Practical

Node.|s

Building Real-World Scalable Web Apps

LEARN TO BUILD COMPLEX WEB APPS
WITH NODE.JS

Azat Mardan

Apresse

http://www.it-ebooks.info/

For your convenience Apress has placed some of the front
matter material after the index. Please use the Bookmarks
and Contents at a Glance links to access them.

Apress*

www.it-ebooks.info

http://www.it-ebooks.info/

Contents at a Glance

About the AUthOr ... ———————————— Xv
About the Technical ReVIEWETcvsssvsmssssssmsmsmssssssssmssssmssssssssssssssssssssssnssssnssssssnsssnssnsnss xvii
AcknOowIedgmEeNnts.......cccciiiisssssnmmnnmmmmmmsssssssssssnnnmesssssssssnnnnnnsessssssssssnnnnnnsessssssssnnnnnnnnnessssssns Xix
INtrodUCTiONceiiieesissannsssannssssnnnsssnnnsssnnnsssnnnsssnnnsssnnnsssannsssnnnsssnnnsssannsssnnnssssnnenssnnnsssnnnsssnnns xxi
Chapter 1: Setting up Node.js and Other Essentials........c.ccccssmrmssmsmssnsmsssnnssssssssssnnssssanas 1
Chapter 2: Using Express.js 4 to Create Node.js Web AppS....c..cccciurmmsennmmssssssnssssssssnnsnans 33
Chapter 3: TDD and BDD for Node.js with Mochaccccccmnnnnemmmmmsssssnmmmsssssnmsssssssnnns 57
Chapter 4: Template Engines: Jade and Handlebarsccccuccmrnnsemmmsssmsmsssnsssssssssssssssanns A
Chapter 5: Persistence with MongoDB and MongosKin.........ccuussmsesmsssmsssmsssssssasssasssnnnns 103

Chapter 6: Using Sessions and OAuth to Authorize and Authenticate
Users in NOUE.JS APPS..uuuurtturmmmmmssnnnsnnsmmsssnnsssssssssssssnnnnnsssssss 129
Chapter 7: Boosting Your Node.js Data with the Mongoose ORM Librarycccccurereas 149
Chapter 8: Building Node.js REST API Servers with Express.js and Hapi......c..cccuuiuennuns 173
Chapter 9: Real-Time Apps with WebSocket, Socket.l0, and DerbyJsSccunememnnnnnnnns 195
Chapter 10: Getting Node.js Apps Production Ready.........ccccussmmmmmmssssnnnsssssnnsssssssansnnsans 215
Chapter 11: Deploying NOde.jS APPS «ueursssamssssssssssanssssanssssanssssansessansesssnsesssnsesssnsssssnnssss 243
Chapter 12: Publishing Node.js Modules and Contributing to Open Source..........ccuvuu.. 261
11 . 269
v

www.it-ebooks.info

http://www.it-ebooks.info/

Introduction

There are more and more books and online resources being published that cover Node.js basics (e.g., how-to’s of
Hello World and simple apps). For the most part, these tutorials rely on core modules only or maybe one or two

Node Package Manager (NPM) packages. This “sandbox” approach of tutorials is easy and doesn’t require many
dependencies, but it can’t be further from the actual Node.js stack. This is especially true with Node.js, the core of
which—by design—is kept lean and minimal. At the same time, the vast “userland” (i.e., NPM) provides an ecosystem
of packages/modules to serve specific granular purposes. Therefore, there is a need to show effectively how Node.js

is used in the industry and to have it all in one place—the all-encompassing practical resource that can be used as a
learning tool, a code cookbook, and a reference.

What This Book Is

Practical Node.js: Building Real-World Scalable Web Apps is a hands-on manual for developing production-ready
web applications and services by leveraging the rich ecosystem of Node.js packages. This is important because real
applications require many components, such as security, deployment, code organization, database drivers, template
engines, and more. This is why we include extensive 12-chapter coverage of third-party services, command-line tools,
NPM modules, frameworks, and libraries.

Just to give you some idea, Practical Node.js is a one-stop place for getting started with Express.js 4, Hapi.js,
Derby]S, Mongoskin, Mongoose, Everyauth, Mocha, Jade, Socket.IO, TravisCI, Heroku, Amazon Web Services (AWS),
and many others. Most of these items are vital for any serious project.

