
Kung-Kiu Lau
Winfried Lamersdorf
Ernesto Pimentel (Eds.)

 123

LN
CS

 8
13

5

Second European Conference, ESOCC 2013
Málaga, Spain, September 2013
Proceedings

Service-Oriented
and Cloud Computing

Lecture Notes in Computer Science 8135
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Kung-Kiu Lau Winfried Lamersdorf
Ernesto Pimentel (Eds.)

Service-Oriented
and Cloud Computing
Second European Conference, ESOCC 2013
Málaga, Spain, September 11-13, 2013
Proceedings

13

Volume Editors

Kung-Kiu Lau
The University of Manchester, School of Computer Science
Oxford Road, Manchester M13 9PL, UK
E-mail: kung-kiu@cs.man.ac.uk

Winfried Lamersdorf
Universität Hamburg, Fachbereich Informatik/VSYS
Vogt-Kölln-Straße 30, 22527 Hamburg, Germany
E-mail: lamersd@informatik.uni-hamburg.de

Ernesto Pimentel
University of Málaga, Department of Computer Science
Boulevard Louis Pasteur 35, 29011 Málaga, Spain
E-mail: ernesto@lcc.uma.es

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-40650-8 e-ISBN 978-3-642-40651-5
DOI 10.1007/978-3-642-40651-5
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013946368

CR Subject Classification (1998): H.3.4-5, D.2.11, K.6.5, K.6.3, H.2.8, C.2.4, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Service-oriented computing – together with Web services as its most important
implementation platform – has become the most important paradigm for dis-
tributed software development and application for a number of years now. The
former ECOWS (European Conference on Web Services) conference series ad-
dressed key issues of service-oriented computing, in particular Web services, in
nine successful conferences until 2011.

In the meantime, as services are increasingly used remotely, i.e., in the “cloud,”
the focus of the conference series has shifted slightly. Accordingly, ECOWS was
re-launched in 2012 as the “European Conference on Service-Oriented and Cloud
Computing” (ESOCC) in Bertinoro, Italy, addressing the state of the art and
practice of service-oriented computing and cloud computing.

The second European Conference on Service-Oriented and Cloud Computing,
ESOCC 2013, was held in Málaga, Spain, during September 11–13, 2013.

This volume contains the technical papers presented at the conference. The
conference consisted of two tracks: a Research Track and an Industrial Track.
There were a total of 44 submissions to the Research Track, from which 11
papers were selected (yielding an acceptance rate of 25%), together with four
short papers. The review and selection process was performed rigorously, with
each paper being reviewed by at least three Program Committee (PC) members
(sometimes with the help of additional reviewers).

The Industrial Track selected three papers for presentation, and also invited
two presentations from industry.

There were three excellent invited talks at the conference, given by Gian-
luigi Zavattaro (University of Bologna, Italy), Kenji Takeda (Microsoft Research,
Cambridge, UK), and Florian Rosenberg (IBM Thomas J. Watson Research Cen-
ter, Yorktown Heights, USA).

Five workshops were co-located with the conference: Cloud for IoT (CLIoT
2013), Cloud Storage Optimization (CLOUSO 2013), Foundations of Coordina-
tion Languages and Self-Adaptative Systems (FOCLASA 2013), the First Work-
shop on Mobile Cloud and Social Perspectives (MoCSoP 2013), and the Third
International Workshop on Adaptive Services for the Future Internet (WAS4FI
2013).

A PhD Symposium was held on the same day as the workshops.
All in all, ESOCC 2013 was a successful conference, and we owe its success

to many people: all the authors who submitted papers, and those who presented
papers at the conference; all the PC members who took part in the review and
selection process, as well as the additional reviewers they called on for help; all
the invited speakers; the members of the Organizing Committee who chaired the

VI Preface

industrial track, the workshops and the PhD Symposium, as well as the people
who helped organize these events. Last, but not least, we are grateful to the local
Organizing Committee for their efficient organization and warm hospitality. To
all of you: we say a heart-felt “Thank you”!

July 2013 Kung-Kiu Lau
Winfried Lamersdorf

Ernesto Pimentel

Organization

ESOCC 2013 was organized by the the Department of Computer Science of the
University of Málaga, Spain.

Organizing Committee

General Chair

Ernesto Pimentel University of Málaga, Spain

Program Chairs

Kung-Kiu Lau University of Manchester, UK
Winfried Lamersdorf University of Hamburg, Germany

Industrial Track Chairs

Judith Bishop Microsoft Research USA
Aljosa Pasic ATOS, Spain

Workshop Chairs

Massimo Villari University of Messina, Italy
Carlos Canal University of Málaga, Spain

PhD Symposium Chair

Wolf Zimmermann University of Halle, Germany

Program Committee

Marco Aiello University of Groningen, The Netherlands
Farhad Arbab CWI and Leiden University, The Netherlands
Luciano Baresi Politecnico di Milano, Italy
Sami Bhiri Digital Enterprise Research Institute, Ireland
Mario Bravetti University of Bologna, Italy
Antonio Brogi University of Pisa, Italy
Christoph Bussler VoxeoLabs Inc., USA
Manuel Carro Technical University of Madrid and

IMDEA Software Institute, Spain
Wojciech Cellary Poznan University of Economics, Poland
Javier Cubo University of Málaga, Spain
Flavio de Paoli Universita’ Milano Bicocca, Italy

VIII Organization

Juergen Dunkel Hannover University for Applied Sciences and
Arts, Germany

Schahram Dustdar TU Wien, Austria
Rik Eshuis Eindhoven University of Technology,

The Netherlands
David Eyers University of Otago, New Zealand
George Feuerlicht University of Technology Sydney, Australia
Chris Giblin IBM Research Zürich, Switzerland
Claude Godart LORIA, France
Michael Goedicke University of Duisburg-Essen, Germany
Thomas Gschwind IBM Research Zürich, Switzerland
Martin Henkel Stockholm University, Sweden
Dionisis Kehagias Centre for Research and Technology Hellas,

Greece
Ernoe Kovacs NEC, Germany
Akhil Kumar Penn State University, USA
Birgitta König-Ries Friedrich Schiller University of Jena, Germany
Peep Küngas University of Tartu, Estonia
Frederic Lang INRIA Rhône-Alpes/VASY, France
Heiko Ludwig IBM Almaden Research Center, USA
Welf Löwe Linnaeus University, Sweden
Ingo Melzer DaimlerChrysler AG, Germany
Roy Oberhauser Aalen University, Germany
Guadalupe Ortiz University of Cádiz, Spain
Claus Pahl Dublin City University, Ireland
George Papadopoulos University of Cyprus, Cyprus
Cesare Pautasso University of Lugano, Switzerland
Wolfgang Reisig Humboldt-Universität zu Berlin, Germany
Ulf Schreier Furtwangen University, Germany
Rainer Unland University of Duisburg-Essen, Germany
Massimo Villari University of Messina, Italy
Erik Wilde EMC Corporation, USA
Gianluigi Zavattaro University of Bologna, Italy
Wolf Zimmermann Universität Halle, Germany
Olaf Zimmermann Rapperswil University of Applied Sciences,

Switzerland
Christian Zirpins University of Karlsruhe, Germany

Additional Reviewers

Vasilios Andrikopoulos
Juan Caballero
Marco Comerio
Ando Emerencia

Christian Gierds
Eirini Kaldeli
Pedro Lopez-Garcia
Faris Nizamic

George Pallis
Achille Peternier
Robert Prüfer
Jan Sürmeli

Table of Contents

Invited Talk

Aeolus: Mastering the Complexity of Cloud Application Deployment . . . 1
Michel Catan, Roberto Di Cosmo, Antoine Eiche, Tudor A. Lascu,
Michael Lienhardt, Jacopo Mauro, Ralf Treinen, Stefano Zacchiroli,
Gianluigi Zavattaro, and Jakub Zwolakowski

Research Track

A Service Delivery Framework to Support Opportunistic
Collaborations . 4

Gregory Katsaros, Erik Wittern, Birgit Gray, and Stefan Tai

Probabilistic Topic Models for Web Services Clustering and
Discovery . 19

Mustapha Aznag, Mohamed Quafafou, El Mehdi Rochd,
and Zahi Jarir

Managing Imprecise Criteria in Cloud Service Ranking with a Fuzzy
Multi-criteria Decision Making Method . 34

Ioannis Patiniotakis, Stamatia Rizou, Yiannis Verginadis,
and Gregoris Mentzas

Modeling Quality Attributes of Cloud-Standby-Systems: A Long-Term
Cost and Availability Model . 49

Alexander Lenk and Frank Pallas

Cloud4SOA: A Semantic-Interoperability PaaS Solution for Multi-cloud
Platform Management and Portability . 64

Eleni Kamateri, Nikolaos Loutas, Dimitris Zeginis, James Ahtes,
Francesco D’Andria, Stefano Bocconi, Panagiotis Gouvas,
Giannis Ledakis, Franco Ravagli, Oleksandr Lobunets, and
Konstantinos A. Tarabanis

Implementation and Evaluation of a Multi-tenant Open-Source ESB 79
Steve Strauch, Vasilios Andrikopoulos, Santiago Gómez Sáez,
and Frank Leymann

Putting the Customer Back in the Center of SOA with Service Design
and User-Centered Design . 94

Arnita Saini, Benjamin Nanchen, and Florian Evequoz

X Table of Contents

RAFT-REST - A Client-Side Framework for Reliable, Adaptive
and Fault-Tolerant RESTful Service Consumption . 104

Josef Spillner, Anna Utlik, Thomas Springer, and Alexander Schill

Contract Compliance Monitoring of Web Services . 119
Gregorio Dı́az and Luis Llana

Service-Oriented Distributed Applications in the Future Internet:
The Case for Interaction Paradigm Interoperability 134

Nikolaos Georgantas, Georgios Bouloukakis, Sandrine Beauche,
and Valérie Issarny

An App Approach Towards User Empowerment in Personalized Service
Environments . 149

Mario Hoffmann

Short Papers

A Life-Cycle Model for Software Service Engineering 164
Erik Wittern and Robin Fischer

A Tale of Millis and Nanos: Time Measurements in Virtual and
Physical Machines . 172

Ulrich Lampe, Markus Kieselmann, André Miede,
Sebastian Zöller, and Ralf Steinmetz

A UML Profile for Modeling Multicloud Applications 180
Joaqúın Guillén, Javier Miranda, Juan Manuel Murillo,
and Carlos Canal

Towards Cross-Layer Monitoring of Multi-Cloud Service-Based
Applications . 188

Chrysostomos Zeginis, Kyriakos Kritikos, Panagiotis Garefalakis,
Konstantina Konsolaki, Kostas Magoutis, and Dimitris Plexousakis

Industrial Track

A Reliable and Scalable Service Bus Based on Amazon SQS 196
Sergio Hernández, Javier Fabra, Pedro Álvarez, and Joaqúın Ezpeleta

A Comparison of On-Premise to Cloud Migration Approaches 212
Claus Pahl, Huanhuan Xiong, and Ray Walshe

Migration of an On-Premise Application to the Cloud:
Experience Report . 227

Pavel Rabetski and Gerardo Schneider

Author Index . 243

Aeolus: Mastering the Complexity
of Cloud Application Deployment

Michel Catan1, Roberto Di Cosmo2, Antoine Eiche1, Tudor A. Lascu3,
Michael Lienhardt2, Jacopo Mauro3, Ralf Treinen2, Stefano Zacchiroli2,

Gianluigi Zavattaro3, and Jakub Zwolakowski2

1 Mandriva SA
{mcatan,aeiche}@mandriva.com

2 Univ Paris Diderot, Sorbonne Paris Cité, PPS, UMR 7126, CNRS
roberto@dicosmo.org, michael.lienhardt@inria.fr,

{treinen,zack,zwolakowski}@pps.univ-paris-diderot.fr
3 Lab. Focus, Department of Computer Science/INRIA, University of Bologna

{lascu,jmauro,zavattar}@cs.unibo.it

Cloud computing offers the possibility to build sophisticated software systems on
virtualized infrastructures at a fraction of the cost necessary just few years ago, but
deploying/maintaining/reconfiguring such software systems is a serious challenge. The
main objective of the Aeolus project, an initiative funded by ANR (the French “Agence
Nationale de la Recherche”), is to tackle the scientific problems that need to be solved in
order to ease the problem of efficient and cost-effective deployment and administration
of the complex distributed architectures which are at the heart of cloud applications.

The approach taken in Aeolus is to
bridge the gap between Infrastructure as
a Service and Platform as a Service. In
fact, as shown in the picture, applications
leveraging the power of the Cloud need
to allow efficient deployment and config-
uration of their components at the level
of IaaS and at the level of Services. For
this, it is necessary to develop advanced
tools that propose a deployment config-
uration according to the requirements of
the user or of a higher level application.

Integrated solutions to this problem
needs to deal at the same time with both
fine grained software components, like
packages to be installed on one single
virtual machine, and coarse grained ser-
vices possibly obtained as composition
of distributed and properly connected
sub-services. To this aim, in [3] we have
proposed the Aeolus component model:
a component is a grey-box showing rel-
evant internal states and the actions that

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 1–3, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 M. Catan et al.

can be acted on the component to change state during deployment and reconfigura-
tion, each state activates provide, require and conflict ports, active require ports must be
bound to active provide ports of other components and active conflict ports prohibit the
presence of components with specific active ports.

In the Aeolus component model, as
depicted, one can express also numerical
constraints indicating the maximal num-
ber of require ports that can be connected
to a provide port, as well as a minimal
number of provide ports that need to be
connected to a require port. In the exam-
ple, for instance, the wordpress ser-
vice require two instances of the mysql
database (for example, to have both a pri-
mary and a backup instance).

Based on the Aeolus formalization of
software components, we have studied
the reconfigurability problem: given an
initial configuration, an universe of avail-
able components, and a target compo-
nent, verify the existence of a sequence

of low-level actions that bring the initial configuration to a new one in which the target
component is correctly deployed. This study (see [3,2] for the details) allowed us to
precisely characterize the theoretical limits of the reconfigurability problem: it is unde-
cidable in the general case, EXP-Space hard if no numeric constraints are considered,
and Polytime if also conflicts are not taken into account.

The current research in Aeolus is devoted to the identification of efficient solutions.
We plan to gain effectiveness by identifying interesting sub-cases in which feasible
solutions are possible. The Zephyrus tool [1] is a first achievement along this direction.

Zephyrus operates on a simplified cloud configuration model, abstracting over the
dynamic aspect of Aeolus, and focusing on the problem of finding a target final config-
uration. When searching for such a configuration that satisfies a user reconfiguration re-
quest, Zephyrus takes into account multiple factors: the current cloud deployment status,
the software universes (repository of available components on the different machines)

Aeolus: Mastering the Complexity of Cloud Application Deployment 3

and desired optimization criteria (e.g. minimize the amount of deployed machines and,
hence, the total cost of operation). Zephyrus is guaranteed to find an optimal solution if
one exists, and to do so relies on an external constraint solver. Description of the soft-
ware components that Zephyrus can grasp includes information about their dependen-
cies, as well as resource consumption information (e.g. memory, bandwidth, disk space,
etc.) and the distribution packages which they require to work properly. Thanks to this
last piece of information, Zephyrus can assign components to virtual machines guar-
anteeing that they are actually installable there. We are currently extending Zephyrus
with simple internal states like installed, running, and stopped. We have already imple-
mented a prototype that computes a sequence of state transitions under the assumption
that the initial configuration is empty and that the numerical constraint and the conflicts
are considered only in the final configuration.

In order to practically experiment and trial our tools in an industrial environment, we
are currently developing a n-tiers application deployment engine. This engine applies,
on an IaaS, a final configuration proposed by the Zephyrus tool. First, this tool provi-
sions the required virtual machines thanks to the cloud operating system Openstack.
When the virtual machines are running, we go to the second step which is installation
and configuration. In this step, the engine will connect to each virtual machine involved
in the n-tiers application to install required packages and configure services. This is
done using the deployment tool MSS (Mandriva Server Setup). Finally, the third step
consists of launching each services in order to have an application running. These steps
are performed, without any human interaction, by combining the MSS configuration
informations and the Zephyrus solution. Currently, we have already deployed a varnish
load balancer with several instances of Wordpress. We are now integrating more exam-
ples with complex databases configuration containing master and slave requirements.

As future work, we plan to extend the Aeolus model to deal also with different ad-
ministrative domains to support a more realistic representation of complex and possi-
bly multi-cloud applications. In fact, different administrative domains could impose to
contemporaneously deal with different deployment and reconfiguration policies. At the
moment, the unique form of heterogeneity that we are able to deal with in the Zephyrus
model is at the level of virtual machines: those could provide different resource levels
as well as different universes of basic packages depending on the installed operating
system.

References

1. Di Cosmo, R., Lienhardt, M., Treinen, R., Zacchiroli, S., Zwolakowski, J.: Optimal provision-
ing in the cloud. Technical report, Aeolus project (Juin 2013),
http://hal.archives-ouvertes.fr/hal-00831455

2. Di Cosmo, R., Mauro, J., Zacchiroli, S., Zavattaro, G.: Component reconfiguration in the
presence of conflicts. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP
2013, Part II. LNCS, vol. 7966, pp. 187–198. Springer, Heidelberg (2013)

3. Di Cosmo, R., Zacchiroli, S., Zavattaro, G.: Towards a formal component model for the cloud.
In: Eleftherakis, G., Hinchey, M., Holcombe, M. (eds.) SEFM 2012. LNCS, vol. 7504, pp.
156–171. Springer, Heidelberg (2012)

http://hal.archives-ouvertes.fr/hal-00831455

A Service Delivery Framework

to Support Opportunistic Collaborations

Gregory Katsaros1, Erik Wittern1, Birgit Gray2, and Stefan Tai1

1 FZI - Research Center for Information Technology, Berlin, Germany
{katsaros,wittern,tai}@fzi.de
2 DW - Deutsche Welle, Germany

birgit.gray@dw.de

Abstract. The wide spread use of computing devices, such as smart
phones, cameras, and sensors results in abundance of available informa-
tion. When such information flows occur in a specific place, at a certain
time, and with the participating entities working together or sharing
information to achieve common goals, we refer to the outcome of an op-
portunistic collaboration. In this paper we define and analyse this new
collaboration domain and present a framework through which oppor-
tunistic collaboration services can be provisioned. We describe in detail
the processes that the framework supports, including the modeling of
opportunistic collaborations, the collaboration service creation, and the
participation management. We evaluate the framework through a use
case scenario in the context of participatory journalism in high-profile
news events.

Keywords: opportunistic collaborations, services, collaboration, model-
driven engineering, Cloud platform.

1 Introduction

Collaboration is the social paradigm of people working together towards achiev-
ing a common goal. From an IT perspective, collaboration is “[...] the process
in which entities share information, resources and responsibilities to jointly
plan, implement and evaluate a program of activities to achieve a common
goal” [1]. The same principle can be applied when describing distributed sys-
tems, with their contributing entities sharing and exchanging information, ser-
vices, resources and responsibilities in order to reach a desired outcome (i.e., as
outlined by the corresponding application requirements).

In collaboration networks, nowadays, human participants can exchange infor-
mation through different channels, including mobile phones, tablet computers,
connected cameras or wearable sensors. The adoption of such smart devices
transforms each of the participants into a moving gateway of information (to
be consumed or being produced), resulting in a mesh of active, communicating
things. Besides, an increasing number of real-world entities are equipped with
sensors and actuators and are connected with the Internet, forming the so called
Internet of Things (IoT) [2]. Through the effective utilization of available in-
formation flows in terms of collaborations, everyday challenges can be tackled

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 4–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Service Delivery Framework to Support Opportunistic Collaborations 5

and new opportunities can be realized. For example, the visitors of a high pro-
file sports event, by sharing their position, they could create a real-time map of
people participation around the stadium premises. Therefore, the digital infor-
mation that is produced by all entities of a community could be exploited either
for the creation of ICT services (e.g. best route), which could be offered directly
back to the people, or for knowledge creation on behalf of the organizers, in a
crowd-sourcing manner. [3]

These new circumstances create novel types of collaborations which are op-
portunistic. We define opportunistic collaborations in the following way:

Definition 1. Opportunistic collaborations take place at a certain time and a cer-
tain location. In them, participants aim to achieve common and/or compatible
goals.

space

€

goalsusers

time

collaboration
opportunistic

1 2

3 4

Fig. 1. The Opportunistic Collaboration realization through the intersection of goals,
time and space

As depicted in Figure 1, the collaborations considered in this paper are oppor-
tunistic, in that they support participants in achieving a common or compatible
goal (Figure 1, graph 1). They exist in conjunction with a timely limited occasion
such as short-lived events (Figure 1, graph 2) and occur on relatively short no-
tice, therefore, related services must be provisioned and placed quickly with little
effort. On the other hand, opportunistic collaborations are linked with a certain

6 G. Katsaros et al.

location (Figure 1, graph 3), for example, a specific venue or geographic location.
Participants may only take part in a collaboration if they are situated within the
area. The high level of volatility of the participants even challenges the establish-
ment of collaboration in this dynamic and constantly evolving environment. To
what is more, the different technical requirements and capabilities of each par-
ticipant in a collaboration hardens the interoperability, hence the increased par-
ticipation. Finally, the usage patterns of an opportunistic collaboration is based
on open and massive participation, thus, the mechanism serving the collabora-
tion should be flexible in terms of capacity. Therefore, a centralized service-based
solution is more appealing than an ad-hoc collaboration implementation.

In this context, our motivation for this work lies on the the need of tools
and mechanisms to design and deploy collaboration services that support such
opportunistic collaborations. These services must have short development cycles
and short time-to-market, should take into consideration the diversity of data
and resources, and use Cloud-enabled technologies to allow the scalability and
reconfiguration during runtime.

Definition 2. A collaboration service is an on-line offering that allows for the
participants of an opportunistic situation to engage themselves in the collabora-
tion and to share or consume information and resources in a dynamic manner.

In this publication we present a framework which allows the modeling and
provisioning of opportunistic collaboration services. In section 2 we present the
framework in detail, in section 3 we validate our approach by conceptualizing a
use case from the domain of participatory journalism. We discuss related work
from diverse areas in section 4, before we conclude in section 5.

2 Collaboration Service Creation Framework

The proposed framework envisions the rapid development and provision of ser-
vices to serve collaboration scenarios as illustrated in Figure 2. The stakeholders
in the designed system are on the one hand the participants in the opportunistic
collaboration scenario (consumers of the service) and on the other hand the col-
laboration service developers(CSDs) that are designing and offering the service.

The participants are represented by entities that offer their resources (stor-
age, computation, video streams etc.), which make themselves available to the
framework by registering through provided interfaces.

Consequently, the modeling of collaboration services and the definition of the
goals are performed by the CSD. Given that the CSD identifies the opportunity,
he specifies a collaboration model and rules that will guide the participants to-
wards achieving the corresponding goals in the scenario. Therefore, the resulting
collaboration service is owned and managed by him. One CSD can own multiple
collaboration services for the same or different location, time, scenario etc.

Finally, the collaboration service will allow participants to join the collabo-
ration network and interact with each other, following the rules and conditions
that the CSD has defined in the model. Considering these entities’ capabilities

A Service Delivery Framework to Support Opportunistic Collaborations 7

Collaboration
Service Developers (CSDs)

Collaboration service B
Collaboration service A

Collaboration service
creation framework

IaaS
IaaS

Collaboration service
provisioning

P
ar

ti
ci

p
an

ti
o

n
m

an
ag

em
en

t

Colla
boratio

n

modelin
g

Collaboration

Participants

Fig. 2. Realization of opportunistic collaboration services

of producing data (for example, location data, photos and videos) and also con-
suming data, and based on the selected role, they can act as both consumer and
producer of information.

The motivation of the CSDs in order to engage themselves and use such frame-
work is that they could fast and simple provision custom services for specific
events or situations. Those services would allow information exchange between
participating entities either for enhancing the user-experience of the visitors /
participants to the event or in order to assist the organizers by providing them
additional information and therefore better perspective.

The incentives for participation to such collaboration would be given by the
creator of the opportunistic collaboration service. To this end, for example, an
opportunistic collaboration scenario during a sports event taking place in a cer-
tain location for a few days (e.g. European Basketball finals) could be based on a
credit system: participants when sharing information (e.g. photos, audio stream
etc.), and therefore becoming producers, they collect credits which can then
spend by becoming consumers in the opportunistic collaboration, or cash into
other services or presents provided by the organizers. The investigation and im-
plementation of such incentives mechanisms is out of the scope of our work while
it belongs to a business plan analysis. The focus of this work is the definition
of opportunistic collaboration principles and the presentation of the framework
that allows the provisioning of such services. The additional tools that could
make the proposed concept a complete ready-to-use solution (e.g. mobile client
application, graphical interface for modeling etc.) are not being described in this
publication.

8 G. Katsaros et al.

The collaboration service provisioning that is offered by the framework is
divided into three major scientific and technical processes: 1) participation man-
agement, 2) collaboration modeling and 3) collaboration service provisioning.
Each process is being accomplished be a set of components of the framework as
is being presented in the architecture diagram illustrated in Figure 3.

Collaboration service creation framework

Participation Manager

Register
ed

Users

Participants
entities

abstractions
library

Collaboration
Modelling

Environment

Model Builder
Collaborat
ion model
repository

Policy Definition
Environment

Service
image

repository

Collaboration
Service Builder

Collboration
Service Deployer

& Manager

Web application
interface for the

definition and design
of the collaboration

model

Web application
interface for the

definition and of the
goals that are

driving the
collaboration

Service
reposito

ry

Interface for account
management,
participants

registration to
collaborations etc

Deployment of
Collaboration

Service onto IaaS
infrastructure and
management of

operation

Participation management processCollaboration modeling process

Collaboration service provisioning process

Fig. 3. Architecture of our framework for provisioning opportunistic collaboration
services

In the following sections we present the framework’s architecture and describe
each process in detail.

2.1 Participation Management Process

The first element of the collaboration service provisioning framework is the man-
agement of participation of the framework itself as well as of the collaboration
service during runtime (smart devices, IoTs etc.). All involved entities must be
registered using a respective profile of participation. The Participation Manager
component is responsible for exposing the interfaces towards the users of the
framework (i.e., CSDs) as well as the possible users of a collaboration service
(i.e., participants). In the case of the collaboration service participants, this pro-
file includes an abstraction of the registered entity, which must be created for
every type of entity. The objective of this registration process is twofold: (a)
define and enable interfaces of several heterogeneous information and service
entities, (b) create an active pool of mobile devices, sensors and actors with
which future collaborations can be formed. Through this process the protocol
and technology for the collaboration operation are also specified. With regard

A Service Delivery Framework to Support Opportunistic Collaborations 9

to the framework, the participation of the CSDs must be managed in order for
them to have access to the tools and services of the framework. The registered
users and the abstracted interfaces are being stored in the Registered users and
Participants entities abstractions library repositories, as illustrated in Figure 3.

target: gpsCoordinates
radius: Integer

Location

type: participantType
name: String
location: gpsCoordinates
timestamp: Date

Participant

type: roleType
access: access

Role

1…*

startDate: Date
endDate: Date

Time
description: String

Goal

type: interfaceType
state: state

Interface

type: resourceType
...

Resource

title: String
Opportunistic Collaboration

1…*

1…*

1…*

Producer
Consumer

roleType
<<enumeration>>

mobile camera sensor
Web service
Web HTML editor
e.t.c.

interfaceType
<<enumeration>>

photo file
video stream
HTML file
e.t.c.

resourceType
<<enumeration>>

Enabled
Disabled

state
<<enumeration>>

1…* 1…* 1…*

Public
Private

access
<<enumeration>>

Fig. 4. Opportunistic collaboration reference model

2.2 Collaboration Modeling Process

The main offering of the framework results from its support mechanisms for CSDs
to accelerate the creation of new collaboration services. The first task in that con-
text is to identify and analyze the requirements of an opportunistic collaboration.
Hence, the CSD creates a collaboration model that describes the potential par-
ticipants, the information flows between them, and their roles. The time and the
location factors of an opportunistic collaboration are being explicitly expressed
within the model while the goal of it is being captured by the model through the
constraints definition as well as by the overall model structure.

Figure 4 illustrates the reference model for modeling opportunistic collab-
orations. Every participant has a certain role and an interface that supports
information exchange. The resourceType and the interfaceType are enumeration
types that are being defined during the registration process by the Participation
Manager. Furthermore, the state of an interface can either be enabled (in the
sense that is an active participant of the collaboration) or disabled. The role of
a participant can formally be specified as producer or consumer of information.

10 G. Katsaros et al.

To model a prosumer, the participant is modeled twice with different roles each
time. Every role can be accessed publicly or privately. In a public role partici-
pants are allowed to join it during runtime while in a private one the CSD must
define the participant’s information during design-time. Additional roles can be
defined by the CSD by extending the model.

The modeling process is realized through the Collaboration Modeling Environ-
ment component of the proposed framework. Using this component, the CSD
can design the collaboration scenario, specify the requirements and constraints,
and generate the specification file that will be used for the service development.
An instance of a collaboration model depicts effectively the collaboration sce-
nario and application that the CSD wants to realize and after the design process
is being built and stored in a repository.

The application logic and coordination of any possible information process-
ing functions is being introduced in the collaboration modeling process through
the Policy Definition Environment component. In corresponding tasks, the CSD
can add on top of the designed model certain rules and constraints that help him
achieve the goals of the opportunistic collaboration. Those policies will be incor-
porated into the collaboration service that will be instantiated later and triggered
automatically based on the information flow between the participants. The real-
ization of this mechanism is done through a syntax inspired by the Object Con-
straint Language (OCL) [4] and adjusted to our needs. Through this descriptive
syntax the CSD can define rules, operations or execute functions on top of the
model. The syntax of our rule definition language is presented in Table 1.

Table 1. Rules and constraints definition notation

Predefined types Operation

Context Defines an operation which is being applied upon a model
entity

Pre Pre-condition with regard to an operation. Must return
TRUE or FALSE. Represents what must be true before
the operation is executed.

Post Post-condition with regard to an operation. Must return
TRUE or FALSE and must be evaluated after a pre-
condition. Represents what will be true after the oper-
ation is executed.

Exec Executable condition. It executes a pre-defined function
and can be evaluated in relation with or without a pre-
or a post-condition.

and, or, xor, not,
implies, if-then-else,
while

Logical operators that return a boolean value.

==,<, >, != Comparison operators used with logical operators.

function name(arg1,
... , argN)

Execution of a function with the name function name
and the arguments listed in the parenthesis. The function
should be found in the library, either provided by the
platform or added by the CSD.

A Service Delivery Framework to Support Opportunistic Collaborations 11

An example syntax for constraining the location of the opportunistic collab-
oration is the following:

Context: Opportunistic Collaboration

Pre: withinRange(opportunistic_collaboration->Participant.location,

opportunistic_collaboration->Location.target,

opportunistic_collaboration->Location.radius)

In this example, the participant must be within the range of the defined
location. The context specifies the entity of the model that the policy is being
applied to and the Pre stands for a pre-condition constraint. There can be post-
conditions as well as executables (exec). The developer, depending on the type
of the resources in the modeled collaboration, can introduce, for example, a rule
on a video streaming resource to not transmit the video if the brightness of
the image is too low. This feature will also enable the introduction of security
restrictions on the data transmitted from each information node. At this point
we should note that the definition of the constraints might seem complicated
and time consuming but in the final developed system such complexity would
be hidden behind graphical rule definition interfaces (e.g. rule definition within
email clients). Hence, here we are explaining the logic and the concept behind
that functionality.

2.3 Collaboration Service Provisioning Process

In order to allow open participation, improve the interoperability and also re-
move the participation overhead from the end user, the realization of the col-
laboration is necessary to be realized through a centralized service and not in
a P2P fashion. To this end, the provisioning of the opportunistic collaboration
process is an important part of the framework and is being achieved through
a set of components described bellow. The Collaboration Service Builder and
the Collaboration Service Deployer & Manager are responsible for the respec-
tive tasks. In the beginning, the model of a scenario along with the policies
defined are being transformed to a virtual machine image (VMI) through Model
Transformation Tools integrated into the framework. This image can then be de-
ployed to Cloud infrastructures. It includes all the necessary interfaces that are
defined in the model and exist in the framework’s registry and represents the col-
laboration service that will serve the opportunistic collaboration. Following the
image creation is the deployment and management of the service. The respective
component deploys the image in an Cloud provider. The details of deployment
process depend on the hosting environment of the framework and therefore we
will not go into details at this point. This instantiation process results in the
delivery of a collaboration service, provided as a Cloud service offering, which
allows for the rapid realization of the described collaborative situation. The re-
alization of the collaboration service as a Cloud-based offering allows the CSD
to modify the collaboration model and re-deploy the service during runtime. In
this sense, the proposed system acts as an accelerator for the creation of services
in order to harness dynamically appearing collaboration potentials.

12 G. Katsaros et al.

3 Use Case: Supporting Data-Driven Reporting
from Predictable, High Profile News Events

To illustrate how our framework functions with actual collaboration opportuni-
ties and to show its applicability, we here present a realistic use case from the
domain of data-driven reporting [5].

3.1 The Application Domain

News events and other happenings of public interest often draw large media au-
diences. They include, for example, major sports championships, cultural perfor-
mances, speeches by politicians, election debates, event-driven press conferences,
organized demonstrations, or the aftermaths of sudden news events.

News journalists report from such events. They have to deal with an ever
increasing volume of data in order to conduct their work in the digital age,
stemming from digital devices, social networks, open sensor networks, smart city
objects, or even publicly operated drones. These data sources must be managed
in addition to traditional data streams from correspondents, news agencies, or
outside broadcast vans. A news editor is regularly tasked with planning for
predictable, high profile news events.

Journalists and editors should consider any available information for inclusion
in their reports. They would ideally require tools, which allows them to select,
combine and receive real-time data feeds from digital devices, sensor networks,
or sensor-enabled objects. For the date or period in question, news editors need
to know which data feeds are available, i.e. which are physically present in the
location and which are reliable as well as legally compliant.

target: 37 23.516 -122 02.625
radius: 2km

Location

type: Field journalist
name: Birgit
location: 48.2188°N,
11.6248°E
timestamp: 2012-04-13 T
10:45

Participant

type: Producer
access: Private

Role

description: Sport event
coverage

Goal

type: Video
stream

Resource

Title: Data driven journalism
Opportunistic Collaboration

name: mobile
camera sensor
state: Enabled

Interface

type: Photo file
Resource

type: Editor
name: Erik
location: 52.5233°N,
13.4127°E
timestamp: 2012-04-13 T
10:45

Participant

type: Consumer
access: Private

Role

name: Web
service
state: Enabled

Interface

type: Photo file
Resource

type: Visitor
name: Greg
location: 48.2188°N,
11.6248°E
timestamp: 2012-04-13 T
10:45

Participant

name: mobile
camera sensor
state: Enabled

Interface

type: Photo file
Resource

type: Producer
access: Public

Role

name: Web
service
state: Enabled

Interface

type: Video
Stream

Resource

startDate: 12/04/2012
endDate: 15/04/2012

Time

type: Consumer
access: Private

Role

type: Photo file
Resource

name: mobile
camera sensor
state: Enabled

Interface

type: Photo file
Resource

type: Static Camera
name: NWCorner
location: 48.2188°N,
11.6248°E
timestamp: 2012-04-13 T
10:45

Participant

name: CCTV
camera sensor
state: Enabled

Interface

type: Video
stream

Resource

type: Producer
access: Private

Role

Fig. 5. Data driven journalism collaboration model

A Service Delivery Framework to Support Opportunistic Collaborations 13

Specifying the Use Case’s Collaboration
The scenario that we are going to present is referring to timely limited high
profile athletics event that is taking place in a sport facility (e.g. stadium). The
specified participants of this scenario are:

– Visitors of the sports event act as participants in the collaboration service.
They dynamically enter and leave the collaboration and share resources with
other participants through their mobile camera sensors, thus acting as pro-
ducers of information.

– Field journalists located at the premises of the sport’s facility report to
the editor using their smart, mobile devices. They produce information using
their smart phones (e.g., they stream video) and also consume information
provided by visitors. Thus, field journalists obtain a real-time overview of
the on-going activities and can therefore better organize the on-site coverage
in total.

– News editor responsible for this event acts as a consumer alone. He receives
the information produced by the field journalists as well as the dynamic
visitor participation. By utilizing this information flow, he can orchestrate
the movement of the journalist and produce in real-time the reportage for
the sport event. He is also fulfilling the role of the CSD for the offline design
of the collaboration model.

– Static Camera provided by the organizers of the sports event located in
the NW corner of the stadium. It is acting as a producer participants and is
able to send live video stream through its interface.

The collaboration model of the described opportunistic collaboration scenario
is presented in Figure 5. We should note that for the actual implementation of
this conceptual use case there might be extra tools need that are built on top
of our framework. To this end we are assuming that participants (consumers or
producers) of this opportunistic collaboration are using a client application to
visualize the collaboration itself. Through such application the editor and the
field journalist can request resources from the producer entities. The following
set of constraints is defined on top of the presented scenario:

Context: Opportunistic Collaboration

Pre: ((opportunistic_collaboration->Participant.type == "Field Journalist")

AND (opportunistic_collaboration->Participant.type == "Visitor")

AND (opportunistic_collaboration->Participant.type == "Static Camera"))

AND (inRange(opportunistic_collaboration->Participant.location,

opportunistic_collaboration->Location.target,

opportunistic_collaboration->Location.radius))

Post: opportunistic_collaboration->Participant->Role->Interface.state = Enabled

Context: Role

Pre: self.type=="Producer"

Exec: applyImageFilter(self->Interface)

The first constraint, which applies to the whole model, includes a pre-condition
for the existence of the collaboration stating that the participants with the type

14 G. Katsaros et al.

“Field Journalist”, “Visitor” and “Static Camera” must be within the range
of the defined collaboration location (Interface.state=Enabled). As a result the
“Editor” of the scenario could be in a different location but still receive the
feeds from the information producers which are restricted to a certain location.
The second constraint applies to the Role entity of the model and has the pre-
condition that the role type should be “Producer”. In that case the exec condition
must be applied as well, which in this case is the execution of the function
“applyImageFilter” on the interface of the “Producer” role. In other words, the
content transmitted from the producers will subject to an image correction filter
that will be applied by this function. The function is being provided by the
CSD during the constraint definition step and is being incorporated within the
collaboration service image.

Through this conceptual validation of the opportunistic collaboration model-
ing we can verify the applicability of the proposed approach in scenarios with
certain usage patterns. The location and time specific requirements of the news
event are captured by the model and the presented constraint. The participants,
the field journalists and the static camera must be within the specified range,
while the editor could be anywhere. The concrete realization of information
transmission, on the other hand, depends on the implementation of the infor-
mation interfaces. Thus, our model is principally capable of handling diverse
information transmission technologies by defining specific interfaces in the re-
spective entities. To what is more, successful adaptation of collaboration services
in the data-driven journalism context requires processing of real-time informa-
tion flows. Our model specifies the creation and transfer of information in terms
of involved roles being producer or consumer. In addition, handling potentially
tremendous amounts of information requires effective processing means like fil-
tering of legally or quality-wise inappropriate information. Using our frame-
work’s proposed constraint definition, we are able to specify the (automatic)
pre-processing of information, which can be used for the outlined purposes.

4 Related Work

We focus related work on two areas: first, we consider existing approaches in the
area of collaboration modeling, which is at the heart of our approach. Second,
we consider related work regarding Cloud service deployment.

4.1 Collaboration Modeling

A fundamental question addressed in related work regarding generic collabora-
tionmodels is whether modeling approaches can support the development of col-
laboration technologies [6], corresponding to the premise of our collaboration ref-
erence model. The authors present eight collaboration modeling approaches, and
conclude that with them can contribute to the requirements analysis, choosing or
developing new collaboration capabilities, adoption, and maximizing
benefit from technologies. In this sense, the authors support our idea of utiliz-
ing modeling approaches to improve the realization of collaboration scenarios. “A

A Service Delivery Framework to Support Opportunistic Collaborations 15

Reference Model for Collaborative Networks” (ARCON) is a modeling framework
for capturing collaborative networks [7]. Its goal is to provide a generic abstract
representation of collaborative networks a) to better understand their
involved entities and relations among them and b) to provide basis for more spe-
cific models for manifestations of collaborative networks.While ARCON provides
a very complete referencemodel, it does not specifically focus on opportunistic col-
laborations. In the field of ad-hoc networks there have been modeling structures
presented for workflows[8] as well as opportunistic service compositions[9]. Such
solutions usually propose decentralized strategies, which in our case could not ful-
fill our requirements as we explained in previous section. Other approaches focus
more specifically on modeling the collaboration in the context of collaboration
models for the Internet of Things. It has been proposed to use agent models
to capture how sensors in a network can collaborate [10]. The model includes var-
ious types of software agents that realize sensor collaboration. Other approaches
model collaboration between Internet of Things (IoTs) entities [11]. For collabora-
tions, devices are abstracted as device-orientedWeb services which are composed
in processmodels. Further, this approach does not include aspects like temporal or
local validity, which we address. The “pervasive computing supported collabora-
tive work” model (PCSCW) aims to seamlessly integrate smart devices to enable
the collaboration of users [12]. A task model defines collaboration processes that
make use of resources defined in a resource model, under consideration of device
collaboration rules [13]. These rules define behavior of resources within a collab-
oration, for example, to switch the means of data communication given a certain
threshold is reached. Despite not targeting opportunistic collaborations specifi-
cally, PCSCW’s approach is very similar to our perception of collaboration mod-
eling and did and will continue to influence our work.

Some ideas exist with regard to utilizing smart phones (and their vari-
ous sensors) in collaboration scenarios. It is proposed to use smart phone
cameras for collaborative road advisories [14], or in combination with online
social networks for collaboration in the context of opportunistic scenarios [15].

4.2 Cloud Service Delivery

Cloud service delivery requires the creation of a service in the sense of a vir-
tual machine image, which can be run on Cloud infrastructure or platforms.
Our framework utilizes model-driven engineering (MDE) approaches for this
purpose. In MDE, models describing software are created instead of manually
implementing software. The main goal of MDE is to better cope with increasing
development complexities, avoiding for example errors or memory leaks intro-
duced through manual software implementation [16]. The created models are
automatically transferred to executable software. Arguments for MDE include
the increased abstraction from the software’s underlying computing environ-
ment, allowing engineers to focus on the software solution instead of the details
of the implementation [17].

16 G. Katsaros et al.

Cloud computing can be beneficially combined with MDE in two ways [18]:
First, MDE can be utilized to automate the development of Cloud services. On
the infrastructure level, it has been proposed to use MDE for the configura-
tion, deployment, and management of virtual machines [19]. The approach uses
feature models from the software engineering domain to capture the configura-
tion options of virtual machines and uses these models to drive the deployment
process. On the application level, for example, the “model-driven approach for
the design and execution of applications on multiple Clouds” (MODAClouds)
has been presented [20]. By using MDE, the approach aims to enable the cre-
ation of services specific for different (and potentially multiple) Clouds. Second,
MDE can be performed using Cloud services. Multiple service providers offer
integrated development environments that can be accessed as Software-as-a-
Service 1. Also, modeling capabilities can be offered as Software-as-a-Service 2.
Related research addresses questions like collaboration, revision control, and con-
tinuous integration [21]. In the context of IoT, it has been proposed to simplify
the development and deployment of radio-frequency identification (RFID) re-
lated applications [22]. The approach uses blueprints, which act as architectural
patterns, to abstract from and ease the utilization of Cloud services. Software
modules, representing for example the RFID sensors, can then be combined using
a Cloud-based mash-up editor.

As far as the services lifecycle concerns specifications from OSLC (Open Ser-
vices for Lifecyle Collaboration) have being proposed for the development of
model-based methodologies for service discovery[23]. The proposed technique for
code generation and service orchestration would be considered for the implemen-
tation of the Collaboration Service Manager component of our framework. Our
framework foresees both approaches to combine MDE and Cloud computing for
Cloud service delivery: a platform that provides means for the model-driven de-
velopment of opportunistic collaboration services, using MDE to automatically
create, deploy, and operate the resulting services in the Cloud.

5 Conclusion

The high dynamics in which nowadays devices are created and their increased
interconnectedness, enabled by their interfaces, result in an active information
mesh. The effective collaboration between the members of that mesh could be
highly productive and raise new opportunities.

To this end, we presented an architectural framework through which one can
develop services to support opportunistic collaborations. The suggested method-
ology incorporates three processes: (a) the participation management, (b) the
opportunistic collaboration modeling, and (c) the service provisioning. In this
context, we designed and proposed a reference model for opportunistic collab-
orations. On top of that model, we defined a constraint language and syntax

1 For example the ”Cloud9 IDE”, see: https://c9.io/
2 For example Signavio’s BPMN process modeling offers, see: http://www.signavio.
com/products/process-editor/process-modeling/

https://c9.io/
http://www.signavio.com/products/process-editor/process-modeling/
http://www.signavio.com/products/process-editor/process-modeling/

A Service Delivery Framework to Support Opportunistic Collaborations 17

that can be used in order to express the logic and operation of an opportunistic
collaboration.

Furthermore, we performed a conceptual validation of the proposed method-
ology by applying the modeling process of the suggested system on a use case
from the data-driven reporting sector. In the specific scenario an opportunistic
collaboration between the field journalists, the visitors and the editor of a me-
dia/news agency is formed in order to facilitate and enhance the coverage of a
high-profile sports event. Using our modeling approach we were able to capture
all the necessary interactions that characterize the scenario. The time and lo-
cation constraints could be effectively expressed through the policy definition
language that we introduced.

Our future steps include the implementation of a user friendly interface 3 for
the modeling of opportunistic collaborations through which even non-experts
could design a collaboration scenario. In addition, we aim at implementing the
management components (participation and service manager) as RESTful ser-
vices that would keep resources for every entity. The evaluation of the proposed
implementation will be done in terms of: (a)time to publish a collaboration
service, (b) ease of collaboration modeling methodology, (c) capacity of partici-
pation, and (d) communication interfaces supported.

Overall, we strongly believe that our framework could be the baseline of a
platform to accelerate the development of opportunistic collaborations.

References

[1] Camarinha-Matos, L., Afsarmanesh, H.: Taxonomy of Collaborative Networks.
Technical report, Future Internet Enterprise Systems (FInES) Task Force on Col-
laborative Networks (March 2012)

[2] Kortuem, G., Kawsar, F., Sundramoorthy, V., Fitton, D.: Smart objects as build-
ing blocks for the internet of things. IEEE Internet Computing 14(1), 44–51 (2010)

[3] Leimeister, J.M., Huber, M., Bretschneider, U., Krcmar, H.: Leveraging crowd-
sourcing: Activation-supporting components for it-based ideas competition. J.
Manage. Inf. Syst. 26(1), 197–224 (2009)

[4] OMG: Object Constraint Language v2.0. Technical report, Object Management
Group (2006)

[5] Mirko, L.: Status and Outlook for data-driven journalism. European Journalism
Center: Data-Driven Journalism: What is there to learn? A Paper on the Data-
Driven Journalism Roundtable Held in Amsterdam on 24 August (2010)

[6] Poltrock, S., Handel, M.: Modeling Collaborative Behavior: Foundations for Col-
laboration Technologies. In: Proceedings of the 42nd Hawaii International Con-
ference on System Sciences (HICSS), pp. 1–10 (2009)

[7] Camarinha-Matos, L., Afsarmanesh, H.: The ARCON modeling framework. In:
Collaborative Networks: Reference Modeling. Springer, New York (2008)

[8] Huth, C., Smolnik, S., Nastansky, L.: Applying topic maps to ad hoc workflows
for semantic associative navigation in process networks. In: Proceedings of the
Seventh International Workshop on Groupware, pp. 44–49 (2001)

3 Such as Oryx Editor, https://code.google.com/p/oryx-editor/

https://code.google.com/p/oryx-editor/

18 G. Katsaros et al.

[9] Groba, C.: Towards opportunistic service composition in dynamic ad hoc envi-
ronments. In: Pallis, G., et al. (eds.) ICSOC 2011 Workshops. LNCS, vol. 7221,
pp. 189–194. Springer, Heidelberg (2012)

[10] Biswas, P.K., Qi, H., Xu, Y.: A Mobile-Agent-Based Collaborative Framework for
Sensor Network Applications. In: 2006 IEEE International Conference on Mobile
Adhoc and Sensor Systems (MASS), pp. 650–655 (October 2006)

[11] Chen, F., Ren, C., Dong, J., Wang, Q., Li, J., Shao, B.: A Comprehensive Device
Collaboration Model for Integrating Devices with Web Services under Internet
of Things. In: Proceedings of the 19th IEEE International Conference on Web
Services (ICWS). IEEE Computer Society, Los Alamitos (2011)

[12] Hamadache, K., Lancieri, L.: Role-Based Collaboration Extended to Pervasive
Computing. In: International Conference on Intelligent Networking and Collab-
orative Systems (INCOS 2009), pp. 9–15. IEEE Computer Society (November
2009)

[13] Hamadache, K., Lancieri, L.: Dealing with device collaboration rules for the PC-
SCW model. In: Kolfschoten, G., Herrmann, T., Lukosch, S. (eds.) CRIWG 2010.
LNCS, vol. 6257, pp. 233–248. Springer, Heidelberg (2010)

[14] Koukoumidis, E., Martonosi, M., Peh, L.S.: Leveraging Smartphone Cameras for
Collaborative Road Advisories. IEEE Transactions on Mobile Computing 11(5),
707–723 (2012)

[15] Liu, C.H., Hui, P.: Mobile Sensing for Social Collaborations. Technical report,
Deutsche Telekom Laboratories (2011)

[16] Schmidt, D.C.: Model-Driven Engineering. IEEE Internet Computing 39(2), 25–
31 (2006)

[17] Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley (2011)
[18] Bruneliere, H., Cabot, J., Jouault, F., et al.: Combining Model-Driven Engineer-

ing and Cloud Computing. In: Modeling, Design, and Analysis for the Service
Cloud-MDA4ServiceCloud 2010: Workshop’s 4th edn. (Co-Located with the 6th
European Conference on Modelling Foundations and Applications-ECMFA 2010)
(2010)

[19] Le Nhan, T., Sunyé, G., Jézéquel, J.-M.: A Model-Driven Approach for Virtual
Machine Image Provisioning in Cloud Computing. In: De Paoli, F., Pimentel,
E., Zavattaro, G. (eds.) ESOCC 2012. LNCS, vol. 7592, pp. 107–121. Springer,
Heidelberg (2012)

[20] Ardagna, D., Di Nitto, E., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria,
F., Casale, G., Matthews, P., Nechifor, C.S., Petcu, D., et al.: MODAClouds: A
model-driven approach for the design and execution of applications on multiple
Clouds. In: 2012 ICSE Workshop on Modeling in Software Engineering (MISE).
IEEE Computer Society (2012)

[21] Mikkonen, T., Nieminen, A.: Elements for a cloud-based development environ-
ment: online collaboration, revision control, and continuous integration. In: Pro-
ceedings of the WICSA/ECSA 2012 Companion Volume, WICSA/ECSA 2012.
ACM, New York (2012)

[22] Guinard, D., Floerkemeier, C., Sarma, S.: Cloud Computing, REST and Mashups
to Simplify RFID Application Development and Deployment. In: Proceedings of
the 2nd International Workshop on the Web of Things (WoT 2011). ACM, San
Francisco (2011)

[23] Biehl, M., Gu, W., Loiret, F.: Model-based service discovery and orchestration for
OSLC services in tool chains. In: Brambilla, M., Tokuda, T., Tolksdorf, R. (eds.)
ICWE 2012. LNCS, vol. 7387, pp. 283–290. Springer, Heidelberg (2012)

Probabilistic Topic Models

for Web Services Clustering and Discovery

Mustapha Aznag1, Mohamed Quafafou1, El Mehdi Rochd1, and Zahi Jarir2

1 Aix-Marseille University, LSIS UMR 7296, France
{mustapha.aznag,mohamed.quafafou,el-mehdi.rochd}@univ-amu.fr

2 University of Cadi Ayyad, LISI Laboratory, FSSM, Morocco
jarir@uca.ma

Abstract. In Information Retrieval the Probabilistic Topic Models were
originally developed and utilized for topic extraction and document mod-
eling. In this paper, we explore several probabilistic topic models: Prob-
abilistic Latent Semantic Analysis (PLSA), Latent Dirichlet Allocation
(LDA) and Correlated Topic Model (CTM) to extract latent factors from
web service descriptions. These extracted latent factors are then used to
group the services into clusters. In our approach, topic models are used
as efficient dimension reduction techniques, which are able to capture se-
mantic relationships between word-topic and topic-service interpreted in
terms of probability distributions. To address the limitation of keywords-
based queries, we represent web service description as a vector space and
we introduce a new approach for discovering web services using latent
factors. In our experiment, we compared the accuracy of the three prob-
abilistic clustering algorithms (PLSA, LDA and CTM) with that of a
classical clustering algorithm. We evaluated also our service discovery
approach by calculating the precision (P@n) and normalized discounted
cumulative gain (NDCGn). The results show that both approaches based
on CTM and LDA perform better than other search methods.

Keywords: Web service, Data Representation, Clustering, Discovery,
Machine Learning, Topic Models.

1 Introduction

The Service Oriented Architecture (SOA) is a model currently used to pro-
vide services on the internet. The SOA follows the find-bind-execute paradigm
in which service providers register their services in public or private registries,
which clients use to locate web services. SOA services have self-describing inter-
faces in platform-independent XML documents. Web Services Description Lan-
guage (WSDL) is the standard language used to describe services. Web services
communicate with messages formally defined via XML Schema. Different tasks
like matching, ranking, discovery and composition have been intensively studied
to improve the general web services management process. Thus, the web services
community has proposed different approaches and methods to deal with these

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 19–33, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

20 M. Aznag et al.

tasks. Empirical evaluations are generally proposed considering different simu-
lation scenarios. Nowadays, we are moving from web of data to web of services
as the number of UDDI Business Registries (URBs) is increasing. Moreover,
the number of hosts that offer available web services is also increasing signifi-
cantly. Consequently, discovering services which can match with the user query
is becoming a challenging and an important task. The keyword-based discov-
ery mechanism supported by the most existing services search engines suffers
from some key problems: (1) User finds difficulties to select a desired service
which satisfies his requirements as the number of retrieved services is huge. (2)
Keywords are insufficient in expressing semantic concepts. This is due to the
fact that the functional requirements (keywords) are often described by natural
language. To enrich web service description, several Semantic Web methods and
tools are developed, for instance, the authors of [9,19,1] use ontology to anno-
tate the elements in web services. Nevertheless, the creation and maintenance of
ontologies may be difficult and involve a huge amount of human effort [2,12].

To address the limitation of keywords-based queries, we represent web service
description as a vector and introduce a new approach for discovering web services
using a semantic clustering approach. Service Clustering aims to group together
services which are similar to each other. Our clustering approach is based on
probabilistic topic models. By organizing the web service data into clusters,
services become easier and therefore faster to be discovered and recommended
[17].

Probabilistic topic models are a way to deal with large volumes of data by
discovering their hidden thematic structure. Their added value is that they can
treat the textual data that have not been manually categorized by humans. The
concept of ”topic” consists on discovering clusters of textual data on similar
subjects. These clusters are obtained by calculating the occurrences of words
emerging together frequently in different independent texts. Formally, proba-
bilistic topic models use their hidden variables to discover the latent semantic
structure in large textual data.

In this paper we investigate using probabilistic machine-learning methods to
extract latent factors zf ∈ Z = {z1, z2, ..., zk} from service descriptions. We will
explore several probabilistic topic models : PLSA (Probabilistic latent semantic
analysis), LDA (Latent Dirichlet Allocation) and CTM (Correlated Topic Model)
and use them to analyze search in repository of web services and define which
achieves the best results. By describing the services in terms of latent factors, the
dimensionality of the system is reduced considerably. The latent factors can then
also be used to efficiently cluster services in a repository. In our experiments, we
consider that web services are mixtures of hidden topics, where a topic defines
a probability distribution over words.

The rest of this paper is organized as follows. Section 2 provides an overview
of related work. In Section 3 we describe in detail our service clustering and
discovery approach. Section 4 describes the experimental evaluation. Finally,
the conclusion and future work can be found in Section 5.

Probabilistic Topic Models for Web Services Clustering and Discovery 21

2 Related Work

In this section, we briefly discuss some of research works related to discovering
Web services. Although various approaches can be used to locate and discover
Web services on the web, we have focused our research on the service discovery
problem using a clustering method. The clustering methodology is a technique
that transforms a complex problem into a series of simpler ones, which can be
handled more easily. Specifically, this technique re-organizes a set of data into
different groups based on some standards of similarity. Clustering analysis has
been often used in computer science, as in data mining, in information retrieval,
and in pattern classification.

In [1], the authors proposed an architecture for Web services filtering and
clustering. The service filtering mechanism is based on user and application
profiles that are described using OWL-S (Web Ontology Language for Services).
The objectives of this matchmaking process are to save execution time and
to improve the refinement of the stored data. Another similar approach [15]
concentrates on Web service discovery with OWL-S and clustering technology.
Nevertheless, the creation and maintenance of ontologies may be difficult and
involve a huge amount of human effort [2,12].

Generally, every web service associates with a WSDL document that contains
the description of the service. A lot of research efforts have been devoted in
utilizing WSDL documents [8,2,12,13,7,14,17]. Dong et al. [8] proposed the Web
services search engine Woogle that is capable of providingWeb services similarity
search. However, their engine does not adequately consider data types, which
usually reveal important information about the functionalities of Web services
[11]. Liu and Wong [13] apply text mining techniques to extract features such
as service content, context, host name, and service name, from Web service
description files in order to cluster Web services. They proposed an integrated
feature mining and clustering approach for Web services as a predecessor to
discovery, hoping to help in building a search engine to crawl and cluster non-
semantic Web services. Elgazzar et al. [7] proposed a similar approach which
clusters WSDL documents to improve the non-semantic web service discovery.
They take the elements in WSDL documents as their feature, and cluster web
services into functionality based clusters. The clustering results can be used to
improve the quality of web service search results.

Some researchers use the proximity measures to cluster web services. Mea-
suring the proximity between a service and other services in a dataset is the
basic step of most clustering techniques [15,17]. If two vectors are closed to
each other in vector space, then they have similar service descriptions or func-
tional attributes depending on characteristics used for constructing the model.
Various techniques exist to measure the proximity of two vectors. Nayak et al.
[15] proposed a method to improve the Web service discovery process using the
Jaccard coefficient to calculate the similarity between Web services. Multidimen-
sional Angle is an efficient measure of the proximity of two vectors. It is used in

22 M. Aznag et al.

various clustering approaches [17]. This proximity measure applies cosine of the
angle between two vectors. It reaches from the origin rather than the distance
between the absolute position of the two points in vector space.

Ma et al. [14] proposed an approach similar to the previously discussed ap-
proaches [8,1,15] where the keywords are used first to retrieve Web services, and
then to extract semantic concepts from the natural language descriptions in Web
services. Ma et al. presented a service discovery mechanism called CPLSA which
uses Probabilistic Latent Semantic Analysis (PLSA) to extract latent factors
from WSDL service descriptions after the search is narrowed down to a small
cluster using a K-Means algorithm. The PLSA model represents a significant
step towards probabilistic modelling of text, it is incomplete in that it provides
no probabilistic model at the level of documents [3]. The Latent Dirichlet Allo-
cation (LDA) [3] is an attempt to improve the PLSA by introducing a Dirichlet
prior on document-topic distribution.

Cassar et al. [5,6] investigated the use of probabilistic machine-learning tech-
niques (PLSA and LDA) to extract latent factors from semantically enriched
service descriptions. These latent factors provide a model which represents any
type of service’s descriptions in a vector form. In their approach, the authors
assumed all service descriptions were written in the OWL-S. In [5], Cassar et
al. showed how latent factors extracted from service descriptions can be used
directly to cluster services in a repository; obtaining a more efficient clustering
strategy than the one obtained by a K-Means algorithm. The results obtained
from comparing the two methods (PLSA and LDA) showed that the LDA model
provides a scalable and interoperable solution for automated service discovery
in large service repositories. The LDA model assumes that the words of each
document arise from a mixture of topics, each of which is a distribution over
the vocabulary. A limitation of LDA is the inability to model topic correlation
[4]. This limitation stems from the use of the Dirichlet distribution to model the
variability among the topic proportions.

The Correlated Topic Model (CTM) has been developed to address the limi-
tation of LDA [4]. In CTM, topic proportions exhibit correlation via the logistic
normal distribution. One key difference between LDA and CTM is the inde-
pendence assumption between topics in LDA, due to the Dirichlet prior on the
distribution of topics (under a Dirichlet prior, the components of the distribu-
tion are independent whereas the logistic normal models correlation between the
components through the covariance matrix of the normal distribution). However,
in the CTM model, a topic may be consistent with the presence of other topics.
In this paper, we exploit the advantages of CTM to propose an approach for
web service discovery and use a novel semantic clustering algorithm to cluster
web services. In our approach, we utilized CTM to capture the semantics hidden
behind the words in a query, and the descriptions of the services. Then, we ex-
tracted latent factors from web service descriptions. The latent factors can then
be used to efficiently cluster services in a repository.

Probabilistic Topic Models for Web Services Clustering and Discovery 23

3 Web Service Clustering and Discovery Approach

In this section, we will first describe the necessary pre-processing of WSDL docu-
ment to construct a web service representation. We then discuss the probabilistic
machine-learning techniques used to generate the latent factors. Finally we ex-
plain how these latent factors are used to provide an efficient clustering and
discovery mechanism.

3.1 Web Service Representation

Generally, every web service has a WSDL (Web Service Description Language)
document that contains the description of the service. The WSDL document is
an XML-based language, designed according to standards specified by the W3C,
that provides a model for describing web services. It describes one or more ser-
vices as collections of network endpoints, or ports. It provides the specifications
necessary to use the web service by describing the communication protocol, the
message format required to communicate with the service, the operations that
the client can invoke and the service location. Two versions of WSDL recom-
mendation exist: the 1.11 version, which is used in almost all existing systems,
and the 2.02 version which is intended to replace 1.1. These two versions are
functionally quite similar but have substantial differences in XML structure.

To manage efficiently web service descriptions, we extract all features that
describe a web service from the WSDL document. We recognize both WSDL
versions (1.1 and 2.0). During this process, we proceed in two steps. The first
step consists of checking availability of web service and validating the content
of WSDL document. The second step is to get the WSDL document and read it
directly from the WSDL URI to extract all information of the document.

Before representing web services as TF-IDF (Text Frequency and Inverse Fre-
quency) [18] vectors, we need some preprocessing. There are commonly several
steps:

– Features extraction extracts all features that describe a web service from the
WSDL document, such as service name and documentation, messages, types
and operations.

– Tokenization: Some terms are composed by several words, which is a com-
bination of simple terms (e.g., get ComedyFilm MaxPrice Quality). We use
therefore regular expression to extract these simple terms (e.g., get, Comedy,
Film, Max, Price, Quality).

– Tag and stop words removal : This step removes all HTML tags, CSS compo-
nents, symbols (punctuation, etc.) and stop words, such as ’a’, ’what’, etc.
The Standford POS Tagger3 is then used to eliminate all the tags and stop
words and only words tagged as nouns, verbs and adjectives are retained.
We also remove the WSDL specific stopwords, such as host, url, http, ftp,
soap, type, binding, endpoint, get, set, request, response, etc.

1 http://www.w3.org/TR/wsdl
2 http://www.w3.org/TR/wsdl20/
3 http://nlp.stanford.edu/software/tagger.shtml

http://www.w3.org/TR/wsdl
http://www.w3.org/TR/wsdl20/
http://nlp.stanford.edu/software/tagger.shtml

24 M. Aznag et al.

– Word stemming: We need to stem the words to their origins, which means
that we only consider the root form of words. In this step we use the Porter
Stemmer [16] to remove words which have the same stem. Words with the
same stem will usually have the same meaning. For example, ’computer’,
’computing’ and ’compute’ have the stem ’comput’. The Stemming process
is more effective to identify the correlation between web services by repre-
senting them using these common stems (root forms).

– Service Matrix construction: After identifying all the functional terms, we
calculate the frequency of these terms for all web services. We use the Vector
Space Model (VSM) technique to represent each web service as a vector of
these terms. In fact, it converts service description to vector form in order
to facilitate the computational analysis of data. In information retrieval,
VSM is identified as the most widely used representation for documents
and is a very useful method for analyzing service descriptions. The TF-IDF
algorithm [18] is used to represent a dataset of WSDL documents and convert
it to VSM form. We use this technique, to represent a service description
in the form of Service Matrix. In the service matrix, each row represents a
WSDL service description, each column represents a word from the whole
text corpus (vocabulary) and each entry represents the TF-IDF weight of a
word appearing in a WSDL document. TF-IDF gives a weight wij to every
term j in a service description i using the equation: wij = tfij . log(

n
nj
).

Where tfij is the frequency of term j in WSDL document i, n is the total
number of WSDL documents in the dataset, and nj is the number of services
that contain term j.

3.2 A Probabilistic Topic Model Approach

In our approach, we apply probabilistic machine-learning techniques; Probabilis-
tic Latent Semantic Analysis (PLSA), Latent Dirichlet Allocation (LDA) and
Correlated Topic Model (CTM); to extract latent factors zf ∈ Z = {z1, z2, ..., zk}
from web service descriptions (i.e., Service Matrix). We use then the extracted
latent-factors to group the services into clusters. In our work, topic models are
used as efficient dimension reduction techniques, which are able to capture se-
mantic relationships between word-topic and topic-service interpreted in terms
of probability distributions. In our context, an observed event corresponds to
occurrence of a word w in a service description s.

The Probabilistic Latent Semantic Analysis (PLSA) is a generative statistical
model for analyzing co-occurrence of data. PLSA is based on the aspect model
[10]. Considering observations in the form of co-occurrences (si, wj) of words
and services, PLSA models the joint probability of an observed pair P (si, wj)
obtained from the probabilistic model is shown as follows [10]:

P (si, wj) =

k∑

f=1

P (zf)P (si|zf)P (wj |zf) (1)

We assume that service descriptions and words are conditionally independent
given the latent factor. We have implemented the PLSA model using the

Probabilistic Topic Models for Web Services Clustering and Discovery 25

PennAspect4 model which uses maximum likelihood to compute the parameters.
The dataset was divided into two equal segments which are then transformed
into the specific format required by the PennAspect. We use words extracted
from service descriptions and create a PLSA model. Once the latent variables
zf ∈ Z = {z1, z2, ..., zk} are identified, services can be described as a multinomial
probability distribution P (zf |si) where si is the description of the service i.The
representation of a service with these latent variables reflects the likelihood that
the service belongs to certain concept groups [14]. To construct a PLSA model,
we first consider the joint probability of an observed pair P (si, wj) (Equation
1). The parameters P (z), P (s|z) and P (w|z) can be found using a model fit-
ting technique such as the Expectation Maximization (EM) algorithm [10]. The
learned latent variables can be used to cluster web services. If a probability dis-
tribution over a specific zf when given a web service s is high, then the service
s can be affected to the cluster zf .

The Latent Dirichlet Allocation (LDA) is a probabilistic topic model, which
uses a generative probabilistic model for collections of discrete data [3]. LDA is
an attempt to improve the PLSA by introducing a Dirichlet prior on service-topic
distribution. As a conjugate prior for multinomial distributions, Dirichlet prior
simplifies the problem of statistical inference. The principle of LDA is the same
as that of PLSA: mapping high-dimensional count vectors to a lower dimensional
representation in latent semantic space. Each word w in a service description s
is generated by sampling a topic z from topic distribution, and then sampling a
word from topic-word distribution. The probability of the ith word occurring in
a given service is given by Equation 2:

P (wi) =

k∑

f=1

P (wi|zi = f)P (zi = f) (2)

Where zi is a latent factor (or topic) from which the ith word was drawn,
P (zi = f) is the probability of topic f being the topic from which wi was drawn,
and P (wi|zi = f) is the probability of having word wi given the f th topic.

Let θ(s) = P (z) refer to the multinomial distribution over topics in the service
description s and φ(j) = P (w|z = j) refer to the multinomial distribution over
words for the topic j. There are various algorithms available for estimating pa-
rameters in the LDA: Variational EM [3] and Gibbs sampling [20]. In this paper,
we adopt an approach using Variational EM. See [3] for further details on the
calculations. For the LDA training, we used Blei’s implementation5, which is a
C implementation of LDA using Variational EM for Parameter Estimation and
Inference. The key objective is to find the best set of latent variables that can
explain the observed data. This can be made by estimating φ(j) which provides
information about the important words in topics and θ(s) which provides the
weights of those topics in each web service. After training the LDA model, we
use the learned latent factors to cluster web services. If a probability distribution
θ(s) over a specific zf when given a web service s is high, then the service s can
be affected to the cluster zf .

4 http://cis.upenn.edu/~ungar/Datamining/software_dist/PennAspect/
5 http://www.cs.princeton.edu/~blei/lda-c/

http://cis.upenn.edu/~ungar/Datamining/software_dist/PennAspect/
http://www.cs.princeton.edu/~blei/lda-c/

26 M. Aznag et al.

The Correlated Topic Model (CTM) is another probabilistic topic model that
enhances the basic LDA [3], by modeling of correlations between topics. One key
difference between LDA and CTM is that in LDA, there is an independence as-
sumption between topics due to the Dirichlet prior on the distribution of topics.
In fact, under a Dirichlet prior, the components of the distribution are indepen-
dent whereas the logistic normal used in CTM, models correlation between the
components through the covariance matrix of the normal distribution. However,
in CTM, a topic may be consistent with the presence of other topics. Assume
we have S web services as a text collection, each web service s contains Ns word
tokens, T topics and a vocabulary of size W. The Logistic normal is obtained
by :

– For each service, draw a K-dimensional vector ηs from a multivariate Gaus-
sian distribution with mean μ and covariance matrix Σ : ηs ∼ N (μ,Σ)

– We consider the mapping between the mean parameterization and the nat-
ural parameterization: θ = f(ηi) =

exp η∑
i exp ηi

– Map η into a simplex so that it sums to 1.

The main problem is to compute the posterior distribution of the latent vari-
ables given a web service : P (η, z1:N , w1:N). Since this quantity is intractable, we
use approximate techniques. In this case, we choose variational methods rather
than gibbs sampling because of the non-conjugacy between logistic normal and
multinomial. The problem is then to bound the log probability of a web service :

logP (w1:N |μ,Σ, β) ≥ Eq[logP (η|μ,Σ)] +
∑N

n=1 Eq[logP (zn|η)]
+

∑N
n=1 Eq[log P (wn|zn, β)] +H(q)

(3)

The expectation is taken with respect to a variational distribution of the latent
variables :

q(η, z|λ, ν2, φ) =

K∏

i=1

q(ηi|λi, ν
2
i)

N∏

n=1

q(zn|φn) (4)

and H(q) denotes the entropy of that distribution (See [4] for more details).
Given a model parameters {β1:K , μ,Σ} and a web service w1:N , the variational

inference algorithm optimizes the lower bound (Equation 3)) with respect to the
variational parameters using the variational EM algorithm. In the E-step, we
maximize the bound with respect to the variational parameters by performing
variational inference for each web service. In the M-step, we maximize the bound
with respect to the model parameters. The E-step and M-step are repeated until
convergence. For the CTM training, we used the Blei’s implementation6, which
is a C implementation of Correlated Topic Model using Variational EM for Pa-
rameter Estimation and Inference. We estimate the topic-service distribution by

computing: θ = exp(η)∑
i exp(ηi)

. Where exp(ηi) = exp(λi +
ν2
i

2) and the variational

parameters {λi, ν
2
i } are respectively the mean and the variance of the normal

distribution. Then, we estimate the topic-word distribution φ by calculating the

6 http://www.cs.princeton.edu/~blei/ctm-c/index.html

http://www.cs.princeton.edu/~blei/ctm-c/index.html

Probabilistic Topic Models for Web Services Clustering and Discovery 27

exponential of the log probabilities of words for each topic. As already men-
tioned, the learned latent factors can be used to cluster web services. Thus, if a
probability distribution θ over a specific zf when given a web service s is high,
then the service s can be affected to the cluster zf .

The three topic models were trained using different number of classes (e.g 5
to 100) to compare the results (See Section 4).

The key idea of our approach is to cluster the services into a group of
learned latent variables, which can be achieved by computing the probability
P (latent variable|service) for each latent variable. The rationale for this is that
the dimensionality of the model is reduced as every web service can be described
in terms of a small number of latent factors (topics) rather than a large number
of concepts. With the maximum value of the computation used for the cluster
for a service, we can categorize services into their corresponding group. Conse-
quently, searching for a service inside a cluster can be performed by searching
for matching topics rather than matching the text describing the web service to
a set of keywords extracted from the user query.

Based on the clustered service groups, a set of matched services can be re-
turned by comparing the similarity between the query and the related topic,
rather than computing the similarity between query and each service in the
dataset. If the retrieved services are not compatible with user’s query, the second
best cluster would be chosen and the computing proceeds to the next iteration.

Service discovery aims to find web services with user required functionalities.
The service discovery process assumes that services with similar functionalities
should be discovered. In our work, we propose to use the probabilistic topic
model to discover the web services that match with the user query. Let Q =
{w1, w2, . . . , wn} be a user query that contains a set of words wi produced by a
user. In our approach, we propose to use the generated probabilities θ and φ as
the base criteria for computing the similarity between a service description and
a user query. For this, we model information retrieval as a probabilistic query to
the topic model. We note this as P (Q|si) where Q is the set of words contained
in the query. Thus, using the assumptions of the topic model, P (Q|si) can be
calculated by equation 5.

