IBM SmartCloud Enterprise APIs 85
Resource Model 86
Entity Lifecycles 87
Command Line 91

Environment Setup 91
Querying the Catalog 92
Provisioning an Instance 92
Provisioning Storage 96
Provisioning an Instance with Parameters 97
Managing IP Addresses 98
Saving Images 99

Java API 100
Environment Setup 100
Querying the Catalog 101
Working with Virtual Machine Instances 104
Locations and Capabilities 108
Working with Images 110
Uploading Files When Creating a New Instance 111
Minimizing REST Calls 112
Example: Developing a Maven Cloud Plug-In 114

REST API 122
Background 122
Using PHP to Invoke the IBM SmartCloud Enterprise REST APIs 125
Example: create instance Form 130

viii Contents



ptg8286219

Example: Page to Show a List of Instances 139
Using Java to Invoke the IBM SmartCloud Enterprise REST APIs 144

Rational Asset Manager 146
Business Scenario: Using Elastic Cloud Services to Scale 152

Chapter 4 Standards 157
Data Exchange 157

Extensible Markup Language (XML) 157
JavaScript Object Notation (JSON) 160

REST 162
Background 163
HyperText Transfer Protocol 163
REST Architecture 164
Implementing and Consuming REST Services 165
Example: Uploading Files When Creating Instances with REST 169
JAX-RS 171

Virtualization 178
Open Virtualization Format 179

Cloud Computing 179
Cloud Computing Reference Architecture 180
Distributed Management Task Force Open Cloud Standards Incubator 180
Cloud Data Management Interface 181

Business Scenario: IoT Data Use of Standards 181

Chapter 5 Open Source Projects 183
Virtualization Projects 183

Kernel-Based Virtual Machine (KVM) 183
QEMU 185
libvirt 186
Xen 188

Cloud Projects 188
Eucalyptus 188
Apache Libcloud 189
Delta Cloud 190
OpenStack 190
Cloud Foundry 191
Hadoop 191
Setting up Hadoop 192

Business Scenario: Data Management 194

Chapter 6 Cloud Services and Applications 197
Creating and Customizing Images 197

Operating Systems Specifics 200
Modeling Deployment Topologies 200

Contents ix



ptg8286219

Services 206
Linux Services 207
Windows Services 209

Networking 209
Basic Network Settings 209

Software Installation and Management 211
Red Hat Package Management and YUM 211
Software Management on SUSE 211
Cloud Software Bundles 212
Open Service Gateway Initiative (OSGi) 213

Storage 223
Block Storage 224
File-Based Storage 226
File Systems 227
Network Storage Systems 230
Structured Storage 231
Managing Storage on IBM SmartCloud Enterprise 232

Remote Desktop Management 233
X Windows 233
Virtual Network Computing (VNC) 234
NX Remote Desktop 236

Composite Applications 237
Email 238

Setting up an SMTP Server 238
Software as a Service 239

Document-Management Systems 239
Email and Collaboration Suites 241

Business Scenario: The IoT Data Application 242

Part III: Exploring Hosting Cloud Applications

Chapter 7 Security 243
Background 243
Business Scenario: IoT Data Security Context 244
Public Key Infrastructures and Certificates 245

Example: Trusted Certificate Signing Authorities in WebSphere Application Server 249
Identity and Access Management 252

Configuring Authentication and Access in J2EE Applications 254
Managing Users with Lightweight Directory Access Protocol 256
Enabling an Application for Multitenant Access 260
Federated Identity Management 260
OAuth 261

x Contents



ptg8286219

Network Security 266
Firewalls 266
Example: Connecting to a VLAN through a Firewall 271
Operating System Network Security Mechanisms 271
Business Scenario: Network Deployment and Firewall Rules 272
Proxy Servers 273
Virtual Private Networks 276

Browser Security 278
Application Hardening 280

Cross-Site Scripting 280
Cross-Site Request Forgery 281
SQL and Other Injection Attacks 282

Secure Communication Protocols 282
Secure Shell (SSH) 283
HTTPS 290
Internet Protocol Security (IPSec) 293

Operating System and Virtual Machine Security 293
Basic Operating System Tools 293
Security-Enhanced Linux 294

Security of Data at Rest 298
Security Events 298
Security Compliance 299
Business Scenario: IoT Data Security Architecture 300

Chapter 8 Performance, Availability, Monitoring, 
and Metering 301

Performance and Scalability 301
Compute Capacity 302
Network Performance 302
J2EE Application Performance and Scalability 304
Performance Analysis and Testing 307

Availability 310
Backup, Recovery, and Restore 311
Storage Availability 314
Availability of Relational Databases 315
Virtual IP Addresses 316

Monitoring and Metering 317
Operating System Monitoring 318
Network Monitoring 323
Application Monitoring 323
Comprehensive Monitoring Solutions 327

Business Scenario: IoT Data Performance, Availability, Monitoring, and Metering Plan 328

Contents xi



ptg8286219

Chapter 9 Operations and Maintenance on the Cloud 331
Business Support Systems 331
Maintaining Compatibility with Future Versions of Software 333

An Evolving API 334
Java 334
REST 335
XML 336
JSON 336
Command Line 337
Data 337

Business Scenario: IoT Data Operations and Maintenance Plan 337

Further Reading 339

References 345

Index 355

xii Contents



ptg8286219

xiii

Preface

We are writing this book to share our experience over the past several years of developing the
IBM SmartCloud™ Enterprise. We hope that readers will not just learn more about that cloud, but
also be inspired to build solutions using it or other clouds as a platform. We hope that people
using other clouds will benefit from this book as well.



ptg8286219

This page intentionally left blank 



ptg8286219

xv

Acknowledgments

Thanks to many dedicated colleagues at IBM who have worked on IBM SmartCloud Enterprise
and other related products and projects. In particular, thanks to all the customers and people
inside IBM who are using the IBM SmartCloud Enterprise, for their feedback and questions,
especially the Rational® team. We gained a great deal of insight about the use of the cloud from
these questions and discussions, and it forced us to look at the cloud from an outside-in point of
view.

Thanks also to the entire IBM SmartCloud development team for its hard work and dedica-
tion in building this wonderful platform, working through unreasonable schedules and difficult
technical problems in the process.

Thanks to these specific people who helped with suggestions and review:
• Chris Roach, Program Manager, Cloud Technology, IBM

• Doug Davis, Senior Technical Staff Member, Web Services and Cloud Standards, IBM

• Dikran Meliksetian, Senior Technical Staff Member, Integrated Technology Delivery,
IBM

• Jamshid Vayghan, PhD, IBM Distinguished Engineer and Director, CTO Sales Trans-
formation, IBM

• Michael Behrendt, Cloud Computing Architect, IBM

• Prasad Saripalli, PhD, Principal Architect, IBM Cloud Engineering

• Scott Peddle, Advisory Software Engineer, IBM Global Technology Services®

• Shane Weeden, Senior Software Engineer and IBM Tivoli® Federated Identity Manager
development lead, who helped us understand OAuth and FIM.

• Stefan Pappe, IBM Fellow, Cloud Services Specialty Area, IBM



ptg8286219

This was a personal effort by the authors and is not representative of IBM or its views. IBM
did not participate in and does not endorse this work. However, the authors thank IBM for access
to the IBM SmartCloud Enterprise system and the opportunity to work on such a challenging and
satisfying project.

xvi Acknowledgments



ptg8286219

xvii

About the Authors

Alex Amies is a Senior Software Engineer with IBM and an architect on the IBM Smart-
Cloud Enterprise development team.

Harm Sluiman is a Distinguished Engineer with IBM and the technical lead for Smart-
Cloud Enterprise.

Qiang Guo Tong is an Advisory Software Engineer with IBM and one of the lead develop-
ers for SmartCloud Enterprise.

Guo Ning Liu is a Staff Software Engineer with IBM and worked on development of the
public APIs, provisioning services, and security for SmartCloud Enterprise.



ptg8286219

This page intentionally left blank 



ptg8286219

1

Introduction

The goal of this book is to help enterprises develop and operate services on the cloud. In particu-
lar, we hope that independent software vendors will be inspired to build value-add services on
public clouds. Additionally, we hope that developers of applications who make heavy use of
Infrastructure as a Service (IaaS), such as developers of Platform as a Service, Software as a
Service, and Business as a Service, will find this book useful. The target audience is developers
who use cloud-management application programming, architects who are planning projects, and
others who want to automate the management of IT infrastructure. The book is intermediate in
level but still offers a broad overview of the entire topic of IaaS clouds and aims to give a basic
background on most of the prerequisites needed to understand the topics discussed.

The book makes special reference to the IBM SmartCloud Enterprise. However, the
principles are general and are useful to anyone planning to automate the management of IT infra-
structure using cloud technology. In contrast to technical product documentation, the book tells a
story about why you might want to use the technologies described and includes sufficient back-
ground material to enable you to build the cloud applications described without having to consult
numerous external references. The references are listed as suggestions for further reading, not as
prerequisites to understanding the information presented.

Today cloud computing is bringing application development, business, and system opera-
tions closer together. This means that software developers need to better understand business
process and system operations. It also means that business stakeholders and operations staff have
to consume more software. The promise of cloud computing is that centralization, standardiza-
tion, and automation will simplify the user experience and reduce costs. However, fully achieving
these benefits requires a new mindset. The scope of this book is intentionally broad, to cover
these aspects of application development and operation. In addition, the book is quite practical,



ptg8286219

providing numerous code examples and demonstrating system utilities for deployment, security,
and maintenance.

The plan of the book runs from simple to more challenging. We hope that it gives applica-
tion developers an idea of the different possible applications that can be developed. As a result,
we look at some adjacent areas and related standards. Many of the topics discussed are not new;
however, they are strategic to cloud computing and, when necessary, we review them so that read-
ers do not need to seek background information elsewhere. We also will demonstrate several rel-
atively older technologies, such as Linux services and storage systems, that are finding new uses
in cloud computing.

Above all, this book emphasizes problem solving through cloud computing. At times you
might face a simple problem and need to know only a simple trick. Other times you might be on
the wrong track and need some background information to get oriented. Still other times, you
might face a bigger problem and need direction and a plan. You will find all of these in this book.

We provide a short description of the overall structure of a cloud here, to give the reader an
intuitive feel for what a cloud is. Most readers will have some experience with virtualization.
Using virtualization tools, you can create a virtual machine with the operating system install soft-
ware, make your own customizations to the virtual machine, use it to do some work, save a snap-
shot to a CD, and then shut down the virtual machine. An Infrastructure as a Service (IaaS) cloud
takes this to another level and offers additional convenience and capability.

Using an IaaS cloud you can create the virtual machine without owning any of the virtual-
ization software yourself. Instead, you can access the tools for creating and managing the virtual
machine via a web portal. You do not even need the install image of the operating system; you
can use a virtual machine image that someone else created previously. (Of course, that someone
else probably has a lot of experience in creating virtual machine images, and the image most
likely went through a quality process before it was added to the image catalog.) You might not
even have to install any software on the virtual machine or make customizations yourself; some-
one else might have already created something you can leverage. You also do not need to own any
of the compute resources to run the virtual machine yourself: Everything is inside a cloud data
center. You can access the virtual machine using secure shell or a remote graphical user interface
tool, such as Virtual Network Computing (VNC) or Windows® Remote Desktop. When you are
finished, you do not need to save the virtual machine to a CD; you can save it to the cloud storage
system. Although you do not have to own any of the infrastructure to do all this yourself, you still
have to pay for it in some way. The cloud provider handles that automatically as well, based on
the quantity of resources that you have used. This is the cloud pay-as-you-go concept.

The cloud provider has to invest in a lot of infrastructure to support this. Figure I.1 shows a
high-level overview of an Infrastructure as a Service cloud.

2 Introduction



ptg8286219

Figure I.1 Conceptual diagram of an Infrastructure as a Service cloud

The figure shows two cloud data centers with rack-based servers. Each server has many
CPUs and can support multiple virtual machines of different sizes. This is a major investment for
the cloud provider and the first advantage that a cloud user might think of, compared to in-house
virtualization: With a cloud, you can have as many computing resources as you need for as short
or long of a duration as desired; you are not limited by the computing capacity of your local facil-
ities. We refer to this characteristic as elasticity. You also connect to the cloud via the Internet,
which is convenient if you are hosting a web site but requires you to consider security. This is
where the virtual local area network shown in Figure I.1 can help you.

The cloud also provides a network storage system, which you can use for storing either vir-
tual machine images or data. Although the cost of ownership of network storage systems is
declining, owning your own network storage system is still expensive and affordable to usually
only medium to large companies. Blocks of the storage system can be carved off and made avail-
able as block storage volumes that can attach to virtual machines. Another aspect of data storage
and backup in cloud environments is that multiple data centers are available for making redun-
dant copies of data and providing high availability for mission-critical applications.

The cloud portal provides all this self-service as an additional aspect of cloud computing,
which is a great savings for enterprises. No need to ask an administrator every time you need a
new server, IP address, or additional storage—the cloud portal provides a control panel that gives

Introduction 3

User

Internet
(SSH)

Manage
Virtual Machines

Storage
System

Virtual
Machine

Data Center 1

Virtual Local Area
Network

Cloud Portal

Data Center 2
Racks

Save Data
Save Image



ptg8286219

you an overview of resources that end users can manage on demand. Not only are fewer adminis-
trators needed, but the consumers of the resources also have access to the resources more quickly.
This results in both a savings in capital and staff needed and a more agile business.

Another aspect of cloud computing that is immediately apparent to independent software
vendors is that public clouds provide a platform for a marketplace. Visibility of resources and ser-
vices on the cloud can be categorized at three levels: private, shared, and public. Publicly visible
resources, especially virtual machine images, provide an opportunity for independent software
vendors to sell services.

Terminology
This section gives some of the basic terminology for cloud computing, to give readers a common
resource for the terms used. Upcoming chapters explain the terminology in more detail for spe-
cialized aspects of cloud computing.

instance—A virtual machine instance. Sometimes referred to as a node.

image—A template for creating a virtual machine. A large file that saves the state of a
virtual machine so that a new virtual machine can be created from it.

virtual local area network (VLAN)—An abstraction of the traditional local area net-
work that does not depend on physical connections. A VLAN usually is a resource that a
cloud user uses and is isolated from the Internet.

public cloud—A cloud from which multiple enterprises or individuals can consume
services. IBM SmartCloud Enterprise is a public cloud that allows only enterprises as
customers.

private cloud—A cloud that an enterprise operates for its sole use.

multitenant—A service that multiple tenants share. In this context, a tenant is usually
an enterprise, and separation of the tenants’ resources is implied.

compute size—The number of virtual CPUs, amount of memory, and hard disks dedi-
cated to a virtual machine.

elasticity—The capability to scale resources on demand, such as dynamically adding
virtual machines or IP addresses.

Organization of the Book
The book is divided in to three parts.

Background Information
The first part of the book covers background knowledge on cloud computing. It begins with
Chapter 1, “Infrastructure as a Service Cloud Concepts,” and covers the basic reasons for using

4 Introduction



ptg8286219

cloud computing by looking at some use cases. This chapter then explains some basic cloud con-
cepts and the resource model of the entities we are managing. The chapter provides a context and
language for the chapters that follow. It is followed by a description of how to set up development
environments in the cloud. To this point, all the concepts apply equally to any Infrastructure as a
Service cloud.

Developing Cloud Applications
The second part of the book describes how to use cloud tools and develop simple cloud applica-
tions, and it explores potential cloud application areas. It includes chapters on developing on the
cloud, developing with the IBM SmartCloud Enterprise, leveraging standards, and creating cloud
services and applications. The chapters also describe the command-line toolkit, Java, and REST
APIs for managing resources specifically for IBM SmartCloud Enterprise, as well as provide a
number of code examples. In addition, this part discusses standards that relate to cloud comput-
ing and some open source projects and covers how to leverage those standards to interoperate
between clouds. Following that, this part describes several application areas that are becoming
important in cloud computing, such as image customization, network services, software installa-
tion and management, storage, and remote desktops.

Exploring Hosting Cloud Applications
The third section of the book discusses hosting applications on the cloud. This includes chapters
on security; monitoring, performance, and availability; and operations and maintenance on the
cloud. First, we provide an overview of relevant security areas and techniques for hardening
applications. We then discuss monitoring, performance, and availability. Finally, we discuss busi-
ness support systems and maintenance.

The book uses a scenario to illustrate and tie together the different concepts discussed.
Throughout, we focus on a hypothetical company called IoT Data that provides a data storage
service for Internet-enabled devices.

Disclaimer
Any recommended solutions contained in this book are not guaranteed. Warranty is not implied
for any source code. All source code should be understood as sample for illustrative purposes
only. IBM does not support or endorse any information in this book.

Disclaimer 5



ptg8286219

This page intentionally left blank 



ptg8286219

7

C H A P T E R 1

Infrastructure as a
Service Cloud
Concepts

This chapter discusses Infrastructure as a Service (IaaS) concepts with the goal of giving cloud
application developers background knowledge and helping them explore why they might want to
use cloud computing. 

The United States National Institute for Standards and Technology (NIST) defines cloud
computing as a model for convenient and rapid network access to a shared pool of computing
resources that can be provisioned with minimal management effort [Mell and Grance, 2009].
According to this definition, cloud computing has five essential characteristics:

• On-demand self-service

• Broad network access

• Multitenancy

• Rapid elasticity

• Measured service (pay as you go)

NIST also describes four deployment models:

• Private cloud—An organization operates a cloud for its own use. A private cloud can
be either on-site at an enterprise’s own premises or off-site at the cloud provider’s loca-
tion, with network connectivity and isolation from the outside using a virtual private
network (VPN). A private cloud does not need multitenant capability, even though this
is one of the five essential characteristics listed earlier.

• Community cloud—Several organizations use the cloud. For example, several govern-
ment organizations might share both goals and resources.

• Public cloud—A cloud provider offers cloud services to the public-at-large. 

• Hybrid cloud—Two or more clouds are federated by some enabling technology.



ptg8286219

The content in this book applies to each of these models. However, some of the technolo-
gies are more applicable to one of more of the different types of clouds. For private clouds, you
will need to operate the cloud itself more independently, so you need a deeper background in vir-
tualization technologies. Public clouds tend to be large in scale, enabling independent software
vendors (ISVs) and others to develop innovative services and solutions. To do this successfully,
ISVs need to understand how to develop reusable cloud services. Interoperability is important in
hybrid clouds, and you might find yourself focusing on standards. Likewise, collaboration is
important in community clouds, so open source projects and collaboration techniques might be
important.

Workloads
The term workload in the context of cloud computing is an abstraction of the use to which
cloud consumers put their virtual machines on the cloud. For example, a desktop workload
might be supporting a number of users logging on to interactive desktop sessions. An SAP
workload might be a system of virtual machines working together to support an enterprise’s
SAP system. Workloads are a key characteristic differentiating the requirements for cloud
computing. Different workloads have different characteristics in terms of computing capacity,
variability of load, network needs, back-up services, security needs, network bandwidth needs,
and other quality-of-service metrics. At a high level, cloud workloads are divided into three
groups: server centric, client centric, and mobile centric. Table 1.1 summarizes the common
types of cloud workloads.

Table 1.1 Common Workloads in Cloud Computing

Description and Key Quality-of-

Workload Examples Service Metrics

Server Centric

Web sites Freely available web sites for social Large amounts of storage, 
networking, informational high network bandwidth, 
web sites large number of users

Scientific computing Bioinformatics, atmospheric modeling, Computing capacity
other numerical computations

Enterprise software Email servers, SAP, enterprise Security, high availability, 
content management customer support

Performance testing Simulation of large workloads to Computing capacity
test the performance characteristics 
of software under development

Online financial services Online banking, insurance Security, high availability,
Internet accessibility

8 Chapter 1 Infrastructure as a Service Cloud Concepts



ptg8286219

Description and Key Quality-of-

Workload Examples Service Metrics

E-commerce Retail shopping Variable computing load,
especially at holiday times

Core financial services Banking and insurance systems Security, high availability

Storage and backup services General data storage and backup Large amounts of reliable
storage

Client Centric

Productivity applications Users logging on interactively for Network bandwidth and 
email, word processing, and so on latency, data backup, security

Development and testing Software development of web User self-service, flexibility, 
applications with Rational Software rich set of infrastructure 
Architect, Microsoft® Visual Studio, services 
and so on

Graphics intensive Animation and visualization software Network bandwidth and 
applications latency, data backup

Rich Internet applications Web applications with a large amount 
of JavaScript

Mobile Centric

Mobile services Servers to support rich mobile High availability
applications

It is apparent from Table 1.1 that different workloads are appropriate for different types of
clouds. For example, free online social networking web sites need many virtual machines to sup-
port many users and save large numbers of media files. Public cloud computing is ideal for sup-
porting online social networking sites. Security and high availability is a top consideration for
core financial services that need to be isolated from the Internet. The data integrity provided by a
relational database is important for financial applications, to ensure that financial transactions are
accounted for accurately. However, social networking web sites often use NoSQL data stores that
do not provide full relational integrity.

The workloads can be refined further. For example, desktop needs are different for a handful
of developers than they are for a large number of general employees. The developers might use a
Linux desktop and set up everything themselves. The general employees might use a standard
desktop image maintained from a central point. Support is also important for the general employ-
ees, who do not have the expertise to troubleshoot and reinstall, if needed, as developers do.

The paper MADMAC: Multiple Attribute Decision Methodology for Adoption of Clouds
[Saripalli and Pingali, 2011] discusses in detail cloud workloads and decision making for enter-
prise cloud adoption.

Workloads 9



ptg8286219

Use Cases
This section explores some of the use cases driving cloud computing. Cloud computing offers
many advantages that are important for individual use cases. Infrastructure virtualization also
opens up new possibilities and IT assets that traditional computing does not use. Finally, operat-
ing in a public Internet environment offers new collaboration possibilities while also introducing
security challenges. See “Use Cases and Interactions for Managing Clouds” [Distributed Man-
agement Task Force, 2010] for more detail on use cases. 

Actors
A number of actors collaborate together in cloud use cases. Consider this basic list.

Cloud service developer—Develops software and other assets for consumption on the
cloud.

Cloud service consumer—Requests cloud resources and approves business expendi-
tures. Cloud service consumers can include users, administrators, and business
managers.

Cloud provider—Provides a cloud service to consumers.

Web Site Hosting
Operating a web site that requires database access, supports considerable traffic, and possibly
connects to enterprise systems requires complete control of one or more servers, to guarantee
responsiveness to user requests. Servers supporting the web site must be hosted in a data center
with access from the public Internet. Traditionally, this has been achieved by renting space for
physical servers in a hosting center operated by a network provider far from the enterprise’s inter-
nal systems. With cloud computing, this can now be done by renting a virtual machine in a cloud
hosting center. The web site can make use of open source software, such as Apache HTTP Server,
MySQL, and PHP; the so-called LAMP stack; or a Java™ stack, all of which is readily available.
Alternatively, enterprises might prefer to use commercially supported software, such as Web-
Sphere® Application Server and DB2®, on either Linux® or Windows operating systems. All
these options are possible in IaaS clouds and, in particular, in the IBM SmartCloud Enterprise.

Figure 1.1 shows a use case diagram for this scenario.
When building the web site, the developer needs to create a virtual machine instance that

will host the web and application servers needed. The developer can save an instance to an image
when the development of the site reaches a certain point or just for back-up purposes. Usually an
administrator does not want to use an instance that a developer created. However, the administra-
tor needs to know the hosting requirements in detail and might use an image that the developer
saved or scripts that a developer created, as a starting point. In the process of maintaining the web
site, an administrator might need to add storage and clone storage for back-up purposes. After
cloning, the administrator might want to copy the data to some other location, so having it offline

10 Chapter 1 Infrastructure as a Service Cloud Concepts



ptg8286219

from the production web site would be an advantage. From the users’ perspective, users will be
unaware that the web site is hosted in the cloud.

Use Cases 11

Developer

Administrator

Consumer

Develop

Administer

Visit

Use Web Site

Back Up

Build Web Site Create Instance

Save Image

Add Volume

Clone Volume

Add Storage

Back UpAdd Resources

Save Work

Maintain Web
Site

Cloud

Add Server

Figure 1.1 Use case diagram for hosting a web site on the cloud

The activities of the developer and administrator can be accomplished via a console with a
graphical user interface, such as the one the IBM SmartCloud Enterprise provides. However, as
time passes, many regular cloud users will automate with scripts. Command-line tools are ideal
for these power users because they execute much faster than a user can click a mouse and navigate
pages. Many power users have cheat sheets for common operations, such as installing software
and patches, that they can retrieve and edit as needed. They can save scripts for creating instances,
saving images, and performing other operations along with the rest of the script collection.

The main advantage of using the cloud for this use case is that renting a virtual machine in
a location where it is accessible from the Internet is considerably cheaper than placing physical
machines in a data center accessible from the Internet. Other cloud advantages also apply to this
use case, including the rapid ability to substitute in a new virtual machine for a server experienc-
ing a hardware fault.

Short-Term Peak Workloads
In the retail industry, workloads come in short peaks at certain times of the year (notably, at
Christmas) or coincide with advertising campaigns. Quickly adding capacity during these times



ptg8286219

is important. With their elastic ability to add servers as desired, clouds are ideal in this situation.
Monitoring is important because user traffic varies from year to year based on economic condi-
tions and other factors that make predicting the workload difficult. The IBM SmartCloud Enter-
prise includes an IBM Tivoli Monitoring image in the catalog that can be helpful. Along with
other images in the catalog, it can be rented for as long as needed, and no installation is necessary.
Figure 1.2 shows a use case diagram for this scenario.

12 Chapter 1 Infrastructure as a Service Cloud Concepts

Cloud

Visit

Administrator

Consumer

Administer

Maintain Web Site

Use Web Site

Create Instance

Delete Instance

Add Volume

Use Tivoli Monitoring

Add Resources

Monitor

Add Storage
Reduce Resources

Figure 1.2 Use case diagram for monitoring peak workloads

As in the previous use case, all actions required to do this can be done in the console graph-
ical user interface. However, scripts avoid repetitive work and save administrators time.

The main advantage of the cloud in this use case is its elastic scalability.

Proof-of-Concept
Enterprises usually do proof-of-concept or pilot studies of new technologies before committing
to use them. External IT consultants are often invited to do these proof-of-concepts. The consult-
ants are typically under a lot of pressure to deliver a large quantity of computing capacity in a
short period of time. If they do not have prior experience in this area, they generally have little
hope of succeeding. Assets that they can take from job to job are critical. The cloud can make this
easier by allowing saved images to be reused directly and to allow consultants and enterprise
users to easily share the same network space. This solution is a better one than requiring the con-
sultant to transport physical machines, install everything on her or his laptop, or install all the
software on-site at the enterprise in a short period of time.



ptg8286219

Figure 1.3 shows a use case diagram for this scenario.

Use Cases 13

Develop Reuse

Deliver

Develop Pilot Create Instance

Save Instance

Create User Account

Test Pilot

Consultant

Enterprise

Add Consultant

Cloud

Test

Figure 1.3 Use case diagram for a proof-of-concept on the cloud

Working in a public cloud environment with support for user administration is critical here,
to allow the enterprise to add an account for the consultant. Alternatively, the consultant could
use his or her account space and simply allow access via a network protocol such as HTTP. If the
enterprise likes the proof-of-concept, it might want to use it long term. It can move it to the com-
pany’s private network by saving an image and starting up an instance on its virtualization LAN.
Table 1.2 compares a traditional proof-of-concept and a proof-of-concept on the cloud.

Table 1.2 Comparison of Traditional and Cloud Environments for a 
Proof-of-Concept

Traditional Cloud

The consultant travels to the customer site. The consultant works over the Internet.

The customer gives the consultant access to The customer gives the consultant access to the 
the enterprise network, subject to an cloud with account or specific virtual machines 
approval workflow. with cryptographic keys.

Customer procures hardware for the pilot. Customer creates an instance with the self-service
interface.

The consultant works independently. The consultant pulls in experts for high availability,
performance, security, and so on for a few hours, as
needed.



ptg8286219

14 Chapter 1 Infrastructure as a Service Cloud Concepts

Traditional Cloud

The consultant cannot connect his or her laptop The customer can use her or his favorite 
to the enterprise network and instead must use application lifecycle management tools on a 
only tools that the customer makes available. laptop or available on the cloud.

The consultant installs everything from scratch. The consultant starts up instances from prebuilt
images.

The server is repurposed after completion. Server instances are saved as images, and running
instances are deleted.

The cloud enables a different set of deliverables for proof-of-concept, pilot, beta programs,
and consulting projects. In traditional environments, enterprise network constraints (especially
security issues) often require consultants to work with unfamiliar tools. This results in written
reports documenting deployment steps and best practices that customers cannot easily consume.
In other situations, consultants are left in a permanent support position long after the project has
“finished.” The cloud enables a different set of deliverables, including virtual machine images,
deployment topology models, and software bundles, as shown Table 1.3.

Table 1.3 Comparison of Traditional and Cloud Project Artifacts

Traditional Cloud

Software installation program (time consuming Virtual machine image (capturing an instance 
to develop) with the click of a button)

Written reports summarizing deployment steps Deployment topology models, automation scripts

User documentation written from scratch Documentation reused from standard images

Configuration files in miscellaneous locations Asset added to cloud catalog

Difficult support process Support via remote access to cloud

The primary advantages of the cloud for this use case are elastic scalability, access from the
Internet, and the capability to save and reuse projects assets.

Extra Capacity
In this scenario, the IT department runs out of computing resources, delaying in-house projects.
The department rents resources on the cloud to meet the shortfall. A virtual private network is
used to connect to a private virtual local area network (VLAN) in the cloud to the enterprise
network.

Table 1.2 Comparison of Traditional and Cloud Environments for a 
Proof-of-Concept (continued)



ptg8286219

Use Cases 15

Employee

Enterprise

Use Instance

Use Enterprise ResourceAdd VLAN

Create Instance

Cloud Enterprise

Use Resource

Configure

Use VPN

Add Capacity

Figure 1.4 Use case diagram for adding extra capacity for enterprise IT infrastructure

Open Source/Enterprise Collaboration
Recently, enterprises have embraced the idea of open source. However, this is best done in a con-
trolled way. An organization might be unwilling to host an open source project on SourceForge or
Apache but might want to use open source in a more controlled way. By hosting the project itself
on the cloud, the enterprise maintains complete control over the project while still gaining the
advantages of an open source model. 

Outside contributors can make use of these advantages:

• Be given user accounts without granting access to the enterprise’s internal IT systems

• Use a common set of development tools hosted on the cloud

Storage System for Security Videos
Some application domains consume huge amounts of data. Video files are one example. In addi-
tion to the files themselves, a management application must allow the videos to be accessed and
store additional metadata about them. Hadoop, a freely available open source distributed file sys-
tem capable of storing huge amounts of data, might fulfill the storage needs of such a security
video management and access system. IaaS clouds are an ideal platform for hosting Hadoop and
being able to add nodes to the cluster on demand.



ptg8286219

Business Scenario: IoT Data Hosting Provider
To tie together the information presented in this book, this section describes how it can be used in
a business scenario. In this situation, the company IoT Data provides a hosting service for Inter-
net-connected devices to store data. IoT Data’s business services include the following:

• Registering devices

• Storing data from a device using a REST web service

• Conducting HTML and programmatic searches of the data

• Sharing the data in public, community, and commercial modes

IoT Data charges customers by gibibytes (GiB) of data stored and 10% of any data sold.
For large customers, IoT Data also provide the entire suite of software for private hosting on the
cloud itself. In this case, the changes are per virtual machine hour and depend on the size of the
virtual machine (in addition to the per-GiB charge). A diagram showing the main actors and use
cases for IoT Data is shown next.

16 Chapter 1 Infrastructure as a Service Cloud Concepts

Administer

User

*

IoTData System

<<subsystem>>
Device

<<subsystem>>
Data Store

Search

Store Data

Register Device

Administration

Figure 1.5 IoT Data use case diagram

IoT Data does not have a large budget to hire employees, so as much work as possible has
to be automated. IoT Data also cannot afford to buy servers, so it needs a pay-as-you-go model,
such as a public cloud provides. In addition, the company has few resources to develop its own
software and thus must leverage as much as possible from the cloud provider. This book explains
how different technologies can meet IoT Data’s business needs (however, we do not actually
write the code for doing so).



ptg8286219

Virtualization
We briefly discuss virtualization, with the goal of providing a foundation for discussing IaaS
clouds and the resource model. The term virtualization can apply to a computer (a virtual
machine and the resources it uses), storage, network resources, desktops, or other entities. Virtu-
alization of hardware resources and operating systems dates back the 1960s, with IBM main-
frames, and was later used on AIX® and other UNIX® platforms. It has been a powerful tool for
these platforms for many years. In 1999, VMWare introduced virtualization for low-cost Intel®

x-series hardware, based on the research of its founders at Stanford University. This made the
practice of virtualization more widespread. 

A hypervisor, or virtual machine manager, is a software module that manages virtual
machines. The hypervisor resides on the host system on which the virtual machines run. The rela-
tionship of the hypervisor to the host operating system and to the virtual machine is one of the key
distinguishing characteristics of the different virtualization systems.

Major virtualization systems for x86 hardware include these:

• VMWare, a broad range of virtualization products for x86

• Xen, an open source virtualization system with commercial support from Citrix

• Windows Hyper-V, introduced by Microsoft in Windows Server 2008

• Kernel Virtualization Machine (KVM), a part of the Linux kernel since version 2.6.2

Virtualization became widespread in the early 2000s, several years before the rise of cloud
computing. Virtualization offers many practical benefits, including the following:

• The ease of setting up new systems. New systems do not need to installed using installa-
tion media.

• No need to buy new hardware to simulate various system environments for debugging
and support.

• The capability to recover quickly from system corruption.

• The ease of relocating and migrating systems. For example, a move to a more powerful
machine can simply be a matter of taking a snapshot of a virtual machine and starting up
a new virtual machine based on that snapshot.

• The ease of remote management. Physical access to data centers is tightly controlled
these days. The use of virtual machines greatly reduces the need for physical access.

• The capability to run multiple operating systems simultaneously on one server.

In virtualization of hardware and operating systems, we refer to the guest system as the sys-
tem being virtualized. The system the guest runs on is called the host, which uses a hypervisor to
managing scheduling and system resources, such as memory. Several types of virtualization
exist: full virtualization, partial virtualization, and paravirtualization. 

Virtualization 17



ptg8286219

Full virtualization is complete simulation of the hardware. Full virtualization is simulating
to emulate. In emulation, an emulated system is completely independent of the hardware. The
Android smart phone emulator and QEMU in unaccelerated mode are examples of system emu-
lation. Full virtualization differs from emulation in that the virtual system is designed to run on
the same hardware architecture as the host system. This enables the instructions of the virtual
machine to run directly on the hardware, greatly increasing performance. In full virtualization, no
software is needed to simulate the hardware architecture. Figure 1.6 gives a schematic diagram of
full virtualization.

18 Chapter 1 Infrastructure as a Service Cloud Concepts

•�•�• 

•�•�• 

Applications Applications 

Unmodified Guest
Operating System

Unmodified Guest
Operating System

Hypervisor

Host Operating System 

Physical Hardware 

Figure 1.6 Schematic diagram of full virtualization

One of the key characteristics of full virtualization is that an unmodified guest operating
system can run on a virtual machine. However, for performance reasons, some modifications are
often made. Intel and AMD introduced enhancements to CPUs to allow this: the Intel VT (Virtual
Technology) and AMD-V features introduced in 2005. These features support modifications of
the guest operating system instructions through variations in their translation to run on the hard-
ware. The Intel VT-x (32-bit processors) and VT-i (IA64 architecture) introduced two new opera-
tion levels for the processor, to be used by hypervisors to allow the guest operating systems to run
unmodified. Intel also developed a VT-d feature for direct IO, to enable devices to be safely
assigned to guest operating systems. VT-d also supports direct memory access (DMA) remap-
ping, which prevents a direct memory access from escaping the bounds of a virtual machine.
AMD has a similar set of modifications, although implemented somewhat differently.

Figure 1.6 shows the hypervisor running on top of the host operating system. However, this
is not necessary for some hypervisors, which can run in “bare-metal” mode, installed directly on
the hardware. Performance increases by eliminating the need for a host operating system.



ptg8286219

VMWare Workstation and the IBM System z® Virtual Machine are examples of full virtu-
alization products. VMWare has a wide range of virtualization products for x86 systems. The
ESX Server can run in bare-metal mode. VMWare Player is a hosted hypervisor that can be freely
downloaded and can run virtual machines created by VMWare Workstation or Server. Xen can
run as a full virtualization system for basic architectures with the CPU virtualization features
present.

In paravirtualization, the hardware is not simulated; instead, the guest runs in its own iso-
lated domain. In this paradigm, the hypervisor exports a modified version of the physical hard-
ware to the guest operating system. Some changes are needed at the operating system level.
Figure 1.7 shows a schematic diagram of paravirtualization.

Virtualization 19

•�•�• 

•�•�• 

Applications Applications 

Modified Guest
Operating System

Modified Guest
Operating System

Hypervisor

Host Operating System 

Physical Hardware 

Figure 1.7 Schematic diagram of paravirtualization

Xen is an example of a paravirtualization implementation. VMWare and Windows Hyper-
V can also run in paravirtualization mode.

In operating system–level virtualization, the hypervisor is integrated into the operating sys-
tem. The different guest operating systems still see their own file systems and system resources,
but they have less isolation between them. The operating system itself provides resource manage-
ment. Figure 1.8 shows a schematic diagram of operating system–level virtualization.

One of the advantages of operating system–level virtualization is that it requires less dupli-
cation of resources. Logical partitions on the IBM AIX operating system serves as an example of
operating system–level virtualization. 



ptg8286219

Figure 1.8 Schematic diagram of operating system–level virtualization

KVM can be considered an example of operating system–level virtualization. KVM is a
Linux kernel module and relies on other parts of the Linux kernel for managing the guest sys-
tems. It was added to the Linux kernel in version 2.6. KVM exports the device /dev/kvm, which
enables guest operating systems to have their own address spaces, to support isolation of the vir-
tual machines. Figure 1.9 shows the basic concept of virtualization with KVM.

20 Chapter 1 Infrastructure as a Service Cloud Concepts

•�•�• 

•�•�• 

Applications Applications 

Modified Guest
Operating System

Modified Guest
Operating System

Host Operating System 

Physical Hardware 

•�•�• 

•�•�• 

Applications Applications 

Guest Operating  
System 

Guest Operating  
System 

Hypervisor

Physical Hardware 

/dev/kvm /dev/kvm

QEMU QEMU

Figure 1.9 Virtualization with KVM

KVM depends on libraries from the open source QEMU for emulation of some devices.
KVM also introduces a new process mode, called guest, for executing the guest operating



ptg8286219

systems. It is a privilege mode sufficient to run the guest operating systems but not sufficient to
see or interfere with other guest systems or the hypervisor. KVM adds a set of shadow page tables
to map memory from guest operating systems to physical memory. The /dev/kvm device node
enables a userspace process to create and run virtual machines via a set of ioctl() operations,
including these:

• Creating a new virtual machine

• Allocating memory to a virtual machine

• Reading and writing virtual CPU registers

• Injecting an interrupt into a CPU

• Running a virtual CPU

In addition, guest memory can be used to support DMA-capable devices, such as graphic
displays. Guest execution is performed in the loop:

• A userspace process calls the kernel to execute guest code. 

• The kernel causes the processor to enter guest mode.

• The processor executes guest code until it encounters an IO instruction or is interrupted
by an external event.

Another key difference between virtualization systems is between client-based and server-
based virtualization systems. In a client-based virtualization system, such as VMWare Worksta-
tion, the hypervisor and virtual machine both run on the client that uses the virtual machine.
Server products, such as VMWare ESX, and remote management libraries, such as libvirt, enable
you to remotely manage the hypervisor. This has the key advantage of freeing the virtual machine
from the client that consumes it. One more step in virtualization is needed in cloud computing,
which is to be able to manage a cluster of hypervisors.

Computing capacity is not the only resource needed in cloud computing. Cloud consumers
also need storage and network resources. Those storage and network resources can be shared in
some cases, but in other cases, they must be isolated. Software based on strong cryptography,
such as secure shell (SSH), can be used safely in a multitenant environment. Similarly, some soft-
ware stores data in encrypted format, but most does not. Thus, storage and network virtualization
and tenant isolation are needed in clouds as well. 

Storage virtualization provides logical storage, abstracting the details of the storage tech-
nology from users and application software. This is often implemented in network-attached
storage devices, which can provide multiple interfaces to a large array of hard disks. See the
“Storage” section later in this chapter for more details.

Network resources can also be virtualized. This book is most concerned with virtualization
at the IP level. In the 1990s, local area networks (LANs) were created by stringing Ethernet cable
between machines. In the 2000s, physical network transport was incorporated directly into cabi-
nets that blade servers fit into, to keep the back of the cabinet from looking like a bird’s nest of

Virtualization 21



ptg8286219

Ethernet cable. Today we can do the virtual equivalent of that with virtual network management
devices in a VLAN, which can be managed conveniently and also provides network isolation for
security purposes. See the “Network Virtualization” section later in this chapter for more details.

These virtualization platforms provide great convenience, but management comes at the
cost of learning them and developing efficient skills. Some other limitations exist as well:

• The different virtual hosts must be managed separately, and only a limited number of
guest machines can be placed on one host. Today 16 dual-core CPU machines are
affordable, to support around 32 capable virtual machines, but we need a way to scale to
larger numbers.

• End users still need to contact a system administrator when they want a new virtual
machine. The administrator then must track these requests and charge for use.

• Virtualization itself does not provide a library of images that can be readily used. A fea-
ture of organizations that use a lot of direct virtualization is image sprawl, consisting of
a large number of unmanaged virtual machine images.

• The system administrator still must manage the various pieces of the infrastructure.
Some small companies cannot afford system administrators, and many large organiza-
tions would like to reduce the number of system administrators they currently have.

• Hardware still must be bought. Most enterprises would like to minimize their capital
investments in hardware.

Infrastructure as a Service Clouds
An IaaS cloud provides abstractions beyond virtualization so that you do not need to learn how to
manage them yourself. In fact, when using an IaaS cloud, you normally are not even aware of
what virtualization platform is being used. In this case, the cloud service provider is concerned
about the virtualization platform; you do not need to worry about it. Figure 1.10 shows some of
the main components of an IaaS cloud.

The user logs into a self-service user interface that is part of a system called the business
support services (BSS). The BSS knows how to charge a user for the resources used, and the self-
service user interface enables the user to create and manage resources such as virtual machines,
storage, and IP addresses. This gives the user a central location for viewing and managing all
resources instead of being left to manage a collection of independent virtualization technologies.
A programmatic API also is often provided, to enable automation of resource management for a
similar set of capabilities as those of the self-service user interface. The operational support sys-
tem (OSS) manages a collection of hypervisors and federates other virtualized resources. The end
result is that the user can have access to the virtual machine without having to know how it was
created.

22 Chapter 1 Infrastructure as a Service Cloud Concepts



ptg8286219

Infrastructure as a Service Clouds 23

<<use>>

<<use>>

HTTP

SSH

User <<use>>

<<use>>

Infrastructure as a Service Cloud

Usage

<<component>>

Business Support Systems

<<component>>

Operational Support Systems

<<node>>

Virtual Machine

<<component>>

Billing System

Figure 1.10 Basic concepts of an Infrastructure as a Service cloud

Additional features of IaaS clouds, such as the IBM SmartCloud Enterprise, are convenient
for enterprises. Importantly, the relationship is between the cloud provider and the enterprise. An
enterprise contact can thus manage the users, who can create and use resources that the enterprise
is paying for. In addition, the work products created by people using the cloud should belong to
the enterprise, and the cloud infrastructure should support this.

One of the most interesting aspects of cloud computing is that it enables a new level of tool-
ing and collaboration. It enables reuse of work products, especially images, by teams. For
example, an operating system expert can set up a base operating system image, a software devel-
oper can add an installation of a software product on top of it, and an enterprise user can make use
of the image by taking snapshots suitable for his or her enterprise’s needs. Figure 1.11 shows how
a developer can interact with cloud tools to provide assets that an end user can consume.

Business support systems (BSS) are a critical part of the cloud and might be important to
your applications if you sell services to customers. Most online systems need a BSS. BSS
includes subscriber management, customer management, contract management, catalog manage-
ment, business partner enablement, metering, and billing. Clearly, BSS is a wider concept than
just IaaS. The Apple iPhone AppStore and the Android AppStore are examples of platforms that
include a BSS.



ptg8286219

24 Chapter 1 Infrastructure as a Service Cloud Concepts

<<use>>

<<use>>

<<use>>

<<use>>

<<component>>

IaaS Cloud

Catalog

<<use>>

<<use>>

<<component>>
Integrated Development Environment

<<node>>
Virtual Machine

Developer

Desktop

User

SSH

<<use>>

<<component>>
Business Support Systems

<<component>>
Operational Support Systems

Figure 1.11 Use of development tools in a cloud environment

Other Cloud Layers
Cloud layers operate at a higher level of abstraction than IaaS, including Platform as a Service
(PaaS), Software as a Service (SaaS), and Business as a Service (BaaS). In its definition of cloud
computing, NIST recognizes three of these layers: IaaS, PaaS, and SaaS. Figure 1.12 illustrates
this concept of different layers of cloud computing.

Business as a Service

Software as a Service

Platform as a Service

Infrastructure as a Service 

Figure 1.12 Cloud platform layers



ptg8286219

Infrastructure as a Service is a term for services that provide a model for dynamically allo-
cating infrastructure and software, starting with an OS, on that infrastructure. Platform as a Ser-
vice describes concrete services used in the execution of an application or higher-level service.
The services provide some generalized and reusable capability to their software consumer and
are thus a “platform” service being consumed. They bring their own interface and programming
model for the consumer to use, along with their own API, data, messaging, queueing, and so on. 

If a platform service is hosted by an infrastructure service provider, the IaaS API is likely
used as part of the process to instantiate and access the platform service, but it is a separate
concept.

To complete the terminology, Software as a Service is typically a self-sufficient software
solution to a consumer need. Typically, this is a tool or business application with on-demand,
turn-key characteristics.

If a software service leverages a platform service, it normally does so transparently. If the
software service is hosted by an infrastructure service provider, the IaaS application program-
ming interface can be used as part of the process to instantiate and access the software service.

If you look at the service stack from the top down, you can see some of the value the other
layers provide. At the very top are business services such as Dunn and Bradstreet, which provides
analysis and insight into companies that you might potentially do business with. Other examples
of business services are credit reporting and banking. Providing business services such as these
requires data stores for storing data. However, a relational database by itself is not sufficient: The
data retrieval and storage methods must be integrated into programs that can provide user inter-
faces for people can use. Relational databases also need to be maintained by database administra-
tors who archive and back up data. This is where Platform as a Service comes in. Platform as a
Service provides all the services that enable systems to run by themselves, including scaling,
failover, performance tuning, and data retrieval. For example, the Salesforce Force.com platform
provides a data store where your programs can store and retrieve data without you ever needing to
worry about database or system administration tasks. It also provides a web site with graphical
tools for defining and customizing data objects. IBM Workload Deployer is another Platform as a
Service that runs on an infrastructure as a service cloud but is aware of the different software run-
ning on individual virtual machines; it can perform functions such as elastic scaling of applica-
tion server clusters.

With Platform as a Service, you still need to write a program that enables a user to interact
with it via a graphical user interface. If you do not like that idea, you can use Software as a Ser-
vice. Salesforce.com enables enterprises to use a customer relationship management (CRM) sys-
tem without having to do any programming or software installation. Its web site also supports
graphical tools for customizing menus, data entry forms, and reports. It works great if you all you
need to do is create, retrieve, update, and delete data or use a predefined service, such as email. If
you need to do more than that, you need to drop down to the Platform as a Service level.

Other Cloud Layers 25

Force.com
Salesforce.com


ptg8286219

Virtual Machine Instances
An instance is a running virtual machine, in addition to some data the cloud maintains to help
track ownership and status. The cloud manages a large pool of hardware that can be used to create
running instances from images. The virtual machine includes a copy of the image that it instanti-
ates and the changes that it saves while it runs. The instance also includes virtualizations of the
different hardware that it needs to run, including CPUs, memory, disk, and network interfaces.
The cloud manages a pool of hypervisors that can manage the virtual machine instances. How-
ever, as a user of the cloud, you do not need to worry about the hypervisors. In fact, the hypervi-
sor you are using—KVM, Xen, VMWare, or any other—makes no difference.

When you delete an instance, that hardware can be reused. The cloud scrubs your hard disk
before doing so, to make sure that the next user of the hardware finds no traces of previous data.

Virtual Machine Images
A virtual machine image is a template for creating new instances. You can choose images from a
catalog to create images or save your own images from running instances. Specialists in those
platforms often create catalog images, making sure that they are created with the proper patches
and that any software is installed and configured with good default settings. The images can be
plain operating systems or can have software installed on them, such as databases, application
servers, or other applications. Images usually remove some data related to runtime operations,
such as swap data and configuration files with embedded IP addresses or host names.

Image development is becoming a larger and more specialized area. One of the outstanding
features of the IBM SmartCloud Enterprise is the image asset catalog. The asset catalog stores a
set of additional data about images, including a “Getting Started” page, a parameters file that
specifies additional parameters needed when creating an instance, and additional files to inject
into the instance at startup. It also hosts forums related to assets, to enable feedback and questions
from users of images to the people who created those images. Saving your own images from run-
ning instances is easy, but making images that other people use requires more effort; the IBM
SmartCloud Enterprise asset catalog provides you with tools to do this.

Because many users share clouds, the cloud helps you track information about images,
such as ownership, history, and so on. The IBM SmartCloud Enterprise knows what organization
you belong to when you log in. You can choose whether to keep images private, exclusively for
your own use, or to share with other users in your organization. If you are an independent soft-
ware vendor, you can also add your images to the public catalog.

Some differences between Linux and Windows exist. The filelike description of the Linux
operating system makes it easy to prepare for virtualization. An image can be manipulated as a
file system even when the instance is not running. Different files, such as a user’s public SSH key
and runtime parameters, can be injected into the image before booting it. Cloud operators take
advantage of this for ease of development and to make optimizations. The same method of
manipulating files systems without booting the OS cannot be done in Windows.

26 Chapter 1 Infrastructure as a Service Cloud Concepts



ptg8286219

Storage
Virtualization of storage can be done in different ways to make physical storage transparent to
consumers of I/O services. Block storage is storage handled as a sequence of bytes. In file-based
storage systems, the block storage is formatted with a file system so that programs can make use
of file-based I/O services to create and manage files. Virtualization can be done at both levels.

Block Storage
Usually, the person installing an operating system partitions physical hard disks in a physical
computer. A disk partition is a logical segment of a hard disk. Partitioning a disk can have several
advantages, including separating the operating system from user files and providing a storage
area for swapping. The disadvantages of partitioning include the need to reorganize or resize if
you run out of space on one partition. The classical example is running out of space on your oper-
ating system partition (C:) when you still have plenty of space on the other partitions. One advan-
tage of partitions in virtual systems is that you can plan for a large amount of storage space but do
not have to actually allocate that space until you need to use it.

Clouds can make use of partitions as well. In the IBM SmartCloud Enterprise, when you
provision a virtual machine, you have an option to create only the root file partition. This opti-
mizes startup time. If you have a large amount of storage associated with the image, the time sav-
ings can be considerable. Later, when you use the storage, it is then allocated.

A Linux logical volume manager (LVM) provides a level of abstraction above block
devices, such as hard disks, to allow for flexibility in managing storage devices. This can make it
easier to resize physical partitions, among other tasks. The LVM manages physical volumes,
which can be combined to form a volume group. Logical volumes can then be created from the
volume groups. The logical volumes can span multiple physical volumes, allowing them to be
any size up to the total size of the volume group.

Copy on write is a technique for efficiently sharing large objects between two or more
clients. Each client appears to have its own writable copy of the object, but each client actually
has only a read-only copy of the shared object. When a client tries to write to the object, a copy of
the block is made and the client is given its own copy. This is efficient when the object is only
rarely changed by client programs, such as an operating system when a virtual machine loads and
runs it. This technique can make starting the virtual machine much faster than first copying the
operating system to a separate storage area before booting the virtual machine. In this context,
copy on write is often used with a network-based file system.

The term direct attached storage is usually used to contrast local block-based storage with
network attached storage. Direct attached storage is simple, cheap, and high performance. Its
high-performance characteristics are due to the fact that it is directly attached. Its disadvantages
include that its lifetime is usually tied to the lifetime of the virtual machine. In addition, it might
not be scalable if you do not have physical access to the machine. In a cloud environment, you
often have no way of increasing direct attached storage, so be sure to start with enough.

Storage 27



ptg8286219

In an Infrastructure as a Service cloud, you do not need to be concerned with the different
storage implementations the cloud provider uses. Instead, you should be concerned with the
amount of storage and the level of performance the storage service provides. Cloud consumers
need a basic understanding of the concepts to do informed planning. Generally, local storage
comes and goes with virtual machines, and remote storage can be managed as an independent
entity that can be attached to or detached from a virtual machine. In general, local and remote
storage have a large difference in performance. Remote storage is not suitable for some applica-
tions, such as relational databases.

File-Based Storage
File systems provide a level of abstraction over block storage, to allow software to more easily
use and manage files. As with block-based storage, a fundamental difference exists between local
and remote file systems. Common local file systems in clouds are ext3 and ext4 on Linux and
NTFS on Windows. Common remote file systems are NFS on Linux and CIFS on Windows. One
huge difference between remote files systems and network attached storage, such as AoE and
iSCSI, is that remote file systems are designed for multiple clients with simultaneous write
access. This is not possible with remote block devices provided by network attached storage.

Some distributed file systems can span many servers. Apache Hadoop is an example of
such a distribute file system used by many large web sites with huge storage requirements.
Hadoop is discussed in the upcoming “Hadoop” section in Chapter 5, “Open Source Projects.”

Table 1.4 compares different basic storage options.

Table 1.4 Comparison of Different Storage Options

Storage Option Advantages Disadvantages

Local block based High performance Lifetime tied to a virtual machine

Remote block based Can be managed independently, Cannot be shared among 
with a lifetime not tied to a multiple virtual machines
virtual machine

Local file based High performance Lifetime tied to a virtual machine

Remote file based Can be shared among different Relatively lower performance
clients

The persistence of virtual machines and their local storage can vary with different virtual-
ization methods. Some virtual machines’ local storage disappears if the virtual machine is
deleted. In other implementations, the local storage is kept until the owner deletes the virtual
machine. The IBM SmartCloud Enterprise uses this model. Some virtualization implementations
support the concept of a persistent virtual machine. In a third model, some implementations boot
the operating system from network attached storage and do not have any local storage. Be sure to
understand the storage model your cloud provider uses so that you do not lose data.

28 Chapter 1 Infrastructure as a Service Cloud Concepts



ptg8286219

Network Virtualization
Networking is one of the fundamental elements of cloud computing and also one of the hazards to
users of cloud computing. Network performance degradation and instability can greatly affect the
consumption of cloud resources. Applications that are relatively isolated or are specially
designed to deal with network disruptions have an advantage running in the cloud.

From a different perspective, network resources can be virtualized and used in cloud com-
puting just as other resources are. In this section, we first discuss basic use of IP addresses in a
cloud context and then cover virtual networks.

Delivery of cloud services takes place over networks at different levels using different pro-
tocols. This is one of the key differences in cloud models. In PaaS and SaaS clouds, delivery of
services is via an application protocol, typically HTTP. In IaaS, cloud services can be delivered
over multiple layers and protocols—for example, IPSec for VPN access and SSH for command-
line access. 

Management of the different layers of the network system also is the responsibility of
either the cloud provider or the cloud consumer, depending on the type of cloud. In a SaaS model,
the cloud provider manages all the network layers. In an IaaS model, the cloud consumer man-
ages the network levels, except for the physical and data link layers. However, this is a simplifica-
tion because, in some cases, the network services relate to the cloud infrastructure and some
services relate to the images. The PaaS model is intermediate between IaaS and SaaS.

Table 1.5 summarizes the management of network layers in different cloud scenarios.

Table 1.5 Management for Network Layers

OSI Layer Example Protocols IaaS PaaS SaaS

7 Application HTTP, FTP, NFS, SMTP, SSH Consumer Consumer Provider

6 Presentation SSL, TLS Consumer Provider Provider

5 Session TCP Consumer Provider Provider

4 Transport TCP Consumer Provider Provider

3 Network IP, IPSec Consumer Provider Provider

2 Data link Ethernet, Fibre Channel Provider Provider Provider

1 Physical Copper, optical fiber Provider Provider Provider

This table is a simplification of the many models on the market. However, it shows that an
IaaS gives cloud consumers considerably more flexibility in network topology and services than
PaaS and SaaS clouds (but at the expense of managing the tools that provide the flexibility).

Network Virtualization 29



ptg8286219

IP Addresses
One of the first tasks in cloud computing is determining how to connect to the virtual machine.
Several options exist when creating a virtual machine: system generated, reserved, and VLAN IP
address solutions. System-generated IP addresses are analogous to Dynamic Host Control Proto-
col (DHCP)–assigned addresses. They are actually static IP addresses, but the IaaS cloud assigns
them. This is the easiest option if all you need is a virtual machine that you can log into and use.

Reserved IP addresses are addresses that can be provisioned and managed independently 
of a virtual machine. Reserved IP addresses are useful if you want to assign multiple IP addresses
to a virtual machine.

IPv6 is an Internet protocol intended to supersede IPv4. The Internet needs more IP
addresses than IP v4 can support, which is one of the primary motivations for IPv6. The last top-
level block of IPv4 addresses was assigned in February 2011. The Internet Engineering Task
Force (IETF) published Request for Comments: 2460 Internet Protocol, Version 6 (IPv6), which
was the specification for IPv6 in 1998. IPv6 also provides other features not present in IPv4. Net-
work security is integrated into the design of IPv6, which makes IPSec a mandatory part of the
implementation. IPv6 does not specify interoperability with IPv4 and essentially creates an inde-
pendent network. Today usage rates of IPv6 are very low, and most providers operate in compati-
bility/tolerance mode. However, that could change.

Network Virtualization
When dealing with systems of virtual machines and considering network security, you need to
manage networks. Network resources can be virtualized just like other cloud resources. To do
this, a cloud uses virtual switches to separates a physical network into logical partitions. Figure
1.13 shows this concept.

VLANs can act as an extension of your enterprise’s private network. You can connect to it
via an encrypted VPN connection.

A hypervisor can share a single physical network interface with multiple virtual machines.
Each virtual machine has one or more virtual network interfaces. The hypervisor can provide net-
working services to virtual machines in three ways:

• Bridging

• Routing

• Network address translation (NAT)

Bridging is usually the default mode. In this mode, the hypervisor works at the data link
layer and makes the virtual network interface externally visible at the Ethernet level. In routing
mode, the hypervisor works at the network layer and makes the virtual network interface exter-
nally visible at the IP level. 

30 Chapter 1 Infrastructure as a Service Cloud Concepts



ptg8286219

Figure 1.13 Physical and virtual networks in a cloud

In network address translation, the virtual network interface is not visible externally.
Instead, it enables the virtual machine to send network data out to the Internet, but the virtual
machine is not visible on the Internet. Network address translation is typically used to hide virtu-
alization network interfaces with private IP addresses behind a public IP address used by a host or
router. The NAT software changes the IP address information in the network packets based on
information in a routing table. The checksum values in the packet must be changed as well. 

NAT can be used to put more servers on the network than the number of virtual machines
you have. It does this by port translation. This is one reason IPv6 is still not in wide use: Even
though the number of computers exceeds the number of IP addresses, you can do some tricks to
share them. For example, suppose that you have a router and three servers handling HTTP, FTP,
and mail, respectively. You can assign a public IP address to the router and private IP addresses to
the HTTP, FTP, and mail servers, and forward incoming traffic (see Table 1.6).

Network Virtualization 31

1 1

Actor
System Administrator

Node
Virtual Machine 

Node
Hypervisor 

0 0 0

00
Node

Virtual Machine 

Node
Hypervisor 

0 1
IP Network

Virtual Local Area Network 

1

1

1IP Network
Internet 

IP Network
Data Center Physical Network 

Actor
Internet User

Node
Virtual Machine 

00 0

0

0 0 0
Node

Virtual Machine 



ptg8286219

Table 1.6 Example of Network Address Translation

Public IP Port Private IP

80, 443 192.168.0.1 (HTTP server)

9.0.0.1 (router) 21 192.168.0.2 (FTP server)

25 192.168.0.3 (mail server)

Desktop Virtualization
Desktops are another computing resource that can be virtualized. Desktop virtualization is
enabled by several architectures that allow remote desktop use, including the X Window System
and Microsoft Remote Desktop Services. The X Window System, also known as X Windows, X,
and X11, is an architecture commonly used on Linux, UNIX, and Mac OS X that abstracts graph-
ical devices to allow device independence and remote use of a graphical user interface, including
display, keyboard, and mouse. X does not include a windowing system—that is delegated to a
window manager, such as KDE or Gnome. X is based on an MIT project and is now managed by
the X.Org Foundation. It is available as open source software based on the MIT license. X client
applications exist on Linux, UNIX, Mac OS X, and Windows. The X server is a native part of
most Linux and UNIX systems and Mac OS X and can be added to Windows with the Cygwin
platform. The X system was designed to separate server and client using the X protocol and lends
itself well to cloud computing. X Windows is complex and can involve some troubleshooting, but
because it supports many varied scenarios for its use, it has enjoyed a long life since it was first
developed in 1984.

The Remote Desktop Service is a utility that enables users to use a Microsoft Windows
graphical user interface on a remote computer. Remote Desktop Service makes use of the Remote
Desktop Protocol (RDP), a protocol that Microsoft developed to support it. Client implementa-
tions exist for Windows (including most variants, such as Windows 7, XP, and Mobile), Linux,
UNIX, Mac OS X, and others. Remote Desktop Service was formerly known as Terminal Ser-
vices. The Remote Desktop Service implementation of RDP is highly optimized and efficient
over remote network connections.

In addition to X and RDP, two other remote graphical user interface platforms worth men-
tioning are Virtual Network Computing (VNC) and the NX Client. VNC is a system that uses a
remote control paradigm that uses Remote Framebuffer Protocol (RBP). Because it is based at
the framebuffer level, it can operate on all Windows systems, including Linux/UNIX and Win-
dows. VNC is open source software available under the GNU license. Setup of VNC on a Linux
system is described in the section “Linux, Apache, MySQL, and PHP” in Chapter 2, “Developing
on the Cloud.”

NX is commercial/open source developed by NoMachine. NX Server and Client are the
components of the platform, which operates over an SSH connection. The big advantage of the
MoMachine NX system is that it works over a secure channel. NX also compresses the display

32 Chapter 1 Infrastructure as a Service Cloud Concepts



ptg8286219

data and uses a client proxy to make optimal use of network bandwidth. Future versions of the
tool from NoMachine might be commercial only, with the FreeNX project producing the open
source version. Figure 1.14 shows the basic concepts of VNC and NX.

Desktop Virtualization 33

User

Client Computer Virtual Machine 

SSH (22)
NX Client
<<utility>> 

SSH Server
<<service>> 

NX Server
<<service>> 

RFB (5900)

X Windows
<<service>> 

VNC Viewer
<<utility>> 

VNC Server
<<service>> 

Figure 1.14 Remote Desktop Management with VNC and NX Client

Commercial distributions of NX can support many desktops centrally. Linux desktops,
such as KDE and Gnome, work over the top of X to enable users to manage Windows in a multi-
tasking environment and personalize their desktop settings. You can use the desktop environment
of your choice with either VNC or NX.

In addition to VNC and NX, several open source and commercial implementations of X are
available for Microsoft Windows, including Cygwin X server, Hummingbird Exceed, Reflection
X, and Xming.

See the sections “Linux, Apache, MySQL, and PHP” in Chapter 2 for basic use of VNC
and the section “Remote Desktop Management” in Chapter 6, “Cloud Services and Applica-
tions,” for more details on using virtual desktops.



ptg8286219

This page intentionally left blank 



ptg8286219

35

C H A P T E R 2

Developing on the
Cloud

This book is geared to developers, so we have written this chapter to give application developers
some tools for application development. Even if you don’t use these tools, you might learn some-
thing by experimenting with the methods described here.

Linux, Apache, MySQL, and PHP
The so-called LAMP stack is a great open source platform for running web applications. To set
up a LAMP environment, first provision a Red Hat Enterprise Linux 5.4 64-bit copper instance
on the IBM Cloud. Many other Linux images will do just as well. We also describe some basic
tools for working with Linux in the cloud here, including PuTTY and VNC. Some of the settings
are specific to Red Hat. The Java 2 Enterprise Edition example that follows uses SUSE Linux
Enterprise.

On a Windows client, use the PuTTY SSH client to connect to the Linux server. To import
the key, go to Connection, SSH, Auth, click the Browse button, and add your private key, as
shown in Figure 2.1.

Enter the host name or IP address and use the other default settings in the main screen (see
Figure 2.2). Save it with a name for future use.



ptg8286219

Figure 2.1 PuTTY configuration

36 Chapter 2 Developing on the Cloud

Figure 2.2 PuTTY session information



ptg8286219

See the “Secure Shell (SSH)” section of Chapter 7, “Security,” for more details on SSH.
Click the Open button to log in. Enter the user name, idcuser. No password is required because
you are authenticating with your private key. To install software, you often must be acting as root.
The image is set up so that you cannot log in as root, which is a good security practice. However,
to perform administration work, you can execute sudo as idcuser. Type the following command to
get root access:

> sudo /bin/bash

If you have any problems in Linux, the first place to check is the logs directory /var/log.
The system log messages are stored in the file /var/log/messages. To view them as they occur,
use the tail command:

tail -f messages

Red Hat Enterprise Linux distributions mostly come with the Apache HTTP server
installed. If yours does not, use this command to install it: 

# yum install apache

To start Apache, type this command:

# /usr/sbin/apachectl start

The image is set up with iptables blocking all inbound traffic, which stops you from see-
ing web pages served by the Apache HTTP server. To allow traffic on port 80, use this command:

# /sbin/iptables -A INPUT -p tcp —dport 80 -j ACCEPT

See the “Services” section in Chapter 6, “Cloud Services and Applications,” for more
details on system services. These commands are specific to Red Hat. See the “Java 2 Enterprise
Edition” section, later in this chapter, for the basic steps on SUSE Linux Enterprise. See the
“Firewalls” section of Chapter 7 for more background on firewalls in general. 

Now enter the address of your server into your web browser:

http://<ip or hostname>

You should see the Apache web server test page. If you have any problems, check the
HTTP server logs in /var/log/httpd. The Apache configuration file is located at /etc/httpd/
conf.d.

To install PHP and MySQL, use the yum package install tool to install it from the Red Hat
software repository. Using the yum installer is a best practice on Red Hat to check and download
the dependencies properly. Type this command:

# yum install php-mysql

Restart the HTTP server with this command:

# /usr/sbin/apachectl restart

Linux, Apache, MySQL, and PHP 37



ptg8286219

Now create a basic PHP page to check your PHP installation. You can use vi, edit the file on
your local system, or install Emacs. We prefer to use Emacs. Install it with this command:

# yum install emacs

The document root of the HTTP server is at /var/www/html. Create a file called test.php
using these commands:

# cd /var/www/html

# emacs test.php

Cut and past the following text into PuTTY:

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head><title>PHP Test</title></head>

<body>

<?php

phpinfo();

?>

</body>

</html>

phpinfo() is a function that lists the PHP installation and configuration settings. Type
Ctrl+X Ctrl+S to save the document, and type Ctrl+X Ctrl+C to exit Emacs. Enter this URL in
your browser:

http://<ip>/test.php

You should see a page like Figure 2.3, as shown in the VNC viewer.
A more useful editor for PHP scripts than Emacs is the Eclipse PHP plug-in, which you can

download free from the Eclipse Project using the software update installer. It provides a color-
coded editor, context completion, and integration with a debugger. Figure 2.4 shows the PHP
plug-in configuration panel.

To use the desktop, you need to make a few edits to enable VNC. If it is not installed
already, use yum to install VNC:

# yum install vnc

Run this command to set a VNC password:

# /usr/bin/vncpasswd

Uncomment these two lines in the file ~idcuser/.vnc/xstartup:

unset SESSION_MANAGER

exec /etc/X11/xinit/xinitrc 

38 Chapter 2 Developing on the Cloud



ptg8286219

Linux, Apache, MySQL, and PHP 39

Figure 2.3 PHP information page

Figure 2.4 Eclipse PHP plug-in configuration screen



ptg8286219

If the xstartup file does not exist, it will be created when the VNC server is first run. If
VNC is running as a service, you can check the status of the VNC server using this command:

# /sbin/service vncserver status

Xvnc (pid 379) is running...

This shows that the VNC server is running. If it is not running, use this command to start it:

# /usr/bin/vncserver

This command also creates a new authority file, /home/idcuser/.Xauthority, if it does
not already exist. See the section “Remote Desktop Management” in Chapter 6 for more details
on VNC.

Add a firewall rule for the ports VNC needs by adding a line to the file /etc/sysconfig/
iptables:

-A RH-Firewall-1-INPUT —protocol tcp —destination-port 5900:5902 -j
ACCEPT

This is an alternate method to the command described previously and saves the rule.
Restart the firewall with the service command, as root:

# /sbin/service iptables restart

See the “Firewalls” section in Chapter 7 for more on managing firewall rules. Download
the VNC client to your PC and start it up, entering the address <IP>:1 to connect. If you do not
achieve success, stop the VNC server, go back and edit the xstartup file, and restart VNC. To stop
the VNC server, enter this command: 

# /usr/bin/vncserver -kill :1

To log into VNC as a different user, run the command vncserver as that user.

Windows
Working with Microsoft Windows virtual machines is possible on many Infrastructure as a Ser-
vice (IaaS) clouds. However, some of the tools for making use of virtual machine instances vary.
The notes here relate to the IBM SmartCloud Enterprise with Windows 2008 Server. 

You can provision a Windows virtual machine instance the same as a Linux instance with
the self-service user interface. However, you will be prompted for an administrator user password
instead of a Secure Shell key name. After provisioning has completed, you can connect to the
Windows instance with Remote Desktop.

Java 2 Enterprise Edition
You can set up a Java 2 Enterprise Edition (J2EE) environment on one of the base OS images, or
you can use one that is already preconfigured, such as WebSphere Application Server on Red Hat
Enterprise Linux (RHEL) or SUSE Linux Enterprise. This section helps you get started working

40 Chapter 2 Developing on the Cloud



ptg8286219

with a Java 2 Enterprise environment, including setting up a Java SDK, creating a simple applica-
tion on WebSphere Application Server with data persistence to DB2, and working with messag-
ing and scheduled events. The tools used in this section are leveraged in later chapters of the book
for more complex examples.

Java SDK
The RHEL image comes bundled with a JDK. However, the version is old, so you might want to
download a newer version from the IBM Java web site. In fact, if you want to use the IBM Smart
Business Cloud Enterprise APIs, you need Java SE version 6 (JDK 1.6). Download the 64-bit
AMD/Opteron/EM64T or 32-bit x86. Tip: Using a browser in VNC directly to download files
from the Internet saves double handling, compared with downloading to your local machine and
uploading to the cloud. Install the JDK with the following commands:

# chmod +x ibm-java-x86_64-jre-6.0-9.1.bin

# ./ibm-java-x86_64-jre-6.0-9.1.bin

Check the version with this command:

# export JAVA_HOME=/opt/ibm/java-x86_64-60/jre

# $JAVA_HOME/bin/java -version

If you do not adjust the TCP window scaling, you might encounter some difficulties using
some API functions (mainly the describeInstance method) because of the large amount of data
generated from the instances in the cloud itself. This is a known problem for some Linux versions
with certain default settings. If you have this problem, you need to modify the tcp_window_scal-
ing parameter with the sysctl command (which modifies kernel parameters at runtime), restart
network services, and set tcp_window_scaling to 0 in the /etc/sysctl.conf configuration file.

WebSphere Application Server
The IBM SmartCloud Enterprise catalog includes instances of WebSphere Application Server
(WAS) 7.0. With this, you can use a J2EE environment without needing to install any software
and can also enjoy the extra features that WAS provides above other J2EE environments. When
requesting a WAS server, you are prompted for a user name and password for the WAS adminis-
tration console. Write these down; you will need them later. In addition, you are prompted to
choose the profile, as shown in Figure 2.5.

A WebSphere profile defines a runtime environment, including all the files that the server
processes to determine and store configuration information. Choose the Development profile. It
makes WAS more convenient to manage through IBM Rational Software Architect, as discussed
in the following sections. We return to profiles in the section “J2EE Application Performance and
Scalability” in Chapter 8, “Performance, Availability, Monitoring, and Metering.”

Java 2 Enterprise Edition 41



ptg8286219

42 Chapter 2 Developing on the Cloud

Figure 2.5 WebSphere Image Provisioning Wizard additional parameters screen

The WAS server starts up a short time after the instance is provisioned and has booted up.
You can bring up the administration console with this URL:

https://host:9043/ibm/console/logon.jsp

You can do all the management of WAS, except for starting and stopping the server itself,
from the web administration console. You can use IBM Rational Application Developer, Eclipse,
or other integrated development environments (IDEs) to create J2EE applications that can run in
WAS. For Eclipse, use J2EE Standard Tools, also known as the J2EE Developer Tools version.
You can also use the IBM Rational Application Developer images in the Cloud catalog, to take
advantage of a prebuilt environment.

https://host:9043/ibm/console/logon.jsp


ptg8286219

To try it in Rational Application Developer (RAD) or Rational Software Architect (RSA),
start a new Enterprise Application in Eclipse using the EAR Application Project wizard, as
shown in Figure 2.6.

Java 2 Enterprise Edition 43

Figure 2.6 Eclipse EAR Application Project Wizard

Call the project CloudAPIClientEAR. Click the Finish button. Next, create a Dynamic Web
Project and call it CloudAPIClientWeb. Add the Dynamic Web project to the CloudAPIClien-
tEAR project, as shown in Figure 2.7.

Now create an HTML file and a servlet to test the application. Add a file called index.html
to the web content directory with some text such as “My Web Application.” Also add a servlet
with code such as the class TestServlet, shown here:

package com.ibm.cloud.examples.servlet;

import java.io.IOException;

import java.io.Writer;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;



ptg8286219

/**

* Servlet implementation class TestServlet

*/

public class TestServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

protected void doGet(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException {

Writer writer = response.getWriter();

writer.write(“My web application”);

}

}

44 Chapter 2 Developing on the Cloud

Figure 2.7 Eclipse Dynamic Web Project Wizard

If you used RSA or Eclipse, your web application archive (war) web.xml file should be
already configured for you. If not, make it look like this example:



ptg8286219

<?xml version=”1.0” encoding=”UTF-8”?>

<web-app id=”WebApp_ID” version=”2.5”
xmlns=”http://java.sun.com/xml/ns/javaee”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd”>

<display-name>CloudAPIClientWeb</display-name>

<servlet>

<display-name>TestServlet</display-name>

<servlet-name>TestServlet</servlet-name>

<servlet-class>com.ibm.cloud.examples.servlet.
TestServlet</servlet-class>

</servlet>

<servlet-mapping>

<servlet-name>TestServlet</servlet-name>

<url-pattern>/TestServlet</url-pattern>

</servlet-mapping>

<welcome-file-list>

<welcome-file>index.html</welcome-file>

</welcome-file-list>

</web-app>

Next, export from RSA by right-clicking the EAR project and choosing Export to EAR.
Name the file CloudAPIClientEAR.ear, as shown in Figure 2.8.

