

Learning Node.js

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

Learning Node.js
 A Hands-On Guide to

Building Web Applications in
JavaScript

Marc Wandschneider

Editor-in-Chief

Mark Taub

Acquisitions Editor

Mark Taub

Marketing
Manager

Stephane Nakib

Managing Editor

Kristy Hart

Senior Project
Editor

Lori Lyons

Copy Editor

Chuck Hutchinson

Indexer

Tim Wright

Proofreader

Anne Goebel

Technical Reviewer

Bill Glover

Editorial Assistant

Olivia Basegio

Cover Designer

Chuti Prasertsith

Compositor

Nonie Ratcliff

Manufacturing
Buyer

Dan Uhrig

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and the
publisher was aware of a trademark claim, the designations have been printed with initial
capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or
omissions. No liability is assumed for incidental or consequential damages in connection
with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk
purchases or special sales, which may include electronic versions and/or custom covers
and content particular to your business, training goals, marketing focus, and branding
interests. For more information, please contact:

U.S. Corporate and Government Sales

(800) 382-3419

corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales

international@pearsoned.com

Visit us on the Web: informit.com/aw

Library of Congress Control Number: 2013936406

Copyright © 2013 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected
by copyright, and permission must be obtained from the publisher prior to any prohibited
reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission to
use material from this work, please submit a written request to Pearson Education, Inc.,
Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you
may fax your request to (201) 236-3290.

ISBN-13: 978-0-321-91057-8
ISBN-10: 0-321-91057-5

Text printed in the United States on recycled paper at RR Donnelley & Sons,
Crawfordsville, Indiana.

First printing: June 2013

❖

 Much love to Tina, for simply being there.

❖

This page intentionally left blank

viii Contentsviii Contents

Type Comparisons and Conversions 38

Functions 39

Basics 39

Function Scope 42

Language Constructs 43

Classes, Prototypes, and Inheritance 44

Prototypes and Inheritance 45

Errors and Exceptions 47

Some Important Node.js Globals 47

global 47

console 48

process 48

Summary 48

 3 Asynchronous Programming 49

The Old Way of Doing Things 49

The Node.js Way of Doing Things 50

Error Handling and Asynchronous Functions 53

The callback Function and Error Handling 54

Who Am I? Maintaining a Sense of Identity 56

Being Polite—Learning to Give Up Control 58

Synchronous Function Calls 61

Summary 61

Part II: Learning to Run 63

4 Writing Simple Applications 65

Your First JSON Server 65

Returning Some Data 67

Node Pattern: Asynchronous Loops 69

Learning to Juggle: Handling More Requests 72

More on the Request and Response Objects 78

Increased Flexibility: GET Params 79

Modifying Things: POST Data 83

Receiving JSON POST Data 84

Receiving Form POST Data 87

Summary 88

ixContents ixContents

 5 Modules 89

Writing Simple Modules 89

Modules and Objects 91

npm: The Node Package Manager 92

Consuming Modules 93

Searching for Modules 93

Module Caching 94

Cycles 95

Writing Modules 95

Creating Your Module 96

Developing with Your Module 101

Publishing Your Modules 102

A Module So Common It Should Be Built In 103

The Problem 104

The Solution 105

Summary 112

6 Expanding Your Web Server 113

Serving Static Content with Streams 113

Reading a File 114

Serving Static Files in a Web Server with Buffers 116

Serving Up More Than Just HTML 118

Assembling Content on the Client: Templates 120

The HTML Skeleton Page 123

Serving Static Content 124

Modifying Your URL Scheme 124

The JavaScript Loader/Bootstrapper 126

Templating with Mustache 127

Your Home Page Mustache Template 129

Putting It All Together 130

Summary 133

Part III Writing Web Applications 135

7 Building Web Applications with Express 137

Installing Express 137

Hello World in Express 138

x Contentsx Contents

Routing and Layers in Express 139

Routing Basics 140

Updating Your Photo Album App for Routing 141

REST API Design and Modules 144

API Design 144

Modules 146

Additional Middleware Functionality 148

Usage 148

Configurations 149

Ordering of Middleware 150

Static File Handling 151

POST Data, Cookies, and Sessions 153

Better Browser Support for PUT and DELETE 155

Compressing Output 156

HTTP Basic Authentication 157

Error Handling 158

Summary 159

8 Databases I: NoSQL (MongoDB) 161

Setting Up MongoDB 161

Installing MongoDB 161

Using Mongo DB in Node.js 162

Structuring Your Data for MongoDB 163

It’s All JavaScript 163

Data Types 164

Understanding the Basic Operations 164

Connecting and Creating a Database 165

Creating Collections 165

Inserting Documents into Collections 166

Updating Document Values 167

Deleting Documents from Collections 168

Querying Collections 168

Updating Your Photo Albums App 171

Writing the Low-Level Operations 171

Modifying the API for the JSON Server 177

Updating Your Handlers 177

Adding Some New Pages to the Application 183

xiContents xiContents

Recapping the App Structure 187

Summary 188

9 Databases II: SQL (MySQL) 189

Getting Ready 189

Installing MySQL 189

Adding the mysql Module from npm 190

Creating a Schema for the Database 190

Basic Database Operations 191

Connecting 191

Adding Queries 192

Adding Authentication to the Application 192

Updating the API to Support Users 193

Examining the Core User Data Operations 193

Updating the Express Application 197

Creating the User Handler 198

Creating the Login and Register Pages 201

Resource Pooling 204

Getting Started 204

Working with Connections 205

Authenticating the API 205

Summary 209

Part IV Getting the Most Out of Node.js 211

10 Deployment and Development 213

Deployment 213

Level: Basic 214

Level: Ninja 216

Multiprocessor Deployment: Using a Proxy 218

Multiple Servers and Sessions 221

Virtual Hosting 224

Built-in Support 225

Proxy Server Support 227

Securing Your Projects with HTTPS/SSL 227

Generating Test Certificates 228

Built-in Support 228

Proxy Server Support 229

xii Contentsxii Contents

Multiplatform Development 230

Locations and Configuration Files 230

Handling Path Differences 231

Summary 232

 11 Command-Line Programming 233

Running Command-Line Scripts 233

UNIX and Mac 233

Windows 235

Scripts and Parameters 236

Working with Files Synchronously 237

Basic File APIs 237

Files and Stats 239

Listing Contents of Directories 240

Interacting with the User: stdin/stdout 240

Basic Buffered Input-Output 240

Unbuffered Input 241

The Readline Module 243

Working with Processes 247

Simple Process Creation 247

Advanced Process Creation with Spawn 248

Summary 251

 12 Testing 253

Choosing a Framework 253

Installing Nodeunit 254

Writing Tests 254

Simple Functional Tests 255

Testing Asynchronous Functionality 258

RESTful API Testing 258

Testing Secured Resources 261

Summary 262

Index 263

Acknowledgments

I’d like to thank all the Marks at PHPTR (it’s a common name, it seems) who have helped me
make this book and other projects a reality. The copy editors have been brilliant and helpful.

A huge debt of gratitude is due to Bill Glover and Idriss Juhoor for their excellent technical and
style reviews.

And finally, much love to Tina, for simply being there.

About the Author

Marc Wandschneider co-founded Adylitica, a leading specialist in massively scalable web
and mobile app design and development. He travels the globe, consulting as a lead manager for
software projects and teams. A graduate of McGill University’s School of Computer Science, he
spent five years at Microsoft, developing and managing developers on the Visual Basic, Visual
J++, and .NET Windows Forms teams. As Contract Software Developer/Architect at SourceLabs,
he built the SWiK open source Wiki platform. He authored PHP and MySQL LiveLessons and Core
Web Application Development with PHP and MySQL .

Introduction

Welcome to Learning Node.js . Node.js is an exciting new platform for writing network and web
applications that has created a lot of buzz over the past couple of years and rapidly gathered a
sizeable following in the developer community. In this book, I teach you more about it, why
it is special, and get you up and writing Node.js programs in short order. You’ll soon find that
people are rather flexible with the name of Node.js and will refer to it frequently as just Node
or even “node.” I certainly do a lot of that in this book as well.

Why Node.js?

Node.js has arisen for a couple of primary reasons, which I explain next.

The Web

In the past, writing web applications was a pretty standard process. You have one or more
servers on your machine that listens on a port (for example, 80 for HTTP), and when a request
is received, it forks a new process or a thread to begin processing and responding to the query.
This work frequently involves communicating with external services, such as a database,
memory cache, external computing server, or even just the file system. When all this work is
finally finished, the thread or process is returned to the pool of “available” servers, and more
requests can be handled.

It is a reasonably linear process, easy to understand, and straightforward to code. There are,
however, a couple of disadvantages that continue to plague the model:

 1. Each of these threads or processes carries some overhead with it. On some machines,
PHP + Apache can take up as much as 10–15MB per process. Even in environments
where a large server runs constantly and forks threads to process the requests, each of
these carries some overhead to create a new stack and execution environment, and you
frequently run into the limits of the server’s available memory.

 2. In most common usage scenarios where a web server communicates with a database,
caching server, external server, or file system, it spends most of its time sitting around
doing nothing and waits for these services to finish and return their responses. While it is
sitting there doing nothing, this thread is effectively “blocked” from doing anything else.
The resources it consumes and the process or thread in which it runs are entirely frozen
waiting for those responses to come back.

2 Introduction

Only after the external component has finally sent back its response will that process
or thread be free to finish processing, send a response to the client, and then reset to
prepare for another incoming request.

So, although it’s pretty easy to understand and work with, you do have a model that can be
quite inefficient if your scripts spend most of their time waiting for database servers to finish
running a query—an extremely common scenario for a lot of modern web applications.

Many solutions to this problem have been developed and are in common use. You can buy
ever bigger and more powerful web servers with more memory. You can replace more powerful
and feature-rich HTTP servers such as Apache with smaller, lightweight ones such as lighttpd
or nginx. You can build stripped-down or reduced versions of your favorite web programing
language such as PHP or Python. (Indeed, Facebook has taken this one step further and built a
system that converts PHP to native C++ code for maximal speed and optimal size.) Or you can
throw more servers at the problem to increase the number of simultaneous connections you
can accommodate.

New Technologies

Although the web developers of the world have continued their eternal struggle against server
resources and the limits on the number of requests they can process, a few other interesting
things have happened in the meantime.

JavaScript, that old (meaning 1995 or so) language that came to be most well known (and
frequently reviled) for writing client-side scripts in the web browser, has been growing in
popularity again. Modern versions of web browsers are cleaning up their implementations of
it and adding in new features to make it more powerful and less quirky. With the advent of
client libraries for these browsers, such as jQuery, script.aculo.us, or Prototype, programming
in JavaScript has become fun and productive. Unwieldy APIs have been cleaned up, and fun,
dynamic effects have been added.

At the same time, a new generation of browser competition has erupted, with Google’s
Chrome, Mozilla’s Firefox, Apple’s Safari, and Microsoft’s Internet Explorer all vying for
the crown of browser king. As part of this, all these companies are investing heavily in the
JavaScript portion of these systems as modern web applications continue to grow ever-more
dynamic and script-based. In particular, Google Chrome’s V8 JavaScript runtime is particularly
fast and also open-sourced for use by anybody.

With all these things in place, the opportunity arose for somebody to come along with a new
approach to network (web) application development. Thus, the birth of Node.js.

What Exactly Is Node.js?

In 2009, a fellow named Ryan Dahl was working for a company called Joyent, a cloud and
virtualization services company in California. He was looking to develop push capabilities for

3What Exactly Is Node.js?

web applications, similar to how Gmail does it, and found most of what he looked at not quite
appropriate. He eventually settled on JavaScript because it lacked a robust input/output (I/O)
model (meaning he could write his own new one) and had the fast and fully programmable V8
runtime readily available.

Inspired by some similar projects in the Ruby and Python communities, he eventually took the
Chrome V8 runtime and an event-processing library called libev, and came up with the first
versions of a new system called Node.js. The primary methodology or innovation in Node.js is
that it is built entirely around an event-driven nonblocking model of programming. In short,
you never (well, rarely) write code that blocks.

If your web application—in order to process a request and generate a response—needs to run
a database query, it runs the request and then tells Node.js what to do when the response
returns. In the meantime, your code is free to start processing other incoming requests or,
indeed, do any other task it might need, such as cleaning up data or running analyses.

Through this simple change in the way the application handles requests and work, you are able
to trivially write web servers that can handle hundreds, if not thousands, of requests simulta-
neously on machines without much processing or memory resources. Node runs in a single
process, and your code executes largely in a single thread, so the resource requirements are
much lower than for many other platforms.

This speed and capacity come with a few caveats, however, and you need to be fully aware of
them so you can start working with Node with your eyes wide open.

First and foremost, the new model is different from what you may have seen before and can
sometimes be a bit confusing. Until you’ve wrapped your brain fully around some of the core
concepts, some of the code you see written in Node.js can seem a bit strange. Much of this
book is devoted to discussing the core patterns many programmers use to manage the chal-
lenges of the asynchronous, nonblocking way of programming that Node uses and how to
develop your own.

Another limitation with this model of programming is that it really is centered around applica-
tions that are doing lots of different things with lots of different processes, servers, or services.
Node.js truly shines when your web application is juggling connections to databases, caching
servers, file systems, application servers, and more. The flip side of this, however, is that it’s
actually not necessarily an optimal environment for writing compute servers that are doing
serious, long-running computations. For these, Node’s model of a single thread in a single
process can create problems if a given request is taking a ton of time to generate a complicated
password digest or processing an image. In situations in which you’re doing more computa-
tionally intensive work, you need to be careful how your applications use resources, or perhaps
even consider farming those tasks out to other platforms and run them as a service for your
Node.js programs to call.

Finally, Node.js is a reasonably new platform and under active development. It has not yet (as
of February 2013) hit version 1.0, and is constantly seeing new releases, sometimes at a truly
dizzying pace.

4 Introduction

To reduce the randomization and troubles caused by these frequent updates, the developers
have taken to labeling portions of the system with different degrees of stability , ranging from
Unstable to Stable to Locked . Changes to Stable or Locked portions of the runtime are rare and
involve much community discussion to determine whether it will generate too much pain. As
you work your way through this book, we point out which areas are less stable than others and
suggest ways you can mitigate the dangers of changing APIs.

The good news is that Node.js already has a large and active user community and a bunch of
mailing lists, forums, and user groups devoted to promoting the platform and providing help
where needed. A simple Google search will get you answers to 99 percent of your questions in a
matter of seconds, so never be afraid to look!

Who Is This Book For?

I wrote this book under the assumption that you are comfortable programming computers and
are familiar with the functionality and syntax of at least one major programming language
such as Java, C/C++, PHP, or C#. Although you don’t have to be an expert, you’ve probably
moved beyond “Learn X in Y days” level tasks.

If you’re like me, you have probably written some HTML/CSS/JavaScript and thus have “worked
with” JavaScript, but you might not be intimately familiar with it and have just largely
templated heavily off code found on blog posts or mailing lists. Indeed, with its clunky UI
and frustrating browser mismatches, you might even frown slightly at the mere mention of
JavaScript. Fear not—by the end of the first section of this book, distasteful memories of the
language will be a thing of the past and, I hope, you’ll be happily writing your first Node.js
programs with ease and a smile on your face!

I also assume that you have a basic understanding of how web applications work: Browsers
send HTTP requests to a remote server; the server processes that request and sends a response
with a code indicating success or failure, and then optionally some data along with that
response (such as the HTML for the page to render or perhaps JavaScript Object Notation,
or JSON, containing data for that request). You’ve probably connected to database servers in
the past, run queries, and waited for the resulting rows, and so on. When I start to describe
concepts beyond these in the samples and programs, I explain and refresh everybody’s memory
on anything new or uncommon.

How to Use This Book

This book is largely tutorial in nature. I try to balance out explanations with code to demon-
strate it as much as possible and avoid long, tedious explanations of everything. For those situ-
ations in which I think a better explanation is interesting, I might point you to some resources
or other documentation to learn more if you are so inclined (but it is never a necessity).

5Download the Source Code

The book is divided into four major sections:

Part 1 . Learning to Walk —You start installing and running Node, take another look at
the JavaScript language and the extensions used in V8 and Node.js, and then write your
first application.

Part 2 . Learning to Run —You start developing more powerful and interesting
application servers in this part of the book, and I start teaching you some of the core
concepts and practices used in writing Node.js programs.

Part 3 . Breaking Out the Big Guns —In this part, you look at some of the powerful tools
and modules available to you for writing your web applications, such as help with web
servers and communication with database servers.

Part 4 . Getting the Most Out of Node.js —Finally, I close out the book by looking at
a few other advanced topics such as ways in which you can run your applications on
production servers, how you can test your code, and how you can use Node.js to write
command-line utilities as well!

As you work your way through the book, take the time to fire up your text editor and enter the
code, see how it works in your version of Node.js, and otherwise start writing and developing
your own code as you go along. You develop your own little photo-sharing application as you
work through this book, which I hope provides you with some inspiration or ideas for things
you can write.

Download the Source Code

Source code for most of the examples and sample projects in this book can be found at
github.com/marcwan/LearningNodeJS . You are highly encouraged to download it and play along,
but don’t deny yourself the opportunity to type in some of the code as well and try things out.

The GitHub code has some fully functioning samples and has been tested to work on Mac,
Linux, and Windows with the latest versions of Node.js. If new updates of Node require
updates to the source code, I put changes and notes there, so please be sure to pull down new
versions every few months.

If you have any questions or problems with the code in this book, feel free to go to
github.com/marcwan/LearningNodeJS and add an issue; they’ll be monitored and answered
reasonably quickly.

This page intentionally left blank

This page intentionally left blank

1
Getting Started

In this chapter, you dive right into things and get Node.js installed on your machines
and make sure it is working correctly before moving further into the language and writing
networked applications. By the end of this chapter, you should have Node installed and
running on your computer, have entered a few small test programs to play around with it, and
know how to use the built-in Node debugger.

Installing Node.js

Let’s begin by looking at installation on Windows. Mac and Linux users should feel free to skip
ahead to the appropriate sub-section, unless you have both types of machines.

Installation on Windows

To install Node.js on a Windows machine, you can use the handy installer provided on the
nodejs.org website. Visit the Download page and then download Windows Installer (.msi) for
either 32 bits or 64 bits, depending on what platform you are running. I show the installation
for Windows 7/64-bit.

After you download the MSI, double-click on it. You should see a setup program similar to that
shown in Figure 1.1 .

Read and accept the License Agreement and then click Install. Because the install is pretty quick
and painless, a few seconds later, you can click Finish to complete the installation.

Verifying the Installation

To test the installation of the Node software, you can use the Windows command prompt cmd.
exe . (If you are using PowerShell, that also works just fine.) If you are not familiar with this,
you can launch it by going to Start / Run and then typing cmd , as shown in Figure 1.2 .

10 Chapter 1 Getting Started

Figure 1.2 Launching the Windows command prompt

You then see a command interpreter, such as in Figure 1.3 . If you want to learn more about
using the command prompt, search the Internet for help using the phrases “Learning to use
Windows cmd.exe” or “Getting Started with PowerShell” (if you are running Windows 7) for
more information.

Figure 1.3 The Windows command prompt

Figure 1.1 Windows Setup Installer

11Installing Node.js

To make sure Node was installed properly, type node -–version in the command window.
You should see the output as in Figure 1.4 .

Figure 1.4 Verifying Node is installed correctly. Check the version number.

The command prompt window should print out the version number of the Node you just
installed a few seconds ago. (Don’t worry if the number doesn’t match what you see—indeed,
I’d be surprised if it did!) If you do not see this version number, or if instead you see the output
saying that “‘node’ is not recognized as an internal or external command” (see Figure 1.5),
something has gone wrong and you should do the following:

 ■ Look in Control Panel / Programs and see whether the installation actually completed.
If not, try the install again, and pay a bit closer attention to what happens. Perhaps
something has gone wrong.

 ■ Look in Program Files\nodejs and make sure node.exe is actually there. If it is not,
try installing again. (Uninstall an old version first, if necessary.)

 ■ Make sure that node.exe is in your PATH environment variable. In the command
prompt, Windows has a list of directories in which you can search when you type in the
name of a program. You can view this by simply typing path in the command prompt
window. It should show something similar to that in Figure 1.6 . In particular, look at
the two highlighted directory names at the end. Something very similar to both of these
should be in your PATH .

 ■ If Program Files\nodejs and Users\..\AppData\..\npm are not in your PATH , but
these folders definitely do exist, you can add them to your PATH manually by adding
them to your PATH environment variable. You do this in the System Control Panel
window. Click on Advanced System Settings and then Environment Variables. Then add
the path of the npm folder (it is in something like C:\Users\UserName\Local\npm) to
the PATH under User Variables for Username and add the path to the Node.js folder (it is
in something like C:\Program Files\nodejs) to the PATH under System Variables. Note
that the npm folder might be in Username\Remote\npm instead of Username\Local\npm ,
depending on how your computer is configured.

After confirming you have node.exe installed and working, you can start writing JavaScript.

12 Chapter 1 Getting Started

Installation on the Mac

While there are two different ways you can install Node.js on the Mac—either by using the
PKG installer or by compiling from source —I’m going to show only the former. It is by far the
faster and easier way of doing things. If you are more inclined to build the node distribution
from source, I’ve included instructions in the git sources for this book.

Using the PKG Installer

By far the quickest way to install Node.js on your Apple Mac computer running OS X is to
download and run the Node PKG installer available from the nodejs.org website.

After you download the installer, double-click it, and you should see something similar to that
shown in Figure 1.7 . I tend to use just the default installation because I want all the compo-
nents, and the default path (/usr/local/bin) is what I want. I recommend you do the same
here.

When the installation is complete, you should see something similar to that shown in Figure
1.8 . As the package installer explains, it is important to make sure that /usr/local/bin is
in your PATH environment variable. You can open the Terminal.app program. (Go to
/Applications/Utilities , and launch Terminal.) In the terminal window, type

echo $PATH

Figure 1.5 Node is not recognized as an internal or external command.

Figure 1.6 Checking your PATH environment variable

13Installing Node.js

Figure 1.8 Make sure your path is set up correctly.

On my machine, the output is

/usr/bin:/bin:/usr/sbin:/sbin :/usr/local/bin :/Users/marcw/bin:/usr/local/git/bin

You can see that /usr/local/bin is indeed here in the PATH . If it is not, you should edit your
~/.bash_profile file (it’s okay to create this file if it does not exist) and add

PATH=${PATH}:/usr/local/bin

Figure 1.7 Running the Mac PKG installer for Node.js

14 Chapter 1 Getting Started

Close the terminal window, launch another, and verify that /usr/local/bin is now in your
PATH . You should be able to type

node --version

and see something like

client:LearningNode marcw$ node --version

v0.10.3

client:LearningNode marcw$

Don’t worry if the version number doesn’t match what you have on your computer.

After confirming you have the node program installed and working, you can start writing
JavaScript.

Installation on Linux

Installing Node.js

Although many different versions of Linux probably have Node.js as a prebuilt and installable
package, I almost always roll my own on my Linux machines for full control over the process.
The installation tends to be reasonably painless, so I am not really creating much extra work
for myself.

Getting the Command-Line Compiler on Linux

To build packages from source on Linux, you first need to make sure that you have the
command-line compiler tools installed. To do this, you can type

g++

in a terminal window. If you see something like

marcw@hostname:~$ g++

g++: no input files

you have the compiler installed and will be able to build. If instead you see

marcw@hostname:~$ g++

-bash: g++: command not found

you need to figure out how to install the build tools on your version of Linux. For most versions
of Ubuntu Linux, you can use the apt-get tool as follows. The trick is knowing what packages
you need to install on your specific version. For Ubuntu 8, you would need to run

apt-get install build-essential libssl-dev libxml2-dev autoconf2.13

Whereas for version 10, the following works:

apt-get install pentium-builder g++ libssl-dev libxml2-dev autoconf2.13

15Installing Node.js

After this has all run to completion, you should be able to type

g++

again and have it all work.

The following instructions are what have been used on Ubuntu Linux versions for the past few
years and assume you are using (ba)sh as your primary shell. Start by creating some scratch
space to download and compile from:

cd

mkdir -p src/scratch

cd src/scratch

The next step is to download and unpack the node sources. You can do this using curl or
wget:

curl http://nodejs.org/dist/v0.10.1/node-v0.10.1.tar.gz -o node-v0.10.1.tar.gz

tar xfz node-v0.10.1.tar.gz

cd node-v0.10.1

Next, you run the configuration scripts to prepare for the build:

./configure

You can let it use the default /usr/local as the installation point because it’s a good location
from which to run this software. If you want to install it somewhere else, you can specify the
--prefix switch to the configure script, as follows:

./configure --prefix =/opt/nodejs

The configure script should execute quickly and print out some JSON when it is done. Now you
can build the product. Type in the following command and go get yourself a coffee (or two,
depending on how fast or slow your machine is):

make

After the make has completed successfully (if it fails, do a Google search on the problem
because you will almost certainly not be the first to see it), you can then install the software to
your chosen prefix (/usr/local if you did not choose one):

sudo make install

When you are done, you should be able to just enter

node --version

npm --version

and get output somewhat similar to

marcw@hostname:~$ node --version

v0.10.1

marcw@hostname:~$ npm --version

1.1.65

http://nodejs.org/dist/v0.10.1/node-v0.10.1.tar.gz

16 Chapter 1 Getting Started

Running Node.js and “Hello World!”

There are two primary ways to use Node.js on your machines: by using the Node Shell or by
saving JavaScript to files and running those.

The Node Shell

The first way you will run Node.js is the Node shell, which is frequently called the Node REPL —
REPL stands for Read-Eval-Print-Loop . It’s a great way to quickly test things in Node. If you don’t
remember exactly how a function should be used, you can just quickly use the REPL and type
in something to see what happens.

To launch the Node shell, you simply type node in whatever shell you are using:

client:node marcw$ node

>

The > is all the response you get. You can immediately start typing in some code:

> console.log("Hello World!");

Hello World!

undefined

>

The first line of the output is the result of the code you just executed. In this case, you use the
Node global variable console and its log function to print out Hello World! (See the next
chapter for more information on console and other globals.) The output of this statement is,
predictably, Hello World! , which is printed for you.

The last line of the output is always the resulting value of the preceding statement. Every state-
ment, function call, or expression has a value associated with it, which is printed out in the
Node shell for you. If there is no evaluated expression value or the called function does not
return any particular value, the special value undefined is returned instead.

To exit the REPL, you simply press Ctrl+D (same on Windows).

If you ever see three dots (...) in the Node REPL, that means it is expecting more input from
you to complete the current expression, statement, or function. If you do not quite understand
why it is giving you the ellipsis, you can just type .break (with the period) to get out of it:

> function () {

... }

... what?

... .break

>

17Your First Web Server

Editing and Running JavaScript Files

The other option for running Node.js code is to simply use your favorite text editor to write
JavaScript code into a file, and then compile and run that code via the command line using the
node command.

To demonstrate this, save the following to a file called hello.js :

/**

* Let's be sociable.

*/

console.log("Hello World!");

Now, you can execute this file from the command line with

node hello.js

And you should see this output:

Hello World!

Because you are not in the Node shell, you don’t get any information on the return values of
the code executed.

Your First Web Server

You’re ready to write something a bit more interesting now and create a little web server.
Fortunately, Node makes this task extremely easy. Enter and save the following into a file called
web.js :

var http = require("http");

function process_request(req, res) {

 var body = 'Thanks for calling!\n';

 var content_length = body.length ;

 res.writeHead(200, {

 'Content-Length': content_length,

 'Content-Type': 'text/plain'

 });

 res.end(body);

}

var s = http.createServer(process_request);

s.listen(8080);

To run it, simply type

node web.js

http.createServer(process_request)

18 Chapter 1 Getting Started

Your computer now has a web server running on port 8080. To test it, you can use the
command-line program curl , which most Mac and Linux machines have pre-installed.
(Windows users, see “Downloading from the Web on Windows.” You also can just type
http://localhost:8080 into a web browser, but you won’t see the response codes there
unless you open a debug console.)

curl -i http://localhost:8080

You should now see something similar to the following:

HTTP/1.1 200 OK

Content-Length: 20

Content-Type: text/plain

Date: Tue, 15 Feb 2013 03:05:08 GMT

Connection: keep-alive

Thanks for calling!

Downloading from the Web on Windows

By default, Windows does not ship with any command-line utilities to get the contents of a URL.
Because it’s such a useful thing to do, I highly recommend you download cURL (I just refer to it
as curl from now on) or wget for Windows.

Curl:

You can download the Windows binaries for curl by visiting http://curl.haxx.se/download.html
and looking there for the “Win32 - Generic” section.

Download one of the highlighted binaries, preferably one with support for SSL and SSH (if it
redirects you to another page, download the binary “Download WITH SUPPORT SSL”), unpack
it, and put curl.exe somewhere in your PATH or user directory. To launch it, in the command
prompt or PowerShell, just type

C:\Users\Mark\curl --help

Wget:

If you cannot get curl working on your Windows machine, wget is a great alternative. You can
download it from http://users.ugent.be/~bpuype/wget/ .

It works basically the same as curl , but with some slightly different command-line arguments.
To learn more, view the help:

C:\Users\Mark\wget --help

Node.js provides a lot of powerful functionality right out of the box, and in the first line of the
preceding program, you use one of these built-in modules—the http module, which allows your
program to act as a web server. The require function includes this module, and you have the
variable http refer to it.

http://localhost:8080
http://localhost:8080
http://curl.haxx.se/download.html
http://users.ugent.be/~bpuype/wget/

19Debugging Your Node.js Programs

The createServer function takes only one argument, and that is a function that will be
called whenever somebody makes a connection to your server. You pass the process_request
function you wrote earlier, which is given an object representing the incoming request (a
ServerRequest object) and another for the pending response (of type ServerResponse).
When the server is created, you tell it to start listening for incoming requests on a particular
port—here, you use 8080—when you launch the program.

The –i switch you passed to curl earlier tells it to print out the headers along with the
response. This lets you learn a little bit more about what exactly Node is doing for you.

You can see that the 200 (OK) response you passed to the ServerResponse#writeHead func-
tion is returned in the HTTP response headers, and you also see the content length and types
are both represented. Node.js, by default, also indicates that HTTP connections to its server are
keep-alive , which allows multiple requests on the same network connection; you don’t need
it for most of the examples early in this book.

To stop the server from running, you simply press Ctrl+C. It is smart enough to clean up every-
thing and shut down properly.

Debugging Your Node.js Programs

Now you can rewrite the preceding web server, but this time get a little careless and introduce
a smelling pistake—misspell body.length , as follows—and put it into a file called debugging.
js :

var http = require("http");

function process_request(req, res) {

 var body = 'Thanks for calling!\n';

 var content_length = body.lenggth ;

 res.writeHead(200, {

 'Content-Length': content_length,

 'Content-Type': 'text/plain'

 });

 res.end(body);

}

var s = http.createServer(process_request);

s.listen(8080);

You can run this program as before:

node debugging.js

Now, when you connect to http://localhost:8080, you’ll probably see something like this:

client:~ marcw$ curl -i localhost:8080

HTTP/1.1 200 OK

Content-Length: undefined

http://localhost:8080
http.createServer(process_request)

20 Chapter 1 Getting Started

Content-Type: text/plain

Date: Tue, 30 Oct 2012 04:42:44 GMT

Connection: keep-alive

You no longer get the "Thanks for calling!" message, and you can see that the
Content-Length header is not what you expected.

For a trivial program like this, the error is pretty easy to figure out, but in a bigger program,
it can be hard to figure these things out. To help with this issue, Node.js includes a debug-
ger right in the node program. To use it, you just add the debug flag before the name of your
program:

node debug debugging.js

You should see something like the following:

client:Chapter01 marcw$ node debug debugging.js

< debugger listening on port 5858

connecting... ok

break in debugging.js:1

 1 var http = require("http");

 2

 3 function process_request(req, res) {

debug>

You use a few key commands in the Node debugger:

 ■ cont —Continue running.

 ■ next —Step over the next statement.

 ■ step —Step into the next statement (if possible; otherwise, just step over).

 ■ out —Step out of the current executing function.

 ■ backtrace —Show me the current call execution frame or call stack.

 ■ repl —Start the Node REPL to allow you to view variable values and execute code.

 ■ watch(expr) —Add the given expression to the watch list, which is shown whenever you
step or move through anything in the debugger.

 ■ list(n) —List the n lines of source code before and after the currently stopped line in
the debugger.

Now, suspecting something might be wrong with the Content-Length in the program, you
can put a breakpoint on the line var content_length = body.lenggth; , or line 5:

debug> setBreakpoint(5)

 1 var http = require("http");

 2

 3 function process_request(req, res) {

 4 var body = 'Thanks for calling!\n';

21Debugging Your Node.js Programs

* 5 var content_length = body.lenggth;

 6 res.writeHead(200, {

debug>

Line 5 now has a * next to it to indicate there is a breakpoint. When you start the debug-
ger, the program is stopped at the first line. You can resume execution by using the cont
command:

debug> cont

debug>

Now, you go to another terminal window or command prompt and type

curl –i http://localhost:8080

You should immediately notice two things:

 1. The curl does not return right away.

 2. In your node debug session, you now see

break in debugging.js:5

 3 function process_request(req, res) {

 4 var body = 'Thanks for calling!\n';

* 5 var content_length = body.lenggth;

 6 res.writeHead(200, {

 7 'Content-Length': content_length,

You can skip over this line:

debug> next

break in debugging.js:7

* 5 var content_length = body.lenggth;

 6 res.writeHead(200, {

 7 'Content-Length': content_length ,

 8 'Content-Type': 'text/plain'

 9 });

And now start the Node REPL so you can examine some variable values:

debug> repl

Press Ctrl + C to leave debug repl

>

Let’s look at the values of body and content_length , respectively:

> body

'Thanks for calling!\n'

> content_length

>

http://localhost:8080

22 Chapter 1 Getting Started

For body , you can see, as expected, that you get a value. But for content_length , which you
expect to be 20 , you see nothing. You now can see that the code that set its value is wrong and
have found the problem!

Finally, you can either just shut down the whole system by pressing Ctrl+D to end the debug-
ger or you can type cont to continue running the server. Typing cont inside the REPL will not
work and results in the following error: ‘ReferenceError: cont is not defined’. You will need to
press Ctrl+C to exit the REPL first, and then you can use cont .

Although this introduction to the debugger has been quite brief, it is worth playing around
with; it is quite powerful and very useful. There are, additionally, some other browser-based
debuggers being written by Node.js community members, the most promising of which so far is
node-inspector . Feel free to search for them and play around with them to see how they can
help you.

In a pinch, there is nothing wrong with inserting a simple console.log(variable_name);
into your code to have the results printed to the terminal window. It can often be a quick and
simple way to get the information you need to track down bugs or problems.

Staying Up-to-Date and Finding Help

As mentioned previously, one of the challenges of working with Node.js is its constant state
of change. Although more and more APIs and sections of the product are considered Stable or
Locked , some things are still changing with every new release, and these releases are happening
on a weekly basis.

Here are some things you can do to keep up-to-date and not miss out on any important
changes or news:

 ■ Join the Node.js mailing list at http://groups.google.com/group/nodejs . Many of the core
Node developers are on this list and post whenever a new release or change is made.

 ■ If you are on Twitter, follow @nodejs there; you will receive tweets whenever there is a
new release or whenever something else important comes along.

 ■ Visit nodejs.org on a semiregular basis to make sure you are not falling too far behind.

For help, the nodejs Google group is, of course, invaluable, as is the nodejs.org website.
Similarly, StackOverflow.com has a very active community helping out with Node-related ques-
tions, and you can find many good answers there.

However, I have found that a vast majority of problems are best answered with a simple Google
search. Somebody somewhere has very likely run into the same problem as you and written a
blog post or message about it. It is quite rare that I am unable to find the answers with simple
searches.

http://groups.google.com/group/nodejs

23Summary

Summary

You should now have Node.js installed on your computer, have verified that it is working prop-
erly, and have even run and debugged a few problems. Now it’s time to take a closer look at the
JavaScript language.

This page intentionally left blank

2
A Closer Look at JavaScript

Chances are, if you are reading this book, you have worked with JavaScript in the past.
Perhaps you have worked on or written a web application that uses HTML, CSS, and JavaScript,
and you have written some code to make the client more dynamic and interactive, either
directly by manipulating the browser Document Object Model (DOM) or by using a framework
such as jQuery or Prototype to hide some of the messier details for you. You might have even
found working with JavaScript a reasonably frustrating experience, spent a lot of time fighting
the different browsers’ incompatibilities, and it is also quite possible that you have never really
studied the JavaScript language apart from the most basic of language features, looking things
up on the fly as you go.

The good news is that modern web browsers are slowly driving a much-needed cleanup of the
JavaScript language. Additionally, ECMAScript, which is the specification on which modern
implementations are based, is also evolving. The Chrome V8 JavaScript engine itself is also
improving and cleaning up many frustrating things about the language and adding important
features that are missing and need updating.

So, even if you’ve already played around with JavaScript in the past, it is probably worth your
while to read through this chapter fully and learn about some of the details you might have
overlooked or about some of the new features or those changed by V8 and Node.js. Although
most of the discussion in this chapter is applicable to standard JavaScript, sometimes I show
you something new and improved in Google’s V8. For such nonstandard features, I mark them
with (V8 JS).

Types

This section begins the review of JavaScript by looking at the types the language offers. For
much of the discussion in this chapter, I use the Node.js Read-Eval-Print-Loop (REPL) to demon-
strate how the code works. To help you out, I use bold to indicate things that you type into the
interpreter.

client:LearningNode marcw$ node

>

26 Chapter 2 A Closer Look at JavaScript

Type Basics

Node.js has a few core types: number , boolean , string , and object . The two other types,
function and array , are actually special kinds of object s, but because they have extra
features in the language and runtime, some people refer to these three— object , function ,
and array —as complex types . The types null and undefined are also special kinds of object s
and are also treated specially in JavaScript.

The value undefined means that a value has not been set yet or simply does not exist:

> var x;

undefined

> x = {};

{}

> x.not_valid;

undefined

>

null , on the other hand, is an explicit assertion that there “is no value”:

> var y;

undefined

> y

undefined

> y = null ;

null

>

To see the type of anything in JavaScript, you use the typeof operator:

> typeof 10

'number'

> typeof "hello";

'string'

> typeof function () { var x = 20; }

'function'

>

Constants

While Node.js theoretically supports the const keyword extension that some modern
JavaScript implementations have implemented, it’s still not widely used. For constants, the
standard practice is still to just use uppercase letters and variable declarations:

> var SECONDS_PER_DAY = 86400;

undefined

> console.log(SECONDS_PER_DAY);

86400

undefined

>

27Types

Numbers

All numbers in JavaScript are 64-bit IEEE 754 double-precision floating-point numbers. For all
positive and negative integers that can be expressed in 2 53 bits accurately, the number type in
JavaScript behaves much like integer data types in other languages:

> 1024 * 1024

1048576

> 1048576

1048576

> 32437893250 + 3824598359235235

3824630797128485

> -38423538295 + 35892583295

-2530955000

>

The tricky part of using the number type, however, is that for many numeric values, it is an
approximation of the actual number. For example:

> 0.1 + 0. 2

0.30000000000000004

>

When performing floating-point mathematical operations, you cannot just manipulate arbi-
trary real numbers and expect an exact value:

> 1 - 0.3 + 0.1 == 0.8

false

>

For these cases, you instead need to check if the value is in some sort of approximate range, the
size of which is defined by the magnitude of the values you are comparing. (Search the website
stackoverflow.com for articles and questions on comparing floating-point numbers for good
ideas of strategies on this.)

For those situations in which you absolutely need to represent 64-bit integer values in
JavaScript without any chance of approximation errors, you are either stuck using the string
type and manipulating these numbers by hand, or you can use one of the available modules for
manipulating big integer values.

JavaScript is a bit different from other languages in that dividing a number by zero returns the
value Infinity or -Infinity instead of generating a runtime exception:

> 5 / 0

Infinity

> -5 / 0

-Infinity

>

28 Chapter 2 A Closer Look at JavaScript

Infinity and -Infinity are valid values that you can compare against in JavaScript:

> var x = 10, y = 0;

undefined

> x / y == Infinity

true

>

You can use the functions parseInt and parseFloat to convert strings to numbers:

> parseInt("32523523626263");

32523523626263

> parseFloat("82959.248945895");

82959.248945895

> parseInt("234.43634");

234

> parseFloat("10");

10

>

If you provide these functions with something that cannot be parsed, they return the special
value NaN (not-a-number):

> parseInt("cat");

NaN

> parseFloat("Wankel-Rotary engine");

NaN

>

To test for NaN, you must use the isNaN function:

> isNaN(parseInt("cat"));

true

>

Finally, to test whether a given number is a valid finite number (that is, it is not Infinity,
-Infinity , or NaN), use the isFinite function:

> isFinite(10/5);

true

> isFinite(10/0);

false

> isFinite(parseFloat("banana"));

false

>

Booleans

The boolean type in JavaScript is both simple and simple to use. Values can either be true
or false, and although you technically can convert values to boolean with the Boolean

29Types

function, you almost never need it because the language converts everything to boolean when
needed, according to the following rules:

 1. false , 0 , empty strings (""), NaN , null , and undefined all evaluate to false .

 2. All other values evaluate to true .

Strings

Strings in JavaScript are sequences of Unicode characters (represented internally in a 16-bit
UCS-2 format) that can represent a vast majority of the characters in the world, including those
used in most Asian languages. There is no separate char or character data type in the language;
you just use a string of length 1 to represent these. For most of the network applications you’ll
be writing with Node.js, you will interact with the outside world in UTF- 8, and Node will
handle all the details of conversion for you. Except for when you are manipulating binary data,
your experience with strings and character sets will largely be worry-free.

Strings can be wrapped in single or double quotation marks. They are functionally equivalent,
and you are free to use whatever ones you want. To include a single quotation mark inside a
single-quoted string, you can use \' , and similarly for double quotation marks inside double-
quoted strings, you can use \" :

> 'Marc\'s hat is new.'

'Marc\'s hat is new.'

> "\"Hey, nice hat!\", she said."

'"Hey, nice hat!", she said.'

>

To get the length of a string in JavaScript, just use the length property:

> var x = "cat";

undefined

> x.length;

3

> "cat".length;

3

> x = null;

null

Attempting to get the length of a null or undefined string throws an error in JavaScript:

> x.length;

TypeError: Cannot read property 'length' of null

 at repl:1:2

 at REPLServer.self.eval (repl.js:109:21)

 at rli.on.self.bufferedCmd (repl.js:258:20)

 at REPLServer.self.eval (repl.js:116:5)

 at Interface.<anonymous> (repl.js:248:12)

 at Interface.EventEmitter.emit (events.js:96:17)

30 Chapter 2 A Closer Look at JavaScript

 at Interface._onLine (readline.js:200:10)

 at Interface._line (readline.js:518:8)

 at Interface._ttyWrite (readline.js:736:14)

 at ReadStream.onkeypress (readline.js:97:10)

To add two strings together, you can use the + operator:

> "cats" + " go " + "meow";

'cats go meow'

>

If you start throwing other types into the mix, JavaScript converts them as best it can:

> var distance = 25;

undefined

> "I ran " + distance + " kilometres today";

'I ran 25 kilometres today'

>

Note that this can provide some interesting results if you start mixing expressions a bit too
much:

> 5 + 3 + " is my favourite number";

'8 is my favourite number'

>

If you really want “53” to be your favorite number, you can just prefix it all with an empty
string to force the conversion earlier:

> "" + 5 + 3 + " is my favourite number";

'53 is my favourite number'

>

Many people worry that the concatenation operator + has terrible performance when working
with strings. The good news is that almost all modern browser implementations of JavaScript—
including Chrome’s V8 that you use in Node.js—have optimized this scenario heavily, and
performance is now quite good.

String Functions

Many interesting functions are available to strings in JavaScript. To find a string with another
string, use the indexOf function:

> "Wishy washy winter".indexOf("wash");

6

>

To extract a substring from a string, use the substr or splice function. (The former takes the
starting index and length of string to extract; the latter takes the starting index and ending
index):

31Types

> "No, they're saying Booo-urns.".substr(19, 3);

'Boo'

> "No, they're saying Booo-urns.".slice(19, 22);

'Boo'

>

If you have a string with some sort of separator character in it, you can split that up into
component strings by using the split function and get an array as the result:

> "a|b|c|d|e|f|g|h".split("|");

['a',

 'b',

 'c',

 'd',

 'e',

 'f',

 'g',

 'h']

>

Finally, the trim function (V8 JS) does exactly what you would expect—removes whitespace
from the beginning and end of a string:

> ' cat \n\n\n '. trim();

'cat'

>

Regular Expressions

JavaScript has powerful regular expression support, the full details of which are beyond the
scope of this book, but I briefly show how and where you can use them. A certain number of
string functions can take arguments that are regular expressions to perform their work. These
regular expressions can either be entered in literal format (indicated by putting the regular
expression between two forward slash [/] characters) or as a call to the constructor of a RegExp
object:

/[aA]{2,}/

new RegExp("[Aa]{2,}")

Both of these are regular expressions that match against a sequence of two or more of the letter
a (upper- or lowercase).

To replace all sequences of two or more a’ s with the letter b on string objects, you can use the
replace function and write either of the following:

> "aaoo".replace(new RegExp("[Aa]{2,}"), "b");

'boo'

> "aaoo".replace(/[Aa]{2,}/, "b");

'boo'

>

32 Chapter 2 A Closer Look at JavaScript

Similar to the indexOf function, the search function takes a regular expression and returns
the index of the first match against it, or -1 if no such match exists:

> "aaoo".search(/[Aa]{2,}/);

0

> "aoo".search(/[Aa]{2,}/);

-1

>

Objects

Objects are one of the core workhorses of the JavaScript language, and something you will
use all the time. They are an extremely dynamic and flexible data type, and you can add and
remove things from them with ease. To create an object, you can use either of the following,
although the latter, known as object literal syntax , is almost always preferred nowadays:

> var o1 = new Object();

undefined

> var o2 = {};

undefined

>

You can also specify the contents of objects using object literal syntax, where you can specify
member names and values at initialization time:

var user = {

 first_name: "marc",

 last_name: "wandschneider",

 age: Infinity,

 citizenship: "man of the world"

};

About JSON

One of the things used quite often in this book (and indeed in all the network and web applica-
tions) is JSON, or JavaScript Object Notation . This data exchange format gives you all the flex-
ibility of a text-based data format, without the hassle that some of the other formats such as
XML bring. (To be fair to the latter, JSON does lack some of the validation features of those
formats as well, but I still find it infinitely preferable to use.)