P (Q|si) =
∏

wk∈Q

P (wk|si) =
∏

wk∈Q

T∑

z=1

P (wk|zf)P (zf |si) (5)

The most relevant services are the ones that maximize the conditional proba-
bility of the query P (Q|si). Consequently, relevant services are ranked in order
of their similarity score to the query. Thus, we obtain automatically an efficient
ranking of the services retrieved.

4 Evaluation

Our experiments are performed out based on real-world web services obtained
from [21]. The WSDL corpus consists of over 1051 web services from 8 different

28 M. Aznag et al.

application domains. Each web service belongs to one out of eight service do-
mains named as: Communication, Education, Economy, Food, Travel, Medical
and Military. Table 1 lists the number of services from each domain.

Before applying the proposed service clustering and discovery, we deal the
WSDL corpus. The objective of this pre-processing is to identify the functional
terms of services, which describe the semantics of their functionalities. WSDL
corpus processing consists of several steps: Features extraction, Tokenization:,
Tag and stop words removal, Word stemming and Service Matrix construction
(See Section 3.1).

Table 1. Domains of Web services

Domain Services Domain Services

Communication 59 Geography 60
Economy 354 Medical 72
Education 264 Travel 161
Food 41 Military 40

4.1 Web Service Clustering Evaluation

In order to evaluate the effectiveness of the clustering technique, we use two
different measures: entropy and purity [23,22]. Suppose q classes represent the
partitioned web services (service domains), k clusters produced by our clustering
approach and n the total number of services.

– Entropy: The entropy measures how the various semantic classes are dis-
tributed within each group (cluster). Given a particular cluster Cj of size
nj , the entropy of this cluster is defined to be:

E(Cj) = − 1

log(q)

q∑

i=1

ni
j

nj
log(

ni
j

nj
) (6)

Where q is the number of domains in the dataset, and ni
j is the number

of services of the ith domain that where assigned to the j th cluster. The
averaged entropy of the clustering solution is defined to be the weighted sum
of the individual cluster entropies (Equation 7). In general, smaller entropy
values indicate better clustering solutions.

Entropy =

k∑

j=1

nj

n
E(Cj) (7)

– Purity: The purity measure evaluates the coherence of a cluster. It is the
degree to which a cluster contains services from a single domain. The purity
of Cj is formally defined as:

P (Cj) =
1

nj
maxi(n

i
j) (8)

Probabilistic Topic Models for Web Services Clustering and Discovery 29

Where maxi(n
i
j) is the number of services that are from the dominant

domain in cluster Cj and ni
j represents the number of services from cluster

Cj assigned to domain i.
The purity gives the fraction of the overall cluster size that the largest

domain of services assigned to that cluster. For a clustering solution, the
overall purity is then again the weighted sum of the individual cluster puri-
ties (Equation 9). In general, larger purity values indicate better clustering
solutions.

Purity =
k∑

i=1

ni

n
P (Ci) (9)

In our experiment, we compared the accuracy of three probabilistic clustering
algorithms (PLSA, LDA and CTM) to that of a classical clustering algorithm
(K-means). The eight service domains described previously (Table 1), are used as
the base classes to evaluate Purity and Entropy of clusters. Thus, we generate k
clusters using each algorithm starting with 5 clusters and increasing in steps of 5
up to 100 clusters. The results of Entropy and Purity for clustering solutions are
shown respectively in Figure 1(a) and 1(b). The results show that the clustering
method based on the CTM performs significantly than others algorithms. We
also note that LDA performs better than PLSA and K-means. The K-means is a
simple algorithm and does not an always converge in an optimal way. It depends
on the random factor of where the initial cluster centroids are generated. As
can be seen from Figure 1, CTM and LDA perform better than PLSA and K-
means for a large number of clusters. This makes them ideal solutions for web
services clustering in large dataset. The Correlated Topic Model allows each
service to exhibit multiple topics with different proportions. Thus, it can capture
the heterogeneity in grouped data that exhibit multiple latent factors.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 10 20 30 40 50 60 70 80 90 100

E
nt

ro
py

Number of Clusters

K-means
PLSA

LDA
CTM

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 10 20 30 40 50 60 70 80 90 100

P
ur

ity

Number of Clusters

K-means
PLSA

LDA
CTM

Fig. 1. (a) Entropy of clusters for the proposed clustering solutions. (b) Purity of
clusters for the proposed clustering solutions.

4.2 Web Service Discovery Evaluation

We also evaluated the effectiveness of web service discovery based on the three
probabilistic topic models (labeled PLSA, LDA and CTM). The probabilistic

30 M. Aznag et al.

methods are compared with a text-matching approach (labeled Text-Search).
For this experiment, we use the services description collected from the WSDL
corpus. As described previously, the services are divided into eight domains and
some queries templates are provided together with a relevant response set for
each query. The relevance sets for each query consists of a set of relevant service
and each service s has a graded relevance value relevance(s) ∈ {1, 2, 3} where 3
denotes high relevance to the query and 1 denotes a low relevance.

In order to evaluate the accuracy of our approach, we compute two standard
measures used in Information Retrieval : Precision at n (Precision@n) and Nor-
malised Discounted Cumulative Gain (NDCGn). These evaluation techniques
are used to measure the accuracy of a search and matchmaking mechanism.

– Precision@n: In our context, Precision@n is a measure of the precision of
the service discovery system taking into account the first n retrieved services.
Therefore, Precision@n reflects the number of services which are relevant
to the user query. The precision@n for a list of retrieved services is given by
Equation 10:

Precision@n =
|RelevantServices ∩RetrievedServices|

|RetrievedServices| (10)

Where the list of relevant services to a given query is defined in the test
collection. For this evaluation, we have considered only the services with a
graded relevance value of 3 and 2.

– Normalised Discounted Cumulative Gain: NDCGn uses a graded relevance
scale of each retrieved service from the result set to evaluate the gain, or
usefulness, of a service based on its position in the result list. This measure
is particularly useful in Information Retrieval for evaluating ranking results.
The NDCGn for n retrieved services is given by Equation 11.

NDCGn =
DCGn

IDCGn
(11)

Where DCGn is the Discounted Cumulative Gain and IDCGn is the Ideal
Discounted Cumulative Gain. The IDCGn is found by calculating theDCGn

of the first n returned services. The DCGn is given by Equation 12.

DCGn =
n∑

i=1

2relevance(i) − 1

log2(1 + i)
(12)

Where n is the number of services retrieved and relevance(s) is the graded
relevance of the service in the ith position in the ranked list.

We evaluated our service discovery approach by calculating the Precision@n
and NDCGn. In this experiment, we have selected randomly 12 queries from
the test collection. The text description is retrieved from the query templates and
used as the query string. We consider that the size of the services to be returned
was set to 50. The average Precision@n and NDCGn are obtained over all 12
queries for CTM, LDA, PLSA and Text-Search. The results are shown in Figure
2(a) and 2(b).

Probabilistic Topic Models for Web Services Clustering and Discovery 31

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on
@

n

Number of Services Retrieved

Text-Search
PLSA

LDA
CTM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on
@

n

Number of Services Retrieved

Text-Search
PLSA

LDA
CTM

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 5 10 15 20 25 30 35 40 45 50

P
re

ci
si

on
 @

 n

Number of Services Retrieved

CTM with Conditional Probability
LDA with Conditional Probability

PLSA with Conditional Probability
CTM with Multidimensional Angle
LDA with Multidimensional Angle

PLSA with Multidimensional Angle
Text-Search

Fig. 2. (a) Comparaison of average Precision@n values over 12 queries. (b) Comparai-
son of average NDCGn values over 12 queries. (c) Comparaison of average Precision@n
values over 12 queries for all methods using both Conditional Probability and Multi-
dimensional Angle.

The comparison of Precision@n shows that the CTM and LDA perform bet-
ter than Text-Search and PLSA. The probabilistic methods based on CTM and
LDA used the information captured in the latent factors to match web services
based on the conditional probability of the user query. Text-Search and PLSA
were unable to find some of the relevant web services that were not directly
related to the user’s queries through CTM and LDA. The low precision results
obtained by probabilistic method based on PLSA are due to limited number of
concepts used for training the model. In this context, web service descriptions
are similar to short documents. Therefore, the method based on PLSA model is
not able to converge to a high precision using these limited concepts.

In Information retrieval, NDCGN gives higher scores to systems which rank
a search result list with higher relevance first and penalizes systems which return
services with low relevance. The NDCGn values for all queries can be averaged
to obtain a measure of the average performance of a ranking algorithm. In our
experiments, we consider services with graded relevance values from 3 (high
relevance) to 1 (low relevance) for this evaluation. NDCGn values vary from
0 to 1. The results obtained for NDCGn show that the both CTM and LDA
perform better than the other search methods. Thus, the probabilistic methods
based on both CTM and LDA give a higher NDCGn than all other methods for
any number of web services retrieved. This reflects the accuracy of the ranking
mechanism used by our method. Text-Search and PLSA methods have a low
NDCGn because, as shown in the Precision@n results, both methods are unable
to find some of the highly relevant services.

In order to compare the accuracy of our approach with existing approaches,
we have implemented the approach proposed by Cassar et al. [6], which uses
the proximity measure called Multidimentional Angle (also known as Cosine
Similarity); a measure, which uses the cosine of the angle between two vectors
[17]. In the first time, we represent the user’s query as a distribution over topics.
Thus, for each topic zf we calculate the relatedness between query Q and zf
based on topic− word distribution φ using Equation 13.

P (Q|zf) =
∏

wi∈Q

P (wi|zf) (13)

32 M. Aznag et al.

Then, we calculate the similarity between the user’s query and a web service
by computing the Cosine Similarity between a vector containing the query’s
distribution over topics q and a vector containing the service’s distribution over
topics p. The multidimensional angle between a vector p and a vector q can be
calculated using Equation 14:

Cos(p, q) =
p.q

‖ p ‖ . ‖ q ‖ =

∑t
i=1 piqi√∑t

i=1 p
2
i

∑t
i=1 q

2
i

(14)

where t is the number of topics.
The comparison of average Precision@n (See Figure 2(c)) shows that the

probabilistic method CP (i.e. Conditional Probability) performs better than the
MA (i.e. Multidimensional Angle) for all the probabilistic topic models. The re-
sults show that the CTM and LDA perform better than Text-Search and PLSA.

5 Conclusion

In this paper, we have used several probabilistic topic models (i.e. PLSA, LDA
and CTM) to extract latent factors from web service descriptions. Then, the
learned latent factors are used to group services into clusters. Indeed, the cate-
gorization of services is often done with human intervention. To overcome this
limitation, we propose to vary the number of topics (which can be considered as
clusters, with one difference, which is that we can model the observations in a
more compressed way than it would be if the model was based on clusters) to au-
tomatically obtain the categories to which services belong. The accuracy of the
three probabilistic clustering algorithms is compared with a classical clustering
algorithm (i.e. K-means). The results show that the clustering method based on
both CTM and LDA perform better than PLSA and K-means. In our work, we
propose also to use the probabilistic topic models to discover the web services
that match with the user query. We evaluated our service discovery approach
by calculating the Precision@n and NDCGn. The comparison of Precision@n
and NDCGn show that the CTM and LDA perform better than the other search
methods (i.e. Text-Search and PLSA). This reflects the accuracy of the ranking
mechanism used by our method. The probabilistic methods based on both CTM
and LDA used the information captured in the latent factors to match web ser-
vices based on the conditional probability of the user query. The obtained results
show that the topic models provide a scalable and interoperable solution for au-
tomated service discovery in large service repositories. Future work will focus
on developing a new probabilistic model based on the latent factors to tag web
services automatically.

References

1. Abramowicz, W., Haniewicz, K., Kaczmarek, M., Zyskowski, D.: Architecture for
Web services filtering and clustering. In: ICIW 2007 (2007)

2. Atkinson, C., Bostan, P., Hummel, O., Stoll, D.: A Practical Approach to Web
service Discovery and Retrieval. In: ICWS 2007 (2007)

Probabilistic Topic Models for Web Services Clustering and Discovery 33

3. Blei, D., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3,
993–1022 (2003)

4. Blei, D., Lafferty, J.D.: A Correlated Topic model of Science. In: AAS 2007, pp.
17–35 (2007)

5. Cassar, G., Barnaghi, P., Moessner, K.: Probabilistic methods for service clustering.
In: Proceeding of the 4th International Workshop on Semantic Web Service Match-
making and Resource Retrieval, Organised in conjonction the ISWC 2010 (2010)

6. Cassar, G., Barnaghi, P., Moessner, K.: A Probabilistic Latent Factor approach to
service ranking. In: ICCP 2011, pp. 103–109 (2011)

7. Elgazzar, K., Hassan, A., Martin, P.: Clustering WSDL Documents to Bootstrap
the Discovery of Web Services. In: ICWS 2010, pp. 147–154 (2010)

8. Dong, X., Halevy, A., Madhavan, J., Nemes, E., Zhang, J.: Similarity Search for
Web Services. In: VLDB Conference, Toronto, Canada, pp. 372–383 (2004)

9. Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
258–273. Springer, Heidelberg (2003)

10. Hofmann, T.: Probabilistic Latent Semantic Analysis. In: UAI, pp. 289–296 (1999)
11. Kokash, N.: A Comparison of Web Service Interface Similarity Measures. Frontiers

in Artificial Intelligence and Applications, vol. 142, pp. 220–231 (2006)
12. Lausen, H., Haselwanter, T.: Finding Web services. In: European Semantic Tech-

nology Conference, Vienna, Austria (2007)
13. Liu, W., Wong, W.: Web service clustering using text mining techniques. IJAOSE

2009 3(1), 6–26 (2009)
14. Ma, J., Zhang, Y., He, J.: Efficiently finding web services using a clustering semantic

approach. In: CSSSIA 2008, pp. 1–8. ACM, New York (2008)
15. Nayak, R., Lee, B.: Web service Discovery with Additional Semantics and Cluster-

ing. In: IEEE/WIC/ACM 2007 (2007)
16. Porter, M.F.: An Algorithm for Suffix Stripping. Program 1980 14(3), 130–137

(1980)
17. Platzer, C., Rosenberg, F., Dustdar, S.: Web service clustering using multidimen-

tional angles as proximity measures. ACM Trans. Internet Technol. 9(3), 1–26
(2009)

18. Salton, G.: Automatic Text Processing: The Transformation, Analysis, and Re-
trieval of Information by Computer. Addison-Wesley Longman Publishing Co.,
Inc., Boston (1989)

19. Sivashanmugam, K., Verma, A.P., Miller, J.A.: Adding Semantics to Web services
Standards. In: ICWS 2003, pp. 395–401 (2003)

20. Steyvers, M., Griffiths, T.: Probabilistic topic models. In: Landauer, T., Mcnamara,
D., Dennis, S., Kintsch, W. (eds.) Latent Semantic Analysis: A Road to Meaning.
Lawrence Erlbaum (2007)

21. Yu, Q.: Place Semantics into Context: Service Community Discovery from the
WSDL Corpus. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 188–203. Springer, Heidelberg (2011)

22. Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion
functions for document clustering. In: Machine Learning 2004, vol. 55, pp. 311–331
(2004)

23. Zhao, Y., Karypis, G.: Evaluation of hierarchical clustering algorithms for docu-
ment datasets. In: CIKM 2002 (2002)

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 34–48, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Managing Imprecise Criteria in Cloud Service Ranking
with a Fuzzy Multi-criteria Decision Making Method

Ioannis Patiniotakis1, Stamatia Rizou2, Yiannis Verginadis1, and Gregoris Mentzas1

1 Institute of Communications and Computer Systems,
National Technical University of Athens

9 Iroon Polytechniou Str., Athens, Greece
{ipatini,jverg,gmentzas}@mail.ntua.gr
2 European Projects Department, Singular Logic S.A.,

Al. Panagouli & Siniosoglou Ste., Athens, Greece
srizou@singularlogic.eu

Abstract. The increase of cloud technology solutions has made the evaluation
and selection of desired cloud services, a cumbersome task for the user. In par-
ticular, the lack of standard mechanisms that allow the comparison of cloud
service specifications against user requirements taking into account the implicit
uncertainty and vagueness is a major hindrance during the cloud service evalua-
tion and selection. In this paper, we discuss an alternative classification of me-
trics used for ranking cloud services based on their level of fuzziness and
present an approach that allows cloud service evaluation based on a heteroge-
neous model of service characteristics. Our approach allows the multi-objective
assessment of cloud services in a unified way, taking into account precise and
imprecise metrics. We use fuzzy numbers to model the imprecise service cha-
racteristics and vague user preferences and we validate a fuzzy AHP approach
that solves the problem of service ranking.

Keywords: Cloud Services, Ranking, Imprecise Criteria, Fuzzy, MCDM.

1 Introduction

As the complexity of cloud services increases, the role of cloud brokers in the cloud
service ecosystems becomes increasingly important. More specifically, with the in-
crease of cloud technologies adoption, the number of services offered in the cloud
market also raises. Thus, the evaluation of the available cloud services could be a
cumbersome task for the user due to the plethora of the offered services in the cloud
market and the lack of standard mechanisms that allow their comparison against user
requirements. In that respect, there is an increasing need for user guidance during the
service selection process. Cloud brokers that mediate between the service user and the
service provider, assist the service user in selecting the most appropriate service.

Recent work has focused on developing methods and mechanisms to allow the
comparison and ranking of competitive cloud services and help the user during
the cloud service selection. As a first step towards this goal, researchers identified the

 Managing Imprecise Criteria in Cloud Service Ranking 35

evaluation criteria that can be used as comparison dimensions to enable the service
ranking [1], [2]. According to this existing work, the service evaluation may be af-
fected by a set of quantitative and qualitative service characteristics. Quantitative
characteristics are those that can be measured, e.g. response time, while qualitative
characteristics cannot be quantified in an objective manner and are based typically on
user experience such as service usability. Although the existence and significance of
qualitative characteristics are identified, existing approaches up to now do not provide
models and methods to handle the qualitative service characteristics. Furthermore,
current approaches use quantitative models to insert user requirements. However,
imprecise models are closer to the human perception since they can express the va-
gueness of the user requirements. For instance, while price is a quantitative metric, it
is obviously more intuitive for the user to express his requirements by using
expressions such as cheap or expensive, rather than by specifying definite numerical
thresholds.

In this paper, we aim to tackle the aforementioned limitations of the existing ap-
proaches in cloud service ranking by providing an approach that allows cloud service
evaluation based on a heterogeneous model of service characteristics. We categorize
service characteristics in two categories according to the most appropriate modeling
(precise or imprecise) of the service specification and requirements. In more detail,
we focus on imprecise metrics and on a unified method to manage them along with
the precise ones (i.e. measurable without uncertainty) for providing cloud service
rankings. Given the proposed model, we present a fuzzy AHP approach that solves
the problem of service ranking and allows the multi-objective assessment of cloud
services. In addition, this approach provides a more expressive and unified way to
capture and process user opinions and preferences, both precise and imprecise, than
traditional service ranking methods. Finally we apply our approach in an example
extracted from the literature and we demonstrate its validity.

The rest of the paper is structured as follows: In Section 2 a discussion of the prob-
lem space is given, while in Section 3, we detail our proposed service ranking
approach. In Section 4, we give an illustrative example. In Section 5, we present the
related work and we conclude this paper and discuss the next steps in Section 6.

2 Problem Space

Several attempts have been made to provide taxonomies of the various attributes that
can characterize a cloud service. One of most important works in that direction is the
SMICloud [1], [3] which distinguishes between qualitative and quantitative metrics.
For instance, cost could be classified in quantitative metrics since it can be measured
in local currency, while reputation could be classified in qualitative characteristics
since it is based on the user experience and word of mouth. It is also evident from the
literature review that most of these efforts focus only on the quantitative (or at least
on quantifiable metrics) and all of them use only measurable and precise metrics
(i.e. crisp numbers) in the methods and techniques implemented for ranking cloud
services [1].

36 I. Patiniotakis et al.

However, sometimes it can be hard to classify the characteristics in one of the two
categories, since even for some quantitative attributes it makes sense that the users
express their preferences in a qualitative manner. There are a number of metrics that
can be seen as qualitative but at the same time with some reasonable assumptions they
can be precisely quantified (e.g. Interoperability, Usability etc.) or that they can be
resolved in a number of lower level metrics, involving both quantitative and qualita-
tive attributes (e.g. Serviceability etc.) or including both precise and imprecise values.
For instance, usability metric has been defined as a quantifiable attribute [1] in the
sense of average time experienced by users of the cloud service to install, learn, un-
derstand and operate it. But, often this average time is not enough to define how usa-
ble a cloud service is, since this information is often vague and imprecise. It might be
the case that the average installation or learn time for a cloud customer about a specif-
ic service is relative short because of the customer’s huge experience in the specific
domain and not because the service is really usable for an average user. It would be an
oversight to ignore the degree of difficultness that previous users experienced based
on their degree of expertise, when they tried to install, learn, understand and operate
the specific cloud service. This value is highly subjective, uncertain and often is
available through linguistic terms when previous users are expressing their opinions.

Therefore, we believe that a distinction between precise and imprecise metrics is
more meaningful for characterizing and ranking a cloud service. Most of the related
work focused on the precise metrics that can be objectively measured with high de-
gree of certainty using specific software and hardware monitoring tools (e.g. Service
Response Time, On-going Cost, Stability, Availability etc.). In this paper, we focus
on imprecise metrics and on a unified method to manage them along with the precise
ones for providing cloud service rankings. Imprecise metrics cannot be measured
accurately, they present a high degree of uncertainty and their value is usually subjec-
tive (e.g. Provider Brand Name, Service Reputation, Support Satisfaction, Documen-
tation Readability etc.). For example, regarding the Service Reputation it is more
realistic for cloud customers to express their opinions verbally (i.e. Bad, Ok, Good)
thus inducing in a cloud service ranking system a vagueness that should not be ig-
nored. Cloud customers need to declare their preferences in a way that retains their
inherent vagueness, such as using linguistic terms, which are easier, more intuitive
and more comprehensible than using numbers.

So, there is a need for a more realistic approach that takes under consideration the
implicit vagueness in certain criteria along with the fuzziness when coping with user’s
preferences or requirements, expressed with words and terms common in human lan-
guage. In the next section, we present our approach for addressing the cloud service
ranking based on both precise and imprecise criteria in unified way. We use a fuzzy
MCDM approach that may also take into account cases where cloud customers would
like to declare their preferences for precise criteria in a fuzzy way.

3 Proposed Service Ranking Approach

Before detailing with our proposed service ranking approach some essential concepts
will be briefly presented.

3.1 Preliminaries on Fu

Fuzzy numbers are based o
sets are sets of ordered pair
membership function. They
from binary (belongs or no
number, usually in [0,1] int

Fuzzy numbers are defi
whose membership functio
have membership value 1 a
is Triangular Fuzzy Numbe
defined as in (1) and they
usually represented as trip
l=m=u the number become

ሻݔሺߤ ൌ ൞ ௫ି௟௠ି௟ ݔ ݂݅ א ሾ݈, ݉௨ି௫௨ି௠ ݔ ݂݅ א ሾ݉, 0ݑ ݁ݏ݅ݓݎ݄݁ݐ݋
In our work we will only

four arithmetic operations a

ሚܣ ْ ෨ܤ ൌ ሺܽ௟, ܽ௠, ܽ௨ሻ
ሚܣ ٓ ෨ܤ ൌ ሺܽ௟, ܽ௠, ܽ௨ሻ
ሚܣ ٔ ෨ܤ ൌ ሺܽ௟, ܽ௠, ܽ௨ሻ
ሚܣ ٕ ෨ܤ ൌ ሺܽ௟, ܽ௠, ܽ௨ሻ

An important operation o
natural order exists, but in
used to compare fuzzy num
numbers. Several defuzzifi
[5]). In our work we choose

Fuzzy intervals are also
both of their boundaries ar
union and intersection. A w
a crisp one, by defuzzifyin
specifically consider a class

Managing Imprecise Criteria in Cloud Service Ranking

uzzy Numbers

on Zadeh’s pioneer work on Fuzzy Set Theory [4]. Fu
rs ܣ ൌ ൛൫ݔ, ,ሻ൯ݔ஺ሺߤ ݔ א ,޿ ߤ א Թൟ, where μ(x) is called
y extend the notion of membership of an element in a
ot belongs) to a grade of membership, expressed as a r
terval (called normalized fuzzy set).
ined as convex, normalized fuzzy sets on the Real a
ons μ: R→[0,1] are at least segmentally continuous
at precisely one element. A special class of fuzzy numb
ers (TFNs) seen in figure 1. Their membership function
are graphically rendered as triangles (see Fig.1). They
plets ෤ܽ ൌ ሺ݈, ݉, ,ሺܽ௟ ݎ݋ ሻݑ ܽ௠, ܽ௨ሻ, .ݏ .ݐ ݈ ൑ ݉ ൑ W .ݑ
es an ordinary number, called crisp number.

݉ሿݑሿ݁ (1)

Fig. 1. Triangular Fuzzy Number

y consider positive TFNs, where ݈, ݉, ݑ ൐ 0. For them
are defined as in equations (2) – (5). ሻ ْ ሺܾ௟, ܾ௠, ܾ௨ሻ ൌ ሺܽ௟ ൅ ܾ௟, ܽ௠ ൅ ܾ௠, ܽ௨ ൅ ܾ௨ሻ ሻ ٚ ሺܾ௟, ܾ௠, ܾ௨ሻ ൌ ሺܽ௟ െ ܾ௨, ܽ௠ െ ܾ௠, ܽ௨ െ ܾ௟ሻ ሻ ٔ ሺܾ௟, ܾ௠, ܾ௨ሻ ൌ ሺܽ௟ · ܾ௟, ܽ௠ · ܾ௠, ܽ௨ · ܾ௨ሻ ሻ ٕ ሺܾ௟, ܾ௠, ܾ௨ሻ ൌ ሺܽ௟/ܾ௨, ܽ௠/ܾ௠, ܽ௨/ܾ௟ሻ

on fuzzy numbers is fuzzy comparison. In crisp numbe
n fuzzy numbers this is not the case. An approach wid
mbers is by defuzzying them; i.e. mapping them onto r
fication techniques have been proposed in literature (
e Chan et al. [8] technique: ොܽ ൌ ሺ݈, ݉, ሻ෣ݑ ൌ ௟ାସ·௠ା௨଺
o defined. They are intervals on Real axis where one
re fuzzy. Two important operations on fuzzy intervals
way to apply them is by defuzzifying the fuzzy interval i
ng the fuzzy bounds into crisp bounds. In this work
s of fuzzy intervals, called trapezoidal fuzzy intervals.

37

uzzy
the
set,
real

axis,
and
bers
n is
are

When

the

(2)

(3)

(4)

(5)

rs a
dely
real
(see

(6)

e or
are

into
we

38 I. Patiniotakis et al.

3.2 Proposed Service R

The proposed method aims
leverage both crisp and fuz
based on the Service Meas
Performance Indicators (KP

SMICloud proposes a se
aspects of cloud services. A
ranking cloud services, but i
KPIs to achieve the same pu
judgment errors. Garg et al.
service importance values fr
guished between essential, w
They have also explained
attributes. This approach [1]
explain how we extend SMI

We propose a method w
numbers and intervals, or
mapped onto fuzzy number
cise and precise in nature,
qualitative attributes or att
Precise values pertain to ac
lar to SMICloud’s we deri
fuzzy AHP we rank servic
Kwong & Bai [7] have intr
ranking problem. Chan et
proach using extend analysi

In our work we have se
for service ranking purpose
and trapezoidal intervals du
a more expressive and uni
precise and imprecise, than
ragraphs we present the fou

Fig. 2. Extended

Ranking Method

s at providing a cloud service ranking technique capable
zzy information. It extends the SMI approach [1], which
surement Index (SMI) [3], a set of business-relevant K
PIs).
et of quantifiable metrics (KPIs) capable to measure sev
A modified Analytical Hierarchy Process (AHP) is used
instead of requiring experts to compare them, it uses serv

urpose, thus reducing experts’ effort and alleviating subjec
. [1] have proposed certain techniques to derive the rela
from KPIs, required in AHP. Furthermore, they have dis
where KPI values are required, and non-essential attribu
how to handle the lack of KPI values for non-essen

] considers only crisp values. In the following paragraphs
Cloud approach in order to handle fuzzy values too.
here service KPI and user requirement values can be fu
linguistic terms. In the latter case linguistic terms

rs in order to ensure unified processing, both of the imp
user provided values. Imprecise values usually pertain
tributes where uncertainty in measurements is involv

ccurately measured attribute values. Using techniques si
ive fuzzy comparison matrices and subsequently usin

ces. Buckley [6] has proposed such a fuzzy AHP meth
roduced a process that transforms the problem into a cr
al. [8] have proposed an enhancement on the former
is method [9], thus avoiding some of its shortcomings.

elected the method presented in [8], appropriately adap
es. We have also chosen to use triangular fuzzy numb
ue to their simplicity and broad use. Our approach provi
ified way to capture user opinions and preferences, b
n traditional service ranking methods. In the following
ur phases of the proposed service ranking method.

SMICloud Attribute Hierarchy for Cloud computing

e to
h is
Key

veral
 for
vice

ctive
ative
stin-
utes.
ntial
s we

uzzy
are

pre-
n to
ved.
imi-
ng a
hod.
risp
ap-

pted
bers
ides
both

pa-

 Managing Imprecise Criteria in Cloud Service Ranking 39

Phase 1: Expressing ranking problem into a hierarchal structure

The goal of the cloud service ranking is captured into a hierarchical model (Fig. 2).
Goal is decomposed into service attributes contributing to goal achievement.
Attributes can be further decomposed into sub-attributes at any number of levels.
Eventually, the cloud services are related to the lowest-level (leaf) attributes. Our
model extends the hierarchical structure, presented in Fig.2, by enabling the addition
of imprecise attributes in different levels (e.g. Reputation).

Phase 2: Computation of relative QoS attribute weights

Next the relative importance of each attribute in hierarchical model, compared to its
siblings, must be calculated. Siblings are those attributes at the same level and with
the same parent attribute/goal. The approach proposed in original AHP [10] and used
in SMICloud, is through pairwise comparisons between all sibling attributes. Every
comparison yields the relative importance of an attribute over another one, expressed
in a scale of 1 (equal importance) to 9 (extremely more important).

However, since the input might be fuzzy, a more appropriate approach would be
the use of fuzzy importance values. The work in [8] proposed a scale of fuzzy impor-
tance values, but other variations also appear in literature, for instance [7], [11].

Fig. 3. The membership functions of the fuzzy relative importance values [8]

Having the relative importance values, a fuzzy AHP method is applied to calculate
the relative weights of the attributes, for every level and group of siblings. A detailed
presentation of the method is given in next section. Obviously, if any of the service
attributes in hierarchical model is of no interest in a particular case of service ranking
then it can be omitted from the process, implying a zero weight.

Phase 3: Computation of relative service performances

The original AHP method would require expert(s) to pairwise compare all services for
every lowest-level attribute, using a 1 to 9 scale. Contrary, SMICloud proposes that

40 I. Patiniotakis et al.

relative service performances can be deduced from KPI values. Four types of KPIs
are considered; Boolean, Numeric, Unordered Sets and Range KPIs. It also distin-
guishes attributes to essential, where KPI values must be provided, and non-essential.
For every essential attribute a user requirement must be provided. Services failing to
comply with all essential requirements are excluded from the ranking process. We
extend SMICloud approach in order to handle fuzzy KPIs and user requirements.
Specifically, they are defuzzified before applying SMICloud techniques.

Let services Si and Sj and their respective KPI values vi and vj for an attribute q. vr
is the user requirement value that represents a fuzzy constraint above (or below)
which the service KPI values (for a criterion) must reside in order to accept the cor-
responding service for ranking. wq is the weight of the attribute from phase 2. For
range attributes, KPI values and user requirements are ranges rather than single num-
bers. In this case the limits of the ranges can be fuzzy numbers, meaning the ranges
have imprecise boundaries.

Table 1. Relative service performance values for the four attribute types

Boolean KPI attributes

௜ܵ ௝ܵ⁄ ൌ ቐ 1 ௜ݒ ݂݅ ؠ ௤ݓ௝ݒ ௝ݒ ݂݅ ൌ ௜ݒ ݀݊ܽ 1 ൌ 01 ⁄௤ݓ ௝ݒ ݂݅ ൌ ௜ݒ ݀݊ܽ 0 ൌ 1

Numeric KPI attributes

௜ܵ ௝ܵ⁄ ൌ ۔ۖەۖ
௜ݒۓ ⁄௝ݒ ݂݅ ݎ݄݄݁݃݅ ݏ݅ ௝ݒݎ݁ݐݐܾ݁ ⁄௜ݒ ௤ݓݎ݁ݐݐܾ݁ ݏ݅ ݎ݁ݓ݋݈ ݂݅ 1݀݁݀݅ݒ݋ݎ݌ ݐ݋݊ ݏ݅ ௜ݒ ݂݅ ⁄௤ݓ ݂݅ ௝ݒ ݏ݅ ݐ݋݊ ݀݁݀݅ݒ݋ݎ݌

Unordered set KPI attributes
if an essential attribute ௜ܵ ௝ܵ⁄ ൌ ௦௜௭௘ሺ௩೔ሻ௦௜௭௘൫௩ೕ൯
if a non-essential attribute

௜ܵ ௝ܵ⁄ ൌ ۔ۖەۖ
௩ೝ൯ת௩ೝሻ௦௜௭௘൫௩ೕת௦௜௭௘ሺ௩೔ۓ ௝ݒ ݂݅ ת ௥ݒ ് ௜ݒ ݀݊ܽ ׎ ת ௥ݒ ് 1׎ ௝ݒ ݂݅ ת ௥ݒ ؠ ௜ݒ ݀݊ܽ ׎ ת ௥ݒ ؠ ௤ݓ׎ ௝ݒ ݂݅ ת ௥ݒ ് ௜ݒ ݀݊ܽ ׎ ת ௥ݒ ؠ 1׎ ⁄௤ݓ ௝ݒ ݂݅ ת ௥ݒ ؠ ௜ݒ ݀݊ܽ ׎ ת ௥ݒ ് ׎

Range KPI attributes
if an essential attribute ௜ܵ ௝ܵ⁄ ൌ ௟௘௡ሺ௩೔ת௩ೝሻ௟௘௡൫௩ೕת௩ೝ൯
if a non-essential attribute

௜ܵ ௝ܵ⁄ ൌ
۔ۖەۖ
௜ݒሺ݈݊݁ۓ ת ௝ݒ௥ሻ݈݁݊൫ݒ ת ௥൯ݒ ௝ݒ ݂݅ ת ௥ݒ ് ௜ݒ ݀݊ܽ ׎ ת ௥ݒ ് 1׎ ௝ݒ ݂݅ ת ௥ݒ ؠ ௜ݒ ݀݊ܽ ׎ ת ௥ݒ ؠ ௤ݓ׎ ௝ݒ ݂݅ ת ௥ݒ ് ௜ݒ ݀݊ܽ ׎ ת ௥ݒ ؠ 1׎ ⁄௤ݓ ௝ݒ ݂݅ ת ௥ݒ ؠ ௜ݒ ݀݊ܽ ׎ ת ௥ݒ ് ׎

We define length of a fuzzy interval as the length
of the defuzzified interval, i.e. ݈݁݊൫ ෨ܺ൯ ൌ ݈݁݊൫ ෠ܺ൯.

The resulting relative service performances formulate a comparison matrix for each

attribute. Then a fuzzy AHP method is applied to derive the relative service weights
for each one. A detailed description of the method is given in the next section.

Phase 4: Aggregation of relative service weights

The relative service weights of each attribute, computed in phase 3, are aggregated
using their corresponding relative weights computed in phase 2. The aggregation
operation is a weighted average between sibling-attributes. This process is repeated
bottom-up at all levels of the hierarchical model. The result will be the overall relative
service weights, which can be used to rank the cloud services.

 Managing Imprecise Criteria in Cloud Service Ranking 41

If more than one user contribute their opinions/preferences on service KPI attribute
values and/or requirements, then it is imperative to aggregate them into single values
per service, requirement and attribute in order to apply the described method. As
Meixner [22] explained the use of the geometric mean yields satisfactory fuzzy value
aggregations and also geometric mean is commonly used in AHP applications where
group decision making is involved. Let N be the number of user values and k=1..N

 ෨ܸపఫതതതത ൌ ቀ൫∏ ݈௜௝௞ே௞ୀଵ ൯ଵ/ே, ൫∏ ݉௜௝௞ே௞ୀଵ ൯ଵ/ே, ൫∏ ௜௝௞ே௞ୀଵݑ ൯ଵ/ேቁ

3.3 Brief Description of Fuzzy AHP with Extend Analysis

The fuzzy AHP with extend analysis method proposed in [8] is applied in phases 2
and 3. It takes a comparison matrix of attributes or services, and determines their
weight vector using the extend analysis method [9]. The process starts by obtaining
the fuzzy synthetic degree Di for each matrix row, using the next equations. Let ܣሚ௞ ൌ ൣ ෤ܽ௜௝௞ ൧ be the fuzzy comparison matrix, and i,j=1..N.

෩௜ܦ ൌ ൫ܦ௜௟, ,௜௠ܦ ௜௨൯ܦ ൌ ∑ ܽ௜௝ே௝ୀଵ ٔ ൫∑ ∑ ܽ௜௝ே௝ୀଵே௜ୀଵ ൯ିଵ
 (7)

Next, we find the attributes or services with the higher fuzzy synthetic degree D.
The degree of possibility that Di is greater than Dj is:

 ܸ൫ܦ௜ ൒ ௝൯ܦ ൌ ۔ە
ۓ 1 ௜௠ܦ ݂݅ ൒ ௝௠஽ೕ೗ି஽೔ೠ൫஽೔೘ି஽೔ೠ൯ିቀ஽ೕ೘ି஽ೕ೗ቁܦ ௜௠ܦ ݂݅ ൑ ௝௟ܦ ݀݊ܽ ௝௠ܦ ൑ ௜௨0ܦ ݁ݏ݅ݓݎ݄݁ݐ݋ (8)

The degree of possibility that a fuzzy synthetic degree Di is greater than the rest Dk
where k=1..N and k≠i, is:

 ݀௜ ൌ ܸሺܦ௜ ൒ ݇׊ ௞ܦ ൌ 1. . ܰ, ݇ ് ݅ሻ ൌ ݉݅݊ ܸ൫ܦ௜ ൒ ௝൯ (9)ܦ

Eventually, the weights vector is the normalized vector of di.

ݓ ൌ ሾݓଵ ڮ ௜ݓ ݁ݎ݄݁ݓ ேሿ்ݓ ൌ ݀௜ ∑ ݀௞ே௞ୀଵ⁄ (10)

The proposed method is explained in the next section through an example.

4 Use Case Example

We extend the example of [1] in three ways. First we add Reputation, as a new (top-
level) QoS group and adjust QoS group weights accordingly. Reputation encompasses
two attributes, Brand-name and Service reputation, which can be fuzzy numbers
or linguistic terms mapped onto fuzzy numbers. Second, we extend the pre-existing

42 I. Patiniotakis et al.

Serviceability attribute by adding two new second-level, fuzzy attributes. Thus Servi-
ceability encompasses both crisp and fuzzy attributes. The new attributes are Support
satisfaction and Document readability. Third, we convert two user requirements into
fuzzy, namely Memory Capacity and Service response time range.

The resulting example is shown in Table 3. The user weights are supposed to have
been derived using the process described in phase 2. However in this example we
have used random weights. The linguistic terms used for the four new attributes are
mapped onto triangular fuzzy numbers as shown next:

Table 2. Mapping of linguistic terms onto fuzzy numbers

In the following we briefly explain the calculations used in phases 3 and 4 of the

proposed method, on a specific fuzzy attribute. For instance we choose Brand-name
in Reputation QoS group, which is an essential attribute.

Using the input of Table 3 and the mapping of Table 2 we have: S1 is OK: (3,5,7),
S2 is ABOVE: (5,7,9) and S3 is OK: (3,5,7) and user requirement is OK: (3,5,7) or
better. We remind that fuzzy KPI values express single but imprecise values. With
equation (6) we defuzzify service brand-name KPI values in order to check whether
they meet the user requirement,

ଵܵ෡ ൌ ܵଷ෡ ൌ ௥ෝݒ ൌ ሺ3,5,7ሻ෣ ൌ 3 ൅ 4 · 5 ൅ 76 ൌ 5 ܽ݊݀ ܵଶ෡ ൌ 7

Obviously all three services meet the user requirement since S1 and S3 are on par
with constraint whereas S3 is clearly above. Since Brand-name is effectively a numer-
ic constraint, in order to compute the relative service importance, we select the equa-
tion for numeric attributes in Table 1. Fuzzy division is given by equation (5).

 ଵܵ ܵଶ⁄ ൌ ሺ4, 5, 7ሻ ٕ ሺ5, 7, 9ሻ ൌ ሺ0.44, 0.71, 1.40ሻ

We also calculate relative service importance for S1/S3, S2/S3 and their inverses.
The fuzzy relative service ranking matrix for Brand-name is:
.ܨ ௕௥௔௡ௗܯܴܴܵ ൌ ቎ ሺ1, 1, 1ሻ ሺ0.44, 0.71, 1.40ሻ ሺ0.57, 1.00, 1.75ሻሺ0.71, 1.40, 2.25ሻ ሺ1, 1, 1ሻ ሺ0.71, 1.40, 2.25ሻሺ0.57, 1.00, 1.75ሻ ሺ0.44, 0.71, 1.40ሻ ሺ1, 1, 1ሻ ቏

Continuing, the fuzzy synthetic degree for each service is computed, using Fuzzy

RSRM data and equation (7). The fuzzy synthetic degrees for the three services are:

Brand name Service rep. Support satisfaction Doc. readability
BELOW (0,3,5) BAD (0,3,5) VERY LOW (0,3,4) HIGH (5,6,7) BAD (0,3,5)
OK (4,5,7) OK (4,5,7) LOW (3,4,5) VERY HIGH (6,7,8) OK (4,5,7)
ABOVE (5,7,9) GOOD (5,7,9) MEDIUM (4,5,6) PERFECT (7,8,9) GOOD (5,7,9)

 Managing Imprecise Criteria in Cloud Service Ranking 43

T
ab

le
 3

. C
as

e
S

tu
dy

 E
xa

m
pl

e
(b

as
ed

 o
n

[1
])

T
op

 le
ve

l
Q

oS
 G

ro
up

s
Fi

rs
t l

ev
el

A

ttr
ib

ut
es

Se

co
nd

 le
ve

l
A

ttr
ib

ut
es

Se

rv
ic

e
1

(S
1)

Se

rv
ic

e
2

(S
2)

Se

rv
ic

e
3

(S
3)

V

al
ue

 T
yp

e
U

se
r

R
eq

ui
re

d
V

al
ue

A
cc

ou
nt

ab
ili

ty
 (0

.0
5)

le

ve
l:

0-
10

 (1
)

4

8
4

N
um

er
ic

4

A
gi

lit
y

(0
.1

)
C

ap
ac

ity
 (0

.8
)

C
PU

 (0
.4

)
9,

6
12

,8

8,
8

N
um

er
ic

4

x
1.

6
G

H
z

M
em

or
y

(0
.5

)
15

14

15

Fu

zz
y

N
um

(9

,1
0,

15
) G

B

D
is

k
(0

.1
)

16
90

20

40

63
0

N
um

er
ic

50

0
G

B

El
as

tic
ity

 (0
.2

)
Ti

m
e

(1
)

80
-1

20

52
0-

78
0

20
-2

00

R
an

ge

60
-1

20
 m

se
c

A
ss

ur
an

ce
 (0

.2
)

A
va

ila
bi

lit
y

(0
.5

)

99
,9

5%

99
,9

9%

10
0%

N

um
er

ic

99
,9

0%

Se
rv

ic
e

St
ab

ili
ty

 (0
.3

)
U

pl
oa

d
Ti

m
e

(0
.3

)
13

,6

15

21

N
um

er
ic

C
PU

 (0
.2

)
17

,9

16

23

N
um

er
ic

M
em

or
y

(0
.5

)
7

12

5
N

um
er

ic

Se

rv
ic

ea
bi

lit
y

(0
.2

)
Fr

ee
 S

up
po

rt
(0

.4
)

0
1

1
B

oo
le

an

Ty

pe
 o

f
Su

pp
or

t (
0.

2)

24
/7

, D
ia

gn
os

tic
 to

ol
s,

Ph
on

e,
 U

rg
en

t R
es

po
ns

e
24

/7
, D

ia
gn

os
tic

 to
ol

s,
Ph

on
e,

 U
rg

en
t R

es
po

ns
e

24
/7

, P
ho

ne
, U

rg
en

t
R

es
po

ns
e

U
no

rd
er

ed

Se
t

24
/7

, P
ho

ne

Su
pp

or
t s

at
is

fa
ct

io
n

(0
.3

)
V

ER
Y

 H
IG

H

H
IG

H

M
ED

IU
M

Li

ng
ui

st
ic

M

ED
IU

M

D
oc

um
en

t r
ea

da
bi

lit
y

(0
.1

)
G

O
O

D

O
K

O

K

Li
ng

ui
st

ic

≥
O

K

C
os

t (
0.

4)

O
n-

G
oi

ng
 C

os
t (

1)

V
M

 C
os

t (
0.

6)

0,
68

0,

96

0,
96

N

um
er

ic

<
1

$/
ho

ur

D
at

a
–

in
bo

un
d

(0
.1

)
10

10

8

N
um

er
ic

10

0
G

B
/m

on
th

D

at
a

–
ou

tb
ou

nd
 (0

.1
)

11

15

18

N
um

er
ic

20

0
G

B
/m

on
th

St

or
ag

e
(0

.2
)

12

15

15

N
um

er
ic

10

00
 G

B

Pe
rf

or
m

an
ce

 (0
.1

)
Se

rv
ic

e
R

es
po

ns
e

Ti
m

e
(1

)
R

an
ge

 (0
.2

)
80

-1
20

52

0-
78

0
20

-2
00

Fu

zz
y

R
an

ge

(5
0,

60
, 1

15
,1

25
) m

se
c

A
ve

ra
ge

 V
al

ue
 (0

.8
)

10
0

60
0

30

N
um

er
ic

Se
cu

rit
y

(0
.0

5)

le
ve

l:
0-

10
 (1

)

4
8

4
N

um
er

ic

4

R
ep

ut
at

io
n

(0
.1

)
B

ra
nd

 N
am

e
(0

.3
5)

O
K

A

B
O

V
E

O
K

Li

ng
ui

st
ic

≥

O
K

Se
rv

ic
e

R
ep

ut
at

io
n

(0
.6

5)

G

O
O

D

O
K

O

K

Li
ng

ui
st

ic

≥
O

K

44 I. Patiniotakis et al.

ௌଵܦ ൌ ∑ ܽଵ௝ଷ௝ୀଵ ٔ ൫∑ ∑ ܽ௜௝ଷ௝ୀଵଷ௜ୀଵ ൯ିଵ ൌ ሺ0.15, 0.29, 0.64ሻ ܦௌଶ ൌ ∑ ܽଶ௝ଷ௝ୀଵ ٔ ൫∑ ∑ ܽ௜௝ଷ௝ୀଵଷ௜ୀଵ ൯ିଵ ൌ ሺ0.18, 0.41, 0.85ሻ ܦௌଷ ൌ ∑ ܽଷ௝ଷ௝ୀଵ ٔ ൫∑ ∑ ܽ௜௝ଷ௝ୀଵଷ௜ୀଵ ൯ିଵ ൌ ሺ0.15, 0.29, 0.64ሻ

With equations (8) and (9) we get the possibility a service is better than the rest. ݀ሺ ଵܵሻ ൌ min ܸሺ ଵܵ ൒ ܵଶ, ܵଷሻ ൌ 0.80, ݀ሺܵଶሻ ൌ 1.00 and ݀ሺܵଷሻ ൌ 0.80

Eventually, the normalized relative weights vector of services for brand-name is:
௕௥௔௡ௗݓ ൌ ሾ0.31 0.38 0.31ሿ்

Similarly we calculate the relative service weight vectors for all lowest-level

attributes, either fuzzy or crisp. The higher-level attribute vectors can be computed as
explained in phase 4. For instance, for Service Reputation weight vector is: ݓ௦௘௥௩.௥௘௣௨௧. ൌ ሾ0.38 0.31 0.31ሿ்

Then the relative service weight vector for Reputation can be derived from the vec-
tors of brand-name and service reputation as shown next.

ோ௘௣௨௧௔௧௜௢௡ݓ ൌ ሾݓ௕௥௔௡ௗ ௦௘௥௩.௥௘௣௨௧.ሿݓ ൈ ቂ0.350.65ቃ ൌ ൥0.31 0.380.38 0.310.31 0.31൩ ൈ ቂ0.350.65ቃ ൌ ൥0.360.330.31൩

Repeating the process for every attribute we get the relative service weights for the
overall goal. Then the ranking of the three cloud services is ࡿ૚ ظ ૜ࡿ ظ ௢௩௘௥௔௟௟ݓ .૛ࡿ ൌ ሾ0.45 0.20 0.35ሿ்

5 Related Work

In the area of web services, there are existing works that model the nfp (non-
functional properties) and considerate them during service ranking. In particular,
some existing approaches have used fuzzy models for matchmaking of user require-
ments to service specifications and for service discovery [16], [17], [18]. More rele-
vant to the service ranking problem, several selection methods have been proposed in
the literature based on fuzzy sets in an effort to model imprecise metrics [19], [21],
[14]. However, in these approaches the optimal solution is computed based on clas-
sical summations of weighted functions that do not allow the representation of the
trade-offs among the different attributes. Some recent works have tried to address this
limitation. Benouaret et al. [15] proposed a fuzzification of Pareto dominance to com-
pute the top-k service composition. Liu et al. [20] proposed a method for service
selection based on personalized preference and trade-offs among QoS factors and
price. However, none of these works intended to propose a model for handling

 Managing Imprecise Criteria in Cloud Service Ranking 45

heterogeneous quantitative and qualitative service attributes. Our proposed solution
based on AHP, allows the expression of trade-offs using pairwise comparisons of
service attributes. Moreover our method enables the modeling of both functional and
non-functional metrics, proposing thus a unified model for cloud service ranking.

Closer to our goal, existing works in the area of cloud service optimization have
mainly focused on the modeling and assessment of quantitative (precise) characteris-
tics to enable automatic service optimization in infrastructure layer. For instance,
CloudCmp has proposed a measurement methodology for quantifying and comparing
the performance of cloud services in IaaS layer. In that respect, authors have first
identified common services e.g. elastic compute cluster or persistent storage, offered
by different providers that can be subject to comparison. Then, for each service, they
have defined a set of low-level performance metrics such as benchmark finishing
time, costs and scaling latency. Similarly, Han et al. [12] have proposed a service
recommender framework using network QoS and Virtual Machine (VM) platform
factors for assisting user's decisions when it comes to the selection of cloud provider.
In their work, they do not consider user preferences and they limit their evaluation
criteria only to IaaS specific factors. In an effort to provide automatic cloud service
adaptation across different cloud platforms, Pawluk et al. [13] have presented the
STRATOS cloud brokerage framework which addresses the problem of dynamically
selecting resources from multiple cloud providers at runtime by calculating the in-
duced costs and lock-in effect using a quantitative model. These approaches focus on
the service optimization in IaaS layer and they do not address the problem of service
evaluation in multiple quantitative and qualitative dimensions taking into account the
uncertainty or vagueness.

Beyond the service optimization in IaaS layer, which uses typically low-level per-
formance metrics, some existing approaches have attempted to provide a classifica-
tion of service characteristics and attributes in order to enable the comparison of cloud
services. To this end, SMICloud [1] proposes the SMI Index, which classifies the
service characteristics in a hierarchy of top-level attributes that are further divided
in first- and second-level attributes. For instance, cost is a top-level attribute with
acquisition and ongoing costs as first-level attributes. SMICloud presents also a
framework that enables the ranking of services based on a multi-dimensional model
by using an Analytical Hierarchical Process (AHP) ranking mechanism. However,
this ranking mechanism supports only quantifiable (precise) measures and does not
allow the comparison of services based on imprecise metrics. Similarly, Godse et al.
[2] applied an AHP algorithm for ranking SaaS products and presented a hierarchy of
top-level and first-level service characteristics.

To the best of our knowledge, there is no existing work that attempts to address
imprecise criteria and vagueness on user expressed preferences in a unified service
ranking mechanism. To this end, in this paper we present a model that extends the
SMICloud approach and provides a mechanism that enables the ranking of services
based on precise as well as imprecise characteristics and information regarding user
preferences.

46 I. Patiniotakis et al.

6 Conclusions

In this paper, we discussed the limitations of the existing approaches in cloud service
ranking domain. We introduced an alternative classification of metrics used for rank-
ing cloud services based on their level of fuzziness. In order to address these limita-
tions, we presented an approach that allows cloud service evaluation based on a
heterogeneous model of service characteristics. Based on this approach, we allowed
the fuzzy expression of user preferences even for the quantitative characteristics,
while we use also fuzzy numbers to model the qualitative characteristics in a more
intuitive way. In addition, we used a fuzzy AHP approach that solves the problem of
service ranking and allows the multi-objective assessment of cloud services in a uni-
fied way (taking into account precise and imprecise metrics). Although tracing its
roots in existing service ranking methods, our approach provides a more expressive
and unified way to capture user opinions and preferences, both precise and imprecise.
In addition, the use of linguistic terms in place of fuzzy numbers reduces the apparent
complexity of the approach and makes its use more intuitive.

Moreover, we have illustrated the usage of our approach by applying it on an ex-
tended version of the example in [1]. Further comparison between the proposed ap-
proach and traditional approaches using solely crisp values for criteria evaluation is
not considered meaningful at this stage of our research. This is because the traditional
approaches make assumptions and approximations for addressing the imprecise nature
of criteria while in our approach we cope with this issue by taking into account their
real nature (i.e. considering their fuzziness). In addition, we provide with the means
for addressing both precise and imprecise criteria in a unified way. However, in order
to validate our approach we plan to conduct relevant experiments with the participa-
tion of industrial users.

In our short-term future work, we plan to examine a fuzzy extension of the Analyt-
ic Network Process (ANP) method in order to cope with cases where there are inter-
dependent relationships among criteria. In our current approach the criteria must be
independent and this is a restriction posed by AHP method. Furthermore, we plan to
integrate and validate the proposed framework in a dedicated optimization mechanism
that will address the need for continuous optimization in cloud service brokers. Tak-
ing into account imprecise information regarding the cloud service ranking can lead to
a more realistic, user-friendly and valuable solution for enhancing cloud brokerage
capabilities.

Acknowledgment. The research presented in this paper is supported by the European
Union within the FP7 Marie Curie Initial Training Network “RELATE” and the FP7
ICT Broker@Cloud project.

References

1. Garg, S.K., Versteeg, S., Buyya, R.: SMICloud: A Framework for Comparing and Ranking
Cloud Services. Presented at the Fourth IEEE International Conference on Utility and
Cloud Computing, Victoria, NSW, pp. 210–218 (2011), doi:10.1109/UCC.2011.36

 Managing Imprecise Criteria in Cloud Service Ranking 47

2. Godse, M., Mulik, S.: An Approach for Selecting Software-as-a-Service (SaaS) Product.
In: 2009 IEEE International Conference on Cloud Computing (2009)

3. Cloud Service Measurement Index Consortium (CSMIC) (n.d.). SMI Framework. Intro-
ducing the Service Measurement Index, http://www.cloudcommons.com/
web/cc/SMIintro (retrieved)

4. Zadeh, L.A.: Fuzzy sets. Information and Control 8(3), 338–353 (1965)
5. Ross, T.J.: Fuzzy Logic with Engineering Applications, 3rd edn. John Wiley & Sons

(2010)
6. Buckley, J.J.: Ranking alternatives using fuzzy numbers. Fuzzy Sets Systems 15(1), 21–31

(1985)
7. Kwong, C.K., Bai, H.: A fuzzy AHP approach to the determination of importance weights

of customer requirements in quality function deployment. Journal of Intelligent Manufac-
turing 13(5), 367–377 (2002), doi:10.1023/A:1019984626631

8. Chan, K.Y., Dillon, T.S., Kwong, C.K.: An Enhanced Fuzzy AHP Method with Extent
Analysis for Determining Importance of Customer Requirements. In: Chan, K.Y., Kwong,
C.K., Dillon, T.S. (eds.) Comput. Intell. Techniques for New Product Design. SCI,
vol. 403, pp. 79–94. Springer, Heidelberg (2012)

9. Chang, D.-Y.: Applications of the extent analysis method on fuzzy AHP. European Journal
of Operational Research 95(3), 649–655 (1996),
doi:dx.doi.org/10.1016/0377-2217(95)00300-2

10. Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill International (1980)
11. Durán, O., Aguilo, J.: Computer-aided machine-tool selection based on a Fuzzy-AHP ap-

proach. Expert Systems with Applications 34(3), 1787–1794 (2008),
doi:dx.doi.org/10.1016/j.eswa.2007.01.046

12. Han, S.-M., Hassan, M.M., Yoon, C.-W., Huh, E.-N.: Efficient service recommendation
system for cloud computing market. In: 2nd International Conference on Interaction
Sciences: Information Technology, Culture and Human (2009)

13. Pawluk, P., Simmons, B., Smit, M., Litoiu, M., Mankovski, S.: Introducing STRATOS: A
Cloud Broker Service. In: 5th IEEE International Conference on Cloud Computing
(CLOUD), pp. 891–898 (2012)

14. Almulla, M., Almatori, K., Yahyaoui, H.: A QoS-based Fuzzy Model for Ranking Real
WorldWeb Services. Presented at the IEEE International Conference on Web Services
(2011)

15. Benouaret, K., Benslimane, D., Hadjali, A., Barhamgi, M.: Top-k Web Service Composi-
tions using Fuzzy Dominance Relationship. Presented at the IEEE International Confe-
rence on Services Computing (2011)

16. Chao, K.-M., Younas, M., Lo, C.-C., Tan, T.-H.: Fuzzy Matchmaking for Web Services.
Presented at the 19th International Conference on Advanced Information Networking and
Applications, AINA 2005 (2005)

17. Huang, C.-L., Chao, K.-M., Lo, C.-C.: A Moderated Fuzzy Matchmaking for Web Servic-
es. Presented at the the Fifth International Conference on Computer and Information Tech-
nology, CIT 2005 (2005)

18. Lin, M., Xie, J., Guo, H., Wang, H.: Solving QoS-driven Web Service Dynamic Composi-
tion as Fuzzy Constraint Satisfaction. Presented at the IEEE International Conference on e-
Technology, e-Commerce and e-Service (EEE 2005). (2005)

19. Lin, W.-L., Lo, C.-C., Chao, K.-M., Younas, M.: Fuzzy Consensus on QoS in Web Servic-
es Discovery. Presented at the 20th International Conference on Advanced Information
Networking and Applications, AINA 2006 (2006)

48 I. Patiniotakis et al.

20. Liu, X(F.), Fletcher, K.K., Tang, M.: Service Selection based on Perso-nalized Preference
and Trade-Offs among QoS. Presented at the IEEE First International Conference on Ser-
vice Economics (2012)

21. Nepal, S., Sherchan, W., Hunklinger, J., Bouguettaya, A.: A Fuzzy Trust Management
Framework for Service Web. Presented at the IEEE International Conference on Web Ser-
vices (2010)

22. Meixner, O.: Fuzzy AHP Group Decision Analysis and its Application for the Evaluation
of Energy Sources. Presented at the 10th International Symposium on the Analytic Hie-
rarchy/Network Process Multicriteria Decision Making, Pittsburgh, Penn-sylvania, USA
(2009)

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 49–63, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Modeling Quality Attributes
of Cloud-Standby-Systems

A Long-Term Cost and Availability Model

Alexander Lenk and Frank Pallas

FZI Forschungszentrum Informatik
Friedrichstr. 60

10117 Berlin, Germany
{lenk,pallas}@fzi.de

Abstract. Contingency plans for disaster preparedness and concepts for resum-
ing regular operation as quickly as possible have been an integral part of run-
ning a company for a long time. Today, large portions of revenue generation are
taking place over the Internet and it has to be ensured that the respective re-
sources and processes are secured against disasters, too. Cloud-Standby-
Systems are a way for replicating an IT infrastructure to the Cloud. In this
work, a Markov-based model is presented that can be used to analyze and con-
figure such systems on a long term basis. It is shown that by using a Cloud-
Standby-System the availability can be increased, how configuration parameters
like the replication interval can be optimized, and that the model can be used for
supporting the decision whether the infrastructure should be replicated or not.

Keywords: Cloud-Standby, Cold-Standby, BCM, Cloud Computing, IaaS.

1 Introduction

The effort of companies to protect their production facilities, distribution channels or
critical business processes against possible risks is not a new phenomenon. Instead,
contingency plans for disaster preparedness and concepts for resuming regular opera-
tion as quickly as possible have been an integral part of running a company since the
times of the industrial revolution. In this context, disasters are fire, earthquakes, ter-
rorist attacks, power outages, theft, illness, or similar circumstances. The respective
measures that must be taken in order to being prepared for such disasters and for
keeping up critical business processes in the event of an emergency are commonly
referred to as “Business Continuity Management” (BCM) [1] in economics. The ef-
fectiveness of BCM can be controlled via the key figures “Recovery Time Objective”
(RTO) and “Recovery Point Objective” (RPO) [2]. RTO refers to the allowed time for
which the business process may be interrupted and the RPO relates to the accepted
amount of produced units or data that may be lost by an outage.

Today, with the Internet being production site as well as distribution channel, BCM
faces different challenges. One of the most important tasks in IT-related emergency

50 A. Lenk and F. Pallas

management is the redundant replication of critical systems. Depending on the system
class, different mechanisms are used to secure a system against prolonged outages. In
this regard the RTO specifies the maximum allowed time within which the IT system
must be up again and the RPO is the accepted period of data updates that may be lost,
i.e. generally the time between two backups [2].

This work presents an approach for the calculation based on Markov chains [6].
The basic idea is to carry out a “random walk” [6] on the system’s state graph accord-
ing to defined transition probabilities. The costs and the availability can then be calcu-
lated by means of the Markov chain and the probability distribution for staying in
each state. The presented model is illustrated by means of a simple example and it is
shown that the model can be used to calculate optimal configuration options, like the
replication interval, of the Cloud-Standby-Systems.

The remainder of this paper is structured as follows: First the related work and a
brief description of the Cloud-Standby-System-Class is presented. Then the quality
model itself is developed and it is shown how it can be used to make deliberate confi-
guration decisions on the basis of a simple example. Finally, the conclusion sums up
the paper and gives an outlook to future work in this field.

2 Related Work

The recovery of IT systems can be achieved through different replication mechanisms
[10][11]. “Hot standby” is on the one side of the spectrum: A second data center with
identical infrastructure is actively operated on another site with relevant data being
continuously and consistently mirrored in almost real-time from the first to the second
data center. The operating costs of such a hot standby system, however, amount to the
operating costs of the secondary system plus the cost of the mirroring. On the other
side of the spectrum is the “cold standby”, the low-cost backup, e.g. on tape, without
retaining a second site with backup infrastructure resources. A tape backup is not
possible during productive operation and is usually done at times of low load like at
night or during weekends. In this case, a RPO of days or weeks is common. Due to
the fact that the IT infrastructure has to be newly procured in case of a disaster, an
RTO of several days to months is possible. Between these two extremes lies the con-
cept of “warm standby”. Although a backup infrastructure is kept at another location
in this case, it is not fully active and must be initially put into operation in case of a
disaster. A warm standby system usually has a RPO and RTO between minutes and
hours.

The calculation of quality metrics addressed in this paper can generally be subdi-
vided into the two fields of cost and availability calculation. Regarding these calcula-
tions, related work already exists in the field of virtualized infrastructures, Cloud
Computing, and warm standby systems.

The approach of Alhazmi et al. [8] describes a way of evaluating disaster recovery
plans by calculating the costs. The approach is of generic nature and is not focusing
on the field of Cloud Computing with its own specific pricing models. Wood et al. [2]
describe a way of replicating the data from one virtual machine to a replica machine.

 Modeling Quality Attributes of Cloud-Standby-Systems 51

The respective cost calculation is focusing on this specific approach and cannot be
adapted to Cloud-Standby-Systems like the ones considered in this paper.

Dantas et al. [12] present an Markov-based approach to model the availability of a
warm-standby Eucalyptus cluster. Even if the approach is related to the work pre-
sented herein with regards to the used mathematical model and also shows that Mar-
kov chains can be used to model availabilities in Cloud Computing, it is not used to
model the costs and the calculation of the availability is restricted to a single Eucalyp-
tus installation with different clusters and does not consider settings with several
cloud providers.

Klems et al. [4] present an approach for calculating the downtime of a Cloud-
Standby-System. This approach evaluates the system in general but is a rather
simplistic short term approach, comparing a Cloud-Standby-System with a manual
replication approach.

3 Cloud-Standby-System

A common option for reducing the operating costs of only sporadically used IT infra-
structure, such as in the case of the “warm standby” [10][11], is Cloud Computing. As
defined by NIST [3], Cloud Computing provides the user with a simple, direct access
to a pool of configurable, elastic computing resources (e.g. networks, servers, storage,
applications, and other services, with a pay-per-use pricing model). More specifically,
this means that resources can be quickly (de-)provisioned by the user with minimal
provider interaction and are also billed on the basis of actual consumption. This pric-
ing model makes Cloud Computing a well-suited platform for hosting a replication
site offering high availability at a reasonable price. Such a warm standby system with
infrastructure resources (virtual machines, images, etc.) being located and updated in
the Cloud is herein referred to as a “Cloud-Standby-System”. The relevance and po-
tential of this cloud-based option for hosting replication systems gets even more ob-
vious in the light of the current situation in the market. Only fifty percent of small and
medium enterprises currently practice BCM with regard to their IT-services while
downtime costs sum up to $12,500-23,000 per day for them [9].

The calculation of quality properties, such as the costs or the availability of a repli-
cation system, and the comparison with a “base system” without replication is an
important basis for decision-making in terms of both the introduction and the configu-
ration of Cloud-Standby-Systems. However, due to the structure and nature of replica-
tion systems, this calculation is not trivial, as in each replication state different kinds
of costs (replication costs, breakdown costs, etc.) with different cost structures incur.
Furthermore, determining the quality of the system is difficult due to the long periods
of time and the low probability of disasters (e.g. only one total outage every 10 years).
A purely experimental determination by observing a reference system over decades is
therefore not feasible. Instead, a method for simulating and calculating the long-term
quality characteristics of different configurations is needed.

Cloud-Standby is a Cloud based warm standby approach where the virtual machine
images of a Primary System (PS) are periodically synced to a standby-site in the
Cloud – the Replication System (RS). The states of a generic Cloud-Standby-System
[2][7] are depicted in Fig. 1.

52 A. Lenk and F. Pallas

Fig. 1. State chart of a Cloud-Standby-System

It is assumed that the PS needs to be deployed on Cloud 1 (C1) at first and goes in-
to runtime after the deployment. During runtime, the RS on Cloud 2 (C2) is periodi-
cally started, updated and then shut down again. In case of an outage on C1, the RS
takes over and only if during this time an outage also takes place on C2 the whole
system is unavailable. As soon as C1 rises up again, the PS can be redeployed and
then takes over. A more detailed description of the Cloud-Standby-System-Class is
subject to future publications.

In order to provide decision support regarding the question whether the introduc-
tion of such a Cloud Standby System is useful or not, the states need to be transferred
into to a mathematical model first. In the next chapter we build such a quality model
using a graph and Markov chain, based on the UML chart in Fig.1.

4 Quality Model

In order to facilitate the calculation of quality properties at all, some variables must be
defined and parameterized for calculation. Some of the parameters are defined in the
use case, or of experimental origin, others are taken from external sources and some
can only be estimated. Together with results from previous experiments, average start
times can then be calculated. Table 1 represents the time variables to be parameterized
as well as the underlying source for its parameterization.

To calculate the total costs, the costs for the run-time of each server must be
known. These data can be found in the offers of the Cloud providers. For some evalu-
ations, the costs / loss of profit faced by the company in the case of system unavaila-
bility must also be known or at least estimated. All types of costs included in the
following analysis are summarized in Table 1. The availability of the Cloud provider
is an important basis for the calculation of the overall availability of the system and
thus also of the costs. Many Cloud providers declare such availability levels in their
SLA. However, this availability is less interesting in the context of this calculation
because this work focuses on global, long-term outages caused by disasters that

 Modeling Quality Attributes of Cloud-Standby-Systems 53

Table 1. Parameters

Type Variable Unit Source
Duration of the initial deployment ݐௗ௘௣௟ min. Experiment / calculation
Backup interval ݐ௨௣ௗ௔௧௘ூ௡௧ min. Specification
Backup time ݐ௕௔௖௞௨௣ min. Experiment / calculation
Duration of the replica deployment ݐ௥௘௣௟௜௖௔ min. Experiment / calculation
Transition from emergency to
normal state

 ௘௥௥௢௥ min. Assumption / historicalݐ

Primary Cloud provider costs ܿݐݏ݋ଵ Euro/h/
server

Offer

Secondary Cloud provider costs ܿݐݏ݋ଶ Euro/h/
server

Offer

Unavailability costs ܿݐݏ݋௘ Euro/h Assumption / historical
Primary Cloud availability ݈ܽ݅ܽݒଵ years Assumption / historical
Secondary Cloud availability ݈ܽ݅ܽݒଶ years Assumption / historical

cannot be handled by traditional backup techniques. The availability described in the
third part of Table 1 indicates the average time period in which exactly one such
global outage of the respective Cloud provider is likely to be expected.

Even if elasticity [3] is a key concept of Cloud Computing and although the prices
for cloud resources constantly changed during the past years, we use static values for
the average amount of servers and for the costs over the years. These dynamic aspects
could nonetheless easily be added in future work by not having constant prices and
servers but functions representing these values. For a first step towards modelling the
costs of Cloud-Standby-Systems, however, the use of static values appears acceptable.

4.1 Units

The states for the state graph that should represent the basis for further calculations
can be directly derived from the different states of the UML state chart (Fig. 1). In
that regard, ௜ܵ corresponds to the description of the state ݅ from the state space ܫ. To
calculate the quality properties of the system, stopping times must be assigned to each
of the states (see Table 2). It is assumed that the step length of the Markov chain is
one minute and the stopping time is ݀௜ ׊ ݅ א .in a state ௜ܵ ܫ

Table 2. Designation of the states from the process steps

 Process Step Model State
PS Deployment ଵܵ
PS Runtime ܵଶ
PS Runtime + RS Update ܵଷ
RS Deployment ܵସ
RS Runtime ܵହ
RS Runtime + PS Deployment ܵ଺
Outage ܵ଻

54 A. Lenk and F. Pallas

 Ԧ݀ ؔ
ێێۏ
ێێێ
ۍێ ௘௥௥௢௥ݐ௨௣ௗ௔௧௘ூ௡௧൯ݐ௥௘௣௟஽௘௣௟൫ݐ௨௣ௗ௔௧௘ݐ௨௣ௗ௔௧௘ூ௡௧ݐௗ௘௣௟ݐ െ ௘௥௥௢௥ݐ௥௘௦௧௢௥௘ݐ௥௘௦௧௢௥௘ݐ ௨௣ௗ௔௧௘ூ௡௧൯ െݐ௥௘௣௟஽௘௣௟൫ݐ ۑۑے

ۑۑۑ
ېۑ

As shown in the definition of the stopping times Ԧ݀, all times except those of ݀ଶ, ݀ସ
and ݀ହ can be determined from the previously set parameters (Table 1). The update
interval ݐ௨௣ௗ௔௧௘ூ௡௧ is part of the configuration and has a major influence on the costs
and the availability of the system. The time it takes to start the replica deployment
(݀ସሻ strongly depends on when the server has last been updated. Consequently, the
start time of the replica is increased by a long update interval. Hence, an increase of
the backup interval results in a reduction of the deployment time and accordingly the
function ݐ௥௘௣௟஽௘௣௟ሺݐ௨௣ௗ௔௧௘ூ௡௧ሻ is increasing monotonically. For ݀ହ it is assumed that
the time ݐ௘௥௥௢௥ is constant, regardless of the use of a replication system. The run-time
of the replication system is therefore made up of the outage time less replication dep-
loyment time (݀ସሻ and the time for the return to the production system (݀଺ሻ.