Java 2 Enterprise Edition 45

Figure 2.8 Rational Software Architect EAR Export Wizard



ptg8286219

To add your enterprise application EAR file, follow these steps:

1. Go to the WebSphere administration console in your browser. 

2. Navigate to Applications, New Application, New Enterprise Application, and choose
Upload from Local File System. Upload the EAR file and click the Next button. 

3. Choose the Fast Path option. 

4. Choose any directory to install the application. 

5. In the Map Modules to Servers panel, select CloudAPIClientWeb. 

6. Click Save Changes. 

7. Go to Applications, Application Types, WebSphere enterprise applications. Start the
application.

Navigate to the following URL to view the HTML page:

http://host:9080/CloudAPIClientWeb/

You should see the text “My web application” added to the HTML page. To see the servlet,
enter the following the URL:

http://host:9080/CloudAPIClientWeb/TestServlet

You should see the text that printed from the Writer in the previous TestServlet.
Deploying in this way can get old if you do it more than a few times. You can save a lot of

time by using the remote deployment capabilities in Eclipse or IBM Rational Application Devel-
oper (RAD). Using either automatically publishes your J2EE application to the server instead of
requiring you to step through all the screens in the WebSphere administration console. Use the
New Server Wizard to add the remote server; you must supply the host name or IP address and
administration user ID and password. Figure 2.9 shows the New Server Wizard from RAD.

You might need to use the Linux desktop to perform certain tasks. See the section “Remote
Desktop Management” in Chapter 6 for more details on this topic.

46 Chapter 2 Developing on the Cloud

http://host:9080/CloudAPIClientWeb/
http://host:9080/CloudAPIClientWeb/TestServlet


ptg8286219

Java 2 Enterprise Edition 47

Figure 2.9 New Server Wizard in IBM Rational Application Server

Relational Database
Most enterprise and web applications need a relational database to store data. In this section, we
look at using the IBM DB2 Enterprise database. Images are available for DB2 Enterprise in the
catalog. We use the IBM DB2 Enterprise Developer Ed SLES 9.7.1–BYOL image to demonstrate.
(It has an image ID of 20005750.) The “Getting Started” page for the image lists the different
ports and other parameters used. Add a firewall rule allowing traffic through port 50002 using
YAST, as explained in the Chapter 7 section “Firewalls.” You can create a connection to the
SAMPLE database from your Eclipse or Rational Application Developer environment using the
New Connection Wizard in Data view. Figure 2.10 shows this in Rational Application Developer.



ptg8286219

Figure 2.10 New Connection Wizard in Rational Application Developer

Enter the IP address from the IBM Cloud Enterprise Control Panel, 50001 for the port,
db2inst1 for the user name, and the password that you supplied when creating the DB2 instance.
Click the Test Connection button to test connectivity. We show how to use the DB2 command
line in the next section. 

The database needs to run from a local disk, for I/O performance reasons. However,
because the local disk is not persistent, you need to back up the database somewhere else. An
attached disk is probably the best option for backup location initially. Many tools can help back
up data. In development mode, data-movement tools such as copy, db2move, import, and export
might be the most convenient to work with at first. For example, this command exports the data-
base {dbname} to a file:

> db2move {dbname} export

The DB2 command-line tool is discussed in the section, “Business Scenario: Developing
the IoT Data Portal,” later in this chapter.

48 Chapter 2 Developing on the Cloud



ptg8286219

In operations mode, you probably will also use the backup, recover, and restore utilities.
You can easily automate the backup utility, and you can use the rollforward utility to save
changes made. You can also use the HADR function that is built into DB2 for high availability, to
minimize any data lost if a machine crashes.

DB2 supports different types of clients. The Rational Database Connection Wizard previ-
ously used the DB2 JDBC driver to connect. The examples that follow also use JDBC. The DB2
JDBC drivers are located in this directory:

/opt/ibm/db2/V9.5/java

You may have a different version of DB2. The DB2 JDBC driver is a type 4 driver, so to
install it, you only need to copy the JAR file. The driver requires a JDK 1.4.2 or later. We use the
db2jcc4.jar driver, which includes JDBC 4.0 functions; JDK 6 is required for this. You will
need also db2jcc_license_cisuz.jar file on the classpath.

DB2 also has drivers for ODBC, .NET, PHP, and other platforms, but we do not discuss
those.

DB2 also comes with a native client (IBM Data Server Runtime Client) and administrative
console (IBM Data Server Client). You can access these using remote desktop where DB2 is
installed, or you can install them locally on your own desktop computer. The most convenient
way to manage DB2 in a cloud environment (at least for the examples we are running) is via the
DB2 Command Line Processor (CLP) client. To use this, connect to the DB2 server instance with
SSH and enter these commands:

> sudo su - db2inst1

> db2 -t

The script first changes to the dbinst1 user, who is the owner of the database instance with
the environment of that owner (su - option). Then we start up a DB2 command-line client. The
-t option enables multiline commands terminated by a semicolon.

Data Persistence
Several options provide the capability to store and retrieve data from relational databases in J2EE
applications. The original way of accessing relational data is to use the Java Database Connectiv-
ity (JDBC) API. With this approach, you have to write SQL statements and create a mapping to
Java objects. Object-relational mapping is a paradigm developed to save you from having to
hand-craft code for translating. The Java Persistence API (JPA) does object-relational mapping in
a way that is part of the J2EE standard. It also hides some of the specifics of dealing with different
databases, at least for standard applications.

The JPA EntityManager class provides a way to store, update, insert, and delete objects in
the database. XML configuration files specify the mapping from the SQL schema to Java objects.
Alternatively, you can use Java annotations. JPA provides a query language that enables you to
query the data in the database. WebSphere uses the Apache OpenJPA implementation of the JPA

Java 2 Enterprise Edition 49



ptg8286219

specification. You can use JPA both within and outside a J2EE application. The minimum Java
version is Java 5 SE.

For applications outside a J2EE container, the connection parameters can be set in a
persistence.xml file in the META-INF directory of the JAR file. Consider this example:

<?xml version=”1.0”?>

<persistence xmlns=”http://java.sun.com/xml/ns/persistence”
version=”1.0”>

<persistence-unit name=”openjpa”>

<provider>org.apache.openjpa.persistence.PersistenceProviderImpl</prov
ider>

<class>com.ibm.cloud.examples.iotdata.services.Customer</class>

<class>com.ibm.cloud.examples.iotdata.services.Device</class>

<properties>

<property name=”openjpa.ConnectionDriverName”
value=”com.ibm.db2.jcc.DB2Driver”/>

<property name=”openjpa.ConnectionUserName” value=”db2inst1”/>

<property name=”openjpa.ConnectionPassword” value=”xxx”/>

<property name=”openjpa.ConnectionURL”
value=”jdbc:db2://host:50001/iotdata”/>

<property name=”openjpa.Log” value=”DefaultLevel=WARN,
Tool=INFO”/>

</properties>

</persistence-unit>

</persistence>

In this file, the classes Customer and Device are the classes to be enhanced for JPA access.
These example classes are described later in the section “Business Scenario: Developing the IoT
Data Portal.” The connection properties are listed. The database name given in the JDBC URL is
iotdata. The entry point for JPA programming is the EntityManagerFactory class.

package com.ibm.cloud.examples.iotdata.services;

import javax.persistence.EntityManagerFactory;

import javax.persistence.Persistence;

public class EntityManagerFactoryHolder {

private static EntityManagerFactoryHolder instance = new
EntityManagerFactoryHolder();

private EntityManagerFactory entityManagerFactory;

50 Chapter 2 Developing on the Cloud



ptg8286219

private EntityManagerFactoryHolder() {}

public static EntityManagerFactoryHolder getInstance() {

return instance;

}

public EntityManagerFactory getEntityManagerFactory() {

if (entityManagerFactory == null) {

entityManagerFactory =
Persistence.createEntityManagerFactory(“openjpa”);

}

return entityManagerFactory;

}

}

The EntityManagerFactory class is an expensive resource, and only a single instance of it
should exist. The EntityManagerFactoryHolder class is a singleton class and maintains a single
instance of EntityManagerFactory.

For running outside the container, you need to copy the OpenJPA library and the DB2
database driver to the classpath. You can download the OpenJPA library from the Apache
OpenJPA site. Copy the DB2 driver from the DB2 instance. Copy the db2jcc4.jar db2jcc_
license_cisuz.jar files from the DB2 server using the SCP commands explained in the
“Secure Shell (SSH)” section in Chapter 7.

# scp -i mykey db2server:/opt/ibm/db2/V9.5/java/db2jcc4.jar
driver/db2jcc4.jar

# scp -i mykey db2server:/opt/ibm/db2/V9.5/java/db2jcc_license_cu.jar
driver/db2jcc_license_cu.jar

Here, db2server is the host name or IP address of the DB2 server, and driver is the local
directory where you want to copy the files.

Running inside the WebSphere Application Server, you need to configure a JDBC data
source. First, create a J2C authentication alias by following these steps. 

1. Select Security, Global Security from the left menu. 

2. Click the J2C Authentication data link.

3. Enter the user name and password, as shown in Figure 2.11.

Java 2 Enterprise Edition 51



ptg8286219

Figure 2.11 Creating a new WebSphere authentication alias

To set the JPA default provider and create the data source, follow these steps: 

1. Navigate to Servers, Server Types, WebSphere Application Server, on the left menu, and
then go to server1, Container Services, Default Java Persistence API settings. 

2. Select org.apache.openjpa.persistence.PersistenceProviderImpl as the default JPA
provider. 

3. Click Related Items, Data Sources. Select Node ...Server=server1 and click New button
to add a new data source. Select the options shown in Figure 2.12 for Data Source Name
and JNDI.

52 Chapter 2 Developing on the Cloud

Figure 2.12 WAS Console: Data Source Wizard

Both the data source name and the JNDI name are iodata. Click Next and select Create a
New JDBC Provider. Enter the data in the next step, as shown in Figure 2.13.



ptg8286219

Figure 2.13 WebSphere Application Server New Data Source Wizard

For Database Type, select DB2. Also select DB2 Using IBM JCC Driver and select Con-
nection Pool Data Source. On the next screen, enter the path to which you copied the driver and
license file. Enter the database-specific properties that correspond to the database you created
earlier.

Java 2 Enterprise Edition 53

Figure 2.14 WebSphere Data Source Wizard: database-specific properties



ptg8286219

Select the J2C Authentication Alias that you created previously. Finally, click Finish. After
you have finished adding the JDBC provider and data source, also set the default JPA provider
properties to use this data source.

Messaging
Messaging is an important concept in cloud computing. It is typically used when some action will
take longer than a user can conveniently wait for a page to load, such as a minute or two. Often
the cloud service takes care of the messaging for you, such as when provisioning a new virtual
machine. However, other times you need messaging in your own programs. For example, sup-
pose that you want to provision a storage volume and then add that storage to a virtual machine
that you provision. You must wait for the storage to be provisioned and in an available state
before you can use it in a virtual machine provisioning request. This is an example in which you
can use messaging to track long-running operations. In many more examples, you might take
longer to perform an operation than you would expect a user to wait for a page to return. These
operations need to be done in the background after the user has submitted the request.

Also, in general, workloads that can be processed in batch mode are good candidates for
cloud computing. Because these workloads are not needed rapidly in an interactive mode for
users, you can afford to keep the servers for the work offline until they are needed. For example,
consider a document indexing job that takes about an hour and needs to be run every day. You can
save the virtual machine needed for this work, start it up when it is needed, and shut it down when
you finish. Messaging systems are ideal for processing this kind of work. This section focuses on
the IBM WebSphere Application Server 7.0 messaging system. However, the concepts also apply
to open source implementations, such as Apache Active MQ.

J2EE supports asynchronous messaging via the Java Messaging Service (JMS). JMS
enables programs to create, send, receive, and read asynchronous messages. Messages can be
delivered in point-to-point or publish/subscribe modes. WebSphere Application Server supports
JMS using either an embedded messaging provider or a third-party provider. 

A JMS queue is an instance of the JMS interface javax.jms.Queue and represents a mes-
sage destination. Administrators can define a JMS queue using the WebSphere administration
console, and clients can look it up using the Java Naming and Directory Interface (JNDI). Mes-
sage-driven beans can simplify programs responding to events. They eliminate the need for hav-
ing to poll the message queue for new messages. Applications can use message-driven beans to
consume messages asynchronously. 

JMS leverages the J2EE Connector Architecture (JCA) to enable different JMS implemen-
tations to interoperate. It wraps the JMS client library in a resource adapter. Our message-driven
beans can use an ActivationConfigProperty annotation attributes that relate to ActivationSpec
objects.

In WebSphere 7.0, a service integration bus provides asynchronous messaging services as a
JMS 1.1 provider. The messaging engine is a component of the service integration bus that
handles messages submitted to the bus and requests to retrieve messages from the bus. The
service integration bus can be distributed over several servers or clusters. Bus members are the

54 Chapter 2 Developing on the Cloud



ptg8286219

individual servers or clusters that participate in the bus and include message stores where the
messages are saved. Figure 2.15 illustrates these concepts.

Java 2 Enterprise Edition 55

Service Integration Bus 

Messaging 
Engine 

Message
Store

Messaging 
Engine 

Bus Member 

Destination 

Bus Member 

Figure 2.15 WebSphere service integration bus schematic diagram 

Follow these steps to add a bus: 

1. Select Service integration, Busses on the left menu.

2. Click New.

3. Enter the name MyBus; deselect the Bus Security option.

4. Click Next.

5. Click Finish.

The results should look Figure 2.16.

Figure 2.16 WebSphere service integration bus management



ptg8286219

Follow these steps to add a bus member:

1. Select Service Integration, Buses.

2. Click the MyBus you just created.

3. Under Additional Properties, click Bus Members.

4. Click Add. 

5. Select Server in the first step of the wizard.

6. Select File Store as the message store type.

7. Enter 10 MB for the log size, 20 MB for the minimum store size, and 50 MB for the
maximum store size. Accept the other configuration defaults.

8. Accept the performance tuning parameters.

9. Click the Finish button.

10. Click Save.

Out of the box, WebSphere does not start a messaging server. However, if you add a bus
member, it starts the messaging server when WebSphere starts up. 

Restart WebSphere now to start up with the messaging engine running. Use the following
commands:

# /opt/IBM/WebSphere/AppServer/profiles/AppSrv01/bin/stopServer.sh
server1

# /opt/IBM/WebSphere/AppServer/profiles/AppSrv01/bin/startServer.sh
server1

You are prompted for the administrator password when shutting down the server.
Next, add a destination with these steps:

1. Select Service Integration, Buses.

2. Click the MyBus link.

3. Under Additional Properties, click the Destinations link.

4. Click the New button.

5. Select Queue and then click Next.

6. Enter the text ‘MyQueue’ for the name.

7. Select the bus member that you created previously.

8. Click the Finish button. 

56 Chapter 2 Developing on the Cloud



ptg8286219

Check the messaging engine with these steps:

1. Select Service Integration, Buses.

2. Click the IBASampleBus link.

3. Under Additional Properties, click Messaging Engines.

You should see a green arrow next to the messaging engine.
Next, add a JMS queue connection factory with these steps:

1. Add queue.

2. Restart WebSphere.

3. Add activation spec: jms/MyActivationSpec.

To add an activation specification, follow these steps:

1. Select Resources, JMS, Activation Specifications from the left menu.

2. Select Scope to Node … Server=server1.

3. Click the New button.

4. Select the default messaging provider. 

5. In the General Properties panel, enter a name of ConnectionFactory, a JNDI name of
jms/ConnectionFactory, a destination type of Queue, a destination JNDI name of
jms/requests, and a bus name of MyBus.

6. Click Finish.

The result should look like Figure 2.17.

Java 2 Enterprise Edition 57

Figure 2.17 WebSphere administration console: activation specifications

The previous steps are needed to host the application code in the upcoming section “Busi-
ness Scenario: Developing the IoT Data Portal.”



ptg8286219

Scheduled Events
Provisioning requests submitted to the clouds take a finite time to process, depending on the size
of the instance requested and various other factors. The entities go through a lifecycle, including
states that they cannot be accessed in. For example, on the IBM SmartCloud Enterprise, a new
instance goes through the NEW and PROVISIONING states before reaching an ACTIVE state,
when it can be used. For these reasons, it might be necessary to be able to check on their status at
scheduled intervals. In stand-alone programs, you can use the java.util.concurrent utilities to
do this; in WebSphere, you can use the WebSphere scheduler service. Following is an example of
a stand-alone program that uses the java.util.concurrent utilities to schedule a job at 5-
minute intervals for an hour:

package com.ibm.cloud.examples.schedule;

import java.util.concurrent.*;

public class Scheduler {

private static int count = 0;

public static void main(String[] args) {

ScheduledExecutorService scheduler =
Executors.newSingleThreadScheduledExecutor();

final Runnable iaaSJob = new Runnable() {

public void run() {

System.out.println(“Check status or submit
request “ + count);

count++;

}

};

// Schedule at 5 minute intervals

final ScheduledFuture<?> handle =

scheduler.scheduleAtFixedRate(iaaSJob, 0, 5,
TimeUnit.MINUTES);

// Cancel after an hour

scheduler.schedule(new Runnable() {

public void run() { handle.cancel(true); }

}, 60, TimeUnit.MINUTES);

}

}

The program uses the Executors class to create a single-thread ScheduledExecutorSer-
vice object. The variable iaaSJob implements the Runnable interface and prints a message for
demonstration purposes. It is scheduled to execute at 5-minute intervals and to be canceled after
60 minutes.

58 Chapter 2 Developing on the Cloud



ptg8286219

Business Scenario: Developing the IoT Data Portal
IoT Data needs to host its web site, which has a web user interface and public API and is data
intensive. Many factors need to be considered when choosing a platform for developing and host-
ing a new web site. No single correct answer exists. The IoT Data web site has one point of com-
plexity: It is data intensive and needs to expand automatically as storage is needed. IoT Data will
use Hadoop for data management. This is a Java project, so the choice of hosting leans toward
Java. 

We chose Java 2 Enterprise Edition hosted on WebSphere Application Server, with the
deployment architecture shown in Figure 2.18. 

Business Scenario: Developing the IoT Data Portal 59

IBM DB2 

Hadoop 

IBM HTTP 
Server 

WebSphere 
Application 

Server 

Figure 2.18 IoT Data hosting: deployment architecture

This example uses the Hadoop file system for data storage. This is a scalable file system
that can span many servers and locations in a fault-tolerant way. Later sections go into more
detail. 

Basic customer and device data will be stored in DB2. Log onto the DB2 instance with
SSH and execute the following script to create the tables required:

> sudo su - db2inst1

> db2 -t

>

> CREATE DATABASE iotdata;

>

> CONNECT TO iotdata;

>

> CREATE TABLE customer (

>  name VARCHAR(80) NOT NULL, 

>  id INTEGER GENERATED ALWAYS AS IDENTITY, 

>  PRIMARY KEY (id)



ptg8286219

> );

>

> CREATE TABLE device (

>  name VARCHAR(80) NOT NULL, 

>  id INTEGER GENERATED ALWAYS AS IDENTITY, 

>  location VARCHAR(80) NOT NULL, 

>  customer_id INTEGER NOT NULL, 

>  PRIMARY KEY (id), 

>  FOREIGN KEY (customer_id) references customer(id)

> );

The script first creates the database iotdata and then connects to it. Then you can create
the customers and devices tables. Both tables have a name and an id field; the latter is the primary
key. Table devices have a foreign key reference to the customer table to reference the customer to
which the device belongs. You can add some sample data to experiment. Enter the following
commands in the DB2 command-line tool:

> INSERT INTO customer VALUES (‘National Weather Bureau’, DEFAULT);

> INSERT INTO device VALUES (‘Weather Station’, DEFAULT, ‘41’, 1);

> INSERT INTO device VALUES (‘Radar’, DEFAULT, ‘41’, 1);

You can check this with these SELECT statements:

> SELECT * from customers;

> SELECT * from devices;

Here we use JPA to manage the data in DB2 from the J2EE application. Entity classes in
JPA are plain old Java objects (POJOs). The relationships to database structures can be specified
either in XML files or using Java annotations. The following entity class represents the customer
table in DB2:

package com.ibm.cloud.examples.iotdata.services;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

@Entity

public class Customer {

@Id @GeneratedValue(strategy=GenerationType.IDENTITY) 

private long id;

private String name;

public Customer() {}

60 Chapter 2 Developing on the Cloud



ptg8286219

public long getId() {

return id;

}

public void setId(long id) {

this.id = id;

}

public String getName() {

return name;

}

public void setName(String name) {

this.name = name;

}

}

The @Id annotation indicates that it is the primary key. The @GeneratedValue annotation
indicates that the database generates the field automatically. The CustomerService service can
use the Customer class, as shown here:

package com.ibm.cloud.examples.iotdata.services;

import java.util.List;

import javax.persistence.EntityManager;

import javax.persistence.EntityManagerFactory;

import javax.persistence.Query;

/** 

* Service class for accessing customer data

*/

public class CustomerService {

public void addCustomer(Customer customer) {

EntityManagerFactory factory = 

EntityManagerFactoryHolder.getInstance().
getEntityManagerFactory();

EntityManager em = factory.createEntityManager();

em.getTransaction().begin();

em.persist(customer);

em.getTransaction().commit();

em.close();

}

Business Scenario: Developing the IoT Data Portal 61



ptg8286219

public static void main(String[] args) {

CustomerService service = new CustomerService();

System.out.println(“Adding a customer”);

Customer newCustomer = new Customer();

newCustomer.setName(“Air Quality Management District”);

service.addCustomer(newCustomer);

}

}

This adds a customer record to the data store using JPA. After getting an EntityManager
from the EntityManagerFactory, it begins a transaction, adds a customer record, and commits
the transaction. The class could be improved by closing the EntityManager in a finally block.
The main block exercises the method with example data. To run the class outside a J2EE con-
tainer, you need to set JPA Java agent as a JVM argument, as shown here:

-javaagent:${JPA_LOCATION}\openjpa-all-2.1.0.jar

You can retrieve individual records using the EntityManager.find method, as shown in
this method:

public Customer getCustomer(long id) {

EntityManagerFactory factory = 

EntityManagerFactoryHolder.getInstance()
.getEntityManagerFactory();

EntityManager em = factory.createEntityManager();

Customer customer = em.find(Customer.class, id);

em.close();

return customer;

}

With these building blocks, you can execute a JPA query to find all the devices in the cloud.
Consider an example of this:

public List getCustomers() {

EntityManagerFactory factory = 

EntityManagerFactoryHolder.getInstance()
.getEntityManagerFactory();

EntityManager em = factory.createEntityManager();

em.getTransaction().begin();

Query query = em.createQuery(“SELECT c from Customer c”);

List results = query.getResultList();

em.getTransaction().commit();

em.close();

return results;

}

62 Chapter 2 Developing on the Cloud



ptg8286219

The query is similar to SQL, but with some differences. Instead of using a SELECT * FROM,
you select the results into a Java object. You can exercise this method using the following code:

public static void main(String[] args) {

CustomerService service = new CustomerService();

System.out.println(“Looking up all customers”);

List customers = service.getCustomers();

for (Object res : customers) {

Customer c = (Customer)res;

System.out.println(c.getId() + “ : “ + c.getName());

}            

}

If you run this program, you see output like this:

Looking up all customers

1 : National Weather Bureau

2 : Air Quality Management District

You can model the device resource with the following Java class:

package com.ibm.cloud.examples.iotdata.services;

import javax.persistence.*;

@Entity

public class Device {

@Id @GeneratedValue(strategy=GenerationType.IDENTITY) 

private long id;

private String name, location;

@ManyToOne private Customer customer;

public Device() { }

public Customer getCustomer() { return customer; }

public void setCustomer(Customer c) { this.customer = c; }

public long getId() { return id; }

public void setId(long id) { this.id = id; }

public String getLocation() { return location; }

public void setLocation(String l) { this.location = l; }

public String getName() { return name; }

public void setName(String name) { this.name = name; }      

}

The Device class is similar to the Customer class. The main difference lies in the use of a
many-to-one entity relationship, which is expressed with the @ManyToOne annotation. The class
can be used by the DeviceService service-tier class, shown here:

Business Scenario: Developing the IoT Data Portal 63



ptg8286219

package com.ibm.cloud.examples.iotdata.services;

import java.util.List;

import javax.persistence.*;

public class DeviceService {

public void addDevice(Device device) {

EntityManagerFactory factory = 

EntityManagerFactoryHolder.getInstance()
.getEntityManagerFactory();

EntityManager em = factory.createEntityManager();

em.getTransaction().begin();

em.persist(device);

em.getTransaction().commit();

em.close();

}

public static void main(String[] args) {

DeviceService service = new DeviceService();

System.out.println(“Adding a new device”);

Device newDevice = new Device();

newDevice.setName(“Air Quality Station”);

newDevice.setCustomer(device.getCustomer());

newDevice.setLocation(“41”);

service.addDevice(newDevice);

}            

}

}

This program adds a new device record to the data store. You can list all devices for a cus-
tomer with this method:

public List getDevicesByCustomer(long customerId) {

EntityManagerFactory factory = 

EntityManagerFactoryHolder.getInstance()
.getEntityManagerFactory();

EntityManager em = factory.createEntityManager();

em.getTransaction().begin();

Query query = em.createQuery(“SELECT d FROM Device d WHERE
d.customer.id = “ + customerId);

List results = query.getResultList();

em.getTransaction().commit();

64 Chapter 2 Developing on the Cloud



ptg8286219

em.close();

return results;

}

This method uses the JPA query language with a where clause.
You can begin to put the web application together by writing a page that lists all the devices

that a customer has registered. This is the doGet method of the servlet:

protected void doGet(HttpServletRequest request, 

HttpServletResponse response) 

throws ServletException, IOException {

String customerIdStr = request.getParameter(“customerid”);

long customerId = Long.parseLong(customerIdStr);

CustomerService customerService = new CustomerService();

Customer customer = customerService.getCustomer(customerId);

PrintWriter writer = response.getWriter();

writeTitle(writer, customerId, “Device List”);

DeviceService deviceService = new DeviceService();

List devices = deviceService.getDevicesByCustomer(customerId);

LocationService locationService = LocationService.getInstance();

writer.println(“<table><tbody>”);

writer.println(“<tr><th>Device</th><th>Location</th></tr>”);

for (Object res : devices) {

Device d = (Device)res;

Location l = locationService.getLocation(d.getLocation());

writer.println(“<tr><td><a href=’” + d.getId() + “‘>” +

d.getName() + “</a></td>”);

writer.println(“<td><a href=’” + d.getLocation() + “‘>” +

l.getName() + “</td></tr>”);

}

writer.println(“</tbody></table>”);

writer.println(“<p><a href=’NewDeviceServlet?customerid=” + 

customer.getId() + “‘>Add a New Device</a></p>”);

writeFooter(writer);

}

The servlet expects an HTTP parameter called customerid, which it uses to look up the
customer record and the devices registered for the customer. It writes a header that includes a
breadcrumbs trail with links back to the web site home page index.html and the customer home
page CustomerServlet. It iterates over all the devices and prints the name and device location to

Business Scenario: Developing the IoT Data Portal 65



ptg8286219

an HTML table. A LocationService looks up the name of the location, based on its ID. This uses
an IBM SmartCloud Enterprise API that finds and caches all the relevant locations. We discuss it
later in the chapter.

The persistence.xml file needs to be updated to take its settings from the container
instead of directly in the file. The updated file is shown here:

<?xml version=”1.0”?>

<persistence xmlns=”http://java.sun.com/xml/ns/persistence”
version=”1.0”>

<persistence-unit name=”iotdata”>

<provider>org.apache.openjpa.persistence.PersistenceProviderImpl</prov
ider>

<class>com.ibm.cloud.examples.iotdata.services.Customer</class>

<class>com.ibm.cloud.examples.iotdata.services.Device</class>

<properties>

<property name=”openjpa.ConnectionFactoryName” value=”iotdata”/>

</properties>

</persistence-unit>

</persistence>

The EntityManagerFactoryHolder object needs to be updated to refer to the new per-
sistence-unit iotdata. Bring up the page by entering this URL:

http://host:9080/CloudAPIClientWeb/DeviceListServlet?customerid=1

Figure 2.19 shows this page.

66 Chapter 2 Developing on the Cloud

Figure 2.19 DeviceListServlet

We continue this scenario in the section “Business Scenario: Using Elastic Cloud Services
to Scale” in Chapter 3, “Developing with IBM SmartCloud Enterprise APIs.”

http://host:9080/CloudAPIClientWeb/DeviceListServlet?customerid=1


ptg8286219

Integration of Application Lifecycle Management Tools with Clouds 67

Integration of Application Lifecycle Management Tools
with Clouds
In this section we discuss application lifecycle management (ALM) tools and their connection
with cloud computing. A recent trend in ALM is building a better connection between develop-
ment and operations and, in particular, integration of these tools with clouds. We mentioned
before that one of the neat things about cloud resources compared to physical resources is that
you can create cloud resources on demand with APIs. The emerging generation of ALM tools
takes advantage of this. These tools can be run on the cloud, leverage the cloud in some way, and
can be used to develop applications for the cloud.

ALM tools help plan, design, collaborate, develop, test, deliver, and maintain software
projects. When we scale up to multiperson software projects with build artifacts to deploy into
application servers, we need some tools to help us. These tools include the following:

• Requirements management tools to document and track functional and nonfunctional
requirements. An example is Rational Requirements Composer.

• Planning tools that help you plan the time and resources needed for a project and help
you track the execution of that project. An example is IBM Rational Team Concert™.

• Design tools, such as for creating UML diagrams.

• Source code management system that enables code to be managed centrally. Some
examples of open source code management systems are Concurrent Versions System
(CVS) and Subversion, and an example of a commercial product that includes a source
code management system is IBM Rational Team Concert.

• Integrated development environments (IDEs) for developers to edit and debug source
code. Examples are the open source Eclipse IDE and the commercial tool IBM Rational
Application Developer.

• Various testing tools to assist in executing and tracking functional, performance, inte-
gration, globalization, and regression testing, such as Rational Functional Tester and
Rational Performance Tester.

• Defect-tracking systems, such as Bugzilla and IBM Rational Team Concert.

• Ticket-tracking systems for customer support. In open source and cloud projects,
forums are replacing these in many cases. 

Probably the most fundamental need as a project becomes larger than a single person is the
need to share source code in a central repository. CVS is an open source source code–manage-
ment system that had been popular from many years. It is scalable and can be conveniently used
from within integrated development environments using plug-ins. More recently, some improved
open source source code–management systems, notably Subversion, have begun to compete with



ptg8286219

and replace CVS. A commercial alternative with considerably more functionality than these is
IBM Rational Team Concert (RTC). The main impact of cloud computing on source code–man-
agement tools is that they can be conveniently run on the cloud.

When you get the source code into a central repository, you need to build it into deployable
artifacts. You can do this with open source build tools such as Ant or Maven. We discuss this in
detail in the section “Build and Deployment Automation,” later in this chapter.

When you know how to develop and deliver code in a project team of more than one per-
son, you need to make sure that your code meets requirements. Requirements come in several
flavors:

• Business requirements—Requirements from specific business stakeholders 

• Marketing requirements—Business-level requirements that the marketing team cre-
ates after analysis of many customers and business stakeholders

• Functional requirements—Lower-level requirements to which developers can code

• Nonfunctional requirements—Requirements that relate to software in general, such as
performance, usability, accessibility, and maintainability

• Use cases—A specific way of writing requirements in a way that a detailed design can
be more easily derived from

• Agile stories—Another specific way of writing requirements so that they can be devel-
oped as complete units in agile stories

For medium to large projects, you usually have requirements at multiple levels and may
have more than one tool for tracking them. IBM Rational Requirements Composer is a tool for
managing requirements that gives stakeholders visibility into the requirements and integrates
with development and test tools for traceability of requirements.

After you have collected requirements, it is desirable to create a design to translate this into
working software. Software designs can also come at different levels:

• Conceptual designs—These document the decisions for use of key technology, includ-
ing the reasons for adopting the technologies and how those technologies should be
applied to the project. The conceptual design should also outline each area of the prob-
lem to be solved and describe the approach to be used in developing the software. These
designs should include high-level component diagrams.

• Detailed design—These document the specific software components to be used, what
needs to be developed, public interfaces, and package structure. They should include
lower-level UML diagrams.

68 Chapter 2 Developing on the Cloud



ptg8286219

• User interface design—This is a sketch of the user interface to be developed, created
by a user interface designer or user experience specialist.

Many tools are useful for the different aspects of software design. The IBM RSA Design
Manager, including the Design Manager server, is a tool to enable collaborative design among
different participants and stakeholders in the design process. It has both web and desktop user
interfaces that support traceability, offer insight into design reasoning, and allow stakeholders to
enter comments corresponding to specific areas of the design artifacts. It also supports a design
review and approval process, which is important for larger projects.

For quality code development, you need to verify that the code is working properly. Unit
testing is where this begins. JUnit is a simple and useful tool for driving unit tests and can give
helpful reports. However, it can be difficult to do unit tests when the code integrates with different
systems. Mock objects can represent these dependencies. The open source EasyMock tool is use-
ful for this. You will soon find that creating mock objects is an intensive job in itself. Working as
a team and sharing resources on the cloud and with ALM tools helps address this.

Functional verification testing is testing to verify that the code can execute all the different
functions it is supposed to in an operational environment. This is done by following different web
screens in a web browser. Ideally, it should be automated by recording the steps the user takes.
IBM Rational Functional Tester (RFT) is a commercial product that can be used to do this.

Rational Application Developer
Rational Application Developer is an integrated development environment for Java, J2EE, Web
2.0, and other platforms. The IBM SmartCloud Enterprise has images for Rational Application
Developer in the catalog. Rational Application Developer also has a cloud plug-in that enables
you to provision and integrate with servers, such as WebSphere Application Server on the cloud.
This enables you to achieve a scenario like this:

1. Find the Rational Application Developer Virtual Image in catalog.

2. Select virtual machine properties.

3. Set up a connection to a virtual desktop with NX client.

4. Start up Rational Application Developer on a remote desktop.

5. Add a new WebSphere cloud server.

6. Set cloud credentials.

7. Request a virtual machine for WebSphere on the cloud.

First, find Rational Application Developer in the catalog, as shown in Figure 2.20.

Integration of Application Lifecycle Management Tools with Clouds 69



ptg8286219

Figure 2.20 Find Rational Application Developer Virtual Image in catalog

Click the Start an Instance of Your Image link. This brings up the wizard to select the char-
acteristics of the virtual machine, as shown in Figure 2.21.

Click Next. The next steps prompt you for a desktop password. Provision the virtual
machine; this takes a few minutes. NX Client is an open source/commercially supported remote
desktop client that tunnels over SSH. Download the NX Client from the NoMachine web site.
Start the Connection Wizard from the Windows Start menu (or equivalent on Linux). In the Con-
nection Wizard, import and save your SSH key. The key does not need conversion by PuTTYgen.
Enter the user name and the password that you entered in the provisioning wizard. You should see
a desktop like in Figure 2.22.

If you have trouble connecting via the NX Client, see the section “NX Remote Desktop” in
Chapter 6.

70 Chapter 2 Developing on the Cloud



ptg8286219

Integration of Application Lifecycle Management Tools with Clouds 71

Figure 2.21 Provisioning wizard for virtual machine properties

Figure 2.22 Remote Desktop with Rational Application Developer launch icon



ptg8286219

Double-click the desktop launch icon. Close the Welcome page. You should see a Servers
tab. Right-click in the blank space and select New, Server. Select the check box Server to Be
Defined Here Is for Use in a Cloud Environment, as shown in Figure 2.23.

72 Chapter 2 Developing on the Cloud

Figure 2.23 Defining a new cloud server in Rational Application Developer

Click Next. Enter your Cloud user credentials in the next screen, as shown in Figure 2.24.
In the final screen, enter the virtual machine instance type characteristics and Click Finish.

Rational Team Concert
In addition to helping with source code management, RTC is a full-featured development collab-
oration tool, supporting Agile project management, a build server, and a defect management–
tracking system. An RTC image is available in the IBM SmartCloud Enterprise catalog. RTC
supports browser, Eclipse, and Microsoft Visual Studio clients. RTC allows for different roles,
such as project administrator, project lead, and project team member, to support multiple projects
and teams with delegated administration. Rational Team Concert images are available on the
IBM SmartCloud Enterprise. 



ptg8286219

Integration of Application Lifecycle Management Tools with Clouds 73

Figure 2.24 Enter cloud credentials in the New Server Wizard

To try Rational Team Concert, search for it in the catalog and then click the Start an
Instance of Your Image link. To access the web user interface, use the URL https://hostname/
jazz/web/. You will be prompted for the administrative password that you entered when provi-
sioning the virtual machine instance. After you have logged in, you will see a message to perform
the Jazz™ Team Server setup. Follow the Fast Path. Two embedded licenses are available for
developers and can be assigned during setup process. Select the Tomcat User Database for the
user registry.

Navigate to the Project Management area. Initially, there are no projects. Follow the link to
the Project Area Management section. You should see something like Figure 2.25.

Click the Create Project Area button. Enter a name, summary, and description for the
project. Click the Deploy Predefined Process Templates link.

You can add users to RTC using the User Management section, as shown in Figure 2.26.
After you have created users, you can add them to the project.

https://hostname/jazz/web/
https://hostname/jazz/web/


ptg8286219

74 Chapter 2 Developing on the Cloud

Figure 2.25 Rational Team Concert Project Areas Management section

Figure 2.26 User Management section in RTC

You can configure email settings in RTC in the Server area under the Email Settings menu.
First, set up the email server, as explained in the “Email” section in Chapter 6. Then navigate to
Server, Configuration, Email Settings and enter values for the email server, as shown in 
Figure 2.27.



ptg8286219

Integration of Application Lifecycle Management Tools with Clouds 75

Figure 2.27 RTC Email Settings configuration

Set Enable Email Notification to True. Enter localhost for the SMTP server. Use the fully
qualified domain name of the server as the last part of the email address—for example,
idcuser@vhost0297.site1.compute.ihost.com. Click Save.

You can add users to projects using the Project Management area. To add a user, navigate to
Project Management, Project Name and, under the Members header, add the user to the project.
To generate an invitation, hover over the line containing the member and, at the right of the line,
click the Invite to Join Team Icon (which is visible only when you hover over it). You should see
something like Figure 2.28.

The web user interface is useful for many purposes, but you should use the RTC Eclipse
client to administer RTC or as a developer. You can download the client from jazz.net and use the
Install Manager to install it.

Build and Deployment Automation
Rational Application Developer and integrated development tools are ideal for code develop-
ment, including performing local builds and unit testing. However, creating a repeatable build
process is critical for application development in a team greater than one person. Many tasks are
often included in build and deployment lifecycles, including these:

• Compilation

• Packaging

• Validation

• Unit testing

• Middleware configuration

• Deployment 

idcuser@vhost0297.site1.compute.ihost.com


ptg8286219

76 Chapter 2 Developing on the Cloud

Figure 2.28 RTC team member invitation

In cloud computing, you can take deployment automation a step further by creating virtual
machines with preinstalled software. 

Both open source and commercial build tools are capable of handling build and deploy-
ment automation, including Ant, Maven, and IBM Build Forge®. We focus on the Apache Maven
open source tool. Importantly, it has definitions for all the phases of build and deployment that we
are interested in and includes an extensible framework. In addition, it has patterns for best prac-
tices and plug-ins for useful build tasks.

To set up Maven, download it from the project web site and define the environment vari-
ables shown here:

set M2_HOME=D:\opt\apache-maven-3.0.3

set JAVA_HOME=D:\Program Files\IBM\SDP\jdk

set PATH=%JAVA_HOME%;%PATH%;%M2_HOME%\bin

(Or do the equivalent for Linux.) Verify that Maven is available by executing this
command:

>mvn —version

Apache Maven 3.0.3 (r1075438; 2011-03-01 01:31:09+0800)

Maven home: D:\opt\apache-maven-3.0.3

Java version: 1.6.0, vendor: IBM Corporation

Java home: D:\Program Files\IBM\SDP\jdk\jre



ptg8286219

Integration of Application Lifecycle Management Tools with Clouds 77

Default locale: en_US, platform encoding: GB18030

OS name: “windows xp”, version: “5.1 build 2600 service pack 3”, arch:
“x86”, family: “windows”

You should see something like the previous information printed. You can create a Maven
repository and project structure with this command:

>mvn archetype:generate -DgroupId=com.iotdata -DartifactId=my-app 
-DarchetypeArtifactId=maven-archetype-quickstart 
-DinteractiveMode=false

This downloads various plug-ins the first time it executes. Then it generates an application
project directory called my-app with a source directory tree and a pom.xml file, which are part of
the Maven standard project structure. The Project Object Model (pom.xml) file is the build script
and is shown here:

<project xmlns=”http://maven.apache.org/POM/4.0.0”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd”>

<modelVersion>4.0.0</modelVersion>

<groupId>com.iotdata</groupId>

<artifactId>my-app</artifactId>

<packaging>jar</packaging>

<version>1.0-SNAPSHOT</version>

<name>my-app</name>

<url>http://maven.apache.org</url>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>3.8.1</version>

<scope>test</scope>

</dependency>

</dependencies>

</project>

This defines the project, including a group ID, the artifact ID my-app, JAR packaging, and a
dependency on junit. The group ID is a unique identifier for the organization. In this case, the
package is a JAR, but it can also be a WAR, EAR, or some other type of output artifact. You can
substitute your own company web site for the url parameter.

To build the application change to the my-app directory and execute this command:

> mvn package

[INFO] BUILD SUCCESSFUL

...



ptg8286219

The package argument is a phase on the build lifecycle. This command downloads more
plug-ins the first time you execute it, but it should end with the success message shown previ-
ously. Maven executes all the phases in the build lifecycle, up to package. In this case, it includes
the compile phase. It generates the JAR file my-app-1.0-SNAPSHOT.jar in the target directory.
Other common phases in the Maven build lifecycle include these:

• Validate

• Compile

• Test

• Package

• Integration test

• Verify

• Install

• Deploy

• Clean

You also can define your own, such as gathering code quality metrics. To try the package,
type the following command:

> java -cp target/my-app-1.0-SNAPSHOT.jar com.iotdata.app.App

Hello World!

In the generate archetype, Maven also created the source code for class com.iotdata.
app.App for you, with a “Hello World” application located in the directory ${basedir}/
src/main/java. The compiled classes go in the directory ${basedir}/target/classes. You can
also run unit tests from Maven using this command:

>mvn test

———————————————————————————-

T E S T S

———————————————————————————-

Running com.iotdata.app.AppTest

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0, Time elapsed: 0.015
sec

Results :

Tests run: 1, Failures: 0, Errors: 0, Skipped: 0

...

Here, the output came from the unit test class that Maven also generated with the
archetype:generate command. 

78 Chapter 2 Developing on the Cloud



ptg8286219

Maven also has the concept of a repository. The local repository is the directory
~/.m2/repository. On Windows, this is in a location such as C:\Documents and Settings\
Administrator\.m2\repository. You can install your application into the local repository with
this command:

>mvn install

This excludes test files that match certain naming conventions.
Now you are confident that you can use Maven, so let’s apply it to the projects. In Maven,

an archetype is a template for a project, which includes a standard project structure. The previous
example is good, but in the examples in previous sections, we already had our own project cre-
ated in our IDE and we were creating web and enterprise applications. Let’s see how to address
that and learn a little more about Maven in the process. The Maven standard directory structure is
shown here:

my-app

|— pom.xml

— src

|— main

|   |— java

|    — resources

|        — META-INF

|            — application.properties

`— test

— java

This includes an application.properties file for configuration settings specific to your
project. You saw a dependency on JUnit in the previous example. In Maven, a dependency
includes at least a groupId, an artifactId, a version, and a scope. To process dependencies, Maven
looks in your local repository. If the dependency does not exist in your local repository, it down-
loads it from an external repository into your local repository. The default external repository is at
http://repo1.maven.org/maven2/. You can set up your own remote repository as well, and the
cloud is a good place to do that. Suppose that you have a dependency on a third-party JAR file.
You can add that to pom.xml with a stanza such as this:

<dependency>

<groupId>log4j</groupId>

<artifactId>log4j</artifactId>

<version>1.2.12</version>

<scope>compile</scope>

</dependency>

In this example, it is for the log4j library. 

Integration of Application Lifecycle Management Tools with Clouds 79

http://repo1.maven.org/maven2/


ptg8286219

We can add our JAR to our own repository with this stanza:

<distributionManagement>

<repository>

<id>iotdata-repository</id>

<name>IoT Data Repository</name>

<url>scp://host/repository/maven2</url>

</repository>

</distributionManagement>

Here, IoT Data is the name of the fictitious company, and host is the name of the server.
We also need to create a settings file in the ~/.m2 directory with the information shown here to
connect to the repository:

<settings xmlns=”http://maven.apache.org/SETTINGS/1.0.0”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://maven.apache.org/SETTINGS/1.0.0

http://maven.apache.org/xsd/settings-1.0.0.xsd”>

...

<servers>

<server>

<id>iotdata-repository</id>

<username>a.user</username>

<!— Default value is ~/.ssh/id_dsa —>

<privateKey>/path/to/identity</privateKey>

<passphrase>my_key_passphrase</passphrase>

</server>

</servers>

...

</settings>

Using these settings, Maven uses the SCP utility to upload the artifact to the repository.
Sometimes third-party libraries are not in the Maven repository. For legal reasons, the J2EE and
related libraries are not. In such a case, you need to go to the relevant web site, agree to the terms
and conditions, and download the JAR files yourself. Then use this command:

> mvn install:install-file -Dfile=/opt/apache-tomcat70/lib/servlet-
api.jar -DgroupId=javax -DartifactId=servlet-api -Dversion=3.0 -
Dpackaging=jar

This example focuses on the Servlet APIs, which are needed to compile a J2EE web
project.

To create a web application with the standard project structure, type this command: 

> mvn archetype:generate -
DarchetypeGroupId=org.apache.maven.archetypes -
DarchetypeArtifactId=maven-archetype-webapp -DgroupId=com.iotdata
-DartifactId=my-webapp

80 Chapter 2 Developing on the Cloud



ptg8286219

Maven creates the project tree in the directory my-webapp, including the pom.xml file. But
instead, let’s use the project that we already created in the section “WebSphere Application
Server.” Add the following pom.xml file to the top directory of your web application project:

<project xmlns=”http://maven.apache.org/POM/4.0.0”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd”>

<modelVersion>4.0.0</modelVersion>

<groupId>com.iotdata</groupId>

<artifactId>CloudAPIClientWeb</artifactId>

<packaging>war</packaging>

<version>1.0</version>

<name>IoT Data Cloud API Client Web</name>

<url>http://maven.apache.org</url>

<dependencies>

<dependency>

<groupId>javax</groupId>

<artifactId>servlet-api</artifactId>

<version>3.0</version>

<scope>provided</scope>

</dependency>

</dependencies>

<build>

<finalName>${pom.artifactId}</finalName>

<sourceDirectory>src</sourceDirectory>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-war-plugin</artifactId>

<configuration>

<warSourceDirectory>WebContent</warSourceDirectory>

</configuration>

</plugin>

</plugins>

</build>

</project>

Notice that the package is now a WAR. The pom.xml file uses the Maven WAR plug-in,
which creates the WAR package. Our directory structure is a little different than the standard
structure, so we add the sourceDirectory tag, which is a property of the build element. Notice
that we used the dependency for the Servlet API that we discussed earlier. The scope is set to
provided so that we do not have to copy the Servlet API jar to our web application.

Integration of Application Lifecycle Management Tools with Clouds 81



ptg8286219

To build it, change directories to my-webapp and type this command:

> mvn package

You should find the output in the file CloudAPIClientWeb.war in the target directory.
Deploy this to your application server, point your browser at http://host:8080/my-webapp/,
and you should see a page with the text “Hello World!”

You can manage multiple projects within a single Maven file structure by using multiple
pom.xml files. You can do this because your web application will be included in an enterprise
application. Create a pom.xml file like this above the my-app and my-webapp directories:

<project xmlns=”http://maven.apache.org/POM/4.0.0”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd”>

<modelVersion>4.0.0</modelVersion>

<groupId>com.iotdata</groupId>

<version>1.0</version>

<artifactId>app</artifactId>

<packaging>pom</packaging>

<modules>

<module>CloudAPIClientWeb</module>

<module>CloudAPIClientEAR</module>

</modules>

</project>

This defines modules for each of the CloudAPIClientWeb and CloudAPIClientEAR
projects. Create a pom.xml file for the EAR project, as shown here:

<project xmlns=”http://maven.apache.org/POM/4.0.0”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0
http://maven.apache.org/maven-v4_0_0.xsd”>

<modelVersion>4.0.0</modelVersion>

<parent>

<groupId>com.iotdata</groupId>

<artifactId>app</artifactId>

<version>1.0</version>

</parent>

<groupId>com.iotdata</groupId>

<artifactId>CloudAPIClientEAR</artifactId>

<packaging>ear</packaging>

<version>1.0</version>

<name>IoT Data Cloud API Client EAR</name>

<url>http://maven.apache.org</url>

82 Chapter 2 Developing on the Cloud

http://host:8080/my-webapp/


ptg8286219

<dependencies>

<dependency>

<groupId>com.iotdata</groupId>

<artifactId>CloudAPIClientWeb</artifactId>

<version>1.0</version>

<type>war</type>

</dependency>

</dependencies>

<build>

<finalName>${pom.artifactId}</finalName>

<plugins>

<plugin>

<groupId>org.apache.maven.plugins</groupId>

<artifactId>maven-ear-plugin</artifactId>

<version>2.4</version>

<configuration>

<earSourceDirectory>

${basedir}

</earSourceDirectory>

<modules>

<webModule>

<groupId>com.iotdata</groupId>

<artifactId>CloudAPIClientWeb</artifactId>

<bundleFileName>

CloudAPIClientWeb.war

</bundleFileName>

</webModule>

</modules>

</configuration>

</plugin>

</plugins>

</build>

</project>

This defines a parent that refers to the top-level pom.xml. You also need to add this stanza to
your web pom.xml. This time, the package value is ear, and it uses the Maven ear plug-in. It
defines the web model from the earlier web project.

Now clean and rebuild the entire project with this command:

> mvn clean install

The ear will be built, and it will include the WAR file from the web application. Now you
know how to create a reproducible build. That is important because, in test and production envi-
ronments, you will not allow developers to connect to the application server with their IDEs.

Integration of Application Lifecycle Management Tools with Clouds 83



ptg8286219

Business Scenario: Application Lifecycle 
Management Tools
IoT Data is a small-to-medium project with five developers, three testers, an architect, a project
manager, and a market manager. It decides to follow an Agile development project, to reduce risk
by always having a buildable and working code base and by adding capabilities in increments
with each iteration. The company adopts IBM Rational Software Architect (RSA) as its standard
development environment. This helps in the development of the J2EE application and includes
design capabilities. 

The source code will be stored in the IBM Rational Team Concert (RTC) code repository.
The RTC server will run in the cloud. RTC includes a client plug-in that installs into RSA, which
makes checking in code possible from a single tool. 

RTC also acts as the project management tool, allowing the project manager to track the
project progress. Defects are also tracked in RTC, but the test team accesses RTC via the web
interface. The architect enters functional requirements as Agile stories in RTC, and development
work is tracked against these requirements. However, the project manager uses IBM Rational
Requirements Composer to track requirements from business stakeholders. He gets many more
business requirements than the development team can deliver but they can become critical some-
times when customer deals depend on delivery of specific requirements. Executive commitments
to customers need to be tracked especially carefully.

84 Chapter 2 Developing on the Cloud



ptg8286219

85

C H A P T E R 3

Developing with IBM
SmartCloud
Enterprise APIs

IBM SmartCloud Enterprise is a public Infrastructure as a Service cloud hosted at www.ibm.
com/cloud/enterprise and is suitable for enterprises. IBM’s differentiators include a broad range
of services and products, self-service and delegated administration models that enable collabo-
ration, enterprise-suitable business support services, and a large catalog of virtual machine
images created by the image development center of excellence. 

The IBM SmartCloud Enterprise REST API is the fundamental way to programmatically
communicate with the IBM SmartCloud Enterprise. It includes most of the capabilities you can
perform from the self-service user interface, including managing instances, images, storage, and
IP addresses. For convenience, a command-line API and Java API client are also provided; both
wrap the REST services. The Java API client and command-line tool require downloads, which
are freely available to registered users in the asset catalog. The command line conveniently
speeds up operations for power users, but if you need to create an application that interprets the
output from the API, you need to write a program. You can use the IBM SmartCloud Enterprise
API to add capability or integrate cloud management into your other applications. For Java pro-
grammers, the most convenient option is the Java API; developers in other languages can use the
REST API. This chapter explains the principles and then gives examples of use of the command
line, Java API, and REST interfaces.

www.ibm.com/cloud/enterprise
www.ibm.com/cloud/enterprise


ptg8286219

Resource Model
Figure 3.1 shows the resource model.

86 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

<<interface>> 

Image< > 

<<interface>> 

Volume< > 

<<interface>> 

Key< > 

<<interface>> 

VLAN< > 

<<interface>> 

Location< > 

<<interface>> 

VLANOffering< > 

<<interface>> 

VolumeOffering

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

* * 

* 

* 

* 

* 

* 

* 

* 
* 

* 

* 

0 

<<interface>> 

Instance< > 

<<interface>> 

Address< > 

<<interface>> 

AddressOffering< > 

< > 

Figure 3.1 Resource model for IBM SmartCloud Enterprise

The fundamental resource of interest is an Instance object, which represents a virtual
machine. An Image object represents a snapshot by capturing or saving a virtual machine, with
some additional data, from which other Instance objects can be created. Because there can be
many Instances of an Image, this is a one-to-many relationship. An Address is a reserved IP
address. An Instance can be assigned zero or more Addresses, so this is also a one-to-many rela-
tionship. A Location represents a data center. All the resources, except Key, are associated with a
Location. A Key is used to log onto an Instance using SSH. One Key can be used for many
Instances.

Each resource has a set of attributes. Some attributes can be set during creation of the vir-
tual machine instance and then changed at will afterward. Some attributes can be set only at cre-
ation time and are read-only afterward. Some attributes are generated by the system and only
readable by users. The naming convention that we give is the one from the IBM SmartCloud
Enterprise native API.

The key entities include instance, image, address, volume, credential, and VLAN: 

• Instance—An Instance is a virtual machine created from an Image. It is normally in the
active state, meaning that it is running, but it can also be in other states, such as provi-
sioning or failed.



ptg8286219

• Image—An Image is a template that can be used to create an instance of a virtual
machine. Think of this as a large file that saves the file systems of an operating system,
all the software installed on it, and configuration settings. Some of the configuration set-
tings for runtime use, such as IP address, are not saved.

• Address—An Address is an IP address that can be either assigned by the cloud to an
instance at provisioning time or reserved by the user as an independent operation.

• Volume—A Volume is a virtual block storage device that can be attached to an instance.
Only one instance can be attached to a volume at any given time, but multiple volumes
can be attached to a single instance. 

• Credential—A Credential is used to connect to a running virtual machine. On the IBM
SmartCloud Enterprise, the credential is an SSH public–private key pair.

• VLAN—A VLAN is the virtual equivalent of a subnet.

Configuration and other utilities include these:

• Location—Global delivery points are important to reduce network latency and satisfy
compliance needs for certain enterprises that store important information. Images,
Instance, Address, and Volume resources are all located in a particular location, which
this object represents.

• VM Configuration—Specifies the compute size of an Instance, including number of
CPUs, amount of memory, and amount of local disk storage.

• Volume Offering—Specifies the characteristics of a storage volume.

Entity Lifecycles
The different states of the individual resources are listed in the appendixes of the IBM Smart-
Cloud Enterprise REST API Reference. The states are given as numeric codes, for ease of con-
sumption by the APIs. Instance entities have a total of 15 states. Table 3.1 lists the most important
states.

Table 3.1 Key States for Instance Entities

Code State Description

0 New The request to provision an instance has just been submitted.

1 Provisioning The instance is being created.

2 Failed The request did not succeed.

3 Removed The instance has been deleted.

5 Active The instance is running and available to be used.

Entity Lifecycles 87



ptg8286219

Table 3.1 Key States for Instance Entities (continued)

Code State Description

7 Deprovisioning The instance is in the process of being deleted.

8 Restarting The instance is being rebooted.

9 Starting The instance is booting.

If an instance is in normal operation, it is in the active state. When creating a new instance,
the instance begins in the new state and transitions through to the provisioning state and then the
active state, when it can be used. Figure 3.2 illustrates the instance lifecycle.

88 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

New Failed

Provisioning

Deprovisioning

Restarting, 
Stopping, 
Stopped 

Removed 

Active 

Figure 3.2 Instance partial lifecycle

Table 3.2 lists the states for images.

Table 3.2 States for Image Entities

Code State Description

0 New The request to save an instance has just been submitted.

1 Available An instance may be created from the image.

2 Unavailable The image is not available for use.

3 Deleted The image has been deleted.

4 Capturing The image is currently being saved from an instance.



ptg8286219

The normal state for images is available. An image cannot be deleted while an instance for
that image exists. The other important interaction point with instances is saving, also known as
capturing, an instance to an image. When a request to save image is first submitted, it is in the new
state. Then it transitions to the capturing state and ends in the new state. Figure 3.3 shows the
image lifecycle.

Entity Lifecycles 89

New Unavailable 

Available 

Deleted 

Capturing 

Figure 3.3 Image lifecycle

Table 3.3 shows the IP address states.

Table 3.3 States for IP Address Entities

Code State Description

0 New The request for an IP address has just been submitted.

1 Allocating The IP address is in the process of being allocated.

2 Free The IP address is available to be attached to an instance. 

3 Attached The IP address is attached to an instance. 

4 Releasing The IP address is in the process of being released.

5 Released The IP address has been released.

6 Failed The request for an IP address failed.

7 Pending

Dynamically assigned IP addresses do not have independent entity representations. IP
addresses are not deleted like instances or images; they are simply returned to a pool for reuse.
However, the entity representations of the IP addresses appear to be deleted. All IP addresses cur-
rently are IPv4. Figure 3.4 depicts the address lifecycle.



ptg8286219

90 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

Allocating 

Free 

Releasing 

Attached 

Failed 

New 

Figure 3.4 Address lifecycle

When an IP address is used by an instance, it determines the MAC address for the virtual
network interface. The MAC address thus cannot be determined when reserving an IP address,
but it can be determined after the instance is provisioned. If you reuse the same reserved IP with a
different instance, you get the same MAC address. If multiple IP addresses exist, there will be
multiple MAC addresses, one MAC address per each IP address associated with the instance.

Table 3.4 lists the key states for storage volumes.

Table 3.4 Key States for Storage Volumes

Code State Description

0 New The request for storage volume has just been submitted.

1 Creating The volume is in the process of being created.

2 Deleting The volume is in the process of being deleted.

3 Deleted The volume has been deleted.

4 Attached The disk has not been attached (previously was mounted).

5 Detached The disk has been attached (previously was mounted).

6 Failed The request for a volume failed.

7 Delete pending

8 Being cloned The disk is being cloned.

9 Cloning



ptg8286219

The normal state for a volume that is not attached to an instance is unattached. A key dif-
ference exists between Linux and Windows with attached disks. With Linux, the normal process
is to mount the disk at the time of provisioning an instance. With Windows, this is not possible;
the disk is attached to Windows instances with a RAW format. Mounting is a concept that is not
as transparent in Windows systems compared with Linux systems.

Command Line
Command-line tools can be helpful for power users or in scripting contexts to automate common
tasks and configuration. The IBM SmartCloud Enterprise command line tool has nearly the same
capabilities as the REST API. This section walks you through setting up the command line tool,
querying the catalog, provisioning an instance, managing storage, working with parameters dur-
ing the provisioning process, managing IP addresses, and saving virtual machine images.

Environment Setup
To start, this section demonstrates how to create an instance using the command line on a Win-
dows client. Command-line utilities are also available for Linux/UNIX clients. Download the
command-line tool from the Asset Catalog. You will see a link on the Support tab. Unzip the
bundle somewhere on your local disk in a location with no spaces in the folder names. Follow
these steps to get your scripting environment set up:

1. Install a version 1.6 JDK if you do not have one already installed.

2. Define JAVA_HOME as the location where you installed the JDK.

3. Extract the command-line tool ZIP into a directory on your system without spaces in the
path. Define a variable called DT_HOME for this.

4. Create a directory for your scripts and define a variable called SCRIPT_HOME for the loca-
tion.

After you have created a directory for your scripts, initialize your client with a password
file, which is required and protects your real IBM SmartCloud Enterprise password. These com-
mands are shown here:

> set JAVA_HOME=D:\Program Files\IBM\SDP\jdk

> set PATH=%JAVA_HOME%\bin;%PATH%

> set DT_HOME=D:\alex\architecture\articles\cloud_monitoring\
cmd

> set SCRIPT_HOME=D:\alex\architecture\articles\cloud_monitoring\
script

> cd %DT_HOME%

> ic-create-password -u a@bc.com -p aq1sw2 -w unlock -g
%SCRIPT_HOME%/mykey.ext

> cd %SCRIPT_HOME%

Command Line 91



ptg8286219

In the script, substitute your own values for user ID (a@bc.com), password (aq1sw2),
and passphrase (unlock).

Querying the Catalog
You first need to retrieve some information from the catalog to determine what image to provi-
sion an instance for. To get a list of images, use this command:

> ic-describe-images -u a@bc.com -w unlock -g %SCRIPT_HOME%/mykey.ext
> images_list.txt

Save the output to a file called images_list.txt because the output is long. You will see
output similar to this:

...

ID : 20001119

Name : Red Hat Enterprise Linux 5.4 (64-bit)

Visibility : PUBLIC

State : AVAILABLE

Owner : SYSTEM

Platform : Red Hat Enterprise Linux/5.4

Location : 41

~~~~~

InstanceType ID : BRZ64.2/4096/850

Label : Bronze 64 bit

...

InstanceType ID : COP64.2/4096/60

Label : Copper 64 bit

Price : USD0.4/UHR  

...

This describes a Red Hat Enterprise Linux 5.1 server with image ID 20001119. The data
center ID is 41 (Research Triangle Park, North Carolina). The images can be provisioned with
different compute sizes. The size shown is Bronze 64 bit, which has 4086 MB memory and 850
GB storage. The next instance that it can be provisioned on is Copper 64 bit, and so on. 

Provisioning an Instance
Instances can be provisioned at different data centers. The data center also must match for the
instance, image, IP address, and any storage volumes attached. To find a list of available loca-
tions, use the ic-describe-locations command:

> ic-describe-locations -u a@bc.com -w unlock -g
%SCRIPT_HOME%/mykey.ext

This gives output similar to this:

92 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

a@bc.com


ptg8286219

...

ID : 101

Location : ca-on-dc1

Name : ca-on-dc1

Description : Data Center 1 at Ontario, Canada

----------------------------------

----------------------------------

ID : 121

Location : ap-jp-dc1

Name : ap-jp-dc1

Description : Data Center 1 at Makuhari, Japan

----------------------------------

The first entry is data center 101, in Ontario, Canada; the second is data center 121, in
Makuhari, Japan. At the time of writing, data centers are located in Research Triangle Park
(RTP), North Carolina (41); Enhigen, Germany (61); Boulder, Colorado (81 and 82); Ontario,
Canada (101); and Makuhari, Japan (121). Use the location IDs in your program to identify spe-
cific data centers.

You need to define an SSH key pair to log into the instance. You can do this using the user
interface or the command line. You can get a list of your key pairs using this command:

> ic-describe-keypairs -u a@bc.com -w unlock -g
%SCRIPT_HOME%/mykey.ext

You should see output similar to this:

Name : MyKey

Default Key : false

Material : AAAAB3NzaC1yc2EAAAADAQABAAABAQCLI7Q/ntSeb7eeZpnA9J5qGsR/
CjnNlACav9O2R

ztowZwnWx9vMwzLue4z3A+cfBrzmGvZgnNTkVlnhKbjJ72dvIMLWgE5oKnYsud+As0+pxJ
cfJ1Pd7

xeOnxayX+dMM7lIjQHQsorFC9/AEKix8uIzTI4G0LjLTtLk56QXQw+PLNcjNx77eG1G1gi
nF2UXV9

Wjvhbqt8MebjDpoZP55URKlH+24IifcURKXVV6IfjfHRcTToy5sL1QrLqKXEMK08TKndMp
WvSEv3j+

q5X7DwwAiC4V7NH1OWIVl7VtDfoCoDsli/
KEMAlMFOYIxlOeLA7MlmAWOb99K2p

LastModifiedTime : 2010-11-24 04:07:29

0 instances related.

...

Name is the name of the key used to identify it in the IBM SmartCloud Enterprise portal and
on the command line when requesting a new instance. Material is the public part of the key pair.
When requesting the key, you should save the private key, which is not displayed in the com-
mand, on your local disk. The IBM SmartCloud Enterprise stores only your public key. If you
lose your private key, you cannot recover it from the cloud.

Command Line 93



ptg8286219

Now you have all the information you need to create the instance. You can do this with the
following command:

> ic-create-instance -u u@abc.com -w unlock -g %SCRIPT_HOME%/mykey.ext 

-t COP64.2/4096/60 -n MyRedHat -k 20001119 -c MyKey -d 
“Base OS” 

-L DATA_CENTER_ID

The -t (or type) parameter is compute size. The -n parameter is a user-friendly name for
the image. The -k parameter is the image ID from the describe images command. The -c
parameter is the name of the key pair from the describe-keypairs command. The -d (or
description) parameter is a potentially long description of the image. The -L (or location)
parameter is the data center ID. This should match the output from the image you selected from
the describe-images command. No IP address is included; the IP address will be dynamically
generated, and you can discover it after the virtual machine has been provisioned. You should see
output similar to this:

Executing action: CreateInstance ...

The request has been submitted successfully.

1 instances!

----------------------------------

ID : 49571

Name : MyRedHat

Hostname :

InstanceType : COP64.2/4096/60

IP :

KeyName : MyKey

Owner : a@bc.com

RequestID : 49871

RequestName : MyRedHat

Status : NEW

Volume IDs :

----------------------------------

Executing CreateInstance finished

The request takes a little while to provision. To find the status, use this command:

> ic-describe-request -u a@bc.com -e 49871 -w unlock -g
%SCRIPT_HOME%/mykey.ext

The -e parameter is the request ID from the create-instance command. You should see
output similar to this:

Executing action: DescribeRequest ...

1 instances :

----------------------------------

ID : 49571

Name : MyRedHat

94 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

Hostname : 170.224.160.62

InstanceType : COP64.2/4096/60

IP : 170.224.160.62

KeyName : MyKey

Owner : a@bc.com

RequestID : 49871

RequestName : MyRedHat

----------------------------------

Executing DescribeRequest finished

The output indicates that the request has finished. This means that you can use the instance.
You can also find out about the instance using the describe-instances request, shown here:

ic-describe-instances -u aamies@cn.ibm.com -w unlock -g
%SCRIPT_HOME%/mykey.ext

No additional parameters are needed in this command. You should see output similar to
this:

Executing action: DescribeInstances ...

1 instances!

----------------------------------

ID : 49571

Name : MyRedHat

Hostname : 170.224.160.62

InstanceType : COP64.2/4096/60

IP : 170.224.160.62

KeyName : MyKey

Owner : a@bc.com

RequestID : 49871

RequestName : MyRedHat

Status : ACTIVE

Location : 41

Volume IDs :

Disk Size : 60

Root Only : false

----------------------------------

Executing DescribeInstances finished

Now you can use your instance. This is the command line for deleting it when you are fin-
ished:

> ic-delete-instance -u u@abc.com -w unlock -g %MY_HOME%/mykey.ext -l
INSTANCE_ID

Command Line 95



ptg8286219

Provisioning Storage
When you are familiar with how a basic instance works, you can try to attach storage. You can
obtain a description of storage volume offerings using this command:

ic-describe-volume-offerings -u aamies@cn.ibm.com -w unlock -g
%SCRIPT_HOME%/mykey.ext

This gives the following type of output:

Executing action: DescribeVolumeOfferings ...

----------------------------------

ID : 20001208

Name : Small

Location : 41

Price : .../UHR

CurrencyCode : USD

CountryCode : 

PricePerQuantity : 1

UnitOfMeasure : UHR

Supported Format :