JSON is extremely similar to object literal notation with two key differences: Whereas, in object
literal notation, wrapping the property names in single or double quotation marks is optional, in
JSON it is mandatory. Furthermore, all strings should be double-quoted as follows:

// valid object literal notation, INVALID JSON:

var obj = {

 // JSON strings are supposed to use ", not '

 "first_name": 'Marc',

33Types

 // Must wrap property names for JSON

 last_name: "Wandschneider"

}

// valid JSON and object literal notation:

var obj = {

 "first_name": "Marc",

 "last_name": "Wandschneider"

}

A nontrivial number of JSON libraries actually accept single-quoted strings, but to be maximally
compatible, you should be careful to use double quotation marks whenever you write or gener-
ate JSON.

To generate JSON, you mostly use the V8 functions JSON.parse and JSON.stringify . The
former takes a JSON string and converts it to an object (or throws an error if it fails), while the
latter takes an object and returns a JSON string representation of it.

When you are writing objects in code, you mostly use object literal notation, but you also work
with a lot of JSON in this book as well, so it is important to recognize the difference. I point out
whenever JSON is absolutely required.

You can add a new property to your user object by using any of the following methods:

> user.hair_colour = "brown";

'brown'

> user["hair_colour"] = "brown";

'brown'

> var attribute = 'hair_colour';

undefined

> user[attribute] = "brown";

'brown'

> user

{ first_name: 'marc',

 last_name: 'wandschneider',

 age: Infinity,

 citizenship: 'man of the world',

 hair_colour: 'brown' }

>

If you try to access a property that does not exist, you do not receive an error, but instead just
get back undefined :

> user.car_make

undefined

>

34 Chapter 2 A Closer Look at JavaScript

To remove a property from an object, you can use the delete keyword:

> delete user.hair_colour;

true

> user

{ first_name: 'marc',

 last_name: 'wandschneider',

 age: Infinity,

 citizenship: 'man of the world' }

>

The flexibility of objects in JavaScript makes them quite similar to various associative arrays,
hash maps, or dictionaries seen in other languages, but there is an interesting difference:
Getting the size of an object-as-associative-array in JavaScript is a bit tricky. There are no size
or length properties or methods on Object . To get around this, you can write the following
(V8 JS) :

> Object.keys(user).length;

4

Note that this uses a nonstandard extension to JavaScript Object.keys ; although V8 and most
browsers (except Internet Explorer) already support it.

Arrays

The array type in JavaScript is actually a special casing of the object type, with a number of
additional features that make them useful and powerful. To create arrays, you can either use
traditional notation or array literal syntax :

> var arr1 = new Array();

undefined

> arr1

[]

> var arr2 = [];

undefined

> arr2

[]

>

As with objects, I almost always prefer the literal syntax version, and rarely use the former.

If you use the typeof operator on arrays, you get a surprising result:

> typeof arr2

'object'

>

35Types

Because arrays are actually objects, the typeof operator just returns that, which is very
frequently not what you want! Fortunately, V8 has a language extension to let you test deter-
minatively whether or not something is an array: the Array.isArray function (V8 JS) :

> Array.isArray(arr2);

true

> Array.isArray({});

false

>

One of the key features of the array type in JavaScript is the length property, used as follows:

> arr2.length

0

> var arr3 = ['cat', 'rat', 'bat'];

undefined

> arr3.length;

3

>

By default, arrays in JavaScript are numerically indexed:

// this:

for (var i = 0; i < arr3.length; i++) {

 console.log(arr3[i]);

}

// will print out this:

cat

rat

bat

To add an item to the end of an array, you can do one of two things:

> arr3.push("mat");

4

> arr3

['cat', 'rat', 'bat', 'mat']

> arr3[arr3.length] = "fat";

'fat'

> arr3

['cat', 'rat', 'bat', 'mat', 'fat']

>

You can specify the index of the element where you want to insert a new element. If this
element is past the last element, the elements in between are created and initialized with the
value undefined :

36 Chapter 2 A Closer Look at JavaScript

> arr3[20] = "splat";

'splat'

> arr3

['cat', 'rat', 'bat', 'mat', 'fat', , , , , , , , , , , , , , , , 'splat']

>

To remove elements from an array, you might try to use the delete keyword again, but the
results may surprise you:

> delete arr3[2];

true

> arr3

['cat', 'rat', , 'mat', 'fat', , , , , , , , , , , , , , , , 'splat']

>

You see that the value at index 2 still “exists” and has just been set to undefined .

To truly delete an item from an array, you probably should use the splice function, which
takes an index and the number of items to delete. What it returns is an array with the extracted
items, and the original array is modified such that they no longer exist there:

> arr3.splice(2, 2);

[, 'mat']

> arr3

['cat', 'rat', 'fat', , , , , , , , , , , , , , , , 'splat']

> arr3.length

19

Useful Functions

There are a few key functions you frequently use with arrays. The push and pop functions let
you add and remove items to the end of an array, respectively:

> var nums = [1, 1, 2, 3, 5, 8];

undefined

> nums.push(13);

7

> nums

[1, 1, 2, 3, 5, 8, 13]

> nums.pop();

13

> nums

[1, 1, 2, 3, 5, 8]

>

37Types

To insert or delete items from the front of an array, use unshift or shift , respectively:

> var nums = [1, 2, 3, 5, 8];

undefined

> nums.unshift(1);

6

> nums

[1, 1, 2, 3, 5, 8]

> nums.shift();

1

> nums

[1, 2, 3, 5, 8]

>

The opposite of the string function split seen previously is the array function join , which
returns a string:

> var nums = [1, 1, 2, 3, 5, 8];

undefined

> nums.join(", ");

'1, 1, 2, 3, 5, 8'

>

You can sort arrays using the sort function, which can be used with the built-in sorting
function:

> var jumble_nums = [3, 1, 8, 5, 2, 1];

undefined

> jumble_nums.sort();

[1, 1, 2, 3, 5, 8]

>

For those cases where it doesn’t quite do what you want, you can provide your own sorting
function as a parameter:

> var names = ['marc', 'Maria', 'John', 'jerry', 'alfred', 'Moonbeam'];

undefined

> names.sort();

['John', 'Maria', 'Moonbeam', 'alfred', 'jerry', 'marc']

> names.sort(function (a, b) {

 var a1 = a.toLowerCase(), b1 = b.toLowerCase();

 if (a1 < b1) return -1;

 if (a1 > b1) return 1;

 return 0;

 });

['alfred', 'jerry', 'John', 'marc', 'Maria', 'Moonbeam']

>

38 Chapter 2 A Closer Look at JavaScript

To iterate over items in arrays, you have a number of options, including the for loop shown
previously, or you can use the forEach function (V8 JS) , as follows:

['marc', 'Maria', 'John', 'jerry', 'alfred', 'Moonbeam'].forEach(function (value) {

 console.log(value);

});

marc

Maria

John

jerry

alfred

Moonbeam

Type Comparisons and Conversions

As alluded to previously, for the most part, types in JavaScript behave as you would expect
them and as you have seen in other programming languages. JavaScript has both the equality
operator == (do the two operands have the same value?) and the precise equality operator ===
(do the two operands have the same value and are of the same type?):

> 234 == '234'

true

> 234 === '234'

false

> 234234.235235 == 'cat'

false

> "cat" == "CAT"

false

> "cat".toUpperCase() == "CAT";

true

You also saw that a number of different things evaluate to false , despite being quite different:

> '' == false == null == undefined == 0

true

> null === undefined

false

>

This saves you some time when doing tasks such as checking arguments to functions:

function fine(param) {

 if (param == null || param == undefined || param == '')

 throw new Error("Invalid Argument");

}

39Functions

function better(param) {

 if (!param) throw new Error("Invalid Argument");

}

One case where type comparisons can be tricky is if you use object constructors for values
instead of just using primitives:

> var x = 234;

undefined

> var x1 = new Number(234);

undefined

> typeof x 1

'object'

> typeof x

'number'

> x1 == x

true

> x1 === x

false

>

The object constructors are functionally equivalent to the primitive types; all the same opera-
tions, operators, and functions produce the same results, but the precise equality operator ===
and typeof operator produce different results. For this reason, it is recommended to just use
the primitive types whenever possible.

Functions

Although it does not look like it at first glance (the name doesn’t help either), JavaScript is a
functional programming language, wherein functions are fully typed objects that can be manip-
ulated, extended, and passed around as data. Node.js takes advantage of this capability, and
you will use it extensively in your network and web applications.

Basics

The simplest kind of function is exactly as you would expect:

function hello(name) {

 console.log("hello " + name);

}

> hello("marc");

hello marc

undefined

>

40 Chapter 2 A Closer Look at JavaScript

To declare parameters for a function in JavaScript, you simply list them in the parentheses.
There is, however, absolutely no checking of these parameters at runtime:

> hello();

hello undefined

undefined

> hello("marc", "dog", "cat", 48295);

hello marc

undefined

>

If too few parameters are passed into a function call, the resulting variables are assigned the
value undefined . If too many are passed in, the extras are simply unused.

All functions have a predefined array in the body called arguments . It has all the values that
were passed in to this particular function call, and lets you do extra checking on the parameter
list. Indeed, you can go a step further and use it to make your functions more powerful and
flexible.

Suppose you want to initialize a caching subsystem you wrote. The function to do this takes a
size to create the cache and uses default values for other things such as cache location, expira-
tion algorithm, maximum cache item size, and storage type. You could write the function as
follows:

function init_cache(size_mb, location, algorithm, item_size, storage_type) {

 ...

}

init_cache(100, null, null, null, null);

However, it would be even cooler if you could have the function be “smart” enough to give
you a couple of different ways to call it:

function init_cache() {

 var init_data = {

 cache_size: 10,

 location: '/tmp',

 algorithm: 'lru',

 item_size: 1024,

 storage_type: 'btree'

 };

 var a = arguments;

 for (var i = 0; i < a.length; i++) {

 if (typeof a[i] == 'object') {

 init_data = a[i];

 break;

 } else if (typeof a[i] == 'number') {

 init_data.cache_size = a[i];

41Functions

 break;

 } else {

 throw new Error("bad cache init param");

 }

 }

 // etc

}

Now you have a number of different ways you can call this function:

init_cache();

init_cache(200);

init_cache({ cache_size: 100,

 location: '/exports/dfs/tmp',

 algorithm: 'lruext',

 item_size: 1024,

 storage_type: 'btree'});

Functions in JavaScript do not even need to have names:

var x = function (a, b) {

 return a + b;

}

> x(10, 20);

30

These nameless functions are typically called anonymous functions . There is one drawback to
fully anonymous functions and that comes in debugging:

var x = function () {

 throw new Error("whoopsie");

}

> x();

Error: whoopsie

 at x (repl:2:7)

 at repl:1:1

 at REPLServer.self.eval (repl.js:109:21)

 at rli.on.self.bufferedCmd (repl.js:258:20)

Anonymous functions do not permit the language engine to tell you what the name of the
function is when an exception is thrown. This can make your life a bit more difficult when
debugging.

A simple solution and modern extension to the JavaScript language is to simply name the
anonymous functions:

42 Chapter 2 A Closer Look at JavaScript

var x = function bad_apple() {

 throw new Error("whoopsie");

}

> x();

Error: whoopsie

 at bad_apple (repl:2:7)

 at repl:1:1

 at REPLServer.self.eval (repl.js:109:21)

 at rli.on.self.bufferedCmd (repl.js:258:20)

In complicated programs, having an exact pointer to the location of an error can be a real life-
saver. For this reason, some people choose to name all their anonymous functions.

You have already seen an example of anonymous functions in the earlier section “Arrays”
when you called the sort function with an anonymous function to do case-insensitive string
comparisons. You use many more of them throughout this book.

Function Scope

Every time a function is called, a new variable scope is created. Variables declared in the parent
scope are available to that function, but variables declared within the new scope are not avail-
able when the function exits. Consider the following code:

var pet = 'cat';

function play_with_pets() {

 var pet = 'dog';

 console.log(pet);

}

play_with_pets();

console.log(pet);

It outputs the following:

dog

cat

Combining this scoping with anonymous functions can be a good way to do some quick or
private work with private variables that will disappear when the anonymous function exits.
Here’s a contrived example to compute the volume of a cone:

var height = 5;

var radius = 3;

var volume;

43Language Constructs

// declare and immediately call anon function to create scope

(function () {

 var pir2 = Math.PI * radius * radius; // temp var

 volume = (pir2 * height) / 3;

})();

console.log(volume);

You will see a number of other common patterns involving functions when you move into
Chapter 3 , “Asynchronous Programming.”

Language Constructs

JavaScript contains nearly all the language operators and constructs you would expect, includ-
ing most logical and mathematical operators.

The ternary operator is supported:

var pet = animal_meows ? "cat" : "dog";

Even though numbers are implemented as double-precision floating-point numbers, bitwise
operations are supported in JavaScript: The & (and), | (or), ~ (inverse), and ̂ (xor) operators all
work by:

1. First converting the operands into 32-bit integers.

2. Performing the bitwise operation.

3. Finally, converting the resulting number back to a JavaScript number.

In addition to the standard while , do...while , and for loops, JavaScript also supports the
new language extensions for loop called the for...in loop (V8 JS). This loop is used to get
the names of all the keys on an object:

var user = {

 first_name: "marc",

 last_name: "wandschneider",

 age: Infinity,

 occupation: "writer"

};

for (key in user) {

 console.log(key);

}

44 Chapter 2 A Closer Look at JavaScript

first_name

last_name

age

occupation

undefined

>

Classes, Prototypes, and Inheritance

Object-oriented programming in JavaScript is a bit different from other languages in that there
is no explicit class keyword or type. Indeed, classes are all declared as functions:

function Shape () {

 this.X = 0;

 this.Y = 0;

 this.move = function (x, y) {

 this.X = x;

 this.Y = y;

 }

 this.distance_from_origin = function () {

 return Math.sqrt(this.X*this.X + this.Y*this.Y);

 }

}

var s = new Shape();

s.move(10, 10);

console.log(s.distance_from_origin());

The preceding program generates the following output:

14.142135623730951

You can add as many properties and methods to your classes as you like, at any time:

var s = new Shape(15, 35);

s.FillColour = "red";

The function that declares the class also servers as its constructor!

There are two problems with this scheme for creating classes, however. First, it seems a bit inef-
ficient to have to carry around the method implementations with every single object. (Every
time you create a new instance of Shape , you are creating the move and distance_from_
origin functions from scratch.) Second, you might like to extend this class to create circles and
squares and have them inherit the methods and properties from the base class without your
having to do any extra work.

45Classes, Prototypes, and Inheritance

Prototypes and Inheritance

By default, all objects in JavaScript have a prototype object, which is the mechanism through
which they inherit properties and methods. Prototypes have been the source of much confu-
sion in JavaScript over the years, often because different browsers use different nomencla-
ture for it and subtly different implementations. Because it is relevant to the interests of
this chapter, I demonstrate the model that V8 (and thus Node) uses and that other modern
JavaScript implementations seem to be moving toward.

Change the Shape class created earlier so that all inheriting objects also get the X and Y proper-
ties, as well as the methods you have declared on it:

function Shape () {

}

Shape.prototype.X = 0;

Shape.prototype.Y = 0;

Shape.prototype.move = function (x, y) {

 this.X = x;

 this.Y = y;

}

Shape.prototype.distance_from_origin = function () {

 return Math.sqrt(this.X*this.X + this.Y*this.Y);

}

Shape.prototype.area = function () {

 throw new Error("I don't have a form yet");

}

var s = new Shape();

s.move(10, 10);

console.log(s.distance_from_origin());

Run this script and you get the same output as the previous one. Indeed, functionally, apart
from potentially being slightly more memory efficient (if you created lots of instances, they
would all share the implementations of move and distance_from_origin instead of carrying
around their own), it is not that different. You have added a method area that all shapes will
have. On the base class, it does not make much sense, so you just have it throw an error.

More importantly, you have set yourself up to extend it quite easily:

function Square() {

}

Square.prototype = new Shape();

Square.prototype.__proto__ = Shape.prototype;

Square.prototype.Width = 0;

46 Chapter 2 A Closer Look at JavaScript

Square.prototype.area = function () {

 return this.Width * this.Width;

}

var sq = new Square();

sq.move(-5, -5);

sq.Width = 5;

console.log(sq.area());

console.log(sq.distance_from_origin());

The code for this new Square class makes use of a new JavaScript language feature seen in V8
and a few other implementations: the __proto__ property. It lets you tell JavaScript that a new
class you are declaring should have the base prototype of the specified type, and then you can
extend it from there.

You can further extend things with a new class called Rectangle , inheriting from the Square
class:

function Rectangle () {

}

Rectangle.prototype = new Square();

Rectangle.prototype.__proto__ = Square.prototype;

Rectangle.prototype.Height = 0;

Rectangle.prototype.area = function () {

 return this.Width * this.Height;

}

var re = new Rectangle();

re.move(25, 25);

re.Width = 10;

re.Height = 5;

console.log(re.area());

console.log(re.distance_from_origin());

To convince yourself that things are going smoothly, you can use an operator you have not
seen before, instanceof :

console.log(sq instanceof Square); // true

console.log(sq instanceof Shape); // true

console.log(sq instanceof Rectangle); // false

console.log(re instanceof Rectangle); // true

console.log(sq instanceof Square); // true

console.log(sq instanceof Shape); // true

console.log(sq instanceof Date); // false

47Some Important Node.js Globals

Errors and Exceptions

In JavaScript, you traditionally signal errors using an Error object and a message. You throw
this error, to signal the error condition:

function uhoh () {

 throw new Error("Something bad happened!");

}

> uhoh();

Error: Something bad happened!

 at uhoh (repl:2:7)

 at repl:1:1

 at REPLServer.self.eval (repl.js:109:21)

 at rli.on.self.bufferedCmd (repl.js:258:20)

You can catch it with a t ry / catch block as seen in other languages:

function uhoh () {

 throw new Error("Something bad happened!");

}

try {

 uhoh();

} catch (e) {

 console.log("I caught an error: " + e.message);

}

console.log("program is still running");

The output of this program is

I caught an error: Something bad happened!

program is still running

As you see in the next chapter, however, this method of error handling does create some prob-
lems with the asynchronous model of programming you will be using in Node.js.

Some Important Node.js Globals

Node.js has a few key global variables that are always available to you.

global

When you write JavaScript in web browsers, you have the window object, which acts as a
“global” variable. Any variables or members you attach to it are available anywhere in your
application.

48 Chapter 2 A Closer Look at JavaScript

Node.js has something similar, called the global object. Anything attached to it is available
anywhere in your node application:

function printit(var_name) {

 console.log(global[var_name]);

}

global.fish = "swordfish";

global.pet = "cat";

printit("fish"); // prints swordfish

printit("pet"); // prints cat

printit("fruit"); // prints undefined

console

You have already seen the global variable console in Node, as you frequently use the
console.log function. There are a few other interesting functions, however:

 ■ warn(msg) —This function is similar to log , but it prints on stderr .

 ■ time(label) and timeEnd(label) —The first marks a time stamp, and when you call
the second, it prints out the elapsed time since the time function was called.

 ■ assert(cond , message) —If cond evaluates to false , throw an AssertionFailure
exception.

process

The other key global in Node is the process global variable, which contains a lot of informa-
tion and methods that you will see as you work through this book. The exit method is one
way to terminate your Node.js programs, the env function returns an object with current user
environment variables, and cwd returns the current working directory of the app.

Summary

You took a quick look at the JavaScript language in this chapter, and I hope your knowledge
of the language has at least been sharpened a little bit, with some confusing or unknown areas
clarified a bit. With this basic knowledge under your belt, you can now begin to look at how
Node.js uses the language so effectively to create powerful and speedy applications.

3
Asynchronous Programming

Now that you have a refreshed and updated idea of what JavaScript programming is really
like, it’s time to get into the core concept that makes Node.js what it is: that of nonblocking IO
and asynchronous programming . It carries with it some huge advantages and benefits, which you
shall soon see, but it also brings some complications and challenges with it.

The Old Way of Doing Things

In the olden days (2008 or so), when you sat down to write an application and needed to load
in a file, you would write something like the following (let’s assume you’re using something
vaguely PHP-ish for example purposes):

$file = fopen('info.txt', 'r');

// wait until file is open

$contents = fread($file, 100000);

// wait until contents are read

// do something with those contents

If you were to analyze the execution of this script, you would find that it spends a vast major-
ity of its time doing nothing at all . Indeed, most of the clock time taken by this script is spent
waiting for the computer’s file system to do its job and return the file contents you requested.
Let me generalize things a step further and state that for most IO-based applications—those
that frequently connect to databases, communicate with external servers, or read and write
files—your scripts will spend a majority of their time sitting around waiting (see Figure 3.1).

The way your server computers process multiple requests at the same time is by running many
of these scripts in parallel. Modern computer operating systems are great at multitasking, so
you can easily switch out processes that are blocked and let other processes have access to the
CPU. Some environments take things a step further and use threads instead of processes.

51The Node.js Way of Doing Things

// blah

setTimeout(function () {

 console.log("I've done my work!");

}, 2000);

console.log("I'm waiting for all my work to finish.");

If you run the preceding code, you see the following output:

I'm waiting for all my work to finish.

I've done my work!

I hope this is not a surprise to you: The program sets the timeout for 2000ms (2s), giving it the
function to call when it fires, and then continues with execution, which prints out the “I’m
waiting...” text. Two seconds later, you see the “I’ve done...” message, and the program
then exits.

Now, look at a world where any time you call a function that needs to wait for some external
resource (database server, network request, or file system read/write operation), it has a similar
signature. That is, instead of calling fopen(path, mode) and waiting, you would instead call
fopen(path, mode, function callback(file_handle) { ... }) .

Now rewrite the preceding synchronous script using the new asynchronous functions. You can
actually enter and run this program with node from the command line. Just make sure you also
create a file called info.txt that can be read.

var fs = require('fs'); // this is new, see explanation

var file;

var buf = new Buffer(100000);

fs.open(

 'info.txt', 'r',

 function (handle) {

 file = handle;

 }

);

fs.read(// this will generate an error.

 file, buffer, 0, 100000, null,

 function () {

 console.log(buf.toString());

 file.close(file, function () { /* don't care */ });

 }

);

52 Chapter 3 Asynchronous Programming

The first line of this code is something you haven’t seen just yet: The require function is a
way to include additional functionality in your Node.js programs. Node comes with a pretty
impressive set of modules , each of which you can include separately as you need functionality.
You will work further with modules frequently from now on; you learn about consuming them
and writing your own in Chapter 5 , “Modules.”

If you run this program as it is, it throws an error and terminates. How come? Because the fs.
open function runs asynchronously; it returns immediately, before the file has been opened, and
you have the handle value returned to you. The file variable is not set until the file has been
opened and the handle to it has been received in the callback specified as the third parameter
to the fs.open function. Thus, it is still undefined when you try to call the fs.read function
with it immediately afterward.

Fixing this program is easy:

var fs = require('fs');

fs.open(

 'info.txt', 'r',

 function (err, handle) { // we'll see more about the err param in a bit

 var buf = new Buffer(100000);

 fs.read(

 handle, buf, 0, 100000, null,

 function (err, length) {

 console.log(buf.toString('utf8', 0, length));

 fs.close(handle, function () { /* don't care */ });

 }

);

 }

);

The key way to think of how these asynchronous functions work is something along the
following lines:

 ■ Check and validate parameters.

 ■ Tell the Node.js core to queue the call to the appropriate function for you (in the
preceding example, the operating system open or the read function), and to notify (call)
the provided callback function when there is a result.

 ■ Return to the caller.

You might be asking: If the open function returns right away, why doesn’t the node process
exit immediately after that function has returned? The answer is that Node operates with an
event queue; if there are pending events for which you are awaiting a response, it does not exit
until your code has finished executing and there are no events left on that queue. If you are
waiting for a response (either to the open or the read function calls), it waits. See Figure 3.2 for
an idea of how this scenario looks conceptually.

54 Chapter 3 Asynchronous Programming

If you run this code, you might very well expect to see the output "I caught the error: Uh
oh!" . But you do not. You actually see the following:

timers.js:103

 if (!process.listeners('uncaughtException').length) throw e;

 ^

Error: Uh oh, something bad!

 at Object._onTimeout errors_async.js:5:15)

 at Timer.list.ontimeout (timers.js:101:19)

What happened? Did I not say that try ... catch blocks were supposed to catch errors for
you? I did, but asynchronous callbacks throw a new little wrench into this situation.

In reality, the call to setTimeout does execute within the try ... catch block. If that func-
tion were to throw an error, the catch block would catch it, and you would see the message
that you had hoped to see. However, the setTimeout function just adds an event to the Node
event queue (instructing it to call the provided function after the specified time interval—
2000ms in this example), and then returns. The provided callback function actually operates
within its own entirely new context and scope!

As a result, when you call asynchronous functions for nonblocking IO, very few of them throw
errors, but instead use a separate way of telling you that something has gone wrong.

In Node, you use a number of core patterns to help you standardize how you write code and
avoid errors. These patterns are not enforced syntactically by the language or runtime, but you
will see them used frequently and even use them yourself.

The callback Function and Error Handling

One of the first patterns you will see is the format of the callback function you pass to most
asynchronous functions. It always has at least one parameter, the success or failure status of the
last operation, and very commonly a second with some sort of additional results or information
from the last operation (such as a file handle, database connection, rows from a query, and so
on); some callbacks are given even more than two:

do_something(param1, param2, ..., paramN, function (err, results) { ... });

The err parameter is either

 ■ null , indicating the operation was a success, and (if there should be one) there will be
a result.

 ■ An instance of the Error object class. You will occasionally notice some inconsistency
here, with some people always adding a code field to the Error object and then using
the message field to hold a description of what happened, whereas others have chosen
other patterns. For all the code you write in this book, you will follow the pattern
of always including a code field and using the message field to provide as much
information as you can. For all the modules you write, you will use a string value for the

55Error Handling and Asynchronous Functions

code because they tend to be a bit easier to read. Some libraries provide extra data in the
Error object with additional information, but at least the two members should always be
there.

This standard prototype methodology enables you to always write predictable code when you
are working with nonblocking functions. Throughout this book, I demonstrate two common
coding styles for handling errors in callbacks. Here’s the first:

fs.open(

 'info.txt', 'r',

 function (err, handle) {

 if (err) {

 console.log("ERROR: " + err.code + " (" + err.message ")");

 return;

 }

 // success!! continue working here

 }

);

In this style, you check for errors and return if you see one; otherwise, you continue to process
the result. And now here’s the other way:

fs.open(

 'info.txt', 'r',

 function (err, handle) {

 if (err) {

 console.log("ERROR: " + err.code + " (" + err.message ")");

 } else {

 // success! continue working here

 }

 }

);

In this method, you use an if ... then ... else statement to handle the error.

The difference between these two may seem like splitting hairs, but the former method is a
little more prone to bugs and errors for those cases when you forget to use the return state-
ment inside the if statement, whereas the latter results in code that indents itself much more
quickly and you end up with lines of code that are quite long and less readable. You look at a
solution to this second problem in the section titled “A Module So Common It Should Be Built
In” in Chapter 5 .

56 Chapter 3 Asynchronous Programming

A fully updated version of the file-loading code with error handling is shown in Listing 3.1 .

Listing 3.1 File Loading with Full Error Handling

var fs = require('fs');

fs.open(

 'info.txt', 'r',

 function (err, handle) {

 if (err) {

 console.log("ERROR: " + err.code

 + " (" + err.message + ")");

 return;

 }

 var buf = new Buffer(100000);

 fs.read(

 handle, buf, 0, 100000, null,

 function (err, length) {

 if (err) {

 console.log("ERROR: " + err.code +

 " (" + err.message + ")");

 return;

 }

 console.log(buf.toString('utf8', 0, length));

 fs.close(handle, function () { /* don't care */ });

 }

);

 }

);

Who Am I? Maintaining a Sense of Identity

Now you’re ready to write a little class to help you with some common file operations:

var fs = require('fs');

function FileObject () {

 this .filename = '';

 this .file_exists = function (callback) {

 console.log("About to open: " + this.filename);

 fs.open(this.filename, 'r', function (err, handle) {

 if (err) {

 console.log("Can't open: " + this .filename);

 callback(err);

57Who Am I? Maintaining a Sense of Identity

 return;

 }

 fs.close(handle, function () { });

 callback(null, true);

 });

 };

}

You have currently added one property, filename , and a single method, file_exists . This
method does the following:

 ■ It tries to open this file specified in the filename property read-only.

 ■ If the file doesn’t exist, it prints a message and calls the callback function with the
error info.

 ■ If the file does exist, it calls the callback function indicating success.

Now, run this class with the following code:

var fo = new FileObject();

fo.filename = "file_that_does_not_exist";

fo.file_exists(function (err, results) {

 if (err) {

 console.log("Aw, bummer: " + JSON.stringify(err));

 return;

 }

 console.log("file exists!!!");

});

You might expect the following output:

About to open: file_that_does_not_exist

Can't open: file_that_does_not_exist

But, in fact, you see this:

About to open: file_that_does_not_exist

Can't open: undefined

What happened? Most of the time, when you have a function nested within another, it inherits
the scope of its parent/host function and should have access to all the same variables. So why
does the nested callback function not get the correct value for the filename property?

The problem lies with the this keyword and asynchronous callback functions. Don’t forget
that when you call a function like fs.open , it initializes itself, calls the underlying operating
system function (in this case to open a file), and places the provided callback function on the
event queue. Execution immediately returns to the FileObject#file_exists function, and

58 Chapter 3 Asynchronous Programming

then you exit. When the fs.open function completes its work and Node runs the callback, you
no longer have the context of the FileObject class anymore, and the callback function
is given a new this pointer!

The bad news is that you have, indeed, lost your this pointer referring to the FileObject
class. The good news is that the callback function for fs.open does still have its function
scope. A common solution to this problem is to “save” the disappearing this pointer in a vari-
able called self or me or something similar. Now rewrite the file_exists function to take
advantage of this:

 this.file_exists = function (callback) {

 var self = this ;

 console.log("About to open: " + self.filename);

 fs.open(this.filename, 'r', function (err, handle) {

 if (err) {

 console.log("Can't open: " + self.filename);

 callback(err);

 return;

 }

 fs.close(handle, function () { });

 callback(null, true);

 });

 };

Because function scope is preserved via closures, the new self variable is maintained for you
even when your callback is executed asynchronously later by Node.js. You will make extensive
use of this in all your applications. Some people like to use me instead of self because it is
shorter; others still use completely different words. Pick whatever kind you like and stick with
it for consistency.

Being Polite—Learning to Give Up Control

Node runs in a single thread with a single event loop that makes calls to external functions and
services. It places callback functions on the event queue to wait for the responses and otherwise
tries to execute code as quickly as possible. So what happens if you have a function that tries to
compute the intersection between two arrays:

function compute_intersection(arr1, arr2, callback) {

 var results = [];

 for (var i = 0 ; i < arr1.length; i++) {

 for (var j = 0; j < arr2.length; j++) {

 if (arr2[j] == arr1[i]) {

 results[results.length] = arr1[j];

 break;

 }

59Being Polite—Learning to Give Up Control

 }

 }

 callback(null, results); // no error, pass in results!

}

For arrays of a few thousand elements, this function starts to consume significant amounts of
time to do its work, on the order of a second or more. In a single-threaded model, where Node.
js can do only one thing at a time, this amount of time can be a problem. Similar functions
that compute hashes, digests, or otherwise perform expensive operations are going to cause
your applications to temporarily “freeze” while they do their work. What can you do?

In the Introduction to this book, I mentioned that there are certain things for which Node.js is
not particularly well suited, and one of them is definitely acting as a compute server . Node is far
better suited to more common network application tasks, such as those with heavy amounts
of I/O and requests to other services. If you want to write a server that does a lot of expensive
computations and calculations, you might want to consider moving these operations to other
services that your Node applications can then call remotely.

I am not saying, however, that you should completely shy away from computationally inten-
sive tasks. If you’re doing these only some of the time, you can still include them in Node.js
and take advantage of a method on the process global object called nextTick . This method
basically says, “Give up control of execution, and then when you have a free moment, call the
provided function.” It tends to be significantly faster than just using the setTimeout function.

Listing 3.2 contains an updated version of the compute_intersection function that yields
every once in a while to let Node process other tasks.

Listing 3.2 Using process#nextTick to Be Polite

function compute_intersection(arr1, arr2, callback) {

 // let's break up the bigger of the two arrays

 var bigger = arr1.length > arr2.length ? arr1 : arr2;

 var smaller = bigger == arr1 ? arr2 : arr1;

 var biglen = bigger.length;

 var smlen = smaller.length;

 var sidx = 0; // starting index of any chunk

 var size = 10; // chunk size, can adjust!

 var results = []; // intermediate results

 // for each chunk of "size" elements in bigger, search through smaller

 function sub_compute_intersection() {

 for (var i = sidx; i < (sidx + size) && i < biglen; i++) {

 for (var j = 0; j < smlen; j++) {

 if (bigger[i] == smaller[j]) {

 results.push(smaller[j]);

 break;

60 Chapter 3 Asynchronous Programming

 }

 }

 }

 if (i >= biglen) {

 callback(null, results); // no error, send back results

 } else {

 sidx += size;

 process.nextTick(sub_compute_intersection);

 }

 }

 sub_compute_intersection();

}

In this new version of the function, you basically divide the bigger of the input arrays into
chunks of 10 (you can choose whatever number you want), compute the intersection of that
many items, and then call process#nextTick to allow other events or requests a chance to
do their work. Only when there are no events in front of you any longer will you continue to
do the work. Don’t forget that passing the callback function sub_compute_intersection to
process#nextTick ensures that the current scope is preserved as a closure, so you can store
the intermediate results in the variables in compute_intersection .

Listing 3.3 shows the code you use to test this new compute_intersection function.

Listing 3.3 Testing the compute_intersection Function

var a1 = [3476, 2457, 7547, 34523, 3, 6, 7,2, 77, 8, 2345,

 7623457, 2347, 23572457, 237457, 234869, 237,

 24572457524] ;

var a2 = [3476, 75347547, 2457634563, 56763472, 34574, 2347,

 7, 34652364 , 13461346, 572346, 23723457234, 237,

 234, 24352345, 537, 2345235, 2345675, 34534,

 7582768, 284835, 8553577, 2577257,545634, 457247247,

 2345];

compute_intersection(a1, a2, function (err, results) {

 if (err) {

 console.log(err);

 } else {

 console.log(results);

 }

});

Although this has made things a bit more complicated than the original version of the function
to compute the intersections, the new version plays much better in the single-threaded world

61Summary

of Node event processing and callbacks, and you can use process.nextTick in any situation
in which you are worried that a complex or slow computation is necessary.

Synchronous Function Calls

Now that I have spent nearly an entire chapter telling you how Node.js is very much asynchro-
nous and about all the tricks and traps of programming nonblocking IO, I must mention that
Node actually does have synchronous versions of some key APIs, most notably file APIs. You use
them for writing command-line tools in Chapter 11 , “Command-Line Programming.”

To demonstrate briefly here, you can rewrite the first script of this chapter as follows:

var fs = require('fs');

var handle = fs.openSync('info.txt', 'r');

var buf = new Buffer(100000);

var read = fs.readSync(handle, buf, 0, 10000, null);

console.log(buf.toString('utf8', 0, read));

fs.closeSync(handle);

As you work your way through this book, I hope you are able to see quite quickly that Node.
js isn’t just for network or web applications. You can use it for everything from command-line
utilities to prototyping to server management and more!

Summary

Switching from a model of programming, where you execute a sequence of synchronous or
blocking IO function calls and wait for each of them to complete before moving on to the next
model where you do everything asynchronously and wait for Node to tell you when a given
task is done, requires a bit of mental gymnastics and experimentation. But I am convinced that
when you get the hang of this, you’ll never be able to imagine going back to the other way of
writing your web apps.

Next, you write your first simple JSON application server.

This page intentionally left blank

Part II
Learning to Run

4 Writing Simple Applications 65

 5 Modules 89

6 Expanding Your Web Server 113

This page intentionally left blank

4
Writing Simple Applications

Now that you have a better understanding of how the JavaScript language really works, it’s
time to start unleashing the power of Node.js to write web applications. As I mentioned in
the Introduction to this book, you will work on a small photo album website throughout this
book. In this chapter, you start by working on a JSON server to serve up the list of albums and
pictures in each of those albums, and by the end, you add the capability to rename an album.
In the process, you get a good understanding of the basics of running a JSON server, as well
as how it interacts with a lot of the basic parts of HTTP such as GET and POST parameters,
headers, requests, and responses. This first generation of the photo album application uses
file APIs to do all its work; it’s a great way to learn about them and lets you focus on the new
concepts you want to learn.

Your First JSON Server

At the end of Chapter 1, “Getting Started,” you wrote a little HTTP server that, for any incom-
ing request, would return the plain text “Thanks for calling!\n”. Now you can change this a
little bit and have it do few things differently:

1. Indicate that the returned data is application/json instead of text/plain .

2. Print out the incoming request on console.log .

3. Return a JSON string.

Here is the trivial server, which is saved to simple_server.js:

var http = require('http');

function handle_incoming_request (req, res) {

 console.log("INCOMING REQUEST: " + req.method + " " + req.url);

 res.writeHead(200, { "Content-Type" : "application/json" });

66 Chapter 4 Writing Simple Applications

 res.end(JSON.stringify({ error: null }) + "\n");

}

var s = http.createServer(handle_incoming_request);

s.listen(8080);

Run this program in one terminal window (Mac/Linux) or command prompt (Windows) by
typing

node simple_server.js

It should just sit there doing nothing, waiting for a request. Now, in another terminal window,
type

curl -X GET http://localhost:8080

If you’ve done everything correctly, in the window running the server, you should see

INCOMING REQUEST: GET /

In the window where you ran the curl command, you should see

{"error":null}

Try running different variations on the curl command and see what happens. For example:

curl -X GET http://localhost:8080/gobbledygook

Starting with this first new program, you can standardize the output of your JSON responses to
always have an error field in the output. This way, calling applications can quickly determine
the success or failure of the request. In cases in which a failure does occur, you always include a
message field with more information, and for cases in which the JSON response is supposed to
return some data, you always include a data field:

// failure responses will look like this:

{ error : "missing_data",

 message : "You must include a last name for the user" }

// success responses will usually have a "data" object

{ error : null,

 data : {

 user: {

 first_name: "Horatio",

 last_name: "Gadsplatt III",

 email: "horatio@example.org"

 }

 }

}

Some applications prefer to use numeric codes for their error systems. Using such codes is
entirely up to you, but I prefer to use text ones because they feel more descriptive and save

http://localhost:8080
http://localhost:8080/gobbledygook
http.createServer(handle_incoming_request)

68 Chapter 4 Writing Simple Applications

 if (err) {

 callback(err);

 return;

 }

 callback(null, files);

 }

);

}

Let’s walk through this function carefully. To start, it calls the fs.readdir function and
provides a function that should be called when all the items in the directory have been loaded.
This callback function has the same prototype that most callbacks have: an error parameter and
a results parameter; you are free to call these whatever you want.

Note that the only parameter to the load_album_list function itself is a callback function.
Because the load_album_list function is itself asynchronous, it needs to know where to
pass the list of albums when it is finished with its work. It cannot return a value to the caller,
because it will finish executing long before the fs.readdir function calls back to give you the
results.

Again, this is the core technique of Node application programming: You tell Node to do
something and where to send the results when it is done. In the meantime, you go on with
other processing. Many of the tasks you have it perform basically end up being a long series of
callbacks.

Listing 4.1 has the full code for the new album-listing server.

Listing 4.1 The Album-Listing Server (load_albums.js)

var http = require('http'),

 fs = require('fs');

function load_album_list (callback) {

 fs.readdir(

 "albums",

 function (err, files) {

 if (err) {

 callback(err);

 return;

 }

 callback(null, files);

 }

);

}

function handle_incoming_request (req, res) {

 console.log("INCOMING REQUEST: " + req.method + " " + req.url);

 load_album_list(function (err, albums) {

69Node Pattern: Asynchronous Loops

 if (err) {

 res.writeHead(503, {"Content-Type": "application/json"});

 res.end(JSON.stringify(err) + "\n");

 return;

 }

 var out = { error: null,

 data: { albums: albums }};

 res.writeHead(200, {"Content-Type": "application/json"});

 res.end(JSON.stringify(out) + "\n");

 });

}

var s = http.createServer(handle_incoming_request);

s.listen(8080);

In Listing 4.1 , after fs.readdir has finished, you check the results. If an error occurs, you
send that back to the caller (the function you passed to load_album_list in the handle_
incoming_request function); otherwise, you send the list of folders (albums) back to the caller
with null indicating no error.

This listing adds some new error-handling code to the handle_incoming_request function: If
the fs.readdir function tells you that something bad has happened, you would like the caller
to be made aware of that fact, so you still return some JSON and the HTTP response code 503
to indicate that something unexpected has happened. The JSON servers should always return as
much information as possible to their clients to help them determine if a problem is something
they did or something internally wrong on the server itself.

To test the program, make sure the folder from which you are running this script has the
albums/ subfolder with some album folders in it. To run the server, you again run

node load_albums.js

And to get the results, you use

curl -X GET http://localhost:8080/

The results from the curl command should look something like this:

{"error":null,"data":{"albums":["australia2010","italy2012","japan2010"]}}

Node Pattern: Asynchronous Loops

What happens if you create a text file called info.txt in your albums/ folder and rerun the
album-listing server? You will probably see results like this:

{"error":null,"data":{"albums":["australia2010", "info.txt" ,"italy2012","japan2010"]}}

http://localhost:8080/
http.createServer(handle_incoming_request)

70 Chapter 4 Writing Simple Applications

What you really want is for the program to check the results of fs.readdir and return only
those entries that are folders, not regular files. To do this, you can use the fs.stat function,
which passes an object you can use to test this.

So, rewrite the load_album_list function to loop through the results of fs.readdir and test
whether they are folders:

function load_album_list (callback) {

 fs.readdir(

 "albums",

 function (err, files) {

 if (err) {

 callback(err);

 return;

 }

 var only_dirs = [];

 for (var i = 0; i < files.length; i++) {

 fs.stat(

 "albums/" + files[i],

 function (err, stats) {

 if (stats.isDirectory()) {

 only_dirs.push(files[i]);

 }

 }

);

 }

 callback(null, only_dirs);

 }

);

}

Keep the rest of the program the same and then run the curl command. It should always
return

{"error":null,"data":{"albums":[]}}

You broke the server! What happened?

The problem lies in the new for loop you added. Most loops and asynchronous callbacks are
not compatible. Effectively, what you do in the preceding code is

 ■ Create an array only_dirs to hold the response.

 ■ For each item in the files array, call the nonblocking function fs.stat and pass it the
provided function to test if the file is a directory.

 ■ After all these nonblocking functions have been started, exit the for loop and call the
callback parameter. Because Node.js is single-threaded, none of the fs.stat functions

71Node Pattern: Asynchronous Loops

will have had a chance to execute and call the callbacks yet, so only_dirs is still null ,
and you pass that to the provided callback . Indeed, when the callbacks to fs.stat are
finally called, nobody cares anymore.

To get around this problem, you have to use recursion. You effectively create a new function
with the following format and then immediately call it:

function iterator (i) {

 if(i < array.length) {

 async_work(function(){

 iterator(i + 1)

 })

 } else {

 callback(results);

 }

}

iterator(0)

You can actually do one step better and use a named-anonymous function so that you don’t
clutter up your scope with function names:

(function iterator (i) {

 if(i < array.length) {

 async_work(function(){

 iterator(i + 1)

 })

 } else {

 callback(results);

 }

})(0);

Thus, to rewrite the loop testing whether or not the files result from fs.readdir are folders,
you can write the function as follows:

function load_album_list (callback) {

 fs.readdir(

 "albums",

 function (err, files) {

 if (err) {

 callback(err);

 return;

 }

 var only_dirs = [];

 (function iterator(index) {

 if (index == files.length) {

 callback(null, only_dirs);

 return;

 }

72 Chapter 4 Writing Simple Applications

 fs.stat(

 "albums/" + files[index],

 function (err, stats) {

 if (err) {

 callback(err);

 return;

 }

 if (stats.isDirectory()) {

 only_dirs.push(files[index]);

 }

 iterator(index + 1)

 }

);

 })(0);

 }

);

}

Save this new version of the simple JSON server and then run the curl command, and you
should now see the results with only album folders and no files included.

Learning to Juggle: Handling More Requests

The photo-album JSON server currently responds to only one kind of request: a request for a
list of albums. Indeed, it doesn’t even really care how you call this request; it just returns the
same thing all the time.

You can expand the functionality of the server a bit to allow you to request either of the
following:

 1. A list of albums available—you call this /albums.json .

 2. A list of items in an album—you can call this / albums/ album_name .json.

Adding the .json suffix to requests emphasizes that you are currently writing a JSON server that
works only with that.

A new version of the handle_incoming_request function with support for these two requests
could be as follows:

function handle_incoming_request (req, res) {

 console.log("INCOMING REQUEST: " + req.method + " " + req.url);

 if (req.url == '/albums.json') {

 handle_list_albums(req, res);

 } else if (req.url.substr(0, 7) == '/albums'

 && req.url.substr(req.url.length - 5) == '.json') {

 handle_get_album(req, res);

 } else {

73Learning to Juggle: Handling More Requests

 send_failure(res, 404, invalid_resource());

 }

}

The two if statements in the preceding code are the bold ones; both look at the url property
on the incoming request object. If the request is simply for /albums.json, you can handle the
request as before. If it’s for /albums/something.json, you can assume it’s a request for the listing
of an album’s contents and process it as appropriate.

The code to generate and return the albums list has been moved into a new function called
handle_list_albums , and the code to get an individual album’s contents is similarly orga-
nized into two functions called handle_get_album and load_album . Listing 4.2 contains the
full listing for the server.

Starting with this new version of the code, you can change the output of the JSON server
slightly: Everything returned will be objects, not just arrays of strings. This helps you later in
the book when you start generating UI to match the JSON responses. I italicized the code in
Listing 4.2 that makes this change.

Although I try to avoid long, tedious, multipage code dumps later in this book, this first
version of the server here is worth browsing through fully because most things you do after this
are based on the foundation built here.