In addition, we create a few projects by building, step by step, from a straightforward concept to a more
complicated application. These projects can also serve as a boilerplate for jump-starting your own development
efforts. Also, the examples show industry best practices to help you avoid costly mistakes.

Last but not least, many topics and chapters serve as a reference to which you can always return later when
you're faced with a challenging problem.

Practical Node.js aims to save you time and make you a more productive Node.js programmer!

What You’ll Learn

Practical Node.js takes you from an overview of JavaScript and Node.js basics, installing all the necessary modules to
writing and deploying web applications, and everything in between. We cover libraries including, but not limited to,
Express.js 4 and Hapi.js frameworks, Mongoskin and the Mongoose object-relational mapping (ORM) library for the
MongoDB database, Jade and Handlebars template engines, OAuth and Everyauth libraries for OAuth integrations,
the Mocha testing framework and Expect test-driven development/behavior-driven development language, and the
Socket.IO and Derby]S libraries for WebSocket real-time communication.

xxi

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

In the deployment chapters (10 and 11), the book covers how to use Git and deploy to Heroku, as well as
examples of how to deploy to AWS, daemonize apps, and use Nginx, Varnish Cache, Upstart, init.d, and the forever
module.

The hands-on approach of this book walks you through iterating on the Blog project in addition to many other
smaller examples. You'll build database scripts, representational state transfer (RESTful) application programming
interfaces (APIs), tests, and full-stack apps all from scratch. You'll also discover how to write your own Node.js
modules and publish them on NPM.

Practical Node.js will show you how to do the following:

Build web apps with Express.js 4, MongoDB, and the Jade template engine
e Use various features of Jade and Handlebars

e Manipulate data from the MongoDB console

e Use the Mongoskin and Mongoose ORM libraries for MongoDB

e Build REST API servers with Express.js 4 and Hapi.js

e Test Node.js web services with Mocha, Expect, and TravisCI

e Use token and session-based authentication

e Implement a third-party (Twitter) OAuth strategy with Everyauth

e Build WebSocket apps using Socket.IO and Derby]S libraries

e Prepare code for production with Redis, Node.js domains, and the cluster library using tips
and best practices

e Deploy apps to Heroku using Git

e Install necessary Node.js components on an AWS instance

e Configure Nginx, Upstart, Varnish, and other tools on an AWS instance
e Write your own Node.js module and publish it on NPM

You already know what Node.js is; now, learn what you can do with it and how far you can take it.

What This Book Is Not

Although the entire first chapter is dedicated to installations and a few important differences between Node.js and
browser JavaScript, we didn’t want to dilute the core message of making production-ready apps, or make
Practical Node.js even larger and more convoluted. Therefore, the book is not a beginner’s guide and there is no
extensive immersion into the inner workings of the Node.js platform and its core modules.

We also can’t guarantee that each component and topic are explained to the extent you need, because the nature
of your project might be very specific. Most chapters in the book help you to get started with the stack. There is simply
no realistic way to fit so many topics in one book and cover them comprehensively.

Another caveat of this book (or virtually any other programming book) is that the versions of the packages we
use will eventually become obsolete. Often, this isn’t an issue because, in this book, versions are stated and locked
explicitly. So no matter what, the examples will continue to work with our versions.

Even if you decide to use the latest versions, in many cases this still might not be an issue, because essentials
remain the same. However, if you go this off-path route, once in a while you might be faced with a breaking change
introduced by the latest versions.

xxii

www.it-ebooks.info

http://www.it-ebooks.info/

INTRODUCTION

Who Can Benefit from This Book

Practical Node.js is an intermediate- to advanced-level book on programming with Node.js. Consequently, to get the
most out of it, you need to have prior programming experience and some exposure to Node.js. We assume readers’
prior knowledge of computer science, programming concepts, web development, Node.js core modules, and the
inner workings of HTTP and the Internet.

However, depending on your programming level and ability to learn, you can fill in any knowledge gaps very
quickly by visiting links to official online documentations and reading external resources referenced in this book. Also,
if you have a strong programming background in some other programming language, it would be relatively easy for
you to start Node.js development with Practical Node.js.