~~~~~~

Format : EXT3

Format : RAW

~~~~~~

...

The ID is used in commands to create storage volumes. Name is also the size. Use EXT3 for-
mat on Linux and RAW format on Windows. You can request a new storage volume with this
command:

ic-create-volume -u a@bc.com -w unlock -g %SCRIPT_HOME%/mykey.ext -n
MyVolume -s Small -f EXT3 -L 41 -O 20001208

The -n parameter is the name of the volume, the -s parameter is the size, the -f parameter
is the format, the -L parameter is the location, and the -O parameter is the offering ID. You should
see output similar to this:

Executing action: CreateVolume ...

The request has been submitted successfully.

ID : 7253

Name : MyVolume

Owner : a@b.com

Size : 256

Format : ext3

InstanceID : 0

OfferingID : 20001208

96 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

The ID of the volume is returned in the output (7253). You need this to attach the volume to
an instance. Use the ic-describe-volumes command to get a list of volumes, and use ic-
delete-volume to delete one. To use the volume with an instance, use the create instance
command with some additional parameters:

ic-create-instance -u aamies@cn.ibm.com -w unlock -g
%SCRIPT_HOME%/mykey.ext -t COP64.2/4096/60 -n MyRedHat -k 20001119 -c
alex-prod -d “Base OS” -L 41 -v 7253 -m
{oss.storage.id.0.mnt:/mnt/volume1}

The -v option specifies the storage volume ID, and the -m parameter specifies the mount
point of the volume. To check it out, log into the instance with putty using the idcuser ID and no
password. Use the Linux df command:

[idcuser@vhost1374 ~]$ df

Filesystem           1K-blocks      Used Available Use% Mounted on

/dev/hda2             60880276   3563828  54804044   7% /

/dev/hda1               101086     11738     84129  13% /boot

tmpfs                  2022056         0   2022056   0% /dev/shm

/dev/hdb1            264218344    191712 250605132   1% /mnt/volume1

The /mnt/volume1 device is the storage volume we provisioned and attached to the
instance.

Provisioning an Instance with Parameters
Creating an instance with parameters is similar. First, find out the parameters that are associated
with the image using the describe image command:

> ic-describe-image -u aamies@cn.ibm.com -w unlock -g
%SCRIPT_HOME%/mykey.ext -k 20007420 > %SCRIPT_HOME%/image.txt

The -k parameter is the image ID 20017833 for a WebSphere image that contains parame-
ters. These parameters are parsed from the parameters.xml file and listed in the output:

ID : 20007420

Name : IBM WebSphere Application Server V7.0 – DUO

...

there are 4 additional parameters.

@@@@@@@@@@@@@@@@@@@@@@@@

name : WASAdminUser

type : text

description : Specify a user ID for executing and administering
WebSphere processes on the instance. To ensure security, do not
specify ‘root’ or ‘idcuser’ as administrator ID.

value : null

@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@

name : WASAdminPassword

Command Line 97



ptg8286219

type : password

description : Specify a password for WebSphere administrator ID.
Password must contain at least 1 number, at least 1 lower case letter,
and at least 1 upper case letter.

value : null

@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@

name : WASProfileType

type : radioGroup

description : Choose development profile if you are developing an
application using tools such as IBM Rational Application Developer.
Choose default single server server profile for running the
application in a production-like setting.

value : development

Options :~~~~~

option : development

option : production

Options :~~~~~

@@@@@@@@@@@@@@@@@@@@@@@@

@@@@@@@@@@@@@@@@@@@@@@@@

name : WASAugmentList

type : radioGroup

description : Specify feature packs to enable in the profile

value : all

Options :~~~~~

option : cea

option : sca

option : sca_sdo

option : xml

option : all

option : none

Options :~~~~~

This tells you that four parameters exist. The first two parameters, WASAdminUser and
WASAdminPassword, have no default values, so you must supply values for them. The second two
parameters, WASProfileType and WASAugmentList, do have default values. If you do not supply
values, the defaults are used. You can request the instance with the parameters using a form of the
create instance command:

> ic-create-instance -u aamies@cn.ibm.com -w unlock -g
%SCRIPT_HOME%/mykey.ext -t COP32.1/2048/60 -n WebSphere -k 20007420 -c
alex-prod -d “WebSphere” -L 41 -m
{WASAdminUser:webadmin,WASAdminPassword:Aq1sw2de}

Managing IP Addresses
To understand IP address offerings, first use the ic-describe-address-offerings command. It
gives output similar to this:

98 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

Executing action: DescribeAddressOfferings ...

----------------------------------

ID : 20001223

Location : 41

Ip Type : PUBLIC

Price : /UHR

CurrencyCode : USD

CountryCode : 

PricePerQuantity : 1

UnitOfMeasure : UHR

...

This shows a public IP address offering in a location with ID 41 in addition to price data.
You will need the address offering ID to provision. To allocate an IP address, use this command:

ic-allocate-address -u a@bc.com -w unlock -g %SCRIPT_HOME%/mykey.ext 
-L 41 -O 20001223 

The -O parameter is the offering ID from the describe address offerings command.
Use the ic-describe-addresses command to list IP addresses, as shown in this command:

ic-describe-addresses -u a@bc.com -w unlock -g %SCRIPT_HOME%/mykey.ext

No additional special parameters are used here. This results in output similar to this:

Executing action: DescribeAddresses ...

3 addresses.

----------------------------------

ID : 36550

InstanceId : null

IP : 170.224.161.34

State : FREE

Location : 41

...

The address ID is needed if you want to assign this to a virtual machine. The instance ID
field tells you which instance, if any, is associated with the IP address. If the state is FREE, you can
use the IP address in an instance provisioning request. Use the ic-release-address command to
release an address.

Saving Images
After you have worked with an image for some time, installed software, changed configuration
settings, and so on, you will need to save the image. To do this, use the ic-save-instance
command:

ic-save-instance -u a@bc.com -w unlock -g %SCRIPT_HOME%/mykey.ext -l
50464 -n MyRedHatImage -d “Snapshot of my Red Hat Image”

Command Line 99



ptg8286219

Here, the -l parameter is the instance ID, the -n parameter is the name, and the -d parame-
ter is a description. You should see output similar to this:

Executing action: SaveInstance ...

ID : 20016436

Name : MyRedHatImage

Visibility : PRIVATE

State : NEW

Owner : null

State : NEW

Description : Snapshot of my Red Hat Image

CreatedTime : Wed Feb 23 17:33:17 CST 2011

...

At this point, the request has been submitted, but the image has not yet been made. The ID
of this image is 20016436. The visibility is private, which means that only you can see it. To find
the status of the image, use the command ic-describe-image:

ic-describe-image -u a@bc.com -w unlock -g %SCRIPT_HOME%/mykey.ext -k
20016436

Here, the -k parameter is the image ID. You will also receive an email when the image has
been saved. Use the ic-delete-image to delete the image.

Java API
In general, you can do a greater range with a Java program than with a command line. The
examples in this section are not the same as those from the earlier command-line examples. You
might want to read the previous section if you have not done so already.

Environment Setup
The IBM SmartCloud Enterprise provides a Java API to make it easy to manage resources via
Java. A few prerequisite libraries can be downloaded from the Asset Catalog. These include the
Apache Commons Codec 1.3, HttpClient 3.1, lang 2.3, and Logging 1.1.1 libraries, as well as the
Developer Cloud API Client JAR. Figure 3.5 shows an Eclipse project setup.

100 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

Java API 101

Figure 3.5 Java library dependency setup

Querying the Catalog
The basic interface that implements most of the methods needed is DeveloperCloudClient. All
methods on this interface, except getLocale and setLocale setRemoteCredentials, result in
REST calls to the cloud. This basic program retrieves a list of images and prints the ID and name
to the console:

import java.io.IOException;

import java.util.HashMap;

import java.util.List;

import com.ibm.cloud.api.rest.client.DeveloperCloud;

import com.ibm.cloud.api.rest.client.DeveloperCloudClient;

import com.ibm.cloud.api.rest.client.bean.*;

import com.ibm.cloud.api.rest.client.exception.*;

/**

* Example program to demonstrate the Java client API’s.

*/



ptg8286219

public class JavaAPIExamples {

public static final String USERNAME = “a@bc.com”;

public static final String PASSWORD = “secret”;

private DeveloperCloudClient client =
DeveloperCloud.getClient();

/**

* Configures the REST client proxy.

*/

public JavaAPIExamples() {

client.setRemoteCredentials(USERNAME, PASSWORD);

}

/**

* Exercises the describeImages() method.

* @throws UnauthorizedUserException Invalid user credentials

* @throws UnknownErrorException Some other kind of error

* @throws IOException Network problems 

*/

public void describeImages() throws UnauthorizedUserException,
UnknownErrorException, IOException {

List<Image> images = client.describeImages();

System.out.println(“Found “ + images.size() + 
“ image(s).”);

for (Image image: images) {

System.out.println(“Found image with id “ +
image.getID() +                         “, “ + image.getName());

}

}

/**

* Entry point

* @param argv Not used

* @throws Exception Authorization, network IO, or other
problems

*/

public static void main(String[] argv) throws Exception {

System.out.println(“Running Java API examples”);

JavaAPIExamples examples = new JavaAPIExamples();

examples.describeImages();

}

}

102 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

The program is executed from the command line. It first imports all the required packages
and classes. It defines two constants for user ID and password; replace these with your own cre-
dentials. After this, it defines the client proxy using the DeveloperCloud class to create it. In the
constructor, the program sets the credentials in the client proxy. In the method describeImages,
the program calls the API DeveloperCloudClient.describeImages, which returns a list of
Image objects. The program then iterates over the list, printing the ID and name. The output looks
similar to this:

Running Java API examples

Found 336 image(s).

Found image with id 20009984, IBM DB2 Enterprise Developer Ed SLES
9.7.1 - BYOL

...

Found image with id 20016550, MyRedHatImage

Found image with id 20013501, alex SUSE public 12/1/10 6:33 PM

...

The previous program lists all the images in the catalog, in addition to the images owned by
the user. To find a list of the images the user owns, use a method like this:

public void describeMyImages() throws UnauthorizedUserException,
UnknownErrorException, IOException {

List<Image> images = client.describeImages();

for (Image image: images) {

if (USERNAME.equals(image.getOwner())) {

System.out.println(“Found image with id “ + 

image.getID() + “, attributes: “);

System.out.println(“Name: “ + image.getName());

System.out.println(“Description: “ +

image.getDescription());

System.out.println(“Visibility: “ +
image.getVisibility());

System.out.println(“Location: “ +
image.getLocation());

System.out.println(“State: “ + image.getState());

System.out.println(“Platform: “ +
image.getPlatform());

System.out.println(“Architecture: “ +

image.getArchitecture());

System.out.println(“Supported instance types: “);

List<InstanceType> instanceTypes =

image.getSupportedInstanceTypes();

for (InstanceType instanceType: instanceTypes) {

System.out.print(instanceType.getId() + “ “ +

Java API 103



ptg8286219

instanceType.getLabel() + “, “);

}

}

}

}

The program filters the list by checking the owner attribute of the image. A number of
attributes and the list of supported instance types (compute sizes) are printed to standard output.
The program output is similar to this:

Running Java API examples

Found image with id 20016550, attributes: 

Name: MyRedHatImage

Description: Snapshot of my Red Hat Image

Visibility: PRIVATE

Location: 41

State: AVAILABLE

Platform: Red Hat Enterprise Linux/5.4

Architecture: x86_64

Supported instance types: 

COP64.2/4096/60 Copper 64 bit, BRZ64.2/4096/60*500*350 Bronze 64 bit,
GLD64.8/16384/60*500*500 Gold 64 bit,
PLT64.16/16384/60*500*500*500*500 Platinum 64 bit,
SLV64.4/8192/60*500*500 Silver 64 bit, 

...

Working with Virtual Machine Instances
You can use the previous information to provision a virtual machine instance. The attributes
needed are the location ID, image ID, instance type, and a key when provisioning an instance.
You can get a list of your keys using the DeveloperCloudClient.describeKeys method, as
demonstrated in the following method:

public void describeKeys() throws UnauthorizedUserException,
UnknownErrorException, IOException {

List<Key> keys = client.describeKeys();

for (Key key: keys) {

System.out.println(“Found key with id “ + key.getName());

}

}

This results in the following output:

Running Java API examples

Found key with id mykey

...

104 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

The following code demonstrates creating an instance with the DeveloperCloudClient.
createInstance method:

public void createInstance() throws UnauthorizedUserException,
UnknownErrorException, IOException, 

InsufficientResourcesException, InvalidConfigurationException,
PaymentRequiredException {

System.out.println(“Provisioning a new instance”);

Address address = null;

Volume volume = null;

Address[] secondaryAddresses = new Address[0];

List<Instance> instances = client.createInstance(

“Java API Test Instance”,       // Name of instance

“41”,                           // Data center ID

“20016550”,                     // Image ID

“COP64.2/4096/60”,              // Instance type

“mykey”,                        // Key

address,                        // Address

volume,                         // Volume

new HashMap<String,Object>(),   // Options

null,                           // VLAN ID

secondaryAddresses,             // Secondary IP addresses

true);                          // Minimum ephemeral

Instance instance = instances.get(0);

System.out.println(“ID: “ + instance.getID());

}

The name, data center ID, image ID, instance type, and key were described previously. This
method has a lot of strings, so we defined typed variables for address and volume for clarity, even
though they are given null values. Also, for illustration, we included a HashMap for the options,
even though we have not included any options. If the VLAN ID is set to null, a public Internet
address is used. Otherwise, include the ID of your enterprise’s VLAN. The secondary address is
an optional list of additional IP addresses. The minimum ephemeral flag is an option for perfor-
mance optimization. Because you likely will not need all the ephemeral (local) storage right
away, the instance is provisioned with the minimum amount of storage needed; later expansion is
allowed as needed. The method produces output similar to this:

Running Java API examples

Provisioning a new instance

ID: 50767

Notice that the instance is created immediately and has an identifier that you can use. How-
ever, immediately after the provisioning request, the virtual machine instance is not in a state that

Java API 105



ptg8286219

can be used. You must wait until the instance is in an active state before logging on to it. Use 
any of the methods DeveloperCloudClient.describeInstances, describeInstance, or
describeRequest to find the status of the request. The following method demonstrates the use of
DeveloperCloudClient.describeInstances.

public void describeInstances() throws UnauthorizedUserException,
UnknownErrorException, IOException {

List<Instance> instances = client.describeInstances();

System.out.println(“Found “ + instances.size() + “
instance(s).”);

for (Instance instance: instances) {

System.out.println(“ID: “ + instance.getID());

System.out.println(“Name: “ + instance.getName());

System.out.println(“IP: “ + instance.getIP());

System.out.println(“Status: “ + instance.getStatus());

}

}

The program produces output similar to this:

Found 1 instance(s).

ID: 50767

Name: Java API Test Instance

IP: 170.224.160.133 

Status: ACTIVE

Some images have additional parameters that must be supplied when creating an instance.
You can find these in the parameters.xml file, available in the image.getManifest() method
call. For example, the WebSphere Application Server (WAS) has these parameters:

<?xml version=”1.0” encoding=”UTF-8”?>

<parameters xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”parameters.xsd”>

...

<field name=”WASAdminUser” type=”text” label=”WebSphere
administrator ID”

description=”Specify a user ID ...”/>

<field name=”WASAdminPassword” type=”password” label=”WebSphere
administrator password”

pattern=”^\w*(?=\w*\d)(?=\w*[a-z])(?=\w*[A-Z])\w*$”

patternErrorMessage=”Invalid Password. Must ...”

description=”Specify a password for ...”/>

<field name=”WASProfileType” type=”radioGroup” label=”Select a ...”

description=”Choose ...”>

<values>

<value>development</value>

</values>

106 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

<options>

<option label=”Development profile”>development</option>

<option label=”Default single server
profile”>production</option>

</options>

</field>

<field name=”WASAugmentList” type=”radioGroup” label=”Select ...”

description=”Specify feature packs to enable in the profile”>

<values>

<value>all</value>

</values>

<options>

<option label=”CEA feature pack”>cea</option>

<option label=”SCA feature pack”>sca</option>

<option label=”SCA feature pack with SDO”>sca_sdo</option>

<option label=”XML feature pack”>xml</option>

<option label=”All of the above”>all</option>

<option label=”None”>none</option>

</options>

</field>

</parameters>

The file indicates that two parameters are required: a user name for the WAS administrative
user and a password. The other parameters, WASProfileType and WASAugmentList, include
default parameters. If you do not supply a value, the defaults are used. On the IBM SmartCloud
Enterprise user interface, you are prompted to enter these parameters with a panel in the Instance
Creation Wizard, as shown in Figure 3.6.

These parameters can be supplied using the Java API, as in the following method:

public void createInstanceWebSphere() throws
UnauthorizedUserException,       UnknownErrorException, IOException,
InsufficientResourcesException,       InvalidConfigurationException,
PaymentRequiredException {

Address address = null;

Volume volume = null;

Address[] secondaryAddresses = new Address[0];

Map<String,Object> parameters = new HashMap<String,Object>();

parameters.put(“WASAdminUser”, “***”);

parameters.put(“WASAdminPassword”, “***”);

List<Instance> instances = client.createInstance(

“WebSphere Server”,           // Name of instance

“41”,                         // Data center ID

“20017599”,                   // Image ID

“BRZ32.1/2048/60*175”,        // Instance type

“mykey”,                      // Key

Java API 107



ptg8286219

address,                      // Address

volume,                       // Volume

parameters,                   // Options

null,                         // VLAN ID

secondaryAddresses,           // Secondary IP
addresses

true);                        // Minimum ephemeral

Instance instance = instances.get(0);

}

108 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

Figure 3.6 Instance creation parameters for WebSphere Application Server

Locations and Capabilities
Different cloud locations help you minimize network latency while delivering and consuming
services at different points around world. In the context of the IBM SmartCloud Enterprise, a
location is a data center. Some data centers have different capabilities. You can query the data
centers using the describeLocations method, shown here, to determine the capabilities.

public void describeLocations() throws UnauthorizedUserException,
UnknownErrorException, IOException {

List<Location> locations = client.describeLocations();



ptg8286219

System.out.println(“Found “ + locations.size() + “
locations(s).”);

for (Location l: locations) {

Map<String, Capability> capabilities =
l.getCapabilities();

Set<String> keys = capabilities.keySet();

System.out.println(“Location “ + l.getId() + “, name “ +
l.getName() + “, capabilities:”);

for (String key: keys) {

Capability capability = capabilities.get(key);

System.out.println(“\t” + key + “ : “ +
capability.getId());

Map<String, List<String>> entries =
capability.getEntries();

Set<String> entryKeys = entries.keySet();

for (String entryKey : entryKeys) {

List<String> list = entries.get(entryKey);

System.out.print(“\t\t” + entryKey + “ : “);

for (String item : list) {

System.out.print(item + “, “);

}

System.out.println();

}

}

}

}

This program retrieves a list of locations and iterates through it, printing the ID, name, and
capabilities. The capabilities are encapsulated in a Capability object. This returns output similar
to the following:

Found 6 locations(s).

Location 41, name RTP, capabilities:

oss.instance.spec.x86_64 : oss.instance.spec.x86_64

oss.storage.format : oss.storage.format

RAW : raw, 

EXT3 : ext3, 

oss.storage.availabilityarea : oss.storage.availabilityarea

oss.instance.spec.i386 : oss.instance.spec.i386

...

Location 41 RTP (Research Triangle Park, North Carolina) has capabilities that include
these:

• 64-bit x86 architecture (oss.instance.spec.x86_64)

• 32-bit x86 architecture (oss.instance.spec.i386)

• Storage formats RAW and ext3 (oss.storage.format)

Java API 109



ptg8286219

Working with Images
To save an instance, use the method DeveloperCloudClient.saveInstance(), as in this
example:

public void saveInstance() throws UnauthorizedUserException,
UnknownErrorException, IOException, 

InsufficientResourcesException, InvalidConfigurationException,
PaymentRequiredException, UnknownInstanceException {

System.out.println(“Saving an instance”);

Image image = client.saveInstance(“50767”, “LAMP Server”, 

“LAMP with VNC enabled”);

System.out.println(“ID: “ + image.getID());

}

The DeveloperCloudClient.saveInstance method takes three parameters: the instance
ID, a name for the new image, and a description for the instance. You can think of this method as
a request to save an image. It returns an Image object, but because the image has not been saved at
this point, only basic information is available. However, importantly, the image ID can be
extracted from the object, as the previous code shows. The output from the program looks similar
to this:

Saving an instance

ID: 20016616

You can use the previous describeMyInstances method to check the status. Wait until the
status shows AVAILABLE before you try to use the image or delete the instance it was created from.
The method cloneImage copies the RAM asset of an image without copying the image file itself.
This can be useful if you want to customize the metadata, startup scripts, or other files loaded to
the image at provisioning time without actually changing the base image file. For example, you
could clone a base image and add a software bundle to the clone without starting and saving an
instance. It returns with the clone immediately in an available state. The following program
demonstrates the cloneImage() method:

public void cloneImage() throws Exception {

String cloneId = client.cloneImage(“20017142”, “LAMP Clone”, “A
description”);

System.out.println(“Cloned image id: “ + cloneId);

Image image = client.describeImage(cloneId);

System.out.println(“Name: “ + image.getName());

System.out.println(“Description: “ + image.getDescription());

System.out.println(“State: “ + image.getState());

}

This gives the following output:

Cloning image

Cloned image id: 20018355

110 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

Name: LAMP Clone

Description: A description

State: AVAILABLE

You can delete an instance with the method DeveloperCloudClient.deleteInstance(),
which takes the instance ID as the only parameter.

Uploading Files When Creating a New Instance
After saving an instance, you can customize the metadata associated with the instance. The sec-
tion “Creating and Customizing Images” in Chapter 6, “Cloud Services and Applications,”
describes this. You might want to upload a file when creating a new instance. For example, you
might want to pass in a license key to an instance containing commercial software. You can edit
the parameters.xml file stored in Rational Asset Manager to have a parameter of type file, as
shown in this example:

<?xml version=”1.0” encoding=”UTF-8”?>

<parameters xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”parameters.xsd”>

<firewall>

<rule>

<source>0.0.0.0/0</source>

<minport>1</minport>

<maxport>65535</maxport>

</rule>

</firewall>

<field name=”key” type=”file” label=”SSH key”

description=”SSH key for Hadoop”/>

</parameters>

The field element specifies that a file should be supplied and that the name of the parame-
ter containing the file should be key. The following method requests a new instance of the image
and supplies the file to upload:

public void createInstanceFileUpload() throws

UnauthorizedUserException, UnknownErrorException,
IOException, 

InsufficientResourcesException,
InvalidConfigurationException,

PaymentRequiredException {

System.out.println(“Provisioning a new instance”);

Address address = null;

Volume volume = null;

Address[] secondaryAddresses = new Address[0];

Map<String,Object> parameters = new HashMap<String,Object>();

File attachFile = new File(“d:/temp/key”);

Java API 111



ptg8286219

parameters.put(“key”, attachFile);

List<Instance> instances = client.createInstance(

“WebSphere Server”,           // Name of instance

“41”,                         // Data center ID

“20017833”,                   // Image ID

“BRZ32.1/2048/60*175”,        // Instance type

“alex-prod”,                  // Key

address,                      // Address

volume,                       // Volume

parameters,                   // Options

null,                         // VLAN ID

secondaryAddresses,           // Secondary IP addresses

true);                        // Minimum ephemeral

Instance instance = instances.get(0);

System.out.println(“ID: “ + instance.getID());

System.out.println(“Request ID: “ + instance.getRequestID());

}

The program uploads the file d:/temp/key. After the instance is provisioned, the file is
placed in a directory described in the file, placed in the instance at /etc/cloud/parameters.xml.
For this example, the file looks similar to this:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

<parameters>

<field description=”SSH key for Hadoop” label=”SSH key”

name=”key” type=”file”>

<values><value>/home/idcuser/cloud/key</value></values>

</field>

<firewall>

<rule><source>0.0.0.0/0</source>

<minport>1</minport><maxport>65535</maxport></rule>

</firewall>

</parameters>

The file is located at /home/idcuser/cloud/key in the virtual machine instance.

Minimizing REST Calls
Making REST calls across the Internet is relatively expensive, so try to minimize these. All the
methods in DeveloperCloudClient make REST calls except getLocale, setLocale, and
setRemoteCredentials. Most of the other objects, such as Address, Image, Instance, Location,
and Volume, are transfer objects that can be cached in the client application. Consider a scenario
in which you need to find the price of an instance for a list of instances. The only way to find out
the price is via the Image object. If you start with an Instance object, you need to make a REST
call to find the associated Image, run through a loop to find the matching instance size, and finally

112 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

get the price. Without caching, if you do that for a list of n instances, it would take n REST calls,
one for each lookup of the Image object. The following code example avoids that by using
caching of the Image objects in a prior call:

// Find all images and put them in a map

List<Image> images = client.describeImages();  // REST call

System.out.println(“Found “ + images.size() + “ image(s)”);

Map<String, Image> imageMap = new HashMap<String, Image>();

for (Image image: images) {

imageMap.put(image.getID(), image);

}

// Get a list of instances

List<Instance> instances = client.describeInstances();  // REST call

System.out.println(“Found “ + instances.size() + “ instance(s).”);

for (Instance instance: instances) {

String instanceTypeID = instance.getInstanceType();

Image image = imageMap.get(instance.getImageID());

List<InstanceType> supportedTypes =
image.getSupportedInstanceTypes();

for (InstanceType instanceType: supportedTypes) {

if
(instanceType.getId().trim().equals(instanceTypeID.trim())) {

String label = instanceType.getLabel();

PriceDetails priceDetails = instanceType.getPrice();

double price = priceDetails.getRate();

String name = instance.getName();

System.out.println(“Price for instance “ + 

name + “ supported type <“ + 

label + “> with price “ + price);

}

}

}

The code first gets the whole image catalog and caches it in the map imageMap, based on image
ID. Then it gets all the instances that belong to the user and finds the image ID for each. Using the
image ID, the code looks up the object in the map Image and finds the price information. The out-
put of the program is shown here:

Found 617 image(s)

Found 1 instance(s).

Price for instance RSA 8.0 Preview supported type <Bronze 64 bit> with
price 0.45

This example has only one instance.

Java API 113



ptg8286219

Example: Developing a Maven Cloud Plug-In
The section “Build and Deployment Automation” in Chapter 2, “Developing on the Cloud,”
described how to work with Maven for building J2EE applications. Maven provides an extensible
framework using a plug-in mechanism. In this section, you create a Maven plug-in that looks up
or creates a virtual machine on the cloud using the IBM SmartCloud API. The plug-in first tries to
look up the virtual machine instance. If it succeeds, it can use this instance for provisioning the
J2EE application. Otherwise, it creates a new virtual machine.

To get started, generate a sample Maven plug-in project using the command line:

>mvn archetype:generate -DarchetypeArtifactId=maven-archetype-mojo 
-DgroupId=com.ibm.cloud.enterprise.example -DartifactId=sce-maven-
plugin -DinteractiveMode=false

This creates a plug-in project directory tree with the MOJO (Maven Old Java Object) type.
Import the project into your IDE and add the maven core and plug-in libraries to your IDE build
path. Maven plug-ins implement the Mojo interface, usually by extending the AbstractMojo
class. Add the source code for the SCEMojo class, as shown here:

package com.ibm.cloud.enterprise.example;

import java.io.IOException;

import java.util.HashMap;

import java.util.List;

import java.util.Map;

import org.apache.maven.plugin.AbstractMojo;

import org.apache.maven.plugin.MojoExecutionException;

import org.apache.maven.plugin.logging.Log;

import com.ibm.cloud.api.rest.client.DeveloperCloud;

import com.ibm.cloud.api.rest.client.DeveloperCloudClient;

import com.ibm.cloud.api.rest.client.bean.Address;

import com.ibm.cloud.api.rest.client.bean.Instance;

import com.ibm.cloud.api.rest.client.bean.Volume;

import com.ibm.cloud.api.rest.client.exception.*;

/**

* @goal create_instance

*/

public class SCEMojo extends AbstractMojo {

private DeveloperCloudClient client =
DeveloperCloud.getClient();

private Log log = getLog();

114 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

/**

* The user name for the cloud account

* @parameter expression=”${create_instance.user_name}”

*/

private String user_name;

/**

* The password for the cloud account

* @parameter expression=”${create_instance.password}”

*/

private String password;

/**

* The name of the server to lookup or create

* @parameter expression=”${create_instance.name}” default-
value=”app_server”

*/

private String name;

/**

* The data center to create the server in

* @parameter expression=”${create_instance.data_center}”

*/

private String data_center;

/**

* The image ID to create the server with

* @parameter expression=”${create_instance.image_id}”

*/

private String image_id;

/**

* The name of the SSH key to create the server with

* @parameter expression=”${create_instance.key_name}”

*/

private String key_name;

/**

* The name of the WebSphere administrative user

* @parameter expression=”${create_instance.was_admin_user}”

*/

private String was_admin_user;

/**

Java API 115



ptg8286219

* The name of the WebSphere administrative user password

* @parameter expression=”${create_instance.was_admin_password}”

*/

private String was_admin_password;

}

The code already has the imports for the methods that you will add shortly. The class-level
JavaDoc has a @goal tag. This is required and indicates the build goal, which is create_
instance. The private fields user_name, password, name, data_center, image_id, key_name,
was_admin_user, and was_admin_password are parameters that are passed in by users of the
plug-in. Table 3.5 explains these parameters.

Table 3.5 Description of Parameters Used in Maven Plug-In

Name Description

user_name The user name for the cloud account

password The password for the cloud account

name The name of the server to look up or create (default value = app_server)

data_center The data center to create the server in

image_id The image ID to create the server with

key_name The name of the SSH key to create the server with

was_admin_user The name of the WebSphere administrative user

was_admin_password The name of the WebSphere administrative user password

Classes implementing the Mojo interface must implement the execute method. Add the
execute method as shown here:

public void execute() throws MojoExecutionException {

try {

log.info(“Logging onto cloud with user name “ +
user_name);

client.setRemoteCredentials(user_name, password);

log.info(“Looking for a server with name “ + name);

List<Instance> instances = client.describeInstances();

log.info(“Found “ + instances.size() + “ instances”);

boolean found = false;

for (Instance instance: instances) {

if ((instance.getStatus() ==
Instance.Status.ACTIVE) &&

instance.getName().equals(name)) {

log.info(“Found a server with name “ + name);

116 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

found = true;

}

}

if (!found) {

log.info(“No server with name “ + name + “
found”);

createInstance();

}

} catch (Exception e) {

log.warn(e);

throw new MojoExecutionException(e.getMessage());

}

}

The method first sets the user’s credentials and then retrieves a list of virtual machines that
the user owns. It iterates over the list of virtual machines looking for an active instance with the
same name as the parameter provided by the user. If it finds a matching virtual machine, you are
done. Otherwise, you create a virtual machine with the createInstance() method, shown next.
Add this method to the earlier SCEMojo class.

private void createInstance() throws InsufficientResourcesException, 

InvalidConfigurationException,
PaymentRequiredException, 

UnauthorizedUserException, UnknownErrorException,
IOException {

Address address = null;

Volume volume = null;

Address[] secondaryAddresses = new Address[0];

Map parameters = new HashMap<String,Object>();

parameters.put(“WASAdminUser”, was_admin_user);

parameters.put(“WASAdminPassword”, was_admin_password);

List<Instance> newInstances = client.createInstance(

name, // Name of instance

data_center, // Data center ID

image_id, // Image ID

“COP32.1/2048/60”, // Instance type

key_name, // Key

address, // Address

volume, // Volume

parameters, // Options

null, // VLAN ID

secondaryAddresses, // Secondary IP addresses

true); // Minimum ephemeral

Instance instance = newInstances.get(0);

log.info(“ID: “ + instance.getID());

}

Java API 117



ptg8286219

The method creates the virtual machine with the parameters the user provided and writes
the instance ID to the log.

Create a pom.xml file for the plug-in, as shown:

<?xml version=”1.0”?>

<project xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd”
xmlns=”http://maven.apache.org/POM/4.0.0”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

<modelVersion>4.0.0</modelVersion>

<groupId>com.ibm.cloud.enterprise</groupId>

<artifactId>sce-maven-plugin</artifactId>

<version>1.0-SNAPSHOT</version>

<packaging>maven-plugin</packaging>

<name>sce-maven-plugin Maven Mojo</name>

<url>http://ibm.com/cloud/enterprise</url>

<dependencies>

<dependency>

<groupId>org.apache.maven</groupId>

<artifactId>maven-plugin-api</artifactId>

<version>2.0</version>

</dependency>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>3.8.1</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>commons-httpclient</groupId>

<artifactId>commons-httpclient</artifactId>

<version>3.1</version>

<scope>compile</scope>

</dependency>

<dependency>

<groupId>commons-logging</groupId>

<artifactId>commons-logging</artifactId>

<version>1.1.1</version>

<scope>compile</scope>

</dependency>

<dependency>

<groupId>commons-codec</groupId>

<artifactId>commons-codec</artifactId>

<version>1.3</version>

118 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

<scope>compile</scope>

</dependency>

<dependency>

<groupId>commons-lang</groupId>

<artifactId>commons-lang</artifactId>

<version>2.3</version>

<scope>compile</scope>

</dependency>

<dependency>

<groupId>com.ibm.cloud.enterprise</groupId>

<artifactId>DeveloperCloud_API_Client</artifactId>

<version>1.4.1</version>

<scope>compile</scope>

</dependency>

</dependencies>

</project>

The pom.xml file uses a maven-plugin package type. It defines a maven-plugin-api
dependency and dependencies on the IBM SmartCloud Enterprise Java API and its dependent
libraries, Apache HTTP Client, Commons, Logging, Codec, and Lang. Maven can automatically
download the Apache libraries from the Maven central repository. Download and install the
SmartCloud API library into your local repository with this command:

mvn install:install-file -
Dfile=/opt/sce/DeveloperCloud_API_Client_1.4.1.jar -
DgroupId=com.ibm.cloud.enterprise
-DartifactId=DeveloperCloud_API_Client -Dversion=1.4.1 -Dpackaging=jar

Be sure to adjust the file parameter to be consistent with your local environment. 
Build and install the plug-in into your local repository with these Maven commands:

>mvn package

>mvn install

Now you can use the plug-in in a project. Generate the project cloud-app with the Maven
generate command:

mvn archetype:generate -DgroupId=com.ibm.cloud.enterprise -
DartifactId=cloud-app -DarchetypeArtifactId=maven-archetype-quickstart
-DinteractiveMode=false

Import a new project into your IDE. Modify the pom.xml generated to add a dependency
and plug-in configuration, as shown here:

<?xml version=”1.0”?>

<project xsi:schemaLocation=”http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven-4.0.0.xsd”
xmlns=”http://maven.apache.org/POM/4.0.0”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”>

Java API 119



ptg8286219

<modelVersion>4.0.0</modelVersion>

<groupId>com.ibm.cloud.enterprise</groupId>

<artifactId>cloud-app</artifactId>

<version>1.0-SNAPSHOT</version>

<name>cloud-app</name>

<url>http://maven.apache.org</url>

<dependencies>

<dependency>

<groupId>junit</groupId>

<artifactId>junit</artifactId>

<version>3.8.1</version>

<scope>test</scope>

</dependency>

<dependency>

<groupId>com.ibm.cloud.enterprise</groupId>

<artifactId>sce-maven-plugin</artifactId>

<version>1.0-SNAPSHOT</version>

<scope>compile</scope>

</dependency>

</dependencies>

<build>

<plugins>

<plugin>

<groupId>com.ibm.cloud.enterprise</groupId>

<artifactId>sce-maven-plugin</artifactId>

<version>1.0-SNAPSHOT</version>

<configuration>

<user_name>a.user@example.com</user_name>

<password>****</password>

<name>was</name>

<data_center>101</data_center>

<image_id>20015399</image_id>

<key_name>july26</key_name>

<was_admin_user>wasadmin</was_admin_user>

<was_admin_password>***</was_admin_password>

</configuration>

<executions>

<execution>

<phase>compile</phase>

<goals>

<goal>create_instance</goal>

</goals>

</execution>

</executions>

120 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

</plugin>

</plugins>

</build>

</project>

Notice the use of the parameters in the configuration section.
Now you are ready to try the plug-in. First check with a new instance and existing instance.

Invoke the plug-in with the Maven goal shown here:

>mvn com.ibm.cloud.enterprise:sce-maven-plugin:1.0-
SNAPSHOT:create_instance

If you do not already have a virtual machine with the given name, you should see output
similar to this:

[info] Logging onto cloud with user name a.user@example.com

[info] Looking for a server with name was

[info] Found 4 instances

[info] No server with name was found

[info] ID: 112332

[INFO] ——————————————————————————

[INFO] BUILD SUCCESS

[INFO] 

...

If you already have a virtual machine with the given name, you should see output similar to
the following. Remember that if you just executed the previous command to create a server, it
takes some time to create. We discuss this challenge shortly.

...

[INFO] —- sce-maven-plugin:1.0-SNAPSHOT:create_instance (default-cli)
@ cloud-a

pp —-

[info] Logging onto cloud with user name aamies@cn.ibm.com

[info] Looking for a server with name was

[info] Found 5 instances

[info] Found a server with name was

[INFO] ——————————————————————————

[INFO] BUILD SUCCESS

[INFO] ——————————————————————————

...

It was good to see how a cloud can fit into the development and deployment lifecycle, but
you have to complete a few more steps to use this in a truly useful way. You saw earlier that it
takes some time to create a server; you need a polling mechanism to wait for it to complete. The
additional challenge here is to wait for the application server itself to come up before continuing
with other actions that depend on it. You can use the WebSphere wasadmin APIs for this. When

Java API 121



ptg8286219

you have an active server with the application server running, you can deploy your J2EE applica-
tion to it. When you are finished with your WebSphere server, you then can delete it. You can add
that into the clean phase of the lifecycle or somewhere else. 

Further steps that you can take include these:

• Creating a private Maven repository on the cloud

• Creating a Cloud API project template

You can do this by creating a Maven archetype, which would automatically add dependent
JARs.

REST API
REST APIs have become popular due to their simple programming model, especially for light-
weight application programming languages like Python, PHP, and Ruby.  This section provides
background on the IBM SmartCloud Enterprise REST API and using it to create a simple web
application that manages cloud resources using PHP.  It also gives some simple examples of Java
programs that invoke the REST APIs.

Background
The IBM SmartCloud Enterprise REST API enables you to manage cloud resources with any lan-
guage that supports HTTP. Many tools invoke REST APIs. In Java, one possibility is the Apache
HttpClient, which you saw was the library need for the IBM SmartCloud Enterprise command-
line tool and Java client. Another option in Java is the JAX-RS API. PHP provides the cURL
function, based on libcurl, which is a standard part of PHP 5. Another option in PHP is the HTTP
class, which is a PECL extension for PHP 5. We use PHP for these examples. Java programmers
can more conveniently use the Java client library provided by the IBM SmartCloud Enterprise. 

You can view simple GET requests using a web browser. However, the IBM Cloud REST
API implementation refuses requests from user agents from well-known browsers, to protect
users from cross-site request forgery (CSRF) attacks that could be executed from JavaScript in
web pages without their knowledge. To get around this for the purpose of development, install the
Firefox User Agent Switcher plug-in. Add a new User Agent Profile using the Edit User Agents
dialog shown in Figure 3.7.

Click the New button to add a new user agent, as shown in Figure 3.8.
Enter the value cloudapi and a name of the User Agent Profile, and click OK. You can then

make REST requests using Firefox.
The REST API has a base URL of this:

www.ibm.com/computecloud/enterprise/api/rest/20100331

122 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

www.ibm.com/computecloud/enterprise/api/rest/20100331


ptg8286219

REST API 123

Figure 3.7 Firefox User Agent Switcher dialog box

Figure 3.8 New/Edit User Agent dialog box

At the time of writing, a redirect to another server is www-147.ibm.com. The forwarding
takes some time, so it can make sense to find out the actual host and use that directly in the HTTP
requests. Following the base URL, you can access the individual resource types by adding
/instances, /images, and so on, as described in the REST API reference. For example, to get a
list of images, enter this URL: 

www-147.ibm.com/computecloud/enterprise/api/rest/20100331/instances

www-147.ibm.com
www-147.ibm.com/computecloud/enterprise/api/rest/20100331/instances


ptg8286219

This returns a result similar to the following:

<ns2:DescribeInstancesResponse>

-

<Instance>

<ID>50767</ID>

<Location>41</Location>

<RequestID name=”Java API Test Instance”>51067</RequestID>

<Name>Java API Test Instance</Name>

<Owner>a@bc.com</Owner>

<ImageID>20016550</ImageID>

<InstanceType>COP64.2/4096/60</InstanceType>

<KeyName>alex-prod</KeyName>

<Hostname>170.224.160.133 </Hostname>

<IP>170.224.160.133 </IP>

...

<DiskSize>76</DiskSize>

<MiniEphemeral>false</MiniEphemeral>

</Instance>

</ns2:DescribeInstancesResponse>

In theory, REST APIs can be executed from a web browser using asynchronous JavaScript
and XML (AJAX). However, most modern web browsers, including Firefox and IE, the sup-
ported web browsers for IBM SmartCloud, allow only AJAX calls back to the server where the
HTML document originated, which is the so-called “server of origin” browser security policy.
That makes it difficult for you to create a web site with AJAX calls back to the IBM SmartCloud
Enterprise. To work around this, you can use a proxy that serves web pages making AJAX calls
back to it and relay that to calls to the SmartCloud REST APIs from the server.

cURL is a common Linux/UNIX command-line utility that is useful for making and pro-
cessing HTTP requests. The Red Hat images on the IBM Cloud have cURL installed by default.
For other images, you can download it from the Haxx cURL web site. 

If you use cURL with a single argument representing a URL, it executes a GET request. For
example, to get the same result as in the previous request in the browser, you can use the cURL
command as follows:

$ curl -u a@bc.com:password —location-trusted https://www-
147.ibm.com/computecloud/enterprise/api/rest/20100331/instances

HTTP Basic authentication is required by the IBM cloud REST API, which cURL supports
via the -u user:password option. The —location-trusted option is needed to send the pass-
word to URLs you are redirected to. This is required because whatever URL you request on the
IBM cloud, you are redirected to a central authentication point.

124 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

Using PHP to Invoke the IBM SmartCloud Enterprise REST APIs
To demonstrate the REST API further, we use some PHP scripts. If you have not already done so,
set up the LAMP environment described in the previous chapter. PHP has a wrapper for cURL.
The following PHP script calls the REST API for list instances.

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<title>IBM Cloud Get Instances</title>

</head>

<body>

<?php

// Include the functions for parsing the response

include(“response_parser.php”);

// Get data from cloud

$url = “https://www-
147.ibm.com/computecloud/enterprise/api/rest/20100331/instances”;

$ch = curl_init();    

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_URL, $url); 

curl_setopt($ch, CURLOPT_USERPWD, “a@bc.com:password”); 

curl_setopt($ch, CURLOPT_UNRESTRICTED_AUTH);

$result = curl_exec($ch); 

curl_close($ch); 

// Parse XML response

parseResponse($data);

?> 

</body>

</html>

PHP script to call describe instances (response_parser.php)

This is an HTML page with an embedded PHP script. The curl_init() function is called
to initialize the cURL handle $ch. The option CURLOPT_RETURNTRANSFER returns a string. The
CURLOPT_USERPWD option sets the user ID and password. Basic authentication is the default. The
CURLOPT_UNRESTRICTED_AUTH option allows credentials to be sent to redirected pages. The
curl_exec function executes the HTTP request. The function is shown in the following include.

The REST API returns either XML or JSON. You can parse XML in PHP in several ways,
including with the XML Parser and SimpleXML. The following parsing utility uses the XML
Parser.

REST API 125



ptg8286219

<?php

function startElement($parser, $name, $attrs) {

echo “$name : “;

}

function endElement($parser, $name) {

echo “<br/>”;}

function characterData($parser, $data) {

echo $data;

}

function parseResponse($data) {

echo “Parsing XML document<br/>”;

$xml_parser = xml_parser_create();

xml_set_element_handler($xml_parser, “startElement”,
“endElement”);

xml_set_character_data_handler($xml_parser, “characterData”);

if (!xml_parse($xml_parser, $data)) {

die(sprintf(“XML error: %s at line %d”,

xml_error_string(xml_get_error_code($xml_parser)),

xml_get_current_line_number($xml_parser)));

}

xml_parser_free($xml_parser);

echo “Done<br/>”;

}

?>

Parsing utility (response_parser.php)

The parser calls the startElement, endElement, and characterData functions when it
encounters the start of an element, the end of an element, or character data. The parseResponse
function is the entry point for the XML parsing. This is not intended to be a proper XML parser
for the requests; it just demonstrates use of the REST API from PHP. It is an example of a SAX
(Simple API for XML)-style parser, which is convenient when looking for specific tags or print-
ing all the tags, as the previous program does. SimpleXML is an easier option if you are looking
to fully parse the XML responses. SimpleXML is an example of a DOM (Document Object
Model)-style parser that enables you to traverse the entire document. You can invoke the script
with a browser. If you previously set up the LAMP environment on the IBM cloud, copy the
response_parser.php and response_parser.php files to the directory /var/www/html using
WinSCP. Enter the URL http://<>/response_parser.php into your browser. You should the
output similar to this:

Parsing XML document

NS2:DESCRIBEINSTANCESRESPONSE : INSTANCE : ID : 50767

126 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

LOCATION : 41

REQUESTID : 51067

NAME : Java API Test Instance

OWNER : a@bc.com

IMAGEID : 20016550

INSTANCETYPE : COP64.2/4096/60

KEYNAME : alex-prod

IP : 170.224.160.133 

The REST API can also return JSON. The advantage of this is that it might not even need to
be parsed; it can just be sent to the browser as part of an HTML document and loaded by the
browser’s JavaScript interpreter. To specify JSON as the return format, set the HTTP Accept
header as shown here:

Accept: application/json

For describe images, this leads to output similar to the following:

{“images”:[

{“name”:”IBM DB2 Enterprise Developer Ed SLES 9.7.1 - BYOL”,

“manifest”:”https://.../parameters.xml”,

“state”:1,

“visibility”:”PUBLIC”,

“owner”:”SYSTEM”,

“architecture”:”i386”,

“platform”:”SUSE Linux Enterprise Server/11”,

“createdTime”:1282466774126,

“location”:”61”,

“supportedInstanceTypes”:[

{“label”:”Silver 32 bit”,

“price”:{...},

“id”:”SLV32.2/4096/60*350”

},

...

],

“productCodes”:[“ehnmbYowzwCR4@zx2oBRcn”],

“documentation”:”https://.../GettingStarted.html”,

“id”:”20009984”,

“description”:”IBM DB2 Enterprise 9.7.0.1 ...”

},

...

]};

You can do this in PHP with the curl_setopt method using the CURLOPT_HTTPHEADER con-
stant. Next is an example of a PHP web page that uses JSON to build a list of images in an HTML
select (drop-down) form object:

REST API 127



ptg8286219

<!— HTML page to get a list of images —>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<title>IBM Cloud Get Images</title>

<script type=”text/javascript”>

function getImages() {

<?php

// Get image data from cloud

$url = “https://www-
147.ibm.com/computecloud/enterprise/api/rest/20100331/offerings/image”
;

$ch = curl_init();

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_URL, $url); 

curl_setopt($ch, CURLOPT_UNRESTRICTED_AUTH, TRUE);

curl_setopt($ch, CURLOPT_USERPWD, “a@bc:secret”); 

curl_setopt($ch, CURLOPT_HTTPHEADER, array(“Accept:
application/json”));      

$data = curl_exec($ch); 

curl_close($ch); 

// Put JSON response into a JavaScript variable

echo “var jsonString = “ . $data . “;\n”;

echo “var data = eval(jsonString)\n”;

?> 

var div = document.getElementById(‘images_select’);

var images = data[‘images’];

var imageString = ‘<p>’ + images.length + ‘images found
</p>’;

if (images.length > 0) {

imageString += ‘<select>’;

for (i=0; i<images.length; i++) {

var image = images[i];

imageString += “<option id=’” + image[‘id’]
+ “‘>” +                                     image[‘name’] +
“</option>”;

}

imageString += ‘</select>’;

} else {

imageString = ‘Error: ‘ + jsonString;

}

div.innerHTML = imageString;

} // end getImages

128 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

</script>

</head>

<body>

<h1>List of Images</h1>

<button onclick=’getImages();’>Get Images</button>

<div id=’images_select’></div>

</body>

</html>

All the programmatic code in this program is in the JavaScript section of the HTML <head>
tag. It sends a REST call to the cloud using the PHP cURL API. It puts the result into a string and
writes this to the JavaScript variable jsonString, and then uses the top-level eval() JavaScript
function that evaluates the JSON string as an expression. Some JavaScript processing follows this
to put the data returned into an HTML select widget. The generated HTML is put into the div tag
dynamically. When the user first brings up the page, the select widget is not visible. After the user
clicks on the Get Images button, the select widget displays, as in Figure 3.9.

REST API 129

Figure 3.9 PHP web page to retrieve list of images

Clearly, in this example, it would be better to populate the drop-down list as soon as the
page loads. Separating PHP, JavaScript, and HTML better would also improve the code. We work
on this in the next example.



ptg8286219

Example: create instance Form
The create instance REST API is a POST request to the /instances relative URL that takes a
names for the instance, the image ID, the compute size, the location, and the name of a key. The
following HTML page collects the information for a create instance request.

<!-- create_instance_wizard.php HTML page to provision instances -->

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<title>IBM Cloud Instance Provisioning Wizard</title>

<?php

include(“get_imagesjs.php”);

include(“get_keysjs.php”);

?> 

<script type=”text/javascript”
src=”create_instance_wizard.js”></script>

<script type=”text/javascript”
src=”create_instance_image.js”></script>

<script type=”text/javascript”
src=”create_instance_compute.js”></script>

<script type=”text/javascript”
src=”create_instance_key.js”></script>

</head>

<body>

<h1>Instance Provisioning Form</h1>

<form action=’create_instance_submit.php’ method=’POST’>

<p>

<label for=’name’>Instance name</label>

<input id=’name’ name=’name’ type=’text’/>

</p>

<p>

<label for=’images_select’>Image</label>

<select id=’images_select’ name=’imageID’></select>

</p>

<p>

<label for=’images_select’>Compute size</label>

<select id=’compute_select’
name=’instanceType’><option>Select an image first</option></select>

</p>

<p>

<label for=’key_select’>Key</label>

<select id=’key_select’ name=’publicKey’><option>Select a
key</option></select>

</p>

130 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

<p>

<input id=’compute_select_button’ type=’submit’
value=’Create Instance’/>

<input id=’location_hidden’ name=’location’ type=’hidden’/>

</p>

</form>

</body>

</html>

The page has two PHP include statements for REST calls to query for the images and keys
available. They are followed by four JavaScript imports to initialize the page and to contain func-
tions to respond to events on the page. The HTML form contains a text field to enter the image
name, a select element to select the image type, a select element for the compute size, a select ele-
ment for the key, a button to submit the form, and a hidden field to contain the instance location.
Figure 3.10 shows the page.

REST API 131

Figure 3.10 Instance provisioning form

The user should fill in a name for the instance, select an image, select a compute size, select
a key, and click the Create Instance button. The image must be selected before the compute size
can be populated because you need to show the list of supported computed sizes for the particular
image. You determine the data center from the image. You get an error if you try to submit a 
create instance request for a data center that does not match the image. The PHP include
makes the REST call to get an array of images.

<!— get_imagesjs.php JavaScript function to get an array of images —
>

<script type=”text/javascript”>

// Returns an array of images

function getImages() {

<?php

// Get image data from cloud



ptg8286219

$url = “https://www-
147.ibm.com/computecloud/enterprise/api/rest/20100331/offerings/image”
;

$ch = curl_init();

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_URL, $url); 

curl_setopt($ch, CURLOPT_UNRESTRICTED_AUTH, TRUE);

curl_setopt($ch, CURLOPT_USERPWD, “a@bc.com:secret”); 

curl_setopt($ch, CURLOPT_HTTPHEADER, array(“Accept:
application/json”));      

$data = curl_exec($ch); 

curl_close($ch); 

// Put JSON response into a JavaScript variable

echo “var jsonString = “ . $data . “;\n”;

echo “var data = eval(jsonString)\n”;

?> 

return data[‘images’];

} // end getImages

</script>

It is similar to the use of the describe images function discussed previously. However, it
uses the HTTPHEADER cURL option to specify that JSON should be returned. It writes the JSON
data to a variable and returns it from the JavaScript function. The get_keysjs.php include

makes the REST call to get the list of keys:

<!— get_keysjs.php JavaScript function to get an array of keys using
a REST call —>

<script type=”text/javascript”>

// Returns an array of keys

function getKeys() {

<?php

// Get image data from cloud

$url = “https://www-
147.ibm.com/computecloud/enterprise/api/rest/20100331/keys”;

$ch = curl_init();

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_URL, $url); 

curl_setopt($ch, CURLOPT_UNRESTRICTED_AUTH, TRUE);

curl_setopt($ch, CURLOPT_USERPWD, “a@bc.com:secret”); 

curl_setopt($ch, CURLOPT_HTTPHEADER, array(“Accept:
application/json”));      

$data = curl_exec($ch); 

curl_close($ch); 

132 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

// Put JSON response into a JavaScript variable

echo “var keyJsonString = “ . $data . “;\n”;

echo “var keysData = eval(keyJsonString)\n”;

?> 

return keysData[‘keys’];

} // end getImages

</script>

This function works in a similar way to getImages. However, the URL is /keys. The file
create_instance_wizard.js initializes the JavaScript for the page:

//create_instance_wizard.js

// global variables

var imagesSelect = null;

var imageArray = null;

var selectedImage = null;

var keyArray = null;

// Initializes the page

window.onload = function() {

// Populate the images drop down

imagesSelect = document.getElementById(‘images_select’);

imageArray = getImages();

populateImageDropdown(imagesSelect, imageArray);

// Wire the processing function for the image select 

imagesSelect.onchange = populateComputeDropdown;

// Wire the processing function for the compute size select 

var computeSelectButton =
document.getElementById(‘compute_select_button’);

// Populate the keys drop down

keyArray = getKeys();

populateKeySelect(keyArray);

}

The script defines several global variables: imagesSelect contains the DOM element 
for the select element listing the image options. This is needed several times. The variable
imageArray contains the array of images returned from the REST call. The keyArray variable
contains the keys returned from the REST call to get the list of keys. Next, the script defines 
the window.onload function listing the code to be executed after the page loads. It calls the
getImages function to parse the list of images and the getKeys function to get the list of keys. 

REST API 133



ptg8286219

The create_instance_image.js script populates the image select with the array of images
from the catalog:

//create_instance_image.js

// select The select element to populate

// images The array of images

function populateImageDropdown(select, images) {

var imageString = “<option>Select an image</option>”;

if (images.length > 0) {

var i = 0;

for (i=0; i<images.length; i++) {

var image = images[i];

imageString += “<option value=’” + image[‘id’] 
+ “‘>” + image[‘name’] + “</option>”;

}

} else {

alert(‘No images found’);

}

select.innerHTML = imageString;             

} // end populateImageDropdown

The script iterates through the image array returned from the REST call and creates HTML
option elements, which it inserts into the image select element. The value of each option is the
image ID, and the text displayed is the image name. Other data here might be interesting to the
user, such as description and data center, but we have omitted it, to keep the example simple. The
create_instance_compute.js script populates the compute size select widget (drop-down) with
data. It is called whenever the user changes the selected option in the image select element.

// create_instance_compute.js

// Populate the select with the compute size options

function populateComputeDropdown() {

selectedImage = imageArray[imagesSelect.selectedIndex-1];

var supportedInstanceTypes =
selectedImage[‘supportedInstanceTypes’];

var computeSelect = document.getElementById(‘compute_select’);

var computeString = “<option>Select compute size</option>”;

if (supportedInstanceTypes.length > 0) {

var j =0;

for (j=0; j<supportedInstanceTypes.length; j++) {

var size = supportedInstanceTypes[j];

computeString += “<option value=’” + size[‘id’] +
“‘>” + size[‘label’] + “</option>”;

}

} else {

alert(‘No compute sizes found’);

134 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

}

computeSelect.innerHTML = computeString;

// Set the location field

var locationHidden = document.getElementById(‘location_hidden’);

locationHidden.value = selectedImage[‘location’];

} // end populateComputeDropdown

The script determines the image selected by the user and extracts the supported instance
types (compute sizes) for that image from the describe images JSON data. Then the function
creates an HTML option for each compute size. Finally, the function finds the location associated
with the selected image and sets it to a hidden field so that it can be used in the create instance
request. The script create_instance_key.js populates the key selection element.

//create_instance_key.js

// Create the key drop down

// keyArray An array of key objects

function populateKeySelect(keyArray) {

var keySelect = document.getElementById(‘key_select’);

var keyString = “<option>Select key</option>”;

if (keyArray.length > 0) {

var k =0;

for (k=0; k<keyArray.length; k++) {

var key = keyArray[k];

keyString += “<option id=’” + key[‘keyName’] + “‘>”
+ key[‘keyName’] + “</option>”;

}

} else {

alert(‘No keys found’);

}

keySelect.innerHTML = keyString;

} // end populateKeySelect

The JavaScript function populateKeySelect iterates over the key objects in the array
keyArray and creates an HTML option element for each one. Finally, it inserts the option ele-
ments into the key select element. When the user clicks the Create Instance button, the script is
submitted to the create_instance_submit.php script.

<!— create_instance_submit.php Processes a create instance submission
—>

<!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01 Transitional//EN”

“http://www.w3.org/TR/html4/loose.dtd”>

<html>

<head>

<title>IBM Cloud Instance Provisioning Wizard</title>

<script type=’text/javascript’>

REST API 135



ptg8286219

<?php

include(‘create_instancejs.php’);

?> 

</script>

<script type=’text/javascript’
src=’create_instance_submit.js’></script>

</head>

<body>

<h1>Instance Provisioning Confirmation</h1>

<p>You provisioning submission is being processed</p>

<p>Name: <span id=’name_span’/></p>

<p>ID: <span id=’instance_id_span’/></p>

<p>Image ID: <span id=’image_id_span’/></p>

<p>Instance Type: <span id=’instance_type_span’/></p>

<p>Location: <span id=’location_span’/></p>

<p>Key: <span id=’key_span’/></p>

<p><a href=’create_instance_wizard.php’>Go back</a></p>

</body>

</html>

This page includes the PHP script create_instancejs.php to submit the create
instance request using the REST API. Then it imports the create_instance_submit.js
JavaScript file. The body of the page contains placeholders for the return data from the create
instance request. These are filled in using JavaScript after the page loads. The page generated by
these scripts looks like Figure 3.11.

136 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

Figure 3.11 Create instance submit confirmation page



ptg8286219

The create_instancejs.php script collects the form values submitted to the page:

<?php

// create_instancejs.php 

// Collect the form variables

$name = $_POST[‘name’];

$imageID = $_POST[‘imageID’];

$instanceType = $_POST[‘instanceType’];

$location = $_POST[‘location’];

$publicKey      = $_POST[‘publicKey’];

// Call the REST API

$url = “https://www-
147.ibm.com/computecloud/enterprise/api/rest/20100331/instances”;

$ch = curl_init();

$request_body = ‘name=’ . urlencode($name) . ‘&imageID=’ .

urlencode($imageID) . ‘&’ . ‘instanceType=’ . 

urlencode($instanceType) . ‘&location=’ . urlencode($location) .

‘&publicKey=’ . urlencode($publicKey);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_URL, $url); 

curl_setopt($ch, CURLOPT_UNRESTRICTED_AUTH, TRUE);

curl_setopt($ch, CURLOPT_USERPWD, “aamies@cn.ibm.com:hsing1yun”);

curl_setopt($ch, CURLOPT_POST, TRUE);

curl_setopt($ch, CURLOPT_POSTFIELDS, $request_body);

curl_setopt($ch, CURLOPT_HTTPHEADER, array(“Accept:
application/json”)); 

$data = curl_exec($ch); 

$httpCode = curl_getinfo($ch, CURLINFO_HTTP_CODE);

curl_close($ch); 

// Check HTTP response and put JSON response into a JavaScript
variable

echo “var httpCode = $httpCode;\n”;

if ($httpCode != 200) {

error_log(“HTTP response: $httpCode, error message: “ . $data);

echo “var responseData = ‘“ . trim($data) . “‘;\n”; // error
message

} else {

echo “var responseData = $data;\n”;

echo “var instances = responseData[‘instances’];\n”;

echo “var instance = instances[0];\n”;

}

?>

REST API 137



ptg8286219

First, the script uses the PHP $_POST environment variable to collect the submitted data.
The array names match the HTML form element names. The REST call is similar to others you
have seen, except that the URL is different and the HTTP POST method is used. The URL is set to
/instances. The name, image ID, instance type (compute size), location, and key variables are
added to the request body in preparation for calling the REST API. The standard PHP function
urlencode is to escape special character values in the data. The cURL CURLOPT_POST option
specifies that the HTTP method is POST. Finally, the result is written to the JavaScript variable
responseData, and the HTTP response code is written to the JavaScript variable httpCode. The
JSON returned from the create instance REST call looks similar to this:

{“instances”:[

{“launchTime”:1299536879688,

...

“requestId”:”55032”,

“keyName”:”mykey”,

“name”:”my instance”,

“instanceType”:”COP32.1/2048/60”,

“status”:0,

“owner”:”a@bc.com”,

“location”:”41”,

“imageId”:”20009997”,

“volumes”:[],

“requestName”:”my instance”,

“id”:”54732”,

“secondaryIP”:[],

“expirationTime”:1362608888650}

]};

You can use this data to give the user immediate feedback. In addition, you can use the
requestId or the instance id to check the status of the request or the instance later to see if it is
ready for use. The response data is processed with the create_instance_submit.js script:

// create_instance_submit.js 

// Initializes the page

window.onload = function() {

if (httpCode != 200) {

alert(“Response Bad: “ + responseData);

} else {

var nameSpan = document.getElementById(‘name_span’);

nameSpan.innerHTML = instance[‘name’];

var instanceIdSpan =
document.getElementById(‘instance_id_span’);

instanceIdSpan.innerHTML = instance[‘id’];

var imageIdSpan =
document.getElementById(‘image_id_span’);

138 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

imageIdSpan.innerHTML = instance[‘imageId’];

var instanceTypeSpan =       

document.getElementById(‘instance_type_span’);

instanceTypeSpan.innerHTML = instance[‘instanceType’];

var locationSpan =
document.getElementById(‘location_span’);

locationSpan.innerHTML = instance[‘location’];

var keySpan = document.getElementById(‘key_span’);

keySpan.innerHTML = instance[‘location’];

}

}

The script delays execution until after the page loads by defining the script to be executed
in the window.onload function. The script first checks the HTTP response code. If it is OK (200),
it extracts the JSON response data for the different fields and sets them into the placeholders of
the HTML page. 

When you test, make sure you choose an image type with no additional input parameters
necessary. Otherwise, you will get an error message similar to this:

Error 412: Invalid db2inst1 password. Must contain at least 1 number,
at least 1 lower case letter, and at least 1 upper case letter.

To handle this case, you need to parse and examine the parameters.xml file for the image. See
[Vernier, 2011, “Convert IBM Cloud Image Parameters into Java Using JAXB”] for details on this.

That concludes this lengthy example. Several points are worth noting. First, a lot of work
was needed to handle the basics of the page behavior using JavaScript. Open source libraries can
help with this; one of the most useful basic libraries is the Prototype JavaScript framework. Sec-
ond, the pages look very plain; you could write your own CSS stylesheets to tidy them up. Taking
a further step, the HTML widgets and page can be made to look more professional and act more
nicely using one of the open source JavaScript widget sets, such as the Dojo Toolkit. Third, the
code is not very robust. It omits a lot of error handling and validation, to keep the example as
simple as possible. Fourth, the user interface displays many alphanumeric IDs, which is hardly
user friendly; you should replace these with names by looking up the appropriate API. Fifth, the
example makes the REST calls in series. The create instance form page has two REST calls,
one for getting a list of images and one for getting a list of keys. Not until the describe images
call returns do you call describe keys. If you added storage volumes and IP addresses to the
form, you would have to make four REST calls before showing the page to the user.

Example: Page to Show a List of Instances
This example describes an example PHP page that shows a list of instances. The example also
addresses some of the issues with the last example. We make requests for data from the browser
using Asynchronous JavaScript and XML (AJAX); however, we do not actually use XML. We
use JSON because it is easier to handle in the browser JavaScript code.

REST API 139



ptg8286219

The Prototype JavaScript framework enables JavaScript developers to code in an object-
oriented way. The framework includes an AJAX class to handle the low-level HTTP request and
response handling, and to isolate the developer from the differences between browsers. To use
Prototype, download it from the project web site and copy the file prototype.js to your web
server. Add a line like this in the header section of your page:

<script type=’text/javascript’ src=’prototype.js’></script>

The page list_instances.html, shown next, shows a list of virtual machines instances:

<!-- list_instances.html

HTML page to get a list of instances -->

<!DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN” 

“http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd”>

<html>

<head>

<title>My Instances</title>

<script type=’text/javascript’
src=’prototype.js’></script>

<script type=’text/javascript’
src=’list_instances.js’></script>

<script type=’text/javascript’
src=’list_rest.js’></script>

<script type=’text/javascript’
src=’list_populate.js’></script>

<link rel=”stylesheet” type=”text/css”
href=”examples.css”/>

</head>

<body>

<h1>My Instances</h1>

<p id=’instance_count_p’></p>

<table>

<tbody id=’instance_list_tbody’></tbody>

</table>

</body>

</html>

Most of the work is done by the list_instances.js, list_rest.js, and list_
populate.js scripts, referenced in the head section. The body contains a placeholder for the
count of the number of instances and a table listing the instances. The page looks as shown in
Figure 3.12.

140 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

REST API 141

Figure 3.12 List instances HTML page

The list_instances.js script initializes the page.

// list_instances.js

// Initializes the page

window.onload = function() {

callREST(‘instances’, populateTable);

}

When the page has loaded, it calls the callREST function with the arguments instances
and populateTable. The callREST function is in the list_rest.js script.

// list_rest.js

// JavaScript function to initiate the REST API call

// resource The kind of resource to list (instances, locations, or
images)

// functionToCall The function to call after receiving the data

function callREST(resource, functionToCall) {

new Ajax.Request(‘/list_rest.php’, {

method:’get’,

parameters: {resource: resource},

onSuccess: function(transport){

var response = transport.responseText || ‘no response
text’;

var data = transport.responseText.evalJSON();

functionToCall(data);

},

onFailure: function(transport){ 

alert(transport.responseText || ‘no response text’);

}

});

}



ptg8286219

The callREST function makes an AJAX call to the list_rest.php PHP script, which
retrieves a list of resources—these can be instances, images, or any other kind of entity that the
REST API supports. You also can reuse it for other purposes. The resource parameter indicates
the type of entity to retrieve. The script uses the Prototype AJAX class, supplying functions to
call on success and on failure. The second parameter to the callREST function is the name of a
function to call with the JSON data returned. This is invoked with the data returned from the
AJAX call.

When sending JSON content from your server to a browser, use the HTTP header shown
here:

Content-type: application/json

The data returned in the AJAX calls looks similar to this:

{‘instances’:[

{‘launchTime’:1299239330335,

‘software’:[{

‘version’:’5.4’,

‘type’:’OS’,

‘name’:’Red Hat Enterprise Linux’}],

‘primaryIP’:{‘hostname’:’myhost’,’ip’:’170.224.164.61’,’type’:0},

‘requestId’:’53865’,

‘keyName’:’mykey’,

‘name’:’LAMP Server’,

‘instanceType’:’COP64.2/4096/60’,

‘status’:5,

‘owner’:’a@bc.com’,

‘location’:’41’,

‘imageId’:’20016733’,

‘root-only’:’false’,

‘productCodes’:[],

‘volumes’:[],

‘requestName’:’LAMP Server’,

‘id’:’53565’,

‘secondaryIP’:[],

‘expirationTime’:1362311339164,

‘diskSize’:’120’}

]}

We are most interested in the name, software, ip, and status fields. The list_rest.php
PHP script, shown next, makes the REST call.

<?php

// list_rest.php

// PHP script to make a rest call to describe the resource passed in
the GET parameter,

142 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

// including instances, locations, images, etc

$resource = $_GET[‘resource’];

error_log(“resource $resource”);

$baseUrl = “https://www-
147.ibm.com/computecloud/enterprise/api/rest/20100331/”;

$url = $baseUrl . $resource;

$ch = curl_init();    

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

curl_setopt($ch, CURLOPT_URL, $url); 

curl_setopt($ch, CURLOPT_USERPWD, “aamies@cn.ibm.com:hsing1yun”); 

curl_setopt($ch, CURLOPT_UNRESTRICTED_AUTH, TRUE);

curl_setopt($ch, CURLOPT_HTTPHEADER, array(“Accept:
application/json”));

$data = curl_exec($ch); 

$httpCode = curl_getinfo($ch, CURLINFO_HTTP_CODE);

curl_close($ch); 

// Check HTTP response and put JSON response into a JavaScript
variable

if ($httpCode != 200) {

error_log(“HTTP response: $httpCode, error message: “ . $data);

header(“HTTP/” . $httpCode . ‘ ‘ .  trim($data)); // error
message

} else {

header(‘Content-type: application/json’);

echo trim($data);

}

?> 

The script takes one parameter, resource, which has the same purpose as described earlier.
In this case, the value is instances. The script adds this to the base URL to determine which
REST API to use. It works only for APIs that use HTTP GET and do not take any parameters.
The cURL use is similar to the earlier create instance example. Finally, the JSON response is
relayed to the browser. In the case of an error, the HTTP response is relayed as well.

The list_populate.js script populates an HTML table with the data.

// list_populate.js

// JavaScript function to process the result returned from the REST
call

// Populates the table listing instances

function populateTable(instancesObject) {

var instances = instancesObject[‘instances’];

var summaryStr = ‘’;

if (instances.length == 0) {

REST API 143



ptg8286219

summaryStr = ‘You do not have any instances’;

$(‘instance_count_p’).innerHTML = summaryStr;

} else {

summaryStr = ‘You have ‘ + instances.length + ‘
instance(s)’;

$(‘instance_count_p’).innerHTML = summaryStr;

var tableStr =
‘<tr><th>Name</th><th>IP</th><th>Status</th><th>Software</th></tr>’;

for (var i=0; i<instances.length; i++) {

var instance = instances[i];

var primaryIP = instance[‘primaryIP’];

var status = instance[‘status’];

var softwareList = instance[‘software’];

if (softwareList.length > 0) {

software = softwareList[0];

}

tableStr += ‘<tr><td>’ + instance[‘name’] + ‘</td>’
+

‘<td>’ + primaryIP[‘ip’] + ‘</td>’ +

‘<td>’ + statusLabel[status] + ‘</td>’ +

‘<td>’ + software[‘name’] +
‘</td></tr>’;

}

$(‘instance_list_tbody’).innerHTML = tableStr;

}

}

// Instance Status labels

var statusLabel = [‘New’,’Provisioning’,’Failed’,’Removed’,
‘Rejected’, ‘Active’, ‘Unknown’, ‘Deprovisioning’, ‘Restarting’,
‘Starting’, ‘Stopping’, ‘Stopped’, ‘Deprovisioning Pending’, 

‘Restart Pending’];

The populateTable function takes one argument, which is the instantiated JSON data from
the AJAX call. It uses the Prototype $(‘element_id’) function to look up an HTML element
based on the element ID. This is a compact way to retrieve the placeholder HTML elements. The
status values are returned from the REST API as integer values. The REST API reference guide
lists the meaning of the difference values; these are listed in the statusLabel array and used as
labels in the table using a lookup from the array.

Using Java to Invoke the IBM SmartCloud Enterprise REST APIs
Even though there is a Java API for the IBM SmartCloud Enterprise, you might have an occasion
to use the REST API with Java (for example, when creating a proxy for the API). This section

144 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

gives several simple examples using Java; they make use of the Apache HttpClient 3.1 library.
You can find a list of instances with the following code:

public int getInstances() throws HttpException, IOException {

System.out.println(“Getting instances”);

HttpClient httpclient = getHttpClient();

GetMethod method = getGetMethod(baseUrl + “instances/”);

try {

int statusCode = httpclient.executeMethod(method);

printBody(method);

System.out.println(“Status: “ + statusCode);

return statusCode;

} finally {

method.releaseConnection();

}

}

The output of this method is similar to the output of the earlier PHP examples. The method
is a utility method shown here:

private HttpClient getHttpClient() {

HttpClient httpclient = new HttpClient();

HttpState state = new HttpState();

UsernamePasswordCredentials creds = new
UsernamePasswordCredentials(userName, password);

state.setCredentials(AuthScope.ANY, creds);

httpclient.setState(state);

httpclient.getParams().setAuthenticationPreemptive(true);

return httpclient;

}

The utility method getGetMethod is shown next:

private GetMethod getGetMethod(String url) {

GetMethod method = new GetMethod(url);

if (!xml) {

method.setRequestHeader(“Accept”, “application/json”);

} else {

method.setRequestHeader(“Accept”, “gzip,deflate”);

}

return method;

}

You can retrieve a list of locations with this method:

public int getLocations() throws HttpException, IOException {

System.out.println(“Getting instances”);

HttpClient httpclient = getHttpClient();

REST API 145



ptg8286219

GetMethod method = getGetMethod(baseUrl + LOCATIONS);

try {

int statusCode = httpclient.executeMethod(method);

printBody(method);

System.out.println(“Status: “ + statusCode);

return statusCode;

} finally {

method.releaseConnection();

}

}

Again, the output is similar to the output in the earlier PHP examples.

Rational Asset Manager
Rational Asset Manager (RAM) is an application that manages images, software, documents, and
other assets. In the context of the IBM SmartCloud Enterprise, RAM provides a framework to
enable asset providers to publish assets and support a community of users of those assets. The
IBM SmartCloud Enterprise also uses RAM to manage images, software, and document meta-
data. When image providers prepare an image, they can use RAM to store information in a man-
ner similar to a “Getting Started” guide and to host a support forum for the users of the image;
they can also take advantage of Web 2.0 capabilities, such as user ratings and tags. This is valu-
able to users, who can select well-used and well-supported images. RAM also enables users to
browse and query assets and to personalize their user account. In addition to the RAM server
hosted by IBM SmartCloud Enterprise, the catalog has a RAM image that you can use for your
own projects.

You can programmatically download and manage assets in RAM using either the RAM
client API or the RAM Eclipse client. Download the required libraries from the asset catalog. In
the image catalog, click Help, Extensions, as in Figure 3.13.

146 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

Figure 3.13 Location for downloading RAM client

Under Client API Jars, download the ramclient.zip, as shown in Figure 3.14. This
includes all the JARs you need to support a remote client to the asset catalog.



ptg8286219

Rational Asset Manager 147

Figure 3.14 RAM extensions page

The Eclipse Client plug-in and Web Services are options as well.
Following is a simple program that uses the RAM API to retrieve an image asset based on

the GUID. Notice that the image ID used in the SCE APIs is a parameter that you can access in
the asset catalog.

package com.ibm.cloud.example.ram;

import java.util.logging.Level;

import java.util.logging.Logger;

import com.ibm.ram.client.RAMAsset;

import com.ibm.ram.client.RAMSession;

import com.ibm.ram.common.data.AssetAttribute;

import com.ibm.ram.common.data.AssetIdentification;

public class RAMClient {

private static final String USER = “a@b.com”;

private static final String PASSWORD = “***”;

private static final String URL = “https://



ptg8286219

www-147.ibm.com/cloud/enterprise/ram.ws”;

private RAMSession session;

private static Logger logger =
Logger.getLogger(“com.ibm.cloud.example.ram”);

private static final String LS =
System.getProperty(“line.separator”);

public void connect() {

try {

session = new RAMSession(URL, USER, PASSWORD);

} catch(Exception e) {

logger.log(Level.SEVERE, “Error connecting”, e);

}

}

/**

* Prints out information about an image asset 

* @param guid The RAM Asset globally unique identifier

*/

public void getAsset(String guid) {

try {

AssetIdentification assetID = new
AssetIdentification();

assetID.setGUID(guid);

RAMAsset asset = session.getAsset(assetID);

logger.log(Level.INFO, “Got asset “ +
asset.getName() + 

“ with ID “ + asset.getAssetAttribute(“Image Id”));

AssetAttribute[] assetAttributes =
asset.getAssetAttributes();

StringBuilder sb = new StringBuilder();

for (int i=0; i<assetAttributes.length; i++) {

StringBuilder valueString = new
StringBuilder();

String[] values =
assetAttributes[i].getValues();

if (values != null) {

for (int j=0; j<values.length; j++) {

valueString.append(values[j] + “
“);

}

}

sb.append(assetAttributes[i].getName() + “ : “
+ valueString + LS);

}

148 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

logger.log(Level.INFO, “Attributes: “ + sb);

} catch(Exception e) {

logger.log(Level.SEVERE, “Error getting asset”, e);

}

}

/**

* Example usage: java com.ibm.cloud.example.ram.RAMClient Guid

*/

public static void main(String[] args) {

RAMClient client = new RAMClient();

client.connect();

String guid = args[0];

client.getAsset(guid);

}

}

You can invoke the program by passing in an example GUID:

Java -cp $CP com.ibm.cloud.example.ram.RAMClient {6D6FF958-0EBA-7A7E-
CEC8-BE737E9ACA94}

Here, $CP is a system variable containing the classpath of the RAM and dependent libraries
downloaded earlier, and the program argument is the GUID for an image in the SmartCloud
Enterprise catalog. When invoked, the program gives output similar to this:

INFO: Got asset Microsoft Windows Server 2008 R2 (64-bit) with ID
Image Id = 20012053

INFO: Attributes: Primary Artifact : 

Request Image URL : <a href=”https://www-
147.ibm.com/cloud/enterprise/user/control.jsp?autocreate={id:’20012053
’}” target=”_blank”>Start an instance of this image</a> 

Terms and Conditions : <a href=”https://www-
147.ibm.com/cloud/enterprise/ram/artifact/%7B6D6FF958-0EBA-7A7E-CEC8-
BE737E9ACA94%7D/1.0/Terms.pdf” target=”_blank”>Link to Terms.pdf</a> 

Image Id : 20012053 

Operating System : Windows Server 2008 

Product Name : 

Support Information : 

Installed Software : 

Offering Deployment Automation Model : 

Offering Deployment Model : 

Offering Documentation : 

Operating System Details : /win2k8dc-r2-
x64.topology#capability.windowsOperatingSystem[displayName=’win2k8dc-
r2-x64’ and name=’WindowsOperatingSystem_3369’ and linkType=’any’ and
kernelWidth=’64-bit’ and os.type=’Windows’ and os.version=’2008 R2’] 

Rational Asset Manager 149



ptg8286219

We have deleted some of the log trace information here. The image ID 20012053 is the
important link to the SmartCloud Enterprise REST API.

You can extend the program with the following method to perform a generic search:

public void search(String queryText) {

SearchQuery query = session.createAssetQuery(queryText);

SearchResult searchResult = session.getAssets(query);

RAMAssetSearchResult[] results =

(RAMAssetSearchResult[])searchResult.getAssetSearchResults();

logger.log(Level.INFO, results.length + “ results found.”);

for (int i=0; i<results.length; i++) {

RAMAsset asset = (RAMAsset)results[i].getAsset();

String guid = assetInfo.getIdentification().getGUID();

String name = assetInfo.getName();

AssetAttribute imageID = asset.getAssetAttribute(“Image
Id”);

logger.log(Level.INFO, “Asset “ + name + “ “ + 

imageID + “ “ + guid);

}

}

The method creates a SearchQuery object that allows a web-style search to be executed.