Listing 4.2 Handling Multiple Request Types

var http = require('http'),

 fs = require('fs');

function load_album_list (callback) {

 // we will just assume that any directory in our 'albums'

 // subfolder is an album.

 fs.readdir(

 "albums",

 function (err, files) {

 if (err) {

 callback(make_error("file_error", JSON.stringify(err)));

 return;

 }

 var only_dirs = [];

 (function iterator (index) {

 if (index == files.length) {

 callback(null, only_dirs);

 return;

 }

 fs.stat(

 "albums/" + files[index],

74 Chapter 4 Writing Simple Applications

 function (err, stats) {

 if (err) {

 callback(make_error("file_error",

 JSON.stringify(err)));

 return;

 }

 if (stats.isDirectory()) {

 var obj = { name: files[index] };

 only_dirs.push(obj);

 }

 iterator(index + 1)

 }

);

 })(0);

 }

);

}

function load_album (album_name, callback) {

 // we will just assume that any directory in our 'albums'

 // subfolder is an album.

 fs.readdir(

 "albums/" + album_name,

 function (err, files) {

 if (err) {

 if (err.code == "ENOENT") {

 callback(no_such_album());

 } else {

 callback(make_error("file_error",

 JSON.stringify(err)));

 }

 return;

 }

 var only_files = [];

 var path = "albums/" + album_name + "/";

 (function iterator (index) {

 if (index == files.length) {

 var obj = { short_name: album_name,

 photos: only_files };

 callback(null, obj);

 return;

 }

 fs.stat(

 path + files[index],

75Learning to Juggle: Handling More Requests

 function (err, stats) {

 if (err) {

 callback(make_error("file_error",

 JSON.stringify(err)));

 return;

 }

 if (stats.isFile()) {

 var obj = { filename: files[index],

 desc: files[index] };

 only_files.push(obj);

 }

 iterator(index + 1)

 }

);

 })(0);

 }

);

}

function handle_incoming_request (req, res) {

 console.log("INCOMING REQUEST: " + req.method + " " + req.url);

 if (req.url == '/albums.json') {

 handle_list_albums(req, res);

 } else if (req.url.substr(0, 7) == '/albums'

 && req.url.substr(req.url.length - 5) == '.json') {

 handle_get_album(req, res);

 } else {

 send_failure(res, 404, invalid_resource());

 }

}

function handle_list_albums (req, res) {

 load_album_list(function (err, albums) {

 if (err) {

 send_failure(res, 500, err);

 return;

 }

 send_success(res, { albums: albums });

 });

}

function handle_get_album (req, res) {

 // format of request is /albums/album_name.json

 var album_name = req.url.substr(7, req.url.length - 12);

 load_album(

 album_name,

76 Chapter 4 Writing Simple Applications

 function (err, album_contents) {

 if (err && err.error == "no_such_album") {

 send_failure(res, 404, err);

 } else if (err) {

 send_failure(res, 500, err);

 } else {

 send_success(res, { album_data: album_contents });

 }

 }

);

}

function make_error (err, msg) {

 var e = new Error(msg);

 e.code = err;

 return e;

}

function send_success (res, data) {

 res.writeHead(200, {"Content-Type": "application/json"});

 var output = { error: null, data: data };

 res.end(JSON.stringify(output) + "\n");

}

function send_failure (res, code, err) {

 var code = (err.code) ? err.code : err.name;

 res.writeHead(code, { "Content-Type" : "application/json" });

 res.end(JSON.stringify({ error: code, message: err.message }) + "\n");

}

function invalid_resource () {

 return make_error("invalid_resource",

 "the requested resource does not exist.");

}

function no_such_album () {

 return make_error("no_such_album",

 "The specified album does not exist");

}

var s = http.createServer(handle_incoming_request);

s.listen(8080);

To avoid too much duplication of code, I also factored out a lot of the processing for sending
the final success or response to the requesting client. This code is in the send_success and
send_failure functions, both of which make sure to set the right HTTP response code and
then return the correct JSON as appropriate.

You can see that the new function load_album is quite similar to the load_album_list func-
tion. It enumerates all the items in the album folder, then goes through each of them to make
sure it is a regular file, and returns that final list. I also added a couple extra lines of code to the
error handling for fs.readdir in load_album :

http.createServer(handle_incoming_request)

77Learning to Juggle: Handling More Requests

if (err.code == "ENOENT") { // see text for more info

 callback(no_such_album());

} else {

 callback({ error: "file_error",

 message: JSON.stringify(err) });

}

Basically, if fs.readdir fails because it cannot find the album folder, that is a user error; the
user specified an invalid album. You want to return an error indicating that fact, so you do
that by using the helper function no_such_album . Most other failures, however, are likely to
be server configuration problems, so you want to return the more generic "file_error" for
those.

The output of getting /albums.json now looks as follows:

{"error":null,"data":{"albums":[{"name":"australia2010"},{"name":"italy2012"},{"name":
"japan2010"}]}}

After putting a few image files in each of the album folders, the output of getting the contents
of an album (such as /albums/italy2012.json) now looks as follows (it’s been cleaned up here):

{
 "error": null,
 "data": {
 "album_data": {
 "short_name": "/italy2012",
 "photos": [
 {
 "filename": "picture_01.jpg",
 "desc": "picture_01.jpg"
 },
 {
 "filename": "picture_02.jpg",
 "desc": "picture_02.jpg"
 },
 {
 "filename": "picture_03.jpg",
 "desc": "picture_03.jpg"
 },
 {
 "filename": "picture_04.jpg",
 "desc": "picture_04.jpg"
 },
 {
 "filename": "picture_05.jpg",
 "desc": "picture_05.jpg"
 }
]
 }
 }

}

78 Chapter 4 Writing Simple Applications

More on the Request and Response Objects

Now enter and run the following program:

var http = require('http');

function handle_incoming_request(req, res) {

 console.log("---");

 console.log(req);

 console.log("---");

 console.log(res);

 console.log("---");

 res.writeHead(200, { "Content-Type" : "application/json" });

 res.end(JSON.stringify({ error: null }) + "\n");

}

var s = http.createServer(handle_incoming_request);

s.listen(8080);

Then, in another terminal window, run the curl command on something from this server:

curl -X GET http://localhost:8080

Your client window should just print error: null , but the server window prints an extremely
large amount of text with information about the request and response objects passed to your
HTTP server.

You’ve already used two properties on the request object: method and url . The former tells you
if the incoming request is GET , POST , PUT , or DELETE (or something else such as HEAD), whereas
the latter contains the URL requested on the server.

The request object is a ServerRequest object provided by the HTTP module included in Node.
js, and you can learn all about it by consulting the Node documentation. You use these two
properties and also see more in a little bit about handling POST data with the ServerRequest .
You can also examine incoming headers by looking at the headers property.

If you look at the headers the curl program sends to you, you see

{ 'user-agent': 'curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r
zlib/1.2.5',

 host: 'localhost:8080',

 accept: '*/*' }

If you call the JSON server in the browser, you see something like

{ host: 'localhost:8080',

 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10.8; rv:16.0) Gecko/20100101
Firefox/16.0',

 accept: 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',

 'accept-language': 'en-US,en;q=0.5',

 'accept-encoding': 'gzip, deflate',

 connection: 'keep-alive' }

http://localhost:8080
http.createServer(handle_incoming_request)

79Increased Flexibility: GET Params

On the response side, you have already used two methods: writeHead and end . You must
call end on the response object once and only once for each incoming request. Otherwise, the
client never gets the response and continues to listen on the connection for more data.

When you are writing your responses, you should take care to make sure you think about your
HTTP response codes (see the sidebar “HTTP Response Codes”). Part of writing your servers
includes thinking logically about what you are trying to communicate to the calling clients and
sending them as much information as possible to help them understand your response.

HTTP Response Codes

The HTTP specification contains a large number of response codes a server can return to call-
ing clients. You can learn more about them on Wikipedia (http://en.wikipedia.org/wiki/List_of_
HTTP_status_codes).

Although a dizzying number of response codes is possible, you’ll find yourself using a few of
the more common responses in most of your applications:

 ■ 200 OK—Everything went fine.

 ■ 301 Moved Permanently—The requested URL has been moved, and the client should re-
request it at the URL specified in the response.

 ■ 400 Bad Request—The format of the client’s request is invalid and needs to be fixed.

 ■ 401 Unauthorized—The client has asked for something it does not have permission to
view. It should try again authenticating the request first.

 ■ 403 Forbidden—For whatever reason, the server is refusing to process this request. This
is not the same as 401, where the client can try again with authentication.

 ■ 404 Not Found—The client has asked for something that does not exist.

 ■ 500 Internal Server Error—Something happened resulting in the server being unable
to process the request. You typically use this error for situations in which you know
the code has entered some sort of inconsistent or buggy state and needs developer
attention.

 ■ 503 Service Unavailable—This indicates some sort of runtime failure, such as temporar-
ily low on memory or having troubles with network resources. It’s still a fatal error like
500, but it does suggest the client could try again in a while.

These are the codes you will use the most, but there are many others that you are encouraged
to browse over. If you’re unsure when to use one, look at code that others have written and
see how they do it. The correct code for any given situation can be cause for great debate, but
you can usually get the right ones without too much trouble.

Increased Flexibility: GET Params

When you start adding a lot of photos to your albums, you will have too many photos to
display efficiently on one “page” of the application, so you should add paging functionality to

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

80 Chapter 4 Writing Simple Applications

it. Clients should be able to say how many photos they want and what page they want,
like this:

curl -X GET 'http://localhost:8080/albums/italy2012.json?page=1&page_size=20'

If you’re not familiar with the terminology, the bolded part of the preceding URL is the
query string , commonly just referred to as the GET params for the request. If you run this curl
command with the previous version of the program, you’ll probably notice that it doesn’t quite
work any more. If you add the following to the beginning of handle_incoming_request , you
can see why:

console.log(req.url);

The URL now looks like this:

/albums/italy2012.json ?page=1&page_size=20

The code is looking for the .json at the end of the string, not buried in the middle of it. To fix
the code to handle paging, you have to do three things:

1. Modify the handle_incoming_request function to parse the URL properly.

2. Parse the query string and get the values for page and page_size .

3. Modify the load_album function to support these parameters.

You are fortunate in that you can do the first two in one fell swoop. If you add the url module
that Node ships with, you can then use the url.parse function to extract both the core URL
pathname and the query parameters. The url.parse function helps a little bit further in that
you can add a second parameter, true , which instructs it to parse the query string and gener-
ate an object with the GET parameters in it. If you print out the results of url.parse on the
preceding URL, you should see

{ search: '?page=1&page_size=20',

 query: { page: '1', page_size: '20' },

 pathname: '/albums/italy2012.json',

 path: '/albums/italy2012.json?page=1&page_size=20',

 href: '/albums/italy2012.json?page=1&page_size=20' }

Now you can modify the handle_incoming_request function to parse the URL and store it
back on the request object in parsed_ur l. The function now looks like this:

function handle_incoming_request (req, res) {

 req.parsed_url = url.parse(req.url, true);

 var core_url = req.parsed_url.pathname;

 // test this fixed url to see what they're asking for

 if (core_url == '/albums.json') {

 handle_list_albums(req, res);

http://localhost:8080/albums/italy2012.json?page=1&page_size=20

81Increased Flexibility: GET Params

 } else if (core_url .substr(0, 7) == '/albums'

 && core_url .substr(core_url .length - 5) == '.json') {

 handle_get_album(req, res);

 } else {

 send_failure(res, 404, invalid_resource());

 }

}

For the last part, you modify the handle_get_album function to look for the page and page_
num query parameters. You can set some reasonable default values for them when the incoming
values are not provided or are not valid values. (The servers should always assume that incom-
ing values are dangerous or nonsensical and check them carefully.)

function handle_get_album (req, res) {

 // get the GET params

 var getp = req.parsed_url.query;

 var page_num = getp.page ? getp.page : 0;

 var page_size = getp.page_size ? getp.page_size : 1000;

 if (isNaN(parseInt(page_num))) page_num = 0;

 if (isNaN(parseInt(page_size))) page_size = 1000;

 // format of request is /albums/album_name.json

 var core_url = req.parsed_url.pathname;

 var album_name = core_url.substr(7, core_url.length - 12);

 load_album(

 album_name,

 page_num,

 page_size,

 function (err, album_contents) {

 if (err && err.error == "no_such_album") {

 send_failure(res, 404, err);

 } else if (err) {

 send_failure(res, 500, err);

 } else {

 send_success(res, { album_photos: album_contents });

 }

 }

);

}

Finally, you modify the load_album function to extract the subarray of the files_only array
when it’s done with all its work:

82 Chapter 4 Writing Simple Applications

function load_album (album_name, page , page_size , callback) {

 fs.readdir(

 "albums/" + album_name,

 function (err, files) {

 if (err) {

 if (err.code == "ENOENT") {

 callback(no_such_album());

 } else {

 callback({ error: "file_error",

 message: JSON.stringify(err) });

 }

 return;

 }

 var only_files = [];

 var path = "albums/" + album_name + "/";

 (function iterator (index) {

 if (index == files.length) {

 var ps;

 // slice fails gracefully if params are out of range

 ps = only_files.splice(page * page_size, page_size);

 var obj = { short_name: album_name,

 photos: ps };

 callback(null, obj);

 return;

 }

 fs.stat(

 path + files[index],

 function (err, stats) {

 if (err) {

 callback({ error: "file_error",

 message: JSON.stringify(err) });

 return;

 }

 if (stats.isFile()) {

 var obj = { filename: files[index], desc: files[index] };

 only_files.push(obj);

 }

 iterator(index + 1)

 }

);

 })(0);

 }

);

}

83Modifying Things: POST Data

Modifying Things: POST Data

Now that I’ve largely covered how to get things from your JSON server, you might like to start
being able to send data to it, either to create new things or modify existing ones. This is typi-
cally done with HTTP POST data, and you can send the data in many different formats. To send
data using the curl client, you must do a few things:

1. Set the HTTP method parameter to POST (or PUT).

2. Set the Content-Type of the incoming data.

3. Send the data itself.

You can easily accomplish these tasks with curl . You do the first simply by changing the
method name, the second by specifying HTTP headers with the -H flag to curl , and the last
you can do in a few different ways, but here you can use the -d flag and just write the JSON as
a string.

Now it’s time add some new functionality to the server to allow you to rename albums. Make
the URL format as follows and specify that it must be a POST request:

http://localhost:8080/albums/ albumname /rename.json

So, the curl command to rename an album is now the following:

curl -s -X POST -H "Content-Type: application/json" \

 -d '{ "album_name" : " new album name " }' \

 http://localhost:8080/albums/ old_album_name /rename.json

Modifying the handle_incoming_request to accept the new request type is pretty easy:

function handle_incoming_request (req, res) {

 // parse the query params into an object and get the path

 // without them. (2nd param true = parse the params).

 req.parsed_url = url.parse(req.url, true);

 var core_url = req.parsed_url.pathname;

 // test this fixed url to see what they're asking for

 if (core_url == '/albums.json' && req.method.toLowerCase() == 'get') {

 handle_list_albums(req, res);

 } else if (core_url.substr(core_url.length - 12) == '/rename.json'

 && req.method.toLowerCase() == 'post') {

 handle_rename_album(req, res);

 } else if (core_url.substr(0, 7) == '/albums'

 && core_url.substr(core_url.length - 5) == '.json'

 && req.method.toLowerCase() == 'get') {

 handle_get_album(req, res);

http://localhost:8080/albums/albumname/rename.json
http://localhost:8080/albums/old_album_name/rename.json

84 Chapter 4 Writing Simple Applications

 } else {

 send_failure(res, 404, invalid_resource());

 }

}

Note that you have to put the code to handle the rename request before the load-album
request; otherwise, the code would have treated it as an album called rename and just executed
handle_get_album .

Receiving JSON POST Data

To get the POST data in the program, you use a Node feature called streams . Streams are a
powerful way to transfer large amounts of data in Node while maintaining the asynchronous,
nonblocking nature of the system. I cover streams more fully in Chapter 6 , “Expanding Your
Web Server,” but for now, you just need to know the key pattern for using streams:

.on(event_name , function (parm) { ... });

In particular, pay attention to two events for now: the readable and end events. The stream
is actually just the ServerRequest object from the http module (which inherits from the class
Stream ; ServerResponse does, too!), and you listen to these two events via the following
pattern:

 var json_body = '';

 req.on(

 readable ,

 function () {

 var d = req.read();

 if (d) {

 if (typeof d == 'string') {

 json_body += d;

 } else if (typeof d == 'object' && d instanceof Buffer) {

 json_body += d.toString('utf8');

 }

 }

 }

);

 req.on(

 end ,

 function () {

 // did we get a valid body?

 if (json_body) {

 try {

 var body = JSON.parse(json_body);

 // use it and then call the callback!

 callback(null, ...);

85Modifying Things: POST Data

 } catch (e) {

 callback({ error: "invalid_json",

 message: "The body is not valid JSON" });

 } else {

 callback({ error: "no_body",

 message: "We did not receive any JSON" });

 }

 }

 }

);

For each piece (chunk) of data forming the body of the incoming request, the function you
pass to the on('readable', ...) handler is called. In the preceding code, you first read the
data from the stream with the read method and append this incoming data to the end of the
json_body variable; then when you get the end event, you take the resulting string and try to
parse it. JSON.parse throws an error if the given string is not valid JSON, so you have to wrap
it in a try/catch block.

The function to process the request for a rename is as follows:

function handle_rename_album (req, res) {

 // 1. Get the album name from the URL

 var core_url = req.parsed_url.pathname;

 var parts = core_url.split('/');

 if (parts.length != 4) {

 send_failure(res, 404, invalid_resource(core_url));

 return;

 }

 var album_name = parts[2];

 // 2. get the POST data for the request. this will have the JSON

 // for the new name for the album.

 var json_body = '';

 req.on(

 readable ,

 function () {

 var d = req.read();

 if (d) {

 if (typeof d == 'string') {

 json_body += d;

 } else if (typeof d == 'object' && d instanceof Buffer) {

 json_body += d.toString('utf8');

 }

 }

 }

);

86 Chapter 4 Writing Simple Applications

 // 3. when we have all the post data, make sure we have valid

 // data and then try to do the rename.

 req.on(

 'end' ,

 function () {

 // did we get a body?

 if (json_body) {

 try {

 var album_data = JSON.parse(json_body);

 if (!album_data.album_name) {

 send_failure(res, 403, missing_data('album_name'));

 return;

 }

 } catch (e) {

 // got a body, but not valid json

 send_failure(res, 403, bad_json());

 return;

 }

 // 4. Perform rename!

 do_rename(

 album_name, // old

 album_data.album_name, // new

 function (err, results) {

 if (err && err.code == "ENOENT") {

 send_failure(res, 403, no_such_album());

 return;

 } else if (err) {

 send_failure(res, 500, file_error(err));

 return;

 }

 send_success(res, null);

 }

);

 } else { // didn't get a body

 send_failure(res, 403, bad_json());

 res.end();

 }

 }

);

}

The complete listing for the updated server that can now handle three requests is in the
Chapter 4 GitHub source code as post_data.js. Please note that if you are running a version
of node earlier than 0.10, the above code will generate errors and not function. I’ll explain in
more detail in Chapter 6 what changed.

87Modifying Things: POST Data

Receiving Form POST Data

Although you won’t use this as much in your application, a lot of data sent to servers from web
applications are sent via <form> elements, for example:

 <form name='simple' method='post' action='http://localhost:8080'>

 Name: <input name='name' type='text' size='10'/>

 Age: <input name='age' type='text' size='5'/>

 <input type='submit' value="Send"/>

 </form>

If you write a little server program to fetch the POST data using the readable and end events
as you did in the preceding section, printing out the data for the preceding form yields

name=marky+mark&age=23

What you really need, however, is something similar to what you got previously with JSON:
a JavaScript object that represents the data sent to you. To achieve this, you can use another
module built into Node.js, querystring , and specifically, its parse function, as follows:

var POST_data = qs.parse(body);

The resulting object is as you expect it to be:

{ name: 'marky mark++', age: '23' }

The complete listing of the simple server to receive a form and print out its contents is as
follows:

var http = require('http'), qs = require('querystring');

function handle_incoming_request (req, res) {

 var body = '';

 req.on(

 readable ,

 function () {

 var d = req.read();

 if (d) {

 if (typeof d == 'string') {

 body += d;

 } else if (typeof d == 'object' && d instanceof Buffer) {

 body += d.toString('utf8');

 }

 }

 }

);

 req.on(

 'end',

 function () {

88 Chapter 4 Writing Simple Applications

 if (req.method.toLowerCase() == 'post') {

 var POST_data = qs.parse(body);

 console.log(POST_data);

 }

 res.writeHead(200, { "Content-Type" : "application/json" });

 res.end(JSON.stringify({ error: null }) + "\n");

 }

);

 var s = http.createServer(handle_incoming_request);

 s.listen(8080);

}

Starting in Chapter 6 , however, when you learn how to use the express web application frame-
work for Node, you’ll see that this functionality is typically all handled for you.

Summary

This chapter covered quite a lot of new material. You wrote your first web application by
writing a simple JSON server. I like this approach for a few key reasons:

 ■ It lets you focus on the server and the key concepts you need to get really comfortable
with Node.js.

 ■ You can make sure your server API is well organized and efficient.

 ■ A nice, light application server should mean that the computer(s) running it will be able
to handle the load without too much trouble. When you add in HTML UI and client-side
features later, you can try to have the client do as much of the work as possible.

Now you not only have a basic working server, but also have seen how to modify the output it
sends you with different request URLs and query parameters. You have also seen how to send
new data or modify existing data by submitting POST data along with the request. Although
some of the programs look reasonably long and complicated already, you are working with just
basic components right now to examine core Node principles. You start to replace these with
more helpful and functional modules quite soon.

But first, take a break and learn more about modules —much more on how to consume them
and also how to write your own.

5
Modules

In the Node.js servers and scripts you have written thus far, you have already consumed exter-
nal functionality in the form of modules. In this chapter, I explain how this all works and how
to write your own. In addition to all the already-powerful and functional modules that Node
provides for you, there is a huge community further developing modules that you can take
advantage of in your programs, and indeed you can even write your own to give something
back!

One of the cool things about Node is that you don’t really distinguish between modules that
you have produced and modules that you consume from external repositories, such as those
you see later in this chapter via npm , the Node Package Manager. When you write separate
classes and groups of functions in Node, you put them in basically the same format—perhaps
with a bit less dressing and documentation—as modules you download from the Internet
and use. In fact, it usually takes only an extra bit of JSON and maybe a line or two of code to
prepare your code for consumption by others!

Node ships with a large number of built-in modules, all of which are packaged in the node
executable on your system. You can view their source if you download the Node source code
from the nodejs.org website. They all live in the lib/ subdirectory.

Writing Simple Modules

At a high level, modules are a way to group common functionality in Node.js. If you have
a library of functions or classes for working with a particular database server, for example, it
would make a lot of sense to put that code into a module and package it for consumption.

Every file in Node.js is a module , although modules do not necessarily have to be this simple. You
can package complex modules with many files, unit tests, documentation, and other support
files into folders and consume them in the same way you would a module with only a single
JavaScript file (see “Writing Modules” later in this chapter).

90 Chapter 5 Modules

To write your own module that exposes, or exports , a function called hello_world , you can
write the following and save it to mymodule.js:

exports.hello_world = function () {

 console.log("Hello World");

}

The exports object is a special object created by the Node module system in every file you
create and is returned as the value of the require function when you include that module. It
lives off the module object that every module has, and is used to expose functions, variables,
or classes. In the simple example here, the module exposes a single function on the exports
object, and to consume it, you could write the following and save it to modtest.js:

var mm = require ('./mymodule');

mm.hello_world();

Running node modtest.js causes Node to print out "Hello World" exactly as you would
expect. You can expose as many functions and classes as you want off the exports object as
you’d like. For example:

function Greeter (lang) {

 this.language = lang;

 this.greet() = function () {

 switch (this.language) {

 case "en": return "Hello!";

 case "de": return "Hallo!";

 case "jp": return " !";

 default: return "No speaka that language";

 }

 }

}

exports. hello_world = function () {

 console.log("Hello World");

}

exports. goodbye = function () {

 console.log("Bye bye!");

}

exports.create_ greeter = function (lang) {

 return new Greeter(lang);

}

The module variable given to each module contains information such as the filename of the
current module, its child modules, its parent modules, and more.

91Writing Simple Modules

Modules and Objects

You frequently return objects from modules that you write. There are two key patterns through
which you do this.

The Factory Model

The previous sample module contains a class called Greeter . To get an instance of a Greeter
object, you call a creation function—or factory function —to create and return an instance of this
class. The basic model is as follows:

function ABC (parms) {

 this.varA = ...;

 this.varB = ...;

 this.functionA = function () {

 ...

 }

}

exports.create_ABC = function (parms) {

 return new ABC(parms);

}

The advantage to this model is that the module can still expose other functions and classes via
the exports object.

The Constructor Model

Another way to expose classes from a module you write would be to completely replace the
exports object in the module with a class that you want people to use:

function ABC () {

 this.varA = 10;

 this.varB = 20;

 this.functionA = function (var1, var2) {

 console.log(var1 + " " + var2);

 }

}

module.exports = ABC;

To use this module, you would change your code to be the following:

var ABCClass = require('./conmod2');

var obj = new ABCClass();

obj.functionA(1, 2);

Thus, the only thing you are really exposing from the module is a constructor for the class.
This approach feels nice and OOP-y, but has the disadvantage of not letting you expose much

92 Chapter 5 Modules

else from your module; it also tends to feel a bit awkward in the Node way of doing things. I
showed it to you here so that you can recognize it for what it is when you see it, but you will
almost never use it in this book or your projects—you will largely stick with the factory model.

npm: The Node Package Manager

Apart from writing your own modules and using those provided by Node.js, you will frequently
use code written by other people in the Node community and published on the Internet.
The most common way this is done today is by using npm , the Node Package Manager . npm is
installed with your node installation (as you saw in Chapter 1 , “Getting Started”), and you can
go to the command line and type npm help to verify that it’s still there and working.

To install modules via npm , you use the npm install command. This technique requires only
the name of the module package you want to install. Many npm modules have their source code
hosted on github.com, so they usually tell you the name required, for example:

Kimidori:p1 marcw$ npm install mysql

npm http GET https://registry.npmjs.org/mysql

npm http 200 https://registry.npmjs.org/mysql

npm http GET https://registry.npmjs.org/mysql/-/mysql-2.0.0-alpha4.tgz

npm http 200 https://registry.npmjs.org/mysql/-/mysql-2.0.0-alpha4.tgz

npm http GET https://registry.npmjs.org/require-all/0.0.3

npm http 200 https://registry.npmjs.org/require-all/0.0.3

npm http GET https://registry.npmjs.org/require-all/-/require-all-0.0.3.tgz

npm http 200 https://registry.npmjs.org/require-all/-/require-all-0.0.3.tgz

mysql@2.0.0-alpha4 node_modules/mysql

|___ require-all@0.0.3

If you’re not sure of the name of the package you want to install, you can use the npm search
command , as follows:

npm search sql

This command prints the name and description of all matching modules.

npm installs module packages to the node_modules/ subdirectory of your project. If a module
package itself has any dependencies, they are installed to a node_modules/ subdirectory of that
module’s folder:

+ project/

 + node_modules/

 module1

 module2

 + node_modules

 dependency1

 main.js

https://registry.npmjs.org/mysql
https://registry.npmjs.org/mysql
https://registry.npmjs.org/mysql/-/mysql-2.0.0-alpha4.tgz
https://registry.npmjs.org/mysql/-/mysql-2.0.0-alpha4.tgz
https://registry.npmjs.org/require-all/0.0.3
https://registry.npmjs.org/require-all/0.0.3
https://registry.npmjs.org/require-all/-/require-all-0.0.3.tgz
https://registry.npmjs.org/require-all/-/require-all-0.0.3.tgzmysql@2.0.0-alpha4node_modules/mysql
https://registry.npmjs.org/require-all/-/require-all-0.0.3.tgzmysql@2.0.0-alpha4node_modules/mysql

93Consuming Modules

To see a list of all modules that a project is currently using, you can use the npm ls command:

Kimidori:handlers marcw$ npm ls

/Users/marcw/src/scratch/project

|___ async@0.1.22
|___ bcrypt@0.7.3
| |___ bindings@1.0.0
|___ mysql@2.0.0-alpha4

|___ require-all@0.0.3

To update an installed package to a newer version, use the npm update command. If you
specify a package name, it updates only that one. If you do not specify a package name, it
updates all packages to their latest version:

Kimidori:p1 marcw$ npm update mysql

npm http GET https://registry.npmjs.org/mysql

npm http 304 https://registry.npmjs.org/mysql

Kimidori:p1 marcw$ npm update

npm http GET https://registry.npmjs.org/bcrypt

npm http GET https://registry.npmjs.org/async

npm http GET https://registry.npmjs.org/mysql

npm http 304 https://registry.npmjs.org/mysql

npm http 304 https://registry.npmjs.org/bcrypt

npm http 304 https://registry.npmjs.org/async

npm http GET https://registry.npmjs.org/require-all/0.0.3

npm http GET https://registry.npmjs.org/bindings/1.0.0

npm http 304 https://registry.npmjs.org/require-all/0.0.3

npm http 304 https://registry.npmjs.org/bindings/1.0.0

Consuming Modules

As you have already seen, to include a module in a Node file that you are writing, you use the
require function. To be able to reference the functions and/or classes on that module, you
assign the results (the exports object of the loaded module) to a variable:

var http = require('http');

Included modules are private to the module that includes them, so if a.js loads the http
module, then b.js cannot reference it, unless it itself also loads http.

Searching for Modules

Node.js uses a pretty straightforward set of rules for finding modules requested with the
require function:

https://registry.npmjs.org/mysql
https://registry.npmjs.org/mysql
https://registry.npmjs.org/bcrypt
https://registry.npmjs.org/async
https://registry.npmjs.org/mysql
https://registry.npmjs.org/mysql
https://registry.npmjs.org/bcrypt
https://registry.npmjs.org/async
https://registry.npmjs.org/require-all/0.0.3
https://registry.npmjs.org/bindings/1.0.0
https://registry.npmjs.org/require-all/0.0.3
https://registry.npmjs.org/bindings/1.0.0

94 Chapter 5 Modules

 1. If the requested module is a built-in one—such as http or fs—Node uses that.

 2. If the module name in the require function begins with a path component— ./ , ../ , or
/ — Node looks in the specified directory for that module and tries to load it there. If you
don’t specify a .js extension on your module name, Node first looks for a folder-based
module of that name. If it does not find that, it then adds the extensions .js, .json, .node,
and in turn tries to load modules of those types. (Modules with the extension .node are
compiled add-on modules.)

 3. If the module name does not have a path component at the beginning, Node looks in
the node_modules / subfolder of the current folder for the module there. If it is found,
that is loaded; otherwise, Node works its way up the path tree of the current location
looking for node_modules/ folders there. If those continue to fail, it looks in some
standard default locations, such as /usr/lib or /usr/local/lib.

 4. If the module isn’t found in any of these locations, an error is thrown.

Module Caching

After a module has been loaded from a particular file or directory, Node.js caches it. Subsequent
calls to require that would load the same module from the same location to get the exact same
code, with any initialization or other work that has taken place. This is interesting because
sometimes two files that are asking to load a particular module might get different ones!
Consider the following project structure:

+ project/

 + node_modules/

 + special_widget/

 + node_modules/

 mail_widget (v2.0.1)

 mail_widget (v1.0.0)

 main.js

 utils.js

In this example, if either main.js or utils.js requires mail_widget, it gets v1.0.0 because Node’s
search rules find it in the node_modules/ subdirectory of project. However, if it requires
special_widget, which in turn wishes to use mail_widget, special_widget gets its own privately
included version of mail_widget, the v2.0.1 one in its own node_modules/ folder.

This is one of the most powerful and awesome features of the Node.js module system! In so many
other systems, modules, widgets, or dynamic libraries are all stored in a central location, which
creates versioning nightmares when you require packages that themselves require different
versions of some other module. In Node, they are free to include these different versions of the
other modules, and Node’s namespace and module rules mean that they do not interfere with
each other at all! Individual modules and portions of a project are free to include, update, or
modify included modules as they see fit without affecting the rest of the system.

95Writing Modules

In short, Node.js works intuitively, and for perhaps the first time in your life, you don’t have to
sit there endlessly cursing the package repository system you’re using.

Cycles

Consider the following situation:

 ■ a.js requires b.js.

 ■ b.js requires a.js.

 ■ main.js requires a.js.

You can see that you clearly have a cycle in the preceding modules. Node stops cycles from
being a problem by simply returning uninitialized modules when it detects one. In the preced-
ing case, the following happens:

 ■ main.js is loaded, and code runs that requires a.js.

 ■ a.js is loaded, and code runs that requires b.js.

 ■ b.js is loaded, and code runs that requires a.js.

 ■ Node detects the cycle and returns an object referring to a.js, but does not execute any
more code—the loading and initialization of a.js are unfinished at this point!

 ■ b.js, a.js, and main.js all finish initializing (in that order), and then the reference from
b.js to a.js is valid and fully usable.

Writing Modules

Recall that every file in Node.js is itself a module, with a module and exports object. However,
you also should know that modules can be a bit more complicated than that, with a directory
to hold its contents and a file containing packaging information. For those cases in which you
want to write a bunch of support files, break up the functionality of the module into separate
JavaScript files, or even include unit tests, you can write modules in this format.

The basic format is as follows:

 1. Create the folder to hold the module contents.

 2. Put a file called package.json into this folder. This file should contain at least a name for
the module and main JavaScript file that Node should load initially for that module.

 3. If Node cannot find the package.json file or no main JavaScript file is specified, it looks
for index.js (or index.node for compiled add-on modules).

96 Chapter 5 Modules

Creating Your Module

Now take the code you wrote for managing photos and albums in the preceding chapter and
put it into a module. Doing so lets you share it with other projects that you write later and
isolate the code so you can write unit tests, and so on.

First, create the following directory structure in the source scratch (that is, ~/src/scratch or
wherever you’re playing around with Node) directory:

+ album_mgr/

 + lib/

 + test/

In the album_mgr folder, create a file called package.json and put the following in it:

{ "name": "album-manager",

 "version": "1.0.0",

 "main": "./lib/albums.js" }

This is the most basic of package.json files; it tells npm that the package should have the
friendly name album-manager and that the “default” or starting JavaScript file for the package
is the albums.js file in the lib/ subdirectory.

The preceding directory structure is by no means mandatory or written in stone; it is simply
one of the common layouts for packages that I have found to be useful and have thus latched
on to. You are under no obligation to follow it. I do, however, recommend that you start doing
things this way and start experimenting only after you’re comfortable with the whole system.

Sites such as github.com that are frequently used to host Node module source automatically
display Readme documentation if they find it. Thus, it is pretty common for people to include
a Readme.md. (The “md” stands for markdown and refers to the standard documentation format
that github.com uses.) You are highly encouraged to write documentation for your modules to
help people get started using it. For the album-manager module, I wrote the following Readme
file:

Album-Manager

This is our module for managing photo albums based on a directory. We

assume that, given a path, there is an albums sub-folder, and each of

its individual sub-folders are themselves the albums. Files in those

sub-folders are photos.

Album Manager

The album manager exposes a single function, `albums`, which returns

an array of `Album` objects for each album it contains.

Album Object

The album object has the following two properties and one method:

97Writing Modules

* `name` -- The name of the album

* `path` -- The path to the album

* `photos()` -- Calling this method will return all the album's photos

Now you can write your actual module files. First, start with the promised lib/albums.js, which
is just some of the album-loading code from Chapter 4 , “Writing Applications,” repackaged
into a module-like JavaScript file:

var fs = require('fs'),

 album = require('./album.js');

exports.version = "1.0.0";

exports.albums = function (root, callback) {

 // we will just assume that any directory in our 'albums'

 // subfolder is an album.

 fs.readdir(

 root + "/albums",

 function (err, files) {

 if (err) {

 callback(err);

 return;

 }

 var album_list = [];

 (function iterator(index) {

 if (index == files.length) {

 callback(null, album_list);

 return;

 }

 fs.stat(

 root + "albums/" + files[index],

 function (err, stats) {

 if (err) {

 callback({ error: "file_error",

 message: JSON.stringify(err) });

 return;

 }

 if (stats.isDirectory()) {

 var p = root + "albums/" + files[index];

 album_list.push(album.create_album(p));

 }

 iterator(index + 1)

 }

);

98 Chapter 5 Modules

 })(0);

 }

);

};

One of the standard things to provide in the exported functionality of modules is a version
member field. Although I don’t always use it, it can be a helpful way for calling modules to
check your version and execute different code depending on what it has.

You can see that the album functionality is split into a new file called lib/album.js, and there is
a new class called Album . This class looks as follows:

function Album (album_path) {

 this.name = path.basename(album_path);

 this.path = album_path;

}

Album. prototype .name = null;

Album. prototype .path = null;

Album. prototype ._photos = null;

Album. prototype .photos = function (callback) {

 if (this._photos != null) {

 callback(null, this._photos);

 return;

 }

 var self = this;

 fs.readdir(

 self.path,

 function (err, files) {

 if (err) {

 if (err.code == "ENOENT") {

 callback(no_such_album());

 } else {

 callback({ error: "file_error",

 message: JSON.stringify(err) });

 }

 return;

 }

 var only_files = [];

 (function iterator(index) {

 if (index == files.length) {

 self._photos = only_files;

 callback(null, self._photos);

99Writing Modules

 return;

 }

 fs.stat(

 self.path + "/" + files[index],

 function (err, stats) {

 if (err) {

 callback({ error: "file_error",

 message: JSON.stringify(err) });

 return;

 }

 if (stats.isFile()) {

 only_files.push(files[index]);

 }

 iterator(index + 1)

 }

);

 })(0);

 }

);

};

If you’re confused by the prototype keyword used a few times in the preceding source code,
perhaps now is a good time to jump back to Chapter 2, “A Closer Look at JavaScript,” and
review the section on writing classes in JavaScript. The prototype keyword here is simply a
way to set properties on all instances of our Album class.

Again, this is pretty much what you saw in Chapter 4 with the basic JSON server. The only
thing that is really different is that it is packaged into a class with a prototype object and
method called photos .

I hope you also noted the following two things:

 1. You now use a new built-in module called path , and you use the basename function on it
to extract the album’s name from the path.

 2. As mentioned in the section “Who Am I? Maintaining a Sense of Identity” in Chapter 3 ,
“Asynchronous Programming,” nonblock asynchronous IO and the this pointer can get
a little tricky, so you use the var self = this trick to help you remember your object
reference.

The rest of the album.js file is simply as follows:

var path = require('path'),

 fs = require('fs');

// Album class code goes here

100 Chapter 5 Modules

exports.create_album = function (path) {

 return new Album(path);

};

function no_such_album() {

 return { error: "no_such_album",

 message: "The specified album does not exist" };

}

And that is all you need for our album-manager module! To test it, go back to the scratch direc-
tory and enter the following test program as atest.js:

var amgr = require('./album_mgr');

amgr.albums('./', function (err, albums) {

 if (err) {

 console.log("Unexpected error: " + JSON.stringify(err));

 return;

 }

 (function iterator(index) {

 if (index == albums.length) {

 console.log("Done");

 return;

 }

 albums[index].photos(function (err, photos) {

 if (err) {

 console.log("Err loading album: " + JSON.stringify(err));

 return;

 }

 console.log(albums[index].name);

 console.log(photos);

 console.log("");

 iterator(index + 1);

 });

 })(0);

});

Now, all you have to do is ensure you have an albums/ subfolder in the current directory, and
you should be able to run atest.js and see something like the following:

Kimidori:Chapter05 marcw$ node atest

australia2010

['aus_01.jpg',

 'aus_02.jpg',

 'aus_03.jpg',

101Writing Modules

 'aus_04.jpg',

 'aus_05.jpg',

 'aus_06.jpg',

 'aus_07.jpg',

 'aus_08.jpg',

 'aus_09.jpg']

italy2012

['picture_01.jpg',

 'picture_02.jpg',

 'picture_03.jpg',

 'picture_04.jpg',

 'picture_05.jpg']

japan2010

['picture_001.jpg',

 'picture_002.jpg',

 'picture_003.jpg',

 'picture_004.jpg',

 'picture_005.jpg',

 'picture_006.jpg',

 'picture_007.jpg']

Done

Developing with Your Module

You now have a module for working with albums. If you would like to use it in multiple proj-
ects, you could copy it to the node_modules/ folder of your other projects, but then you would
have a problem: What happens when you want to make a change to your albums module? Do
you have to copy the source code over to all the locations it is being used each and every time
you change it?

Fortunately, npm comes to the rescue here. You can modify the package.json file to add the
following:

{ "name": "album-manager",

 "version": "1.0.0",

 "main": "./lib/albums.js",

 "private": true }

This code tells npm to never accidentally publish this to the live npm repository, which you
don’t want for this module now.

Now you can use the npm link command, which tells npm to put a link to the album-manager
package in the local machine’s default public package repository (such as /usr/local/lib/node_
modules on Linux and Mac machines, or C:\Users\ username \AppData\location\npm
on Windows).

102 Chapter 5 Modules

Kimidori:Chapter05 marcw$ cd album_mgr

Kimidori:album_mgr marcw$ sudo npm link

/usr/local/lib/node_modules/album-manager ->

/Users/marcw/src/scratch/Chapter05/album_mgr

Note that depending on how the permissions and such are set up on your local machine, you
might need to run this command as super-user with sudo .

Now, to consume this module, you need to do two things:

 1. Refer to 'album-manager' instead of 'album_mgr' in the code (because npm uses the
name field in package.json).

 2. Create a reference to the album-manager module with npm for each project that wants to
use it. You can just type npm link album-manager:

Kimidori:Chapter05 marcw$ mkdir test_project

Kimidori:Chapter05 marcw$ cd test_project/

Kimidori:test_project marcw$ npm link album-manager

/Users/marcw/src/scratch/Chapter05/test_project/node_modules/album-manager ->

 /usr/local/lib/node_modules/album-manager ->
/Users/marcw/src/scratch/Chapter05/album_mgr

Kimidori:test_project marcw$ dir

drwxr-xr-x 3 marcw staff 102 11 20 18:38 node_modules/

Kimidori:test_project marcw$ dir node_modules/

lrwxr-xr-x 1 marcw staff 41 11 20 18:38 album-manager@ ->

 /usr/local/lib/node_modules/album-manager

Now, you are free to make changes to your original album manager source, and all referencing
projects will see changes right away.

Publishing Your Modules

If you have written a module that you would like to share with other users, you can publish it
to the official npm registry using npm publish . This requires you to do the following:

 ■ Remove the "private": true line from the package.json file.

 ■ Create an account on the npm registry servers with npm adduser .

 ■ Optionally, choose to fill in more fields in the package.json (run npm help json to
get more information on which fields you might want to add) with things such as a
description, author contact information, and host website.

 ■ Finally, run npm publish from the module directory to push it to npm . That’s it!

Kimidori:album_mgr marcw$ npm adduser

Username: marcwan

Password:

Email: marcwan@example.org

103A Module So Common It Should Be Built In

npm http PUT https://registry.npmjs.org/-/user/org.couchdb.user:marcwan

npm http 201 https://registry.npmjs.org/-/user/org.couchdb.user:marcwan

Kimidori:album_mgr marcw$ npm publish

npm http PUT https://registry.npmjs.org/album-manager

npm http 201 https://registry.npmjs.org/album-manager

npm http GET https://registry.npmjs.org/album-manager

npm http 200 https://registry.npmjs.org/album-manager

npm http PUT https://registry.npmjs.org/album-manager/1.0.0/-tag/latest

npm http 201 https://registry.npmjs.org/album-manager/1.0.0/-tag/latest

npm http GET https://registry.npmjs.org/album-manager

npm http 200 https://registry.npmjs.org/album-manager

npm http PUT https://registry.npmjs.org/album-manager/-/album-manager-1.0.0.tgz/
-rev/2- 7f175fa335728e1cde4ce4334696bd1a

npm http 201 https://registry.npmjs.org/album-manager/-/album-manager-1.0.0.tgz/
-rev/2- 7f175fa335728e1cde4ce4334696bd1a

+ album-manager@1.0.0

If you accidentally publish something you didn’t mean to or otherwise want to remove from
the npm registry, you can use npm unpublish :

Kimidori:album_mgr marcw$ npm unpublish

npm ERR! Refusing to delete entire project.

npm ERR! Run with --force to do this.

npm ERR! npm unpublish <project>[@<version>]

npm ERR! not ok code 0

Kimidori:album_mgr marcw$ npm unpublish --force

npm http GET https://registry.npmjs.org/album-manager

npm http 200 https://registry.npmjs.org/album-manager

npm http DELETE https://registry.npmjs.org/album-manager/-rev/
3-fa97bb84fa1cb8d6d6a3f57ad4a2cf2f

npm http 200 https://registry.npmjs.org/album-manager/-rev/
3-fa97bb84fa1cb8d6d6a3f57ad4a2cf2f

- album-manager@1.0.0

A Module So Common It Should Be Built In

You have already used a few of the Node.js built-in modules in code written thus far (http ,
fs , path , querystring , and url), and you will use many more throughout the rest of the book.
However, there is one module you can install from npm that you will use in pretty much every
single project you write. As such, it deserves its own section here.

https://registry.npmjs.org/-/user/org.couchdb.user:marcwan
https://registry.npmjs.org/-/user/org.couchdb.user:marcwan
https://registry.npmjs.org/album-manager
https://registry.npmjs.org/album-manager
https://registry.npmjs.org/album-manager
https://registry.npmjs.org/album-manager
https://registry.npmjs.org/album-manager/1.0.0/-tag/latest
https://registry.npmjs.org/album-manager/1.0.0/-tag/latest
https://registry.npmjs.org/album-manager
https://registry.npmjs.org/album-manager
https://registry.npmjs.org/album-manager/-/album-manager-1.0.0.tgz/-rev/2-7f175fa335728e1cde4ce4334696bd1a
https://registry.npmjs.org/album-manager/-/album-manager-1.0.0.tgz/-rev/2-7f175fa335728e1cde4ce4334696bd1a
https://registry.npmjs.org/album-manager/-/album-manager-1.0.0.tgz/-rev/2-7f175fa335728e1cde4ce4334696bd1a
https://registry.npmjs.org/album-manager/-/album-manager-1.0.0.tgz/-rev/2-7f175fa335728e1cde4ce4334696bd1a
https://registry.npmjs.org/album-manager
https://registry.npmjs.org/album-manager
https://registry.npmjs.org/album-manager/-rev/3-fa97bb84fa1cb8d6d6a3f57ad4a2cf2f
https://registry.npmjs.org/album-manager/-rev/3-fa97bb84fa1cb8d6d6a3f57ad4a2cf2f
https://registry.npmjs.org/album-manager/-rev/3-fa97bb84fa1cb8d6d6a3f57ad4a2cf2f
https://registry.npmjs.org/album-manager/-rev/3-fa97bb84fa1cb8d6d6a3f57ad4a2cf2f

104 Chapter 5 Modules

The Problem

Consider the case in which you want to write some asynchronous code to

 ■ Open a handle to a path.

 ■ Determine whether or not the path points to a file.

 ■ Load in the contents of the file if the path does point to a file.

 ■ Close the file handle and return the contents to the caller.