As mentioned earlier, Practical Node.js is written for intermediate and advanced software engineers. For this
reason, there are three categories of programmers who can benefit from it the most:

1. Generalist or full-stack developers including development operation (DevOps) and quality
assurance (QA) automation engineers

2. Experienced front-end web developers with a strong background and understanding of
browser JavaScript

3. Skilled back-end software engineers coming from other languages such as Java, PHP, and
Ruby, who don’t mind doing some extra work get up to speed with the JavaScript language

Source Code

Learning is more effective when we apply our knowledge right away. For this reason, virtually every chapter in
Practical Node.js ends with a hands-on exercise. For your convenience, and because we believe in open source and
transparency, all the book’s examples are available publicly (i.e., free of charge) for exploration and execution on
GitHub at https://github.com/azat-co/practicalnode.

Errata and Contacts

If you spot any mistakes or typos (and I'm sure you will), please open an issue or, even better, fix it and make a pull
request to the GitHub repository of the book’s examples at https://github.com/azat-co/practicalnode. For all
other updates and contact information, the canonical home of Practical Node.js on the Internet is
http://practicalnodebook.com.

Notation

This book follows a few formatting conventions. Code is in monospace font—for example, var book = {name:
'Practical Node.js'};.If the code begins with $, this code is meant to be executed in the terminal/command line.
However, if the code line starts with >, the code is meant for the virtual environment (a.k.a., console—either for
Node.js or MongoDB). If the Node.js module name is in code font, this is the NPM name and you can use it with NPM
and the require() method, such as superagent.

xxiii

www.it-ebooks.info

https://github.com/azat-co/practicalnode
https://github.com/azat-co/practicalnode
http://practicalnodebook.com
http://www.it-ebooks.info/

INTRODUCTION

Why You Should Read This Book

Practical Node.js was designed to be one stop for going from Hello World examples to building apps in a professional
manner. You get a taste of the most widely used Node.js libraries in one place, along with best practices and
recommendations based on years of building and running Node.js apps in production. The libraries covered in
Practical Node.js greatly enhance the quality of code and make you more productive. Also, although the material in
this book is not groundbreaking, the convenience of the format saves hours of frustration researching the Internet.
Therefore, Practical Node.js is here to help you to jump-start your Node.js development!.

XXiv

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1

Setting up Node.js and Other
Essentials

As with many technologies, it’s vital to have the proper foundation set up first, before moving on to solving more
complex problems. In this chapter, we cover the following:

¢ Node.js and (NPM) Node Package Manager installation

e Node.js script launches

e Node.js syntax and basics

e Node.js integrated development environments (IDEs) and code editors
e Awareness of file changes

e Node.js program debugging

Installing Node.js and NPM

Although your operating system (OS) might have Node.js installed on it already, you should update to at least 0.10.x.
In the following subsection, we examine a few different approaches to installing Node.js:

e One-click installers: probably the easiest and fastest way to get started with the platform
e Installing with HomeBrew or MacPorts: straightforward installation for Max OS X users
e Installing from a tar file: an alternative installation from an archive file

o Installing without sudo: the best way to avoid needing sudo (admin rights) when using the
node and npm commands

e Installing from a Git repo: an option for advanced developers who need the latest version
and/or contribute to the project

e Multiversion setup with Nave: a must-have for developers contributing to projects that use
different Node.js versions

e Multiversion setup with Node Version Manager (NVM): alternative to Nave (see previous entry)

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

One-Click Installers

First, let’s go to http://nodejs.org and download a one-click installer for your OS (Figure 1-1) by clicking on the
Install button. Don’t choose binaries or source code unless you know what to do with them or your OS is not present
there (i.e., not Windows or Mac).

800.) node js 9 "ﬂa
&« = C [nodejs.org @ =

Node.js is a platform built on
applications. Node

efficient, perfect for dat

SpanjshD!ct r& Irir Couch

Figure 1-1. One-click installers for Node.js

The installers come with NPM (Node Package Manager)— an important tool for managing dependencies.
If there’s no installer for your OS (page http://nodejs.org/download/), you can get the source code and
compile it yourself (Figure 1-2).

www.it-ebooks.info

http://nodejs.org/
http://nodejs.org/download/
http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

©00 | & 2 -]

- C' | [nodejs.org/download/ ® s

. . s

Figure 1-2. Multiple options for downloading

Note For older Mac OS X machines, you can pick 32-bit versions.