4.2 Markov Chain and Transition Graph

The quality properties of the replication system can be calculated by modeling the
states as a Markov chain and a long-term distribution of the stopping time probabili-
ties in the states ܵ. Due to the lack of memory of the Markov chain (Markov property)
it is not possible to directly model the stopping times. The stopping times must be
transferred into recurrence probabilities. These must be designed so that, on average,
in ݀௜ of the cases the state is maintained and in one case the state is left. It follows that
the total number of possible cases is ݀௜ ൅ 1. Thus, the recurrence probabilities have to
be calculated with ߣ௜ ׊ ݅ א :ܫ

௜ߣ ൌ ௗ೔ௗ೔ାଵ ݅ ׊ א ܫ

In addition to the recurrence probabilities, the probabilities of an outage are required.
These are calculated analogously to the recurrence probabilities. On the average,
normalized to the iteration step of the Markov chain of one minute, one outage in the
period of ݈ܽ݅ܽݒ௜ , א ݅ ሼ1, 2ሽ should incur:

௜ߝ ൌ ଵ௔௩௔௜௟೔כଷ଺ହכଶସכ଺଴ , ݅ א ሼ1,2ሽ

Replication system

Considering these probabilities, the Markov chain ܥܯଵ for the replication system can
now be established as follows:

 Modeling Quality Attributes of Cloud-Standby-Systems 55

Fig. 2. States of the replication system as a Markov chain (ܥܯଵ)

The transition matrix ଵܲ can be read directly from the Markov chain in Fig. 2:

ۈۉ
ۇۈۈ

λଵ 0 1 െ λଵ െ εଵ 0 0 εଵ 00 λଶ 1 െ λଶ െ εଵ εଵ 0 0 00 1 െ λଷ െ εଵ λଷ εଵ 0 0 00 0 0 λସ 1 െ λସ െ εଶ 0 εଶ0 0 0 0 λହ 1 െ λହ െ εଶ εଶεଶ 0 1 െ λ଺ െ εଶ 0 0 λ଺ 01 െ λ଻ 0 0 0 0 0 λ଻ۋی
 ۊۋۋ

Base system

As the properties of the replication system should in the end be compared to the origi-
nal system, now the Markov chain ܥܯଶ and the transition matrix ଶܲ must be created
as a reference for the system without replication. The two chains only differ in the fact
that no update is performed, which means ݐ௨௣ௗ௔௧௘ூ௡௧ ՜ ∞, the stopping time in the
states ܵଷ െ ܵ଺ are equal to zero and no second provider exists, the probability of out-
age εଶ is therefore 1. In case these parameters are applied to ܥܯଵ, the states ܵହ and ܵ଺ are no longer obtainable. With a probability of 1 the state of ܵସ merges directly
with ܵ଻ and can thus be combined with ܵ଻.

Due to the fact that the update interval is infinite, the recurrence probability of ܵଶ
is one1. This also results in a negative transition probability from ܵଶ to ܵଷ. However,

1 limݐ݊ܫ݁ݐܽ݀݌ݑݐ՜ ∞ߣ൫ݐ݊ܫ݁ݐܽ݀݌ݑݐ൯ ൌ limݐ݊ܫ݁ݐܽ݀݌ݑݐ՜ ∞ ൅1ݐ݊ܫ݁ݐܽ݀݌ݑݐݐ݊ܫ݁ݐܽ݀݌ݑݐ ൌ 1.

s1 s3 s4

s2

s5

s7

1‐λ2‐ε1 1‐λ3‐ε1

ε1 1‐λ4‐ε2

1‐λ5‐ε2

ε2

1‐λ1‐ε1

ε1

ε2

λ1

λ2

λ3

λ4 λ5

λ7

1‐λ7

ε1

s6

λ6

ε2

1‐λ6‐ε2

56 A. Lenk and F. Pallas

as the recurrence probability of ܵଷ is zero, this negative transition probability can be
resolved by combining the vertices ܵଶ and ܵଷ to ܵଶ. Eventually, this results in a new
recurrence probability for ܵଶ of 1 െ εଵ.

The new Markov chain is therefore ܥܯଶ:

Fig. 3. States of the base system as a Markov chain (ܥܯଶ)

The transition matrix ଶܲ was created similarly to ଵܲ as a Թ଻௫଻ matrix, so that the
same algorithms are applicable on both matrices. The transitions to and from the
states ܵଷ െ ܵ଺ have a probability of zero:

ۈۉ
ۇۈۈ

λଵ 1 െ λଵ െ εଵ 0 0 0 0 εଵ0 1 െ εଵ 0 0 0 0 εଵ0 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 00 0 0 0 0 0 01 െ λ଻ 0 0 0 0 0 λ଻ۋی
 ۊۋۋ

4.3 Long-Term Distribution

The stationary distribution of a Markov chain ܥܯ can be calculated in order to reach
a long-term distribution of the system. This distribution ߨ௜ , ݅ א states the probability ܫ
of the system to be in the state ௜ܵ , ݅ א ݊ at any given time ܫ א Գ. With the help of the
probability distribution, long-term quality properties such as the cost of γ and
the overall availability of ߙ can easily be calculated. The algorithm for determining
the stationary distribution is represented in shortened form as follows2. In this case ߃௥
is the unit matrix and ܾ௥ሬሬሬԦ is the unit vector with the rank ݎ.

 ܳ ൌ ܲ െ Ε଻

2 A detailed description of the calculation of the stationary distribution is given in [6].

 Modeling Quality Attributes of Cloud-Standby-Systems 57

 ܳᇱ ൌ ቌݍଵ,ଵ ڮ ଵ,଻ݍ ڭ1 ڰ ڭ ଻,ଵݍڭ ڮ ଻,଻ݍ 1ቍ்

The result of the equation system

 ܳᇱ כ ሬԦߨ ൌ ܾ଻ሬሬሬԦ

is the stationary distribution ߨሬԦ. This distribution is a vector of which point ߨ௜ א ܫ
indicates the probability to be in the state ௜ܵ at a given step ݊.

5 Quality Metrics and Decision Support

After defining the stationary distribution ߨ௜ , ݅ א the quality properties of costs and ,ܫ
availability can be determined.

5.1 Cost

The costs ܿଵ for provider 1 result from the sum of the costs in the states ଵܵ, ܵଶ, ܵଷ, ܵ଺.
The costs ܿଶ incur for provider 2 during the update, in the emergency mode in ܵଷ, ܵସ, ܵହ and the recurrence via state ܵ଺. The costs ܿக for the non-availability of the
system incur in the states ଵܵ, ܵସ, ܵ଻.

,ሬԦߨሺߛ Ԧܿ, ݊௦௘௥௩௘௥ሻ ؔ ܿଵ݊௦௘௥௩௘௥ ෍ ሼଵ,ଶ,ଷ,଺ሽא௜௜ߨ
௜ ൅ ܿଶ݊௦௘௥௩௘௥ ෍ ሼଷ,ସ,ହ,଺ሽא௜௜ߨ

௜ ൅ ܿఌ ෍ ሼଵ,ସ,଻ሽא௜௜ߨ
௜ (1)

5.2 Availability

The availability results from the sum of the probabilities of the states in which the
system is available (ܵଶ, ܵଷ, ܵସ, ܵ଺) or from the recurrence probability for the states in
which the system is unavailable (ଵܵ, ܵସ, ܵ଻):

ሬԦሻߨሺߙ ؔ ෍ ሼଶ,ଷ,ହ,଺ሽא௜௜ߨ
௜ ൌ 1 െ ෍ ሼଵ,ସ,଻ሽא௜௜ߨ

௜ (2)

5.3 Decision Support Based on the Quality Metrics

In case of a decision having to be made whether the replication system should be used
in a particular configuration or not, it is useful to compare the quality properties of the
different options. Especially during the introduction phase such a direct comparison
between the base system and the replication system makes sense.

58 A. Lenk and F. Pallas

In many cases companies cannot accurately predict certain parameters such as the
cost of an outage (ܿݐݏ݋௘) and can only make estimations in a specific interval. There-
fore, it is appropriate to make quality properties not only dependent on the update
interval, but also on other parameters.

Ratio of Outage Costs to Replication Interval

To perform a comparison of the total costs in relation to the outage costs and update
interval, the total costs with variable outage costs (ܿݐݏ݋௘ሻ and update interval
 :have to be calculated first. We represent these total costs as (௨௣ௗ௔௧௘ூ௡௧ݐ)

,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ ௘൯ݐݏ݋ܿ ؔ ,௨௣ௗ௔௧௘ூ௡௧ሻݐሬԦ௜ሺߨ൫ߛ Ԧܿሺܿݐݏ݋௘ሻ, ݊௦௘௥௩௘௥൯, ݅ א ሼ1,2ሽ (3)

By using these variable cost calculation functions the area in which the two systems
have the same cost can be determined. This is achieved by sectioning the functions:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௘൫ݐݏ݋ܿ ൌ׷ ,௨௣ௗ௔௧௘ூ௡௧ݐଵ൫ߛ ௘൯ݐݏ݋ܿ ת ,௨௣ௗ௔௧௘ூ௡௧ݐଶ൫ߛ ௘൯ (4)ݐݏ݋ܿ

The function will facilitate the consideration of the limit of value. In this case limits
for the update interval are the value of continuous updates and an update interval
tending to infinity. Due to the cost structure of the Cloud provider (billing period of
an hour) the continuous replication is to be equated with a replication interval of 1
hour or 60 minutes:

௘௠௜௡ݐݏ݋ܿ ؔ lim௧ೠ೛೏ೌ೟೐಺೙೟՜ஶ ௘ݐݏ݋ܿ ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯ (5)

௘௠௔௫ݐݏ݋ܿ ؔ lim௧ೠ೛೏ೌ೟೐಺೙೟՜଺଴ ௘ݐݏ݋ܿ ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯ (6)

Outside of the interval ሾcost୫ୣ୧୬, cost୫ୣୟ୶ሿ a Cloud-standby replication such as de-
scribed in this work doesn't make sense. Should the costs cost୫ୣ୧୬ decrease, the base
system is always cheaper and should the update interval be 60 minutes, two systems
are operated in parallel. In this case, there would be a direct transition to a hot standby
approach because it guarantees an even higher availability.

Ratio of Availability to the Replication Interval

To establish a ratio between availability and replication interval, the availability ߙ is
represented as a function that is dependent on ݐ௨௣ௗ௔௧௘ூ௡௧:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜൫ߙ ൌ׷ ,ሬԦ௜ሻߨሺߙ א ݅ ሼ1,2ሽ (7)

This ratio allows a determination of the interval in which the replication system can
ensure availability:

ଵ௠௜௡ߙ ؔ lim௧ೠ೛೏ೌ೟೐಺೙೟՜ஶ ௨௣ௗ௔௧௘ூ௡௧൯ (8)ݐଵ൫ߙ

ଵ௠௔௫ߙ ؔ lim௧ೠ೛೏ೌ೟೐಺೙೟՜଺଴ ௨௣ௗ௔௧௘ூ௡௧൯ (9)ݐଵ൫ߙ

 Modeling Quality Attributes of Cloud-Standby-Systems 59

The system without replication availability is independent of ݐ௨௣ௗ௔௧௘ூ௡௧:

ଶߙ ൌ ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ൫ߙ

As the availability function ߙଵ൫ݐ௨௣ௗ௔௧௘ூ௡௧൯ is convex, ߙଵ௠௜௡ ൏ .ଵ௠௔௫ always appliesߙ
Furthermore, it also applies:

ଶߙ ൑ ଵ௠௜௡ (10)ߙ

This connection which is surprising at first glance can be explained by the fact that in
case of an error in the base system it will be directly changed to the state ܵ଻, while in
case of a replication the outage time can be bridged by using Cloud provider 2. Only
in case of ݐ௘௥௥௢௥ ൌ 0 applies:

ଶߙ ൌ ଵ௠௜௡ߙ

i.e. for ݐ௘௥௥௢௥ ൐ ש 0 ௨௣ௗ௔௧௘ூ௡௧ݐ ൐ 60 applies:

ଶߙ ൏ ௨௣ௗ௔௧௘ூ௡௧ሻݐଵሺߙ

Thus, it can be assumed that from an availability point of view, the outage time ݐ௘௥௥௢௥ ൐ 0 should definitely be used on a replication system, even if a very large up-
date interval is chosen.

Determining the Cost Neutral Update Interval

In order to decide on the length of the replication interval it makes sense to perform a
comparison of the systems on a cost basis. It is assumed that outage costs ܿݐݏ݋௘ can
be quantified. In order to perform a cost comparison, the two total cost functions are
set up:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜,௖௢௦௧೐൫ߛ ൌ ,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ ,௘൯ݐݏ݋ܿ ݅ ߳ ሼ1,2ሽ (11)

The maximum and minimum costs for the replication system can easily be determined
by considering the limit values:

ଵ,௖௢௦௧೐௠௜௡ߛ ൌ׷ lim௧ೠ೛೏ೌ೟೐಺೙೟՜ஶ ௨௣ௗ௔௧௘ூ௡௧൯ (12)ݐଵ,ସ଴଴൫ߛ

ଵ,௖௢௦௧೐௠௔௫ߛ ൌ׷ lim௧ೠ೛೏ೌ೟೐಺೙೟՜଺଴ ௨௣ௗ௔௧௘ூ௡௧൯ (13)ݐଵ,ସ଴଴൫ߛ

The cost neutral update interval can be determined by the intersection of the two cost
functions:

௨௣ௗ௔௧௘ூ௡௧ݐ ؔ ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,௖௢௦௧೐൫ߛ ת ௨௣ௗ௔௧௘ூ௡௧൯ (14)ݐଶ,௖௢௦௧೐൫ߛ

60 A. Lenk and F. Pallas

6 Evaluation

In section 3 we motivated that a quality model is needed to evaluate if a Cloud-
Standby-System is useful in a given use case. In this chapter we evaluate the model by
applying it to a given use case. We demonstrate how the quality model can be applied
to a server deployment of 10 servers and given or experimentally determined metrics
(see Table 3). It is further illustrated how the administrator of the application can be
supported in his decision whether to use Cloud Standby or not.

Table 3. Input Parameter (see Table 1-3) Assumptions

Variable Value ݐௗ௘௣௟ 60 min. ݐ௕௔௖௞௨௣ 30 min. ݐ௘௥௥௢௥ 1440 min. ݊௦௘௥௩௘௥ ଵݐݏ݋ܿ 10 0,68€/h/server3 ܿݐݏ݋ଶ 0,68€/h/server ݈ܽ݅ܽݒଵ 10 years ݈ܽ݅ܽݒଶ 10 years

For the calculation of the quality properties, it is necessary to determine the time
for the deployment of the replica (ݐ௥௘௣௟஽௘௣௟). As the time depends on the update fre-
quency, it must be adopted via a function. We assume that 50% of the deployment
process is fixed and 50% may be affected by the update interval. The strictly mono-
tonically increasing function should have its lowest point at an update interval of 60
and approach the limit of the time for the initial deployment ݐௗ௘௣௟ at infinity:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௥௘௣௟஽௘௣௟൫ݐ ൌ ௗ௘௣௟ݐ ൬1 െ 0,5 ଺଴௧ೠ೛೏ೌ೟೐಺೙೟൰ , ௨௣ௗ௔௧௘ூ௡௧ݐ א ሾ60, ∞ሿ
This function will in our future work be determined by interpolation of data points
from real experiments.

6.1 Ratio of Outage Costs to the Replication Interval

With the help of the stationary distributions ߨ௜ (see Section 4.3) and the costs in Table 3
the cost functions ߛ௜ can now be defined depending on ݐ୳୮ୢୟ୲ୣI୬୲ and cost௘ using formu-
la (3) with ݅ ൌ 1 (Cloud-Standby-System) and ݅ ൌ 2 (Base-System).

Representing the two functions in a graph (Fig. 4) reveals combinations where ߛଵ has lower function values (total costs) and others where ߛଶ is lower. The intersec-
tion of the functions establishes a curve on which both systems have the same level of
costs. This function is represented in Fig. 5. Besides the combinations leading to the
same costs (grey line), the combinations in which the replication system is monetarily
inferior to the normal system (grey area) as well as those in which the replication
system is cheaper (white area) can be identified.

3 “Extra Large” Amazon EC2 instance in the availability zone EU-West or performance wise

comparable instance on another vendor [5].

 Modeling Quality Attributes of Cloud-Standby-Systems 61

Fig. 4. Comparison of the total costs ߛଵ
(colored area) and ߛଶ(grey area) at variable ݐ௨௣ௗ௔௧௘ூ௡௧ and ܿݐݏ݋௘

 Fig. 5. ݐ௨௣ௗ௔௧௘ூ௡௧ and ܿݐݏ݋௘ combinations
in which the replication system is more
expensive (grey area), costs the same (grey
line) and is cheaper (white area)

The limits of the function ܿݐݏ݋௘ሺݐ௨௣ௗ௔௧௘ூ௡௧ሻ result in the interval in which a Cloud-
standby approach on the basis of total costs makes sense (see formula (5) and (6)): ܿݐݏ݋௘௠௜௡ ൌ lim௧՜ஶ ௘ݐݏ݋ܿ ሺݐሻ ൌ ௘௠௔௫ݐݏ݋ܿ ݄/6.79€ ൌ lim௧՜଺଴ ௘ݐݏ݋ܿ ሺݐሻ ൌ 8198.79€/݄

In the case of the costs for the outage being lower than the assumed values for server
costs, costs for outage times, etc. at more than 8198.79 € per hour, a replication sys-
tem should be deployed in any case. However, such high costs suggest the approach
of a hot standby as two systems can be operated in parallel without any further costs.
Given the above-mentioned assumptions, the use of a replication system does not
make sense when the outage costs are less than 6.79 € per hour. In this case no matter
how large the replication interval is selected, the use of a simple, unsecured system
makes more sense from a cost perspective (but not in terms of availability).

6.2 Ratio of Availability to the Replication Interval

Applying the values from Table 5, the availability functions of ߙଵ and ߙଶ can be cal-
culated depending on ݐ௨௣ௗ௔௧௘ூ௡௧ with formula (7).

The overall availability of the system increases according to formula (8)-(10) noti-
ceably by introducing the replication system. The limit of the function ߙଵ and the
value of ߙଶ are:

 ௜ߛ

௨௣ௗ௔௧௘ூ௡௧ݐ ௘ݐݏ݋ܿ

 ௘ݐݏ݋ܿ

௨௣ௗ௔௧௘ூ௡௧ݐ

62 A. Lenk and F. Pallas

ଵ௠௜௡ߙ ൌ lim௧ೠ೛೏ೌ೟೐಺೙೟՜ஶ ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ ൌ ଵ௠௔௫ߙ 0.9999883 ൌ lim௧ೠ೛೏ೌ೟೐಺೙೟՜଺଴ ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ൫ߙ ൌ ଶߙ 0.9999940 ൌ ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ൫ߙ ൌ 0.999988201

Since an outage time of ݐ௘௥௥௢௥ ൐ 0 was assumed, thus it always makes sense in terms
of availability to use the replication system as already presumed.

6.3 Determining the Cost Neutral Update Interval

 Now the cost neutral update interval has to be defined by using formula (11), i.e. the
time ݐ௨௣ௗ௔௧௘ூ௡௧ in which the base system and the replication system produce the same
costs. Therefore, it is exemplarily assumed that the outage costs are deter-
mined: ܿݐݏ݋௘ ൌ 400€/h. With the help of these outage costs, the new cost functions
can be set up now:

௨௣ௗ௔௧௘ூ௡௧൯ݐ௜,ସ଴଴൫ߛ ൌ ,௨௣ௗ௔௧௘ூ௡௧ݐ௜൫ߛ 400൯, ݅ ߳ ሼ1,2ሽ

Consideration of the limit value according to (12) and (13) easily depicts the minimal
and maximal costs: ߛଵ,ସ଴଴௠௜௡ ൌ lim௧ೠ೛೏ೌ೟೐಺೙೟՜ஶ ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ ൌ 59650.34 € / year ߛଵ,ସ଴଴௠௔௫ ൌ lim௧ೠ೛೏ೌ೟೐಺೙೟՜଺଴ ௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ ൌ 99772.07€ / year

The costs for the use of the system without replication can be calculated with the
function ߛଶ,ସ଴଴൫ݐ௨௣ௗ௔௧௘ூ௡௧൯. These costs are independent of t and thus constant. It is
evident that the costs of ߛଵ,ସ଴଴ are reduced with an increasing update interval and at
some point cut with ߛଶ,ସ଴଴ (see formula (14)). By calculating the equation

௨௣ௗ௔௧௘ூ௡௧൯ݐଵ,ସ଴଴൫ߛ ൌ ௨௣ௗ௔௧௘ூ௡௧൯ݐଶ,ସ଴଴൫ߛ

to ݐ௨௣ௗ௔௧௘ூ௡௧, the update interval that can be selected without additional monetary
expenses can be determined: ݐ௨௣ௗ௔௧௘ூ௡௧ ൌ 1923.03 ݉݅݊.
Considering the outage costs, the system assumed in the example can be made more
available without higher costs at an update interval of 1923 minutes, which is a bit
less than a daily update (every 1.33 days). The following changes in the availability
arise from this: ߙଵሺ1923ሻ െ ߙଶሺ1923ሻ ൌ 0.000274. This means that the system in
the given use case is within 10 years 1440 minutes or one day more available and
consequently the availability class will rise from 3 to 4 with the same costs4.

4 The introduction of the Cloud-Standby-System may, however, introduce other costs that are

not included herein but are subject to future work.

 Modeling Quality Attributes of Cloud-Standby-Systems 63

7 Conclusion

In this work a novel Markov chain based approach was presented that can be used to
calculate the availability and long-term costs of a Cloud-Standby-System that repli-
cates a single application from one cloud to another. It was also shown that a Cloud-
Standby-System has an advantage over a base system in matters of availability even if
the replication is not even performed once. It was also shown how the model can be
used to configure a Cloud-Standby-System. Since it was proven that a Cloud-
Standby-System provides a higher availability by design, future work is to develop a
reference architecture for this kind of systems. Challenges will presumably arise with
regard to the questions how the deployment of an application can be described on the
different Clouds, how algorithms for the deployment and the replication look like and
how they can be translated into the metric necessary for the model presented in this
paper. Furthermore, future work might also concentrate on the introduction of
more dynamic parameters regarding provider costs, outage costs, etc. into the model
presented herein.

References

1. Hotchkiss, S.: Business continuity management in practice. BCS, the Chartered Institute
for IT, Swindon, UK (2010)

2. Wood, T., et al.: Disaster recovery as a cloud service: Economic benefits & deployment
challenges. In: Proc. of HotCloud, Boston (2010)

3. Mell, P., Grance, T.: The NIST definition of cloud computing (draft). NIST special publi-
cation 800, 145 (2011)

4. Klems, et al.: Automating the delivery of IT Service Continuity Management through
cloud service orchestration. In: IEEE Network Operations and Management Symposium,
NOMS (2010)

5. Lenk, A., et al.: What are you paying for? Performance benchmarking for infrastructure-
as-a-service offerings. In: IEEE International Conference on Cloud Computing (CLOUD).
IEEE (2011)

6. Gilks, W.R., Richardson, S., Spiegelhalter, D. (eds.): Markov Chain Monte Carlo in prac-
tice: interdisciplinary statistics, vol. 2. Chapman & Hall/CRC (1995)

7. Cully, B., et al.: Remus: High availability via asynchronous virtual machine replication. In:
Proceedings of the 5th USENIX Symposium on Networked Systems Design and Imple-
mentation (2008)

8. Alhazmi, O., et al.: Assessing Disaster Recovery Alternatives: On-Site, Colocation or
Cloud. In: 23rd IEEE International Symposium on Software Reliability Engineering
Workshops (ISSREW). IEEE (2012)

9. Symantec, SMB Disaster Preparedness Survey – Global Results (January 2011)
10. Schmidt, K.: High Availability and Disaster Recovery. Concepts, Design, Implementation.

Springer, Germany (2006)
11. Henderson, C.: Building Scalable Web Sites, 1st edn. O’Reilly, Sebastopol (2006)
12. Dantas, et al.: An Availibility Model for Eucalyptus Platform: An Analysis of Warm-

Standby Replication Mechanism. In: IEEE International Conference on Systems, Man, and
Cybernetics (2012)

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 64–78, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Cloud4SOA: A Semantic-Interoperability PaaS Solution
for Multi-cloud Platform Management and Portability

Eleni Kamateri1,2, Nikolaos Loutas1,2, Dimitris Zeginis1,2, James Ahtes3,
Francesco D’Andria3, Stefano Bocconi4, Panagiotis Gouvas5, Giannis Ledakis5,

Franco Ravagli6, Oleksandr Lobunets7 and Konstantinos A. Tarabanis1,2

1 Centre for Research and Technology Hellas (CERTH), Thessaloniki, Greece
{ekamater,nlout,zeginis,kat}@iti.gr

2 Information Systems Lab, University of Macedonia, Thessaloniki, Greece
{ekamater,nlout,zeginis,kat}@uom.gr

3 ATOS Spain SA, Barcelona, Spain
{james.ahtes,francesco.dandria}@atos.net

4 Cyntelix Corporation BV, Amersfoort, The Netherlands
sbocconi@cyntelix.com

5 Singular Logic, Athens, Greece
{pgouvas,g.ledakis}@gmail.com

6 Digital Enterprise Research Institute (DERI), NUI Galway, Ireland
franco.ravagli@deri.org

7 Fraunhofer FIT, Sankt Augustin, Germany
oleksandr.lobunets@fit.fraunhofer.de

Abstract. Cloud Platform as a Service (PaaS) is a novel, rapidly growing seg-
ment in the Cloud computing market. However, the diversity and heterogeneity
of today’s existing PaaS offerings raises several interoperability challenges.
This introduces adoption barriers due to the lock-in issues that prevent the port-
ability of data and applications from one PaaS to another, “locking” software
developers to the first provider they use. This paper introduces the Cloud4SOA
solution, a scalable approach to semantically interconnect heterogeneous PaaS
offerings across different Cloud providers that share the same technology. The
design of the Cloud4SOA solution, extensively presented in this work, com-
prises of a set of interlinked collaborating software components and models to
provide developers and platform providers with a number of core capabilities:
matchmaking, management, monitoring and migration of applications. The pa-
per concludes with the presentation of a proof-of-concept implementation of the
Cloud4SOA system based on real-life business scenarios.

Keywords: Cloud computing, Platform as a Service (PaaS), interoperability,
portability, semantics, vendor lock-in.

1 Introduction and Motivation

During the last years, Cloud computing has managed to consolidate its position in the
domain of IT technologies. According to a recent survey conducted by the Open

 Cloud4SOA: A Semantic-Interoperability PaaS Solution 65

Group [1], the majority of organizations currently utilize Cloud-based services and
solutions, or intend to do so in the next years. Similar increase is also expected in the
adoption of PaaS solutions with Gartner predicting that PaaS will increase from
three percent to 43 percent of all enterprises by 2015 [2]. Furthermore, a recent
Current Analysis report refers that a major shift towards PaaS is gaining momentum
in 2013 [3].

PaaS is the layer that lies between the underlying system infrastructure (IaaS) and the
overlaying application software (SaaS), containing all application infrastructure services
including application containers (servers), application development tools, database man-
agement systems, integration middleware, portal products, business process management
suites, etc. known as “middleware” [4]. The benefits of moving and running an ecosys-
tem of applications on a PaaS provider vary from time- and money-saving to improved
operational efficiency, performance, scalability and reliability.

However, IT managers remain sceptical of this new trend expressing considerable
concerns about the possible risks that such a movement may entail. Lack of compli-
ance, secure software development process and adequate provisions in Service Level
Agreement (SLA) are some of these concerns, with vendor lock-in and interoperabil-
ity often cited among the most significant challenges facing the long-term adoption of
Cloud computing [1, 5].

The PaaS market segment is at its early stage and does not yet have well-
established leaders, business practices or dedicated standards [4]. Most PaaS vendors
such as Google App Engine and Heroku provide great functionality for developing
new applications from scratch, but they do not provide answer for legacy applications,
letting PaaS customers do the migration of their applications themselves and usually
without adequate support. Similar problems are also experienced when PaaS custom-
ers need to migrate an application from one Cloud to another. Some PaaS vendors do
not even allow software created by their customers to be moved off their platforms.
But even if someone can freely move their data and applications between different
Cloud platforms, the high diversity and heterogeneity of today’s existing PaaS offer-
ings act as deterrent as developers will have to re-engineer their applications to adapt
them to the selected PaaS.

Even on the vendor’s side, the very same “lock-in” is greatly limiting the entry of
new PaaS providers with innovative offerings, due to the high switching costs that
their competition’s customers have.

The current state of the PaaS landscape is therefore far from a global arena open to
every player. Thus, reducing the interoperability barriers present between different
PaaS vendors constitutes an important step for realizing the potential of an open mar-
ket global vision for Cloud computing and their platforms.

In this vein, this paper introduces an interoperable multi-PaaS Cloud solution de-
veloped by the Cloud4SOA research project, which aims to provide better accessibil-
ity and flexibility in the fragmented PaaS market. The Cloud4SOA empowers
Cloud-based application developers with application portability without setting their
applications and data at risk. To this end, it provides added-value capabilities
that facilitate the access and lifecycle management to the PaaS offering that best
matches developer’s computational needs. Specifically, it supports multi-platform

66 E. Kamateri et al.

matchmaking, management, monitoring and migration of applications by semantically
interconnecting heterogeneous PaaS offerings across different Cloud providers that
share the same technology.

The rest of this paper is structured as follows. Section 2 reviews the concept of
Cloud interoperability as well as the relevant initiatives dealing with this challenging
issue. Section 3 presents the most representative capabilities of the Cloud4SOA
system. Section 4 describes the Cloud4SOA reference architecture’s layers and com-
ponents. Section 5 gives an overview of the implementation process while section 6
describes the evaluation exercise conducted to assess the usefulness of the
Cloud4SOA system. Finally, Section 7 concludes the paper summing up the research
findings and the future work.

2 Background and Related Work

2.1 Addressing the Cloud Interoperability

In order to tackle the problem of interoperability, it is quite important to understand
what interoperability is and how it can be resolved in the context of Cloud computing.
Interoperability is a broad term, encompassing many different aspects related to
effective collaboration of diverse resources, services and/or systems. Several attempts
have been made to define, address and scope it. This section presents the varied as-
pects of the Cloud interoperability and a high-level picture of the most promising
strategies for addressing it.

Cloud portability is highly related to Cloud interoperability and should be also con-
sidered when interoperability is analyzed. Portability refers to the ability to move and
reuse applications and data from one Cloud provider to another regardless of the dif-
ferences that may exist among their systems [6]. Therefore, the Cloud portability
requires interoperability obstacles to have been previously resolved in order to move
services among Clouds.

In addition, the Cloud interoperability is considered as a synonym of integration in
this context; the ability of different Cloud services to seamlessly interoperate or work
with each other targeting a common purpose. This also involves the life-cycle man-
agement of services across Cloud environments.

Trying to figure out a Cloud interoperability framework that will be adopted by
current Cloud systems to resolve interoperability problems, a number of strategies
have been proposed.

A common tactic to address Cloud interoperability is the use of open standards for
the resources/services, security and management functions. This consensus will ena-
ble the easy integration and migration of services between heterogeneous Cloud sys-
tems. However, most of the existing Cloud solutions have not been built to comply
with any established Cloud standards leading to a locked-in and fragmented Cloud
market.

This deficiency can be addressed by means of interoperability techniques that will
be applied to the current non-compatible Cloud systems including the creation of

 Cloud4SOA: A Semantic-Interoperability PaaS Solution 67

abstraction layers and open APIs. The main characteristic of an abstraction layer is
that it is specifically conceived to hide the details of the underlying layers. Indeed, it
is used to hide the differences of underlying resources/services. It can also resolve
conceptualization incompatibilities arisen in the semantics of Cloud services provid-
ing an abstract view that facilitates the easy discovery and selection, customization
and integration of different services. On the other hand, a standardized management
interface (API) abstracts/wraps proprietary ones and resolves the arisen programmatic
differences from one Cloud to another translating the commands to specific Cloud
provider’s management configurations.

2.2 Related Work

Cloud computing reference architectures can provide a common viewpoint of Cloud
computing model and, therefore, deal with arisen interoperability issues (e.g. CSA1,
NIST2, and recently Gartner3 and IETF4). However, in real life persuading the whole
community to agree on and adopt a reference architecture or a common model may
sound unrealistic or at least difficult to achieve. A more flexible approach to tackle
interoperability conflicts among different Cloud providers is needed such as the use of
a Cloud broker that adopts the aforementioned interoperability techniques. A Cloud
broker can achieve unification and connectivity among current Cloud systems, while
reducing the need for reforming their establishment technology. In this section, we
summarize a number of broker-based Cloud architectures derived from related EU
projects that aim to address Cloud interoperability mainly in the PaaS layer as well as
open and proprietary offerings targeting PaaS interoperability.

The broker-based architecture proposed in Cloud@Home [7] uses virtualization
techniques to overcome compatibility problems and provide a homogeneous view of
distributed resources and services.

The RESERVOIR project [8] aimed at the development of a service-oriented infra-
structure that allows the interoperability of Cloud providers for the reliable delivery of
services. Service providers address end-users’ needs leasing computational resources
from infrastructure providers which interoperate with each other creating a seamlessly
infinitive pool of IT resources.

For the purposes of the Contrail project [9], a set of adapters are implemented in
each Cloud provider to enable the efficient cooperation and sharing of resources com-
ing from different Cloud providers. To this end, CONTRAIL provides a system in
which resources that belong to different operators are integrated into a single homo-
geneous federated Cloud that users can access seamlessly.

1 https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf
2 http://www.cloudcredential.org/images/
pdf_files/nist%20reference%20architecture.pdf

3 http://www.gartner.com/id=1395513
4 http://social.technet.microsoft.com/wiki/contents/articles/
4399.private-cloud-reference-model.aspx

68 E. Kamateri et al.

The PaaSage5 project aim
model-based development,
and new applications indep

4CaaSt [10] introduces
ment and specification of
underlying complexity of i
platform enables the creatio
the Cloud can be easily tailo

The mOSAIC project [1
applications’ deployment a
open APIs (independent of
In addition, mOSAIC enab
terms of an ontology while
fitting Cloud services.

The Cloud-TM project
which exposes a set of API
of large scale parallel applic
ly acquired from the underl

The goal of the Broker@
equip Cloud service interm
tinuous quality assurance an

Table 1. Ov

Architecture Layer

Cloud@Home IaaS

RESERVOIR IaaS

Contrail IaaS/PaaS

PaaSage IaaS/PaaS

4CassSt PaaS

mOSAIC IaaS/PaaS

Cloud-TM IaaS

Broker@Cloud IaaS/PaaS

Cloud4SOA PaaS

An open API serves as a
sues. Several open APIs
OpenStack7, and the propri

5 http://www.paasage.
6 http://deltacloud.ap
7 http://www.openstac
8 www.rightscale.com/
9 http://www.vmware.c
datacenter-virtuali

ms at delivering an open and integrated platform to supp
 configuration, optimization, and deployment of exist
endently of the existing Cloud infrastructures.
a broker-based architecture which decouples the devel

f applications from their actual deployment, leaving
infrastructure and platforms out of users’ concerns. T
on of a business ecosystem where services at all layers
ored to different users, mashed up and traded together.
11] aims at the development of a platform that facilita
and portability across multiple Clouds providing a set
f vendors) and a high-level abstraction of Cloud resourc
bles developers to specify their resource requirements
the platform, using a brokering mechanism, will find b

[12] aims at building an innovative middleware platfo
Is and abstractions for the development and administrat
cations across a dynamic set of distributed nodes, elastic
ying IaaS Cloud provider(s).
@Cloud [13] project is to develop a framework that w

mediaries with advanced methods and mechanisms for c
nd optimization of software-based Cloud services.

verview of Related Broker-based Architectures

IaaS Inter-
operability

PaaS Inter-
operability

Portability Ontology-
based

Standar
ized AP

 (OCCI

a pragmatic strategy for tackling certain interoperability
and proprietary ones (such as the open DeltaCloud 6

ietary Rightscale8 & vCloud9) have been proposed for

eu/
pache.org/
k.org/

om/products/
zation/vcloud-suite/overview.html

port
ting

lop-
the

This
s of

ates
t of
ces.
s in
est-

orm
tion
cal-

will
con-

rd-
PI

I)

y is-
6 &
the

 C

management of IaaS servic
As regards to the PaaS laye
dify11 enables the deploym
Clouds. Compatible One12

deploy and manage Cloud
looks to standardize basic
their differentiating qualitie
aims to give developers th
tions that will be portable
PaaS offering that provide
Shift makes use of DeltaCl
tion deployment.

Table 2. Ov

Architecture Solution

Cloudify Open

Compatible One Open

CAMP Open

Cloud Foundry Proprietary

OpenShift Proprietary

From the above analysis
translate user’s requiremen
Semantics can enhance the
straction mechanism to su
tion’s requirements and C
enabling the ease mapping
and 4CaaSt platforms. Furt
to mask the programming
management of distributed
platforms. As shown in Ta
has been observed that the
e.g. RESERVOIR, Cloud@
zation of the IaaS to meet
CONTRAIL. There are lim
bility and dealing with with
works that each application

10 http://occi-wg.org/
11 http://www.cloudify
12 http://www.compatib
13 https://www.oasis-op
14 http://www.cloudfou
15 https://www.openshi

Cloud4SOA: A Semantic-Interoperability PaaS Solution

ces, as well as the popular OCCI10 standard specificati
er, early efforts have been made in the last few years. Cl
ment, management and scaling of applications on vari
2 is an open source Cloud broker that enables to cre

platforms. Moreover, CAMP13, out of the OASIS gro
management aspects so that PaaS providers can focus

es. Furthermore, Cloud Foundry14, developed by VMw
he opportunity to build Cloud Foundry PaaS implemen

across various infrastructures. OpenShift15 is Red H
es developers a flexible development environment. Op
loud’s interoperability API to provide cross-cloud appli

erview of Open and Proprietary PaaS Offerings

Description
IaaS Interop-

erability
PaaS Interoper

bility

Open PaaS
Open source Cloud broker
Open PaaS API specification

Open source project
 Development environment

s, we can deduce that the main role of a Cloud broker i
nts and match them with the appropriate Cloud offerin
e matchmaking operation providing an ontology-based
upport the unified representation of Cloud-based appli
Cloud offerings coming from different Cloud provid

of them. Such descriptors are interpreted by the mOSA
thermore, a standardized interface (API) is quite necess
differences of proprietary APIs and enable the seaml
resources/services as well as portability of services acr

able 1, APIs are exposed by most of the platforms. Las
majority of the Cloud brokers are acting in the IaaS lay

@Home, and Cloud-TM, or they are based on the person
user requirements at the PaaS layer such as mOSAIC

mited approaches exclusively focusing on PaaS interope
h the different data models and proprietary runtime fram

n requires and each platform provider enables.

/
ysource.org/
bleone.org/
pen.org/committees/tc_home.php?wg_abbrev=ca
undry.com/
ift.com/

69

ion.
lou-
ious
eate,
oup,
s on
are,
nta-

Hat’s
pen-
ica-

ra-

s to
ngs.
ab-
ica-
ders
AIC
sary
less
ross
st, it
yer,

nali-
and
era-
me-

amp

70 E. Kamateri et al.

Towards this direction, Cloud4SOA provides a broker-based solution that operates
in the PaaS layer enabling interoperability and portability among different Cloud plat-
forms (PaaS offerings). In this way, developers can select, deploy and manage their
applications on a PaaS offering while they can easily switch between platforms when-
ever they need to without re-architecting their initial application solutions. Moreover,
the ontology-based architecture introduced by the Cloud4SOA exhibits the key
characteristics of an interoperable solution. Specifically, it establishes a set of abstrac-
tions among different PaaS offerings while it exposes a multi-PaaS application
management standardized interface that will support the seamless deployment and
management of applications across different Cloud platforms.

3 Cloud4SOA’s Core Capabilities

In this section, the most representative functionalities that are implemented by the
Cloud4SOA reference architecture are presented. The key core capabilities of the
Cloud4SOA system have been aggregated based on the requirement analysis con-
ducted within the first months of the Cloud4SOA project. In particular, the analysis
has exposed a set of key requirements that an interoperable Cloud PaaS architecture
should satisfy taking into account both current literature analysis and stakeholders’
needs (for more details, see [14]).

• The semantic matchmaking capability resolves the semantic conflicts between
diverse PaaS offerings. Specifically, it aligns the user requirements and the PaaS
offerings even if they are expressed in different terms and resolves the semantic
conflicts between diverse PaaS offerings in order to allow matching of concepts
between different PaaS providers. The outcome is a list of PaaS offerings that
satisfy developer’s needs, ranked according to the number of satisfied user
preferences.

• The management capability supports the efficient deployment and governance of
applications in a PaaS-independent way. The developers can manage the life-cycle
of their applications in a homogenized way, independently of the specific PaaS of-
fering where the application is deployed. In addition, the application management
capitalizes on the SLA mechanism that enables the establishment of an agreement
between a PaaS offering and a developer.

• The migration capability allows migrating already deployed applications from one
PaaS offering to another. Moving an application between PaaS offerings consists
of two main steps: i) moving the application data (the application is stopped before
starting to move the data) and ii) moving and re-deploying the application itself to
the new PaaS offering.

• The monitoring capability supports a unified platform-independent mechanism, to
monitor the health and performance of business-critical applications hosted on
multiple Clouds environments, in order to ensure that their performance consis-
tently meets expectations, user-defined according to their existing SLA. In order to
consider the heterogeneity of different PaaS offerings, Cloud4SOA provides a
monitoring functionality based on unified platform-independent metrics.

 Cloud4SOA: A Semantic-Interoperability PaaS Solution 71

4 Cloud4SOA Reference Architecture

The main beneficiaries of the Cloud4SOA’s capabilities are the Cloud-based applica-
tion developer and Cloud PaaS provider. A developer may be a free-lancer or working
for a company who wants to deploy their applications on a PaaS offering, a software
company that wants to use a local PaaS for internal development or an Independent
Software Vendor (ISV) interested in selling SaaS services on top of a hosted PaaS. On
the other hand, a PaaS provider may be a small-medium enterprise (SME) or a larger
industry working in the PaaS field.

Cloud4SOA combines three fundamental and complementary computing para-
digms, namely Cloud computing, Service Oriented Architectures (SOA) and light-
weight semantics, to propose a reference architecture and deploy fully operational
prototypes optimising the initial envisioned architecture [15]. The envisioned broker-
based reference architecture that exhibits these characteristics is depicted in Fig. 1 and
consists of five layers, three horizontal and two vertical, outlined below.

Fig. 1. Cloud4SOA Reference Architecture

4.1 Frond-end Layer

The Front-end layer supports the user-centric focus of the Cloud4SOA and the easy
access of both developers and PaaS providers to Cloud4SOA’s functionalities ex-
posed via widgetized services which are adaptable to the user’s context.

The Front-end layer makes use of a web-based interface that implements a design
metaphor based on the concept of a dashboard. The choice is motivated by the fact
that the user needs an overview about the performance of the application(s) deployed
on different PaaS providers and a centralized point for managing applications. The
dashboard offers a set of widgets which allow encapsulating functionality in a self-
contained application, i.e. an application with a front-end and business logic. Widgets

72 E. Kamateri et al.

can be modelled to correspond to the different actions the user wants to perform on
the platform, e.g. search a PaaS offering or deploy an application. At the same time,
they can be grouped in different ways to allow presenting the user only with the func-
tionalities he is likely to need in the course of a certain activity.

4.2 SOA Layer

The SOA layer acts as a mediator to the other layers’ services, translating a resource
centric architecture, provided by the Semantic layer with its implementation and
management concepts, into the high-level architecture, letting Front-end layer access
Cloud4SOA’s core functionalities. The SOA layer comprises of a toolbox that is
accessible through the adaptable Front-end layer including:

The Profile Management module capitalizes on the models provided by the Seman-
tic layer to enable the management of the semantic profiles, namely PaaS offerings,
applications and user profiles.

The PaaS Matchmaking module relies on the search mechanisms offered by the
Repository layer and employs lightweight semantic models and techniques in order to
find available, best matching (according to user requirements) PaaS offerings.

The PaaS Recommendation module offers suggestions for the best matches of PaaS
offerings. The degree of relation between a PaaS offering and an application is com-
puted based on the similarity of their semantic profiles. Moreover this module offers a
rating mechanism that enables the user rating and the system automatic rating (based
on SLA violations) of PaaS offerings.

The Application Deployment module capitalizes on the functionality offered by the
Cloud4SOA Harmonized API to provide a set of back-end capabilities including de-
ployment and governance (start, stop and undeploy) of applications on PaaS offerings.

The Application Migration module facilitates the user in migrating to another PaaS
offering while it tackles the semantic interoperability conflicts that are raised when
applications need to migrate between different Cloud PaaS offerings.

The Application Monitoring module provides the interface to interact with the moni-
toring functionality and to retrieve the collected data according to different parameters.

4.3 Semantic Layer and Cloud4SOA Semantic Model

The Semantic layer is the backbone of the architecture that puts in place the PaaS
Semantic Interoperability Framework (PSIF) [15] and facilitates the formal represen-
tation of information (i.e. PaaS offerings, applications and user profiles). It spans the
entire architecture resolving interoperability conflicts and providing a common basis
for publishing and searching different PaaS offerings. Each of the three main compo-
nents has a unique objective and utilizes a specific set of fundamental PaaS entities
depending on its focus, implementing in this way a specific part of the adopted the
Cloud4SOA Semantic Model.

The Cloud4SOA Semantic Model, depicted in Fig. 2, serves as a means for the
unification and the disciplined representation of different Cloud systems. It consists
of five tiers, where each tier describes a set of fundamental PaaS entities and their
relations:

 C

• The Infrastructure tier c
cepts such as hardware
and QoS parameters. Th
tions and PaaS offerings,

• The Platform tier is use
offerings using entities
prise. It is based on the
is the PaaS offering.

• The Application tier is u
entities related to the app
Cloud-based Application

• The User tier facilitates
system to create a seman

• The Enterprise tier des
layer and their relations
concepts such as of the P

F

4.4 Governance Layer

The Governance layer im
where developers can estab
ance and mitigate violation
Cloud-based applications,
scalability issues. In particu

The Execution Managem
thing related to the applicat
tenance and migration relate

Cloud4SOA: A Semantic-Interoperability PaaS Solution

captures knowledge related to infrastructure modeling c
component, software component, programming langu

his tier offers a common language to describe both appli
, thus enabling their matching.
ed by PaaS providers to semantically annotate their P
to describe the platform, the infrastructure and the en
Infrastructure tier in order to operate and its main conc

used by developers to annotate their applications utiliz
plication’s requirements. It captures knowledge related t
n and the central concept of this tier is the Application.
the users’ annotation enabling any user in the Cloud4S

ntic profile reusing concepts coming from FOAF ontolog
cribes the enterprises that participate at the Cloud P

s with other entities (e.g. users). This tier mainly mod
PaaS provider and the SLA agreement.

Fig. 2. Cloud4SOA Semantic Model

mplements the business-centric focus of the Cloud4S
blish their user-defined SLA metrics to measure perfo
ns. It enables the lifecycle execution and management
taking into account monitoring information, SLAs

ular:
ment Service (EMS) module is the key interface in eve
tion lifecycle including deployment, un-deployment, ma
ed tasks.

73

con-
uage
ica-

PaaS
nter-
cept

zing
to a

OA
gy.

PaaS
dels

OA
rm-
t of
and

ery-
ain-

74 E. Kamateri et al.

The Monitoring module is responsible for monitoring applications’ and platform’s
health. It is based on a unified and Cloud platform-independent approach in order to
consider heterogeneity of different Clouds architectures.

The SLA module enables the SLA management. The SLA module consists of three
sub-components that interact with the Monitoring and EMS modules:

The SLA Negotiation allows Cloud4SOA to perform automatic negotiations on be-
half of PaaS providers, based on the semantic description of offerings and the QoS
requirements specified by the developer. However, in the scope of project, SLAs do
not aim at representing a contractual relationship between the customers consuming
virtualized Platforms and the PaaS vendors that provide them. SLAs describe the
service that is delivered, the functional and non-functional properties of the resource,
and the duties of each party involved.

The SLA Enforcement is in charge of supervising that all the agreements (SLAs
guarantees) are respected.

The SLA-Decisor is responsible for dealing with the violations and deciding the
appropriate recovery action to take (stop, migration, etc.) when a violation occurs.

4.5 Repository Layer and Cloud4SOA Harmonized API

Cloud4SOA uses a persistency layer, named Repository layer, in order to store both
semantic and syntactic data. In order for Cloud4SOA to provide high-level functional-
ities (e.g. matchmaking) it needs to persistently store the RDF triples related to devel-
oper’s profiles and PaaS providers’ capabilities. Additional requirements are also
imposed by the Security and SLA modules. Moreover, it provides a Harmonized API
that enables the seamless interconnection and management of applications across
different Cloud PaaS offerings.

The Cloud4SOA Harmonized API capitalizes on the Cloud4SOA Semantic Model
and acts as an intermediary between the Cloud4SOA system and the PaaS offerings,
where the Cloud-based applications are actually executed. Therefore, heterogeneity of
the numerous PaaS providers, each of them introducing their own APIs, can be han-
dled by this unified API. The API contains a number of operations that support the
management of the Cloud-based applications independent of the specific API of the
underlying PaaS offering. Given that each PaaS offering uses its own API, an adapter
is needed as a middleware between the Cloud4SOA API and the native API of the
PaaS offering. More specifically, the adapter translates the functions of the
Cloud4SOA API to the PaaS offering’s native API, and vice versa.

5 Implementation

During the implementation phase, all components of the Cloud4SOA platform have been
implemented. The platform has been developed using JAVA technology in order to in-
crease its portability. Specific J2EE patterns have been adopted in order to increase the
flexibility during the development and the maintainability in general. The Cloud4SOA
consortium tried to vertically modularize the code-organization based on the various
functionalities that each component accomplishes. In addition, for a project of this scale

 Cloud4SOA: A Semantic-Interoperability PaaS Solution 75

and modularity, it was also mandatory to use build automation techniques. Maven tech-
nology uses an XML file to describe the software project being built, its dependencies on
other external modules and components, the build order, directories, and required plug-
ins making it ideal for the Cloud4SOA purposes. Specifically, the exploitation of
MAVEN technology makes the build process easy, provides a uniform build system,
provides quality project information, provides guidelines for best practices development
and allows transparent migration to new features. Finally, the adoption of Spring
Framework v3 simplified the collaboration between the developers thanks to the flexible
instantiation methods (i.e. auto-wiring support).

Cloud4SOA is now in an invitation-only Beta phase of its release. In parallel, the
project is deploying an offering focused specifically on its PaaS applica-
tion/matchmaking service, hosted publically to developers. This will help gain a lar-
ger user base and provide a priority service for the fragmented nature of the PaaS
market segment. The full multi-Cloud management, monitoring and migration capa-
bilities will be rolled out by the project partners in the autumn of 2013. As an open
source solution, the full release will be paired by a local implementation of the
Cloud4SOA and its adapters available to download from GitHub, giving a flexible
choice for developers to leverage the Cloud4SOA system between publically hosted
or local versions.

6 Evaluation

The evaluation of a software product is an important phase in the development proc-
ess. Cloud4SOA follows a two-fold usability evaluation approach to assert the useful-
ness of the Cloud4SOA system: i) implementation of three proof-of-concept
showcases based on real-life business scenarios and ii) an extensive Beta program
which taps the project’s PaaS developer and vendor stakeholders.

Additionally, we designed and conducted system performance studies to estimate
capacity of the existing closed beta deployment and learn the ways of scaling
Cloud4SOA’s services for higher demands.

6.1 Internal Evaluation via Industry Showcases

In showcase #1, Portugal Telecom Inovação (PTIN)16, the research and development
part of Portugal Telecom Group (PT), has developed the business intelligence show-
case. PTIN has created a context-aware multimedia framework. Within the framework,
a XMPP server has an active role in the processes performed by 3 service enablers that
have been re-designed based on SOA concepts. Following this development, PTIN has
ported, through Cloud4SOA, these services from the framework to several PaaS provid-
ers recommend and supported by Cloud4SOA. The deployment and on-demand migra-
tion of context-aware multimedia services to different PaaS providers has enabled the
seamless integration with services deployed in the same or different Clouds and with
profiling and location tracking services exposed from the PTIN’s infrastructure, offering
to the mobile end-users high capacity value-added services.

16 http://www.ptinovacao.pt/

76 E. Kamateri et al.

In showcase #2, the Fraunhofer Institute for Applied Information Technology (FIT)17
has implemented the industrial business collaboration showcase. Specifically, FIT has
adapted the existing Basic Support for Cooperative Work (BSCW) 18 application to be
deployed via the Cloud4SOA system as a Cloud-enabled service on a PaaS platform with
the final goal of an efficient execution and effective governance of the BSCW service on a
PaaS platform. The interoperability of different BSCW servers would be enabled on a
back-end and file store level reducing administration overhead and providing users who
work on different servers a seamless cooperation environment.

ROMTELECOM 19 has implemented the existing VPN Portal as the network-
monitoring showcase in the Cloud4SOA project. Virtual Private Network (VPN) Por-
tal is a customer-facing portal that presents to the customers information and reports
available in several internal systems and allows to view and manage incident tickets.
Parts of the VPN Portal have been ported on a PaaS in order to be easily integrated
with other portals. The showcase has developed and tested the effectiveness of the
portability of the customer-facing interfaces in the Cloud, the separation of the pres-
entation interfaces from the computational-intensive algorithms and from the internal
databases, and the ad-hoc migration of parts of the application among different Cloud
infrastructures, in the same time testing the effectiveness of using a proprietary data-
base in “cloudified” applications.

A valuable continuous feedback has been provided during all the phases of the sys-
tem development helping to resolve inconsistencies between designers’ and users’
mental models, and adjust the system architecture. The aspects touched by this early
feedback include but are not limited by PaaS adapters’ architecture design and devel-
opment, application deployment flows (e.g. Git-based deployment implementation),
design of UI (e.g. GUI or CLI), design of the monitoring subsystem.

6.2 Performance Studies

An important aspect of the Cloud4SOA evaluation is performance evaluation that
aims to collect and disseminate the data related to system performance under a real-
life workload. This step has been performed before the launch of the external Beta
program in order to avoid hitting the performance issues after opening the system to a
wider sample of Cloud4SOA stakeholders.

The performance studies follow a common design similar to every web-based ap-
plication. First, a workload model is created and expressed in terms of use-cases of
using the Cloud4SOA web-based GUI by an end-user. The workload model includes
parameters to define the number of simultaneous end-users working with the
Cloud4SOA system, user-thinking time between the subsequence requests and full
load ramp-up period.

The performance studies help us to learn more about the limits of the current de-
ployment of the Cloud4SOA and the possible ways of scaling different components of
the system.

17 http://www.fit.fraunhofer.de/en.html
18 https://public.bscw.de/pub/
19 http://www.romtelecom.ro/

 Cloud4SOA: A Semantic-Interoperability PaaS Solution 77

6.3 Cloud4SOA Stakeholder Beta Program

The goal of the final external evaluation is to assert Cloud4SOA added-value services
usefulness on a significant sample of end-users invited to an early beta access to the
system.

Through a campaign of industry events, developer conferences and workshops, the
project has already begun to gather direct feedback based on its Beta release. One
such set of comments that has influenced the initial Cloud4SOA deployment model is
based on developer priorities of today compared to an evolving PaaS market that will
mature in the next few years. For example, the Cloud4SOA application-to-provider
matchmaking capability has received much more interest than anticipated, especially
for a project focused more on the actual alleviation of vendor lock-in (i.e. the
Cloud4SOA’s migration capability). As such, Cloud4SOA is releasing a standalone
platform matchmaking service in order to offer an immediate added-value for devel-
opers in the fragmented PaaS market of today, which is helping build momentum and
user-base for the full post-Beta release of the Cloud4SOA later in 2013 with the more
advanced multi-PaaS management and migration capabilities.

This combination of an extensive invitation-only current Beta (representing the full
matchmaking, management, monitoring and migration capabilities) and the fully
public platform matchmaking standalone, Cloud4SOA is currently receiving a broad
external evaluation for its release schedule, feature set rollout and future market
deployment.

7 Conclusion and Next Steps

Cloud4SOA is expected to push towards a more open, competitive and dynamic mar-
ket segment for rising PaaS providers and their potential developers. In particular, it
addresses key PaaS-oriented adoption barriers in Cloud computing, such as the seg-
ment’s fragmented presentation of platform offerings and the vendor lock-in risk that
remains a key concern for small and large companies alike.

Moreover, Cloud4SOA has just recently begun contributing to OASIS’s new
CAMP working group, an industry-backed standard specification that provides a basic
platform management API. The working group’s progress and first specification helps
validate the project’s objectives, and could allow the Cloud4SOA system to act as a
bridge between CAMP compliant and non-compliant platforms, as well as other
multi-Cloud ecosystem scenarios.

Acknowledgments. This work is partially funded by the European Commission
within the 7th Framework Programme in the context of the ICT project Cloud4SOA
(http://www.cloud4soa.eu/) under grand agreement No. 257953. The authors would
like to thank the entire Cloud4SOA consortium that participated in the collaborative
development of the Cloud4SOA system and are not listed as authors of this paper.

78 E. Kamateri et al.

References

1. The Open Group Cloud Computing Work Group: Cloud ROI Survey Results
Comparison 2011 & 2012 (2012), http://www.opengroup.org/getinvolved/
workgroups/cloudcomputing

2. Platt, B.: People want PaaS: Nearly 60 percent of companies say they will deploy PaaS
soon (2012), http://venturebeat.com/2012/11/29/paas-engine-yard/

3. Singh, A.: Current Analysis: PaaS to Play a Critical Role in Enterprise Development
(2012), http://www.currentanalysis.com/news/2012/pr-paas-platform
.asp

4. Pettey, C., Goasduff, L.: Gartner Says Platform as a Service Is On the Cusp of Several
Years of Strategic Growth (2012), http://www.gartner.com/newsroom/id/
1911014

5. The Open Web Application Security Project (OWASP): Cloud - Top 5 Risks with PAAS
(2011), https://www.owasp.org/index.php/Cloud_-_Top_5_Risks_with
_PAAS

6. Oberle, K., Fisher, M.: ETSI CLOUD – initial standardization requirements for cloud ser-
vices. In: Altmann, J., Rana, O.F. (eds.) GECON 2010. LNCS, vol. 6296, pp. 105–115.
Springer, Heidelberg (2010)

7. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Cloud@Home: Bridging the gap
between volunteer and cloud computing. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang,
H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS, vol. 5754, pp. 423–432. Springer, Heidel-
berg (2009)

8. Rochwerger, B., et al.: The reservoir model and architecture for open federated cloud
computing. IBM Journal of Research and Development 53(4), 4–1 (2009)

9. Harsh, P., Jegou, Y., Cascella, R.G., Morin, C.: Contrail virtual execution platform chal-
lenges in being part of a cloud federation. In: Abramowicz, W., Llorente, I.M., Surridge,
M., Zisman, A., Vayssière, J., et al. (eds.) ServiceWave 2011. LNCS, vol. 6994, pp. 50–
61. Springer, Heidelberg (2011)

10. Garcia-Gomez, S., et al.: Challenges for the comprehensive management of Cloud Servic-
es in a PaaS framework. Scalable Computing: Practice and Experience 13(3) (2012)

11. Petcu, D., et al.: Portable Cloud applications-From theory to practice. Future Generation
Computer Systems (2012) (in press)

12. Romano, P., et al.: Cloud-TM: harnessing the cloud with distributed transactional memo-
ries. ACM SIGOPS Operating Systems Review 44(2), 1–6 (2010)

13. Grivas, S.G., et al.: Cloud broker: Bringing intelligence into the cloud. In: IEEE 3rd Inter-
national Conference on Cloud Computing (CLOUD), pp. 544–545. IEEE (2010)

14. Loutas, N., et al.: D1.1 Requirements Analysis Report. Cloud4SOA Project Deliverable
(2011), http://www.cloud4soa.eu/sites/default/files/Cloud4SOA
%20D1.1%20Requirements%20Analysis.pdf

15. Loutas, N., et al.: Towards a Reference Architecture for Semantically Interoperable
Clouds. In: IEEE 2nd International Conference on Cloud Computing Technology and
Science, pp. 143–150. IEEE (2010)

16. Loutas, N., et al.: A Semantic Interoperability Framework for Cloud Platform as a Service.
In: IEEE 3rd International Conference on Cloud Computing Technology and Science, pp.
280–287. IEEE (2011)

Implementation and Evaluation
of a Multi-tenant Open-Source ESB

Steve Strauch, Vasilios Andrikopoulos, Santiago Gómez Sáez,
and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract Offering applications as a service in the Cloud builds on the
notion of application multi-tenancy. Multi-tenancy, the sharing of ap-
plication instances and their underlying resources between users from
different organizational domains, allows service providers to maximize
resource utilization and reduce servicing costs per user. Realizing ap-
plication multi-tenancy however requires suitable enabling mechanisms
offered by their supporting middleware. Furthermore, the middleware it-
self can be multi-tenant in a similar fashion. In this work we focus on
enabling multi-tenancy for one of the most important components in
service-oriented middleware, the Enterprise Service Bus (ESB). In par-
ticular, we discuss the prototype realization of a multi-tenant aware ESB,
using an open source solution as the basis. We then evaluate the perfor-
mance of our proposed solution by an ESB-specific benchmark that we
extended for multi-tenancy purposes.

Keywords: Multi-tenancy, Enterprise Service Bus (ESB), ESB bench-
marking, JBI specification, Platform as a Service.

1 Introduction

The Enterprise Service Bus (ESB) technology addresses the fundamental need
for application integration by acting as the messaging hub between applications.
As such, in the last years it has become ubiquitous in service-oriented enterprise
computing environments. ESBs control the message handling during service in-
vocations and are at the core of each Service-Oriented Architecture (SOA) [12].
Given the fact that the Cloud computing paradigm [16] is discussed in terms
of the creation, delivery and consumption of services [5], it is therefore essential
to investigate into how the ESB technology can be used efficiently in a Cloud-
oriented environment.

For this purpose, in our previous work we focused on investigating how to
make ESBs multi-tenant aware [21]. In this context, making an ESB multi-
tenant aware means that the ESB is able to manage and identify multiple tenants
(groups like companies, organizations or departments sharing the application)
and their users, providing tenant-based identification and hierarchical access

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 79–93, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

80 S. Strauch et al.

control to them. In other words, the ESB should provide the appropriate mecha-
nisms that allow (multi-)tenant applications to seamlessly interact with it while
sharing one (logical) instance of the ESB. Given the role of the ESB middleware
in the technological stack, there are two fundamental aspects of multi-tenancy
awareness: communication (i.e. supporting message exchanges isolated per ten-
ant and application), and administration and management (i.e. allowing each
tenant to configure and manage individually their communication endpoints at
the ESB).

Multi-tenancy has been previously defined in different ways in the literature
for SOA and middleware, see for example [10], [17], [14], [23]. Such definitions
however do not address the whole technological stack behind the different Cloud
service models as defined in [16] (i. e. IaaS — Infrastructure as a Service, PaaS
— Platform as a Service, SaaS — Software as a Service). For these reasons
in [21] we define multi-tenancy as the sharing of the whole technological stack
(hardware, operating system, middleware and application instances) at the same
time by different tenants and their users.

Multi-tenancy is one of the key enablers that allow Cloud computing solu-
tions to serve multiple customers from a single system instance (the other being
virtualization of the application stack). Using these techniques, Cloud service
providers maximize the utilization of their infrastructure, and therefore increase
their return on infrastructure investment, while reducing the costs of servicing
each customer. On the Cloud service consumer side, the fundamental assump-
tion in using multi-tenant applications is that tenants are well isolated from each
other, both in terms of data and computational resources. This ensures that the
operation of one tenant does not have any discernible effect on the efficacy and
efficiency of the operation of the other tenants. Ensuring tenant isolation in
Cloud solutions however is a notoriously difficult problem and remains largely
an open research question, see for example [10] and [14].

Towards this direction, in this work we investigate the performance of a multi-
tenant aware ESB implementation from both perspectives, i.e. service providers
and consumers. For this purpose we first present in detail the realization of
the ESBMT architectural framework [21] based on the Java Business Integration
(JBI) specification [11] into a multi-tenant aware ESB solution. We then eval-
uate the performance of our solution in terms of response time as experienced
by the service consumer (i.e. the application tenant), and CPU and memory
utilization (that are of particular interest to the service provider). For this pur-
pose we extend and modify an industry benchmark for ESBs in order to make it
suitable for driving multi-tenant, in addition to non multi-tenant, interactions.
Our contributions can be summarized as follows:

– A detailed presentation of the realization of a multi-tenant aware ESB solu-
tion implementing the ESBMT framework [21] by extending the open source
Apache ServiceMix solution [3].

– The creation of an ESB benchmark which allows evaluating the performance
and utilization of multi-tenant aware solutions by extending an existing
benchmark [2].

Implementation and Evaluation of a Multi-tenant Open-Source ESB 81

– An analysis of the performance and utilization characteristics of our proposed
implementation compared against a baseline, non multi-tenant aware ESB
solution (Apache ServiceMix).

The remaining of the paper is structured as follows: Section 2 briefly summa-
rizes the JBI specification and the ESBMT framework which is based on JBI.
Section 3 discusses the realization of this framework using Apache ServiceMix
as a proof-of-concept implementation for our proposal, together with the tech-
nologies involved. Section 4 introduces the benchmarking tool that we developed
as part of this work, discusses the benchmarking environment, and presents the
results of this evaluation. Section 5 discusses the key findings of our evaluation.
The paper closes with Section 6 and Section 7 summarizing related work, and
concluding with some future work, respectively.

2 Background

Java Business Integration Environment. The Java Business Integration
(JBI) specification defines a standards-based environment for integration solu-
tions by specifying the interaction of JBI components installed in a JBI con-
tainer [11]. A number of middleware technologies like ESBs (e.g. Open ESB1,
Apache ServiceMix [3]) and application servers (like GlassFish2) implement the
JBI specification. By basing our approach on the JBI specification we therefore
ensure that we produce a generic and reusable solution that can be replicated
across different ESB solutions (and other technologies that implement the JBI
specification).

Figure 1 provides an overview of the JBI environment, based on [11]. JBI-
compliant components are deployed in the container and interact through a Nor-
malized Message Router (NMR). The components consume or provide services
described in WSDL 2.0 3. Two types of JBI components are specified: Binding
Components (BCs), providing connectivity to external services and mediating
between external protocols and the NMR, and Service Engines (SEs), offering
business logic and message transformation services inside the JBI container.
Configuration of the components is achieved by a management framework based
on Java Management Extensions (JMX). The framework allows the installation
of JBI components, deployment and configuration of service artifacts called Ser-
vice Units (SUs), and controlling the state of both individual SUs and the JBI
container. Different SUs are usually packaged in Service Assemblies (SAs), as
shown in Fig. 1, in order to solve larger integration problems.

ESBMT: A Multi-tenant ESB Architecture. In our previous work [21]
we identified the requirements for enabling multi-tenancy in ESB solutions and
categorized them into functional and non-functional requirements. Functional
1 Open ESB: http://openesb-dev.org
2 GlassFish: http://glassfish.java.net
3 WSDL 2.0 Specification: http://www.w3.org/TR/wsdl20/

http://openesb-dev.org
http://glassfish.java.net
http://www.w3.org/TR/wsdl20/

82 S. Strauch et al.

Legend

Internal Invocation
External Invocation
Container
Binding Component BC
Service Engine SE
Service Unit SU
Service Assembly SA

a

JVM

JBI Environment

M
anagem

entFram
ew

ork
Normalized Message

Router (NMR)

SU1

SA1

BC1 BC2

SE1

SU2 SU3

SU4 SU5

SA2

SE2

SU6

Com
ponentFram

ew
ork

External Service
Provider

External Service
Consumer

M
anagem

ent
Client

Fig. 1. Overview of the JBI environment

requirements can be further classified as tenant-related and integration-related.
Tenant-related requirements ensure the fine-grained management of both tenants
and their corresponding users. In addition, the functionality of the ESB should
be provided for each tenant in a transparent manner, without integration ef-
fort on behalf of the tenants. Integration-related requirements ensure that other
PaaS components or external applications that might not be multi-tenant can
also interact with the system in order to share, e.g. the tenant or service registry
maintained by the ESB. Non-functional requirements ensure tenant isolation
and security as well reusability and extensibility. Tenant isolation requirements
include data (preventing tenants to access data belonging to other tenants) and
performance isolation (ensuring tenants have access only to their assigned com-
putational resources). Security requirements describe the need for appropriate
mechanisms for authorization, authentication, integrity, and confidentiality to be
in place. Finally, reusability and extensibility requirements define the technology-
and solution-independence of the proposed architecture.

Based on these requirements, in [21] we proposed ESBMT, a JBI-based ESB
architecture that satisfies these requirements. Figure 2 provides an overview of
ESBMT. The three layer architecture consists of a Presentation layer, a Business
Logic layer, and a Resources layer. The purpose, contents, and implementation
of each layer is discussed in the following.

3 Implementation

For purposes of implementing ESBMT we extended the open source ESB Apache
ServiceMix version 4.3.0 [3], hereafter referred to simply as ServiceMix. All ar-
tifacts required to install and setup the ESBMT realization including a manual
are publicly available at http://tiny.cc/ESB-MT-install. The presentation

http://tiny.cc/ESB-MT-install

Implementation and Evaluation of a Multi-tenant Open-Source ESB 83

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

JBI Container Manager

Service Assembly Manager

Service Registry
Database Cluster

Configuration
Registry Database

JBI Container
Instance Cluster

Access Layer

Web UI

Tenant Registry
Database

Message Broker

Fig. 2. Overview of ESBMT

of the implementation follows the ESBMT architecture as illustrated in Fig. 2.
More specifically:

Resources Layer. The Resources layer consists of a JBI Container Instance
Cluster and a set of registries. The JBI Container Instance Cluster bundles
together multiple JBI containers (in the sense of Fig. 1). Each one of these in-
stances performs the tasks usually associated with traditional ESB solutions,
that is, message routing and transformation. For purposes of performance, in-
stances are organized in clusters, using an appropriate mechanism like the one
offered by ServiceMix. Realizing multi-tenancy on this level means that both
BCs and SEs are able to:

– handle service units and service assemblies containing tenant and user spe-
cific configuration information, and

– process such deployment artifacts accordingly in a multi-tenant manner. For
example, a new tenant-specific endpoint has to be created whenever a service
assembly is deployed to this JBI component in order to ensure data isolation
between tenants.

The installation/uninstallation and configuration of BCs and SEs in a JBI Con-
tainer Instance is performed through a set of standardized interfaces that also
allow for backward compatibility with non multi-tenant aware components.

In terms of implementation technologies, ServiceMix is based on the OSGi
Framework4. OSGi bundles realize the ESB functionality complying to the JBI
specification. The original ServiceMix BC for HTTP version 2011.01 and the
original Apache Camel SE version 2011.01 are extended in our prototype in order
to support multi-tenant aware messaging. These components are able to marshal,
4 OSGi Version 4.3: http://www.osgi.org/Download/Release4V43/

http://www.osgi.org/Download/Release4V43/

84 S. Strauch et al.

Presentation

Business
Logic

Resources

Web Service API

Configuration Registry Manager

Tenant Registry Manager

Service Registry Manager

JBI Container Manager

Service Assembly Manager

Service Registry
Database Cluster

Configuration
Registry Database

JBI Container
Instance Cluster

Access Layer

Web UI

Tenant Registry
Database

Message Broker

Runtime Environment

Standardized Interfaces for Service Engines

Standardized Interfaces for Binding Components

Normalized Message Router

Service
Engine

Binding
Component

Binding
Component

Binding
Component

Binding
Component

Service
Engine

Service
Engine

Service
Engine

External
Service
Providers

External
Service

Consumers

Fig. 3. Architecture of an ESB Instance

demarshal, and process messages with the tenantID and userID included as part
of their SOAP header. Our ServiceMix extension also implements an OSGi-based
management service which listens to a JMS topic for incoming management
messages sent by the Web application.

The Resources layer also contains three different types of registries (Fig. 2):
the Service Registry stores the services registered with the JBI environment, as
well as the service assemblies required for the configuration of the BCs and SEs
installed in each JBI Container Instance in the JBI Container Instance Cluster in
a tenant-isolated manner [7]; the Tenant Registry records the set of users for each
tenant, the corresponding unique identifiers to identify them, as well all neces-
sary information to authenticate them; finally, the Configuration Registry stores
all configuration data created by tenants and the corresponding users, except
from the service registrations and configurations that are stored in the Service
Registry. Due to the fact that tenant or user actions affect more than one reg-
istries at the time, all operations and modifications on the underlying resources
are implemented as distributed transactions based on a two-phase commit pro-
tocol [9] to ensure consistency. The ServiceRegistry, TenantRegistry, and Config-
urationRegistry components are realized based on PostgreSQL version 9.1.1 [19].
Figure 4 shows the entity-relationship diagram of the information stored in the
Configuration Registry.

Business Logic Layer. The Business Logic layer contains an Access Layer
component, which acts as a multi-tenancy enablement layer [10] based on role-
based access control [20]. Different categories of roles can be defined based on
their interaction with the system: system-level roles like administrators, and
tenant-level roles like operators. The system administrator configures the whole

Implementation and Evaluation of a Multi-tenant Open-Source ESB 85

Fig. 4. ER diagram of JBI components in the Configuration Registry using (Min,Max)
notation

system and assigns quotas of resource usage. The tenant users consume the quo-
tas of resource usage to deploy service assemblies or to register services. This
information is stored in the Configuration Registry (see quota and contingent
entities in Fig. 4). A tenant administrator can partition the quota of resource
usage obtained from the system administrator. It is important that the system
administrator assigns a default tenant administrator role to at least one tenant
user to enable the corresponding tenant to perform actions. This default tenant
administrator can then appoint other tenant administrators or assign tenant op-
erator roles to tenant users. The tenants and their corresponding users have to
be identified and authenticated once when the interaction with the JBI environ-
ment is initiated. Afterwards, the authorized access is managed by the Access
Layer transparently. The identification of tenants and users is performed based
on unique tenantID and userID keys assigned to them by the Access Layer.