You’ve seen almost all this code before, and the function to do this looks something like the
following, where functions you call are bold and the callback functions you write are bold
and italic:

var fs = require('fs');

function load_file_contents(path, callback) {

 fs.open (path, 'r', function (err, f) {

 if (err) {

 callback(err);

 return;

 } else if (!f) {

 callback({ error: "invalid_handle",

 message: "bad file handle from fs.open"});

 return;

 }

 fs.fstat (f, function (err, stats) {

 if (err) {

 callback(err);

 return;

 }

 if (stats.isFile ()) {

 var b = new Buffer(10000);

 fs.read (f, b, 0, 10000, null, function (err, br, buf) {

 if (err) {

 callback(err);

 return;

 }

105A Module So Common It Should Be Built In

 fs.close (f, function (err) {

 if (err) {

 callback(err);

 return;

 }

 callback(null, b.toString('utf8', 0, br));

 });

 });

 } else {

 callback({ error: "not_file",

 message: "Can't load directory" });

 return;

 }

 });

 });

}

As you can, even for a short, contrived example such as this, the code is starting to nest pretty
seriously and deeply. Nest more than a few levels deep, and you’ll find that you cannot fit your
code in an 80-column terminal or one page of printed paper any more. It can also be quite
difficult to read the code, figure out what variables are being used where, and determine the
flow of the functions being called and returned.

The Solution

To solve this problem, you can use an npm module called async . Async provides an intuitive
way to structure and organize asynchronous calls and removes many, if not all, of the tricky
parts of asynchronous programming you encounter in Node.js.

Executing Code in Serial

You can execute code serially in async in two ways: through the waterfall function and the
series function (see Figure 5.1) .

The waterfall function takes an array of functions and executes them one at a time, passing
the results from each function to the next. At the end, a resulting function is called with the
results from the final function in the array. If an error is signaled at any step of the way, execu-
tion is halted, and the resulting function is called with an error instead.

107A Module So Common It Should Be Built In

 else

 // f and stats are passed to next in waterfall

 callback(null, f, stats);

 });

 },

 function (f, stats, callback) {

 if (stats.isFile()) {

 var b = new Buffer(10000);

 fs.read(f, b, 0, 10000, null, function (err, br, buf) {

 if (err)

 callback(err);

 else

 // f and string are passed to next in waterfall

 callback(null, f, b.toString('utf8', 0, br));

 });

 } else {

 callback({ error: "not_file",

 message: "Can't load directory" });

 }

 },

 function (f, contents, callback) {

 fs.close(f, function (err) {

 if (err)

 callback(err);

 else

 callback(null, contents);

 });

 }

]

 // this is called after all have executed in success

 // case, or as soon as there is an error.

 , function (err, file_contents) {

 callback(err, file_contents);

 });

}

Although the code has grown a little bit in length, when you organize the functions serially in
an array like this, the code is significantly cleaner looking and easier to read.

The async.series function differs from the async.waterfall in two keys ways:

 ■ Results from one function are not passed to the next; instead, they are collected in an
array, which becomes the “results” (the second) parameter to the final resulting function.
Each step of the serial call gets one slot in this results array.

 ■ You can pass an object to async.series , and it enumerates the keys and executes the
functions assigned to them. In this case, the results are not passed as an array, but an
object with the same keys as the functions called.

108 Chapter 5 Modules

Consider this example:

var async = require("async");

async.series ({

 numbers : function (callback) {

 setTimeout(function () {

 callback(null, [1, 2, 3]);

 }, 1500);

 },

 strings : function (callback) {

 setTimeout(function () {

 callback(null, ["a", "b", "c"]);

 }, 2000);

 }

},

function (err, results) {

 console.log(results);

});

This function generates the following output:

{ numbers: [1, 2, 3], strings: ['a', 'b', 'c'] }

Executing in Parallel

In the previous async.series example, there was no reason to use a serial execution sequence
for the functions; the second function did not depend on the results of the first, so they could
have executed in parallel (see Figure 5.2). For this, async provides async.parallel , as follows:

var async = require("async");

async.parallel ({

 numbers : function (callback) {

 setTimeout(function () {

 callback(null, [1, 2, 3]);

 }, 1500);

 },

 strings : function (callback) {

 setTimeout(function () {

 callback(null, ["a", "b", "c"]);

 }, 2000);

 }

},

function (err, results) {

 console.log(results);

});

111A Module So Common It Should Be Built In

The results parameter passed to the final resulting function is an object in which the proper-
ties hold the results of each of the functions executed on the object:

{ numbers: [1, 2, 3],

 strings: ['a', 'b', 'c'],

 assemble: { numbers: '1, 2, 3', strings: '\'a\', \'b\', \'c\'' } }

Looping Asynchronously

In Chapter 3 , I showed you how you can use the following pattern to iterate over the items in
an array with asynchronous function calls:

(function iterator(i) {

 if(i < array.length) {

 async_work(function(){

 iterator(i + 1)

 })

 } else {

 callback(results);

 }

})(0);

Although this technique works great and is indeed gloriously geeky, it’s a bit more complicated
than I’d like. Async comes to the rescue again with async.forEachSeries . It iterates over
every element in the provided array, calling the given function for each. However, it waits for
each to finish executing before calling the next in the series:

async.forEachSeries(

 arr,

 // called for each element in arr

 function (element, callback) {

 // use element

 callback(null); // YOU MUST CALL ME FOR EACH ELEMENT!

 },

 // called at the end

 function (err) {

 // was there an error? err will be non-null then

 }

);

To simply loop over every element in a loop and then have async wait for all of them to
finish, you can use async.forEach , which is called in the exact same way and differs in that it
doesn’t execute the functions serially.

Async contains a ton of other functionality and is truly one of the indispensible modules of
Node.js programming today. I highly encourage you to browse the documentation at https://
github.com/caolan/async and play around with it. It truly takes the already-enjoyable Node.js
programming environment and makes it even better.

https://github.com/caolan/async
https://github.com/caolan/async

112 Chapter 5 Modules

Summary

In this chapter, you were more formally introduced to modules in Node.js. Although you have
seen them before, you now finally know how they’re written, how Node finds them for inclu-
sion, and how to use npm to find and install them. You can write your own complex modules
now with package.json files and link them across your projects or even publish them for others
to use via npm .

Finally, you are now armed with knowledge of async, one of the most powerful and cool
modules that you will use in nearly every single Node project you write from now on.

Next up: Putting the “web” back in web servers. You look at some cool ways to use JSON and
Node in your web apps and how to handle some other core Node technologies such as events
and streams.

6
Expanding Your Web Server

In this last chapter of Part II, “Learning to Run,” you expand the web server a little bit with
some key new functionality; you learn how to serve up static content such as HTML pages,
JavaScript files, cascading style sheets, and even image files. Armed with this knowledge, you
turn your focus away from the server and look at programming the client.

In the new Node.js world of programming websites, you’re going to migrate from the tradi-
tional model of generating HTML on the server before sending it down to clients, and instead
have your server serve up only static files or JSON. The web browser can then use AJAX calls
along with template libraries to generate pages on the fly as the user navigates around the site.
Finally, you look at uploading files to your servers and see some of the tools you can use to
help make that task easier.

Begin by taking a look at Node.js streams .

Serving Static Content with Streams

In the asynchronous, nonblocking IO world of Node.js, you previously saw that you can use
fs.open and fs.read in a loop to read the contents of a file. However, Node.js provides
another, far more elegant mechanism for reading (and even writing) files called streams . They
act an awful lot like UNIX pipes—even on Windows—and you briefly saw them in use in the
section “Receiving JSON POST Data” in Chapter 4 , “Writing Simple Applications,” when you
needed to load in the data users sent along with requests.

In the basic usage, you use the on method to add listeners to events . The provided functions are
called whenever one of those events is triggered. The readable event is sent whenever a read
stream has read something in for you to process. The end event is sent whenever a stream has
nothing more to read, and error events are sent whenever something has gone wrong.

114 Chapter 6 Expanding Your Web Server

Reading a File

As a simple example, write the following code and save it to simple_stream.js:

var fs = require('fs');

var contents;

// INCEPTION BWAAAAAAA!!!!

var rs = fs.createReadStream("simple_stream.js");

rs.on(' readable ', function () {

 var str;

 var d = rs.read();

 if (d) {

 if (typeof d == 'string') {

 str = d;

 } else if (typeof d == 'object' && d instanceof Buffer) {

 str = d.toString('utf8');

 }

 if (str) {

 if (!contents)

 contents = d;

 else

 contents += str;

 }

 }

});

rs.on('end' , function () {

 console.log("read in the file contents: ");

 console.log(contents.toString('utf8'));

});

If you’re looking at the preceding code (it creates an object, adds two listeners, and then does...
seemingly nothing) and wondering why it doesn’t just exit before the loading is done, recall in
Chapter 3 , “Asynchronous Programming,” I said that Node runs in an event loop waiting for
things to happen and executing code when something finally does happen.

Ch-Ch-Ch-Changes to Streams

Streams underwent a major change for the 0.10 series of Node.js releases. Up until that ver-
sion, they had been pretty functional but were broken in a couple of key ways related to timing
and pausing. After years of putting it off, the Node core team finally resolved to fix these issues
and risk breaking a few apps here and there.

In the old world, to work with read streams, you added a data event listener and had that data
read by that stream passed as an argument to your callback. In the new world, you listen to the

115Serving Static Content with Streams

readable event instead and call the read method on the stream when it informs you that data
is ready for reading.

If you see any code that still uses the old data event, you shouldn’t have to worry; it’s 99
percent likely to be compatible with the new model, but I just wanted to make you aware that
you’ll be seeing both models for the next little while.

Well, part of this is knowing when events are pending or going to happen, such as the case in
which you have a read stream open and it actually has calls to the file system waiting to finish
reading in content. As long as there is something that is expected to happen, Node does not
exit until all those events are finished and user code (if there is any) is executed.

The preceding example creates a new read stream given a path with the fs.createReadStream
function. It then simply reads itself and prints the contents to the output stream. When it
gets a readable event, it calls the read method on the stream and gets back whatever data is
currently available. If no data is returned, it just waits until another readable event comes in
or an end event is received.

Manipulating Binary Data with Buffers

Thus far in your Node.js experience, you have been using strings, typically UTF-8 strings, to do
your work. However, when working with streams and files, you actually work mostly with the
Buffer class.

Buffers work more or less as you’d expect them to: They hold binary data that can be converted
into other formats, used in operations to file writes, or broken apart and reassembled.

One critical point to remember about buffers is that the length property on the object does not
return the size of the content, but that of the buffer itself! For example:

var b = new Buffer(10000);

var str = " ";

b.write(str); // default is utf8, which is what we want

console.log(b.length); // will print 10000 still!

Node.js does not keep track of what you have written to which place in the buffer, so you must
keep track of these things yourself.

Sometimes a string does not have the same byte length as the number of characters—for
example, the preceding string " " . Buffer.byteLength returns the former:

console.log(str.length); // prints 5

console.log(Buffer.byteLength(str)); // prints 15

To convert a buffer to a string, you should use the toString method. You will almost always
have it convert to UTF-8 strings:

console.log(buf.toString('utf8'));

116 Chapter 6 Expanding Your Web Server

To append one buffer to the end of another, you can use the concat method, as follows:

var b1 = new Buffer("My name is ");

var b2 = new Buffer("Marc");

var b3 = Buffer.concat([b1, b2]);

console.log(b3.toString('utf8'));

Finally, you can “zero out” or otherwise fill in all the values in the buffer by using the fill
method, such as buf.fill("\0") .

Serving Static Files in a Web Server with Buffers

For this next exercise, write a little web server that serves up static content (an HTML file) using
Node buffers. You start with the handle_incoming_request function:

function handle_incoming_request (req, res) {

 if (req.method.toLowerCase() == 'get'

 && req.url.substring(0, 9) == '/content/') {

 serve_static_file(req.url.substring(9), res);

 } else {

 res.writeHead(404, { "Content-Type" : "application/json" });

 var out = { error: "not_found",

 message: "'" + req.url + "' not found" };

 res.end(JSON.stringify(out) + "\n");

 }

}

If an incoming request requests /content/something.html, you try to serve that up by calling
the serve_static_file function. The design of the http module in Node.js is sufficiently
clever that the ServerResponse object you get to each request on your server is itself actually
a stream to which you can write your output! You do this writing by calling the write method
on the Stream class:

function serve_static_file (file, res) {

 var rs = fs.createReadStream(file);

 var ct = content_type_for_path(file);

 res.writeHead(200, { "Content-Type" : ct });

 rs.on(

 ' readable ',

 function () {

 var d = rs.read();

 if (d) {

 if (typeof d == 'string')

 res.write(d);

 else if (typeof d == 'object' && d instanceof Buffer)

117Serving Static Content with Streams

 res.write(d.toString('utf8'));

 }

 }

);

 rs.on(

 end ,

 function () {

 res.end(); // we're done!!!

 }

);

}

function content_type_for_path (file) {

 return "text/html";

}

The rest of the server’s code is as you have seen before:

var http = require('http'),

 fs = require('fs');

var s = http.createServer(handle_incoming_request);

s.listen(8080);

Create a file called test.html with some simple HTML content in it; then run the server with

node server.js

And then ask for that test.html using curl :

curl -i -X GET http://localhost:8080/content/test.html

You should see output similar to the following (depending on what exactly you put in test.
html):

HTTP/1.1 200 OK

Date: Mon, 26 Nov 2012 03:13:50 GMT

Connection: keep-alive

Transfer-Encoding: chunked

<html>

<head>

 <title> WooO! </title>

</head>

<body>

 <h1> Hello World! </h1>

</body>

</html>

http://localhost:8080/content/test.html
http.createServer(handle_incoming_request)

118 Chapter 6 Expanding Your Web Server

You are now able to serve up static content! But you have two problems. First, what happens
if you ask for /content/blargle.html? In its current form, the script throws an error and termi-
nates, which isn’t what you want. In this case, you want to return a 404 HTTP response code
and even maybe an error message.

To do this, you can listen to the error event on read streams. Add the following few lines to
the serve_static_file function:

rs.on(

 error ,

 function (e) {

 res.writeHead(404, { "Content-Type" : "application/json" });

 var out = { error: "not_found",

 message: "'" + file + "' not found" };

 res.end(JSON.stringify(out) + "\n");

 return;

 }

);

Now, when you get an error (after which no data or end events are called), you update the
response header code to 404, set a new Content-Type , and return JSON with the error infor-
mation that the client can use to report to the user what has happened.

Serving Up More Than Just HTML

The second problem is that you can currently serve up only HTML static content. The
content_type_for_path function only ever returns "text/html" . It would be nice if it were a
bit more flexible, which you can accomplish as follows:

function content_type_for_file (file) {

 var ext = path.extname(file);

 switch (ext.toLowerCase()) {

 case '.html': return "text/html";

 case ".js": return "text/javascript";

 case ".css": return 'text/css';

 case '.jpg': case '.jpeg': return 'image/jpeg';

 default: return 'text/plain';

 }

}

Now you can call the curl command with a number of different file types and should get the
expected results. For binary files such as JPEG images, you can use the -o flag to curl to tell
it to write the output to the specified filename. First, copy a JPEG to your current folder, run
server with node server.js , and then add the following:

curl -o test.jpg http://localhost:8080/content/family.jpg

Chances are, you now have a file called test.jpg that is exactly what you expect it to be.

http://localhost:8080/content/family.jpg

119Serving Static Content with Streams

Shuffling data from stream (rs in the preceding example) to stream (res) is such a common
scenario that the Stream class in Node.js has a convenience method to take care of all this for
you: pipe . The serve_static_file function then becomes much simpler:

function serve_static_file (file, res) {

 var rs = fs.createReadStream(file);

 rs.on(

 error ,

 function (e) {

 console.log("oh no! Error!! " + JSON.stringify(e));

 res.end("");

 }

);

 var ct = content_type_for_path(file);

 res.writeHead(200, { "Content-Type" : ct });

 rs.pipe(res);

}

There is, unfortunately, one small problem with pipe : It sends out HTTP response headers
as soon as you call it; after they are sent, you cannot subsequently call ServerResponse.
writeHead . If the file you want to read with fs.createReadStream does not exist, you
have no way to report it to the client. To get around this issue, you need to first check to see
whether the file exists and then perform the pipe operation:

function serve_static_file (file, res) {

 fs.exists(file, function (exists) {

 if (!exists) {

 res.writeHead(404, { "Content-Type" : "application/json" });

 var out = { error: "not_found",

 message: "'" + file + "' not found" };

 res.end(JSON.stringify(out) + "\n");

 return;

 }

 var rs = fs.createReadStream(file);

 rs.on(

 'error',

 function (e) {

 res.end();

 }

);

 var ct = content_type_for_file(file);

 res.writeHead(200, { "Content-Type" : ct });

 rs.pipe(res);

 });

}

120 Chapter 6 Expanding Your Web Server

Events

Streams are actually a subclass of the Node.js Event class, which provides all the functionality
for connecting and emitting events in your JavaScript files. You can inherit from this class to
create your own event firing classes. For this example, create a dummy downloader class that
fakes a remote download via a two-second setTimeout call:

var events = require('events');

function Downloader () {

}

Downloader.prototype = new events.EventEmitter();

Downloader.prototype.__proto__ = events.EventEmitter.prototype;

Downloader.prototype.url = null;

Downloader.prototype.download_url = function (path) {

 var self = this;

 self.url = path;

 self.emit(start , path);

 setTimeout(function () {

 self.emit(end , path);

 }, 2000);

}

var d = new Downloader();

d.on("start", function (path) {

 console.log("started downloading: " + path);

});

d.on("end", function (path) {

 console.log("finished downloading: " + path);

});

d.download_url("http://marcwan.com");

You signal that an event has happened by using the emit method with the name of the event
and any arguments you would like passed to the listening function. You should make sure that
all possible code paths (including errors) signal an event; otherwise, your Node program
might hang.

Assembling Content on the Client: Templates

In more traditional web application models, the client sends an HTTP request to the server, the
server gathers all the data and generates the HTML response, and it sends that down as text.
While this way of doing things is very reasonable, it has a few key disadvantages:

 ■ It doesn’t take advantage of any of the computing power available on the average client
computer these days. Even the average mobile phone or tablet is multiple times more
powerful than PCs of 10 years ago.

http://marcwan.com

121Assembling Content on the Client: Templates

 ■ It makes your life more difficult when you have multiple types of clients. Some people
might access you through a web browser, others through mobile apps, even others
through desktop applications or third-party apps.

 ■ It’s frustrating to have to perform so many different types of things on the server. It
would be great if you could just have your server focus on processing, storing, and
generating data, and letting the client decide how to present the data.

An increasingly common way of doing things, and something I’ve found particularly compel-
ling and fun with Node, is to convert the server back end to serve only JSON, or as absolutely
little of anything else as possible. The client app can then choose how to present the returned
data to the user. Scripts, style sheets, and even most HTML can be served from file servers or
content delivery networks (CDNs).

For web browser applications, you can use client-side templates (see Figure 6.1). In this way of
doing things,

 1. The client downloads a skeleton HTML page with pointers to JavaScript files, CSS files,
and an empty body element from the Node server.

 2. One of the referenced JavaScript files is a bootstrapper that does all the work of gathering
everything and putting the page together. It is given the name of an HTML template and
a server JSON API to call. It downloads the template and then applies the returned JSON
data to that template file using a template engine . You will use a template engine called
“Mustache” (see the sidebar “Template Engines”).

 3. The resulting HTML code is inserted into the body of the page, and all the server has to
do is serve up a little bit of JSON.

It has been in preparation for this that you have been developing the photo album applica-
tion as a JSON-only server thus far. Although you will add the capability now for it to serve up
static files, this is largely for convenience and educational purposes; in a production environ-
ment, you would probably move these files to a CDN and update the URLs to point to them as
appropriate.

Template Engines

A large number of client-side (and even server-side) template engines or libraries are available.
For the jQuery JavaScript library that you’re using most often in this book, there are a few such
as JSRender or jQote, both of which are just fine. There are others that don’t necessarily have
to fit in with your chosen JavaScript helper library as well.

For your purposes here, they’re all about the same . The feature sets all tend to be roughly
equal, with similar ways of doing things and reasonably similar performance. When you are
choosing a library, I recommend just picking one that is actively being developed and/or main-
tained and that seems to have a reasonable syntax that you find comfortable.

For this book and many of my recent projects, I am using a template engine called Mustache .
As I just said, this decision is semi-arbitrary but was helped by mustache.js

123Assembling Content on the Client: Templates

The HTML Skeleton Page

Although you might attempt to do all HTML generation on the client, you cannot completely
avoid the server doing any at all; you still need it to send down the initial page skeleton that
the client can use to perform the rest of the generation.

For this example, you use a reasonably simple HTML page, which is saved as basic.html, shown
in Listing 6.1 .

Listing 6.1 The Simple App Page Bootstrapper (basic.html)

<!DOCTYPE html>

<html>

<head>

 <title>Photo Album</title>

 <!-- Meta -->

 <meta http-equiv="content-type" content="text/html; charset=utf-8" />

 <!-- Stylesheets -->

 <link rel="stylesheet" href="http://localhost:8080/content/style.css"

 type="text/css" />

 <!-- javascripts -->

 <script src="http://localhost:8080/content/jquery-1.8.3.min.js"

 type="text/javascript"></script>

 <script src="http://localhost:8080/content/mustache.js"

 type="text/javascript"></script>

 <script src= "http://localhost:8080/content/{{PAGE_NAME}}.js"

 type="text/javascript"></script>

</head>

<body></body>

</html>

This file is straightforward; it has a style sheet, and then you include jQuery and Mustache. The
last script tag is the most interesting: This file is the page bootstrapper that holds the code that
will download the template, get the JSON data from the server for the page, and generate the
HTML for the page based on these two things. You can see that it is set up with a parameter
{{PAGE_NAME}} to replace with the actual page you will be loading at any given time.

124 Chapter 6 Expanding Your Web Server

Serving Static Content

Now you are going to modify the application server’s folder layout a little bit as follows:

+ project_root/

 + contents/ # JS, CSS, and HTML files

 + templates/ # client-side HTML templates

 + albums/ # the albums we've seen already

You’ve seen the albums folder before, but now you are going to add the contents and templates
folders to handle additional content you’re going to add.

The updated handle_incoming_request function looks something like the following. The
serve_static_file function is identical to the one you just wrote in the preceding section:

function handle_incoming_request (req, res) {

 // parse the query params into an object and get the path

 // without them. (true for 2nd param means parse the params).

 req.parsed_url = url.parse(req.url, true);

 var core_url = req.parsed_url.pathname;

 // test this updated url to see what they're asking for

 if (core_url.substring(0, 9) == /content/) {

 serve_static_file("content/" + core_url.substring(9), res);

 } else if (core_url == /albums.json) {

 handle_list_albums(req, res);

 } else if (core_url.substr(0, 7) == /albums

 && core_url.substr(core_url.length - 5) == .json) {

 handle_get_album(req, res);

 } else {

 send_failure(res, 404, invalid_resource());

 }

}

For example, in the content/ folder, you start with three files:

 ■ jquery-1.8.3.min.js —You can download this file directly from jquery.com. Most versions
of jQuery from the past couple of years should work just fine.

 ■ mustache.js —You can download this file from a number of places. In this case, simply
use the generic mustache.js from github.com/janl/mustache.js. There are also some
server-side versions of mustache as well, which are not what we want for this chapter.

 ■ style.css —You can just create this as an empty file or start to fill in CSS to modify the
pages that you’ll generate for the album app.

Modifying Your URL Scheme

The app server thus far supports only /albums.json and /albums/ album_name .json. You can now
add support for static content, pages, and template files as follows:

125Assembling Content on the Client: Templates

/content/ some_file.ext

/pages/ some_page_name [/optional/junk]

/templates/ some_file.html

For content and template files, there are actually real files to download directly from the hard
disk. For page requests, however, you always return some variation on the basic.html you saw
in the previous section. It has the {{PAGE_NAME}} macro replaced with the name of the page
passed in through the URL; that is, /page/ home.

The updated handle_incoming_request now looks as follows:

function handle_incoming_request (req, res) {

 // parse the query params into an object and get the path

 // without them. (true for 2nd param means parse the params).

 req.parsed_url = url.parse(req.url, true);

 var core_url = req.parsed_url.pathname;

 // test this fixed url to see what they're asking for

 if (core_url.substring(0, 7) == /pages/) {

 serve_page(req, res);

 } else if (core_url.substring(0, 11) == /templates/) {

 serve_static_file("templates/" + core_url.substring(11), res);

 } else if (core_url.substring(0, 9) == /content/) {

 serve_static_file("content/" + core_url.substring(9), res);

 } else if (core_url == '/albums.json') {

 handle_list_albums(req, res);

 } else if (core_url.substr(0, 7) == '/albums'

 && core_url.substr(core_url.length - 5) == '.json') {

 handle_get_album(req, res);

 } else {

 send_failure(res, 404, invalid_resource());

 }

}

The serve_page function actually determines what page the client has asked for, fixes up the
basic.html template file, and sends the resulting HTML skeleton down to the browser:

/**

* All pages come from the same one skeleton HTML file that

* just changes the name of the JavaScript loader that needs to be

* downloaded.

*/

function serve_page (req, res) {

 var core_url = req.parsed_url.pathname;

 var page = core_url.substring(7); // remove /pages/

126 Chapter 6 Expanding Your Web Server

 // currently only support home!

 if (page != 'home') {

 send_failure(res, 404, invalid_resource());

 return;

 }

 fs.readFile(

 'basic.html',

 function (err, contents) {

 if (err) {

 send_failure(res, 500, err);

 return;

 }

 contents = contents.toString('utf8');

 // replace page name, and then dump to output.

 contents = contents.replace({{PAGE_NAME}} , page);

 res.writeHead(200, { "Content-Type": "text/html" });

 res.end(contents);

 }

);

}

Instead of using fs.createReadStream , you use fs.readFile , which reads in the entire
contents of a file to a Buffer . You have to convert this Buffer to a string, and then you can
fix up the contents so the right JavaScript loader is indicated. This approach is not recom-
mended for large files because it wastes a lot of memory, but for something as short as this
basic.html file, it’s perfectly fine and convenient!

The JavaScript Loader/Bootstrapper

The HTML pages are going to be quite simple, so you can start with a reasonably trivial
JavaScript loader. As you add more functionality later in the book, you make them a bit more
complicated, but Listing 6.2 shows the one you can start with now, which you save as home.js.

Listing 6.2 The JavaScript Page Loader (home.js)

$(function (){

 var tmpl, // Main template HTML

 tdata = {}; // JSON data object that feeds the template

 // Initialize page

 var initPage = function () {

127Assembling Content on the Client: Templates

 // Load the HTML template

 $.get("/templates/home.html", function(d){ // 1

 tmpl = d;

 });

 // Retrieve the server data and then initialize the page

 $.getJSON("/albums.json", function (d) { // 2

 $.extend(tdata, d.data);

 });

 // When AJAX calls are complete parse the template

 // replacing mustache tags with vars

 $(document).ajaxStop(function () {

 var renderedPage = Mustache.to_html(tmpl, tdata); // 3

 $("body").html(renderedPage);

 })

 }();

});

The $(function () { ... syntax is basically the same as $(document).ready(function ()
... in jQuery, just a bit shorter. So, this function is called after all the other resources (most
notably jQuery and Mustache) are loaded. It then does the following three things:

 1. It requests the template file, home.html from the server by calling the URL /tmpl/home.
html.

 2. It asks for the JSON data representing albums in the application, /albums.json.

 3. Finally, it gives these two things to Mustache to do its templating magic.

Templating with Mustache

The template engine I chose for the photo album app, Mustache, is easy to use, fast, and small.
Most interestingly, it has only tags, wrapped in {{ and }} , known as mustaches . It does not
have any if statements or looping constructs. Tags act as a set of rules that play out depending
on the data you provide.

The basic usage of Mustache, which you saw in the preceding sections, is

var html_text = Mustache.to_html(template , data);

$("body").html(html_text);

To print properties from an object, you use the following:

Mustache template:

The album "{{name}}" has {{photos.length}} photos.

128 Chapter 6 Expanding Your Web Server

JSON:

{

 "name": "Italy2012",

 "photos" : ["italy01.jpg", "italy02.jpg"]

}

Output:

The album "Italy2012" has 2 photos.

To apply a template over every item in a collection or array, you use the # character. For
example:

Mustache:

{#albums}}

 * {{name}}

{{/albums}}

JSON:

{

 "albums" : [{ "name" : "italy2012" },

 { "name" : "australia2010" },

 { "name" : "japan2010" }]

}

Output:

* italy2012

* australia2010

* japan2010

If you do not have any matching results, nothing is printed. You can capture this case by
adding the ̂ character:

Mustache:

{{#albums}}

 * {{name}}

{{/albums}}

{{^albums}}

 Sorry, there are no albums yet.

{{/albums}}

JSON:

{ "albums" : [] }

Output:

Sorry, there are no albums yet.

129Assembling Content on the Client: Templates

If the object after the # character isn’t a collection or array but just an object, the values from it
are used without iterating:

Mustache:

{{#album}}

 The album "{{name}}" has {{photos.length}} photos.

{{/album}}

JSON:

{

 "album": { "name": "Italy2012",

 "photos" : ["italy01.jpg", "italy02.jpg"] }

}

Output:

The album "Italy2012" has 2 photos.

By default, all values are HTML escaped; that is, < and > are replaced with < and >
respectively, and so on. To tell Mustache not to do this, use the extra hairy Mustache triple
brackets, {{{ and }}} :

Mustache:

{{#users}}

 * {{name}} says {{{ saying }}}

 * raw saying: {{ saying }}

{{/users}}

JSON:

{

 "users" : [{ "name" : "Marc", "saying" : "I like cats!" },

 { "name" : "Bob", "saying" : "I hate cats" },

}

Output:

* Marc says I like cats!

 * raw saying: I like cats!

* Bob says I hate cats

 * raw saying: I hate cats

Your Home Page Mustache Template

Now, it’s time to write your first template for your home page, which you can save in home.
html, shown in Listing 6.3 .

130 Chapter 6 Expanding Your Web Server

Listing 6.3 The Home Page Template File (home.html)

<div id="album_list">

 <p> There are {{ albums.length }} albums</p>

 <ul id="albums">

 {{#albums}}

 <li class="album">

 {{name}}

 {{/albums}}

 {{^albums}}

 Sorry, there are currently no albums

 {{/albums}}

</div>

If you have any albums, this code iterates over each of them and provides an element
with the name of the album and a link to the album page, accessed via the URL /page/
album/ album_name . When there are no albums, a simple message is printed instead.

Putting It All Together

I threw a lot of new stuff at you in the preceding sections, so stop now and make this all run.
You should now have the following file layout for your web application:

+ project_root/

 server.js // GitHub source

 basic.html // Listing 6.1

 + content/

 home.js // Listing 6.2

 album.js // Listing 6.5

 jquery-1.8.3.min.js

 mustache.js

 style.css

 + templates/

 home.html // Listing 6.3

 album.html // Listing 6.4

+ albums/

 + whatever albums you want

The code for home.html and album.html, which we have not previously seen, are in Listings
6.4 and 6.5 .

131Assembling Content on the Client: Templates

To run this project, you should be able to type

node server.js

You can then switch to a web browser and browse to http://localhost:8080/page/home. If you
want to see what happens on the command line, try using curl as follows:

curl -i -X GET http://localhost:8080/page/home

Because curl executes no client-side JavaScript for you, the template and JSON date are not
loaded via Ajax, and you get only the basic HTML skeleton from basic.html.

Listing 6.4 Another Mustache Template Page (album.html)

<div id="album_page">

 {{#photos}}

 <p> There are {{ photos.length }} photos in this album</p>

 <div id="photos">

 <div class="photo">

 <div class='photo_holder'>

 <img style='width: 250px; height: 250px; background-color: #fbb'

 src="{{url}}" border="0"/></div>

 <div class='photo_desc'><p>{{ desc }}</p></div>

 </div>

 </div> <!-- #photos -->

 <div style="clear: left"></div>

 {{/photos}}

 {{^photos}}

 <p> This album doesn't have any photos in it, sorry.<p>

 {{/photos}}

</div> <!-- #album_page -->

Listing 6.5 Our Album Page Bootstrapper JavaScript File (album.js)

$(function (){

 var tmpl, // Main template HTML

 tdata = {}; // JSON data object that feeds the template

 // Initialize page

 var initPage = function () {

http://localhost:8080/page/home
http://localhost:8080/page/home

132 Chapter 6 Expanding Your Web Server

 // get our album name.

 parts = window.location.href.split("/");

 var album_name = parts[5];

 // Load the HTML template

 $.get("/templates/album.html", function(d){

 tmpl = d;

 });

 // Retrieve the server data and then initialize the page

 $.getJSON("/albums/" + album_name + ".json", function (d) {

 var photo_d = massage_album(d);

 $.extend(tdata, photo_d);

 });

 // When AJAX calls are complete parse the template

 // replacing mustache tags with vars

 $(document).ajaxStop(function () {

 var renderedPage = Mustache.to_html(tmpl, tdata);

 $("body").html(renderedPage);

 })

 }();

});

function massage_album (d) {

 if (d.error != null) return d;

 var obj = { photos: [] };

 var af = d.data.album_data;

 for (var i = 0; i < af.photos.length; i++) {

 var url = "/albums/" + af.short_name + "/" + af.photos[i].filename;

 obj.photos.push({ url: url, desc: af.photos[i].filename });

 }

 return obj;

}

If you’ve done everything correctly, you should see output something similar to that shown in
Figure 6.2 . It’s not pretty, but now you can start to play around with the template file and the
style.css file to really make the application yours!

133Summary

Figure 6.2 The template-enabled JSON application running in the browser

Summary

This chapter introduced two key Node.js features, streams and events, that you used to serve up
static content from your web application. Equally importantly, this chapter introduced client-
side template engines, and you used Mustache to put together a simple start to a front-end for
your photo album application.

You might have noticed, however, that some of the things you have been doing thus far
seem unnecessarily complicated, tedious, or possibly even worryingly bug-prone (the
handle_incoming_request function in particular). It would be nice if there were some
further modules to help you keep track of things more easily.

It is thus that you are not going to develop the photo album much further in its current form,
but continue to look at some modules that will clean up your code significantly and allow
you to add features quickly and with little code. You will do so using the Express Application
Framework for Node .

This page intentionally left blank

Part III
Writing Web Applications

7 Building Web Applications with Express 137

8 Databases I: NoSQL (MongoDB) 161

9 Databases II: SQL (MySQL) 189

This page intentionally left blank

7
Building Web Applications

with Express

Thus far, you have been learning the fundamentals and core concepts of Node.js; armed with
these ideas, you have built some simple applications, although you’ve had to write a lot of
code to do some reasonably basic things. It’s time to change gears a bit and start building more
interesting web applications, using one of the biggest strengths of Node: the huge collection of
libraries and modules available to you through npm . Now that you understand the core work-
ings of Node and modules, it’s time to start finding ways to make your life significantly easier
and your development much faster.

In this chapter, you start working with express , a web application framework for Node. It takes
care of many of the basic tasks you learned about in previous chapters, and even exposes some
powerful new functionality that you can take advantage of in your apps. I show you how to
build apps with express and update your photo album app to use it. Then you look a bit more
at application design, learn how to expose the API from your JSON server, and explore some
new functionality you haven’t seen before.

Installing Express

In this chapter, you are going to slowly change the way you install applications via npm . You
might expect that, to install express, you’d just type

npm install express

and this would work just fine. However, it always installs the latest version of the express node
module, which you might not want when you’re deploying your application to live production
servers. When you develop and test against a particular version, it’s good to have that same
version run on the live servers. Only after you update to a newer version and fully test against
that do you want to use that new version on the live servers.

138 Chapter 7 Building Web Applications with Express

So, the basic methodology for building Node applications is now as follows:

 1. Create an application folder.

 2. Write a package.json file describing the package and stating which npm modules are
needed.

 3. Run npm install to make sure these modules are installed properly.

So, create a new folder called trivial_express/ for your express test application and then put the
following into package.json in that folder:

{

 "name": "Express-Demo",

 "description": "Demonstrates Using Express and Connect",

 "version": "0.0.1",

 "private": true,

 "dependencies": {

 "express": "3.x"

 }

}

The name and description fields are reasonably self-explanatory, and the app is just a toy
right now, so it has an appropriate version number. As you saw in Chapter 5 , “Modules,”
you can set private to true , which tells npm never to try installing it in the live npm registry
because it is just a test project for your own use.

After creating the file, you can run the following to read in the dependencies section and install
all the appropriate modules:

npm install

Because express itself depends on many different modules, you see a decent amount of output
before it exits, but then your node_modules/ folder should be ready to go. If you ever make a
change to your package.json, you can just run npm update to make sure all the modules are
correctly installed.

Hello World in Express

Recall from Chapter 1 , “Getting Started,” that your first web server in Node.js was roughly like
the following:

var http = require("http");

function process_request (req, res) {

 res.end("Hello World");

}

var s = http.createServer(process_request);

s.listen(8080);

http.createServer(process_request)

139Routing and Layers in Express

Well, in express, it looks quite similar:

var express = require('express');

var app = express();

app.get('/', function (req, res){

 res.end('hello world');

});

app.listen(8080);

Save that, run it, and then either run curl or localhost:8080 in the web browser, and you
should get the hello world output you expect. One of the great things about express is that
it is built on top of everything you have seen so far , so the HTTP request and response objects
have the same methods and properties they had before. To be certain, they have many new
things added that make them more interesting and powerful, but you are not operating in a
completely new world here—just an extended version of the one with which you are already
familiar and comfortable!

Routing and Layers in Express

Express is built on top of a Node module called connect . Connect is what is known as a middle-
ware library that provides a collection of common functions that network applications might
need. At the heart of this model is the concept of a flow of functions, or what some people like
to describe as a layered set of functions.

Middleware: What’s in a Name?

When you run into the term middleware for the first time, you can be forgiven for being worried
that you’ve missed out on some key new concept or technology shift. Fortunately, it’s nothing
so complicated.

Effectively, middleware originally was used to describe software components (typically on the
server side of things) that connected two things together, such as a business logic layer and a
database server, or storage services with application modules, and so on.

Over time, however, the term seems to have become more generic and broad, and now seems
to cover any piece of software that connects two things together in some way, shape, or form.

For the purposes of this book, the middleware exposed by connect that you see in express is
basically just a collection of modules that allow your web apps to seamlessly integrate function-
ality from either the server or browser.

You set up your application by creating a sequence of functions (layers) through which express
navigates. When one decides that it wants to take over, it can complete the processing and stop
the sequence. Express then walks back up through the sequence to the end. (Some layers do
their process “on the way in,” others “on the way out.”)

140 Chapter 7 Building Web Applications with Express

So, in the preceding express application, there is only one layer in the sequence:

app.get('/', function (req, res){ });

This function, which is a helper provided by express, processes the incoming request (by calling
the provided function) if the following are both true:

 ■ The HTTP request method is GET .

 ■ The requested URL is / .

If the incoming request does not match these criteria, the function is not called. If no func-
tion matches the requested URL—for example, browse or curl to /some/other/url—express just
gives a default response:

Cannot GET /some/other/url

Routing Basics

The general format of the URL routing functions is as follows:

app. method (url_pattern , optional_functions , request_handler_function);

The preceding route handler is for handling GET requests for the URL /. To support handling
a POST request on a particular URL, you can use the post method on the express application
object:

app.post("/forms/update_user_info.json", function (req, res) { ... });

Similarly, express supports DELETE and PUT methods, both of which you use in the photo-
sharing application, via the delete and put methods, respectively. Alternately, you can use the
all method to indicate that the routing function should accept the given URL with any given
HTTP method:

app.all("/users/marcwan.json", function (req, res) { ... });

The first parameter to the routing function is a regular expression to match an incoming
request URL. It can be simple as follows:

/path/to/resources

Or it can contain regular expression features, such as

/user(s)?/list

which matches both /users/list and /user/list, while

/users/*

matches anything starting with /users/.

141Routing and Layers in Express

One of the most powerful features of routing is the ability to use placeholders to extract named
values from the requested route, marked by the colon (:) character. When the route is parsed,
express puts the matched placeholders on the req.params object for you. For example:

app.get("/albums/:album_name.json", function (req, res) {

 res.end("Requested " + req.params.album_name);

});

If you call the preceding app requesting /albums/italy2012.json, you get the following output:

Requested italy2012.

You can put multiple parameters in the same URL as well:

app.get("/albums/:album_name/photos/:photo_id.json", function (req, res) { ...);

If your function is called, req.params has both album_name and photo_id set with the appro-
priate incoming values. Placeholders match any sequence of characters except for forward
slashes.

The function you provide to the routing method is given the request and response object, as
you have seen. However, it is also given a third parameter, which you are free to use or ignore.
It is usually labeled next (the flow of the layered functions is always continued through func-
tions called next), and gives you the opportunity to do some additional examinations on the
incoming URL and still choose to ignore it, as follows:

app.get("/users/:userid.json", function (req, res, next) {

 var uid = parseInt(req.params.userid);

 if (uid < 2000000000) {

 next(); // don't want it. Let somebody else process it.

 } else {

 res.end(get_user_info(uid));

 }

});

Updating Your Photo Album App for Routing

The photo album app is quite easy to adapt to express. You have to do only a few things to get
it working:

 ■ Create a package.json and install express.

 ■ Replace the http module’s server with that of express.

 ■ Replace the handle_incoming_request function with routing handlers.

 ■ Update the way you get query parameters in express. (They are placed on req.query for
your convenience.)

142 Chapter 7 Building Web Applications with Express

Now copy the last version of the photo app you created at the end of Chapter 6 , “Expanding
Your Web Server,” to a new folder (you can call it basic_routing/) and place the following
package.json inside:

{

 "name": "Photo-Sharing",

 "description": "Our Photo Sharing Application",

 "version": "0.0.2",

 "private": true,

 "dependencies": {

 "async": "0.1.x",

 "express": "3.x"

 }

}

You can run npm install to make sure express and async are installed to node_modules/. You
can then change the top of the server.js file to use express instead of the http module:

var express = require('express');

var app = express();

var path = require("path"),

 async = require('async');

 fs = require('fs');

And you change

http.listen(8080);

to

app.listen(8080);

Next, you have to replace the handle_incoming_request function, which looks as follows:

function handle_incoming_request (req, res) {

 req.parsed_url = url.parse(req.url, true);

 var core_url = req.parsed_url.pathname;

 // test this fixed url to see what they're asking for

 if (core_url.substring(0, 7) == '/pages/') {

 serve_page(req, res);

 } else if (core_url.substring(0, 11) == '/templates/') {

 serve_static_file("templates/" + core_url.substring(11), res);

 } else if (core_url.substring(0, 9) == '/content/') {

 serve_static_file("content/" + core_url.substring(9), res);

 } else if (core_url == '/albums.json') {

 handle_list_albums(req, res);

 } else if (core_url.substr(0, 7) == '/albums'

 && core_url.substr(core_url.length - 5) == '.json') {

http.listen(8080)

143Routing and Layers in Express

 handle_get_album(req, res);

 } else {

 send_failure(res, 404, invalid_resource());

 }

}

You replace it with these routing functions:

app.get(/albums.json , handle_list_albums);

app.get(/albums/:album_name.json , handle_get_album);

app.get(/content/:filename , function (req, res) {

 serve_static_file('content/' + req.params.filename, res);

});

app.get(/templates/:template_name , function (req, res) {

 serve_static_file("templates/" + req.params.template_name, res);

});

app.get(/pages/:page_name , serve_page);

app.get('*' , four_oh_four);

function four_oh_four (req, res) {

 send_failure(res, 404, invalid_resource());

}

Not only do the routing functions seem much cleaner and simpler than the previous func-
tion you had, but it is much easier to see the URLs that will be matched and how the app will
function. You added a new route matching "*" so that all other requests will be given a 404
response.

There is one problem with the routing functions right now, however. What happens if the user
asks for / pages/album/italy2012? Currently, the app will fail: The regular expression matching
for parameters never includes forward slash (/) characters, so the route /pages/:page_name
does not match. To solve this problem, you must add the extra route:

app.get(/pages/:page_name/:sub_page , serve_page);

Now all the pages will route to the correct function, and you have also set yourself up to
quickly identify the subpage being requested.

One of the nice things about the app now is that you no longer need to parse the incoming
requests or parameters; express does all this for you. So, whereas before you had to include
the url module to parse the incoming URL, it’s now ready for you right when you get to the
routing functions. Similarly, you never need to parse GET query parameters because they are
also prepared for you in advance. So you can update the small helper functions as follows:

function get_album_name (req) {

 return req.params.album_name;

}

function get_template_name (req) {

 return req.params.template_name;

}

144 Chapter 7 Building Web Applications with Express

function get_query_params (req) {

 return req.query;

}

function get_page_name (req) {

 return req.params.page_name;

}

With those changes, the photo sharing app should be updated and ready to go with express. It
should behave exactly like the old one.

REST API Design and Modules

When you are designing JSON servers such as the one you are writing, it is important to spend
some time thinking about the API and how clients will use it. Spending some time up front to
design a good API helps you to think about how people will use the application and also helps
you organize and refactor the code to reflect this conceptual understanding.

API Design

For the photo-sharing JSON server, you are developing what’s called a RESTful JSON server. The
word REST comes from Representational State Transfer , and basically implies that you can request
an accurate representation of an object from the server. REST APIs focus on four core operations
(which, coincidentally, map to four HTTP request methods):

 ■ Creation (PUT)

 ■ Retrieval (GET)

 ■ Updating (POST)

 ■ Destruction (DELETE)

Some people refer to these operations as CRUD , and pretty much everything you do in your
API centers around doing one of these things to objects, whether they are albums, photos,
comments, or users. Although it is not possible to design the perfect API, I will do my absolute
best to help you design one that is at least extremely intuitive and doesn’t leave the client
authors scratching their heads as to what you intended. Here are some principles to follow
when designing RESTful interfaces:

 ■ There are two basic kinds of URLs. Most URLs you design will be a variation on
these two:

1. Collections—for example, /albums.

2. Specific items within these collections—for example, /albums/italy2012.

145REST API Design and Modules

 ■ Collections should be nouns, specifically a plural noun, such as albums , users , or photos .

 ■ PUT /albums.json —The HTTP request body contains the JSON with the data for
the new album.

 ■ You fetch or update an object by specifying the specific instance on the collection with
GET or POST , respectively:

 ■ GET /albums/italy2012.json —The request returns this album.

 ■ POST /albums/italy2012.json —The HTTP request body contains the JSON with
the new data for this album.

 ■ You destroy objects with DELETE .

 ■ DELETE /albums/italy2012.json —Destroys this album.

 ■ If you have collections off collections, for example, photos associated with albums, you
just continue the pattern:

 ■ GET /albums/italy2012/photos.json —Returns all the photos in this album.

 ■ PUT /albums/italy2012/photos.json —Adds a new photo to this collection.

 ■ GET /albums/italy2012/photos/23482938424.json —Fetches the photo with
the given ID.