Installing with HomeBrew or MacPorts

If you already have HomeBrew (brew) installed, run the following in a straightforward manner:

$ brew install node
$ brew install npm

Similarly, for MacPorts, run

$ sudo port install nodejs

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

If your Mac OS X does not have HomeBrew, go to http://brew.sh/ or install it with the following command:

$ ruby -e "$(curl -fsSL https://raw.github.com/Homebrew/homebrew/go/install)"

Installing from a Tar File

To install from a tar file (which is type of archive), set up a folder for the latest Node.js as follows:

$ echo 'export PATH=$HOME/local/bin:$PATH' >> ~/.bashrc
$. ~/.bashrc

$ mkdir ~/local

$ mkdir ~/node-latest-install

$ cd ~/node-latest-install

Note Advanced users who choose to make their own Node.js builds need to have certain compilers installed first. For
more information, refer to the official documentation (https://github.com/joyent/node/wiki/Installation).

Download the tar file with CURL and unpack it:

$ curl http://nodejs.org/dist/node-latest.tar.gz | tar xz --strip-components=1
$./configure --prefix="/local

Build Node.js and install it:

$ make install
$ curl https://npmjs.org/install.sh | sh

Tip If you find yourself getting errors when trying to install the module globally via NPM ($ npm install -g
<packagename>), reinstall Node.js and NPM with the “Installing Without sudo” solution below to eliminate the need
to use sudo with the installation command. For more solutions for advanced users, there’s a Gist from Isaac Z. Schlueter:
https://gist.github.com/isaacs/579814.

Installing Without sudo

Sometimes, depending on your configuration, NPM asks users for sudo— root user permissions. To avoid using sudo,
advanced developers can use the following::

$ sudo mkdir -p /usr/local/{share/man,bin,lib/node,include/node}
$ sudo chown -R $USER /usr/local/{share/man,bin,lib/node,include/node}

Note Please be sure you are comfortable with the functionality of the chown command before you run it.

www.it-ebooks.info

http://brew.sh/
https://raw.github.com/Homebrew/homebrew/go/install
https://github.com/joyent/node/wiki/Installation
http://nodejs.org/dist/node-latest.tar.gz
https://npmjs.org/install.sh
https://gist.github.com/isaacs/579814
http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

Then, proceed with a normal installation:

$ mkdir node-install

$ curl http://nodejs.org/dist/node-v0.4.3.tar.gz | tar -xzf - -C node-install
$ cd node-install/*

$./configure

$ make install

$ curl https://npmjs.org/install.sh | sh

Installing from a Git Repo

If you want to use the latest core Node.js code, and maybe even contribute to the Node.js and NPM projects, it’s possible
to build the installation from the cloned Git repo. (This step requires Git. To install it, go to http://git-scm.com/

and click Download.) For basic Git commands, refer to Chapter 11, where we explore deployment; otherwise, do the
following:

1. Make the folders and add the path:
$ mkdir ~/local
$ echo 'export PATH=$HOME/local/bin:$PATH' >> ~/.bashrc
$. ~/.bashrc

To clone the original Node.js repo from Joyent (alternatively, you can fork it and clone your own repository),
do the following:

$ git clone git://github.com/joyent/node.git
$ cd node
$./configure --prefix=~/local

2. Make the build:

$ make install
$cd..

3. Repeat for NPM:
$ git clone git://github.com/isaacs/npm.git
$ cd npm
$ make install

For a more cutting-edge NPM version, use

$ make link

Multiversion Setup with Nave

If you plan to run multiple versions of Node.js, use Nave (https://github.com/isaacs/nave), which is a virtual
environment for Node.js. First, make a folder:

mkdir ~/.nave
cd ~/.nave

www.it-ebooks.info

http://nodejs.org/dist/node-v0.4.3.tar.gz
https://npmjs.org/install.sh
http://git-scm.com/
https://github.com/isaacs/nave
http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Then, download Nave and set the link to the PATH-ed folder:

$ wget http://github.com/isaacs/nave/raw/master/nave.sh
$ sudo 1In -s $PWD/nave.sh /usr/local/bin/nave

An example of switching to Node.js version 0.4.8 with Nave in a virtual environment is as follows:
$ nave use 0.4.8
To use NPM in this particular virtual environment, use
$ curl https://npmjs.org/install.sh | sh
It is now possible to install something via NPM:
$ npm install express
Last, exit the virtual environment with
exit

More approaches to install Node.js and NPM are in gist (https://gist.github.com/isaacs/579814).