You invoke this method with the query text Windows. The output is shown here:

INFO: 93 results found.

INFO: Asset Microsoft Windows Server 2008 R2 (64-bit) (EHN) Image Id =
20012054 {16AD9067-E16E-6C83-A2E3-80512F3AD815}

INFO: Asset Microsoft Windows Server 2008 R2 (64-bit) Image Id =
20012053 {6D6FF958-0EBA-7A7E-CEC8-BE737E9ACA94}

INFO: Asset Microsoft Windows Server 2008 R1 (32-bit) (EHN) Image Id =
20012835 {2E49860A-930F-6052-88EF-B2212B9DB95A}

INFO: Asset Microsoft Windows Server 2003 R2 (32-bit) (EHN) Image Id =
{015B829A-5586-0775-85DB-5AAB432A5587}

...

These examples return all the data in the asset catalog that the user whose credentials you
use has the authority to browse. This is slightly different from the GET /offerings/image call in
the SmartCloud Enterprise REST API, listing the images the user is entitled to, considering the
enterprise’s onboarding contract. That is a subset of the full list of public images in the catalog.

Three levels of visibility in RAM—public, enterprise, and private—relate to three respec-
tive communities. Publicly visible assets are visible to all the users on the cloud. Shared visibility
assets are visible by the enterprise communities, including all the users in each respective enter-
prise. A privately visible asset is visible only to the user who created it. The previous examples
returned images from all levels of visibility. The example method that follows shows how to find
the name of the community associated with an asset.

150 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

public void getAssetCommunityInfo(String guid) {

try {

AssetIdentification assetID = new AssetIdentification();

assetID.setGUID(guid);

RAMAsset asset = session.getAsset(assetID);

logger.log(Level.INFO, “Got asset “ + asset.getName() + 

“ with ID “ + asset.getAssetAttribute(“Image Id”));

CommunityInformation community = asset.getCommunity();

String communityName = community.getName();

int communityID = community.getId();

logger.log(Level.INFO, “Attributes: “ + communityName + 

“, community id: “ + communityID);

} catch(Exception e) {

logger.log(Level.SEVERE, “Error getting asset”, e);

}

}

This results in output similar to the following:

INFO: Getting asset with guid {6D6FF958-0EBA-7A7E-CEC8-BE737E9ACA94}

INFO: Got asset Microsoft Windows Server 2008 R2 (64-bit) with ID
Image Id = 20012053

INFO: Attributes: Cloud Computing Core Community, community id: 1000

The asset belongs to the Cloud Computing Core Community—that is, it is publicly visible.
The ID of this community is 1000.

With the RAM search APIs, you can find all assets matching a generic search term. The
RAM API also helps you be more precise in matching specific attributes and either OR’ing or
AND’ing different terms together, paging results, and so on. In addition, you can filter searches
based on communities. Consider an example:

public void search(String queryText, String communityName) {

RAMAssetQueryBuilder queryBuilder = new
RAMAssetQueryBuilder(session);

CommunityInformation community = new CommunityInformation();

community.setName(communityName);

queryBuilder.addSearchFilter(community);

queryBuilder.addQueryTextField(“*” + queryText + “*”);

SearchResult searchResult = session.getAssets(queryBuilder);

RAMAssetSearchResult[] results =

(RAMAssetSearchResult[])searchResult.getAssetSearchResults();

logger.log(Level.INFO, results.length + “ results found.”);

for (int i=0; i<results.length; i++) {

RAMAsset asset = (RAMAsset)results[i].getAsset();

String guid = asset.getIdentification().getGUID();

String name = asset.getName();

Rational Asset Manager 151



ptg8286219

AssetAttribute imageID = asset.getAssetAttribute(“Image
Id”);

logger.log(Level.INFO, “Asset “ + name + “ “ + 

imageID + “ “ + guid);

}

}

The example uses a RAMAssetQueryBuilder object to construct a query with two condi-
tions: a query with the input text and a filter based on the community. The output based on invok-
ing the method with the query text of Windows and a community name of Cloud Computing Core
Community is shown here:

INFO: Getting asset with search text Windows, community: Cloud
Computing Core Community

INFO: 79 results found.

INFO: Asset Microsoft Windows Server 2008 R2 (64-bit) (EHN) Image Id =
20012054 {16AD9067-E16E-6C83-A2E3-80512F3AD815}

INFO: Asset Microsoft Windows Server 2008 R2 (64-bit) Image Id =
20012053 {6D6FF958-0EBA-7A7E-CEC8-BE737E9ACA94}

...

Notice that the number of results returned is now 79, which is a subset of the total before:
93 total.

Business Scenario: Using Elastic Cloud Services to Scale
Let’s continue developing our application from the business scenario in Chapter 2. The main
advantages of an IaaS cloud for IoT Data are twofold: (1) The cloud hosts the application to save
hosting costs and (2) the cloud APIs add servers and storage volumes to elastically increase stor-
age capacity.

Fundamentally, the IoT Data application needs to allow customers to register new devices.
You can add devices using the JPA code described earlier. However, because devices might have
limited network bandwidth availability, we prefer to have file storage locations geographically
close to the locations of the devices to optimize networking performance. We need to query the
IBM SmartCloud Enterprise to find these locations. Let’s build an HTML form for a customer to
register a new device. This is the doGet method of the NewDeviceServlet class:

protected void doGet(HttpServletRequest request, 

HttpServletResponse response) 

throws ServletException, IOException {

PrintWriter writer = response.getWriter();

String customerIdStr = request.getParameter(“customerid”);

long customerId = Long.parseLong(customerIdStr);

writeTitle(writer, customerId, “Add Device”);

writer.println(“<form method=’POST’ action=’#’>”);

152 Chapter 3 Developing with IBM SmartCloud Enterprise APIs



ptg8286219

writer.println(“<p>Device Name: <input type=’text’
name=’device_name’ size=’60’/></p>”);

writer.println(“<p>Storage location: <select name=’location’>”);

Collection<Location> locations =
LocationService.getInstance().getLocations();

for (Location location : locations) {

writer.println(“<option value=’” + location.getId() + 

“‘>” + location.getName() + “</option>”);

}

writer.println(“</select></p>”);

writer.println(“<p><input type=’hidden’ name=’customerid’
value=” + customerId + “/></p>”);

writer.println(“<p><input type=’submit’ value=’Add
Device’/></p>”);

writer.println(“</form>”);

writeFooter(writer);

}

The servlet expects the customerid parameter to contain the customer ID. It uses the 
LocationService to discover the different locations that the cloud supports. This populates the
select element in the HTML form. The LocationService class is shown here:

package com.ibm.cloud.examples.iotdata.iaas;

import java.util.*;

import com.ibm.cloud.api.rest.client.DeveloperCloudClient;

import com.ibm.cloud.api.rest.client.bean.Location;

public class LocationService {

private static LocationService instance = new LocationService();

private Map<String, Location> locationMap = 

new HashMap<String, Location>();

private LocationService() {

load();

}

public static LocationService getInstance() {

return instance;

}

public void load() {

DeveloperCloudClient client =

ClientHolder.getInstance().getClient();

Business Scenario: Using Elastic Cloud Services to Scale 153



ptg8286219

try {

List<Location> locations =
client.describeLocations();

for (Location location : locations) {

LocationLabels.getInstance().replaceLabel(location);

locationMap.put(location.getId(), location);

}

} catch (Exception e) {

System.err.println(“Could not load locations: “ +

e.getMessage());

e.printStackTrace();

}

}

public Location getLocation(String id) {

return locationMap.get(id);

}

public Collection<Location> getLocations() {

return locationMap.values();

}

}

This is a service to find and cache location objects from the cloud REST API. The locations
are not expected to change frequently, so the service caches them for better performance. Also,
because the names of the locations are not user friendly, the service adds user-friendly labels
using the LocationLabels utility. The servlet writes out an HTML form that looks like 
Figure 3.15.

154 Chapter 3 Developing with IBM SmartCloud Enterprise APIs

Figure 3.15 Business scenario screen to add a new device (NewDeviceServlet)



ptg8286219

The locations are shown in the select element in the figure. You need to provide code to
process the user’s request to added the device when he or she clicks the Add Device button. That
is also in the NewDeviceServlet class. It is in the doPost method, shown here:

protected void doPost(HttpServletRequest request, 

HttpServletResponse response) 

throws ServletException, IOException {

String customerIdStr = request.getParameter(“customerid”);

long customerId = Long.parseLong(customerIdStr);

Customer customer = new Customer();

customer.setId(customerId);

String deviceName = request.getParameter(“device_name”);

String location = request.getParameter(“location”);

Device device = new Device();

device.setName(deviceName);

device.setLocation(location);

device.setCustomer(customer);

DeviceService deviceService = new DeviceService();

PrintWriter writer = response.getWriter();

writeTitle(writer, customerId, “Add Device”);

try {

deviceService.addDevice(device);

writer.println(“<p>The device “ + deviceName + 

“ was successfully added</p>”);

writer.println(“<p><a href=’NewDeviceServlet?customerid=”
+ 

customer.getId() + “‘>Add Another Device</a></p>”);

} catch(Throwable t) {

writer.println(“<p>The device could not be added.  Error:
“ +

t.getMessage() + “</p>”);

writer.println(“<p>Device Name: “ + device.getName() +
“</p>”);

writer.println(“<p>Location: “ + device.getLocation() +
“</p>”);

writer.println(“<p>Customer ID: “ + 

device.getCustomer().getId() + “</p>”);

t.printStackTrace();

}

writeFooter(writer);

}

The code collects the customer ID, device name, and location from the servlet request. It
uses these to add the device using the DeviceService class, which uses JPA to add the data to
DB2. A message is displayed that depends on the success of the record insert operation.

Business Scenario: Using Elastic Cloud Services to Scale 155



ptg8286219

This page intentionally left blank 



ptg8286219

157

C H A P T E R 4

Standards

The goal of this chapter is to outline the standards that relate to IaaS cloud management and
comment on how these can be leveraged in creating cloud applications.

Data Exchange
This chapter looks at several data exchange languages and tools that are important in cloud com-
puting, particularly XML and JSON. Most applications built on top of IaaS clouds need both
XML and JSON. This chapter helps users gain a basic background in the topic without having to
go to external sources to understand the content in the book.

Extensible Markup Language (XML)
XML has been around for a long time, but a few points about it are worth discussing in relation to
clouds. The first problem a programmer encounters with XML is how to parse it. The Java API
for XML Binding (JAXB) API makes parsing XML documents simple. It binds Java objects to
XML elements in a preprocessing step, an approach that saves a lot of development effort com-
pared to a hand-crafted parser using the Document Object Model (DOM) or Simple API for
XML (SAX). Unfortunately, not all programming languages have a utility like this.

The IBM SmartCloud Enterprise uses XML files called parameters.xml as a template to
indicate which parameters the user should be prompted to enter when creating an image. The file
is located in the RAM catalog entry for the image it is associated with, and the GET
offerings/image REST API gives a URL for it. The equivalent Java API is Image.getMani-
fest(). The following example represents the template of an image for an install of IBM DB2.



ptg8286219

<?xml version=”1.0” encoding=”UTF-8”?>

<parameters xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:noNamespaceSchemaLocation=”platform:/resource/com.ibm.ccl.devcloud
.client/schema/parameters.xsd”>

<field name=”db2_user_password” type=”password” label=”Instance
owner (db2inst1) password”

pattern=”^\w*(?=\w*\d)(?=\w*[a-z])(?=\w*[A-Z])\w*$”

patternErrorMessage=”Invalid db2inst1 password. Must contain least
...”

description=”db2inst1 password. Must contain ...”>

<values>

<value>db2cloud</value>

</values>

</field>

...

</parameters>

You might need to parse the parameters.xml file in two scenarios: when provisioning an
instance in a cloud-management application and when customizing the behavior of an instance
from inside the instance itself. In the first case, the parameters.xml file tells you how to prompt
the user for parameters that are passed in at the time the provisioning request is submitted (for
example, for values of the different DB2 passwords listed earlier). This was discussed in the sec-
tion on the IBM SmartCloud Enterprise REST API in Chapter 3, “Developing with IBM Smart-
Cloud Enterprise APIs.” Your program must discover the name, description, type, and validation
rules of the field to properly prompt the user to enter the data.

Now consider how DB2 will find the values of the passwords to set. The IBM SmartCloud
Enterprise platform populates the parameters.xml file with the values submitted by the user and
places them in the instance in the /etc directory. In this case, your program must discover the
values of the fields.

The JAXB xjc tool binds XML elements to Java objects using the W3C XML schema lan-
guage. The command takes a package name and a schema file as input, as shown here:

xjc -p <packageName> parameters.xsd

Alternatively, you can use the IBM Rational Software Architect (RSA) Wizard for this.
Add the schema file (parameters.xsd) to your project and right-click. Select Generate, Java. A
wizard displays, as in Figure 4.1.

158 Chapter 4 Standards



ptg8286219

Data Exchange 159

Figure 4.1 Rational Software Architect XSD to Java Wizard

Enter the package name and click the Finish button. This simple program makes use of
JAXB to parse the DB2 parameters.xml file: 

package com.ibm.cloud.api.parser;

import java.net.URL;

import java.util.List;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.Unmarshaller;

import com.ibm.cloud.api.parser.parameters.Field;

import com.ibm.cloud.api.parser.parameters.Parameters;

public class ParameterParser {

public static void main(String[] args) throws Exception {

URL url =
ClassLoader.getSystemResource(“data/parameters.xml”);

JAXBContext jc =
JAXBContext.newInstance(“com.ibm.cloud.api.parser.parameters”);

Unmarshaller u = jc.createUnmarshaller();

Parameters parameters = (Parameters) u.unmarshal(url);



ptg8286219

//Display the parameters

for (Field field : parameters.getField()) {

System.out.println(“Field: “ + field.getName());

System.out.println(“\tLabel: “ + field.getLabel());

System.out.println(“\tDescription: “ +
field.getDescription());

System.out.println(“\tType: “ +
field.getType().name());

System.out.println(“\tNo. values: “ +
field.getValues().getValue().size());

if (field.getValues().getValue().size() > 0) {

List<String> values =
field.getValues().getValue();

for (String value: values) {

System.out.println(“\t\t” + value);

}

}

}

}

}

The program assumes that the parameters.xml file is stored in the location /data relative
to the classpath of the class ParameterParser. It creates a JAXBContext, which it uses to unmar-
shal the file. Then the program iterates over the fields, printing the name, label, description, type,
and values. The output of the program appears next:

Field: db2_user_password

Label: Instance owner (db2inst1) password

Description: db2inst1 password. Must contain at least 1 number,
at least 1 lower case letter, and at least 1 upper case letter.

Type: PASSWORD

No. values: 1

db2cloud

Field: db2_fenc_password

Label: Fenced user (db2fenc1) password

...

See [Vernier, 2011, “Convert IBM Cloud Image Parameters into Java Using JAXB”] for
more details on downloading and parsing parameters.xml.

JavaScript Object Notation (JSON)
The bodies of REST requests and responses might be in different formats, depending on the
choices of the service implementers. In IBM SmartCloud Enterprise, the responses can be
returned in either XML or JSON format. JSON might be new to some users, so we cover it
briefly. JSON can be simpler and more lightweight than XML, but it lacks some of the tight defi-
nition of types that XML has. Another advantage of JSON is that it can be instantiated immedi-
ately by JavaScript in a browser. Although not a formal standard, JSON is becoming a de facto

160 Chapter 4 Standards



ptg8286219

standard for REST services. JSON is described by IETF Request for Comments 4627, “The
application/json Media Type for JavaScript Object Notation (JSON).” However, this document is
informational, not a formal standard.

Several packages exist for streaming objects to and parsing JSON, including the IBM
JSON4J library packaged with WebSphere Application Server 7.0, the json.org library, and the
Google API. Following is an example of JSON from the IBM SmartCloud Enterprise:

{“images”:[

{      “name”:”IBM DB2 Enterprise Developer Ed SLES 9.7.1 -
BYOL”,

“id”:”20009984”

“state”:1,

“visibility”:”PUBLIC”

}]

}

This example describes an image in the catalog. We have deleted some of the attributes to
keep it short and simple. An example program that uses the json.org library to traverse this JSON
data is shown next:

package com.ibm.cloud.examples.rest;

import org.json.JSONArray;

import org.json.JSONException;

import org.json.JSONObject;

/**

* Class to demonstrate parsing of JSON data.

*/

public class JSONTraverser {

private static String DATA = “{‘images’:[“ +

“{‘name’:’IBM DB2 Enterprise Developer Ed SLES 9.7.1 -
BYOL’,” +

“‘id’:’20009984’,” +

“‘state’:1,” +

“‘visibility’:’PUBLIC’” +

“}]}”;

public void parse() throws JSONException {

JSONObject object = new JSONObject(DATA);

JSONArray images = object.getJSONArray(“images”);

for (int i=0; i<images.length(); i++) {

System.out.println(“JSON array”);

JSONObject image = (JSONObject)images.get(i);

Data Exchange 161



ptg8286219

String name = image.getString(“name”);

String id = image.getString(“id”);

String state = image.getString(“state”);

String visibility = image.getString(“visibility”);

System.out.println(“Name: “ + name);

System.out.println(“ID: “ + id);

System.out.println(“State: “ + state);

System.out.println(“Visibility: “ + visibility);

}

}

/**

* Entry point

* @param args Not used

*/

public static void main(String[] args) throws Exception {

System.out.println(“Parsing JSON string”);

JSONTraverser parser = new JSONTraverser();

parser.parse();

}

}

The program can be invoked from the command line. It creates a JSONObject from the data,
from which it extracts a JSONArray. The program then iterates over the array, instantiating a
JSONObject representing an image for each element in the array. The output of the program
appears here:

Parsing JSON string

JSON array

Name: IBM DB2 Enterprise Developer Ed SLES 9.7.1 - BYOL

ID: 20009984

State: 1

Visibility: PUBLIC

This code is fine if you have a very simple task to perform. However, if you need to do
something more substantial, you might need a more generic library, such as Google gson.

REST
REST APIs are provided as an important part of cloud computing platforms, both IaaS clouds
and other types of clouds. However, REST is not specific to cloud computing, and you can make
use of cloud computing without it. This section is provided to give readers basic background
material on the topic so that they do not have to consult external sources to understand the
examples in the book. Most of the material in this section is not specific to IBM SmartCloud
Enterprise. The text also highlights areas that are particularly relevant to cloud computing.

162 Chapter 4 Standards



ptg8286219

Background
REpresentational State Transfer (REST) is a programming style modeled on the principles of the
World Wide Web. Ron Fielding introduced it with his PhD thesis “Architectural Styles and the
Design of Network Based Software Architectures,” with the goal of replicating the scalability
and success of the web for application programming. REST architecture is defined as having the
following characteristics:

• Addressable resources. The key entity is a resource, and it must be addressable with a
uniform resource identifier (URI).

• A set of well-defined interfaces for managing the resources.

• Representation-oriented nature (say, with XML, JSON, or HTML).

• Stateless communication capability.

REST is a simpler paradigm than other kinds of distributed programming models that did
not enjoy widespread adoption, such as SOAP and COBRA. The simplicity of the REST pro-
gramming model is the main reason for its widespread popularity today.

HyperText Transfer Protocol
We mostly refer to REST as implemented using HTTP, although that is not necessarily the case.
Other web services protocols, such as SOAP, use HTTP only as a transport, but REST uses the
methods of HTTP, including GET, POST, PUT, and DELETE. We could look at flow of text to an
HTTP server with a program like this one that connects with a TCP socket:

import java.io.*;

import java.net.Socket;

public class ReadHTTP {

public static void main(String[] args) throws IOException {

Socket socket = new Socket(“localhost”, 80);

PrintWriter out = new PrintWriter(socket.getOutputStream(),
true);

BufferedReader in = new BufferedReader(new
InputStreamReader(socket.getInputStream()));

out.print(“GET /index.html\r\n\r\n”);

String line;

while ((line = in.readLine()) != null) {

System.out.println(line);

}

out.close();

in.close();

socket.close();

}

}

REST 163



ptg8286219

The program is simplified to demonstrate the principle, but it ignores some best practices of
catching exceptions and closing streams in finally blocks. The program connects to the server
localhost at HTTP port 80 and writes the text GET /index.html over the socket. This is a GET
request. The request ends with \r\n\r\n so that the server gets the blank line that it needs to end
the HTTP request. Then it reads the response back from the server and prints it to standard out-
put. Executing the program returns something like this:

HTTP/1.0 200 OK

Date: Fri, 11 Feb 2011 00:18:23 GMT

Expires: -1

Cache-Control: max-age=0

Content-Type: text/html; charset=ISO-8859-1

<html><head>...

The HTTP response code is 200, which indicates that the response succeeded. A series of
HTTP headers exist: Date, Expires, Cache-control, and Content-type. After the HTTP head-
ers are printed comes a blank line, and then the HTML body is written out. The HTTP protocol is
described in RFC 2616 [Fielding and Gettys, 1999], which includes the different request types,
the HTTP headers, and the response codes.

REST Architecture
The idea that every resource must be addressable via a URI is a big help in simplifying program-
ming models. Other programming models have often forced client programs to get objects for
objects for objects before finally getting to the object that the client programmer is really inter-
ested in.

The REST principle of a constrained interface is difficult for object-oriented programmers
to get used to. Only a handful of methods are available for all the different operations you need to
provide. The methods include the following:

• GET—A read-only operation that requests specific information.

• PUT—Stores the body of the message to the server. This is usually an insert or update.
The operation is idempotent, which means that, no matter how many times you PUT an
object, the result is the same. Just as when clicking the Save button of a desktop applica-
tion, the file will be saved the same no matter how many times you click the button.

• DELETE—Removes a resource.

• POST—Modifies the resources in some way. This is the only HTTP operation that is not
idempotent. POST can also be used to create resources. It is the most open and extensible
of the HTTP methods.

• OPTIONS—Enables querying of the server for capabilities.

164 Chapter 4 Standards



ptg8286219

HTTP uses the Content-Type header to tell the server or client what type of data is encoded
in the body. This is a MIME type. Here is the format:

Content-Type: type/subtype; name=value; name=value ...

Consider these examples:

text/plain

application/xml;charset=utf-8

Using the Accept header, clients can tell the server what type of format they need: XML,
JSON, or other. These headers can also be used for versioning.

The principle of statelessness helps applications scale and simplifies server implementa-
tions as well. It is also natural. For example, a client makes a call, uses the returned data to make
another call, and so on to compose an application.

Hypermedia as the engine of application state (HATEOAS) is an additional REST principle
promoted by some proponents. The interpretation is that we should use full URLs when referring
to resources within responses, not just an identifier. The HATEOAS engine of application state
principle means that it is much easier to navigate from resource to resource using links than it is
to know exactly how to construct the addresses for each resource in advance. For example, sup-
pose that a search result returned too many results to manage in one request. The server could
return the first batch with a link to the next batch. This works just like searching with a browser at
popular search portals.

Implementing and Consuming REST Services
Many tools help developers implement REST in their applications. At least one of these is a stan-
dard: JAX-RS is a set of Java APIs for development of REST services. It is defined by Java Spec-
ification Request 311, “Java API for RESTful Web Services.” Earlier examples used PHP with
the cURL library to invoke REST web services. Let’s look at some other ways of producing and
consuming REST services.

Business Scenario: File Uploads

One of the most fundamental capabilities of IoT Data’s cloud service is enabling file uploads
from devices. This section looks at how to do that. The Internet Engineering Task Force RFC
1867 Form-based File Upload in HTML defines a file value for the type attribute of the HTML
input element. It also defines a multipart/form-data value for the MIME media type. Example
HTML code is shown here:

<form enctype=’multipart/form-data’ action=’DeviceServlet’

method=’post’>

<fieldset>

<label for=’devicefile’>File</label>

<input id=’devicefile’ ‘name=’devicefile’ type=’file’/>

REST 165



ptg8286219

<input type=’submit’ value=’Upload File’/>

</fieldset>

</form>

This HTML fragment generates a file upload widget, which looks like Figure 4.2.

166 Chapter 4 Standards

Figure 4.2 Business scenario: file upload

The Apache FileUpload project provides a utility for processing file uploads. The project
depends on the Apache Commons IO library. Make sure that you have both JAR files in your
classpath (WebContent/WEB-INF/lib). You can use this within the doPost method of the same
servlet, as shown here:

protected void doPost(HttpServletRequest request, 

HttpServletResponse response) 

throws ServletException, IOException {

PrintWriter writer = response.getWriter();

Device device = getDevice(request);

Customer customer = device.getCustomer();

writeTitle(writer, customer, “File upload confirmation”);

DiskFileItemFactory factory = new DiskFileItemFactory();

ServletFileUpload upload = new ServletFileUpload(factory);

factory.setSizeThreshold(2097152);  // 2 MB

try {

List items = upload.parseRequest(request);

for (Object item : items) {

FileItem fileItem = (FileItem)item;

writer.println(“<p>File item: “ + fileItem.getName()
+

“</p>”);

writer.println(“<p>Content Type: “ +

fileItem.getContentType() + “</p>”);

writer.println(“<p>Size: “ + fileItem.getSize() +
“</p>”);



ptg8286219

File uploadedFile = new
File(“/opt/IBM/WebSphere/files/” +

fileItem.getName());

fileItem.write(uploadedFile);

}

} catch (Exception e) {

writer.println(“Could not upload file: “ +
e.getMessage());

e.printStackTrace();

}

writer.println(“<p><a href=’DeviceServlet?deviceid=” + 

device.getId() + “‘>Upload another file</a></p>”);

writeFooter(writer);

}

The method first creates a DiskFileItemFactory object, which is used to create 
a ServletFileUpload object. A limit of 2,097,152 bytes is set for the uploaded files. The
ServletFileUpload object parses the file uploads and puts references (handles) to them in the
FileItem objects. These are written out to the local file system under /opt/IBM/WebSphere/
files/. Figure 4.3 shows the confirmation.

REST 167

Figure 4.3 File upload confirmation

Writing an equivalent REST service is similar. One change to make, however, is that the
URL should use a REST-style pattern line:

http://host_name/devices/234

To use a style like this, you can add a mapping in the web.xml file as shown:

<servlet-mapping>

<servlet-name>RESTServlet</servlet-name>

<url-pattern>/devices</url-pattern>

<url-pattern>/devices/*</url-pattern>

</servlet-mapping>

http://host_name/devices/234


ptg8286219

The HttpServletRequest.getPathInfo() method returns something like /234, from
which you can find the device record. Besides this difference, the server implementation is
exactly the same as for a browser client, although you can ignore the HTML returned. You can
invoke the REST API with a client, as shown in the uploadFile method:

package com.ibm.cloud.examples.iotdata.rest.client;

import java.io.File;

import org.apache.commons.httpclient.*;

import org.apache.commons.httpclient.methods.PostMethod;

import org.apache.commons.httpclient.methods.multipart.*;

public class FileUploadClient {

private static final String BASE_URL =

“http://host:9080/CloudAPIClientWeb/devices/”;

public void uploadFile(int deviceId, String fileName) {

System.out.println(“Uploading file: “ + fileName);

HttpClient httpclient = new HttpClient();

HttpState state = new HttpState();

httpclient.setState(state);

PostMethod post = new PostMethod(BASE_URL + deviceId);

File file = new File(fileName);

try {

Part[] parts = new Part[1];

parts[0] = new FilePart(“devicefile”, file);

MultipartRequestEntity requestEntity = new

MultipartRequestEntity(parts, post.getParams());

post.setRequestEntity(requestEntity);

int statusCode = httpclient.executeMethod(post);

System.out.println(“Response code: “ + statusCode);

} catch (Exception e) {

System.err.println(“Error executing HTTP request: “
+

e.getMessage());

e.printStackTrace();

} finally {

post.releaseConnection();

}

}

168 Chapter 4 Standards



ptg8286219

public static void main(String[] args) {

FileUploadClient client = new FileUploadClient();

client.uploadFile(1,
“d:/temp/air_quality_sanfernando.gif”);

}

}

This program uses the Apache HTTPClient 3.1 library. The critical part of the program is
the use of the MultipartRequestEntity class to add a FilePart to the request body. If every-
thing goes well, you should see output similar to this:

Uploading file: d:/temp/air_quality_sanfernando.gif

Response code: 200

Response code 200 indicates that the request was successful.

Example: Uploading Files When Creating Instances with REST
In the IBM SmartCloud Enterprise “Java API” section in Chapter 3, you saw how to upload files
using the Java API. Now that you understand more about the HTTP protocol and Apache Http-
Client library, you can use the same tools to upload files when creating instances using the REST
API. The following code demonstrates how to do this.

public int createInstance() throws HttpException, IOException {

System.out.println(“Creating instance”);

HttpClient httpclient = getHttpClient();

PostMethod method = getPostMethod(baseUrl + INSTANCES);

try {

ArrayList<Part> parts = new ArrayList<Part>();

parts.add(new StringPart(“name”, “My Instance”));

parts.add(new StringPart(“imageID”, “20017833”));

parts.add(new StringPart(“instanceType”,
“BRZ32.1/2048/60*175”));

parts.add(new StringPart(“publicKey”, “mykey”));

parts.add(new StringPart(“location”, “41”));

parts.add(new StringPart(“key”, “license.key”));

File file = new File(“d:/temp/license.key”);

parts.add(new FilePart(“key”, file));

Part[] array = (Part[]) parts.toArray(new
Part[parts.size()]);

MultipartRequestEntity requestEntity = new

MultipartRequestEntity(array, method.getParams());

method.setRequestEntity(requestEntity);

int statusCode = httpclient.executeMethod(method);

printBody(method);

REST 169



ptg8286219

System.out.println(“Status: “ + statusCode);

return statusCode;

} finally {

method.releaseConnection();

}

}

The method uploads the file license.key, which acts as the parameter for the same param-
eters.xml in the earlier Java example. The utility method getHttpClient is used to create an
HttpClient object with the authentication parameters set. This is shown here:

private HttpClient getHttpClient() {

HttpClient httpclient = new HttpClient();

HttpState state = new HttpState();

UsernamePasswordCredentials creds = new

UsernamePasswordCredentials(userName, password);

state.setCredentials(AuthScope.ANY, creds);

httpclient.setState(state);

httpclient.getParams().setAuthenticationPreemptive(true);

return httpclient;

}

Other programs can reuse this method. You also use the utility method, shown here:

private PostMethod getPostMethod(String url) {

PostMethod method = new PostMethod(url);

if (!xml) {

method.setRequestHeader(“Accept”, “application/json”);

} else {

method.setRequestHeader(“Accept”, “gzip,deflate”);

}

return method;

}

This method sets the return type using the Accept HTTP header with a global flag. The
printBody method opens an input stream to read and print the response.

private void printBody(HttpMethod method) throws IOException {

BufferedReader br = null;

try{

br = new BufferedReader(new

InputStreamReader(method.
getResponseBodyAsStream()));

String readLine;

while(((readLine = br.readLine()) != null)) {

System.out.println(readLine);

} 

} finally {

if (br != null) {

170 Chapter 4 Standards



ptg8286219

try { br.close(); } catch (Exception fe) {}

}

}

}

As in the Java example, the file is uploaded to a location specified in /etc/cloud/
parameters.xml in the instance, which is at /home/idcuser/cloud/license.key.

JAX-RS
JAX-RS is a set of Java APIs for the development of REST services. You might be interested in it
for creating your own services built on an IaaS cloud and also for creating a client that communi-
cates with a cloud IaaS-management API. It is defined by Java Specification Request 311, “Java
API for RESTful Web Services.” The reference implementation of the specification is provided
by the Jersey open source project, which is a part of Glassfish. The dependencies for Jersey
include the Java 6 SE JDK. JAX-RS enables you to create REST services based on Plain Old Java
Objects (POJOs). JAX-RS can be used either to implement or to consume REST services.

Apache Wink is an open source implementation of JAX-RS. In addition to the open source
download, it is bundled in WebSphere to enable easy development of REST web services in Web-
Sphere. Several components are available in Wink:

• Service implementation building blocks

• Client building blocks

• Wink runtime

The service implementation building blocks include the following:

• Resource (enables retrieval and manipulation of data; a resource is bound to a URI using
the @Path annotation).

• Provider (implements one or more interfaces in the JAX-RS specification, annotated
with @Provider). These varieties of Provider exist:

• Entity provider (serves data in a specific format or media type)

• Context provider (provides information on how to serialize or deserialize with JAXB)

• Exception mapping provider (handles exceptions that may occur during request pro-
cessing)

• URI dispatching.

• Assets (contain business logic implemented by a developer).

• Annotations.

• URL handling.

• HTTP methods.

• Query parameters.

REST 171



ptg8286219

JAX-RS is a server API. Apache Wink can also help you create Java REST clients. The
Apache Wink client transforms REST calls and results into Java classes that be used by a pro-
gram consuming a REST service. It uses the java.net.HttpURLConnection class to connect to
the REST service, and it provides the capability to serialize and deserialize REST requests and
responses. It also provides Java object models for object models for Atom, JSON, XML, and
other types. It supports HTTP proxies and SSL/TLS as well. The client building blocks include
the following:

• RestClient (the central access point for the Apache Wink REST client)

• Resource (represents a single web resource)

• ClientRequest (represents a request invocation)

• ClientResponse (represents a response from a REST service)

• ClientConfig

• ClientHandler

• InputStreamAdapter

• OutputStreamAdapter

• EntityType

The Apache Wink runtime is deployed in a J2EE application server. It includes a servlet
that accepts HTTP requests. It passes the requests to the Request Processor, which, in turn, passes
control to the application code.

• Request Processor

• Deployment Configuration

• Handler Chains

The Apache Wink distribution includes three main JAR files: 

wink-common-<version>.jar

wink-common-<version>.jar

wink-common-<version>.jar

A bundle also includes all the class files together. You need the JAX-RS JAR file jsr311-
api-1.1.1.jar in the /lib directory, along with several other JAR files to support Wink (listed
shortly).

A JAX-RS application is packaged as a web application in a WAR file. Packaging and
deploying a JAX-RS application depends on whether the application server is JAX-RS aware.
IBM WebSphere is JAX-RS aware with the installation of the Mobile/Web 2.0 Feature Pack.
However, we assume that your application server is not JAX-RS aware. Follow these steps when
deploying a JAX-RS application with Wink:

172 Chapter 4 Standards



ptg8286219

1. Create a root resource. Create a Java class annotated with the @Path tag and add Java
methods for each of the HTTP methods that you need to support. Annotate these meth-
ods with the @GET, @POST, @PUT, and @DELETE tags.

2. Create a class deriving from javax.ws.rs.core.Application. This registers your
resource in step 1 with the Wink framework. (You do not need this step in a JAX-RS-
aware application server.)

3. Create a web.xml file to register org.apache.wink.server.internal.servlet.Rest-
Servlet, which is the entry point for Wink.

4. Package the files into a web container, including the JAR files for commons-lang-
2.3.jar, jaxb-api-2.1.jar, jaxb-impl-2.1.4.jar, stax-api-1.0-2.jar, jsr311-
api-1.1.jar, slf4j-api-1.5.11.jar, and slf4j-jdk-1.5.11.jar.

To create a REST client with Apache Wink, follow these basic steps:

1. Instantiate a RestClient object.

2. Instantiate a Resource object for the URL of the REST service, matching the resource.

3. Invoke the HTTP method.

The ClientConfig configuration class enables you to set security options, such as basic
authentication with the BasicAuthSecurityHandler class.

Business Scenario: File Listing and Retrieval REST Service

Using what you have learned about JAX-RS and Apache Wink, you can create a file listing and
retrieval REST service. The goal is to enable customers to browse and download files that they
have uploaded to the IoTData cloud service. We show how to take the first steps in this direction
by creating a simple REST service to browse and retrieve files on the local file system.

In RSA, create a Dynamic Web Project, named iotdata with context root iotdata. Also
add a new EAR application project, named iotdataEAR. Add the Apache Wink JARs listed previ-
ously to the directory WebContent\WEB-INF\lib. Create a new class called IotFile to represent
file resources with the code shown here:

package com.iotdata.rest;

import java.io.File;

import javax.ws.rs.GET;

import javax.ws.rs.Path;

import javax.ws.rs.Produces;

import javax.ws.rs.core.Response;

@Path(“/iotfile”)

public class IotFile {

private static final String BASE_DIRECTORY = “e:/temp”;

REST 173



ptg8286219

@GET

@Produces(“text/xml”)

public Response get() {

File directory = new File(BASE_DIRECTORY);

StringBuilder sb = new StringBuilder(“<files>”);

String[] filesNames = directory.list();

for (int i=0; i<filesNames.length; i++) {

sb.append(“<file>” + filesNames[i] + “</file>”);

}

sb.append(“</files>”);

return Response.ok(sb.toString()).type(“text/xml”).
build();

}

}

The class defines an IotFile resource with the basic path /iotfile. Using the JAX-RS
@Path annotation, you define a Java method to return the result of an HTTP GET using the @GET
annotation. The output is returned in text/xml format, as specified with the @Produces tag. In
this method, you return the names of all the files in the base directory using the standard java.io
library. Of course, in a real application, you would have to determine the identity of the customer
and check the user’s authorization; you might not use the java.io library in such a straightfor-
ward way. 

Because you are working with a JAX-RS-unaware application server, you add a class to
register your resource with the JAX-RS framework. Create the class IoTApplication with the
following code:

package com.iotdata.rest;

import java.util.HashSet;

import java.util.Set;

import javax.ws.rs.core.Application;

public class IoTApplication extends Application {

@Override

public Set<Class<?>> getClasses() {

Set<Class<?>> classes = new HashSet<Class<?>>();

classes.add(IotFile.class);

return classes;

}

}

174 Chapter 4 Standards



ptg8286219

This code registers the IotFile class. Next, edit the web.xml file, adding the servlet defini-
tion, as shown.

<servlet>

<servlet-name>IoTApp</servlet-name>

<servlet-
class>org.apache.wink.server.internal.servlet.RestServlet</servlet-
class>

<init-param>

<param-name>javax.ws.rs.Application</param-name>

<param-value>com.iotdata.rest.IoTApplication</param-value>

</init-param>

<load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>

<servlet-name>IoTApp</servlet-name>

<url-pattern>/rest/*</url-pattern>

</servlet-mapping>

Deploy this to the application server. When you enter the URL
http://host:8080/iotdata/rest/iotfile

you should see something like the XML shown here:

<files>

<file>timezone.png</file>

<file>timezone2.png</file>

</files>

Of course, you will not see the same files we have in our temp directory. You can allow
users to retrieve files with an additional Java method supporting HTTP GET, shown here:

@GET

@Path(“{fileName}.{extension}”)

public Response getFile(@PathParam(“fileName”) String fileName, 

@PathParam(“extension”) String extension) {

File file = new File(BASE_DIRECTORY + ‘/’ + fileName + ‘.’ +
extension);

if (!file.exists()) {

return Response.status(Response.Status.NOT_FOUND).build();

}

return Response.ok(file).type(getMediaType(extension)).build();

}

The @Path annotation is now used at the method level. It is additive to the @Path annota-
tion, used at the class level. If an HTTP method matching the pattern

iotfile/{fileName}.{extension}”)

REST 175



ptg8286219

is received, the method getFile is invoked. The method checks to see whether the file
exists. If it does not, a NOT_FOUND HTTP status is returned. Otherwise, the file is returned. You
have a little work to do to determine the media type. Otherwise, the REST client might not know
how to process the file returned. Add a private method to sniff the media type based on the file
extension, as shown:

private MediaType getMediaType(String extension) {

if (“png”.equalsIgnoreCase(extension)) {

return new MediaType(“image”, “png”);

} else if (“gif”.equalsIgnoreCase(extension)) {

return new MediaType(“image”, “gif”);

} // ... more media types

return new MediaType();

}

This is a rudimentary implementation that enables you to experiment with the concept. The
media type determines the value of the Content-Type HTTP header. The official list is the IANA
MIME Media Types [IANA, 2001]. Now if you enter this URL 

http://host:8080/iotdata/rest/iotfile/timezone.png

you should receive the file timezone.png. Substitute the name of a file on your own file system
for this. You can try it in a browser.

We can demonstrate a simple client for this REST service using the Apache Wink client
library. First create a new Java project. Add all the JAR files as for the server project but substitute
the Wink client JAR for the server JAR used earlier. The following program consumes the REST
service to list the files.

package com.iotdata.rest.client;

import org.apache.wink.client.Resource;

import org.apache.wink.client.RestClient;

/**

* Demonstrates building a simple client with Apache Wink 

*/

public class IoTDataRESTClient {

public void listFiles() {

RestClient client = new RestClient();

Resource resource =
client.resource(“http://host:8080/iotdata/rest/iotfile”);

String xml =
resource.accept(“text/xml”).get(String.class);

System.out.println(xml);

}

176 Chapter 4 Standards

http://host:8080/iotdata/rest/iotfile/timezone.png


ptg8286219

public static void main(String[] args) {

IoTDataRESTClient client = new IoTDataRESTClient();

client.listFiles();

}

}

The class first instantiates the RestClient object. Then it instantiates a Resource object
for the URL matching a file listing. At this point, the Resource object exists only on the client. To
invoke the GET method, the Java get method is called with a class type of Java String. The output
looks similar to this:

<files><file>timezone.png</file><file>timezone2.png</file></files>

There are several options for processing JSON formatted data. We demonstrate the wink-
json-provider provider, which is based on the open source JSON.org library. A client can indi-
cate that it needs to receive JSON format using the HTTP Accept header. The HTTP headers can
be retrieved using the annotation @Context and by defining a private field class IotFile, as
shown.

@Context

private HttpHeaders headers;

If the value is APPLICATION_JSON, you return JSON. Otherwise, you return XML. The follow-
ing method replaces method get in class IotFile.

@GET

public Response getXmlOrJson() {

// Read the files from the local directory

File directory = new File(BASE_DIRECTORY);

String[] filesNames = directory.list();

// If JSON is supported by the client return JSON

List<MediaType> acceptHeaders =
headers.getAcceptableMediaTypes();

if (acceptHeaders != null) {

for (MediaType mt : acceptHeaders) {

if
(MediaType.APPLICATION_JSON_TYPE.isCompatible(mt)) {

JSONArray files = new JSONArray();

for (int i=0; i<filesNames.length; i++) {

JSONObject file = new JSONObject();

try {

file.put(“name”, filesNames[i]);

} catch (JSONException e) {

e.printStackTrace();

return
Response.status(Response.Status.INTERNAL_SERVER_ERROR).build();

REST 177



ptg8286219

}

files.put(file);

}

return
Response.ok(files.toString()).type(“application/json”).build();

}

}

}

// otherwise, return XML

StringBuilder sb = new StringBuilder(“<files>”);

for (int i=0; i<filesNames.length; i++) {

sb.append(“<file>” + filesNames[i] + “</file>”);

}

sb.append(“</files>”);

return Response.ok(sb.toString()).type(“text/xml”).build();

}

The method uses the JSON.org JSONArray and JSONObject classes to build the response
object. Add the wink-json-provider-1.1.3-incubating.jar and jsonxxx.jar files to the web
application classpath and refresh the web application. To try it, you can use the following client
code:

public void listFilesJSON() {

RestClient client = new RestClient();

Resource resource =
client.resource(“http://host:8080/iotdata/rest/iotfile”);

String xml =
resource.accept(“application/json”).get(String.class);

System.out.println(xml);

}

This client accepts only an application/json MIME type. The result is shown here:

[{“name”:”timezone.png”},{“name”:”timezone2.png”}]

This indicates that two files are available, with the file names timezone.png and 
timezone2.png.

Virtualization
Virtualization standardization is important for the portability of virtual machine images between
clouds. The Open Virtualization Format (OVF) standard is the most widely supported standard in
this area and the only standard discussed in this book. It is used in the IBM SmartCloud Enter-
prise import and copy capabilities. These functions enable you to import a virtual machine image
created in your own local virtual environment to the cloud, to copy an image from the cloud to
your local environment, and to copy an image from one data center to another.

178 Chapter 4 Standards



ptg8286219

Open Virtualization Format
OVF is a standard from the Distributed Management Task Force for packaging virtual machines
for storage and transport, enabling cross-platform portability. The current version is 1.1 (2010),
and the standards group is actively developing the standard further. OVF supports both single vir-
tual machine and multiple virtual machine configurations. It is neutral enough to support multiple
operating systems and hypervisor platforms.

An OVF package includes these files:

• An OVF descriptor file with a .ovf extension

• An OVF manifest with a .mf extension (optional)

• An OVF certificate with a .cert extension (optional)

• Disk image files (optional)

• Additional resource files, such as ISO images (optional)

The OVF package can be tarred into a single package and named with an .ova extension.
The system environment is specified in an XML descriptor containing deployment parameters,
such as IP address, host name, subnet, and gateways. The OVF descriptor contains the following
sections:

• References to external files

• List of disks

• Network information

• Virtual system information (vendor and application information)

• Virtual hardware, such as CPUs and memory

• Operating system information

The goal of OVF is to be a format for storage and distribution of virtual machines rather
than execution. Hypervisor implementations mostly use different formats for execution of virtual
machines. The Virtual Disk Format (VMDK) from VMWare, the Virtual Hard Disk (VHD) for-
mat from Microsoft, and the open source QCOW format are runtime formats. They are often fre-
quently used for storing and distributing virtual machines, but they are not portable. Even though
OVF is not a runtime format, it includes information for startup and shutdown.

Cloud Computing
A number of cloud standard initiatives presently exist. We briefly discuss the IBM Cloud Com-
puting Reference Architecture submission to the Open Group, the Distributed Management Task
Force Cloud Standard Incubator Group, and the Cloud Data Management Interface. Other emerg-
ing standards include the Open Cloud Computing Interface (OCCI) from the Open Grid Forum,
but we do not have space to include them.

Cloud Computing 179



ptg8286219

Cloud Computing Reference Architecture 
The Cloud Computing Reference Architecture was developed within IBM. Its architecture
overview was the basis for a submission from IBM to the Open Group outlining a blueprint and
best practices for developing different models of cloud computing driven by functional and non-
functional requirements. The Cloud Computing Reference Architecture is important to cloud
providers and consumers because it proposes a common terminology, roles, an understanding of
the basic structure of clouds, and design principles. This is critical for providing consistency and
quality across cloud offerings. It outlines the different components in a cloud service to support
various use cases for Infrastructure as a Service, Platform as a Service, Software as a Service, 
and Business Process as a Service, as well as for public, private, community, and hybrid cloud
models.

The Cloud Computing Reference Architecture places special focus on several key architec-
tural elements:

• Operational and business support, to enable automated delivery, management, and han-
dling of all financial and contractual concerns

• Service layer, providing Infrastructure as a Service, Platform as a Service, Software as a
Service, and other services

• Security, performance, resiliency, consumability, and governance as cross-cutting con-
cerns relevant across all elements of a cloud

• Creation and consumption of cloud services

For more on the Cloud Computing Reference Architecture, see the document Introduction
and Architecture Overview: IBM Cloud Computing Reference Architecture 2.0 [Behrendt, 2011].

Distributed Management Task Force Open Cloud Standards Incubator
The Open Cloud Standards incubator group in the Distributed Management Task Force (DMTF) is
active in formulating standards for clouds. The group includes representatives from many leading
companies in the industry. The white paper “Architecture for Managing Clouds” describes the col-
lective high-level view of cloud computing. The white paper “Use Cases and Interactions for Man-
aging Clouds” [DMTF, 2010] describes the scope of the group. Use cases include the following:

• Establishing a relationship (a potential consumer of services establishing the organiza-
tional or individual identity for future use of cloud resources)

• Administering a relationship (for example, adding and removing users of the service)

• Establishing a service contract

• Updating a service contract

• Contract reporting

• Contract billing

180 Chapter 4 Standards



ptg8286219

• Terminating a service contract

• Provisioning resources

• Deploying a service template

• Changing resource capacity

• Monitoring service resources

• Creating a service template (this is creating an image, in the terminology used in this
book)

• Creating a service offering (the service developer creates a new offering)

• Notification (for a variety of different events, such as security events)

Many of these use cases relate to business support systems discussed in Chapter 9, “Opera-
tions and Maintenance on the Cloud,” rather than the operational aspects of managing cloud
resources.

In 2010, many organizations, including IBM, made submissions to the DMTF for a stan-
dard application programming interface for managing cloud resources (IaaS APIs). A draft stan-
dard was released in 2012, and we hope that it will be finalized and adopted by cloud providers to
enable developers to port cloud applications between different clouds.

Cloud Data Management Interface
The Cloud Data Management Interface (CDMI) is a cloud storage standard from the Storage Net-
work Industry Association. The standard refers to this type of service as Data Storage as a Ser-
vice. The standards define how applications can create and manage storage elements in the cloud,
in addition to discovering the storage capabilities of the cloud provider and managing associated
administrative resources (including containers, accounts, security access, and monitoring and
billing information). The standard is designed to be generic enough to support Internet file sys-
tems, cloud bucket type storage systems, block-based storage, and other types of storage systems.
It enables you to build portable applications that rely on cloud storage services.

One of the challenges of a cloud storage API is being able to handle streaming and events
when uploading and downloading large files over the Internet. CDMI handles this with queues.

Business Scenario: IoT Data Use of Standards
The Internet of Things (IoT) is a rapidly evolving area that undoubtedly will include many stan-
dards. Right now, however, the main question for IoT Data is, what standards should the enter-
prise expose to IoT Data customers, to allow them to most easily make use of the service? Many
of the devices on the IoT are simple, so REST is a good choice: It is simple and neutral toward
programming language and is also a natural extension of the IoT itself. With the addressability
principle, each device can have its own web site:

http://example.com/devices/id

Business Scenario: IoT Data Use of Standards 181

http://example.com/devices/id


ptg8286219

Devices can be browsed using this URL:

http://example.com/devices

Organizations themselves are entities and can be browsed with the following URL:

http://example.com/organizations/{org-id}

Organizations can elect to be listed and make their data available publicly. In any case, the
URLs will be the same, and access control rules determine visibility.

The data itself can up uploaded, downloaded, and searched with the CDMI REST standard.
IoT Data can create an implementation of this standing using JAX-RS. Beyond being a standard
that makes use of a well-understood and interoperable programming model, it includes metadata
representation for access controls, which is an important aspect of cloud storage.

182 Chapter 4 Standards

http://example.com/devices/id
http://example.com/organizations/


ptg8286219

183

C H A P T E R 5

Open Source Projects

The goal of this chapter is to provide an outline of open source projects that are related to IaaS
cloud management and comment on how these can be either used in creating cloud applications
or extended further.

Virtualization Projects
We start with a small selection of virtualization projects because virtualization is the foundation
of cloud computing. Table 5.1 summarizes the different virtualization projects.

Table 5.1 Summary of Open Source Virtualization Projects

Project Description

KVM Virtualization platform built into the Linux kernel

libvirt Virtualization-management API written in C

Xen Virtualization platform

The following sections discuss each project in more detail.

Kernel-Based Virtual Machine (KVM)
KVM was introduced in the “Virtualization” section in Chapter 1, “Infrastructure as a Service
Cloud Concepts.” It is an open source virtualization solution for x86 hardware implementing
Intel VT or AMD-V virtualization extensions. KVM uses a kernel-based virtualization model
and is now included in the Linux kernel. It also relies on some processor-specific extensions and



ptg8286219

leverages the QEMU open sources project. KVM can run Linux and Windows virtual machines.
KVM is included by default in the Red Hat Enterprise Linux (RHEL) images on the IBM Smart-
Cloud Enterprise.

You can tell whether your hardware supports the required extensions by looking in the
/proc/cpuinfo file. Entries for either vmx (Intel) or svm (AMD) should appear in the file. An
example for an Intel Core Duo chip is shown in bold:

processor    : 0

vendor_id    : GenuineIntel

...

flags        : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge
mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe
syscall nx lm constant_tsc arch_perfmon pebs bts rep_good nopl
aperfmperf pni dtes64 monitor ds_cpl vvmmxx est tm2 ssse3 cx16 xtpr pdcm
sse4_1 xsave lahf_lm ida dts 

You can compare this to the CPU information from a virtual machine on IBM SmartCloud
Enterprise, shown here:

processor       : 0

vendor_id       : GenuineIntel

cpu family      : 6

model           : 6

model name      : QEMU Virtual CPU version 0.9.1

...

flags           : fpu de pse tsc msr pae mce cx8 apic sep mtrr pge mca
cmov pat pse36 clflush mmx fxsr sse sse2 syscall nx lm up pni

Notice that no vmx flag exists for the virtual machine, so you cannot run a KVM hypervisor
on it. Similarly, there is often no vmx CPU flag for virtual machines running on Xen.

KVM introduced a new mode of execution to the Linux kernel, in addition to kernel and
user modes. The new mode, called guest mode, has its own user and kernel modes. Guest mode
is not used unless the code executes I/O instructions, when it falls back to user mode. The KVM
module added a new character device driver to expose virtual hardware to guest operating
systems.

The kernel-based virtualization model allows more complete support of the Linux OS.
KVM makes the hypervisor a part of the kernel, which reuses a huge body of Linux code for this
purpose. This is a different approach than in Xen and VMWare, which have independent modules
to do this.

Virtio is the main I/O virtualization platform for KVM, used to support block storage and
network devices.

You can install KVM and the virtio libraries with the following commands:

# yum install kvm

# yum install virt-manager libvirt libvirt-python python-virtinst

184 Chapter 5 Open Source Projects



ptg8286219

You can create a virtual machine image using the QEMU commands, described next. The
kvm command starts new virtual machines.

The Open Virtualization Alliance is a group of virtualization, data center, and cloud solu-
tion providers that promotes the awareness, understanding, and use of KVM.

QEMU
QEMU is an open source machine emulator and virtualization tool. QEMU runs on Windows and
Linux on x86 systems. It can emulate a number of CPU architectures, including MIPS, PowerPC,
and SPARC. Xen and KVM rely on QEMU libraries when running in certain modes. QEMU by
itself performs in emulation mode, which can be slow. For better performance, you can install
kqemu, which allows it to run directly on the host processor. QEMU Manager is a graphical user
interface front end to QEMU for Windows. The current version of QEMU is 0.15.

You can install QEMU on Red Hat or Fedora with this command:

# yum install qemu-launcher

Figure 5.1 shows the first page of the QEMU Manager New Virtual Machine Wizard.

Virtualization Projects 185

Figure 5.1 QEMU Manager New Virtual Machine Wizard

In this step, you select the VMStore, architecture, and operating system. In the next step,
you set memory, virtual disk size, and image format. The supported formats are qcow (native
QEMU format), raw, and VMDK (VMWare image format). After you create a new virtual
machine, you can see it in the console, as shown in Figure 5.2.



ptg8286219

Figure 5.2 QEMU Manager console

You can download some QEMU images from the QEMU project web site to try it out.
On Linux, you create an image file with this command:

$ qemu-img create -f qcow myimage.img 10G

This creates a 10 G file for an image with the QEMU qcow format. You can start a virtual
machine with this command:

$ qemu-system-x86_64 -boot d -cdrom /images/myimage.iso -hda
myimage.img

This starts a virtual machine session that installs an operating system based on an ISO
image mounted as a CD-ROM using the image file myimage.img. After the operating system is
installed, you can run it with this command:

$ qemu-system-x86_64 myimage.img

libvirt
libvirt is a C library to invoke virtualization capabilities in Linux. It was originally designed as 
a management API for Xen, but it now supports KVM, QEMU, Xen, VMWare, Microsoft 

186 Chapter 5 Open Source Projects



ptg8286219

Hyper-V, and other hypervisors. libvirt supports remote management of virtual machines, virtual
networks, and storage using secure protocols. libvirt has bindings in other languages than C,
including Python, Perl, Ruby, Java, and PHP. It also includes a command-line tool called the vir-
tualization shell, or virsh. Graphical user interfaces, such as Virtual Machine Manager, use libvirt
to manage virtualized resources. The current version of libvirt is 0.9.4-1.

libvirt can be used either locally or remotely. It uses a daemon called libvirtd to support
remote communication.

The libvirt resource model centers on the following entities:

• Node—A single physical machine

• Hypervisor—A process that allows virtual machines to be run on the node

• Domain—An instance of an operating system running on a virtual machine

• Snapshots—An image of a virtual machine

There is an XML description of the different resources. The XML schema for domain
includes the follow elements:

Virtualization Projects 187

• BIOS bootloader

• Host bootloader

• System information

• CPU model and topology

• CPU allocation—virtual CPUs

• CPU tuning

• Memory allocation

• NUMA mode tuning

• Block I/O tuning

• Lifecycle control

• Hypervisor features

• Devices

• Filesystems

• Network interfaces

• Graphic framebuffers

• Video devices

• Consoles

• Security

The libvirt CPU concept is that a number of virtual CPUs (VCPUs) can be allocated to a
virtual machine, and the VCPUs can optionally be pinned to one or more physical CPUs.

You can use the virsh command to launch virtual machines after creating a domain.xml
file. This is the basic form of the create command:

$ virsh create domain_file.xml

To list active domains, use this command:

$ virsh list

A number of other commands enable you to save, restore, reboot, suspend, and restore vir-
tual machines.



ptg8286219

Xen
Xen is a open source virtualization solution for x86, IA_64, ARM, and other hardware. The
project includes a hypervisor and related tools. Xen can run Linux, Windows, and other operating
systems.

Xen originated at the University of Cambridge Computer Laboratory in 2001 as part of the
XenoServer project. It was first described in an academic paper in 2003 at an Association of
Computing Machinery (ACM) symposium. The company XenSource was founded in 2004 to
promote commercial adoption. Citrix acquired XenSource in 2007.

With Xen, a special privileged domain called Domain0, or Dom0, is used to control the guest
virtual machines, or guest domains, and to manage the hardware. The hypervisor gives each 
guest domain some of the physical system resources. It exports simplified devices to the guest
domains. For example, if the physical network device is a Linksys or 3Com Ethernet card, the
guest domain sees a simplified network device. Storage block devices are also exported to the guests
as generic block devices.

To install Xen on SUSE 11, start YaST and choose Virtualization, Install Hypervisor and
Tools. On the next screen, select Xen. Then select Networked Bridge Configuration and click
Install. To make the version of the OS with Xen installed the default upon booting, in YaST,
select System, Boot Loader and then reboot. You might experience issues with running a Xen-
enabled guest on a cloud that is based on KVM, such as IBM SmartCloud, because of a conflict
between the two virtualization systems.

In x86 are four protection rings that act as privilege levels. Xen makes use of these to iso-
late and manage different guest operating systems. Ring 0 is the most privileged level; ring 3 is
the least privileged. The Xen hypervisor runs in ring 0, the guest operating system in ring 1, and the
guest user-level applications in ring 3. The Intel and AMD processor virtualization extensions
provide alternate ways to achieve the same purpose. Guest domains are called DomU, or unprivi-
leged domains. With the Intel VT extensions present, the Xen hypervisor operates in a mode
called Virtual Machine Extensions (VMX) root operation mode, and the guest operating system
operates in VMX nonroot mode. Xen uses the Hardware Virtual Machine (HVM) interface to
abstract the differences between Intel and AMD processors.

Cloud Projects
This section gives a brief overview of several open source cloud projects. Eucalyptus and Open-
Stack could be utilized to build private clouds. LibCloud and DeltaCloud could be utilized to
build management utilities for cloud resources.

Eucalyptus
Eucalyptus is an open source cloud-management platform sponsored by Eucalyptus Systems,
Inc. It provides Infrastructure as a Service (IaaS) based on Linux. Eucalyptus is hypervisor 
neutral and can currently run (as of version 2.0) on KVM or Xen hypervisors. Eucalyptus also

188 Chapter 5 Open Source Projects



ptg8286219

interoperates with public clouds, presently supporting Amazon’s EC2. This capability enables
customers to support a private-public hybrid cloud model with a private cloud running Eucalyp-
tus on their own premises and using public cloud resources on EC2. Eucalyptus even uses AWS-
compatible APIs for access to its own resources and includes an S3-compatible bucket storage
manager called Walrus. Using this service, objects are stored as data into buckets with user-
defined keys.

You can try Eucalyptus online via a test drive hosted system. 

Apache Libcloud
Apache Libcloud is a cloud-management API written in Python. It provides a uniform API that
connects to multiple cloud providers, including the IBM SmartCloud Enterprise. Its goal is to
provide a basic yet functional cloud library. Libcloud includes modules for managing virtual
machines, storage, and load balancers. The current version is 0.5.2. It depends on Python 2 and
will not run on Python 3. 

To install Libcloud, download and unzip the ZIP bundle, change to the module directory,
and type the following command:

$ python setup.py install

The setup.py script is included in the bundle.
In Libcloud terminology, a node is a virtual machine instance. The following script gives a

list of your virtual machine instances.

from libcloud.compute.types import Provider

from libcloud.compute.providers import get_driver

SCE_USERNAME= ‘a.user@example.com’

SCE_PASSWORD = ‘***’

Driver = get_driver(Provider.IBM)

conn = Driver(SCE_USERNAME, SCE_PASSWORD)

nodes = conn.list_nodes()

print(‘No. of virtual machines found:’, len(nodes))

In this example, the values for user name and password SCE_USERNAME and SCE_PASSWORD
are intended to be stored in environment variables. The function get_driver() gets a driver that
is appropriate for the cloud provider. The Driver class is initialized with a constructor that cre-
ates a connection to the cloud with the identity of the user. Finally, the method list_nodes()
returns a list of virtual machine instances that are printed to the console. Classes for different
cloud providers exist. When executing the script, you get a warning about the certificate not being
checked; the site has instructions for fixing this. The output from the script is shown here:

(‘No. of virtual machines found:’, 1)

Cloud Projects 189



ptg8286219

The following method gives a list of images:

...

images = conn.list_images()

The first part of the script is identical to the first example.

Delta Cloud
Delta Cloud is a cloud-management API with a similar goal to that of Apache libCloud: to pro-
vide a standard interface to access multiple clouds. It is also an Apache incubator project. Delta
Cloud provides a REST API that acts as a proxy to multiple cloud providers, including the IBM
SmartCloud Enterprise. The project was initiated by Red Hat and is aligned with its REST API
for enterprise virtualization. In addition to the REST API is a Ruby client and C library. The cur-
rent version is 0.3.0.

The model for compute entities in the REST API includes the following resources:

• Realms

• Hardware profiles

• Images

• Instances

• Keys

• Firewalls

• Addresses

• Load balancers

A realm is a container for compute resources, like a data center or a pool of resources
within a data center.

The model for storage entities includes the following resources:

• Storage volumes

• Storage snapshots

• Blob storage

OpenStack
OpenStack is an open source project that includes a full Infrastructure as a Service cloud platform
for public and private clouds. Sponsored by Rackspace and NASA, it was launched in 2010.
OpenStack leverages both the Rackspace and the NASA Nebula cloud computing platforms. It is
released with an Apache license and was developed in Python. The OpenStack platform includes
compute, storage, and image repository services. 

190 Chapter 5 Open Source Projects



ptg8286219

The compute service includes infrastructure for managing a network of virtual machines
and networks, including a control panel and API. Access is managed using role-based access
control through users and projects. The compute module is hardware and hypervisor agnostic.

The storage service, called the OpenStack Object Store, or Swift, is a scalable redundant
storage system. It is an object store, not a file system.

The image service provides discovery, registration, and loading of virtual machine images.
It integrates with the OpenStack Object Store for storing the images. It supports a number of
image formats, including Raw, AMI, Hyper-V, VDI, qcow2, VMDK, and OVF.

Cloud Foundry
Cloud Foundry is an open source project sponsored by VMWare that focuses on Platform as a
Service. It supports multiple cloud providers and application services. The app execution engine
runs applications in Rails, Java, and other languages. A request router accepts all HTTP requests
to the application and routes them. Cloud Foundry includes an autoscale feature that distributes
requests using a request router to multiple application execution engines. A cloud controller
loads and unloads applications. A set of services provides functions such as data persistence that
applications can leverage. A health monitor checks the health of the application and restarts it if 
necessary.

Hadoop
A distributed file system is one that can span many nodes. The Hadoop Distributed File System
(HDFS) is an example of such a distribute file system used by many large web sites with huge
storage requirements. Apache Hadoop is the open source project that supports HDFS. Hadoop
also includes a wider platform that supports a MapReduce distributed programming framework.
It consists of four parts:

• Hadoop Common

• Hadoop Distributed File System (HDFS)

• MapReduce, a framework for distributed processing of large data sets

• ZooKeeper, coordination service

The prerequisites for Hadoop are Secure Shell (SSH) and the Secure Shell server (SSHD).
HDFS is a fault-tolerant, distributed file system designed to run on low-cost hardware. It

allows streaming for large data sets, which typically are gigabytes or terabytes in size. HDFS is
designed for batch processing with a write-once, read-many use pattern rather than interactive
use. This fits applications such as web crawlers or map-reduce applications.

Hadoop supports a style of programming called map/reduce. In this style, a large task is
broken down into small pieces, the pieces are computed individually, and the pieces finally are
combined into a whole. A central application of this is combining data from the HDFS file system
that is spread over many nodes in the cluster. Hadoop provides a fault-tolerant system, which is
important because, with many nodes in a cluster, the chance of any one failing goes higher.

Cloud Projects 191



ptg8286219

ZooKeeper is a service for maintaining configuration and naming information and for pro-
viding distributed synchronization.

Many large-scale business applications use Hadoop. For example, Yahoo! Search uses a
10,000-machine Hadoop cluster. According to the Hadoop web site, Rackspace, Amazon, and
Facebook also use Hadoop.

Setting up Hadoop
The prerequisites for Hadoop are Java 6 SE and SSH. We run Hadoop 0.20.2 on Linux. 

Hadoop can run in three modes:

• Stand-alone—Everything runs as one process, with no daemons

• Pseudo-distributed—Simulates a cluster with only one node

• Distributed—Fully clustered

Stand-alone and pseudo-distributed modes are suitable for development and testing. Dis-
tributed mode is necessary for production use. In stand-alone mode, the only configuration step is
to set your JAVA_HOME environment variable. Let’s set up Hadoop in pseudo-distributed mode.
Download Hadoop and execute these commands as root:

# mkdir /etc/hadoop

# mv ~idcuser/Desktop/hadoop-0.20.2.tar.gz /etc/hadoop

# chown -R webadmin:users /etc/hadoop

This sets up /etc/hadoop as the install directory for Hadoop. Add the following lines to
~webadmin/.bashrc as webadmin:

export HADOOP_INSTALL=/opt/hadoop/hadoop-0.20.2

export PATH=$PATH:$HADOOP_INSTALL/bin

Execute the following commands as webadmin:

> cd

> . ./.bashrc

Add the webadmin user to /etc/ssh/sshd_config:

AllowUsers idcuser webadmin

Restart the SSH service. Execute the following commands as webadmin to enable SSH
login without a password:

> ssh-keygen -t rsa -P ‘’ -f ~/.ssh/mykey

> cat ~/.ssh/mykey >> ~/.ssh/authorized_keys

Try it using the command ssh local. You should not have to enter a password. See the
“Secure Shell (SSH)” section in Chapter 7, “Security,” for more on SSH. 

192 Chapter 5 Open Source Projects



ptg8286219

Edit the core-site.xml file in the directory $HADOOP_INSTALL/conf, as shown:

<?xml version=”1.0”?>

<configuration>

<property>

<name>fs.default.name</name>

<value>hdfs://127.0.0.1/</value>

</property>

</configuration>

Edit the hdfs-site.xml file as shown:

<?xml version=”1.0”?>

<configuration>

<property>

<name>dfs.replication</name>

<value>1</value>

</property>

</configuration>

Edit the mapred-site.xml file:

<?xml version=”1.0”?>

<configuration>

<property>

<name>mapred.job.tracker</name>

<value>127.0.0.1:8021</value>

</property>

</configuration>

Format the Hadoop file system using this command:

> hadoop namenode -format

Start the HDFS and MapReduce daemons using these commands:

> start-dfs.sh

> start-mapred.sh

Add a firewall rule for port 50030, as explained in the section “Firewalls” in Chapter 7.
Bring up the Hadoop MapReduce Administration page, at http://host:50030, as shown in 
Figure 5.3.

Add another firewall rule for port 50070 and then bring up the NameNode administration
page at address http://host:50070. This is shown in Figure 5.4.

Cloud Projects 193



ptg8286219

Business Scenario: Data Management
We chose Hadoop for data management for IoT Data because it is a scalable, low-cost solution.
MapReduce is a better framework for managing large amounts of data as a whole, compared to a
relational database, which is more efficient at updating small pieces of data and point queries.
MapReduce is also a more efficient system when the data is stored once and read many times. In
IoT Data’s business scenario, the devices store data continuously but never change data after it
has been stored. In addition, MapReduce works well on the semistructured or unstructured data
that the many different devices store to the data repository. Hadoop is also an extensible frame-
work that will allow IoT Data to grow its business to applications, such as hosting applications to
process the data stored by the network of devices. The enterprise might find it useful to support
applications that are very data intensive, such as processing environmental data remotely col-
lected from satellites.

Figure 5.3 Hadoop MapRed administration page

194 Chapter 5 Open Source Projects



ptg8286219

Business Scenario: Data Management 195

Figure 5.4 Hadoop NameNode administration page



ptg8286219

This page intentionally left blank 



ptg8286219

197

C H A P T E R 6

Cloud Services and
Applications

The goal of this chapter is to give ideas, show examples, and discuss possible directions for cloud
applications, especially those that make use of IaaS management APIs. Many interesting ideas
for creating cloud applications combine Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), and Software as a Service (SaaS). Examples of the recent activity in the area of cloud
applications, although not IaaS, are the SalesForce AppExchange, Google Chrome Web Store,
and Mozilla Prism, a new framework for hosting web applications that is currently under devel-
opment.

Creating and Customizing Images
Virtual machine images are important assets in cloud computing and can be a building block for
cloud services. Most IaaS clouds enable users to save instances as images and then to reinstanti-
ate that image later, as needed. This capability enables you to easily save images that you cus-
tomize and share them with your colleagues. However, depending on how widely you want to
share your image, you might need to go further to make it easy to use and extend your image. The
IBM SmartCloud Enterprise offers many options for customizing and sharing images with oth-
ers, especially for images that will become master images added to the catalog available to all
other cloud users. This section looks at some of these concepts and how to use the features on the
IBM SmartCloud Enterprise.

Creating an image for use by others can include these steps:

1. Extend a base operating system image by adding data and software.

2. Customize firewall and other security settings to allow your image to work easily out of
the box.



ptg8286219

3. Clean up runtime data.

4. Add terms and conditions for the use of your software.

5. Parameterize settings that will vary from user to user.

6. Create startup scripts.

7. Create a topology describing your image.

8. Create user documentation.

9. Create a catalog description.

Virtual machine instances on the IBM SmartCloud Enterprise consist of these elements:

• The bits that make up the image of the virtual machine image, including the operating
system and other software.

• Documentation on how to use the virtual machine, including a “Getting Started Guide,”
stored in the image catalog in Rational Asset Manager.

• Elements that you need to extract or templatize so that they can be set by the user who
creates the image. This includes a parameters.xml file for passing parameters, such as
initial passwords.

• Data values supplied to you by the user who creates an instance of the image, such as the
values of initial passwords.

• Data values supplied by the cloud, such as IP address and host name.

When creating an image that you want to share with others, consider which elements will
be unique to each particular instance. IP address and host name will be unique to every instance,
but your image might have something special, such as a particular kind of user ID and password
or the URL of a service. For example, the WebSphere image used in the section “WebSphere
Application Server” in Chapter 2, “Developing on the Cloud,” gave the user the choice of a devel-
opment profile or a production profile when provisioning the WebSphere server. The IBM Smart-
Cloud Enterprise API enables you to pass this data from your application through to the instance
when it starts up, without requiring the application to ever connect directly to the instance. As an
example, Figure 6.1 shows the files that are included with the IBM Rational Team Concert image.

Parameters passed into the image at creation time will be passed into the instance and will
be available under /etc/cloud/parameters.xml. A basic image with no parameters passed in at
instance creation time has a simple parameters.xml file that looks like this:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes”?>

<parameters>

<firewall>

<rule>

<source>0.0.0.0/0</source>

<minport>1</minport>

<maxport>65535</maxport>

198 Chapter 6 Cloud Services and Applications



ptg8286219

</rule>

</firewall>

</parameters>

This contains firewall data for iptables.

Creating and Customizing Images 199

Figure 6.1 Files included with the IBM Rational Team Concert image catalog entry

The Linux operating system provides startup customization integration points using scripts
in the init.d directory, which are linked to the rc.d directories for each of the Linux run levels.
The scripts also act as interfaces to services, allowing management by a system administrator.
The Red Hat base images contain scripts /etc/init.d/cloud-startup3.sh and /etc/init.d/
cloud-startup5.sh that can be used to provide integration points for startup customization. The
SUSE Linux Enterprise images have similar scripts. Windows customization and startup is dif-
ferent because Windows virtual machine images cannot be manipulated as open file systems.

The file scripts.txt, stored in the image catalog entry in Rational Asset Manager (RAM),
is a special file that stores name-value pairs of files that are copied to the instance during provi-
sioning. The name is the name of the file in RAM, and the value is the target location for the file
to be placed on the instance after provisioning. Consider the contents of scripts.txt for the
IBM Rational Team Concert image:

rtcsvc=/etc/init.d/cloud-startup3.sh



ptg8286219

See the paper “Creating and Customizing Images” [Goodman, 2009] for more on images
on the IBM SmartCloud Enterprise. The paper describes a simple cloud storage application based
on an NFS server. It uses a Perl script to extract location and permission data supplied by the end
user at provisioning time to configure the NFS server. Perl is a good choice of language to do this
for Linux operating system features because it is lightweight and present with the Linux images
provided on IBM SmartCloud Enterprise.

A cloud virtual machine image is not the same as a snapshot of a virtual machine. An image
is intended to be portable and to be reused. A snapshot is intended as a backup of a virtual
machine and includes runtime data. To our knowledge, no public clouds support snapshots in this
sense. However, the concept is demonstrated by VMWare virtualization products that enable you
to save a snapshot of a virtual machine. Multiple snapshots are related to each other, and only
incremental data is saved, resulting in storage and performance efficiency. In VMWare terminol-
ogy, a virtual machine image is called a template.

When creating an image to share with others, make sure that you clean up all logs on the
system. Otherwise, you will be sharing log information with people who use your image.

Operating Systems Specifics
Some commands work differently on different systems. In this book, we use the Red Hat Enter-
prise Linux and SUSE Linux Enterprise operating systems primarily for examples. Many other
Linux distributions and UNIX systems are similar. If you need to programmatically determine
the operating system and version, you can do so in several ways. To find basic information on the
Linux kernel, use the uname command:

# uname -a

Linux vm-10-200-7-154 2.6.18-194.el5 #1 SMP Tue Mar 16 21:52:39 EDT
2010 x86_64 x86_64 x86_64 GNU/Linux

Red Hat systems have a file called in the /etc directory—for example:

# cat /etc/redhat-release

Red Hat Enterprise Linux Server release 5.5 (Tikanga)

Some other Linux distributions maintain entries in the /proc directory tree—for example:

# cat /proc/version

Linux version 2.6.18-194.el5 (mockbuild@x86-005.build.bos.redhat.com)
(gcc version 4.1.2 20080704 (Red Hat 4.1.2-48)) #1 SMP Tue Mar 16
21:52:39 EDT 2010

Modeling Deployment Topologies
Deployment topology modeling is an area being vitalized with considerable recent activity, and it
has important applications in cloud computing. A deployment topology model describes how a
solution can be deployed and configured. IBM Rational modeling tools, particularly Rational

200 Chapter 6 Cloud Services and Applications



ptg8286219

Software Architect, can help you create deployment topologies that describe deployment archi-
tectures, integrate with UML models, and integrate with Rational Asset Manager. The tools are
intended to bridge the gap between design and deployment. Application developers and deploy-
ment engineers thus can plan a proper environment for an application, including sufficient hard-
ware and dependent software with correct versions. Enterprises also can thus enforce best
practices and standards on deployments, such as standard hardware and software stacks. The
topology palette includes middleware, operating systems, hardware, networking, storage, and
virtualization, and it enables you to add your own items.

Deployment topology modeling encourages a number of best practices, including these:

• Thinking about deployment earlier in the cycle and prompting designers and developers
to think about deployment

• Sharing and reusing deployment topologies

• Enforcing architectural decisions

• Validating deployment scenarios 

In the IBM SmartCloud Enterprise, details from the topology models for each image are
shown with the asset in the catalog in Rational Asset Manager. Using these, you can reuse the
expert knowledge of the people who created the images directly. As an example, Figure 6.2
shows the topology model for the WebSphere Application Server image.

Creating and Customizing Images 201

Figure 6.2 Partial topology for WebSphere application server in IBM SmartCloud Enterprise
catalog

Topologies contain units and links. Units are parts of the deployment architecture, such as
hardware, an application server, a relational database, an operating system, EAR and WAR files,
and so on. Links show the connections between the units. You can begin planning directly with a