 ■ Slight changes to the way in which you get data from these collections, such as
pagination or filtering, should all be done via GET query parameters:

 ■ GET /albums.json?located_in=Europe —Fetches only those albums in Europe.

 ■ GET /albums/japan2010/photos.json?page=1&page_size=25 —Fetches the
given page of 25 photos for the japan2010 album.

 ■ You version the API so that if you want to make major changes to it in future versions
that would not be compatible, you can simply update the version number. You prefix the
API URLs with /v1/ for this first version.

 ■ Finally, you suffix all your URLs that return JSON with .json so that clients know what
data will be in the responses. In the future, you could also add support for .xml or
whatever other formats you want.

With this in mind, the new API for the photo-sharing application centers around albums. It
looks as follows:

/v1/albums.json

/v1/albums/:album_name.json

/pages/:page_name

/templates/:template_name

/content/:filename

146 Chapter 7 Building Web Applications with Express

Why don’t you put version numbers on the static content URLs? Because they’re not part of
the JSON server interface, but instead are helpers to provide the contents for the web browser
client. Users always get the latest version of this and thus get code that knows how to use the
correct version of the API.

It should be trivial for you to update the server.js file with this API design change. Don’t forget
to also update the bootstrapping JavaScript files in /content/ with the new URLs as well! Give
that a try before continuing onward.

Modules

With the APIs updated around the new REST interface, you can take advantage of some of the
clarity you have given to the application. You now have clear functionality boundaries around
albums and pages, so you can put those areas of functionality into their own modules.

Create a subfolder of the application folder called handlers/ and put the new modules in there.
For albums, create a file in that folder called albums.js and move the four album manipulation
functions into that file. You can view the source for this project in the GitHub under the folder
named handlers_as_modules/. Effectively, all you are doing is taking the code for the functions
handle_get_album and handle_list_albums and putting them, along with their accompany-
ing helper functions load_album and load_album_list , into the new module. Take a look at
this for a minute and see how easy it is to reorganize the code quickly.

Recall that the server.js file has a few functions to help you extract album names and query
parameters and the like. You can get rid of them and just put the appropriate member refer-
ences for req.params and req.query in the right place.

There are also a few functions to help you simplify sending success and error codes, such as
send_success , send_failure , and invalid_resource . You can put them into their own
module called helpers.js in the handlers/ directory. You refer to this at the top of the albums.js
file, and the contents are shown in Listing 7.1 .

Listing 7.1 Helper Functions (helpers.js)

exports.version = '0.1.0';

exports. make_error = function(err, msg) {

 var e = new Error(msg);

 e.code = err;

 return e;

}

exports. send_success = function(res, data) {

 res.writeHead(200, {"Content-Type": "application/json"});

 var output = { error: null, data: data };

 res.end(JSON.stringify(output) + "\n");

}

147REST API Design and Modules

exports. send_failure = function(res, code, err) {

 var code = (err.code) ? err.code : err.name;

 res.writeHead(code, { "Content-Type" : "application/json" });

 res.end(JSON.stringify({ error: code, message: err.message }) + "\n");

}

exports. invalid_resource = function() {

 return make_error("invalid_resource",

 "the requested resource does not exist.");

}

exports. no_such_album = function() {

 return make_error("no_such_album",

 "The specified album does not exist");

}

Now, when you want to refer to the album functions, you add the following require to the
top of server.js:

var album_hdlr = require('./handlers/albums.js');

And then you can update the routing handlers for the album functions to be as follows:

app.get('/v1/albums.json', album_hdlr.list_all);

app.get('/v1/albums/:album_name.json', album_hdlr.album_by_nam e);

Similarly, you can move the functionality to build pages into the handlers/ directory in a
file called pages.js, as in Listing 7.2 . This task really only involves moving the serve_page
function.

Listing 7.2 Building Pages (pages.js)

var helpers = require('./helpers.js'),

 fs = require('fs');

exports.version = "0.1.0";

exports. generate = function (req, res) {

 var page = req.params.page_name;

 fs.readFile(

 'basic.html',

 function (err, contents) {

 if (err) {

 send_failure(res, 500, err);

 return;

 }

148 Chapter 7 Building Web Applications with Express

 contents = contents.toString('utf8');

 // replace page name, and then dump to output.

 contents = contents.replace({{PAGE_NAME}} , page);

 res.writeHead(200, { "Content-Type": "text/html" });

 res.end(contents);

 }

);

};

You can then update the routing handler for pages, as follows:

var page_hdlr = require('./handlers/pages.js');

app.get('/v1/pages/:page_name', page_hdlr.generate);

After all is said and done, the server.js file has left only the functions for serving static content,
which you can view in the GitHub source for Chapter 7, “Building Web Applications with
Express,” in the handlers_as_modules/ project folder.

The application should have the same functionality as before, but is now much more modular-
ized and is easier to read and follow along. You now also have an idea for how you can add
functionality to it as you proceed.

Additional Middleware Functionality

I’ve mentioned before that express is built on top of the connect middleware library. These
components chain together and are given every incoming request one at a time until one of
them decides to process it and ceases calling the provided next function. The routing handlers
form part of this chain. Express and connect come with a number of other useful components,
so let’s spend a while reviewing some of the more interesting ones.

Usage

You use middleware components in express and connect with the use method. For example, to
use the logging middleware, you would write the following:

var express = require('express');

var app = express();

app.use(express.logger());

/* etc ... */

The express.logger function that you call returns a function that will form part of the filter
layering in your application. Express comes with a number of components built in, but you are
allowed to use any compatible middleware component. You can use any of those provided by
connect (provided you’ve added it to the dependencies section of your package.json file):

149Additional Middleware Functionality

var express = require('express');

var connect = require('connect');

var app = express();

app.use(connect.compress());

/* etc ... */

Because adding and importing connect only for this is a hassle, express actually re-exposes all
the connect middleware, so you can refer to them directly off the express module, as follows:

var express = require('express');

var app = express();

app.use(express.compress());

/* etc ... */

Or you can download third-party components from npm or somewhere else and install them
directly:

var express = require('express');

var middle_something = require('middle_something');

var app = express();

app.use(middle_something());

/* etc ... */

Configurations

Using only some middleware in certain configurations can be helpful. Some might modify your
output for speed or size so that it can be difficult or annoying to use curl to test your server.
To do this, you call the configure method on the express app, providing it with the name of
the configuration you want to target and a function that will be called when that configura-
tion is needed. If you don’t provide a name, that function is called always, and you can provide
multiple configuration names separated by a comma before you provide the function, as
shown here:

app.configure(function () {

 app.use(express.bodyParser());

});

app.configure('dev', function () {

 app.use(express.logger('dev'));

});

app.configure('production', 'staging', function () {

 app.use(express.logger());

});

150 Chapter 7 Building Web Applications with Express

Middleware or routes that are set up outside configure function calls are considered applicable
for all configurations.

To run your app with a particular configuration, set the NODE_ENV environment variable to the
one you want. On most shells on your Mac or UNIX computer, you can run node as follows:

NODE_ENV=production node program.js

On Windows, you can, in the command prompt, just set the NODE_ENV and then run node
(VERIFY):

set NODE_ENV=production

node program.js

Ordering of Middleware

The layering and order of these middleware components is important. As I mentioned, express
and connect work through them one at a time until it finds one that decides it can handle the
request. To see how this is relevant, consider the following simple app:

var express = require('express');

var app = express();

app.use(express.logger('dev'))

 // move this to AFTER the next use() and see what happens!

 .use(express.responseTime())

 .use(function(req, res){

 res.end('hello world\n');

 })

 .listen(8080);

Call this app by using

curl -i localhost:8080/blargh

You should see the following:

HTTP/1.1 200 OK

X-Powered-By: Express

X-Response-Time: 0ms

Date: Wed, 05 Dec 2012 04:11:43 GMT

Connection: keep-alive

Transfer-Encoding: chunked

hello world

Now, watch what happens if you move the responseTime middleware component to the end,
as follows:

151Additional Middleware Functionality

var express = require('express');

var app = express();

app.use(express.logger('dev'))

 // move this to AFTER the next use() and see what happens!

 .use(function(req, res){

 res.end('hello world\n');

 })

 .use(express.responseTime())

 .listen(8080);

Notice that the X-Response-Time header is gone!

HTTP/1.1 200 OK

X-Powered-By: Express

Date: Wed, 05 Dec 2012 04:14:05 GMT

Connection: keep-alive

Transfer-Encoding: chunked

hello world

The function that prints “Hello World!” took the request and handled it fully by not calling
next and by using res.end to close down the response, so the responseTime middleware
never got a chance to inspect the request. As you’re adding middleware components, think
about how they’re going to fit together for the various routes your app will be using.

Static File Handling

You have written a little bit of Node code to serve static files in your application, but it turns
out that doing so is largely unnecessary. Express (through connect) provides a static middle-
ware component that can do all this work for you!

To use it, you just pass the name of the base folder whose contents you want to serve statically
to the middleware creation function, as follows:

app.use(express.static("/secure/static_site_files"));

You put this before the URL routers, and then when a request comes in, this static layer takes
the URL, appends it to its base folder name, and looks to see whether that file exists. For
example, if you request /content/style.css, this middleware looks to see whether /secure/
static_site_files/content/style.css exists and is readable. If it is, the middleware serves that file
and stops calling further layers. If not, it calls the next function.

If you want to serve static content from multiple locations, add multiple components:

app.use(express.static("/secure/core_site_content"));

app.use(express.static("/secure/templates_and_html"));

152 Chapter 7 Building Web Applications with Express

Note, that while you technically can serve content from your application’s folder by using the
__dirname predefined variable in Node (it gives you the path to the currently executing Node
script), this is a terrible idea and you should never do it .

The static middleware provides no security at all, so say you take the photo-sharing application
from before and just add

app.use(express.static(__dirname));

You could then—as expected—browse for /content/style.css and /templates/home.html without
any problems. The problem is that if the user asks for /server.js or /handlers/albums.js, the
static middleware happily serves that as well because they both lie off the __dirname base
folder.

You might ask why security has not been added to the static middleware component, but this
is the wrong question—it’s an unnecessary complication. If you want to use this component,
put your static content outside your application source tree. Indeed, as I’ve hinted before, you
might even choose to have your application avoid serving static content altogether and opt to
put the static content on CDNs instead. So get used to separating those components out from
your source tree right from the start.

If you rewrite the server.js to use the static middleware, it looks something like the following. It
does, require, however, that you move the content/, templates/, and album/ folders to another
location so that you can avoid the security problem I just mentioned. The updated app struc-
ture looks as follows:

+ root_folder/

 + static/

 + albums/

 + content/

 + templates/

 + app/

 + handlers/

 + node_modules/

Then the server.js file can look like that shown in Listing 7.3 . One nice thing about this new
version of the server is that you’ve managed to remove two routing functions—those for
content and templates.

Listing 7.3 Using the Static Middleware (server.js)

var express = require('express');

var app = express();

var fs = require('fs'),

 album_hdlr = require('./handlers/albums.js'),

 page_hdlr = require('./handlers/pages.js'),

 helpers = require('./handlers/helpers.js');

153Additional Middleware Functionality

app.use(express.static(__dirname + "/../static"));

app.get('/v1/albums.json' , album_hdlr.list_all);

app.get('/v1/albums/:album_name.json' , album_hdlr.album_by_name);

app.get('/pages/:page_name' , page_hdlr.generate);

app.get('/pages/:page_name/:sub_page' , page_hdlr.generate);

app.get("/" , function (req, res) {

 res.redirect("/pages/home");

 res.end();

});

app.get('*' , four_oh_four);

function four_oh_four (req, res) {

 res.writeHead(404, { "Content-Type" : "application/json" });

 res.end(JSON.stringify(helpers.invalid_resource()) + "\n");

}

app.listen(8080);

If you’re paying attention, you might have noticed the new route added for / that reroutes you
to /pages/home using the ServerResponse.redirect method, to save some typing in the web
browser!

POST Data, Cookies, and Sessions

Express and connect already provide you with some help with the query parameters by
parsing them and placing them in req.query . Although you saw back in Chapter 4 , “Writing
Applications,” that it’s possible to load and parse form POST data yourself using streams, the
good news is that you don’t have to do this—middleware can do all this work for you. And you
can even have it set up cookies and sessions for you. The middleware components to do this
are bodyParser , cookieParser , and session , respectively:

app.use(express.bodyParser());

app.use(express.cookieParser());

For the first one, all body data is parsed and placed in req.body . If the incoming data is in
urlencoded or JSON format, the individual fields are placed in req.body as fields on an object.
cookieParser does something similar, except it places the values in req.cookies instead.

To set a cookie on the outgoing response, use the cookie function on the response object, with
the name and value (and optional timeout values):

154 Chapter 7 Building Web Applications with Express

var express = require('express');

var app = express()

 .use(express.logger('dev'))

 .use(express.cookieParser())

 .use(function(req, res){

 res.cookie("pet", "Zimbu the Monkey",

 { expires: new Date(Date.now() + 86400000) });

 res.end(JSON.stringify(req.query) + "\n");

 })

 .listen(8080);

To clear a cookie you’ve set, just use the clearCookie method on the response object with the
name of the cookie you’d like removed.

Setting up sessions is a bit more involved, requiring that you first provide a memory store and a
secret key to encrypt values with:

var MemStore = express.session.MemoryStore;

app.use(express.session({ secret: "cat on keyboard",

 cookie: { maxAge: 1800000 },

 store: new MemStore()}));

In this example, you set a secret key, and then you use the MemoryStore class provided by the
connect module. This is very convenient and easy to use but resets itself every time you restart
Node. If you want something that will last past server restarts, you should look in npm for some
other options that use external storage such as memcache or redis (see the next two chapters).
By default, session cookies never expire. If you want to expire them, provide the number of
milliseconds of validity. Here, the code indicates you will not accept session cookies older than
30 minutes.

When you have the sessions ready to go, req.session is populated with the session data. To
add new session data, you simply set a new value on this object. It is persisted and sent with
the response:

var express = require('express');

var MemStore = express.session.MemoryStore;

var app = express()

 .use(express.logger('dev'))

 .use(express.cookieParser())

 .use(express.session({ secret: "cat on keyboard",

 // see what happens for value of maybe 3000

 cookie: { maxAge: 1800000 },

 store: new MemStore()}))

 .use(function (req, res){

 var x = req.session.last_access; // undefined when cookie not set

 req.session.last_access = new Date();

155Additional Middleware Functionality

 res.end("You last asked for this page at: " + x);

 })

 .listen(8080);

File Uploads

The express bodyParser middleware component automatically includes the connect multipart
component for you, which provides support for file uploads. If you upload a file to your app
using the multipart/form-data enctype , you see the req.files contain any files sent with the
request:

var express = require('express');

var app = express()

 .use(express.logger('dev'))

 .use(express.bodyParser())

 .use(function (req, res){

 if (!req.files || !req.files.album_cover) {

 res.end("Hunh. Did you send a file?");

 } else {

 console.log(req.files);

 res.end("You have asked to set the album cover for "

 + req.body.albumid

 + " to '" + req.files.album_cover.name + "'\n");

 }

 })

 .listen(8080);

To test this, you can still use curl ! It can upload files along with the request by combining the
-F option (for form data) and the @ operator with a filename, which tells it to send that file:

curl -i -H "Expect:" --form 'album_cover=@oranges.jpg' \

--form albumid=italy2012 http://localhost:8080

There is one trick, however, and that is that curl sometimes expects the server to send the
response 100 Continue and then hang waiting. To get around this, you pass -H "Expect:"
to curl , which lets you test file uploads normally.

Better Browser Support for PUT and DELETE

PUT (object creation) and DELETE (object destruction) are critical parts of REST APIs that you
are using, and the client web pages send data to the server via these methods. For example, in
jQuery, to say you want to delete a comment, you use

$.ajax({

 url: 'http://server/v1/comments/234932598235.json',

 type: 'DELETE'

}

http://localhost:8080

156 Chapter 7 Building Web Applications with Express

In most modern web browsers, this technique works just fine. However, in some older browsers
(well, and any Internet Explorer version before 10), it fails. The reason is that their implementa-
tion of XmlHttpRequest , the object via which AJAX requests are done, does not support PUT or
DELETE as a method.

A common and elegant solution is to add a new header called X-HTTP-Method-Override
to your output, with the method you really want to use, and then just use POST to post the
request to the server. The jQuery code would then become

$.ajax({

 beforeSend: function(xhr) {

 xhr.setRequestHeader('X-HTTP-Method-Override', 'DELETE');

 },

 url: 'http://server/v1/comments/234932598235.json',

 type: 'POST'

}

To support this solution on your server, you use the methodOverride middleware, as follows:

app.use(express.methodOverride());

It looks for this header and converts POST requests to DELETE or PUT as necessary. Thus, the
app.delete and app.put routes work exactly as expected.

Compressing Output

To save on bandwidth costs and speed, many web servers compress output using gzip or some
similar algorithm before sending it down to the client. This requires that the client first indi-
cate that it is able to accept compressed output with the Accept-Encoding HTTP header. If
this is provided and the server knows how, it adds the Content-Encoding header on output
with the appropriate algorithm specified and then sends down the compressed data.

To use this feature in your app, you can use the compress middleware. It is truly a hassle-
free component; it checks whether the client accepts compressed output via headers, sets the
response headers, and compresses the output, as shown here:

var express = require('express');

var app = express();

app.use(express.logger('dev'));

app.use(express.compress());

app.get('/', function (req, res){

 res.send('hello world this should be compressed\n');

});

app.listen(8080);

157Additional Middleware Functionality

The only downside to this module is that it might interfere with some of your development
testing (curl just prints the compressed binary data to the screen, which can be annoying), so
it is common for you to use this only in a production configuration, as follows:

var express = require('express');

var app = express();

app.use(express.logger('dev'));

app.configure('production', function () {

 app.use(express.compress());

});

app.get('/', function(req, res){

 res.send('hello world this should be compressed\n');

});

app.listen(8080);

HTTP Basic Authentication

Middleware can also help you with HTTP Basic Authentication, if you want to use that in your
application. Despite being frequently maligned as outdated and unsafe, Basic Authentication,
when combined with SSL and HTTPS, actually can be a reasonable and sufficiently robust secu-
rity solution for your applications.

To use it, you set up the basicAuth middleware, providing it a function that takes a username
and password. It returns true if the provided authentication information is good, or false if
not, as shown here:

var express = require('express');

var app = express();

app.use(express.basicAuth(auth_user));

app.get('/', function (req, res){

 res.send('secret message that only auth\'d users can see\n');

});

app.listen(8080);

function auth_user (user, pass) {

 if (user == 'marcwan'

 && pass == 'this is how you get ants') {

 return true;

 } else {

 return false;

 }

}

158 Chapter 7 Building Web Applications with Express

If you run this server and then try to browse to it, it asks you for a username and password
before letting you continue.

Error Handling

Although you can handle errors individually for each request, sometimes you might like to
have a global error handler for common situations. To do this, you provide a function that
takes four parameters to the app.use method:

app.use(function (err, req, res, next) {

 res.status(500);

 res.end(JSON.stringify(err) + "\n");

});

This method is placed after all the other middleware setup and routing functions so that it’s the
last function that express calls in the app. You can examine the exact error in this function and
decide what to return to the user. As an example, here is a version that converts any given err
object or thrown Error object to appropriate JSON and returns it to the client as a server error:

var express = require('express');

var app = express();

app.get('/', function (req, res){

 throw new Error("Something bad happened");

 res.send('Probably will never get to this message.\n');

});

app.use(function (err, req, res, next) {

 res.status(500);

 res.end(err + "\n");

});

app.listen(8080);

Finally, Node.js allows you to specify a global application-wide error handler via the process
object:

process.on('uncaughtException', function (err) {

 console.log('Caught exception: ' + err);

});

It is, however, a terrible idea to use this for anything other than logging or diagnostic purposes.
If this function is called, you should assume that Node is in a very unhappy or unstable state
and should be restarted. So, for those situations when you use this function, it is merely to log
the error and then terminate the node process:

process.on('uncaughtException', function (err) {

 console.log('Caught exception: ' + err);

 process.exit(-1);

});

159Summary

You should use try/catches around situations in which errors are possible, and for those
extremely catastrophic or completely unexpected scenarios, let the process die and restart it—
automatically if possible.

Summary

This is another big chapter with tons of fun new stuff. I introduced the express application
framework, talked about middleware, described how to use cookies and sessions, and helped
you convert some of the code in your photo-sharing application into modules. You also
managed to get rid of a lot of code by using static file-serving middleware and can now add
compression, authentication, and better error handling to your applications.

The photo-sharing application is shaping up quite nicely, but it still feels a bit rudimentary;
you have only pictures in the albums and no great place to store any additional information
you might like to add to albums or photos. With this issue in mind, in the following chapters
you start looking at databases—first NoSQL (CouchDB) and then MySQL—and see how you can
use them in Node. You also look at some caching solutions and continue to grow out the little
app into something more useful.

This page intentionally left blank

8
Databases I: NoSQL

(MongoDB)

Now that you have a solid foundation for your web application and are fully set up with the
express web application framework and Mustache templating, you are ready to spend a couple
of chapters adding a back end to it. In these next two chapters, you look at two common ways
this is done. You start in this chapter by looking at a popular NoSQL database called MongoDB,
which provides a quick and easy way to serialize JSON data directly to a database. This chapter
covers the basics of using it, and then you update your album handler to let you store album
and photo data to the database.

I chose to work with MongoDB instead of other popular NoSQL databases—in particular,
CouchDB—because it’s particularly easy to use and has some wonderful querying functional-
ity that others don’t provide so readily. Because the goal of this book is to teach you about
working with Node.js, I wanted to choose the database server that was easiest to work with and
would let you focus on your primary mission.

If you’re more comfortable working with MySQL or other relational databases, this chapter is
still very much worth reading because you see how you move the album and photo handlers
from file-based to database-backed modules. In the next chapter, where I discuss relational
database systems, I provide a version of the code for MySQL as well.

Setting Up MongoDB

To use MongoDB in your Node.js applications, you need to do two things: install the database
server itself and make it work with Node.

Installing MongoDB

To get started with MongoDB, you can just download the binaries from http://mongodb.org .
Distributions for most platforms are in zip file format, and you extract them to some location
from which you’d like to run MongoDB.

http://mongodb.org

162 Chapter 8 Databases I: NoSQL (MongoDB)

In the bin/ subfolder, you should find a file called mongod, which is the base database server
daemon . To run the server in a development environment, you typically just use

./mongod --dbpath /path/to/db/dir # unix

mongod --dbpath \path\to\db\dir # windows

You can create a folder like ~/src/mongodbs or something similar to hold your databases. To
quickly delete them and restart your database server, just press Ctrl+C to kill the current server
and then run the following:

rm /path/to/db/dir/* && ./mongod --dbpath /path/to/db/dir # unix

del \path\to\db\dir* # windows 1

mongod --dbpath \path\to\db\dir # windows 2

To test your installation, open another terminal window or command prompt, and run the
mongo program, which runs a simple interpreter that looks a lot like the Node REPL:

Kimidori:bin marcw$./mongo

MongoDB shell version: 2.2.2

connecting to: test

> show dbs

local (empty)

>

For deployment to a live production environment, you should read the MongoDB documenta-
tion a bit further and learn about best practices and configuration options, including setting up
replication and backups, for example.

Using MongoDB in Node.js

After verifying the MongoDB installation, you need to hook it up to Node.js. The most popular
driver being used currently is the official native-mongodb for Node written by 10gen, the
company that produces MongoDB. There is a relational-object mapping (ROM) layer called
mongoose for MongoDB and Node.js that is quite popular, but you can stick with the simple
driver for this book because it provides everything you want (your data needs are not terribly
complicated) and lets you structure your code to be more database agnostic (as we’ll see in the
next chapter).

To install the mongodb module, add the following to your package.json file:

{

 "name": "MongodB-Demo",

 "description": "Demonstrates Using MongoDB in Node.js",

 "version": "0.0.1",

 "private": true,

 "dependencies": {

 "async": "0.1.x",

 "mongodb": "1.2.x"

 }

}

163Structuring Your Data for MongoDB

You can then run npm update to get the latest version of all the drivers. If you look in the
node_modules/ folder, you should see the mongodb/ subfolder there.

Structuring Your Data for MongoDB

MongoDB is quite suitable for use in your applications because it uses JSON for storage itself.
Whenever you create or add things to your database, you pass around JavaScript objects—
which is extremely convenient for you in Node!

If you’ve used relational databases before, you’re likely familiar with the terminology of data-
bases, tables, and rows. In MongoDB, these elements are called databases , collections , and
documents , respectively. Databases can be partitioned into collections of like objects, all of
which are represented by JSON documents.

All objects in MongoDB have a unique identifier, represented by _id . It can basically be any
type as long as it’s a unique value. If you do not provide one, MongoDB creates one for you:
It is an instance of the class ObjectID . When printed, it returns a 24-character hexadecimal
string, such as 50da80c04d403ebda7000012 .

It’s All JavaScript

For the photo album application, you need to create two document types: one for albums and
one for photos within albums. You do not need to use MongoDB’s autogenerated _id values
because you always have uniquely identifying information for your documents: For albums,
the album_name is always unique, and for photos, the combination of album_name and photo
filename is unique.

Thus, you store your albums as follows:

{ _id: "italy2012",

 name:"italy2012",

 title:"Spring Festival in Italy",

 date:"2012/02/15",

 description:"I went to Italy for Spring Festival." }

And your photo documents look similar to the following:

{ _id: "italy2012_picture_01.jpg",

 filename: "picture_01.jpg",

 albumid: "italy2012",

 description: "ZOMGZ it's Rome!",

 date: "2012/02/15 16:20:40" }

Attempting to insert values into a collection with duplicate _id values causes MongoDB to
signal an error. You use this capability to ensure that albums are unique and that image files
within an album are also unique.

164 Chapter 8 Databases I: NoSQL (MongoDB)

Data Types

For the most part, working with MongoDB in JavaScript is entirely natural feeling and straight-
forward. There are, however, a couple of scenarios in which you might run into some trouble,
so it’s worth covering them now.

As you saw back in Chapter 2 , “A Closer Look at JavaScript,” JavaScript represents all numbers
as 64-bit double-precision floating-point numbers. This gives you 53 bits of integer precision.
But there is frequently a legitimate need for fully 64-bit integer values. When the reduced preci-
sion and approximations are unacceptable, you can use the Long class that the mongodb driver
for Node has provided. It takes a string value in its constructor and lets you perform opera-
tions on 64-bit integer values. It has a number of methods such as toString , compare , and
add / subtract / multiply to mimic all common operations you’d expect for integer values.

JavaScript also has a Binary class that, as you might expect, lets you store binary data into
your documents. You can pass the constructor either a string or a Buffer object instance, and
the data is stored as binary data. When you reload the document later, the value is returned to
you again with some extra metadata describing how Mongo is storing it in the collection.

Finally, I want to mention the Timestamp class, which saves times to the database document,
but does so when you actually write the record! So you can just set a value as follows:

{ _id : "unique _identifier1234",

 when: new TimeStamp(),

 what: "Good News Everyone!" };

For a complete list of the data type helpers that the mongodb module provides, check out the
documentation at github.com/mongodb/node-mongodb-native and also look at the source
code in node_modules/mongodb/node_modules/bson/lib/bson/.

Understanding the Basic Operations

Now it’s time to make some things happen with MongoDB and Node.js. At the top of every file
that uses the mongodb module, include the following:

var Db = require('mongodb').Db,

 Connection = require('mongodb').Connection,

 Server = require('mongodb').Server;

For those situations in which you use extra types, such as Long or Binary , you can refer to
them through the mongodb module as follows:

var mongodb = require('mongodb');

var b = new mongodb.Binary(binary_data);

var l = new mongodb.Long(number_string);

165Understanding the Basic Operations

Connecting and Creating a Database

To connect to a MongoDB server, you need to use the Server and Db classes. You can option-
ally also use the Connection class to get the default port number that the server listens on. The
code to create the shared db object is as follows:

var Db = require('mongodb').Db,

 Connection = require('mongodb').Connection,

 Server = require('mongodb').Server;

var host = process.env['MONGO_NODE_DRIVER_HOST'] != null

 ? process.env['MONGO_NODE_DRIVER_HOST'] : 'localhost';

var port = process.env['MONGO_NODE_DRIVER_PORT'] != null

 ? process.env['MONGO_NODE_DRIVER_PORT'] : Connection.DEFAULT_PORT;

var db = new Db('PhotoAlbums',

 new Server(host, port,

 { auto_reconnect: true,

 poolSize: 20}),

 { w: 1 });

MongoDB and the mongodb module you use are quite flexible with the way they handle writes
and data integrity. The { w: 1 } flag you pass to the database constructor tells them to wait
until at least one confirmed write has succeeded before calling any callbacks you provide to
database operations. You can specify higher numbers for environments with replication or 0 for
those cases in which you don’t care to know when the writes are finished.

You don’t need to create a new Db object for each incoming request to your application server,
nor do you need to worry about multiple people trying to work with the database server at the
same time: The mongodb module handles connection pooling and manages multiple requests
at the same time for you. You can choose how many connections to maintain to the MongoDB
server by adjusting the value of the poolSize parameter to the Server object constructor, as
shown in the preceding code.

The name of the database you want to create, or use if it already exists, is passed to the
constructor of the Db object. It is created if it does not exist.

Creating Collections

As mentioned previously, collections are the MongoDB equivalent of tables from
relational database systems, and you create them with a call to either the collection or
createCollection method on the Db object. By specifying the { safe: true } option as a
second parameter, you can control exactly how they work with regards to existing or nonexist-
ing collections (see Table 8.1).

166 Chapter 8 Databases I: NoSQL (MongoDB)

Table 8.1 Creating

Function { safe: true } Effect

collection Yes Opens a collection if it exists; returns an error if not

collection No Opens a collection if it exists; creates the collection on
first insertion if not

createCollection Yes Creates a collection if it does not exist; returns an error
if it does exist

createCollection No Creates a collection if it doesn’t exist; returns an
existing collection if it does

To use the { safe: true } option, you write your code as follows:

db.collection("albums", { safe: true }, function (err, albums) {

 // ... do stuff

});

The code you will use most commonly to create or open a collection, however, is simply

db.collection("albums", function (err, albums) {

 if (err) {

 console.error(err);

 return;

 }

 // albums can now be used to do stuff ...

});

Inserting Documents into Collections

To insert data into a collection, you use the insert method as follows:

var album = { _id: "italy2012",

 name: "italy2012",

 title: "Spring Festival in Italy",

 date: "2012/02/15",

 description: "I went to Italy for Spring Festival." };

albums.insert(album, { safe: true }, function (err, inserted_doc) {

 if (err && err.name == "MongoError" && err.code == 11000) {

 console.log("This album exists already, sorry.");

 return;

 } else if (err) {

 console.log("Something bad happened.");

167Understanding the Basic Operations

 return;

 }

 // continue as normal

});

You see that you are specifying your own _id field for the document. If you did not, MongoDB
would provide one for you. If a document with that _id exists already, the callback is called
with an error. You also can see that you pass the { safe: true } option again because you
want to be sure that the write succeeds. If you were writing a store for an analytics application
and it would be acceptable to lose the occasional value here and there, you could omit this
option.

You can insert multiple documents at the same time by passing an array to the insert
function:

var docs = [{ _id: "italy2012",

 name: "italy2012",

 title: "Spring Festival in Italy",

 date: "2012/02/15",

 description: "I went to Italy for Spring Festival." },

 { _id: "australia2010",

 name: "australia2010",

 title: "Vacation Down Under",

 date: "2010/10/20",

 description: "Visiting some friends in Oz!" },

 { _id: "japan2010",

 name: "japan2010",

 title: "Programming in Tokyo",

 date: "2010/06/10",

 description: "I worked in Tokyo for a while."

 }];

albums.insert(docs, { safe: true }, callback);

Updating Document Values

To update a document, you can call the update method on a collection. The first parameter
identifies a document or set of documents, and the second is an object description of how to
modify the matching document(s). The object description comes in the form of a command
and a field or fields to accompany it:

photos.update({ filename: "photo_03.jpg", albumid: "japan2010" },

 { $set : { description: "NO SHINJUKU! BAD DOG!" } },

 { safe: true },

 callback);

In this description, you use the command $set , which tells MongoDB to update the value of
the provided field with the provided new value; here, you tell it to update the description field

168 Chapter 8 Databases I: NoSQL (MongoDB)

with a new value. There are a lot of different commands you can use, some of the more inter-
esting of which are listed in Table 8.2 .

Table 8.2 Update Commands

Command Effect

$set Sets the value of the given field to the given value.

$inc Increments the value of the specified field.

$rename Renames the specified field to the given new name.

$push If the field is an array, this pushes a new value to the end of it.

$pushAll If the field is an array, this pushes the given new multiple values to the end
of it.

$pop Removes the last element of the array field.

$pull Removes the given value(s) from an array field.

Deleting Documents from Collections

To delete data from a collection, you use the remove method on the collection object. You can
specify any set of fields to identify a document or set of documents:

photos.remove({ filename: "photo_04.jpg", albumid: "japan2010" },

 { safe: true },

 callback);

You can skip the safe: true option and the callback if you don’t care to confirm that the
delete completed:

photos.remove({ filename: "photo_04.jpg", albumid: "japan2010" });

You can also remove all documents in a collection by simply calling remove with no
arguments:

photos.remove(); // DANGER ZONE!!

Querying Collections

By far, the biggest reason that MongoDB is the most popular of the NoSQL database engines
is that its ability to find documents in collections most closely matches the behavior of tradi-
tional SQL database queries. All your work here is done with the find function on collections.

Find Basics

Before starting, note that the find method itself does not actually do any work; it sets up a
results cursor (which is an object that can iterate over the set of rows returned from executing

169Understanding the Basic Operations

a query). The query is not executed and the contents of the cursor are not actually generated
until you call one of the functions on it: nextObject , each , toArray , or streamRecords .

The first three operate as you’d expect: nextObject can just be called to get one document,
each calls a function with each resulting document, and toArray fetches all the documents
and passes them as a parameter to a callback:

var cursor = albums.find();

cursor.nextObject(function(err, first_match) {});

cursor.each(function(err, document) {});

cursor.toArray(function(err, all_documents) {});

If you call the find method with no arguments, it matches all documents in the collection.

You can use the streamRecords method on the cursor to create a Stream object, which you
can then use as you use other streams:

var stream = collection.find).streamRecords();

stream.on("data", function(document) {}); // why data and not readable ? See text!

stream.on("end", function() {});

This is the preferred way to fetch large numbers of records because it has a lower memory foot-
print than methods such as toArray , which return all the documents in a single chunk. At
the time of the writing of this book, the mongodb module had not been updated to the new
"readable" event model that streams in Node.js use now; it is entirely possible that this has
changed by the time you start using it. So, double-check, just to be sure. (The best place would
be at the official site for the driver, http://mongodb.github.com/node-mongodb-native/ .)

To find specific documents in your collection, you can specify the fields to match as the first
parameter to the find function:

photos.find({ albumid: "italy2012" }).toArray(function (err, results));

You can use operators in find queries quite similar to those you saw previously for the update
function. For example, if you had documents for people, you could find all people older than
age 20 with

users.find({ age: { $gt: 20 } }).toArray(callback);

You can combine these operators using logical operations such as $and and $or to give more
powerful queries. For example, to return all users between the ages of 20 and 40 (inclusive), you
could use

users.find({ $and: [{ age: { $gte: 20 } }, { age: { $lte: 40 } }] });

Some more operators are shown in Table 8.3 . For a full listing of them, consult the MongoDB
query documentation.

http://mongodb.github.com/node-mongodb-native/

170 Chapter 8 Databases I: NoSQL (MongoDB)

Table 8.3 Find Operators

Operator Meaning

$ne Not equal

$lt Less than

$lte Less than or equal

$gt Greater than

$gte Greater than or equal

$in Matches if the field value is one of the values in the given array of values

$nin Matches if the field value is not one of the values in the given array of values

$all Matches if the given field is an array and contains all the values in the given
array of values

Searching for MongoDB Generated IDs

I mentioned previously that if you do not provide an _id field in documents you insert,
MongoDB provides one for you. These autogenerated _id fields are of type ObjectID and
are represented as 24-character hexadecimal strings.

The problem is that if you use these fields, you cannot search for them simply by specifying the
string value of the ID. You need to wrap them back in an ObjectID class constructor, as fol-
lows:

var ObjectID = require('mongodb').ObjectID;

var idString = '50da9d8d138cbc5da9000012';

collection.find({_id: new ObjectID(idString)}, callback);

If you try to execute the following, you don’t get any matches:

collection.find({ _id: idString }, callback);

You won’t encounter this problem in the apps you’re developing in this book because you are
going to always generate your own _id fields.

Further Refining Your Finds

To implement paging and sorting on your pages, you need to be able to manipulate or other-
wise modify the results of the find operations. The mongodb module lets you do this by
chaining additional function calls with these effects to the find operation, before you call one
of the functions to generate a cursor.

The methods you’ll use the most are skip , limit , and sort . The first indicates how many
documents in the result set should be ignored before you start returning any, the second

171Updating Your Photo Albums App

controls how many should be returned after you’ve done any skipping, and the last controls
ordering and sorting—you are welcome to sort on more than one field.

So, to fetch all the photos in an album sorted ascending by date, you would write

photos.find({ albumid: "italy2012" })

 .sort({ date: 1}) // 1 is asc, -1 is desc

 .toArray(function (err, results));

To return the third page of these photos, assuming pages are 20 photos each, you would use

photos.find({ albumid: "italy2012" })

 .sort({ date: 1}) // 1 is asc, -1 is desc

 .skip(40)

 .limit(20)

 .toArray(function (err, results) { });

Again, anything called before the toArray function at the end is just setting up the results
cursor, and the query is not executed until that last function call.

You can pass multiple fields to the sort function for sorting on multiple values:

collection.find()

 .sort({ field1: -1, field2: 1 })

 .toArray(callback);

Updating Your Photo Albums App

With this understanding of the basics of using MongoDB in Node.js, you can update your
photo-sharing application to use a database instead of just the simple file system functions to
store album and photo information. You still keep the actual image files on your hard disk,
but in a real production environment, you would put them on some sort of storage server or
content delivery network (CDN).

Writing the Low-Level Operations

You begin by adding a new folder named data/ to your application. You can put low-level oper-
ations to the back end in this folder. You also create a file called backend_helpers.js that will
contain some functions to help you work with and generate errors, validate parameters, and do
some other common back-end operations. These tasks are all pretty simple, and you can view
the source code on GitHub.

Creating a Configuration File

In the application root folder, create a new file called local.config.js, which contains the follow-
ing JavaScript:

172 Chapter 8 Databases I: NoSQL (MongoDB)

exports.config = {

 db_config: {

 host: "localhost",

 // use default "port"

 poolSize: 20

 },

 static_content: "../static/"

};

Including this file means that all of the configuration options are handily located in one place,
and you can change it trivially without having to rummage through code looking for things.

Getting Your Databases and Collections

Next, create a file called db.js in data/. In this file, you create the database connection and
collections you use for your photo application. In this file, you also create the connection to
the PhotoAlbums database using the information in the local.config.js file:

var Db = require('mongodb').Db,

 Connection = require('mongodb').Connection,

 Server = require('mongodb').Server,

 async = require('async'),

 local = require("../local.config.js");

var host = local.config.db_config.host

 ? local.config.db_config.host

 : 'localhost';

var port = local.config.db_config.port

 ? local.config.db_config.port

 : Connection.DEFAULT_PORT;

var ps = local.config.db_config.poolSize

 ? local.config.db_config.poolSize : 5;

var db = new Db('PhotoAlbums',

 new Server(host, port,

 { auto_reconnect: true,

 poolSize: ps}),

 { w: 1 });

Now, to get the actual album and photo collections, you need to open the connection and
make sure those collections exist. You do this by adding the following function to db.js:

exports. init = function (callback) {

 async.waterfall([

 // 1. open database connection

 function (cb) {

 db.open(cb);

 },

173Updating Your Photo Albums App

 // 2. create collections for our albums and photos. if

 // they already exist, then we're good.

 function (opened_db, cb) {

 db.collection("albums", cb);

 },

 function (albums_coll, cb) {

 exports.albums = albums_coll;

 db.collection("photos", cb);

 },

 function (photos_coll, cb) {

 exports.photos = photos_coll;

 cb(null);

 }

 // we'll just pass results back to caller, so can skip results fn

], callback);

};

exports. albums = null;

exports. photos = null;

You can see that albums and photos are now exported objects in db.js, so people can fetch
them whenever they need them by writing

var db = require('./db.js');

var albums = db.albums ;

Finally, you need to make sure your db.init function is called before the application starts, so
replace the call in server.js

app.listen(8080);

with

db.init(function (err, results) {

 if (err) {

 console.error("** FATAL ERROR ON STARTUP: ");

 console.error(err);

 process.exit(-1);

 }

 app.listen(8080);

});

Creating an Album

The low-level code to create a new album becomes

exports. create_album = function (data, callback) {

 var final_album;

 var write_succeeded = false;

174 Chapter 8 Databases I: NoSQL (MongoDB)

 async.waterfall([

 function (cb) {

 try {

 backhelp.verify(data,

 ["name", "title", "date", "description"]);

 if (!backhelp.valid_filename(data.name))

 throw invalid_album_name();

 } catch (e) {

 cb(e);

 }

 cb(null, data);

 },

 // create the album in mongo.

 function (album_data, cb) {

 var write = JSON.parse(JSON.stringify(album_data));

 write._id = album_data.name;

 db.albums.insert(write, { w: 1, safe: true }, cb);

 },

 // make sure the folder exists.

 function (new_album, cb) {

 write_succeeded = true;

 final_album = new_album[0];

 fs.mkdir(local.config.static_content

 + "albums/" + data.name, cb);

 }

],

 function (err, results) {

 if (err) {

 if (write_succeeded)

 db.albums.remove({ _id: data.name }, function () {});

 if (err instanceof Error && err.code == 11000)

 callback(backhelp.album_already_exists());

 else if (err instanceof Error && err.errno != undefined)

 callback(backhelp.file_error(err));

 else

 callback(err);

 } else {

 callback(err, err ? null : final_album);

 }

 });

};

Although the async module makes the code a bit “longer” and spread out, I hope you can
already see how much it cleans things up. All the asynchronous operations are expressed as a
sequence of things that need to be done; async takes care of all the messy details for you!

175Updating Your Photo Albums App

You do one trick here in the code to clone an object:

var write = JSON.parse(JSON.stringify(album_data));

It turns out that quickly serializing and deserializing an object is one of the quickest ways to
clone it in JavaScript. The reason we clone the object in the above previous code is so that
we do not modify an object that “isn’t ours,” per se. It can be considered rude (or downright
buggy) to modify objects passed in to our function, so we have just quickly cloned it before
adding the _id field. Note that backhelp is simply the backend (in the data/ folder) version of
the helper functions we’ve seen before in helpers.js.

Finding Albums

Loading an album given its name is quite an easy operation:

exports. album_by_name = function (name, callback) {

 db.albums.find({ _id: name }).toArray(function (err, results) {

 if (err) {

 callback(err);

 return;

 }

 if (results.length == 0) {

 callback(null, null);

 } else if (results.length == 1) {

 callback(null, results[0]);

 } else {

 console.error("More than one album named: " + name);

 console.error(results);

 callback(backutils.db_error());

 }

 });

};

You spend more time on error handling and validation than you do actually finding the
album.

Listing All Albums

Similarly, listing all the albums is quite easy:

exports. all_albums = function (sort_field, sort_desc, skip, count, callback) {

 var sort = {};

 sort[sort_field] = sort_desc ? -1 : 1;

 db.albums.find()

 .sort(sort)

 .limit(count)

 .skip(skip)

 .toArray(callback);

};

176 Chapter 8 Databases I: NoSQL (MongoDB)

Getting the Photos in an Album

Finding all photos in a given album is also no sweat:

exports. photos_for_album = function (album_name, pn, ps, callback) {

 var sort = { date: -1 };

 db.photos.find({ albumid: album_name })

 .skip(pn)

 .limit(ps)

 .sort("date")

 .toArray(callback);

};

Adding a Photo to an Album

Indeed, the only other semicomplicated operation you need to perform is adding a photo to
an album, and that is a bit more work because you have to add the step to copy the temporary
uploaded file to its final resting place in the static/albums/ folder:

exports. add_photo = function (photo_data, path_to_photo, callback) {

 var final_photo;

 var base_fn = path.basename(path_to_photo).toLowerCase();

 async.waterfall([

 function (cb) {

 try {

 backhelp.verify(photo_data,

 ["albumid", "description", "date"]);

 photo_data.filename = base_fn;

 if (!backhelp.valid_filename(photo_data.albumid))

 throw invalid_album_name();

 } catch (e) {

 cb(e);

 }

 cb(null, photo_data);

 },

 // add the photo to the collection

 function (pd, cb) {

 pd._id = pd.albumid + "_" + pd.filename;

 db.photos.insert(pd, { w: 1, safe: true }, cb);

 },

 // now copy the temp file to static content

 function (new_photo, cb) {

 final_photo = new_photo[0];

 var save_path = local.config.static_content + "albums/"

 + photo_data.albumid + "/" + base_fn;

 backhelp.file_copy(path_to_photo, save_path, true, cb);

177Updating Your Photo Albums App

 }

],

 function (err, results) {

 if (err && err instanceof Error && err.errno != undefined)

 callback(backhelp.file_error(err));

 else

 callback(err, err ? null : final_photo);

 });

};

Modifying the API for the JSON Server

Next, you add the following two new API functions to the JSON server to facilitate creating
albums and adding photos to them:

app.put(/v1/albums.json , album_hdlr.create_album);

app.put(/v1/albums/:album_name/photos.json , album_hdlr.add_photo_to_album);

The nice thing about express is that it makes this process that simple. When you add these two
lines, the API is expanded with new functionality, and now you just need to update the album
handler to support these new features.

Because the API now supports putting data, including files and POST bodies, you need to add
some more middleware to support this capability. So, add the following to the top of the server.
js file:

app.use(express.logger('dev'));

app.use(express.bodyParser({ keepExtensions: true }));

Here, you add some logging output, and the bodyParser populates the req.body and req.
files when requests come in. Note that you instruct the bodyParser middleware to leave the
file extensions on incoming files. By default, it removes them.

Updating Your Handlers

Now that you have the database primitives for your album and photo operations, you need to
modify the album handler to use them instead of file system operations.