The various Managers in this layer (Fig. 2) encapsulate the business logic re-
quired to manage and interact with the underlying components in the Resources
layer: Tenant Registry, Configuration Registry, and Service Registry Managers
for the corresponding registries, JBI Container Manager to install and uninstall
BCs and SEs in JBI Containers in the cluster, and Service Assembly Manager
for their configuration through deploying and undeploying appropriate service
artifacts.

The Business Logic layer of the proposed architecture is implemented as a
Web application. In order to ensure consistency, the application is running in
the Java EE 5 application server JOnAS version 5.2.2 [18], which can manage
distributed transactions. As the management components of the underlying re-
sources are implemented as EJB components, we use container-managed transac-
tion demarcation, which allows the definition of transaction attributes for whole
business methods, including all resource changes.

86 S. Strauch et al.

Presentation Layer. The Presentation layer contains the Web UI and the Web
service API components which allow the customization, administration, man-
agement, and interaction with the other layers. The Web UI offers a customizable
interface for human and application interaction with the system, allowing for the
administration and management of tenants and users. The Web service API of-
fers the same functionality as the Web UI, but also enables the integration and
communication of external components and applications. It is realized based on
the JAX-WS version 2.0 5. For both interface mechanisms, security aspects such
as integrity and confidentiality of incoming messages must be ensured by ap-
propriate mechanisms, e.g. Secure HTTP connections and WS-Security6. As a
result, signing and encryption of SOAP messages is supported by the implemen-
tation. Furthermore, authentication is implemented by using a custom SOAP
header element named TenantContext. The Tenant Context contains the ten-
antID and userID both represented as UUIDs, and the password of the user.
This header element is encrypted and signed. Thus, users of other tenants are
prevented to act on behalf of the sending user.

4 Evaluation

As discussed in the opening of this paper, multi-tenancy of Cloud solutions can
be decomposed into two perspectives: performance, as experienced by the ESB
users, and resource utilization, of primary concern to the ESB provider. These
two perspectives are the focus of our evaluation of the ESBMT implementation.
In order to provide a baseline against which we evaluate our proposal we use the
backward compatibility feature of ESBMT as non multi-tenant aware version of
the ESB, because the functionality in this case is the same as of the original non
multi-tenant ServiceMix that we based our implementation on. The following
sections discuss the method, workload, experimental setup and results towards
this goal.

4.1 Method

Our investigation showed that there is no commonly agreed benchmark for ESBs,
see for example [23]. For this reason we chose to use the industrial ESB bench-
mark by AdroitLogic [2] as a basis. This benchmark has been in development
since 2007, and a number of open source ESB solutions have been evaluated in
six rounds, with the latest round results coming out in August 2012. All infor-
mation about the benchmark, as well as the results of each evaluation round are
publicly available at [2].

We had to deal with two major obstacles in adopting this benchmark. Firstly,
ServiceMix version 4.3.0 failed to pass smoke testing by AdroitLogic for one of
the benchmarking scenarios and as a result ServiceMix has not been included
in their evaluation. By using one of the other benchmarking scenarios, however,
5 http://jcp.org/aboutJava/communityprocess/final/jsr224/
6 http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

http://jcp.org/aboutJava/communityprocess/final/jsr224/
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss

Implementation and Evaluation of a Multi-tenant Open-Source ESB 87

we were able to execute the benchmark normally. Secondly, this benchmark was
not designed for multi-tenancy, using only one communication endpoint with
multiple users of the same tenant sending concurrent requests. Thus, we had
to adapt the AdroitLogic Benchmark Driver accordingly, as described in the
following sections.

4.2 Workload

For purposes of evaluation we derived three test scenarios from the Direct Proxy
Service scenario in AdroitLogic’s benchmark [2]. The Direct Proxy Service sce-
nario demonstrates the ability of an ESB to act as a virtualization layer for
back-end Web services, operating as a proxy between a client (the AdroitLogic
Benchmark Driver) and a simple echo service on the provider side. Starting from
this point, we defined the following scenarios:

1. a non multi-tenant ESB deployment (backward compatibility feature of
ESBMT) on one Virtual Machine (VM) image, acting as the baseline for
comparisons;

2. the same non multi-tenant ESB deployed across 2 VMs, in order to simulate
the effect of horizontal scaling [22], i.e. adding another application VM when
more computational resources are required; and,

3. our ESBMT implementation deployed on 1 VM.

Following the test parameters set by the benchmark we configured in each
ESB deployment with 1, 2, 4, and 10 endpoints per scenario. The message size
used by the Benchmark Driver is fixed to 1KB, composed out of random charac-
ters. The original Benchmark Driver steadily increases the number of concurrent
users of the ESB (2000, 4000, 8000, 16000, 64000, and 128.000) and sends a fixed
number of requests per user for each round of the benchmark. Since in our case
we have multiple endpoints and tenants, we distribute these requests between
the different endpoints (or tenants in the third scenario) and we send them con-
currently across each endpoint. In the first round of the benchmark for example,
and for 4 endpoints/tenants, we send 2000/4 = 500 requests per endpoint or
tenant for a total of 2000 requests; in the next round we send 4000/4 = 1000
requests, and so on. Each endpoint or tenant receives in any case 10K messages
as a warm-up before any measurements.

4.3 Experimental Setup

Figure 5 provides an overview of the experimental setup realizing our adapta-
tion of the Direct Proxy Service Scenario including message flow, control, and
measurement points. The test cases were run on Flexiscale7 and three Virtual
Machines: VM0 (6GB RAM, 3 CPUs), VM1 (4GB RAM, 2 CPUs), and VM2
(4GB RAM, 2 CPUs). All three VMs run Ubuntu 10.04 Linux OS and every
CPU is an AMD Opteron Processor with 2GHz and 512KB cache. In VM0,
7 Flexiant Flexiscale: http://www.flexiscale.com/

http://www.flexiscale.com/

88 S. Strauch et al.

VM0Apache
Tomcat
Echo Web
Service

Wireshark
AdroitLogic
Benchmark
Driver +

s

VM1

HTTP SOAP
Provider
Endpoint

HTTP SOAP
Consumer
Endpoint

(2) (3)

s

VM2

HTTP SOAP
Provider
Endpoint

HTTP SOAP
Consumer
Endpoint

Legend

Message Flow
Control Point
Received Messages
Measurement Point
Response Time
Measurement Points
CPU Utilization and
Heap Memory Use

(1) (4)

Fig. 5. Overview of the Experimental Setup

an Apache Tomcat 7.0.23 instance was deployed with the Echo Web service,
the adapted AdroitLogic Benchmark Driver, and Wireshark 1.2.7 for monitoring
HTTP requests and responses. In VM1 and VM2, the ESBMT implementation
is deployed, which required also the deployment of PostgreSQL 9.1.1 database
(for the registries), and Jonas 5.2.2 server for the Web application implement-
ing the Business Logic layer. The endpoints deployed in ServiceMix are using
HTTP-SOAP, see Fig. 5. Scenarios 1 and 2 are using the backward compatibility
feature of ESBMT for non multi-tenant operation.

The total time in receiving the receipt acknowledgment by the Echo Web
service for each message was measured at the AdroitLogic Benchmark Driver,
in order to calculate latency. The CPU utilization for the ServiceMix process
and the Java Virtual Machine (JVM) heap memory use was measured directly
in VM1 and VM2. The maximum JVM heap memory size was set to 512MB
before the warm-up phase for both VM1 and VM2.

4.4 Experimental Results

Performance: Figure 6 summarizes and presents the latency recorded for all sce-
narios and work loads. The baseline for the presentation is the non multi-tenant
aware implementation of the ESB on one VM (1VM-NonMT-* Endpoints in Fig. 6).
As shown in the figure, our proposed multi-tenant aware implementation of the
ESB exhibits a performance decline of around 30% across the different cases when
comparing the same number of endpoints and tenants in the other scenarios. The
same load across 2 tenants instead of 2 endpoints, for example, results in 23, 57%
more latency on average (Fig. 6b), 24, 68% more for 4 tenants/endpoints (Fig. 6c)
and 39, 44% increase for 10 tenants/endpoints (Fig. 6d).

When comparing 1 tenant against 1 endpoint (Fig. 6a) an 50% reduction of
response time is observed, showing that the performance decrease is actually

Implementation and Evaluation of a Multi-tenant Open-Source ESB 89

(a) 1 Endpoint vs. 1 Tenant (b) 2 Endpoints vs. 2 Tenants

(c) 4 Endpoints vs. 4 Tenants (d) 10 Endpoints vs. 10 Tenants

Fig. 6. Average response time (latency) for 1KB size messages

ameliorated when more tenants/endpoints are added. Also of particular interest
is the fact that adding a VM and distributing the requests between those VMs —
essentially reducing the number of active endpoints by half — improves response
time by 50% only for 2 endpoints (53, 07%), degrading from there with the
number of endpoints (48, 10% for 4, and 42% for 10).

Utilization: The measurements for CPU and memory utilization for the same
loads are summarized by Table 1. The reported CPU utilization is normal-
ized over the number of CPUs of the VMs containing the ESB implementation
(Fig. 5). Memory utilization is presented as a percentage of the maximum heap
size for the JVM containing the ESB (approximately 455MB). In both cases, the
figures for the 2VMs scenario are calculated as the average of the utilization of
each VM.

As shown in Table 1, the overall utilization of system resources increases with
the introduction of multi-tenancy. The additional computation required for pro-
cessing the tenant and user information, and routing the messages accordingly,
translates into more than 300% increase in CPU utilization compared to the
baseline, non multi-tenant aware implementation. With respect to the same sce-
nario, standard deviation σ is increasing with the number of tenants introduced.
However, given the proximity of the average and median values to the maximum
CPU utilization in all cases, this can be interpreted as a distribution heavily
concentrated towards the maximum utilization. With respect to memory uti-
lization, Table 1 shows also an overall increase of around 100% across the three
cases of ESBMT (2, 4 and 10 tenants). The low standard deviation, and the small

90 S. Strauch et al.

Table 1. CPU and Memory utilization

1/2E 2/2E 1/2T 1/4E 2/4E 1/4T 1/10E 2/10E 1/10T

CPU (%)

Average 10,77 8,55 47,01 11,71 8,46 54,42 14,99 9,69 66,33
Median 11,00 9,42 50,00 12,00 10,00 58,33 16,33 11,83 76,00
Max 12,00 16,33 51,67 13,00 10,67 60,33 19,00 12,67 78,33
σ 1,63 3,21 9,03 2,07 3,14 11,38 3,72 4,09 21,39

Memory (%)

Average 18,47 15,99 37,67 23,90 15,22 42,93 20,54 13,26 47,06
Median 17,71 15,66 36,09 23,37 15,47 43,57 20,70 13,36 46,51
Max 35,43 22,98 67,31 36,09 20,00 70,50 29,06 18,34 80,78
σ 0,05 0,05 0,13 0,05 0,02 0,14 0,04 0,02 0,15

1/iE: 1 VM, non multi-tenant, i endpoints;
Legend: 2/jE: 2 VMs, non multi-tenant, j endpoints in total;

1/kT : 1 VM, multi-tenant aware, k tenants

differences between average and median values show that memory consumption
is relatively steady over all work loads. Similar behavior is observed also for the
other two (non multi-tenant) scenarios.

5 Discussion

The results presented in the previous section show that performance reduction in
our implementation is significant (one third of the baseline performance) w.r.t.
to system latency. However, it has to be noted that we have not introduced any
optimization techniques in our multi-tenant aware ESB solution, or tried to im-
plement performance isolation between tenants. As such, there is much space for
improvement in this respect. CPU utilization on the other hand increases more
than threefold and remains high for the most part of the benchmark, while mem-
ory utilization doubles but remains well below the 50% of the maximum allowed
size on average. Our ESBMT therefore has a relatively small impact on memory
requirements, but incurs high computation resource demands. Computational
resources are relatively cheap (compared, e.g., to storage space) and continue to
grow cheaper over time [4]. The actual cost of using our approach must therefore
be evaluated against the possibilities opened by the fine granularity of adminis-
tration and management on the level of both tenants and users.

Horizontal scaling the ESB produces the desired results, i.e. 50% improvement
for adding one VM, only for 2 endpoints distributed between the 2 VMs. Adding
another VM produces diminishing returns as the number of endpoints (represent-
ing applications using the same ESB) increases. This needs to be weighed against
the cost of deploying and operating multiple VMs. Furthermore, the measure-
ments presented in Section 4 for the horizontal scaling scenario assume that the
requests are evenly distributed between the two VMs, emulating the effect of a
load balancer operating on the front end of the ESB. Actually implementing such
a solution will incur additional development and operating costs that need to
be considered. In principle therefore we can conclude that the realization of our

Implementation and Evaluation of a Multi-tenant Open-Source ESB 91

proposal achieves its envisioned goal as far as service providers are concerned,
i.e. increasing CPU utilization, while imposing a relatively small memory foot-
print. Performance on the service consumer side however is impacted negatively
and further work towards the direction of ameliorating this effect is necessary.

6 Related Work

Existing approaches on enabling multi-tenancy for middleware typically focus
on different types of isolation in multi-tenant applications for the SaaS delivery
model, see for example [10]. As discussed also in [23] however, only few PaaS
solutions offer multi-tenancy awareness allowing for the development of multi-
tenant applications on top of them. The work of Walraven et al. [23] follows a
similar approach to ours; our work however proposes a more generic approach
built around any ESB technology that complies with the JBI specification, and
does not require the implementation of a dedicated support layer for these
purposes.

Focusing on ESB solutions, in [1] we surveyed a number of existing ESB
solutions and evaluated their multi-tenancy readiness. Our investigation showed
that the surveyed solutions in general lack in support of multi-tenancy. Even
in the case of products like IBM WebSphere ESB8 and WSO2 ESB9 where
multi-tenancy is part of their offerings, multi-tenancy support is implemented
either based on proprietary technologies like the Tivoli Access Manager (in the
former case), or by mitigating the tenant communication and administration
on the level of the message container (Apache Axis 2 10 in the latter case). In
either case, the used method can not be applied to other ESB solutions and as
a result no direct comparison of the applied multi-tenancy enabling mechanisms
can be performed. The presented approach differs from existing approaches by
integrating multi-tenancy independently from the implementation specifics of
the ESB.

The different benchmarks and metrics developed in the domain of Cloud com-
puting in the recent years focus on a particular type of Cloud services such as
databases [8], on Cloud-related features such as elasticity [6] and performance
isolation [13], or on virtualization technology [15]. To the extent of our knowl-
edge, there is no commonly agreed approach and benchmark for the evaluation of
the performance of multi-tenant PaaS middleware components such as an ESB.
AdroitLogic completed in August 2012 [2] the 6th round of public ESB perfor-
mance benchmarking since June 2007. This round included eight free and open
source ESBs including Apache ServiceMix version 4.3.0 — for which however
they were not able to execute for all defined scenarios. Our ESB performance
evaluation approach reuses, but adapts and extends, the AdroitLogic Benchmark
Driver and our test scenarios are derived from the Direct Proxy scenario, but
extended in order to consider multi-tenancy.
8 IBM WebSphere ESB: http://tiny.cc/IBMWebSphereESB
9 WSO2 ESB: http://wso2.com/products/enterprise-service-bus/

10 Apache Axis: http://axis.apache.org/axis2/java/core/

http://tiny.cc/IBMWebSphereESB
http://wso2.com/products/enterprise-service-bus/
http://axis.apache.org/axis2/java/core/

92 S. Strauch et al.

7 Conclusions and Future Work

Multi-tenancy allows Cloud providers to serve multiple consumers from a sin-
gle system instance, reducing costs and increasing their return of investment by
maximizing system utilization. Making therefore ESB solutions, a critical piece of
middleware for the service-oriented enterprise environment, multi-tenant aware
is essential. Multi-tenancy awareness manifests as the ability to manage and
identify multiple tenants (organizational domains) and their users, and allow
their applications to interact seamlessly with the ESB. Allowing multiple ten-
ants however to use the same ESB instance requires to ensure that they are
isolated from each other. There is therefore a trade-off between the benefits for
the ESB provider in terms of utilization and their impact on the performance of
applications using the ESB that needs to be investigated.

Toward this goal, in the previous sections we present the realization of our
proposal for a generic ESB architecture that enables multi-tenancy awareness
based on the JBI specification. We first provide the necessary background and
explain our proposed architecture across three layers based on previous work.
We then discuss in detail the realization of this architecture by extending the
open source Apache ServiceMix ESB solution. In the next step we adapt the ESB
benchmark developed by AdroitLogic to accommodate multi-tenancy and we use
it to measure the performance and resource utilization of our ESB solution.

Our analysis shows that our current, not optimized in any manner implemen-
tation of a multi-tenant aware ESB solution succeeds in increasing the CPU
utilization while having a relatively small impact on the memory footprint. In
this sense it succeeds as far as the ESB provider is concerned. On the other
hand, there is a significant reduction in performance experienced by the ESB
consumers which needs to be ameliorated by re-engineering and fine-tuning our
implementation accordingly. Techniques for performance isolation have also to
be brought into play [14]. In the scope of this work, this is a direction that
we want to investigate in the future. We also plan to take advantage of using
the JBI specification as the basis of our architectural framework and apply the
same techniques and architectural solutions to other ESB solutions, as well as
non-ESB solutions, like for example application servers, that comply with this
specification.

Acknowledgments. The research leading to these results has received fund-
ing from projects 4CaaSt (grant agreement no. 258862) and Allow Ensembles
(grant agreement no. 600792) part of the European Union’s Seventh Framework
Programme (FP7/2007-2013).

References
1. 4CaaSt Consortium: D7.1.1 – Immigrant PaaS Technologies: Scientific and

Technical Report. Deliverable (July 2011), http://www.4caast.eu/wp-content/
uploads/2011/09/4CaaSt D7.1.1 Scientific and Technical Report.pdf

2. AdroitLogic Private Ltd.: Performance Framework and ESB Performance Bench-
marking, http://www.esbperformance.org

http://www.4caast.eu/wp-content/uploads/2011/09/4CaaSt_D7.1.1_Scientific_and_Technical_Report.pdf
http://www.4caast.eu/wp-content/uploads/2011/09/4CaaSt_D7.1.1_Scientific_and_Technical_Report.pdf
http://www.esbperformance.org

Implementation and Evaluation of a Multi-tenant Open-Source ESB 93

3. Apache Software Foundation: Apache ServiceMix,
http://servicemix.apache.org

4. Armbrust, M., et al.: Above the Clouds: A Berkeley View of Cloud Comput-
ing. Tech. Rep. UCB/EECS-2009-28, EECS Department, University of California,
Berkeley (2009)

5. Behrendt, M., et al.: Introduction and Architecture Overview IBM Cloud Com-
puting Reference Architecture 2.0 (February 2011), http://www.opengroup.
org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc

6. Brebner, P.: Is your Cloud Elastic Enough?: Performance Modelling the Elasticity
of Infrastructure as a Service (IaaS) Cloud Applications. In: Proceedings of ICPE
2012, pp. 263–266 (2012)

7. Chong, F., Carraro, G., Wolter, R.: Multi-Tenant Data Architecture. MSDN
(2006), http://msdn.microsoft.com/en-us/library/aa479086.aspx

8. Cooper, B.F., et al.: Benchmarking Cloud Serving Systems with YCSB. In: Pro-
ceedings of the 1st ACM Symposium on Cloud Computing, pp. 143–154. ACM
(2010)

9. Coulouris, G., Dollimore, J., Kindberg, T.: Distributed Systems: Concepts and
Design. Addison Wesley (June 2005)

10. Guo, C., et al.: A Framework for Native Multi-Tenancy Application Development
and Management. In: Proceedings of CEC/EEE 2007, pp. 551–558. IEEE (2007)

11. Java Community Process: Java Business Integration (JBI) 1.0, Final Release
(2005), http://jcp.org/aboutJava/communityprocess/final/jsr208/

12. Josuttis, N.: SOA in Practice. O’Reilly Media, Inc. (2007)
13. Krebs, R., Momm, C., Kounev, S.: Metrics and Techniques for Quantifying Perfor-

mance Isolation in Cloud Environments. In: Proceedings of the 8th International
ACM SIGSOFT Conference on Quality of Software Architectures, pp. 91–100.
ACM (2012)

14. Krebs, R., Momm, C., Kounev, S.: Architectural Concerns in Multi-Tenant SaaS
Applications. In: Proceedings of CLOSER 2012. SciTePress (2012)

15. Makhija, V., et al.: VMmark: A Scalable Benchmark for Virtualized Systems. Tech.
Rep. VMware-TR-2006-002, VMware, Inc. (2006)

16. Mell, P., Grance, T.: The NIST Definition of Cloud Computing (September 2011),
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909616

17. Mietzner, R., Unger, T., Titze, R., Leymann, F.: Combining Different Multi-
Tenancy Patterns in Service-Oriented Applications. In: Proceedings of EDOC 2009,
pp. 131–140. IEEE (2009)

18. OW2 Consortium: JOnAS: Java Open Application Server,
http://wiki.jonas.ow2.org

19. PostgreSQL Gobal Development Group: PostgreSQL,
http://www.postgresql.org

20. Sandhu, R.S., et al.: Role-based Access Control Models. Computer 29, 38–47 (1996)
21. Strauch, S., Andrikopoulos, V., Leymann, F., Muhler, D.: ESBMT: Enabling Multi-

Tenancy in Enterprise Service Buses. In: Proceedings of CloudCom 2012, pp. 456–
463. IEEE (2012)

22. Vaquero, L., Rodero-Merino, L., Buyya, R.: Dynamically Scaling Applications
in the Cloud. ACM SIGCOMM Computer Communication Review 41(1), 45–52
(2011)

23. Walraven, S., Truyen, E., Joosen, W.: A Middleware Layer for Flexible and Cost-
Efficient Multi-Tenant Applications. In: Kon, F., Kermarrec, A.-M. (eds.) Middle-
ware 2011. LNCS, vol. 7049, pp. 370–389. Springer, Heidelberg (2011)

http://servicemix.apache.org
http://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
http://www.opengroup.org/cloudcomputing/uploads/40/23840/CCRA.IBMSubmission.02282011.doc
http://msdn.microsoft.com/en-us/library/aa479086.aspx
http://jcp.org/aboutJava/communityprocess/final/jsr208/
http://www.nist.gov/customcf/get_pdf.cfm?pub_id=909616
http://wiki.jonas.ow2.org
http://www.postgresql.org

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 94–103, 2013.
© Springer-Verlag Berlin Heidelberg 2013

Putting the Customer Back in the Center
of SOA with Service Design and User-Centered Design

Arnita Saini, Benjamin Nanchen, and Florian Evequoz

University of Applied Sciences Western Switzerland (HES–SO), Sierre, Switzerland
arnita.04@gmail.com, {benjamin.nanchen,florian.evequoz}@hevs.ch

http://iig.hevs.ch

Abstract. This article introduces a methodology used for designing the online
presence of a Swiss SME providing Cloud Services. The Web application used
for the purchasing and administration, backed by a Service-Oriented Architec-
ture (SOA), has been designed to be customer-centric using a combination of
different techniques borrowed from the fields of ethnomethodology, service
design and user-centered design. The tools employed include service blueprint
design and affinity diagram analysis followed by prototyping and subsequent
usability evaluation. This collaborative methodology explained with the help of
the applied research project use case is seen to yield excellent results in terms of
customer-orientation.

Keywords: Service Design, User-Centered Design, Service Oriented Architecture.

1 Introduction

The concept of service has two distinct meanings [6]. On the business front, it
represents the business service exposed to the customer. On the technological front, a
(software) service represents a small software component encapsulating specific func-
tionalities, and is the basis of a Service-Oriented Architecture (SOA).

SOA is the method of choice for structuring large software systems into discrete
business components (i.e. individual services). It helps adapt software to changes in
business processes and thus provides an excellent way to develop applications for
supporting business processes [4, 17, 19]. However, use of this model alone does not
ensure customer friendliness to an application developed with the help of the SOA.
Indeed, the approaches for engineering an SOA and align the business with IT do not
typically include the customers themselves. They start downstream after the definition
of business services. Therefore the link between the customer needs and the individu-
al software services is generally not explicit [6, 9].

To overcome this shortcoming, we propose to employ an interdisciplinary method-
ology combining user-centered design [12, 15] and service design [8]. Those ap-
proaches have been found to help manage the complexity of software [21], ease their
use [7, 14] and improve the satisfaction of the customer [8]. Therefore our goal is to
combine those methods to design an SOA-based application exposed to the final
customer with explicit links between the customer needs and the related software
services.

 Putting the Customer Back in the Center of SOA 95

User-centric principles were already applied in the context of SOA by previous re-
search [5, 18]. However, the intent was to facilitate the re-use of software services by
the developer calling the services, and not to improve the quality of the service deli-
vered to the final customer as in our case. Therefore, the originality of our work is the
mix of user-centered design and service design to explicitly align the needs of the
customer with the SOA.

This article presents our methodology in the context of a use case conducted with a
Swiss Cloud Services provider. We start by presenting the situation at the beginning
of the project and the goals. We present next the methodology, starting from the data
collection, moving to the interpretation and recommendations for the design. Lastly,
we discuss the methodology and results.

2 Initial Situation and Project Goal

Krios is a ten-year old Swiss company active in the Cloud Computing business. It
offers mainly PaaS, DaaS and SaaS services to SMEs in Switzerland. As the products
portfolio of Krios has grown organically along the years without a clear overall
structure, it became extremely challenging to manage the settings of each particular
product that was technically organized as an independent silo with an ad hoc adminis-
tration interface. In case of changes, this leaded to problems like lack of traceability
of processes, too many ad hoc administration consoles or increased risk of manual
errors. To overcome those problems, an important redesign project was launched. The
goal of this project was twofold: first, tackle the backend complexity by adopting a
Service-Oriented Architectural framework to allow the integration of the different
software silos; second, reduce the frontend complexity through the design of a web
application, called INFOPLACE, that must be built on top of the SOA and presented
to the final customer. The INFOPLACE will allow the customer to purchase and ad-
ministrate the different services Krios offers. The focus of this paper is on the design
of the INFOPLACE and its link to the SOA.

3 Methodology at a Glance

Consistent with previous research [11], the project team consisted of members be-
longing to a variety of backgrounds including service design, business process man-
agement, computer science and interaction design. The methodology chosen reflects
those various backgrounds by borrowing mainly from the fields of service design and
user-centered design. It consists of 9 steps distributed in 4 phases, as depicted in
Fig.1. First, data gathering is done in three stages. Then the results are consolidated in
the data interpretation phase that provides the material for the main phase “Design
from insights”. This phase introduces the service blueprint that links the SOA with the
customer needs. The service blueprint then provides the basis for the wireframing and
information architecture of the final application. The application is finally prototyped
and evaluated in a last phase. In the following sections, we describe the methodology
in greater details.

96 A. Saini, B. Nanchen, and F. Evequoz

Fig. 1. Phases and steps of the methodology

4 Data Gathering through Ethnomethodology

Considering services are based on human factors (expertise, experience, empathy and
other non-quantifiable qualities), quantitative techniques are insufficient to study and
evaluate the status of a service. Ethnomethodology is a powerful tool for studying
contexts, behaviors and activities that the service environment is comprised of [13].
Ethnomethodology could be conducted “through site visits, immersion work, and
contextual semi-directed interviews with service providers and service consumers in
order to identify the salient attributes of a given service experience” [10]. In context
of the current project, ethnomethodology was done in three phases:

4.1 Phase 1: Competitor Interface Analysis

An assessment of user interfaces of the competition faced by Krios was done first.
The competitors chosen were Amazon, Office 365 due to their worldwide reputation,
Swisscom, a Swiss IT services company and Infomaniak, a direct competitor of Krios.
The goal was to gain understanding of how these competitors provided their services
through their respective user interfaces. The assessment followed a simple protocol of
visiting the home page, purchasing and customizing a service. This was supplemented
with Heuristic Evaluation [16] to identify the usability strengths and weaknesses of
three of the service vendor interfaces i.e. Swisscom, Office 365 and Amazon. For this
evaluation, the evaluator spent around one hour with each of the interfaces. This
phase provides us with a list of best practices in the domain.

4.2 Phase 2: Semi-Structured Interviews with Customers

Following a semi-structured interview protocol, a total of 8 participants, including 5
customers, 1 collaborator of Krios and the 2 managers of Krios were interviewed. All
interviews were conducted contextually. Two to three members of the team would
conduct the interviews. Field notes were made of observations and important user
statements. The topics addressed were divided into mainly four parts, General context
of work, Experience of Krios services, Quality of service and other category-relevant
general questions. This phase provides us with the customer’s expectations.

��������	

��
�����

�������	

����	�����

����	����

��
����
��

������

��
�	
��

��	����

�����	���

��	��	
����

����	�
���

�	��������	�

�	�������

!�
"�����

#�
��
���

������
�����	
���

�����

���	�	����

��

���
����
�	
��
��
�����

�	
�
������
�����������

��

 Putting the Customer Back in the Center of SOA 97

4.3 Phase 3: Immersion Work at Krios

Three team members visited Krios during working days and focused on understanding
the physical, organizational and technical environment to identify the underlying per-
formance drivers. A detailed task analysis session [12, 20] was conducted to under-
stand the existing system and the information flows that are important and need to be
incorporated into INFOPLACE. It was videotaped and reviewed for interpretation.
Moreover, Krios provided us with a detailed list of their current Information Systems
and their dependencies to the business services. This phase provides us with the back
office’s constraints.

5 Data Interpretation

On retrospective analysis of the interview transcripts and videos, extensive notes were
made about the key observations, user statements, breakdowns and design ideas.
Notes made during this interpretation session were then used in doing a user-centric
analysis using the Affinity diagram tool. An effective data consolidation technique
[2], this helped map the issues and insights into a hierarchical diagram and summarize
details, prioritize issues and find patterns and insights in interpreted data. The main
outcomes of interpretation sessions were as follows:

1. Simplicity in design emerged as an important factor. By comparison to the former
Krios administration interface and intelligent borrowing from competitor interface
analysis, recommendations for design emerged.

2. The customer’s main requests were identified as: changing user data, account crea-
tion or removal, permission change and service purchase.

3. Since INFOPLACE was intended to be an online customer service offered by
Krios to assist in purchasing and consuming their services, it was considered post-
interpretation sessions by the Krios management that assistance for purchase
should be provided through implementation of wizards. Focus was given to design
work on “service purchase” in accordance with Krios

4. The services provided by Krios can be roughly divided into three categories: host-
ing, SaaS and customer service. INFOPLACE belongs to the customer service cat-
egory.

5. Based on the insights gained after interpretation, it was understood that as a service
consumer, every user assumes at any given point one of the two roles on
INFOPLACE defined as follows: (a) Master User (while performing enterprise
transactions with Krios and managing employees and accounts, role imparted as
the point of contact of an client enterprise of Krios); (b) Base User (while consum-
ing service and using products, the role of end-users). Differing INFOPLACE
needs were found to belong to two categories based on functions and tasks to be
done. These roles help define a user’s access on INFOPLACE so that appropriate
features and components of service can be availed based on the roles.

98 A. Saini, B. Nanchen, and F. Evequoz

6 Designing from Insights

6.1 Service Blueprint

The technique of Service Blueprint is particularly well suited to “capture the entire cus-
tomer service experience from the customer’s point of view”. Its goal is to improve the
perceived quality of service by identification of failure points in a service operation [3].

The technique helps in distinguishing visible activities (onstage) from support ac-
tivities (backstage) from the customer’s point of view. Five elements compose the
Service Blueprint: Customer actions, Onstage/Visible Contact Employee Actions,
Backstage/Invisible Contact Employee Actions, Support Processes and Physical Evi-
dence. The Physical Evidence is the concrete result presented to the customer in re-
sponse to their action. Based on this physical evidence, the customer evaluates the
quality of service. The Support Processes indicate the role of the underlying IT sys-
tems, thus providing a direct link between the needs of the customer and the SOA.
This is the main input of our interdisciplinary approach applying a combination of
user-centered design and service design.

Different steps are needed to build a Service Blueprint: (1) clearly articulate ser-
vice process, specify which segment of customers is the focus of the Blueprint, (2)
delineate the actions of customers, (2) delineate the contact employee actions, both
onstage and backstage, (3) delineate the support processes, (4) add links that connect
the customer to contact employee activities and to needed support functions, (5) add
the physical evidences [3].

Fig. 2. Service blueprint for Purchase of service

Fig.2 presents the Servic
was identified as a critical
we used the outcomes of th
interviews (customer expec
the customer’s actions need
steps needed by Krios (bac
(support process). In parall
customer (onstage) was add

In this context, the Se
processes that must take pla
the SOA for the respective
shows the called systems) a

6.2 Wireframing

Based on the service bluep
frames for service purchase
fied. Wireframing helps in
the task. Also, navigation
designed. The first two scr
Fig.3.

Fig. 3. Wireframes of

6.3 Information Archit

In coherence with Service
tecture of Infoplace was bu
screens, based on tasks (cu
port process of service blu
navigational paths (physica
mation to be delivered. For
would have an option for
clicking this, the user is di

Putting the Customer Back in the Center of SOA

ce Blueprint corresponding to the purchase of a service t
function of INFOPLACE. To build this Service Bluepr
he competitors’ analysis (best practices) and of custome
ctations) consolidated in the affinity analysis phase. Fi
ded to buy a service were identified, and then the necess
ckstage). Those were then linked with the underlying S
lel, the information that INFOPLACE must provide to
ded. At the end, the physical evidence was included.
ervice Blueprinting technique helps outline the vari
ace onstage or backstage. Based on these processes, call
e service/business function is identified (Support Proc
and directly related to the customer actions.

print designed for purchase of service, we designed w
e using the customer actions and on-stage features ide
designing the layout and positioning of features related
from one screen to another for accomplishing the task

reen views of the “purchase service wizard” are shown

f the Purchase wizard for email-hosting service purchase

tecture

Blueprint and related task screens, the information arc
uilt. Such architecture decides the content and hierarchy
ustomer’s actions of service blueprint) and functions (s
ueprint) to be performed, taking into consideration use
al evidences of service blueprint) and structures the inf
r example, at the first level of architecture, the home scr

purchasing a particular service, say E-mail hosting.
isplayed a screen with information about service follow

99

that
rint,
er’s
irst,
sary
OA
the

ious
ls to
cess

wire-
enti-
d to
k is
n in

chi-
y of
sup-
er’s
for-
reen

On
wed

100 A. Saini, B. Nanchen, and F. Evequoz

by a wizard of service purchase in the third level. Post completion of this wizard, the
user is displayed the relevant information of licensing, invoices and finally informed
of purchase after which he returns back to level one of architecture, the home screen.
In this way, the information architecture structures the information within the
INFOPLACE.

Similar to the above described service purchase scenario, various features and
functions were designed using service blueprint and wireframing techniques and in-
corporated into the architecture. Some of the features that materialized into design
have been mentioned below in Table 1. Design implications for these features coming
from domains of service design and user-centered design are mentioned. Second and
third columns of the table ascertain how the features are implemented using know-
ledge from the corresponding domains. For example (see last row of Table 1), letting
the customers give their feedback to the site administrators in case of problems was
identified as a desirable feature of INFOPLACE. For helping customers who are fac-
ing problems, a complaint lodging system was designed. Complaints are then notified
to the Admin who addresses the complaints and users are then notified about rectifica-
tion of the problem. The Admin can also provide additional information to customers.
These were the implications of user-centered design. For such complaint lodging and
addressing to take place, the system of confirmation process enables notification of
messages to the Admin and customers. This is the implication of Service design.

Table 1. Sample of the features desired and their design implications

Features Desired
Implications from Service
Design

Implications from User-
Centered Design

Easier setting of permissions
Centralized functionality for
setting permissions

Permissions categorized
based on employees, products

Efficient management of
purchase orders, invoices and
licenses

Choice of mode of payment
through System of payment
process

Purchase wizard for easier
and user friendly purchasing
and invoicing

Information about problems
faced, address complaints

System of confirmation
process enables notification,
reception of messages

Complaint lodging system,
notifications sent about the
problems and what is done

7 Prototype Implementation and Usability Evaluation

Once the initial design was finalized, the visual design proposed was combined with
the layout of Krios website in order to retain consistency. The final screens can be
seen in Fig.4. In order to further improve the quality of the interface design, the
INFOPLACE prototype was evaluated by five usability experts using Nielsen’s heu-
ristics [16]. Suggestions for solving the usability problems found were then given
from perspectives of design as well as development. The most severe problems will
be corrected prior to release of INFOPLACE.

Fig.

8 Discussion and C

The service-oriented archit
formance of service. Howe
must be aware of the desire
thods help in bridging this
methodology combining a
and the Service Design, w
Needs and goals of custom
petitor interface analysis an
blueprint increased the un
their links to the underlyin
participation among team m
inputs from the different sk
of the project is that the fi
their products portfolio, fo
configured packages with
services i.e. providing less
to evaluate the acceptance
said that, thanks to this proj
ty maturity ladder, moving
or the enlightened stage [1
top-level management of K
timely realization of this pro

Lastly, the authors are co
customer satisfaction by m
focused design using collab

Putting the Customer Back in the Center of SOA

. 4. A prototype screen of INFOPLACE

Conclusions

tecture (SOA) facilitates scalability, availability and p
ver, along with this, it is necessary that service-orientat
es and needs of its users. User centered design (UCD) m
gap. We have proposed in this article an interdisciplin
customer-oriented focus given by the Ethnomethodolo

with UCD methods from Interaction Design perspect
mers and users were identified using a combination of co
nd interviews as part of ethnomethodology. Service des
derstanding of customer-oriented business processes

ng systems. Such an interdisciplinary approach facilita
members and led to a dynamic process of work by draw
kills and expertise within the team. An important side eff
indings have motivated Krios management in simplify
or example, reducing their products list, providing p
appropriate pricing, hiding details of parameterization
complexity to the user. Also, a follow up study is plan
of the new system amongst the customers. Thus, it can
ject, Krios has progressed onto higher rungs of the usab
on from “Unrecognized” or ignorant to the “Implement

1]. In line with this, it was observed that commitment
Krios proved to be a tremendous drive in the effective
oject.
onvinced of the value of such collaborative work in gain

moving from workflows over SOA to customer experie
boration between UCD and Service Design.

101

per-
tion
me-
nary
ogy
tive.
om-
sign
and
ated

wing
ffect
ying
pre-
n of
nned
n be
bili-
ted”
t by
and

ning
ence

102 A. Saini, B. Nanchen, and F. Evequoz

References

1. Ashley, J., Desmond, K.: Usability Maturity: A Case Study in Planning and Designing an
Enterprise Application Suite. In: Kurosu, M. (ed.) Human Centered Design, HCII 2009.
LNCS, vol. 5619, pp. 579–584. Springer, Heidelberg (2009)

2. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Mor-
gan Kaufmann, San Francisco (1998) ISBN 1-55860-411-1

3. Bitner, M.J., et al.: Service blueprinting: A practical technique for service innovation. Cali-
fornia Management Review 50(3), 66–94 (2008)

4. Brown, A., et al.: Using Service-Oriented Architecture and Component-Based Develop-
ment to Build Web Service Applications. A Rational Software White paper, Rational
Software Corporation (2002)

5. Chang, M., He, J., Tsai, W.T., Xiao, B., Chen, Y.: UCSOA: User-centric service-oriented
architecture. In: IEEE International Conference on e-Business Engineering, ICEBE 2006,
pp. 248–255. IEEE (2006)

6. Chen, H.M.: Towards service engineering: service orientation and business-IT alignment.
In: Proceedings of the 41st Annual Hawaii International Conference on System Sciences.
IEEE (2008)

7. Cloyd, M.H.: Designing User-Centered Web Applications in Web Time. IEEE Soft-
ware 18, 62–69 (2001)

8. Elizabeth, B., Sanders, N.: From User-Centered to Participatory Design Approaches. In:
Frascara, J. (ed.) Design and the Social Sciences. Taylor & Francis Books Limited (2002)

9. Engels, G., Hess, A., Humm, B., Juwig, O., Lohmann, M., Richter, J.P., ... Willkomm, J.:
A method for engineering a true service-oriented architecture. To appear: Proceedings of
the 10th International Conference on Enterprise Information Systems, Barcelona, Spain
(2008)

10. Fragnière, E., Nanchen, B., Sitten, M.: Performing Service Design Experiments Using
Ethnomethodology and Theatre-Based Reenactment: A Swiss Ski Resort Case Study. Ser-
vice Science 4(2), 89–100 (2012)

11. Khambete, P.: A Pattern Language for Touch Point Ecosystem User Experience: A Pro-
posal. In: Proceedings of the 3rd International Conference on Human Computer Interac-
tion, India HCI , pp. 68–74 (2011) ISBN: 978-1-4503-0729-1

12. Maguire, M.: Methods to support human-centred design. Int. J. Human-Computer Stu-
dies 55, 587–634 (2001)

13. Makino, Y., Furuta, K., Kanno, T., Yoshihara, S., Mase, T.: Interactive method for service
design using computer simulation. Service Sci. 1(2), 121–134 (2009)

14. Moallem, A.: Excellence in Ease of Use with Rich Functionality. In: Jacko, J. (ed.) Hu-
man-Computer Interaction, Part IV, HCII 2007, LNCS, vol. 4553, pp. 672–681. Springer,
Heidelberg (2007)

15. Murugesan, S., Deshpande, Y., Hansen, S., Ginige, A.: Web Engineering: A New Discip-
line for Development of Web-Based Systems. In: Murugesan, S., Desphande, Y. (eds.)
Web Engineering 2000. LNCS, vol. 2016, pp. 3–13. Springer, Heidelberg (2001)

16. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI, pp. 249–256 (1990)

17. Patig, S., Wesenberg, H.: Role of Process Modeling in Software Service Design. In: Bare-
si, L., Chi, C.-H., Suzuki, J. (eds.) ICSOC-ServiceWave 2009. LNCS, vol. 5900, pp. 420–
428. Springer, Heidelberg (2009)

 Putting the Customer Back in the Center of SOA 103

18. Soriano, J., Lizcano, D., Hierro, J.J., Reyes, M., Schroth, C., Janner, T.: Enhancing user-
service interaction through a global user-centric approach to SOA. In: Fourth International
Conference on Networking and Services, ICNS 2008, pp. 194–203. IEEE (2008)

19. Stojanovic, Z., et al.: Modeling and Design of Service-Oriented Architecture. In: IEEE In-
ternational Conference on Systems, Man and Cybernetics (2004)

20. Task Analysis methods, http://www.usabilitynet.org/tools/taskan
alysis.htm (accessed on June 15, 2012)

21. Uflacker, M., Busse, D.: Complexity in Enterprise Applications vs. Simplicity in User Ex-
perience. In: Jacko, J. (ed.) Human-Computer Interaction, Part IV HCII 2011. LNCS,
vol. 4553, pp. 778–787. Springer, Heidelberg (2007)

RAFT-REST - A Client-Side Framework
for Reliable, Adaptive and Fault-Tolerant

RESTful Service Consumption

Josef Spillner, Anna Utlik, Thomas Springer, and Alexander Schill

Technische Universität Dresden,
Faculty of Computer Science,

01062 Dresden, Germany
{josef.spillner,thomas.springer,alexander.schill}@tu-dresden.de,

anna.utlik@mailbox.tu-dresden.de

Abstract. The client/server paradigm in distributed systems leads to
multi-stakeholder architectures with messages exchanged over connec-
tions between client applications and services. In practice, there are many
hidden obstacles for client developers caused by unstable network con-
nections, unavailable or faulty services or limited connectivity. Even if
many frameworks and middleware solutions have already been suggested
as corrective, the rapid development of clients to (almost) RESTful ser-
vices remains challenging, especially when mobile devices and wireless
telecommunications are involved. In this paper we introduce RAFT-
REST, a conceptual framework aimed at engineers of clients to RESTful
services. RAFT-REST reduces the effort to achieve reliable, adaptive and
fault-tolerant service consumption. The framework is applied and vali-
dated with ReSup, a fully implemented flavour for Java clients which run
on the desktop and on Android mobile devices. We show that by using
the framework, message loss can be reduced significantly with tolerable
delay, which contributes to a higher quality of experience.

1 Introduction

As the World Wide Web and the Internet of Services become more enriched with
different kinds of information and functionality, private and commercial partici-
pants in these networks find new ways to expose their internal data, applications
and even hardware resources. From the user’s point of view, the interaction with
such services is not restricted anymore to read-only access to information, but
also includes utilisation and modification of data resources for creating com-
plex applications and systems. Web services following the paradigm of Repre-
sentational State Transfer, or simply RESTful web services, are attracting the
attention of an increasing number of individual developers and service-driven
companies as an easy and scalable way to provide an interface to different user
groups. This has led to an enormous growth of the adoption of distributed REST-
ful applications. Many popular Internet-scale services like Facebook, Twitter,
Dropbox, Flickr and Amazon S3 rely on the RESTful service paradigm.

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 104–118, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

RAFT-REST - A Client-Side Framework 105

This development is a result of major advantages RESTful services offer.
Based on HTTP for resource access and service invocation in almost all practi-
cal realisations of the RESTful approach, overhead with auxiliary data otherwise
used for encapsulating messages in envelopes and expressing operations [1] is re-
duced. Compared with SOAP-formatted and other procedural service protocols
[10], RESTful services are easier to develop and use and fit more naturally the
underlying stateful entity model like databases and hardware resources. Addi-
tionally due to the absence of the auxiliary data and the predictable nature of
their requests they typically offer better performance. The latter property allows
these services to be consumed with less restrictions on devices with limited com-
putational power, such as mobile phones, tablets and embedded systems. Thus,
with the simultaneous increase of radio communication and wireless network
covered areas, RESTful services give their consumers a possibility to access and
store valuable information in any place, at any time, and from the most com-
fortable terminal.

The other side of the coin is a high dependency on a stable and continuously
available network connection, which raises a set of challenges for the develop-
ment of RESTful service clients, especially when mobile devices and wireless
telecommunications are involved. The addressed statelessness prevents services
from keeping any information about clients on the service side, thus making
the client responsible for maintaining the session integrity and handling its in-
terruption due to network volatility and service failures. Mitigating this issue
implies writing fault-handling code that is individual to every service. Addi-
tionally, a high dependency on external services makes mobile applications and
other clients consuming RESTful services unusable during a network downtime,
as no data which would be necessary for these applications can be received. It is
left to the client developer if caching of data and its further reuse from a cache
storage should be implemented in the application or not. However, the RESTful
paradigm encourages caching and provides sufficient means to benefit from this
technique.

As another drawback, the wild growth of services and client programming
techniques for them has led to the lack of standardisation and formalised ser-
vice description and engineering methodologies. Although the basic principles of
REST are well known [4] and a lot of best practices and recommendations have
been published in developer-oriented literature [11,9,14] to determine one good
way of designing RESTful services, many implementations bypass some or even
all those rules and hence require treatment of almost-REST anomalies.

The current approach to develop RESTful service clients is to use a service-
specific framework offered by service providers. These frameworks provide a high-
level API which might be the most convenient and appropriate solution if a client
for a particular service should be implemented. As soon as a RESTful service client
should consume services provided by different vendors service-specific frameworks
are not appropriate. In addition, as we will discuss in the related work section,
these frameworks only have a very limited support for fault-handling, disconnec-
tion support and configurability. Altenative approaches use low-level network

106 J. Spillner et al.

programming based on HTTP or support access to RESTful services at message or
service level. While these approaches are more general, flexibile, configurable and
reusable, implementation effort is also significantly higher. Especially, advanced
mechanisms for fault-handling, configuration, caching and adaptivity have to be
implemented by the developer. Thus, development of RESTful service clients, es-
pecially for mobile devices, is currently a challenging, costly and time consuming
task.

In this paper we therefore introduce RAFT-REST, a conceptual framework
for reliable, adaptive and fault-tolerant access to RESTful services. Any imple-
mentation of it is targeted to the provision of service handling support on the
client side in the context of unreliable network conditions combined with often
sloppy almost-RESTful service interfaces. The conceptual framework proposes a
novel way of accessing and consuming RESTful services from applications which
cannot assume high-quality networks and service behaviour.

The contribution of the paper is threefold. Firstly, we describe the results of
an analysis of 12 highly popular RESTful services and a set of fault-tolerant con-
sumption frameworks with respect to support for the aformentioned problems.
This analysis underpins the current state of service-specific frameworks as stated
before. Secondly, we introduce the concepts of RAFT-REST as a conceptual,
generic and portable client-side framework for rapid and cost efficient develop-
ment of reliable, fault-tolerant and adaptive RESTful service clients. Thirdly,
we describe ReSup, a concret implementation of the RAFT-REST concepts for
Java clients running on a desktop or Android device. We especially present and
evaluation of fault-handling, configurability and performance for the use case of
reliable mobile service consumption.

The remainder of the paper is organized as follows: In Section 2 we present and
compare related client-side service integration approaches. Then, we introduce
RAFT-REST as a concept and an architecture for reliable service consumption
in Section 3. Through a reference implementation on Android, RAFT-REST is
then evaluated for the use case of reliable mobile service consumption in Sec-
tion 4. Finally, the performed work and its results are summarised and directions
for future research towards more failure-aware service-oriented architectures are
explained.

2 Related Work: SDKs and Fault-Tolerant Frameworks

Developers of clients for RESTful service interfaces have a choice in the level
of assistance which coincides with the level of restriction to certain libraries,
toolkits and providers. The following methodologies exist:

– Low-level network programming through APIs such as socket or, slightly
more comfortable, on the HTTP level, such as HttpUrlConnection, Http-
Client and curl. These libraries partially offer functions to overcome com-
munication issues, but do not understand service response semantics.

RAFT-REST - A Client-Side Framework 107

– Message-level programming where each message is represented as a data
structure. The data types are generated from message and interaction de-
scriptions such as RPC IDL, Protocol Buffers, ggzcommgen or XML Schema.
In this methodology, the message transport (e.g. HTTP or message buses)
needs to be selected but not explicitly handled by the client developer.

– Service-level programming where messages descriptions are complemented
by interfaces and endpoints, metadata about the provider and service con-
text, as well as quantitative non-functional properties describing for instance
the cost of a single invocation [8]. In this methodology, the most suitable
message transport is selected automatically.

– Provider-level programming by using a provider-specific software develop-
ment kit (SDK). This methodology trades the ability to switch flexibly
between providers for a simplified programming model, in particular avoid-
ing the need to configure endpoints within the application. Sometimes, the
SDKs even offer graphical elements aimed at instant service consumption by
humans.

None of these practical methodologies are well-suited for imperfect network
conditions and generic service faults. Researchers have found several API and
SDK shortcomings and proposed improvements. We will summarise the find-
ings and extend them with our own observations. Additionally, we will high-
light some proposed service consumption concepts which focus on reliability and
fault-tolerance, and explain why they don’t fully match the needs of developers
of applications in imperfect networks.

2.1 Conventional Consumption Frameworks

RESTful services and programmable web APIs are expected to follow certain
established guidelines and best practices. Among them are (1) well-designed
URIs as resource identifiers, (2) well-projected request semantics on top of the
method semantics which the transport channel provides, (3) appropriate status
codes, (4) conscious use of metadata along with each request and response, and
(5) correspondence between content types and well-formed messages.

Vendors of services typically offer SDKs for a variety of programming lan-
guages, frameworks and platforms. These SDKs are almost always restricted to
a single service endpoint. Furthermore, they mirror all design weaknesses which
violate the guidelines for service design.

As a complement to previous API and SDK analysis work [11,14,2], we have
performed an up-to-date analysis of 12 currently highly popular RESTful services
which confirms the view that more robust and reliable integration and consump-
tion techniques are needed.The analyis encompasses social interaction (Shuffler.fm
andFacebook), data storage (Dropbox andAmazonS3), images (Flickr andDaisy),
audio (SoundCloud) and video (Vimeo), open data (Open 311) and security and
management of resources (CloudPassage and Sun Cloud). These services differ
not only in their domains, but also in technical characteristics including the data
model, message body formats, CRUD operations (Create/Read/Update/Delete),

108 J. Spillner et al.

HTTP headers and HTTP response codes. Further differences exist in their adap-
tivity, security, internationality and documentation.

Guideline violations among this set of APIs are plentyful, hence we can only
briefly mention some notable examples. In the Facebook Graph API, POST
is used for both creations and updates, while PUT is not used. In Flickr, the
semantic difference between POST and GET is expressed with a GET parameter.
Amazon S3 transmits only stock response codes in the headers and delivers
meaningful error symbols in the body, and Flickr omits the codes altogether.

Table 1 summarises the SDK characteristics for services whose SDK offers at
least some fault tolerance or caching.

Table 1. Result of client libraries evaluation

Facebook Dropbox Amazon
S3

Flickr Sound-
Cloud

Representation of resource data
model as API types

+ + + + –

Wrapping of received exceptions
into verbose error messages

+ + + – +

Request retry techniques – – + – –
Handling of connection or read
timeouts

– + + - –

Data integrity checking – – + – –
Caching of successful responses + + – – –

2.2 Fault-Tolerant Consumption Frameworks

Researchers have found existing SDKs to be essential for a quick adoption of new
services among application developers, and yet insufficient due to their restriction
to one service, mirroring of service design weaknesses, and assumption of perfect
networks [7,3]. In this section, four proposals with partially existing framework or
code implementations will be presented and compared: iTX, FTWeb, DR-OSGi
and FT-REST.

The issue of maintaining a stable Internet connection in wireless networks
is a well known problem of mobile devices. Modern distributed applications,
typically developed on web services, often rely on mobile components, which
heavily depend on different types of wireless connection (WIFI, GPRS, UMTS,
Wi-Max, etc.). Apart from instability of applications, for mobile devices individ-
ually such network problems can cause performance and monetary costs. Many
research efforts have been started in this area in order to achieve resilience of
such application against network volatility.

The authors of the mobile recovery concept [15] describe the problem of mo-
bile client state recovery after the network disconnection and reconnection. The
goal of this work is to reduce the costs of recovery if a user was involved in a

RAFT-REST - A Client-Side Framework 109

long-lasting network transaction which was interrupted. The notion of Internet
transaction (iTX), as used in this work, has been taken from the familiar concept
of database transactions and describes the user interaction with one or more
network resources for achieving one or more objectives. The proposed solution
involves logging of user state for each step of iTX. As initial steps in transaction
can branch into several parallel and independent subtransactions, it is necessary
to track in which subtransaction the user is at any given moment, and evaluate
which actions should and can be recovered. Therefore, the proposed solution
allows to reuse the current state from the log and does not repeat the steps of
transactions again, thus saving network traffic. However, the algorithm of the
given solution requires continuous computation and updating of an action graph,
as well as persistent storage for user states. This is why mobile devices, due to
limited battery, memory and processing power, are a bad choice for placement
of this solution.

The authors of the FTWeb project [13] and the Fault Tolerant Web Service
Framework [12] both provide a fault tolerant layer for unreliable web services.
The model proposed in FT-Web provides a software layer that acts as proxy be-
tween client requests and service responses. This proxy ensures transparent fault
handling for client by usage of active replication. The given approach addresses
requirements of high service availability and reliability for distributed systems. In
contrast, the Fault Tolerant Web Service Framework project proposes customis-
able fault-tolerance connectors between client and service. Each such connector
is a software component which captures web service interactions and partially
performs built-in fault tolerance actions. It encapsulates pre-processing and post-
processing of requests, and recovery actions which can be parameterised by user.
Connectors reside on a third-party infrastructure between service providers and
consumers. An infrastructure assumption on which the given approach relies is
redundant services. This is used by recovery strategies which implement passive
and active replication of request between equivalent services. Both of these ap-
proaches are targeted at SOAP web services, and involve third party components
between clients and services.

The bundle-oriented DR-OSGi [6] proposes a systematic handling of network
outages in distributed system in a consistent and reusable way by implement-
ing fault tolerant strategies as reusable components. This solution is target-
ing service-oriented applications implemented on top of the OSGi platform.
Hardening strategies for network volatility resilience, such as caching, hoarding,
replication, etc., are provided as OSGi bundles, and could be added to existing
applications transparently. Although the presented benchmarks are showing im-
proved results with DR-OSGi when network becomes unavailable in exchange
for a small performance overhead, this solution affords needless system resources
consumption. This circumstance prevents it from being widely used on mobile
devices. Also, the underlying OSGi framework restricts the usage of DR-OSGi
on platforms where OSGi is not supported, or must be pre-installed manually,
for instance on Android.

110 J. Spillner et al.

The work in FT-REST [3] presents an approach to fault handling in client
RESTful applications. This proposal consists of a domain-specific Fault Toler-
ance Description Language (FTDL) and client-side library. FTDL is used to
specify fault tolerance policies for RESTful application which are compiled af-
terwards by FT-REST framework into platform specific code. This code module
can be added to the business logic of applications and acts as a fault-tolerant
layer between the application and a RESTful service. The authors claim that this
concepts brings benefits in programmability – by separating the fault tolerance
concern from the underlying logic, the programmer can fully focus on imple-
menting the core of application; reusability – by reusing the XML-structured
FTDL specification of a service between different applications and across plat-
forms; and extensibility – by robust extension of FTDL fault-tolerant strategies
instead of writing fault-tolerant code. FT-REST encapsulates the following fault
tolerance strategies: retry (reattempting a service endpoint), sequential (itera-
tion through the set of equivalent endpoints), parallel (simultaneous invocation
of equivalent endpoints), and composite (combinations of the aforementioned).
However, client-side caching and other disconnected operations techniques are
not considered in this work.

Many scientific works are focused on adding resilience to distributed network
applications, but only few of them consider the client as a point of network and
service fault handling. Among the introduced works, FT-REST can be considered
as highly related, as it provides fault handling support for the client and is
aimed at consuming RESTful services. However, no previous approaches have
been found which provide developers with an out-of-the-box solution that helps
to implement RESTful mobile application with necessary fault tolerance.

3 Service Consumption Concept

In this section, the design choices and concepts behind a framework for reliable,
adaptive and fault-tolerant RESTful service consumption (RAFT-REST) will
be presented. This includes a detailed description of the logical and the derived
structural architecture, a service consumption workflow and a consideration of
component interactions.

3.1 Logical Architecture

RAFT-REST is a conceptual framework which ensures a high level of reliability,
resilience, adaptivity and fault tolerance for service consumption subject to net-
work and service failures. It is intended to achieve service-oriented architectures
of higher quality, in particular for mobile clients and embedded cyber-physical
systems connected to often brittle service interfaces in the cloud.

The high-level logical architecture of RAFT-REST is shown in Fig. 1. It con-
sists of an API Mapping Component, a Request Executor, a Network Manager
as well as a Cache and a Request Queue. The purpose of the API Mapping
Component is to transform requests and messages into a format understood

RAFT-REST - A Client-Side Framework 111

by the service interface. The Network Manager monitors the network connec-
tions maintained by the client device and notifies the other componentens of
the RAFT-REST framework about changes of connectivity. The heart of the
RAFT-REST logical architecture is the Request Executor. As an active compo-
nent it manages the Cache and Request Queue and handles incoming request
from clients as well as response messages from services. Access to the network is
managed based on the connectivity information provided by the Network Man-
ager. The Request Queue fulfills the requirement of asynchrony by enqueuing all
outgoing request received from a client. The Cache is responsible for temporar-
ily storage of requested resources in the persistent memory of the client device.
Thus, it is a key component to handle short-time network failures and longer
disconnection phases.

Fig. 1. RAFT-REST Logical Architecture

As a particular design choice, the framework should be as generic as pos-
sible, while allowing for almost-REST service-specific workarounds. Therefore,
messages can be adapted by the API mapper when instructed to do so by the ap-
plication. A typical use case is to substitute an error code for a success indication
in cases of occurred problems.

3.2 Structural Architecture

The structural architecture of RAFT-REST, which is derived from the logical
one, is shown in Fig. 2. It describes the framework from the perspective of a
developer.

Client and Service. The Service component represents a RESTful service,
which provides a RESTful service API. The Client component represents the
Application client which intents to consume the RESTful service.

The Core Structure of the framework is build around the RequestQueue for
request messages and the Cache for resource representations. The Request
Execution Manager acts as mediator with fault tolerance and adaptation
functions. The fault tolerant part checks network and message errors, includ-
ing response error codes, makes decisions about whether such errors can be
mitigated, and applies fault handling techniques. The adaptive part is mostly
specific to certain services. It adapts resources to the device context apart from

112 J. Spillner et al.

general adaptations, e.g. to work around wrongly modelled response codes. The
Request Execution Manager provides an interface, via which clients can pass re-
quests and receive responses. During the instantiation a client can configure some
of the network and performance related parameters using the Configuration
component.

Fig. 2. RAFT-REST Structural Architecture

The Network Manager is aware of network conditions, and supply this
information to other components, which rely on it (i.e. Requests Queue and
RequestExecution Controller). As it is possible to have more than one type of
network connection on mobile devices, and retrieving information about connec-
tion state is associated with inquires to hardware, Network Manager must rely
on Network Monitoring components, which are platform specific. Thus, the
framework can be extended with custom Network Monitoring components at
this point.

The Canonicalization component is present in the architecture to supply
the framework with canonical entities of the requests and responses. The most
widespread service descriptions now exist as plain text, which can be understood
by human. In such situation RESTful service endpoints, corresponding HTTP
methods and responses should be transformed manually by the developer. Plug-
gable components can be added to achieve automatic transformation.

Finally, the Administrative component collects statistics and manages the
level of information that is printed into log messages.

RAFT-REST - A Client-Side Framework 113

3.3 Service Consumption Workflow

The intended workflow for RAFT-RESTful service consumption is represented
in Fig. 3 to illustrate the behavior of the RAFT-REST framework. The complete
workflow is organized into three phases.

In Phase 1 the client initiates the interaction with a service by handing a
service request over to the framework. As a first step this request is transformed
into a canonical representation which allows the framework to process different
types of service interfaces in a common way. As a second step, the cache is
checked. If the reply to this request is found in the cache, e.g. the result of an
idempotent request which is always cacheable, it is returned immediately to the
client.

Otherwise, Phase 2 is entered and the request is placed into a request queue
where it stays until an active network link to the service is available. For mitigat-
ing the absence of a connection, a random delay time is added before messages
can be forwarded using a re-established network connection to avoid request
overhead after service ior network failures.

In Phase 3 the resource is requested from the service and eventually error
responses could be received. In this phase the framework is responsible for eval-
uating the cause of an error and deciding about appropriate error handling. For
instance a retry of a message can be triggered. Parameters for error handling
such as the maximum number of retries and the back off time between retries
are configurable. Finally the response is handled (e.g. response data is cached)
and forwarded to the initiating client.

Fig. 3. Workflow of RESTful service consumption according to the RAFT-REST
concept

Table 2 offers a comparative summary of the characteristics of RAFT-REST
and FT-REST. While RAFT-REST lacks a structured description of faults, for
which a domain-specific language is yet to be defined, it offers additional func-
tionality especially through caching and error mitigation. Equivalent endpoint
invocation is a feature already found in general adaptive service proxies and
therefore can be combined with RAFT-REST while keeping the framework lean.

114 J. Spillner et al.

Table 2. Comparison of characteristics: FT-REST vs RAFT-REST

Characteristics FT-REST RAFT-REST
Separation of concerns - separating
of fault-tolerant layer from applica-
tion logic

yes yes

Fault condition description for each endpoint, in
XML document

for each endpoint
(optionally hierar-
chical), in generated
classes

Handling strategies configuration for each endpoint for all application
Timeout handling yes yes
HTTP response error codes han-
dling

yes yes

Mitigation of errors, embedded in
the message

no yes

Service binding code no yes
Fault handling techniques
Retrying of request yes yes
Equivalent endpoints invocation yes no
Cache no yes
Asynchronous request invocation
(due to network conditions)

no yes

4 Validation: The ReSup Framework

ReSup (RESTful Support), a Java framework for the development of service-
bound mobile and desktop applications, turns the RAFT-REST concepts into
practice for service clients implemented with the Java language and correspond-
ing networking libraries. ReSup consists of a proxy library located between the
application and the network stack, similar to existing HTTP client libraries, and
an Eclipse wizard to generate service-specific message classes by mapping API
specifications to code. A screenshot of the wizard in Fig. 4 highlights the possib-
lity to import WADL (Web Application Description Language) service descrip-
tions to reduce the manual class modelling effort [8]. Both the wizard and the
library need to be present as JAR files (org.tud.resup.apimapper_1.0.0.
2013MMDD.jar, Resup_1.0.0.2013MMDD.jar) in the plugins folder of Eclipse.
The library is subsequently copied into the resulting project archive and used at
runtime.

The ReSup library delivers and caches message objects which may be created
manually in the application code or as instantiations of the generated classes.
Each message object represents a service resource or a request targeting one.
The way ReSup is used depends mainly on the application requirements. Fig. 5
demonstrates the possible configuration directive combinations.

RAFT-REST - A Client-Side Framework 115

Fig. 4. Eclipse wizard to generate API mapping classes for use with the ReSup library

Fig. 5. Flexible configuration of the ReSup objects depending on the desired applica-
tion behaviour

The integration of ReSup is particularly easy by its HttpClient interface which
mimicks the API of the widely used Apache HttpClient library. Hence, develop-
ers can switch to ReSup by just substituting a Java import statement and after-
wards gradually turning on and testing its RAFT features. ReSup can also run as
a transparent stand-alone proxy so that applications do not have to be modified
except for a system-wide forced HTTP proxy configuration. Proxies, gateways and
networked intermediaries are common architectural elements for RESTful service
consumption [5]. However, on mobile systems such as Android, this requires sys-
tem modification access and is therefore often not a viable solution.

In order to demonstrate the capabilities of ReSup, and therefore acknowledge
the RAFT-REST concepts, we have performed a number of measurements and
experiments in an evaluation study which includes existing services with REST-
ful interfaces in both simulated and real imperfect networks. Fig. 6 shows the
setup of the experiment. Off-the-shelf networking tools such as Burp, an inter-
cepting proxy, Trickle, a bandwidth variator, and Netem, a packet loss generator,
are used to simulate reproducible low-quality connections. Trickle allows scaling
the bandwidth within the constraints imposed by the hardware from a zero-
throughput connection to the typical speeds of mobile networks, WLANs and
LANs. Netem varies typical WAN parameters such as delay, loss, duplication
and re-ordering (shuffling).

116 J. Spillner et al.

Fig. 6. Test suite for the experiments involving RESTful services and clients using the
ReSup library

The test environment consisted of the test suite running on an Intel Core i5
machine with 4 times 2.4 GHz CPUs, 3 GB DDR2 RAM, the Ubuntu 12.04
operating system and Java 1.6.

The results are shown in Fig. 7 and 8, respectively. The first diagram shows the
distribution of error responses still successfully received from one of the test runs,
in this case a mobile connection with 50 kbps. On the whole range of possible
network losses, ReSup retrieves a higher number of error reponses compared to
a pure HttpClient connection. The increase is between 35% and 92%, but still
recovers less than half of the lost packets when the loss rate exceeds 80%. The
second diagram measures the overall response times over a bivariate range from
a perfect connection (100 Mbps with 0% loss) to a nearly unusable one (50 kbps
with 80% loss). Due to the caching, ReSup is much faster for all good-enough
connections and considerably slower than HttpClient for all worse ones due to
the retries. Yet, the retries contribute to the higher success rate as shown in 7,
therefore even the highest run-time overhead of 55,4% for a 500 kbps connection
with 60% loss will eventually improve the user experience in practice.

Fig. 7. Error response numbers evaluation

RAFT-REST - A Client-Side Framework 117

Fig. 8. Response times evaluation

5 Conclusion

We have motivated and discussed RAFT-REST, a client-side RESTful service in-
tegration concept which addresses reliability, safety and quality concerns.
Compared to previous integration concepts, the combination of conventional
fault-tolerance schemes, graceful error handling and caching achieves a great
user experience for distributed applications connected by imperfect networks.
The ReSup framework targets mobile application developers through an API-
compatible HTTP client library and an Eclipse code engineering plugin with the
aim to increase real-world application robustness through RAFT-REST. It is
made available as open source toolkit for use and further improvements1.

Subsequent research questions focus on the global view, i.e. the server-side
and total load behaviour when using any of the offered RAFT-REST mecha-
nisms, as well as on extended validation with real-time statistics collection and
visualisation for immediate feedback about the waiting state of applications to
the user.

Acknowledgements. This work has received funding under project number
080949277 by means of the European Regional Development Fund (ERDF), the
European Social Fund (ESF) and the German Free State of Saxony.

References

1. Aihkisalo, T., Paaso, T.: Latencies of Service Invocation and Processing of the
REST and SOAP Web Service Interfaces. In: Eighth IEEE World Congress on
Services (SERVICES), Hawaii, USA, pp. 100–107 (June 2012)

2. Belqasmi, F., Glitho, R.H., Fu, C.: RESTful Web Services for Service Provisioning
in Next-Generation Networks: A Survey. IEEE Communications Magazine 49(12),
66–73 (2011)

1 ReSup website and source code: http://serviceplatform.org/wiki/ReSup

http://serviceplatform.org/wiki/ReSup

118 J. Spillner et al.

3. Edstrom, J., Tilevich, E.: Reusable and Extensible Fault Tolerance for REST-
ful Applications. In: 11th International Conference on Trust, Security and Pri-
vacy in Computing and Communications (TrustCom), pp. 737–744 (June 2012),
doi:10.1109/TrustCom.2012.244

4. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

5. Kelly, M., Hausenblas, M.: Using HTTP Link: Header for Gateway Cache Inval-
idation. In: Proceedings of the First International Workshop on RESTful Design
(WS-REST), Raleigh, North Carolina, USA, pp. 23–26 (April 2010)

6. Kwon, Y.-W., Tilevich, E., Apiwattanapong, T.: DR-OSGi: Hardening Distributed
Components with Network Volatility Resiliency. In: Bacon, J.M., Cooper, B.F.
(eds.) Middleware 2009. LNCS, vol. 5896, pp. 373–392. Springer, Heidelberg (2009)

7. Leitner, P., Rosenberg, F., Dustdar, S.: Daios – Efficient Dynamic Web Service
Invocation. Internet Computing 13(3), 72–80 (2009)

8. Maleshkova, M., Pedrinaci, C., Domingue, J.: Supporting the creation of seman-
tic RESTful service descriptions. In: 8th International Semantic Web Conference
(ISWC), Washington D.C., USA (October 2009)

9. Masse, M.: REST API Design Rulebook. O’Reilly (2011)
10. Mulligan, G., Gracanin, D.: A comparison of SOAP and REST implementations of

a service based interaction independence middleware framework. In: Proceedings
of the Winter Simulation Conference (WSC), Austin, Texas, USA, pp. 1423–1432
(December 2009)

11. Mulloy, B.: Web API Design: Crafting Interfaces that Developers Love. e-Book
(March 2012)

12. Salatge, N., Fabre, J.C.: Fault Tolerance Connectors for Unreliable Web Services.
In: 37th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), Edinburgh, UK, pp. 51–60 (June 2007)

13. Santos, G.T., Lung, L.C., Montez, C.: FTWeb: A Fault Tolerant Infrastructure for
Web Services. In: Proceedings of the Ninth IEEE International EDOC Enterprise
Computing Conference, Enschede, The Netherlands, pp. 95–105 (September 2005)

14. Tilkov, S.: REST Anti-Patterns. InfoQ Article (July 2008)
15. VanderMeer, D., Datta, A., Dutta, K., Ramamritham, K., Navathe, S.B.: Mobile

User Recovery in the Context of Internet Transactions. IEEE Transactions on
Mobile Computing 2(2), 132–146 (2003)

Contract Compliance Monitoring

of Web Services

Gregorio Dı́az1 and Luis Llana2

1 Computer Science Dept. University of Castilla-La Mancha
2 Computer Science Dept. Complutensis University of Madrid

gregorio.diaz@uclm.es, llana@dfi.uclm.es

Abstract. Design and implementation via contractual specifications
helps designers and programmers understand and analyze when the re-
quirements have been elicited according to the client’ desires. In general,
software is released when some tests have been successfully passed. How-
ever, these tests only cover a finite set of possible executions. But in sys-
tems such as web services, which involve a set of heterogeneous parties, it
is difficult to identify an appropriate set of tests because their execution
tends to be nondeterministic since most rely on underlying software sys-
tems where most of the information is hidden due to copyright or security
concerns. In this work, we propose that the use of contract specifications,
such us C-O Diagrams, allow one to specify and codify a system, where
once the software has been released it is still possible to check if the
execution conforms to a given contract. To achieve this goal, we pur-
pose a monitoring technique, where all actions specified in a contract are
recorded in a log that will be used by the monitor software to check if
the contract is being fulfilled and alerting all parties when it is not so
that the system can force reparations.

1 Introduction

A contract from a software perspective refers to a set of statements agreed be-
tween the involved parties. These statements have different detail level depend-
ing on the case. One of the first approaches to use contracts in software designs
dates to the mid-eights, with the Eiffel language, where the contract refers to
a set of pre and post conditions and invariants following the ideas defined by
Hoare. These ideas have proven effective for the development of Object Ori-
ented designs. However in more recent paradigms such as component-based and
interaction-based developments, the abstraction level has changed and therefore
new definition of contracts need to be introduced.

In the context of SOA, there are different service contract specification lan-
guages, such as ebXML, WSLA, and WS-Agreement. These standards and spec-
ification languages suffer from one or more of the following problems: They are
restricted to bilateral contracts, lack formal semantics (so it is difficult to rea-
son about them), their treatment of functional behaviour is rather limited and
the sub-languages used to specify security constraints, for instance, are usually

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 119–133, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

120 G. Dı́az and L. Llana

limited to small application-specific domains. The lack of suitable languages for
contracts in the context of SOA is a clear conclusion of the survey [15] where a
taxonomy is presented.