topology diagram, or you can import elements from a UML model into a topology that provides a



ptg8286219

logical model of the application. To create a topology model, switch to Deployment view and
select File, New, Topology from the main menu in Rational Software Architect.

Topology models can have one or more diagrams. The diagrams show different views, such
as a subsystem or a specific aspect, but the model itself contains the items and the links. Different
levels of abstraction can also exist—typically these:

• Logical model, which shows the application and infrastructure at a high level

• Physical model, which shows the specific types of servers and devices

• Deployment model, which shows the actual servers to be deployed

You can get started with topology models using the Rational Software Architect 8.0 image
available on the IBM SmartCloud Enterprise. This image makes use of the NX Client remote
desktop, as explained in the later section “NX Remote Desktop.” After provisioning a Rational
Software Architect instance and connecting via the NX Client, you should see a desktop like the
one in Figure 6.3.

202 Chapter 6 Cloud Services and Applications

Figure 6.3 Rational Software Architect remote desktop

Double-click on the Rational Software Architect desktop icon to start it. Then follow these
steps:

1. Dismiss the Welcome screen. 

2. Create a new modeling project using the File, New, UML Project menu item. Name the
project IoTData.

3. Switch to Deployment view using the menu item Windows, Open Perspective, Other
and then selecting Deployment.

4. Create a new topology model using the File, New, Topology menu item.



ptg8286219

Modeling at a logical level can be an easy way to begin the deployment model and enable
you to start earlier in the development cycle. In a logical model, you typically show the logical
components of the application, computing nodes, locations, and constraints. This can include
specific constraints, such as the version of a Java runtime environment or other software depend-
encies, but it can also leave out some items. For example, your application might not depend on a
specific operating system, so you can leave that out, even though some kind of operating system
is needed for a real deployment. As an example, Figure 6.4 shows a logical model of a storage
application.

Creating and Customizing Images 203

0 0

1

0

0

0

1 2Component

Actor
End User 

Server Manager

1 2Component

Location

Storage Manager

Actor
System Administrator 

Node
Database

Node
Application Server

1 2

North Carolina

DataDeploymentUnit
DataStore

Figure 6.4 Logical topology model of IoT data application

In the logical model, there are two components: storageManager and serverManager.
There is a hosting link between these components and the node that represents the application
server they run on. There is also a data store and a hosting link to the database server it resides on.
A network connection constraint link exists between the application server and the database
server. At this point, the Node items represent servers in general; we do not know what specific



ptg8286219

kinds of servers they are or what operating systems would run on them. The servers are all
located at the North Carolina data center. The model was created in Rational Software Architect
by importing a UML model with components and dragging items from the topology palette to the
diagram.

A hosting link is a constraint that tells you that you need a unit to a particular component.
For example, a web component needs to be hosted on an web application server. The hosting con-
straint in Figure 6.5 shows how to do that.

204 Chapter 6 Cloud Services and Applications

Figure 6.5 An example of a hosting constraint

An infrastructure diagram shows different network or security zones. An example of an
infrastructure diagram for the IoT Data system is shown in Chapter 7, “Security.”

A physical model shows the specific types of hardware, operating systems, middleware,
hardware, and other devices. A realization link connects the logical model to the physical model by
introducing a constraint that tells what kind of unit a node can be realized as. A realization link is
more specific than a hosting link. For example, your web component has a hosting requirement on
a web application server that can be realized with WebSphere Application Server (see Figure 6.6).

Application Server
Node

Hosting Link 

Realization Link 

Web Component
Component

1 2 

0 0 

WebSphere Application Server
Unit

0 0 

Figure 6.6 Hosting links and realization links



ptg8286219

An infrastructure diagram at a physical level might show DMZ, Internet, intranet, and
physical network zones.

The topology files for physical models for the images in IBM SmartCloud Enterprise are
included in the catalog, hosted in Rational Asset Manager. Find the image in the catalog, click
Content, and download the .topology file. To see it in Rational Software Architect, copy the
topology file to the topologies directory of your Rational Software Architect project and refresh
it. Figure 6.7 shows the topology diagram for Websphere 7.0.

Creating and Customizing Images 205

Software Installation
2 

IBM Rational Agent Controller V8.1.3

2 

Software Installation 2 

IBM WebSphere Application Server V7.0

2 

Software Installation
IBM Installation Manager  V1.3.4

2 2 

SUSE Linux Server 11
2 2 

<no hostname>

Server1 0 

Realize Server Configuration 

Software Installation
2 2 

IBM WebSphere Update Installer V7.0.0.9
Software Installation

2 2 

IBM Tivoli Monitoring Agent V6.1

Software Installation
2 2 

IBM Installation Manager for WebSphere V1.3.4.1

Figure 6.7 IBM SmartCloud Enterprise WebSphere Application Server 7.0 topology model

The topology shows the software installations included, each of which links to the operat-
ing system, SUSE Linux Enterprise 11. The different feature packs and Java Development Kit are
included within the WebSphere Application Server installation. The IBM SmartCloud Enterprise
catalog includes two topology files for each catalog entry: a .topology file that describes the
model and a .topologyv file that describes the diagram. Figure 6.8 shows the DB2 9.7 topology
model. 

This model includes the installations included, as well as the database instance and a
sample database. These physical items can be linked to the logical model of your application
using realization links. You can add these topologies to Rational Software Architect by right-
clicking them in the project explorer and selecting the Add to Palette menu item.

A deployment model creates an application scenario. It includes the host names of the
actual servers the application will be deployed on. In the earlier WebSphere Application Server
and DB2 examples, the server configurations are omitted. During this process, Rational Software
Architect warns you of unresolved dependencies, which ensures that you have satisfied all the
necessary prerequisites for deployment. For production installation, you can go further, including
specifying an IP subnet, firewall, and other items.



ptg8286219

Figure 6.8 IBM SmartCloud Enterprise DB2 Enterprise 9.7 topology model

Deployment models are so specific that they can be used by tools for automated deploy-
ment. You can use topology models with Rational Build Forge to model automated deployment
tasks. WAS also provides additional functionality for automation with topology models. You can
integrate with Tivoli Change and Configuration Management Database. Topology modeling is
used later in the section “Cloud Software Bundles.”

Services
This section covers some relatively old technologies that are finding new uses in cloud comput-
ing, especially in the area of virtual machine image development.

206 Chapter 6 Cloud Services and Applications

dasadm1

ssh

URL = http://$ipaddress

Cloud Client
User

50001

Instance Owner

db2fadm1

db2iadm1

db2inst1

idcuser

idcuser

IBM Tivoli Monitoring Agent

Port Config

Rational Build Forge Agent 7.1.1

Rational Agent Controller 8.1

db2fenc1

dasusr 1

SUSE Linux Server
hostname

0
Server

<Realize with System Type>

1

DB2 9.7 System
DB2 9.7.1

2 1

7 1

db2inst1

SAMPLE

Port Configuration



ptg8286219

Linux Services
When customizing images, you will probably make use of system services. In Linux, the init
command manages process control initiation. It is the parent of all processes, invoked as the last
step in the kernel boot process. For the RHEL and SUSE images in the IBM SmartCloud Enter-
prise catalog, this creates the processes stored in the /etc/inittab file based on UNIX System
V–style run levels. Table 6.1 shows typical Linux run levels as used in Red Hat and SUSE.

Table 6.1 Typical Linux Run Levels

Level Description

0 Shut down the system

1 Run in single-user mode

2 Run in multiuser mode without networking or starting daemons

3 Run in multiuser mode with networking, with console login only

4 Not used

5 Run in multiuser mode with networking and X Windows

6 Reboot the system

We usually manage services with commands other than init, such as the service and chk-
config commands. You can use the service command to find the status of the different services
on a system, as shown here:

# /sbin/service —status-all

anacron is stopped

atd (pid  2384) is running...

auditd (pid  1741) is running...

automount (pid 2089) is running...

...

In general, the command is used to run an init script located in /etc/init.d/SCRIPT. It has
this form:

# service SCRIPT COMMAND [OPTIONS]

Most scripts have at least a start and a stop function. For example, the script for running
the firewall iptables service /etc/init.d/iptables contains the functions start, stop, save,
status, and restart, among others. You can use the service command to start the iptables ser-
vice, as shown:

# /sbin/service iptables start

Services 207



ptg8286219

A related command is chkconfig, which updates and queries run-level information for sys-
tem services in the /etc/rc[0-6].d directories. To query system services, use a -list argument:

# /sbin/chkconfig —list

NetworkManager  0:off   1:off   2:off   3:off   4:off   5:off   6:off

acpid           0:off   1:off   2:on    3:on    4:on    5:on    6:off

anacron         0:off   1:off   2:on    3:on    4:on    5:on    6:off

atd             0:off   1:off   2:off   3:on    4:on    5:on    6:off

...

This tells you which services are on and which are off for run levels 0 through 6. A com-
mon use of the command is to turn services on and off with this form:

# chkconfig [—level levels] name <on|off|reset|resetpriorities>

Some images are set up with iptables blocking all inbound traffic except port 22 (SSH). As
an example, to turn off the iptables service altogether (a poor security setting), use this command:

# /sbin/chkconfig iptables off

You can also add and delete services with the —add and —del options.
The file /etc/services contains a file with friendly names of network services, their ports,

and their protocol types. Port numbers lower than 1,024 can be bound only by root. The general
form of an entry in services is shown here:

service-name   port/protocol   [aliases …]

service-name is the friendly name of the service. The protocol is typically either tcp or
udp. Typical entries in the table are like the examples shown shortly for FTP and SSH.

...

ftp            21/tcp

ssh            22/tcp      # SSH Remote Login Protocol

...

This means that FTP should run on port 21 with TCP, and SSH should run on port 22 with
TCP. A service is not necessarily running because it appears in the services file. Use the 
service command to find the status of services.

You can also manage network services with the service command. For example, to restart
network services, use this command:

# /sbin/service network restart

The IBM SmartCloud Enterprise has startup scripts cloud_startup3.sh and cloud_
startup5.sh in the /etc/init.d directory. You can modify these scripts to customize the behav-
ior of your instance; they will be executed by root. To execute commands using another user at
startup, use the su command:

su username -c “command to run as username”

208 Chapter 6 Cloud Services and Applications



ptg8286219

The -c option tells su to execute the command following it.
The xinetd daemon is the extended Internet services daemon on Linux. It replaces the

inetd daemon on older UNIX systems. Instead of having many network services constantly run-
ning and listening on port, the xinetd service wraps them and invokes them when a connection
request is made. It takes advantage of the /etc/xinetd.conf file to know what services to wrap
and the services file to determine which ports to use. Restart xinetd after making changes to
configuration files with this command:

# /sbin/service xinetd restart

The xinetd service is fine to use for infrequently used daemons, such as those used by sys-
tem administrators, but it performs poorly for heavily used services provided to external users.

Windows Services
On Windows instances, the parameters file is copied to the location C:\Cloud\parameters.xml.
The files FirstProvisionStartup.bat and VMInstanceStartup.bat are executed on startup.

You might find that you need to interoperate between Linux and Windows. Cygwin is an
open source tool that can help you do this. It includes many command-line and graphical UNIX
utilities. With Cygwin installed, you can run a bash shell and many ports of Linux tools to Win-
dows. Windows is probably the most popular system for personal workstations. Installing Cyg-
win can be a good option for installation on your personal workstation for connectivity and
compatibility with cloud-based Linux tools.

Networking
Some basic knowledge of networking is required to configure your applications. A more detailed
understanding is required for composite applications spanning different virtual machines, and an
advanced knowledge of networking is required if you develop an application that provides net-
work services. Let’s start with some basic settings.

Basic Network Settings
You will always have an IP address to connect to your virtual machine in the cloud. You should
also have a host name for the virtual machine, which will be assigned by the cloud provider. To
find the host name of your virtual machine in a Linux shell, use the hostname command, which
shows or sets the system host name—for example: 

# hostname

vhost0297

This tells you that the host name is vhost0297. The nslookup command queries the domain
name system (DNS) server to give information about the network. The most basic use is to find
the IP address for a given host name. To find out more details about your own host, use the
nslookup command with the -sil options:

Networking 209



ptg8286219

# nslookup -sil vhost0297

Server:         170.224.55.202

Address:        170.224.55.202#53

Name:   vhost0297.site1.compute.ihost.com

Address: 170.224.161.42

In the previous command, substitute the host name of your own server for vhost0297. This
tells you that the fully qualified host name is host0297.site1.compute.ihost.com. The IP
address of the DNS (170.224.55.202) and the IP address of your own virtual machine
(170.224.55.202) are also listed. 

A reverse lookup finds the host name for a given IP address. Some applications, such as
mail servers, do this as a security check. You can check that reverse look-up is working properly
by providing your IP address as a parameter for nslookup, as shown here:

# nslookup -sil 170.224.161.42

Server:         170.224.55.202

Address:        170.224.55.202#53

42.161.224.170.in-addr.arpa     name =
vhost0297.site1.compute.ihost.com

Substitute your own IP address in place of 170.224.161.42. The result here shows that you
get the host name expected. If you have trouble with your host name or DNS, you might have to
check the configuration settings in the file /etc/resolv.conf. 

Sometimes you need to check what network services are listening for connections on ports.
You can use the netstat -nl command, which lists network connections, routing tables, and
interface statistics, to do this. The n option is for numeric data, and the l option is for listening—
for example:

# netstat -nl

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address      Foreign Address     State

...

tcp        0      0 :::80              :::*                LISTEN

tcp        0      0 :::22              :::*                LISTEN

tcp        0      0 :::443             :::*                LISTEN

...

This tells us that our virtual machine is listening for TCP connections on ports 22, 80, and
443.

On Linux, network ports lower than 1024 can be opened only by root. If you want to run as
another user, you need to use a port greater than or equal to 1024. Alternatively, you can switch to
root for the purpose of opening the port and then switch back to a less privileged user to run the
service. The latter method is the way important services, such as HTTP, mail, FTP, and SSH, run.

210 Chapter 6 Cloud Services and Applications

host0297.site1.compute.ihost.com


ptg8286219

Software Installation and Management
Windows and different distributions of Linux have different software installation and manage-
ment utilities. The IBM SmartCloud Enterprise also has a method for installing software during
the instance provisioning process.

Red Hat Package Management and YUM
The Red Hat Package Management tool is a command-line desktop graphical tool for managing
software. RPM is also a file format to package software for installation. It can be useful to list
installed software, locate software to install, and resolve dependencies needed during installation.
However, our focus here is on automation, which can be done via the Yellowdog Updater Modi-
fied (YUM). YUM is a package manager that was originally intended to improve the installation
of RPM files. It has become Red Hat’s main tool for managing software. The Red Hat up2date
tool for updating the operating system and installed files is now deprecated in favor of YUM. 

YUM enables you to set up your own software repository to augment Red Hat’s and soft-
ware repository and other repositories provided by third parties. To set up your own repository
install using YUM, do this:

# yum install createrepo

Then run createrepo to set up the repository. These common YUM commands install a
package:

# yum install <package name/s>

This searches, downloads, and installs the software and any dependencies for you automat-
ically. This command updates a package:

# yum update <package name/s>

This command checks for any updates for installed software:

# yum check-update

The next command removes a package:

# yum remove <package name/s>

YUM is configured with the /etc/yum.conf file. The YUM update notifier daemon 
yum-updatesd runs in the background to check for updates. It is configured via the yum-
updatesd.conf file.

Software Management on SUSE
Software can be installed on SUSE using YaST, apt-get install, Zypper. YaST is a general-pur-
pose graphical tool for system administration. Zypper and apt-get install are command-line tools
for package management. Zypper is based on the C library libzypp, which helps resolve package
dependencies. In fact, YaST is now based on libzypp. 

Software Installation and Management 211



ptg8286219

Zypper can be used to search for installed software, as shown here:

$ zypper search —search-descriptions <package_name>

<package_name> is the name of the package to search for. Zypper can install software, as
shown next:

# zypper install <package_name>

For example, this command installs emacs:

# zypper install emacs

Some other useful commands are listed here:

• refresh, to refresh package information

• addrepo, to add a new repository

• remove, to uninstall a software package

• list-updates, to list the available updates or patches

Cloud Software Bundles
The cloud infrastructure can also install software. The motivation for doing this is to reduce the
number of images that need to be created. Suppose you have a software application that is sup-
ported on Windows, Red Hat Enterprise Linux, and SUSE for the current and previous version of
each operating system. Six images are already needed. If it can be either bundled with another
product or provided by itself, the number of images becomes 12. For utility software, such as edi-
tors, agents, and database drivers, no good solution uses images alone. The need for installing
software in clouds, either in an automated way or via user self-service, is apparent. The IBM
SmartCloud Enterprise supports Composable Software Bundles to address this need. It leverages
IBM Rational Asset Manager to achieve this.

In the earlier “Creating and Customizing Images” section, we discussed startup scripts and
copying files in the Rational Asset Manager catalog entries to virtual machine instances at provi-
sioning time. A software bundle is a Rational Asset Manager asset that describes software to be
installed to an instance at startup time, including files to be copied, but does not include a virtual
machine image. The files include installation files, configuration files, a parameter specification
file, and a description of prerequisites required. Figure 6.9 illustrates this concept.

Composable Software Bundles can delegate installation of software to YUM, Zypper, or
another software management utility. You can get started creating a software bundle by copying
the software bundle template in the asset catalog. Add an installation script, any other files, and
topology files. The topology files include a TEMPLATE-Automation.topology file and a
TEMPLATE-Semantic.topology file. These can be edited by hand or by using Rational Software
Architect.

212 Chapter 6 Cloud Services and Applications



ptg8286219

Figure 6.9 Software bundles concept

To browse the software bundles in the IBM SmartCloud Enterprise, in the catalog, remove
the default filter and then choose the Composable Software Bundles link in the left margin. Let’s
use the emacs software bundle as an example. The bundle includes the file scripts.txt, which
includes these files:

• ryo.crontab, a cron job definition

• ryoCron.sh, which waits for the network to become available before running the instal-
lation script ryoAutomation.sh

• ryoAutomation.sh, which checks to see if this is the first time it has been executed and,
if needed, calls the script

• installEmacs.sh, which installs emacs using zypper

To add a software bundle to an image, download the software bundle files and merge the
files with your image files.

Open Service Gateway Initiative (OSGi)
The Open Service Gateway initiative (OSGi) is a standard from the OSGi Alliance describing a
component configuration architecture for Java. It is used to assist the plug-in framework for a
number of products and open source projects, such as Eclipse, IBM Rational Software Architect,

Software Installation and Management 213

Cloud

Developer

User

<<node>>
Virtual Machine

<A> Software Bundle
<<artifact>>

<< Component>>

Catalog (RAM)

<< Component>>

Self Service UI



ptg8286219

IBM Tivoli Federated Identity Manager (FIM), mobile phones, embedded devices, and most
J2EE application servers. OSGi plays a critical role in defining versions and dependencies of
software bundles and gives software users flexibility in choice of feature use while maintaining
good performance. This section offers a brief overview of OSGi, comments on the problems rele-
vant to cloud that OSGi addresses, and shows how to create an Eclipse plug-in that lists your IBM
SmartCloud Enterprise virtual machine instances.

OSGi enables these actions:

• Install, uninstall, stop, and start a module

• Run more than one version of a module at the same time

• Manage dependencies

For example, consider the IBM SmartCloud Enterprise Java API has a dependency on the
open source library Apache HttpClient 3.1. After this was released, the Apache HttpClient team
introduced a new programming model that is incompatible with old versions. What happens if
you need to write a program that uses a newer version of Apache HttpClient and also use the IBM
SmartCloud Enterprise Java API? This is a problem that you can solve with OSGi.

Eclipse is the poster child for OSGi. In 2003, Eclipse adopted OSGi for its 3.0 version,
which was released in 2004. Eclipse is actually a collection of plug-ins based on the Eclipse Rich
Client Platform core, which provides an implementation of the OSGi framework called Equinox.
Plug-ins include the Rational Software Architect cloud plug-in that enables you to create virtual
machine instances in different clouds, such as IBM SmartCloud Enterprise. It is useful to
describe OSGi with some examples relating to the Eclipse integrated development environment
so that you can learn through concrete examples. Eclipse plug-ins add functionality in a struc-
tured manner. This allows the integration of both user interface and behind-the-scenes features.

A fundamental unit in OSGi is the bundle, which contains Java classes and other resources
and defines a unit of software that can be published, discovered, and bound to a service. Rules for
an OSGi bundle are enforced through special class loaders. In an ordinary Java program, all
classes can see all other classes. However, the OSGi framework restricts interaction between bun-
dles based on information in each bundle’s manifest.mf file. Important directives in the mani-
fest.mf file include these:

• Bundle-Name (name of the bundle)

• Bundle-Version (version of the bundle)

• Require-Bundle (defines a dependency on another bundle)

• Export-Package (exports the package)

• Bundle-Activator (class used to start and stop the bundle)

214 Chapter 6 Cloud Services and Applications



ptg8286219

To create a an OSGi bundle in Eclipse 3.6, first create a new Plug-in Project:

1. From the File menu, choose New, Project, Plug-in Project.

2. In the dialog box, enter the name of the plug-in, com.ibm.example.cloud.plugin.
Choose OSGi framework Equinox.

3. In the next dialog box, choose Java SE 1.6 as the execution environment. Generate an
Activator called com.ibm.example.cloud.plugin.Activator.

4. In the next dialog box, choose to create the project with the Hello OSGi Bundle 
template.

A number of files are generated, including the following manifest.mf file:

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Plugin

Bundle-SymbolicName: com.ibm.example.cloud.plugin; singleton:=true

Bundle-Version: 1.0.0.qualifier

Bundle-Activator: com.ibm.example.cloud.plugin.Activator

Bundle-Vendor: IBM

Require-Bundle: org.eclipse.ui,

org.eclipse.core.runtime

Bundle-RequiredExecutionEnvironment: JavaSE-1.6

Bundle-ActivationPolicy: lazy

The project wizard creates the two classes Activator and SampleAction. The Activator
class is shown in the next listing.

package com.ibm.example.cloud.plugin;

import org.eclipse.jface.resource.ImageDescriptor;

import org.eclipse.ui.plugin.AbstractUIPlugin;

import org.osgi.framework.BundleContext;

public class Activator extends AbstractUIPlugin {

// The plug-in ID

public static final String PLUGIN_ID =
“com.ibm.example.cloud.plugin”; //$NON-NLS-1$

// The shared instance

private static Activator plugin;

public Activator() {      }

Software Installation and Management 215



ptg8286219

public void start(BundleContext context) throws Exception {

super.start(context);

plugin = this;

}

public void stop(BundleContext context) throws Exception {

plugin = null;

super.stop(context);

}

public static Activator getDefault() {

return plugin;

}

public static ImageDescriptor getImageDescriptor(String path) {

return imageDescriptorFromPlugin(PLUGIN_ID, path);

}

}

The BundleContext parameter provides a number of methods for discovering the bundle’s
environment and listening for changes in that environment. Eclipse 3.6 has a Design view for the
plug-in shown in Figure 6.10.

216 Chapter 6 Cloud Services and Applications

Figure 6.10 Design view for plug-in in Eclipse 3.6



ptg8286219

You can launch the bundle using the Launch the Framework link. A new instance of Eclipse
is launched, with an additional menu called Sample Menu. Under the menu is a menu item called
Sample Action. If you click that menu item, a dialog box pops up with the text “Hello, Eclipse
World.”

By default, the classes in the plug-in are visible to all the other classes inside the plug-in but
are not visible to classes outside the plug-in. So going back to the IBM SmartCloud Enterprise
example, you can add Apache HttpClient 3.1 to your plug-in project without affecting use of a
later version of HttpClient outside the plug-in. Let’s modify our code to display a list of instance
owned by a SmartCloud Enterprise user:

1. Create a directory call lib under the project folder. Add the JARs commons-
codec-1.3.jar, commons-httpclient-3.1.jar, commons-lang-2.3.jar, commons-
logging-1.1.1.jar, and DeveloperCloud_API_Client_JAR.jar to this folder. 

2. Refresh the project.

3. In the Runtime tab of plug-in Design view, add the jars to the classpath.

After completing the previous steps, create the class SmartCloud with this code:

package com.ibm.example.cloud.plugin;

import java.util.List;

import com.ibm.cloud.api.rest.client.DeveloperCloud;

import com.ibm.cloud.api.rest.client.DeveloperCloudClient;

import com.ibm.cloud.api.rest.client.bean.Instance;

public class SmartCloud {

public static final String USERNAME = “a@example.com”;

public static final String PASSWORD = “********”;

private DeveloperCloudClient client =
DeveloperCloud.getClient();

public SmartCloud() {

client.setRemoteCredentials(USERNAME, PASSWORD);

}

public String describeInstances() {

try {

List<Instance> instances =
client.describeInstances();

String message = “You have “ + instances.size() + “
instance(s).\n”;

for (Instance instance: instances) {

message += “ID: “ + instance.getID() + ‘\n’;

Software Installation and Management 217



ptg8286219

message += “Name: “ + instance.getName() +
‘\n’;

message += “IP: “ + instance.getIP() + ‘\n’;

message += “Status: “ + instance.getStatus() +
‘\n’;

message += “Image ID: “ +
instance.getImageID() + ‘\n’;

}

return message;

} catch(Exception e ) {

return “Error getting virtual machine instances: “ +
e.getMessage();

}

}

}

Modify the class Activator, adding the code shown:

public void run(IAction action) {

SmartCloud smartCloud = new SmartCloud();

String message = smartCloud.describeInstances();

MessageDialog.openInformation(

window.getShell(), “Plugin”, message);

}

Launch the plug-in from Plug-in Design view. Now when you click on the Sample Action
menu item, your list of virtual machine instances will be shown as in Figure 6.11.

218 Chapter 6 Cloud Services and Applications

Figure 6.11 Example Cloud Eclipse plug-in

Eclipse plug-ins have some Eclipse-specific dependencies, but Eclipse also enables you to
create a standard OSGi bundle without any Eclipse-specific code. You can do this by checking
the OSGi framework option in the New Plug-in Project Wizard. We did this in IBM Rational
Software Architect 7.0 and called the plug-in com.ibm.example.cloud.osgi. The New Plug-in
Project Wizard generated the manifest file shown here:



ptg8286219

Manifest-Version: 1.0

Bundle-ManifestVersion: 2

Bundle-Name: Osgi Plug-in

Bundle-SymbolicName: com.ibm.example.cloud.osgi

Bundle-Version: 1.0.0

Bundle-Activator: com.ibm.example.cloud.osgi.Activator

Bundle-Vendor: IBM

Bundle-RequiredExecutionEnvironment: JavaSE-1.6

Import-Package: org.osgi.framework;version=”1.3.0”

Bundle-ActivationPolicy: lazy

Notice that there are no Eclipse dependencies, so you can use this OSGi bundle in standard
containers. The wizard generates the class Activator, shown here:

package com.ibm.example.cloud.osgi;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

public class Activator implements BundleActivator {

public void start(BundleContext context) throws Exception {

System.out.println(“Hello World!!”);

}

public void stop(BundleContext context) throws Exception {

System.out.println(“Goodbye World!!”);

}

}

The class Activator implements BundleActivator, which is an OSGi interface. To run the
bundle, right-click on the root of the plug-in project and select Run As, Run Configurations.
Change the name to Cloud Plug-in and uncheck all the target platform plug-ins, leaving only the
workspace selected. Set Autostart to True. Click Apply and then Run. You should see the OSGi
command line:

osgi> Hello World!!

We can issue commands in the OSGi console. Try entering the status command ss. You
should see output similar to this:

osgi> ss

Framework is launched.

Software Installation and Management 219



ptg8286219

id      State      Bundle

0      ACTIVE      org.eclipse.osgi_3.4.3.R34x_v20081215-1030

1      ACTIVE      com.ibm.example.cloud.osgi_1.0.0

This tells you that the Eclipse OSGi framework plug-in and your own plug-in are launched.
You can stop your bundle by entering the stop command:

osgi> stop 1

Goodbye World!!

When you stop the bundle, the text that you added to the stop() is printed. For a more seri-
ous plug-in, you could put clean-up code in this method. You can also add, update, and remove
bundles using the OSGi console.

Example: OSGI Cloud Service

In this example, you examine use of OSGi import/export and hiding the implementation of the
service. You might want to do this, for example, to write a cloud-management console that con-
nects to multiple different clouds. This is important because different cloud clients might have
incompatible libraries, and you need to be able to connect to the clouds in a way that is transpar-
ent to the client.

You will create two OSGi bundles. This bundle exports a service that connects to IBM
SmartCloud Enterprise and lists the images belonging to a user:

com.ibm.example.cloud.osgi.smartcloud

This bundle imports the service and invokes it:

com.ibm.example.cloud.osgi

Create the com.ibm.example.cloud.osgi.smartcloud OSGi bundle using the techniques
described. Define the interface CloudClient shown next:

package com.ibm.example.cloud.osgi.client;

/**

* Example interface for a cloud client

*/

public interface CloudClient {

void describeMyImages();

}

Add the SmartCloud API–dependent libraries to the bundle, including the JARs commons-
codec-1.3.jar, commons-httpclient-3.1.jar, commons-lang-2.3.jar, commons-logging-
1.1.1.jar, and DeveloperCloud_API_Client_JAR.jar. Create the class SmartCloud

EnterpriseClient, shown later, that implements CloudClient. 

220 Chapter 6 Cloud Services and Applications



ptg8286219

package com.ibm.example.cloud.osgi.smartcloud.impl;

import java.util.List;

import com.ibm.cloud.api.rest.client.DeveloperCloud;

import com.ibm.cloud.api.rest.client.DeveloperCloudClient;

import com.ibm.cloud.api.rest.client.bean.Image;

import com.ibm.example.cloud.osgi.client.CloudClient;

public class SmartCloudEnterpriseClient implements CloudClient {

public static final String USERNAME = “a@example.com”;

public static final String PASSWORD = “********”;

private DeveloperCloudClient client =
DeveloperCloud.getClient();

public SmartCloudEnterpriseClient() {

client.setRemoteCredentials(USERNAME, PASSWORD);

}

@Override

public void describeMyImages() {

try {

List<Image> images = client.describeImages();

for (Image image: images) {

if (image.getOwner().equals(USERNAME)) {

System.out.println(“ID: “ +
image.getID());

System.out.println(“Name: “ +
image.getName());

System.out.println(“Status: “ + 

image.getState());

System.out.println(“Location: “ +

image.getLocation() + ‘\n’);

}

}

} catch(Exception e ) {

e.getMessage();

}

}

}

Software Installation and Management 221



ptg8286219

Now you can register the service using OSGi APIs in the Activator class, as shown here:

package com.ibm.example.cloud.osgi.smartcloud;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceRegistration;

import com.ibm.example.cloud.osgi.client.CloudClient;

import
com.ibm.example.cloud.osgi.smartcloud.impl.SmartCloudEnterpriseClient;

public class Activator implements BundleActivator {

private ServiceRegistration serviceRegistration;

public void start(BundleContext context) throws Exception {

System.out.println(“SmartCloud client started”);

CloudClient cloudClient = new
SmartCloudEnterpriseClient();

serviceRegistration =

context.registerService(CloudClient.class.getName(), 

cloudClient, null);

}

public void stop(BundleContext context) throws Exception {

System.out.println(“SmartCloud client stopped”);

serviceRegistration.unregister();

}

}

Next, you export the CloudClient service from the com.ibm.example.cloud.osgi.
smartcloud bundle. Do this by adding com.ibm.example.cloud.osgi.client to the exported
packages in the Runtime tab of the bundle designer. Now import the package com.ibm.
example.cloud.osgi.client to the com.ibm.example.cloud.osgi.client bundle by adding it
in the Dependencies tab of the bundle designer. Finally, in the Activator class of the
com.ibm.example.cloud.osgi.client bundle, you can use the service, as shown:

package com.ibm.example.cloud.osgi;

import org.osgi.framework.BundleActivator;

import org.osgi.framework.BundleContext;

import org.osgi.framework.ServiceReference;

import com.ibm.example.cloud.osgi.client.CloudClient;

222 Chapter 6 Cloud Services and Applications



ptg8286219

public class Activator implements BundleActivator {

private ServiceReference serviceReference;

public void start(BundleContext context) throws Exception {

System.out.println(“Cloud plug-in started”);

serviceReference =

context.getServiceReference(CloudClient.class.getName());

CloudClient cloudClient =

(CloudClient)context.getService(serviceReference);

cloudClient.describeMyImages();

}

public void stop(BundleContext context) throws Exception {

System.out.println(“Cloud plug-in stopped”);

}

\}

This executes the service when the bundle is loaded. Now you are ready to run the plug-in.
Right-click the com.ibm.example.cloud.osgi.client bundle and select Run As, Run Configu-
rations in RSA. This starts an OSGi console and loads the bundles, creating the following output:

osgi> SmartCloud client started

Cloud plug-in started

ID: 20017833

Name: WebSphere Hadoop

Status: AVAILABLE

Location: 41

ID: 20022207

Name: RSA 8.0 for Cloud Project

Status: AVAILABLE

Location: 101

ID: 20017142

Name: PHP Examples

Status: AVAILABLE

Location: 41

By importing on the service interface, the implementation classes for the IBM SmartCloud
Enterprise client are hidden. This demonstrates an extensible method for creating a cloud client
that can connect to many clouds without the risk of incompatible libraries.

Storage
Storage is one of the application areas for clouds that is most important to enterprises. We intro-
duced storage virtualization concepts earlier in the “Storage” section in Chapter 1. Here we

Storage 223



ptg8286219

discuss some basics of storage usage, focusing on Linux, and explore how these can be translated
into cloud applications.

Block Storage
After you have provisioned storage volumes and attached them to virtual machine instances on
the cloud, you can manage the storage with native operating system tools. These include both
command-line and graphical tools. Figure 6.12 shows the Logical Volume Manager on RHEL.

224 Chapter 6 Cloud Services and Applications

Figure 6.12 Logical Volume Manager user interface

Figure 6.12 shows a local volume on a SmartCloud Enterprise Copper RHEL virtual
machine. A 64-bit Copper compute size has 2 CPUs, 4 GB of memory, and 60 GB of storage.

One of the interesting points about Linux block storage is that you can make block storage
devices out of files; these are called loop devices. This has some interesting virtualization and
cloud applications, particularly in virtual machine image creation, customization, and manage-
ment. With basic Linux tools, we can make direct attached storage, network attached storage, and
a loop storage device all look like the same thing to a guest operating system.

The dump data dd command can be used to copy and convert from physical disks. To
demonstrate the use of dd, we use the input file and output file options. For example, to copy a file
as a sequence of bytes, use this sequence of commands:

# echo test  > test

# dd if=test of=test.bak

0+1 records in



ptg8286219

0+1 records out

5 bytes (5 B) copied, 4.8692e-05 seconds, 103 kB/s

# cat test.bak

test

Using the dd command with the input file (dd) and output file (of=test.bak) options
simply copies the input file to the output file. We could have done the same thing with the cp com-
mand, but dd enables us to specify lower-level details, such as the block size with the bs option
and the number of blocks to copy with the count option. The seek option tells dd how many
blocks to skip. We can put these options together to create a sparse disk file, which is a file where
the space available is not taken up until it is actually used. The advantage of a sparse disk file over
a preallocated disk file is that you can make more efficient use of physical storage by making vir-
tual storage look large but delaying physical allocation until it is needed. Also, the sparse storage
volume can be created much more quickly. An example of sparse file creation is shown here:

# dd if=/dev/zero of=sparse_file bs=1k seek=4096k count=1

1+0 records in

1+0 records out

1024 bytes (1.0 kB) copied, 5.7697e-05 seconds, 17.7 MB/s

# ls -lh sparse_file

-rw-r—r— 1 root root 4.1G May 31 12:26 sparse_file

# du sparse_file

16      sparse_file

The input file option value feeds dd from /dev/zero, which is a special file with many
nulls. The bs option creates the file with 1 K blocks. The seek option tells dd to skip 4,096�1,024
bytes before writing anything. The count option writes one block. The result is that the ls com-
mand sees the file as 4.1 G in size, although it is really only 16 K in size, as shown by the disk
usage command du.

The losetup command creates and manages loop devices. Linux systems usually come
preconfigured with a small number of loop devices. You can check for the next one available with
the losetup command with the -f option:

# /sbin/losetup -f

/dev/loop0

This shows that the next available loop device is /dev/loop0. We can map our sparse file to
the loop device:

# /sbin/losetup /dev/loop0 sparse_file

After creating the device, you can use fdisk to partition it and use kpartx to make the par-
titions available to the system. This is useful if you plan to use the device to create a virtual
machine image. The partitions can be used to create a volume group with the vgcreate command
and a logical volume with the lvcreate command. The mkfs command can also be used to create
a file system on the device. This is discussed in the upcoming section, “File Systems.”

Storage 225



ptg8286219

For details on how to use the Linux Logical Volume Manager on the IBM SmartCloud
Enterprise, see the article “IBM SmartCloud Enterprise Tip: Configure the Linux Logical Vol-
ume Manager” [Criveti, 2011].

File-Based Storage
Linux and UNIX systems present the file system as one large tree. The mount command attaches
devices to this tree. The basic form of the mount command is 

# mount -t type device dir

Here, type is the type of file system, device is the device to be attached, and dir is the
directory to mount the file system as. The mount command without any arguments lists all the
devices mounted to the file system. The file /etc/fstab contains the default locations of device
mount points and is read by the operating system during startup. It is also consulted when mount-
ing a removable device such as a CD in a standard location. A common operation in virtual envi-
ronments is to store ISO image as files so that they can moved easily and then mount them with
the mount command to look in an analogous way as a CD is mounted when access to the data
stored in the ISO image is needed. This can be done with the following commands:

# mkdir /mnt/cdrom

# mount -t iso9660 -o loop myimage.iso /mnt/cdrom

The -o loop option indicates that it is a loop device—that is, the device is a file itself. The
loop device features is a basic element of the Linux system that enables virtual machine images to
be stored as files, manipulated using the file system, and then run when needed.

You can also mount a file as if it were a floppy with this command:

# mkdir /mnt/floppy

# mount -t msdos -o loop myimage.img /mnt/floppy

For DVD options, us the udf file type. 
To mount a shared file system from a remote server using NFS, use these commands:

# mkdir /mnt/share

# mount hostname:/mountpoint /mnt/share

hostname is the remote server DNS name, and mountpoint is the remote directory to
mount.

NFS runs a daemon process called nfsd to make data available to other computers. It relies
on the Linux remote process call (RPC) library that allows C programs to make procedure calls
on other machines across the network. The files to export are listed in the file /etc/exports using
the exportfs command. The mountd daemon processes mount requests from NFS clients. The
portmap daemon is also used to map RPC program numbers to DARPA port numbers and the
lockd NFS lock manager. To share files on an instance using NFS, create firewall rules for
portmap (port 111), nfsd (port 2049), mountd (port 1011), and lockd (port 35000). See the “Fire-
walls” section in Chapter 7 for instructions on how to do this. Add entries for mountd and lockd

226 Chapter 6 Cloud Services and Applications



ptg8286219

in the /etc/services file. See the earlier “Services” section for instruction on how to do that.
Start the nfsd and mountd daemons with these commands:

# /usr/sbin/rpc.nfsd

# /usr/sbin/rpc.mountd

Create the directory ~idcuser/myshare and edit or create the /etc/exports file with the
line shown here:

/home/idcuser/myshare ip(rw,no_root_squash,async)

ip is the IP address or range addresses of the client(s) you need to allow to mount the
export. Use a slash (/) to create ranges, as in 9.200.7.171/175. Use * for any IP address (a bad
option in the cloud). Start the NFS server with these commands:

# service portmap start

# service nfs start

Now you can mount your remote file system on the client computer using the mount
command.

When troubleshooting NFS problems, you can check the output of the rpcinfo command,
as shown here:

# /usr/sbin/rpcinfo -p

program vers proto   port

100000    2   tcp    111  portmapper

100000    2   udp    111  portmapper

100021    1   udp  59880  nlockmgr

100021    3   udp  59880  nlockmgr

100021    4   udp  59880  nlockmgr

100021    1   tcp  43109  nlockmgr

100021    3   tcp  43109  nlockmgr

100021    4   tcp  43109  nlockmgr

The result should show entries for portmapper and nlockmgr (statd) for a client. If you do
not see, try restarting nfslock with this command:

# /sbin/service nfslock start

NFS can be relatively complex to operate and troubleshoot, especially with SELinux. It
transfers files without encryption, which can be an issue in a cloud environment. If you just need
to transfer files in a limited number of situations, consider using SCP, as described in the “Secure
Shell (SSH)” section in Chapter 7.

File Systems
File systems have been thought of as a method of organizing files. However, you saw that the Net-
work File System is really a protocol for connecting to a remote file system; that could be ext3 or
something else. From that example, it is apparent that the underlying storage system does not

Storage 227



ptg8286219

always matter. This section discusses some aspects of file systems that are relevant to cloud com-
puting. This section mostly applies to Linux, but the concepts are similar on Windows. 

We can divide file systems into three basic types:

• Local file systems

• Shared or network file systems

• Distributed file systems to support network storage systems

A local file system is a fundamental element of operating systems. Local file systems have
inodes that point to the locations where data blocks containing data are stored. The inodes also
contain data about files, such as file name, owner information, size, last modified time, and access
permissions. To share files among multiple computer systems, you use a network file system,
such as NTFS. To store large amounts of data in a central location you use network file systems.
A distributed file system supports files stored over multiple nodes. An example is the Hadoop
File System (HDFS).

Linux supports many different file systems. These are the most interesting to us:

• ext3—The standard file system for local storage volumes.

• ext4—The successor to ext3.

• NTFS—A Windows file system that can also be used locally on Linux.

• proc file system—A special file system that stores system-related data.

• Network File System (NFS)—A protocol for sharing files remotely on Linux and
UNIX systems. 

• Common Internet File System (CIFS)—Previously known as Server Message Block
(SMB). A Microsoft protocol for sharing files remotely across systems. It works on
Linux as well.

• ISO file system—Used for optical drives.

You can find out what types of file systems are used using the mount command without any
arguments—for example:

# mount

/dev/vda2 on / type ext3 (rw)

proc on /proc type proc (rw)

sysfs on /sys type sysfs (rw)

devpts on /dev/pts type devpts (rw,gid=5,mode=620)

/dev/vda1 on /boot type ext3 (rw)

tmpfs on /dev/shm type tmpfs (rw)

none on /proc/sys/fs/binfmt_misc type binfmt_misc (rw)

sunrpc on /var/lib/nfs/rpc_pipefs type rpc_pipefs (rw)

This shows that the ext3, proc, sysfs, devpts, tmpfs, and rpc_pipefs file systems are 
in use. The ext3 file system is used to store files on disks and is the file system we are most

228 Chapter 6 Cloud Services and Applications



ptg8286219

interested in. The others are virtual file systems have specialized purposes. The tmpfs file system
is based on RAM for fast access. The proc file system is used to store system information. The
sysfs file system is used to store device information.

You can find out about the disk space used by file systems on your system with the df -T
command, as shown:

#df -T

Filesystem    Type   1K-blocks      Used Available Use% Mounted on

/dev/vda2     ext3    61824020   6260048  53051528  11% /

/dev/vda1     ext3      101086     11919     83948  13% /boot

tmpfs        tmpfs     2022028         0   2022028   0% /dev/shm

The -T option adds file system type information to the df command. The output shows that
ext3 is used for the /dev/vda2 and /dev/vda1 file systems, and that the tmpfs type is used for
tmpfs.

The ext3 file system is the default file system used by many popular Linux distributions,
including the Red Hat Enterprise Linux and SUSE distributions on IBM SmartCloud Enterprise.
It is a journaled file system, which means that it keeps track of changes in a journal (a log) before
committing the changes. In the event of a power outage or sudden shutdown from some other
cause, the files can be more easily recovered than a file system without journaling. 

The ext3 file system has a maximum size, depending on its block size. For a block size of 1
kibibyte (KiB), the maximum file system size is 1 tebibyte (TiB); with a block size of 4 KiB, the
maximum file system size is 16 TiB. It can support a maximum file size from 16 GiB (1 KiB
block size) to 2 GiB (4 KiB block size). You can create an ext3 file system with the Linux mke2fs
or mkfs.ext3 command and find out about a file system with the dumpe2fs command. To create
an ext3 file system on the loop device you created earlier, use the mkfs.ext3 command, shown
here:

# /sbin/mkfs.ext3 /dev/loop0

mke2fs 1.39 (29-May-2006)

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

524288 inodes, 1048576 blocks

52428 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=1073741824

32 block groups

32768 blocks per group, 32768 fragments per group

16384 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736

Storage 229



ptg8286219

Writing inode tables: done

Creating journal (32768 blocks): done

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 22 mounts or

180 days, whichever comes first.  Use tune2fs -c or -i to override.

CONVERTING FROM OLD UNITS OF MEASURE TO NEW

Here’s a quick reference for the conversion from the old units of measure to the new:

New unit No. bytes Old unit No. bytes

kibibyte (KiB) 1,024 bytes or 210 kilobyte (KB) 1,000 bytes or 103

mebibyte (MiB) 1,048,576 or 220 Megabyte (MB) 106

gibabyte (GiB) 230 Gigabyte (GB) 109

tebibyte (TiB) 240 Terabyte (TB) 1012

The command creates the inode tables, file system accounting information, and journal.
The command output shows the details of the file system created, including the number of blocks,
number of inodes, and other information. You can mount the loop device just like a physical
device, except that you need to use the lomount command instead of the regular mount command. 

The ext4 file system, the successor to ext3, was added to the Linux kernel 2.6.28 in 2008. It
can handle volumes up to 1 exabyte in size and files up to 16 TiB in size. It improves performance
for large file sizes and reduces fragmentation.

The native file system for Windows is NTFS. Files are shared across Windows systems
using the Common Internet File System (CIFS), previously known as the Server Message Block
(SMB). You can interoperate with CIFS on Linux systems using Samba, an open source imple-
mentation of the CIFS protocol. In a cloud environment, you might prefer to restrict use of CIFS
to VPN access only, for security reasons. You have ways to share files across remote systems
securely using SSH, for example, with SFTP and the SSH file system (SSHFS).

Virtual Machine Disk (VMDK) is a documented file format developed by VMWare for vir-
tual machines. It is supported by the various VMWare products and by both third parties and open
source projects, such as QEMU. Virtual Machine Disk files are given a .vmdk extension by con-
vention and are often included in virtual machine packages, such as Open Virtualization Format.

Network Storage Systems
Network storage systems were developed to support the exploding data storage requirements of
enterprises as the IT industry has developed over the last 30 years. They emerged as an evolution
of shared file systems. Network storage systems are essential to cloud computing infrastructure to
provide sufficient storage for the combined needs of many users. Network storage systems can

230 Chapter 6 Cloud Services and Applications



ptg8286219

provide both block-based and file-based storage services. Some of the challenges that network
storage systems address are listed here:

• Backing up data from applications, such as email systems and financial systems.

• Helping to manage different classes of data in an organized way. Data can be active or
inactive, but it may be hard to know if or when inactive data will be needed.

• Helping users store their data so that they are not solely dependent on personal worksta-
tions or laptops.

• Providing scalable solutions for applications that use huge amounts of data, such as data
warehouses.

• Providing virtualization of storage so that users do not need to know or care how or
where data is stored.

Previously, network storage was a tool that large enterprises and governments used because
it was expensive to buy and difficult to implement, requiring specialized skills to install and con-
figure. One of the great things about cloud computing is that it has expanded the influence of net-
work storage beyond large enterprises and makes it available to us all.

A storage area network (SAN) is a dedicated network that provides access to block-level
storage. Storage area networks can be used to create storage devices that appear locally attached
to the operating system. They are often used to support applications such as data mining that need
rapid access to large amounts of data. 

Several network-based storage systems work at the block level. ATA over Ethernet (AoE)
is a network-based storage system designed for use over local area networking using an Ethernet
protocol. It has no security built into it and can allow anyone on the same logical switch to access
AoE drives exported by the server.

An iSCSI (Internet Small Computer Interface) network storage system operates at the net-
work layer, such as TCP, and can potentially work over a wide area network. It works at the block
level and supports authentication of a client to the server for security. It exports a SCSI drive over
a network as if it is were a normal SCSI drive. An iSCSI server is called a target. There are open
source and commercial implementations of iSCSI targets, as well as hardware implementations,
such as IBM’s DS family of storage servers.

Network attached storage can also be implemented with Fibre Channel devices using a host
bus adapter (Fibre Channel HBA). The use of optic fiber components greatly increases the perfor-
mance of this class of storage device.

Structured Storage
The file systems we discussed earlier are often referred to as supporting unstructured data stor-
age—that is, you have no idea what data is in the files. With structured data, you have visibility
into the content of the data. Usually it is stored in some kind of database, relational or otherwise.
The main method of accessing relational databases in Infrastructure as a Service clouds is via

Storage 231



ptg8286219

virtual machine images. Another approach is to provide a central relational database service that
is shared among multiple tenants; this is a Platform as a Service option.

An alternative to relational databases are other database management systems, such as
NoSQL, that do not maintain relational integrity. These do not require fixed schemas, avoid join
operations, and do not provide ACID (atomicity, consistency, isolation, durability) guarantees.
They basically work as key–value stores, and their attractiveness results from their low-cost way
of storing, indexing, and searching in a scalable and fault-tolerant way. NoSQL databases have
been used for storing data for large social networking sites where the web sites have provided free
services to huge user populations.

Managing Storage on IBM SmartCloud Enterprise
Block storage volumes can be provisioned with IBM SmartCloud Enterprise both by the user
interface and via the web user interface. We demonstrated provisioning storage using the com-
mand line and API in Chapter 3, “Developing with IBM SmartCloud Enterprise APIs.” In these
examples, the storage volume options were ext3 format with a mount point provided. It is also
possible to provision raw storage volumes, as shown in Figure 6.13.

232 Chapter 6 Cloud Services and Applications

Figure 6.13 Provisioning a raw storage volume in the IBM SmartCloud Enterprise

You need to wait for a few minutes before you can use the storage volume in a virtual
machine instance provisioning request. When status has changed from New to Nonattached, you
can use it. After you have created a new virtual machine instance with the disk attached, you need
to format and mount it using the tools already discussed.

Mounting a storage volume on Windows is similar in principle to doing so on Linux. How-
ever, it is usually done via the graphical user interface. After a storage volume is provisioned on
the IBM SmartCloud Enterprise, it can be added to Windows virtual machines during provision-



ptg8286219

ing. At that point, the storage volume is attached but not mounted and is still unformatted. After
the virtual machine has booted up, you must mount and format the volume using the Storage Disk
Management Wizard on Windows 2008 Server.

Remote Desktop Management
The section “Desktop Virtualization” in Chapter 1, “Infrastructure as a Service Cloud Concepts,”
briefly discussed the main concepts of this topic, and the section “Linux, Apache, MySQL, and
PHP” in Chapter 2, “Developing on the Cloud,” gave an example of using VNC on Red Hat
Enterprise Linux. This section gives more details on the tools available on typical cloud images.

X Windows
X Windows, or just X, is the basis for most Linux remote display tools. Even for VNC, which
works at a lower level, X Windows is still involved. It provides the basic primitives for rendering
and interacting with graphical user interface environments and fonts on Linux and UNIX. Certain
basic concepts are important for orientation and troubleshooting. We covered some general back-
ground material on the various open source projects behind X Windows in the introductory sec-
tion “Desktop Virtualization” in Chapter 1. Here we discuss practical use. In addition to its use
for individual work, X Windows is the basis for a number of workstation, server, and device dis-
play products. 

X uses a client/server architecture that allows it to be used over the network. The X Session
Manager manages desktop sessions and can save and restore the state of running applications. A
protocol called the X Session Management Protocol defines how the session manager interacts
with applications. In particular, the Window Manager interacts with the X Session Manager for
the existence and placement of windows and icons. Different implementations of X Session Man-
agers exist, including the default session manager xsm and the KDE session manager kmsserver.
Different implementations of window managers also exist, such as metacity or GNOME and
KWin for KDE. The X Display Manager facilitates the starting of sessions on local or remote
computers using the X Display Manager Control Protocol. An X server runs on the computer that
provides the display and graphical input devices. After it starts, it connects to the display man-
ager. In a typical scenario of a local connecting from a local workstation to a virtual machine on
the cloud, the local workstation runs the X server and the virtual machine runs the display man-
ager. Besides the original X Display Manager (xdm), other implementations include gdm for
GNOME and KDM for KDE.

An X system can support many displays, local and remote. The display is known from the
DISPLAY variable. To find the value of your display variable, type this command:

$ echo $DISPLAY

:0.0

This indicates that the display is 0.0. To set the display, use the bash command:

$ export DISPLAY=host:n.n

Remote Desktop Management 233



ptg8286219

You can omit host if you mean localhost, and n.n is the display number. You do not always
need the part after the decimal, making the short form possible:

$ export DISPLAY=:0

This means display 0 on localhost. If you do not have the DISPLAY variable set, you will get
errors trying to open graphical applications. For Cygwin, you can find the DISPLAY value by hov-
ering over the tray icon.

The X Windows authorization system enables remote use and also local use with multiple
users in a safe way. Access can be based on host, cookie, or user. Cookies are created and stored
in a .Xauthority file in the user’s home directory. If you get errors because this file is not write-
able, you can use the xauth command or. This sometimes happens when you try to start up mul-
tiple sessions and the home directory of the root user has not been set properly. The xauth
command is used to create and edit authorization information for connecting to the X server. You
can also use it to break any locks with this form:

$ xauth -b quit

Alternatively, delete the file .Xauthority file to solve the problem.
The xhost command adds or deletes a host from being able to connect to your X server—

for example:

$ xhost + remote_host

After logging into remote_host, you are authorized to connect back to the X server where
you issued the xhost command.

Xterm is a terminal emulator for X that is commonly used to start a command line on a sys-
tem that uses X.

By default, many of the images on the IBM SmartCloud Enterprise are configured to run at
run level 3 by default. This means that the X services, which operate at run level 5, are not started.
That does not prevent you from using VNC or NX, as described shortly, but it can prevent you
from doing port forwarding to X services. To change the default run level, edit the file /etc/
inittab, changing the line shown here:

id:5:initdefault:

Then restart the service and bring up the system to run level 5 with the following com-
mands:

# /sbin/service xinetd restart

# /sbin/init 5

Virtual Network Computing (VNC)
Virtual Network Computing (VNC) is bundled on many cloud images and can be freely and eas-
ily installed on those it is not included with. Users need to download a VNC viewer to use VNC

234 Chapter 6 Cloud Services and Applications



ptg8286219

from a client computer. You can freely download a VNC from the RealVNC web site. For perfor-
mance reasons, the native VNC view is preferred over the Java applet loaded via a web page.

After installation, you must open a port in the firewall. By default, VNC uses TCP port
5900+N. N is the display number, :1 for the first remote display, :2 for the second, and so on.
When you start up the vncserver, it tells you what display it is using. There is also a service over
HTTP on port 5800+N to serve a VNC viewer in a Java applet. 

On SUSE, start the YaST administration tool using the yast command: 

# yast

Select Network Services, Remote Administration (VNC), as shown in Figure 6.14.

Remote Desktop Management 235

Figure 6.14 SUSE YaST administration tool

In the next dialog box, select Allow Remote Administration and Open Port in Firewall, as
shown in Figure 6.15.

The changes should take effect immediately. If you have connection problems, check that
the firewall port for 5900+N is open, where N is the display number.

By default, the RFB protocol that VNC uses is not secure. However, it can also be tunneled
over SSH. The open source ssvnc client does this. It requires an x11vnc server on the virtual
machine. See the article “Secure Multi-user Access to IBM Cloud Instances with VNC and SSH”
[Hudacek, 2011] for details on doing this. Another option to tunnel VNC over SSH is to use port
forwarding. This is explained in the section “Port Forwarding” in Chapter 7.



ptg8286219

236 Chapter 6 Cloud Services and Applications

Figure 6.15 YaST Remote Administration (VNC) dialog box

NX Remote Desktop
The NX remote desktop technology relies on an NX server and an NX client. You used the NX
desktop in the section “Rational Application Developer” in Chapter 2. The NX server is available
commercially from NoMachine or open source distributions. Some images in the IBM Smart-
Cloud Enterprise uses the FreeNX open source package. The NX server is responsible for user
authentication and session activation. A third component is the NX node. nxservice and related
commands are not daemons but, rather are activated by the SSH server. 

Configuration files are usually in the directory /etc/nxserver, which also includes the
keys needed for authentication. If you have trouble, a useful setting is NX_LOG_LEVEL, in the
node.cfg file. You can set it to 4 for server/client communication. The location of the log file is
also configured in node.cfg, with a default setting of /var/log/nxserver.log.

You can freely download the NX client from the NoMachine web site. After installing,
import and save your SSH key (unconverted by Putty) and set the IP or host name of your virtual
machine in the Server field. Figure 6.16 shows the configuration screen.

The client configuration user interface enables you to choose a desktop, such as KDE or
Gnome. This can be a source of errors, so try a different value if you have trouble establishing a
session after authentication. The client configuration and session files are stored in the user’s .nx
directory (C:\Documents and Settings\Administrator\.nx on Windows). In case of errors,
check the session directory, also under .nx.

See the “Secure Shell (SSH)” section in Chapter 7 for more on SSH.



ptg8286219

Composite Applications 237

Figure 6.16 NX Client Connection Wizard

Composite Applications
In some cases, you might need to create a composite application that includes a group of sys-
tems—for example, a web application with a web server, an application server, and a relational
database. In the IBM Cloud catalog, a number of applications fall into this category, such as IBM
Tivoli Monitoring (ITM) and Rational Team Concert (RTC). One way to do this is on a large
machine with many CPUs. The IBM cloud supports virtual machines with up to 32 CPUs. The
main task you face when creating a composite application on a single instance is installing all the
different software items and managing the licenses. Software bundles, described in the earlier
section, “Software Installation and Management,” can help with this.

You might also need to create a group on different machines. You might find images with
the software you need already installed. Several tasks in creating a group of different instances
might be relevant to your particular application: 

• Configuration of the topology

• Startup sequence

• Runtime parameters, such as system-to-system credentials



ptg8286219

Email
Email is a basic utility that many applications use. For example, IBM Rational Team Concert
uses email to invite team members to join a project. Open source mail servers can be used in your
cloud applications, including Sendmail, qmail, and Apache James. Most application program-
ming languages include a library that you can use in the applications you develop, for interfacing
with a mail server to send and manage mail. In Java, this is provided by JavaMail. Your basic
challenges in email enabling a cloud application are to find or install a mail server, configure it for
relaying, and configure your software application to make use of it.

Mail is most often sent using the Simple Mail Transport Protocol (SMTP) and is retrieved
by mail clients from their local mail servers with Post Office Protocol (POP) or Internet Mail
Access Protocol (IMAP). For basic email enabling of an application, you must configure SMTP
but probably not POP. SMTP relaying is the process of sending a request to a mail server to send
that mail to an address on a different server. You need to do this when you connect a mail-enabled
application. Because of problems with spam and mail abuse, mail servers tightly manage relay-
ing, which provides a challenge for legitimate use. Out of the box, the Sendmail installation on
Red Hat Enterprise Linux allows relaying only from localhost.

Setting up an SMTP Server
Let’s start by setting up an SMTP server to send mail from a cloud application. The Red Hat
Enterprise Linux images shipped in the IBM SmartCloud Enterprise include the SMTP server
Sendmail. Let’s look at that as an example. Check the status of the mail server with this
command:

# /sbin/service sendmail status

sendmail is stopped

This tells you that the mail server is not running. Confirm the fully qualified domain name
of your virtual machine with the nslookup command, as described in the earlier section “Basic
Network Settings.” If it looks okay, try starting the Sendmail service with this command:

# /sbin/service sendmail start

Starting sendmail:                         [  OK  ]

Starting sm-client:                        [  OK  ]

The output tells you that the mail server started successfully. You can check the ports and
IP addresses that Sendmail is listening on with this command:

# netstat -nl

Active Internet connections (only servers)

Proto Recv-Q Send-Q Local Address       Foreign Address          State

…

tcp        0      0 127.0.0.1:25        0.0.0.0:*               LISTEN

238 Chapter 6 Cloud Services and Applications



ptg8286219

This tells you that Sendmail is listening for connections from localhost on port 25, the stan-
dard SMTP port. If your application is on another server, you must change the DaemonPort
Options setting in the Sendmail configuration file at /etc/mail/sendmail.cf. Next, add the
aliases for your server in the file /etc/mail/local-host-names. Add your server name, not just
the domain name. Remember that many other cloud users share the same domain name. If your
application is not on the local machine, you also need to add your application server host name to
the access database to allow relaying. To do this, edit the file /etc/mail/access.db, add your
application server host name, and execute the command make access.db. Restart Sendmail with
this command:

# /sbin/service sendmail restart

Shutting down sm-client:                    [  OK  ]

Shutting down sendmail:                     [  OK  ]

Starting sendmail:                          [  OK  ]

Starting sm-client:                         [  OK  ]

Now verify your setup by trying the SMTP service from the command line, as shown here:

$ mail a@example.com

Subject: testing

hello

.

Cc:

Do this from the idcuser account, not from root. Enter your own email address instead of
the address given, and check that you receive the email. End the message with a single period on
the last line.

For troubleshooting, see the log file at /var/log/maillog.

Software as a Service
Software as a Service (SaaS) originated before Infrastructure as a Service and the term cloud
became popular. During the initial period, SaaS offerings were built directly on physical hard-
ware and required large capital investments. Salesforce is the prime example of SaaS. It began as
a customer relationship application and has now grown to include a wide range of business appli-
cations and a Platform as a Service, force.com. The capital investment required for SaaS is now
much reduced by running SaaS on top of cloud infrastructure.

Document-Management Systems
A document-management system manages files so that they can be stored in a central location for
convenient access, indexing, and searching. Modern document-management systems enable
users to add their own comments about the documents and have Web 2.0 features such as tagging
and ratings. They support role-based access management in managing the documents, and you

Software as a Service 239

force.com


ptg8286219

can place workflows around documents to ensure that they are reviewed and approved before
publishing. 

In the IBM SmartCloud Enterprise, document management is done by IBM Rational Asset
Manager (RAM). This is especially appropriate because most of the documents in the cloud are
virtual machine images, which themselves are software assets. RAM is a standard IBM product
that you can use also in your own projects. The image catalog has an entry for RAM that enables
you to start up your own server.

All the images in the catalog of the SmartCloud Enterprise have image assets that have
public visibility. When you save a virtual machine as an image in the SmartCloud Enterprise, an
image asset is created. You can add documents, such as help in getting started and screen shots, to
aid your image users. RAM also supports a forum where your users can ask questions. Initially,
your image asset has private visibility—that is, it will be visible only to you. However, you can
also make it visible to the other members of your enterprise.

RAM supports other types of documents as well, such as text documents. Most of the sup-
port documents for the SmartCloud Enterprise are stored as RAM documents assets. When creat-
ing a new document in RAM, you will see the screen in Figure 6.17.

240 Chapter 6 Cloud Services and Applications

Figure 6.17 Creating a document in RAM

You can add a name, a short description, and a long description and attach files. You can
configure an approval workflow to automatically be enforced before the document is made
visible to others. Figure 6.18 shows an example step in the approval workflow.



ptg8286219

Software as a Service 241

Figure 6.18 Review of a document submitted to RAM

In this case, there are two steps: claim review and then accept/reject the document.

Email and Collaboration Suites
Cloud-based collaboration tools are useful in project environments where team members change
dynamically and include members outside your own organization. These tools include chat,
wikis, web conferences, file sharing, and email. Using cloud-based collaboration tools, you
remove the burden of managing the infrastructure to support them from your own IT organiza-
tion. You easily give access to people who need access without giving access to your organiza-
tion’s private network. In fact, establishing email services is not cheap and convenient enough to
do on a project basis if you needed to, say, because the project spans multiple enterprises.

IBM SmartCloud for Social Business is a cloud-based collaboration suite from IBM that
includes email and collaboration tools. IBM SmartCloud for Social Business also includes exten-
sion points for third-party applications. Two patterns for integration exist:

• Outbound integration—Integrate other applications into IBM SmartCloud for Social
Business

• Inbound integration—Integrate IBM SmartCloud for Social Business into other
services 

IBM SmartCloud for Social Business allows single sign-on using Security Access Markup
Language (SAML) or OAuth. See the section on OAuth in Chapter 7 for more details on that
approach.



ptg8286219

Business Scenario: The IoT Data Application
We decided on the IoT Data application architecture early in the book before we discussed the
different options available on the cloud. Now we can discuss the reasons for the choices.

For our IoT Data scenario, we create our own custom images with Hadoop installed. Then
we use the IBM SmartCloud Enterprise REST Java client to create virtual machine instances. We
will not provide these images to outside users, so we will leave visibility as private. We create
start-up scripts to automatically start Hadoop when the operating system is booted and the net-
work becomes available. We discussed start-up scripts in the earlier section “Linux Services.”

IoT Data makes heavy use of storage services. Before creating the virtual machine instances,
we create storage volumes with the REST API Java client. The storage volumes are provided as
block storage, but we select ext3 as the format when they are provisioned. This acts as local file
system. We attach a storage volume with each virtual machine instance. We use the Hadoop Dis-
tributed File System (HDFS) to span multiple nodes and scale to a large number of files. We need
additional information about our files, especially on the customer who owns the files. We use
Hadoop to store this metadata.

We do not need a software installation or management services at this point. When new
updates to Hadoop become available, we will re-evaluate this. We also have no need for remote
desktop management at this point. We do make use of email to inform users of the completion of
long-running jobs in Hadoop. We use the Sendmail system provided with RHEL for this.

One important problem is that, when bringing up a new Hadoop node, we need to join it to
our cluster. Our plan for this is to upload the SSH private key when creating the virtual machine.
We demonstrated how to do this in the section “Business Scenario: File Uploads” in Chapter 4,
“Standards.” Then we can use the IP information from SmartCloud Enterprise to join the new
node to the cluster.

Our IoT Data application is an example of a composite application. It consists of three
parts:

• The management application, running as a J2EE application on WebSphere

• The relational database, used to store customer and device information

• The Hadoop cluster

Our main need for automation is in scaling the file system by adding Hadoop nodes. We
believe that a single management application and database will be sufficient, so we do not have an
initial need to automate that using IaaS APIs. However, we still have performance, availability,
and maintenance to consider, which are topics for Chapter 8, “Performance, Availability, Moni-
toring, and Metering.”

242 Chapter 6 Cloud Services and Applications



ptg8286219

243

C H A P T E R 7

Security

Background
This section gives an overview of security considerations when developing a cloud-based appli-
cation and highlights security differences between traditional software development and cloud-
based software. The differences arise from several factors, which might or might not apply to the
particular application you are developing:

• Exposure on the public Internet

• Multitenant awareness

• Automated, delegated, or self-service administration

One of the basics of being on the Internet is that your application must be network aware.
Usually, that implies an HTML interface, but it can also be accomplished with a network-aware
client application.  Cloud applications should be built with the security implementations of expo-
sure on the network and the greater surface of attack that a web user interface presents in mind. 

A tenant is an organization that has many users consuming a service and that is isolated
from other tenants on the same system. If you are building an application that is intended for use
only within your organization, it does not need to be multitenant aware. The need for automated,
delegated, or self-service administration stems from changes in user expectations to be able to
instantly manage their own user accounts and also from the financial drive to reduce support cen-
ter costs. Building enterprise applications that are multitenant aware has been a major trend in
application development over the past five to ten years.

The Cloud Security Alliance outlines additional risks in its “Top Threats to Cloud Comput-
ing.” Additional threats include these:



ptg8286219

• Abuse of cloud computing services

• Insecure interfaces and APIs

• Malicious insiders

• Shared infrastructure

• Account hijacking

Actually, these either are included in the three differences between cloud and traditional
computing here or are no different than traditional security threats. However, they are important
issues to keep in mind. The Cloud Security Alliance also describes possible security benefits of
cloud computing, which include these:

• Centralized data storage

• Use of standard images

In the context of security, plain text is data to be encrypted or data that has been decrypted,
cipher text is the encrypted text, and a cipher is an algorithm for converting plain text to cipher
text. A key is data that the cipher algorithm uses. A symmetric key cipher uses the same key to
both encrypt and decrypt data. In this method, the key must be kept secret. An asymmetric key
cipher uses one key to encrypt data and another to decrypt the data. This is the basis for public
key cryptography. One of the keys, the private key, must be kept secret; the other key, the public
key, can be shared with other parties. A mathematical relationship usually exists between the two
keys, which requires a generation procedure. A secure hash algorithm provides an irreversible
transformation of data to a unique value that can be used to validate the authenticity of the data.
Secure hash algorithms are the basis for digital signatures.

Business Scenario: IoT Data Security Context
The IoT Data application supports multiple tenants and also has limited support for unregistered
users. It operates in the public Internet. Figure 7.1 shows an infrastructure diagram for the net-
work zones for the IoT Data business scenario.

We define three security zones:

• The Public Zone, which anyone on the Internet can access. It contains a welcome page.

• The Registered Users Zone, which only registered users can access. It contains the stor-
age management component.

• The Administration Zone, which contains the Server Management component.

244 Chapter 7 Security



ptg8286219

Figure 7.1 Infrastructure diagram for the IoT Data security zones

Public Key Infrastructures and Certificates
One of the first issues you will encounter enabling working on the cloud is being able to interop-
erate with the different protocols that are commonly used, such as SSH and HTTPS. Although
these protocols are not specific to cloud computing, they are important building blocks for it. To
be able to use these protocols, you need to deal with certificates. This is why we discuss keys and
certificates first.

A public key infrastructure is one of the most important enabling elements of secure com-
munications and e-commerce. Public key infrastructure uses the asynchronous key cipher crypto-
graphic methods mentioned previously to guarantee that you can trust the identity of the party
sending messages to you by checking that party’s public certificate. The certificate should be
signed by a certificate authority (CA) that you trust. In a more general case, a trust chain should
consist of a chain of signatures finally leading to a certificate authority that you trust. The most
commonly used standard for certificates is X.509.

The IBM SmartCloud Enterprise web site and the REST API service use HTTPS to trans-
mit all data. That is backed by a certificate to verify its identity. The certificate is signed by
Equifax, a well-known certificate authority that all major browsers recognize. You can find
details about it in Firefox by clicking on the icon to the left of the address bar. Clicking the More
Information button brings up the detail screen shown in Figure 7.2.

You can click the View Certificate button to see the contents on the certificate, as shown in
Figure 7.3.

Public Key Infrastructures and Certificates 245

Actor
End User 

Actor
System Administrator 

Actor
Unregistered User

0 1

North Carolina
Location

10
Location

Administration Zone

Server Manager 

10
Location

Public Zone

Welcome Page 

10
Location

Registered Users Zone

Storage Manager 



ptg8286219

Figure 7.2 Firefox dialog box for security details for the IBM SmartCloud Enterprise web site

246 Chapter 7 Security

Figure 7.3 Firefox dialog of certificate contents



ptg8286219

You can check your browser’s trusted certificate authorities in Firefox under Tools, Prefer-
ences, Advanced, Encryption, Certificates, Authorities, as shown in Figure 7.4, and verify that
Equifax is on the list. You can select it and export it, which will come in handy later when dealing
with your own programs. Save it in .pem format.

Public Key Infrastructures and Certificates 247

Figure 7.4 Trusted certificate authorities in Firefox

This explains how your browser trusts the IBM SmartCloud Enterprise. Whether a program
that you might write trusts the certificate depends on language platform support and con-
figuration.

In the Java platform the Key and Certificate Management Tool, keytool, manages crypto-
graphic keys, certificate chains, and trusted certificates. It stores these in a keystore. A special file
for the public certificates of certificate authorities, called cacerts, is located at java.home\lib\
security. This includes the Equifax certificate, which you can check with this command on
Windows and a similar command on Linux:

“%JAVA_HOME%\bin\keytool” -list -keystore
“%JAVA_HOME%\jre\lib\security\cacerts” -storepass changeit

In some environments, some applications might use the jssecacerts keystore. JSSE is the
Java Secure Sockets Extension. 

In your own applications, you can use your own certificates. You can do this with a certifi-
cate-generating tool such as OpenSSL. However, the certificates should still be signed by a
trusted CA. Requesting that a trusted certificate authority sign your own certificate costs money.



ptg8286219

You will need to do this for a production system but will probably prefer to avoid it in develop-
ment projects. In this context, you can sign your own certificates. If you use a certificate that is
not in the trusted keystore, you must add it yourself. To add a certificate to the trust store, use the
keytool command, shown here:

keytool -import -noprompt -keystore jssecacerts -storepass changeit -
alias myca -file myca.pem

This uses the import option to add the certificate file to the jssecacerts keystore, opening
the keystore with the password changeit and saving it with the alias myca. You can also interact
with the keystore using the java.security API. The following example demonstrates looking up