Some Helpful Classes

Begin by creating a couple of helpful little classes. The one for photos is as follows:

function Photo (photo_data) {

 this.filename = photo_data.filename;

 this.date = photo_data.date;

 this.albumid = photo_data.albumid;

 this.description = photo_data.description;

 this._id = photo_data._id;

}

178 Chapter 8 Databases I: NoSQL (MongoDB)

Photo.prototype. _id = null;

Photo.prototype. filename = null;

Photo.prototype. date = null;

Photo.prototype. albumid = null;

Photo.prototype. description = null;

Photo.prototype .response_obj = function() {

 return {

 filename: this.filename,

 date: this.date,

 albumid: this.albumid,

 description: this.description

 };

};

The only real interesting function here is the response_obj function. You use it because the
Photo class theoretically holds everything you could want to know about a photo, but when
you pass it back in JSON to the caller of an API, there might be some data you don’t want to
include in that response object. Consider a User object; you would certainly want to scrub out
passwords and other sensitive data.

A basic version of an Album object would also look as follows:

function Album (album_data) {

 this.name = album_data.name;

 this.date = album_data.date;

 this.title = album_data.title;

 this.description = album_data.description;

 this._id = album_data._id;

}

Album.prototype. _id = null;

Album.prototype. name = null;

Album.prototype. date = null;

Album.prototype. title = null;

Album.prototype. description = null;

Album.prototype. response_obj = function () {

 return { name: this.name,

 date: this.date,

 title: this.title,

 description: this.description };

};

Now, look at how the handler class is reorganized to use the low-level album operations you
wrote in the previous section.

179Updating Your Photo Albums App

Creating an Album

Again, you almost write more code checking for errors than you do performing the operation.
This is the nature of good coding. Too many books and tutorials skip out on these things, and
it’s one of the reasons there’s so much bad code in the world today!

var album_data = require('../data/album.js');

// ... etc ...

exports. create_album = function (req, res) {

 async.waterfall([

 function (cb) {

 if (!req.body || !req.body.name || !helpers.valid_filename(req.body.name))
{

 cb(helpers.no_such_album());

 return;

 }

 cb(null);

 },

 function (cb) {

 album_data.create_album(req.body, cb);

 }

],

 function (err, results) {

 if (err) {

 helpers.send_failure(res, err);

 } else {

 var a = new Album(results);

 helpers.send_success(res, {album: a.response_obj() });

 }

 });

};

Loading an Album by Name

Once again, error checking and handling make up 90 percent of your work. I highlighted the
call here to the back end to actually fetch the album:

exports. album_by_name = function (req, res) {

 async.waterfall([

 function (cb) {

 if (!req.params || !req.params.album_name)

 cb(helpers.no_such_album());

 else

 album_data.album_by_name(req.params.album_name, cb);

 }

],

 function (err, results) {

 if (err) {

180 Chapter 8 Databases I: NoSQL (MongoDB)

 helpers.send_failure(res, err);

 } else if (!results) {

 helpers.send_failure(res, helpers.no_such_album());

 } else {

 var a = new Album(album_data);

 helpers.send_success(res, { album: a.response_obj() });

 }

 });

};

Listing All Albums

Here, you fetch only 25 albums at a time so as not to have overly complicated pages. You could
make these configurable via query parameters if you wanted:

exports. list_all = function (req, res) {

 album_data.all_albums("date", true, 0, 25, function (err, results) {

 if (err) {

 helpers.send_failure(res, err);

 } else {

 var out = [];

 if (results) {

 for (var i = 0; i < results.length; i++) {

 out.push(new Album(results[i]).response_obj());

 }

 }

 helpers.send_success(res, { albums: out });

 }

 });

};

This model of separating the handlers and database code seems as though it makes a bit more
work (and it does a little bit), but it has the huge advantage of giving you a very flexible back
end. In the next chapter, you see that you can switch the data store for albums and photos to
another database system without touching the album handler at all! You only need to modify
the classes in the data/ folder.

Getting All Photos for an Album

The code to view photos in an album is shown in Listing 8.1 . It involves two new methods,
exports.photos_for_album and a new function to the Album object, photos . Most of the
complexity of these functions comes from handling paging and slicing up the output array of
photos.

181Updating Your Photo Albums App

Listing 8.1 Getting All the Photos in an Album

Album.prototype. photos = function (pn, ps, callback) {

 if (this.album_photos != undefined) {

 callback(null, this.album_photos);

 return;

 }

 album_data.photos_for_album(

 this.name,

 pn, ps,

 function (err, results) {

 if (err) {

 callback(err);

 return;

 }

 var out = [];

 for (var i = 0; i < results.length; i++) {

 out.push(new Photo(results[i]));

 }

 this.album_photos = out;

 callback(null, this.album_photos);

 }

);

};

exports. photos_for_album = function(req, res) {

 var page_num = req.query.page ? req.query.page : 0;

 var page_size = req.query.page_size ? req.query.page_size : 1000;

 page_num = parseInt(page_num);

 page_size = parseInt(page_size);

 if (isNaN(page_num)) page_num = 0;

 if (isNaN(page_size)) page_size = 1000;

 var album;

 async.waterfall([

 function (cb) {

 // first get the album.

 if (!req.params || !req.params.album_name)

 cb(helpers.no_such_album());

 else

 album_data.album_by_name(req.params.album_name, cb);

 },

 function (album_data, cb) {

 if (!album_data) {

 cb(helpers.no_such_album());

182 Chapter 8 Databases I: NoSQL (MongoDB)

 return;

 }

 album = new Album(album_data);

 album.photos(page_num, page_size, cb);

 },

 function (photos, cb) {

 var out = [];

 for (var i = 0; i < photos.length; i++) {

 out.push(photos[i].response_obj());

 }

 cb(null, out);

 }

],

 function (err, results) {

 if (err) {

 helpers.send_failure(res, err);

 return;

 }

 if (!results) results = [];

 var out = { photos: results,

 album_data: album.response_obj() };

 helpers.send_success(res, out);

 });

};

Adding a Photo

Finally, you can write the API to add photos; it is shown in Listing 8.2 . This API also involves
adding a new method to the Album object.

Listing 8.2 Adding Photos Using the API

Album.prototype. add_photo = function (data, path, callback) {

 album_data.add_photo(data, path, function (err, photo_data) {

 if (err)

 callback(err);

 else {

 var p = new Photo(photo_data);

 if (this.all_photos)

 this.all_photos.push(p);

 else

 this.app_photos = [p];

 callback(null, p);

 }

 });

};

183Updating Your Photo Albums App

exports. add_photo_to_album = function (req, res) {

 var album;

 async.waterfall([

 function (cb) {

 if (!req.body)

 cb(helpers.missing_data("POST data"));

 else if (!req.files || !req.files.photo_file)

 cb(helpers.missing_data("a file"));

 else if (!helpers.is_image(req.files.photo_file.name))

 cb(helpers.not_image());

 else

 album_data.album_by_name(req.params.album_name, cb);

 },

 function (album_data, cb) {

 if (!album_data) {

 cb(helpers.no_such_album());

 return;

 }

 album = new Album(album_data);

 req.body.filename = req.files.photo_file.name;

 album.add_photo(req.body, req.files.photo_file.path, cb);

 }

],

 function (err, p) {

 if (err) {

 helpers.send_failure(res, err);

 return;

 }

 var out = { photo: p.response_obj(), album_data: album.response_obj() };

 helpers.send_success(res, out);

 });

};

Adding Some New Pages to the Application

The JSON server is now completely modified to use MongoDB for all its album and photo
storage work. What you don’t have yet, however, are some pages to let you create new albums
or add new photos to albums via the web interface. Let’s fix that now.

Defining the URLs for the Pages

Here, you place the two new pages you want to create in /pages/admin/add_album and /pages/
admin/add_photo. Fortunately, you don’t need to modify the URL handlers in the express app
for this at all.

184 Chapter 8 Databases I: NoSQL (MongoDB)

Creating an Album

Don’t forget that for each page in the Mustache-templated site, you need two files:

 ■ A JavaScript bootstrapper

 ■ A template HTML file

The code to bootstrap the add album page is trivial; it doesn’t even need to load any JSON from
the server, only the template. It is shown in Listing 8.3 .

Listing 8.3 admin_add_album.js

$(function (){

 var tmpl, // Main template HTML

 tdata = {}; // JSON data object that feeds the template

 // Initialize page

 var initPage = function () {

 // Load the HTML template

 $.get("/templates/admin_add_album.html", function (d){

 tmpl = d;

 });

 // When AJAX calls are complete parse the template

 // replacing mustache tags with vars

 $(document).ajaxStop(function () {

 var renderedPage = Mustache.to_html(tmpl, tdata);

 $("body").html(renderedPage);

 })

 }();

});

The code for the HTML page to add the album is a bit more complicated because you need to
do some JavaScript to do the form submission via Ajax. This code is shown in Listing 8.4 . The
trickery you see with the dateString variable is to ensure that dates are always in the format
yyyy/mm/dd , and not sometimes yyyy/m/d .

Listing 8.4 admin_add_album.html

<form name="create_album" id="create_album"

 enctype="multipart/form-data"

 method="PUT"

 action="/v1/albums.json">

<h2> Create New Album: </h2>

<dl>

185Updating Your Photo Albums App

 <dt>Album Name:</dt>

 <dd><input type='text' name='name' id="name" size='30'/></dd>

 <dt>Title::</dt>

 <dd><input id="photo_file" type="text" name="title" size="30"/></dd>

 <dt>Description:</dt>

 <dd><textarea rows="5" cols="30" name="description"></textarea></dd>

</dl>

<input type="hidden" id="date" name="date" value=""/>

</form>

<input type="button" id="submit_button" value="Upload"/>

< script type="text/javascript">

 $("input#submit_button").click(function (e) {

 var m = new Date();

 var dateString =

 m.getUTCFullYear() +"/"+

 ("0" + (m.getUTCMonth()+1)).slice(-2) +"/"+

 ("0" + m.getUTCDate()).slice(-2) + " " +

 ("0" + m.getUTCHours()).slice(-2) + ":" +

 ("0" + m.getUTCMinutes()).slice(-2) + ":" +

 ("0" + m.getUTCSeconds()).slice(-2);

 $("input#date").val(dateString);

 var json = "{ \"name\": \"" + $("input#name").val()

 + "\", \"date\": \"" + $("input#date").val()

 + "\", \"title\": \"" + $("input#title").val()

 + "\", \"description\": \"" + $("textarea#description").val()

 + "\" }";

 $.ajax({

 type: "PUT",

 url: "/v1/albums.json",

 contentType: 'application/json', // request payload type

 "content-type": "application/json", // what we want back

 data: json,

 success: function (resp) {

 alert("Success! Going to album now");

 window.location = "/pages/album/" + $("input#name").val();

 }

 });

 });

< /script >

186 Chapter 8 Databases I: NoSQL (MongoDB)

Adding Photo to Album

To add a photo to the album, you have to write a bit more complicated code. In the bootstrap-
per, you need a list of all the albums so that the user can select to which album the photo
should be added. This code is shown in Listing 8.5 .

Listing 8.5 admin_add_photo.js

$(function (){

 var tmpl, // Main template HTML

 tdata = {}; // JSON data object that feeds the template

 // Initialize page

 var initPage = function () {

 // Load the HTML template

 $.get("/templates/admin_add_photos.html", function(d){

 tmpl = d;

 });

 // Retrieve the server data and then initialize the page

 $.getJSON("/v1/albums.json", function (d) {

 $.extend(tdata, d.data);

 });

 // When AJAX calls are complete parse the template

 // replacing mustache tags with vars

 $(document).ajaxStop(function () {

 var renderedPage = Mustache.to_html(tmpl, tdata);

 $("body").html(renderedPage);

 })

 }();

});

And finally, I leave you to look in the create_album/ folder in the GitHub source for Chapter 8
for the source of the HTML page that shows the form and performs the actual uploads to the
server (admin_add_photo.html). The big thing this file does is use the FormData extension to
the XmlHttpRequest object to allow Ajax file uploads, as shown here:

 $("input#submit_button").click(function (e) {

 var m = new Date();

 var dateString = /* process m -- see GitHub */

 $("input#date").val(dateString);

 var oOutput = document.getElementById("output");

 var oData = new FormData (document.forms.namedItem("add_photo"));

187Recapping the App Structure

 var oReq = new XMLHttpRequest();

 var url = "/v1/albums/" + $("#albumid").val() + "/photos.json";

 oReq.open("PUT", url, true);

 oReq.onload = function (oEvent) {

 if (oReq.status == 200) {

 oOutput.innerHTML = "\

Uploaded! Continue adding or <a href='/pages/album/"

 + $("#albumid").val() + "'>View Album";

 } else {

 oOutput.innerHTML = "\

Error " + oReq.status + " occurred uploading your file.<br \/>";

 }

 };

 oReq.send(oData);

 });

FormData is powerful and awesome but is not supported in Internet Explorer (IE) versions prior
to 10. Firefox, Chrome, and Safari have all supported it for quite a while. If you need to support
older IE browsers, you need to look at other methods for uploading files, such as using Flash or
otherwise regular old HTML Forms.

Recapping the App Structure

The application has gotten a bit more complicated; it is worth spending a few seconds again
covering exactly how you’ve structured it. You’ve moved all static content into the static/
folder and the code into the app/ folder, so you now have the following basic layout:

The static/ folder contains the following sub-folders:

 ■ albums/ —Contents of our albums and their image files

 ■ content/ —Contains stylesheets and JavaScript bootstrapping files needed to render the
page templates

 ■ templates/ —The HTML templates for rendering pages in the client browser

In the app/ folder, you have:

 ■ ./ —Contains the core server scripts and package.json files

 ■ data/ —All code and classes related to working with the backend data store

 ■ handlers/ —Contains the classes that are responsible for handling incoming requests

All the versions of your application from this point on will use this structure.

188 Chapter 8 Databases I: NoSQL (MongoDB)

Summary

You now have not only a fully updated version of the photo album application that uses
MongoDB as its data store for albums and photos, but also a couple more interesting pages in
your web application for creating albums and uploading photos to the server.

The only problem is that anybody can view and use these pages and APIs to manipulate albums
and photos. So you next need to focus your attention on adding users and requiring that you
be logged in before making these changes.

9
Databases II: SQL (MySQL)

Although the NoSQL databases are surging in popularity, there are still plenty of good reasons
to continue using relational databases, and they too remain just as popular as ever, especially
the two most common open source variants, MySQL and PostgreSQL. The good news is that
the asynchronous nature of Node.js meshes perfectly well with using these databases in your
web applications, and there is good npm module support for most of them.

In this chapter, I cover using MySQL with Node, using the mysql module from npm . Because
you learned how to put your albums and photos in the database in the preceding chapter, you
can now turn your focus to registering users in the application and requiring them to be logged
in before creating any albums or adding any photos.

Even if you’re not planning on using traditional relational databases such as MySQL, it is
still worth your while to read through this chapter because I introduce a couple of important
features in express, as well as talk about resource pooling , a way to control and limit the use
of precious system resources. You also update the photo albums sample so that albums and
photos will work with MySQL.

Getting Ready

You need to do two things before you can start playing around with MySQL in Node.js: Make
sure MySQL is installed and install the mysql npm module.

Installing MySQL

If you haven’t installed MySQL on your development machine yet, visit dev.mysql.com/
downloads/mysql and download the version of the community server most appropriate for
your machine. For Windows and Mac OS X, you can find downloadable installers, whereas
for Linux and other Unix systems, you can unpack .tar.gz archives to your preferred location
(most typically /usr/local/mysql).

190 Chapter 9 Databases II: SQL (MySQL)

If you’re running the installers for Windows or Mac OS X, they take care of everything for
you, whereas for binary distributions only, you have to read the INSTALL-BINARY text file and
follow the instructions in there to get MySQL fully up and running. When you’re done, you
should be able to start a new command prompt or terminal and run the mysql command:

Kimidori:Learning Node marcw$ /usr/local/mysql/bin/mysql -u root

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 1

Server version: 5.5.29 MySQL Community Server (GPL)

mysql>

Adding the mysql Module from npm

To install the mysql module for Node.js, you can modify the package.json and add the follow-
ing under dependencies:

"dependencies": {

 "async": "0.1.x",

 "mysql": "2.x"

}

You should now see mysql/ under node_modules/ in your folder. Note that the 2.x series of the
mysql module is a significant improvement and departure from the 0.x series. Again, one of
the trickier parts of Node.js is that it’s constantly under development and improvement; things
are still changing quite a bit. You use the 2.x series in this book because it’s much more robust
than what was there before.

Creating a Schema for the Database

When working with MySQL, you need to create a database schema for the application, which
you place in schema.sql. The first part of this is to create a database with UTF-8 as the default
character set and sorting order, as follows:

DROP DATABASE IF EXISTS PhotoAlbums ;

CREATE DATABASE PhotoAlbums

 DEFAULT CHARACTER SET utf8

 DEFAULT COLLATE utf8_general_ci;

USE PhotoAlbums ;

You then have to create a schema for your Users table, where you place information for regis-
tered users of your photo-sharing app. You only need to require an email address, display
name, and password from the user, and store a couple extra pieces of information, including

191Basic Database Operations

when the account was created, when it was last modified, and whether or not it’s been marked
as deleted. The Users table looks as follows:

CREATE TABLE Users

(

 user_uuid VARCHAR(50) UNIQUE PRIMARY KEY,

 email_address VARCHAR(150) UNIQUE,

 display_name VARCHAR(100) NOT NULL,

 password VARCHAR(100),

 first_seen_date BIGINT,

 last_modified_date BIGINT,

 deleted BOOL DEFAULT false,

 INDEX(email_address),

 INDEX(user_uuid)

)

ENGINE = InnoDB;

Running all these commands in MySQL (mysql -u user -p secret < schema.sql) sets up
the appropriate database and table structures you need to begin writing code. If you’re follow-
ing along with the code from the GitHub repository, you’ll notice that tables have been added
for albums and photos.

Basic Database Operations

Most of your work with MySQL will be limited to making connections to the MySQL server and
executing these queries and statements. This gives you more than enough to run your straight-
forward web applications and extract much of the power of the database server.

Connecting

To connect to the remote server, you create a connection via the mysql module and then call
the connect function, as follows:

dbclient = mysql.createConnection({

 host: "localhost",

 user: "root",

 password: "",

 database: "PhotoAlbums"

});

dbclient.connect(function (err, results) { });

192 Chapter 9 Databases II: SQL (MySQL)

If the connection fails, you get an error. If it succeeds, you can then use your client object to
execute queries. After finishing all your work with the database, you should close the connec-
tion by calling the end method:

dbclient.end();

Adding Queries

After connecting to the database server, you can start executing queries with the (wait for it...)
query method, to which you pass the SQL statements you want executed:

dbclient.query("SELECT * FROM Albums ORDER BY date", function (err, results, fields)
{});

If the query succeeds, the results parameter passed to the callback contains data relevant to
what you requested, and there is a third parameter, fields , for those cases when you have
additional information to specify. (It is often empty when you don’t have such information.)
For SELECT statements, the second parameter is an array of queried rows:

dbclient.query("SELECT * FROM Albums", function (err, rows) {

 for (var i = 0; i < rows.length; i++) {

 console.log(" -> Album: " + rows[i].name

 + " (" + rows[i].date + ")");

 }

});

If you are using INSERT , UPDATE , or DELETE , the results you get back from the query method
look more similar to the following:

{ fieldCount: 0,

 affectedRows: 0,

 insertId: 0,

 serverStatus: 2,

 warningCount: 0,

 message: '',

 changedRows: 0 }

You can use this information to make sure that the number of affected rows is what you
expected it to be by looking at the affectedRows property, or you can get the autogenerated
ID of the last inserted row via the insertId property.

And that’s pretty much all there is to using MySQL in Node.js. Let’s put it to some serious use
then!

Adding Authentication to the Application

In the preceding chapter, I showed you how to convert the storage for albums and photos in
your application to use databases, but you have a problem in that your add album and add
photos pages are accessible by anybody anonymously. You can change your application to

193Adding Authentication to the Application

 ■ Let new users register for the application.

 ■ Require a user to be logged in and registered before using the add album or photo pages.

Updating the API to Support Users

To support a new user subsystem, you need to add a couple of new routes to the API:

app.put('/v1/users.json', user_hdlr.register);

app.post('/service/login', user_hdlr.login);

The first is the CRUD method (see “API Design” in Chapter 7 , “Building Web Applications with
Express”) for creating users through the API. The second is the way you support logins and
authentication for the web browser version of the application. I show the implementations for
these two methods later in the section “Creating the User Handler.”

Examining the Core User Data Operations

To get a connection to the database, create a data/ folder for your application, and put—in
addition to a backend_helpers.js file containing some simple error-handling help—a file called
db.js there. This file is shown in Listing 9.1 . Effectively, it provides a function to get a connec-
tion to a MySQL database using connection information provided in the file local.config.js, as
you saw in Chapter 8 , “Databases I: NoSQL (MongoDB).”

Listing 9.1 db.js

var mysql = require('mysql'),

 local = require("../local.config.js");

exports. db = function (callback) {

 conn_props = local.config.db_config;

 var c = mysql.createConnection({

 host: conn_props.host,

 user: conn_props.user,

 password: conn_props.password,

 database: conn_props.database

 });

 callback(null, c);

};

When you have a connection, you are responsible for closing it by calling the end method to
free up the resources it consumes. With this file in place, you can start implementing the back
end for the preceding new APIs in data/user.js.

194 Chapter 9 Databases II: SQL (MySQL)

Creating a User

The code to register a new user in the database is as follows:

exports. register = function (email, display_name, password, callback) {

 var dbc;

 var userid;

 async.waterfall([

 // validate ze params

 function (cb) { // 1.

 if (!email || email.indexOf("@") == -1)

 cb(backend.missing_data("email"));

 else if (!display_name)

 cb(backend.missing_data("display_name"));

 else if (!password)

 cb(backend.missing_data("password"));

 else

 cb(null);

 },

 function (cb) {

 db.db(cb);

 },

 function (dbclient, cb) {

 dbc = dbclient;

 bcrypt.hash(password, 10, cb); // 3.

 },

 function (hash, cb) {

 userid = uuid(); // 4.

 dbc.query(// 5a.

 "INSERT INTO Users VALUES (?, ?, ?, ?, UNIX_TIMESTAMP(), NULL, 0)",

 [userid, email, display_name, hash],

 cb);

 },

 function (results, fields, cb) { // 5b.

 exports.user_by_uuid(userid, cb);

 }

],

 function (err, user_data) {

 if (dbc) dbc.end();

 if (err) {

 if (err.code

 && (err.code == 'ER_DUP_KEYNAME'

 || err.code == 'ER_EXISTS'

 || err.code == 'ER_DUP_ENTRY'))

 callback(backhelp.user_already_registered());

195Adding Authentication to the Application

 else

 callback (err);

 } else {

 callback(null, user_data);

 }

 });

};

The code does the following:

 1. It validates the incoming parameters, in particular making sure the email address is semi-
valid. You could be even stricter if you wanted and require activation of an account by
sending a link to that address.

 2. It gets a connection to the database.

 3. It hashes the password using the bcrypt module. Bcrypt is a slow method of generating
passwords that makes brute-force attacks on them extremely difficult.

 4. You generate a UUID for the user. You can use it later in the API to identify users. These
IDs are better than simple integer user IDs because they’re harder to guess and have no
obvious ordering.

 5. You execute the query to register the user in the database and finally ask the database to
return that just-created user back to the caller.

You use two new modules in this code, bcrypt (for password encryption) and node-uuid (to
generate the GUID that you use for the user identifier). You thus update the package.json file
with the following dependencies:

 "dependencies": {

 "express": "3.x",

 "async": "0.1.x",

 "mysql": "2.x",

 "bcrypt": "0.x",

 "node-uuid": "1.x"

 }

}

Also note that you store the account creation date as a BIGINT instead of a regular MySQL
DATETIME field. I’ve found that, because JavaScript uses time stamps everywhere for dates
and times, it can be much easier to just store and manipulate them in databases as well.
Fortunately, MySQL provides a few functions to help you work with these dates.

Fetching a User (by Email Address or UUID)

Now that you have a way to save users into the database, you can write the functions to bring
them back. First, write a generic function to find a user based on a particular field in the
database:

196 Chapter 9 Databases II: SQL (MySQL)

function user_by_field (field, value, callback) {

 var dbc;

 async.waterfall([

 function (cb) {

 db.db(cb);

 },

 function (dbclient, cb) {

 dbc = dbclient;

 dbc.query(

 "SELECT * FROM Users WHERE " + field

 + " = ? AND deleted = false",

 [value],

 cb);

 },

 function (rows, fields, cb) {

 if (!rows || rows.length == 0)

 cb(backhelp.no_such_user());

 else

 cb(null, rows[0]);

 }

],

 function (err, user_data) {

 if (dbc) dbc.end();

 callback(err, user_data);

 });

}

Now, write the exported functions to fetch a user:

exports. user_by_uuid = function (uuid, callback) {

 if (!uuid)

 cb(backend.missing_data("uuid"));

 else

 user_by_field("user_uuid", uuid, callback);

};

exports. user_by_email = function (email, callback) {

 if (!email)

 cb(backend.missing_data("email"));

 else

 user_by_field("email_address", email, callback);

};

And that’s all you have for the data portion of user management. Everything else you do is on
the front-end handlers.

197Adding Authentication to the Application

Updating the Express Application

The primary method the express server uses to remember whether a user is logged in is session
cookies . Browsers send you cookies along with every request, so you use session data (which you
saw in “POST Data, Cookies, and Sessions” in Chapter 7) to remember user login state. To set
up this capability, add the following lines to the top of server.js:

app.use(express.cookieParser("secret text"));

app.use(express.cookieSession({

 secret: "FLUFFY BUNNIES",

 maxAge: 86400000,

 store: new express.session.MemoryStore()

}));

If a user is logged in, you set req.session.logged_in = true and set req.session.
logged_in_email_address to a valid value. If a user is not logged in, these values are
undefined .

To make sure a user is logged in before using the admin pages you created in the preceding
chapter, you can introduce an extra little bit of express functionality that you haven’t seen yet:
the ability to inject your own middleware functions into routing declarations.

Normally, you would route a URL as follows:

app.get(URL, HANDLER_FUNCTION);

You can, however, insert any number of middleware functions between the URL and the
handler function. These are called one at a time in the order they’re listed. They are given three
parameters: req , res , and next . If they want to handle the request, they can process it and
send a response (and call res.end). If they do not, they can simply call the next() function.

So, to require that a user be logged in for admin pages, change the URL routers for pages to the
following:

app.get('/pages/:page_name', requirePageLogin , page_hdlr.generate);

app.get('/pages/:page_name/:sub_page', requirePageLogin , page_hdlr.generate);

The requirePageLogin function checks to see whether the user is asking for a page that
requires authentication. If so, it then checks whether or not that user is logged in. If he is, it
allows processing to continue by calling next() . If he is not logged in, it intercepts the URL
and redirects the user back to the login page:

function requirePageLogin (req, res, next) {

 if (req.params && req.params.page_name == 'admin') {

 if (req.session && req.session.logged_in) {

 next();

 } else {

 res.redirect("/pages/login");

 }

 } else

 next();

}

198 Chapter 9 Databases II: SQL (MySQL)

Creating the User Handler

To support management of accounts, you can create a new user handler in handlers/users.js.
Just as you did previously with albums and photos, you create a new User class that will help
you wrap users and also let you implement a response_obj method to filter out things you
don’t want to return:

function User (user_data) {

 this.uuid = user_data["user_uuid"];

 this.email_address = user_data["email_address"];

 this.display_name = user_data["display_name"];

 this.password = user_data["password"];

 this.first_seen_date = user_data["first_seen_date"];

 this.last_modified_date = user_data["last_modified_date"];

 this.deleted = user_data["deleted"];

}

User.prototype. uuid = null;

User.prototype. email_address = null;

User.prototype. display_name = null;

User.prototype. password = null;

User.prototype. first_seen_date = null;

User.prototype. last_modified_date = null;

User.prototype. deleted = false;

User.prototype. check_password = function (pw, callback) {

 bcrypt.compare(pw, this.password, callback);

};

User.prototype. response_obj = function () {

 return {

 uuid: this.uuid,

 email_address: this.email_address,

 display_name: this.display_name,

 first_seen_date: this.first_seen_date,

 last_modified_date: this.last_modified_date

 };

};

Creating a New User

Next, you implement the function to create a user. It basically does the following:

1. Checks the incoming data to make sure it’s valid.

2. Creates the user account with the back end and gets the raw data back again.

3. Marks the user as logged in.

4. Returns the newly created user object back to the caller.

199Adding Authentication to the Application

This function looks like this:

exports. register = function (req, res) {

 async.waterfall([

 function (cb) { // 1.

 var em = req.body.email_address;

 if (!em || em.indexOf("@") == -1)

 cb(helpers.invalid_email_address());

 else if (!req.body.display_name)

 cb(helpers.missing_data("display_name"));

 else if (!req.body.password)

 cb(helpers.missing_data("password"));

 else

 cb(null);

 },

 function (cb) { // 2.

 user_data.register(

 req.body.email_address,

 req.body.display_name,

 req.body.password,

 cb);

 },

 function (user_data, cb) { // 3.

 req.session.logged_in = true;

 req.session.logged_in_email_address = req.body.email_address;

 req.session.logged_in_date = new Date();

 cb(null, user_data);

 }

],

 function (err, user_data) { // 4.

 if (err) {

 helpers.send_failure(res, err);

 } else {

 var u = new User(user_data);

 helpers.send_success(res, {user: u.response_obj() });

 }

 });

};

Logging In a User

To log a user in to the system, you do the following:

 1. Fetch the user object for the given email address (and throw an error if that email address
does not exist).

 2. Compare the passwords using the bcrypt module.

200 Chapter 9 Databases II: SQL (MySQL)

 3. Set the session variables to mark the user as logged in if the passwords match. Otherwise,
you mark the authentication as failed.

Here’s how it looks:

exports. login = function (req, res) {

 async.waterfall([

 function (cb) {

 var em = req.body.email_address;

 if (!em || em.indexOf('@') == -1)

 cb(helpers.invalid_email_address());

 else if (req.session && req.session.logged_in_email_address

 == em.toLowerCase())

 cb(helpers.error("already_logged_in", ""));

 else if (!req.body.password)

 cb(helpers.missing_data("password"));

 else

 user_data.user_by_email(req.body.email_address, cb); // 1.

 },

 function (user_data, cb) {

 var u = new User(user_data);

 u.check_password(req.body.password, cb); // 2.

 },

 function (auth_ok, cb) {

 if (!auth_ok) {

 cb(helpers.auth_failed());

 return;

 }

 req.session.logged_in_email_address = req.body.email_address; // 3.

 req.session.logged_in_date = new Date();

 cb(null);

 }

],

 function (err, results) {

 if (!err || err.message == "already_logged_in") {

 helpers.send_success(res, { logged_in: true });

 } else {

 helpers.send_failure(res, err);

 }

 });

};

Testing for Logged-in Status

To test whether or not a user is logged in, you can just see if the appropriate session variable
is set:

201Adding Authentication to the Application

exports.logged_in = function (req, res) {

 var li = (req.session && req.session.logged_in_email_address);

 helpers.send_success(res, { logged_in: li });

};

Logging Out

Finally, to log out, you just clear the session data, and the user is no longer considered logged
in to the system:

exports.logout = function (req, res) {

 req.session = null;

 helpers.send_success(res, { logged_out: true });

};

Creating the Login and Register Pages

For the new user subsystem, you have two new pages in your application: a login page and a
registration page. Both are made up of two files, as usual: a JavaScript bootstrapper and an HTML
file. For both, the JavaScript bootstrapper is quite standard:

$(function (){

 var tmpl, // Main template HTML

 tdata = {}; // JSON data object that feeds the template

 // Initialize page

 var initPage = function () {

 // Load the HTML template

 $.get("/templates/ login OR register .html", function(d){

 tmpl = d;

 });

 // When AJAX calls are complete parse the template

 // replacing mustache tags with vars

 $(document).ajaxStop(function () {

 var renderedPage = Mustache.to_html(tmpl, tdata);

 $("body").html(renderedPage);

 });

 }();

});

The HTML for the register page is shown in Listing 9.2 . Apart from showing the HTML for the
registration form, it has some JavaScript to ensure that the user has entered all the fields, verify
that the two passwords match, and then submit the data to the back-end server. If the login
succeeds, you redirect back home; otherwise, you show an error and let the user try again.

202 Chapter 9 Databases II: SQL (MySQL)

Listing 9.2 The Register Page Mustache Template (register.html)

<div style="float: right">Login</div>

<form name="register" id="register">

 <div id="error" class="error"></div>

 <dl>

 <dt>Email address:</dt>

 <dd><input type="text" size="30" id="email_address"

 name="email_address"/></dd>

 <dt>Display Name:</dt>

 <dd><input type="text" size="30" id="display_name" name="display_name"/></dd>

 <dt>Password:</dt>

 <dd><input type="password" size="30" id="password" name="password"/></dd>

 <dt>Password (confirm):</dt>

 <dd><input type="password" size="30" id="password2" name="password2"/></dd>

 <dd><input type="submit" value="Register"/>

 </dl>

</form>

< script type="text/javascript">

$(document).ready(function () {

 if (window.location.href.match(/(fail)/) != null) {

 $("#error").html("Failure creating account.");

 }

});

$("form#register").submit(function (e) {

 if (!$("input#email_address").val()

 || !$("input#display_name").val()

 || !$("input#password").val()

 || !$("input#password2").val()) {

 $("#error").html("You need to enter an email and password.");

 } else if ($("input#password2").val() != $("input#password").val()) {

 $("#error").html("Passwords don't match.");

 } else {

 var info = { email_address: $("input#email_address").val(),

 display_name: $("input#display_name").val(),

 password: $("input#password").val() };

 $.ajax({

 type: "PUT",

 url: "/v1/users.json",

 data: JSON.stringify(info),

 contentType: "application/json; charset=utf-8",

 dataType: "json",

 success: function (data) {

 window.location = "/pages/admin/home";

 },

 error: function () {

203Adding Authentication to the Application

 var ext = window.location.href.match(/(fail)/) ? "" : "?fail";

 window.location = window.location + ext;

 return false;

 }

 });

 }

 return false;

});

</ script >

Finally, the code for the login page is shown in Listing 9.3 . It is quite similar to that for the
register page: It shows some HTML for the form and then has some JavaScript to process the
data and submit to the server.

Listing 9.3 The Login Page Mustache Template (login.html)

<div style='float: right'>Register</div>

<form name="login" id="login">

 <div id="error" class="error"></div>

 <dl>

 <dt>Email address:</dt>

 <dd><input type="text" size="30" id="email_address"

 name="email_address"/></dd>

 <dt>Password:</dt>

 <dd><input type="password" size="30" id="password" name="password"/></dd>

 <dd><input type="submit" value="Login"/>

 </dl>

</form>

< script type="text/javascript">

$(document).ready(function () {

 if (window.location.href.match(/(fail)/) != null) {

 $("#error").html("Invalid login credentials.");

 }

});

$("form#login").submit(function (e) {

 if (!$("input#email_address").val() || !$("input#password").val()) {

 $("#error").html("You need to enter an email and password.");

 } else {

 var info = { email_address: $("input#email_address").val(),

 password: $("input#password").val() };

 $.ajax({

 type: "POST",

 url: "/service/login",

 data: JSON.stringify(info),

 contentType: "application/json; charset=utf-8",

204 Chapter 9 Databases II: SQL (MySQL)

 dataType: "json",

 success: function (data) {

 window.location = "/pages/admin/home";

 },

 error: function () {

 var ext = window.location.href.match(/(fail)/) ? "" : "?fail";

 window.location = window.location + ext;

 return false;

 }

 });

 }

 return false;

});

</ script >

And with those new files (data/user.js and handlers/users.js, login.js and login.html, and regis-
ter.js and register.html), you have a complete login system for your web browser front end.

Resource Pooling

In the preceding chapter, you saw that the MongoDB driver for Node.js managed its own
collection of connections, or “pool” of connections. The mysql module does not do this for
you, so you have to come up with your own connection pooling mechanism. Fortunately, it’s
so trivial to do this that you don’t need to worry at all that the module doesn’t implement this
capability.

In npm , a module called generic-pool allows for pooling of, well, anything. To use it, you
create a pool, specify the upper limit on the number of items you’d like to create, and provide a
function to create a new instance of an object in the pool. Then, to get an item from the pool,
you call the acquire function, which waits until a pool object is available for use. When you
are done, you call the release function to return the object back to the pool.

Let’s see this in action.

Getting Started

Add generic-pool to the package.json dependencies:

 "dependencies": {

 "express": "3.x",

 "async": "0.1.x",

 "generic-pool": "2.x",

 "mysql": "2.x",

 "bcrypt": "0.x",

 "node-uuid": "1.x"

 }

205Authenticating the API

To include it in a file, you require it as follows:

var pool = require('generic-pool'),

To create a pool, you create a new instance of the pool class with some configuration informa-
tion, namely the number of pool items you want, and the function to create a new object:

conn_props = local.config.db_config;

mysql_pool = pool.Pool({

 name : 'mysql',

 create : function (callback) {

 var c = mysql.createConnection({

 host: conn_props.host,

 user: conn_props.user,

 password: conn_props.password,

 database: conn_props.database

 });

 callback(null, c);

 },

 destroy : function (client) { client.end(); },

 max : conn_props.pooled_connections,

 idleTimeoutMillis : conn_props.idle_timeout_millis,

 log : false

});

Working with Connections

Now, in the code, whenever you want a connection to your MySQL server, instead of creating a
new one, you can just let the pool manage all this for you. The acquire function blocks until a
connection is available for you to use. The previous db function in db.js becomes

exports. db = function (callback) {

 mysql_pool.acquire(callback);

};

And when you’re done with the connection, you can just release it back to the connection pool
as follows:

conn.release();

Anybody else waiting for a connection gets it right away.

Authenticating the API

Now, you’re probably sitting around feeling quite smug knowing that your application properly
checks that you’re logged in before letting you create albums or add photos to an album, but
you still have one major security problem: The API itself is not at all secure. You can still run
the following without being challenged:

206 Chapter 9 Databases II: SQL (MySQL)

curl -X PUT -H "Content-Type: application/json" \

 -d '{ "name": "hk2012", "title" : "moo", "description": "cow", "date":
"2012-12-28" }'\

 http://localhost:8080/v1/albums.json

The system isn’t that impressive if only some parts of it are secure but others are wide open!
You can fix that issue right now.

You can create a system through which

 ■ The web browser front end continues to use the login and register pages and login service
to manage access to the server.

 ■ API users will use HTTP Basic Authentication passing a username and password along with
the request to authenticate access to restricted APIs.

HTTP Basic Authentication: Is It Secure?

As I explain in this chapter, HTTP Basic Authentication is a relatively simple form of security:
The client passes a header with a username and password base64 encoded to the server
with every request, which is authenticated by the server before processing it. Because base64
encoding is not a form of encryption, it amounts to passing plain-text usernames and pass-
words over the Internet. So you must ask: Is that fundamentally insecure?

The answer is, largely, no. Most secured portions of websites are encrypted and sent over the
network using SSL/HTTPS. This method of sending encrypted traffic between a client and serv-
er is pretty safe, and something you should absolutely set up on your servers as well.

Other people argue that web browsers remember Basic Auth usernames and passwords, and
this can be insecure. This argument is valid, and this is why you use Basic Auth only for API
servers. For browser-based applications, you should stick with regular login pages and session
cookies.

So, although HTTP Basic Authentication can be insecure, with a little preparation and precau-
tion, there is no reason it cannot be a reliable production-level security system for your REST
API servers.

Clients do not remember sessions from API users, because they are not passing cookies around,
so no login state is stored. Thus, these users need to authenticate every single request. To do
this, they pass headers of the following format:

Authorization: Basic username:password base64 encoded

For example, to send the credentials for marcwan@example.org with the password kittycaton-
keyboard, you would send

Authorization: Basic bWFyY3dhbkBleGFtcGxlLm9yZzpraXR0eWNhdG9ua2V5Ym9hcmQ=

http://localhost:8080/v1/albums.json

207Authenticating the API

Fortunately, you don’t have to compute these headers yourself, because programs such as curl
do the job for you. To pass HTTP Basic Authentication information with a curl request, you
can just add the following to your request:

curl -u username:password ...

So, you can secure those APIs that can make changes to your system: the two PUT APIs for
creating albums and adding photos to albums. To do so, write a new piece of middleware called
requireAPILogin :

app.put('/v1/albums.json', requireAPILogin , album_hdlr.create_album);

app.put('/v1/albums/:album_name/photos.json',

 requireAPILogin , album_hdlr.add_photo_to_album);

The requireAPILogin function is as follows:

function requireAPILogin (req, res, next) {

 if (req.session && req.session.logged_in) { // 1.

 next();

 return;

 }

 var rha = req.headers.authorization; // 2.

 if (rha && rha.search('Basic ') === 0) {

 var creds = new Buffer(rha.split(' ')[1], 'base64').toString();

 var parts = creds.split(":"); // 3.

 user_hdlr.authenticate_API(// 4.

 parts[0],

 parts[1],

 function (err, resp) {

 if (!err && resp) {

 next();

 } else

 need_auth(req, res);

 }

);

 } else

 need_auth(req, res);

}

The code works as follows:

 1. To maintain compatibility with the web application, you check to see whether the user
has already logged in using sessions in the browser. If so, this user is clear to use any API
she wants. Because pure API calls from the command line or most simple clients don’t
pass around cookies (whereas Ajax calls to the API in the browser do), there is no session,
and additional authentication information has to be provided.

208 Chapter 9 Databases II: SQL (MySQL)

 2. You look in the headers for the Authentication: header.

 3. You decode and break apart the username and password from the header.

 4. You pass that information along to the authenticate_API function in the user handler.

The authenticate_API function in the user handler is as follows—It fetches the user given her
email address, validates the password using the bcrypt npm module, and then returns success or
failure:

exports. authenticate_API = function (un, pw, callback) {

 async.waterfall([

 function (cb) {

 user_data.user_by_email(un, cb);

 },

 function (user_data, cb) {

 var u = new User(user_data);

 u.check_password(pw, cb);

 }

],

 function (err, results) {

 if (!err) {

 callback(null, un);

 } else {

 callback(new Error("bogus credentials"));

 }

 });

};

Finally, if you determine that a user has not properly authenticated his request, you need to do
a bit of work to tell him that he is not allowed to use the requested resource:

function need_auth (req, res) {

 res.header('WWW-Authenticate',

 'Basic realm="Authorization required"');

 if (req.headers.authorization) {

 // no more than 1 failure / 5s

 setTimeout(function () {

 res.send('Authentication required\n', 401);

 }, 3000);

 } else {

 res.send('Authentication required\n', 401);

 }

}

This function completes the API server obligations for HTTP Basic Authentication. If authen-
tication fails, it returns the response header WWW-Authenticate . For a bit of extra security, if
you see the user is sending incorrect username/password combinations, you can sleep for a few

209Summary

seconds to further discourage brute-force attacks. And with that, you now have a reasonably
secure web and API server for your photo-sharing application.

To truly secure it, you should make sure that any request requiring a password being sent to
you is secured with HTTPS so that nobody is able to use a packet sniffer to see any passwords
over the wire. I discuss HTTPS in more detail in Chapter 10 , “Deployment and Development.”

Summary

I threw two new things at you in this chapter: using MySQL databases in your Node applica-
tions and adding user authentication to both your web apps and your API servers. For this
chapter, I also updated the MongoDB version of the application with the user authentication
subsystem in the GitHub tree, so you’re welcome to explore how things are done there as well.
By creating two parallel authentication systems, you work to create a good user experience for
your browser application, while letting API users still get the full simplicity and power of the
JSON API.

In closing out this third part of the book, you learned how to add some powerful new tech-
nologies to the photo-sharing application including express and databases, and created a fully
functioning (if basic) project on which you can build. In the last part of the book, I cover some
of the details I have been glossing over thus far in the book. First up, in Chapter 10 , you learn
how to deploy your applications.

9
Databases II: SQL (MySQL)

Although the NoSQL databases are surging in popularity, there are still plenty of good reasons
to continue using relational databases, and they too remain just as popular as ever, especially
the two most common open source variants, MySQL and PostgreSQL. The good news is that
the asynchronous nature of Node.js meshes perfectly well with using these databases in your
web applications, and there is good npm module support for most of them.

In this chapter, I cover using MySQL with Node, using the mysql module from npm . Because
you learned how to put your albums and photos in the database in the preceding chapter, you
can now turn your focus to registering users in the application and requiring them to be logged
in before creating any albums or adding any photos.

Even if you’re not planning on using traditional relational databases such as MySQL, it is
still worth your while to read through this chapter because I introduce a couple of important
features in express, as well as talk about resource pooling , a way to control and limit the use
of precious system resources. You also update the photo albums sample so that albums and
photos will work with MySQL.

Getting Ready

You need to do two things before you can start playing around with MySQL in Node.js: Make
sure MySQL is installed and install the mysql npm module.

Installing MySQL

If you haven’t installed MySQL on your development machine yet, visit dev.mysql.com/
downloads/mysql and download the version of the community server most appropriate for
your machine. For Windows and Mac OS X, you can find downloadable installers, whereas
for Linux and other Unix systems, you can unpack .tar.gz archives to your preferred location
(most typically /usr/local/mysql).

Part IV
Getting the Most

Out of Node.js

10 Deployment and Development 213

 11 Command-Line Programming 233

 12 Testing 253

This page intentionally left blank

10
Deployment and

Development

With the ability to build nontrivial Node.js applications firmly under your belt, you can now
turn your attention to some additional topics on deployment and development of these apps.
In this chapter, you start by looking at some of the various ways that people deploy and run
their Node apps on production servers, looking at both UNIX/Mac and Windows options. You
also see how you can take advantage of multiprocessor machines, despite the fact that Node.js
is a single-threaded platform.

You then move on to look at adding support for virtual hosts on the server, as well as securing
your applications with SSL/HTTPS support. Finally, you take a quick look at some of the issues
with multiplatform development when you have people working on a Node app with both
Windows and UNIX/Mac machines.

Deployment

To run your Node.js applications thus far, you’ve just been using the following from the
command line:

node script_name.js

This approach works pretty great for development. However, for deploying your applications to
live servers, you might want to add in an extra layer of reliability to help in those cases when
they crash. Although you, of course, strive to avoid bugs in your servers, some will eventually
creep in, so you’d like to have your servers recover as quickly as possible from such problems.

Let’s look at some of the options now.

214 Chapter 10 Deployment and Development

Port Numbers

For most of this book, you have been using very high port numbers for your sample apps, most
frequently 8080. The reason is that on some operating systems, most notably UNIX/Mac OS X
systems, port numbers below 1024 require super-user access. So, for simple debugging and
testing, 8080 is a great alternative to the more common port 80 for web traffic.

However, when you deploy your live applications, you frequently want them to run on port 80
because this is the default for web browsers. To do this, you need to run the scripts as super-
user. The two ways of doing this are

1. Log in to your system as the super-user and run programs that way.

2. Use the sudo command, which elevates the process to be executed to super-user privi-
leges when it actually runs.

Of these two strategies, I most frequently use the latter.