Multiversion Setup with NVM

Another option to Nave is NVM—Node Version Manager (GitHub, https://github.com/creationix/nvm). Install
NVM as follows:

$ curl https://raw.github.com/creationix/nvm/master/install.sh | sh

or

$ wget -g0- https://raw.github.com/creationix/nvm/master/install.sh | sh
Then, harness NVM’s install:

$ nvm install 0.10
To switch to the 0.10 version, apply the use command. For example:

$ nvm use 0.10

Alternative Multiversion Systems

Alternatives to Nave and NVM include the following:
e neco (https://github.com/kuno/neco)
e n(https://github.com/visionmedia/n)

www.it-ebooks.info

http://github.com/isaacs/nave/raw/master/nave.sh
https://npmjs.org/install.sh
https://gist.github.com/isaacs/579814
https://github.com/creationix/nvm
https://raw.github.com/creationix/nvm/master/install.sh
https://raw.github.com/creationix/nvm/master/install.sh
https://github.com/kuno/neco
https://github.com/visionmedia/n
http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

Checking the Installation

To test your installation, run the following commands in your Terminal app (command line cmd. exe in Windows):

$ node -v
$ npm -v

You should see the latest versions of Node.js and NPM that you just downloaded and installed, as shown in
Figure 1-3.

® 00 ¢ azat — bash w
Azats-Air:~ azat$ node -v

v0.10.12

Azats-Air:~ azat$ npm -v

1.2.32

Azats-Air:~ azat$

Figure 1-3. Checking Node.js and NPM installations

That’s it! You now have Node.js and NPM installed, and you should be ready to dig deeper into using the platform.
The simplest way to run Node.js is through its virtual environment, which is often called read-eval-print-loop, or REPL.

Node.js Console (REPL)

Like most platforms/languages (e.g., Java, Python, Ruby, and PHP), Node.js comes with a virtual environment: REPL.
Using this shell program, we can execute pretty much any Node.js/JavaScript code. It's even possible to include modules
and work with the file system! Other REPL use cases involve controlling nodecopters (http://nodecopter.com/)

and debugging remote servers (more about this in Chapter 10). To start the console, run the following command in

your terminal:

$ node

www.it-ebooks.info

http://nodecopter.com/
http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

The prompt should change from $ to > (or something else, depending on your shell). From this prompt, we can
run any JavaScript/Node.js (akin to the Chrome Developer Tools console) we want. For example:

1+1

"Hello"+" "+"World"
a=1;b=2;a+b

17+29/2*7

f = function(x) {return x*2}
(b)

VvV V V V VvV Vv

The result of the previous snippet is shown in Figure 1-4.

® 0O 0O 43 azat — node e

Azats-Air:~ azat$ node
> 1+1

2

> "Hello"+" "+"World"
'Hello World'

> o=1;b=2;a0+b

3

> 17+429/2%7

118.5

> f = function(x) {return x*2}
[Function]

> f(b)

4

>

Figure 1-4. Executing JavaScript in Node.js REPL

There are slight deviations in ECMAScript implementations in Node.js and browsers such as the Chrome
Developer Tools console. For example, {}+{} is ' [object Object][object Object]' in Node.js REPL, whereas the
same code is NaN in the Chrome console because of the automatic semicolon insertion (ASI) feature. However, for the
most part, Node.js REPL and the Chrome/Firefox consoles are similar.

Launching Node.js Scripts

To start a Node.js script from a file, simply run $ node filename—for example, $ node program.js.If all we need is
a quick set of statements, there’s a -e option that allows us to run inline JavaScript/Node.js—for example, $ node -e
"console.log(new Date());".

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

If the Node.js program uses environmental variables, it’s possible to set them right before the node command.
For example:

$ NODE_ENV=production API_KEY=442CC1FE-4333-46CE-80EE-6705A1896832 node server.js

Preparing your code for production is discussed later in Chapter 10.

Node.js Basics and Syntax

Node.js was built on top of the Google Chrome V8 engine and its ECMAScript, which means most of the Node.js
syntax is similar to front-end JavaScript (another implementation of ECMAScript), including objects, functions,
and methods. In this section, we look at some of the most important aspects; let’s call them Node.js/JavaScript
Jundamentals:

e Loose typing

e Buffer—Node.js super data type
e Objectliteral notation

e Functions

e Arrays

e Prototypal nature

o Conventions

Loose Typing

Automatic typecasting works well most of the time. It’s a great feature that saves a lot of time and mental energy!
There are only a few types of primitives:

e String

e Number (both integer and real)
e Boolean

e Undefined

e Nul

e RegExp

Everything else is an object (i.e., mutable keyed collections, read Stackoverflow on “What does immutable
mean?’;! if in doubt).