the key added using the previous command line.

import java.io.FileInputStream;

import java.io.InputStream;

import java.security.cert.Certificate;

import java.security.KeyStore;

public class CertUtil {

public void getCert(String alias) throws Exception {

KeyStore ks =
KeyStore.getInstance(KeyStore.getDefaultType());

char[] password = {‘c’, ‘h’, ‘a’, ‘n’, ‘g’, ‘e’, ‘i’, ‘t’,
};

InputStream is = new FileInputStream(“jssecacerts”);

ks.load(is, password);

Certificate c = ks.getCertificate(alias);

System.out.println(alias + “ is a “ + c.getType());

}

public static void main(String[] args) throws Exception {

CertUtil util = new CertUtil();

util.getCert(“myca”);

}

}

The program gets an instance of the KeyStore class and loads it using a FileInputStream.
Then the program looks up the certificate using the alias that you used on the command line.
Notice that the password uses a char array instead of a String. This is so that you can zero out the
password when you are finished, which is something we neglected to do. The output of the com-
mand is shown here:

myca is a X.509

As expected, we found the certificate that we imported with the command line.
We demonstrate how to create self-signed certificates for setting up HTTPS in the section

“Example: Setting up HTTPS on the IBM HTTP Server,” later in the chapter.

248 Chapter 7 Security



ptg8286219

Example: Trusted Certificate Signing Authorities in WebSphere
Application Server
Java 2 Enterprise servers, such as WebSphere Application Server (WAS), build on the capabili-
ties of the Java Standard Edition, including support of different key stores for incoming versus
outgoing connections. WAS does not have the Equifax certificate in the trust store by default, cre-
ating a challenge that this example solves. If you try to call the IBM SmartCloud Enterprise APIs
from within a WAS server, you get an error similar to this:

Error: com.ibm.jsse2.util.g: PKIX path building failed:
java.security.cert.CertPathBuilderException: PKIXCertPathBuilderImpl
could not build a valid CertPath.; internal cause is: 

java.security.cert.CertPathValidatorException: The certificate
issued by OU=Equifax Secure Certificate Authority, O=Equifax, C=US is
not trusted; internal cause is: 

java.security.cert.CertPathValidatorException: Certificate
chaining error

This is as designed. The error message tells you that the certificate could not be trusted
because it could not be traced back to a trusted signing authority. To add Equifax as a trusted
signing authority, you can use the Equifax Secure certificate exported from Firefox and the WAS
server from the “Java 2 Enterprise Edition” section in Chapter 2, “Developing on the Cloud.”
After you export the certificate from Firefox, as described earlier, copy it to the WAS server using
WinSCP. Log into the WAS administration console and navigate to the SSL Certificate and Key
Management menu. Select Manage Endpoint Security Configurations, BaseAppSrvNode, Key
Stores and Certificates, NodeDefaultTrustStore, Signer Certificates, and click Add. Enter the
path to the certificate on the server and enter an alias for the certificate—say, equifax—as shown
in Figure 7.5.

Public Key Infrastructures and Certificates 249

Figure 7.5 Adding a trusted certificate signer in WAS 7

Save the configuration and check that it is good by viewing the certificate information from
the list of trusted signers, as in Figure 7.6.



ptg8286219

Figure 7.6 Viewing a trusted certificate signer in WAS 7

After checking that the certificate was added properly, restart the server. This is done either
with the IBM SmartCloud Enterprise or by logging on to the server with Putty. 

Now let’s write an application to see this work. The following servlet lists all the images in
the catalog:

package com.ibm.cloud.examples.servlet;

import java.io.IOException;

import java.io.Writer;

import java.util.List;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import com.ibm.cloud.api.rest.client.bean.Image;

import com.ibm.cloud.examples.cache.CatalogCache;

/**

* Servlet returns a list of images

*/

250 Chapter 7 Security



ptg8286219

public class DescribeImagesServlet extends HttpServlet {

protected void doGet(HttpServletRequest request,
HttpServletResponse response) 

throws ServletException, IOException {

Writer writer = response.getWriter();

try {

List<Image> images =
CatalogCache.getInstance().getImages();

writer.write(“Found “ + images.size() + “
image(s).\n”);

for (Image image: images) {

writer.write(“ID: “ + image.getID() + “, “ +
image.getName());

}

} catch(Exception e) {

writer.write(“Error: “ + e.getMessage());

}

}

}

You saw from other examples that retrieving a list of images and other data from the REST
services can take some time because of calls across the Internet. However, in a web application,
many users want certain sets of relatively unchanging data. This servlet uses a cache imple-
mented by the CatalogCache class, shown here: 

package com.ibm.cloud.examples.cache;

import java.io.IOException;

import java.util.List;

import com.ibm.cloud.api.rest.client.DeveloperCloud;

import com.ibm.cloud.api.rest.client.DeveloperCloudClient;

import com.ibm.cloud.api.rest.client.bean.Image;

import com.ibm.cloud.api.rest.client.exception.UnknownErrorException;

/** 

* Singleton class caches catalog data

*/

public class CatalogCache {

private static final String USERNAME = “aamies@cn.ibm.com”;

private static final String PASSWORD = “hsing1yun”;

private static final long REFRESH_INTERVAL = 1000*60*60*24;  //
refresh every day

Public Key Infrastructures and Certificates 251



ptg8286219

private static CatalogCache instance;

private List<Image> imageCache;

private long lastRefreshed;

private CatalogCache() {

}

public static CatalogCache getInstance() {

return instance;

}

public List<Image> getImages() throws UnknownErrorException,
IOException {

if ((imageCache == null) || ((System.currentTimeMillis() -
lastRefreshed) > REFRESH_INTERVAL)) { 

DeveloperCloudClient client =
DeveloperCloud.getClient();

client.setRemoteCredentials(USERNAME, PASSWORD);

imageCache = client.describeImages();

lastRefreshed = System.currentTimeMillis();

} 

return imageCache;

}

public void invalidate() {

imageCache = null;

}

}

The class calls the IBM SmartCloud Enterprise Java API and stores the data in a List,
where it can be refreshed periodically.

Identity and Access Management
Identity and access management refers to the domain of management of users, groups, and user
authentication and authorization. Being exposed on the public Internet, you must make sure that
passwords and encryption methods are strong. This means that cloud applications should help
users by preventing them from using weak passwords. The implication of multitenant awareness
is that you need to know which tenant a logged-in user belongs to. The need for automation
implies that you need to a way for users to either self-register or delegate user administration to
responsible administrators. For example, the IBM SmartCloud Enterprise enables each tenant to
have a user that can manage other users within that tenant. In addition, you need users to recover
lost password information without needing to call a support center. The IBM SmartCloud
Enterprise uses a central user- and password-management mechanism based on the IBM.com

252 Chapter 7 Security

IBM.com


ptg8286219

identity-management system. Coding all these in a small or medium-size development project is
a tall order, so try to leverage standards and use third-party solutions wherever possible.

Authorization includes making sure that users can access only the data they are entitled to.
This is based on membership in user roles. For example, in the IBM SmartCloud Enterprise, there
are two user roles: End users may see only their own resources, and customer administrators may
manage other users accounts and view the resources of other users. It is a best practice to exter-
nalize authentication and access control from your application. 

A number of standards relate to identity and access. HTTP basic access authentication is an
authentication method allowing a HTTP client to include a user name and password pair in an
HTTP header. The user name and password are concatenated as user_name:password and are
base 64 encoded before being added as an HTTP header. The IBM SmartCloud Enterprise uses
HTTP basic authentication over HTTPS. Basic and Digest Access Authentication are defined in
RFC 2617 [Franks, et al., 1999]. These methods may be acceptable over an HTTPS connection
but would not provide good confidentiality guarantees over HTTP.

Storing user identity data can be done with different user repositories. Lightweight Direc-
tory Access Protocol (LDAP) is a protocol to access directory servers that often store identity
data in a standard way. OpenID is a method for central user repositories operated by identity
providers to store user account information that can be used across many web sites. The advan-
tage is that it avoids the need for users to register multiple times at different web sites and main-
tain a long list of user names and passwords. Many applications opt to store user data in the same
relational database that they use for transactional and other data. User management can be imple-
mented with the IBM Tivoli Identity Manager in a central way across many different kinds of sys-
tems, including role management, delegated administration, and self-service. We discuss identity
management in more detail in the upcoming sections “Managing Users with Lightweight Direc-
tory Access Protocol” and “Enabling an Application for Multitenant Access.”A number of tools
help manage identity and access in a standards-based and centralized way. The IBM Tivoli
Access Manager is a system for authentication and authorization. The Tivoli Access Manager
WebSEAL component is installed at the outer edge of the application in the DMZ to make sure
that users gaining access to the application are first authenticated. Without using a centralized
approach like this, you require developers to be very disciplined in enforcing authentication and
run the risk of a careless web page developer forgetting to require access in a location. WebSEAL
also allows for single sign-on, avoiding the need for users to have to enter their passwords more
than once as they cross web pages that are driven by different back-end systems. The Tivoli
Access Manager allows for different authentication methods, including LDAP.

In some cases when working in cloud environments, you might not feel confident in pass-
word authentication alone. You can increase the level of security by adding another factor of
authentication—in other words, using a two-factor authentication method. A two-factor
authentication method simply requires the use of two different authentication methods, such as a
password and a private key. By default, SSH access to instances in the SmartCloud Enterprise by
user idcuser requires a private key but no password. It is a good practice to set the password for

Identity and Access Management 253



ptg8286219

idcuser the first time you access the account, which makes accessing the virtual machine a two-
factor authentication method. You also need to edit the following line in the SSH server configu-
ration file:

PasswordAuthentication yes

The next time you log in, you will still need your SSH key, but you will be prompted for the
password as well.

Configuring Authentication and Access in J2EE Applications
In J2EE applications, you can configure authentication and access by editing the web.xml file.
First, we add a stanza for a security-constraint:

<security-constraint>

<web-resource-collection>

<web-resource-name>User Personalization</web-resource-
name>

<url-pattern>/username</url-pattern>

</web-resource-collection>

<auth-constraint>

<role-name>authenticated-users</role-name>

</auth-constraint>

</security-constraint>

This indicates that all users wanting to access any URL with the pattern /username must
belong to the role authenticated-users. Next, you define a login method:

<login-config>

<auth-method>BASIC</auth-method>

<realm-name>File Realm</realm-name>

</login-config>

This means that users should log in with HTTP Basic authentication using the authentica-
tion realm called File Realm. Finally, you define the security roles:

<security-role>

<description>

The role required to access the user interface

</description>

<role-name>authenticated-users</role-name>

</security-role>

This defines the role authenticated-users.
You can test this with a servlet that queries the user’s name and role:

package com.ibm.cloud.example.security;

import java.io.IOException;

254 Chapter 7 Security



ptg8286219

import java.io.PrintWriter;

import java.security.Principal;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class UserNameServlet extends HttpServlet {

private static final long serialVersionUID = 1L;

protected void doGet(HttpServletRequest request, 

HttpServletResponse response) throws ServletException, 

IOException {

PrintWriter writer = response.getWriter();

Principal principal = request.getUserPrincipal();

String userName = “Unknown”;

boolean userInRole = false;

if (principal != null) {

userName = request.getUserPrincipal().getName();

userInRole = request.isUserInRole(“authenticated-
users”);

}

writer.println(“User Name: “ + userName + 

“, user in role: “ + userInRole);

}

}

The servlet gets the Principal object from the servlet request. If the user does not authen-
ticate, this is null. If it is not null, you get the user name. In addition, you check whether the user
is in the role authenticated-users with the HttpServletRequest.isUserInRole() method.
Finally, you print the result. To try this, deploy the servlet into a web application called basicauth
and map the servlet to URL /username. You can check this with a simple file realm, such as in
Apache Tomcat. The default user store is in the file conf/tomcat-users.xml. Add the following
entries to create a test user:

<tomcat-users>

<user name=”alex” password=”***” roles=”authenticated-users” />

<role rolename=”authenticated-users”/>

</tomcat-users>

Bring up the URL http://host:8080/basicauth/username. You should be prompted for the
name and password that you entered into tomcat-users.xml. The servlet should print the follow-
ing output:

User Name: alex, user in role: true 

Identity and Access Management 255

http://host:8080/basicauth/username


ptg8286219

You are on the right track but have to make some adjustments. This example has several
shortcomings:

• You have embedded security into your application. 

• Your application is an island of security.

• You have not accounted for isolation of tenants.

Let’s see how to address these points. 

Managing Users with Lightweight Directory Access Protocol
In the previous section, you stored user information in an XML file. This has obvious scalability
and interoperability limitations. Let’s look at an improved way of storing user information.

Lightweight Directory Access Protocol (LDAP) is a protocol implemented by directory
servers that provides a standard way of storing and looking up information on users and comput-
ing entities. Many directory servers implement LDAP, including IBM Directory Server, OpenL-
DAP, Novel Directory Server, and Microsoft Active Directory. LDAP servers are one of the most
popular means of storing user information, and many tools support it. For example, many web
servers, J2EE servers, and email servers can use LDAP as a user repository out of the box. LDAP
directories are often used to centralize identity information for an enterprise in a single place,
usually called an enterprise directory. In Java, you can interact with LDAP servers with the Java
Naming and Directory Interface (JNDI). LDAP also supports transmission over SSL and TLS for
security.

In LDAP, each entity is identified by its Distinguished Name (DN). Entities can support a
flexible list of attributes that you can modify by editing the schema. Standard object classes are
defined for user and identity management, such as inetOrgPerson, group, and organization. The
object classes define the attributes allowed or required for any given entity. Entities can have mul-
tiple object classes. The standard objects are one of the keys enabling a common understanding
of user and group objects. They also can be easily extended with additional attributes specific to
your application context.

OpenLDAP is part of Red Hat Enterprise Linux distributions. It includes a directory server
and management and client tools. We use it to demonstrate the use of LDAP for user manage-
ment. You can install OpenLDAP on the RHEL virtual machines on the IBM SmartCloud Enter-
prise using this command:

# yum install openldap openldap-servers

This installs both server and client tools. It creates the file /etc/openldap/ldap.conf,
which is the configuration file for the OpenLDAP client tools, and the file /etc/openldap/
slapd.conf, which is the configuration tool for the server. The schema files are stored in the
directory /etc/openldap/schema/. The top of the directory tree is called the directory context,
abbreviated to dc, and is used as a suffix in the distinguished names for your objects. Edit
/etc/openldap/slapd.conf to set the suffix for your organization and the root user:

256 Chapter 7 Security



ptg8286219

suffix          “dc=example,dc=com”

rootdn          “cn=Manager,dc=example,dc=com”

Set the password for the root user using the slappasswd command. Start the LDAP service
using the service command, as shown here:

# /sbin/service ldap start

You can check whether it is running by using this command:

# ldapsearch -x -b ‘’ -s base ‘(objectclass=*)’ namingContexts

The ldapsearch command is a tool for searching the directory. It shows an error if the
server is not running properly. 

Directory data can be exchanged using the LDAP Data Interchange Format (LDIF), which
is a text format that is simple to edit manually. Add a root entry at the top of the directory tree to
represent your organization. Switch to user ldap using the Linux su command. Create a file called
organization.ldif that contains this text:

dn: dc=example,dc=com

objectclass: dcObject

objectclass: organization

o: Example Company Inc.

dc: example

This is an example of the LDIF format mentioned earlier. Two object classes exist: dcOb-
ject and organization. Add this to the directory using the ldapadd command:

ldapadd -x -D “cn=Manager,dc=example,dc=com” -W -f organization.ldif

You can check that it has been added by using this command:

ldapsearch -x -b ‘dc=example,dc=com’ ‘(objectclass=*)’

You should see output that matches your LDIF file. 
LDAP can support a hierarchical structure to organize resources. It can help organize users,

groups, and other objects in different branches of a directory information tree. This term
describes the topology of the organization of objects within a directory. A simple directory infor-
mation tree separates people into one branch of the tree and roles in another branch, as shown in
Figure 7.7.

To create a branch of the tree for people, create an LDIF file called ou_people.ldif with
the following content:

dn: ou=people,dc=example,dc=com

objectclass:organizationalunit

ou: people

description: A branch for people

Identity and Access Management 257



ptg8286219

Figure 7.7 Example directory information tree

In LDAP, ou is the attribute name for organizational unit. Add the ou entity with the follow-
ing ldapadd command:

ldapadd -x -D “cn=Manager,dc=example,dc=com” -W -f group_people.ldif

You can also add users to the directory using LDIF. Create an LDIF file with the following
text:

dn: cn=John Doe,ou=people,dc=example,dc=com

objectclass: person

objectclass: inetOrgPerson

objectclass: top

objectclass: organizationalPerson

objectclass: ePerson

cn: John Doe

sn: Doe

uid: jdoe

userpassword: secret

This represents a user called John Doe. In a real application, you would normally use a 
user interface or other tool to add users. In cloud applications, users are often added by 

258 Chapter 7 Security

ou=groups ou=people

dc=example,
dc=com

cn=Employees
cn=John Doe

cn=John Doe
sn=Doe
uid=jdoe



ptg8286219

self-registration. However, LDIF has its uses in bulk import of user data. Add the user with the 
ldapadd command, as before.

# ldapadd -x -D “cn=Manager,dc=example,dc=com” -W -f person.ldif

You can check that the user was added properly with the follow command:

# ldapsearch -x -b ‘ou=people,dc=example,dc=com’
‘(objectclass=inetorgperson)’

The previous LDIF data should be returned. With a large number of entities in the directory
server, organizing groups into their own branch of the directory tree is also convenient. Create an
LDIF file called group_ou.ldif with the following content:

dn: ou=groups,dc=example,dc=com

objectclass:organizationalunit

ou: groups

description: A branch for groups

Add the ou entity with ldapadd, as in the previous examples. Next, create an LDIF file
called employees.ldif with the group definition, as shown here:

dn: cn=employees,ou=groups,dc=example,dc=com

objectclass: groupofnames

cn: employees

description: Example Company employees

member: cn=John Doe,ou=people,dc=example,dc=com

This adds the user John Doe to the group employees. Add the group entity with ldapadd, as
in the earlier examples. 

You can configure the IBM WebSphere Application Server to use an LDAP directory server
as a user repository. You can do this in either federated or stand-alone mode. Federated mode com-
bines the out-of-the-box file realm with an LDAP realm. Stand-alone mode is the best mode for a
production system, for performance reasons. However, you have the additional challenge of repli-
cating the WebSphere administrative user and group to LDAP. You perform the following steps
with WAS 7.0 for federated mode.

1. Click Security, Global Security.

2. Select Federated Repositories and click Configure.

3. Click Add Base Entry to Realm.

4. Click Add Repository.

Enter the following values in the form:

Repository identifier: ldap
LDAP Server: Custom
Primary Host name: localhost

Identity and Access Management 259



ptg8286219

Port: 389
Bind distinguished name: dc=example,dc=com
Bind password: ***

Click OK and Save. You must register the group object class (groupofnames) and group
membership attribute (member) in the WebSphere console as well. You can do this under Global
Security, Federated Repositories, Manage Repositories, {Realm Name}, Group Attribute Defini-
tion. Restart the WebSphere server. Now you can deploy a web application with a security
description similar to the previous example and verify that users both have valid entries in the
LDAP directory server and belong to the correct group.

Enabling an Application for Multitenant Access
According to the NIST definition of cloud computing, multitenant access is one of its essential
characteristics. You can think of a tenant as an enterprise. For this, you need to isolate a tenant’s
data from all other tenants. Two basic steps are required to achieve this:

1. When the user logs in, the web server authenticates him or her and also finds the tenant
the user belongs to. This is usually stored in the user’s session.

2. Every time the user accesses or modifies data in the data store, you check that all the
data is owned by that tenant.

For the first step, you must associate a tenant identifier with the user record. Typically, each
user record in the user repository contains at least these attributes:

• User ID—How the application recognizes the user

• Credential—For example, a password

• User name—How other users recognize this user

• Role—Linked to the actions that a user can perform, such as end user or administrator

• Tenant ID—An identifier for a business entity that wants to separate all its resources
from other business entities

With this scheme, you can look up the user’s role and tenant ID at the time you check the
credentials upon login. You also need a tenant ID associated with data in the data store (usually a
relational database) to identify which tenant owns what data. With the LDAP approach for man-
aging users described earlier, you can extend the user object schema to include a tenant ID.

Federated Identity Management
Federated identity management involves being able to share identity information between a fed-
eration of identity and service providers. The most frequently needed business case for this is
single sign-on among multiple identity providers. For example, consider an employee wanting to

260 Chapter 7 Security



ptg8286219

view health insurance benefits. The employee navigates from the employer’s intranet and follows
a link to the health insurance provider’s web site. With federated single sign-on, the health insur-
ance provider’s web site can trust the authentication at the employer’s intranet. This is interesting
in a cloud environment because you want to provide users with a federation of cloud services.

Federated single sign-on is usually accomplished by first setting up a trust relationship
between identity and service providers and then making use of a cryptographic token service to
exchange authentication information. A commonly used standard for the token service is
Security Access Markup Language (SAML). The tokens exchanged represent user identity infor-
mation and assertions and come in different flavors, including Lightweight Third Party Authenti-
cation (LTPA), SAML, Passticket, X.509 Certificate, and Kerberos.

The IBM Tivoli Federated Identify Manager (FIM) is a software product that enables feder-
ated single sign-on and other federated identity-management scenarios. It can integrate with
many authentication and access platforms and protocols, including SAML, WS-Federation,
Liberty ID-FF, Information Card Profile, OpenID, .NET, and SAP Dreamweaver.

OAuth
OAuth is a protocol to allow secure API authorization. It can allow consumer applications written
by enterprises or independent third-party software vendors to interact with protected data from
service providers. OAuth enables users to access their data via these third-party applications
without sharing passwords. OAuth 1.0 is described in RFC 5849, and OAuth 2.0 is currently in
draft. IBM SmartCloud for Social Business, Twitter, Google, LinkedIn, and Facebook are
example platforms that use OAuth for the authentication of users and third parties with their
APIs. OAuth can support the various different scenarios that these popular web sites need. 

Traditional client/server or web applications have no standard model for third parties to
access user data, other than the user sharing a password with the third-party application. This is
not desirable from a security standpoint because it gives the owner of the third-party application
too much control over user data. It can also lead to practices in which the password is left exposed
in application configuration files and scripts. This is the motivation for development of the OAuth
standard.

Four roles are defined in OAuth: client, resource server, resource owner, and authorization
server. In a cloud context, the resource server is the cloud provider. The client is a third-party
application that interacts with the resource server to access a protected resource, which is owned
by the resources owner. The authorization server ensures that access to the protected resource is
authorized by the resource owner. The authorization server then issues the client a token. Typi-
cally, the client is a third-party application that leverages a platform provided by the resource
server. The authorization server can be a component of the resource server or a separate entity.
The client must also have credentials that the authorization server recognizes, typically through a
registration process. Figure 7.8 shows a schematic diagram of the OAuth flow.

Identity and Access Management 261



ptg8286219

262 Chapter 7 Security

1. Authorization Request

2. Authorization Grant

6. Protected Resource

4. Access Token

5. Access Token

3. Authorization Grant
and Client Credentials

Client

Resource Owner

Authorization
Server

Resource Server

Figure 7.8 Schematic of OAuth flow

Consider a more detailed description of the steps:

1. The client requests access to the resource. Usually, this is via the authorization server.

2. The client receives an authorization grant.

3. The client requests an authorization grant. 

4. The authorization server issues an access token.

5. The client uses the access token to request access to the protected resource.

6. The resource server returns the protected resource to the client.

The flow ensures that the resource owner authenticates with the resource server so that the
resource owner never needs to share authentication credentials with the client. When the access
token is issued to the client directly, it is termed an implicit grant. This is useful for browser-
based clients.

Three kinds of credentials are used in OAuth: client credentials, temporary credentials, and
token credentials. Client credentials authenticate the client. Token credentials are used in place of
a resource owner’s user name and password. The client uses the token credentials instead of ask-
ing the resource owner for a user name and password. Token credentials can be limited in scope
and duration.

The Twitter REST API methods enable access to Twitter data using OAuth 1.0. Let’s look
at it to get a feel for what using OAuth 1.0 is like. To use the Twitter API, you need to register
your application first. In this step, each client application is issued with a consumer key and a
secret that are used to sign each API call. When you register your application with Twitter, you
must provide the follow information:



ptg8286219

• Application name

• Application description

• Web site

• Organization

• Type (browser or desktop)

• Callback URL

You can enter your own application name and description. To get a web site, create a new
instance of a LAMP server, as described in the section “Linux, Apache, MySQL, and PHP” in
Chapter 2. You can leave the callback URL blank and supply this as a parameter in your API calls
when you develop your application. After you register, you are given a 22-character alphanu-
meric key and a 41-character secret.

To authenticate to Twitter, these steps take place:

1. The application requests a token. 

2. Twitter grants a token and directs the user to the service provider.

3. The user grants authorization.

4. Twitter directs the user to the consumer.

5. The application requests an access token.

6. Twitter grants an access token.

7. The application can access the protected resources.

The Twitter OAuth implementation requires that requests be signed using the HMAC-
SHA1 message digest algorithm.

What if hosting a web site is not convenient for you? Since the OAuth standard 1.0 was
published, several related use cases have been proposed that it does not handle well. These use
cases include JavaScript embedded in HTML pages and native applications that run on desktops
or mobile phones. The OAuth 2.0 draft standard has four different flows to handle these use
cases:

• Authorization code flow, Section 4.1 (classic 3-legged from OAuth 1.0)

• Implicit grant flow, Section 4.2 (browser-based clients that cannot maintain a secret,
authorized by a user)

• Resource owner password credentials, Section 4.3 (end user gives user name and pass-
word to application client)

• Client credentials flow, Section 4.4 (2 and 3 legged flow for non-browser-based clients)

OAuth 2.0 is not compatible with OAuth 1.0. It does not require use of a secret code issued
to the client, except in the specific flows described earlier (the first in the previous list). It also

Identity and Access Management 263



ptg8286219

adds a refresh token to allow the client to continue to access protected resources without having
to seek additional access tokens after the first one has expired.

OAuth 2.0 considers different types of clients:

• Web applications—This type of client is capable of securely storing client credentials
so that the client credentials flow is suitable for these clients.

• Browser-based applications (user agent–based applications)—These clients are not
capable of securely storing client credentials, so the implicit grant flow is most appropri-
ate.

• Native applications—These applications execute on the same operating system as the
resource owner uses. This type of client is capable of securely storing dynamically
issued credentials but not client credentials, so the authorization code flow is suitable for
these clients.

A key weakness with using OAuth 1.0 with HTML/JavaScript clients is the need to store a
secret key in an HTML page, which would be available to all users to view. OAuth 2.0 introduces
a different flow for this scenario, with two assumptions:

• The user can log on with the same browser the JavaScript code is executing within.

• The transaction takes place with HTTPS, so that there is no need to sign messages.

OAuth 2.0 defines authorization endpoints and token endpoints. An authorization endpoint
is used to obtain authorization from a resource owner. A token endpoint is used to obtain an
access token from an authorization grant. Not every flow described in OAuth 2.0 uses both end-
points. In issuing an authorization grant, the authorization server must first authenticate the
resource owner. Because the user credential may be passed in clear text, HTTPS or some other
protocol over transport-layer security (TLS) must be used. The authorization server should
require the client to register a redirection URI in advance so that the access token is sent via user
agent redirection. This is needed to prevent a session fixation attack.

Let’s look at the user experience for a browser-based OAuth 2.0 example. We can explain
the flow for a simple HTML client with the following screens and sample code. Suppose that the
user wants to log in and then make use of a third-party service that invokes REST APIs provided
by the cloud platform. Figure 7.9 illustrates this.

Of course, the user would not see the token fields displayed in the figure. This HTML page
would be written by a third-party service provider who created the service by making some
REST calls. The client requests an access token from the authorization server using HTML form
submit. This is followed by a user consent form (not shown) displayed by the authorization
server. After the authorization server obtains user approval for request for an application to call
API, it forwards the access token back to the application. Figure 7.10 shows this.

264 Chapter 7 Security



ptg8286219

Identity and Access Management 265

Figure 7.9 OAuth demonstration: user navigates to a screen where a cloud REST API is
invoked

Figure 7.10 OAuth provider generates an access token and sends it to the redirect URL



ptg8286219

The OAuth provider generates an access token and redirects back to the application at the
redirect URL. The REST API call now is called with code similar to this:

function callAPI() {

var accessToken = $(‘access’).value;

var tokenString = ‘Bearer ‘ + accessToken;

var url = $(‘url’).value + ‘?’ + new Date().getTime();

new Ajax.Request(url, {

method:’get’,

requestHeaders: [‘Authorization’, tokenString],

onSuccess: function(transport){

var response = transport.responseText || ‘no response text’;

$(‘result’).innerHTML = response;

},

onFailure: function(transport){

var response = transport.responseText || ‘no response
text’;

alert(‘callAPI failure: ‘ + response);

}

});

return false;

}

The JavaScript function uses the open source Prototype JavaScript library. The result looks
like Figure 7.11.

The application invokes the REST API using AJAX with an access token in the header and
prints output to the page.

Network Security
Because all resources reside on the network in cloud computing, network security is essential.
This section describes some basic concepts, considerations, and tools in network security.

Firewalls
An individual firewall is a firewall that is installed on the same server as the resource it is protect-
ing. This is an essential tool in cloud computing. Most modern operating systems, including all
the images on the IBM SmartCloud Enterprise, are packaged with an individual firewall. On
Linux virtual machines, this is iptables; on Windows, it is a Microsoft solution. On the IBM
SmartCloud Enterprise, a firewall also exists between the hypervisor and the virtual machines
that it manages.

A firewall rule specifies a set of criteria for a network packet and a target. When a network
packet arrives, each rule is checked. If the packet does not meet the criteria for the rule, the next
rule is checked.

266 Chapter 7 Security



ptg8286219

Network Security 267

Figure 7.11 Application invokes REST API

On SUSE machines, you can use the YaST administration utility to add firewall rules. For
example, to allow port 50030 (used by Hadoop) from any outside address, start YaST from the
command line by typing the command yast as root and navigate to Security and Users, Firewall
using the Tab key; then click Enter. You will see a screen similar to Figure 7.12

Navigate to Custom Rules and click Enter. Navigate to Add and click Enter. Enter 0/0 for
the Source Network, which indicates any source computer, and 50030 for the port, which is the
Hadoop port you are interested in (see Figure 7.13).

Click Add, Next, and Finish. You do not have to manually restart; YaST takes care of this.
On Red Hat images, you can use the iptables command to manage firewall rules. This is

the basic form of an iptables command:

# iptables [-t table] -[AD] chain rule-specification [options]

The actions associated with a firewall rule include ACCEPT, DROP, QUEUE, and RETURN. If you
don’t want to accept a network packet, you should specify a DROP action. In the iptables com-
mand, A appends a rule, and D deletes one. 

Three firewall tables exist. The default table is named filter. This table contains three
chains: input, forward, and output. The input chain is for packets coming in to the local sock-
ets, the forward chain is for packets that are routed, and the output chain is for locally generated
packets.



ptg8286219Figure 7.12 YaST firewall management utility

268 Chapter 7 Security

Figure 7.13 Custom firewall rule in YaST

As an example, to allow network packets from any source on port 80, the default HTTP
port, use this command:

# /sbin/iptables -A INPUT -p tcp —dport 80 -j ACCEPT



ptg8286219

This adds a rule to the INPUT chain of the filter table for TCP packets on port 80 with an
ACCEPT action. The -p parameter specifies the protocol—tcp, in this case. The —dport 80 option
is the destination port—80, in this case. The -j (jump) option is the target—ACCEPT, in this case.
It can be a good practice to leave firewall rules in place only for as long as you need them. The
command form is ideal for doing this. However, often, you will prefer to keep the rules perma-
nently, including after the next time you restart the instance. To do this, edit the file
/etc/sysconfig/iptables. A typical iptables file looks like this:

*filter

:INPUT DROP [67:14849]

:FORWARD DROP [0:0]

:OUTPUT ACCEPT [346:34696]

-A INPUT -m state —state RELATED,ESTABLISHED -j ACCEPT

-A INPUT -p tcp -m tcp —dport 22 -j ACCEPT

COMMIT

This specifies the rules for the filter table. All incoming packets from ports 67 to 14849
are dropped. No forwarding is allowed, all outgoing packets on ports 346 to 34696 are allowed,
and incoming packets on port 22 (SSH) are allowed. After you have made the edits and saved the
file, start or restart the iptables service with this command:

# /sbin/service iptables restart

If you have made changes with the iptables command, you can save them with this com-
mand:

# /sbin/service iptables save

Check the status of the firewall with this command:

# /sbin/service iptables status

Some performance advantages can be gained from using the hypervisor firewall rules.
However, you cannot manage them as dynamically as you can the rules for the local firewall, and
you can do so only for your personal or community-level visibility images. You can set the hyper-
visor firewall rules at instance creation time using the parameters.xml file on the IBM Smart-
Cloud Enterprise. You can find this file in the asset catalog entry for your image. A typical
parameters.xml file looks like this:

<?xml version=”1.0” encoding=”UTF-8”?>

<parameters xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”parameters.xsd”>

<firewall>

<rule>

<source>0.0.0.0/0</source>

<minport>1</minport>

<maxport>65535</maxport>

Network Security 269



ptg8286219

</rule>

</firewall>

</parameters>

This specifies that any source can connect to the instance on any port, from 1 through
65535. You can tighten this by editing and adding minport and maxport elements. For example,
to restrict network traffic to only ports 22 (SSH) and 80 (HTTP), you can use these rules:

<?xml version=”1.0” encoding=”UTF-8”?>

<parameters xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

xsi:noNamespaceSchemaLocation=”parameters.xsd”>

<firewall>

<rule>

<source>0.0.0.0/0</source>

<minport>22</minport>

<maxport>22</maxport>

</rule>

<rule>

<source>0.0.0.0/0</source>

<minport>80</minport>

<maxport>80</maxport>

</rule>

</firewall>

</parameters>

After editing the file, upload it to the image catalog for your image, replacing the old file,
and start a new instance.

Linux firewalls can also be used to protect servers other than the server on which the fire-
wall resides. Actually, this is a preferred configuration because it provides an additional level of
isolation. To do this, you need to isolate the servers that you are protecting from the Internet by
placing them on a VLAN. You must add two IP addresses on the firewall virtual machine. Finally,
you need to configure rules for forwarding between the Internet and the VLAN in iptables (see
Figure 7.14).

In Figure 7.14, virtual machine VM1 is directly connected to the Internet. The firewall
VM2 has two IP addresses: One is Internet accessible, and one is on the private VLAN. Virtual
machine VM3 has a single IP address that is accessible only on the VLAN. A firewall rule allow-
ing inbound access from the Internet and mapping the firewall’s IP to VM3’s IP for a certain port
allows inbound access from the Internet on that port only. For example, if this was a web server
and a user attempted to access the firewall’s IP address on port 80, that request would be for-
warded to a web server on VM3. No other ports on VM3 would be open. Another firewall rule
allows outbound access for VM4. This can be done by using ports dynamically for an individual
TCP connection. For example, if VM4 attempts to open a TCP connection to the Internet, the
firewall can find an available port and change the TCP packet to contain this port and the

270 Chapter 7 Security



ptg8286219

firewall’s own IP address. When it receives a packet back from the Internet in response to the
request from VM4, it does the reverse mapping. In this way, the virtual machine VM4 can open
connections to the Internet without being visible on the Internet.

Network Security 271

Internet 

No Inbound Access from
Internet but Outbound

Access Possible via Firewall

No Inbound and Outboard
Access to Internet Possible

via Firewall

Firewall
VM2

Private VLAN

VM4
Private IP

VM1
Public IP

Direct Access from
Internet

(No Firewall)

VM3
Private IP

Figure 7.14 Schematic diagram of a firewall protecting a VLAN

Example: Connecting to a VLAN through a Firewall
Our scenario in this section is that the composite application is hosted on a VLAN, and the users of
the application are on the Internet. We host the database, application server, and other elements of our
composite application on a VLAN for better security. The goal in this section is to allow general
access to the web interface of the composite application via a firewall rule.

Operating System Network Security Mechanisms
A separate network security mechanism on Linux is the hosts.allow and hosts.deny files in the
/etc directory and related services. These files use the host_access format, which is a simple
access-control language based on client host name, address, and user name. This is typically used
with the xinetd and rpc daemons. If a request matches an entry in the hosts.allow file, it is
allowed. Otherwise, the hosts.deny file is checked: If it matches, it is denied; if not, the request
is allowed. By default, many of the images on the IBM SmartCloud Enterprise are empty for both
hosts.allow and hosts.deny. This allows any host to connect to all services. To tighten access,
add an entry like this in hosts.deny:

ALL: ALL



ptg8286219

This denies access to all services from all hosts. Then add rules for specific services in
hosts.allow:

ALL: LOCAL

ALL: jumpbox.example.com

This allows local access to all services and also all services from the JumpBox. To access
these services from your local PC, you must log into JumpBox and then log into the server with
the services.

Business Scenario: Network Deployment and Firewall Rules
In our IoT Data scenario, we have a typical multitiered application with the addition of the
Hadoop cluster. Figure 7.15 shows the data flows.

272 Chapter 7 Security

User Admin

Data Center Boundary

Jump Box 

HTTPS

HTTPS

IBM DB2 Hadoop

JDBC SSH
SSH

VPN

SSH

SSH

IBM HTTP
Server

WebSphere
Application

Server

Figure 7.15 Network deployment for IoT Data web application
Legend Blue: Internet; yellow: VPN

Our goal in formulating a network security architecture is to reduce the risk of servers
being compromised by reducing Internet exposure and layering using network zones. We do this
using the firewalls on the individual systems and using the VLAN feature of the IBM SmartCloud
Enterprise. The only traffic that we allow through the data center boundary is from end users to
the HTTP server via HTTPS and from administration users to the JumpBox located on the
VLAN. Access to the other systems is regulated according to the firewall rules in Table 7.1.



ptg8286219

Table 7.1 Description of Firewall Rules for IoT Data Web Application

Source Destination Protocol Description

Users HTTP server HTTPS Access to web site

Admin users JumpBox VPN Administration

HTTP server WebSphere HTTPS Proxy to application server

WebSphere DB2 JDBC Database access 

WebSphere Hadoop SSH File access 

JumpBox HTTP server SSH Administration

JumpBox WebSphere SSH Administration

JumpBox DB2 SSH Administration

JumpBox Hadoop SSH Administration

The firewalls should be configured on the destination machines.

Proxy Servers
Proxy servers provide security benefits by isolating clients from servers. Proxy servers are most
often used with HTTP but can be used with other protocols. Proxy servers can be either forward
or reverse proxies. The can work at the application protocol level or at a deeper level. SOCKS is a
protocol to allow for proxies at a lower level than the application protocols, such as HTTP and
FTP. It is defined in RFC 1928.

A forward proxy is an intermediate server that is located between a client and an origin
server. It helps protect the client from direct access to the Internet and can also regulate which
web sites are visible to a client. To access the origin server, the client must send a request to the
proxy naming the origin server. The proxy then returns data from the origin server to the client.
The client needs to be configured to use the proxy. Most often, a forwarding proxy is used as a
security feature to protect clients from direct access to the Internet and to ensure that clients do
not have access to content on the Internet that is not appropriate for the workplace where the
client is located. In this case, it is providing some of the features of a firewall. It is important to
allow only authorized clients to access your proxy. Otherwise, the proxy may be abused, and
HTTP requests from the malicious user will appear to have originated from your proxy.

A reverse proxy appears to the client as an ordinary web server but actually forwards
requests to one or more servers. This is most often done for the purposes of authentication or load
balancing. For example, to provide single sign-on across multiple web servers, an authentication
server can intercept requests and check whether the user has authenticated before accessing 
the server. If not, the authentication server prompts the user to log on. After authentication, no
matter which HTTP server the user attempts to access, the authentication server passes an

Network Security 273



ptg8286219

authentication token containing the identity of the user to the HTTP server in a HTTP header. The
IBM Tivoli Access Manager acts as a reverse proxy in this role to provide single sign-on. 

Apache can be configured as either a forward or reverse proxy. The Apache mod_proxy pro-
vides basic proxy capabilities for the Apache HTTP server. Several other proxy modules, including
mod_proxy_http, mod_proxy_ftp, mod_proxy_ajp, and mod_proxy_balancer, provide extensions
to this for specific protocols and capabilities. See the section “Linux, Apache, MySQL, and PHP” 
in Chapter 2 for how to set up the Apache HTTP server. To configure the proxy, edit the file
/etc/httpd/conf/httpd.conf, removing the commented-out section from the default file:

<IfModule mod_proxy.c>

ProxyRequests On

<Proxy *>

Order deny,allow

Deny from all

Allow from .example.com

</Proxy>

Replace .example.com with your IP address or range or host name pattern. Try it by editing
the proxy settings on your browser. On Firefox, this is under Tools, Options, Internet, Connec-
tions. Select Manual Setting and enter the IP address of your proxy server. To test the proxy, enter
the URL of a web site in the browser address bar. The page should display successfully in your
browser, and you should be able to see a record of the request in the proxy server access log at
/var/log/httpd/access_log, as shown here for the URL Google.com:

202.108.130.138 - - [04/Jul/2011:06:49:35 +0000] “GET
http://www.google.com/ HTTP/1.1” 200 16384 “-” “Mozilla/5.0 (Windows;
U; Windows NT 5.1; zh-CN; rv:1.9.2.18) Gecko/20110614 Firefox/3.6.18”

Some enterprises require all Internet access to be via a proxy. This can interfere with 
Java programs that use REST services, such as the IBM SmartCloud Enterprise REST API. For
some programs that use only basic networking methods, you can solve this by adding standard
Java VM properties to the command line that the Java program using the SCE APIs is launched
from for the proxy:

• http.proxyHost—The host name of the proxy server.

• http.proxyPort—The port number, with a default value of 80.

• http.nonProxyHosts—A list of hosts that should be reached directly, bypassing the
proxy. This is a list of regular expressions separated by |. Any host that matches one of
these regular expressions is reached through a direct connection instead of through a
proxy.

274 Chapter 7 Security

example.com
Google.com


ptg8286219

The properties can also be set programmatically within the Java program using the
System.setProperty(String, String) method. This is a Java virtual machine–wide setting.
You can check that the proxy is actually being used by checking the access log, as described ear-
lier. You can try it with this program:

package com.ibm.cloud.examples.rest;

import java.io.BufferedReader;

import java.io.InputStreamReader;

import java.net.URL;

import java.net.URLConnection;

public class ProxyTest {

public static void main(String[] args) throws Exception {

URL url = new URL(“http://www.google.com”);

URLConnection connection = url.openConnection();

BufferedReader reader = new BufferedReader(

new
InputStreamReader(connection.getInputStream()));

String line = null;

while ((line = reader.readLine()) != null) {

System.out.println(line);

}

}

}

You can invoke it like this:

java -Dhttp.proxyHost=proxy.example.com
om.ibm.cloud.examples.rest.ProxyTest

The main drawback is that it does not work with the Apache HttpClient, which the IBM
SmartCloud Enterprise Java REST client uses. To set a proxy with Apache HttpClient, use code
similar to this:

httpclient.getHostConfiguration().setProxy(“proxy.example.com”, 80);

httpclient.getState().setProxyCredentials(“example-realm”, “
examplehost”,

new UsernamePasswordCredentials(“username”, “password”));

The IBM SmartCloud Enterprise REST Java API has an interface to set the proxy in Devel-
operCloudClient.

Network Security 275



ptg8286219

Figure 7.16 Use of proxy by the IBM SmartCloud Enterprise Java client

Virtual Private Networks
Virtual private networks (VPNs) rely on encryption to create an extension of a private network
over the Internet. VPNs enable several network scenarios that are valuable to enterprises. A tradi-
tional use of VPNs is to connect the local area networks of different offices of an enterprise into a
wide area network (WAN). These types of connections are site-to-site. When VPNs were intro-
duced for this purpose, they replaced the use of leased lines, greatly reducing cost for the enter-
prises. Another traditional use of a VPN is to enable employees to access an enterprise’s private
network remotely, for example, to work from home. In this scenario, the enterprise provides a
VPN gateway that is accessible from the Internet, and the employee installs a VPN client that he
or she installs on a laptop to access applications such as email. This is termed a mobile virtual
private network because one of the endpoints (where the employee is located) does not have a
fixed IP address.

When a client sends a packet through a VPN gateway, an authentication header is added,
the data is encrypted, and the data is placed in an Encapsulating Security Payload. The receiving
VPN server decrypts the data and routes the packet to the destination according to information in
the header.

The encryption provided by VPNs is at a low level, so all communication to the enterprise
is encrypted. This can be at either OSI Layer 2 (data link layer) or Layer 3 (network layer) and
can include any of these methods:

• IPSec

• SSL/TLS

• Datagram Transport Layer Security (Cisco)

• Microsoft Point-to-Point encryption

• SSH tunneling

276 Chapter 7 Security

Rest
API

API CLT

API Request ForwardCommand

JAVA API PROXY

PROXY
Server

HttpClient

Invoke

Set Proxy

DeveloperCloudClient

HTTPTransport



ptg8286219

VPNs can use bridging to create a virtual wide area Ethernet LAN. This has some advan-
tages over using routing because it can work with any protocol that can work over Ethernet.
Bridging is needed if you are using non-IP protocols or Windows file sharing. On the other hand,
setting up a VPN with routing can be easier and allows finer control over access to specific hosts
and ports.

Many enterprises prefer to use cloud computing to extend the capacity of their IT infra-
structure. To support this scenario, the VPN is configured via a gateway in the enterprise network
to a private VLAN in the cloud. This is termed a site-to-site connection. The virtual machines on
the cloud private network are not visible from the Internet but can be accessed only either via the
VPN or via another virtual machine on the VLAN (see Figure 7.17).

Network Security 277

VPN 

Cloud 

Enterprise 

VLAN

Figure 7.17 Use of a VPN to extend an enterprise network

In this way, the cloud acts as an extension of the enterprise network. The extension in the
cloud is isolated from the Internet and from virtual machines in the cloud outside the VLAN. The
IBM SmartCloud Enterprise supports this scenario as a fundamental offering. Unlike the work-
from-home scenario, the employee does not have to do any special installation of a VPN client.

You can also support a network scenario that uses the cloud to support a VPN without
needing an enterprise to own an on-premises VPN gateway. The CohesiveFT VPN-Cubed
images in the IBM SmartCloud Enterprise catalog can provide a VPN gateway. This can support
employees working from home with a VPN client, such as the OpenVPN client. Figure 7.18
shows this concept.

OpenVPN is an open source VPN client and server solution that can manage point-to-point
and site-to-site connections. It uses the OpenSSL encryption library. The OpenVPN install image
can be downloaded from the OpenVPN web site. It includes both client and server software and
must be installed on both client and server machines. You can install using the RPM package on
RHEL machines and using the apt-get command on SUSE or other Debian-based systems. It is



ptg8286219

possible to install on other Linux systems from the tarball using make. There is a self-extracting
installer for Windows and also client-only install images that you can direct end users to.

278 Chapter 7 Security

Oper VPN 

VPN 
VLAN 

Cloud 

Cohesive   VPN-Cubed

Figure 7.18 Use of VPN gateway in the cloud to access a VLAN

Setting up the VPN with Open VPN involves setting up a public key infrastructure, includ-
ing a certificate with a public key, a private key for each server and client, and a certificate author-
ity (CA) certificate to sign each of these certificates. By default, VPN does mutual authentication
of both server and client using these certificates. However, you can configure alternate authenti-
cation methods. It is also possible to set up an Open VPN server on a dynamic IP address.

The VPN-Cubed solution can support many network configurations that can be useful in
creating more complex virtual network configurations within a cloud and to connect computing
resources over multiple clouds with a VPN. VPN-Cubed can act as a virtual router, virtual bridge,
VPN concentrator, and firewall.

Browser Security
Browser security is important to consider when developing applications that are accessible on the
Internet. In addition, some providers support extensible platforms that allow third parties to
embed applications. For example, social networking platforms such as Facebook and IBM



ptg8286219

SmartCloud for Social Business provide ways of embedding applications within their web sites.
The end user sees a web page that consists of the combination of elements of the cloud platform
and some embedded widgets that are provided by independent third parties. This is the opposite
of a mash-up, in which a lightweight web site is created by embedding widgets from more pow-
erful providers such as Google Maps or Yahoo! Search. In either case, web browsers place secu-
rity restrictions on web browsers to protect users. One of the most important of these security
restrictions is the same origin policy for JavaScript.

The same origin policy for JavaScript, as implemented in mainstream browsers, enforces
that the JavaScript code in a HTML page can communicate only back to the server it came from.
This must be the same host, same port, and same protocol. Table 7.2 shows some examples for a
page loaded from http://a.example.com/folder/index.html.

Table 7.2 Result of the Same Origin Policy for JavaScript for the Page
http://a.example.com/folder/index.html

URL Result Notes

http://a.example.com/folder2/index.html Success Only path is different

http://a.example.com/folder/innner/index.html Success Only path is different

http://a.example.com:8080/folder/index.html Fails Different port

https://a.example.com/folder/index.html Fails Different protocol

http://b.example.com/folder/index.html Fails Different host

The two solutions to the need to load content into a page from another server are as follows:

• Proxy the application content from the server of origin.

• Load the external content into an iFrame.

Using the server of origin as a proxy, a third-party server generates content, and the server
of origin loads this into an area of a template page. Using this strategy, the browser sees all the
content coming from the same server. Figure 7.19 shows a schematic of this solution.

Using an iFrame, the page provides a URL to a third-party server where the content is gen-
erated. By using the iFrame, the browser allows content to be loaded into the page, and it appears
as if the content is integrated to the user.

Browser Security 279

http://a.example.com/folder/index.html
http://a.example.com/folder/index.html
http://a.example.com/folder2/index.html
http://a.example.com/folder/innner/index.html
http://a.example.com:8080/folder/index.html
https://a.example.com/folder/index.html
http://b.example.com/folder/index.html


ptg8286219

Figure 7.19 Embedding content into a web page using a proxy to a third-party server

Application Hardening
Application hardening refers to preventing malicious users from gaining unauthenticated access
or having gained authenticated access, from using tricks to subverting authorization mechanisms.
For example, malicious users can manipulate URLs, inject scripts, or misuse another user’s ses-
sion. The risks are serious because this can lead to theft of data. 

IBM Rational AppScan® is a tool that can scan your application for vulnerabilities to these
styles of attack and provide recommendations to address them. It scans all the pages in your
application, sends different kinds of invalid data, and scans for weaknesses. It also examines port
and protocol settings for poor practices.

Cross-Site Scripting
Many sites allow users to enter data that other users can view. For example, if a user registers at a
site with her or his name, an administrator can view that information in a list of users. A cross-site
scripting (XSS) attack adds a script to the information submitted so that the script is executed
later when someone else views the data. For example, if an attacker registers and adds a
JavaScript script to the end of his name, that script may be executed later when the administrator
views the list of users.

280 Chapter 7 Security

Page Outline 

Embedded Content Server of Origin Third-Party Server 

Web Page 

Embedded Content 



ptg8286219

Cross-Site Request Forgery
A cross-site request forgery (CSRF) attack is an attack method that forces an end user to execute
unwanted actions on a web application to which he is currently logged on. An attacker can force
a user of a web application to execute actions selected by attacker just with the help of social
engineering tricks, such as via a link sent by email or chat software. When CSRF makes an attack
directed to a user, data and operation instructions of the end user are threatened.

Consider an example in which a user logs into an online bank to check his balance of
deposit and then goes to his favorite forum without exiting the online bank system. If the attacker
has a well-constructed malicious link in the forum, the user’s fund in the bank account can be
transferred to an account the attacker specifies. For example, the forum might include an image
tag with a link back to the bank web site:

<img src=’http://bank/account/transfer-money?to=bad_guys_account’/>

This results in an HTTP GET request by the user back to the bank web site just by viewing
the page; the fact that there is not really an image behind the web site does not matter. Other vari-
ations of CSRF exist, including these [Bath, 2008]:

• Leveraging the user’s browser to send requests to servers behind a firewall. In this case,
the user is behind an enterprise firewall and has access to servers that are not accessible
from the Internet.

• Changing variables describing a browser’s state, such as cookies and client certificates. 

• Logging a CSRF attack. In this case, the attacker uses his own login credentials to log
into a public service that is customized with some malicious personal customizations.
This allows the attacker to collect information about the real user. Also, an attacker can
force the login with the user’s own credentials.

Different attack methods require different levels of sophistication. At the low end, a simple
attack on a poorly designed web site can be done using basic HTML page design. At the high
end, control on some point of the network that the user requests travel over is required.

CSRF attacks can be prevented in three ways:

• Generate a secret token and bind it to the user’s session, making sure that it is received
with each request.

• Check the HTTP Referrer header to make sure that the request came from your web site.

• Include a secret token in XMLHttpRequest. This applies to sites that use AJAX.

The most popular method is to include a secret token in every HTTP request that causes an
update to the system, such as a fund transfer action. The secret token is maintained during the
HTTP session and cannot be guessed before the HTTP session is established. A random num-
ber–generation algorithm can be leveraged for the token generation. 

Application Hardening 281



ptg8286219

In this example, a code snippet in Java is used to generate a 32-bit secret token for your ref-
erence. It uses the JDK SecureRandom API. 

private SecureRandom sr = new SecureRandom();

private String generateToken(){

StringBuilder sb = new StringBuilder();

for(int i=0;i<CSRFController.TOKENLENGTH;i++){

int index = sr.nextInt(CHARSET.length);

sb.append(CHARSET[index]);

}

return sb.toString();

}

private final static char[] CHARSET = new char[] {

‘A’,’B’,’C’,’D’,’E’,’F’,’G’,’H’,’I’,’J’,’K’,’L’,’M’,

‘N’,’O’,’P’,’Q’,’R’,’S’,’T’,’U’,’V’,’W’,’X’,’Y’,’Z’,

‘a’,’b’,’c’,’d’,’e’,’f’,’g’,’h’,’i’,’j’,’k’,’l’,’m’,

‘n’,’o’,’p’,’q’,’r’,’s’,’t’,’u’,’v’,’w’,’x’,’y’,’z’,

‘0’,’1’,’2’,’3’,’4’,’5’,’6’,’7’,’8’,’9’

};

An interceptor (in J2EE, it is called Filter) between the server and the browser is required to
check the existence and correctness of the secret token for every HTTP request. Figure 7.20
shows the work flow of the interceptor. 

SQL and Other Injection Attacks
Most web sites need relational databases and collect information from users using HTML forms
saved in a database. A SQL injection attack uses HTML forms to submit data that attempts to
break out of the contents of SQL statements and create their own SQL statements.

IBM Rational AppScan can also scan for this style of attack.

Secure Communication Protocols
The three secure protocols that we are most concerned with in cloud computing are Secure Shell
(SSH), HTTPS, and IPSec. Each has its own use. SSH is a fundamental tool for developers and
administrators, primarily used for remotely logging into a console. However, it has also become
widely used to tunnel (in other words, carry embedded in) other protocols for file transfer and
other purposes. HTTPS is the most common protocol for securing communications for applica-
tion users over the web. IPSec is a protocol used to secure virtual private networks (VPNs) for all
communications in general. It is useful to people working in locations remote from the comput-
ing resources they use. It usually requires special client setup. Although these protocols existed
before cloud computing, we cover them because they are fundamental tools and have new rele-
vance in cloud computing.

282 Chapter 7 Security



ptg8286219

Secure Communication Protocols 283

Create a
secure token
in the session

Forward to
the secured
resource

Response
with

403 error

If the token is
same as the one

in session

If it is the
first request after

authentication

If a token is
included in http

request

N

N

N

Y

Y

Y

Figure 7.20 CSRF attack-prevention work flow of the interceptor

Secure Shell (SSH)
As you saw in earlier sections, SSH is a fundamental tool in cloud computing. It can be worth
learning as a power user to solve numerous practical problems in cloud computing. SSH was
designed as a secure replacement for Telnet but now is also commonly used programmatically for
many applications. The two main versions of SSH are SSH-1 and SSH-2. The original version,
SSH-1, has been superseded by SSH-2. SSH-2 was developed as a standard by the Internet Engi-
neering Task Force and was released in 2006. The most popular implementation of SSH is the
OpenSSH open source project. On Windows, PuTTY is the most popular client. See the section
“Linux, Apache, MySQL, and PHP” in Chapter 2 for the basic use of PuTTY.

SSH uses public key cryptography to authenticate the remote computer and the user if nec-
essary. Besides remote login, SSH can be used for tunneling, forwarding, X11 connections, and
file transfer. Files can be copied with the SCP (Secure Copy) protocol and SFTP, which both 
use SSH.

Let’s take a closer look at the use of keys and authentication with SSH. SSH is most often
done with public–private key pairs. It can be configured other ways, but on the IBM Smart Cloud
Enterprise, most Linux images are configured by default for authentication via public-private key



ptg8286219

pairs. You can manage the keys associated with your account via the Control Panel user interface
using the Account, Generate New Key button. When you generate a key, you are prompted with a
dialog box similar to the one shown in Figure 7.21.

284 Chapter 7 Security

Figure 7.21 Generating a new key in the IBM SmartCloud Enterprise

When you click Generate Key, SCE generates a public-private key pair. You are given the
option to save your private key. You should save it in a safe place; the cloud will not save it for
you. However, the cloud will save the public key. You can also retrieve this in the Control Panel
from the Account, Security Key Pairs table and clicking the Edit link. You should see something
like Figure 7.22.

If you need your public key at any point, you can get it from this dialog box. Alternatively,
if you prefer to use your own public key, you can generate it with OpenSSH or PuTTY and paste
it here. The IBM SmartCloud Enterprise embeds the public key in the virtual machine so that you
can SSH to it. Let’s see what happens when you log in with the key you just generated. You saved
it as a file named july26_key and changed the file permissions to none for group and others.
First, provision a Linux image using the key. Then, using the OpenSSH client with the -v verbose
option, you will see something like this output:

$ ssh -v idcuser@170.224.193.53 -i july26_key 

OpenSSH_5.8p1 Debian-1ubuntu3, OpenSSL 0.9.8o 01 Jun 2010 

debug1: Reading configuration data /etc/ssh/ssh_config 

debug1: Applying options for * 

debug1: Connecting to 170.224.193.53 [170.224.193.53] port 22. 

debug1: Connection established. 

...

debug1: Remote protocol version 2.0, remote software version
OpenSSH_4.3 



ptg8286219

...

The authenticity of host ‘170.224.193.53 (170.224.193.53)’ can’t be
established. 

RSA key fingerprint is
7b:ce:14:93:c6:63:72:fa:27:6b:aa:d7:fa:c2:2a:80. 

Are you sure you want to continue connecting (yes/no)? yes 

Warning: Permanently added ‘170.224.193.53’ (RSA) to the list of known
hosts. 

debug1: ssh_rsa_verify: signature correct 

...

debug1: Next authentication method: publickey 

debug1: Trying private key: july26_key 

debug1: read PEM private key done: type RSA 

debug1: Authentication succeeded (publickey). 

Authenticated to 170.224.193.53 ([170.224.193.53]:22). 

debug1: channel 0: new [client-session] 

debug1: Entering interactive session. 

IBM WebSphere Application Server V7.0 

Documentation ->
http://www14.software.ibm.com/webapp/wsbroker/redirect?version=compass
&product=was-base-dist 

Please switch to WebSphere Administrator user ID “wasadmin” before
executing WebSphere commands. 

[idcuser@vhost0308 ~]$ 

Secure Communication Protocols 285

Figure 7.22 IBM SmartCloud Enterprise Portal Panel for editing the SSH key



ptg8286219

The @ symbol in the ssh command invocation delineates the user name from the host name
or IP address. The -i option specifies the name for the private key july26_key. This saves you
from having to type it and is a good form to use in scripts. When the client begins, it prints the
version of OpenSSL used. OpenSSL is an open source cryptography library used by OpenSSH.
Next, it reads the client configuration file ssh_config. Many options in this file relate to security
and protocol options. We discuss some of these here. Then the versions of software and protocol
are printed out. Its remote protocol is SSH version 2.0. The client finds that it is not familiar with
this server and asks whether you trust it. You answer yes, and the SSH client adds the server IP
and RSA fingerprint to the list of known hosts. You can delete that later with the -R option of the
ssh-keygen command. (We have deleted a few lines showing a number of authentication meth-
ods tried.) The final method tried is public key. It tries the private key file july26_key, supplied
on the command line, which it finds to be an RSA type of key in the PEM format. RSA stands for
Rivest, Shamir, and Aldeman, the three people who discovered this break-through cryptographic
algorithm in the 1970s. The algorithm bases the public-private key pair on large prime numbers,
which, when multiplied together, form a number so large that it is difficult to factorize, unless you
happen to have the private key. The PEM (Privacy Enhanced Email, a name no longer meaning-
ful, so we just use the acronym) file is a kind of certificate format that is Base 64 encoded. If you
open the file, it is text and looks like this:

-----BEGIN RSA PRIVATE KEY-----

...

-----END RSA PRIVATE KEY-----

A number of alphanumeric characters show up in between. Other authentication methods
are supported, in case you prefer not to use RSA. 

Then you get a message that authentication has succeeded, a new channel has been opened,
and a session begun.

Consider this common scenario: You create two instances on the cloud, server1 and
server1, and you need to open an SSH session from server1 to server2. You should already have
your private key on your local PC, so you need to copy it to server1. You can do this with Win-
SCP. Server2 already is configured to accept this key because it was created with the public key 
in the authorized key list. Execute these commands:

> chmod 0700 mykey

> ssh -i mykey server2

mykey is the name of your private key here. You should keep your private key from being
visible to other users with the chmod command. If you do not do this, ssh complains and might
ignore the key. The -i option uses the key that you just copied in the SSH session. The default is
~/.ssh/id_rsa. The server2 argument is the host name or IP address of server2. Make sure that
you have the right permissions on the directory .ssh. If some of the files are owned by root,
change them to idcuser with the chown command.

286 Chapter 7 Security



ptg8286219

To generate a new SSH key, use the ssh-keygen command—for example:

> ssh-keygen -t rsa -P ‘My Passphrase’ -f ~/.ssh/mykey

This generates an RSA type (-t flag) with the passphrase ‘My Passphrase’ (-P flag),
places the private key in the file ~/.ssh/mykey (-f flag), and places the public key in the file
~/.ssh/mykey.pub. If you do not use the -f option, the private key is written to ~/.ssh/
identity. Authorized keys are contained in the file ~/.ssh/authorized_keys. To add a new
public key to the authorized keys file, append it with this command:

> cat mykey.pub >> ~/.ssh/authorized_keys

The SSH keys generated by IBM SmartCloud Enterprise are in a format compatible with
Open SSH. In the section “Linux, Apache, MySQL, and PHP” in Chapter 2 you saw how to con-
vert these to PuTTY format using puttygen. PuTTYgen can also convert back to OpenSSH for-
mat in case you lose the original key. To do this, go to the Conversions, Export OpenSSH Key
menu and save the file. PuTTYgen can also generate keys. You can upload the generated public
SSH key to SmartCloud Enterprise if you prefer not to use the keys the cloud generated.

The configuration file for SSH on the Linux systems on the IBM SmartCloud Enterprise is
at /etc/ssh/ssh_config and /etc/ssh/sshd_config. The AllowedUsers setting is one setting
that you can change. The value of this parameter is a space-separated list of user name patterns—
for example:

AllowUsers idcuser webadmin

To start the SSH server (sshd), use this command:

# /etc/init.d/sshd start

To restart, use this command:

# /etc/init.d/sshd restart

The -v option (verbose) prints extra information and can be useful in debugging problems
at the client end. For most of the images in the IBM SmartCloud Enterprise, by default, the SSH
server sends informational and error messages to the file /var/log/secure.

It is good practice to add a passphrase to your SSH keys to protect them. The problem with
this is that scripts and programs that need access to the keys do not have the passphrase. The ssh-
agent tool, which is a part of the OpenSSH distribution, is designed to solve this problem. It can
automate entry of the passphrase in a similar way so that a stash file can allow the web server to
open the X.509 certificate, as described in the section “Example: Setting up HTTPS on the IBM
HTTP Server” in this chapter.

A number of tools tunnel over SSH. For example, NX remote desktop technology, dis-
cussed in the section “NX Remote Desktop” in Chapter 6, “Cloud Services and Applications,”
tunnels over SSH. Several file transfer tools also tunnel over SSH.

Secure Communication Protocols 287



ptg8286219

Secure Copy, also known as SCP, is a protocol and a program to transfer files securely. It is
based on BSD remote copy (RCP) command tunneled through SSH. As with SSH, by default, it
runs on port 22. Basic use of SCP on Linux is shown here:

# scp -i identity_file host:sourcefile destinationfile

This uses the private key file identity_file to copy the file sourcefile from the machine
host to the file destinationfile on the local machine.

OpenSSH also includes an SFTP (secure FTP) client and server. The Windows WinSCP
program works by default but can also use SCP. This is probably the most convenient way to
transfer files from a Windows client to a Linux virtual machine in the cloud.

Port Forwarding

Port forwarding with SSH involves this process:

1. The address and port of a packet are translated to a new destination.

2. The packet is carried over an SSH connection, where the destination is accessed.

SSH enables a user to tunnel another protocol over an SSH connection. With OpenSSH,
this is done with sshd. It can be useful if the protocol being tunneled is not secure or the destina-
tion address and port combination is not visible from the origin. The client that uses the tunneled
protocol must be capable of specifying a nonstandard port for this to work. The concept is that
you establish an SSH session to your server and then specify which port on the client machine to
forward connections from. SSH can also forward to other servers. Port forwarding can be impor-
tant for solving connectivity problems with the cloud, your workstation, and IT resources inside
your company. This is especially important when you need flexible but secure access for low-vol-
ume administrative tasks, such as moving files to secure locations. Knowing the tools well can
avoid you having to write and maintain custom code for these administrative tasks. We look at
several examples in this section.

Suppose that an administrative application is running on port 9080. Your company does not
allow it to be exposed on the Internet, so the firewall is configured not to allow any Internet access
on port 9080. You can access the administrative web application like using SSH, using the
scheme shown in Figure 7.23.

The laptop will run an SSH client that forwards HTTP requests on port 9080 to the server,
which will carry the data encrypted over SSH across the Internet and through the firewall. The
server will then forward the requests to the web server on the virtual machine on port 9080. The
ports need not be the same at either end, and the host that you access need not be the one on which
the SSH server is running.

To enable SSH forwarding at the SSH server, edit the SSH server configuration file
/etc/ssh/sshd_config, uncommenting the following line and setting the value to yes: 

AllowTcpForwarding yes

288 Chapter 7 Security



ptg8286219

Secure Communication Protocols 289

Enterprise 

Laptop 
SSH Client 
HTTP 9080 

Internet 
SSH 

Firewall 
Allows SSH 22 

Server 
SSH Server 
HTTP 9080 

Cloud 

Figure 7.23 Port forwarding from a laptop to the cloud using SSH

Then restart the SSH server. You also need to enable forwarding on the SSH client. Edit the
file ssh_config, uncomment this line, and set the value to yes.

Tunnel yes

TunnelDevice any:any

If you are using Cygwin, the file is at {cygwin}\etc\defaults\etc. Then you start an SSH
session with the -L option, as shown:

ssh -L 9080:host:9080 idcuser@host -i .ssh/key-file -v

The -L option has the form -L [bind_address:]port:host:hostport, where port is the
local port to be allocated, optionally bound to the bind_address; host is the host name of the
remote computer; and hostport is the port on the remote computer. The local and remote ports in
this example are both 9080. In verbose mode, you should see some lines like the following when
you connect:

...

debug1: Local connections to LOCALHOST:9080 forwarded to remote
address 170.224.193.53:9080

debug1: Local forwarding listening on 127.0.0.1 port 9080.

debug1: channel 0: new [port listener]

debug1: channel 1: new [client-session]

...

Now open your web browser and point to the URL http://127.0.0.1:9080/admin, where
admin is the path to your administrative application. The web user interface for your administra-
tive application is shown. The SSH client listens to the local address on port 9080 and forwards to
the remote host on the same port. In verbose mode, you will see messages about forwarded
requests. All the web traffic will be encrypted because it is tunneled over SSH. You can use the
same technique to forward to multiple port:host combinations with a single SSH session. This
example uses the OpenSSH client, but it is equally possible with PuTTY. 

The openSSL -f option requests SSH to go into the background before command execu-
tion. The -Y option (-X on older OpenSSH installations) does X forwarding to enable you to run

http://127.0.0.1:9080/admin


ptg8286219

graphical user interface programs from the remote machine using your local display. This can
allow you to run xterms and other programs with X Windows graphical user interfaces. Perhaps a
nicer way to do this is to run vnc over SSH to have a full desktop available. We did this from a
Windows workstation with Cygwin installed to a Linux virtual machine on the cloud. First, con-
figure both the SSH server and the client to allow X11 forwarding, as you did earlier. Start the
VNC server and then start the SSH client with this command:

ssh -L 5901:host:5901 idcuser@host -i .ssh/key-file

Finally, open the vncviewer and enter localhost:5901 as the address. You should see a
Linux desktop displayed within a few seconds.

SELinux can potentially interfere with SSH port forwarding. Check /var/log/messages
for any sign of this if you have trouble. SELinux is discussed in the upcoming section “Security-
Enhanced Linux.”

SSH can support more scenarios in addition to than those described here. For example,
OpenSSH can also act as a SOCKS server by using the -D option for dynamic port allocation for
forwarding. The -w option can be used to tunnel.

HTTPS
The HTTPS protocol is HTTP over Secure Sockets Layer (SSL) or its successor, Transport Layer
Security (TLS). After establishing a TLS connection with the server, all traffic, including HTTP
headers, are encrypted. 

HTTP depends on public key cryptography, discussed in the section “Public Key Infra-
structure and Certificates” in this chapter. In the most common mode, sometimes referred to as
one-way SSL, the identity of the server is verified by a public certificate that is known to the
client. This protects against eavesdropping. In a variation sometimes referred to as two-way SSL,
the server also verifies the identity of the client with a client certificate.

You must obtain a certificate from a well-known certificate signing authority (CA), such as
Equifax or Verisign. This can be costly if you have many servers, so you might consider issuing
certificates with your own signing authority. You can use a certificate server such as OpenSSL.
However, you will still need a certificate chain with a root certificate signed by a well-known cer-
tificate signing authority. For development server, you can use a certificate shipped with the
server or sign your own certificates without needing to use the well-known CA.

In developing and hosting an application, your main challenge is obtaining certificates for
your server and maintaining them, making sure that they do not expire.

Example: Setting up HTTPS on the IBM HTTP Server

The IBM WebSphere images in the SmartCloud Enterprise catalog come with the IBM HTTP
Server (IHS) bundled. IHS is a customized version of the Apache HTTP Server with additions to
make administration easier, more secure, and better integrated with WebSphere Application
Server (WAS). Using IHS in front of WAS is a best practice, for security and performance rea-
sons. If you browse to the IP of the virtual machine instance after it has been provisioned, you
will see the default screen for this (see Figure 7.24).

290 Chapter 7 Security



ptg8286219

Secure Communication Protocols 291

Figure 7.24 IBM HTTP Server default page

The page has useful links to product documentation. You can use the WebSphere Adminis-
tration Console to manage IHS. You can use the IKEYMAN utility graphical user interface or
command line to create a CMS key database file and self-signed server certificate. To start the
graphical user interface, log into VNC as the WAS administrator, create a command shell, and
enter this command:

# cd /opt/IBM/HTTPServer

# bin/ikeyman -x

To create a new key database, click Key Database File, New on the menu; choose CMS for
the type and enter values for the file name and location, as in Figure 7.25.

Figure 7.25 Creating a new key store in the iKeyMan key-management tool



ptg8286219

After clicking OK and entering a password, choose to stash the password. IHS needs this to
be able to read the keystore. The main console displays again, as in Figure 7.26. 

292 Chapter 7 Security

Figure 7.26 Main console in iKeyMan key-management tool

To generate a self-signed certificate, select Personal Certificates in the drop-down menu
and click the New Self-Signed button. Enter a key label for the certificate and choose arbitrary
values for the other fields. Click OK.

Enable SSL by editing the file /opt/IBM/HTTPServer/conf/httpd.conf, uncommenting
the mod_ibm_ssl directive, as shown here:

LoadModule ibm_ssl_module modules/mod_ibm_ssl.so

Listen 443

<VirtualHost *:443>

SSLEnable

SSLProtocolDisable SSLv2

</VirtualHost>

KeyFile /home/admin/var/ibm/key.kdb

SSLDisable

Restart IHS from the WAS console under Servers, Server Types, Web Servers. Open a
browser and enter the URL https://host into the address bar. You should see a message that the cer-
tificate is not trusted. Messages vary between browsers. Add an exception and, in the process,
view the certificate, checking that it is the same as the self-signed one you created earlier. You are



ptg8286219

now ready to do development with a self-signed certificate. When you are ready for production,
create a Certificate Signing Request and send it to a well-known CA so that your users will trust it. 

Nothing is wrong with the certificate you just created. You can use it for internal communi-
cation between servers, such as between IHS and WAS.

Internet Protocol Security (IPSec)
IPSec is a protocol suite that secures each IP packet of a communication session. The protocols
include a method for mutual authentication and negotiation of cryptographic keys. IPSec oper-
ates at the Internet layer of the IP protocol stack, which means that applications do not need to be
specifically aware of IPSec. In contrast, the security protocols HTTPS, SSL, TLS, and SSH oper-
ate at higher levels in the stack that do require applications to be aware of their use. One of the