In [12] C-O Diagramswere introduced, a graphical representation not only
for electronic contracts but also for the specification of any kind of normative
text (Web service composition behaviour, software product lines engineering,
requirements engineering, . . .). C-O Diagrams allow the representation of com-
plex clauses describing the obligations, permissions, and prohibitions of different
signatories (as defined in deontic logic [14]), as well as reparations describing
contractual clauses in the case of non-fulfillment of obligations and prohibitions.
Also, C-O Diagrams permit defining real-time constraints. In [11] some of the
satisfaction rules needed to check if a timed automaton satisfies a C-O Dia-
gram specification were defined. In [13], C-O Diagrams were equipped with a
formal semantics, based on a transformation of these diagrams into a network
of timed automata (NTA). Finally, some conformance relationships are given in
[4], where contract and implementation, are compared.The contribution of this
work pursues the further development of our previous work. Here, we focus on the
development of a software system implementing the conformance relationships
between contracts and implementations to check if implementation executions
corresponds to its contracts. The software developed in this case is a monitoring
system and is based in a subscription and notification system where the different
involved services subscribe to a specific contract under a specific role and are
notified in case a service violates the contract.

2 Related Work

The use of deontic logic for reasoning about contracts is wide spread in the
literature and was proposed in [5] for modelling communication processes. In
[10] Marjanovic and Milosevic present their initial ideas for formal modelling
of e-contracts based on deontic constraints and verification of deontic consis-
tency, including temporal constraints. In [6] Governatori et al. go a step further,
providing a mechanism to check whether business processes are compliant with
business contracts. They introduce the logic FCL to reason about the contracts,
based again on deontic logic. In [9] Lomuscio et al. provides another methodol-
ogy to check whether service compositions are compliant with e-contracts, using
WS-BPEL to specify both, all possible behaviours of each service and the con-
tractually correct behaviours, and translating these specifications into automata
supported by the MCMAS model checker to verify the behaviours automatically.

None of the previous works provide a visual model for the definition of con-
tracts. However, there are several works that define a meta-model for the spec-
ification of e-contracts, with the purpose of their enactment or enforcement. In
[3] Chiu et al. present a meta-model for e-contract templates written in UML,
where a template consists of a set of contract clauses of three different types:
obligations, permissions and prohibitions. These clauses are later mapped into
ECA rules for contract enforcement purposes, but the templates do not include

Contract Compliance Monitoring of Web Services 121

any kind of reparation or recovery associated to the clauses. In [7] Krishna et al.
purpose another meta-model, based on entity-relationship diagrams to generate
workflows supporting e-contract enactment. This meta-model includes clauses,
activities, parties and the possibility of specifying exceptional behaviour, but
this approach is not based on deontic logic and says nothing about including
real-time aspects natively.

3 C-O Diagrams Syntax and Semantics

We first introduce a motivation example to understand the diagrams in a more
intuitive manner. Figure 1 depicts our running example. This example consists
of the auction of an item. The online auction starts when a seller wants to
auction an item. Therefore, the seller has one day to upload valid information
about the item he wants to sell, taking into account that the sale of inadequate
items such as counterfeit items or wild animals is forbidden. Once an item is
cleared for auction, the auction service has one day to publish the auction of
the item. After that, the buyer can place bids during seven days. When this
period of time is over, if the bid placed by the buyer is the highest, the activities
concerning the payment and the shipment of the item start.

Online_Auctioning 1

Auction_Item 2 Check_Item 3 Auction_Process 6

-

- -

SEQ

Payment_Shipment 9

-

Seller

P a1

g1

t1

Seller

AND

2

Auction Service Buyer

SEQ

Inadequate_Item 4 Valid_Information 5

F a 3O a

Seller

4O a
5P at2 t3

Publish_Item 7 Place_Bid 8

Payment_Item 10 Send_Item 13

SEQ

Buyer

O - a8t4
R1

Ot5

Seller

a7
a6

OR

Paypal 12Credit_Card 11

R1

Refund_Buyer 15 Penalty_Seller 16

-

AND

Refund_Penalty 14

O P

Auction ServiceAuction Service

a10a9

t6

guard
time

restriction

Propostion

Reparation

name

agent Refinement

Fig. 1. C-O Diagrams examples

122 G. Dı́az and L. Llana

At first sight, C-O Diagrams are top down hierarchical structures with several
boxes and branches. In Figure 1, we observe two examples, a contract and a repa-
ration of a clause of this contract corresponding to our running example. The basic
construction element of these diagrams is called box, also referred to as proposi-
tion or clause, and is divided into four fields. The guard, top left hand side field,
g specifies the conditions under which the contract clause must be taken into ac-
count (boolean expression). The time restriction tr, bottom left hand side field,
specifies the time frame during which the contract clause must be satisfied (dead-
lines, timeouts, etc.). The propositional content P, in the centre, is the main field
of the box, and it is used to specify normative aspects such as obligations (O),
permissions (P) and prohibitions (F), that are applied over actions, and/or the
specification of the actions themselves. The last field, on the right-hand side, is the
reparation R. This reparation, if specified by the contract clause, is a reference to
another contract that must be satisfied in case the main norm is not satisfied (a
prohibition is violated or an obligation is not fulfilled, there is no reparation for
permission), considering the clause eventually satisfied if this reparation is satis-
fied. Each box has also a name at the bottom and an agent at the top.

These are the basic boxes, which can be composed by using a few refine-
ments. Refinements are classified into three types: joining AND-refinements,
disjunctive OR-refinements and sequential SEQ-refinement. Joining refinements
require that all the hanging propositions should be accomplished to declare the
upper proposition accomplished; on the contrary, disjunctive propositions only
require one to be accomplished; whereas, sequential propositions require a left-
to-right ordered sequential satisfaction of every proposition to obtain the same
result. In Fig. 1 we show a C-O Diagram that we specify for the process, called
Online Auctioning, to start from the permission specified in clause 1, that has
been called Auction Item. We have grouped the rest of the clauses into four
more general clauses with a sequence relationship between them: 1) Check Item
decomposed via a conjunction of clauses 2 and 3, 2) Auction Process refined as
a sequence of Clause (4 and 5), 3) Payment Shipment other sequence of clauses.

The clause Check Item is decomposed into two subclauses, where an AND-
refinement is used in the decomposition and the real-time constraint t2, one
day, equivalent to t3 is affecting the whole composition1. We have, on the left-
hand side of the specification the prohibition specified in clause 2, that has been
called Inadequate Item, and on the right-hand side the obligation specified in
clause 3, that has been called Valid Information. The decomposition of clause
Auction Process into two subclauses is performed via a SEQ-refinement. We
have on the left-hand side the specification of the obligation specified in clause
4, that has been called Publish Item, including the real-time constraint t4, one
day, and on the right-hand side the permission specified in clause 5, that has
been called Place Bid, including the real-time constraint t5, seven days. We can
see in this clause that the repetition structure of C-O Diagrams is used to model

1 Since they are equivalent we have assumed that the conjunction can be affected by
the same restriction. Similar approach is taken when the all the subclauses of the
parent clause are affected by the same temporal restriction.

Contract Compliance Monitoring of Web Services 123

that the buyer is allowed to place multiple bids. The clause Payment Shipment,
which only shows the name and guard g1 (this guard checks if the buyer is the
auction winner) is decomposed into two sub-clauses via sequential composition,
that is, Payment Item, on the left hand side, and, afterwards, Send Item, on the
right hand side. The first is the obligation (O) of payment with the temporal
restriction t4, three days in this case, then this obligation is decomposed via an
OR-refinement into clause 11 and clause 12 composing the actions of paying by
credit card or PayPal by means of an OR-refinement. On the right-hand side we
have the obligation (O) specified in clause 13, which has been called Send Item,
including the real-time constraint t5 14 days and a reference to reparation R1.
Since reparations are references to new contracts, in Figure 1 we can see the
diagram corresponding to reparation R1. It has been called Refund Penalty,
including the real-time constraint t6, and it is decomposed into two subclauses
by means of an AND-refinement. The subclause on the left corresponds to the
obligation (O) specified in clause 15, which has been called Refund Buyer, and
the subclause on the right corresponds to the permission (P) specified in clause
16, which has been called Penalty Seller regarding the possibility of performing
some kind of penalization over the seller by the Auction Service.

The syntax of C-O Diagramswas first presented in [12]. Next, we just present
a brief description of the EBNF grammar followed in the diagrams:

C := (agent, name, g, tr,O(C2), R) | C1 := C (And C)+ |C (Or C)+ |C (Seq C)+

(agent, name, g, tr, P (C2), ε) | C2 := a |C3 (And C3)
+ |

(agent, name, g, tr, F (C2), R) | C3 (Or C3)
+ |C3 (Seq C3)

+

(ε, name, g, tr, C1, ε) C3 := (ε, name, ε, ε, C2, ε)
R := C | ε

The C-O diagram semantics is defined by using NTAs (Network of Timed
Automata) [1] as semantic objects. Here we omit this formal translation and the
technical definitions can be found in [13,4]. Instead, we present an informal in-
tuitive interpretation of the NTA behaviors. When transforming a C-O diagram
into a network of timed automata, the states of the generated automata are
decorated with the set of contractual obligations, prohibitions and permissions
that are either violated or satisfied.

Definition 1. (Normative timed automaton) Let us consider the set of con-
tractual obligations and prohibitions CN ranged over cn, cn′,. . . standing for
identifiers of obligations and prohibitions and the set of contractual permissions
CP ranged over cp, cp′,

A normative timed automaton is a timed automaton (N,n0, E, I) (see [1])
where the state s ∈ S is defined as the tuple (n, v, Cla) where n ∈ N , v corre-
sponds to the clock and variable valuation and a new tuple to extend the automata
with normative propositions Cla = (V io, Sat, Per) with V io, Sat ⊆ CN and
Per ⊆ CP . The subset V io stands for the obligations and prohibitions violated,
whereas Sat stands for the satisfied. Although, the subset Per stands for the per-
mission that have been granted, already. The initial state is s0 = (n̄0, u, v, Cla0),
where Cla0 is the set of clauses that are violated, satisfied or permitted at this
initial state.

124 G. Dı́az and L. Llana

Let us recall that the intuitive meaning of an NTA is the parallel composition
of several timed automata. We consider a set of actions ACT , in which we have
the following actions:

– An internal action τ ∈ ACT .

– An input action m? ∈ ACT .

– An output action m! ∈ ACT .

– A synchronization action m ∈
ACT that comes from a synchro-
nization of an input action m? and
an output action m!.

The semantics of timed automata is well known [1]. It is based on a timed
labeled system, where states are pairs s = (n, v) where n is a node of the automa-
ton and v is a valuation of the clocks and variables. However, as stated in the
previous definition, the state has been extended with the information regarding
the clauses that have been either violated, satisfied or permitted. There are two
types of transition:

– timed transitions2 s d−−→ s′(d ∈
IR+)

– and action transitions s a−−→ s′(a ∈
ACT).

A Network of Timed Automata (NTA) is then defined as a set of timed au-
tomata that run simultaneously, using the same set of clocks and variables, and
synchronizing on the common actions, where the state corresponds to the union
of all the independent states. Internal actions can be executed by the corre-
sponding automata independently, and they are ranged over the letters a, b, . . .
whereas synchronization actions must be executed simultaneously by two au-
tomata. Synchronization actions are ranged over lettersm,m′, . . . and come from
the synchronization of two actions m! and m?, executed from two different au-
tomata3.

The operational semantics of a network of timed automata has the following
transitions:

– A delay transition of d time units requires that all involved automata are
able to perform this delay individually.

– Autonomous action transitions that correspond to the evolution of a single
timed automaton.

– Synchronization transitions that require two automata to perform two com-
plementary actions, m! and m?, respectively.

Definition 2. (Semantics of an NTA)
Let N = (A1, , . . . , Ak) be an NTA. A state of N is a tuple s = (s1, . . . , sk),
where si is a state of the automaton Ai (for i = 1, . . . , k). We have the following
transitions:

2 Timed transitions only change the valuation of clocks.
3 In the original definition, the only internal action is τ , and synchronizations always
yield internal actions.

Contract Compliance Monitoring of Web Services 125

AUTOMATON A

g1== true

n2
Buyer(a)6

t 4< 3

t 5 := 0

t 4<= 3

g
1== true

n4 n5

t 4< 3

t 5 := 0t 4<= 3

n6
t 1== 3

n7
n8 n9

8

t 5 < 14

n15

Seller(a)

n3

n10
n11 n12

9

t 6 < 7

n14
m !2

AuctionSer(a)
6t <= 7

n13

t 6== 7

n0 n1 n2

m ?2

n4

AUTOMATON A

0

t 5<= 14

t 5== 14

t 3 := 0

n3

t 6<= 7

t 6== 7

n5

1

m ?2

m !2

n0

n1

g1== false

add(Sat,11)

add(Sat,12)

add(Vio,12)

add(Sat,13)

add(Vio,13)

Buyer(a)7

Buyer(a)7

t 1== 3

add(Vio,11)
Buyer(a)6

8Seller(a) 9AuctionSer(a)

add(Sat,15)

add(Vio,15)

10

t 6 < 7
AuctionSer(a)

add(Per,16)

AuctionSer(a)10

t 4 := 0

t 4 := 0

add(Sat,13)

Fig. 2. Automata for the Payment Shipment clause, A0 and A1

– Timed transitions. If ∀1 ≤ j ≤ k : sj
d−−→ s′j, then: (s1, . . . , sk)

d−−→
(s′1, . . . , s

′
k) with d ∈ IR+.

– Autonomous transitions. If ∃1 ≤ j ≤ k : sj
a−−→ s′j for a ∈ ACT, a 	= m!

and a 	= m?, then:
(s1, . . . , sj , . . . sk)

a−−→ (s1, . . . , s
′
j , . . . sk).

– Synchronization transitions. ∃1 ≤ i, j ≤ k : sj
m?−−−−→ s′j , si

m!−−→ s′i for
m?,m! ∈ ACT, then:
(. . . , sj , . . . , si, . . . ,)

m−−→ (. . . , s′j , . . . , s
′
i, . . .), assuming that j ≤ i, the other

case is similar.

The complete semantics for C-O Diagrams in terms of NTAs translation can
be found in [13]. Figure 2 shows the resulting NTA once these transformations
are applied over the Payment Shipment clause of Fig. 1. This NTA consists of
two automata running in parallel, that is, NTAP&S = {A0, A1}. Automaton
A0 is where the main part is translated and the starting point of this example.
The main translated structures observed here are the three kind of refinements
and the reparation of a violated clause. Besides these main structures, we can
see how guards and time restrictions are translated. The nodes are labeled with
invariants defining the maximum amount of time the state of the system will
stay in this node and transitions are labeled in this order 1st) guards to enable
the transitions, 2nd) actions to be performed, 3rd) updates of the violation,
satisfaction and permission subsets, and 4th) modifications and resets of clocks
and variables, but only if they are specified.

In A0, this clause starts with a SEQ-refinement of two clauses 10 and 13,
which assemble in sequence via the transition between nodes n7 and n8, that
is, the end of clause 10 and the beginning of clause 13, respectively. From node
n0, where clause 10 starts, we may reach either n2 or n4, which correspond

126 G. Dı́az and L. Llana

to an OR-refinement representing the payment made either by credit card or
Paypal. Node n6 only captures termination in the event that that the time for
the payment expires without performing any of these actions. Notice that once
the payment has been made (nodes n3 or n5) we move into node n7, from which
the “sending item action” clause 13 starts, which corresponds to action a8. In
this case we have 14 time units. If this time expires and the client has not
received the item, the reparation clause is activated (node n10). In this case we
have an AND-refinement, so a second timed automaton (A1) is created, which
corresponds to the right-hand side part of the AND-refinement (the left-hand
side is performed by A0). Both automata synchronize at their beginning and
at their termination in order to be executed simultaneously using channel m2.
The obligation to refund the money is captured by action a9 in A0, whereas
the permission to penalize the seller is captured by action a10 in A1. Over-line
actions label those transitions enabled when the main action is not performed.

guards are here translated as guards in the transitions and time restrictions
are used to denote the invariants of certain states and some guards in transitions,
which determine whether a clause is satisfied in time. In reference to the different
violation, satisfaction and permission sets, they are modified as follows.Whenever
obligations of actions are performed in time, the clauses defining them are added
to the satisfaction set, otherwise they are added to the violation set. An exam-
ple of this situation can be observed in our example of the transitions connecting
node 2 to node 3 and node 2 to node 6 from automata A0, respectively. If the ac-
tions specified in prohibitions are performed during the forbidden period of time4

specified in the tr field, then they are added to the violation set otherwise to the
satisfaction set. Finally, permissions are optional and when their actions are per-
formed the clauses are added to the permission set, but if they are not performed
then no modification to any set is done. In the transitions from nodes 1 to 2 and
1 to 3 of the automata A0 this situation is shown, respectively.

4 Conformance Relations

In this section we define a set of conformance relations to establish whether an
implementation of a contract conforms to the contract we want to satisfy. We
will consider a semantic relation inspired in the conformance testing relation
given in [16]. We take as starting point a normative document written in terms
of a C-O Diagram, which is then translated into a network of timed automata.
We also consider an implementation I of this contract, with at least the same
actions we had in the contract. We intend to define a black box conformance
relation, which means that we do not know how the implementation has been
done, so we can only use the information about the actions it performs.

Definition 3. A timed trace is a sequence [a1d1a2d2 · · · andn] ∈ (ACT × IR+)∗.
We will use the symbols t, t1, t2, tn,... to denote traces. The empty trace is
denoted by []. The concatenation of t1 and t2 will be denoted by t1 · t2. We will

4 Note that this time can be an unbounded period of time, i.e., infinite, and therefore
forbidden during all the time the contract is valid.

Contract Compliance Monitoring of Web Services 127

say that t1 is a subtrace of t2, written t1 ≤ t2, if there is a trace t such that
t2 = t1 · t.

Let N be an NTA, where we define the timed computations of N as follows:

– s
[]

==⇒ s.

– s
t·[ad]

=====⇒ s′ for a ∈ ACT and d ∈ IR+ if there exist states s1, s′1, . . . , , sl, s′l
of N with l ≥ 1 such that

s
t

==⇒ s1
d1−−→ s′1

τ−−→ s2
d2−−→ s′2 · · · sl−1

dl−1−−−−→ s′l−1
τ−−→ sl

dl−−→ s′l
a−−→ s′ and

d =
∑

1≤i≤l di

We define the set of timed traces of N as tr(N) = {t | ∃s : s0
t

==⇒ s}, being s0
the initial state of N .

The following definition introduces the sets V, S and P to traces, as the values
of Vio, Sat and Per of the last state of a trace since they may be modified by
any transition in the trace.

Definition 4. Let N = (A1, . . . Ak) be an NTA and t ∈ tr(N), we define the
sets of violation (denoted V(N, t)), satisfaction (denoted S(N, t)), and permission
(denoted P(N, t)) as follows:

– V(N, t) = {⋃1≤i≤k V ioi| s0 t
==⇒ (s′1, . . . , s

′
k), s

′
i = (ni, vi, (V ioi, Sati, P eri))}

– S(N, t) = {⋃1≤i≤k Sati| s0 t
==⇒ (s′1, . . . , s

′
k), s

′
i = (ni, vi, (V ioi, Sati, P eri))}

– P(N, t) = {⋃1≤i≤k Peri| s0 t
==⇒ (s′1, . . . , s′k), s

′
i = (ni, vi, (V ioi, Sati, P eri))}

Where s0 is the initial state of N . We say that t is a good trace, denoted by
t ∈ good(N) if it is maximal5, S(N, t) 	= ∅, and V(N, t) ⊆ S(N, t).

We say that t is a clean trace, denoted by t ∈ clean(N), if V(N, t) = {∅}.

Table 1. Trace examples for NTAP&S

Trace Description V S P

t0 = [a64] 4 days without paying. 10 ∅ ∅

t1 = [a63a88] Credit card payment in 3 days and then
item shipped in 8 days.

∅ 11, 13 ∅

t2 = [a63a815a98] Similar to t1 but the item is not shipped. 13, 15 11 ∅

t3 = [a63a815a102a96] Similar to t2 but with a penalization. 13 11 16
t4 = [a72a815a94] Paypal payment in 2 days, item not re-

ceived but refunded in 19 days.
13 12, 15, 13 ∅

t5 = [a72a815a94a101] Similar to t4 but a penalization is made. 13 12, 15, 13 16

5 A maximal trace is a trace that cannot be extended anymore: if t ∈ tr(N) but
t · [ad] �∈ tr(N) for all a ∈ ACT and d ∈ IR+.

128 G. Dı́az and L. Llana

Comming back to our running example NTAP&S in Fig. 2, let us analyze the
following maximal traces of Table 1. The good traces will be t1, t4 and t5 because
a) the satisfaction set is not empty and b) the violation set are either empty or
repaired since the violation set is a subset of the satisfaction. From these traces
only t1 corresponds to a clean trace since t4 and t5 have violated the shipment
clause 13, however they have been recovered via R1.

Definition 5. Let C be an NTA corresponding to a C-O diagram. We say that
C is consistent if the following conditions hold:

– clean(C) ∩ good(C) 	= ∅. This means that there is a way to meet contracts
without making any violations.

– ∀cn ∈ CN ∃t ∈ clean(C)∩good(C) : ∃S ∈ S(C, t) : cn ∈ S. That is there is
a way to meet all obligations and prohibitions without making any violation.

Our NTAP&S example satisfies both conditions since trace t1 is a good and
clean trace that meets both obligations, the payment and the shipment.

Next, we assume that implementations are given as networks of timed automata,
however they can be given in any other way since the conformance relationship we
define works as a black box relationship and only reasons about the actions spec-
ified in the contract, as we will see in the next section. Implementations usually
need to implement a single action by making several simple actions. For instance
let us suppose that a contract specifies that a payment can be done by credit card.
When implementing the payment procedure, several invisible steps such us con-
tacting the bank or checking the credit card should be performed. All these actions
are not considered in the specification of the contract and they should not be taken
into account. All we need in this case is the amount of time required to perform
these actions. Thus, these implementation traces may contain actions that are not
considered in the contract, so we need to hide these actions and therefore a func-
tion called hide is used in the next definition.

Definition 6. Let us consider ACT ⊆ ACT ′ and t ∈ (ACT ′ × IR+)∗. We
consider the operator hideACT defined as follows:

– hideACT ([]) = []
– hideACT ([ad] · t) = [ad] · hideACT (t) for a ∈ ACT, a 	= τ
– hideACT ([ad] · t) = d+hideACT (t) for a 	∈ ACT or a = τ , where the operator

+ adds d units of time to the last action of t. Formally it is defined as follows:
• d+ [] = []
• d+ ([ad1] · t) = [a(d1 + d)] · t

Let us consider the following trace t6 = [a13a
′
32a

′′
32a34] belonging to a possible

implementation of our contract. The actions a′3 and a′′3 are internal actions of the
implementation (for instance the seller obtains the delivery company list related
to the shipment address a′3 and sends the shipment info to the deliverer a′′3).
Therefore, the result of hideACT (t6) = [a13a38], where the internal actions have
been omitted and the intermediate time delays are 2 + 2 + 4 = 8.

Now, we have all the machinery needed to define our conformance relation.
We will consider that an implementation satisfies a contract if a) there is at least

Contract Compliance Monitoring of Web Services 129

one trace that executes all the actions expressed in the obligations in due time,
and no actions from the prohibitions; that is, satisfying all the obligations and
prohibitions expressed in the contract, and b) if at any time a violation occurs,
then it will be repaired in the future. In our example, the ideal implementation
should be able to “allow the user to at least pay with either credit card or Pay-
pal in 3 days, and then, the seller send the item in time”. This ideal behavior is
represented by condition a), since it gathers all contract obligations and prohibi-
tions. However we should be most realistic and think that all systems are prone
to errors, then implementations can as well fail in some occasions. But if they
do, then they should been able to recover somehow. That is the idea behind the
second condition, that is, if a seller does not send the item, he should at least
refund the buyer.

Definition 7. Let us consider a consistent contract specification C and an im-
plementation I, we say that I conforms C, written I conf C, iff

– For any cn ∈ CN there exists t ∈ tr(I) such that hideACT (t) ∈ clean(C) ∪
good(C) and cn ∈ S(I, hideACT (t)).

– If there exists t ∈ tr(I) and cn ∈ CN with cn ∈ V(C, hideACT (t)), there
exists t′ such that t · t′ ∈ tr(I) such that hideACT (t · t′) ∈ tr(C) and cn ∈
S(C, hideACT (t · t′)).

Let us consider the following implementations I1, I2 and I3 where tr(I1) =
{t1, t2}, tr(I2) = {t4} and tr(I3) = {t1, t4} of our running example NTAP&S .
The implementation I1 satisfies the first condition since t1 is good and clean
and satisfies all the cn ∈ CN , although it does not satisfy the second because
t2 violates clause 5, which is never repaired. Thus implementation I1 does not
conform to the given contract. Regarding I2, we have the opposite situation, here
trace t4 violates clause 5, but reparation R1 is now applied to refund the buyer.
Therefore this trace satisfies the second condition but not the first because it
does not include all cn ∈ CN . Finally, implementation I3 is the only one that
conforms the contract written as I3 conf NTAP&S, since it includes t1 and t2,
which fulfil both conditions.

5 Design of the Monitoring Software

To follow the conformance relationship given before, it is necessary to generate
all possible traces from a given contract and implementation, which in some cases
is impossible since recursion can result in an infinite set of traces. To avoid this
problem we use a different approach that we call “on-the-fly” monitoring. Instead
of producing a set of all traces, we check step-by-step if the trace produced by the
implementation can be produced by the given contract in terms of its equivalent
automata. In this case the implementation is not given via an NTA automata,
as it has been stated above that the conformance relationship is a black box
relation, where only the information present in the traces is taken into account,
that is, the actions specified in the contract and the time of its executions. On
the contrary, our goal is to monitor implementations of given contracts.

130 G. Dı́az and L. Llana

The algorithm implemented in the monitor is based on the forward reach-
ability algorithm implemented in the model checking UPPAAL tool [8]. This
algorithm is presented in Algorithm 5.1, which accepts as the input parameter
the trace6 to be checked. The initialization declares the Waiting list of states.
The main structure is a repeat-until that ends when the waiting list is empty.
The statements in this structure start by getting the first state in the waiting
list and the first part of the trace, i.e., the first action-delay tuple. Afterwards,
the algorithm checks for all the transitions starting from this state using the
action and delay obtained from the trace. If this action and delay corresponds
with the last action and delay in the trace two situations are studied. The first
codifies that in case a violation have occurred but not repaired then the con-
tract is breached and therefore notified to the involved parties. However if there
have been no violations or they are properly repaired then the trace conforms
the contract. Once these two cases have been studied every new reached state is
added to the waiting list. Finally, the state already visited and the action and
delay studied are discarded. Note that, the state is not removed until all their
descendants have been added to the waiting list; but if there is no descendant
it is removed as well. This last chance can result in an empty waiting list and
therefore a negative response, that is, the trace would not conform the contract.

Algorithm 5.1: Monitoring(Trace)

Trace := {(a0, d0), (a1, d1) . . . (an, dn)};
Waiting := (n0, v0, Cla0);
repeat
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

get(n, v, Cla) : Cla := (V io, Sat, Per) from Waiting;
get(a, d) from Trace;

for each transition (n, v, Cla)
(a,d)−−−−→ (n′, v′, Cla′)

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

if (a, d) equal to (an, dn)

then

⎧
⎪⎪⎨

⎪⎪⎩

if V io 	= {} ∧ V io � Sat
then returnNot ;

else returnYes ;
add(n′, v′, cl′) to Waiting;

remove(n, v, cla) from Waiting;
remove(a, d) from Traces;

until Waiting = {};
returnNot ;

The conformance notion defined above varies from the algorithm given in this
case since it does not have access to all of the traces belonging either to the
contract or its implementation.

6 The trace is shortened according to the delays before treated due to latencies in the
communicating media and all actions not belonging to the contract are hide.

Contract Compliance Monitoring of Web Services 131

Fig. 3. WST plugin to model C-O Diagrams

Our current work is focused on the development of a plugin for WST7 [2]
implementing the transformations and monitoring system. A prototype of this
plugin can be seen in Fig. 3. This plugin will be available in the next release of
the tool and it is aimed at helping users to model the system and perform the
automatic translation to be used by the monitor. In addition, WST is a general
framework to develop Web Service Transformations using XSLT technologies
applied to the area of web services and any others related to this main area of
application. The objective of this tool is the inclusion of formal validation and
verification techniques in the life cycle of software development. This tool already
performs several translations from languages such as WS-CDL and WS-BPEL
or visual models including UML sequence diagrams and KAOS goal models into
the formalism supported by UPPAAL and CPN-tools8.

As a proof of concept the Online Auctioning Process has been implemented.
This implementation consists of the diagram classes shown in Fig. 4. Here, how-
ever some details have been hidden for the sake of readability, we can still see the
design patterns observer (white) and bidder (green), which have been used to im-
plement the example. The design pattern observer is divided into two parts; the
observer and the subject. In our system, we have identified the subject to observe
as the Auctioning Service and the state to be observed as the monitor (yellow).
The Auctioning Service notifies whether the trace of the system is correct or not.
Whereas the observers are the sellers and buyers that will be notified in case the
contract is breached. This design pattern is known in the web service context as a
subscribe/publisher notification protocol, indeed the WS-Notify language defines
all the needed machinery. On the other hand, the bidder is a pattern to manage
the auction itself and the bidder class is merged with the observers, i.e., the sellers
and buyers.

7 Available at http://dsi.uclm.es/retics/wst/
8 Available at http://www.cpntools.org/.

http://dsi.uclm.es/retics/wst/
http://www.cpntools.org/

132 G. Dı́az and L. Llana

Fig. 4. UML Class Diagram to implement the Online Auction Process

6 Conclusions

In this paper we have used the conformance relationship based on the formal
semantics given by NTAs (Network of Timed Automata) for normative contracts
written in terms of C-O diagrams in order to implement a monitoring mechanism
for web services. For that purpose, we have introduced an on-the-fly algorithm
to check if implementation traces either satisfy all obligations and prohibitions
stated in contracts, or in the event of a violation, the corresponding reparation is
executed. These implementations are said to conform to the contract. We have
also implemented our running example as a proof of concept. Furthermore a new
plugin for the tool WST has been presented. This plugin allows the design of
normative contracts in terms of C-O Diagrams.

As a future work, we plan to improve the implementation of the conformance
relationship detecting, those traces that include the performance of all the obli-
gations and the absence of all prohibitions. The idea is to keep a record of how
adequate the implementation is with respect to the contract. However, even
if, these traces are still present, the presence of traces non consisting with the
contract is sufficient to determine that the contract is violated.

References

1. Alur, R., Dill, D.L.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

2. Cambronero, M.E., Dı́az, G., Mart́ınez, E., Valero, V., Tobarra, M.L.: WST: a tool
supporting timed composite Web Services Model transformation. Simulation 88(3),
349–364 (2012)

Contract Compliance Monitoring of Web Services 133

3. Chiu, D., Cheung, S., Till, S.: A Three-Layer Architecture for E-Contract Enforce-
ment in an E-Service Environment. In: Proceedings of the 36th Hawaii Interna-
tional Conference on System Sciences (HICSS-36), pp. 74–83 (2003)

4. Dı́az, G., Llana, L., Valero, V., Mateo, J.A.: Conformance Verification of Normative
Specifications using C-O Diagrams. In: Proceedings Sixth Workshop on Formal
Languages and Analysis of Contract-Oriented Software, FLACOS, pp. 1–10 (2012)

5. Dignum, F., Weigand, H.: Modelling Communication between Cooperative Sys-
tems. In: Iivari, J., Rossi, M., Lyytinen, K. (eds.) CAiSE 1995. LNCS, vol. 932,
pp. 140–153. Springer, Heidelberg (1995)

6. Governatori, G., Milosevic, Z., Sadiq, S.: Compliance checking between business
processes and business contracts. In: Proceedings of the 10th IEEE Conference on
Enterprise Distributed Object Computing, pp. 221–232 (2006)

7. Krishna, P.R., Karlapalem, K., Dani, A.R.: From Contract to E-Contracts: Model-
ing and Enactment. Information Technology and Management 6(4), 363–387 (2005)

8. Larsen, K.G., Pettersson, Z., Wang, Y.: UPPAAL in a Nutshell. STTT: Interna-
tional Journal on Software Tools for Technlogy Transfer 1(1-2), 134–152 (1997)

9. Lomuscio, A., Qu, H., Solanki, M.: Towards verifying contract regulated service
composition. In: Proceedings of IEEE International Conference on Web Services
(ICWS 2008), pp. 254–261 (2008)

10. Marjanovic, O., Milosevic, Z.: Towards formal modeling of e-Contracts. In: Pro-
ceedings of 5th IEEE International Enterprise Distributed Object Computing Con-
ference, pp. 59–68 (2001)

11. Mart́ınez, E., Dı́az, G., Emilia Cambronero, M.: Contractually Compliant Service
Compositions. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 636–644. Springer, Heidelberg (2011)

12. Mart́ınez, E., Dı́az, G., Cambronero, M.E., Schneider, G.: A Model for Visual
Specification of e-Contracts. In: The 7th IEEE International Conference on Services
Computing (IEEE SCC 2010), pp. 1–8 (2010)

13. Mart́ınez, E., Dı́az, G., Cambronero, M.E., Schneider, G.: Specification and Veri-
fication of Normative Specifications using C-O Diagrams (2012),
http://dsi.uclm.es/descargas/thecnicalreports/DIAB-12-05-1/TSE11.pdf

14. McNamara, P.: Deontic Logic. In: Gabbay, D.M., Woods, J. (eds.) Handbook of
the History of Logic, vol. 7, pp. 197–289. North-Holland Publishing (2006)

15. Okika, J.C., Ravn, A.P.: Classification of SOA Contract Specification Languages.
In: 2008 IEEE International Conference on Web Services (ICWS 2008), pp. 433–
440. IEEE Computer Society (2008)

16. Tretmans, J.: Testing Concurrent Systems: A Formal Approach. In: Baeten,
J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 46–65. Springer,
Heidelberg (1999)

http://dsi.uclm.es/descargas/thecnicalreports/DIAB-12-05-1/TSE11.pdf

Service-Oriented Distributed Applications

in the Future Internet: The Case
for Interaction Paradigm Interoperability

Nikolaos Georgantas1, Georgios Bouloukakis1,
Sandrine Beauche2, and Valérie Issarny1

1 Inria Paris-Rocquencourt, France
firstname.lastname@inria.fr

2 Ambientic, France
sandrine.beauche@ambientic.com

Abstract. The essential issue of interoperability in distributed systems
is becoming even more pressing in the Future Internet, where complex
applications will be composed from extremely heterogeneous systems.
Open system integration paradigms, such as service oriented architec-
ture (SOA) and enterprise service bus (ESB), have provided answers to
the interoperability requirement. However, when it comes to integrating
systems featuring heterogeneous interaction paradigms, such as client-
service, publish-subscribe and tuple space, existing solutions are typically
ad hoc and partial, applying to specific interaction protocol technologies.
In this paper, we introduce an interoperability solution based on ab-
straction and merging of the common high-level semantics of interaction
paradigms, which is sufficiently general and extensible to accommodate
many different protocol technologies. We apply this solution to revisit the
SOA- and ESB-based integration of heterogeneous distributed systems.

Keywords: Interoperability, interaction paradigms, interaction abstrac-
tions, service oriented architecture, enterprise service bus.

1 Introduction

The Future Internet (FI) is emerging as, among others, a global application space
where People, Services and Things will be always-connected and interact in nu-
merous ways. Accordingly, complex distributed applications in the FI will be
based, to a large extent, on the open integration of extremely heterogeneous
systems, such as lightweight embedded systems (e.g., sensors, actuators and
networks of them), mobile systems (e.g., smartphone applications), and resource-
rich IT systems (e.g., systems hosted on enterprise servers and Cloud infras-
tructures). These heterogeneous system domains differ significantly in terms of
interaction paradigms, communication protocols, and data representation mod-
els, which are most often provided by supporting middleware platforms. In par-
ticular with regard to middleware-supported interaction, the client-service (CS),
publish-subscribe (PS), and tuple space (TS) paradigms are among the most

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 134–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Service-Oriented Distributed Applications in the Future Internet 135

widely employed ones, with numerous related middleware platforms, such as:
Web Services, Java RMI for CS; JMS, SIENA for PS [1, 2]; and JavaSpaces,
Lime for TS [3, 4]. In the following, we outline a representative application
scenario, where a complex distributed application needs to be devised by inte-
grating heterogeneous networked systems that interact with differing interaction
paradigms.

Search and Rescue (S&R) operations after a disaster, such as a flood or earth-
quake, are carried out in hazardous environments and require personnel from
multiple agencies (e.g., fire-fighters, police) to coordinate. To detect survivors,
sensors are installed at various places of the hazardous area. Such sensors com-
municate their location. S&R personnel also notify at short intervals of their
current positions via their PDAs. Upon sensing some life sign, sensor nodes
send out notifications. At the same time, nearby light-emitting actuators start
lighting the place to facilitate the rescuing effort. Sensors, PDAs, and actuators
interact among them and with external actors via a TS. TS location and life sign
data are sent via CS invocations to a planning service that recommends at real
time the optimal deployment of rescue forces. This output is notified via a PS
system to the coordinator of the operation on her smartphone and also to a num-
ber of control/monitoring centers. The coordinator may approve and command
S&R personnel via the PS system and the TS system to rush into the spot.

To enable such a scenario, the heterogeneity between the involved system
domains needs to be tackled. Existing cross-domain interoperability efforts are
based on, e.g., bridging communication protocols [5], wrapping systems behind
standard technology interfaces [6], and providing common API abstractions [7–
10]. In particular, such techniques have been applied by the two currently domi-
nant system integration paradigms, that is, service oriented architecture (SOA)
and enterprise service bus (ESB) [11]. Both SOA and ESB employ the CS
paradigm. Certainly, there are extensions, such as event-driven SOA [11] or
industrial-strength ESBs supporting the PS paradigm. Additionally, research
efforts have proposed the TS paradigm as interaction substrate for Web services
or for ESBs [9, 12]. Nevertheless, most of these cross-paradigm interoperability
efforts are ad hoc and partial, applying to specific cases. On the other hand,
interaction paradigms have been widely studied, with theoretical approaches
providing them with formal semantics by relying on concurrency theory, process
algebras and architectural connectors (e.g., see [13]). These approaches typically
identify semantics for individual paradigms but not cross-paradigm semantics.

In this paper1, we introduce a model-based system integration solution that
can deal with diverse existing systems, focusing in particular on integrating their
heterogeneous interaction paradigms. Our systematic approach is carried out in
two stages. First, a middleware platform is abstracted under a corresponding
interaction paradigm among the three base ones, i.e., CS, PS and TS. To this
aim, we elicit a connector model for each paradigm, which comprehensively cov-

1 This work has been partially supported by the European Union’s Seventh Frame-
work Programme FP7/2007-2013 under grant agreement number 257178 (project
CHOReOS).

136 N. Georgantas et al.

GA connector

app A

app B
PS

connector

TS
connector

connector
converter

CS
connector

app C

Fig. 1. GA-based connector interoperability

ers its essential semantics. Then, these three models are abstracted further into
a single generic application (GA) connector model, which encompasses their
common interaction semantics. Based on GA, we build abstract connector con-
verters that enable interconnecting the base interaction paradigms. A high-level
representation of our approach is depicted in Figure 1. We realize our interoper-
ability solution as an extensible service bus (XSB), which is an abstract service
bus that employs GA as its common bus protocol. Furthermore, we provide an
implementation of the XSB, building upon existing SOA and ESB realizations.
Based on our XSB platform, we propose a comprehensive solution to the peer-
to-peer integration of services relying on heterogeneous interaction paradigms
into complex applications. Our overall approach generalizes the way to design
and implement service-oriented distributed applications, where the employed
interaction paradigms are explicitly represented and systematically integrated.
We demonstrate the applicability of our solution by implementing the scenario
introduced above, and evaluate it in terms of extensibility and performance.

The rest of this paper is structured as follows. In Section 2, we introduce our
connector models for abstracting and interconnecting interaction paradigms. In
Section 3, we present the application of our models to the XSB solution, as well as
its implementation. Then, in Section 4, we discuss the results of our evaluation.
We finally complement this paper with a comparison of our approach with related
work in Section 5, and conclude, also discussing future work, in Section 6.

2 Abstractions for Interaction Paradigm Interoperability

In this section, we identify the semantics of the three principal interaction
paradigms, i.e., CS, PS and TS, and elicit a connector model for each paradigm
(Section 2.1). Our modeling proposition is the outcome of an extensive survey
of these paradigms as well as related middleware platforms in the literature.
In a second step, we introduce our GA connector model, which enables cross-
paradigm interoperability (Section 2.2). Before getting into the specifics of each
connector, we briefly introduce in the following our global approach to connector
modeling and point out the specific focus of this paper.

Our models represent the essential semantics of interaction paradigms, con-
cerning space coupling, time coupling [14] and concurrency. Space coupling de-
termines how peer applications interconnected via the connector identify each
other and, consequently, how interaction elements (e.g., messages for a CS con-
nector) are routed from one peer to the other. Time coupling determines if peers

Service-Oriented Distributed Applications in the Future Internet 137

need to be present and available at the same time for an interaction or if the
interaction can take place in phases occurring at different times. Concurrency
characterizes the exclusive or shared access semantics of the virtual channel es-
tablished between interacting peers. These three categories of semantics are of
primary importance, because these are end-to-end semantics: when interconnect-
ing different connectors, we seek to map and preserve these semantics.

We represent interaction paradigm semantics in the connector’s abstract API
(Application Programming Interface). This API presents the programmingmodel
supported by the connector and offered to the peer applications that use the con-
nector for their interaction. The API is a set of primitives expressed as operations
or functions supported by the middleware. This abstract API can be refined to
a specific middleware platform by mapping to the primitives and incorporating
the data structures and types of the middleware platform. Besides a connector’s
API, we introduce an abstract interface description language (IDL) for specify-
ing the open interfaces of systems that rely on middleware represented by the
specific connector. Our IDLs are largely inspired from WSDL. We specify the
IDLs conceptually, while we have also implemented each one of them as an XML
schema document. Based on the flexibility of XML schema, an IDL can be easily
refined in order to enable the description of a concrete system that is based on
the connector, e.g., we can refine the abstract XML elements into the precise
data structures and types of the specific middleware and system.

Based on the informal identification of semantics as discussed in the previous,
we further specify the connector’s formal behavioral semantics in terms of LTS
(Labeled Transition Systems). This formal behavior specification focuses on time
coupling and concurrency semantics, while space coupling semantics is mainly
represented by the connector’s API and IDL. Additionally, we formally verify the
correctness of these behavioral specifications with respect to time coupling and
concurrency properties expressed in LTL temporal logic. This allows stating the
correctness of our base connector models with respect to the semantics that they
must have. This further enables identifying the semantics of the GA connector
derived from the interconnection of base connectors.

The focus of this paper is the application of our connector modeling and anal-
ysis approach to the practical integration of heterogeneous services. Hence, and
due to space limitations, we introduce in the following sections our connectors
only informally – concentrating on their space coupling, time coupling and con-
currency semantics – and mainly in terms of their respective IDLs, which are
used to describe open interfaces of services.

2.1 Connector Models for Base Interaction Paradigms

This section introduces connector models for the CS, PS and TS paradigms.

Client-Service Connector. The CS connector model integrates a wide range of
semantics, covering both the non queue-based messaging and remote procedure
call paradigms. In terms of space coupling between two interacting peers, CS
requires that the sender must hold a reference of the receiver. With respect to
time coupling, both entities must be connected at the time of the interaction.

138 N. Georgantas et al.

CS-based service interface

element sub-element attributes S&R scenario - planning service

message data fields semantics, name, type {sensorId, sensorType, locationData, lifeSign}

main scope of message service system identity name, address type, address value planningService

sub-scope of message operation semantics, name, type, value planOperation

interaction semantics of
message

{one-way, notification, request-
response, solicit-response}

request

Fig. 2. CS IDL

Regarding concurrency, a dedicated virtual channel is used between a sender
and a receiver: as long as servers do not have an excessive load of messages to
process, all messages sent by different clients will be received by the designated
servers. CS semantics is reflected on the CS-IDL presented in Figure 2, where the
last column presents the example of the planning service of the S&R scenario
(note that we provide an example for the underlined attributes of the third
column). Message is the essential interaction element in CS-IDL; its interaction
semantics is borrowed from WSDL. The main new concept here is that a message
is assigned two qualifiers, main scope and sub-scope, which are, in inverse order,
the operation served by the message and the URL of the service providing the
operation. These qualifiers delimit the set of peer entities that will receive the
message – actually only one service and, more finely, its specific operation.

Publish-Subscribe Connector. The PS connector model abstracts compre-
hensively different types of publish-subscribe systems, such as queue-, topic- and
content-based systems [14]. In PS, multiple peers interact via an intermediate
broker. Publishers produce events, which are received by peers that have pre-
viously subscribed for receiving the specific events. In terms of space coupling,
interacting PS peers do not need to know each other; e.g., in topic-based systems,
events are diffused to subscribers only based on the topic. With respect to time
coupling, peers do not need to be present at the same time: subscribers may be
disconnected at the time that events are published; they can receive the pending
events when reconnected and before the events expire. Regarding concurrency,
the broker maintains a dedicated buffer for each subscriber. Hence, all published
non expired events will be eventually received by interested subscribers. We note
that standardization of open PS interfaces (in the way SOA has done for CS sys-
tems) is far less developed. Hence, to introduce our PS-IDL (Fig. 3), we rely on
our PS connector semantics, which has been extracted from a wide range of PS
systems. The figure includes the example of the coordinator of the S&R scenario.
The essential interaction element in PS-IDL is event ; its interaction semantics
denotes whether this event is published or received by the system in question
and its lifetime, determined by lease. An event’s main scope and sub-scope are
the PS system URL and the filter, respectively, used for qualifying the event.
Filter may represent a queue, topic or content. Similarly to CS, these qualifiers
delimit the set of peers that will receive the event.

Service-Oriented Distributed Applications in the Future Internet 139

PS-based service interface

element sub-element attributes S&R scenario - coordinator

event data fields semantics, name, type {personnelId, personnelType, locationData}

main scope of event pub-sub system identity name, address type, address value SRcoordinationBroker

sub-scope of event filter

semantics incl. {queue, topic,
content}, name, type, value

topic, planningServiceInput

interaction semantics of
event

produce/consume {publish, subscribe} subscribe

lease type, value forever

Fig. 3. PS IDL

TS-based service interface

element sub-element attributes S&R scenario - sensor

tuple data fields semantics, name, type {sensorId, sensorType, locationData, lifeSign}

main scope of tuple tuple space system identity name, address type, address value SRdataSpace

sub-scope of tuple extent semantics, name, type, value -

template semantics, name, type, value sensorTemplate

interaction semantics
of tuple

produce/consume {write, take, read} write

consume policy {one, all} -

lease type, value forever

Fig. 4. TS IDL

Tuple Space Connector. The TS connector model is based on the classic tuple
space semantics [15]. In TS, multiple peers interact via an intermediate shared
data space. Peers can post data into the space and retrieve data from it, either
by taking a copy or removing the data. Data take the form of tuples; a tuple
is an ordered list of typed elements. Data are retrieved by matching based on a
tuple template, which may define values or expressions for some of the elements.
Regarding space coupling, TS peers may write and read/take data from the
space with no knowledge of each other. As for time coupling semantics, peers
can act without any synchronization. With respect to concurrency, peers have
access to a single, commonly shared copy of the data. Then, concurrent access
semantics of the data space is non-deterministic: the order among accessing
peers is determined arbitrarily. Hence, if a peer that intends to take specific
data is given access to the space before other peers that are interested in the
same data, the latter will never access these data. The TS-IDL is depicted in
Figure 4, including the example of a sensor of the S&R scenario. Same as for
PS systems, there are no standard open interfaces for TS systems, hence we rely
on the generality of our TS connector. The essential interaction element in TS-
IDL is tuple. Its interaction semantics denotes whether this tuple is produced or
consumed by the system in question and its lifetime, determined by lease. In the
case of tuple consumption, only one or all tuples matching a template may be
retrieved. A tuple’s main scope and sub-scope are the TS system URL and the
pair {extent, template}, respectively, used for qualifying the tuple. Extent may
be used to access only an identified part of the shared space. These qualifiers
delimit the set of peer entities that will potentially receive the tuple.

140 N. Georgantas et al.

2.2 Generic Application Connector Model

Given the three base connector models, we now introduce the Generic Applica-
tion (GA) connector model. Our objective is to devise a single generic connector
that comprehensively represents the end-to-end cross-paradigm interaction se-
mantics of application peers that employ different base connectors.

We identify two main high-level API primitives for the GA connector: (i) post
employed by a peer for sending data to one or more other peers, and (ii) get
employed by a peer for receiving data. For example, a PS publish primitive can
be abstracted by a post. We identify space coupling semantics for the GA connec-
tor by appropriately mapping among the space coupling semantics of the base
connectors. Hence, we define the essential interaction element for GA to be data.
Data can represent any one of CS message, PS event or TS tuple. Same as for the
base connectors, GA uses the qualifiers main scope and sub-scope to characterize
a data element. These qualifiers can represent the corresponding qualifiers of any
of the CS, PS or TS. Hence, GA’s {main scope, sub-scope} maps, for CS, to {CS
system identity, operation}, for PS, it maps to {PS system identity, filter}, and
for TS, to {TS system identity, {extent, template}}. In this way, GA generalizes
and unifies addressing for the different interaction paradigms.

In order to identify the time coupling and concurrency semantics of GA and
construct a converter among the base connectors (see Fig. 1), we have built
upon the formal method of protocol conversion via projections [16]. According
to this method, conversion between two different protocols is possible if both
protocols can be projected (where projection is an abstraction defined as a set
of transformations on the protocol LTS) to a functionally sufficient common
image protocol. Then, the end-to-end protocol of the interconnection of the two
protocols is this image protocol. However, this work is out of the scope of this
paper. In the following, we present informally some of the outcomes of this work.

In the case of CS-PS-TS interconnection, GA is the common image protocol
and represents the common time coupling and concurrency semantics. However,
as shown in Section 2.1, time coupling and concurrency semantics of CS, PS, TS
are not directly compatible. In particular, we saw that for successful interaction,
for CS, the CS server must be online, for PS, a subscription is necessary, and for
TS, all interested peers must be allowed to read the shared data before one of
the peers takes them. This means that, in Fig. 1, app A, B and C may assume
and perceive different semantics, which can be problematic for the composed
application. The solution is to constrain the semantics of the heterogeneous con-
nectors to a compatible subset by application-side enforcement. This means that
if each one of app A, B and C enforces with its behavior the identified condition
for successful interaction proper to its connector, common time coupling and
concurrency semantics will apply to the end-to-end GA connector. In another
example, a CS two-way interaction does not have an equivalent in the PS and TS
connectors. In this case, the PS and TS applications should take care of enforc-
ing the additional semantics. In general, CS is the more restrictive of the three
paradigms, while PS and TS allow more flexibility to the applications; hence,
the PS and TS applications should apply the missing semantics, if required by

Service-Oriented Distributed Applications in the Future Internet 141

GA-based service interface

element sub-element attribute S&R scenario - coordinator

data data fields semantics, name, type {personnelId, personnelType, locationData}

main scope of data system identity name, address type, address value SRcoordinationBroker

sub-scope of data data qualifier(s) semantics, name, type, value topic, planningServiceInput

interaction semantics of data {post, get, post-get, get-post} get

Fig. 5. GA IDL

the CS application. While each case should be treated individually, we can state
in general that in a CS-PS-TS interconnection, the resulting end-to-end GA
semantics is the one of CS.

Based on the above and by mapping among the IDLs of the base connectors,
we elicit the IDL for the GA connector as shown in Fig. 5. We can see that
interaction semantics of data corresponds to the one of CS. The figure includes
the example of the coordinator of the S&R scenario as mapped from PS-IDL (see
Fig. 3) to GA-IDL. Concluding, we point out three important features of GA
that result from the previous. First, although GA semantically intersects the CS,
PS and TS paradigms, it represents rich interaction functionality, which means
that interconnecting CS, PS and TS systems – under certain identified conditions
– results in satisfactorily functional systems. Second, GA-IDL, which unifies the
description of heterogeneous systems, is not heavier or more complex than the
native CS/PS/TS-IDL descriptions. Third, GA applies at the middleware layer,
and hence it allows full expressivity – only subject to the intersected end-to-end
interaction semantics – of application-layer languages that specify the internal
or external behavior of application components, such as WS-BPEL.

3 eXtensible Service Bus

We apply our connector models and resulting middleware interoperability method
to an enhanced service bus paradigm, the eXtensible Service Bus (XSB). XSB
features richer interaction semantics than common ESBs to deal effectively with
the increased Future Internet heterogeneity. Moreover, from its very conception,
XSB incorporates special consideration for the cross-integration of heterogeneous
interaction paradigms. In particular, XSB is an abstract bus that prescribes only
the high-level semantics of the common bus protocol, which is the GA semantics.
Services relying on different interaction paradigms can be plugged into XSB by
employing binding components (BCs) that adapt between their native middle-
ware and the common bus protocol. This adaptation is based on the abstractions
discussed in Section 2, and in particular on the conversion between the native
middleware, the corresponding CS/PS/TS abstraction, and the GA abstraction,
as depicted in Figure 6. Hence, XSB BCs are half-converters in relation to Fig. 1.

XSB, being an abstract bus, can have different implementations. This means
that it needs to be complemented with a substrate bus which supports deploy-
ment of services and a communication protocol that implements GA semantics.

142 N. Georgantas et al.

This substrate bus may be designed and built from scratch or, alternatively, an
existing one can be used, as long as GA primitives can be conveyed on top of
the available protocol. The latter solution can be attractive, as it enables XSB
realizations in different domains. We provide a generic architectural framework
for XSB. This enables implementing XSB on top of a substrate bus of choice, and
offers systematic support for building XSB BCs for different middleware plat-
forms that apply one of the CS, PS, TS interaction paradigms. Furthermore, the
framework can be extended with support for a new interaction paradigm. In the
following, we present our architectural framework and the implementations we
carried out by using this framework.

XSB

application

middleware
service B

middleware

CS/PS/TS

GA

/PS/

GA

GA semantics

common bus
protocol

Binding
Component

service A

Fig. 6. eXtensible Service Bus

Architectural Framework. The architecture of an XSB BC as provided by
our architectural framework is depicted in Fig. 7, where the main components
are the xDL Processor, Core Engine, and Envelope for Substrate Bus. On its
lower side, the BC communicates with the substrate bus, while on its upper
side, it communicates with the middleware of the corresponding service by em-
ploying an instance of the same middleware, e.g., as an external library. In order
to support extensibility, each component of an XSB BC is designed with three
architectural levels : the first one is the most generic and can be refined step-
wise into the two other levels, where refinement refers to class inheritance and
XML schema transformation. The generic level provides APIs and functionali-
ties that are shared among all supported interaction paradigms. The interaction
paradigm level specializes the APIs and functionalities of the previous level for
each one of the CS, PS and TS interaction paradigms. The middleware platform
level specializes the APIs and functionalities of the previous level for a concrete
middleware. In the following, we briefly sketch the main components of an XSB
BC, and how a developer can make use of them.

The xDL Processor processes the descriptions of services deployed on the
XSB. It performs both parsing of CS/PS/TS-IDL descriptions and mapping of
them to GA-IDL descriptions, where the latter relies on XSLT-based transforma-
tions [17]. We use the XML schema extensibility mechanisms to specialize these
functions from one architectural level to another. The Core Engine provides
mechanisms to: (i) transform and map between service data and CS/PS/TS/GA
XML data; (ii) execute service primitives, and map between them and CS/PS/TS

Service-Oriented Distributed Applications in the Future Internet 143

/GA primitives; and (iii) manage connections to the service middleware. The
above mechanisms cooperate with each other, as well as with the xDL Processor
for retrieving service information. The Envelope for Substrate Bus makes the BCs
deployable on top of different substrate buses. It provides the mechanisms to:
(i) communicate GA primitives over substrate bus connections, while exchang-
ing them with the Core Engine; and (ii) manage the lifecycle of the service on
the substrate bus, after retrieving service information from the xDL Processor.
These mechanisms can be refined to support a new substrate bus.

Use by the Developer. Targeting facilitated extensibility of our solution, we
provide a highly-optimized design, where the common reusable part of the BC
functionalities is already implemented by the different architectural levels, leav-
ing to the developer the required specialization for introducing a new service,
middleware platform, or interaction paradigm. More specifically, a developer
wishing to deploy a new service on the XSB should write an xDL description
of the service, and then invoke the tools provided by our solution to generate
a corresponding BC deployable on the bus. A developer wishing to develop an
XSB BC supporting a new middleware platform should refine the interaction
paradigm levels of the xDL Processor and Core Engine. A developer wishing to
support a new interaction paradigm should refine the generic levels of the xDL
Processor and Core Engine.

From/to Substrate Bus

communication via
Substrate Bus

service deployment
on Substrate Bus

Envelope
for
Substrate
Bus

middleware
connection lifecycle

primitives mapping
& execution

From/to middleware e

s

middleware
connection lifecycle

primitives mapping
& executionexecut

Core
Engine

communication via
Substrate Bus

service deployment
on Substrate Bus

e

e unicat deplo

xDL
Processor

s

data transformation
& mapping

pn xDL parsing &
mapping

Fig. 7. Binding Component architecture

Implementation. We have implemented XSB on top of the EasyESB2 enter-
prise service bus, which is an open source lightweight service bus. In particular,
we have refined our architectural framework to support building XSB BCs on
top of EasyESB, and have provided interaction paradigm level BCs for CS, PS
and TS. We demonstrate the applicability of our approach by implementing the
S&R scenario. Our scenario implementation integrates: (1) sensors, actuators
and personnel equipment communicating over a Jini JavaSpaces TS3; (2) the

2 https://research.linagora.com/display/easyesb
3 http://www.jini.org/wiki/JavaSpaces Specification

144 N. Georgantas et al.

planning service implemented as a JMEDS DPWS Web Service4; and (3) a JMS
PS system based on Apache ActiveMQ5 that the coordinator of the operation
uses to receive recommendations and to send commands. We provide support
for the three mentioned middleware platforms by producing appropriate mid-
dleware platform level BCs. Our XSB prototype implementation is available as
open source software at http://xsb.inria.fr.

4 Evaluation

Based on the implementation of our solution discussed in Section 3, we eval-
uate our approach with respect to three criteria. First, we evaluate the effort
for the application developer and accordingly the provided support by our so-
lution for developing complex applications from the integration of services that
employ heterogeneous interaction paradigms. Second, we have designed our ar-
chitectural framework with particular consideration for its extensibility. Thus,
we evaluate the easiness in integrating new middleware platforms, in particu-
lar with regard to building related binding components (BCs). Third, we have
introduced a number of extensions to the typical SOA & ESB infrastructure,
such as transfer of GA primitives as payload of ESB communication primitives,
and, more importantly, runtime model transformations inside the BC. Hence,
we evaluate the performance of our solution and the time overhead introduced.
We discuss our evaluation results in the following.

Effort for Application Design. Table 1 summarizes our measurements of
the development effort required for the S&R scenario. Essentially, this effort
includes writing an xDL description for each constituent service, and providing
mapping directives between the data exchanged among the services. GA-IDL
service descriptions are then generated automatically by using the tools provided
by our platform. We see that application development effort is considerably
low, since our platform takes care of resolving the interaction paradigm and
middleware heterogeneity among the constituent services.

Table 1. Development effort for the application developer

xDL description Generated desc. Mapping directives
(XML lines) (XML lines) (XML lines)

Java Spaces system 148 98 72
DPWS system 50 61 76
JMS system 209 90 78

Total 407 249 226

Extensibility. Referring to the architectural framework of Fig. 7, we measure
the effort for building a BC for the JMS Apache ActiveMQ middleware platform.

4 http://ws4d.e-technik.uni-rostock.de/jmeds/
5 http://activemq.apache.org/

http://xsb.inria.fr

Service-Oriented Distributed Applications in the Future Internet 145

Table 2. Development effort for the JMS binding component

Lines of code XML schema Configuration
(lines) (XML lines)

xDL Processor 7520 2617 111
Core Engine 9993 219 137
Envelope for Substrate Bus 508 0 0

Total 18021 2836 248

Written by the developer 1162 191 12
Effort 6% 6% 4%

Table 3. Interaction latency on the bus for each interconnection

Interconnection Latency (ms)

one-way CS - CS via EasyESB 258
one-way CS - CS via XSB 261,5
CS - PS via XSB 283
CS - TS via XSB 276
PS - TS via XSB 298

Table 2 summarizes this effort, in terms of implemented numbers of: (1) Lines of
code, (2) XML schema lines regarding the xDL descriptions, and (3) XML lines
of configuration files for the architectural framework. We have performed our
measurements with the Metrics 1.3.6 Eclipse plugin6. We provide measurements
for each one of the three components of the framework, as well as the ratio
of the effort specific to the JMS platform (refinement of subcomponents) over
the total effort (i.e., including the generic code written once and reusable each
time). We see that considerably small effort, no more than 6% of the total effort,
is required for the integration of a new middleware platform. This points out
the significant support offered, resulting in considerable easiness for integrating
new middleware platforms and related high extensibility of our approach.

Performance. We measure execution times for a number of layouts: (i) one-
way and two-way interaction inside our implemented CS system; (ii) end-to-end
interaction between a publisher and a subscriber inside our implemented PS
system; (iii) end-to-end interaction between a writer and a reader inside our
implemented TS system; (iv) one-way and two-way interaction between two
CS peers via EasyESB; and (v) interaction between all pair combinations of
CS, PS and TS peers via XSB. We repeat each measurement a 100 times and
calculate mean values. Based on these experiments, we evaluate the latency
overhead introduced by the EasyESB for an one-way CS-CS communication,
and the latency overhead introduced by the XSB for an one-way CS-CS as well
as all other pair combinations of communication. Our results are summarized in
Table 3. We see that the latency overhead introduced by the XSB for a CS-CS
interconnection is only 1% greater than the latency overhead introduced by the

6 http://metrics.sourceforge.net

146 N. Georgantas et al.

EasyESB itself. When conversion between heterogeneous interaction paradigms
is involved, the XSB latency overhead ranges from 7% to 15,5%, where we note
that we always compare with the EasyESB CS-CS homogeneous interconnection,
since EasyESB support for other interaction paradigms is not available. We see
that the performance cost introduced by the XSB remains at reasonable levels.

5 Related Work

Distributed system interoperability approaches at the middleware level are clas-
sically based on bridging communication protocols, wrapping systems behind
standard technology interfaces, and providing common API abstractions. Most
efforts focus on a single interaction paradigm, which is already a hard problem.
Nevertheless, there are some solutions combining diverse interaction paradigms.

Common API abstractions enable developing applications that are agnostic
to the underlying interaction paradigm. Then, some local mapping is performed
between the API operations and the diverse interaction paradigms/related in-
teraction protocols supported. In our previous work [18], we made a first at-
tempt towards modeling the CS, PS and TS interaction paradigms. We also
proposed a TS-based model as higher-level API abstraction for representing all
three paradigms. Even if under certain conditions any of the three paradigms
can be used as common abstraction, our introduction of GA in this paper makes
things clearer and facilitates extension with new interaction paradigms. Addi-
tionally, that work was about heterogeneous service orchestrations, while our
current work is more general and enables service choreographies. In the same
category, ReMMoC [7] is an adaptive middleware for mobile systems, enabling
clients that can interact with both RPC servers and PS systems via a common
programming interface. Such systems are described with extended WSDL de-
scriptions. Our solution is much more general: it covers as well TS systems and
introduces the higher-level GA abstraction that can accommodate new interac-
tion paradigms. Following a similar approach, an API conforming to one inter-
action paradigm can be locally mapped to an interaction protocol conforming to
another paradigm. Thus in [8], the authors implement the LIME TS middleware
on top of a PS substrate. Similarly, work in [9] enables Web services SOAP-based
interactions over a TS binding. Contrary to these specific solutions, our approach
aims to cover a much wider range of interaction paradigm interoperability.

Wrapping systems behind standard technology interfaces enables accessing
these systems by using interaction paradigms that are different from their native
ones. In [6], a gateway allows high-level access to the data and operations of a
wireless sensor network via Web service interfaces. Again, our solution is much
more general, relying on technology-independent abstractions.

Bridging is about interworking between heterogeneous interaction protocol
stacks. The ESB paradigm is currently the dominant bridging solution for the
integration of heterogeneous systems, with realizations that are established in-
dustrial (open- and closed-source) products, such as Apache ServiceMix7 and

7 http://servicemix.apache.org

Service-Oriented Distributed Applications in the Future Internet 147

IBM Websphere ESB8. Certain efforts have provided binding components (BCs)
for ESBs that map between different interaction paradigms. For instance in [5],
an external TS is connected through a BC to a distributed ESB topology and
is accessible via the bus messaging-based interface. However, such solutions are
typically ad hoc and concern each time a specific case, while we propose a generic
and systematic approach that can be applied to many different middleware tech-
nologies. Other efforts propose extensions to SOA and ESB infrastructures, such
as event-driven SOA [11], while now most industrial-strength ESBs support the
PS paradigm. Still, these remain partial, they do not support the TS paradigm.
Acknowledging the flexibility of the TS model, a number of system integration
efforts have adopted TS as the common interaction facility. Some of these ap-
proaches enrich TS with PS semantics, or offer a REST-based API in addition to
the TS-based API [19]. Similar efforts introduce extended TS as an alternative
solution to the realization of the ESB paradigm [12]. Some of these ESBs of-
fer various interaction semantics (by emulating different interaction paradigms)
and related APIs, such as CS- and PS- in addition to TS-based. With respect
to these efforts, the comparative advantage of our approach is its generality and
extensibility thanks to the introduction of the higher-level GA abstraction.

6 Conclusion

Integrating services that employ heterogeneous interaction paradigms is chal-
lenging. We have introduced a modeling approach abstracting heterogeneous
middleware platforms into their corresponding interaction paradigms, and the
latter to a single higher-level interaction paradigm that enables cross-paradigm
interconnection. We apply our modeling abstractions to extend an SOA & ESB
infrastructure for supporting development of complex applications by seamless
peer integration of heterogeneous services. A development platform is provided
to application designers. Using this platform, they can easily develop composite
applications: they only need to build descriptions for the constituent services and
directives for data mapping among them. Our platform then deals with reconcil-
ing among the heterogeneous interaction paradigms and protocols of the services.
Additionally, support for new middleware platforms, new ESB infrastructures, or
even new interaction paradigms can be incorporated in a facilitated way thanks
to our architectural framework. Our evaluation demonstrates the application
design support, high extensibility, and low performance cost of our solution.

In our current and future work, besides publishing on the formal foundation
of our interoperability approach, we aim to enrich our modeling abstractions
with support for continuous interactions in addition to discrete ones. Contin-
uous interactions are commonly found in data streaming protocols, which are
increasingly important in the Future Internet, due to the vast spread of media
content and sensor-generated data streams.

8 http://www.ibm.com/developerworks/websphere/zones/businessintegration/

wesb.html

http://www.ibm.com/developerworks/websphere/zones/businessintegration/wesb.html
http://www.ibm.com/developerworks/websphere/zones/businessintegration/wesb.html

148 N. Georgantas et al.

References
1. Monson-Haefel, R., Chappell, D.: Java Message Service. O’Reilly & Associates,

Inc., Sebastopol (2000)
2. Carzaniga, A., Wolf, A.L.: Content-based Networking: A New Communication In-

frastructure. In: König-Ries, B., Makki, K., Makki, S.A.M., Pissinou, N., Scheuer-
mann, P. (eds.) IMWS 2001. LNCS, vol. 2538, pp. 59–68. Springer, Heidelberg (2002)

3. Freeman, E., Arnold, K., Hupfer, S.: JavaSpaces Principles, Patterns, and Practice.
Addison-Wesley Longman Ltd., Essex (1999)

4. Murphy, A.L., Picco, G.P., Roman, G.C.: LIME: A Coordination Model and Mid-
dleware Supporting Mobility of Hosts and Agents. ACM Transactions on Software
Engineering and Methodology (TOSEM) 15(3), 328 (2006)

5. Baude, F., Filali, I., Huet, F., Legrand, V., Mathias, E., Merle, P., Ruz, C., Krum-
menacher, R., Simperl, E., Hammerling, C., Lorre, J.P.: ESB Federation for Large-
scale SOA. In: Proceedings of the 2010 ACM Symposium on Applied Computing,
SAC 2010, pp. 2459–2466. ACM, New York (2010)

6. Avilés-López, E., Garćıa-Maćıas, J.: TinySOA: A Service-oriented Architecture for
Wireless Sensor Networks. Service Oriented Computing and Applications 3(2), 99–
108 (2009)

7. Grace, P., Blair, G.S., Samuel, S.: A Reflective Framework for Discovery and Inter-
action in Heterogeneous Mobile Environments. SIGMOBILE Mob. Comput. Com-
mun. Rev. 9(1), 2–14 (2005)

8. Ceriotti, M., Murphy, A.L., Picco, G.P.: Data Sharing vs. Message Passing: Synergy
or Incompatibility?: An Implementation-driven Case Study. In: Proceedings of the
2008 ACM Symposium on Applied Computing, New York, USA, pp. 100–107 (2008)

9. Wutke, D., Martin, D., Leymann, F.: Facilitating Complex Web Service Interac-
tions through a Tuplespace Binding. In: Meier, R., Terzis, S. (eds.) DAIS 2008.
LNCS, vol. 5053, pp. 275–280. Springer, Heidelberg (2008)

10. Pietzuch, P., Eyers, D., Kounev, S., Shand, B.: Towards a Common API for Pub-
lish/Subscribe. In: Proceedings of the 2007 Inaugural International Conference on
Distributed Event-based Systems, pp. 152–157. ACM, New York (2007)

11. Papazoglou, M.P., Heuvel, W.J.: Service Oriented Architectures: Approaches,
Technologies and Research Issues. The VLDB Journal 16, 389–415 (2007)

12. Mordinyi, R., Kühn, E., Schatten, A.: Space-Based Architectures as Abstraction
Layer for Distributed Business Applications. In: Proceedings of the 2010 Interna-
tional Conference on Complex, Intelligent and Software Intensive Systems, CISIS
2010, pp. 47–53. IEEE Computer Society, Washington, DC (2010)

13. Busi, N., Zavattaro, G.: A Process Algebraic View of Shared Dataspace Coordina-
tion. The Journal of Logic and Algebraic Programming 75(1), 52–85 (2008)

14. Eugster, P.T., Felber, P.A., Guerraoui, R., Kermarrec, A.M.: The Many Faces of
Publish/Subscribe. ACM Comput. Surv. 35(2), 114–131 (2003)

15. Gelernter, D.: Generative Communication in Linda. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 7(1), 80–112 (1985)

16. Lam, S.S.: Protocol Conversion. IEEE Trans. Softw. Eng. 14(3), 353–362 (1988)
17. Kay, M.: XSLT 2.0 Programmer’s Reference. Wiley Pub. (2004)
18. Georgantas, N., Rahaman, M.A., Ameziani, H., Pathak, A., Issarny, V.: A Co-

ordination Middleware for Orchestrating Heterogeneous Distributed Systems. In:
Riekki, J., Ylianttila, M., Guo, M. (eds.) GPC 2011. LNCS, vol. 6646, pp. 221–232.
Springer, Heidelberg (2011)

19. Nixon, L.J.B., Simperl, E., Krummenacher, R., Martin-Recuerda, F.: Tuplespace-
based Computing for the Semantic Web: A Survey of the State-of-the-Art. Knowl.
Eng. Rev. 23(2), 181–212 (2008)

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 149–163, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An App Approach Towards User Empowerment
in Personalized Service Environments

Mario Hoffmann

Fraunhofer AISEC, Parkring 4, 85748 Garching near Munich, Germany
mario.hoffmann@aisec.fraunhofer.de

Abstract. The laws of identity and privacy protection goals are major require-
ments of user-centric personalized service environments. The goal is that users
can send master data, preferences, attributes and claims together with policies to
relying parties such as Cloud Services Providers in order to control purpose,
usage, and availability of personally identifiable information. In order to meet
the requirements and to establish a trusted end point this paper introduces a vir-
tual representation of a user called LifeApp that can be downloaded and installed
by relying partners. On the one hand this approach aims at empowering the user
to control access, enforce policies, minimize misusage and enjoy – nonetheless
– personalized contextual services. On the other hand relying parties benefit
from synchronizing data whenever it changes at the user’s or the requester’s
side. The advantages are up-to-date and authentic user data, simplified customer
relationship management, and if needed compliance to local data protection.
The paper introduces the app approach to personalized service environments
based on the Kantara-UMA protocol.

Keywords: Internet Identity Management, Life Management Platforms, Per-
sonal Clouds, Personally Identifiable Information, Privacy by Design, User
Empowerment, Kantara UMA Protocol.