Also, in JavaScript, there are String, Number, and Boolean objects that contain helpers for the primitives,
as follows:

'a' === new String('a') //false

but

'http://stackoverflow.com/questions/3200211/what-does-immutable-mean

www.it-ebooks.info

http://stackoverflow.com/questions/3200211/what-does-immutable-mean
http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

a' === new String('a").toString() //true

a' == new String('a') //true

By the way, == performs automatic typecasting whereas === does not.

Buffer—Node.js Super Data Type

Buffer is a Node.js addition to four primitives (boolean, string, number, and RegExp) and all-encompassing objects
(array and functions are also objects) in front-end JavaScript. Think of buffers as extremely efficient data stores. In
fact, Node.js tries to use buffers any time it can, such as when reading from file systems and when receiving packets
over the network.

Object Literal Notation

Object notation is super readable and compact:

var obj = {
color: "green",
type: "suv",
owner: {
}

}

Remember, functions are objects:

var obj = function () {
this.color: "green",
this.type: "suv",
this.owner: {

}
}

Functions

In Node.js (as well as in JavaScript), functions are first-class citizens, and we treat them as variables, because they are
objects! Yes, functions can even have properties/attributes. First, let’s learn how to define a function.

Define/Create a Function

The three most common ways to define/create a function are to use a named expression, an anonymous expression
assigned to a variable, or both. The following is an example of a named expression:

function f () {
console.log('Hi');
return true;

}
10

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

An anonymous function expression assigned to a variable looks as follows (note that it must precede the
invocation, because the function is not hoisted, unlike the previous example):

var f = function () {
console.log('Hi');
return true;

}

The following is an example of both approaches:

var f = function f () {
console.log('Hi");
return true;

}

A function with a property (remember, functions are just objects that can be invoked/initialized) is as follows:
var f = function () {console.log('Boo"');}
f.boo = 1;

)
f(); //outputs Boo
console.log(f.boo); //outputs 1

Note The return keyword is optional. When it is omitted, the function returns undefined on invocation.

Pass Functions as Parameters

JavaScript treats functions like any other objects, so we can pass them to other functions as parameters (usually,
callbacks in Node.js):

var convertNum = function (num) {
return num + 10;

}

var processNum = function (num, fn) {
return fn(num);
}

processNum(10, convertNum);

Function Invocation vs. Expression

The function definition is as follows:

function £ () {};

11

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

On the other hand, the function invocation looks like

fO);
Expression, because it resolves to some value (which could be a number, string, object, or boolean), is as follows:

function f() {return false;}
fO;

A statement looks like

function f(a) {console.log(a);}

Arrays

Arrays are also objects that have some special methods inherited from the Array.prototype? global object.
Nevertheless, JavaScript arrays are not real arrays; instead, they are objects with unique integer (usually 0 based) keys.

var arr = [];

var arr2 = [1, "Hi", {a:2}, function () {console.log('boo');}];

var arr3 = new Array();

var arr4 = new Array(1,"Hi", {a:2}, function () {console.log('boo');});

Prototypal Nature

There are no classes in JavaScript because objects inherit directly from other objects, which is called prototypal
inheritance. There are a few types of inheritance patterns in JavaScript:

e (lassical
e Pseudoclassical
e Functional

This is an example of the functional inheritance pattern:

var user = function (ops) {

return { firstName: ops.name || 'John'
, lastName: ops.name || 'Doe’
, email: ops.email || 'test@test.com'
, name: function() { return this.firstName + this.lastName}
}
}
var agency = function(ops) {
ops = ops || {}

var agency = user(ops)
agency.customers = ops.customers || 0
agency.isAgency = true

return agency

*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype

12

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array/prototype
http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Conventions
It’s important to follow the most common language conventions. Some of them are listed here:
e Semicolons
e camelCase
e Naming
e Commas
¢ Indentations
e Whitespace

These JavaScript/Node.js conventions (with semicolons being an exception) are stylistic and highly preferential.
They don’t impact the execution; however, it’s strongly suggested that you follow one style consistently, especially if
you are a developer working in teams and/or on open-source projects. Some open-source projects might not accept
pull requests if they contain semicolons (e.g., NPM) or if they don’t use comma-first style (e.g., request).