main uses of IPSec is in virtual private networks (VPNs).

Operating System and Virtual Machine Security
Operating system and virtual machine security is also an important security consideration in
cloud environments. First, you are accessing the virtual machine over the network, very likely
over the Internet, for administrative tasks. You need to be assured that you can do this in a secure
way. Second, if you develop virtual machine images for others to use, you need to configure it in
a way that is secure right from the moment it is created. Additionally, certain risks of operating in a
shared virtualization environment exist that you should be aware of; you should also be aware of
how to mitigate against these. The sections presented here discuss these topics.

Basic Operating System Tools
The basic operating system virtual machine images on IBM SmartCloud Enterprise are created
by experts from Red Hat, Novell, and IBM with solid basic security defaults. One of these is to
not allow remote login by root; another is for IBM to not retain any passwords or private keys.
That means you need to save and remember your SSH private key to be able to log in and use
your virtual machine instances. Of course, you need root access to the operating system for a
number of reasons. After you log in with the idcuser account, you can effectively switch to root
using the sudo command, like this:

> sudo /bin/bash

The sudo command executes a command as another user. In this case, the command you
are executing is the bash shell. This demonstrates the enormous power of the sudo command.
Access to sudo should be carefully controlled. The previous command is permitted because the
idcuser account has been added to the /etc/sudoers file with the following line:

idcuser ALL=(ALL)       NOPASSWD: ALL

The first part of the line lists the user account name, followed by the list of permissions, fol-
lowed by the password option. This gives the idcuser access to execute any command without a

Operating System and Virtual Machine Security 293



ptg8286219

password. You can tighten this by creating a password for the idcuser account and then removing
the NOPASSWD option in the sudoers file. Of course, once root is executing the bash shell, it can
execute any command. You can restrict this by editing the ALL option, which requires the idcuser
to use sudo for specific commands. The other permission options are listed in the comments in
the /etc/sudoers file.

The initial security defaults are a good start, but you should tighten them for production
applications. However, experimenting with the utilities described here can be dangerous. If you
make a mistake or tighten security too much, you can lock yourself out. You might want to exper-
iment with a virtual machine instance on the IBM SmartCloud Enterprise that has no critical data
on it. If you mess up, just delete the instance and start with another one.

It is a best practice to require users to log in remotely using their own user names and use
root sparingly. These steps can be useful in achieving this:

1. Remove the /etc/securetty file that lists the TTY devices that root can use to log in.

2. Set PermitRootLogin no in the SSH configuration file /etc/ssh/sshd_config to pre-
vent root login with SSH.

3. Set the root’s shell to /sbin/nologin in the /etc/passwd file.

If you are sharing an image with others, you should clean up your instance before saving it.
Follow these steps:

1. Remove the shell history. On Linux instances, you can use the command history -c.

2. Remove the last login information by clearing /var/log/lastlog.

3. Remove the idcuser randomized password trigger file /etc/cloud/idcuser_pw_
randomized.

4. Clear other logs and temporary files.

On Windows, the SYSPREP process used for virtual machine instance creation deletes log
events and temporary files in the users’ directory. Reboot the instance after you make system con-
figuration changes with administration tools.

Security-Enhanced Linux
Security-Enhanced Linux (SELinux) is a feature that supports access control policies through the
use of Linux Security Modules in the Linux kernel. It is an important tool for cloud providers to
improve security in environments that many users share, and it is also a part of the virtual
machines that you will use as a consumer of cloud services. It is closely related to the United
States Trusted Computer System Evaluation Criteria (TCSEC, commonly called the Orange
Book). SELinux enforces mandatory access control policies that confine system services and
user programs to the minimum amount of privilege needed. It has no concept of a root user. The
great advantage of SELinux is that is limits damage from attacks on programs that are not cor-
rectly designed and configured. SELinux is included with version 2.6 of the Linux kernel. The

294 Chapter 7 Security



ptg8286219

modules that make up SELinux have also been ported to other UNIX flavors. Red Hat Enterprise
Linux and Novell (SUSE) provide commercial support of SELinux.

You can check the status of SELinux with the sestatus command—for example:

# /usr/sbin/sestatus

SELinux status:                 enabled

SELinuxfs mount:                /selinux

Current mode:                   enforcing

Mode from config file:          enforcing

Policy version:                 21

Policy from config file:        targeted

SELinux assigns a context for every user or process that consists of three parts: the role, the
user name, and the domain. Files, network ports, and hardware also have a SELinux context,
which consists of a name, a role, and a type. Mapping between files and user contexts is called
labeling. The -Z switch is added to shell commands, allowing the security context to be seen. For
example, for files, you can use a variation of the ls command:

# ls -Z

-rw-r—r—  root root user_u:object_r:user_home_t      myfile.txt

drwxr-xr-x  root root user_u:object_r:user_home_t      myshare

The POSIX permissions are shown on the left, the SELinux context strings are shown in
the center, and the file names are shown on the right. In SELinux, there are SELinux users as well
as Linux users, which are mapped to SELinux users. In the first example in this section, root is
mapped to the user_u SELinux user for file permissions. In the second example, root is mapped
to the system_u SELinux user. For processes, you can use a variation of the ps command:

# ps -efZ | less

LABEL                       UID   PID  PPID  C STIME TTY TIME     CMD

system_u:system_r:init_t    root  1    0     0 09:19 ?   00:00:00 init [3]

system_u:system_r:kernel_t  root  2    1     0 09:19 ?   00:00:00 [migration/0]

system_u:system_r:kernel_t  root  3    1     0 09:19 ?   00:00:00 [ksoftirqd/0]

...

This shows the process label on the left, the standard process information in the center, and
the command name on the right.

In SELinux terminology, files, directories, and devices are referred to as objects; processes
are referred to as subjects. Linux and most distributed operating systems use discretionary access
controls—that is, users control the access to objects they own. This opens an opportunity for
malicious code to take advantage of users who give too much permission to the data they own. In
SELinux, as in mainframes, a mandatory access control policy is used where the users do not
control this access; instead, a system-wide policy controls the access and protects against
malicious code taking advantage of user permissions to alter applications or bypass system secu-
rity. These mandatory access rules are checked after the regular Linux discretionary access rules.

Operating System and Virtual Machine Security 295



ptg8286219

All files and processes are labeled with a type. A type defines a domain for the process,
which separates processes by confining them to their own domains. Policies define how processes
interact with files and with each other. These policies can prevent an attack that uses a process to
access files that have wide access permissions. For example, with only discretionary access con-
trol, if an attacker can gain control of a HTTP server, he or she may be able to read files that have
world-readable file access. The SELLinux mandatory access controls can prevent this.

The semanage command can be used to see the mapping between Linux users and SELinux
users—for example:

# /usr/sbin/semanage login -l

Login Name       SELinux User     MLS/MCS Range

__default__      user_u           s0

root             root             SystemLow-SystemHigh

Relatively few SELinux users exist in the out-of-the-box configuration. Most Linux users
are mapped to the SELinux user user_u. 

Configuration files are kept in the directory /etc/selinux; the main configuration file is
/etc/selinux/config. Graphical tools can help with the administration of SELinux. See Figure
7.27 for a screen shot of the SELinux Administration tool on RHEL.

296 Chapter 7 Security

Figure 7.27 SELinux Administration tool on RHEL 5.4



ptg8286219

Figure 7.27 shows the Boolean settings for SELinux, including settings for many services.
You can manage the Boolean settings via the setsebool command.

If you have trouble with SELinux, check the /var/log/messages file for SELinux-related
messages. In addition, you can use the SE Troubleshoot Browser, shown in Figure 7.28.

Operating System and Virtual Machine Security 297

Figure 7.28 SE Troubleshoot Browser

If you are logged into the Linux desktop as root, you get a visual notification warning about
SE Linux events.

Some software might not run well with SELinux. You can set SELinux to permissive mode
by using this command:

# setenforce 0

The setenforce command modifies the mode that SELinux runs in. In permissive mode,
SELinux only logs actions; it does not enforce them. To disable SELinux, edit the file
/etc/selinux/config and set the SELINUX line to disabled.

SELINUX=disabled

Then reboot the system. If you decide to re-enable it later, you will have to relabel the sys-
tem. If you are simply trying to see if SELinux is interfering with a service, set it to permissive
mode instead of disabling it.

A common problem with Apache involves labeling some of the files needed for operation
of the web server. You might see something like the message “httpd: bad user name apache”
when trying to start httpd. This is related to SELinux. To fix this, you can use this command:

/sbin/fixfiles restore



ptg8286219

Security of Data at Rest
Data at rest refers to data in a state other than being transported over a network (data in flight). In
this context, security most likely is a last line of defense. A number of principles are related to
data security:

• Confidentiality—Ensure that only authorized people have access to the data

• Integrity—Ensure that the data is not tampered with

• Availability—Ensure that the data is available when it should be

• Authorized use—Ensure that the data is used only for an authorized purpose

Security of data at rest can be expensive and time consuming to provide—and more so to
prove. For this reason, data classification is important. Data classification can help you focus on
security in areas where it is most important. Personally identifiable information (PII) is data
that identifies an individual person, such as the combination of a person’s name and physical
address. Business confidential information is information that an enterprise desires to keep con-
fidential for business reasons.

Considerations for security of data at rest that we have not covered in previous sections
include the following:

• Erasing data properly

• Encrypting data when needed

• Auditing access and changes to data when needed

• Ensuring security of backups

• Addressing access control

Erasing or shredding data properly is important for sensitive data. When the data that you
are managing is not your own, you need to treat it all as potentially sensitive. When you delete a
file, most operating systems simply disconnect the inode from the file system. A malicious user
with access to the block device could potentially scan the individual blocks and reconstruct deleted
files. Shredding files can avoid this and be achieved by zeroing out the file before deleting it.

Data encryption might also be necessary, depending on the nature and location of the data.
Java and other programming languages provide libraries to do this encryption; commercial prod-
ucts also can handle the encryption. For example, Pretty Good Privacy (PGP) is an application
that encrypts and decrypts data and is commonly used for documents, files, and whole file sys-
tems. It follows the RFC 4880 OpenPGP Message Format standard.

Security Events
Security events come in many shapes and forms. We have already mentioned some types in pre-
vious sections. You can distinguish event sources and event targets. For example, in a denial-of-
service attack, the problem might originate at a server hosted by an ISP (which is the source) and

298 Chapter 7 Security



ptg8286219

might target a web site (which is the target). If the protocol of the attack is HTTP on port 80, we
would say that the web server was the target of he attack. If the event were a port scanning event,
we would say that the operating system was the target. These events are usually logged to event
data stores, which could be files or databases. It is good practice to monitor these event logs regu-
larly. In fact, it might be necessary for compliance reasons.

The basic security log in Linux is usually located in /var/log/secure. It contains entries
similar to these:

...

Apr  3 20:00:03 vm-10-200-7-154 sudo:  idcuser : TTY=pts/0 ;
PWD=/home/idcuser ; USER=root ; COMMAND=/bin/bash

Apr  3 23:09:16 vm-10-200-7-154 sshd[27090]: Accepted publickey for
idcuser from 192.168.254.1 port 22356 ssh2

...

The first entry indicates that the user idcuser executed the sudo command /bin/bash. The
second line indicates that the SSH service accepted the public key for user idcuser and lists the
IP address the login came from.

Because of the large volume of potential security events and the number of possible differ-
ent sources, a large data center needs a way to automate analysis of these events. IBM Tivoli
Security Operations Manager (TSOM) is a product that gives you visibility into and control over
events from many event sources, and targets and automates response. TSOM comes with a
built-in set of rules to determine which events are security related and assigns a score to each
event indicating severity. TSOM can also correlate security events across many different sources
and targets. For example, if a worm affects many machines, these events can be automatically
correlated in real time. The events display on a dashboard, reports can also be generated, and
email alerts can be sent. The event information can be discovered remotely via network protocols
or using agents to extract information from log files or other data stores with no remotely accessi-
ble protocol. Four different correlation engines exist: statistical, rule-based, susceptibility, and
vulnerability. The events go through four stages of processing: aggregation, normalization, con-
textualization, and correlation. Event sources can be weighted depending on the source, the tar-
get, and the event type. For example, an attack on a web server running Common Gateway
Interface (CGI) scripts might be weighted heavily because of its high vulnerability. TSOM has
adapters for security events for firewalls, routers, operating systems, web servers, databases,
network management systems, and other applications.

Security Compliance
Different compliance certifications usually apply based on the industry or business context you
are operating within. Some of these include the following:

• Sarbanes-Oxley, for companies listed on U.S. stock exchanges

• Payment Card Industry (PCI), for e-commerce

Security Compliance 299



ptg8286219

• HIPPA, for health-related industries

• Basel II, for banking

• Common Criteria

• FIPS, for U.S. government

Most of these compliance regulations are not limited in scope to security, but security is an
important part. In this context, a control is a method for ensuring the security and integrity of
data. The security techniques discussed earlier in this chapter can form important security con-
trols for compliance purposes. Compliance for banks and other large enterprises can require spe-
cialists and whole departments to ensure compliance for the enterprise. 

Business Scenario: IoT Data Security Architecture
This section gives a high-level description of our example company, IoT Data, in its approach to
security.

IoT Data will store all user identity information in a central OpenLDAP directory server.
The schema will be customized to include a tenant ID, identifying which customer each user
belongs to. This ID will also be included in all database tables so that we can trace each data
record to a customer. Basic authentication over HTTPS will be used for the user interface and
REST APIs.

All systems are protected by firewalls. We described the data flows and firewall configura-
tion in the section “Business Scenario: Network Deployment and Firewall Rules,” earlier in this
chapter. IoT Data also needs development and test environments. These should not be exposed to
the Internet, in case a competitor accidentally becomes aware of the URL of the test and develop-
ment systems. To achieve this, all test and development servers will be located on a VLAN and
access provided by VPN. An instance of a CohesiveFT image will be used as the VPN gateway,
and the Open VPN client will be used to connect to it.

Except for a limited public area of the main web site, all communication to and between
systems uses some form of encryption. During and after login to the user interface, all communi-
cation will be over HTTPS. All REST APIs will operate over HTTPS. The certificates for the
public web servers will be signed by well-known certificate authorities. To reduce cost, all other
certificates will be self-signed.

IBM Rational AppScan will be used to guide application hardening during the develop-
ment phase. Penetration testing (ethical hacking) will be used to ensure that cross-site scripting,
cross-site request forgery, and injection attacks cannot be performed using known techniques.

All database and system log backups will be stored encrypted. All data deleted by cus-
tomers will be shredded so that it cannot be recovered by a third party.

All operating systems will be Linux. The standard security defaults will mostly be main-
tained by tightening them somewhat. sudo commands will require passwords.

IBM Tivoli Security Operations Manager (TSOM) will be used to monitor all security
events and will display a summary in a central location.

300 Chapter 7 Security



ptg8286219

301

C H A P T E R 8

Performance,
Availability,
Monitoring, and
Metering

When you have your service developed and available on the cloud, you need to monitor it to
avoid problems. In particular, you need to make sure that it is performing well and stays up. One
of the main differences in performance, availability, and monitoring in cloud computing is the
evolving role of the developer, which currently demands more involvement in the overall system
lifecycle. However, other differences also arise compared to traditional systems:

• Virtual nature of all system resources

• Relatively constrained set of choices for compute resources

• Dynamic capability to add more resources

• Greater dependence on the network

• The dynamic nature with which resources can be created and destroyed

We also discuss metering, which is one of the basic principles of cloud computing and
operates with cost based on measured use. Just as you pay for the electricity that you use by the
kilowatt and your telephone bill is based on the number of minutes used, cloud services are based
on resource usage.

Performance and Scalability
One of the great promises of the cloud is that it can allow enterprises to scale out instead of scal-
ing up. In scaling up, if you have too much demand on an application, you can buy a bigger server
to host your application. The problem with this is that you need to migrate the data from the orig-
inal, smaller server to the bigger, more capable server. In scaling out, you can add another server
to share the workload. Setting up load balancing and failover is complex and involves a lot of



ptg8286219

work. For certain common classes of applications, this is a benefit that Platform as a Service
(PaaS) can add if your application can migrate to or be built on it.

Compute Capacity
Virtual memory is a concept that was developed to allow each process in a multitasking system
to have its own unique memory space. Virtual memory enables a developer to think about a pro-
gram as if there is only one kind of memory. However, when we get to system performance, we
need to consider the different kinds and uses of memory. Swap is an area of disk that is used as
part of the virtual memory area. Swap extends the physical memory, allowing the virtual memory
to be much larger than the physical memory. Resident memory is the part of a process space that
is resident in physical memory. A page is a contiguous block of memory. Paging, or swapping,
is the process of moving a page from physical memory to swap.

Thrashing occurs when excessive swapping takes place between physical memory and
swap disk, and is a common cause of performance problems in virtual machines. Especially when
using virtualization on-premises, it is tempting to set up more virtual machines than the hardware
can support. Thrashing usually is easily diagnosed using performance-monitoring tools, such as
top, by checking metrics such as virtual memory, physical memory, memory utilization, and resi-
dent memory.

One of the great aspects of cloud computing is that you can add compute capacity dynami-
cally. For Infrastructure as a Service, you can do this using the APIs that we discussed in Chapter
3, “Developing with IBM SmartCloud Enterprise APIs.”  However, to know when to add com-
pute capacity, you need to use the performance-monitoring tools discussed in the “Monitoring
and Metering” section of this chapter. To make use of the additional compute capacity, you will to
do some form of load balancing. One of the most common ways to do load balancing is to use a
reverse proxy. In the “Proxy Servers” section of Chapter 7, “Security,” we discussed the use of
proxies for security purposes.

Recently, more application capability has been pushed to execute with JavaScript on users’
browsers, and data is transmitted with AJAX. This can improve the perceived responsiveness of
an application. Now we need to consider the browser performance.

Network Performance
Network factors greatly influence the performance of a cloud computing application as users see
it. Network infrastructure within a cloud data center is beyond the scope of the this book—and
probably beyond the scope of your influence as an application developer. However, you can take
many steps as an application developer to improve the performance of your application across the
network. Primarily, you can (1) know the characteristics of your network and your users’ access
to it, (2) design your application to stay within these limits, and (3) make optimal use of the
global cloud network infrastructure to reduce latency. Monitoring of network performance is dis-
cussed in the “Network Monitoring” section of this chapter.

302 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

Network bandwidth is a measure of the capacity or maximum throughput of a network to
transmit data, measured in bits per second. Table 8.1 lists the typical network bandwidth for dif-
ferent network media.

Table 8.1 Network Bandwidth Rates

Connection Technology Bandwidth

Dialup Modem 56 kbps

ADSL Lite 1.5 Mbps

T1 1.54 Mbps

Ethernet 10 Mbps

Wireless 802.11b 11 Mbps

T3 44.7 Mbps

Wireless 802.11g 54 Mbps

Fast Ethernet 100 Mbps

OC3 (optical) 155 Mbps

OC12 (optical) 622 Mbps

Gigabit Ethernet 1 Gbps

Keep in mind that for most of the cases in Table 8.1, users share the available bandwidth
with other users, so actual bandwidth is less. Also remember that the network path from the cloud
data center to a user’s browser traverses a number of different network media, each with different
bandwidth and shared among a different set of users. However, the numbers give you an idea of
the expectations you can have with different network segments.

Network latency is the one-way or round-trip time taken for a network packet to be sent
from a source to a destination. Round-trip network latency is most often quoted. The most com-
monly used method of measuring network latency is ping, which measures round-trip latency.
Because ping packets are small, they can be quickly relayed between different network nodes and
give an optimistic measure of network latency, compared to the network data packets that appli-
cations users will experience.

Many cloud applications are web applications, which means that the user interface ele-
ments, such as HTML, JavaScript, and images, must be loaded into a browser over the network
along with the data presented to the user. Application developers should be mindful of the size
and total amount of these elements because they can greatly affect the time it takes a page to load.

Performance and Scalability 303



ptg8286219

Because of network latency, applications that are “chatty,” or require many small network
transmissions, can perform poorly over Internet connections that are remote from the cloud data
center (for example, users in Asia who are accessing applications running in a data center in the
United States). Web applications with many small graphics, JavaScript files, and AJAX calls are
prone to this problem because the network latency magnifies the page load time. Loading of the
individual page elements might not be as optimized as you hope and varies considerably by
browser type.

Users in different areas of the world do not experience the same levels of service. The IBM
SmartCloud Enterprise has seven data centers distributed globally to serve customers around the
world. The simplest and most obvious way to make use of this capability is to host your applica-
tion geographically close to where you think most of your users are. If you have users spread
throughout the world, another approach is to distribute your application globally across different
data centers. The feasibility of doing this depends on the complexity of your application. In the
simplest case, your main page could give users the choice of geographic location. This might also
be connected with other globalization aspects of your application, such as sales and billing. A
more sophisticated approach is to detect the location of the user and forward him or her to the
optimum delivery point.

J2EE Application Performance and Scalability
J2EE application servers have a number of features that assist with achieving performance and
availability goals. One of the main features is the capability to cluster application servers to dis-
tribute load. A cluster is a group of application server nodes or individual application servers that
work as a group to balance workload. In cloud computing, you have the opportunity to create vir-
tual machines dynamically, and these can act as nodes in the cluster. This section focuses on
WebSphere Application Server (WAS).

A stand-alone server provides a platform to run an application in an isolated environment.
This is efficient for applications supporting small workloads. However, applications that support
large workloads where a cluster is needed must have a way of organizing and managing the parts
of the cluster. In WebSphere, a node is usually a physical server or virtual machine with software
for one or more application servers installed. A cell is a logical group of servers or clusters.
Applications can be installed in a cluster in a single operation, and the cluster can be started and
stopped as a single unit. 

If you connect via SSH to the WAS server created in Chapter 2, “Developing on the Cloud,”
you can see three directories in the WAS installation directory /opt/IBM/WebSphere:

[wasadmin]$ ls

activation  AppServer  Profiles

The AppServer directory contains all the core product files. The Profiles directory is the
default directory for creating profiles. We discussed provisioning of WAS in the section “Web-
Sphere Application Server” of Chapter 2, where we recommended use of the Development

304 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

profile in developing a J2EE application. As discussed, a WAS profile defines a runtime environ-
ment. Creating a standard profile for your needs can help in managing a number of WAS installa-
tions, compared with creating a new profile each time you install WAS. Profiles can be managed
with the manageprofiles command-line tool or with the Profile Management Tool graphical user
interface. To create a new profile in WebSphere, first launch the Profile Management Tool with
this command: 

[wasadmin]$ /opt/IBM/WebSphere/AppServer/bin/ProfileManagement/pmt.sh

When you start the tool, your existing profiles are listed. To create a new profile, click the
Create button. You should see something like Figure 8.1.

Performance and Scalability 305

Figure 8.1 Creating a new profile with the WebSphere Application Server Profile 
Management Tool

Follow these steps:

1. Select Application Server and click Next. 

2. Select Typical Profile Creation on the next screen and click Next. 

3. On the next screen, type a user name and password and click Next again. 

4. Make a note of the settings on the confirmation screen and click Create.

The Advanced Profile Creation option enables you to deploy or not deploy the administra-
tion console and sample applications, select performance tuning options, configure additional
security settings, configure port settings, and create a web server definition.



ptg8286219

You can manage cells, clusters, and nodes in the administrative console. Adding a node to a
cell is known as federation. A node is a group of managed servers. A managed node has been
federated into a cell or registered with an administrative agent or a node agent. An administra-
tive agent can manage multiple application servers on the same machine. In the WebSphere
Application Server Network Deployment model, a single administrative console is the central
point for all the application servers that it manages. A deployment manager manages nodes in a
cell. WAS 7.0 introduced the concept of a job manager to better manage cells across distant geo-
graphic locations. Because administrative calls across the Internet can take a considerable
amount of time, synchronization problems could occur with topologies spanning distant loca-
tions without the use of a job manager. The job manager queues administrative requests to make
sure they are delivered successfully. This flexible administrative model has important applica-
tions if you want to deploy your application across multiple cloud data centers to ensure avail-
ability in the event of a disaster at one location. Figure 8.2 illustrates this concept.

306 Chapter 8 Performance, Availability, Monitoring, and Metering

Application
Server

Cell 1

Application
Server

Cell  2

Deployment 
 Manager 

Deployment 
 Manager 

Job Manager 

Application
Server

Application
Server

Figure 8.2 WebSphere network deployment management concepts



ptg8286219

You can create deployment managers, administrative agents, and job managers with the
Profile Management Tool. To create a new Administrative Agent Profile with an administrative
console, launch the Profile Management Tool as described. However, instead of choosing Appli-
cation Server, as before, choose Management. Choose Typical Profile Creation at the first screen
and enter a user name and password at the next screen. Finally, confirm the profile information and
click Create.

All the steps that you can perform in the administrative console can be scripted with the
wsadmin tool and commands, including Java programs with the Java Management eXtensions
(JMX) and Jython scripts. You can combine this knowledge of the WebSphere network deploy-
ment model with your knowledge of creating and customizing images and what you learned
about the IBM SmartCloud Enterprise REST API to automate provisioning of elements of a
WebSphere cluster. You can do this with the following steps:

1. Starting with a base WebSphere Application Server image, customize the profile with
the Profile Management Tool and the application sever with the administrative console.

2. Save the virtual machine to an instance with the SCE user interface or REST API.

3. Use the SCE REST API to provision new virtual machines.

4. Use the wsadmin tool to join the new virtual machines to the cluster and synchronize
application deployment across the nodes, including deploying your J2EE application.

Performance Analysis and Testing
Performance analysis and testing is closely related to application development. Usually, perfor-
mance analysis is the responsibility of the development group and performance testing is the
responsibility of the test group. IBM Rational Software Architect provides graphical application
profiling for both local and remote processes. Profiling remote processes is especially useful to
analyze the performance of J2EE web applications. 

To profile a Java application in RSA, switch to the Profiling and Logging perspective from
the Window, Open Perspective menu, as shown in Figure 8.3.

In the Navigator tab, right-click your application and click Profile As from the context
menu. You are presented with a configuration dialog, as shown in Figure 8.4.

You can filter the amount of data collected to avoid overloading and slowing the RSA
client. Click Edit Options and add a filter to include the package you are testing with a * after it.
Click Apply and Profile to profile your application. For the execution time analysis, you should
see something like Figure 8.5.

Performance and Scalability 307



ptg8286219

Figure 8.3 Opening the Profiling and Logging perspective in RSA

308 Chapter 8 Performance, Availability, Monitoring, and Metering

Figure 8.4 RSA Edit Configuration dialog box



ptg8286219

Performance and Scalability 309

Figure 8.5 Example of RSA profiling execution time analysis

This figure shows that about 98% of the time is spent in the search() method.
To profile a J2EE web application running in WebSphere Application Server, start the

server from the RSA Servers console in profile mode. If the WAS server is on a remote machine,
you must first install the IBM Agent Controller, which you can freely download from IBM.com.
Then you must set up environment variables, as explained in the documentation for the Agent
Controller.

Performance analysis and tuning of relational databases is a topic by itself. SQL is a declar-
ative language, in the sense that the data to be retrieved or changed is described in the statement,
but the algorithm to perform the query or operation is not described. The statement can be imple-
mented by a relational database in many ways, each of which is called an access path or access
plan. These can result in considerably different performance associated with different access
paths. IBM Data Studio and IBM Optim™ Query Tuner have tools for optimizing access paths,
including graphical visualization capability. DB2 also has its own native tools for access path
tuning.

The goal of performance testing is to verify that your application performs acceptably
under a variety of scenarios and conditions. In contrast with performance analysis, performance
testing covers a wider range of test cases. Performance testing usually focuses on a metric that is
closely aligned with user experience, such as page load time. In addition, a goal of performance
testing might be to ensure that performance does not degrade from release to release. For this rea-
son, it is important to be able to repeat performance tests. 

IBM Rational Performance Tester (RPT) is a performance and load-testing tool that can
store test scripts for automated execution and create a rich set of reports to summarize perfor-
mance characteristics of the application. It sends HTTP requests to your web application, simu-
lating the large numbers of users, and tracks page response times under different test cases. RPT
enables you to record steps in a browser and then play them back to run the test with multiple
users. Data returned from pages can be simulated using data pools, which can be created to match
test cases. It also helps identify performance bottlenecks by pinpointing lines of code with slow

IBM.com


ptg8286219

execution. RPT has built-in support for enterprise systems, including SAP and Seibel. It can help
correlate system health with test execution so that you can see how your system is stressed under
load. RPT can be combined with ITCAM, discussed in the section “Application Monitoring” in
this chapter.

Cloud computing is an ideal environment for performance testing because a large number
of resources can be mobilized over a short time period to conduct resource-intensive tests.
Another approach is to measure the system with a certain compute capacity and then repeat the
test with double (or triple, and so on) the compute capacity. Based on that data, you can extrapo-
late to see what compute capacity is required to support the predicted system load before making
the service available to customers. That assumes that you see a linear trend between compute
capacity and the load capable of supporting it, of course. If you do not see that, you need to iden-
tify the bottleneck. Some bottlenecks are hard to identify until the full production load is applied.
For example, suppose that a 4 CPU system can support 50,000 users, an 8 CPU system can sup-
port 100,000 users, but a 16 CPU system can support only 110,000 users. You have identified a
problem in scaling your application past 8 CPUs.

Availability
A number of different approaches to availability exist. Two fundamentally different approaches
are traditional high availability and design for failure. In the traditional model, the infrastructure
takes responsibility for availability. For example, a J2EE application might rely on high availabil-
ity features from the application server and database. In a design for failure approach, the appli-
cation and management infrastructure is built to handle failure.

Availability also can be achieved at different levels, including physical, virtual resource,
availability zone, region, and cloud. Physical redundancy means replicating all the physical infra-
structure for the application to run in, including servers and network equipment. This is a primary
technique for high availability in a traditional approach. However, a design for failure approach
ignores physical redundancy because hardware is expected to fail.

Virtual resource redundancy enables you to avoid faults in hardware by spreading your
resources over different availability zones. Because hardware in clouds is usually located in racks
with many CPUs in each node of the rack, this approach can give you some guarantee if a whole
node or a whole rack goes down. Spreading resources over different regions, or data centers, can
enable you to avoid service disruption if an entire data center becomes unavailable.

Another issue in high availability scenarios where hardware fails is loss of data. Most
applications store data in relational databases. To prepare for this, you should be incrementally
backing up data. Different databases have different schemes for this. Then if one database fails
and you need to switch to another, you will have lost a minimal amount of data. Another option
for data storage is a NoSQL database. A NoSQL database trades data consistency for partition
tolerance, which can be thought of as the capability to split data between partitions in different
regions.

310 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

Designing for high availability can be difficult and expensive. Another approach for appli-
cations that are not mission critical is to be able re-establish your application quickly in the event
of a failure. Regular data and system backup enables you to do this easily in a cloud environment,
depending on the complexity of your system topology.

We often hear about availability in terms of a number of nines. Table 8.2 shows how diffi-
cult it can be to achieve the number of nines in some claims.

Table 8.2 Availability versus Downtime

Availability Downtime per Year

90% 36.5 days

99% 3.7 days

99.9% 8.8 hours

99.99% 53 minutes

99.999% 5 minutes

Just managing maintenance and system upgrade windows can make achieving these goals
difficult, let alone planning for power and network outage, equipment failure, or disasters.
Human errors are far more common than equipment failures. Most important, you need to invest
considerable effort in planning and practicing every configuration change to the system, to avoid
downtime. This is one area where cloud computing has considerable advantages: It greatly
reduces the scope of IT operations that your own organization is responsible for.

Backup, Recovery, and Restore
Backup can be done locally, or it can be done to a remote location. The advantage of backing up
to a remote location is that, if the entire location where your application is hosted becomes
unavailable, you will still have your data. The elastic nature of cloud storage is helpful in plan-
ning for backup of data because you do not need to plan for and procure a fixed set of hardware in
advance. Important requirements for backup include these:

• Backup should be nondisruptive—that is, backup should not require you to take your
system offline.

• Backup should provide for fast recovery.

• Backup should be schedule driven.

• Backup should be automated.

• Encryption of data is an additional desirable requirement in cloud environments.

Availability 311



ptg8286219

Cold backup is the simplest and cheapest method of recovery. In this method, the applica-
tion is stopped and a full image of the data is taken and saved to a location that cannot immedi-
ately make use of it if a failure occurs. This ensures consistency of the data. However, the
application is offline during the process. For large sets of data that take a long time to restore and
for mission-critical applications, this is unacceptable. Other methods, known as application-
consistent backup, can make backups without needing to take the application offline. 

Typically, backups involve the following components:

• Backup server—This is the administrative point for the backup system

• Storage node—This is where the backup data is stored.

• Agent—An agent is installed on the application server to manage collection of data and
metadata.

• Application server—This is the system that owns the data being backed up.

A snapshot is a copy of the original data at one point in time. Snapshots allow for a full
restore of the data. In most cases, a snapshot is a copy of an entire storage volume. The disadvan-
tages of snapshots are that making them takes a considerable amount of time, they consume a
large amount of storage space, and application performance can be impacted greatly while taking
a snapshot.

Incremental backup is one form of application-consistent backup that saves only the incre-
ment since the last backup. It saves time and network bandwidth, but restoring data based on
incremental backups can be more complex and time consuming. In a differential backup, all the
changes since the last full backup are saved. This can make it simpler to restore than with incre-
mental backups because only the full backup and the differential backup are needed, compared
with the full backup and all the incremental backups with an incremental backup strategy. One
way to save time in restoring from incremental backups is to reconstruct a synthetic full backup
offline on a regular basis before a failure occurs. 

With either full backup, incremental backup, or differential backup, some data will be lost:
the data saved by the application after the last backup and before the failure. Figure 8.6 shows
recovery with full or incremental backup.

The data modifications since the last backup will be lost. Continuous data protection is a
technique that captures every change in application data; it can be file based, block based, or
application based. Figure 8.7 shows this.

Continuous backup can also reduce the time necessary for restore.
Backups can be done at different levels:

• File level—If a file changes, the whole file must be backed up. Open files might not be
able to be backed up.

• Block level—Only the block within a file that changed is backed up. This requires
lower-level tools to work below the file level.

312 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

• Client-side backups—The data is backed up to the local system. This saves network
bandwidth, but at additional risk. However, RAID can be used, and a client-side backup
strategy can be combined with other methods to periodically save backup data on
another system.

Availability 313

Modifications Since Last
Backup

Normal
OperationApplication

RecoverRestore
Data

Analyze
Failure

FailureBackup Restart

Figure 8.6 Application recovery with traditional backup

Modifications Saved Operation 
Normal Recover

Application
Restore

Data
Analyze
Failure

Failure Backup Restart 
Continuous Backup 

Figure 8.7 Application recovery with continuous backup

Tape is still a common backup media for traditional IT systems because of its low cost and
high reliability. However, backing up to disk is becoming more prevalent because of the speed of
restoring data and convenience in use over wide area networks. In cloud backup, data is backed
up to a network storage device on the cloud. A virtual tape library (VTL) looks and acts like a
tape but is actually a file-based system. It can be useful when working with legacy systems that
depend on tape backups.

Backup data can consume a lot of space, depending on the size of the data set backed up
and the frequency of backup. Data deduplication is a technique to save only unique data ele-
ments. It depends on a deduplication capability in the backup system.

It is a common mistake to do backup but not test data restoration. Testing restore and recov-
ery is time consuming but important, to make sure that you can actually recover from a failure.
After all, recovery and restoration of service will be an urgent matter when it is really needed.
The process of recovery can involve these steps:

1. Diagnosing the problem 

2. Deciding what recovery point to use

3. Deciding what point to recover to

4. Restoring data from the backup location to the recovery location



ptg8286219

5. Performing standard recovery and startup

6. Testing

Diagnosing the failure is important and affects the action taken. Possible causes of failure
include these:

• Application failure—The application software may fail due to a bug, lack of robust
error handling, an overloaded condition, or some other reason. Usually recovery is pos-
sible with a restart.

• Power failure—Most applications will recover from a power failure most of the time. A
simple restart might be all that is required.

• Disk failure—The mechanical nature of hard disks makes them the most likely hardware
component to fail. Backup data from another system likely will be needed in this case.

• Hardware failure other than disk failure—In a physical IT environment, you might
need to perform maintenance or replace the system. In a cloud, you will need to restart
the system on another virtual machine instance. 

• Data Center failure.

A good strategy to minimize downtime is to have an idea of the cause of the problem as
soon as it occurs. Monitoring is important to achieve this.

Another strategy for reducing recovery time is to keep backup data locally and replicate
offsite. The local data can be quickly accessed for recovery, and the offsite data can be used in the
case of an emergency. 

Storage Availability
Commercial hard disks fail at the rate of approximately 4% per year [Thorsten, 2008]. So
whether you are managing an application in a traditional or a cloud environment, you need to
consider the availability of your storage system. One of the advantages of IBM SmartCloud
Enterprise is support for storage availability areas. An availability area provides some guarantee
that, if data is stored in multiple availability areas, a hardware failure will not result in loss of the
data. This is somewhat similar to some Redundant Array of Independent Disks (RAID) con-
figurations in traditional IT.

IaaS clouds also enable you to format your own storage volumes, including with the use of
RAID configurations. RAID is a storage technology that improves storage availability using
redundancy. It distributes data across multiple physical disk drives as a logical unit. The way the
data is distributed among the disks determines the RAID level, which implies the combination of
performance and fault tolerance. The physical disks are termed a RAID array that the operating
system accesses as a single logical disk. Striping is a technique for arranging blocks of files
sequentially across multiple physical disks to allow the data to be read and written concurrently
across those disks. Using striping, data can be read and written by the operating system at a
greater rate than supported by the physical devices. Parity data can be added to disks so that, if

314 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

any one disk fails, the lost data can be reconstructed. Disk mirroring involves cloning the data on
the disk to a separate physical disk in real time. In this way, the mirrored disk is always identical
to the original disk and, if a disk fails, no data is lost.

Table 8.3 summarizes the RAID levels.

Table 8.3 RAID Levels

Level Description

RAID 0 Has striping but no parity or mirroring. Highest performance and lowest fault toler-
ance. If any one disk fails, data is lost.

RAID 1 Mirroring with no striping or parity. Highest fault tolerance and lowest performance.
Only two disks are needed for this level.

RAID 2 Bit-level striping and Hamming-code parity. Minimum of three disks needed. Can
recover from a failure of one disk.

RAID 3 Byte-level striping and parity. Minimum of three disks needed. Can recover from a
failure of one disk.

RAID 4 Block-level striping and parity. Minimum of three disks needed. Can recover from a
failure of one disk.

RAID 5 Block-level striping and distributed parity. Minimum of three disks needed. Can
recover from a failure of one disk.

RAID 6 Block-level striping and double-distributed parity. Minimum of four disks needed.
Can recover from a failure of two disks.

RAID 0 and 1 are the two extremes, and RAID 2 through 6 achieve intermediate levels by
adding disks and using more complex systems.

Availability of Relational Databases
Basically, no difference exists between physical and cloud in terms of availability of a single
machine. However, there are large differences in local storage between cloud-based virtual machines
and servers that are typically used to host production databases. Cloud-based virtual machines gener-
ally have a standard amount and type of local storage. Because local storage is important for operat-
ing relational databases, production database servers generally have a greater amount of storage, and
it tends to be higher performance than in other systems. Some clouds have no local storage. For these
reasons, and for a standard high availability solution, it can be beneficial to look for a platform as a
service solution for a relational database.

Relational databases can be backed up fully or incrementally. In general, the database can
remain online when being backed up, but it will operate in backup mode. This is important to
minimize downtime for 24×7 operations. In this mode, data is received by the database but is
cached after the backup operation finishes. After the backup, all the changes in the cache are
applied to the data files.

Availability 315



ptg8286219

IBM DB2 has a tools catalog that is used for scheduling jobs, including backups. Also, by
default, DB2 is set up to send notifications of events, such as health alerts, to administrators.

Virtual IP Addresses
A virtual IP address is an IP address that is assigned to multiple servers but is active on only one
server at any one time. The IBM SmartCloud Enterprise infrastructure cloud has the capability to
support this. The capability provides flexibility for high availability for applications deployed in
the cloud.

In addition to a regular static IP address, a VM can dynamically assume one or several
additional virtual IP addresses. Virtual IP addresses are not active when the VM is started. They
are activated by entering this command in the VM:

# /sbin/ifup eth1

eth1 is the Ethernet interface associated with the virtual IP. Be careful when you activate
the virtual IP: If the same IP addresses may be associated with another server and it is up, you
will end up with an IP address conflict. To deactivate a virtual IP, use this command:

# /sbin/ifdown eth1

An example of the application of these capabilities is high availability for a web site using a
reverse proxy server. Two similar web servers are provided to end users as reverse proxy servers.
One of them acts as the primary proxy server; the other is a warm standby server. Figure 8.8
shows the network configuration of these servers.

316 Chapter 8 Performance, Availability, Monitoring, and Metering

Virtual IP:  172.10.10.10 Virtual IP:  172.10.10.10 

Primary IP:  192.168.0.10 Primary IP:  192.168.0.11 

Proxy Server A Proxy Server B 

Figure 8.8 Network configuration for reverse proxy servers

192.168.0.x is a private LAN that is not visible to the user. 172.10.10.10 is the address
users can access. After the virtual IP in proxy server A gets activated, it acts as the main proxy
server; the virtual IP address on server B is not activated, as shown in Figure 8.9.

When server A is down or the response time of that server is slow, you can deactivate the
virtual IP address of server A and activate the one in server B. The roles of these two servers then
switch. Thus, you can achieve high availability of the service. The Linux kernel has the capability
to operate in a high availability mode in this manner so that you do not have to build your own.
The software package nginx also provides high availability using this feature. These modules
operate a heartbeat to monitor for availability of the servers. Note that, with the IBM SmartCloud
Enterprise, you need to operate with unicast; broadcast and multicast are not supported.



ptg8286219

Figure 8.9 Virtual IP address assigned to the main proxy server

Monitoring and Metering
Monitoring in the cloud has several implications that are different from traditional computing:

• The dynamic nature of cloud computing means that monitoring is more important. You
prefer not to pay for resources that you are not using.

• If you need to scale to cloud levels, you need to automate.

• Monitoring often forms the basic for metering—that is, measuring how your customers
use resources so that you can charge them.

The last point is an interesting one and is fundamental to cloud computing: Cost should be
based on use. If you are providing a service to customers over the Internet, how will you charge
them for it? Several possibilities exist: per unit time of service, per unit of data, per transaction,
per user, one-time charges, or based on premium services. In IaaS clouds, customers are usually
charged per hour of virtual machine time, per gigabyte of storage per unit of time, or per IP
address per unit time. In traditional computing, software costs can have complex license models.
Often these are based on power units or seats—that is, the more compute power your servers
have, the more the license costs are. For example, license costs might be different for number of
CPUs and type of CPU (32 or 64 bit, Intel or RISC). A per-seat license is basically the number of
users of your application. It could be the number of users with a unique login, number of users
served, or number of floating licenses. Whatever metering model you choose for your service, the
implications for your business could be profound.

Many tools are available for monitoring. We divide them into four categories:

• Operating system monitoring

• Network monitoring 

• Application monitoring

• Comprehensive monitoring solutions

Many of the monitoring methods in this section can be the basis for metering. You can use
operating system monitoring tools to measure power units of computing capacity per unit time,
storage used, network bandwidth used, and so on. Often Software as a Service is likely to be

Monitoring and Metering 317

Primary IP:  192.168.0.10 Primary IP:  192.168.0.11 

Main Proxy Server Warm Standby 

172.10.10.10



ptg8286219

metered at a higher level, such as per transaction or per seat. In those cases, metering will be more
closely aligned to application monitoring. Some problems specific to cloud computing that must
be solved are how to tie resource usage to specific customers and how to keep a permanent record
of metering data. Because of the dynamic and distributed nature of cloud resources, you should
keep metering data in a central location, such as a database. Keeping track of log files will be too
difficult and prone to error. We discuss an example of a metering strategy in the section “Business
Scenario: IoT Data Performance, Availability, Monitoring, and Metering Plan,” later in this chap-
ter. You can also divide these areas into performance monitoring and availability monitoring.
Operating system, network, and application monitoring are each needed and are discussed in the
following sections. However, they do not form a complete monitoring strategy for these reasons:

• You cannot watch a console 24 hours a day.

• You still might not be able to tell if something is wrong just by watching the output.

• You might have too many systems to monitor using these tools.

The next section looks at tools for addressing these problems.

Operating System Monitoring
Tools for operating system monitoring fall into distinct categories, including fundamental tools,
availability monitoring, and performance monitoring. Fundamental tools, such as syslog, top,
vmstat, mpstat, and the /proc filesystem, are useful by themselves and also form the basis for
other tools. Nagios is a popular availability-monitoring tool. Munin is a popular performance-
monitoring tool. IBM Tivoli Monitoring also has extensive capabilities for operating system
monitoring, but we defer discussion of that to the upcoming section “Comprehensive Monitoring
Solutions.”

Operating system monitoring is fundamental to all monitoring. One of the most basic tools
on Linux is syslog, which is a library that many services use to log to files in the /var/log direc-
tory tree. Log entries contain a description of the application that generated the message, a sever-
ity level, a time stamp, and the message. Log configuration can be done by editing the file
/etc/syslog.conf. A common default setting is for all messages of syslog level info or higher to
be logged to the file /var/log/messages. 

You can write your own messages to the syslog files using the syslog library in C pro-
grams or by using the logger command in shell scripts. For example:

$ /bin/logger A bad thing happened

$ tail messages

...

Apr  4 10:13:59 vm-10-200-7-154 idcuser: A bad thing happened

The top command displays Linux tasks and a system summary. It is invaluable, providing a
real-time view at an operating system level. The types and order of information displayed are all
user configurable. Figure 8.10 shows sample output from the top command on an IBM Smart-
Cloud Enterprise RHEL system.

318 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

Figure 8.10 Linux top screen shot from a SmartCloud Enterprise RHEL system

The summary output shown indicates that the CPUs are 99.5% idle; there is 4 GB of mem-
ory, of which 381 MB is used; and 1 process is running and 94 processes are sleeping. Table 8.4
describes the fields shown in Figure 8.10, from left to right.

Table 8.4 Description of top Task Detail Output

Abbreviation Name Description

PID Process ID The unique process.

PPID Parent process ID The unique parent process.

RUSER Real user name The real owner of the process.

UID Effective user ID The user ID of the effective owner of the process. 

USER User name The user name of the process owner.

GROUP Effective group name The effective group of the owner of the process. 

TTY Controlling terminal The controlling terminal of the process. 

PR Priority The priority of the task.

NI Nice value A negative value is a higher priority, a positive
value is a lower priority.

P Last used CPU CPU affinity. In a true SMP environment, this
changes frequently.

Monitoring and Metering 319



ptg8286219

Table 8.4 Description of top Task Detail Output (continued)

Abbreviation Name Description

%CPU CPU usage Divided by total number of CPUs.

Time CPU time Total CPU time since the process started.

%MEM Memory usage Share of available physical memory.

VIRT Virtual memory The amount of virtual memory used by the task.

SWAP Swapped size The amount of virtual memory swapped.

RES Resident size The nonswapped physical memory.

CODE Code size The physical memory dedicated to executable
code. 

DATA Data size The physical memory dedicated to other-than-
executable code.

SHR Shared memory size The amount of shared memory used by a task.

nFLT Page fault count Attempts to read or write to a page that is not 
currently in its address space.

nDRT Dirty pages count Number of pages modified since the last write to
disk.

S Process status One of the states uninterruptible sleep, running,
interruptible sleep, stopped, paging, dead, or
defunct.

Command Command The command that started the process. 

When you enter top from the command line, the cursor is positioned in an area that enables
you to enter interactive commands. Type h for help and q to quit. You can start top in batch mode
with the -b flag, to keep a record of system performance or to send to another program. You can
monitor the results by user with the -U flag and by process with the -p flag.

As an example, suppose that you had a problem with a Java process that is not shown on the
top output. However, the top output shows that you have 94 sleeping processes and 1 running
process. These are not all displayed on the output by default; you need to find the process ID of
the Java process and use the -p flag. You can do this with these commands:

# ps -ef | grep java

root      2609  2595  0 08:30 pts/0    00:00:03
/opt/IBM/WebSphere/AppServer/java/bin/java

root      2690  2609  0 08:40 pts/0    00:00:28
/opt/IBM/WebSphere/AppServer/java/bin/java

320 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

Now that you know the process IDs, you can start up top so that only those processes are
shown: 

# top -p2609 -p2690

This results in the top output shown in Figure 8.11.

Monitoring and Metering 321

Figure 8.11 top output focusing on Java processes

Although the Java processes are slow, the CPU and memory utilization is low. However, the
RES column shows that there is very little of the processes in resident memory: 54 MB out of 591
MB and 68 MB out of 436 MB. Maybe the problem is swap configuration. On a more healthy
system, the resident memory for the same Java process is greater than 90%.

Virtual memory statistics can be reported with the command vmstat, including process
memory use, paging, block I/O, traps, CPU, and disk statistics for the overall system. Table 8.5
lists the individual fields.

Table 8.5 Metrics Reported by vmstat

Abbreviation Name Description

r Processes waiting for runtime Number of processes waiting for runtime

b Processes sleeping Number of processes waiting in uninterruptible
sleep

swpd Virtual memory used Amount of virtual memory used

free Idle memory Quantity of idle memory

buff Memory used as buffers Quantity of memory used as buffers

cache Memory use as cache Quantity of memory used as a cashe

inact Inactive memory Quantity of inactive memory

active Active memory Quantity of active memory

si Swap in Amount of memory swapped in from disk



ptg8286219

Table 8.5 Metrics Reported by vmstat (continued)

Abbreviation Name Description

so Swap out Amount of memory swapped out to disk

bi Blocks in Blocks read in from a block device

bo Blocks out Blocks written out to a block device

in Interrupts Number of interrupts per second

cs Context switches Number of context switches per second

us User time Time spent in user mode

sy Kernel time Time spent in kernel mode

id Idle time Time spent idle

wa Waiting for I/O Time spent waiting for IO

st Stolen time Time stolen from a virtual machine

total Total disk reads or writes Total number of successful reads or writes

merged Grouped reads or writes Resulting in a single I/O operation

sectors Sectors read or written Number of sectors read or written to
successfully

ms Milliseconds spent Reading or writing

cur I/O in progress Number of I/O operations currently in
progress

s Seconds for I/O Seconds spent in I/O

The mpstat command reports processor-related statistics and reports activities of each
available processor and global averages. Input parameters to the command include the time inter-
val to report for.

In Linux, the /proc file system stores a large amount of constantly updated information
about the current state of the system.

IBM Tivoli Monitoring (ITM) provides detailed operating system monitoring. It is dis-
cussed in the upcoming section “Comprehensive Monitoring Solutions.”

Nagios is an open source monitoring platform that enables you to monitor systems
remotely for availability, CPU load, memory, disk use, users logged in, and processes. It includes
a core, plug-ins, and additional front ends. To install it, download the tarballs from the Nagios
web site and follow the installation instructions. The installation includes setting up a user to run
Nagios and running Make scripts.

Munin is a performance-monitoring tool. It provides detailed graphs of system perfor-
mance over a web user interface. To install Munin, download the tarball and run the Make scripts. 

322 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

Network Monitoring
The Linux netstat command prints network configuration, connection activity, and usage statis-
tics. With no arguments, netstat gives a list of active connections. Example partial output is
shown here:

# netstat

Active Internet connections (w/o servers)

Proto Recv-Q Send-Q Local Address        Foreign Address  State

tcp        0      0 localhost:ldap       localhost:50640  ESTABLISHED

tcp        0      0 vhost0308:corbaloc   www-900:24407    ESTABLISHED

tcp        0      0 vhost0308:9403       www-900:61028    ESTABLISHED

tcp        0      0 localhost:50640      localhost:ldap   ESTABLISHED

tcp        1      0 localhost6:54535     localhost6:46931 CLOSE_WAIT 

...

We have deleted the last parts of the fully qualified domain names to make the output more
readable. Recv-Q is the number of bytes not copied by the program using the socket. Send-Q is
the number of bytes not acknowledged by the receiving host. The state field can be useful to iden-
tify connections in a bad state. Although not shown, the program using the socket can also be
listed.

So far, we have discussed tools useful for monitoring server performance. Viewing the net-
work performance as experienced by your users of your web site is essential. The Firefox Firebug
plug-in can display page-loading times, as shown in Figure 8.12.

Monitoring and Metering 323

Figure 8.12 Page element loading times in Firebug

Application Monitoring
Application monitoring and application performance analysis are closely related areas. They
overlap but differ in several respects:

• Monitoring is primarily the responsibility of an operations team; performance analysis
is primarily the responsibility of a development team.



ptg8286219

• Monitoring needs to identify points when problems occur; analysis needs to identify
bottlenecks in the application structure.

• Performance analysis includes profiling, which requires deep insight into the structure
of an application.

However, monitoring and analysis can overlap for these reasons:

• The results of monitoring need to be actionable. Developers with limited control over a
production system might not have the capability to reproduce problems after they occur
or to do a deep analysis on a production system. The very tools that enable profiling can
have a large impact on the performance of the system.

• Analysis tools can be capable of capturing output over time that can be used as input
into monitoring applications.

Logging is a fundamental tool for application monitoring and maintenance. In the Java
world, the two most popular logging frameworks are the Java Logging API and Apache Log4j. In
fact, Log4j can be a Java Logging provider. An example of the use of the Java Logging API is
shown here for a program that connects to the IBM SmartCloud asset repository:

package com.ibm.cloud.example.ram;

import java.util.logging.Level;

import java.util.logging.Logger;

import com.ibm.ram.client.RAMSession;

public class RAMClient {

private static final String USER = “a@b.com”;

private static final String PASSWORD = “****”;

private static final String URL = “https://www-
147.ibm.com/cloud/enterprise/ram.ws”;

private RAMSession session;

private static Logger logger =
Logger.getLogger(“com.ibm.cloud.example.ram”);

public void connect() {

logger.fine(“Creating a connection”);

try {

session = new RAMSession(URL, USER, PASSWORD);

} catch(Exception e) {

logger.log(Level.SEVERE, “Error connecting”, e);

}

logger.log(Level.INFO, “session = “ + session);

}

324 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

public static void main(String[] args) {

RAMClient client = new RAMClient();

client.connect();

}

}

The program creates a logger object as a private field with the name com.ibm.cloud.
example.ram. In the connect method, you log three statements. The first is a debug statement
that tells you that you are creating a connection. The second statement is a severe error message 
that you encountered an exception when attempting to connect to the asset catalog. The third
statement is an informational statement that prints the value of the session field. Initially, you can
use these statements for debugging. Later, during the development and test phases of the project,
you retain only the informational messages. You want to capture these log statements in a file so
that your test and operations teams can send them to you for analysis. To do that, you use the con-
figuration file myLogging.properties, shown here:

handlers=java.util.logging.FileHandler

java.util.logging.FileHandler.formatter=java.util.logging.SimpleFormat
ter

java.util.logging.FileHandler.count=10

java.util.logging.FileHandler.pattern=myApplication%g.log

com.ibm.cloud.example.ram.level=FINEST

The handlers property is set to FileHandler so that the log output will be written to a log
file. A SimpleFormatter is used to give human-readable output. The java.util.logging.File-
Handler.count property keeps ten rolling log files. The pattern property specifies the file names
to be used. During the debug phase, you presumably set the log level to FINEST. Later, in opera-
tions, you will set it to SEVERE log–only errors. The possible log levels are SEVERE, WARNING,
INFO, CONFIG, FINE, FINER, and FINEST. To invoke the program with this log configuration file,
use the Java system property, invoking the program as shown here:

java com.ibm.cloud.example.ram.RAMClient -
Djava.util.logging.config.file=bin/myLogging.properties

You add the configuration file under the bin directory. Example output to the log file is
shown next:

2011-7-21 17:20:59 com.ibm.cloud.example.ram.RAMClient connect

FINE: Creating a connection

2011-7-21 17:21:00 com.ibm.cloud.example.ram.RAMClient connect

INFO: session = com.ibm.ram.client.RAMSession@69846984

The log shows such useful fields as the time stamp, class name, log level, and message. You
can configure these fields as well, if needed.

To make use of logs in a monitoring context, you can write log-monitoring agents. These
agents parse logs in real time (that is, they tail the logs) and look for clues of problems, such as

Monitoring and Metering 325



ptg8286219

Exception messages. For example, in tailing the previous log, you could look for lines starting
with the string SEVERE. If we encounter such an error, you could create a support ticket and send
an email.

The Java Standard Edition platform includes monitoring and management capabilities via
the java.lang.management package APIs and the Java Management eXtension (JMX). Several
open source and commercial tools build on these platforms. 

WebSphere Application Server has built-in monitoring capabilities. These are available
under the Monitoring and Tuning, Performance Monitoring Infrastructure menu on the adminis-
trative menu. To begin doing this, enable the Performance Monitoring Infrastructure, shown in
Figure 8.13.

326 Chapter 8 Performance, Availability, Monitoring, and Metering

Figure 8.13 Enabling Performance Monitoring Infrastructure in the WAS administrative console



ptg8286219

When Performance Monitoring Infrastructure is enabled, you can collect metrics and view
performance summary statistics and graphs.

IBM Tivoli Composite Application Manager (ITCAM) is a component of ITM for moni-
toring composite applications, including J2EE, SAP, and other enterprise platforms. It is an end-
to-end transaction management monitoring solution that simulates end user behavior. The
Response Time Tracking component monitors the response time from web applications. ITCAM
also integrates with Rational Performance Tester to record and playback scripts.

Comprehensive Monitoring Solutions
By “comprehensive monitoring solution,” we mean a solution that can monitor different aspects
of performance and availability, set up alerts and notifications, cover many systems and many dif-
ferent types of systems, and use a central dashboard to view the overall status. ITM Tivoli Moni-
toring (ITM) is a monitoring solution that includes these capabilities and is available in the IBM
SmartCloud Enterprise image catalog. It consists of several components:

• The central portal Tivoli Enterprise Portal (TEP), with dashboard, endpoint configura-
tion, summary views, and alert configuration

• Endpoint connectors, both agent based and agentless

• Tivoli Data Warehouse, for collection of data and reporting

• Agent Builder

Figure 8.14 shows the Tivoli Enterprise Portal.

Monitoring and Metering 327

Figure 8.14 Tivoli Enterprise Portal



ptg8286219

Figure 8.14 shows an agentless Linux endpoint. TEP connects to the Linux system using
SNMP to retrieve monitoring data.

The difference between an agent-based and an agentless adapter is that some resources sup-
port remote monitoring APIs, which allows the use of agentless endpoint interfaces. In general,
an agentless adapter is more convenient to manage because no software must be installed on the
remote systems. However, this is not always possible. Agent-based adapters can be installed on
the monitored systems, allowing the collection of more detailed information that is perhaps not
available remotely. In addition, agent-based adapters can operate either with the central monitor-
ing server or autonomously.

Custom agents, such as those that listen to logs, can be built using a wizard with the ITM
Agent Builder.

IBM Systems Director™ is an availability-monitoring and management product. Systems
Director can do the following:

• Automate startup of single system and composite systems

• Simplify and identify a single point for the management of many servers, both physical
and virtual

• Help understand and manage the health of related systems

Systems Director also integrates with ITM.

Business Scenario: IoT Data Performance, Availability,
Monitoring, and Metering Plan
IoT Data is a storage-centric application. Its main concern in performance and scalability is being
able to scale to large amounts of devices, files, and total data. The plan to test this is to run a series
of scale and performance tests for a period of two to three weeks before going live. IoT Data will
start up a large number of virtual machines and storage volumes. It will use the SmartCloud
Enterprise REST APIs to create the storage volumes and virtual machines to support this. In addi-
tion, custom scripts will be created to generate a large number of files, to stress the storage-man-
agement system.

The capability to handle a large user base with acceptable response times is also a concern.
The performance test team will test with user populations of 100, 200, 400, 800, 1,600, and so on
to ensure that the performance scales linearly and to predict the capital expenses to support the
IoT business model.

328 Chapter 8 Performance, Availability, Monitoring, and Metering



ptg8286219

Table 8.6 IoT Data System Inventory

System No. of CPU Cores Data Center Software

ihs1 2 1 IBM HTTP Server

ihs1 2 1 IBM HTTP Server

was1 4 1 WebSphere Application Server

was1 4 1 WebSphere Application Server

db21 8 1 DB2, Tivoli Directory Server

db22 4 2 DB2, Tivoli Directory Server

hdfs1, hdfs2, etc 4 1, 2 Hadoop, storage volumes attached

tsom 4 1 Tivoli Security Operations Manager

itm 4 1 IBM Tivoli Monitoring

Two data centers are used, Data Center 1 and Data Center 2. For performance, some sys-
tems are clustered; for high availability, critical systems are replicated at different data centers.
For the noncritical systems, virtual machine images at Data Center 2 are ready for a cold start.
The IHS servers are clustered using DNS spraying. The WebSphere servers are clustered, and
load balancing is done with the  proxy. High availability is ensured for data using the DB2 HADR
replication system, which replicates data every two hours. The actual customer data is stored in
Hadoop cluster with the Hadoop Distributed File System (HDFS). TSOM is used to check secu-
rity events in the system logs, web servers, directory server, and database. ITM is used to monitor
performance and availability. If a system becomes unavailable, an alert will be sent to a system
administrator. Application-level monitoring is done by a custom agent that monitors the applica-
tion logs on the WebSphere servers.

IoT Data provides a data-centric service. It is natural to charge customers by the amount of
data used—say, based on gigabytes per month. We can measure the amount of data used with an
operating system–level monitoring agent. We need one that can log usage data to a central data-
base. We will keep track of the customer associated with each file by keeping a record of the cus-
tomer-to-file name mapping when customers upload files. Every month, before we send
customers a bill, we will run a job that transforms the data into metering data that our billing sys-
tem can use. We will write this as a stand-alone Java program that is invoked by calendar date and
time using the Java scheduling service.

Business Scenario: IoT Data Performance, Availability, Monitoring, and Metering Plan 329



ptg8286219

This page intentionally left blank 



ptg8286219

331

C H A P T E R 9

Operations and
Maintenance on the
Cloud

We have discussed the various aspects of putting together a cloud application and now can dis-
cuss how to manage an application as part of a business. Not only do you want to run on the
cloud for small systems, but you also want to be able to scale up to large systems with a minimum
of system administration. That means you need to think about automating everything you do. You
can automate some activities through image customization. For example, you can set up the right
firewall rules before the image is saved so that you do not have to repeat it with every server you
add. However, some activities, such as requesting and installing certificates for HTTPS, have to
be done after image customization. This chapter also addresses maintenance of cloud applica-
tions. You might have offloaded a lot of system administration to the cloud provider, but now you
have become more dependent on the cloud. One of the characteristics of current clouds is that
they are rapidly evolving. What if they change something that affects you? How can you future-
proof yourself and your enterprise against changes?

Business Support Systems
The business support systems (BSS) include customer management, subscriber management,
metering, billing, cost management, and other back-office business processes. To scale your busi-
ness, you need to automate as much of this as possible. You saw some of the use cases for BSS in
the section describing the Distributed Management Task Force Open Cloud Standards Incubator
work in Chapter 1, “Infrastructure as a Service Cloud Concepts.” Here is a consolidated list:

• Opening a customer account. The consumer of the service opens an account with the
service provider, including agreeing to terms and conditions.

• Closing a customer account. The consumer closes the customer account with the service
provider.



ptg8286219

• Terminating a customer account. The service provider terminates the customer account.

• Updating a service contract. The customer adds new offerings to the service agreement,
upgrades, or agrees to modified service.

• Adding a new offering. The service provider adds a new offering to the service catalog.
This includes setting the price for the offering and the unit of measure for the offering.
For example, will the offering be charged per hour, per month, per user, per transaction,
or with a one-time charge?

• Retiring an offering. The service provider removes a service. It may be that customers
already using the service can continue to use it for a period of time, but no new cus-
tomers can register for the service.

• Creating a user account. The service provider or customer administrator adds a user
account.

• Modifying a user account. The service provider or customer administrator adds a user
account.

• Deleting a user account. The service provider or customer administrator adds a user
account.

• Billing a customer. The service provider bills the customer. Either a credit card is billed
or an invoice is sent. Usually, this is done on a regular basis for a fixed billing period,
such as at the end of each month. A whole set of activities enable this.

• Customer viewing a billing statement. Customers should be able to see what they are
paying for.

• Customer viewing a usage report. Customers should be able to check the usage for the
past billing period.

• Modifying a customer charge. A charge may be deducted because of an inability to pro-
vide the service, or a special service might be provided to a customer.

You might consider other use cases for marketing or other business reasons, such as free tri-
als, performance of a premium service, and so on.

Developing software for all of these use cases would be a lot of work. Depending on the
sophistication of your service, you might or might not need all these use cases. When managing
customer accounts, you might need your own customer database, and you might also need to
interact with other systems, such as customer relationship management systems. One option is to
manage customers and other business services with online systems such as Salesforce.com.
Salesforce has application programming interfaces that can automate manual work and a user
interface to monitor customer management and other business activities. 

You can consider several options for billing models:

• Develop an image and charge via the cloud provider. In this model, you use the cloud
provider’s BSS, which then sends you payments. You need to be able to register your

332 Chapter 9 Operations and Maintenance on the Cloud

Salesforce.com


ptg8286219

customers with the cloud provider and adopt the cloud provider’s metering and billing
model. For the IBM SmartCloud Enterprise, this might work well if your service can be
packaged into an image. In this case, you use IBM’s BSS and have no need to write your
own. If you can fit your service into an image, this solution has the lowest up-front
development cost.

• Use a monthly subscription. This is perhaps the simplest billing model, but your chal-
lenge is to provide the different BSS functions to support it yourself. Metering is not
necessary because it does not depend on actual usage. However, it might not be appro-
priate in scenarios where customer usage determines your own cost of operations.

• Base billing on user seats. This model is only slightly more complex than a monthly
subscription and accounts for differences between large and small customers, based on
the number of users allowed to use the service. It is appropriate for services in which
your cost is largely determined by the number of users supported.

• Base billing on usage. In this model, you need to track customer usage and bill each cus-
tomer accordingly. This is often the most reasonable from a customer’s point of view.
However, a considerable amount of development work is needed to support this. 

You can do billing with payment gateways that financial institutions provide, such as Pay-
Pal. Again, PayPal has application programming interfaces to eliminate manual work.

When integrating with external systems, you can build out cloud applications to call out to
them, or you can write an interface and have those systems call into you. The latter is somewhat
more convenient for evolving over time. You can build a standard interface beginning with minimal
information for the initial beta program and free trials, and build up to integration with one or more
commercial systems to process transactions from paying customers. You can use simple systems
such as Salesforce and provide a standard interface for integration with more complex systems. This
is preferable to baking all the business logic into your infrastructure application yourself. As time
goes on, you might not find it convenient to drag out your application code and add yet another
piece of business logic.

Maintaining Compatibility with Future Versions 
of Software
After releasing and supporting a cloud service in production for some time, you will find that the
cloud and some of the components that you depend on will have changed. You are somewhat
more at risk in this respect, compared with traditional IT deployments, because you have given
some control of your environment to the cloud. The goal of this section is to help you write robust
client code that can stand up against changes in the cloud environment and APIs.

Maintaining Compatibility with Future Versions of Software 333



ptg8286219

An Evolving API
An important goal in providing an API is that it be stable over a long period. Incremental changes
in minor releases must be compatible. In some cases, major releases of an API are added that
result in a major revision of the API. At that point, two API versions should be supported. 

A key question for cloud providers is, how many versions of the API should be maintained
and how should versions be designated? Cloud computing is evolving rapidly, driving frequent
changes and additions to APIs. One strategy is to update the base URL for the API version. How-
ever, with the API being updated every two to three months, changing the base URL would result
in too many versions being concurrently supported and would cause user confusion. The strategy
adopted by IBM SmartCloud is to keep the base URL fixed and make minor updates to the API
strictly compatible. Changing the base URL would also likely disrupt many API users.

Another risk is that every time an API is changed, something might accidentally break