Level: Basic

At the most basic level, you can just use an infinite loop to run your scripts. This loop just
automatically restarts the node process whenever it crashes out. On UNIX and Mac computers
running bash , the script can be as simple as

#!/bin/bash

while true

do

 node script_name.js

done

On Windows, you can use batch files to do the job for you, as follows (save this to run_script.
bat or something similar and run it):

: loop

node script_name.js

goto loop

: end

These scripts make sure that your Node process is always restarted in the event that it crashes
or is terminated accidentally.

You can actually go one step further and use a command called tee to write the standard
output of the node process to a log file. You usually pipe the output of your process to the tee
command using the | (“pipe”) operator in the command line, and tee then reprints the output
on the standard output in addition to writing to the specified log file, as follows:

node hello_world.js | tee -a /var/server/logs/important.log

The -a flag to tee tells it to append to the specified log file instead of simply overwriting it.
Thus, you can improve your deployment one step further by running your scripts as follows:

bash ./run_script.sh | tee –a /var/server/logs/important.log

215Deployment

Or, on Windows, you can use the following:

run_script.bat | tee –a /var/server/logs/important.log

See the sidebar “Tee for Windows” for more information on actually making this technique
work.

Tee for Windows (and Other Useful Commands)

The Windows shells are not known for being particularly powerful (although PowerShell is a
nice step in the right direction). To get around this issue, people often download external utility
packs that let them get some of the cool scripting functionality seen on UNIX platforms such as
Linux or Mac OS X.

For the tee program mentioned in this chapter, two good choices of utilities are

 ■ http://getgnuwin32.sourceforge.net/

 ■ http://unxutils.sourceforge.net/

You can also find specific tee utilities for Windows by simply searching for “Windows tee.”
Indeed, for many of the UNIX-like tools I’ve been describing throughout this book, perfectly func-
tioning Windows alternatives or versions frequently are available for them.

Using screen to Monitor the Output

Although you are always logged in on Windows and can easily log back in to the desktop to
see what is going on with your Node servers, on UNIX servers such as Linux or Mac OS X, you
frequently want to log out and just leave the servers running. The problem is that when you do
this, you lose your standard output (stdout) handle and the output is lost, unless you are also
writing to a log file. And even then, the log file sometimes is missing important information
printed out by either Node or the OS regarding problems they encounter.

To get around this issue, most UNIX systems support a magical little utility called screen ,
which lets you run programs as if they constantly have a controlling terminal (also known as a
tty), even if you are logged out. Installation is specific to your platform, but Mac OS X has it by
default, and most Linux platforms can get it by doing something similar to apt-get screen .

Now, before you run your Node server, you can run screen and then run Node within that.
To detach from screen , you press the key sequence Ctrl+A Ctrl+D. To get back into the screen,
you run the command screen -r (for resume). If you have multiple screen sessions running,
they each have a name and you also have to type in the name of the session you want to
resume.

You use screen for every single Node server you have running. It’s a great way to come back
every once in a while and browse how things are running.

http://getgnuwin32.sourceforge.net/
http://unxutils.sourceforge.net/

216 Chapter 10 Deployment and Development

Level: Ninja

The previous scripts for running applications are pretty useful, and you can use them for low-
traffic sites that don’t crash very often. They do have a couple of serious limitations, however:

 1. If an app gets into a state where it is constantly crashing, even when restarted, these
scripts blindly keep restarting it, resulting in what is known as a “run-away process.” You
never get it to start properly, and your server will work itself to death constantly trying.

 2. Although these scripts can keep your processes up and running, they don’t do a good job
of telling you when they’re in trouble, specifically if they’re using up too much memory.
There are still instances where a Node process can consume a bit too much memory or
otherwise get into trouble with system resources. It would be great if there were a way to
detect this and terminate them and let them start again from scratch.

Thus, in the following sections, you look at a couple of more advanced deployment options,
which start to deviate quite greatly for UNIX and Windows at this point.

Linux/Mac

The previous version of your script (when viewed as pseudo-code) was effectively

while 1

 run node

end

You can upgrade this script now to do something more along the following lines:

PID = run node

while 1

 sleep a few seconds

 if PID not running

 restart = yes

 else

 check node memory usage

 if using too much memory

 restart = yes

 if restart and NOT too many restarts

 PID = restart node

end

There are two key tasks you need to perform to make this work:

 1. Get the process ID (pid) of the last-started node server.

 2. Figure out how much memory the node process is using.

For the first, you use the pgrep command, available on Mac and most UNIX platforms. When
used with the -n flag, it gives you the process ID of the latest instance of the given process

217Deployment

name. You can also use the -f flag to tell it to match the name of the script, in case your
computer is running multiple Node servers. Thus, to get the pid of the latest created Node
process running script_name.js, you use

pgrep -n -f "node script_name.js"

Now, to get the amount of memory that your process is using, you need to use two commands.
The first is the ps command, which, when given the wux (wup on some platforms—check your
documentation) flags, tells you the total virtual memory consumption of the process, as well as
the current resident size (the one you want). The output of ps wux $ pid is as follows:

USER PID %CPU %MEM VSZ RSS TT STAT STARTED TIME COMMAND

marcw 1974 6.6 3.4 4507980 571888 ?? R 12:15AM 52:02.42 command name

You want the sixth column (RSS) of the second line of this output. To get this, you have to first
run the awk command to get the second line only, and then you run it again to get the value
in the sixth column, as follows:

ps wux $PID | awk 'NR>1' | awk '{print $6}'

With the amount of memory this process is consuming, you can make a decision as to whether
it’s using too much and then terminate and restart it if necessary.

I won’t print out the full code of the shell script here, but you can see it in the code for
Chapter 10 in the GitHub repository, as node_ninja_runner.sh. To use it, you can run it as

node_ninja_runner.sh server.js [extra params]

You do, of course, need to make sure it’s elevated to super-user privileges if you’re going to
listen on a port such as 80 or 443.

Windows

On Windows, the best way to run your apps in a reliable way that can be monitored would be
to use a Windows Service. Node.js itself is not set up to be a Windows Service, but fortunately
you can use some tricks to get it to behave like one.

Through the use of a nice little program called nssm.exe (the Non-Sucking Service Manager)
and an npm module called winser , you can install your Node web applications as services and
manage them fully through the Windows Management Console. To set this up, you need to do
two things:

 1. Install a new custom action in the package.json for the web application.

 2. Download and install winser and have it do its work.

For the first step, you just need to add the following to the package.json file:

{

 "name": "Express-Demo",

 "description": "Demonstrates Using Express and Connect",

218 Chapter 10 Deployment and Development

 "version": "0.0.1",

 "private": true,

 "dependencies": {

 "express": "3.x"

 },

 "scripts": {

 "start": "node 01_express_basic.js"

 }

}

For the second step, you can just do the following:

C:\Users\Mark\LearningNode\Chapter10> npm install winser

(Or you can add winser to your dependencies.) Then, when you are ready to install your app as
a service, you can go to the project folder holding the package.json for the app and run

C:\Users\Mark\LearningNode\Chapter10> node_modules\.bin\winser -i

The program Express-Demo was installed as a service.

To uninstall the service, just run winser -r , as follows:

C:\Users\Mark\LearningNode\Chapter10> node_modules\.bin\winser -r

The service for Express-Demo was removed.

You can then go to the Windows Management Console and start, stop, pause, or otherwise
manage the service to your heart’s content!

Multiprocessor Deployment: Using a Proxy

I’ve mentioned many times that Node.js effectively operates as a single-threaded process: All
the code that your scripts are executing is in the same thread, and you use asynchronous call-
backs to get as much efficiency out of your CPU as possible.

However, you must then ask the question: What do you do on a system with multiple CPUs?
How can you extract maximal functionality out of your servers? Many modern servers are nice
powerful 8–16 core machines, and you’d like to use all of them if possible.

Fortunately, the answer is reasonably simple: Just run one node process per core you want to
utilize (see Figure 10.1). You can choose one of a number of strategies to route incoming traffic
to the various different node processes, as suits your requirements.

The problem you are now faced with is that you have not one, but n Node processes running,
all of which must listen on a different port. (You can’t have multiple people listening on the
same port number.) How do you get traffic to mydomain:80 to these servers?

220 Chapter 10 Deployment and Development

Listing 10.1 Trivial HTTP Server

var http = require('http');

if (process.argv.length != 3) {

 console.log("Need a port number");

 process.exit(-1);

}

var s = http.createServer(function (req, res) {

 res.end("I listened on port " + process.argv[2]);

});

s.listen(process.argv[2]);

You can launch your three servers on UNIX/Mac platforms by typing

$ node simple.js 8081 &

$ node simple.js 8082 &

$ node simple.js 8083 &

On Windows platforms, you can launch them by simply running the following three
commands in different command prompts:

node simple.js 8081

node simple.js 8082

node simple.js 8083

You can now build your proxy server using the npm module http-proxy . The package.json looks
as follows:

{

 "name": "Round-Robin-Demo",

 "description": "A little proxy server to round-robin requests",

 "version": "0.0.1",

 "private": true,

 "dependencies": {

 "http-proxy": "0.8.x"

 }

}

The code for the proxy is quite simple, as shown in Listing 10.2 . It basically maintains an array
of available servers, as shown previously, and then for each request coming to the service,
cycles through those available servers and forwards on the requests to them.

221Multiprocessor Deployment: Using a Proxy

Listing 10.2 A Round-Robin Proxy Load Balancer (roundrobin.js)

var httpProxy = require('http-proxy'),

 fs = require('fs');

var servers = JSON.parse(fs.readFileSync('server_list.json')).servers;

var s = httpProxy.createServer(function (req, res, proxy) {

 var target = servers.shift(); // 1. Remove first server

 proxy.proxyRequest(req, res, target); // 2. Re-route to that server

 servers.push(target); // 3. Add back to end of list

});

s.listen(8080);

To put all this in action, you now run node roundrobin.js , and you can start to query it as
follows:

curl -X GET http://localhost:8080

As you run this command multiple times, you should see the output showing the actual port
number that is being listened to for the current processing server.

Multiple Servers and Sessions

Running multiple servers on different CPUs and servers is a great way to spread the load and
give you a cheap path to scalability. (Servers under heavy load? Just add more!) But they create
one small complication that you need to address before you can use them effectively: The
session data is currently stored per process using local MemoryStore objects (see “POST Data,
Cookies, and Sessions” in Chapter 7 , “Building Web Applications with Express”). This creates a
rather serious problem, as shown in Figure 10.2 .

Because each Node server stores its own record of sessions in its own memory store, when two
requests from the same client go to two different node processes, they have different ideas of
current state of the session data from the client and get horribly confused quickly. You have
two obvious ways to solve this problem:

 1. Implement a more advanced router that remembers to which Node server requests from
a particular client are being sent and ensure that all traffic continues to be routed in the
same way for the same client.

 2. Somehow pool the memory stores that the session data uses so that all Node processes
can access it.

I prefer the second solution because it is quite simple to implement and a much less compli-
cated solution.

http://localhost:8080

http://libevent.org

224 Chapter 10 Deployment and Development

Getting memcached into express

Now that you have memcached installed and running (assume localhost on port 11211),
you need to get a MemoryStore object for it so that you can use it for your session data.
Fortunately, the Node.js community is so active that there’s already an npm module called
connect-memcached . So, let’s add the following to your dependencies in package.json:

"connect-memcached": "0.0.x"

Then you can modify your session creation code as follows:

var express = require('express');

// pass the express obj so connect-memcached can inherit from MemoryStore

var MemcachedStore = require('connect-memcached')(express);

var mcds = new MemcachedStore({ hosts: "localhost:11211" });

var app = express()

 .use(express.logger('dev'))

 .use(express.cookieParser())

 .use(express.session({ secret: "cat on keyboard",

 cookie: { maxAge: 1800000 },

 store: mcds }))

 .use(function(req, res){

 var x = req.session.last_access;

 req.session.last_access = new Date();

 res.end("You last asked for this page at: " + x);

 })

 .listen(8080);

Now, all the Node servers can be configured to use the same MemoryStore for session data and
will be able to fetch the correct information, no matter where the request is processed.

Virtual Hosting

Running multiple websites on one server has been a major requirement of web application plat-
forms for many years now, and fortunately Node.js offers a couple of very workable solutions
here for you when you build your apps with express.

You implement virtual hosting by adding the Host: header to the incoming HTTP request, one
of the major features in HTTP/1.1 (see Figure 10.4).

226 Chapter 10 Deployment and Development

two.get("/", function(req, res){

 res.send("This is app two!")

});

// App three

var three = express();

three.get("/", function(req, res){

 res.send("This is app three!")

});

// controlling app

var master_app = express();

master_app.use(express.logger('dev'));

master_app.use(express. vhost ('app1', one))

master_app.use(express. vhost ('app2', two));

master_app.use(express. vhost ('app3', three));

master_app.listen(8080);

Testing Virtual Hosts

Testing virtual hosts can be a bit of a challenge because your servers are all running on local-
host, but you need to somehow get the server to recognize the name of the requested server.

If you’re testing from the command line using curl , you can just add a header to your request
to specify which host you are requesting, as follows:

curl –X GET -H "Host: hostname1.com" http://localhost:8080

However, if you want to test things out in the browser, you need to modify the DNS entries on
your machine. The most common way to do this is to edit /etc/hosts (on UNIX/Mac machines)
or C:\Windows\System32\drivers\etc\hosts . You must do this with elevated permissions.
On UNIX/Mac, you launch your editor with sudo , whereas on Windows, you can simply use
Notepad, but make sure you run it with Administrator privileges.

Then you can add entries of the following format to the file:

127.0.0.1 hostname

Here, 127.0.0.1 is the IPv4 address for your local computer, and next to it, you just put the
name you want to map to that address. You can add as many lines for as many hosts as you
want (for example, app1 , app2 , and app3).

Between these two options, you should have no problems testing virtual hosts, either from the
command line or the browser.

http://localhost:8080

227Securing Your Projects with HTTPS/SSL

Proxy Server Support

Although it’s cool that express has built-in support for virtual hosts, I worry a bit about the
risks of having multiple web applications running within one process. If any one starts to
misbehave or have problems, any number of your sites can start to have problems as well.

To get around this situation, let’s look at another way of managing virtual hosts using the http-
proxy module again. Because this module is so powerful, it can easily handle routing of traffic
to different virtual hosts in only a few lines of code. Indeed, to route traffic based only on the
host names of the sites, you can run the code listed in Listing 10.4 .

Listing 10.4 Proxy server virtual hosts (proxy_vhosts_server.js)

var httpProxy = require('http-proxy');

var options = {

 hostnameOnly: true,

 router: {

 'app1': '127.0.0.1:8081',

 'app2': '127.0.0.1:8082',

 'app3': '127.0.0.1:8083'

 }

}

var proxyServer = httpProxy.createServer(options);

proxyServer.listen(8080);

You give the proxy server a list of hosts to look for and where to route incoming traffic for
those hosts. To test this, you can again simply run the three different app servers and then run
the proxy server, making it the target of all your traffic.

Securing Your Projects with HTTPS/SSL

For those parts of your application that handle sensitive data such as user passwords or
personal data, bank account or payment information, or indeed anything else somewhat
private in nature, you should secure your applications with SSL-encrypted HTTPS traffic.
Although there is some overhead in creating the SSL connection and encrypting the traffic, the
security benefits are, of course, of paramount importance.

To add support for SSL/HTTPS to your applications, you need to first generate some test certifi-
cates and then add support for the encrypted traffic to the application. For the latter, you again
have two ways of doing this: either through built-in support in express or by using a proxy
server.

httpProxy.createServer(options)

228 Chapter 10 Deployment and Development

Generating Test Certificates

To work with encrypted traffic on your development machines, you need to generate some test
certificates. You need to generate two files—privkey.pem and newcert.pem—the private key and
certificate, respectively. All UNIX/Mac machines come with a tool called openssl that you can
use to generate these two files.

For Windows users, you can download a Win32 version of openssl.exe by visiting
http://gnuwin32.sourceforge.net/packages/openssl.htm . Then the commands you run are
the same as on the other platforms.

To generate the two certificate files, run the following three commands:

openssl genrsa -out privkey.pem 1024

openssl req -new -key privkey.pem -out certreq.csr

openssl x509 -req -days 3650 -in certreq.csr -signkey privkey.pem -out newcert.pem

With these two files in hand, you can work on using them in your apps. Note that you should
never use them in production sites; if you attempt to view a website in a browser secured with
these certificates, you get a horribly loud and dangerous-sounding warning about how they are
not to be trusted at all. You typically have to purchase production certificates from a trusted
certificate authority.

Built-in Support

Not surprisingly, Node.js and express provide support for SSL/HTTPS streams right out of the
box, via the built-in https module provided by Node. You can actually run an https module
server to do the listening on the HTTPS port (by default 443, but for development, you can use
8443 to avoid having to elevate permissions of your Node process), and then it routes traffic to
the express server after the encrypted stream has been negotiated and created.

You create the HTTPS server and pass in as options the locations of the private key and certifi-
cate file you plan to use to sign the site. You also give it the express server to which it can send
traffic after encryption is established. The code for this support is shown in Listing 10.5 .

Listing 10.5 Express/https Module SSL Support (https_express_server.js)

var express = require('express'),

 https = require('https'),

 fs = require('fs');

// 1. Load certificates and create options

var privateKey = fs.readFileSync('privkey.pem').toString();

var certificate = fs.readFileSync('newcert.pem').toString();

var options = {

 key : privateKey,

 cert : certificate

}

http://gnuwin32.sourceforge.net/packages/openssl.htm
https_express_server.js

229Securing Your Projects with HTTPS/SSL

// 2. Create express app and set up routing, etc.

var app = express();

app.get("*", function (req, res) {

 res.end("Thanks for calling securely!\n");

});

// 3. start https server with options and express app.

https.createServer(options, app).listen(8443, function (){

 console.log("Express server listening on port 8443");

});

You can view these encrypted pages in a web browser by entering https://localhost:8443
in the address bar. The first time you view them, you get a scary warning about how insecure
they are.

Proxy Server Support

As with many of the other things you’re investigating in this chapter, you can also use the
remarkably powerful http-proxy module to handle SSL/HTTPS traffic for you. Using this
module has a couple of key advantages over using built-in support for HTTPS in that you let
the actual app servers run as regular HTTP servers, leaving them “hidden” behind the HTTPS
proxy server and freeing them from tedious encryption work. You can then also run as many
as you want using round-robin load balancing seen previously, or look at other creative ways to
set up your configuration.

The methodology for this support isn’t terribly different from that used in the previous
example with express; you create an instance of Node’s built-in HTTPS server class and also
create an instance of a proxy server that knows to route traffic to a regular HTTP server (the app
server). You then run the HTTPS server, and when it has established the secure connection, it
passes the request to the proxy server, which in turn passes it to the app server(s). The code for
this support is shown in Listing 10.6 .

Listing 10.6 http-proxy SSL Support (https_proxy_server.js)

var fs = require('fs'),

 http = require('http'),

 https = require('https'),

 httpProxy = require('http-proxy');

// 1. Get certificates ready.

var options = {

 https: {

 key: fs.readFileSync('privkey.pem', 'utf8'),

 cert: fs.readFileSync('newcert.pem', 'utf8')

https://localhost:8443
https_proxy_server.js

230 Chapter 10 Deployment and Development

 }

};

// 2. Create an instance of HttpProxy to use with another server

var proxy = new httpProxy.HttpProxy({

 target: {

 host: 'localhost',

 port: 8081

 }

});

// 3. Create https server and start accepting connections.

https.createServer(options.https, function (req, res) {

 proxy.proxyRequest(req, res)

}).listen(8443);

This may seem like a lot of routing and redirecting, but the Node development group is almost
fanatical about performance, and these components are sufficiently lightweight that they
shouldn’t add much perceptible delay in the processing of requests for your web applications.

Multiplatform Development

One of the great strengths of Node.js is not only its strong support for UNIX and Mac-like
computers, but also its ability to run on Windows machines. As I was writing this book, I
played around with all the samples and ran things on Windows without much trouble at all.

Indeed, you can have people on your projects developing on whatever platforms they want, as
long as you take care to prepare for a couple of minor issues that will crop up: differences in
configurations and path differences.

Locations and Configuration Files

Windows and UNIX-like operating systems naturally keep things in different places. One way
that you can mitigate this problem is to use a configuration file to store these locations. Then
your code can be made flexible enough to know where to find things without having to handle
each platform separately.

You actually first used this technique in Chapter 8 , “Databases I: NoSQL (MongoDB),” and
Chapter 9 , “Databases II: SQL (MySQL),” where you put database configuration information
in a file called local.config.js. You can continue to follow this technique, and expand on that
and generally put any information that affects the running of your application into that file.
Indeed, you don’t need to restrict it to simply file locations or paths, but can configure port
numbers or build types from there as well:

231Multiplatform Development

exports.config = {

 db_config: {

 host: "localhost",

 user: "root",

 password: "",

 database: "PhotoAlbums",

 pooled_connections: 125,

 idle_timeout_millis: 30000

 },

 static_content: "../static/",

 build_type: "debug" // show extra output

};

What you normally do is actually check this file in to the version control system (such as
GitHub) as local.config.js-base and not have a local.config.js in the source tree. To run the
application, you then copy this base file over to local.config.js, update the values as appropriate
for your local running setup, and then run it that way. Any time you want to use these local
configuration variables, you just add

var local = require('local.config.js');

Then, in code, you’re free to refer to local.config.variable_xyz as you need.

Handling Path Differences

The other major difference between Windows and UNIX-like operating systems is paths. How
do you code for things such as require when you have handlers in subfolders of your current
project directory and so on?

The good news is that a vast majority of the time, you’ll find that Node accepts the forward
slash (/) character. When you require modules from relative paths (such as “../path/to/sth”), it
just “works” as you would expect it to. Even for cases in which you’re using the fs module APIs,
most of them are also able to handle the differences in path types between the platforms.

For those cases in which you absolutely need to work with the different path styles, you can
use the path.sep property in Node.js, and some clever use of array joining and splitting, for
example:

var path = require('path');

var comps = ['..', 'static', 'photos'];

console.log(comps.join(path.sep));

232 Chapter 10 Deployment and Development

The process global in Node.js always tells you what platform you’re running on and can be
queried as follows:

if (process.platform === 'win32') {

 console.log('Windows');

} else {

 console.log('You are running on: ' + process.platform);

}

Summary

In this chapter, you looked at how to take your Node applications and run them in produc-
tion environments, investing execution scripts, load balancing, and multiprocess applications.
This chapter also showed you how to secure your web applications using HTTPS over SSL, and
finally described multiplatform development, showing that it’s not nearly as scary as you
might fear.

You now have a pretty hefty set of tools that enable you to build and run cool asynchronous
applications. In the next chapter, however, you see that using Node.js gets even cooler and
discover that it has a bunch of synchronous APIs that lend themselves to doing command-line
programming and scripting.

11
Command-Line

Programming

After spending so much time in this book discussing how Node.js is a powerful asynchro-
nous, nonblocking platform for creating applications, I’m now going to show you how some-
times using regular synchronous, blocking IO is also cool in Node—writing command-line
programs. It turns out that writing JavaScript code is so much fun that people are starting to
write a lot of their day-to-day scripts and other quick programs in Node as well.

In this chapter, you look at the basics of running command-line scripts in Node, including
looking at some of the synchronous file system APIs available to you. You then look at how
you can interact with the user directly via buffered and unbuffered input, and finally look at
process creation and execution.

Running Command-Line Scripts

You have quite a few options to run Node.js scripts from the command line, for both UNIX-
and Mac-like operating systems as well as Windows-based ones. You are able to make them
appear as regular operating system commands and pass command-line parameters to them
as well.

UNIX and Mac

On UNIX-like operating systems such as Linux or Mac OS X, an overwhelming majority of
users use the Bourne Shell, sh (or the popular modern variant, bash). Although the shell script-
ing language it comes with is quite full featured and powerful, it can sometimes still be more
fun to write scripts in JavaScript instead.

234 Chapter 11 Command-Line Programming

You have two ways to run your Node programs in the shell. The easiest is to just run it as
you always have—by specifying the node program and the script to run (the .js extension is
optional, actually):

node do_something

The second is to directly make the script an executable file by changing the first line as follows:

#!/usr/local/bin/node

The first two characters are known as a shebang , and tell the operating system that what comes
directly after it is the path of the program to execute with this file as a given argument. In the
preceding example, the operating system knows to go to /usr/local/bin, look for the executable
node, run it, and pass in the file as an argument to Node. The Node interpreter is smart enough
to ignore this first line starting with #! because it realizes that these are for operating
system use.

So, you can write the following hello world executable in Node:

#!/usr/local/bin/node

console.log("Hello World!");

To run the program as an executable, you also need to mark it as an executable file by using
the chmod command:

chmod 755 hello_world

Now you can directly execute the script by typing

$./hello_world

Hello World!

$

There is one small problem with this approach: What happens when you take your script to
other machines and node is not in /usr/local/bin, but instead in /usr/bin? The common solu-
tion is to change the shebang line as follows:

#!/usr/bin/env node

The env command then looks through your PATH environment variable to find the first
instance of the node program and then runs that. All UNIX/Mac machines have env in /usr/
bin, so as long as node is in the system PATH somewhere, this is more portable.

If you poke around in your various operating system executable directories or other places
where you have installed software, you see that a lot of programs you use on a regular basis are,
in fact, scripts of some sort.

One small bonus: The Node interpreter is smart enough, even on Windows, to ignore the #!
syntax, so you can still write scripts that can be run as executables on both platforms!

235Running Command-Line Scripts

Windows

Microsoft Windows has never really had a fantastic scripting environment available to it.
Windows Vista and 7 introduced the PowerShell, which is a nice improvement on previous
ones, but it still never quite feels as powerful and easy to use as the shells available on UNIX
platforms. The good news, however, is that this doesn’t hurt you that much because your
primary goal is just to get your scripts launched and executing, and the features available in all
modern (and semimodern) versions of Windows are more than enough.

You can run your scripts with batch files (carrying the extension .bat). If you have the simple
hello_world.js you saw in the previous section, you could create hello_world.bat, as follows:

@echo off

node hello_world

By default, Windows echoes every command it sees in a batch file. The @echo off tells it to
stop that. Now, to run the program, you could just type

C:\Users\Mark\LearningNode\Chapter11\> hello_world

Hello World!

C:\Users\Mark\LearningNode\Chapter11\>

But there is a bug in this program! What if hello_world.bat and hello_world.js are in the same
folder, but you are executing the batch file from somewhere else, as shown here:

C:\Users\Mark\LearningNode\Chapter11\> cd \

C:\> \Users\Mark\LearningNode\Chapter11\hello_world

module.js:340

 throw err;

 ^

Error: Cannot find module 'C:\hello_world'

 at Function.Module._resolveFilename (module.js:338:15)

 at Function.Module._load (module.js:280:25)

 at Module.runMain (module.js:492:10)

 at process.startup.processNextTick.process._tickCallback (node.js:244:9)

Because you don’t specify the full path to hello_world.js, Node doesn’t know where to look for
it and gets lost. You fix that problem by changing the hello_world.bat script to be as follows:

@echo off

node %~d0\%~p0\hello_world

Here, you make use of two handy little batch file macros, %-pXX and %~dXX , to give you the
drive letter and path, respectively, of the n th argument (here, the 0 th , or the name of the script
being run). Now you can run hello_world from wherever you want on your computer and
it’ll work properly:

Z:\> C:\Users\Mark\LearningNode\Chapter11\hello_world

Hello World!

236 Chapter 11 Command-Line Programming

Scripts and Parameters

To be able to do interesting things with your scripts, you need to pass them parameters. In this
case you need to worry about two problems: how to pass these parameters to your scripts and
how to access them within the script.

If you run your Node scripts by calling the interpreter all the time (works on all platforms), you
need to do nothing extra—the arguments are passed directly to the executing script:

node script_name [args]*

Passing Parameters on UNIX/Mac

On UNIX-like operating systems where you use the #! syntax to launch your scripts, these
parameters are passed directly to your scripts when you run them. So, even here, you don’t
have to do anything else.

Passing Parameters on Windows

On Windows, you mostly run your Node scripts via batch files with the .bat extension. You can
pass parameters to these batch files, and they can, in turn, pass them on to your Node.js scripts
by using the macro %* . So, the batch file would look as follows:

@echo off

node %~d0\%~p0\params %*

Accessing Parameters in Node

All parameters passed to your scripts are appended to the argv array on the process global
object. The first two items in this array are always the node interpreter running and the script
being run. So, any additional arguments passed to the script start at the third element, index 2 .
Now run the following:

#!/usr/local/bin/node

console.log(process.argv);

You should see the output roughly as follows:

Kimidori:01_running marcw$./params.js 1 2 3 4 5

['/usr/local/bin/node',

 '/Users/marcw/src/misc/LearningNode/Chapter11/01_running/params.js',

 '1',

 '2',

 '3',

 '4',

 '5']

237Working with Files Synchronously

Working with Files Synchronously

For nearly every single API you have seen in the file system module (fs), both asynchronous
and synchronous versions are available. You have mostly been using the asynchronous versions
thus far, but the synchronous versions can be extremely useful to you when writing command-
line programs. Basically, for a vast majority of APIs in fs with the name func , there is a corre-
sponding API called funcSync .

In the following sections, you look at a few examples of how you can use some of these
synchronous APIs.

Basic File APIs

The fs module doesn’t have a file copy function, so you can write one yourself. For the open ,
read , and write APIs, you use the synchronous versions: openSync , readSync , and
writeSync . In the synchronous versions, they throw an error if anything goes wrong. You can
use a buffer to hold the data as you copy from location a to b. Be sure to close everything when
you’re done:

var BUFFER_SIZE = 1000000;

function copy_file_sync (src, dest) {

 var read_so_far, fdsrc, fddest, read;

 var buff = new Buffer(BUFFER_SIZE);

 fdsrc = fs.openSync(src, 'r');

 fddest = fs.openSync(dest, 'w');

 read_so_far = 0;

 do {

 read = fs.readSync(fdsrc, buff, 0, BUFFER_SIZE, read_so_far);

 fs.writeSync(fddest, buff, 0, read);

 read_so_far += read;

 } while (read > 0);

 fs.closeSync(fdsrc);

 return fs.closeSync(fddest);

}

To call this function, you can write a file_copy.js script that makes sure it gets enough argu-
ments, calls the copy function, and then handles any errors that are thrown during the process:

if (process.argv.length != 4) {

 console.log("Usage: " + path.basename(process.argv[1], '.js')

 + " [src_file] [dest_file]");

238 Chapter 11 Command-Line Programming

} else {

 try {

 copy_file_sync(process.argv[2], process.argv[3]);

 } catch (e) {

 console.log("Error copying file:");

 console.log(e);

 process.exit(-1);

 }

 console.log("1 file copied.");

}

You can see here that you also make use of a new function, process.exit . This function
terminates the Node.js program immediately and passes the return code back to the calling
program (often a shell interpreter or command prompt). The standard in Bourne shell (sh or
bash) is to return 0 on success and nonzero when something bad happens. You return – 1 when
something goes wrong with the copy.

You can trivially change this copy function to a move function by first performing the file copy
operation and then deleting the source file when you’re sure the destination has been fully
written and successfully closed. You perform this deletion by using the function unlinkSync:

function move_file_sync (src, dest) {

 var read_so_far, fdsrc, fddest, read;

 var buff = new Buffer(BUFFER_SIZE);

 fdsrc = fs.openSync(src, 'r');

 fddest = fs.openSync(dest, 'w');

 read_so_far = 0;

 do {

 read = fs.readSync(fdsrc, buff, 0, BUFFER_SIZE, read_so_far);

 fs.writeSync(fddest, buff, 0, read);

 read_so_far += read;

 } while (read > 0);

 fs.closeSync(fdsrc);

 fs.closeSync(fddest);

 return fs.unlinkSync(src) ;

}

The rest of the script remains the same, except you change the call to copy_file_sync to
move_file_sync .

239Working with Files Synchronously

Files and Stats

You create folders in Node by using the mkdir function in the file system module. In the
scripts shown here, you use the mkdirSync variation of it. Now you’re ready to write a program
that behaves the same as the mkdir -p command in UNIX shells: You specify a full path, and
it creates that directory and also any missing intermediary directories that do not yet exist.

The work takes place in two steps:

 1. You break apart the path and then, starting at the top, see which directories exist already
or not. If something exists at the given location but isn’t a directory (that is, you want
to use mkdir a/b/c , but a/b already exists and is a regular file), you throw an error. To
determine the existence of a file, you use the existsSync function and then call the
statsSync function, which gives you a Stats object that can tell you whether or not
the object there is a directory.

 2. For all those entries that have not yet been created, you iterate through and create them.

Here’s the code for the mkdirs function:

function mkdirs (path_to_create, mode) {

 if (mode == undefined) mode = 0777 & (~process.umask());

 // 1. What do we have already or not?

 var parts = path_to_create.split(path.sep);

 var i;

 for (i = 0; i < parts.length; i++) {

 var search;

 search = parts.slice(0, i + 1).join(path.sep);

 if (fs.existsSync(search)) {

 var st;

 if ((st = fs.statSync(search))) {

 if (!st.isDirectory())

 throw new Error("Intermediate exists, is not a dir!");

 }

 } else {

 // doesn't exist. We can start creating now

 break;

 }

 }

 // 2. Create whatever we don't have yet.

 for (var j = i; j < parts.length; j++) {

 var build = parts.slice(0, j + 1).join(path.sep);

 fs.mkdirSync(build, mode);

 }

}

240 Chapter 11 Command-Line Programming

The first line of this function, to set up the mask, is just a way for you to choose reasonable
permissions for the new directories. The caller of this function can specify them directly, or he
can use what is known as the umask to filter out those permissions that the current shell user
does not want to give to new files (or directories). On Windows machines, umask returns 0 ,
indicating that it does not want to mask anything out at all; Windows uses a completely differ-
ent mechanism for file permissions.

Listing Contents of Directories

To list the contents of a directory, you can use the readdirSync function, which returns an
array of all filenames in the specified folder, excluding "." and ".." :

#!/usr/local/bin/node

var fs = require('fs');

var files = fs.readdirSync(".");

console.log(files);

Interacting with the User: stdin/stdout

You might be familiar with the trio of IO handles given to all processes, stdin , stdout , and
stderr , representing input, normal output, and error output, respectively. These are all avail-
able to the Node.js scripts and hang off the process object. In Node, they are all instances of
Stream objects (see Chapter 6 , “Expanding Your Web Server”).

The console.log function, in fact, is just the equivalent of

process.stdout.write(text + "\n");

Whereas console.error is basically

process.stderr.write(text + "\n");

Input, however, gives you a few more options, so in the following sections, you look at buff-
ered (line-by-line) input versus unbuffered (type a character and immediately see something)
input.

Basic Buffered Input-Output

By default, the stream you get for stdin reads and buffers one line at a time. Thus, if you try to
read from stdin , nothing happens until the user presses the Enter key, and then your program
is given the entire line read from the input stream. You listen for these events by adding a
handler for the readable event on stdin , as follows:

process.stdin.on(readable , function () {

 var data = process.stdin.read();

 // do something w input

});

241Interacting with the User: stdin/stdout

By default, however, the stdin stream is paused. Before you can start receiving anything from
it, you need to call the resume function:

process.stdin.resume();

Write a little program that reads in a line of input and then generates and prints out an md5
hash of this input, looping until the user either presses Ctrl+C or enters a blank line:

process.stdout.write("Hash-o-tron 3000\n");

process.stdout.write("(Ctrl+C or Empty line quits)\n");

process.stdout.write("data to hash > ");

process.stdin.on(readable , function () {

 var data = process.stdin.read();

 if (data == null) return;

 if (data == "\n") process.exit(0);

 var hash = require('crypto').createHash('md5');

 hash.update(data);

 process.stdout.write("Hashed to: " + hash.digest('hex') + "\n");

 process.stdout.write("data to hash > ");

});

process.stdin.setEncoding('utf8');

process.stdin.resume();

Most of the work happens when the user presses Enter: You check to see whether the input is
nonempty. If it is, you hash it, print out the result, and then print another prompt and wait for
the user to type in something else. Because stdin is not in the paused state, the Node program
does not exit. (If you were to pause it, it would exit if there was nothing else to do.)

Unbuffered Input

For those situations in which you want to let the user simply press a key and have something
happen immediately, you can turn on raw mode on the stdin stream, using the setRawMode
function, which takes a Boolean indicating whether or not it should turn on (true) raw mode.

Update your hash generator for the previous section to let the user select which type of hash
she would like. After the user enters a line of text and presses Enter, you ask her to press a
number between 1 and 4 to choose which algorithm she’d like. The complete listing for this
program is shown in Listing 11.1 .

Listing 11.1 Using RawMode on stdin (raw_mode.js)

process.stdout.write("Hash-o-tron 3000\n");

process.stdout.write("(Ctrl+C or Empty line quits)\n");

process.stdout.write("data to hash > ");

242 Chapter 11 Command-Line Programming

process.stdin.on(readable , function (data) {

 var data = process.stdin.read();

 if (!process.stdin.isRaw) { // 1.

 if (data == "\n") process.exit(0);

 process.stdout.write("Please select type of hash:\n");

 process.stdout.write("(1 – md5, 2 – sha1, 3 – sha256, 4 – sha512) \n");

 process.stdout.write("[1-4] > ");

 process.stdin.setRawMode(true);

 } else {

 var alg;

 if (data != ' ̂C ') { // 2.

 var c = parseInt(data);

 switch (c) {

 case 1: alg = 'md5'; break;

 case 2: alg = 'sha1'; break;

 case 3: alg = 'sha256'; break;

 case 4: alg = 'sha512'; break;

 }

 if (alg) { // 3.

 var hash = require('crypto').createHash(alg);

 hash.update(data);

 process.stdout.write("\nHashed to: " + hash.digest('hex'));

 process.stdout.write("\ndata to hash > ");

 process.stdin.setRawMode(false);

 } else {

 process.stdout.write("\nPlease select type of hash:\n");

 process.stdout.write("[1-4] > ");

 }

 } else {

 process.stdout.write("\ndata to hash > ");

 process.stdin.setRawMode(false);

 }

 }

});

process.stdin.setEncoding('utf8')

process.stdin.resume();

Because this script receives input from stdin both when it is buffered (you’re asking for the
text to hash) and when it is unbuffered (when you ask for the hashing algorithm to use), it’s a
bit more involved. Let’s see how it works:

 1. You first check to see whether the input you received is buffered or unbuffered. If the
former, it’s a line of text to hash, and you should print out the request to choose which
algorithm to use. Because you want the user to just be able to press a number between 1

243Interacting with the User: stdin/stdout

and 4 , you switch stdin to RawMode now so that pressing any key triggers the readable
event.

 2. If the stream is in RawMode , it means the user has pressed a key in response to your
request for a hash algorithm. For the first line here, you check to see whether this key is
Ctrl+C. (Note that this can be tricky to enter into a text editor; in Emacs, you can press
Ctrl+Q and then Ctrl+C, and it types the ̂ C for you. Every editor is slightly different.) If
the user pressed Ctrl+C, you abort the input request and go back to the hash prompt.

If the user entered some other key, you first make sure it’s a valid key (1–4) or else you
squawk and make him try again.

 3. Finally, depending on the algorithm selected, you generate the hash, print it out, and
then go back to the normal enter data prompt. You must be sure to turn off RawMode
here so that you go back to line-buffered input!

Again, because you call resume on stdin in this program, it does not exit until you call
process.exit , the user enters a blank line, or the user presses Ctrl+C during buffered input
(which causes Node to just terminate).

The Readline Module

One other way to work with input in Node.js is to use the readline module. It’s still marked as
Unstable and subject to change, so I don’t devote too much time and energy to it here, but it
does have a couple neat features that you can use in your programs.

To turn on the readline module, call the createInterface method on it, specifying as options
the stdin and stdout streams to use:

var readline = require('readline');

var rl = readline.createInterface({

 input: process.stdin,

 output: process.stdout

});

After you do this, your program does not exit until rl.close is called!

Line-by-Line Prompting

If you call the prompt method in readline, the program waits for a line of input (followed by
Enter). When the program gets this keypress, it sends the line event on the readline object.
The event can process it as needed:

rl.on("line", function (line) {

 console.log(line);

 rl.prompt();

});

244 Chapter 11 Command-Line Programming

To continue listening, you call the prompt method again. One of the nice things about the
readline interface is that if the user presses Ctrl+C, you get the SIGINT event called, and you
can either shut things down there or do other things to reset the state and continue. Here, by
closing the readline interface, you cause the program to stop listening for input and exit:

rl.on("SIGINT", function () {

 rl.close();

});

Now you’re ready to write a little Reverse Polish Notation calculator using the readline module.
The code for this calculator is shown in Listing 11.2 .

If you’ve never heard of Reverse Polish Notation or forgotten how it works, it’s basically a post-
fix mathematical notation format. Instead of writing 1 + 2 , you write 1 2 + . To write 5 * (2 + 3) ,
you write: 5 2 3 + * , and so on. The little calculator takes a string at a time, splits it up based on
spaces, and does simple calculations.

Listing 11.2 Simple Postfix Calculator Using readline (readline.js)

var readline = require('readline');

var rl = readline.createInterface({

 input: process.stdin,

 output: process.stdout

});

var p = "postfix expression > "

rl.setPrompt(p, p.length);

rl.prompt(); // 1.

rl.on("line", function (line) { // 2.

 if (line == "\n") {

 rl.close(); return;

 }

 var parts = line.split(new RegExp("[]+"));

 var r = postfix_process(parts);

 if (r !== false)

 process.stdout.write("Result: " + r + "\n");

 else

 process.stdout.write("Invalid expression.\n");

 rl.prompt(); // 3.

});

rl.on("SIGINT", function () { // 4.

 rl.close();

});

245Interacting with the User: stdin/stdout

// push numbers onto a stack, pop when we see an operator.

function postfix_process (parts) {

 var stack = [];

 for (var i = 0; i < parts.length; i++) {

 switch (parts[i]) {

 case + : case - : case * : case / :

 if (stack.length < 2) return false;

 do_op(stack, parts[i]);

 break;

 default:

 var num = parseFloat(parts[i]);

 if (isNaN(num)) return false;

 stack.push(num);

 break;

 }

 }

 if (stack.length != 1) return false;

 return stack.pop();

}

function do_op (stack, operator) {

 var b = stack.pop();

 var a = stack.pop();

 switch (operator) {

 case + : stack.push(a + b); break;

 case - : stack.push(a - b); break;

 case * : stack.push(a * b); break;

 case / : stack.push(a / b); break;

 default: throw new Error("Unexpected operator");

 }

}

This program works as follows:

 1. You create the readline module object, set the default prompt text on it, and then tell
readline to show that prompt and wait for a line of input.

 2. When you receive a line of input, you check to see whether it’s empty (in which case you
close down the program by closing the readline interface), or else you parse the input
string and pass it to the little calculating function. You print out the results (good
or bad).

 3. You complete the loop by telling readline to print out the prompt and wait again.

 4. If the user presses Ctrl+C, you close down the readline, which causes the program to exit
gracefully.

246 Chapter 11 Command-Line Programming

Now you can test it:

Kimidori:03_stdinout marcw$ node readline_rpn.js

postfix expression > 1 2 +

Result: 3

postfix expression > 2 3 4 + *

Result: 14

postfix expression > cat

Invalid expression.

postfix expression > 1 2 4 cat dog 3 4 + - / *

Invalid expression.

postfix expression > 2 3 + 5 *

Result: 25

postfix expression >

Questions

The other major functionality in the readline module is the ability to ask questions and receive
the answers directly in a callback. The basic format is

rl.question("hello? ", function (answer) {

 // do something

});

Next, you write a little program that performs a survey: It takes an array of questions (which
you could put in a file if you wanted to make it configurable) and asks them one at a time
to the user. It then writes the user’s answers to answers.txt using appendFileSync on the fs
module.

Note that because the question function is asynchronous, you have to use
async.forEachSeries to iterate over each of the questions in the survey! The code for
the survey program is shown in Listing 11.3 .

Listing 11.3 Survey Program (questions.js)

var readline = require('readline'),

 async = require("async"),

 fs = require('fs');

var questions = ["What's your favorite color? ",

 "What's your shoe size? ",

 "Cats or dogs? ",

 "Doctor Who or Doctor House? "];

var rl = readline.createInterface({ // 1.

 input: process.stdin,

 output: process.stdout

});

247Working with Processes

var output = [];

async.forEachSeries(

 questions,

 function (item, cb) { // 2.

 rl.question(item, function (answer) {

 output.push(answer);

 cb(null);

 });

 },

 function (err) { // 3.

 if (err) {

 console.log("Hunh, couldn't get answers");

 console.log(err);

 return;

 }

 fs.appendFileSync("answers.txt", JSON.stringify(output) + "\n");

 console.log("\nThanks for your answers!");

 console.log("We'll sell them to some telemarketer immediately!");

 rl.close();

 }

);

The program performs the following tasks:

 1. It initializes the readline module and sets up the stdin and stdout streams.

 2. Then, for each question in the array, you call the question function on readline (using
async.forEachSeries because question is an asynchronous function) and add the
result to the output array.

 3. Finally, after all the questions have been asked and async calls the results function, you
either print the error if there was one or append the user’s output to the answers.txt file
and then close the readline object to exit the program.

Working with Processes

One other thing you can do from the command line (or even from within your web applica-
tions) in Node is to launch other programs. You have a couple of options for this using the
child_process module, with varying degrees of complexity. In the following sections, you start
with the easier option, exec .

Simple Process Creation

The exec function in the child_process module takes a command and executes it in the system
shell (sh / bash on UNIX/Mac, or cmd.exe on Windows). Thus, you can specify something

248 Chapter 11 Command-Line Programming

simple like "date" as the program to run, or something complicated like "echo 'Mancy' |
sed s/M/N/g" . All commands are run, and all output is buffered and passed back to the caller
after the command finishes.

The basic format is

exec(command, function (error, stdout, stderr) {

 // error is if an error occurred

 // stdout and stderr are buffers

});

After the command finishes executing, the callback is called. The first parameter is non-null
only if an error occurred. Otherwise, stdout and stderr are set to Buffer objects with the full
contents of anything written to the respective output stream.

Now write a program that uses the exec function to run the cat program (type on Windows).
It takes the name of a file to print out. It uses the exec function to launch the cat / type
program and then prints out all the output when you’re done:

var exec = require('child_process').exec,

 child;

if (process.argv.length != 3) {

 console.log("I need a file name");

 process.exit(-1);

}

var file_name = process.argv[2];

var cmd = process.platform == 'win32' ? 'type' : "cat";

child = exec(cmd + " " + file_name, function (error, stdout, stderr) {

 console.log('stdout: ' + stdout);

 console.log('stderr: ' + stderr);

 if (error) {

 console.log("Error exec'ing the file");

 console.log(error);

 process.exit(1);

 }

});

Advanced Process Creation with Spawn

A more advanced way of creating processes is to use the spawn function available in the
child_process module. This function gives you complete control over the stdin and stdout of
the child processes you create, and permits some fantastic functionality, such as piping output
from one child to another.