Semicolons
The use of semicolons is optional, except for two cases:
1. Inforloop construction: for (var i=0; i++; i<n)

2. When a new line starts with parentheses, such as when using an immediately invoked
function expression (IIFE): ; (function(){...}())

camelCase

camelCase is the main naming pattern in JavaScript, except for class names, which are CapitalCamelCase. An example
follows:

var MainView = Backbone.View.extend({...})
var mainView = new MainView()

Naming

_and $ are perfectly legitimate characters for literals (jQuery and Underscore libraries use them a lot). Private
methods and attributes start with _ (and it does nothing by itself?).

Commas

An example of a comma-first approach is as follows:
var obj = { firstName: "John"

, lastName: "Smith"
, email: "johnsmith@gmail.com"

}

13

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Indentation

Indentation is usually done using either a tab, or four- or two-space indentation, with supporting camps split almost
religiously between the two options.

Whitespace

Usually, there is a space before and after the =, +, {, and } symbols. There is no space on invocation (e.g., arr.push(1);),
but there’s a space when we define an anonymous function: function () {}.

Node.js Globals and Reserved Keywords

Despite being modeled after one standard, Node.js and browser JavaScript differ when it comes to globals. This was
done intentionally because when var is omitted, browser JavaScript leaks variables infamously to the global space,
thus polluting it. This has been dubbed as one of the bad parts of JavaScript in the canonical book JavaScript: The
Good Parts by Douglas Crockford (2008 O'Reilly).

As you might know, in browser JavaScript we have a window object. However, in Node.js, it is absent (obviously we
don’t deal with a browser window), but developers are provided with new objects/keywords:

e process
e global
e module.exports and exports

So, let’s take a look at the main differences between Node.js and JavaScript.

Node.js Process Information

Each Node.js script that runs is, in essence, a process. For example, ps aux | grep 'node' outputs all Node.js
programs running on a machine. Conveniently, developers can access useful process information in code with the
process object (e.g., node -e "console.log(process.pid)"), as shown in Figure 1-5.

14

www.it-ebooks.info

http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

e 00 1. azat.mardanov@DSA002579: ~/code (zsh) o
: bash] (nod ~/code (zsh)

¢ code $ node -e
41270

¢ code $ node -e "console.log(process.cwd())"
/Users/azat.mardanov/code

¢ code $ node -e "console.log(process.pid)”
41280

¢ code $ node -e "console.log(process.pid)”
41284

¢ code $§

L 4

Figure 1-5. Node.js process examples using pid (process ID) and cwd (current working directory)

Accessing Global Scope in Node.js

As you know, browser JavaScript, by default, puts everything into its global scope. On the other hand, Node.js was
designed to behave differently, with everything being local by default. In case we need to access globals, there is a
global object. And, when we need to export something, we should do so explicitly.

In a sense, the window object from front-end/browser JavaScript metamorphosed into a combination of global
and process objects. Needless to say, the document object, which represents the DOM (Document Object Model) of
the web page, is nonexistent in Node.js.

Exporting and Importing Modules

Another bad part in browser JavaScript is that there is no way to include modules. Scripts are supposed to be
linked together using a different language (HTML), but dependency management is lacking. Common]S
(http://www.commonjs.org/) and Require]S (http://requirejs.org/) solve this problem with the AJAX-y
approach. Node.js borrowed many things from the Common]JS concept.

To export an object in Node.js, use exports.name = object;. An example follows:

var messages = {
find: function(req, res, next) {

b

add: function(req, res, next) {

b

format: 'title | date | author'
}

exports.messages = messages;
15

www.it-ebooks.info

http://www.commonjs.org/
http://requirejs.org/
http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

While in the file where we import the aforementioned script (assuming the path and the file name is
route/messages.js), write the following:

var messages = require('./routes/messages.js');

However, sometimes it’s more fitting to invoke a constructor, such as when we attach properties to the Express.js
app (which is explained in detail in Express.js FUNdamentals: An Essential Overview of Express.js [2013],
http://webapplog.com/express-js-fundamentals/). In this case, module.exports is needed:

module.exports = function(app) {
app.set('port', process.env.PORT || 3000);
app.set('views', dirname + '/views');
app.set('view engine', 'jade');
return app;

In the file that includes the previous sample module, write

var app = express();
var config = require('./config/index.js');
app = config(app);

The more succinct code is var = express(); require('./config/index.js")(app);.