either because of a bug or because a client wrote code in a very brittle way, such as not handling
white space properly. To mitigate against this possibility, client code should be written defen-
sively and without dependencies on response formatting, such as white space and labels. In addi-
tion, cloud-maintenance notices should be monitored and the availability of the cloud application
checked after maintenance windows.

Java
Java does not have explicit versioning built into the platform. This has led to initiatives such as
Open Service Gateway (OSGi), which models a versioning and component system with depend-
encies. A simple way to indicate dependencies can be maintained in Java libraries using the JAR
manifest file. An example from the IBM SmartCloud is shown here:

Manifest-Version: 1.0

Archiver-Version: Plexus Archiver

Created-By: Apache Maven

Built-By: root

Build-Jdk: 1.6.0

API-Version: 1.4

Build-ID: CC20110325-0523

The manifest file indicates that the version is 1.4.
Compatibility of changes to a Java APIs is relatively easy to define due to the type-checked

nature and solid design of the language. The prime directive should be this: Do not break clients
written in conformance to APIs. Moving down a level, several types of compatibility are 
important:

• Contract compatibility ensures that method signatures are compatible.

• Binary compatibility means that the methods will be loaded without linkage errors.

• Semantic compatibility means that the meaning of the API does not change.

334 Chapter 9 Operations and Maintenance on the Cloud



ptg8286219

• Runtime compatibility means that the API will continue to run with an old client. Even
though the previous three types of compatibility might be achieved, the API might fail
with an old client if it was not implemented in a robust way.

Several implications and rules flow directly from the need to be binary compatible:

• New objects and methods may be added.

• No parameters may be added or removed from methods. If you find that you need to do
this, add a new method instead.

• Checked exceptions may not be added to or deleted from a method signature.

• Unchecked exceptions may be added to or deleted from a method signature, but they
should be semantically compatible.

• Return types must be the same.

• New fields, methods, or constructors added to an existing class.

• New fields, methods, or constructors may be added to an existing interface, provided
that the interface is not expected to be implemented by the client.

• The last parameter T of a method signature may be changed to variable arity T….
However, this should be avoided because the meaning might be unclear.

• Semantics of APIs (as well as syntax) must remain the same.

Some rules also apply to semantics:

• Don’t strengthen preconditions (for example, forbidding null for input parameters).

• Don’t weaken post conditions (for example, allowing null as a return parameter).

Some rules can be used by API implementers to help consumers of those APIs, including
using the @since Javadoc tag to indicate the version in which methods and classes were added
(for example, @since 1.2). 

REST
At the time of writing, no standards exist for REST API versioning. However, debate on this sub-
ject abounds in Internet forums and blogs. Consider several rules for compatibility:

• The order of parameters does not matter in HTTP requests.

• The order of elements matters in JavaScript arrays (confusing because, in JavaScript, an
array is a hashtable).

• Parameters can be added to future versions of REST methods and returned JSON arrays.

• Parameters will not be removed from future versions of REST methods and return
JSON arrays.

• New methods may be added with new URLs.

Maintaining Compatibility with Future Versions of Software 335



ptg8286219

• The base URL will not change.

• Parameters may be added to methods provided they are optional.

Guidance to consumers is that they should not rely on white space or string indexes in pars-
ing results of REST calls.

Several suggestions for REST APIs have arisen to indicate versioning of the API and even
to allow content negotiation. One of these is media type. Generally two lines of thought arise
regarding use of media types in REST APIs:

• Standard media types should be used. 

• Custom media types should be used to create a strict API contract.

Roy Fielding’s thesis proposes that standard media types be used. A custom media type
would be something like application/i.did.it.myway+xml. One argument for standard types
is that they aid in the use of tools. An opposing argument for custom types is that they avoid the
need for out-of-band knowledge about the content of the return data. The risk exists that certain
firewall rules might not like customer media types. Many enterprise firewalls are set up to strip
out Java applets and certain other media types.

XML
XML is a strongly typed language if an XML Schema is used, and many of the same rules that
apply to Java also apply to XML. Consider some rules for backward compatibility for XML doc-
uments returned from REST APIs by a service provider:

• New elements may be introduced.

• New attributes may be added.

• The order of elements within other elements matters.

• The order of attributes does not matter.

• No elements or attributes should be deleted.

Some of these rules are different for the body of a REST request made to a cloud service:

• Optional new elements may be introduced.

• Optional new attributes may be added.

• The order of elements within other elements matters.

• The order of attributes does not matter.

JSON
Many REST APIs, such as the IBM SmartCloud Enterprise API, allow either XML or JSON to
be used. XML and JSON have different levels of type checking, with JSON having no type
checking. However, a similar set of rules to maintain backward compatibility is suggested.

336 Chapter 9 Operations and Maintenance on the Cloud



ptg8286219

Command Line
No standard relates to compatibility of command-line clients. However, some commonsense
requirements apply:

• Order of parameters does not matter.

• Parameters should not be deleted in future versions.

• New parameters may be added in new versions.

• Parameters may be added to methods, provided they are optional.

Data
Data in cloud services can be thought of as part of a compatibility contract. Consider a light-
weight application that launches a virtual machine instance with a particular compute size. The
compute size typically has an identifier specific to its combination of CPU count, memory, and
disk size. Now, if the cloud provider changed that identifier, the program would break. In this
case, we conclude that the compute size identifier is part of the API contract. However, now con-
sider a virtual machine image for a beta software product. Several months after the beta finishes,
the image provider wants to withdraw the image from the catalog. In this case, we conclude 
that the image ID should not be part of the API contract. 

We expect some data items to be part of an API contract:

• Compute size identifiers

• Identifiers for IP address offerings, storage volume offerings, and related resource offer-
ings

• Data center identifiers

On the other hand, we expect other data items to not be part of an API contract:

• Image identifiers

• Text for labels, names, and descriptions

Business Scenario: IoT Data Operations and 
Maintenance Plan
IoT Data will use a third-party SaaS service for billing. It will collect metering data from moni-
toring agents, as discussed in the last chapter, and combine that with price data using SQL state-
ments to generate billing data, which is then exported to the third-party billing service. The
billing service will send an invoice the customers, settle the payments, and send the revenue to
IoT Data’s bank account. The goal in developing this solution is to eliminate manual work and
minimize custom code.

Business Scenario: IoT Data Operations and Maintenance Plan 337



ptg8286219

The solution consists of shell scripts that execute commands over SSH and are driven by
cron jobs. This sequence takes place:

1. On the last day of every month, the billing export cron job is triggered.

2. The job calls a script that logs on to the database system using SSH. 

3. The script then executes a DB2 stored procedure to combine the metering and price data
to populate the billing table.

4. The script exports the billing data from the database.

5. The exported file is copied with SCP to a secure location for safekeeping.

6. The third-party billing REST service is invoked with cURL commands, sending a POST
request with the billing data.

7. The result is written to an audit trail.

338 Chapter 9 Operations and Maintenance on the Cloud



ptg8286219

339

Further Reading

IBM SmartCloud Enterprise
For IBM Cloud API references for the Smart Business IBM SmartCloud Enterprise, see the
REST and command line reference manuals and the Javadoc available at www.ibm.com/
cloud/enterprise. You need a user account to access these. The IBM DeverloperWorks article
“Get Started with the IBM Smart Business Development and Test on the IBM Cloud” [Rekesh, et
al., 2010] is an excellent guide in getting started guide and offers great tips on tools for working
on the cloud. The developerWorks® article “Convert IBM Cloud Image Parameters into Java
Using JAXB” [Vernier, 2011] contains a useful description of parsing the parameters.xml file.
The documents “Creating and Customizing Images” [Goodman, 2009] and External Image
Provider’s Guide [IBM, 2011] provide descriptions of customizing images with integration with
parameters. The article “IBM SmartCloud Enterprise Tip: Deploy a Complex Topology”
[Vernier, 2011] describes deploying and managing systems with multiple virtual machines.

Cloud Background and Architecture
For more on cloud architecture and background behind the use of clouds, see “Cloud Computing
Reference Architecture” [IBM, 2011] and the DMTF white papers “Interoperable Clouds”
[DMTF, 2009], “Use Cases and Interactions for Managing Clouds” [DMTF, 2010], and “Archi-
tecture for Managing Clouds” [DMTF 2010]. The paper “Cloud Computing Synopsis and Rec-
ommendations: Recommendations of the National Institute of Standards and Technology”
[Badger, 2011] describes the different roles, responsibilities, service level agreements, and risks
for subscribers of different cloud models. For more on cloud workloads, see the paper “MAD-
MAC: Multiple Attribute Decision Methodology for Adoption of Clouds” [Saripalli and Pingali,

www.ibm.com/cloud/enterprise
www.ibm.com/cloud/enterprise


ptg8286219

2011]. The paper “Introduction and Architecture Overview: IBM Cloud Computing Reference
Architecture 2.0” [Behrendt, et al., 2011] gives an overview of IBM’s perspective of cloud com-
puting.

Virtualization
For more on virtualization concepts, see the article “Virtual Linux: An Overview of Virtualiza-
tion Methods, Architectures, and Implementations” [Jones, 2006] and the book Running Xen: A
Hands-on Guide to the Art of Virtualization [Matthews, et al., 2008]. The IBM Information Cen-
ter for Linux, the KVM and QEMU wikis, and the VMWare Technical Resource Center
[VMWare, 2011] are good references on virtualization in general, as well as the individual prod-
ucts and projects in specific. 

For more on KVM, see the article “Discover the Linux Kernel Virtual Machine” [Jones,
2007]. The article “kvm: The Linux Virtual Machine Monitor” [Kivity, et al., 2007] goes into
more depth on the virtualization methods that KVM uses. Also see the Open Virtualization
Alliance web site, which promotes use of KVM. 

For more on the Open Virtualization Format, see the Distributed Management Task Force
Open Virtualization Format home page [DMTF, 2011] for links to the latest standards and white
papers. Snapshots and other QCOW image file features are discussed in “The QCOW2 Image
Format” [McLoughlin, 2008].

For more on libvirt, see libvirt.org and the article “Anatomy of the libvirt Virtualization
Library” [Jones, 2010].

REST and Related Programming APIs
For more on REST development with Java, see the book RESTful Java with JAX-RS [Burke,
2009]. See the article “Java Architecture for XML Binding (JAXB)” [Ort and Mehta, 2003] for
details about JAXB. See the Apache Wink User Guide [Apache Wink Team, 2011] for a step-by-
step guide to programming with JAX_RS using Apache Wink. See the Haxx web site to down-
load cURL and for detailed information on using it. Also see related information on the use of
cURL in PHP in the PHP manual and on the Zend web site.

For more on JavaScript, especially basic JavaScript functions and HTML DOM, see the
Mozilla Developer Network. The Geko DOM Reference is especially valuable. Also see the Pro-
totype JavaScript framework and the Dojo Toolkit open source projects. The page “Introduction
to Ajax” describes AJAX principles and how to use the Prototype framework to execute AJAX
calls.

Operating Systems
For more on Linux features discussed in this book, see the IBM Information Center for Linux
[IBM, 2011], the Fedora Wiki [Red Hat, 2011], Red Hat product documentation [Red Hat, 2011],

340 Further Reading



ptg8286219

and the openSUSE project [Novell, 2011]. For more on UNIX, see the “FreeBSD Books and
Articles Online” web page. For more on software installation and management on SUSE, see the
article “Package Management with Zypper” [Frazier, 2009]. For more on interoperability
between Linux and Windows, see the Cygwin web site.

Middleware and Development Tools
For more on the IBM software discussed in this book, refer to the IBM DB2 9.7 Database for
Linux, UNIX, and Windows Information Center and the WebSphere Application Server Version
7.0 Information Center. For the new features in WebSphere Application Server 7.0, see the arti-
cles “System Administration for WebSphere Application Server V7: Part 1: An Overview of
Administrative Enhancements” [Apte and Chiu, 2008] and “System Administration for Web-
Sphere Application Server V7: Part 2: New Administrative Topologies [Brady, et al., 2009]. For
an overview of using relational databases in a cloud environment, see the article “Database in the
Cloud” [Zhang, 2011].

For more on build and deployment automation, see the Apache Maven web site. For more
on deployment topologies, see Rational Software Architect 8.0 Help [IBM, 2011] and the article
“Create a Deployment Topology Diagram in IBM Rational Software Architect” [Bell, 2009].

For more on basic email configuration, see the article “sendmail: Introduction and Config-
uration” [Seneca, 2001].

Software Installation, Management, and Deployment
Automation
For more on OSGi, see the OSGi Alliance web site. For more on the use of OSGi in Eclipse, see
the Eclipse Equinox web site and the article “Understanding How Eclipse Plug-ins Work with
OSGi” [Delap, 2006]. The article “Hello, OSGi, Part 1: Bundles for Beginners” [Patil, 2008]
gives an example of creating a simple OSGi plug-in. The article “Explore Eclipse’s OSGi Con-
sole” [Aniszczyk, 2007] explains the use of the OSGi console in Eclipse.

For more on topology modeling, see the articles “Anatomy of a Topology Model in Ratio-
nal Software Architect Version 7.5: Part 1: Deployment Modeling” [Makin, 2008] and “Extend-
ing the Topology Editor with Custom Technology Domains” [Zwanziger, et al., 2010]. For more
on automation, see the article “IBM Image Construction and Composition Tool” [Kalantar, et al.,
2010].

Remote Displays and Desktops
For more information on remote displays and desktops, see the Xfree86 Resources page, the X
Org wiki, and the NoMachine, FreeNX Project, RealVNC, and Cygwin/X web sites.

Remote Displays and Desktops 341



ptg8286219

Security
For more on cloud security, see the white paper “Cloud Security Guidance: IBM Recommenda-
tions for the Implementation of Cloud Security” [Buecker, et al., 2009] and also the Cloud Secu-
rity Alliance web site. For more on Linux security, see the Security Guide for Red Hat Enterprise
Linux 4 [Red Hat, 2008]. For more on SELinux, see the Fedora 13 Security-Enhanced Linux
User Guide [McAllister, et al., 2010] and the SELinux project wiki [SELinux Project Team]. See
the Common Criteria Portal for more about Common Criteria.

For more on OAuth, see the OAuth 2.0 Authorization Protocol Draft RFC [Hammer-Lahav,
2011]. You can experiment with OAuth at the Google OAuth Playground. The “Google Internet
Identity Research” page has links to a number of Google and external projects, especially those
related to social networking. 

For more on LDAP, see the OpenLDAP Software 2.4 Administrator’s Guide [OpenLDAP
Project, 2011] and the Red Hat Enterprise Linux documentation. The Identity Commons web site
has links to various identity initiatives and workgrounds. 

Security of the web layer against cross-site scripting (CSS), SQL injection, and cross-site
request forgery (CSRF) is mostly in separate bodies of literature than in general security. For
more on CSRF, see the article “Robust Defenses for Cross-Site Request Forgery” [Bath, et al.,
2008].

For more on VPN concepts and methods, see the articles “Deliver Cloud Network Control
to the User” [Koop, 2010] and “Extend Your Corporate Network with the IBM Cloud” [Rokosz,
2011]. For more on VPN technologies and products, see the OpenVPN, CohesiveFT, and Red
Hat Enterprise Linux documentation web pages.

For more on SSH, see the OpenSSH documentation. For more on port forwarding and tun-
neling, see the articles “SSH Port Forwarding” [Hatch, 2011], “SSH Port Forwarding” [Frields,
2007], and “Tunneling with SSH” [Shewbert, 2006].

Monitoring, Performance, Availability, and Metering
For more on application performance testing and monitoring, see the papers “Load Testing Web
Applications Using IBM Rational Performance Tester: Part 1: Overview of Functions, Features,
and Reports” [Lee and Tham, 2007] and “Response Time Monitoring Using RPT and ITCAM:
Best Practices and Techniques” [Jordan and Vykunta, 2007]. For more on database performance
tuning, see the article “Tuning SQL with Optim Query Tuner, Part 1: Understanding Access
Paths” [Fuh, Ren, and Zeidenstein, 2011].

For availability, see the blog post, “The AWS Outage: The Cloud’s Shining Moment”
[Reese, 2011] and the article “High Availability Apps in the IBM Cloud” [Rekesh and Robertson,
2011]. For more on cloud storage and backup, see the materials on the SNIA site, especially the
presentations “Backup, Recovery, and Restore” [Baig, 2011] and “Introduction to Data Protec-
tion: Backup to Tape, Disk, and Beyond” [Fishman, 2011].

342 Further Reading



ptg8286219

For more on monitoring in the cloud with ITM, see the article “Monitor Services in the
Cloud” [Amies, Sanchez, Vernier, and Dong, 2011]. For more on Java monitoring, see the Java
SE Monitoring and Management Guide [Sun Microsystems, 2006] and the Java Management
Extensions (JMX) Technology Tutorial [Sun Microsystems, 2006].

For more on metering, see the article “Craft a Cloud Performance Metrics Policy” [Myer-
son, 2011].

Version Compatibility
For more on language compatibility in general and for XML, see the World Wide Web Consor-
tium Editorial Drafts Extending and Versioning Languages: Terminology [Orchard, 2007] and
Extending and Versioning Languages: XML Languages [Orchard, 2007], and the draft standard
Guide to Versioning XML Languages Using New XML Schema 1.1 Features [Orchard, 2007]. For
more on Java version compatibility, see Chapter 13 in Binary Compatibility of the Java Language
Specification [Sun Microsystems, 2005] and the Eclipse wiki page. See the Eclipse document
“Evolving Java-Based APIs” [Rivières, 2007] for more on Java API versioning. For more on the
debate about REST versioning, see the blog post “Media Types, Plumbing, and Democracy”
[Allamaraju, 2009].

Business Support Systems
For more on metering and billing, see the article “Cloud Metering and Billing” [Meiers, 2011].

Business Support Systems 343



ptg8286219

This page intentionally left blank 



ptg8286219

345

References

Allamaraju, S., 2009. “Media Types, Plumbing and Democracy,” at www.subbu.org/blog/
2009/12/media-types-and-plumbing.

Amies, A., J. Sanchez, D. Vernier, and X. D. Dong. February 16, 2011. “Monitor Services 
in the Cloud,” IBM developerWorks, at www.ibm.com/developerworks/cloud/library/
cl-monitorcloudservices/.

Aniszczyk, C., 2007. “Explore Eclipse’s OSGi Console: Use and Extend the Console That
Drives Eclipse,” IBM developerWorks, at www.ibm.com/developerworks/opensource/
library/os-ecl-osgiconsole/.

Apache Foundation, 2010. Apache OpenJPA 2.1 User’s Guide, at http://openjpa.apache.org/
builds/latest/docs/manual/manual.html.

Apache Foundation, 2010. FileUpload project, at http://commons.apache.org/fileupload/.

Apache Hadoop Team. Hadoop web site, at http://hadoop.apache.org/.

Apache Maven Team, 2011. Maven web site, at http://maven.apache.org/.

Apache Wink Team, 2011. Apache Wink User Guide, at http://incubator.apache.org/wink/1.1.2/
Apache_Wink_User_Guide.pdf.

Apte, A., and B. Chiu, 2008. “System Administration for WebSphere Application Server V7:
Part 1: An Overview of Administrative Enhancements,” IBM developerWorks, at
www.ibm.com/developerworks/websphere/techjournal/0811_apte/0811_apte.html.

www.subbu.org/blog/2009/12/media-types-and-plumbing
www.subbu.org/blog/2009/12/media-types-and-plumbing
www.ibm.com/developerworks/cloud/library/cl-monitorcloudservices/
www.ibm.com/developerworks/cloud/library/cl-monitorcloudservices/
www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/
www.ibm.com/developerworks/opensource/library/os-ecl-osgiconsole/
http://openjpa.apache.org/builds/latest/docs/manual/manual.html
http://openjpa.apache.org/builds/latest/docs/manual/manual.html
http://commons.apache.org/fileupload/
http://hadoop.apache.org/
http://maven.apache.org/
http://incubator.apache.org/wink/1.1.2/Apache_Wink_User_Guide.pdf
http://incubator.apache.org/wink/1.1.2/Apache_Wink_User_Guide.pdf
www.ibm.com/developerworks/websphere/techjournal/0811_apte/0811_apte.html


ptg8286219

Badger, L., et al., 2011. “Cloud Computing Synopsis and Recommendations: Recommendations
of the National Institute of Standards and Technology,” draft, NIST, at http://csrc.nist.gov/
publications/drafts/800-146/Draft-NIST-SP800-146.pdf.

Baig, A., 2011. “Backup, Recovery, and Restore,” Storage Networking Information Association,
at www.snia.org/education/tutorials/2011/spring.

Balfe, R., 2007. “Leave Eclipse Plug-in Headaches Behind with OSGi,” IBM developerWorks,
at www.ibm.com/developerworks/opensource/library/os-ecl-dynext/.

Bath, A., C. Jackson, and J. C. Mitchell, 2008. “Robust Defenses for Cross-Site Request
Forgery,” Association for Computing Machinery Conference on Computer and Communications
Security 2008, at http://seclab.stanford.edu/websec/csrf/csrf.pdf.

Behrendt, M., et al., 2011. “Introduction and Architecture Overview: IBM Cloud Computing
Reference Architecture 2.0,” IBM submission to the Open Group at www.opengroup.org/
cloudcomputing/.../CCRA.IBMSubmission.02282011.doc.

Bell, D., 2009. “Create a Deployment Topology Diagram in IBM Rational Software Architect,”
at www.ibm.com/developerworks/rational/library/09/creatingphysicaltopologydiagramrsa/.

Brady, J., et al., 2009. “System Administration for WebSphere Application Server V7: Part 2:
New Administrative Topologies,” IBM developerWorks, at www.ibm.com/developerworks/
websphere/techjournal/0901_cundiff/0901_cundiff.html.

Buecker, A., et al., 2009. “Cloud Security Guidance: IBM Recommendations for the
Implementation of Cloud Security,” IBM red paper, at www.redbooks.ibm.com/abstracts/
redp4614.html.

Burke, W. J., 2009. RESTful Java with JAX-RS. O’Reilly.

Cloud Security Alliance. http://cloudsecurityalliance.org.

CohesiveFT, 2011. VPN-Cubed 2.0 product page, at www.cohesiveft.com/vpncubed/.

Coleman, N., and M. Borret, 2010. “Cloud Security: Who Do You trust?” IBM white paper, at
www-03.ibm.com/security/cloud-security.html.

Common Criteria, 2011. “Common Criteria Portal,” at www.commoncriteriaportal.org/.

Criveti, M., 2011. “IBM SmartCloud Enterprise Tip: Configure the Linux Logical Volume
Manager,” IBM developerWorks, at www.ibm.com/developerworks/cloud/library/
cl-cloudtip-lvmconfig/.

Crockford, D. “JSON in Java,” at www.json.org/java/index.html.

Cygwin Project Team, 2011. Cygwin web site, at cygwin.com/index.html.

Cygwin Project Team, 2011. “Cygwin/X Documentation,” at http://xfree86.cygwin.com/docs/.

346 References

http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
http://csrc.nist.gov/publications/drafts/800-146/Draft-NIST-SP800-146.pdf
www.snia.org/education/tutorials/2011/spring
www.ibm.com/developerworks/opensource/library/os-ecl-dynext/
http://seclab.stanford.edu/websec/csrf/csrf.pdf
www.opengroup.org/cloudcomputing/.../CCRA.IBMSubmission.02282011.doc
www.opengroup.org/cloudcomputing/.../CCRA.IBMSubmission.02282011.doc
www.ibm.com/developerworks/rational/library/09/creatingphysicaltopologydiagramrsa/
www.ibm.com/developerworks/websphere/techjournal/0901_cundiff/0901_cundiff.html
www.ibm.com/developerworks/websphere/techjournal/0901_cundiff/0901_cundiff.html
www.redbooks.ibm.com/abstracts/redp4614.html
www.redbooks.ibm.com/abstracts/redp4614.html
http://cloudsecurityalliance.org
www-03.ibm.com/security/cloud-security.html
www.commoncriteriaportal.org/
www.ibm.com/developerworks/cloud/library/cl-cloudtip-lvmconfig/
www.ibm.com/developerworks/cloud/library/cl-cloudtip-lvmconfig/
www.json.org/java/index.html
http://xfree86.cygwin.com/docs/
www.cohesiveft.com/vpncubed/
cygwin.com/index.html


ptg8286219

Deering, S., and R. Hidden, 1998. “Request for Comments: 2460 Internet Protocol, Version 6
(Ipv6),” Internet Engineering Task Force (IETF), at http://tools.ietf.org/html/rfc2460.

Delap, S., 2006. “Understanding How Eclipse Plug-ins Work with OSGi,” IBM
developerWorks, at www.ibm.com/developerworks/opensource/library/os-ecl-osgi/.

Distributed Management Task Force, 2011. Open Virtualization Format home page, at
www.dmtf.org/standards/ovf.

Distributed Management Task Force, 2010. “Architecture for Managing Clouds,” a white paper
from the Open Cloud Standards Incubator, document number DSP-IS0102, DTMF, at
http//:dmtf.org/sites/default/files/standards/documents/DSP-IS0102_1.0.0.pdf.

Distributed Management Task Force, 2010. Open Virtualization Format Specification, version
1.1, at www.dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdf.

Distributed Management Task Force, 2010. “Use Cases and Interactions for Managing Clouds,”
a white paper from the Open Cloud Standards Incubator, document number DSP-IS0103, at
http://dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf.

Distributed Management Task Force, 2009. “Interoperable Clouds,” a white paper from the
Open Cloud Standards Incubator, document number IDSP-IS0101, DTMF, at
www.dmtf.org/sites/default/files/standards/documents/DSP-IS0101_1.0.0.pdf.

Distributed Management Task Force, 2009. “Open Virtualization Format,” white paper, at
www.dmtf.org/sites/default/files/standards/documents/DSP2017_1.0.0.pdf.

Dojo Project Team. Dojo Toolkit, at http://dojotoolkit.org/.

Eclipse Foundation. J2EE Standard Tools Project web site, at www.eclipse.org/webtools/jst/
main.php.

Eclipse Foundation, 2011. Equinox web site, at www.eclipse.org/equinox/.

Eucalyptus Systems, Inc., 2011. Eucalyptus web site, at http://open.eucalyptus.com.

Facebook, 2011. “Authentication,” at http://developers.facebook.com/docs/authentication/.

Fielding R., J. Gettys, et al., 1999. “Hypertext Transfer Protocol—HTTP/1.1,” RFC 2616, The
Internet Society, at www.w3.org/Protocols/rfc2616/rfc2616.html.

Fielding, R., and R. Taylor, 2002. “Principled Design of the Modern Web Architecture,” ACM
Transactions on Internet Technology 2, no. 2 (May 2002), at www.ics.uci.edu/~taylor/
documents/2002-REST-TOIT.pdf.

Fishman, M., 2011. “Introduction to Data Protection: Backup to Tape, Disk, and Beyond,”
Storage Network Industry Association, at www.snia.org/education/tutorials/2011/spring.

References 347

http://tools.ietf.org/html/rfc2460
www.ibm.com/developerworks/opensource/library/os-ecl-osgi/
www.dmtf.org/standards/ovf
http://dmtf.org/sites/default/files/standards/documents/DSP-IS0102_1.0.0.pdf
www.dmtf.org/sites/default/files/standards/documents/DSP0243_1.1.0.pdf
http://dmtf.org/sites/default/files/standards/documents/DSP-IS0103_1.0.0.pdf
www.dmtf.org/sites/default/files/standards/documents/DSP-IS0101_1.0.0.pdf
www.dmtf.org/sites/default/files/standards/documents/DSP2017_1.0.0.pdf
http://dojotoolkit.org/
www.eclipse.org/webtools/jst/main.php
www.eclipse.org/webtools/jst/main.php
www.eclipse.org/equinox/
http://open.eucalyptus.com
http://developers.facebook.com/docs/authentication/
www.w3.org/Protocols/rfc2616/rfc2616.html
www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
www.ics.uci.edu/~taylor/documents/2002-REST-TOIT.pdf
www.snia.org/education/tutorials/2011/spring


ptg8286219

Franks, J., et al., 1999. “RFC 2617: HTTP Authentication: Basic and Digest Access
Authentication,” The Internet Society, at http://tools.ietf.org/html/rfc2617.

Frazier, M., 2009. “Package Management with Zypper,” Linux Journal, at www.linuxjournal.
com/content/package-management-zypper.

FreeBSD Project Team. “FreeBSD Books and Articles Online,” at www.freebsd.org/docs/
books.html.

FreeNX Project. FreeNX Project web site, at http://freenx.berlios.de/.

Frields, P., 2007. “SSH Port Forwarding,” Red Hat Magazine, at http://magazine.redhat.com/
2007/11/06/ssh-port-forwarding/.

Fuh, G., K. Ren, and K. Zeidenstein, 2011. “Tuning SQL with Optim Query Tuner, Part 1:
Understanding Access Paths,” IBM developerWorks, at www.ibm.com/developerworks/data/
library/techarticle/dm-1006optimquerytuner1/index.html.

Glassfish Community. JAXB Reference Implementation, Glassfish, at http://jaxb.java.net.

Goodman, B. D., 2009. “Creating and Customizing Images,” IBM, at https://www.ibm.
com/cloud/enterprise.

Google, 2011. “Authentication and Authorization for Google APIs,” at http://code.google.com/
apis/accounts/docs/GettingStarted.html.

Google, 2011. “google-gson,” at http://code.google.com/p/google-gson/.

Google. “Chrome Web Store,” at http://chrome.google.com/webstore.

Google. “Internet Identity Research Page,” at http://sites.google.com/site/oauthgoog/Home.

Google. “OAuth Playground,” at http://googlecodesamples.com/oauth_playground/index.php.

Hadley, M., and P. Sandoz, 2009. “JAX-RS: Java API for RESTful Web Services,” JSR 311,
Java Community Process, Oracle Corporation, at http://jcp.org/en/jsr/detail?id=311.

Hammer-Lahav, E., 2011. OAuth 2.0 Authorization Protocol, IETF Internet Draft, at
http://datatracker.ietf.org/doc/draft-ietf-oauth-v2.

Hammer-Lahav, E., 2010. “RFC 5847: The OAuth 1.0 Protocol,” at http://tools.ietf.org/
html/rfc5849.

Hammer-Lahav, E., 2010. “OAuth Google Code Project,” at http://code.google.com/p/oauth/.

Hammer-Lahav, E., 2009. “The Authoritative Guide to OAuth 1.0,” at http://hueniverse.com/
oauth/guide/.

Hatch, B., 2011. “SSH Port Forwarding,” Symantec, at www.symantec.com/connect/articles/
ssh-port-forwarding.

348 References

http://tools.ietf.org/html/rfc2617
www.linuxjournal.com/content/package-management-zypper
www.linuxjournal.com/content/package-management-zypper
www.freebsd.org/docs/books.html
www.freebsd.org/docs/books.html
http://freenx.berlios.de/
http://magazine.redhat.com/2007/11/06/ssh-port-forwarding/
http://magazine.redhat.com/2007/11/06/ssh-port-forwarding/
www.ibm.com/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
www.ibm.com/developerworks/data/library/techarticle/dm-1006optimquerytuner1/index.html
http://jaxb.java.net
https://www.ibm.com/cloud/enterprise
https://www.ibm.com/cloud/enterprise
http://code.google.com/apis/accounts/docs/GettingStarted.html
http://code.google.com/apis/accounts/docs/GettingStarted.html
http://code.google.com/p/google-gson/
http://chrome.google.com/webstore
http://sites.google.com/site/oauthgoog/Home
http://googlecodesamples.com/oauth_playground/index.php
http://jcp.org/en/jsr/detail?id=311
http://datatracker.ietf.org/doc/draft-ietf-oauth-v2
http://tools.ietf.org/html/rfc5849
http://tools.ietf.org/html/rfc5849
http://code.google.com/p/oauth/
http://hueniverse.com/oauth/guide/
http://hueniverse.com/oauth/guide/
www.symantec.com/connect/articles/ssh-port-forwarding
www.symantec.com/connect/articles/ssh-port-forwarding


ptg8286219

Haxx. cURL web site, at http://curl.haxx.se/. 

Hudacek, B., 2011. “Secure Multi-user Access to IBM Cloud Instances with VNC and 
SSH,” IBM developerWorks, at www.ibm.com/developerworks/cloud/library/
cl-cloudaccessvncssh/index.html.

IANA, 2001. “MIME Media Types,” at www.iana.org/assignments/media-types/index.html.

IBM, 2011. “Cloud Computing Reference Architecture,” The Open Group, at
www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.
doc.

IBM, 2011. External Image Provider’s Guide, at www.ibm.com/cloud/enterprise.

IBM, 2011. “IBM DB2 Database for Linux, UNIX, and Windows Information Center,” at
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp.

IBM, 2011. IBM SmartCloud Enterprise: REST API Reference, Version 1.4.1, at http://ibm.com/
cloud/enterprise.

IBM, 2011. IBM SmartCloud Enterprise: User Guide, Version 1.4.1, at http://ibm.com/cloud/
enterprise. 

IBM, 2011. “Information Center for Linux,” at http://publib.boulder.ibm.com/infocenter/
lnxinfo/v3r0m0/index.jsp.

IBM, 2011. “Open Services for Lifecycle Collaboration,” at http://open-services.net.

IBM, 2011. “Rational Software Architect 8.0 Help,” at http://publib.boulder.ibm.com/
infocenter/rsahelp/v8/index.jsp.

IBM, 2011. “Rational Team Concert Downloads,” at http://jazz.net/downloads/
rational-team-concert/.

IBM, 2011. “WebSphere Application Server Version 7.0 Information Center,” at
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp.

IBM, 2010. IBM IaaS Resource Model & REST APIs. Document version 1.0, submission to the
DMTF July 2, 2010.

IBM, 2010. IBM LotusLive: Partner Platform Guide.

IBM. “Linux Java Technology,” at www.ibm.com/developerworks/java/jdk/linux/.

Identity Commons, 2011. www.idcommons.net/.

Jersey Project Team. “Glassfish Jersey, JAX-RS Reference Implementation,” at
http://jersey.java.net/.

References 349

http://curl.haxx.se/
www.ibm.com/developerworks/cloud/library/cl-cloudaccessvncssh/index.html
www.ibm.com/developerworks/cloud/library/cl-cloudaccessvncssh/index.html
www.iana.org/assignments/media-types/index.html
www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
www.ibm.com/cloud/enterprise
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/index.jsp
http://ibm.com/cloud/enterprise
http://ibm.com/cloud/enterprise
http://ibm.com/cloud/enterprise
http://ibm.com/cloud/enterprise
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp
http://publib.boulder.ibm.com/infocenter/lnxinfo/v3r0m0/index.jsp
http://open-services.net
http://publib.boulder.ibm.com/infocenter/rsahelp/v8/index.jsp
http://publib.boulder.ibm.com/infocenter/rsahelp/v8/index.jsp
http://jazz.net/downloads/rational-team-concert/
http://jazz.net/downloads/rational-team-concert/
http://publib.boulder.ibm.com/infocenter/wasinfo/v7r0/index.jsp
www.ibm.com/developerworks/java/jdk/linux/
www.idcommons.net/
http://jersey.java.net/


ptg8286219

Jones, M. T., 2010. “Anatomy of the libvirt Virtualization Library,” IBM developerWorks, at
www.ibm.com/developerworks/linux/library/l-libvirt/.

Jones, M. T., 2007. “Discover the Linux Kernel Virtual Machine,” IBM developerWorks, at
www.ibm.com/developerworks/linux/library/l-linux-kvm/.

Jones, M. T., 2006. “Virtual Linux: An Overview of Virtualization Methods, Architectures, and
Implementations,” IBM developerWorks, at www.ibm.com/developerworks/library/l-linuxvirt/.

Jordan, L., and R. Vykunta, 2007. “Response Time Monitoring Using RPT and ITCAM: Best
Practices and Techniques,” IBM, at www-304.ibm.com/software/brandcatalog/ismlibrary/
details?catalog.label=1TW10CP19.

Kalantar, M., et al., 2010. “IBM Image Construction and Composition Tool,” IBM alphaWorks,
at www.alphaworks.ibm.com/tech/iicct.

Kivity, A., et al., 2007. “kvm: the Linux Virtual Machine Monitor,” Proceedings of the Linux
Symposium, at www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf.

Koop, R., 2010. “Deliver Cloud Network Control to the User,” IBM developerWorks, at
www.ibm.com/developerworks/cloud/library/cl-cloudvirtualnetwork/.

KVM Project Team. KVM web site, at www.linux-kvm.org.

Lee, F. Y., and A. Tham, 2007. “Load Testing Web Applications Using IBM Rational
Performance Tester: Part 1. Overview of Functions, Features, and Reports,” IBM
developerWorks, at www.ibm.com/developerworks/rational/library/07/1211_lee-tham1/
index.html.

Libvirt Project Team. Libvirt web site, at http://libvirt.org/index.html.

Makin, N., 2008. “Anatomy of a Topology Model in Rational Software Architect Version 7.5:
Part 1: Deployment Modeling.” IBM developerWorks, at www.ibm.com/developerworks/
rational/library/08/1202_makin/.

Matthews, J., et al, 2008. Running Xen: A Hands-on Guide to the Art of Virtualization, 
Prentice-Hall.

McAllister, M., et al., 2010. Fedora 13 Security-Enhanced Linux User Guide, Edition 1.5, Red
Hat, at http://docs.fedoraproject.org/en-US/Fedora/13/html/Security-Enhanced_Linux/.

McLoughlin, M., 2008. “The QCOW2 Image Format,” at http://people.gnome.org/
~markmc/qcow-image-format.html.

Meiers, J., 2011. “Cloud Metering and Billing,” IBM developerWorks, at
www.ibm.com/developerworks/cloud/library/cl-cloudmetering/index.html.

350 References

www.ibm.com/developerworks/linux/library/l-libvirt/
www.ibm.com/developerworks/linux/library/l-linux-kvm/
www.ibm.com/developerworks/library/l-linuxvirt/
www-304.ibm.com/software/brandcatalog/ismlibrary/details?catalog.label=1TW10CP19
www-304.ibm.com/software/brandcatalog/ismlibrary/details?catalog.label=1TW10CP19
www.alphaworks.ibm.com/tech/iicct
www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
www.ibm.com/developerworks/cloud/library/cl-cloudvirtualnetwork/
www.linux-kvm.org
www.ibm.com/developerworks/rational/library/07/1211_lee-tham1/index.html
www.ibm.com/developerworks/rational/library/07/1211_lee-tham1/index.html
http://libvirt.org/index.html
www.ibm.com/developerworks/rational/library/08/1202_makin/
www.ibm.com/developerworks/rational/library/08/1202_makin/
http://docs.fedoraproject.org/en-US/Fedora/13/html/Security-Enhanced_Linux/
http://people.gnome.org/~markmc/qcow-image-format.html
http://people.gnome.org/~markmc/qcow-image-format.html
www.ibm.com/developerworks/cloud/library/cl-cloudmetering/index.html


ptg8286219

Mell, P., and T. Grance, 2009. “The NIST Definition of Cloud Computing,” U.S. National
Institute of Standards and Technology, at http://csrc.nist.gov/groups/SNS/cloud-computing/
cloud-def-v15.doc.

Mozilla Foundation. Geko DOM Reference, at http://developer.mozilla.org/en/Gecko_
DOM_Reference.

Mozilla Foundation. JavaScript home page, at http://developer.mozilla.org/en/JavaScript.

Mozilla Foundation. “Mozilla Developer Network,” at http://developer.mozilla.org.

Mozilla Foundation. “Prism Wiki,” at http://wiki.mozilla.org/Prism.

Mozilla Foundation, 2010. “Same Origin Policy for JavaScript,” at http://developer.mozilla.org/
en/Same_origin_policy_for_JavaScript.

Munin, 2011. Munin Monitoring web site, at http://munin-monitoring.org/.

Myerson, J. M., 2011. “Craft a Cloud Performance Metrics Policy,” IBM developerWorks, at
www.ibm.com/developerworks/cloud/library/cl-cloudperformmetrics/index.html.

Nagios, 2011. Nagios web site, at http://nagios.org/.

National Institute of Standards and Technology. Cloud Computing home page, at
http://csrc.nist.gov/groups/SNS/cloud-computing/.

Nebel, E., and L. Masinter. 1995. Form-based File Upload in HTML, Internet Engineering Task
for RFC 1867, at www.ietf.org/rfc/rfc1867.txt.

NoMachine web site, at www.nomachine.com.

Novell, 2011. OpenSUSE Project, at http://en.opensuse.org.

Noyes, K., 2010. “Rackspace’s Risky Open Cloud Bet,” LinuxInsider, at www.linuxinsider.
com/story/70442.html.

OAuth Community. OAuth web site, at http://oauth.net.

Open Virtualization Alliance web site, at www.openvirtualizationalliance.org/.

Open Web Application Security Project. “Top Ten Risks,” at www.owasp.org/index.php/
Top_10_2010-A5.

OpenID Foundation. OpenID web site, at http://openid.net/.

OpenLDAP Project, 2011. OpenLDAP Software 2.4 Administrator’s Guide, at
www.openldap.org/doc/admin24/index.html.

OpenSSH Project Team, OpenSSH Documentation, at www.openssh.com/manual.html.

References 351

http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://csrc.nist.gov/groups/SNS/cloud-computing/cloud-def-v15.doc
http://developer.mozilla.org/en/Gecko_DOM_Reference
http://developer.mozilla.org/en/Gecko_DOM_Reference
http://developer.mozilla.org/en/JavaScript
http://developer.mozilla.org
http://wiki.mozilla.org/Prism
http://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
http://developer.mozilla.org/en/Same_origin_policy_for_JavaScript
http://munin-monitoring.org/
www.ibm.com/developerworks/cloud/library/cl-cloudperformmetrics/index.html
http://nagios.org/
http://csrc.nist.gov/groups/SNS/cloud-computing/
www.ietf.org/rfc/rfc1867.txt
www.nomachine.com
http://en.opensuse.org
www.linuxinsider.com/story/70442.html
www.linuxinsider.com/story/70442.html
http://oauth.net
www.openvirtualizationalliance.org/
www.owasp.org/index.php/Top_10_2010-A5
www.owasp.org/index.php/Top_10_2010-A5
http://openid.net/
www.openldap.org/doc/admin24/index.html
www.openssh.com/manual.html


ptg8286219

OpenVPN. Documentation page, at http://openvpn.net/index.php/open-source/
documentation.html.

Oracle. Java SE 6 Documentation, At http://download.oracle.com/javase/6/docs/index.html.

Orchard, D. (ed.), 2007. Extending and Versioning Languages: Terminology, World Wide Web
Consortium Editorial Draft, at www.w3.org/2001/tag/doc/versioning-xml.

Orchard, D. (ed.), 2007. Extending and Versioning Languages: XML Languages, World Wide
Web Consortium Editorial Draft, at www.w3.org/2001/tag/doc/versioning-xml.

Orchard, D. (ed.), 2007. Guide to Versioning XML Languages Using New XML Schema 1.1
Features, World Wide Web Consortium Editorial Draft, at www.w3.org/TR/
xmlschema-guide2versioning/.

Orchard, D., 2006. “A Theory of Compatible Versions,” at www.xml.com/pub/a/2006/12/20/
a-theory-of-compatible-versions.html.

Ort, E., and B. Mehta, 2003. “Java Architecture for XML Binding (JAXB),” Oracle Corporation,
at www.oracle.com/technetwork/articles/javase/index-140168.html.

OSGi Alliance web site, at www.osgi.org.

Patil, S., 2008. “Hello, OSGi, Part 1: Bundles for Beginners,” JavaWorld.com, at
www.javaworld.com/javaworld/jw-03-2008/jw-03-osgi1.html.

PHP Documentation Group, 2011. PHP Manual, online at http://php.net/manual/en/index.php.

Prototype Team, 2007. “Introduction to Ajax,” at www.prototypejs.org/learn/introduction-
to-ajax.

Prototype Team. Prototype JavaScript web site, at www.prototypejs.org/.

QEMU Project Team. QEMU wiki, at http://wiki.qemu.org.

Rackspace, 2011. OpenStack wiki, at http://wiki.openstack.org/StartingPage.

RealVNC, 2011. RealVNC web site, at www.realvnc.com.

Red Hat, 2011. Fedora wiki, at http://fedoraproject.org/wiki/Fedora_Project_Wiki.

Red Hat, 2011. Red Hat Product Documentation, at http://docs.redhat.com.

Red Hat, 2008. Security Guide for Red Hat Enterprise Linux 4, at docs.redhat.com/docs/
en-US/Red_Hat_Enterprise_Linux/4/html/Security_Guide/index.html.

Reese, G., 2011. “The AWS Outage: The Cloud’s Shining Moment,” O’Reilly, at
http://broadcast.oreilly.com/2011/04/the-aws-outage-the-clouds-shining-moment.html.

352 References

http://openvpn.net/index.php/open-source/documentation.html
http://openvpn.net/index.php/open-source/documentation.html
http://download.oracle.com/javase/6/docs/index.html
www.w3.org/2001/tag/doc/versioning-xml
www.w3.org/2001/tag/doc/versioning-xml
www.w3.org/TR/xmlschema-guide2versioning/
www.w3.org/TR/xmlschema-guide2versioning/
www.xml.com/pub/a/2006/12/20/a-theory-of-compatible-versions.html
www.xml.com/pub/a/2006/12/20/a-theory-of-compatible-versions.html
www.oracle.com/technetwork/articles/javase/index-140168.html
www.osgi.org
www.javaworld.com/javaworld/jw-03-2008/jw-03-osgi1.html
http://php.net/manual/en/index.php
www.prototypejs.org/learn/introductionton-ajax
www.prototypejs.org/learn/introductionton-ajax
www.prototypejs.org/
http://wiki.qemu.org
http://wiki.openstack.org/StartingPage
www.realvnc.com
http://fedoraproject.org/wiki/Fedora_Project_Wiki
http://docs.redhat.com
http://broadcast.oreilly.com/2011/04/the-aws-outage-the-clouds-shining-moment.html
JavaWorld.com
docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/4/html/Security_Guide/index.html
docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/4/html/Security_Guide/index.html


ptg8286219

Rekesh, D., and A. Robertson, 2011. “High Availability Apps in the IBM Cloud,” IBM
developerWorks, at www.ibm.com/developerworks/cloud/library/cl-highavailabilitycloud/.

Rekesh, D., B. Snitzer, and H. Shaikh, 2010. “Get Started with the IBM Smart Business
Development and Test on the IBM Cloud,” IBM developerWorks, at www.ibm.com/
developerworks/cloud/library/cl-cloudstart.html.

Rightscale, 2011. “Cloud Foundry Architecture and Auto-Scaling,” at http://blog.rightscale.
com/2011/04/14/cloud-foundry-architecture-and-auto-scaling/.

Rivières, J., 2007. “Evolving Java-Based APIs,” Eclipse wiki, at http://wiki.eclipse.org/index.
php/Evolving_Java-based_APIs.

Rokosz, V., 2011. “Extend Your Corporate Network with the IBM Cloud,” IBM
developerWorks, at www.ibm.com/developerworks/cloud/library/cl-extendnetworkcloud/
index.html.

Salesforce. AppExchange, at http://appexchange.salesforce.com/home.

Saripalli, P., and G. Pingali, 2011. “MADMAC: Multiple Attribute Decision Methodology for
Adoption of Clouds,” IEEE 4th International Conference on Cloud Computing, 316-323.

SELinux Project Team. SELinux project wiki, at http://selinuxproject.org/page/Main_Page.

Seneca, E. J., 2001. “sendmail: Introduction and Configuration,” Linux Journal, at
www.linuxjournal.com/article/5507.

Shah, A., 2008. “DEEP VIRTUE: Kernel-based Virtualization with KVM,” at www.linux-
magazine.com/Issues/2008/86/DEEP-VIRTUE.

Shewbert, J., 2006. “Tunneling with SSH.” IBM developerWorks, at www.ibm.com/
developerworks/aix/library/au-tunnelingssh/index.html.

Sun Microsystems, 2006. Java Management Extensions (JMX) Technology Tutorial. Online.

Sun Microsystems, 2006. Java SE Monitoring and Management Guide. Online.

Sun Microsystems, 2005. Java Language Specification, 3rd Edition, at
http://java.sun.com/docs/books/jls/third_edition/html/binaryComp.html.

Thome, J., 2002. “Using cURL and libcurl with PHP,” Zend Developer Zone, online at
http://devzone.zend.com/article/1081.

Thorsten, 2008. “Amazon’s Elastic Block Store Explained,” at http://blog.rightscale.com/
2008/08/20/amazon-ebs-explained/.

Twitter 2011. Twitter API wiki, at http://apiwiki.twitter.com.

Twitter 2011. “Twitter Developers,” at http://dev.twitter.com/.

References 353

www.ibm.com/developerworks/cloud/library/cl-highavailabilitycloud/
www.ibm.com/developerworks/cloud/library/cl-cloudstart.html
www.ibm.com/developerworks/cloud/library/cl-cloudstart.html
http://blog.rightscale.com/2011/04/14/cloud-foundry-architecture-and-auto-scaling/
http://blog.rightscale.com/2011/04/14/cloud-foundry-architecture-and-auto-scaling/
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
http://wiki.eclipse.org/index.php/Evolving_Java-based_APIs
www.ibm.com/developerworks/cloud/library/cl-extendnetworkcloud/index.html
www.ibm.com/developerworks/cloud/library/cl-extendnetworkcloud/index.html
http://appexchange.salesforce.com/home
http://selinuxproject.org/page/Main_Page
www.linuxjournal.com/article/5507
www.linux-magazine.com/Issues/2008/86/DEEP-VIRTUE
www.linux-magazine.com/Issues/2008/86/DEEP-VIRTUE
www.ibm.com/developerworks/aix/library/au-tunnelingssh/index.html
www.ibm.com/developerworks/aix/library/au-tunnelingssh/index.html
http://java.sun.com/docs/books/jls/third_edition/html/binaryComp.html
http://devzone.zend.com/article/1081
http://blog.rightscale.com/2008/08/20/amazon-ebs-explained/
http://blog.rightscale.com/2008/08/20/amazon-ebs-explained/
http://apiwiki.twitter.com
http://dev.twitter.com/


ptg8286219

Vernier, D., 2011. “Convert IBM Cloud Image Parameters into Java Using JAXB,” IBM
developerWorks, at www.ibm.com/developerworks/cloud/library/cl-parameterizejaxb/
index.html.

Vernier, D., 2011. “IBM SmartCloud Enterprise Tip: Deploy a Complex Topology,” IBM
developerWorks, at www.ibm.com/developerworks/cloud/library/cl-clouddeployutility/
index.html.

Vernier, D., 2011. “IBM SmartCloud Enterprise Tip: Integrate Your Authentication Policy Using
a Proxy,” IBM developerWorks, at www.ibm.com/developerworks/cloud/library/
cl-cloudtip-authproxy/index.html.

Weeden, S., A. L. Blair, and S. Chen, 2008. “Developing a Custom Java Module: Tivoli
Federated Identity Manager 6.2,” IBM DeveloperWorks, at www.ibm.com/developerworks/
tivoli/tutorials/tz-tfimjava/.

White, T., 2011. Hadoop: The Definitive Guide, O’Reilly, 2nd Edition.

VMWare, 2011. “Cloud Foundry,” at http://cloudfoundry.org/.

VMWare, 2011. “Technical Resource Center,” at www.vmware.com/technical-resources/.

Xen Project Team. Xen wiki, at http://wiki.xensource.com.

Xfree86. “Resources,” at www.xfree86.org/sos/resources.html.

X.Org Foundation web site, at www.x.org/wiki/.

Zhang, J., 2011. “Database in the Cloud,” IBM developerWorks, at www.ibm.com/
developerworks/data/library/dmmag/DMMag_2011_Issue2/cloudDBaaS/index.html

Zwanziger, A., et al., 2010. “Extending the Topology Editor with Custom Technology
Domains,” IBM developerWorks, at www.ibm.com/developerworks/rational/library/
10/extendingthetopologyeditorwithcustomtechnologydomains/index.html.

354 References

www.ibm.com/developerworks/cloud/library/cl-parameterizejaxb/index.html
www.ibm.com/developerworks/cloud/library/cl-parameterizejaxb/index.html
www.ibm.com/developerworks/cloud/library/cl-clouddeployutility/index.html
www.ibm.com/developerworks/cloud/library/cl-clouddeployutility/index.html
www.ibm.com/developerworks/cloud/library/cl-cloudtip-authproxy/index.html
www.ibm.com/developerworks/cloud/library/cl-cloudtip-authproxy/index.html
www.ibm.com/developerworks/tivoli/tutorials/tz-tfimjava/
www.ibm.com/developerworks/tivoli/tutorials/tz-tfimjava/
http://cloudfoundry.org/
www.vmware.com/technical-resources/
http://wiki.xensource.com
www.xfree86.org/sos/resources.html
www.x.org/wiki/
www.ibm.com/developerworks/data/library/dmmag/DMMag_2011_Issue2/cloudDBaaS/index.html
www.ibm.com/developerworks/data/library/dmmag/DMMag_2011_Issue2/cloudDBaaS/index.html
www.ibm.com/developerworks/rational/library/10/extendingthetopologyeditorwithcustomtechnologydomains/index.html
www.ibm.com/developerworks/rational/library/10/extendingthetopologyeditorwithcustomtechnologydomains/index.html


ptg8286219

355

Index

A
Accept header, 165
access management, 252, 254

configuring in J2EE
applications, 254-256

enabling multitenant 
access, 260

federated identity
management, 260-261

OAuth, 261-266
user management with LDAP,

256-260
access paths, tuning, 309
actors use case, 10
Address entities, 86-87

lifecycle, 90
managing, 98-99
states for, 89

administrative agents, 306
agents (backups), 312
agile stories, 68
AJAX (asynchronous JavaScript

and XML), 124
ALM (application lifecycle

management) tools, 67-69
build and deployment

automation, 75-83
code verification, 69

IoT Data business 
scenario, 84

Rational Application
Developer, 69-72

Rational Team Concert
(RTC), 72-75

requirements management, 68
software design 

management, 68
source code–management

systems, 67
types of, 67

analyzing performance, 307-310
application monitoring

versus, 323
AoE (ATA over Ethernet), 231
Apache

installing, 37
LAMP stack, 35-40

Apache Libcloud, 189-190
Apache Wink, 171-173
API contracts, compatibility with

data in, 337
API versions, compatibility 

with, 334

application development. See
also cloud applications

IBM SmartCloud Enterprise.
See IBM SmartCloud
Enterprise

with J2EE, 40
data persistence, 49-53
IoT Data business

scenario, 59-66
Java SDK, 41
messaging, 54-57
relational database for, 

47-49
scheduled events, 58
WebSphere Application

Server (WAS), 41-47
with LAMPstack, 35-40
resources for information, 341
security. See security
with Windows, 40

application failure, 314
application hardening, 280

cross-site request forgery,
281-282

cross-site scripting, 280
SQL injection attacks, 282



ptg8286219

356 Index

application lifecycle
management. See ALM tools

application monitoring, 323-327
resources for information,

342-343
application servers, 312
architecture

Cloud Computing Reference
Architecture, 180

cloud computing, resources
for information, 339-340

REST, 164-165
security architecture for IoT

Data business scenario, 300
Architecture for Managing

Clouds, 180
asset management with RAM

(Rational Asset Manager), 
146-152

asymmetric key ciphers, 244
ATA over Ethernet (AoE), 231
authentication, 252, 254

configuring in J2EE
applications, 254-256

enabling multitenant 
access, 260

federated identity
management, 260-261

user management with LDAP,
256-260

authentication aliases, 
creating, 51

authorization, 252, 254
OAuth, 261-266
servers, 261
use of data, 298

automation
of business support systems

(BSS), 331-333
IoT Data business scenario,

337-338
resources for information, 341

availability, 310-311
backup, recovery, restoration,

311-314
of data, 298

database availability, 315-316
in IoT Data business scenario,

328-329
resources for information,

342-343
storage availability, 314-315
virtual IP addresses, 316-317

B
BaaS (Business as a Service), 25
backup servers, 312
backups, 311-314

of relational databases, 48-49
bandwidth, 303
billing models, 332-333

resources for information, 343
block storage, 27-28

cloud applications for, 
224-226

block-level backups, 312
bridging mode, 30
browser security, 278-280
BSS (business support systems),

22-23, 331-333
resources for information, 343

build automation, 75-83
bundles (OSGi), 214

creating, 215-216
launching, 217
running, 219
stopping, 220

Business as a Service (BaaS), 25
business confidential

information, 298
business requirements, 68
business support systems (BSS),

22-23, 331-333
resources for information, 343

bytes, measurement units 
for, 230

C
caching Image entities, 112-113
capabilities, querying data

centers about, 108-109

catalog queries
with IBM SmartCloud

Enterprise command-line
tool, 92

with IBM SmartCloud
Enterprise Java API, 
101-104

CDMI (Cloud Data Management
Interface), 181

cells (in clusters), 304
certificates, 245-248

trusted signing authorities in
WebSphere Application
Server (WAS), 249-252

CIFS (Common Internet File
System), 228, 230

cipher text, 244
ciphers, 244
client centric workloads, 9
client-based virtualization

systems, 21
client-side backups, 313
clients (OAuth), 261

types of, 264
cloud applications

billing models, 332-333
composite applications, 237
email, 238-239
future software 

compatibility, 333
API versions, 334
command-line client

versions, 337
data in API contracts, 337
Java versions, 334-335
JSON versions, 336
REST versions, 335-336
XML versions, 336

networking, basic settings,
209-210

reasons for choosing in IoT
Data business scenario, 242

remote desktop management
NX technology, 236-237
VNC (Virtual Network

Computing), 234-236
X Windows, 233-234



ptg8286219

Index 357

SaaS (Software as a 
Service), 239

collaboration tools, 241
document-management

systems, 239-241
security. See security
services

Linux services, 207-209
Windows services, 209

software installation and
management

cloud software bundles,
212-213

OSGi, 213-223
RPM and YUM, 211
SUSE, 211-212

storage
block storage, 224-226
file systems, 227-230
file-based storage, 

226-227
on IBM SmartCloud

Enterprise, 232-233
network storage systems,

230-231
structured storage, 232

virtual machine images,
creating and customizing,
197-206

cloud computing
ALM (application lifecycle

management) tools, 67-69
build and deployment

automation, 75-83
code verification, 69
IoT Data business

scenario, 84
Rational Application

Developer, 69-72
Rational Team Concert

(RTC), 72-75
requirements

management, 68
software design

management, 68
source code–management

systems, 67
types of, 67

architecture, resources for
information, 339-340

availability, 310-311
backup, recovery,

restoration, 311-314
database availability, 

315-316
storage availability, 

314-315
virtual IP addresses, 

316-317
defined, 7
deployment models, 7-8
IaaS clouds, explained, 22-24
IBM SmartCloud Enterprise.

See IBMSmartCloud
Enterprise

layers of, 24-25
monitoring usage, 317-318

application monitoring,
323-327

comprehensive
monitoring solutions,
327-328

network monitoring, 323
operating system

monitoring, 318-322
performance and 

scalability, 301
compute capacity, 302
J2EE application servers,

304-307
network performance,

302-304
performance analysis and

testing, 307-310
security. See security
standards

Cloud Computing
Reference Architecture,
180

Cloud Data Management
Interface (CDMI), 181

Distributed Management
Task Force Open Cloud
Standards incubator
group, 180-181

IoT Data business
scenario, 181-182

JSON, 160-162
OVF (Open Virtualization

Format), 178-179
REST, 162-178
XML, 157-160

structure of clouds, 2-4
terminology, 4
use cases, 10

actors, 10
extra capacity, 14-15
IoT Data business

scenario. See IoT Data
business scenario use
case

open source/enterprise
collaboration, 15

proof-of-concept, 12-14
short-term peak

workloads, 11-12
video storage system, 15
web site hosting, 10-11

virtual machine images, 26
virtual machine instances, 26
virtualization compared, 2-4
workloads, 8-9

Cloud Computing Reference
Architecture, 180

Cloud Data Management
Interface (CDMI), 181

Cloud Foundry, 191
cloud open source projects

Apache Libcloud, 189-190
Cloud Foundry, 191
Delta Cloud, 190
Eucalyptus, 188-189
Hadoop, 191-192

IoT Data business
scenario, 194-195

setup, 192-194
OpenStack, 190-191

Cloud Security Alliance, 
243-244

cloud software bundles, 212-213
clouds, structure of, 2-4
clusters, 304



ptg8286219

358 Index

code verification tools, 69
cold backups, 312
collaboration tools (cloud-

based), 241
command-line client versions,

compatibility with, 337
command-line tool in IBM

SmartCloud Enterprise, 91
environment setup, 91-92
managing IP addresses, 98-99
provisioning

instances, 92-95
instances with parameters,

97-98
storage, 96-97

querying the catalog, 92
saving images, 99-100

Common Internet File System
(CIFS), 228, 230

communication protocols, 
282-283

HTTPS, 290-293
IPSec, 293
SSH (Secure Shell), 283-290

community clouds, 7
compatibility of cloud

applications with software
versions, 333

API versions, 334
command-line client

versions, 337
data in API contracts, 337
Java versions, 334-335
JSON versions, 336
REST versions, 335-336
XML versions, 336

compliance (security), 299-300
Composable Software Bundles,

212-213
composite applications, cloud

applications for, 237
comprehensive monitoring

solutions, 327-328
compute capacity, 4, 302
conceptual designs, 68
confidentiality of data, 298

configuring
authentication and access in

J2EE applications, 254-256
HTTPS on IBM HTTP Server

(IHS), 290-293
connecting to Linux servers, 

35-37
Content-Type header, 165
continuous backups, 312
conversion units for

measurements, 230
copy on write technique, 27
costs. See metering
create instance example (REST

APIs), 130-139
Credential entities, 87
credentials (OAuth), 262
cross-site request forgery

(CSRF), 281-282
cross-site scripting (XSS), 280
cryptography. See public key

infrastructures
CSRF (cross-site request

forgery), 281-282
cURL, 124
customizing virtual machine

images, 197-200
deployment topology

modeling, 200-206
Linux services, 207-209
operating systems,

determining, 200
Windows services, 209

Cygwin, 209

D
data at rest, security of, 298
data blocks, 228
Data Center failure, 314
data centers, querying, 108-109
data classification, 298
data deduplication, 313
data in API contracts,

compatibility with, 337
data loss, preventing, 310

data management in IoT Data
business scenario, 194-195

data persistence in J2EE
applications, 49-53

databases
availability, 315-316
performance analysis and

tuning, 309
DB2 Enterprise databases for

J2EE application development,
47-49

deduplication, 313
DELETE method, 164
Delta Cloud, 190
deployment

automation, 75-83
cloud computing models, 7-8
resources for information, 341
topology modeling, 200-206

deployment managers, 306
design for failure availability

model, 310
desktop virtualization, 32-33
detailed designs, 68
development tools, resources for

information, 341
diagrams (in topologies), 202
differential backups, 312
direct attached storage, 27
directory context, 256
directory information tree, 257
disk failure, 314
distributed file systems, 228

Hadoop, 191-192
IoT Data business

scenario, 194-195
setup, 192-194

Distributed Management Task
Force Open Cloud Standards
incubator group, 180-181

document-management systems,
239-241

domains in libvirt, 187
downtime, availability versus, 311
drivers for DB2, 49
Dynamic Web Project wizard, 44



ptg8286219

Index 359

E
EAR Application Project 

wizard, 43
EAR Export wizard, 45
Eclipse

creating J2EE applications
for WAS, 42

plug-ins, OSGi and, 214
elasticity, 3-4
email

cloud applications for, 
238-239

cloud-based collaboration
tools, 241

emulation, 18
enabling

file uploads, 165-169
multitenant access, 260

endpoints (OAuth), 264
entity lifecycles in IBM

SmartCloud Enterprise, 87-91
Eucalyptus, 188-189
event sources, event targets

versus, 298-299
event targets, event sources

versus, 298-299
ext3 file system, 228-229
ext4 file system, 228, 230
eXtensible Markup Language.

See XML
extra capacity use case, 14-15

F
failure, causes of, 314
federated identity management,

260-261
federation, 306
file listing and retrieval REST

services, 173-178
file systems, cloud applications

for, 227-230
file uploads

enabling, 165-169
to Instance entities, 111-112
when creating REST

instances, 169-171

file-based storage, 28
cloud applications for, 

226-227
file-level backups, 312
FIM (IBM Tivoli Federated

Identity Manager), 261
Firefox User Agent Switcher

plug-in, 122
firewall rules, 266
firewalls, 266-271

IoT Data business scenario,
272-273

VLAN connections through,
270-271

forward proxies, 273
full virtualization, 18-19
functional requirements, 68
functional verification testing, 69
future compatibility of cloud

applications, 333
API versions, 334
command-line client

versions, 337
data in API contracts, 337
Java versions, 334-335
JSON versions, 336
REST versions, 335-336
XML versions, 336

G–H
GET method, 164
guest mode (KVM), 184
guest operating system

virtualization, 21
guest systems, 17

Hadoop, 15, 191-192
IoT Data business scenario,

194-195
setup, 192-194

hardware failure, 314
HATEOAS (hypermedia as the

engine of application state), 165
HDFS (Hadoop Distributed File

System). See Hadoop
history of virtualization, 17

host names for virtual machines,
finding, 209-210

host systems, 17
hosting constraints, 204
HTTP (HyperText Transfer

Protocol), 163
basic access 

authentication, 253
REST and, 163-164

HTTPS, 282, 290
setting up on IBM HTTP

Server, 290-293
hybrid clouds, 7
HyperText Transfer Protocol. See

HTTP
hypervisors

defined, 17
in libvirt, 187
networking services from, 30

I
IaaS (Infrastructure as a 

Service), 2
conceptual diagram, 3

IaaS clouds, explained, 22-24
IBM HTTP Server (IHS), setting

up HTTPS, 290-293
IBM Rational AppScan, 280
IBM Rational Performance

Tester (RPT), 309
IBM SmartCloud Enterprise, 85

command-line tool, 91
environment setup, 91-92
managing IP addresses,

98-99
provisioning instances,

92-95
provisioning instances

with parameters, 97-98
provisioning storage, 

96-97
querying the catalog, 92
saving images, 99-100

entity lifecycles, 87-91
IoT Data business scenario,

152-155



ptg8286219

360 Index

Java API
environment setup, 

100-101
Maven cloud plug-in

example, 114-122
minimizing REST calls,

112-113
provisioning instances,

104-106
provisioning instances

with parameters, 
106-108

querying locations and
capabilities, 108-109

querying the catalog, 
101-104

saving images, 110-111
uploading files to new

instances, 111-112
RAM (Rational Asset

Manager) and, 146-152
resource model for, 86-87
resources for information, 339
REST API

background on, 122-124
create instance example,

130-139
instance listings example,

139-144
invoking with Java, 

144-146
invoking with PHP, 

125-129
storage management, 

232-233
IBM SmartCloud for Social

Business, 241
IBM Tivoli Access Manager, 253
IBM Tivoli Federated Identity

Manager (FIM), 261
IBM Tivoli Security Operations

Manager (TSOM), 299
identity management, 252, 254

configuring in J2EE
applications, 254-256

enabling multitenant 
access, 260

federated identity
management, 260-261

OAuth, 261-266
user management with LDAP,

256-260
IHS (IBM HTTP Server), setting

up HTTPS, 290-293
image asset catalog, 26
Image entities, 86-87

caching, 112-113
lifecycle, 89
listing, 92, 101-104
saving, 99-100, 110-111
states for, 88

images
asset management with RAM

(Rational Asset Manager),
146-152

creating and customizing,
197-200

deployment topology
modeling, 200-206

Linux services, 207-209
operating systems,

determining, 200
Windows services, 209

defined, 4
explained, 26
snapshots versus, 200

IMAP (Internet Mail Access
Protocol), 238

incremental backups, 312
Infrastructure as a Service. See

IaaS
infrastructure diagrams, 204
inodes, 228
installation

Apache, 37
Java SDK, 41
Libcloud, 189
MySQL, 37-38
PHP, 37-38
resources for information, 341
of software

cloud software bundles,
212-213

OSGi, 213-223

RPM and YUM, 211
SUSE, 211-212

VNC, 38-40
instances, 86

create instance example
(REST APIs), 130-139

defined, 4
explained, 26
lifecycle, 88
listing instances example

(REST APIs), 139-144
provisioning, 92-95, 104-106

with parameters, 97-98,
106-108

states for, 87-88
uploading files to, 111-112

integrity of data, 298
Internet Mail Access Protocol

(IMAP), 238
Internet Small Computer

Interface (iSCSI) network
storage systems, 231

IoT Data business scenario use
case, 16

ALM tools, 84
data management, 194-195
data portal development, 

59-66
file listing and retrieval REST

service, 173-178
file uploads, 165-169
network deployment and

firewall rules, 272-273
operations and maintenance

plan, 337-338
performance, availability,

monitoring, metering, 
328-329

reasons for application
choices, 242

scalability with cloud
services, 152-155

security architecture, 300
security context, 244-245
standards usage, 181-182

IP Address entities. See Address
entities



ptg8286219

Index 361

IP addresses
in network virtualization, 30
virtual IP addresses,

availability, 316-317
IPSec, 282, 293
IPv6, 30
iSCSI (Internet Small Computer

Interface) network storage
systems, 231

ISO file system, 228

J
J2C authentication aliases,

creating, 51
J2EE (Java 2 Enterprise 

Edition), 40
data persistence, 49-53
IoT Data business scenario,

59-66
Java SDK, 41
messaging, 54-57
relational database for, 47-49
scheduled events, 58
WebSphere Application

Server (WAS), 41-47
J2EE application servers,

performance and scalability,
304-307

J2EE applications, configuring
authentication and access, 
254-256

Java
invoking REST APIs with,

144-146
versions, compatibility with,

334-335
Java 2 Enterprise Edition. See

J2EE
Java API for XML Binding

(JAXB) API, 157
Java API in IBM SmartCloud

Enterprise
environment setup, 100-101
Maven cloud plug-in

example, 114-122
minimizing REST calls, 

112-113

provisioning instances, 
104-106

with parameters, 106-108
querying locations and

capabilities, 108-109
querying the catalog, 101-104
saving images, 110-111
uploading files to new

instances, 111-112
Java Messaging Service (JMS),

54-57
Java SDK, installing, 41
JavaScript

resources for information, 340
same origin policy, 279

JavaScript and XML 
(AJAX), 124

JavaScript Object Notation
(JSON), 160-162

versions, compatibility 
with, 336

JAX-RS, 171-173
JAXB (Java API for XML

Binding) API, 157
JMS (Java Messaging Service),

54-57
job managers, 306
journaled file systems, 229
JSON (JavaScript Object

Notation), 160-162
versions, compatibility 

with, 336

K
kernel-based virtual machine

(KVM), 183-185
resources for information, 340

keys, 86, 244
public key infrastructures,

245-248
trusted signing authorities

in WebSphere
Application Server
(WAS), 249-252

RSA keys, 286

keystore, 247
KVM (kernel-based virtual

machine), 183-185
resources for information, 340

L
LAMP stack, 35-40
latency, 303
LDAP (Lightweight Directory

Access Protocol), 253
resources for information, 342
user management with, 

256-260
LDIF (LDAP Data Interchange

Format), 257
Libcloud, 189-190
library dependencies (Java),

setting up, 100-101
libvirt, 186-187

resources for information, 340
Lightweight Directory Access

Protocol (LDAP), 253
resources for information, 342
user management with, 

256-260
links (in topologies), 201
Linux servers, connecting to, 

35-37
Linux services, 207-209
listening for connections, 210
listing Image entities, 92, 

101-104
listing instances example (REST

APIs), 139-144
local file systems, 228
local repository in Maven, 79
Location entities, 86-87

querying, 108-109
logging, 324-326
logical topology models, 

202-204
logical volume manager 

(LVM), 27
loop devices, 224
loss of data, preventing, 310
LVM (logical volume 

manager), 27



ptg8286219

362 Index

M
MADMAC: Multiple Attribute

Decision Methodology for
Adoption of Clouds, 9

managed nodes, 306
map/reduce programming 

style, 191
marketing requirements, 68
Maven

build lifecycle phases, 78
cloud plug-in example, 

114-122
local repository, 79
setup, 76
unit testing, 78

measurements, conversion units
for, 230

memory management, 302
messaging in J2EE applications,

54-57
metering, 317. See also

monitoring
in IoT Data business scenario,

328-329
resources for information,

342-343
Microsoft Windows, 40
middleware, resources for

information, 341
minimizing REST calls, 112-113
mirroring (RAID), 315
mobile centric workloads, 9
mobile virtual private 

networks, 276
modeling deployment

topologies, 200-206
monitoring, 317-318

application monitoring, 
323-327

comprehensive monitoring
solutions, 327-328

in IoT Data business scenario,
328-329

network monitoring, 323

operating system monitoring,
318-322

resources for information,
342-343

multitenant access
defined, 4
enabling, 260

MySQL, installing, 37-38. See
also LAMP stack

N
NAT (network address

translation), 31-32
network attached storage, 27
network bandwidth, 303
Network File System (NFS), 228
network file systems, 228
network latency, 303
network monitoring, 323
network performance, 302-304
network security

firewalls, 266-271
IoT Data business

scenario, 272-273
VLAN connections

through, 270-271
operating system

mechanisms, 271-272
proxy servers, 273-276
VPNs (virtual private

networks), 276-278
network storage systems, 3

cloud applications for, 
230-231

network virtualization, 21, 29-32
IP addresses, 30

networking, basic settings, 
209-210

New Connection wizard, 47
New Server wizard, 46
NFS (Network File System), 228
node agents, 306
nodes

in clusters, 304
in Libcloud, 189
in libvirt, 187

nonfunctional requirements, 68
NoSQL, 232, 310
NTFS file system, 228, 230
NX Client, 32-33
NX remote desktop technology,

236-237

O
OAuth, 261-266

resources for information, 342
Open Cloud Standards incubator

group, 180-181
Open Service Gateway initiative

(OSGi), 213-223
resources for information, 341

open source projects
cloud projects

Apache Libcloud, 189-190
Cloud Foundry, 191
Delta Cloud, 190
Eucalyptus, 188-189
Hadoop, 191-195
OpenStack, 190-191

virtualization projects, 183
KVM, 183-185
libvirt, 186-187
QEMU, 185-186
Xen, 188

open source/enterprise
collaboration use case, 15

Open Virtualization Format
(OVF), 178-179

resources for information, 340
OpenID, 253
opening ports, 210
OpenLDAP, 256
OpenSSH, converting to/from

PuTTY, 287
OpenStack, 190-191
OpenVPN, 277
operating system monitoring,

318-322
operating system–level

virtualization, 19-21



ptg8286219

Index 363

operating systems
determining for virtual

machine images, 200
network security

mechanisms, 271-272
resources for information, 340
security, 293

basic tools, 293-294
Security-Enhanced Linux

(SELinux), 294-297
operational support system

(OSS), 22
OPTIONS method, 164
origin servers, 273
OSGi (Open Service Gateway

initiative), 213-223
resources for information, 341

OSS (operational support
system), 22

OVF (Open Virtualization
Format), 178-179

resources for information, 340

P
PaaS (Platform as a Service), 25
pages (memory), 302
paging (memory), 302
parameters

for Maven cloud plug-in
example, 116

provisioning instances with,
97-98, 106-108

in virtual machine 
images, 198

parameters.xml, 157-158
paravirtualization, 19
parity (RAID), 314
partitioning, 27
passphrases for SSH keys, 287
performance, 301

analysis and testing, 307-310
application monitoring

versus, 323
compute capacity, 302
in IoT Data business scenario,

328-329

J2EE application servers,
304-307

network performance, 
302-304

resources for information,
342-343

persistence in J2EE applications,
49-53

personally identifiable
information (PII), 298

PGP (Pretty Good Privacy), 298
phases in Maven build 

lifecycle, 78
PHP. See also LAMP stack

installing, 37-38
invoking REST APIs with,

125-129
physical redundancy, 310
physical topology models, 202,

204-205
PII (personally identifiable

information), 298
plain text, 244
Platform as a Service (PaaS), 25
POP (Post Office Protocol), 238
port forwarding with SSH, 

288-290
ports, opening, 210
Post Office Protocol (POP), 238
POST method, 164
power failure, 314
Pretty Good Privacy (PGP), 298
private clouds, 4, 7
private keys, 244
privately visible assets, 150
proc file system, 228
profiles

WAS, 305
WebSphere, 41-42

Project Object Model (pom.xml)
file, 77

projects. See open source projects
proof-of-concept use case, 12-14
Prototype JavaScript 

framework, 140

provisioning
instances

with IBM SmartCloud
Enterprise command-
line tool, 92-95

with IBM SmartCloud
Enterprise Java API,
104-106

instances with parameters
with IBM SmartCloud

Enterprise command-
line tool, 97-98

with IBM SmartCloud
Enterprise Java API,
106-108

storage with IBM
SmartCloud Enterprise
command-line tool, 96-97

proxy servers, 273-276
public clouds, 4, 7
public key infrastructures, 

245-248
trusted signing authorities in

WebSphere Application
Server (WAS), 249-252

public keys, 244
publicly visible assets, 150
PUT method, 164
PuTTY, converting to/from

OpenSSH, 287

Q–R
QEMU, 185-186
querying

catalog
with IBM SmartCloud

Enterprise command-
line tool, 92

with IBM SmartCloud
Enterprise Java API,
101-104

Location entities, 108-109

RAD (Rational Application
Developer), 69-72

creating J2EE applications
for WAS, 43-47



ptg8286219

364 Index

RAID (Redundant Array of
Independent Disks), 314

RAID arrays, 314
RAM (Rational Asset 

Manager), 240
IBM SmartCloud Enterprise

and, 146-152
Rational Software Architect

XSD to Java Wizard, 159
Rational Team Concert (RTC),

72-75
RDP (Remote Desktop 

Service), 32
realization links, 204
realms in Delta Cloud, 190
recovery, 311-314
Red Hat Package Management

(RPM), 211
redundancy, levels of, 310
Redundant Array of Independent

Disks (RAID), 314
relational databases

availability, 315-316
for J2EE application

development, 47-49
data persistence, 49-53

performance analysis and
tuning, 309

relaying, 238
remote desktop management

NX technology, 236-237
resources for information, 341
VNC (Virtual Network

Computing), 234-236
X Windows, 233-234

Remote Desktop Service 
(RDP), 32

REpresentational State Transfer.
See REST

Request for Comments: 2460
Internet Protocol, Version 6
(IPv6), 30

requirements management, 68
reserved IP addresses, 30
resident memory, 302
resource model for IBM

SmartCloud Enterprise, 86-87

resource servers, 261
resources for information

on business support 
systems, 343

on cloud computing
architecture and
background, 339-340

on IBM SmartCloud
Enterprise, 339

on JavaScript, 340
on middleware and

development tools, 341
on monitoring, performance,

availability, metering, 
342-343

on operating systems, 340
on remote displays and

desktops, 341
on REST APIs, 340
on security, 342
on software installation,

management, and
deployment automation, 341

on version compatibility, 343
on virtualization, 340

resources owners, 261
REST (REpresentational State

Transfer), 162
architecture, 164-165
background, 163
HTTP and, 163-164
implementing and consuming

services, 165
file listing and retrieval

REST service, 173-178
file uploads, 165-171
JAX-RS, 171-173

version compatibility, 
335-336

REST calls, minimizing, 
112-113

REST API in IBM SmartCloud
Enterprise

background on, 122-124
create instance example, 

130-139

instance listings example,
139-144

invoking
with Java, 144-146
with PHP, 125-129

resources for information, 340
restoration, 311-314
reverse lookups, 210
reverse proxies, 273
round-trip network latency, 303
routing mode, 30
RPM (Red Hat Package

Management), 211
RPT (IBM Rational Performance

Tester), 309
RSA keys, 286
RTC (Rational Team Concert),

72-75

S
SaaS (Software as a Service), 

25, 239
collaboration tools, 241
document-management

systems, 239-241
Salesforce.com, 332
same origin policy 

(JavaScript), 279
SANs (storage area 

networks), 231
saving Image entities, 99-100,

110-111
scalability, 301

with cloud services (IoT Data
business scenario), 152-155

compute capacity, 302
in IoT Data business scenario,

328-329
J2EE application servers,

304-307
network performance, 

302-304
performance analysis and

testing, 307-310
scaling out, scaling up 

versus, 301

Salesforce.com


ptg8286219

Index 365

scaling up, scaling out 
versus, 301

scheduled events in J2EE
applications, 58

SCP (Secure Copy), 288
scripting environment, setting

up, 91-92
secure hash algorithm, 244
Secure Shell (SSH), 282-288

port forwarding, 288-290
resources for information, 342

security
application hardening, 280

cross-site request forgery,
281-282

cross-site scripting, 280
SQL injection attacks, 282

browser security, 278-280
certificates, 245-248

trusted signing authorities
in WebSphere
Application Server
(WAS), 249-252

cloud-based versus traditional
software, 243-244

compliance, 299-300
of data at rest, 298
event sources versus event

targets, 298-299
identity and access

management, 252, 254
configuring in J2EE

applications, 254-256
enabling multitenant

access, 260
federated identity

management, 260-261
OAuth, 261-266
user management with

LDAP, 256-260
in IoT Data business scenario

architecture for, 300
context for, 244-245
network deployment and

firewall rules, 272-273

network security
firewalls, 266-271
IoT Data business

scenario, 272-273
operating system

mechanisms, 271-272
proxy servers, 273-276
VPNs (virtual private

networks), 276-278
operating system security, 293

basic tools, 293-294
Security-Enhanced Linux

(SELinux), 294-297
public key infrastructures,

245-248
trusted signing authorities

in WebSphere
Application Server
(WAS), 249-252

resources for information, 342
secure communication

protocols, 282-283
HTTPS, 290-293
IPSec, 293
SSH (Secure Shell), 

283-290
virtual machine security, 293

basic tools, 293-294
Security-Enhanced LInux

(SELinux), 294-297
security events, sources versus

targets, 298-299
SELinux (Security-Enhanced

Linux), 294-297
server centric workloads, 8-9
Server Message Block (SMB),

228, 230
server-based virtualization

systems, 21
services

Linux services, 207-209
Windows services, 209

shared visibility assets, 150
short-term peak workloads use

case, 11-12

Simple Mail Transport Protocol
(SMTP), 238-239

SimpleXML, 126
SmartCloud Enterprise. See IBM

SmartCloud Enterprise
SMB (Server Message Block),

228, 230
SMTP (Simple Mail Transport

Protocol), 238
SMTP relaying, 238
snapshots, 312

images versus, 200
in libvirt, 187

Software as a Service (SaaS), 
25, 239

collaboration tools, 241
document-management

systems, 239-241
software bundles, 212-213
software deployment, resources

for information, 341
software design management, 68
software installation and

management
cloud software bundles, 

212-213
OSGi, 213-223
resources for information, 341
RPM and YUM, 211
SUSE, 211-212

source code–management
systems, 67

SQL injection attacks, 282
SSH (Secure Shell), 282-288

port forwarding, 288-290
resources for information, 342

stand-alone servers, 304
standards

Cloud Computing Reference
Architecture, 180

Cloud Data Management
Interface (CDMI), 181

Distributed Management
Task Force Open Cloud
Standards incubator group,
180-181



ptg8286219

366 Index

IoT business scenario, 
181-182

JSON, 160-162
OVF (Open Virtualization

Format), 178-179
REST, 162

architecture, 164-165
background, 163
HTTP and, 163-164
implementing and

consuming services,
165-178

XML, 157-160
states

of Address entities, 89
of Image entities, 88
of Instance entities, 87-88
of Storage entities, 90

storage, cloud applications for
block storage, 224-226
file systems, 227-230
file-based storage, 226-227
on IBM SmartCloud

Enterprise, 232-233
network storage systems,

230-231
structured storage, 232

storage area networks 
(SANs), 231

storage availability, 314-315
Storage entities

provisioning, 96-97
states for, 90

storage nodes, 312
storage virtualization, 21, 27

block storage, 27-28
comparison of options, 28
file-based storage, 28

striping (RAID), 314
structured data, 231
structured storage, cloud

applications for, 232
SUSE, software management,

211-212
swap (memory), 302

swapping (memory), 302
symmetric key ciphers, 244
system-generated IP 

addresses, 30

T
tenants, 243

multitenant access, 
enabling, 260

testing
performance, 307-310
recovery and restoration of

backups, 313
thrashing (memory), 302
Tivoli Access Manager

WebSEAL, 253
topology modeling

deployment topologies, 
200-206

resources for information, 341
traditional high availability

model, 310
trust chain, 245
trusted signing authorities in

WebSphere Application Server
(WAS), 249-252

TSOM (IBM Tivoli Security
Operations Manager), 299

tuning. See performance
Twitter REST API, 262-263
two-factor authentication, 253

U
unit testing, 69

with Maven, 78
units (in topologies), 201
unstructured data, 231
uploading files

enabling, 165-169
to Instance entities, 111-112
when creating REST

instances, 169-171
use cases, 10, 68

actors, 10
for business support systems

(BSS), 331-332

extra capacity, 14-15
IoT Data business scenario, 16

ALM tools, 84
data management, 

194-195
data portal development,

59-66
file listing and retrieval

REST service, 173-178
file uploads, 165-169
network deployment and

firewall rules, 272-273
operations and

maintenance plan, 
337-338

performance, availability,
monitoring, metering,
328-329

reasons for application
choices, 242

scalability with cloud
services, 152-155

security architecture, 300
security context, 244-245
standards usage, 181-182

open source/enterprise
collaboration, 15

proof-of-concept, 12-14
short-term peak workloads,

11-12
video storage system, 15
web site hosting, 10-11

Use Cases and Interactions for
Managing Clouds, 10, 180

user interface design, 69
user management with LDAP,

256-260

V
verifying code, 69
version compatibility of cloud

applications, 333
API versions, 334
command-line client

versions, 337
data in API contracts, 337
Java versions, 334-335



ptg8286219

Index 367

JSON versions, 336
resources for information, 343
REST versions, 335-336
XML versions, 336

video storage system use case, 15
virtio libraries, 184
virtual IP addresses, availability,

316-317
virtual local area networks

(VLANs)
connections through firewalls,

270-271
defined, 4
entities, 87

Virtual Machine Disk 
(VMDK), 230

virtual machine images, 26. See
also images

virtual machine instances
explained, 26
provisioning, 104-106

virtual machine managers. See
hypervisors

virtual machine snapshots. See
snapshots

virtual machines. See also cloud
applications

security, 293-294
Security-Enhanced Linux

(SELinux), 294-297
virtual memory, 302
Virtual Network Computing

(VNC), 32, 234-236
virtual private networks (VPNs),

276-278
virtual resource redundancy, 310
virtualization

benefits of, 17
client-based systems, 21
cloud computing compared,

2-4
desktop virtualization, 32-33
explained, 17-22
full virtualization, 18-19
limitations of, 22
network virtualization, 21,

29-32

operating system–level
virtualization, 19-21

OVF (Open Virtualization
Format), 178-179

paravirtualization, 19
resources for information, 340
server-based systems, 21
storage virtualization, 21, 27

block storage, 27-28
comparison of options, 28
file-based storage, 28

virtualization open source
projects, 183

KVM, 183-185
libvirt, 186-187
QEMU, 185-186
Xen, 188

visibility of assets, 150
VLANs (virtual local area

networks)
connections through firewalls,

270-271
defined, 4
entities, 87

VM Configuration entities, 87
VMDK (Virtual Machine 

Disk), 230
VNC (Virtual Network

Computing), 32, 234-236
installing, 38-40

Volume entities, 87
Volume Offering entities, 87
VPN-Cubed, 278
VPNs (virtual private networks),

276-278
resources for information, 342

W
WANs (wide area networks), 276
WAS (WebSphere Application

Server), 41-47
profiles, 305
trusted signing authorities in,

249-252
web site hosting use case, 10-11
WebSEAL, 253

WebSphere Application Server
(WAS), 41-47

profiles, 305
trusted signing authorities in,

249-252
wide area networks (WANs), 276
Windows, 40
Windows services, 209
Wink, 171-173
workloads, types of, 8-9

X–Y–Z
X Windows, 32, 233-234
Xen, 188
XML (eXtensible Markup

Language), 157-160
version compatibility, 336

XSS (cross-site scripting), 280
Xterm, 234

YaST, 211
YUM (Yellowdog Updater

Modified), 211

ZooKeeper, 192
Zypper, 212


	Contents
	Preface
	Introduction
	Part I: Background Information
	Chapter 1 Infrastructure as a Service Cloud Concepts
	Workloads
	Use Cases
	Virtualization
	Infrastructure as a Service Clouds
	Other Cloud Layers
	Virtual Machine Instances
	Virtual Machine Images
	Storage
	Network Virtualization
	Desktop Virtualization


	Part II: Developing Cloud Applications
	Chapter 2 Developing on the Cloud
	Linux, Apache, MySQL, and PHP
	Windows
	Java 2 Enterprise Edition
	Business Scenario: Developing the IoT Data Portal
	Integration of Application Lifecycle Management Tools with Clouds
	Business Scenario: Application Lifecycle Management Tools

	Chapter 3 Developing with IBM SmartCloud Enterprise APIs
	Resource Model
	Entity Lifecycles
	Command Line
	Java API
	REST API
	Rational Asset Manager
	Business Scenario: Using Elastic Cloud Services to Scale

	Chapter 4 Standards
	Data Exchange
	REST
	Virtualization
	Cloud Computing
	Business Scenario: IoT Data Use of Standards

	Chapter 5 Open Source Projects
	Virtualization Projects
	Cloud Projects
	Business Scenario: Data Management

	Chapter 6 Cloud Services and Applications
	Creating and Customizing Images
	Services
	Networking
	Software Installation and Management
	Storage
	Remote Desktop Management
	Composite Applications
	Email
	Software as a Service
	Business Scenario: The IoT Data Application


	Part III: Exploring Hosting Cloud Applications
	Chapter 7 Security
	Background
	Business Scenario: IoT Data Security Context
	Public Key Infrastructures and Certificates
	Identity and Access Management
	Network Security
	Browser Security
	Application Hardening
	Secure Communication Protocols
	Operating System and Virtual Machine Security
	Security of Data at Rest
	Security Events
	Security Compliance
	Business Scenario: IoT Data Security Architecture

	Chapter 8 Performance, Availability, Monitoring, and Metering
	Performance and Scalability
	Availability
	Monitoring and Metering
	Business Scenario: IoT Data Performance, Availability, Monitoring, and Metering Plan

	Chapter 9 Operations and Maintenance on the Cloud
	Business Support Systems
	Maintaining Compatibility with Future Versions of Software
	Business Scenario: IoT Data Operations and Maintenance Plan


	Further Reading
	References
	Index
	A
	B
	C
	D
	E
	F
	G–H
	I
	J
	K
	L
	M
	N
	O
	P
	Q–R
	S
	T
	U
	V
	W
	X–Y–Z