1 Introduction

Although privacy is an inherent necessity people when asked have their difficulties to
value possible consequences and implications of disregard. Moreover, people are used
to disclose their personal preferences, relationships, and behaviors to online services;
typical examples of services managing huge amounts of personally identifiable in-
formation (PII) are online stores, social and business networks as well as dating agen-
cies. Latest prominent examples of – from the users’ point of view – misuse of PII are
mobile apps: In the case of the smartphone-based social network Path for example a
developer in Feb'12 discovered that the app was uploading users' address books to its
server without their explicit consent. Other examples, where users not in all cases
have been asked for their approval when uploading personal data, are apps from Fa-
cebook, Instagram, Foursquare, Foodspotting, and Yelp.1 Implications range from

1 For testing purposes and detailed reports Android apps can be uploaded for example to

AppRay (www.app-ray.de).

150 M. Hoffmann

targeted marketing and predicting behavior to analyzing social and business relation-
ships or even identity theft.

However, “Privacy compliant cloud computing is feasible”2 states a press release
from the data protection office Schleswig-Holstein in July 2012. In order to fulfill the
privacy protection goals transparency, unlinkability and intervenability (see Marit
Hansen’s definitions in [1]) mechanisms for protecting and minimizing personal data,
monitoring it’s usage as well as binding it to specific purposes have to be in place
during the complete life cycles of identities, information, and services. In addition
Article 29 Data Protection Working Party published their “Opinion 05/2012 on Cloud
Computing” in July 2012 [6]; the document “outlines how the wide scale deployment
of cloud computing services can trigger a number of data protection risks, mainly a
lack of control over personal data as well as insufficient information with regard to
how, where and by whom the data is being processed/sub-processed.”

This paper will introduce a “privacy by design” approach to support privacy pro-
tection goals. The core mechanism is based on the well known download of apps.
Users, nowadays, are used to download apps, trust the issuers, and install and confi-
gure them on their mobile phones. The app approach introduced in this paper suppos-
es the same from the service provider’s perspective. The service provider downloads
an app representing a virtual identity from a user and installs it in an encapsulated
virtual machine running in his Cloud infrastructure. This so called LifeApp is supposed
to establish a secure channel to the users’ Life Management Platform and to grant,
monitor, and control access to data that is requested by the service provider. (Note:
The paper will use the terms “service provider”, “requester” and “relying party” syn-
onymously. Here, they do all refer to the same sense of collaboration partner.)

The paper is organized as follows: The next chapter will first give an overview of
the state of the art of relevant areas. Then the LifeApp approach is described followed
by promising application scenarios and the architectural concept. An evaluation of the
concept based on the seven laws of identity (see Kim Cameron’s definition in [3]),
finally, supports the conclusion that the app approach proposed in this paper can be a
large step towards more privacy protection and user empowerment in personalized
service environments.

2 State of the Art

2.1 The Laws of Identity

The laws of identity are based on an open blog of the identity community initiated by
Kim Cameron (Microsoft) in 2005 and have become an important reference for all
identity systems introduced afterwards. They are described in detail in [3] and com-
prise (1) User Control and Consent, (2) Minimal Disclosure for a Constraint Use, (3)
Justifiable Parties, (4) Directed Identity, (5) Pluralism of Operators and Technologies,

2 Press release: ULD: “Privacy compliant cloud computing is feasible”, 13.07.2012,

https://www.datenschutzzentrum.de/presse/20120713-
datenschutzkonformes-cloud-computing_en.htm

An App Approach Towards User Empowerment in Personalized Service Environments 151

(6) Human Integration, and (7) Consistent Experience across Contexts. The LifeApp
approach will be evaluated against the laws of identity in chapter 6 “Compliance to
the Laws of Identity”.

2.2 Relevant Approaches and Concepts

On a conceptual level laws of identity and privacy protection goals are best supported
by Vendor Relationship Management (VRM3), Personal Clouds, and Life Manage-
ment Platforms4. According to its definition VRM provides customers with both in-
dependence from vendors and better means for engaging with vendors, which is a
cornerstone of the approach presented in this paper. Personal Clouds provide the
necessary functionality of personal data storage; examples are personal.com, my-
dex.com, and qiy.com. Only the combination of both, however, enhanced by the us-
er’s full control over his personally identifiable information fulfils the characteristic
of so called Life Management Platforms5 - see below.

The big picture is also addressed by a number of EU funded projects such as Pri-
meLife, ABC4Trust, GINI-SA, and TClouds. PrimeLife6 for example has developed
a user-side transparency enhancing tool “which gives the user an overview of what
data have been sent to different data controllers and also makes it possible for a data
subject to access her personal data and see information on how her data have been
processed and whether this was in line with privacy laws and/or negotiated policies.”
ABC4Trust7 is a successor of PrimeLife and focuses on attribute based credentials for
trust. GINI-SA8 is a support action and “works towards the vision of a Personal Iden-
tity Management environment.” TClouds9 finally “develops an advanced cloud infra-
structure that can deliver computing and storage that achieves a new level of security,
privacy, and resilience.” However, to the author’s knowledge none of them has intro-
duced a user represented as an app that can be downloaded yet.

2.3 Authentication, Authorization, and Identity Management

On protocol level the most relevant developments for the LifeApp approach during the
last two years are Kantara UMA and OAuth 2.0 (both described in the next para-
graph) as well as OpenID Connect10 “a suite of lightweight specifications that provide
a framework for identity interactions via REST like APIs.” Additionally, SAML11
provides an underlying XML-based format for exchanging authentication and

3 http://blogs.law.harvard.edu/vrm/
4 http://www.economist.com/blogs/babbage/2011/11/personal-data
5

 http://www.discoveringidentity.com/2012/07/11/life-management-
platforms/

6 http://primelife.ercim.eu/
7 https://abc4trust.eu/
8 http://www.gini-project.eu
9 http://www.tclouds-project.eu/
10 http://openid.net/connect/
11 https://www.oasis-open.org/committees/download.php/27819/

152 M. Hoffmann

authorization data between parties; LifeApp benefits from its single-sign-on feature.
Higgins12 is relevant because it provides a Personal Data Service (PDS) that lets you
control how your personal data is shared with friends and organizations you trust but
the framework is still under development. In the future personal clouds might be
based on Higgins. Last but not least SCIM13 is a new system for cross-domain identi-
ty management and “is designed to make managing user identities in cloud-based
applications and services easier.” SCIM will be evaluated in more detail in the next
months.

Fig. 1. Kantara UMA Protocol

The integration of LifeApp in a Life Management Platform is based on Kantara
UMA. The protocol U(ser) M(anaged) A(ccess) is a powerful authorization protocol
specified by Kantara Work Group UMA14 and accepted by IETF (see Fig. 1 and [3]).
It is a profile of OAuth 2.0 and implements two OAuth 2.0 cycles; the first cycle spe-
cifies and manages the authorization between the authorizing user, the host(s) con-
taining protected resources, and the so-called authorization manager; the second
cycle defines the sequence of sharing information and enforcing access rights between
the host(s), the authorization manager as well as the requester.

The UMA protocol is mainly characterized by the introduction of an independent
authorization manager (AM) which will play an important role in the LifeApp approach
described in chapter 5. The AM provides a central point of managing access policies
to the authorizing user. The user can manage policies of all protected resources in a

12 http://www.eclipse.org/higgins/
13 http://www.simplecloud.info/
14 http://kantarainitiative.org/confluence/display/uma/Home

An App Approach Towards User Empowerment in Personalized Service Environments 153

standardized and centralized way, which are actually distributed to and stored at hosts
such as business networks, location services or document sharing providers. The ad-
vantage for hosts is that they can outsource the complete management of granting
access rights to protected user resources to the AM.

3 The LifeApp Approach

Now, imagine you are an app – an app for Android, iOS, any kind of mobile or desk-
top operating system and let's call it your LifeApp. Assume your LifeApp consists of
personal information and policies how to deal with that information. This personal
information could be your name, your address, contacts, and preferences – or in gen-
eral any kind of personally identifiable information that belongs to you, characterizes
you, and personalizes your interactions with other people, services, or things. Moreo-
ver, your LifeApp can contain references to your existing personal data stores in the
Cloud or remote data stores you would like to integrate such as your social and busi-
ness networking platforms, your eGovernment services or your business accounts.
LifeApps might even be part of the larger vision of Life Management Platforms in the
future Internet. Fig. 2 shows this vision of a complete life management infrastructure
including the LifeApp.

Fig. 2. Using Life Management Platforms in Future Internet Infrastructures

The new paradigm of being an app has several advantages for both the users them-
selves as well as for relying parties. The main benefit for users is an enhanced user-
controlled access rights management. Since the LifeApp needs to be downloaded,
installed, configured, and – may be – bought by an interested relying party, this party
needs to agree on the users' terms and conditions. This might include particular user

154 M. Hoffmann

defined policies as well as regulations from third party and local data protection regu-
lations. Inside the Life Management Platform every download of the user’s LifeApp
triggers the set up of corresponding profiles, preferences, and policies that reflect a
specific part of the user’s virtual identity and the intended usage of the services of-
fered by other people, things, or services.

The goal is that the user is empowered to minimize the individual information flow
and control the purpose of the usage of PII (both are also requirements identified in
the draft report of the European Parliament with regard to the General Data Protection
Regulation, see [5]). At any time the user is supposed to monitor, modify, deny or
cancel access rights. The update mechanism of the LifeApp ensures that latest revisions
are available for all subscribers.

Relying parties subscribe to the user’s life management service. Besides of having
the latest revision of the LifeApp itself requesters benefit from having up-to-date and
authentic information supported by a synchronization mechanism between the Life
Management Platform and the LifeApps. In case of for example address data, phone
numbers, email addresses, and credit card information there is no longer inconsisten-
cies between relying parties and latest user information; once the user changes an
information in his or her personal data store all communication partners that have
corresponding access rights will get the latest information as soon as they interact
with the LifeApp again.

Furthermore, the LifeApp can take care of fulfilling compliance rules such as na-
tional data protection rights if a corresponding component is built in. That is a huge
benefit especially for small and medium enterprises that cannot afford appropriate
customer relationship management software, for instance. Such service providers now
have the opportunity to simply agree on the terms and conditions the LifeApp provides
in order to be compliant.

Eventually, the model changes for most users of managing many different accounts
independently to having one central managing platform for many if not all accounts
and relationships. And for the corresponding relying parties the model changes from a
centralized model of managing user profiles to a distributed model where the users
control access rights, policies and authorizations to their PII. With the introduction of
the LifeApp the existing relationships between users and requesters have been reversed.

Both parties, finally, benefit from the secure channel that is established between
the data source, e.g. a personal data store, and the LifeApp residing at the service pro-
vider through any kind of transportation medium, e.g. the Internet. This is enabled by
crypto keys that have been generated before downloading the LifeApp by the service
provider.

4 Application Scenarios

The application scenarios for LifeApps are manifold and comprise at least social and
business networks, cloud services, and intelligent environments. The following para-
graphs describe how LifeApps can be integrated in each of those:

An App Approach Towards User Empowerment in Personalized Service Environments 155

4.1 Personal Networks

In the future new social and business networks can be based on the direct exchange of
LifeApps. Assume for example that you attend a special session at a conference on Life
Management Platforms. The conference is taking place in Malaga, a city you have
never been to before. During the conference week – and only during that week – you
would like to exchange local recommendations for sightseeing or restaurants with the
other participants and only with them (and not with your 500+ followers at Face-
book). (Anabel González-Tablas et al. describe such contextual information sharing in
detail in [6].)

So, whenever people will meet – in their jobs, doing some sports, in their leisure
time, at public places or private environments – they will have the opportunity to
share personal information by exchanging their LifeApps directly from device to device
(e.g. based on NFC). The LifeApps contain references and access policies. So, for ex-
ample, whenever one user would like to send a new recommendation he or she re-
quests the receiver's LifeApp first in order to check authorization and to get the most
appropriate communication channel.

The users' privacy benefits from exchanging access rights to references instead of
the information itself. The most important advantage, however, is that no third party
Internet service is needed which maintains a social or business network platform.
Building up people's networks is simply based on their contextual peer-to-peer
relationships.

4.2 Cloud Services

Valid and authentic contact information is a very important commodity for service
providers in Cloud and service environments. At the same time managing user ac-
counts and identifying out-of-date information is complex and costly – usually han-
dled in customer relationship management systems (CRMs). Once a critical mass of
LifeApp users has been reached service providers will start supporting LifeApp-enabled
services by downloading LifeApps themselves. Such relying parties will benefit from
decentralizing and simplifying CRM and – at the same time – having access to up-to-
date and authentic customer information the synchronization mechanism is taking
care of. In addition LifeApp software updates ensure state-of-the-art security mechan-
isms and provide the integration of latest data protection rules in order to fulfill com-
pliance to national and international regulations.

Note: The app approach assumes that business models of relying parties that take
advantage of users' LifeApps do not rely on analyzing, aggregating and archiving PII.

4.3 Intelligent Environments

The vision is that even intelligent environments will benefit from downloading Li-
feApps. In the envisioned future Internet of people, things, and services intelligent envi-
ronments are supposed to deliver contextual services to users in a trustworthy and
secure way respecting their privacy. EU-projects such as SWAMI and HYDRA ad-
dressed these challenges during the last decade.

156 M. Hoffmann

A user's LifeApp could be downloaded, for instance, by a hotel room. According to
the user’s profile “hotel room” the LifeApp grants access to his favorite films and mu-
sic, preferred dishes or allergies, room temperature etc. Also the different LifeApp-
enabled models in a car sharing scenarios could take advantage of a corresponding
profile “car”. As soon as entering a shared car seat, mirrors, favorite radio stations and
recent destinations are set up. The user can immediately start her journey.

5 UMA Based LifeApp Architecture

Life Management Platforms take advantage of the UMA protocol (see section 2.3) by
adapting the protocol schema integrating the authorizing user, the requesters, the au-
thorization manager, and the host(s) where protected information is stored. The only
new component that is added to the protocol is the LifeApp (see Fig. 3).

Fig. 3. LifeApp integration into the UMA protocol

Principally, two scenarios can be distinguished: Online: The LifeApp contains a ref-
erence to the user's authorization manager and a default set of access policies and a
default user profile; Offline: For autonomous usage the LifeApp hosts a minimal set of

An App Approach Towards User Empowerment in Personalized Service Environments 157

attributes, values, and claims as well as appropriate policies. In both cases the relying
party is supposed to download and install the LifeApp from the corresponding trusted
App Store before.

The Personal Data Storage (PDS) on the left side of Fig. 3 is a specific implemen-
tation of the host of UMA's architecture. It serves, firstly, as an adapter to the existing
hosts, where users have stored protected data already; here, the Life Management
Platform integrates existing relationships. Secondly, the PDS provides encrypted sto-
rage saving and archiving PII directly. The PDS in this concept could be securely
hosted by standard Cloud storage providers because the PII is encrypted on the client
side as well as on transportation.

5.1 Example: eGov Citizen Portal

The last twelve months the public sector has recognized the potential of cloud compu-
ting. Some pilot cities in Germany, such as Münster and Ingolstadt, are featuring es-
pecially the consistent integration of the new German ID card into citizen-centric
service portals. The most interesting and complex case with respect to Life Manage-
ment Platforms is the support of service chains where processes have to be operated
across several administrative positions – sometimes even with the involvement of the
private sector; examples include motor vehicle registration, moving to another city or
applying for social benefits.

Fig. 4. Example: A Life Management Platform in an eGov Scenario

The application for social benefits is illustrated as an example in Fig. 4:

1. Let‘s assume a user applies for social benefits at the town hall‘s website.

158 M. Hoffmann

2. At the website of the public authority the user has to provide a lot of different per-
sonalized information such as master data, patient’s record, bank accounts, etc.

3. He has three opportunities: (a) Some data can be sent and/or filled in a form by
hand, (b) some fields are automatically completed by the LifeApp and a correspond-
ing auto-complete service, (c) the LifeApp redirects the request and authorizes
access to the Life Management Platform. Here access to internal and external
sources is specifically protected and bound to specific purposes.

4. The goal is to support two kinds of processes: (a) In a synchronized interaction the
user controls every single step; (b) in the asynchronous alternative the user autho-
rizes the complete service chain accessing information when needed.

In general users who would like to apply for example for social benefits or any other
kind of digital services for citizens are authorizing users in UMA terminology. They
manage their personal data in internal and external repositories and care about identity
theft and data protection. UMA‘s so called authorization manager is implemented as a
Life Management Platform. The platform empowers the authorizing user to control and
authorize access to protected resources. Requesters, e.g. a town hall/job center, need
personalized information from the authorizing user in order to feed a service chain and
operate a process. The requester receives particular access rights by the Life Manage-
ment Platform. Internal and external repositories are hosts in UMA terminology. Inter-
nal repositories contain any kind of user controlled content and can be organized as a
personal data store. External sources are typically based on references to 3rd parties and
other Identity Providers – note: some are not controlled by the authorizing user.

6 Compliance to the Laws of Identity

The main features of the Life Management Platform and the LifeApp approach can be
mapped to the laws of identity (see [3]). The following paragraphs analyze to what
extent the LifeApp approach is consistent to these laws.

6.1 User Control and Consent

Life Management Platforms are designed as an identity system that empowers users
to control access to protected personal information. Taking advantage of UMA's au-
thorization manager (AM) component relying parties need to get the user's consent for
any transaction. The user-centric LifeApp downloaded by the requester takes care of a
secure channel and a standardized communication to the AM and provides a first filter
enforcing policies already on the requester's side. The first law of identity is fulfilled.

6.2 Limited Disclosure for Limited Use

Limited disclosure for limited use relies on two aspects of policy management. The
first aspect “definition” is realized in most identity systems: The user can define rules
and policies who are supposed to get access to what, why, and when. The second

An App Approach Towards User Empowerment in Personalized Service Environments 159

aspect “enforcement” is not that easy to fulfill since any user data is traditionally
considered lost as soon as it is sent to the requester. The LifeApp residing on the re-
quester's side is a first step towards user-centric policy enforcement. It integrates
compliance rules such as data protection laws and, when interacting with the request-
er, monitors and binds the usage of protected data to the purpose(s) intended. The
second law is partially fulfilled.

6.3 Justifiable Parties

Relationships of the parties involved in the Life Management infrastructures are well-
defined and limited. The introduction of an AM to an identity system decreases com-
plexity significantly and frees the hosts of managing users' policies in detail. Disclo-
sure of personally identifying information is restricted to relying parties “having a
necessary and justifiable place in a given identity relationship.” The PDS, moreover,
decreases the number of communication partners significantly since it hides the
access to other hosts and identity providers behind a standardized interface. The third
law of identity is fulfilled.

6.4 Directed Identity

On the one hand UMA's authorization manager basically can be securely addressed
by a well-known URL and public key certificate. According to the definition of the
forth law of identity, thus, the AM supports omni-directional identifiers. On the other
hand a (short-lived) unidirectional identity relation could be established between the
LifeApp and the relying party. Providing both omni-directional as well as unidirection-
al identifiers fulfills the forth law of identity.

6.5 Pluralism of Operators and Technologies

The integrated approach of Life Management Platforms addresses the fifth law that
states that a universal identity system might channel and enable the inter-working of
multiple identity technologies run by multiple identity providers. Both LifeApps as well
as the Life Management Platform are designed to be identity agnostic. That means
that the user can choose with what means he would like to authenticate himself to his
user management interface and what kind of authentication he expects from the rely-
ing party. Different identity providers are integrated as hosts through the personal data
store.

6.6 Human Integration

The user is the most important architectural component of UMA's protocol extension
illustrated in Fig. 3. The user-centric approach enables the user to store his personal
information sustainably and securely at the PDS. Information stored at other identity
providers can be referenced and integrated by corresponding adapters. Policies for

160 M. Hoffmann

granting access rights are managed under user's control at the AM. And, finally, the
LifeApp is the user's trust and compliance anchor at the relying party. The sixth law is
fulfilled.

6.7 Consistent Experience Across Contexts

The strength of Life Management Platforms is the management of contextual identi-
ties. The platform is designed for supporting the user's experience in intelligent envi-
ronments where contexts might switch dynamically and quickly. Switching contexts
transparently providing a consistent user experience is a very important aim for Life
Management Platforms. How these context switches are supposed to be supported by
the user management interface is described in the next chapter.

7 User Experience

User interfaces in identity management aim at a transparent, comprehensible and
context-independent way of dealing with personally identifiable information. The user
needs to be able to relate to how his or her virtual identities are used, whether the
usage is compliant to their policies and bound to a specific purpose, as well as wheth-
er the complete life-cycle is user-controlled. In short: It needs to support the privacy
protection goals: transparency, unlinkability and intervenability.

Usable security and privacy is the key to acceptance of any identity system balanc-
ing user requirements and requirements of providers of context-aware personalized
services. The following paragraphs introduce a user interface design for managing the
information and identity life cycle at a smartphone.

The creation of new virtual identities and corresponding profiles is one of the key
features of the Personal Information Assistant (PIA); see Fig. 5 (a). Some services
rely on one’s real name and address, sometimes on birth date and credit card informa-
tion, some services, however, just ask for an email address to verify one's real interest
in a white paper or article. So, for different purposes users can define specific contex-
tual profiles containing subsets of PII.

Editing such profiles and preferences is illustrated in Fig. 5 (b). Basically, it is an
open list of attributes, claims, and credentials that can be reused in different virtual
identities and profiles. The goal is that PIA – in addition to predefined ones – can
learn new attributes from relying parties. For a first realization it is planned, however,
that the user himself establishes links between attributes with the same semantics
explicitly. The result will be user defined ontologies; standardized ontologies will be
part of future research.

An example of PIA during run-time shows Fig. 6. Part (a) lists the registered
people, environments, and services Bob shares personal information with and which
are authorized to access certain corresponding profiles. As a prerequisite each of them
has downloaded Bob’s LifeApp. Part (b) illustrates the other way around. Details of
communication partners Bob has downloaded are presented. Here, the list contains
Alice, Bob's wife, his best friend Thomas, his boss, as well as his lovely dog Brutus.
How Bob benefits from PIA managing his relationships explain the paragraphs below:

An App Approach Towards User Empowerment in Personalized Service Environments 161

Fig. 5. LifeApp User Interface Mockup – Part 1

Fig. 6. LifeApp User Interface Mockup – Part 2

162 M. Hoffmann

1. Alice is Bob‘s wife and as such part of the group family. Bob and Alice share al-
most everything from each other’s LifeApps. Bob certainly knows Alice‘s birthday –
however, not to forget it the calendar throws a birthday warning. Bob checks
Alice‘s favorites in her profile, compares it with his history from last celebrations
and agrees with others from family and friends in order to avoid doublings.

2. Bob and Thomas are friends. As friends Bob and Thomas share specific LifeApp
configurations. Thomas recommends a good restaurant from his latest trip and he
informs Bob that he got the tickets for the forthcoming football game on Saturday.

3. Bob‘s boss is part of the group company. The LifeApp profile that Bob shares with
his boss and other colleagues is pretty restricted. According to his calendar Bob‘s
boss in on a business trip. In Bob‘s inbox are five new emails from his boss. A
meeting had to be postponed. A new appointment has to be agreed.

4. Brutus is Bob‘s dog and belongs to the group pets. Via Brutus‘ LifeApp Bob has
access to vital functions such as breath, pulse, and blood sugar. So, Bob knows that
Brutus is sleeping right now. The lifecam offers a stream from the dog‘s place.

User interface design is manifold. The mock-up presented above is just one example
based on a smartphone layout. Since the logic of the personal information assistant is
separated from the presentation layer alternatives such as laptops, desktops, tablets
and even smart TVs can be supported efficiently.

8 Conclusion

Life Management Platforms are designed for users to centralize their management of
personally identifiable information (PII) for example in Personal Clouds. Manage-
ment, here, basically refers to the life cycles of attributes, claims, profiles, and poli-
cies in personalized service environments. The introduction of the LifeApp approach
into such environments – as proposed in this paper – is a powerful new paradigm to
establish new forms of relationships between authorizing users and service providers.

The novelty of the LifeApp approach is the user’s app that can be downloaded by
collaboration partners such as other people, Cloud services, and intelligent environ-
ments. The LifeApp might contain content such as attributes, profiles, and policies
already or (recommended) just references plus access policies to protected informa-
tion at personal data stores. At the service provider’s side the LifeApp is able to estab-
lish a trusted contact point and a secure channel which enables the user to monitor and
control the access to, usage of, and the life cycle of his or her PII. Main advantages
for service providers are up-to-date and synchronized authentic user data, avoiding
inconsistencies and non-active users, as well as being compliant to data protection
regulation when needed (and if integrated into the LifeApp). Note: The concept as-
sumes collaboration partners whose business models do not rely on selling PII.

The paper evaluated the LifeApp concept according to the 7 Laws of Identity and
could show that the new privacy protection goals transparency, unlinkability and in-
tervenability are supported. Therefore, the integration of the LifeApp concept in a Life
Management Platform enables developers of personalized service environments to
implement privacy by design.

An App Approach Towards User Empowerment in Personalized Service Environments 163

Roadmap for a proof of concept: The mock-up has been partly underpinned by
specific implementations already. The UMA protocol has been implemented last year.
Currently, as part of a nationally funded project15, first components of the proposed
Life Management Platform such as the personal data store are under development and
authentication technologies such as OpenID Connect and the new German ID card are
supposed to be integrated soon. The implementation of the LifeApp component, finally,
is planned for the end of 2013.

References

1. Hansen, M.: Top 10 Mistakes in System Design from a Privacy Perspective and Privacy
Protection Goals. In: Camenisch, J., Crispo, B., Fischer-Hübner, S., Leenes, R., Russello,
G. (eds.) Privacy and Identity 2011. IFIP AICT, vol. 375, pp. 14–31. Springer, Heidelberg
(2012) http://www.csc.kth.se/~buc/PPC/Slides/marit.pdf

2. Rost, M., Bock, K.: Privacy by Design and the New Protection Goals. Datenschutz und
Datensicherheit 35, 30–35 (2011), https://www.european-privacy-seal.eu/
results/articles/BockRost-PbD-DPG-en.pdf

3. Hardjono, T. (ed.): User Managed Access (UMA) Profile of OAuth 2.0. IETF Internet-
Draft (2013), http://docs.kantarainitiative.org/uma/draft-uma-
core.html

4. Cameron, K.: The Laws of Identity (2005), http://www.identityblog.com/
stories/2005/05/13/TheLawsOfIdentity.pdf

5. Albrecht (Rapp.), J.P.: Draft Report on the proposal for a regulation with regard to the
processing of personal data and on the free movement of such data (General Data Protec-
tion Regulation) (December 2011), http://www.europarl.europa.eu/
meetdocs/2009_2014/documents/libe/pr/922/922387/922387en.pdf

6. Article 29 Data Protection Working Party, Opinion 05/2012 on Cloud Computing (July
2012), http://ec.europa.eu/justice/data-protection/article-29/
documentation/opinion-recommendation/files/2012/wp196_en.pdf

7. González-Tablas, A.I., Alam, M., Hoffmann, M.: An architecture for user-managed loca-
tion sharing in the Future Internet of Services. In: The 4th International Workshop on
Trustworthy Internet of People, Things & Services, co-located with the Internet of Things
2010 Conference, Tokyo, Japan, November 29-December 1 (2010), http://www.
seg.inf.uc3m.es/papers/2010tiopts.pdf

8. Fischer-Hübner, S., Hoofnagle, C., Krontiris, I., Rannenberg, K., Waidner, M. (eds.): On-
line Privacy: Towards Informational Self-Determination on the Internet, http://
drops.dagstuhl.de/opus/volltexte/2011/3205/

15 http://www.aisec.fraunhofer.de/de/kompetenzen/projekte/sealed-

cloud.html

A Life-Cycle Model

for Software Service Engineering

Erik Wittern1 and Robin Fischer2

1 eOrganization Research Group
FZI Research Center for Information Technology

wittern@fzi.de
2 eOrganization Research Group

Karlsruhe Institute of Technology (KIT)
robin.fischer@kit.edu

Abstract. Applying existing life-cycle models to software service
engineering, we identify shortcomings: they do not focus on engineer-
ing activities, lack a clear underlying definition of software services, do
not address both service roles of consumer and provider, and assume
longevity and sequence of activities. We present a life-cycle model for
software service engineering to tackle these shortcomings. We illustrate
the model’s prescriptive use by applying it to assess software service
variability and software service standardization.

Keywords: Software service engineering, service variability, cloud
standards.

1 Introduction

The Internet has fundamentally changed the nature and delivery of services.
Providers of software services can effortlessly serve a tremendous amount of
globally distributed consumers. Methods and tools, best practices, and structure-
providing methodologies are required for providers to efficiently develop and
provision services. Service consumers require support to master consumption-
related tasks like service selection, service integration, or system scaling.

Software service engineering is the systematic application of methods and
tools for the creation and provision of a software service. Life-cycle models struc-
ture service engineering. Their nature is descriptive in that they capture common
service engineering approaches. In addition, life-cycle models are prescriptive in
that they guide providers in service development and provision and consumers
in service consumption. They denote relevant activities at different stages of the
life-cycle and recommend their order.

Despite the important role that life-cycle models play, we find that current
models have flaws with regard to service engineering. Many models have broad fo-
cus (e.g., include organization aspects), hampering their applicability to software
service engineering. Also, the service concept underlying most service life-cycle

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 164–171, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Life-Cycle Model for Software Service Engineering 165

models is not made explicit or is too generic. Many models focus on provider ac-
tivities, leaving the consumer side open. Finally, many models imply a longevity
and sequence of activities that does not necessarily reflect reality.

To overcome these problems, we discuss software service in section 2. We
relate to existing work in section 3. In section 4, we present our software service
life-cycle model. We illustrate its prescriptive use by discussing a) activities to
support service variability and b) software service standardization in section 5.
Section 6 concludes our findings and gives an outlook to future work.

2 Tems and Definitions

Generic Services. A service, generically, is “[...] an abstract resource that
represents a capability of performing tasks that form a coherent functionality
from the point of view of providers entities and requesters entities. To be used,
a service must be realized by a concrete provider agent.” [14].

The involvement of two roles, namely provider and consumer, is a universal
characteristic of services. Generically, the provider performs activities for the
sake of the consumer. In return, the consumer compensates the provider, e.g.,
in form of payments. Some authors identify additional roles (cf. [7]), like service
creator or the service broker in Web services. Because these roles are only sensible
in particular contexts, we concentrate on the two fundamental roles (and assume
the provider to have also created the service). Considering services as activities
reveals their procedural nature. Services take an input, often provided by the
consumer in form of information or physical goods, and transform it. Services
enable consumption on demand. Service consumers can invoke a service (only)
when they actually need them.

Software Services. Given these fundamental characteristics of services gener-
ically, we now focus on software services. We define a software service as a
deployed capability that is realized by software and provided and consumed
on-demand over networks.

This conceptual view of software services is illustrated in Figure 1. On the
left side, software depicts the implementation of a capability to be provided as a
service. The capability that the software realizes can be an application, a plat-
form, or even an infrastructure. The implementation contains the specification
of interfaces. The interfaces are, however, not accessible before the software is
deployed. Through deployment, the capability is made accessible to consumers,
transforming software into a software service. Technically, through deployment
the software is packed (e.g., within a jar or virtual machine) and loaded into an
execution environment (e.g., a Web server or virtual infrastructure). The inter-
faces defined as part of the software are made accessible to consumers by the
execution environment as service interfaces. The necessity of software services to
be deployed is important to differentiate them from classical software products.

The concept of software services comprises sub-ordinate service classes, two of
which we introduce in the following. Web services denote software that provides

166 E. Wittern and R. Fischer

Software
(status: offline)

Execution environment

Software service
(status: deployed)

Specification,
design,

implementation

Specification,
design,

implementation,
deployment,

operation

Service interfaces

Deployment

Fig. 1. Software service engineering

interoperable machine-to-machine interaction over a network [14]. Atomic Web
services provide a single functionality while composite services compose multiple
Web services. Composite Web services can, again, be offered as service, making
composition a recursive operation [5]. Another class of software services are cloud
services. Cloud computing is about on-demand provisioning of scalable, network-
centric, abstracted IT infrastructures (IaaS), platforms (PaaS) and applications
(SaaS) with a pay-per-use model, utilizing virtual processing and storage re-
sources [2]. While cloud services build on Web service standards, cloud standard
challenges remain, e.g. managing virtual compute or data resources.

3 Related Work

Life-cycle models define phases that a software or service goes through from its
conceptualization to its discontinuation. The goal of such models is to provide
an overview and order of tasks that are relevant for provision and consumption.

Software life-cycle models have long been guiding the practice in the software
engineering domain. They define a set of related activities whose execution leads
to the creation of a software product. These activities typically are specifica-
tion, design and implementation, validation, and evolution [13]. Sequential, non-
iterative descriptions, often referred to as waterfall models, were first formally
described in the 1970s [12]. Recommending approaches foresee that activities
are repeatedly executed to refine software or to continuously approve and adapt
it. For example, the correspondingly named spiral model [4] or the development
models used in agile development [1] are cyclic by nature. An example of a flexi-
ble and iterative software life-cycle model is Rational Unified Process (RUP). It
includes four phases, namely inception, elaboration, construction, and transition,
and activities performed in them, referred to as workflows [9].

Software life-cycle models focus on engineering tasks. Service life-cycle
models are diverse, addressing different service types and different scopes. IT
governance, applies service life-cycle models to prescribe the introduction and en-
forcement of company-wide policies for adopting and operating service-oriented
architectures [7]. The Information Technology Infrastructure Library (ITIL) en-
compasses the phases service design, transition, and operation as well as a variety
of related processes. The Web service development life cycle denotes a method-
ology to software service engineering, fostering analysis, change, and evolution

A Life-Cycle Model for Software Service Engineering 167

of Web services [11]. Engineering cloud service comprises requirements, discov-
ery, negotiation, orchestration, and consumption and monitoring phases [8]. Re-
cently, DevOps proposes the integration of development and operation activities
independent of a service’s status [6].

Assessing how the presented service life-cycle models reflect software service
characteristics, we notice the following shortcomings:

Missing focus on consumption: IT governance and management models pro-
vide holistic views, encompassing organizational aspects. Agile and DevOp
methods focus on parallel provider activities. However, integration of
engineering-related aspects of consuming software services is missing.

Coupling activities with service status: In service engineering, activities
can be performed independent of the service’s status. For example, while
a service’s status is running, providers and consumers may perform design
activities to evolve the service or, respectively, plan its consumption. Current
models assume coupling of service status and activities.

Implied longevity of activities: Frequently used phases imply that a service
remains in a corresponding engineering activity for long time. However, ac-
tivities may in reality only be short-lived, e.g. deployment to cloud infras-
tructure can be a matter of seconds.

4 Our Software Service Life-Cycle Model

Our software services life-cycle model is inspired from existing approaches in
software engineering (especially the RUP) and (Web) service engineering. It
considers three dimensions: (1) two service status, (2) five types of activities,
and (3) two roles, namely providers and consumers.

Service Status are offline or deployed. While a service is offline, it is not avail-
able for consumers. The two status are mutually exclusive, i.e. a service may
only be in one status of the two status at a given time. A service’s status im-
pacts how activities are performed in software service engineering. For example,
changing a deployed service requires deployment activities to be performed so
that continuous service availability is ensured. A service’s status is global in that
it affects both provider and consumer activities.

Activity Types include specification, design, implementation, deployment, and
operation. An overview of the set of provider and consumer activities and their
typical sequence is provided in Figure 2.

Similar to software engineering [13], specification activities define requirements
and constraints on service provision or consumption. Both, provider and con-
sumer check the technical feasibility and perform, e.g., requirements analysis,
specification, or validation. Providers will focus more on the realizability of a
service, while the consumer will, e.g., analyze whether to consume a service.
Consumers perform a service candidate identification in cohesion with the fea-
sibility and requirements activities.

168 E. Wittern and R. Fischer

Consumer
- Feasibility study
- Requirements analysis,
specification, & validation
- Identify service candidates

Provider
- Feasibility study
- Requirements analysis,
specification, & validation

Specification

Consumer
- Select service
- Conceptualize consumption
- Participate in provider's
design

Provider
- Define service concept (e.g.,
ontology, workflows,
architecture, components,
interfaces)

Design

Consumer
- Implement client
- Integrate service (e.g.,
migrate data)

Provider
- Implement software
- Test & validate software

Implementation

Consumer Provider
- Deploy software
- Undeploy service
- Redeploy service

Deployment

Consumer
- Invoke service
- Monitor operation (QoS)
- Trigger service adaptation
- Terminate consumption

Provider
- Monitor & maintain service
- Ensure QoS
- Realize adaptation
- Discontinue service

Operation

Fig. 2. Common provider and consumer activities

In design activities, service providers conceptualize the service and its provi-
sion. Results are the service’s architecture, components, data models, or algo-
rithms. In contrast to software design, software service design activities include
service interfaces, deployment, and runtime methods and tools. The consumers’
design activities plan and conceptualize service consumption. Based on require-
ments, preferences, and service candidates, service selection is performed. New
interfaces or systems to integrate the service with are conceptualized.

Service providers apply implementation activities to realize the service based
on designs. Implementation includes the development of the software artifact,
its testing, and validation. Service consumers realize the envisioned service con-
sumption. Contracting must be performed with the provider, specifying e.g., the
service’s price or service level agreements (SLAs). The consumer’s implementa-
tion activities also include the creation of client components. Integration efforts
may be required to utilize a new service with existing services or systems. When
utilizing services to host systems or data, e.g., cloud infrastructure services, mi-
gration of these systems and / or data is required [10].

Deployment activities transfer the software implementation to a deployed sta-
tus. We differentiate deployment from implementation activities as they do not
necessarily co-occur. For example, recurring deployment of once implemented
cloud services is a common approach to realize horizontal scalability [2]. unde-
ployment transfers a service’s status back to being offline.

Provider-side operation activities ensure ongoing service provision matching
quality of service (QoS) properties. The provider maintains the service, reacting
e.g., to errors, changing amounts of requests and resulting performance impacts,
or adaptation needs. When the provider decides to discontinue the service provi-
sion, corresponding activities, e.g., data retrieval or consumer notification, may
be required. The consumer’s operation activities include, foremost, the actual in-
vocation of the service. Furthermore, consumers may trigger service adaptation,
e.g., in reaction to changed context. When terminating consumption, consumers
may have to retrieve their data or actively dissolute running contracts.

Figure 1 summarizes the relationship of status, activities and software ser-
vices. Gray arrows indicate activities on the service. While the service is offline,

A Life-Cycle Model for Software Service Engineering 169

specification, design, implementation activities can be performed. Deployment
activities lead to a transition of the status. While the service is in deployed sta-
tus, any activity can be performed. This characteristic of our life-cycle model
allows, e.g., consumers to perform design activities while a service is deployed.
Such flexibility is not supported by existing service life-cycle models.

5 Applying the Software Service Life-Cycle Model

We illustrate the usage of our model in a prescriptive way for software service
engineering in this section.

Software Service Variability Service variability denotes the capability of a
service to be provisioned in variants. Variant selection depends on context, e.g.,
on consumer or provider requirements and preferences or external factors. We
use our life-cycle model to structure these activities (see Figure 3).

For providers, offering service variability begins with feasibility assessment
as a specification activity. In design activities, providers conceptualize, assess,
and select variants, using, e.g., methods from software product line engineer-
ing [15]. Providers implement selected variants to be offered to all consumers or
customized variants offered only to a subset of consumers. Implemented variants
are deployed, either in parallel or as a single service where variability is often re-
alized through multi-tenancy [2]. Re-deployment furthermore realize variability.
Operation activities concern the adaption of a service.

Consumers specification activities concern the impact of variability for con-
sumption. For example, the flexibility and configuration options that variability
brings might strengthen the case for service consumption. Consumers’ design ac-
tivities include selection of service variants. Configuration can be used to select
a service variant through provision of predetermined information. Implementa-
tion activities concern client variants. Operation activities include assessing the
consumption of the service variant and eventually triggering adaptation. Adap-
tation may be performed solely as an operation activity, if changing the service
variant does not require re-deployment or selecting another service all together.

Consumer
- Consider impact of variability
on service consumption

Provider
- Assess feasibility of providing
service variability

Specification

Consumer
- Select service (considering
variability)
- Select & compose variants

Provider
- Define & assess variants
(e.g., utilizing modeling)
- Select variant(s) to provide

Design

Consumer
- Implement variant-specific
interfaces

Provider
- Implement variants (for all
consumers)
- Implement consumer-specific
variants (customization)

Implementation

Consumer Provider
- (Re-) deploy selected variant

Deployment

Consumer
- Assess variant consumption
- Trigger service adoption

Provider
- Adapt service on demand

Operation

Fig. 3. Service variability activities throughout our life-cycle model

170 E. Wittern and R. Fischer

Software Service Standardization. Standards define rules, guidelines or fea-
tures for generic and repeated use. Using standards in service engineering reduces
complexity of decisions, e.g., while specifying or designing interfaces. Existing
standards classifications assess standards according to main contributions. Se-
lecting standards according to status, activity or role of the service engineering
life-cycle, however, is not supported. Table 1 shows three standards for engineer-
ing cloud service that a recent study classified most mature [3]. While not being
representative for the current state of standardization, we use these examples
to illustrate the use how our life-cycle model in classifying standards for service
engineering.

The Cloud Data Management Interface (CDMI) defines an interface for stor-
ing and managing data in the cloud. CDMI affects specification and design ac-
tivities of both provider and consumer in offline status. Providers benefit from
adopting CDMI because it guides the specification and design of functional and
managerial data interfaces. Likewise, consumers receive guidance for identify-
ing their requirements or for evaluating general capabilities of potential cloud
services. CDMI further provides guidance to consumers in designing a specific
service consumption. The standard supports selection of services based on func-
tional requirements through querying capabilities. Moreover, CDMI offers service
consumers guidance for operating their cloud storage. For example, it addresses
data management abstractions or access rights management capabilities.

The Open cloud Computing Interface Core (OCCI) defines a set of interfaces
and protocols to manage cloud compute resources. It supports the specification
and design of software artifacts for providers and consumers. Similar to CDMI,
OCCI defines functions for the discovery of a service’s capabilities. In doing
so, OCCI supports consumers with design activities for deployed services, e.g.,
feature-based selection among a set of cloud compute services.

The Open Virtualization Format (OVF) describes a file and exchange format
for virtual appliances. It provides guidance for service providers and consumers
for specifying and designing software features while the service is offline. More-
over, OVF supports consumers with operating the services as it provides the
format that is used to import and export virtual machines.

Table 1. Example: Classification of cloud standards

Standard Scope Roles Status Activities

CDMI
Cloud Data Management
Interface

Provider,
Consumer

Offline Specify, Design

Provider Deployed Design, Operate

OCCI
Interface and protocol for
managing cloud infrastructures

Provider,
Consumer

Deployed Design

Provider Offline Specify, Design

OVF
File and exchange format for
virtual appliances

Provider,
Consumer

Offline Specify, Design

Consumer Deployed Operate

A Life-Cycle Model for Software Service Engineering 171

6 Conclusion

We presented a software service life-cycle model for the engineering of service
provisioning and consumption. It considers the dimensions service status, activ-
ities, and roles. Our model is capable to foster the discussion about activities
related to service variability. It states and structures the activities of providers
and consumer when engineering or consuming variable services. The presented
classifications of cloud service standards allow to better understand these ap-
proaches in the context service engineering. Having influence on the evolution
of software service engineering approaches or their uptake, our life-cycle model
acts in a prescriptive way. We will use this model in future work as a framework
to structure discussions about software service engineering approaches.

References

1. Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J.: Agile Software Development
Methods. Review and Analysis. VTT Publications (2002)

2. Baun, C., Kunze, M., Nimis, J., Tai, S.: Cloud Computing. Web-Basierte Dynamis-
che IT-Services, Springer-Verlag New York Incorporated (March 2011)

3. BMWi: The standardisation environment for cloud computing. Tech. rep. (2012)
4. Boehm, B.W.: A Spiral Model of Software Development and Enhancement. Com-

puter 21(5), 61–72 (1988)
5. Curbera, F., Khalaf, R., Mukhi, N., Tai, S., Weerawarana, S.: The next step in

Web services. Communications of the ACM 46(10), 29–34 (2003)
6. Humble, J., Farley, D.G.: Continuous delivery: reliable software releases through

build, test, and deployment automation. Addison-Wesley, Upper Saddle River
(2010)

7. Janiesch, C., Niemann, M., Steinmetz, R.: The TEXO governance framework. Tech.
rep., SAP Research (2011)

8. Joshi, K.P., Finin, T., Yesha, Y.: Integrated Lifecycle of IT Services in a Cloud
Environment. In: Proceedings of the Third International Conference on the Virtual
Computing Initiative (ICVCI 2009), Research Triangle Park, NC (2009)

9. Kruchten, P.: The Rational Unified Process: An Introduction, 3rd edn. Addison-
Wesley (2004)

10. Menzel, M., Ranjan, R.: CloudGenius: Decision Support for Web Server Cloud
Migration. In: Proceedings of the 21st International Conference on World Wide
Web (WWW 2012), Lyon, France, pp. 979–988 (March 2012)

11. Papazoglou, M.P., Van Den Heuvel, W.J.: Service-oriented design and development
methodology. International Journal of Web Engineering and Technology 2(4), 412–
442 (2006)

12. Royce, W.W.: Managing the Development of Large Software Systems. In: Proceed-
ings of IEEE WESCON, pp. 1–9 (August 1970)

13. Sommerville, I.: Software Engineering, 9th edn. Addison-Wesley (2011)
14. W3C Working Group: Web Services Glossary (2004),

http://www.w3.org/TR/ws-gloss/ (accessed February 21, 2013)
15. Wittern, E., Schuster, N., Kuhlenkamp, J., Tai, S.: Participatory Service Design

through Composed and Coordinated Service Feature Models. In: Liu, C., Lud-
wig, H., Toumani, F., Yu, Q. (eds.) ICSOC 2012. LNCS, vol. 7636, pp. 158–172.
Springer, Heidelberg (2012)

http://www.w3.org/TR/ws-gloss/

A Tale of Millis and Nanos: Time Measurements
in Virtual and Physical Machines

Ulrich Lampe1, Markus Kieselmann1, André Miede2,
Sebastian Zöller1, and Ralf Steinmetz1

1 Multimedia Communications Lab (KOM), TU Darmstadt, Germany
{firstName.lastName}@KOM.tu-darmstadt.de

http://www.kom.tu-darmstadt.de/
2 Fakultät für Ingenieurwissenschaften, HTW des Saarlandes, Saarbrücken, Germany

andre.miede@htw-saarland.de
http://www.htw-saarland.de/

Abstract. Cloud computing makes large infrastructure capacities avail-
able to users in a flexible and affordable fashion, which is of specific in-
terest to scientists for conducting experiments. Unfortunately, our past
research has provided first indications that virtual machines – the most
popular type of cloud-based infrastructure – have substantial deficits
with respect to time measurements, which are an important tool for re-
searchers. In this paper, we provide a detailed analysis on the accuracy of
time measurements based on various machine configurations. They cover
influence factors such as machine type, virtualization solution, and pro-
gramming language. The results indicate that not the use of virtualiza-
tion as such, but the potentially uncontrollable utilization of the physical
host is a decisive factor for the accuracy of time measurements. Different
virtualization solutions and programming languages play an inferior role.
Our findings, along with the publicly released tool TiMeAcE.KOM, can
provide a valuable decision support for researchers in the selection and
configuration of cloud-based experimental infrastructures.

Keywords: cloud computing, infrastructure, virtual machine, experi-
ment, time measurement, accuracy, timeace.

1 Introduction

A key feature of cloud computing is elasticity, i. e., the ability to access Infor-
mation Technology (IT) resources in a flexible and affordable fashion [1]. Apart
from small and medium enterprises, this characteristic is specifically relevant
for researchers, who frequently require large capacities on short term in order to
conduct scientific experiments. In this context, Infrastructure as a Service (IaaS)
offers are of specific interest. They provide flexible environments, i. e., Virtual
Machine (VM) instances, which permit the execution of practically any existing
software without major adaptation [2].

Unfortunately, our past work has provided initial indications that VMs suf-
fer from deficits with respect to the accuracy of time measurements [3]. This is

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 172–179, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Tale of Millis and Nanos 173

problematic in so far as time measurements are an important tool in scientific
research, e. g., in the comparative evaluation of exact and heuristic optimiza-
tion approaches [4]. In this paper, we substantially extend our past research
through the consideration of additional influence factors, e. g., different virtual-
ization solutions and programming languages. This work also extends a recently
published work-in-progress paper [5], which is based on similar results, through
the inclusion of statistical test results and an overview of related work.

The remainder of this paper is structured as follows: Section 2 describes our
experimental design and setup. The results and practical conclusions are de-
scribed in Section 3. Subsequently, Section 4 provides an overview of related
work. Section 5 concludes the paper with a summary and outlook.

2 Experimental Setup

2.1 Measurement Tool

In this work,we pursue the same principal experimental approach as in our past re-
search [3]:We repeatedlymeasure the computation time of a deterministic function
in order to quantify potential inaccuracies in time measurement. Deterministic, in
this context, means that the function exhibits the same computational complexity
for a given input parameter. Thus, the observed computation time for each execu-
tion should also be identical under ideal conditions. Accordingly, variations in the
computation times can directly be related to measurement inaccuracies.

For our experiments, we have implemented a measurement tool, which features
a simple counter function as its core component. The function accepts a single
integer a as argument and returns the required computation time as result. The
tool can be configured to conduct a series of b ∈ N batches. Each batch comprises
c ∈ N calls of the aforementioned counter function, using the arguments a ∈
A = {20, 21, . . . , 2m}, where m ∈ N. The tool automatically adapts the given
argument through multiplication by a so-called machine speed index. This index
is initially determined by the program and ensures that for a given argument a,
the computation time is approximately a × 10 ms, regardless of the underlying
processor. This guarantees that the observed runtimes feature roughly the same
absolute values for identical arguments.

2.2 Experimental Configurations

The aim of our work is to quantify the impact of different potential influence
factors on the accuracy of time measurements, which constitutes the depen-
dent variable in our experiments. Thus, we employ a multitude of different ma-
chine configurations in our experiments, where the influence factors are modeled
through five independent variables.

The first independent variable of interest is the machine type, with respect to
which we distinguish two options. As previously outlined, VMs are the most com-
mon form of IaaS, and are commercially offered based on flexible pay-as-you-go
pricing models today. In contrast, Physical Machines (PMs) represent traditional,

174 U. Lampe al.

dedicated experimental infrastructure. The deployment model is the second inde-
pendent variable in our experiments. Specifically, we consider VMs from a public
cloud (Amazon EC2) and a private cloud that is operated on the basis of multiple
IBM Blade servers at our research lab (KOM). In addition, we made VMs available
using a local host computer. As third independent variable, we regard the virtual-
ization software. Concerning this factor, we distinguish between ESXi, a solution
that is commercially marketed by VMware, and Xen, an open-source software that
forms the basis for Amazon’s Elastic Compute Cloud (EC2). As fourth indepen-
dent variable, we consider the host utilization, i. e., computational load that the
PM or host system for the VMs is subjected to. Concerning this factor, we distin-
guish between three options. In the case of low load, the PM exclusively hosts one
instance of the measurement tool or VM. In the case of high load, the system runs
multiple tool instances or VMs in parallel. Lastly, in the case of random load, the
host utilization is out of our control sphere, and potentially fluctuates during the
experiments. As fifth and final independent variable, we regard the programming
language. For that purpose, we have implemented the measurement tool in simi-
lar form in C and Java. This choice was made because Java as such uses a form of
virtualization, the so-called Java VM, which may potentially influence the mea-
surement accuracy independent of the underlying infrastructure. In contrast, C
does not feature such a concept.

2.3 Measurement Procedure

In principal, we follow a full-factorial approach in our experiments. That is, we
examine each possible combination of values for the five independent variables,
i. e., influence factors, that were introduced in the previous section. However, as
can easily be reasoned, some combinations are mutually exclusive: For example,
Amazon does not provide a choice between different virtualization systems, but
uses Xen as standard solution. Nevertheless, our experiments encompass a total
of 16 different machine configurations, which should provide a comprehensive
overview of different influence factors.

As PM and local host for the VMs, we used a desktop computer, equipped
with an Intel Core 2 Duo processor at 2.0 GHz and 2 GB of memory. Given
that our previous research showed no major differences between Linux and Win-
dows concerning the accuracy of time measurements [3], we exclusively employed
the former as guest operating system in our experiments. Specifically, we chose
Ubuntu Server 12.04.1 LTS, which was booted into the default text-based shell to
minimize the influence of background services. In order to generate high load for
the corresponding configurations, we either launched three parallel VM instances
or measurement tool instances on the physical host.

For every configuration, we conducted 20 experimental batches with 100
method calls each (i. e., b = 20, c = 100). The set of applicable arguments
was specified as A = {20 = 1, ..., 29 = 512}, i. e., m = 9. Thus, we obtained a
total sample of 20, 000 runtime observations per configuration, with subsamples
of 2, 000 observations per argument and machine configuration. In total, across
all 16 configurations, 320, 000 individual observations were collected.

A Tale of Millis and Nanos 175

3 Experimental Results and Practical Recommendations

In accordance with our previous work [3], we use the normalized standard devi-
ation, i. e., the Coefficient of Variation (CV), as measure of accuracy. It is given
by the ratio between the standard deviation (commonly denoted as σ) and the
mean value of the observations (μ) in a sample [6]. The CV numerically rep-
resents the dependent variable in our experiments. Due to the definition of the
CV, higher values indicate lower accuracy and vice versa; hence, in the case of
ideal accuracy, the observed CV would correspond to zero.

A comprehensive overview of all machine configurations, along with the CVs
that were observed of each argument of the counter function, is given in Table 1
in the appendix. The table also provides the relative rank for each configuration
with respect to the observed accuracy per argument.

Given the findings of our previous work [3], which indicated general deficits
of VMs with respect to time measurements, our new experiments provide some
surprises. Specifically, the VMs from the private cloud at our institute provide
the best accuracy for small arguments, i. e., a ≤ 2, among all tested configu-
rations (cf. #13 and 14 in Table 1). For increasing arguments, the VMs lose
some ground to the PMs, specifically when the Java-based implementation of
the measurement tool is used (cf. #2 in Table 1). Nevertheless, a Friedman test
at the common confidence level of 95% shows no significant difference between
the PM-based configurations and the configurations that used VMs from our
cloud (p = 0.5034).

Yet, the results confirm the deficits of public clouds with respect to time
measurements. Notably, the VM instances from Amazon EC2 exhibit the highest
CVs, i. e., lowest accuracy, for most arguments, specifically those in the sub-
second range (cf. #15 and 16 in Table 1). Correspondingly, the Friedman tests
show that VMs from the public cloud perform significantly worse compared to
PMs with low utilization (p = 0.0000). However, in comparison to a PM under
high load, the Friedman test shows no significant difference (p = 0.2632).

Concerning the two virtualization solutions, ESXi and Xen, we obtained mixed
results. On the basis of the locally hosted VMs and low utilization, the observed
CVs indicate some advantages for ESXi with respect to small arguments (i. e.,
a ≤ 2), while the relative performance of Xen improves with growing arguments
(cf. #5, 6, 9, and 10 in Table 1). In addition, Xen achieves more favorable ac-
curacy once high host utilization comes into play; in this case, ESXi generally
appears to perform very poorly (cf. #7 and 8 in Table 1). Correspondingly,
a Friedman test indicates a significant difference between both solutions and
confirms a superior measurement accuracy for Xen across the considered pro-
gramming languages and host utilization (p = 0.0038).

From the above discussion, one may conclude that the host utilization plays
a key role in the accuracy of measurements, and this is strikingly confirmed in
our experiments. Regardless of the machine type and virtualization software,
imposing additional load on the physical host results in sharp increases in the
observed CVs (cf. #7, 8, 11, and 12 in Table 1). The same applies for the PM
(cf. #3 and 4 in Table 1). Accordingly, the Friedman tests confirm the role of

176 U. Lampe al.

T
ab

le
1.

O
bs

er
ve

d
ti
m

e
m

ea
su

re
m

en
t

ac
cu

ra
ci

es
,
i.

e.
,
co

effi
ci

en
ts

of
va

ri
at

io
n,

by
m

ac
hi

ne
co

nfi
gu

ra
ti

on
.
V

al
ue

s
in

pa
re

nt
he

se
s

de
no

te
th

e
ra

nk
am

on
g

al
l

co
nfi

gu
ra

ti
on

s
fo

r
th

e
gi

ve
n

ar
gu

m
en

t,
or

de
re

d
fr

om
m

os
t

ac
cu

ra
te

(1
)

to
le

as
t

ac
cu

ra
te

(1
6)

.
A

bs
ol

ut
e

ru
nt

im
es

fo
r

th
e

co
un

te
r

fu
nc

ti
on

ap
pr

ox
im

at
el

y
co

rr
es

po
nd

to
a
×

1
0

m
s.

A
bb

re
vi

at
io

ns
:M

/T
(M

ac
hi

ne
T

yp
e)

,D
/M

(D
ep

lo
ym

en
t

M
od

el
),

V
/S

(V
ir
tu

al
iz

at
io

n
So

ft
w

ar
e)

,
H

/U
(H

os
t

U
ti

liz
at

io
n)

,
P

/L
(P

ro
gr

am
m

in
g

L
an

gu
ag

e)
.

#
M

ac
h
in

e
C

on
fi
gu

ra
ti

on
F
u
n
ct

io
n

A
rg

u
m

en
t

M
/T

D
/M

V
/S

H
/U

P
/L

a
=

1
a
=

2
a
=

4
a
=

8
a
=

1
6

a
=

3
2

a
=

6
4

a
=

1
2
8

a
=

2
5
6

a
=

5
1
2

1
P

M
n
/a

n
/a

L
ow

C
0.

01
23

(3
)

0.
00

90
(3

)
0.

00
65

(5
)

0.
00

48
(5

)
0.

00
34

(5
)

0.
00

25
(5

)
0.

00
18

(5
)

0.
00

14
(5

)
0.

00
11

(3
)

0.
00

08
(5

)
2

P
M

n
/a

n
/a

L
ow

Ja
va

0.
03

28
(6

)
0.

04
03

(6
)

0.
00

05
(1

)
0.

00
03

(1
)

0.
00

02
(1

)
0.

00
03

(2
)

0.
00

01
(1

)
0.

00
01

(2
)

0.
00

00
(1

)
0.

00
00

(1
)

3
P

M
n
/a

n
/a

H
ig

h
C

0.
39

90
(9

)
0.

22
13

(9
)

0.
13

04
(9

)
0.

12
05

(9
)

0.
13

52
(1

2)
0.

13
06

(1
3)

0.
12

05
(1

3)
0.

10
61

(1
5)

0.
09

65
(1

5)
0.

08
23

(1
5)

4
P

M
n
/a

n
/a

H
ig

h
Ja

va
0.

55
27

(1
0)

0.
38

76
(1

0)
0.

31
52

(1
0)

0.
28

14
(1

2)
0.

25
01

(1
4)

0.
22

90
(1

4)
0.

20
78

(1
6)

0.
17

95
(1

6)
0.

16
67

(1
6)

0.
14

96
(1

6)
5

V
M

L
oc

al
E

S
X

i
L
ow

C
0.

01
72

(4
)

0.
00

96
(4

)
0.

00
78

(6
)

0.
00

65
(6

)
0.

01
05

(7
)

0.
00

67
(7

)
0.

00
63

(6
)

0.
01

27
(8

)
0.

00
40

(6
)

0.
00

44
(7

)
6

V
M

L
oc

al
E

S
X

i
L
ow

Ja
va

0.
02

90
(5

)
0.

02
03

(5
)

0.
02

26
(7

)
0.

00
85

(7
)

0.
00

57
(6

)
0.

00
45

(6
)

0.
01

95
(8

)
0.

00
86

(6
)

0.
00

48
(7

)
0.

00
33

(6
)

7
V

M
L
oc

al
E

S
X

i
H

ig
h

C
1.

59
58

(1
4)

1.
15

53
(1

5)
0.

81
51

(1
5)

0.
60

14
(1

6)
0.

44
40

(1
5)

0.
30

63
(1

5)
0.

17
25

(1
4)

0.
07

89
(1

3)
0.

04
06

(1
3)

0.
02

11
(1

3)
8

V
M

L
oc

al
E

S
X

i
H

ig
h

Ja
va

1.
65

90
(1

5)
1.

24
90

(1
6)

0.
83

56
(1

6)
0.

58
77

(1
5)

0.
47

83
(1

6)
0.

34
20

(1
6)

0.
19

34
(1

5)
0.

08
22

(1
4)

0.
04

24
(1

4)
0.

02
34

(1
4)

9
V

M
L
oc

al
X

en
L
ow

C
0.

08
92

(7
)

0.
06

77
(7

)
0.

04
94

(8
)

0.
03

46
(8

)
0.

02
59

(8
)

0.
01

81
(8

)
0.

01
32

(7
)

0.
01

04
(7

)
0.

00
81

(8
)

0.
00

66
(1

0)
10

V
M

L
oc

al
X

en
L
ow

Ja
va

0.
24

63
(8

)
0.

07
33

(8
)

0.
00

29
(3

)
0.

00
05

(2
)

0.
00

02
(2

)
0.

00
01

(1
)

0.
00

01
(2

)
0.

00
01

(1
)

0.
00

02
(2

)
0.

00
02

(2
)

11
V

M
L
oc

al
X

en
H

ig
h

C
1.

19
25

(1
3)

0.
77

90
(1

3)
0.

50
21

(1
3)

0.
28

73
(1

3)
0.

12
66

(1
1)

0.
06

81
(1

1)
0.

03
61

(1
1)

0.
01

98
(1

2)
0.

01
15

(1
1)

0.
00

77
(1

2)
12

V
M

L
oc

al
X

en
H

ig
h

Ja
va

1.
08

30
(1

1)
0.

71
12

(1
2)

0.
44

49
(1

2)
0.

24
89

(1
1)

0.
11

35
(1

0)
0.

05
97

(1
0)

0.
02

96
(1

0)
0.

01
57

(9
)

0.
00

90
(9

)
0.

00
55

(8
)

13
V

M
P

ri
va

te
E

S
X

i
L
ow

C
0.

00
28

(1
)

0.
00

23
(1

)
0.

00
27

(2
)

0.
00

21
(3

)
0.

00
18

(3
)

0.
00

14
(3

)
0.

00
11

(3
)

0.
00

08
(3

)
0.

00
13

(5
)

0.
00

05
(3

)
14

V
M

P
ri

va
te

E
S
X

i
L
ow

Ja
va

0.
01

18
(2

)
0.

00
74

(2
)

0.
00

29
(4

)
0.

00
22

(4
)

0.
00

22
(4

)
0.

00
17

(4
)

0.
00

17
(4

)
0.

00
10

(4
)

0.
00

13
(4

)
0.

00
06

(4
)

15
V

M
P

u
b
li
c

X
en

R
an

d
om

C
1.

74
77

(1
6)

1.
09

45
(1

4)
0.

65
65

(1
4)

0.
31

50
(1

4)
0.

15
03

(1
3)

0.
08

86
(1

2)
0.

04
05

(1
2)

0.
01

96
(1

1)
0.

01
18

(1
2)

0.
00

61
(9

)
16

V
M

P
u
b
li
c

X
en

R
an

d
om

Ja
va

1.
13

98
(1

2)
0.

62
93

(1
1)

0.
35

76
(1

1)
0.

17
83

(1
0)

0.
09

74
(9

)
0.

04
99

(9
)

0.
02

71
(9

)
0.

01
59

(1
0)

0.
01

08
(1

0)
0.

00
75

(1
1)

A Tale of Millis and Nanos 177

the host utilization as decisive factor in measurement accuracy, both for PMs
and VMs (p = 0.0000 in both cases).

Concerning the impact of the programming language, we observe very mixed
results. Neither C nor Java consistently achieves higher accuracy across all con-
sidered machine configurations (cf., for example, #1, 2, 15, and 16 in Table 1).
In accordance, a Friedman test indicates no significant differences between both
programming languages at a 95% confidence level (p = 0.8701).

In conclusion, the experimental results in this paper – to some extent – rela-
tivize the preliminary findings of our previous work: Most notably, we have found
that contemporary virtualization technology as such does not necessarily imply
deficits with respect to the accuracy of time measurements. In fact, the lowest
CVs, i. e., best accuracies, among all machine configurations in our experiments
were observed on VM instances from a private cloud. Likewise, those VMs that
were hosted on a single physical host performed very similarly to a “raw” PM.

Our experiments have shown that a different influence factor, namely host
utilization, is the key determinant for time measurement inaccuracies. Unfortu-
nately, this is the very factor that commonly lies out of the control sphere of the
end user when leasing resources from a public cloud; in fact, from the viewpoint
of the cloud provider, the consolidation of multiple VMs on a single physical host
is highly desirable in order to reduce operational cost. The same also applies to a
private cloud in principal, even though the level of control may be higher for the
end user in such deployment model. To state it more explicitly, virtualization
does not hurt the accuracy time measurement, but high host utilization – which
is a key benefit of virtualization – does.

Hence, our results confirm the most important recommendation of our previ-
ous work: If accurate time measurements, specifically in the sub-second range,
are required in scientific experiments, dedicated PMs should be preferred over
VMs. Yet, if host utilization as the key influence factor can be effectively con-
trolled by the end user, VMs may also provide acceptable accuracy. In this con-
text, dedicated VM instances with performance guarantees – which have recently
appeared in the public cloud market – could be of interest as well.

In order to help scientists in the assessment of experimental infrastructures, we
have created a lightweight tool called Time Measurement Accuracy Estimation
(TiMeAcE.KOM). This tool, which is available through our Web site1, automat-
ically conducts a small set of measurements using a simple counter function, and
provides a textual assessment of measurement accuracies.

4 Related Work

To the best of our knowledge, our previous work [3] and the present paper is
the only research that specifically examines the accuracy of time measurements
in physical and virtual environments. However, with the renewed interest in
virtualization technology and the hype around cloud computing, various research
efforts have been undertaken in related fields recently.
1 http://www.kom.tu-darmstadt.de/timeace/

http://www.kom.tu-darmstadt.de/timeace/

178 U. Lampe al.

In this context, timekeeping on VMs is the first major area of interest. A
comprehensive overview of this topic has been provided in a whitepaper by
VMware [7]. The authors provide an extensive background on timekeeping mech-
anisms on PMs. Based on this, they outline different options for timekeeping in
virtualized environments and also provide hints for improving timekeeping ac-
curacy. A specific proposal for improving the timekeeping VMs in Xen has been
made by Chen et al. [8]. Their approach, called XenHVMAcct, aims to provide
the same accuracy in hardware-assisted VMs, which use an unmodified guest
operating system, as in para-virtualized VMs that rely on modified systems.
Broomhead et al. [9] also introduce an improved timekeeping mechanism in the
context of Xen. Their work specifically targets clock inaccuracies that are intro-
duced by live migration operations.

The second notable area of related research concerns performance evalua-
tions in cloud computing environments. El-Khamra et al. [10], for example, have
examined the runtime fluctuations of a scientific workflow in FutureGrid, a sci-
entific Grid testbed, and the commercial Amazon EC2 cloud. The authors also
find relatively large variations in runtime, but attribute them to performance
fluctuations, rather than timekeeping deficits. Schad et al. [11] have conducted
a longitudinal study of performance variations in Amazon EC2 using a suite
of benchmarks. They find substantial fluctuations in the performance of dif-
ferent system components, such as processor and network, and conclude that
the conduction of performance experiments on leased VMs can be problematic.
However, Schad et al. do not take the potential systematic weaknesses of time
measurements in virtualized environments into account either.

5 Summary and Outlook

Commercial cloud providers make large pools of compute capacity available to
end users based on a pay-as-you-go scheme. This is of specific interest to re-
searchers, who can exploit VM instances to conduct scientific experiments. How-
ever, past research has indicated that VMs suffer from inaccuracy when it comes
to time measurements, which are a common instrument in science, e. g., in the
assessment of heuristic optimization approaches. Based on this notion, this work
provided an extensive analysis concerning the accuracy of time measurements de-
pending on different influence factors, namely machine type, deployment model,
virtualization software, host utilization, and programming language.

We found that the machine type, i. e., the use of virtualization as such, is not
a key determinant of time measurement inaccuracies; instead, the utilization of
the physical host plays a decisive role. According to our observations, a high
degree of load on the physical host – as it can likely be expected in cloud data
centers due to the use of consolidation techniques – results in dramatic loss of
accuracy. Furthermore, we concluded that the virtualization software Xen has
small advantages over ESXi. For the two considered programming languages,
C and Java, we observed no statistically significant results with respect to time
measurement accuracy. Based on our findings, we recommend scientists to either

A Tale of Millis and Nanos 179

use PMs or VMs from a controlled environment if accurate time measurements,
specifically in the sub-second range, are required.

For the future, we plan to extend our existing work through a longitudinal
(i. e., long-term) study with different commercial cloud providers. With such
design, we expect to identify the impact of potential performance fluctuations on
the accuracy of time measurements. Furthermore, these additional experiments
may permit fellow scientists to make a more educated decision among competing
cloud offers.

Acknowledgments. This work has been sponsored in part by the E-Finance
Lab e. V., Frankfurt a. M., Germany (www.efinancelab.de).

References

1. Owens, D.: Securing Elasticity in the Cloud. Comm. of the ACM 53(6), 46–51
(2010)

2. Briscoe, G., Marinos, A.: Digital Ecosystems in the Clouds: Towards Community
Cloud Computing. In: Proc. of DEST 2009 (2009)

3. Lampe, U., Miede, A., Richerzhagen, N., Schuller, D., Steinmetz, R.: The Virtual
Margin of Error – On the Limits of Virtual Machines in Scientific Research. In:
Proc. of CLOSER 2012 (2012)

4. Silver, E.: An Overview of Heuristic Solution Methods. J. of the Operational Re-
search Society 55, 936–956 (2004)

5. Lampe, U., Kieselmann, M., Miede, A., Zöller, S., Steinmetz, R.: On the Accuracy
of Time Measurements in Virtual Machines. In: Proc. of CLOUD 2013 (2013)

6. Jain, R.K.: The Art of Computer Systems Performance Analysis: Techniques for
Experimental Design, Measurement, Simulation, and Modeling. Wiley (1991)

7. VMware, Inc.: Timekeeping in VMware Virtual Machines (2011), http://
www.vmware.com/files/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf

8. Chen, H., Jin, H., Hu, K.: XenHVMAcct: Accurate CPU Time Accounting for
Hardware-Assisted Virtual Machine. In: Proc. of PDCAT 2010 (2010)

9. Broomhead, T., Cremean, L., Ridoux, J., Veitch, D.: Virtualize Everything But
Time. In: Proc. of OSDI 2010 (2010)

10. El-Khamra, Y., Kim, H., Jha, S., Parashar, M.: Exploring the Performance Fluc-
tuations of HPC Workloads on Clouds. In: Proc. of CloudCom 2010 (2010)

11. Schad, J., Dittrich, J., Quiané-Ruiz, J.: Runtime Measurements in the Cloud: Ob-
serving, Analyzing, and Reducing Variance. In: Proc. of the VLDB Endowment,
vol. 3(1–2), pp. 460–471 (2010)

www.efinancelab.de
http://www.vmware.com/files/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf
http://www.vmware.com/files/pdf/techpaper/Timekeeping-In-VirtualMachines.pdf

A UML Profile for Modeling Multicloud

Applications

Joaqúın Guillén1, Javier Miranda1, Juan Manuel Murillo2, and Carlos Canal3

1 Gloin, Calle de Las Ocas 2, Cáceres, Spain
{jguillen,jmiranda}@gloin.es

2 Department of Information Technology and Telematic Systems Engineering,
University of Extremadura, Spain

juanmamu@unex.es
3 Department of Computer Science, University of Málaga, Spain

canal@lcc.uma.es

Abstract. The benefits of counting with a high number of providers for
developing cloud applications are overshadowed by the vendor lock-in is-
sue, which makes it difficult for service-based applications to be migrated
and replicated in new platforms. The MULTICLAPP framework tackles
this issue by providing a three stage development process for building
multicloud applications where developers do not require specific exper-
tise on cloud technologies. The application modeling stage is described
in this paper, where a UML profile is used for modeling applications
in a platform independent manner. Multicloud applications are modeled
as a composition of software artefacts, where each can be assigned to a
different platform. This provides an intuitive way of modeling applica-
tions, and when integrated in the MULTICLAPP framework, makes it
easier for them to be developed, maintained and redeployed in different
platforms.

1 Introduction

Cloud Computing has gained a great acceptance over the past years thanks to
the utility computing business model with which it is commercialized and the
wide range of services it provides to simplify the construction and management
of applications. However, the use of cloud services couples user applications to
vendor specific service definitions. Hence, the so called vendor lock-in [3] issue
becomes one of the main challenges that users have to cope with in the process
of adopting cloud technologies.

Vendor lock-in is not the only issue to consider whilst developing software
that will be deployed in a cloud platform. Software systems are sometimes com-
prised of different components which are subject to different sets of requirements
that are only satisfied if a multicloud deployment scenario is considered. How-
ever developing those types of applications is currently a big challenge since the
development tools and IDEs distributed by providers do not consider this as an
option. Furthermore, the need for developing cloud applications is growing and
this issue must be confronted.

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 180–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A UML Profile for Modeling Multicloud Applications 181

In order to tackle each of these problems the MULTICLAPP Framework has
been designed for developing multicloud applications in three stages. The two
final stages were described in [7][4], and the initial stage is described in this
paper with the inclusion of a UML profile for modeling multicloud applications.