The most common mistake when including modules is creating a wrong path to the file. For core Node.js
modules, use the name without any path—for example, require('name'). The same goes for modules in the
node_modules folder (more on this when we examine NPM later in the chapter).

For all other files (i.e., not modules), use . with or without a file extension. An example follows:

var keys = require('./keys.js'),
messages = require('./routes/messages.js');

In addition, for including files, it’s possible to use longer statements with __dirname and path.join()—for
example, require(path.join(__dirname, ,'routes', 'messages'));.Thisis a recommended approach, because
path. join() will produce a path with valid slashes (forward or backward depending on your OS).

If require() points to a folder, Node.js attempts to read the index. js file in that folder.

__dirname vs. process.cwd

__dirname is an absolute path to the file in which the global variable is called, whereas process.cwd is an absolute
path to the process that runs the script. The latter might not be the same as the former if we started the program from
a different folder, such as $ node ./code/program. js.

16

www.it-ebooks.info

http://webapplog.com/express-js-fundamentals/
http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

Browser Application Programming Interface Helpers

There are myriad helper functions in Node.js from the browser JavaScript application programming interface (API).
The most useful come from String, Array, and Math objects. To make you aware of their existence, or to remind you,
here is a list of the most common functions and their meanings:

e Array

some() and every(): assertions for array items
join() and concat(): convertion to a string

pop(), push(), shift(), and unshift(): working with stacks and queues
map (): model mapping for array items

filter(): querying array items

sort(): ordering items

reduce(), reduceRight(): computing

slice(): copying

splice(): removing

index0f(): lookups of finding the value in the array
reverse(): reversing the order

The in operator: iteration over array items

e Math

random(): random real number less than one

e String

substr() and substring(): extracting substrings
length: length of the string
index0f(): index of finding the value in the string

split(): converting the string to an array

In addition, we have setInterval(), setTimeout(), forEach(), and console methods in Node.js. For the
complete list of methods and examples, visit the following sites:

e String (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/String)

e Array (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Array)

e Math (https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Math)

17

www.it-ebooks.info

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/String
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math
http://www.it-ebooks.info/

CHAPTER 1 © SETTING UP NODE.JS AND OTHER ESSENTIALS

Node.js Core Modules

Unlike other programming technologies, Node.js doesn’t come with a heavy standard library. The core modules of
node.js are a bare minimum, and the rest can be cherry-picked via the NPM registry. The main core modules, classes,
methods, and events include the following:

e http (http://nodejs.org/api/http.htmlithttp_http)

e util (http://nodejs.org/api/util.html)

e querystring (http://nodejs.org/api/querystring.html)
o url (http://nodejs.org/api/url.html)

o fs (http://nodejs.org/api/fs.html)

hitp (http://nodejs.org/api/http.html)
http is the main module responsible for the Node.js HTTP server. The main methods are as follows:
e http.createServer(): returns a new web server object
e http.listen(): begins accepting connections on the specified port and hostname
e http.createClient():is a client and makes requests to other servers
e http.ServerRequest(): passes incoming requests to request handlers
e data: emitted when a part of the message body is received
¢ end: emitted exactly once for each request
e request.method(): the request method as a string
e request.url(): request URL string

e http.ServerResponse(): creates this object internally by an HTTP server — not by
the user— and is used as an output of request handlers

e response.writeHead(): sends a response header to the request
e response.write(): sends aresponse body

e response.end(): sends and ends a response body

util (http://nodejs.org/api/util.html)

The util module provides utilities for debugging. One method is as follows:

e util.inspect(): returns a string representation of an object, which is useful for debugging

querystring (http://nodejs.org/api/querystring.html)
The querystring module provides utilities for dealing with query strings. Some of the methods include the following:
e querystring.stringify(): serializes an object to a query string

e querystring.parse(): deserializes a query string to an object

18

www.it-ebooks.info

http://nodejs.org/api/http.html%23http_http
http://nodejs.org/api/util.html
http://nodejs.org/api/querystring.html
http://nodejs.org/api/url.html
http://nodejs.org/api/fs.html
http://nodejs.org/api/http.html
http://nodejs.org/api/util.html
http://nodejs.org/api/querystring.html
http://www.it-ebooks.info/

CHAPTER 1~ SETTING UP NODE.JS AND OTHER ESSENTIALS

url (http