249Working with Processes

Start by writing a program that takes the name of a JavaScript file and runs it with the node
program:

var spawn = require("child_process").spawn;

var node;

if (process.argv.length != 3) {

 console.log("I need a script to run");

 process.exit(-1);

}

var node = spawn("node", [process.argv[2]]);

node.stdout.on('readable', print_stdout);

node.stderr.on('readable', print_stderr);

node.on('exit', exited);

function print_stdout() {

 var data = process.stdout.read();

 console.log("stdout: " + data.toString('utf8'));

}

function print_stderr(data) {

 var data = process.stderr.read();

 console.log("stderr: " + data.toString('utf8'));

}

function exited(code) {

 console.error("--> Node exited with code: " + code);

}

When you want to call spawn , the first argument is the name of the command to execute,
and the second is an array of parameters to pass to it. You can see that any output written
to stdout or stderr on the child process immediately triggers an event on the appropriate
stream, and you can see what’s happening right away.

Now you’re ready to write something a bit more advanced. In the preceding chapter, you saw a
way to effectively do the following in shell scripts or command prompts:

while 1

 node script_name

end

Write that same code, but in JavaScript, using the spawn function. Using this function is actu-
ally a bit more work than writing it in the shells, but it’s instructive and sets you up to do
more work and monitoring as you want later. The code for the new launcher is shown in
Listing 11.4 .

250 Chapter 11 Command-Line Programming

Listing 11.4 An All-Node Node Runner (node_runner.js)

var spawn = require("child_process").spawn;

var node;

if (process.argv.length < 3) {

 console.log("I need a script to run");

 process.exit(-1);

}

function spawn_node () {

 var node = spawn("node", process.argv.slice(2));

 node.stdout.on(readable , print_stdout);

 node.stderr.on(readable , print_stderr);

 node.on(exit , exited);

}

function print_stdout () {

 var data = process.stdout.read();

 console.log("stdout: " + data.toString('utf8'));

}

function print_stderr (data) {

 var data = process.stderr.read();

 console.log("stderr: " + data.toString('utf8'));

}

function exited (code) {

 console.error("--> Node exited with code: " + code + ". Restarting");

 spawn_node();

}

spawn_node();

This program works by listening for the exit event on the spawned process. Whenever it sees
that, it restarts the node interpreter with the script you want to run.

I leave it to you as an exercise to update this script to behave like the full node_ninja_runner
you wrote in the preceding chapter. You can get the output of the ps aux command by using
the exec function; the resulting buffer can easily be parsed in JavaScript. Finally, you can kill a
child process by calling the kill method on it if you detect that it’s getting too large.

251Summary

Summary

Now you’ve seen that Node is not only great for writing networked applications, but is also
extremely powerful and fun for command-line synchronous applications. After this tour
of creating and running scripts and passing parameters to them, you should now be pretty
comfortable manipulating input and output in your program, and even be able to switch
between buffered and unbuffered input when necessary. Finally, you should be able to create
and run programs in your Node.js scripts with exec and spawn .

To finish this treatment of programming JavaScript in Node.js, it’s time now to turn your atten-
tion to testing your scripts and applications.

This page intentionally left blank

12
Testing

With all the code you have written so far, you’re now ready to look at how to test it to make
sure it works. There are many models and paradigms through which this is done, and Node.js
supports most of them. This chapter looks at some of the more common ones and then looks
at how you can do functional testing of not only synchronous APIs, but also Node’s asynchro-
nous code, and then add some testing to your photo album application.

Choosing a Framework

A few common models of testing are available, including test-driven development (TDD) and
behavior-driven development (BDD). The former focuses highly on making sure that all your code
is properly exposed to testing (indeed, in many cases, demanding that you write no code until
you’ve written the tests for it), whereas the latter focuses more on the business requirements
of a particular unit or module of code, and encourages testing to be a bit more holistic than
simple unit testing.

Regardless of which model to which you subscribe (or will subscribe, if this is your first time
writing tests), adding tests to your code base is always a good idea because you not only want
to make sure that what you have written works, but also make sure that future changes you
make to your code-base don’t break things. Adding testing to your Node applications adds a
few challenges because you frequently need to mix synchronous, asynchronous, and RESTful
server API functionality together, but the Node.js platform is sufficiently robust and advanced
already that there are options for all your needs.

Of the many frameworks available today, three stand out in popularity:

 ■ nodeunit —This is a simple and straightforward test-runner for testing both in Node
and in the browser. It’s extremely easy to work with and gives you a lot of flexibility for
setting up your testing framework.

 ■ Mocha —Based on an older testing framework called Expresso, Mocha is basically a more
feature-rich TDD framework for Node that focuses on being easier to use and more
enjoyable to code. It has some cool features for asynchronous testing and an API for
output formatting.

254 Chapter 12 Testing

 ■ VowsJS —The most prominent of the BDD testing frameworks for Node.js, VowsJS not
only has a very descriptive syntax and structure to combine BDD ideas with your tests,
but also runs your tests concurrently, for faster execution.

Although they all work perfectly fine and have their places, for this chapter, you can stick
with the reasonably straightforward nodeunit , largely because it’s really easy to work with and
demonstrate.

Installing Nodeunit
For your projects now, you can create a test/ subfolder into which you put all the files, samples,
and data files related to the testing of your various projects. The first file to put in is package.
json, as follows:

{

 "name": "API-testing-demo",

 "description": "Demonstrates API Testing with nodeunit",

 "version": "0.0.1",

 "private": true,

 "dependencies": {

 "nodeunit": "0.7.x"

 }

}

When you run npm update , nodeunit is installed, and you can begin writing and running tests.

Writing Tests

Nodeunit organizes tests into modules, with each exposed function acting as a test, and each
exposed object acting as a group of tests. To each test, you are given an object that will help
you perform the tests and tell nodeunit when you are done:

exports.test1 = function (test) {

 test.equals(true, true);

 test.done();

}

You must call test.done at the end of every single test; otherwise, nodeunit does not know
when it is finished. To run this test, save it to a file called trivial.js and then run the provided
running script in the node_modules/.bin folder. On both Unix/Mac platforms and Windows,
you run (switch the / characters for \ characters on Windows, of course)

node_modules/.bin/nodeunit trivial.js

255Writing Tests

You see something similar to

C:\Users\Mark\a> node_modules\.bin\nodeunit.cmd trivial.js

trivial.js

✓ test1

OK: 1 assertions (0ms)

C:\Users\Mark\a>

Simple Functional Tests

For each test you write, you want to do three things:

 1. Call the expect method on the provided test parameter with the number of “conditions”
nodeunit should expect you to verify in this particular test. This step is optional, but
completing it is a good idea in case some of the code accidentally skips over a test.

 2. For each condition you want to verify, you should call some sort of assertion function
(see Table 12.1) to verify you’re seeing what you expect to see. test.equals is the first
example you’ve seen of this.

 3. Call test.done at the end of every single test to tell nodeunit you are finished.

Now take the code you wrote for a Reverse Polish Notation calculator in the preceding chapter
and put it in a file called rpn.js (see Listing 12.1).

Listing 12.1 The rpn.js File

// push numbers onto a stack, pop when we see an operator.

exports.version = "1.0.0";

exports. compute = function (parts) {

 var stack = [];

 for (var i = 0; i < parts.length; i++) {

 switch (parts[i]) {

 case '+': case '-': case '*': case '/':

 if (stack.length < 2) return false;

 do_op(stack, parts[i]);

 break;

 default:

 var num = parseFloat(parts[i]);

 if (isNaN(num)) return false;

 stack.push(num);

 break;

 }

 }

256 Chapter 12 Testing

 if (stack.length != 1) return false;

 return stack.pop();

}

function do_op (stack, operator) {

 var b = stack.pop();

 var a = stack.pop();

 switch (operator) {

 case '+': stack.push(a + b); break;

 case '-': stack.push(a - b); break;

 case '*': stack.push(a * b); break;

 case '/': stack.push(a / b); break;

 default: throw new Error("Unexpected operator");

 }

}

Now, write some tests for it (don’t forget to use require in the rpn.js file in your test file):

exports. addition = function (test) {

 test.expect(4);

 test.equals(rpn.compute(prep("1 2 +")), 3);

 test.equals(rpn.compute(prep("1 2 3 + +")), 6);

 test.equals(rpn.compute(prep("1 2 + 5 6 + +")), 14);

 test.equals(rpn.compute(prep("1 2 3 4 5 6 7 + + + + + +")), 28);

 test.done();

};

The prep function just splits the provided string into an array:

function prep(str) {

 return str.trim().split(/[]+/);

}

You can repeat this for all the operators your calculator supports (subtraction, multiplication,
and division), and even write some additional ones for decimal numbers:

exports. decimals = function (test) {

 test.expect(2);

 test.equals(rpn.compute(prep("3.14159 5 *")), 15.70795);

 test.equals(rpn.compute(prep("100 3 /")), 33.333333333333336);

 test.done();

}

So far you’ve only used the test.equals assertion to verify that values are what you expect.
Nodeunit uses a module from npm called assert , however, and there are many other possibilities,
as shown in Table 12.1 .

257Writing Tests

Table 12.1 Testing Assertions

Method Tests

ok(value) Tests whether or not value is true.

equal(value, expected) Tests whether value is expected (shallow test with == ,
not ===).

notEqual(value, expected) Makes sure that value is not the same as expected
(shallow, using == only).

deepEqual(value, expected) Makes sure that value is expected, inspecting sub-
values if required, using == .

notDeepEqual(value, expected) Makes sure that value is not expected, inspecting sub-
values if required, using == .

strictEqual(value, expected) Tests for equality, using the === operator.

throws(code, [Error]) Makes sure that the given code block throws an error.
You can optionally tell it what kind of error you’re expect-
ing.

doesNotThrow(value, expected) Makes sure the given code does not throw an error
(optionally, of the specified type).

So, you can now add a new test to make sure that the calculator rejects empty expressions:

exports. empty = function (test) {

 test.expect(1);

 test.throws(rpn.compute([]));

 test.done();

};

When the tests fail, nodeunit tells you loudly, giving you both the condition that failed and a
full stack of calls that led up to that failure:

01_functional.js

 addition

AssertionError: 28 == 27

 at Object.assertWrapper [as equals]
 [...]tests/node_modules/nodeunit/lib/types.js:83:39)

 at Object.exports.addition [...]tests/ 01_functional.js:9:10)

 (etc)

✓ subtraction

✓ multiplication

✓ division

258 Chapter 12 Testing

✓ decimals

✓ empty

FAILURES: 1/17 assertions failed (5ms)

You can then look in your code to see which test is causing the problem and analyze the
problem or regression.

Testing Asynchronous Functionality

Because you do much asynchronous programming in Node.js, many of the tests are also asyn-
chronous. Nodeunit is designed with this in mind: Your tests can take as long as they want and
be as asynchronous as they want, as long as they call test.done when they’re finished execut-
ing. As an example, write a couple of asynchronous tests right now:

exports.async1 = function (test) {

 setTimeout(function () {

 test.equal(false, true);

 test.done();

 }, 2000);

};

exports.async2 = function (test) {

 setTimeout(function () {

 test.equal(true, true);

 test.done();

 }, 1400);

};

Running this test module provides the following output (note that the runtime is roughly the
combination of the two tests run serially):

Kimidori: functional_tests marcw$ node_modules/.bin/nodeunit 02_async.js

02_async.js

✓ async1

✓ async2

OK: 2 assertions (3406ms)

RESTful API Testing

Now you can add tests for your photo album at two levels: one to functionally test that various
modules you’ve written are working properly and another to test that the server itself is main-
taining a consistent and functional REST API.

259RESTful API Testing

You can still use nodeunit for the latter by adding a single npm module called request , which
allows you to call remote URLs using the various HTTP methods and returns the results back to
you in the form of a Buffer object.

For example, to call /v1/albums.json on your server, you can call

request.get("http://localhost:8080/v1/albums.json", function (err, resp, body) {

 var r = JSON.parse(body);

 // do something

});

The callback function is given

 ■ An error for those cases when something catastrophic goes wrong.

 ■ An HttpResponse object where you can check things such as headers and status codes.

 ■ A Buffer object holding the contents of the body of the response (if there was one)
returned by the server.

Take the MySQL version of the photo album application you wrote in Chapter 9 , “Databases II:
SQL (MySQL),” and copy it to somewhere new. Then scrub the database and rerun the database
initialization script, schema.sql:

mysql -u root < schema.sql

And then in the root folder, create a new directory called test/:

+ photo_album/

 + static/

 + app/

 + test/

In this test folder, copy over a package.json that has both nodeunit and request :

{

 "name": "API-testing-demo",

 "description": "Demonstrates API Testing with request and nodeunit",

 "version": "0.0.1",

 "private": true,

 "dependencies": {

 "nodeunit": "0.7.x",

 "request": "2.x"

 }

}

And now you can write your first test:

var request = require('request');

var h = "http://localhost:8080";

exports. no_albums = function (test) {

http://localhost:8080/v1/albums.json

260 Chapter 12 Testing

 test.expect(5);

 request.get(h + "/v1/albums.json", function (err, resp, body) {

 test.equal(err, null);

 test.equal(resp.statusCode, 200);

 var r = JSON.parse(body);

 test.equal(r.error, null);

 test.notEqual(r.data.albums, undefined);

 test.equal(r.data.albums.length, 0);

 test.done();

 });

};

At the beginning, there are no albums in the database, so you should get an empty array back
when requesting all albums.

To test album creation, you need to use the PUT method to send the data to the server and
then test the response you get back. The request module lets you specify JSON to pass to the
server along with the request, automagically specifies the Content-Type: application/json
header for you, and expects JSON in return:

exports. create_album = function (test) {

 var d = "We went to HK to do some shopping and spend New Year's. Nice!";

 var t = "New Year's in Hong Kong";

 test.expect(7);

 request.put(

 { url: h + "/v1/albums.json",

 json: { name: "hongkong2012",

 title: t,

 description: d,

 date: "2012-12-28" } },

 function (err, resp, body) {

 test.equal(err, null);

 test.equal(resp.statusCode, 200);

 test.notEqual(body.data.album, undefined);

 test.equal(body.data.album.name, "hongkong2012"),

 test.equal(body.data.album.date, "2012-12-28");

 test.equal(body.data.album.description, d);

 test.equal(body.data.album.title, t);

 test.done();

 }

);

};

When the request is completed, you can test all sorts of things, including the HTTP response
code (which should be 200 for successful requests of this type), and you can pick apart the
JSON and make sure it’s similar to what you expected it to be. At the beginning, observe that
the code specifies that you will check seven conditions; this helps nodeunit sanity check for you.

261RESTful API Testing

Finally, you should not only make sure that the API works as expected, but also doesn’t work as
expected! If a function is expected to return an error, then test that! Indeed, while I was writing
this book, the following test discovered that the album handler in handlers/albums.js had some
parameter validation bugs:

exports. fail_create_album = function (test) {

 test.expect(4);

 request.put(

 { url: h + "/v1/albums.json",

 headers: { "Content-Type" : "application/json" },

 json: { name: "Hong kKong 2012", // no spaces allowed!

 title: "title",

 description: "desc",

 date: "2012-12-28" } },

 function (err, resp, body) {

 test.equal(err, null);

 test.equal(resp.statusCode, 403);

 test.notEqual(body.error, null);

 test.equal(body.error, "invalid_album_name");

 test.done();

 }

);

};

You not only test that the HTTP status code is the expected 403, but that the error code is what
you would expect as well.

Testing Secured Resources

You’ve secured some parts of your server with a username and password (and then put the
traffic for them behind HTTPS so nobody can see them). To test this, you can take advantage
of the fact that HTTP Basic Authentication can be built right into URLs you give to request , as
follows:

https://localhost: username@password :8080/v1/albums.json

Thus, to test secure parts of the site, you can write the nodeunit tests as follows:

var h = "localhost:username@secret:8080";

exports. get_user_info = function (test) {

 test.expect(5);

 request.get(h + "/v1/users/marcwan.json", function (err, resp, body) {

 test.equal(err, null);

 test.notEqual(resp.statusCode, 401);

 test.equal(resp.statusCode, 200);

 var r = JSON.parse(body);

 test.equal(r.data.user.username, "marcwan");

https://localhost:username@password:8080/v1/albums.json

262 Chapter 12 Testing

 test.equal(r.data.user.password, undefined);

 test.done();

 });

};

Summary

Testing your Node.js apps and scripts is both simple and fast with many of the available testing
frameworks available via npm . In this chapter, I showed you not only how to use nodeunit , a
popular TDD framework, to test the synchronous and asynchronous portions of your applica-
tions, but also how to combine it with request to perform full API-level testing of your JSON
servers.

With this knowledge tucked under your belt, you’ve come to the end of your tour of Node.js.
I hope that I’ve been able to convey some of the reasons why Node.js is so unbelievably excit-
ing and fun to develop with and encouraged you to type things and play with the platform as
you’ve been reading along.

Sit down and start to write some code. If you have an idea for a website, start putting together
some pages and APIs for it. If you do mobile development, think about the ways in which you
can deliver a server to mobile customers, and figure out how to use Node to do that. Even if
you’re just looking to script some things on a server, play around and start writing code today.
The only way to get better at programming on any platform is to just use it.

If you run into problems, don’t forget that the Node.js community is extremely active and
helpful. With so many helpful and motivated members, it’s certain you’ll be able to meet many
like-minded users and get all the resources and help you need to build interesting, useful, and
fun applications.

264 accounts, managing with user handlers

A
accounts, managing with user handlers,

198 - 201

logging in users, 199 - 200

new users, creating, 198 - 199

testing for logged-in status, 200 - 201

adding

items at end of arrays, 35

modules to Node files, 93

pages to photo album application,
183 - 187

paging functionality to photo album
application, 80 - 82

properties to classes, 44

properties to objects, 32

queries to MySQL, 192

strings, 30

advanced deployment options, 216 - 218

album-listing server

creating, 65 - 69

error handling, 71 - 72

folders, returning, 70 - 72

multiple requests, handling, 72 - 77

albums

creating for photo album
application, 173 - 175

listing in photo album application,
72 - 77

renaming, 83

and operator, 43

anonymous functions, 41 - 42

APIs

authentication, 206 - 209

designing, 144 - 146

file APIs, 61 , 237 - 238

funcsync, 237

REST APIs, 144

testing, 258 - 262

synchronous, 237

appending buffers to other buffers, 116

applications

advanced deployment options,
216 - 218

APIs

designing, 144 - 146

file APIs, 237 - 238

funcsync, 237

basic level deployment, 214

Hello World (express), 138 - 139

IO-based, 49

photo album application

converting to client-side template,
123 - 127

document types, creating with
MongoDB, 163

folders, returning for album-
listing server, 70 - 72

handlers, updating, 177 - 183

JSON server, returning data
with, 67 - 69

pages, adding, 183 - 187

paging functionality, adding,
80 - 82

structure of, 187

testing, 258 - 262

updating for routing, 141 - 144

Reverse Polish Notation calculator,
testing, 255 - 258

265calling

web applications

HTTP Basic Authentication,
157 - 158

node servers, launching, 220

PUT and DELETE, browser
support for, 155 - 156

web browser applications, client-side
templates, 121

arrays, 34 - 38

adding items at end of, 35

Array.isArray function (V8 JS), 35

creating, 34

iterating over items in, 38

removing elements from, 36

shift, 37

sorting, 37

assertions for testing, 256

async module, 104 - 111

async.series function, 105 - 108

async.auto function, 109 - 111

async.forEach function, 111

asynchronous functionality, testing, 258

asynchronous functions, calling, 54

async.parallel function, 108 - 109

async.series function, 105 - 108

authentication, HTTP Basic Authentication,

157 - 158

APIs, 206 - 209

auto-generated_id fields, searching for

(MongoDB), 169

awk command, 217

B
backtrace command (Node debugger), 20

basic level deployment, 214

bcrypt module, 195

BDD (behavior-driven development), 253

binary data, manipulating with

buffers, 116

bitwise operations, 43

bodyParser middleware component, 155

Boolean function, 29

booleans, 28 - 29

breakpoints, setting in Node debugger,

20 - 21

browsers, support for PUT and DELETE,

155 - 156

buffers

appending to other buffers, 116

binary data, manipulating, 116

binary files, serving, 118 - 119

converting to strings, 116

static files, serving, 114 - 118

building a proxy server, 220 - 221

C
caching modules, 94 - 95

callback functions, 54 - 56

err parameter, 54

nested callbacks, 57 - 58

calling

asynchronous functions, 54

functions, 40 - 41

266 catching errors

catching errors, 47

child_process module, creating processes,

247 - 250

Chrome V8 JavaScript. See V8 JS

classes, 44

modules

bcrypt, 195

caching, 94 - 95

connect, 139

consuming, 93 - 95

creating, 96 - 101

cycles, 95

developing with, 101 - 102

exports object, 90

generic-pool, 204 - 205

npm, 92 - 93

publishing, 102 - 103

searching for, 93 - 94

writing, 89 - 92 , 95

properties, adding, 44

writing, 56 - 57

clearCookie method, 154

clearing cookies, 154

client-side templates, 121

cmd.exe command prompt

(Windows OS), 9

collections, 144 - 145

creating, 165 - 166

documents

deleting, 168

inserting, 166 - 167

querying, 168 - 169

command prompt (Windows), 10

path environment variable, 11

command-line programming, 233

scripts, running

in Mac OS, 233 - 234

parameters, 236

in UNIX, 233 - 234

in Windows, 235

comparing JSON and object literal

notation, 33

complex types, 26

compress middleware, 156 - 157

computationally intensive tasks,

handling, 59 - 61

compute_intersection function, 59 - 61

concatenation operator (+), adding strings

together, 30

configuration, multiplatform development,

230 - 231

configuration files, creating, 171 - 172

connect module, 139

configuration, 149 - 150

static file handling, 151 - 153

usage, 148 - 149

connecting

to MongoDB databases, 165

to remote server, 191 - 192

connections, managing for MySQL, 205

console global variable, 48

constants, 26 - 27

constructor model, returning objects from

modules, 91 - 92

consuming modules, 93 - 95

cont command (Node debugger), 20

contents of albums, listing in photo album

application, 72 - 77

contents of directories, listing, 240

267displaying

converting

buffers to strings, 116

photo album application to client-
side template

HTML skeleton page,
generating, 123

JavaScript page loader, creating,
126 - 127

static content, serving, 124

URL scheme, modifying, 124 - 126

strings to numbers, 28

cookies, 153 - 155

clearing, 154

setting on outgoing response, 153

CPU

computationally intensive tasks,
handling, 59 - 61

multiple servers, running on
different CPUs, 221 - 223

threads, 50

createServer function, 19

creating

arrays, 34

collections with MongoDB, 165 - 166

JSON server

login pages, 201 - 204

modules, 96 - 101

processes, 247 - 250

registration pages, 201 - 204

schema for MySQL, 190 - 191

users, 194 - 195

web server, 17 - 19

CRUD (creation, retrieval, updating and

destruction), 144

curl

albums, renaming, 83

web server, testing, 18

cycles, 95

D
Dahl, Ryan, 2-3

data event, 115

debugging

anonymous functions, 41 - 42

breakpoints, setting in Node
debugger, 20 - 21

commands (Node debugger), 20

execution, resuming in Node
debugger, 21

printing Node debugger output, 22

programs, 19 - 22

declaring parameters for functions, 40

DELETE, browser support for, 155 - 156

deleting documents from collections, 168

deployment

advanced deployment options,
216 - 218

basic level deployment, 214

multiprocessor deployment, 218 - 224

designing

APIs

collections, 144 - 145

designing APIs, 144 - 146

developing with modules, 101 - 102

directories, listing contents of, 240

displaying

JavaScript types, 26

version of Node.js, 11

268 dividing numbers by zero

dividing numbers by zero, 27

documents

inserting into collections, 166 - 167

updating with MongoDB, 167 - 168

DOM (Document Object Model), 25

downloading

source code for this book, 5

downloading from Web using

Windows OS, 18

E
ECMAScript, 25

ellipsis (...), 16

end event, 84

equality operator (==), 38

err parameter (callbacks), 54

error handling

global error handlers, 158 - 159

handle_incoming_request
function, 69

with if...then...else statements, 55 - 56

recursion, error handling for album-
listing server, 71 - 72

errors

catching, 47

throwing, 47

event queue, 52

events, 119

data event, 115

end, 84

readable, 84

executing code

async.auto function, 109 - 111

in parallel, 108 - 109

in serial, 105 - 108

execution, resuming in Node debugger, 21

exiting

Node Shell, 16

exports object, 90

express

Hello World application, 138 - 139

installing, 137 - 139

memcached, using for session
data, 224

middleware

bodyParser, 155

configuration, 149 - 150

cookies, 153 - 155

ordering, 150 - 151

sessions, 153 - 155

usage, 148 - 149

modules, 146 - 148

static files, handling, 151 - 153

URLs, routing functions, 140 - 141

virtual hosting, 225 - 226

testing, 225

expressions, literal format, 31

F
factory model, returning objects from

modules, 91

fetching MySQL database users, 195 - 196

file APIs, 61 , 237 - 238

269functions

files

binary files, serving with buffers,
118 - 119

reading with streams, 114

static files, serving with buffers,
114 - 118

uploading, 155

find, 168-171

floating-point mathematical operations, 27

folders, returning for album-listing

server, 70 - 72

following Node.js with Twitter, 22

for...in loops, 43 - 44

fs (file system) module

file APIs, 237 - 238

funcsync API, 237

mkdirs function, 239 - 240

fs.readdir function, 67 - 69

fs.stat function, 70

funcsync API, 237

functions, 39 - 43

anonymous, 41 - 42

Array.isArray (V8 JS), 35

for arrays, 36 - 38

async.auto, 109 - 111

async.forEach, 111

asynchronous, 51

calling, 54

async.parallel, 108 - 109

async.series, 105 - 108

Boolean, 29

callback functions, 54 - 56

nested callbacks, 57 - 58

calling, 40 - 41

compute_intersection, 59 - 61

createServer, 19

express.logger, 148

fs.readdir, 67 - 69

fs.stat, 70

handle_incoming_request, 69

helper functions, 146 - 147

indexOf, 30

join, 37

load_album, 76

mkdirs, 239 - 240

modules

bcrypt, 195

caching, 94 - 95

connect, 139

consuming, 93 - 95

creating, 96 - 101

cycles, 95

developing with, 101 - 102

exports object, 90

generic-pool, 204 - 205

npm, 92 - 93

publishing, 102 - 103

searching for, 93 - 94

writing, 89 - 92 , 95

nameless, 41 - 42

parameters, declaring, 40

parseFloat, 28

parseInt, 28

pop, 36

process.exit, 238

push, 36

replace, 31

270 functions

require, 52

requirePageLogin, 197

scoping, 42 - 43

search, 32

send_failure, 76

send_success, 76

ServerResponse#writeHead, 11

setTimeout, 50 - 51

sort, 37

spawn, 248 - 250

string functions, 30 - 31

splice, 30

split, 31

substr, 30

trim, 31

unshift, 37

url.parse, 80

G
generating

JSON, 33

test certificates, 228

generic-pool module, 204 - 205

GET parameters, 79-83

global error handlers, 158 - 159

global variables

console, 48

global, 47 - 48

process, 48

Google Chrome V8 JavaScript. See V8 JS

Google groups, nodejs, 22

gzip, 156

H
handle_incoming_request function, 69

handling . See also error handling

computationally intensive tasks,
59 - 61

paging for photo album application,
80 - 82

path differences for multiplatform
development, 231 - 232

static files, 151 - 153

Hello World, writing for express, 138 - 139

helper functions, 146 - 147

home page template (Mustache),

129 - 132

HTTP

<form> elements, receiving POST
data, 87 - 88

Basic Authentication, 157 - 158 , 206

POST data

data, sending, 83 - 84

receiving, 84 - 88

response codes, 79

HTTP server

request objects, 78 - 79

response objects, 78 - 79

HTTPS

test certificates, generating, 228

I
if...then...else statements, error

handling, 55 - 56

implementing round-robin load

balancer, 219

including modules in Node files, 93

271JSON (JavaScript Object Notation)

indexOf function, 30

inheritance, 45 - 46

input

readline module, 243

line-by-line processing, 243 - 246

questions, asking, 246 - 247

stdin streams, 240 - 241

RawMode, 241 - 243

installing

express, 137 - 139

memcached

on UNIX and Mac OS, 223

on Windows, 222 - 223

modules, 92 - 93

MongoDB, 161 - 162

mongodb module, 162

MySQL, 189 - 190

mysql module, 190

Node.js, 9 - 14

on Linux, 14

on Mac OS, 12 - 14

on Windows, 9 - 11

nodeunit, 254

instanceof operator, 46

IO-based applications, 49

iterating over items in arrays, 38

J
JavaScript

bitwise operations, 43

classes, 44

properties, adding, 44

constants, 26 - 27

errors

catching, 47

throwing, 47

files, running Node.js with, 17

inheritance, 45 - 46

JSON, 33

generating, 33

loops, 43 - 44

numbers, 27 - 28

floating-point mathematical
operations, 27

NaN, 28

numbers (JavaScript), dividing by
zero, 27

page loader, creating, 126 - 127

prototypes, 45 - 46

types

arrays, 34 - 38

booleans, 28 - 29

complex types, 26

displaying, 26

null, 26

objects, 32 - 34

strings, 29 - 32

undefined, 26

V8 JS, 25

join function, 37

JPEG images, serving with buffers,

118 - 119

JSON (JavaScript Object Notation), 33 .
See also JSON server

comparing with object literal
notation, 33

generating, 33

272 JSON server

JSON server

API functions, adding, 177

multiple requests, handling, 72 - 77

receiving data, 84 - 88

REST API, 144

returning data with, 67 - 69

sending data to, 83 - 84

testing, 69

K-L
keeping up-to-date with new releases, 22

launching, node servers, 220

length of strings, obtaining, 29 - 30

line-by-line processing, readline module,

243 - 246

Linux, installing Node.js, 14

list command (Node debugger), 20

listing

albums for photo album
application, 175

available albums in photo album
applications, 72 - 77

contents of directories, 240

literal format (expressions), 31

load balancers, implementing, 219

load_album function, 76

locating modules, 93 - 94

logging in users, 199 - 200

login pages, creating, 201 - 204

loops

asynchronous loops, 111

for...in loops (V8 JS), 43 - 44

low-level operations (photo album

application)

albums

creating, 173 - 175

finding, 175

listing, 175

collections, creating, 172 - 173

configuration files, creating, 171 - 172

photos, adding to albums, 176 - 177

M
Mac OS

memcached, installing, 223

Node.js, installing, 12 - 14

scripts, running, 233 - 234

Terminal.app program, 12

mailing lists, Node.js, 22

managing accounts with user handlers,

198 - 201

logging in users, 199 - 200

new users, creating, 198 - 199

testing for logged-in status, 200 - 201

manipulating, binary data with

buffers, 116

memcached, installing

on Mac OS, 223

on UNIX, 223

on Windows, 222 - 223

methods, clearCookie, 154

middleware, 139 - 140

bodyParser, 155

compress, 156 - 157

273multiple requests, handling with JSON server

connect

configuration, 149 - 150

usage, 148 - 149

cookies, 153 - 155

ordering, 150 - 22

sessions, 153 - 155

static file handling, 151 - 153

Mocha, 253

models of testing, 253

modules, 89-111, 146 - 148

async module, asynchronous
loops, 111

bcrypt, 195

caching, 94 - 95

child_process, creating processes,
247 - 250

connect, 139

consuming, 93 - 95

creating, 96 - 101

cycles, 95

developing with, 101 - 102

exports object, 90

fs

funcsync API, 237

mkdirs function, 239 - 240

generic-pool, 204 - 205

including in Node files, 93

installing, 92 - 93

module variable, 90

mongodb, installing, 162

mysql, installing, 190

node-uuid, 195

npm, 92 - 93

objects

returning with constructor model,
91 - 92

returning with factory model, 91

publishing, 102 - 103

readline, 243

line-by-line processing, 243 - 246

questions, asking, 246 - 247

searching for, 93 - 94

winser, 217

writing, 89 - 92 , 95

MongoDB

64-bit integer value operations,
performing, 164

auto-generated_id fields, searching
for, 169

collections

creating, 165 - 166

documents, deleting from, 168

querying, 168 - 169

data types, 164

databases, connecting to, 165

documents

inserting into collections, 166 - 167

updating, 167 - 168

installing, 161 - 162

photo album application, creating
document types, 163

mongodb module, installing, 162

multiplatform development

configuration files, 230 - 231

path differences, handling, 231 - 232

multiple requests, handling with JSON

server, 72 - 77

274 multiple servers, running on different CPUs

multiple servers, running on different

CPUs, 221 - 223

multiprocessor deployment, 218 - 224

Mustache, 122

home page template, 129 - 132

templating with, 127 - 129

MySQL

connecting to remote server,
191 - 192

connections, 205

installing, 189 - 190

queries, 192

schema, creating, 190 - 191

users

creating, 194 - 195

fetching, 195 - 196

login state, remembering, 197

mysql module, installing, 190

N
nameless functions, 41 - 42

NaN (not a number) value, 28

testing for, 28

nested callbacks, 57 - 58

new releases

keeping up-to-date with, 22

next command (Node debugger), 20

Node debugger

backtrace command, 20

breakpoints, setting, 20 - 21

cont command, 20

debugging programs with, 19 - 22

execution, resuming, 21

list command, 20

next command, 20

out command, 20

output, printing, 22

repl command, 20

step command, 20

watch command, 20

Node REPL, variable values, 21 - 22

Node Shell

exiting, 16

launching, 16

running Node.js with, 16

Node.js

event queue, 52

installing, 9 - 14

on Linux, 14

on Mac OS, 12 - 14

on Windows, 9 - 11

mailing list, 22

running

with JavaScript files, 17

with Node Shell, 16

version of, displaying, 11

nodejs Google group, 22

nodeunit

installing, 254

testing

assertions, 256

REST API, 258 - 262

writing tests, 254 - 258

node-uuid module, 195

NoSQL databases, 161

275photo album application

npm (Node Package Manager), 92 - 93

express, installing, 137 - 139

modules

installing, 92 - 93

winser, 217

mysql module, installing, 190

npm update command, 93

nssm.exe, 217

null type, 26

numbers (JavaScript), 27 - 28

dividing by zero, 27

floating-point mathematical
operations, 27

NaN, 28

testing for, 28

O
object literal notation, comparing with

JSON, 33

objects, 32 - 34

exports object, 90

inheritance, 45 - 46

properties

adding, 32

removing, 34

returning from modules

constructor model, 91 - 92

factory model, 91

obtaining length of strings, 29

operators

== operator, 38

=== operator, 38

and, 43

bitwise operations, 43

instanceof, 46

xor, 43

out command (Node debugger), 20

output, compressing, 156

P
packages, updating, 93

page loader (JavaScript), creating, 126 - 127

pages, adding to photo album application,

183 - 187

paging functionality, adding to photo

album application, 80 - 82

parallel code execution, 108 - 109

async.auto function, 109 - 111

parameters

declaring for functions, 40

err parameter (callbacks), 54

for scripts, passing

in UNIX/Mac OS, 236

in Windows OS, 236

parseFloat function, 28

parseInt function, 28

passing script parameters

in UNIX/Mac OS, 236

in Windows OS, passing
parameters, 236

path differences, handling for

multiplatform development, 231 - 232

path environment variable (Windows

command prompt), 11

photo album application

album-listing server

error handling, 71 - 72

folders, returning, 70 - 72

276 photo album application

albums, renaming, 83

converting to client-side template

HTML skeleton page,
generating, 123

JavaScript page loader, creating,
126 - 127

static content, serving, 124

URL scheme, modifying, 124 - 126

document types, creating with
MongoDB, 163

handlers, updating, 177 - 183

JSON server

API functions, adding, 177

creating, 65 - 69

multiple requests, handling, 72 - 77

returning data with, 67 - 69

sending data to, 83 - 84

testing, 69

low-level operations

albums, creating, 173 - 175

albums, finding, 175

albums, listing, 175

collections, creating, 172 - 173

configuration files, creating,
171 - 172

pages, adding, 183 - 187

paging functionality, adding, 80 - 82

photos, adding to albums, 176 - 177

structure of, 187

testing, 258 - 262

updating for routing, 141 - 144

users, supporting with API, 193

photos, adding to albums, 176 - 177

photo-sharing app, creating schema for

Users table, 190 - 191

PKG installer, installing Node.js on Mac

OS, 12 - 14

pop function, 36

port numbers, 213

POST data

receiving, 84 - 88

sending, 83 - 84

precise equality operator (===), 38

primitives, 39

printing Node debugger output, 22

process global variable, 48

processes

creating, 247 - 250

memory overhead, 50

multiprocessor deployment, 218 - 224

process.exit function, 238

programs

command-line programming, 233

scripts, running in UNIX and
MAC OS, 233 - 234

scripts, running in Windows, 235

debugging, 19 - 20

nssm.exe, 217

properties

adding to classes, 44

adding to objects, 32

prototypes, 45 - 46

proxy server

building, 220 - 221

virtual host support for, 227

ps command, 217

publishing modules, 102 - 103

push function, 36

PUT, browser support for, 155 - 156

277security

Q-R
queries, adding to MySQL, 192

RawMode, stdin streams, 241 - 243

readable event, 84

reading files with streams, 114

readline module, 243

line-by-line processing, 243 - 246

questions, asking, 246 - 247

receiving POST data, 84 - 88

recursion, error handling for album-listing

server, 71 - 72

registration pages, creating, 201 - 204

regular expressions, 31 - 32

literal format, 31

remote server, connecting to, 191 - 192

removing

elements from arrays, 36

properties from objects, 34

renaming albums, 83

REPL (Read-Eval-Print-Loop), running

Node.js with Node Shell, 16

repl command (Node debugger), 20

replace function, 31

request objects, 78 - 79

require function, 52 , 93 - 94

requirePageLogin function, 197

response objects, 78 - 79

REST (Representational State

Transfer), 144

REST APIs, 144

testing, 258 - 262

RESTful JSON server, 144

resuming Node debugger execution, 21

returning data with JSON server, 67 - 69

Reverse Polish Notation calculator,

testing, 255 - 258

round-robin load balancer,

implementing, 219

routing functions, 140 - 141

updating photo album application
for, 141 - 144

running Node.js

with JavaScript files, 17

with Node Shell, 16

S
schema, creating for MySQL, 190 - 191

scoping functions, 42 - 43

screen utility, 215

scripts, running

basic level deployment, 214

in Mac OS, 233 - 234

parameters, 236

in UNIX, 233 - 234

in Windows, 235

search function, 32

searching

for auto-generated_id fields
(MongoDB), 169

for modules, 93 - 94

secured resources, testing, 261 - 262

security

APIs, 206 - 209

HTTP Basic Authentication,
157 - 158 , 206

SSL-encrypted HTTPS traffic, 228 - 230

built-in support, 228 - 229

proxy server support, 229 - 230

278 self variable

self variable, 58

send_failure function, 76

send_success function, 76

sending data to JSON server, 83 - 84

serial code execution, 105 - 108

async.auto function, 109 - 111

ServerResponse#writeHead function, 11

sessions, 153 - 155

implementing, 222 - 223

setTimeout function, 50 - 51

setting breakpoints in Node debugger,

20 - 21

shebang, 234

shift function, 37

sort function, 37

source code for this book, downloading, 5

spawn function, creating processes,

248 - 250

splice function, 30

split function, 31

SSL-encrypted HTTPS traffic

built-in support, 228 - 229

proxy server support, 229 - 230

test certificates, generating, 228

starting Node Shell, 16

static files

handling, 151 - 153

serving with buffers, 114 - 118

stdin streams, 240 - 241

RawMode, 241 - 243

step command (Node debugger), 20

stopping web server, 19

streams, 113

binary files, serving with buffers,
118 - 119

data event, 115

events, 119

files, reading, 114

POST data, receiving, 84 - 86

stdin, 240 - 241

RawMode, 241 - 243

strings, 29 - 32

adding together, 30

converting to numbers, 28

functions, 30 - 31

indexOf, 30

splice, 30

split, 31

substr, 30

trim, 31

length of, obtaining, 29

regular expressions, 31 - 32

literal format, 31

structure of photo album application, 187

substr function, 30

supporting users with API (photo album

application), 193

synchronous APIs, 237

T
TDD (test-driven development), 253

tee program, 215

template engines, Mustache, 122

279UNIX

templates

client-side templates, 121

Mustache, 127 - 129

home page template, 129 - 132

template engines, 121-122

Terminal.app program (Mac OS), 12

terminating web server, 19

test certificates, generating, 228

testing

assertions, 256

asynchronous functionality, 258

BDD, 253

JSON server, 69

MongoDB installation, 162

for NaN, 28

Node.js installation on Windows
OS, 9 - 11

nodeunit, installing, 254

REST API, 258 - 262

Reverse Polish Notation calculator,
255 - 258

secured resources, 261 - 262

TDD, 253

users for logged-in status, 200 - 201

virtual hosts, 225

web server, 18

writing tests, 254 - 258

threads, memory overhead, 50

throwing errors, 47

trim function, 31

try/catch blocks, 47

Twitter, following Node.js with, 22

typeof operator, 39

types

arrays, 34 - 38

adding items at end of, 35

Array.isArray function (V8 JS), 35

creating, 34

functions used with, 36 - 38

iterating over items in, 38

removing elements from, 36

booleans, 28 - 29

complex types, 26

displaying, 26

null, 26

numbers, 27 - 28

objects, 32 - 34

properties, adding, 32

properties, removing, 34

primitives, 39

strings, 29 - 32

adding together, 30

length of, obtaining, 29 - 30

regular expressions, 31 - 32

undefined, 26

U
Ubuntu Linux, installing Node.js, 14

undefined type, 26

Unicode characters, 29

uninstalling Windows Services, 218

UNIX

memcached, installing, 223

scripts, running, 233 - 234

parameters, passing, 236

280 unshift function

unshift function, 37

updating

documents with MongoDB, 167 - 168

handlers for photo album
application, 177 - 183

installed packages, 93

photo album application for routing,
141 - 144

uploading files, 155

url.parse function, 80

URLs

collections, 144 - 145

downloading from using Windows
OS, 18

routing functions, 140 - 141

user handlers, creating new users,

198 - 199

users (photo album application)

fetching, 195 - 196

login state, remembering, 197

supporting with API, 193

Users table (photo-sharing app), creating

schema for, 190 - 191

UTF-8, 29

V
V8 JS

Array.isArray function, 35

for...in loops, 43 - 44

values

NaN, 28

testing for, 28

of Node REPL variables, 21 - 22

variables

global variables

console, 48

global, 47 - 48

process, 48

module, 90

Node REPL, values, 21 - 22

self variable, 58

verifying Node.js installation on

Windows OS, 9 - 11

version of Node.js, displaying, 11

virtual hosting, 224 - 227

proxy server support, 227

testing, 225

VowsJS, 254

W
watch command (Node debugger), 20

web applications

DELETE, browser support for,
155 - 156

HTTP Basic Authentication, 157 - 158

node servers, launching, 220

PUT, browser support for, 155 - 156

virtual hosting, 224 - 227

web browser applications, client-side

templates, 121

web server

binary files, serving with buffers,
118 - 119

creating, 17 - 19

debugging, 19 - 20

output, compressing, 156 - 157

281

static files, serving with buffers,
114 - 118

stopping, 19

testing, 18

Windows OS

command prompt, 10

memcached, installing, 222 - 223

Node.js

installing, 9 - 11

verifying installation, 9 - 11

scripts, running, 235

tee program, 215

URLs, downloading from, 18

Windows Services, 217 - 218

winser module, 217

writing

classes, 56 - 57

modules, 89 - 92 , 95

response objects, 79

tests, 254 - 258

X-Y-Z
xor operator, 43

This page intentionally left blank

	Table of Contents
	Introduction
	Why Node.js?
	The Web
	New Technologies

	What Exactly Is Node.js?
	Who Is This Book For?
	How to Use This Book
	Download the Source Code

	Part I: Learning to Walk
	1 Getting Started
	Installing Node.js
	Running Node.js and “Hello World!”
	Your First Web Server
	Debugging Your Node.js Programs
	Staying Up-to-Date and Finding Help
	Summary

	2 A Closer Look at JavaScript
	Types
	Type Comparisons and Conversions
	Functions
	Language Constructs
	Classes, Prototypes, and Inheritance
	Errors and Exceptions
	Some Important Node.js Globals
	Summary

	3 Asynchronous Programming
	The Old Way of Doing Things
	The Node.js Way of Doing Things
	Error Handling and Asynchronous Functions
	Who Am I? Maintaining a Sense of Identity
	Being Polite—Learning to Give Up Control
	Synchronous Function Calls
	Summary

	Part II: Learning to Run
	4 Writing Simple Applications
	Your First JSON Server
	Node Pattern: Asynchronous Loops
	Learning to Juggle: Handling More Requests
	More on the Request and Response Objects
	Increased Flexibility: GET Params
	Modifying Things: POST Data
	Summary

	5 Modules
	Writing Simple Modules
	npm: The Node Package Manager
	Consuming Modules
	Writing Modules
	A Module So Common It Should Be Built In
	Summary

	6 Expanding Your Web Server
	Serving Static Content with Streams
	Assembling Content on the Client: Templates
	Summary

	Part III: Writing Web Applications
	7 Building Web Applications with Express
	Installing Express
	Routing and Layers in Express
	REST API Design and Modules
	Additional Middleware Functionality
	Summary

	8 Databases I: NoSQL (MongoDB)
	Setting Up MongoDB
	Structuring Your Data for MongoDB
	Understanding the Basic Operations
	Updating Your Photo Albums App
	Recapping the App Structure
	Summary

	9 Databases II: SQL (MySQL)
	Getting Ready
	Creating a Schema for the Database
	Basic Database Operations
	Adding Authentication to the Application
	Resource Pooling
	Authenticating the API
	Summary

	Part IV: Getting the Most Out of Node.js
	10 Deployment and Development
	Deployment
	Multiprocessor Deployment: Using a Proxy
	Virtual Hosting
	Securing Your Projects with HTTPS/SSL
	Multiplatform Development
	Summary

	11 Command-Line Programming
	Running Command-Line Scripts
	Working with Files Synchronously
	Interacting with the User: stdin/stdout
	Working with Processes
	Summary

	12 Testing
	Choosing a Framework
	Writing Tests
	RESTful API Testing
	Summary

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K-L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X-Y-Z