The remainder of this paper is structured as follows. In Section 2 we present
the motivations of our work, and more particularly the limitations of current
proposals. A UML profile for modeling multicloud applications is described in
Section 3. Section 4 provides a brief description of the MULTICLAPP frame-
work and describes how the UML profile has been integrated in the framework.
Section 5 presents a real case study where an application was modeled using
MULTICLAPP. In Section 6 the related works are discussed and their differ-
ences with our solution are analysed. Finally, Section 7 contains the conclusions
extracted from our work.

2 The Fine Print of Cloud Computing

Most people think of cloud computing as an extremely powerful and innovative
technology that allows their organizations to actively compete against corpo-
rations with higher technological infrastructures, thanks to its affordable costs
and its flexible business model. However this is only a biased view of the picture,
which may turn out misleading if all of the factors related to cloud computing
are not taken into account. Its adoption is often characterized by the vendor
lock-in and by the difficulties that must be confronted if users wish to develop
multicloud applications.

In order to mitigate the vendor lock-in issue the industry is currently work-
ing on different standardization initiatives that aim to homogenize the services
provided by the existent providers. These were summarised in [7], where we out-
lined that neither of them have been adopted by the industry, and that their
success can only be considered in a long-term basis. Therefore we consider that
standardization initiatives must not be taken as the only means of combating
vendor lock-in.

An alternative to standardization, which is commonly used for developing
multicloud migratable applications, is the use of middleware platforms that cre-
ate an abstraction between the applications and the cloud infrastructure. They
constitute valid and robust solutions which are very popular both at academic
[6][10] as well as at industrial [5][9] levels. Nevertheless these solutions shift the
lock-in issue from the cloud to the middleware platforms.

As an alternative, model driven development (MDD) provides the means for
constructing single and multicloud applications which are not coupled to any
specific platform. The use of models allows system architects and developers
to abstract their applications from specific cloud platforms. Applications are
modeled and transformations are applied upon them in order to generate source
code that complies with the requirements and services of the targeted platforms.
However the existent approaches based on MDD do not generate the complete
source code of the modeled applications and thereby require developers to enrol

182 J. Guillén et al.

themselves in the complex task of working with generated source code that is
tightly coupled to specific platforms.

To sum up, our motivations for the development of the UML profile presented
in this paper, and for its integration in the MULTICLAPP framework, are based
on the great number of difficulties that must be faced in order to model and de-
velop multicloud applications and at the same time mitigate the risks associated
with the adoption of cloud computing; i.e. those related to vendor lock-in and
interoperability issues.

3 Design of the UML Profile

The UML profile that has been designed for modeling multicloud applications
is illustrated in Figure 1.

Fig. 1. MULTICLAPP UML Profile

Since we seek to model applications that can be deployed across multiple
clouds without including platform specific information into the models, parti-
tions of the applications have to be identified. Each of these partitions have
been denominated cloud artefacts and are represented in the profile with the
CloudArtefact stereotype. A cloud artefact is a software component that can be
deployed in a cloud platform and that interoperates with other artefacts as well
as with the services that it requires from the platform in which it is deployed.
Artefacts are not assigned to cloud platforms whilst applications are being mod-
eled in order to guarantee that the models are fully cloud agnostic.

All the classes and components that make up an application are stereotyped as
CloudArtefactElement. This allows them to be assigned to at least one artefact,

A UML Profile for Modeling Multicloud Applications 183

such that elements found within an artefact are deployed in the same platform,
and therefore interoperate with one another locally, whereas those found in dif-
ferent artefacts interoperate with one another remotely.

Application models also include all the information required for artefacts to
interoperate with one another and with the services provided by the cloud plat-
form. Therefore the services required and provided by each artefact must be
stated. This is achieved by establishing use and extends relationships with the
CloudArtefactInterface stereotype, respectively.

Notice that since artefacts are not mapped to any specific platform during the
modeling stage, it is only the Type of service required by each artefact that is
identified. These types can be mapped to specific cloud service instances in sub-
sequent development stages. Similarly, models also represent the dependencies
that exist between artefacts and specify the interfaces through which interoper-
ability between dependent artefacts is carried out.

Finally, the interest to develop multicloud applications is commonly motivated
by the different non-functional requirements that each part of an application may
be subject to, such as the response time of certain components or the physical
location where they can be deployed. This information is present in the models
for each cloud artefact through the use of the QoSParameter stereotype which
contains three tagged values (Property, Operator and Value) that allow simple
expressions to be formulated. Such expressions are interpreted during model
transformations by a decision support system that assists the architect in the
process of choosing the most suitable platform for a given artefact based on the
platform’s SLA offering.

4 The MULTICLAPP Framework

MULTICLAPP allows applications to be constructed in three stages: cloud ap-
plications are modeled in the first stage, the applications’ functional behaviour
is coded in the second stage, and specific cloud compliant artefacts are generated
through an automated procedure in the third stage. An overview of the frame-
work’s development process is provided in [7]; the second and third development
stages are detailed in [4].

During the application modeling stage, the UML profile presented in this
paper is used to model multicloud applications. These models are then pro-
cessed by a Model Transformation Engine that allows artefacts to be assigned to
specific cloud platforms. The model transformations generate software projects
composed of class skeletons and a XML-coded deployment plan that contains all
cloud-related information. This allows the source code to be independent from
any cloud platform and makes it easier for developers to code the application’s
functional behaviour without having to be familiarized with the peculiarities of
any cloud.

Applications that have been fully coded and for which a deployment plan
has been generated are processed by a Source Transformation Engine, which
generates each of the cloud artefacts identified in the deployment plan [8].

184 J. Guillén et al.

Each artefact complies with the specifications of its assigned platform. It con-
tains automatically generated adapters that allow it to interoperate with its
dependant artefacts and with the cloud specific services that it requires. Once
they are generated, the artefacts can be deployed in their cloud platforms.

5 Modeling a Multicloud Application

The MULTICLAPP framework described in this paper has been used in some
of the projects carried out by Gloin to model and develop applications hosted
in multicloud environments. In this section an excerpt of a cloud application
model designed for one of those projects is presented in order to illustrate how
the profile described in Section 3 was applied.

The project from which the application model has been taken consisted of
a data quality project that was developed in the scope of the author rigths
business. Its goal consisted on analysing large heterogeneous data sets in order to
produce statistics and metadata about the analysed information. The numerous
data sources that had to be analysed, the high volume of information that they
contained, and the large number of use cases that had to be implemented, were
factors that greatly increased the complexity of the project. Multiple components
had to be constructed and integrated with one another, preferably using cloud
environments to deploy the software in order to benefit from its low start-up
costs and its high potential for scalability.

Each of the project’s stakeholders imposed their own requirements regarding
the platform and location in which certain components had to be executed, such
that components had to be distributed across different platforms. Furthermore,
building software that was decoupled from the cloud was a critical factor since
some of the software components of the project had to be replicated in different
platforms for performance reasons.

Figure 2 presents an excerpt of a model where the profile presented in Sec-
tion 3 was applied to two interdependent software components developed in the
project: an administration panel that provides a centralized interface from which
to monitor and control the remaining components, and a data processing mod-
ule that generates statistics and metadata that is sent out to other components.
The data processing module is also responsible of authenticating and validating
incoming requests from the administration panel; this is done through a security
management module that validates the permissions of each user. Furthermore,
the data processing module also provides the administration panel with moni-
toring information about its execution.

The QoS requirements of each of these components also differed from one
another. Whilst the administration panel was not subject to any particular non-
functional requirements, legal restrictions enforced the data processing compo-
nent to be physically deployed in Spain since it managed sensible data that
included the users’ roles and permissions. An additional non-functional require-
ment of the data processing component was that it required a storage space
greater than 1GB in order for its security management module to save all user
related information.

A UML Profile for Modeling Multicloud Applications 185

Fig. 2. Cloud application model excerpt

These requirements led to the decision of splitting the application into two
direferent artefacts, containing the administration panel on one hand, and the
data processor and security manager on the other. All elements assigned to
AdministrationArtefact could potentially be deployed in a specific cloud which
has been illustrated as Cloud A, and those assigned to ProcessorArtefact could
potentially be assigned to a different one, illustrated as Cloud B. In this case
the architect assigned AdministrationArtefact to Amazon’s EC2 platform where
other administration components were also hosted. On the other hand Processo-
rArtefact was assigned to a private OpenNebula1 instance in which a MongoDB
database was installed; such configuration satisfied the data processor’s storage
and geographic deployment restrictions.

6 Related Work

Amongst the existent approaches for modeling cloud applications, CloudML[2] is
currently one of the most mature works in this area. It lies under the scope of the
FP7 REMICS project2 and it proposes an extension of SoaMl for incorporating
information into the models about the hardware and network resources that
are required by the applications from their correspondent platforms. This allows
cloud instances to be automatically generated with the modeled configurations
through the use of an engine (CloudML Engine). It differs from the approach
presented in this paper since it is mainly focused on managing how instances
are provisioned. Furthermore, whilst the CloudML approach generates source
code that can be deployed in the supported platforms using the JClouds API

1 http://opennebula.org/
2 http://www.remics.eu/

http://opennebula.org/
http://www.remics.eu/

186 J. Guillén et al.

abstraction, MULTICLAPP follows an alternate approach that relies on the use
of software adaptation techniques to allow the artefacts to interoperate with
platform specific services.

MODAClouds[1] is another European FP7 project which shares some of the
motivations of the MULTICLAPP framework for developing muticloud applica-
tions. The project is currently at an early stage of development and its goal con-
sists on allowing system developers to design software in a cloud agnostic manner,
allowing it to be instantiated and deployed across mutiple clouds. MODAClouds
uses three different levels of abstraction to model multicloud applications: a
Computation Independent Model (CIM) in which non-functional requirements
are modeled, a Cloud-Provider Independent Model (CPIM) where cloud con-
cepts are introduced into the model but kept away from any specific platform,
and a Cloud-Provider Specific Model (CPSM) in which the artefacts required by
each specific platform are introduced into the models. It differs from the MULTI-
CLAPP approach in the generation of cloud dependent models (CPSM), whereas
MULTICLAPP transforms the cloud independent models into software projects
that contain a deployment plan in which all cloud related information is found.
Furthermore it is yet unknown whether the proposal will be complemented with
tools that allow developers to work with the generated source code.

Both of these works rely on model transformations to generate software arte-
facts that can be deployed in their supported platforms and consume the services
provided by each platform. Nevertheless, considering that applications can be
of any functional nature and that therefore do not belong to any particular
domain, in their current state of work, none of these proposals generate the
complete source code of an application directly from the models. Instead they
require developers to code the applications and integrate this source code into
the artefacts generated from the model transformations. Managing this source
code can be quite complex and in most cases will require developers to be familiar
with the peculiarities of the targeted cloud platforms.

7 Conclusions

MDD applied to cloud computing is currently a topic of interest for academics
due to its great potential for combatting vendor lock-in. Furthermore, it becomes
a lot more interesting when applied to multicloud applications since the increased
complexity of their source code is largely simplified through the use of models.
Nevertheless MDD applied to cloud and multicloud applications is still at a very
early stage, and proof of this is that no proposal has yet been widely undertaken
by the industry.

The MULTICLAPP framework’s approach for modeling cloud applications
has been engineered such that developers can code applications as if they were
hosted in in-house environments, thereby favouring the software’s independence
and maintainability. Special attention has been put into designing a development
process under which developers are not required to modify cloud dependent
source code.

A UML Profile for Modeling Multicloud Applications 187

The framework is currently under development and work is being done in
order to enhance its capabilities. More specifically, we are looking to replace the
current approach for modeling non-functional requirements by an existent QoS
modeling standard. Different alternatives have been analysed and the QFTP
UML profile has been chosen as the most suitable solution since it consists on
an OMG standard for modeling QoS requirements on software components and
services, which can be publicly accessed and used in any UML profile.

Acknowledgments. This work has been partially funded by the Spanish Gov-
ernment under Projects TIN2011-24278, TIN2012-34945 and TIN2012-35669. It
has also been funded by the Government of Extremadura and FEDER funds.

References

1. Ardagna, D., Di Nitto, E., Mohagheghi, P., Mosser, S., Ballagny, C., D’Andria,
F., Casale, G., Matthews, P., Nechifor, C.-S., Petcu, D., Gericke, A., Sheridan, C.:
Modaclouds: A model-driven approach for the design and execution of applications
on multiple clouds. In: 2012 ICSE Workshop on Modeling in Software Engineering
(MISE), pp. 50–56 (2012)

2. Brandtzaeg, E., Mosser, S.: Towards CloudML, a Model-based Approach to Pro-
vision Resources in the Clouds. In: Proceedings of the Model-Driven Engineering
for and on the Cloud workshop (co-located with ECMFA 2012)(CloudMDE 2012)
(257793) (2012)

3. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina,
J.: Controlling Data in the Cloud: Outsourcing Computation without Outsourcing
Control. In: Security, pp. 85–90 (2009)

4. Guillén, J., Miranda, J., Murillo, J.M., Canal, C.: A service-oriented framework
for developing cross cloud migratable software. Journal of Systems and Software
(currently in print, 2013)

5. JClouds. JClouds (2011), http://www.jclouds.org/
6. Di Martino, B., Petcu, D., Cossu, R., Goncalves, P., Máhr, T., Loichate, M.: Build-

ing a mosaic of clouds. In: Guarracino, M.R., Vivien, F., Träff, J.L., Cannatoro,
M., Danelutto, M., Hast, A., Perla, F., Knüpfer, A., Di Martino, B., Alexander,
M. (eds.) Euro-Par-Workshop 2010. LNCS, vol. 6586, pp. 571–578. Springer, Hei-
delberg (2011)

7. Miranda, J., Guillén, J., Murillo, J.M., Canal, C.: Enough about standardization,
let’s build cloud applications. In: Proceedings of the WICSA/ECSA 2012 Com-
panion Volume on - WICSA/ECSA 2012, p. 74 (2012)

8. Miranda, J., Murillo, J.M., Guillén, J., Canal, C.: Identifying adaptation needs to
avoid the vendor lock-in effect in the deployment of cloud sbas. In: Proceedings of
the 2nd International Workshop on Adaptive Services for the Future Internet and
6th International Workshop on Web APIs and Service Mashups, WAS4FI-Mashups
2012, pp. 12–19. ACM, New York (2012)

9. Rightscale. Multi-cloud platform (2006)
10. Tsai, W.-T., Sun, X., Balasooriya, J.: Service-Oriented Cloud Computing Architec-

ture. In: 2010 Seventh International Conference on Information Technology: New
Generations, pp. 684–689 (2010)

http://www.jclouds.org/

Towards Cross-Layer Monitoring

of Multi-Cloud Service-Based Applications

Chrysostomos Zeginis, Kyriakos Kritikos, Panagiotis Garefalakis,
Konstantina Konsolaki, Kostas Magoutis, and Dimitris Plexousakis

Institute of Computer Science
Foundation for Research & Technology – Hellas

Heraklion 70013, Greece
{zegchris,kritikos,pgaref,konsolak,magoutis,dp}@ics.forth.gr

Abstract. Cloud computing is becoming a popular platform to de-
liver service-based applications (SBAs) based on service-oriented archi-
tecture (SOA) principles. Monitoring the performance and functionality
of SBAs deployed on multiple Cloud providers (in what is also known as
Multi-Cloud setups) and adapting them to variations/events produced by
several layers (infrastructure, platform, application, service, etc.) in a
coordinated manner are challenges for the research community. This pa-
per proposes a monitoring framework for Multi-Cloud SBAs with two
main objectives: (a) perform cross-layer (Cloud and SOA) monitoring
enabling concerted adaptation actions; (b) address new challenges raised
in Multi-Cloud SBA deployment. The proposed framework is empirically
evaluated on a real-world Multi-Cloud setup.

Keywords: Cloud computing, service-oriented architecture, monitor-
ing, modeling, event processing, service dependencies.

1 Introduction

Cloud computing emerges as a dominant IT services paradigm that enterprizes
increasingly acknowledge for its ability to flexibly host applications over man-
aged virtualized infrastructures. As in any distributed application hosting en-
vironment, Clouds must support extensive monitoring mechanisms to aid in
controlling application performance and adapt to infrastructure variations.

Considering the close relations between Cloud (IaaS, PaaS and SaaS) and
SBAs layers (Business Process and Management (BPM), Service Composition
and Coordination (SCC) and Service Infrastructure (SI) [9]), it is essential to
perform and correlate monitoring across all layers. While it is hard to overesti-
mate the value of effective monitoring (strong infrastructure control, support for
elasticity policies and quality of service (QoS)), most related approaches are frag-
mented (confined within a specific Cloud provider or service layers) and not ap-
plicable/aligned across layers. Multi-Cloud SBA deployment further complicates
this due to lack of cross-platform support for uniform monitoring solutions [3].

This paper addresses the cross-layer Cloud SBA monitoring by exploiting the
dependencies among layers and using the event patterns concept. It supports

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 188–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Towards Cross-Layer Monitoring of Multi-Cloud Service-Based Applications 189

Multi-Cloud SBA deployment by distributing a monitoring mechanism across
Cloud providers. Our monitoring framework relies on an event model to specify
the possible monitored SBA events in a Cloud environment, and a component
model to describe component dependencies [8] and capture system snapshots at
any particular time point. Our evaluation indicates that collecting monitored
events can be effectively distributed across Cloud providers. Event retrieval and
publication towards a rule engine can be efficiently performed from any location.

The paper is structured as follows. Section 2 describes the architecture of our
monitoring engine and implementation details. Section 3 introduces the event
model. Section 4 evaluates aspects of our monitoring system. Section 5 describes
related work. Finally, section 6 draws conclusions and future work directions.

2 Architecture Overview

The architecture presented in this paper builds upon our previous work [10]
on cross-layer SBA monitoring and adaptation, extending it to a Multi-Cloud
setting. It comprises a Monitoring Engine, collecting cross-layer events during
SBA execution, and an Adaptation Engine, performing cross-layer adaptation ac-
tions, which communicate events via a publish/subscribe mechanism (Figure 1).
A Model Repository provides various information, such as service descriptions,
Multi-Cloud deployment models, layer dependencies, and metric/SLA models.

In this Multi-Cloud setting, SBAs are deployed on various Clouds based on
the provided requirements. Three monitoring components are used to perform
monitoring at the SaaS, PaaS, and IaaS layers, while a manager retrieves their
monitoring results, stores them at a time-series database, and reports detected
violations via the publish/subscribe mechanism to Adaptation Engine instances.

This paper focuses primarily on the Monitoring Engine and Model Reposi-
tory implementation in Multi-Cloud setups. We define monitored events using
OWL-Q [6], a semantic and extensible QoS description model for SBAs. It is de-
signed modularly, incorporating several independent QoS-based SBA description
facets, such as QoS offers, requests, metrics, attributes and constraints (require-
ments/capabilities). The SaaS monitoring component uses the Astro monitoring

Fig. 1. Multi-Cloud deployment

190 C. Zeginis et al.

tool [2] to collect events at the BPM and SCC layers. The supported QoS at-
tributes (metrics) include service/SBA execution time (min, max), throughput
(min, max, average) and availability.

The PaaS monitoring component exploits an existing cross-PaaS application
management solution [11] which offers a Cloud technology-agnostic PaaS mon-
itoring functionality and an SLA management layer, unifying diverse, provider-
specific resource-level metrics. Supported metrics include application load,
application and DB response time, and application container response time.

The IaaS monitoring component distinguishes between direct infrastructure
monitoring and monitoring services offered by Cloud providers. We use Na-
gios (http://www.nagios.org) for direct monitoring of user-specified system
resources and services via periodic checks on them. Monitored resources include
memory usage, disk usage, and CPU load. We also use Amazon Cloudwatch
as a Cloud monitoring service instance providing comprehensive monitoring for
Cloud resources and applications run by customers on Amazon Web Services. To
gain system-wide visibility of running EC2 VMs we enable a variety of metrics
via the Cloudwatch API, including CPU utilization, disk read/write rate and
volume of incoming/outgoing network traffic. Each Cloudwatch API request re-
turns a datapoint that is handled as a monitored entity. Our requests are issued
every few seconds to ensure that collected data are valid and can be reacted on
at a reasonable latency.

Regarding event storing, standard solutions include stream processing engines
and time-series databases (TSDBs). The former aim to meet stringent latency re-
quirements when performing continuous queries on streaming data and minimize
processing cost for large data sets. TSDBs differ as they focus more on persis-
tent event storage and in performing rollups (e.g., aggregated metrics such as
average, max, min) for user-specified intervals. Complex event processing (CEP)
could also be exploited to aggregate events, but since we are interested to store
both the raw events (even for a short period) and the rollups, our architecture
uses (per-Cloud, federated) TSDBs. A variety of commercial and open source
TSDBs can be used to handle timestamped events. We decided to use open-
source OpenTSDB, a TSDB especially designed for distributed systems with
high scalability requirements, to store monitored events.

A publish/subscribe mechanism handles transferring raw monitored events
and TSDB rollups to the Adaptation Engine. Different adaptation engine in-
stances may be deployed to distribute adaptation load across applications/
Clouds, each interested only in relevant events and rollups. We use the Siena
(http://www.inf.usi.ch/carzaniga/siena) pub/sub event notification ser-
vice for communicating events and rollups between TSDB and Adaptation En-
gine. Siena is expressive enough to capture all appropriate event information via
an extensible data model without sacrificing scalability and performance during
event delivery.

One of our approach’s main goals is to identify particular event patterns oc-
curring during SBA execution that lead to critical violations so as to enable
selecting the appropriate cross-layer adaptation actions. Since the publishing

http://www.nagios.org
http://www.inf.usi.ch/carzaniga/siena

Towards Cross-Layer Monitoring of Multi-Cloud Service-Based Applications 191

order of events is significant, the Monitor Manager must time-synchronize them
before being sent to the Adaptation Engine. Time synchronization is particu-
larly important in Multi-Cloud settings as standard time synchronization solu-
tions are rarely deployed across Cloud providers. Synchronized events are stored
on a repository for post-processing to discover new patterns of interest in event
streams. Various clock synchronization algorithms have been proposed to achieve
temporal ordering of events produced by concurrent processes. The main ap-
proaches are those using logical clocks to create event sequence numbers and
those using physical clocks to synchronize events. Physical clock-based algo-
rithms, adjust the system components clocks based on server time or master
machine time. As such algorithms are intended for use within intranets and
require systematic adjustment of the machines’ physical clock, a logical-clock
algorithm seems more appropriate in a Multi-Cloud setting. We thus use Lam-
port’s algorithm [7] to efficiently establish event ordering.

Finally, regarding monitor manager functionality, monitored events from
within each Cloud are directed to local TSDB, which uses HBase
(http://hbase.apache.org) (a non-relational, distributed database) to orga-
nize the event time-series. HDFS (http://hadoop.apache.org), a distributed
file system replicating data across all Cloud providers, handles time series stor-
age. For high performance during event collection, each Cloud’s local replica is
updated eagerly; remote replicas are updated in a relaxed (asynchronous) man-
ner. Reads are performed from local copies when available. The monitor man-
ager includes the synchronize and publish mechanisms on top of OpenTSDB.
An analytics manager queries OpenTSDB to retrieve row and aggregated data
to perform analysis for the adaptation engine. Stored events are tagged with
other source information (service/software component, hosting resource, Cloud
provider).

3 Event Model

This section presents an event meta-model describing the most common moni-
tored event types and patterns that occur during the Cloud SBA execution. This
model (Figure 2) is generic enough and extensible to incorporate any other event
type defined by domain-specific service providers. A respective XML schema was
designed to guarantee the validity of concrete event models defined in XML.

The main model class is Event. Its CompositeEvent and SimpleEvent sub-
classes represent simple and composite events, respectively. Composite events
comprise two other (simple or composite) events (the first and second) which
map to a particular ordering. For instance, consider a hardware event comprising
a CPU overload and low available memory events. Simple events has a source
component (defined in a component model not provided in this paper due to
space limitations) and belong to a specific Cloud layer (SaaS, PaaS, IaaS). SaaS
events can be further located at the BPM or SCC layers. Events are also charac-
terized by their criticality as warning, critical or successful. A simple event can
either be Functional or Non-Functional. Functional events refer to operational

http://hbase.apache.org
http://hadoop.apache.org

192 C. Zeginis et al.

Fig. 2. The Event model

characteristics defining the overall SBA behavior, while non-functional events re-
fer to quality attributes that are either measurable or get distinct qualitative val-
ues. Two additional and different classifications exist for non-functional events:
(a) they can be classified as KPI-violations, SLA-violations or contextModifica-
tion events, and (b) as numeric or string events. Sub-classes defined for functional
events include: (a) Process Model Modification, (b) Business Goal Modification,
Software Event, I/O event, Hardware event, and Platform event. Finally, the
EventPattern class represents event pattern appearing during Cloud SBA execu-
tion and leading to critical violation events. Each event pattern has a (composite
or simple) causing event and a simple caused event.

4 Evaluation

This section describes an experimental evaluation of our monitoring architecture
under three deployments: single TSDB server in single Cloud provider (simple
setup 1-1); three TSDB servers in the same Cloud provider (scalability setup
3-1); three TSDB servers in three different providers (one TSDB server in each
Cloud, Multi-Cloud setup 3-3). We use a monitored events dataset consisting
of one million (1M) events comprising six metric types provided by the fol-
lowing sources: a service-level middleware based on the Astro monitoring tool

Towards Cross-Layer Monitoring of Multi-Cloud Service-Based Applications 193

Fig. 3. TSDB read-query response time with varying scope under different setups

(Web service availability, execution time, and throughput); the Amazon Cloud-
watch service (CPU utilization, data transfer, and disk usage metrics for under-
lying VMs). In our experiments, the Siena pub/sub mechanism retrieves events
of interest from the 1M event TSDB dataset via HTTP queries reflecting Siena
filters (e.g., with interest on specific metrics and/or event sources). Retrieved
events are then passed to an adaptation engine (where no further action is taken).

Our first experiment evaluates the three setups in terms of TSDB query com-
pletion time with increasingly broader scope. The query ranges from returning
5K to 1M events out of the 1M event dataset. In the 1-1 setup, TSDB, HBase,
and HDFS run on a single VM. In the 3-1 setup, the same software stack (TSDB,
HBase, HDFS) is deployed on three VMs in a single Cloud provider (Flexiant).
HDFS is configured with two data nodes (single replica per block) and a sin-
gle name node (responsible for metadata). HBase is configured with two region
servers and a single master. In the 3-3 setup the three VMs reside on different
providers (one VM in Amazon, Microsoft Azure, and Flexiant) using the same
HBase and HDFS configurations. In the 3-1, 3-3 setups, the 1M event dataset
is created on all three servers (each creates a different third of the dataset) and
thus events are spread over the HBase region servers and HDFS data nodes.

Figure 3 summarizes our results. Queries with smaller scope (returning 5-
10K events out of 1M examined) perform similarly on all setups. As the scope
increases, setups 3-1 and 3-3 outperform 1-1 due to simultaneously involving
two HBase/HDFS servers for data retrieval. 3-1 seems to outperform 3-3 only
for the 1M query due to cross-Cloud communication starting to impact overall
time. Although that impact is small, replication will reduce it further since local-
copy reads will mask the network latency of cross-Cloud communication.

Our next experiment measures the integrated (TSDB plus publish/subscribe
engine) system performance focusing on end-to-end latency (time to complete
one or more queries over 1M data points) and throughput (publish ops per sec-
ond). Table 1 reports our results focusing on a single query going over 1M data
points with increasing scope. Our results show that latency and throughput in-
crease with an increasing number of publish-event operations. In practice such

194 C. Zeginis et al.

Table 1. End-to-end (TSDB+Siena) response time, throughput under different setups

Number of events published (K) 5 10 50 100 200 500 1000

Single query latency (sec) 0.59 0.82 1.5 2.21 3.68 7.65 11.88

Single query throughput (Kops/sec) 8.5 12.2 33.3 45.2 54.3 65.4 84.2

large queries are expected to hurt responsiveness. Smaller, more frequent queries
should result into longer end-to-end latencies (although response time of indi-
vidual event publish operations will improve) and lower aggregate throughput.
Experiments with 100 consecutive queries over 10K data points each, publishing
a total of 1M events, take 15 sec (compared to 11.88 sec with a single query) and
result in a 67 Kops/sec throughput (compared to 84.2 Kops/sec for one query).

5 Related Work

While several Cloud monitoring approaches have been proposed, few comprehen-
sively consider cross-layer issues. Alcaraz Calero et al. [1] present an analysis of
a wide distributed monitoring solution set analyzing the features, requirements,
and topology of a cross-layer monitoring system for Cloud computing. A number
of EU-funded research projects are currently examining Cloud monitoring so-
lutions: IRMOS (http://www.irmosproject.eu) offers a Cloud infrastructure,
comprising a service management system acting as a link between SaaS and IaaS
to manage the application service component negotiation, reservation, execution
and monitoring. RESERVOIR (http://www.reservoir-fp7.eu) introduces the
Lattice non-intrusive monitoring framework for Cloud applications. Lattice fea-
tures probes to collect and transmit data to the service management part. VI-
SION Cloud (http://www.visioncloud.eu) proposes a monitoring framework
able to aggregate events, apply rules on them, and generate new events, repre-
senting complex system states. Cloud4SOA (http://www.cloud4soa.eu) pro-
poses a cross-PaaS management and monitoring system for applications hosted
on multiple Clouds, to ensure that their performance consistently meets expec-
tations and Cloud resources are being effectively utilized. In terms of cross-layer
SBA monitoring, Guinea et al. [5] present an integrated approach for multi-
layered SBA monitoring and adaptation which is based on a variant of MAPE
control loops. Gjørven et al. [4] propose a coarse-grained approach exploiting
mechanisms across SCC and SI layers in a coordinated fashion to support both
monitoring and adaptation. All these related approaches do not consider all lay-
ers (Cloud and SOA) as well as Multi-Cloud setups (see [3] for an overview),
while their main target is on non-functional properties. Our approach’s main
strength is that it deals with both service and Cloud-based applications while
considering challenges raised in a Multi-Cloud environment.

6 Conclusions and Future Work

We have presented a cross-layer monitoring framework for Multi-Cloud SBAs.
The framework integrates monitoring mechanisms within each Cloud layer and

http://www.irmosproject.eu
http://www.reservoir-fp7.eu
http://www.visioncloud.eu
http://www.cloud4soa.eu

Towards Cross-Layer Monitoring of Multi-Cloud Service-Based Applications 195

across Cloud providers. Our architecture uses an event and a component model
(not analyzed due to space limitations) to describe monitored events and their
source Cloud components. Evaluation of the cross-layer monitoring framework
in different deployment settings shows that TSDB performance scales with the
number of storage servers and minimally impacts a Multi-Cloud setup. Our next
step is to complete developing the adaptation engine and performing larger-scale
end-to-end Multi-Cloud experiments involving long-running SBAs.

Acknowledgements. We thankfully acknowledge the support of the PaaSage
(FP7-317715) EU project.

References

1. Alcaraz Calero, J., König, B., Kirschnick, J.: Cross-layer monitoring in Cloud com-
puting. In: Using Cross-layer Techniques for Communication Systems, Premier ref-
erence source. Igi Global (2012)

2. Barbon, F., Traverso, P., Pistore, M., Trainotti, M.: Run-time monitoring of in-
stances and classes of web service compositions. In: ICWS, pp. 63–71 (2006)

3. Baryannis, G., Garefalakis, P., Kritikos, K., Magoutis, K., Papaioannou, A., Plex-
ousakis, D., Zeginis, C.: Lifecycle Management of Service-based Applications on
Multi-Clouds: A Research Roadmap. In: MultiCloud (2013)

4. Gjørven, E., Rouvoy, R., Eliassen, F.: Cross-layer self-adaptation of service-oriented
architectures. In: MW4SOC, pp. 37–42. ACM (2008)

5. Guinea, S., Kecskemeti, G., Marconi, A., Wetzstein, B.: Multi-layered monitoring
and adaptation. In: Kappel, G., Maamar, Z., Motahari-Nezhad, H.R. (eds.) ICSOC
2011. LNCS, vol. 7084, pp. 359–373. Springer, Heidelberg (2011)

6. Kritikos, K., Plexousakis, D.: Semantic QoS Metric Matching. In: IEEE European
Conference on Web Services, Zurich, Switzerland (2006)

7. Lamport, L.: Time, clocks, and the ordering of events in a distributed system.
Commun. ACM 21(7), 558–565 (1978)

8. Magoutis, K., Devarakonda, M.V., Joukov, N., Vogl, N.G.: Galapagos: Model-
driven discovery of end-to-end application - storage relationships in distributed
systems. IBM Journal of Research and Development 52(4-5), 367–378 (2008)

9. Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: ECMAF: An Event-Based
Cross-Layer Service Monitoring and Adaptation Framework. In: Pallis, G., et al.
(eds.) ICSOC 2011. LNCS, vol. 7221, pp. 147–161. Springer, Heidelberg (2012)

10. Zeginis, C., Konsolaki, K., Kritikos, K., Plexousakis, D.: Towards proactive cross-
layer service adaptation. In: Wang, X.S., Cruz, I., Delis, A., Huang, G. (eds.) WISE
2012. LNCS, vol. 7651, pp. 704–711. Springer, Heidelberg (2012)

11. Zeginis, D., D’Andria, F., Bocconi, S., Gorronogoitia Cruz, J., Collell Martin, O.,
Gouvas, P., Ledakis, G., Tarabanis, K.: A user-centric multi-PaaS application man-
agement solution for hybrid Multi-Cloud scenarios. Scalable Computing: Practice
and Experience 14(1), 17–32 (2013)

A Reliable and Scalable Service Bus

Based on Amazon SQS

Sergio Hernández, Javier Fabra, Pedro Álvarez, and Joaqúın Ezpeleta

Aragón Institute of Engineering Research (I3A)
Department of Computer Science and Systems Engineering

University of Zaragoza, Spain
{shernandez,jfabra,alvaper,ezpeleta}@unizar.es

Abstract. Cloud computing infrastructures are becoming a very pow-
erful mean for the implementation of reliable and extensible computing
systems. In this paper, we evaluate the viability of migrating a frame-
work for the execution of (scientific) workflows from a cluster-based to a
cloud-supported implementation. As a first step, we focus on the viability
of adapting the framework message bus (which has a Linda semantics) to
the use of the Amazon Simple Queue Service (Amazon SQS). The paper
evaluates the performance of the cloud-based bus and studies the influ-
ence of the network latency, depending on different geographical locations
and configurations. It also compares the cloud-based bus with DRLinda,
our former implementation, in terms of economic cost and performance.
This comparison allows us to conclude that, under the same conditions,
the cloud-based message bus is faster, more scalable and more reliable.

Keywords: Cloud based interoperation, Cost evaluation, Web service
based coordination.

1 Introduction

Scientific computing requires more and more computing resources to solve in-
creasingly complex problems. Traditionally, computational clusters and grids
have been used to meet the needs of scientists. Recently, the appearance of cloud
computing as an environment able to provide users with infinite on-demand
resources in a pay-per-use model promises new opportunities [1]. However, al-
though different cloud services have been proven to be valid for scientific appli-
cations [2,3], in general, cloud infrastructures are still unable to meet the needs
of the scientific community due to their high network latencies [4] and lack of
performance [5]. Therefore, their use has been limited to dealing with bursts of
jobs and to meeting deadlines. Meanwhile, different frameworks able to integrate
several heterogeneous computing infrastructures have been proposed [6,7].

In [8], we introduced a framework for the flexible deployment and execution
of scientific workflows in cluster, grid and cloud environments. Figure 1 shows a
high-level view of the framework, which is composed of three different layers. At
the top, the User interface layer allows users to programworkflows using different

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 196–211, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A Reliable and Scalable Service Bus Based on Amazon SQS 197

paradigms and widespread tools in the scientific community (Taverna, Triana,
Kepler, Pegasus, etc.). Developed workflows are submitted to the framework for
their execution via a Web Services interface. The Execution layer is responsible
for managing the life-cycle of jobs composing the workflow. Internally, a message
bus is used to exchange messages between users and the framework components
that provide the core functionalities. Finally, at the bottom of the infrastructure,
several heterogeneous infrastructures form the Computing infrastructures layer.
Specifically, we have integrated: the HERMES cluster hosted by the Aragón In-
stitute of Engineering Research (http://i3a.unizar.es/, I3A), which is managed
by the HTCondor middleware (http://research.cs.wisc.edu/htcondor/); two re-
search and production grids hosted by the Institute for Biocomputation and
Physics of Complex Systems (http://bifi.es/en/, BIFI) and managed by the gLite
middleware (http://glite.cern.ch/), namely AraGrid (http://www.aragrid.es/)
and PireGrid (http://www.piregrid.eu/); and the Amazon Elastic Compute
Cloud (Amazon EC2) [9]. A more detailed description can be found in [8,10].

Fig. 1. Layered architecture of the framework for the deployment and execution of
scientific workflows in heterogeneous computing infrastructures

The cornerstone of the proposed approach is the use of a message bus-based
integration model. The message bus was based on the Linda coordination model
[11] (more details are provided in Section 3). In [12], we described DRLinda,
a distributed message bus built using high-level Petri Nets. The approach has
proven to be effective in solving a variety of computationally complex scientific
problems such as the First Provenance Challenge [8] or the LIGO Inspiral analy-
sis workflow [10], for instance. However, the DRLinda-based message bus suffers
from two major problems. On the one hand, the message bus is not fault-tolerant.
Therefore, a machine failure can cause message loss or service interruption. On
the other hand, scalability is achieved by using a large number of machines to
host DRLinda distributed nodes. Hence, too many resources are required in order
to ensure a good Quality of Service, which implies high economic costs [13].

198 S. Hernández et al.

As a consequence, the approach is not reliable enough to support long-term ex-
periments, where the framework must work without errors and uninterruptedly,
and a large number of users submitting jobs and recovering results at the same
time. To deal with these issues, in this paper we explore the use of cloud comput-
ing to implement the message bus. As shown in Section 4, we propose a flexible
design where the message bus interface and implementation are decoupled. On
the one hand, elasticity, load balancing and replication mechanisms are key to
address performance, scalability and fault-tolerance issues in the interface. On
the other hand, the use of the Amazon Simple Queue Service (Amazon SQS) [9],
a highly reliable (messages are stored redundantly across multiple data centers
and servers), available (Amazon SLA guarantees a 99.95$ availability) and scal-
able (an unlimited number of clients can read and write an unlimited number
of messages at any time) asynchronous message queueing service, represents the
core of the proposed design. Finally, we evaluate the performance and scalabil-
ity of the new message bus and we compare it with our former DRLinda-based
implementation showing the goodness of the cloud-based design.

The remainder of this paper is organized as follows. Section 3 discusses the
advantages and drawbacks of using a Linda-like communication model versus a
queue-based paradigm for the implementation of a message-based coordination
system. Section 4 explores the benefits of using cloud computing services to im-
prove the message bus capabilities and proposes a design based on the Amazon
SQS service. Section 5 analyses the performance and scalability of the proposed
implementation, comparing it with the former Linda-based implementation. Fi-
nally, some conclusions and future work directions are presented in Section 6.

2 Related Work

The usefulness of Amazon services for scientific computing has been previously
analysed. [14] extends the capacity of a private grid integrating Cloud resources
on-demand. By means of some experimental executions of real-world applica-
tions, the authors show the benefits of adding external Cloud-based resources
to improve computing capabilities of grids and deal with load peaks. In [15],
the viability of Amazon S3 as the storage option for large scale science projects
is analysed. Performance, cost and availability are the targets of the study. As
a result, the study provides some recommendations that any storage service for
the scientific community should provide and concludes that, although Amazon
S3 is a good option for many usual applications, its security is not adequate for
supporting complex collaborative scenarios, which are usual in scientific environ-
ments. Studying the impact of several configuration in the use of Amazon EC2
and Amazon S3 is the goal of [16]. The configurations are established in terms
of computing and storage resources and are analysed via simulation. As a result,
the experiments proved that the provisioning technique can have a significant
impact in the total execution cost.

Regarding Amazon SQS, some research evaluate its performance and capabil-
ities. In [17], the author evaluates the throughput of different Amazon services

A Reliable and Scalable Service Bus Based on Amazon SQS 199

including Amazon SQS. The author concludes that the performance is sufficient
to schedule a few long tasks (tasks that last minutes or hours) but it is necessary
to group tasks into batches in scenarios with many short tasks (a few seconds).
However, these experiments are performed in 2007 when the service was in its
first steps and they do not exploit the parallelization capabilities of the service.
More recent research shows Amazon SQS as a suitable environment for high per-
formance scenarios [3]. To test it, they propose the use of a process with three
threads: a sender, a receiver and a deleter, which manage share data structures
to deal with duplicate messages and to delete read messages. As a result, they
observed that Amazon SQS is able to provide the performance required for scien-
tific computations. Also, they analyse the importance of the configuration of the
message visibility timeout to prevent the appearance of duplicate messages when
messages are not processed within the specified timeout. In [2], Amazon SQS is
used as part of a fault-tolerant MapReduce implementation able to work with
spot instances and massive machine terminations. Amazon SQS is key to provide
the required flexibility to the implementation by decoupling sending messages
between master and worker processes. Workers dequeue messages, process the
corresponding split and then delete the message. Thus, if the worker machine
fails or terminates while it is processing a split, the message visibility timeout
will eventually expire and another worker will retrieve and process that split.

3 Linda-Based versus Queue-Based Bus

The proposed framework is based on the use of a bus implemented according to
the Linda coordination model proposed in [11]. Linda coordination is based on
the use of a data space shared by the processes that must communicate, which
is known as the tuple space. Processes communicate by introducing tuples into
the tuple space, in an asynchronous way, and removing them by using a blocking
pattern-based matching function. This blocking operation provides the necessary
synchronization mechanism. Two different implementations of the Linda-based
message bus, called RLinda [18] and DRLinda [12] were developed by the au-
thors. RLinda is a centralized implementation whereas DRLinda is a distributed
version that uses several RLinda nodes to host messages in a distributed way.

We adopted Linda as the coordination model because it is specially adapted
for the flexibility required by evolving systems. The fact of using a unique point
for information exchange allows processes to enter or leave the coordination
space in a dynamic way. In this sense, alternative asynchronous communication
systems, which require processes to know the communication topology in order
to send the appropriate messages to the appropriate channels (queues), are not
flexible enough. This is so because no selective reading of messages is allowed in
queue systems: just take the next message. A way of alleviating this constraint
is to use as many queues as message types.

Despite the fact that the Linda implementations we used have proven to be
effective and valid in terms of system performance, they present some drawbacks.
Firstly, they are not fault-tolerant: messages (tuples) are stored in memory and,

200 S. Hernández et al.

hence, a host failure will cause message loss. This is especially problematic for the
non-distributed version. Otherwise, scalability (in the sense of being able to deal
with an increasing number of message exchanges) is achieved by increasing the
capabilities of the Linda implementation. In the case of the distributed version
this is easier, since it can be done by increasing the number of nodes. Secondly,
the number of used distributed Linda nodes could not be decreased in an easy
way, since that would require some mechanisms to efficiently move tuples among
nodes, which can be a time consuming task. As a consequence, DRLinda is able
to deal with bursts of requests but it remains oversized when the load drops,
making the message bus more prone to failures and increasing the economic costs
of the solution.

Even if, as stated before, the use of a queue system can be expensive in terms
of the number of required queues, the question of evaluating the possibility of
implementing a queue-based bus version appeared as a plausible solution to deal
with the drawbacks of the Linda-based implementations used by the framework.
One of the main reasons is that developing a service oriented architecture based
on asynchronous service invocations, as in this the case, is not difficult.

4 A Highly Scalable and Reliable Cloud-Based Message
Bus

To improve the scalability and reliability of the message bus, cloud computing
provides new opportunities. Public cloud providers supply on-demand resources
and a great variety of services in a pay-per-use model. This view of infinite re-
sources along with other cloud capabilities such as elasticity, flexibility, reliability,
auto-scaling, or self-management make cloud computing an ideal environment
to support applications with high scalability and reliability requirements [1].

In [13], we first explored the use of cloud computing to improve the perfor-
mance of the message bus. Specifically, we proposed an elastic design of DR-
Linda that combines the use of local machines and cloud resources, and also
auto-scales the number of distributed nodes used at each moment depending
on different performance parameters. Thereby, nodes are reserved and released
dynamically according to a defined scaling policy. The goal was to reduce the
cost while maintaining the performance and the Quality of Service. However,
despite of solving the scalability problem (performance degradation experienced
when multiple clients use the message bus at the same time), this solution is
still not fault-tolerant, suffering the same reliability issues as the original (non
cloud-based) DRLinda implementation.

Let us now describe how the service has been designed and implemented using
the Amazon Simple Queue Service (Amazon SQS) [9].

4.1 An Elastic, Scalable and Reliable Bus Entry Point

The message bus entry point (the view processes have of the bus) and imple-
mentation (where messages are stored and how they are accessed) have been

A Reliable and Scalable Service Bus Based on Amazon SQS 201

developed in a decoupled way. This approach makes the bus much more flexible
and adaptable. The main advantage is that different implementations can be eas-
ily deployed, keeping the interface simple with the users unaware of the specific
implementation used. Thus, different implementations can be used depending
on the desired Quality of Service, the application domain, and performance and
reliability requirements, for instance. Besides, this design makes it possible to
completely change the bus implementation at run-time transparently to users.

On the other hand, decoupling the actual implementation of the message bus
and the entry point do have some drawbacks. As the implementation and the
entry point are decoupled, and probably hosted in different distributed machines,
the entry point could represent a single point of failure and a bottleneck.

Figure 2 depicts the bus entry point design. First, the DNS Server is respon-
sible for routing requests to active Load Balancers. Obviously, it must be highly
reliable and scalable since it represents a potential bottleneck and a single point
of failure. It must also provide with a mechanism (for instance, DNS Failover)
to route traffic to alive Load Balancers and make sure all requests are served.

Fig. 2. A high-level view of the bus access component

Next, Load Balancers are responsible for balancing requests between the Re-
quest Managers. Multiple load balancers can be used to ensure the component
is not a bottleneck and all requests are served without unnecessary delays. With
regard to reliability, several Load Balancers can be used and the DNS Server
only uses active Load Balancers.

Finally, Request Managers handle specific requests by interacting with the
private interface of the specific message bus implementation used. Depending on
the implementation, a request could correspond to a direct request or a complex
chain of multiple interactions. In any case, these interactions are managed in a
completely transparent way to users. To ensure the scalability of the component,
Request Managers are deployed elastically: the number of machine instances used
is automatically scaled depending on system load and number of requests, while
faulty machines are transparently replaced by new ones.

202 S. Hernández et al.

Related Load Balancers and Request Managers are deployed as part of the
same zone to reduce network latency. Thus, in order to prevent loss of service
if an entire zone goes down, the bus entry point consists of several zones. Then,
different configurations can be used: all zones can be active, just one zone can
be active while the remaining are used as backup, or some hybrid alternative.

4.2 An Implementation of the Message Bus Based on Amazon SQS

For the implementation of the message bus we have chosen the Amazon Simple
Queue Service (Amazon SQS) [9]. Amazon SQS is a highly reliable and scalable
message queueing service for storing messages in queues and sharing informa-
tion between different components of a distributed system in an asynchronous
way. The service is particularly simple to use thanks to its REST-based API and
the high-level development kits provided by Amazon. Amazon SQS is built to
be highly reliable and to provide high availability. Messages are highly durable:
each message is redundantly stored across different computation nodes and dif-
ferent availability zones in the defined region. In the presence of node failures
or problems in some zone, the service is still available, with the guaranty of no
message loss. Also, Amazon SQS has been designed to be extremely scalable. It
supports an unlimited number of queues, an unlimited number of messages in
each queue, an unlimited number of clients reading and writing messages and
concurrent access to each queue at any time and without performance degrada-
tion [9]. Therefore, its characteristics make Amazon SQS a very suitable choice
for the message bus implementation. Furthermore, using Amazon SQS to imple-
ment the message bus allows us to use other Amazon services in the deployment.

Figure 3 sketches an architectural overview of the bus implementation. From
a structural point of view, it is composed of the following elements:

The Bus Entry Point (BEP). The bus has a unique entry point where mes-
sages are sent and where they are retrieved. The BEP parses the message infor-
mation and acts accordingly to the message content and the type of request: out
(write operation) and in (destructive read operation or take operation). If the
message corresponds to a job invocation, it sends the message to the Job Meta-
scheduler (JMeta) component, returns the Amazon unique message identifier to
the calling process and creates a queue in the Results Queues Pool (RQP) using
that identifier. Also, the message identifier is stored into the own message to be
used later by different components. If the message is a request of a job result, it
reads the message from the specified queue (using the provided identifier) until
a new message is available (so the client is in a synchronous waiting status),
deletes it and destroys the queue. There is a queue collection process which is
on charge of destroying the queues, so the request returns as soon as the result
message is available, and no further delay is required.

Job Meta-Scheduler (JMeta). The Job Meta-scheduler has a queue in which
receives job invocation messages. If there is a specific infrastructure set as the
target for the invocation, the JMeta routes it to the appropriate Mediator.

A Reliable and Scalable Service Bus Based on Amazon SQS 203

Otherwise, all Mediators compete for the message, which means that the JMeta
component will dispatch it according to certain rules and QoS parameters [10].

Mediators. There is a mediator for each component able to provide any service.
Mediators can correspond to computing resources, in which case they are in
charge of invoking resource services and dealing with the results, or they may
correspond to any alternative software module. Any mediator is composed of an
input queue, where messages for the mediated component are sent, as well as the
Message Processing Unit (MPU). Also, each mediator contains a local job response
handler, a component that processes the result of the computing infrastructure
and takes certain decisions depending on the termination status, such as re-
submitting the job or sending it to the Fault Handler (FH) component. In case
the job finishes successfully, the results are sent to the queue specified by means
of the queue identifier contained in the job invocation message, and stored in
the Results Queues Pool component.

Fault Handler (FH). Messages that are returned from a computing infras-
tructure in a faulty error are processed by the Fault Handler component. The
FH takes certain decisions depending on the error status of the job, such as get-
ting another target infrastructure to succeed in the job execution or discard its
execution [13], for instance. For such purposes, it can modify the target of the
job invocation and then route the message back to the JMeta. In case the job
has been executed several times without succeed, it can return an error status
to the original sender, so it will return the message to the corresponding queue
in the Results Queues Pool.

Results Queues Pool (RQP). As was previously stated, the BEP creates a new
queue for each incoming job invocation. Every queue can be accessed twofold.
On the one hand, an external process can access a specific queue by means of the
identifier returned when it originally sent the job invocation through the BEP. On
the other hand, internally, both Mediators and the Fault Handler component can
access each queue by means of the corresponding identifier stored in the messages
that are exchanged among the framework components.

Let us now briefly describe the life-cycle of a service invocation by means of a
case in which a process requests the execution of a job in the HERMES cluster
and it is performed without errors. Figure 3 shows the messages exchanged and
their order. First, the process sends the request to the BEP (step 1), which routes
the message to the JMeta (step 2). Next, the message identifier provided by
Amazon is returned to the invoking process (step 3) and used to create a queue in
the RQP (step 4). The JMeta reads the message from its queue and sends it to the
HERMES Mediator (step 5), which invokes the computing service (step 6). Once
the result is received, the HERMES Mediator sends it to the previously created
queue in the RPQ (step 7). On the other hand, the process eventually requests the
job result to the BEP (step 8), who routes the request to the appropriate queue
in the RQP (step 9). Finally, when the message is read from the queue (step 10),
the BEP provides the invoking process with the message (step 11).

204 S. Hernández et al.

Fig. 3. High-level view of the bus architecture. The arrows indicates the messages
exchanged between the framework components. The bold arrows show a use case where
a process request the execution of a job in the HERMES cluster and it is performed
without errors. The numbers indicate the order of operations in the use case.

4.3 Dealing with Some SQS Constraints

Let us now discuss how the constraints imposed by Amazon SQS affect us and
how we deal with them in order to make the bus implementation viable.

Amazon SQS only guarantees at-least-once message delivery. This means that
the same message can be read from the same queue more than once. In the
case of messages sent by the computing infrastructure mediators to invoking
processes (depicted with number 7 in Figure 3), this is not a problem: after
the first copy is read, the queue is destroyed. But the problem is real when the
message corresponds, for instance, to a job invocation (depicted with number 5
in Figure 3), since it would be possible to execute more than once an expensive
computation. To prevent these problems, the framework components save the
identifier of each read message and, when a new message is received, they check
the new identifier and discard duplicate messages. In future, we plan to analyse
other more elaborate solutions to manage duplicate messages transparently.

Amazon SQS imposes a message visibility timeout. This timeout defines a time
period during which a message cannot be read more than once. As shown in [3],
a bad set of this timeout may cause a significant performance degradation. This
is because if an already read message is not deleted before its visibility timeout
expires, the message becomes available and can be read again, increasing the
number of messages handled and degrading the bus performance. Furthermore,
setting a long visibility timeout could cause some messages to be inaccessible if

A Reliable and Scalable Service Bus Based on Amazon SQS 205

there is an error between the receive and delete operations. Therefore, a proper
configuration of the visibility timeout is required. In our tests, we have checked
that the standard 30-second timeout is enough to handle any message. This value
could change depending on the application context.

Amazon SQS does not guarantee a FIFO message delivery policy, but a best-
effort FIFO policy. Therefore, if an application requires message ordering, clients
are responsible for handling this. In our case, message ordering is not an impor-
tant feature and the best-effort FIFO policy is sufficient for our needs.

Amazon SQS imposes a maximum size of 256 KB for messages. In our frame-
work, the larger messages are those that describe jobs to be executed. Their size
depends on the complexity of the job (arguments, input files, output files, etc.)
and it can vary from a few bytes to hundred of kilobytes. To support any size
messages, we follow the next approach. If the message is over 256 KB, it is com-
pressed in GZIP format and encoded in Base64 (Amazon SQS only supports a
small range of printable characters). If the compressed message is still too large,
the message is stored in Amazon S3 [9] and a pointer to the message is sent to
the corresponding queue. To detect whether a message has been compressed or
whether it is a pointer, a header is added to the beginning of the message.

Message reception is a non-blocking operation. By default, reading messages
from a queue is a non-blocking operation even when the queue is empty. However,
Amazon provides a long polling feature that allows a read request to wait up
to 20 seconds for a new message before returning an empty response. Besides,
there is no delay when messages are available. Therefore, we chain consecutive
reads until a new message is received.

Amazon SQS imposes a deadline of 14 days for a message to stay in a queue.
When this retention period is exceeded, the message is automatically deleted.
This situation may occur in two different ways: a user does not get the execution
result of a job or a framework component does not get a job request. In the first
case, we assume that the user is not interested in that job, whereas in the second
case, there is no component able to handle that message so it may be discard.
Therefore, the message retention period is not an actual limitation.

5 Evaluation

In this section, we detail the experiments performed in order to measure the
scalability of the Amazon-based bus and to compare it to the previous one.

The experiments aim to measure the performance and the scalability of the
proposed cloud-based message bus. They were performed in the Oregon region
because it provides better performance than the other regions, as we show below.
Regarding the message bus deployment, a single Amazon Elastic Load Balancer
was used because this is sufficient for our needs. Request Managers were deployed
using t1.micro instances since they do not need high performance capabilities
as the scalability is achieved using several instances. In the Request Managers
implementation, we used the sequential Amazon SQS client provided by Ama-
zon because we wanted to measure the individual economic cost of each user

206 S. Hernández et al.

request (one request consists of multiple interaction with the Amazon SQS). In
the future, we will experiment with the Amazon batch client to increase the
performance and reduce the cost. Regarding clients, the messages used are ex-
tracted from our previous experiments presented in [8], their average size is 40
KB. Finally, each experiment was carried out five times. Therefore, the results
presented below show the average values obtained from these experiments.

Influence of the Amazon Region. Amazon divides its cloud into different
regions distributed around the world. They have different prices and, depending
on where the clients and the bus are being executed, this can also influence the
access latency. The first experiment tries to achieve an insight into how influential
this may be. With this purpose, an experiment where a unique client puts 5000
messages into a SQS queue (send message operation) and then get them (read
message and delete message operations) was performed. Both client and bus
were placed in every Amazon region available and all possible combinations
were tested. Table 1 shows the average performance of the write operation, the
same results can be extrapolated for the destructive read operation. Each value
in the table shows the time, in milliseconds, required for the client in this column
to write a message in the queue managed by the bus hosted in that row.

Table 1. Performance of write operation through different Amazon regions. Times in
the table are expressed in milliseconds.

Singapore Sydney Tokyo Ireland Sao Paulo N.California N.Virginia Oregon

Singapore 86 1059 462 1438 1751 914 1300 1134

Sydney 971 56 697 1577 1810 814 1389 971

Tokyo 478 659 72 1218 1557 593 987 784

Ireland 1475 1473 1480 94 1282 898 581 899

Sao Paulo 1721 1448 1558 1225 55 835 822 1080

N.California 817 1007 582 838 1047 58 491 142

N.Virginia 1203 1292 1017 555 820 410 110 487

Oregon 1111 978 695 715 1143 137 443 49

The results show the importance of the client and the message bus being close
together. When the client and the message bus are located in the same region,
the average time is between 49 milliseconds (Oregon) and 110 milliseconds (N.
Virginia). However, if the client and the message bus are located in different
regions, the time required for each operation increases substantially to around
1 second. Also, there is a significant performance variation between different
regions, even twice in same cases. Additionally, the results show that to offer a
worldwide service, it is important to analyse the different latencies obtained by
several clients distributed along the world. Finally, the results allow us conclude
that the developed Amazon-based message bus is viable for our purpose because
the time required for read and write is much less than the time required for the
execution of scientific computations.

A Reliable and Scalable Service Bus Based on Amazon SQS 207

Influence of the Number of Clients. In this experiment, we measured how
the number of concurrent clients accessing the bus described in Section 4 can
influence the bus performance. For this purpose, up to 100 clients accessed the
unique bus entry point, introducing and recovering 1000 messages, with a ran-
dom delay between [200, 250] milliseconds among each out (write) and its corre-
sponding in (destructive read or take) operation. The entry point was deployed
with a single t1.micro machine during the whole experiment. Figure 4 shows
the experiment results. They show the average time observed by clients in the
performed operations (by solid lines in Figure 4) and the time required for the
different Amazon SQS requests involved (dashed lines in Figure 4).

The results point towards the importance of a correct configuration of the Bus
Entry Point. Up to 25 concurrent clients, the performance observed by clients
remains within acceptable bounds. It varies from 253.26 ms to 410.61 ms for
the out operation and from 124.94 ms to 233.40 ms for the in operation when the
number of clients is increased from 5 to 25. However, when 50 clients access the
bus at the same time, we observe an exponential performance degradation. In this
case, the average time required to complete the out and in operations becomes
2262.44 ms and 1956.98 ms respectively. Finally, when the number of clients
reaches 75 clients, the entry point is unable to manage so many connections and
becomes inaccessible.

Influence of the Number of Machines Used for the Deployment of
the Bus Entry Point. In this experiment, we varied the number of t1.micro
instance machines used for the deployment of the Bus Entry Point and measured
the influence of the number of instances used when the number of concurrent
clients accessing the bus increases. Figure 5 shows the experiment results. Each
curve shows the performance of the out and in operations for a fixed number of
instances forming the Bus Entry Point.

The results show that when there are few concurrent clients, there is no benefit
in having several instances and a single one may be sufficient. However, as the
number of clients increases, more and more instances are required in order to
maintain the bus performance and prevent service loss. Good performance can be

Fig. 4. Influence of the number of concur-
rent clients accessing the bus

Fig. 5. Influence of the number of in-
stances used for the deployment of the Bus
Entry Point

208 S. Hernández et al.

achieved by using five t1.micro instances to form the Bus Entry Point. Therefore,
these results show the importance of an elastic design of the BEP, as we propose
in Section 4. In any case, it will be necessary to explore scenarios with a large
number of clients and different configurations of the Bus Entry Point in order
to establish the number of requests that each machine can handle, and use this
information to define autoscaling policies in the elastic design.

Amazon-Based Bus versus DRLinda Bus. In this experiment, we compared
our former DRLinda (Distributed Reference-nets based Linda) implementation of
the message bus [12] with the cloud-based approach presented in this paper. The
comparison was performed in terms of the average performance of an operation
and by varying the number of concurrent clients accessing the bus (25, 50, 75
and 100 clients). Each client repeat the previous experiments behaviour, but at
this stage we ran the experiment for an hour.

First, we performed the experiment using the Amazon-based message bus with
five t1.micro instances for the Bus Entry Point, because this configuration gave
good enough performance in the previous experiments. After that, we calculated
the cost of this approach in terms of dollars per hour, and the corresponding num-
ber of t1.medium and t1.large instances needed in order tomatch that cost. Table 2
summarizes this information. Note that depending on the number of clients ac-
cessing the bus, the cost of the Amazon-based approach increases, this is because
the Amazon SQS charges according to the number of requests and the Amazon
Elastic Load Balancer charges according to the amount of data processed.

Table 2. Approximate cost of the Amazon-based approach and the corresponding
number of t1.medium and t1.large instances needed to match that cost

25 clients 50 clients 75 clients 100 clients

Approximate cost ($/hour) 0.58 1.04 1.50 1.96

Number of t1.medium instances 4.86 8.67 12.49 16.30

Number of t1.large instances 2.43 4.34 6.24 8.15

In order to make a fair comparison of both implementations, DRLinda was
deployed in order to have the same cost as the Amazon-based message bus. For
each experiment, two different configurations were explored, using t1.medium
and t1.large instances. The number of instances that appear in the table have
been rounded up. Figure 6 depicts the experiment results.

The results show that, for the same cost, the Amazon-based bus is approxi-
mately 50% faster than the DRLinda bus. If we try to get the same performance
for both implementations, the Amazon-based message bus is a much cheaper
approach than DRLinda. Therefore, we can conclude that the Amazon-based
bus approach outperforms the performance of the DRLinda bus for the same
cost. The Amazon-based bus is faster but also is much more reliable and scal-
able than DRLinda because Amazon SQS (the actual implementation used for
storing messages) is highly reliable and scalable. The Bus Entry Point has been
designed to be fault-tolerant and it can be deployed elastically to fit the load

A Reliable and Scalable Service Bus Based on Amazon SQS 209

Fig. 6. Performance comparison between the DRLinda bus and the Amazon-based bus

experienced at each moment, which turns our proposal into a very suitable so-
lution for a high variety of environments and scenarios.

6 Conclusions and Future Work

In this paper, we have proposed a new cloud-based design for the message bus
of a framework for the execution of scientific computations in cluster, grids and
clouds. The proposed approach is based in a flexible design where the Bus Entry
Point and the specific implementation are decoupled. On the one hand, the Bus
Entry Point is designed elastically in order to be scalable and fault tolerant.
On the other hand, the Amazon Simple Queue Service (Amazon SQS), a highly
scalable and reliable Amazon service, is used for the actual message bus im-
plementation. Our experiments show the importance of placing clients and the
message bus close together due to the high latencies observed between different
regions. Also, they show the need for an elastic design capable of autoscaling the
number of instances used to form the Bus Entry Point depending on the number
of client requests. Finally, the comparison between the new Amazon-based bus
and the former DRLinda bus shows that, for the same cost, the new message
bus is also faster.

As future work, we will improve the statistical quality of the presented results
by increasing the size and scale of the experiments performed. New experiments
aimed at improving our knowledge of the Amazon Simple Queue Service, testing
the proposed elastic design of the Bus Entry Point and understanding the im-
pact of using different instance types in the Bus Entry Point will be performed.
Also, we will study in detail the economic cost of the proposed bus and ex-
plore techniques for reducing it. Regarding duplicate messages, we will analyse
their impact and we will explore solutions for minimizing it. Finally, we will
also explore the use of other alternatives to Amazon SQS such as RabbitMQ
(http://www.rabbitmq.com/), a highly reliable enterprise messaging system.

210 S. Hernández et al.

Acknowledgment. This work has been supported by the research project
TIN2010-17905, granted by the Spanish Ministry of Science and Innovation, and
the regional project DGA-FSE, granted by the European Regional Development
Fund (ERDF).

References

1. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Comput. Commun. Rev. 39(1), 50–55
(2008)

2. Liu, H.: Cutting mapreduce cost with spot market. In: The 3rd USENIXConference
on Hot topics in Cloud Computing, HotCloud 2011 (2011)

3. Yoon, H., Gavrilovska, A., Schwan, K., Donahue, J.: Interactive use of cloud ser-
vices: Amazon sqs and s3. In: The 12th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing, CCGRID 2012, pp. 523–530 (2012)

4. Jackson, K.R., Ramakrishnan, L., Muriki, K., Canon, S., Cholia, S., Shalf, J.,
Wasserman, H.J., Wright, N.J.: Performance analysis of high performance com-
puting applications on the amazon web services cloud. In: The 2010 IEEE Second
International Conference on Cloud Computing Technology and Science, CLOUD-
COM 2010, pp. 159–168 (2010)

5. Losup, A., Ostermann, S., Yigitbasi, N., Prodan, R., Fahringer, T., Epema, D.:
Performance analysis of cloud computing services for many-tasks scientific com-
puting. IEEE Trans. Parallel Distrib. Syst. 22(6), 931–945 (2011)

6. Yu, J., Buyya, R.: A taxonomy of workflow management systems for grid comput-
ing. J. Grid Comput. 3(3-4), 171–200 (2005)

7. Rahman, M., Ranjan, R., Buyya, R., Benatallah, B.: A taxonomy and survey on
autonomic management of applications in grid computing environments. Concur.
Comput.: Pract. Exper. 23(16), 1990–2019 (2011)

8. Fabra, J., Hernández, S., Álvarez, P., Ezpeleta, J.: A framework for the flexible de-
ployment of scientific workflows in grid environments. In: The Third International
Conference on Cloud Computing, GRIDs, and Virtualization, CLOUD COMPUT-
ING 2012, pp. 1–8 (2012)

9. Amazon Web Services (2012), http://aws.amazon.com (accessed May 1, 2013)
10. Hernández, S., Fabra, J., Álvarez, P., Ezpeleta, J.: A Simulation-based Scheduling

Strategy for Scientific Workflows. In: The 2nd International Conference on Simu-
lation and Modeling Methodologies, Technologies and Applications, SIMULTECH
2012, pp. 61–70 (2012)

11. Carriero, N., Gelernter, D.: Linda in context. Commun. ACM 32(4), 444–458 (1989)
12. Fabra, J., Álvarez, P., Ezpeleta, J.: DRLinda: A Distributed Message Broker for

Collaborative Interactions Among Business Processes. In: Psaila, G., Wagner, R.
(eds.) EC-Web 2007. LNCS, vol. 4655, pp. 212–221. Springer, Heidelberg (2007)

13. Hernández, S., Fabra, J., Álvarez, P., Ezpeleta, J.: Using cloud-based resources to
improve availability and reliability in a scientific workflow execution framework.
In: The Fourth International Conference on Cloud Computing, GRIDs, and Vir-
tualization, CLOUD COMPUTING 2013, pp. 230–237 (2013)

14. Ostermann, S., Prodan, R., Fahringer, T.: Extending grids with cloud resource
management for scientific computing. In: The 10th IEEE/ACM International Con-
ference on Grid Computing, pp. 42–49 (2009)

http://aws.amazon.com

A Reliable and Scalable Service Bus Based on Amazon SQS 211

15. Palankar, M.R., Iamnitchi, A., Ripeanu, M., Garfinkel, S.: Amazon s3 for science
grids: a viable solution? In: The 2008 International Workshop on Data-Aware Dis-
tributed Computing, DADC 2008, pp. 55–64 (2008)

16. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: The montage example. In: the International Conference for
High Performance Computing, Networking, Storage and Analysis, SC 2008, pp.
1–12 (2008)

17. Garfinkel, S.L.: An evaluation of amazons grid computing services: Ec2, s3 and sqs.
Technical report. Center for Research on Computation and Society (2007)

18. Fabra, J., Álvarez, P., Bañares, J.A., Ezpeleta, J.: RLinda: A Petri Net Based
Implementation of the Linda Coordination Paradigm for Web Services Interactions.
In: Bauknecht, K., Pröll, B., Werthner, H. (eds.) EC-Web 2006. LNCS, vol. 4082,
pp. 183–192. Springer, Heidelberg (2006)

A Comparison of On-Premise

to Cloud Migration Approaches

Claus Pahl, Huanhuan Xiong, and Ray Walshe

IC4, Dublin City University
Dublin 9, Ireland

http://www.ic4.ie/

Abstract. While cloud computing has certainly gained attention, the
potential for increased uptake of the technology is still large. As a conse-
quence, how to move and migrate to the cloud is an unanswered question
for many organisations. Gaining an understanding of cloud migration
processes from on-premise architectures is our aim here. For this pur-
pose, we look at three provider-driven case studies based on the common
three layers of cloud computing: Infrastructure (IaaS), platform (PaaS)
and software (SaaS) as a service. These shall be complemented by a
fourth, independent systems integration perspective. We extract com-
mon migration process activities for the layer-specific processes and dis-
cuss commonalities, differences and open issues. The results presented
are based on expert interviews and focus groups held with major inter-
national cloud solution providers and independent consultants.

Keywords: Cloud Migration, Cloud Migration Processes, On-premise
to Cloud, Cloud Architecture.

1 Introduction

Software application hosting settings range from on-premise solutions to pri-
vate clouds to public clouds [1]. The migration into the cloud or between these
often hybrid scenarios or between offerings is a key concern and the determi-
nation and assessment of possible migration processes is important. We carried
out research into migration scenarios in the form of migrations processes and
patterns based on expert interviews and focus groups with major international
cloud solution providers and independent consultants. The proposed processes
document a range of different architectural settings. They highlight the concerns
– like costs, skills and technologies – to be considered to deploy applications in
various cloud scenarios and to migrate into these from on-premise architectures.
Attention also needs to be given to hybrid solutions where parts of an applica-
tion system remain on-premise and parts are migrated to the cloud, maintaining
an efficient division of responsibilities and effective data flows.

In order to start the migration process determination and evaluation, an empir-
ical investigation into migration processes was conducted at the Irish Centre for
Cloud Computing and Commerce (IC4). A structured methodological approach

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 212–226, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ic4.ie/

A Comparison of On-Premise to Cloud Migration Approaches 213

was followed, involving IC4 industry consortium members (http:www. ic4.ie)
with background or experience in cloud migration. We conducted expert inter-
views to gain a broader understanding beyond individual cases than would have
been possible through concrete projects observation alone. The experts would have
had 15-20 years of industrial practice and aminimum of 3 years in cloudmigration.

Our work has focused on determining the principle cloud migration processes.
Our investigation has shown differences between the cloud deployment models
IaaS, PaaS and SaaS, which we will reflect by model-specific migration processes
based on a catalogue of common activities. We emphasise the differences and
commonalities between the three layers, but also use an independent broker
acting as a systems integrator (in contrast to the other more provider-based
migration) to broaden the view and evaluate previous results.

We discuss some foundations for our study in Section 2, before detailing the
results in Section 3. The observations are discussed in Section 4, before sum-
marising related work in Section 5.

2 Assumptions and Background

The migration layers that we identified are mainly derived from the user-oriented
service models SaaS, PaaS and IaaS [1, 10]. The concerns shall briefly be outlined:

– SaaS. Companies look for a migration solution to move their existing on-
premises applications to a cloud environment. Application vendors frequently
want to evaluate a cloud platform on which to deploy a new application or
SaaS offering.

– PaaS. PaaS Migration is the process of moving from the use of one software
operating and deployment environment to another environment. At this layer
customers do not manage their virtual machines, but rely on the infrastruc-
ture layer’s compute and storage resources. They merely create applications
within an existing API or programing language.

– IaaS. IaaS migration is mainly offering virtual machines as a (compute)
service to users, such as moving from one VM to another, or managing or
interoperating the different VMs. In addition, storage or network capabilities
can also be provided. Instead of purchasing servers or even hosted services,
IaaS customers can procure and operate servers, data storage systems, or
networking resources at will.

We define cloud migration as follows. Cloud migration is the process of par-
tially or completely deploying an organization’s digital assets, services, IT re-
sources or applications to the cloud. The cloud migration process may involve
retaining some IT infrastructure on-site. In such a scenario, the existing sys-
tem may be fused with a partial cloud solution that can be hosted by a third
party over the Internet for a fee. The cloud component of this hybridised system
can transition between several cloud providers allowing businesses to choose the

http:\www.ic4.ie
http:\www.ic4.ie

214 C. Pahl, H. Xiong, and R. Walshe

most cost-effective solution. However, the migration process involves the risk
of accidentally exposing sensitive business critical information. Therefore, cloud
migration requires careful analysis, planning and execution to ensure the cloud
solution’s compatibility with organizational requirements, while maintaining the
availability and integrity of the organization’s IT systems.

Our motivation is to determine common migration processes and decompose
them into operational level activities in order to make the migration process more
transparent, agile, and suitable for a variety of business models. Our research
will provide an understanding of the core mechanism to assist SMEs (Small to
Medium Enterprises) in particular with the migration of their IT infrastructure
to the Cloud. We will concentrate particularly on the area of managing the tran-
sition of on-premises applications to the Cloud. Our ultimate aim (beyond the
aims of this investigation here) is to develop a system to minimise the inherent
complexities involved with the migration to a Cloud Computing environment.

3 Cloud Migration Case Studies

The three case studies SaaS, PaaS and IaaS, as well as the systems integrator
case study shall now be looked at individually. The results presented here were
extracted from interviews and focus groups held with migration experts. Primar-
ily, on-premise to cloud migration was considered. A common understanding of
cloud migration processes was assumed as follows:

A cloud migration process is a set of migration activities carried to sup-
port an end-to-end cloud migration. Cloud migration processes define a
comprehensive perspective, capturing business and technical concerns.
Stakeholder with different backgrounds are involved.

Thus, initial requirements and expectation elicitations are part of the processes
as are tools for automated migration of IT artefacts or plans for the deployment
of new cloud services and decommissioning of old infrastructure.

We define typically three or four top-level activities that are performed as
discrete, sequenced steps. For each activity, we describe the following concerns:

Concern Concern of the Respective Activity

focus a differentiation whether the focus is technical or business-
oriented in nature

from-to source and target of migration activity
vision &
ignorance

a distinction of migration benefits amd expectations that po-
tential users are aware of (their ’vision’) and those overlooked
(their ’ignorance’)

cases an identification of any distinguishable special cases
stakeholder the stakeholder involved
artefacts the IT artefacts involved
steps the individual, smaller steps involved in the activity

A Comparison of On-Premise to Cloud Migration Approaches 215

On
Premise

Consultation with Customer CIO/CMO

Business - FROM on-premise software application TO cloud application

 Analysis
motivation discovery

 Demo
software demonstration

SaaS Provider

Customer Data Analysis with Customer CIO

Technical - FROM on-premise environment TO reliable cloud environment

 Analysis
data views

 Analysis
data master
and control

 Evaluation
middleware

 Definition
business
objects &

data model

 Implement
data

migration

Internal Provider Configuration

Technical - FROM on-premise environment TO cloud data centres

 Configuration
data configuration and

segmentation

 Migration
data migration

Customer-side Systems Integration

Technical - FROM on-premise TO integrated on-premise and cloud environment

 Analysis
Infrastructure inventory

and planning

 Migration
IT infrastructure

 Cloud
 Solution

Fig. 1. SaaS Migration Processes

The top-level process activities and the individual steps will be summarised
in respective diagrams. The discussion reflects the perspective of the solution
providers, e.g. their aim to clarify benefits, but also potential problems.

3.1 SaaS-Level Migration

For SaaS-level migration (Fig. 1), the software applications under consideration
here are classical ERP packages for accounting, HR management, CRM etc., but
also domain-specific software for the retailing or engineering sector would apply.

1. Consultation with Customer CIO (or CMO)
– Focus: Business
– From-To: FROM on-premise software TO cloud software application

Cloud application providers aim to sell their product, but also need to guide
the process. An important element of the discussion with customers is to
emphasise that a democratisation of software provisioning takes place, i.e.
the same service is provided for everyone.

216 C. Pahl, H. Xiong, and R. Walshe

– Vision: more agility through a more declarative way of configuring and
managing software and a drag & drop style of operating applications.

– Ignorance: cognitive dissidence, i.e. losing control, is often a concern. IT
people do not like to lose systems they built. A more business-oriented
concern is the licensing status that might vary from tool to tool, which
is a financial issue.

The following steps can be identified:
– Step 1: motivation discovery (why would you do this) for small companies
– Step 2: software demonstration to address all actors concerns (meeting

or phone call) as an additional step for midsize companies
2. Customer Data Analysis with Customer CIO

– Focus: Technical
– From-To: FROM on-premise environment TO reliable cloud environment

Data transformation is usually the technical solution, but in terms of ex-
pected benefits, a reliable cloud environment is the driver. Failure assurance
(failover), analysis and audit capabilities are much better in professionally
managed cloud solutions. This requires a technical discussion under these
headings as to what data would or should be moved, what views and re-
sponsibilities exist. A first analysis and selection at this stage will define
who will master data and ascertain that for instance no garbage is migrated.
A data loader can then be configured and used accordingly.
The following steps can be identified:
– Step 1: what view on data: 180-360 degree perspectives
– Step 2: who will master data
– Step 3: evaluate middleware solutions: once-off, incremental or (full-

blown) integration in the cloud
– Step 4: the customer MIS plan defines the application data model (model

the business object such as a customer, an account, activities)
– Step 5: select core data for migration: segmentation if a data model exists

3. Internal Provider Configuration
– Focus: Technical
– From-To: FROM on-premise environment TO cloud data centres

The concern is the provider-side (internal) configuration and segmentation
of data for transfer and storage. SaaS providers often provide data migration
tools through sales infrastructures like app marketplaces.
Two cases can be distinguished. SMBs (small-mid business) have a customi-
sation need arising from the B2B environment where efficiency and growth
are the drivers. USBs (ultra-small business) require configuration for their
B2C environment, targeting engagement, campaigns and loyalty as drivers.

4. Customer-side Systems Integration
– Focus: Technical
– From-To: FROM on-premise environment TO integrated on-premise and

cloud environment
Rarely all on-premise IT infrastructure will be migrated into a cloud en-
vironment. Thus, an integration between different on-premise and (hybrid)
cloud solutions is required. Larger solution providers offer these integration
tools, the IBM Websphere Cast Iron cloud integration is an example.

A Comparison of On-Premise to Cloud Migration Approaches 217

An often observed problem concerns IT staff: they often feel overstretched
due to recent virtualisation cycles in their organisations and do not like their
own systems to be abandoned. Cooperation can consequently be reluctant.

Migration should be more than just redoing past activities in the cloud, i.e.
cloud migration creates an opportunity to transform architectures and internal
processes to some extent.

Success of the migration process is of importance for both providers and their
clients. This can be measured in terms of different metrics such as headcount (a
business concern for the provider) or fewer servers in use (a technical concern
for the client).

Like any other process, cloud migration benefits from tools and proven tech-
niques to be applied. The data loader is a tool example for most application
software. In addition, a list of questions alone or better a template for discus-
sions with questions, particularly for the first stage, is useful. As some of the
software applications are common in organisations, so are migration, integration
and deployment support. There is a noticeable differentiation between organisa-
tions of different size, only offering standard solutions for smaller clients.

3.2 PaaS-Level Migration

PaaS solutions provide support for the development and deployment of software.
We will particularly focus on development (Fig. 2), with ISVs (independent
software vendors) supporting other organisations with their development. This
provides a more complex PaaS setting. Specifically, we consider here a PaaS
solution by a multinational, providing a platform based on globally distributed
datacentres. SDKs for different development languages are available.

1. Consultation with ISV CEO
– Focus: Business
– From-To: FROM classical licensing model TO SaaS

The transfer is often forced by an ISV’s end customers. As the latter are the
ISV’s PaaS customers, as a consequence, a SaaS/PaaS alignment is required
where the ISV solution is made available as a SaaS, making the situation
more complex than the previous SaaS case. Also, the PaaS providers as
multinationals are companies that often work with partners (consultancies),
which can be involved at all levels.
– Vision: costs, sales and marketing are the drivers for an ISV to adopt

cloud development. The value proposition is that hosting is outsourced,
i.e. no more management of infrastructure is required.

– Ignorance: while in general benefits and concerns such as security or fail-
ure are clear (and would be covered in SLA negotiations), some major
changes result as implications that are not fully understood. This in-
cludes changed cash flow from a reliable up-front licensing model to a
more unreliable pay-as-you-go or post-usage billing. Another major as-
pect overlooked is a necessary skills change. This applies to IT managers
in particular, e.g. in relation to security technology like firewalls, but
also the developers themselves, as we will discuss later on.

218 C. Pahl, H. Xiong, and R. Walshe

On
Premise

Consultation with ISV CEO

Business - FROM classical licensing model TO SaaS

 Analysis
motivation discovery

 Discussion
change implications

PaaS Provider

ISV PaaS Infrastructure Assessment and Requirements

Technical - FROM local TO virtualised (self-hosted, or better 3rd party-hosted) TO public
configuration (3rd-party hosted, data centres)

ISV Developer and Software Development

Technical - FROM on-premise environment TO cloud data centres

 Re-engineering/
Development

stateless architecture

 Re-engineering/
Development

data externalisation

ISV Provisioning

Business - FROM Installation TO PaaS access channels (for clients)

 Migration
PaaS-level infrastructure

 Migration
SaaS-level infrastructure

 Cloud
 Solution

Infrastructure
architecture
scoping and

definition

Business Level
costing and
operation
analysis

Architecture
statelessness

and data
externalisation

Development
pricing, support
and marketing

Fig. 2. PaaS Migration Processes

2. ISV PaaS Infrastructure Assessment and Requirements

– Focus: Technical
– From-To: FROM local TO virtualised (self-hosted, or better 3rd party-

hosted) TO public configuration (3rd-party hosted, data centres)

The technology focus is on determining the elements of the existing IT de-
velopment infrastructure and any dependencies between the components. A
dependency analysis (using tools where possible, e.g. scanning networks to
detect dependencies) needs to be carried out – this includes applications and
machines. Already virtualised solutions are easier to move.

3. ISV Developer and Software Development

– Focus: Technical
– From-To: FROM Traditional OO/SC/Server Architectures TO cloud

PaaS architecture

Development using a PaaS environment requires a number of major changes
regarding the architecture design and software development approach.

– Firstly, statelessness is a requirement for virtual machines (VMs) to be
deployable without data.

– Secondly, as a consequence, data externalisation is required to prepare for
scale-out, which necessitates externalisation for an efficient management
of elasticity requirements.

A Comparison of On-Premise to Cloud Migration Approaches 219

Consequently, this requires the developer to change development styles, pos-
sibly in a significant way depending on the current approach.

4. ISV Provisioning

– Focus: Business
– From-To: FROM Installation TO PaaS access channels (for clients)

The business focus reflects the transfer of cloud advantages from the ISV
(at the PaaS-level) to its client (at the SaaS-level). Corresponding access
channels to the new cloud deployment platform need to be provided.

As for SaaS, supporting techniques would be beneficial, but due to the in-
creased complexity, these have less of an impact [7]. Commonly used are question
catalogues (typical are 100 questions that help to capture current and envisioned
development architectures) – used manually by PaaS provider consultants in the
early stages of the migration process. Sometimes, these questions are organised
into decision trees to guide and focus their application [6].

Some other observations are noteworthy. In contrast to the SaaS observations,
the business side can be difficult to convince, while it is easier with IT staff. This
indicates that changed cash flow is more of a problem than IT development re-
skilling. Despite this observation, the architecture complexity (Stage 3) is often
underestimated.

Success criteria that are applied here are expenditure-based and end-customer
numbers (of ISVs) as metrics.

3.3 IaaS-Level Migration

At the IaaS level (Fig. 3), a number of different concerns including VM migration
and big data migration emerge. We take a comprehensive view, i.e. migration of
a full IT infrastructure is the setting.

1. Business Case Determination

– Focus: Business
– From-To: FROM on-premise installation TO IaaS solution

The key drivers are cost (reduction in operational expenditure is aimed at,
but migration costs are often neglected), time (will almost always be incre-
mental), impact (adding flexibility), strategy (what part of the operation or
business would gain, which would suffer pain). Generally, given the normal
scale, an incremental approach is taken. A testbed is defined and a migration
strategy based on best-practice is selected where possible.

– Vision: the drivers listed above have summarised the main concern, but
cost reduction and increased flexibility are important expectations.

– Ignorance: the ’pain versus gain’ problem, i.e. negative aspects and the
cost of required changes are sometimes neglected.

2. Assessment and Planning

– Focus: Business
– From-To: FROM on-premise installation TO IaaS solution

220 C. Pahl, H. Xiong, and R. Walshe

On
Premise

Business Case Determination

Business - FROM on-premise installation TO IaaS solution

 Analysis
cost, time, impact,

strategy

 Definition
incremental approach;

testbed;
migration strategy

IaaS Provider

Assessment and Planning

Business - FROM on-premise installation TO IaaS solution

Migration Process Architecture

Technical - FROM core infrastructure (client as-is) TO IaaS cloud architecture (to prepare
mapping)

 Architecture
business architecture

and functionality scope

 Testing and Monitoring
network/messaging
topologies; storage

structures

Migration Delivery and Production

Technical - FROM core infrastructure (client as-is) TO IaaS cloud architecture (mapped)

 Mapping
definition and pre-

testing

 Production
incl. backup, failover,

documentation

 Cloud
 Solution

 Assessment
easiest/fastest;

pain/gain; best-practice

 Planning
capabilities (technology,

skills, tools)

Fig. 3. IaaS Migration Processes

Input for this assessment stage includes a determination of the ’easiest/fastest’
aspects (in order to start an incremental process), the pain/gain flow chart
(gains versus costs) and, if possible, best-practice/reference cases. As part of
a contracted process, success criteria are also determined.

The planning involves the determination of the required capabilities for
the migration in terms of technology, skills and tools. Specifically, this could
involve assessing the IaaS provider’s own capabilities, i.e. tools available,
the need to bring in contract partners. This results in building a migration
project team, bringing together provider and customer. The project planning
defines milestones, metrics, and role distribution for the project team.

3. Migration Process Architecture

– Focus: Technical

– From-To: FROM core infrastructure (client as-is) TO IaaS cloud archi-
tecture (to prepare mapping)

The technical focus starts with the business architecture and defines the
functionality scope for the cloud architecture. Testing and monitoring are
aspects that need to be addressed at this stage. The architecture concerns
here are network, directory structures, the messaging topology and the ap-
plication topology based on the identified business functions – there should
be a cloud solution for each function as a guideline. Generally, the client’s

A Comparison of On-Premise to Cloud Migration Approaches 221

development methodology and processes and well as the operations processes
need to be adapted. This follows our observations for the PaaS layer.

4. Migration Delivery and Production
– Focus: Technical
– From-To: FROM core infrastructure (client as-is) TO IaaS cloud archi-

tecture (mapped)
The technical work includes the following steps: mapping definition and a
pre-testing step before the new system is put into production. Despite some
technical elements, the process is based on experience (past projects and
general best-practice) are considered for migration projects as a whole.
Production involves backup and documentation. Failover and other failure
management need to be considered here as part of the migration of a pro-
duction system.
– an incremental approach plugs in components individually into the cus-

tomer architecture and tests them,
– a backup is to be kept both on-premise and in-cloud in operation while

data are moved; only then can decommissioning of on-premise infras-
tructure start. Decommissioning needs a planned approach.

Proper documentation and specification is, of course, a key concern.

Success criteria that can be applied here are the time frame or the metrics
(by milestone) as discussed earlier.

Tool support is, as with the other cases, varied. On a higher level, reference
case and best-practice approaches play an important role. Only in the techni-
cal context of virtualization technology, tools and automation are available. We
can easily create virtual machines consisting of virtualized processor, commu-
nications, storage, networking, and I/O resources. Standards like OVF for VM
packaging and exchange and OCCI as an example for VM lifecycle management
or TOSCA for portability at the IaaS layer (and compliant tools) can be utilised.

Again, architecture emerges as critical concern. Specific to this level, networks,
storage and messaging and application topology are the aspects.

3.4 Systems Integrator

This case study (Fig. 4) has a validating role as a number concerns already
addressed above will reappear here. Again, the focus is on-premise to cloud
migration. The company providing input for our study has acted as an inter-
mediary/consultant supporting others to use a cloud service and as a service
solution provider (another SaaS example), for instance an ISV-SaaS provider of
accounting systems using a PaaS platform like Google Apps. Systems integra-
tion refers to the utilisation of infrastructure technologies to communication and
processes to be supported [18].

1. Customer - Business Analysis. As in other cases, the main expected
benefit is cost reduction. Another confirmation applies to the PaaS model.
Cash flows change, but equally important, there is no hybrid between a
software licence model and a SaaS model. A clear decision needs to be taken.

222 C. Pahl, H. Xiong, and R. Walshe

On
Premise

Customer - Business Analysis

Business - FROM on-premise installation TO cloud solution

 Analysis
cost, flow, business

model

 Discussion
Feature requirements,

acceptance testing, data
migration, go-live, contract

Independent Consultant / Systems Integrator

Customer - Architecture Design

Technical - FROM on-premise installation TO cloud solution

Customer – Move

Technical - FROM on-premise infrastructure TO cloud architecture

 Cloud
 Solution

 Planning
Incremental approach

 Technical - Architecture
architecture scoping and

definition

Preparation
IT team preparation

Go-to-market Strategy
pricing, support and

marketing

Legacy Management
backup and

decommissioning

Fig. 4. Systems Integrator Migration Processes

The initial consultation with the client involves a discussion covering the
following aspects and later steps of a migration process (a sample system
type would be an accounting system moved to the cloud):
– Feature requirements determination
– User acceptance testing
– Data migration
– Go-live discussion
– Contract discussion

2. Customer - Architecture Design. The determination of the architectural
scope is the aim. As in other complex cases, an incremental execution is the
preferred solution. A lean startup solution would start with the top 5 out
of 50 features as the first step, adding features in regular extensions. For a
consultant, platform (and provider) selection is the first major decision.
– At the SaaS layer, e.g. Salesforce is a leading provider of CRM software.

The ecosystem can play a role here. Salesforce’s App Exchange on top
of its CRM provides additional benefits in terms of migration support
and systems integration.

– At the PaaS layer, e.g. MS Azure supports a variety of development
languages such as Python and, of course, the .NET platform. However,
Microsoft is less advanced in terms of marketplace solutions.

Another dimension in choosing a provider are the different product lines,
such as premium, standard and free, offering choice to the client.

3. Customer - Move. The final stage addresses business and technical con-
cerns. This go-to-market stage needs an IT team preparation activity.
Architecture emerges as a critical concern, what we have already noted. Ar-
chitecture problems do occur and improperly architected solutions need to

A Comparison of On-Premise to Cloud Migration Approaches 223

be targeted. There is often a need (but also an opportunity) to redesign
a cloud architecture solution (e.g. storage costs are often underestimated,
which either requires unnecessary garbage data to be removed or a differ-
ently configured solution to be used). Possibilities for configuration that
cloud solutions offer are often, at least initially, not considered. Changes in
the cloud solution architecture would anyway require an agile approach to
architectures.

Legacy management is another concern that needs to be looked at from
the outset. Decommissioning needs to take place (as discussed for the IaaS
layer). Backup systems are useful at early migration stages, but provide
consistency problems later on and incur costs.

4 Analysis

A summary of the processes employed by the four different migration solution
provider with their essential activities is given in Figure 5.

Our vision and ignorance discussion has demonstrated a good understanding
of the benefits, but also that a number of concerns emerge that potential users
and also providers do not properly understand and address – both business and
technology issues.

– Technical: As a critical issue, the central role of the architecture emerges [19].
Stateless components and data externalisation are required if cloud advan-
tages like elasticity are to be gained. Consequently, re-architecting is often
necessary if more than data transfer into the cloud (for standard applica-
tions) is the migration scope.

– Business: Skills and cash flow emerge as two concerns. Particularly, for some
IT staff, more emphasis needs to be put on integration, configuration and
security. A cloud solution will not only facilitate the change from capital
expenditure to operational expenditure as a positive aspect, but create dif-
ferent cash flow situations for users of infrastructure or platform solution
who themselves become cloud solution providers.

The attitude of stakeholders varies, e.g. IT specialists can react in a positive,
but also negative way to cloud migration plans. An understanding of the techni-
cal benefits exists, but can be counteracted by the fear to lose control and status
as software is created and managed elsewhere.

Security, trust and data protection are all-encompassing issues that we have
not covered here, due to their very different technical nature compared to the
architecture concerns.

While we acknowledge that the processes presented here are limited to specific
solution providers and might be not be considered as generalised, we have tried
to alleviate this concern by specifically selecting experts with a long experience
(often across companies) and by using the results obtained from the independent
consultant to validate the other three case study results.

224 C. Pahl, H. Xiong, and R. Walshe

 Stakeholder
 - business
 - technical

 Concerns: Change & Evolution | Stakeholder Differentiation | Agility

Infrastructure
architecture
scoping and

definition

On
Premise

Cloud
Solution

Business Analysis
costing and operation

analysis

Technical - Architecture
Incremantal

architecture scoping
and definition

Go-to-market Strategy
pricing, support and

marketing

On
Premise

Cloud
Solution

Assessment & Planning
process, reference

cases, flow

Architecture
mapping, pre-testing,

proofing

Delivery & Production
architecture, functions

success criteria:
milestones/metrics

On
Premise

Cloud
Solution

Business Level
costing and
operation
analysis

Architecture
statelessness

and data
externalisation

Development
pricing, support
and marketing

On
Premise

Cloud
Solution

Analysis
data views

Analysis
data

master and
control

Evaluation
middleware

Definition
business
objects &

data model

Implement
data

migration

SaaS Provider

PaaS Provider

IaaS Provider

Independent Consultant / Systems Integrator

Fig. 5. Migration Processes Framework – Use Cases and Selected Activities

5 Related Work

Related research focuses for instance on an advanced model-driven methodology
and tools for reuse and migration of on-premises applications to cloud. To sup-
port the migration, e.g. the REMICS project (EU FP7) enhances the OMG
Architecture Driven Modernization (ADM) methodology with specific meth-
ods, meta-models and tool support, including knowledge discovery, patterns and
transformations for SOA and Cloud Computing.

The REMICS project is looking at a model-driven solution to support mi-
gration [19–21]. Part of the work concentrates on the opportunity for software
modernisation – a challenge, but also opportunity that we have also identified.
Their architecture-driven modernisation extracts the legacy architecture in or-
der for it to form the basis of the new cloud solution. Automated translation of
business process, component and test specification preserves existing features,
and will also allow weaving in new architectural elements in a coherent way. The
SMART process governs the sequence of activities. However, our concern here
was less to provide a concrete software architecture solution – rather to look at
concerns from a broader management perspective.

A Comparison of On-Premise to Cloud Migration Approaches 225

A number of practical guidelines exist, published by cloud solution providers
to aid the migration to their own products:

– Amazon provides whitepapers for its Amazon Web services solutions (includ-
ing e.g. EC2) [14]. These AWS whitepapers outline the target architecture,
their interfaces and also migration aspects.

– Similar documents are published by other companies, such as IBM [5], Sales-
force [4] or Oracle [11, 12].

– Microsoft as another major provider in the PaaS space also provides whitepa-
pers [2]. Additionally, technology evangelists like David Chappell provide
material in various media types [3].

Data migration [9] emerges as a more mature migration concern. An aspect that
can be tool-supported is cost estimation [8], which can alleviate initial concerns.

6 Conclusions

Migration to the cloud raises currently a range of questions. Common procedures
do not exist and tool support is often not available. Migration experts rely on
their own experience and some basic tools to facilitate the process. We have
aimed to identify commonalities in the migration process in different context,
using the cloud IaaS/PaaS/SaaS layers as the primary differentiation factor.

We have established core elements of a migration process toolkit like standard
activities and steps, based on facets of (a here implicit) cloud migration ontology
defining major concerns. The activities and steps across the different layers point
to a common set of migration tasks that can be assembled to match the needs
of the different deployment layers, but also provider and user types. The dis-
cussion has highlighted the immaturity in terms of established procedures and
availability of tools to support the process. Important challenges arising from
our observations include the importance of adequate architecture design for the
cloud, but also the implications in terms of changed business models.

A plan arising from this discussion is a migration pattern catalogue. Patterns
are templates that can be applied in a concrete situation. A migration pattern
would be more specific than the processes described. In addition to cloud lay-
ers, which we have used to discriminate between different cloud migrations, a
number of other factors arise from our discussion. The size of the organisation
plays a role. It dictates the needs, but also the financial scope, which in turn
limits the effort a provider will make to accommodate special configurations.
Distinguishing between different SaaS application categories (e.g. ERP versus
technical software) makes sense as well as distinguishing more clearly between
PaaS development and deployment or IaaS compute, storage and networking.

Acknowledgements. The authors are greatly indebted to the participants of
the IC4 migration studies.

226 C. Pahl, H. Xiong, and R. Walshe

References

1. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. NIST Special
Publication 800-145 (2010)

2. Server and Cloud Platform (2013),
http://www.microsoft.com/en-us/server-cloud/default.aspx

3. Chappell, D.: How SaaS Changes an ISV’s Business, Sponsored by Mi-
crosoft Corporation (2012), http://www.davidchappell.com/writing/white

papers/How SaaS Changes an ISVs Business--Chappell v1.0.pdf
4. Developerforce (2013), http://wiki.developerforce.com/page/Tools
5. IBM: Cloud Computing Reference Architecture 2.0 (2011), https://www.ibm.com/

developerworks/mydeveloperworks/blogs/c2028fdc-41fe-4493-8257-

33a59069fa04/entry/chapter 13 cloud computing reference

architecture1?lang=en
6. Skilton, M., Gordon, P.: Cloud Buyers’ Decision Tree. The Open Group (2010)
7. In, H.: Conflict Identification and Resolution for Software Attribute Requirements.

PhD dissertation. University of Southern California (1998)
8. RightScale: PlanForCloud (2012), http://www.planforcloud.com/
9. Mohanty, S.: Data Migration Strategy (2004), http://www.information-

management.com/specialreports/20040518/1003611-1.html
10. Murtaza, S., Masud, R.A.: An Extended and Granular Classification of Cloud’s

Taxonomy and Services. International Journal of Soft Computing and Engineer-
ing 2(2), 278–286 (2012)

11. Oracle: SQL Developer Migration (2010), http://www.oracle.com/technetwork/
products/migration/sqldevelopermigration21-wp-131240.pdf

12. Oracle: After Migrating or Upgrading the Database (2011),
http://docs.oracle.com/cd/A87860_01/doc/server.817/a86632/migaftrm.htm

13. Rational Software Development Platform: Migrate from VisualAge Gen-
erator 4.5 to the Enterprise Generation Language (EGL). IBM (2012),
http://www.ibm.com/developerworks/rational/library/egldoc.html

14. Varia, J.: Migrating your Existing Applications to the AWS Cloud: A Phase-
driven Approach to Cloud Migration, AWS Cloud Computing Whitepapers (2010),
http://media.amazonwebservices.com/CloudMigration-main.pdf

15. Email Migration Toolkit (2013), http://www.sitaas.de/fileadmin/data/

Email Migration Toolkit.pdf
16. Pahl, C., Giesecke, S., Hasselbring, W.: Ontology-based modelling of architectural

styles. Information and Software Technology 51(12), 1739–1749 (2009)
17. Wang, M.X., Bandara, K.Y., Pahl, C.: Process as a Service Distributed Multi-

tenant Policy-Based Process Runtime Governance. In: IEEE International Confer-
ence on Services Computing (SCC), pp. 578–585. IEEE (2010)

18. Halvey, J.K., Melby, B.M.: Business Process Outsourcing: Processes, Strategies,
and Contracts. John Wiley & Sons, Inc., Hoboken (2007)

19. Mohagheghi, P., Saether, T.: Software Engineering Challenges for Migration to the
Service Cloud Paradigm. In: World Congress on Services 2011, pp. 507–514. IEEE
(2011)

20. Mohagheghi, P., Berre, A.J., Sadovykh, A., Barbier, F., Benguria, G.: Reuse and
Migration of Legacy Systems to Interoperable Cloud Services - The REMICS
project. In: Mda4ServiceCloud 2010 Workshop (2010)

21. Orue-Echevarria, L., Alonso, J., Escalante, M., Benguria, G.: Moving to SaaS:
Building a migration strategy from concept to deployment. In: Ionita, A.D., Litoiu,
M., Lewis, G. (eds.) Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments. IGI (2012)

http://www.microsoft.com/en-us/server-cloud/default.aspx
http://www.davidchappell.com/writing/white_papers/How_SaaS_Changes_an_ISVs_Business--Chappell_v1.0.pdf
http://www.davidchappell.com/writing/white_papers/How_SaaS_Changes_an_ISVs_Business--Chappell_v1.0.pdf
http://wiki.developerforce.com/page/Tools
https://www.ibm.com/developerworks/mydeveloperworks/blogs/c2028fdc-41fe-4493-8257-33a59069fa04/entry/chapter_13_cloud_computing_reference_architecture1?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/c2028fdc-41fe-4493-8257-33a59069fa04/entry/chapter_13_cloud_computing_reference_architecture1?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/c2028fdc-41fe-4493-8257-33a59069fa04/entry/chapter_13_cloud_computing_reference_architecture1?lang=en
https://www.ibm.com/developerworks/mydeveloperworks/blogs/c2028fdc-41fe-4493-8257-33a59069fa04/entry/chapter_13_cloud_computing_reference_architecture1?lang=en
http://www.planforcloud.com/
http://www.information-management.com/specialreports/20040518/1003611-1.html
http://www.information-management.com/specialreports/20040518/1003611-1.html
http://www.oracle.com/technetwork/products/migration/sqldevelopermigration21-wp-131240.pdf
http://www.oracle.com/technetwork/products/migration/sqldevelopermigration21-wp-131240.pdf
http://docs.oracle.com/cd/A87860_01/doc/server.817/a86632/migaftrm.htm
http://www.ibm.com/developerworks/rational/library/egldoc.html
http://media.amazonwebservices.com/CloudMigration-main.pdf
http://www.sitaas.de/fileadmin/data/Email_Migration_Toolkit.pdf
http://www.sitaas.de/fileadmin/data/Email_Migration_Toolkit.pdf

Migration of an On-Premise Application

to the Cloud: Experience Report

Pavel Rabetski and Gerardo Schneider

Department of Computer Science and Engineering
Chalmers University of Technology, and the University of Gothenburg

Gothenburg, Sweden
rabeckijps@gmail.com, gerardo@cse.gu.se

Abstract. As of today it is still not clear how and when cloud comput-
ing should be used. Developers very often write applications in a way
that does not really fit a cloud environment, and in some cases without
taking into account how quality attributes (like performance, security or
portability) are affected. In this paper we share our experience and ob-
servations from adopting cloud computing for an on-premise enterprise
application in a context of a small software company. We present exper-
imental results concerning a comparative evaluation (w.r.t. performance
and cost) of the behavior of the original system both on-premise and on
the Cloud, considering different scenarios in the Cloud.

1 Introduction

Cloud computing refers to a utility-based provisioning of virtualized computa-
tional resources over the Internet. Even though computing as a utility is not a
new concept [15], it has only recently become commercially available due to new
technological shifts in virtualization, distributed computing and communication
technologies. From a long-held dream cloud computing has turned into a new
promising trend of the IT industry that is about to change the way compu-
tational resources and software are designed and purchased. Bottery et al [3]
believe that the emergence of cloud computing will fundamentally transform the
economics of the multi-billion dollar software industry. Strategy consulting firm
AMI-Partners predicts that small business spending on cloud computing will
hit $100 billion by 2014 [7]. Despite such promising predictions, there is a big
confusion among potential adopters as cloud computing is not mature enough.
Indeed, it is not clear what cloud computing is and when it is convenient to
use it [1]. According to the Gartner report [6], cloud computing will become the
preferred option for application development only around 2015, despite initial
growth. Moreover, the lack of standards and keen competition on the new market
has led to a variety of idiosyncratic cloud platforms. Cloud giants like Amazon,
Google, Microsoft, and SalesForce are trying to establish their rules and promote
their franchise. Choosing a proper cloud provider additionally complicates the
migration planning, especially for smaller companies that do not have resources
for extensive research on cloud computing.

K.-K. Lau, W. Lamersdorf, and E. Pimentel (Eds.): ESOCC 2013, LNCS 8135, pp. 227–241, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

228 P. Rabetski and G. Schneider

The main objective of this work is to analyze what it means to migrate an
on-premise application to the Cloud and what are the consequences of the mi-
gration. We perform our study on a specific industrial case study described in
detail later in the paper. Our main contributions are: 1. The migration of an
industrial enterprise web application to the Cloud; 2. Experiments concerning
performance and costs of the migration. Based on our experimental results we
draw conclusions on the consequences of the migration and provide suggestions
on how to extrapolate our experience to other software systems.

The rest of the paper is organized as follows: Section 2 gives necessary back-
ground information. Sections 3 and 4 describe the migration of an industrial
enterprise system to the Cloud, and our experimental results. Section 5 presents
related work, and the last section summarizes the results.

2 Cloud Computing

In this section we give a definition of cloud computing along with its key char-
acteristics, and we describe two existing cloud classifications.

Cloud computing usually refers to a utility-based provisioning of computa-
tional resources over the Internet. Widely used analogies to explain cloud com-
puting are electricity and water supply systems. Like the Cloud, they provide
centralized resources that are accessible for everyone. Also, in the Cloud you
only pay for what you have used. And finally, resources are usually consumed
by those who have difficulties to produce necessary amounts by themselves or
just do not want to do that. Despite the description by analogy, it is difficult to
give a unique and precise definition. The definitions proposed are often focused
on different perspectives and do not have common baselines. Vaquero et al [20]
gives a definition highlighting three features that most closely describe cloud
computing: scalability, pay-as-you-go utility model and virtualization [20].

There are two widely used cloud computing classifications. The first one de-
scribes four cloud types depending on the deployment location: public, private,
community, and hybrid clouds [13]. The second classification is a widely used
cloud ontology describing three cloud models depending on the provided capabil-
ities [22]: i) Infrastructure as a Service (IaaS), ii) Platform as a Service (PaaS),
and iii) Software as a Service (SaaS). It is also called a cloud stack because they
are somehow typically built on top of each other. They can exist independently
or may co-exist. Due to the lack of standardization it is not very clear where the
exact boundaries lie between the components of the cloud stack.
– IaaS. The infrastructure layer represents fundamental resources that are the

basis for the upper layers. It is very similar to a regular virtual server host-
ing. IaaS is built directly on the hardware, providing virtualized resources
(e.g. storing and processing capacities) as a service. Examples of public IaaS
providers are Amazon Web Services and GoGrid.

– PaaS. This layer is usually built on top of IaaS. The platform layer provides
a higher level software platform with extended services where other systems
can run. It delivers a programming-language-level environment with a set of

Migration of an On-Premise Application to the Cloud: Experience Report 229

language-integrated APIs for implementing and deploying SaaS applications.
Microsoft Azure and Google App Engine are examples of PaaS.

– SaaS. The services exposed in this layer represent alternatives to locally run-
ning end-user applications. They are usually interesting for a wide market,
compared to IaaS or PaaS. They can also be composed from other services
available in the Cloud. Normally, SaaS applications are accessed through
web-portals for some fee. Microsoft Office365 or Gmail are examples of SaaS.

3 Case Study: Migrating DC System to the Cloud

We describe here the migration of an enterprise system to the Cloud. We follow
the migration process suggested in [19]. First, we describe the current system
implementation. Then, we describe the new cloud architecture for the migrated
application along with identified compatibility issues. We also suggest several
system improvements to further leverage the cloud environment.

3.1 Preliminary Analysis

Before doing the migration we have done a careful analysis of advantages and
disadvantages of cloud computing. A summary of the results is presented in
Table 1. In addition to that, we have studied existing public cloud platforms,
namely, Amazon Web Services, Google App Engine, and Microsoft Azure in
order to find the most suitable one. See [16] for a more detailed description.

3.2 Current DC Implementation

InformaIT Company. InformaIT is a small independent software vendor
(ISV) that focuses on document management systems. Most of the systems are
based on Microsoft products and technologies. Being an innovative company,
InformaIT is very interested in modern IT trends. The Document Comparison
system (DC) was selected as a candidate for experimenting on the migration
of applications to the Cloud. DC is a small web-based enterprise solution that
enhances document management processes. The main purpose is to provide a
fast and easy way to compare textual and graphical content of different digital
documents.

Table 1. Summary of advantages and challenges of cloud computing

Advantages: no upfront investments; on-demand capacity; focus on core applica-
tions; potential for more sales; easier customer maintenance; platform-
provided features

Challenges: security and privacy; availability; performance; compliance require-
ments; vendor lock-in; environment limitations (e.g. sandbox); multi-
tenancy and licensing

230 P. Rabetski and G. Schneider

Fig. 1. DC components Fig. 2. On-premise distributed deployment model of DC

Fig. 3. Cloud deployment model of DC

DC Architecture. The system is implemented using Microsoft .NET 2.0 frame-
work and various programming languages including server-side C# and C++,
and client-side JavaScript. DC contains five main components: i) frontend web
application, ii) backend engine, iii) distributed cache, iv) database, and v) shared
file store (see Fig. 1).

The frontend is a simple ASP.NET web application running under IIS on
Windows OS. It provides web interfaces for end-users, so they can upload digital
documents, change configuration settings, analyze the result, and generate re-
ports. The frontend extensively uses ASP.NET session state to track processed
information and a current user status.

The backend is implemented as a Windows service (.NET based). It performs
long running computational tasks e.g. the rasterization of digital documents. A
special commercial library is used to fasten this process which accesses the files
via regular file system API. It also requires the registration of a COM component.

The file store serves as a shared storage for system components. It keeps
persistent data and organizes asynchronous communication between the frontend
and the backend.

Migration of an On-Premise Application to the Cloud: Experience Report 231

The cache layer keeps frequently used data, which increases the performance
of the system. For example, the frontend stores the latest document comparison
result there.

Unlike many document management systems, DC is not database-centric. The
amount of data in the database is quite small and is used infrequently.

Deployment Model. DC is deployed on servers located in the data centers of
customer organizations. This means customers have to take care of the infras-
tructure, and have technical personnel to maintain it. The amount of required
hardware depends on the amount and the complexity of processing data. A single
server is usually enough for small companies, while big organizations need sev-
eral machines to run the system. DC also requires preinstalled Windows Server
2003/2008 with Microsoft SQL Server.

An on-premise distributed deployment model of DC is shown in Fig. 2.
ASP.NET applications are composed into a Web Server Farm. They store fre-
quently used data in a distributed cache that is usually located on a separate
server. Backend engines are deployed separately as well. They require more pow-
erful servers for heavy computations. A customer can choose the number of fron-
tend and backend servers to achieve the required performance. A shared network
folder plays the role of persistent file storage. Microsoft SQL Server is used as
a database. End-users are usually located in the same environment where the
system is running.

This on-premise deployment model gives several advantages. First, it keeps
data and code physically close. It results in very low latencies and no bandwidth
limitations. Second, sensitive data never goes outside the organization, which
provides a high level of security. In some cases when users need to access the
system outside the organization, a VPN connection is established to keep the
transferred data protected.

Organizations are charged per installation depending on the number of users.
There are different types of licenses available, including a personal license and a
concurrent license.

Motivation for the Migration. There are several disadvantages of running
DC on-premise in a customer environment. We briefly discuss here some of them
as well as the benefits of migrating the application to the Cloud.

The biggest opportunity is the potential for more sales. DC is currently ori-
ented to big and medium organizations that have enough resources, own infras-
tructure, and technical personnel to install and run the system. Furthermore, the
license cost is quite high. Potential customers such as small companies cannot
afford DC, facing too big financial commitments. Some of them would like to use
the system inconstantly and pay only for the amount of compared data. SaaS
version of DC can bring the product to such customers.

A cloud computing advantage would be easer installation and upgrade pro-
cedures. The system is currently distributed across many customers. InformaIT
has to convince each customer to replace an on-premises package and then as-
sist during the actual upgrading. Some customers still run older versions of the

232 P. Rabetski and G. Schneider

system, which brings an additional support overhead. The simple maintenance
model of cloud computing will help to distribute resources more efficiently, lead-
ing to cost savings and business agility.

3.3 Suggested Cloud DC Architecture

Developers usually face a range of alternatives when implementing cloud-based
systems. In this section we describe the chosen approach for our case and discuss
different alternatives that can affect cost, architectural quality, and the amount
of required changes.

Choosing a Cloud Provider. The first step when moving an on-premise
application to the Cloud is to choose a proper cloud provider. We examined
three major cloud providers (Amazon Web Services, Google AppEngine, and
Microsoft Azure). Based on our finding we conclude that Google AppEngine
is the worst candidate for DC because it does not support .NET applications,
while Amazon AWS and Microsoft Azure both fit for the migration quite well.
After further analysis we prefer Windows Azure to Amazon AWS for several
reasons: i) it requires less configuration effort, ii) it has a faster deployment
model, and iii) it allows consistent development experience for applications that
are well-versed in Microsoft technologies.

Cloud DC Architecture. Once we have chosen a public cloud provider, we
need to show how existing architectural components are mapped to abstractions
provided by the platform. In our case this platform is Microsoft Azure.

The Frontend. Azure Web Role is an obvious choice for our ASP.NET fron-
tend. Web Role has a preconfigured IIS and a built-in load balancer for web
applications. Still, there are some limitations to keep in mind. For example, the
Azure load balancer is not sticky, meaning that two requests from the same user
can be processed by different Web Role instances. Also, Web Role supports only
IIS 7.0 and requires .NET 3.5/4.0.

The Backend Engine. The backend maps to a Worker Role, since it suits
perfectly for long running background tasks. It is worth noting that roles do not
have administrative privileges in the environment. It restricts the execution of
tasks that change OS configuration e.g. registration of a COM component or
changing OS registry.

The Distributed Cache. Microsoft Azure has only one service for distributed
cache so far, AppFabric Cache. Alternatively, cached data can be stored in either
SQL Azure or regular Azure Storage. Though AppFabric Cache is considered to
have better performance compared to the alternatives [16], it is quite expensive
and limited in size (4GB maximum). We choose AppFabric Cache under the
assumption that the size of data stored in cache will be significantly reduced.
Otherwise we suggest using Table Storage.

The Database. On-premise DC version uses a Microsoft SQL Server database.
We find SQL Azure to be a perfect cloud alternative. In most cases switching

Migration of an On-Premise Application to the Cloud: Experience Report 233

Table 2. Identified compatibility issues

Compatibility issue Required modification

Current solution uses .NET 2.0 and
VS2005 that are not supported by Mi-
crosoft Azure. The platform uses the latest
product versions.

The system should be migrated to .NET
3.5/4.0 and VS2010. This modification is
quite simple due to full backwards com-
patibility of .NET 4.0 and 2.0.

The system cannot register COM compo-
nents directly from code due to environ-
ment limitations.

There are some workarounds that allow us-
ing COM components for Azure applica-
tions: Registration-Free COM [18] and role
startup scripts. We suggest using startup
scripts because it is the easiest solution.

A local folder cannot be shared across
Azure roles. Furthermore, suggested Blob
Storage and Queue Storage have APIs that
are not compatible with regular file APIs
currently used by DC.

Change the code for accessing data in the
file storage to use Blob Storage and Queue
Storage APIs. Azure Drive is an alternative
solution that eliminates these changes.

Standard ASP.NET session state modes
do not suit Azure environment. In-Process
mode is not an option because of a non-
sticky load balancer.

The system needs distributed session stor-
age in order to scale. We suggest us-
ing AppFabric Cache (or optionally Table
Storage). Microsoft Azure offers an easy
way of using these storages.

to SQL Azure is as simple as changing the connection string. In [8] it is argued
that SQL Azure can become a bottleneck for systems that concurrently operate
large amounts of data. However, it is not the case for DC.

The File Store. We have found out that the local file storage is not persistent
and cannot be shared with other roles. All data stored locally gets lost if the
role dies. The only persistent option for Azure applications is Azure Storage. We
suggest using Queue Storage for messaging and Blob Storage for the files shared
among roles. This approach leverages the cloud platform as much as possible.
First, all data are automatically replicated and scaled. Second, Azure Storage
can be accessed directly via REST calls, reducing the load on the frontend.
Last but not least, Queue Storage provides a built-in reliable communication
mechanism.

Fig. 3 presents a proposed deployment model of the system in the Cloud.

Identified Compatibility Issues. Even though Microsoft Azure fits well for
the migration of DC, we have identified some compatibility issues that require
changes in the current implementation. These issues are described in Table 2. In
what follows, we recommend some design modifications in order to tune system
performance, increase portability, and make the migration as smooth as possible.
Separate Data Layer from Business Logic Layer. InformaIT wants the

system to be easily portable across both environments. However, this is not
easy to achieve because of the need to switch from regular file system API
to Azure Storage API. We suggest separating a data access layer from a

234 P. Rabetski and G. Schneider

business logic layer in order to increase portability. In other words, instead
of using APIs directly, a business logic layer calls a data access layer inter-
face. This loose coupling allows using regular file system or Azure Storage
depending on the deployment environment.

Become as Stateless as Possible. Large amount of cached data will not only
degrade the performance but also increase the cost. An additional 1GB of
AppFabric cache costs around 100$, which is 1000 times more than Azure
Storage cost. The bigger the session size, the more time required to serialize/
de-serialize it. DC currently stores megabytes of data per a session, which is a
big overhead. We suggest reducing the amount of cached data, making DC as
stateless as possible. This suggestion can be applied for any web application
that extensively uses session data.

Extensively Use Logging. Logging is very important for cloud applications,
since debugging is impossible in the cloud environment. Logging helps de-
velopers to trace the behavior of the system and determine the reason of
system failures. Furthermore it might be useful for identifying the level of
resource utilization or just collecting statistical information.

4 Experiments

In this section we present experiments concerning cost and performance of
running the DC application on the Cloud (under different conditions), and we
compare those results with the on-premise implementation of DC. We are not
concerned here with other issues as security and privacy.

In what follows we describe the environment these experiments are performed
in. Experiments and measurements are done for North Europe deployment lo-
cation of Microsoft Azure. This is the geographically closest location to the
client testing environment located in Sweden (Gothenburg). All Azure compute
instances have a small size, which provides 1.75 GB memory, 225 GB local
disk space, moderate I/O performance, and CPU performance equivalent to one
1.6GHz core. We use small instances as a part of Azure free trial subscription,
which gives necessary resources to perform our experiments for no fees. Test-
ing on the client side is executed in a non-virtualized environment, external to
the Cloud, with a direct connection to the Internet via a high-speed wired Eth-
ernet. However, the cloud deployment location and the client environment are
changed for some experiments. All experiments are performed at least 100 times
to confirm that the results are stable.

4.1 Performance

As we identified earlier, a cloud environment entails increased latencies and un-
known hardware underneath. Therefore, DC can have the following performance
bottlenecks in the Cloud: the execution of heavy computational tasks (like dig-
ital document rendering) that require efficient hardware; and session handling
that is latency sensitive. These operations represent the highest risk when mov-
ing DC to the cloud environment, because they might lead to significant system
performance degradation.

Migration of an On-Premise Application to the Cloud: Experience Report 235

Fig. 4. Execution time comparison for cloud and on-premise environments

Execution Time. We have analyzed a production set of documents in order
to suggest testing data for this experiment. We have classified two dominant
types and picked up one document of each type (we reference to them as D1
and D2 accordingly). We then execute CPU heavy code for both documents and
compare run time for cloud and on-premise DC versions. For a cloud version
we use a small Azure compute instance (that has CPU performance equivalent
to 1.6GHz), while on-premise installations have Core2Duo P7350 2.0GHz M x86
(laptop), Core2Duo E7500 2.93GHz x86 (workstation), Core i3 540 3.07GHz x64
(dedicated local server). Fig. 4 illustrates the results of our experiments. We have
observed notably worse performance of one DC instance in the Cloud rather than
on the dedicated server with powerful Intel Core i3 CPU (16.1 sec compared to
4.9 sec for D2). This means the system needs about three times more instances
of the backend engine in the Cloud to achieve the same throughput.

Note that in contrast to the on-premise version where all files can be stored
locally, cloud application needs to download and upload files to Blob Storage in
order to process documents. However, it turned out that download and upload
time together never exceeds 13% of total run time. Thus, our conclusion about
computing capacity in the Cloud is still relevant.

SessionStoring/RetrievingTime. In this sectionwe compare on-premise and
cloud DC session handling performance and also test two alternatives in Azure
platform. For on-premise installation we evaluate standard ASP.NET in-process
and state servermodes. In-processmode stores session state data inmemory, while
state server mode uses a special process (separate from the ASP.NET worker pro-
cess) for it. For cloud installation we evaluate AppFabric Cache, and a custom
session handler that uses Azure Table. Session handling is very important for the
frontend ASP.NET application, because it retrieves and stores session data on ev-
ery page load as a part of the ASP.NET application lifecycle.

After putting an object into session, we measure the time it takes to load and
save the session when handling an http request. We perform this experiment
against different storages and object sizes: 1Kb, 1Mb, and 10Mb (assuming that
session should not exceed 10Mb). Every object contains randomly generated

236 P. Rabetski and G. Schneider

Table 3. Storing/retrieving time in seconds for session data

On-premise DC installation Cloud DC installation

Session size In-process State server AppFabric Cache Table Storage

1 Kb 0.0/0.0 0.0/0.0 0.004/0.008 0.094/0.113

1 Mb 0.0/0.0 0.008/0.009 0.098/0.143 0.292/0.548

10 Mb 0.0/0.0 0.161/0.173 0.435/0.583 1.167/1.861

Fig. 5. Cloud DC page response time Fig. 6. Response time file uploading

binary data. It is worth noting that serialization time depends on the number
of objects stored in the session. In our case there is only one object. We also use
the local Web server for state server mode, while a remote Web server would
considerably increase session handling time.

Experiment observations are presented in Table 3 where we can see that on-
premise DC requires significantly less time for session handling compared to
the cloud installation. In-process mode is obviously the fastest, since all data is
kept in memory all the time. However, when data is stored in another location
like AppFabric Cache, it should also be serialized and de-serialized accordingly.
We have observed that AppFabric Cache shows considerably better performance
than Table Storage, especially for small amounts of data. It is approximately 3
times faster for 1Mb and 10Mb cases, and 17 times faster for 1Kb case (4/8ms
compared to 94/113ms). Consequently, DC can have close to on-premise perfor-
mance in the Cloud when operating smaller data amounts (kilobytes) stored in
AppFabric Cache. Table Storage increases response time by 1.167+1.861, that
is approximatively 3 sec, when storing 10Mb of data in session. On the other
hand, it is much cheaper and has no capacity limits. Table Storage also shows a
lower correlation between the time and session size, apparently caused by HTTP
latencies to transfer the data.

Response Time. We have also tested response time of the frontend web ap-
plication against different deployment locations and different scales. We try to
reflect the actual time from the end-user perspective, because perceived response
time dictates user-friendliness of the service. Response time can be decomposed

Migration of an On-Premise Application to the Cloud: Experience Report 237

into four parts: the latency to send a request from a client; the time to redirect
the request by a load balancer (if there are several role instances); the time to
process it by the application; and the latency to get a response back from the
server. Even though these factors depend on network locality and traffic con-
gestion, the main purpose is to show the difference in response time depending
on different conditions. Variable conditions in our experiments are deployment
location, number of role instances (scale), and load. In order to measure response
time purely for a Web Role, we use a stateless .aspx page that does not include
any external factors like session handling or document page rendering.

The first experiment evaluates page response time for a different number of
role instances. The page makes some calculations and then generates dynamic
output content. This dynamic data is needed to ensure that the page is not
cached by any CDN service or in the client environment. We perform the ex-
periment with a variable number of simulated clients accessing the service con-
currently. In order to measure response time, we use Visual Studio 2010 Load
Test1 based on a Web Test that simply requests the page. All testing is done
from outside the Cloud. We run the Load Test for a period of five minutes and
perform it many times to confirm that the results are stable.

Fig. 5 shows the observed response time for both single instance and dual
instance setups with an increasing number of concurrent users. Page time starts
at about 80 ms for both cases and then grows linearly with different angular
coefficients. Results show that an additional role instance decreases response
time, especially for a heavy load. For 250 concurrent users a dual instance setup
performs 400ms faster than a single instance setup.

The main goal of the second experiment is to show the difference in response
time across different deployment locations. To do so, we execute Visual Studio
2010 Web Test that uploads a document to DC that is running in the cloud
environment. This scenario reflects latency and bandwidth in a better way. We
have picked up three random files of different sizes from the production doc-
ument set: 0.28Mb, 1.25Mb, and 5.13Mb. The experiment is executed for two
deployment locations: North America and North Europe, with testing performed
in Sweden (Gothenburg). We repeat the experiment multiple times to confirm
that the results are stable. The observed response time is presented on Fig. 6.

All three cases show approximately twice faster uploading time for North
Europe zone compared to North America zone. The biggest file (5.13 MB) is
uploaded to the first zone for 10 sec, while the second zone requires almost 24
sec. Consequently, a proper deployment location can significantly improve user
experience by reducing interaction latencies.

4.2 Cost

In this section we estimate the cost of DC in the Cloud. For this purpose we
model two real life scenarios that describe how cloud DC can be used. The cost
for every scenario is estimated based on the Microsoft Azure pricing model.

1 http://msdn.microsoft.com/en-us/library/ee923688.aspx

http://msdn.microsoft.com/en-us/library/ee923688.aspx

238 P. Rabetski and G. Schneider

Table 4. DC estimated cost for Scenario 1 and Scenario 2

Scenario 1 Scenario 2

Service Used capacity Cost ($) Used capacity Cost ($)

Compute Instance 11 small instances
(7920 hs)

950 3-11 small instances
(3920 hs)

470

Relational database 1 GB 9.99 1 GB 9.99

Storage 500 GB 75 500 GB 75

Storage transactions 5000k transac-
tions

5 5000k transactions 5

Data transfer 1000 GB 150 1000 GB 150

AppFabric Cache 512 MB 75 0-512 MB 55

Total: 1264.99
(1084.99)

764.99
(664.99)

Table 5. Cost distribution for Scenario 1 and Scenario 2

Compute
instance

Storage Data
transfer

Storage
transactions

Cache Database

Scenario 1 75% 6% 12% 0% 6% 1%

Scenario 2 61% 10% 20% 1% 7% 1%

Scenario 1: Production Installation. In Scenario 1 DC is used as a produc-
tion installation with throughput equivalent to one dedicated server (without
elastic scale). For this scenario we require DC to show the same throughout as
the on-premise installation that is running on a server with Core i3 540 3.07GHz
x64 processor, 500 GB available local storage and 4GB of memory. It uses three
out of four cores for the backend and the rest one for the frontend. As we ob-
served earlier, the backend engine shows three times worse performance in the
Cloud. That means we need nine small compute instances for the Backend. The
frontend application requires two small compute instances, since we do not ex-
pect big performance degradation for the ASP.NET application. We also include
512Mb AppFabric Cache. We perform all calculations for a 30 days period which
is equivalent to one month. So we totally need 30*24*11 = 7920 compute hours
that costs 2160*0.12 = 950 US dollars. Data storage costs 500*0.15=75$; out-
going traffic is 1000*0.15 = 150$; 5 million transactions cost only 5$; and 1
GB SQL Azure is 9.99$. Table 4 presents the total cost for this scenario, and
Table 5 illustrates the cost distribution. The total cost in brackets represents
an upfront payment case (using a subscription). For more information see the
official Microsoft Azure page.

Scenario 2: Production Installation with Scaling. In Scenario 2 DC is
used as a production installation with throughput equivalent to one dedicated
server (using elastic scale). In this scenario we use the same capacities as in
Scenario 2, but leveraging cloud elastic scalability. We assume DC has a typical
enterprise system load pattern: high load during working hours (10 hours from

Migration of an On-Premise Application to the Cloud: Experience Report 239

8AM to 6 PM) and almost no load during the rest time. That means we can
scale our system down when the load is very low. We scale it down to three small
instances to keep the system available. Also, the cache service is not needed
when we have one Web Role. Assuming that there are 22 working days during
a month we will need 30*24*3 + 22*10*8 = 3920 hours. The first term means
that we need 3 instances all the time, and the second term means that we add
8 more instances during high load periods. The cache will cost 75*(22/30) =
55. However, using elasticity does not affect storage and outgoing traffic. The
estimated cost is presented in Table 4. Table 5 shows the cost distribution among
different services.

Based on our estimations we can conclude that compute services dominate in
all scenarios. It makes up 75%, and 61% of the total cost for Scenario 1, and 2
accordingly. On the other hand, storage transactions have the least cost. SQL
Azure also has a small cost share of 1%. However, this is because DC is not
database centric. We found that the cost of DC can drop by 40 percent (764.99$
compared to 1264.99$) when leveraging elastic scalability. Even though choosing
a proper scaling strategy is pretty straightforward for enterprise applications like
ours, it might not be so trivial for other systems.

5 Related Work

Some work have been presented on the benefits, challenges, and consequences of
adopting the Cloud. Armbrust et al [1] described their vision of cloud comput-
ing, emphasizing elasticity as an important economic benefit. Motahari-Nezhad
et al [14] added that cloud computing significantly reduced upfront commitments
and potentially reduced operational and maintenance costs are also important
benefits of cloud computing from business prospective. Chappel [4] elaborated
on different opportunities that cloud computing brings to ISV, including the
potential for more sales and easier customer upgrades. Kim et al [9] made and
extensive research on cloud computing issues, emphasizing security and avail-
ability as the most challenging ones. Security and privacy seems to be one of the
mostly discussed obstacles for cloud computing adoption [5][21].

Various papers evaluated existing cloud implementations. Rimal et al [17]
made a comparative technical study of cloud providers and suggested taxonomy
for identifying similarities and differences among them. Later, Louridas [12] dis-
cussed the migration of applications to the Cloud, examining key features of
cloud offerings based on the taxonomy from [17]. Li et al [10][11] suggested a set
of metrics related to application performance and cost in a cloud environment,
comparing cloud providers based on these metrics. The authors concluded that
none of the cloud providers is clearly superior, even though they observed diverse
performance and cost across different platforms.

However, we have not observed many publications on the consequences of
the migration that would include for example cost, performance, or security
comparison. Tran et al [19] provided a simple cost estimation model for cloud
applications, based on the identified influential cost factors. Babar et al [2] shared

240 P. Rabetski and G. Schneider

experiences and observations regarding the migration of an existing system to a
cloud environment, which also included some guidelines and suggestions. Still,
none of the papers compared system behavior before and after the migration (or
choosing different migration strategies), like we do in this paper.

6 Conclusion

In this paper we have shared our experience of cloud computing adoption based
on a real case study from the industry.

We have implemented a cloud version of the on-premise enterprise application
for Microsoft Azure platform. High compatibility with Azure and easy deploy-
ment were the main reasons for choosing this platform. The application cloud
prototype was used to evaluate the performance and the cost of the system in
a cloud environment. We have investigated the behavior of the system against
different deployment locations, testing materials, scale and load. We could then
make some extrapolations and suggest common practices based on our results.
Our finding helped InformaIT to make a final decision regarding cloud adoption.
Together with partners from InformaIT we have concluded that DC cloud im-
plementation is feasible. We also found the estimated cost reasonable, especially
when the system is dynamically scaled based on the load.

To our best knowledge there is no a unique metric that defines how well an
application fits a cloud environment. The decision should be made separately for
every system, based on the tradeoff between advantages and challenges. Exist-
ing systems are likely to face more challenges than new applications, due to the
technological constraints of cloud platforms. In general, existing systems that are
based on service oriented architecture with a focus on statelessness and low cou-
pling fit the Cloud pretty well. Still, applications might require certain changes
before being able to fully leverage a cloud environment. These changes are usu-
ally caused by environment limitations or the singularity of cloud storages. Based
on our observations, the cloud version of a system is likely to show worse perfor-
mance because of higher latencies and inferior computing hardware underneath.
In order to tune system performance, we suggest eliminating unnecessary trans-
fers between different system components, meaning both the amount of data and
the number of calls. In particular, web applications should reduce the amount of
data stored in session or become completely stateless; data intensive applications
should also consider using local cache to store frequently used data. HPC appli-
cations will usually require more CPU cores (compute instances) in the Cloud to
show the same throughput. Thus, such applications are likely to be costly. Last but
not least, we suggest leveraging dynamic scalability in order to reduce the cost of a
cloud application. This is especially important for systems with a changeable load.
For example, enterprise application should scale up only during working hours;
university web sites should scale up during application periods. However, moni-
toring is necessary when the load does not have a particular pattern. Furthermore,
it might be ambiguous what metrics are the most relevant to monitor.

An extended version of the paper may be found online at www.cse.chalmers.
se/~gersch/ESOCC13-extended version.pdf.

Migration of an On-Premise Application to the Cloud: Experience Report 241

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53, 50–58 (2010)

2. Babar, M.A., Chauhan, M.A.: A tale of migration to cloud computing for sharing
experiences and observations. In: SECLOUD 2011, pp. 50–56. ACM (2011)

3. Botteri, P., Cowan, D., Deeter, B., Fisher, A., Garg, D., Goodman, B., Levine, J.,
Messiana, G., Sarin, A., Tavel, S.: Bessemer’s top 10 laws of cloud computing and
saas (2010)

4. Chappell, D.: Windows azure and isvs: A guide for decision makers (July 2009)
5. Chow, R., Golle, P., Jakobsson, M., Shi, E., Staddon, J., Masuoka, R., Molina,

J.: Controlling data in the cloud: outsourcing computation without outsourcing
control. In: CCSW 2009, pp. 85–90. ACM (2009)

6. Driver, M.: Cloud application infrastructure technologies need seven years to ma-
ture. Research report, Gartner Inc., Stamford, USA (2008)

7. Hichkey, A.R.: Smb cloud spending to approach $100 billion by 2014 (2010)
8. Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., Humphrey, M.: Early observations on

the performance of windows azure. In: HPDC 2010, pp. 367–376. ACM (2010)
9. Kim, W., Kim, S.D., Lee, E., Lee, S.: Adoption issues for cloud computing. In:

iiWAS 2009, pp. 3–6. ACM (2009)
10. Li, A., Yang, X., Kandula, S., Zhang, M.: Cloudcmp: comparing public cloud

providers. In: IMC 2010, pp. 1–14. ACM (2010)
11. Li, A., Yang, X., Kandula, S., Zhang, M.: Comparing public-cloud providers. In-

ternet Computing 15, 50–53 (2011)
12. Louridas, P.: Up in the air: Moving your applications to the cloud. IEEE Soft-

ware 27, 6–10 (2010)
13. Mell, P., Grance, T.: The nist definition of cloud computing. Technical report,

National Institute of Standards and Technology (2011)
14. Nezhad, H.M., Stephenson, B., Singhal, S.: Outsourcing business to cloud com-

puting services: Opportunities and challenges. Technical report HPL-2009-23, HP
Laboratories (2009)

15. Parkhill, D.F.: The Challenge of the Computer Utility. Addison-Wesley, US (1966)
16. Rabetski, P.: Migration of an on-premise application to the cloud. Master’s thesis,

Software Engineering and Management, Dept. of Computer Science and Engineer-
ing, Univ. of Gothenburg, Sweden (2011)

17. Rimal, B., Choi, E., Lumb, I.: A taxonomy and survey of cloud computing systems.
In: 5th Int. Joint Conf. on INC, IMS and IDC, pp. 44–51. IEEE (2009)

18. Templin, D.: Simplify app deployment with clickonce and registration-free com
(2005)

19. Tran, V., Keung, K., Liu, A., Fekete, A.: Application migration to cloud: a taxon-
omy of critical factors. In: SECLOUD 2011, pp. 22–28. ACM (2011)

20. Vaquero, L.M., Rodero-Merino, L., Caceres, J., Lindner, M.: A break in the clouds:
towards a cloud definition. SIGCOMM Comp. Com. Rev. 39, 50–55 (2009)

21. Vouk, M.: Cloud computing - issues, research and implementations. CIT 16(4),
235–246 (2008)

22. Youseff, L., Butrico, M., da Silva, D.: Toward a unified ontology of cloud computing.
In: GCE 2008, pp. 1–10. IEEE (November 2008)

Author Index

Ahtes, James 64
Álvarez, Pedro 196
Andrikopoulos, Vasilios 79
Aznag, Mustapha 19

Beauche, Sandrine 134
Bocconi, Stefano 64
Bouloukakis, Georgios 134

Canal, Carlos 180
Catan, Michel 1

D’Andria, Francesco 64
Dı́az, Gregorio 119
Di Cosmo, Roberto 1

Eiche, Antoine 1
Evequoz, Florian 94
Ezpeleta, Joaqúın 196

Fabra, Javier 196
Fischer, Robin 164

Garefalakis, Panagiotis 188
Georgantas, Nikolaos 134
Gómez Sáez, Santiago 79
Gouvas, Panagiotis 64
Gray, Birgit 4
Guillén, Joaqúın 180

Hernández, Sergio 196
Hoffmann, Mario 149

Issarny, Valérie 134

Jarir, Zahi 19

Kamateri, Eleni 64
Katsaros, Gregory 4

Kieselmann, Markus 172
Konsolaki, Konstantina 188
Kritikos, Kyriakos 188

Lampe, Ulrich 172
Lascu, Tudor A. 1
Ledakis, Giannis 64
Lenk, Alexander 49
Leymann, Frank 79
Lienhardt, Michael 1
Llana, Luis 119
Lobunets, Oleksandr 64
Loutas, Nikolaos 64

Magoutis, Kostas 188
Mauro, Jacopo 1
Mentzas, Gregoris 34
Miede, André 172
Miranda, Javier 180
Murillo, Juan Manuel 180

Nanchen, Benjamin 94

Pahl, Claus 212
Pallas, Frank 49
Patiniotakis, Ioannis 34
Plexousakis, Dimitris 188

Quafafou, Mohamed 19

Rabetski, Pavel 227
Ravagli, Franco 64
Rizou, Stamatia 34
Rochd, El Mehdi 19

Saini, Arnita 94
Schill, Alexander 104
Schneider, Gerardo 227
Spillner, Josef 104
Springer, Thomas 104

244 Author Index

Steinmetz, Ralf 172
Strauch, Steve 79

Tai, Stefan 4
Tarabanis, Konstantinos A. 64
Treinen, Ralf 1

Utlik, Anna 104

Verginadis, Yiannis 34

Walshe, Ray 212
Wittern, Erik 4, 164

Xiong, Huanhuan 212

Zacchiroli, Stefano 1
Zavattaro, Gianluigi 1
Zeginis, Chrysostomos 188
Zeginis, Dimitris 64
Zöller, Sebastian 172
Zwolakowski, Jakub 1

	Preface
	Organization
	Table of Contents
	Invited Talk
	Aeolus: Mastering the Complexity of Cloud Application Deployment
	References

	Research Track
	A Service Delivery Framework to Support Opportunistic Collaborations
	1 Introduction
	2 Collaboration Service Creation Framework
	2.1 Participation Management Process
	2.2 Collaboration Modeling Process
	2.3 Collaboration Service Provisioning Process

	3 Use Case: Supporting Data-Driven Reporting from Predictable, High Profile News Events
	3.1 The Application Domain

	4 Related Work
	4.1 Collaboration Modeling
	4.2 Cloud Service Delivery

	5 Conclusion
	References

	Probabilistic Topic Models for Web Services Clustering and Discovery
	1 Introduction
	2 Related Work
	3 Web Service Clustering and Discovery Approach
	3.1 Web Service Representation
	3.2 A Probabilistic Topic Model Approach

	4 Evaluation
	4.1 Web Service Clustering Evaluation
	4.2 Web Service Discovery Evaluation

	5 Conclusion
	References

	Managing Imprecise Criteria in Cloud Service Ranking with a Fuzzy Multi-criteria Decision Making Method
	1 Introduction
	2 Problem Space
	3 Proposed Service Ranking Approach
	3.1 Preliminaries on Fu uzzy Numbers
	3.2 Proposed Service R Ranking Method
	3.3 Brief Description of Fuzzy AHP with Extend Analysis

	4 Use Case Example
	5 Related Work
	6 Conclusions
	References

	Modeling Quality Attributes of Cloud-Standby-Systems A Long-Term Cost and Availability Model
	1 Introduction
	2 Related Work
	3 Cloud-Standby-System
	4 Quality Model
	4.1 Units
	4.2 Markov Chain and Transition Graph
	4.3 Long-Term Distribution

	5 Quality Metrics and Decision Support
	5.1 Cost
	5.2 Availability
	5.3 Decision Support Based on the Quality Metrics

	6 Evaluation
	6.1 Ratio of Outage Costs to the Replication Interval
	6.2 Ratio of Availability to the Replication Interval
	6.3 Determining the Cost Neutral Update Interval

	7 Conclusion
	References

	Cloud4SOA: A Semantic-Interoperability PaaS Solution for Multi-cloud Platform Management and Portability
	1 Introduction and Motivation
	2 Background and Related Work
	2.1 Addressing the Cloud Interoperability
	2.2 Related Work

	3 Cloud4SOA’s Core Capabilities
	4 Cloud4SOA Reference Architecture
	4.1 Frond-end Layer
	4.2 SOA Layer
	4.3 Semantic Layer and Cloud4SOA Semantic Model
	4.4 Governance Layer
	4.5 Repository Layer and Cloud4SOA Harmonized API

	5 Implementation
	6 Evaluation
	6.1 Internal Evaluation via Industry Showcases
	6.2 Performance Studies
	6.3 Cloud4SOA Stakeholder Beta Program

	7 Conclusion and Next Steps
	References

	Implementation and Evaluation of a Multi-tenant Open-Source ESB
	1 Introduction
	2 Background
	3 Implementation
	4 Evaluation
	4.1 Method
	4.2 Workload
	4.3 Experimental Setup
	4.4 Experimental Results

	5 Discussion
	6 Related Work
	7 Conclusions and Future Work
	References

	Putting the Customer Back in the Center of SOA with Service Design and User-Centered Design
	1 Introduction
	2 Initial Situation and Project Goal
	3 Methodology at a Glance
	4 Data Gathering through Ethnomethodology
	4.1 Phase 1: Competitor Interface Analysis
	4.2 Phase 2: Semi-Structured Interviews with Customers
	4.3 Phase 3: Immersion Work at Krios

	5 Data Interpretation
	6 Designing from Insights
	6.1 Service Blueprint
	6.2 Wireframing
	6.3 Information Archit tecture

	7 Prototype Implementation and Usability Evaluation
	8 Discussion and C Conclusions
	References

	RAFT-REST - A Client-Side Framework for Reliable, Adaptive and Fault-Tolerant RESTful Service Consumption
	1 Introduction
	2 Related Work: SDKs and Fault-Tolerant Frameworks
	2.1 Conventional Consumption Frameworks
	2.2 Fault-Tolerant Consumption Frameworks

	3 Service Consumption Concept
	3.1 Logical Architecture
	3.2 Structural Architecture
	3.3 Service Consumption Workflow

	4 Validation: The ReSup Framework
	References

	Contract Compliance Monitoring of Web Services
	1 Introduction
	2 Related Work
	3 C-O Diagrams Syntax and Semantics
	4 Conformance Relations
	5 Design of the Monitoring Software
	6 Conclusions
	References

	Service-Oriented Distributed Applications in the Future Internet: The Case
for Interaction Paradigm Interoperability
	1 Introduction
	2 Abstractions for Interaction Paradigm Interoperability
	2.1 Connector Models for Base Interaction Paradigms
	2.2 Generic Application Connector Model

	3 eXtensible Service Bus
	4 Evaluation
	5 Related Work
	6 Conclusion
	References

	An App Approach Towards User Empowerment in Personalized Service Environments
	1 Introduction
	2 State of the Art
	2.1 The Laws of Identity
	2.2 Relevant Approaches and Concepts
	2.3 Authentication, Authorization, and Identity Management

	3 The LifeApp Approach
	4 Application Scenarios
	4.1 Personal Networks
	4.2 Cloud Services
	4.3 Intelligent Environments

	5 UMA Based LifeApp Architecture
	5.1 Example: eGov Citizen Portal

	6 Compliance to the Laws of Identity
	6.1 User Control and Consent
	6.2 Limited Disclosure for Limited Use
	6.3 Justifiable Parties
	6.4 Directed Identity
	6.5 Pluralism of Operators and Technologies
	6.6 Human Integration
	6.7 Consistent Experience Across Contexts

	7 User Experience
	8 Conclusion
	References

	Short Papers
	A Life-Cycle Model for Software Service Engineering
	1 Introduction
	2 Tems and Definitions
	3 Related Work
	4 Our Software Service Life-Cycle Model
	5 Applying the Software Service Life-Cycle Model
	6 Conclusion
	References

	A Tale of Millis and Nanos: Time Measurements in Virtual and Physical Machines
	1 Introduction
	2 Experimental Setup
	2.1 Measurement Tool
	2.2 Experimental Configurations
	2.3 Measurement Procedure

	3 Experimental Results and Practical Recommendations
	5 Summary and Outlook
	References

	A UML Profile for Modeling Multicloud Applications
	1 Introduction
	2 The Fine Print of Cloud Computing
	3 Design of the UML Profile
	4 TheMULTICLAPPFramework
	5 Modeling a Multicloud Application
	6 Related Work
	7 Conclusions
	References

	Towards Cross-Layer Monitoring of Multi-Cloud Service-Based Applications
	1 Introduction
	2 Architecture Overview
	3 EventModel
	4 Evaluation
	5 Related Work
	6 Conclusions and Future Work
	References

	Industrial Track
	A Reliable and Scalable Service Bus Based on Amazon SQS
	1 Introduction
	2 Related Work
	3 Linda-Based versus Queue-Based Bus
	4 A Highly Scalable and Reliable Cloud-Based Message Bus
	4.1 An Elastic, Scalable and Reliable Bus Entry Point
	4.2 An Implementation of the Message Bus Based on Amazon SQS
	4.3 Dealing with Some SQS Constraints

	5 Evaluation
	6 Conclusions and Future Work
	References

	A Comparison of On-Premise to Cloud Migration Approaches
	1 Introduction
	2 Assumptions and Background
	3 Cloud Migration Case Studies
	3.1 SaaS-Level Migration
	3.2 PaaS-Level Migration
	3.3 IaaS-Level Migration
	3.4 Systems Integrator

	4 Analysis
	5 Related Work
	6 Conclusions
	References

	Migration of an On-Premise Application to the Cloud: Experience Report
	1 Introduction
	2 Cloud Computing
	3 Case Study: Migrating DC System to the Cloud
	3.1 Preliminary Analysis
	3.2 Current DC Implementation
	3.3 Suggested Cloud DC Architecture

	4 Experiments
	4.1 Performance
	4.2 Cost

	5 Related Work
	6 Conclusion
	References

	Author Index

