

ffirs.indd iffirs.indd i 22/09/12 10:16 AM22/09/12 10:16 AM

PROFESSIONAL NODE.JS®

INTRODUCTION .xxvii

 � PART I INTRODUCTION AND SETUP

CHAPTER 1 Installing Node . 3

CHAPTER 2 Introducing Node .15

 � PART II NODE CORE API BASICS

CHAPTER 3 Loading Modules . 23

CHAPTER 4 Using Buff ers to Manipulate, Encode, and Decode Binary Data 29

CHAPTER 5 Using the Event Emitter Pattern to Simplify Event Binding 35

CHAPTER 6 Scheduling the Execution of Functions Using Timers 45

 � PART III FILES, PROCESSES, STREAMS, AND NETWORKING

CHAPTER 7 Querying, Reading from, and Writing to Files . 53

CHAPTER 8 Creating and Controlling External Processes . 63

CHAPTER 9 Reading and Writing Streams of Data . 75

CHAPTER 10 Building TCP Servers . 83

CHAPTER 11 Building HTTP Servers . 95

CHAPTER 12 Building a TCP Client . 103

CHAPTER 13 Making HTTP Requests . 113

CHAPTER 14 Using Datagrams (UDP) . 129

CHAPTER 15 Securing Your TCP Server with TLS/SSL . 139

CHAPTER 16 Securing Your HTTP Server with HTTPS . 149

 � PART IV BUILDING AND DEBUGGING MODULES AND APPLICATIONS

CHAPTER 17 Testing Modules and Applications . 157

CHAPTER 18 Debugging Modules and Applications . 167

CHAPTER 19 Controlling the Callback Flow .177

Continues

ffirs.indd iffirs.indd i 22/09/12 10:16 AM22/09/12 10:16 AM

 � PART V BUILDING WEB APPLICATIONS

CHAPTER 20 Building and Using HTTP Middleware . 197

CHAPTER 21 Making a Web Application Using Express.js . 217

CHAPTER 22 Making Universal Real-Time Web Applications Using Socket.IO 241

 � PART VI CONNECTING TO DATABASES

CHAPTER 23 Connecting to MySQL Using node-mysql . 267

CHAPTER 24 Connecting to CouchDB Using Nano . 277

CHAPTER 25 Connecting to MongoDB Using Mongoose . 311

INDEX .351

ffirs.indd iiffirs.indd ii 22/09/12 10:16 AM22/09/12 10:16 AM

PROFESSIONAL

Node.js®

ffirs.indd iiiffirs.indd iii 22/09/12 10:16 AM22/09/12 10:16 AM

ffirs.indd ivffirs.indd iv 22/09/12 10:16 AM22/09/12 10:16 AM

PROFESSIONAL

Node.js®

BUILDING JAVASCRIPT-BASED SCALABLE SOFTWARE

Pedro Teixeira

ffirs.indd vffirs.indd v 22/09/12 10:16 AM22/09/12 10:16 AM

Professional Node.js®: Building JavaScript-Based Scalable Software

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-118-18546-9
ISBN: 978-1-118-22754-1 (ebk)
ISBN: 978-1-118-24056-4 (ebk)
ISBN: 978-1-118-26518-5 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108
of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers,
MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be addressed to the
Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011,
fax (201) 748-6008, or online at http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with
respect to the accuracy or completeness of the contents of this work and specifi cally disclaim all warranties, including
without limitation warranties of fi tness for a particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not be suitable for every situation. This work is
sold with the understanding that the publisher is not engaged in rendering legal, accounting, or other professional
services. If professional assistance is required, the services of a competent professional person should be sought. Neither
the publisher nor the author shall be liable for damages arising herefrom. The fact that an organization or Web site is
referred to in this work as a citation and/or a potential source of further information does not mean that the author or the
publisher endorses the information the organization or Web site may provide or recommendations it may make. Further,
readers should be aware that Internet Web sites listed in this work may have changed or disappeared between when this
work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department within the
United States at (877) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material included with
standard print versions of this book may not be included in e-books or in print-on-demand. If this book refers to
media such as a CD or DVD that is not included in the version you purchased, you may download this material at
http://booksupport.wiley.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2012940020

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc., and/or its affi liates, in the United States and other coun-
tries, and may not be used without written permission. Node.js is a registered trademark of Joyent, Inc. All other trade-
marks are the property of their respective owners. John Wiley & Sons, Inc., is not associated with any product or vendor
mentioned in this book.

ffirs.indd viffirs.indd vi 22/09/12 10:16 AM22/09/12 10:16 AM

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com
http://booksupport.wiley.com

This book is dedicated to my wife, Susana.

Throughout all these years she has always been an

example of strength and persistence.

ffirs.indd viiffirs.indd vii 22/09/12 10:16 AM22/09/12 10:16 AM

ffirs.indd viiiffirs.indd viii 22/09/12 10:16 AM22/09/12 10:16 AM

ABOUT THE AUTHOR

PEDRO TEIXEIRA is a prolifi c open-source programmer and author of many Node.js modules. After
graduating with a degree in Software Engineering more than 14 years ago, he has been a consultant,
a programmer, and an active and internationally known Node.js community member.

He is a founding partner of The Node Firm and a Senior Programmer at Nodejitsu Inc., the leading
Node.js platform-as-a-service provider. He is also the author of the popular Node Tuts screencasts.

When Pedro was 10 years old, his father taught him how to program a ZX Spectrum, and since
then he has never wanted to stop. He taught himself how to program his father’s Apple IIc and then
entered the PC era. In college he was introduced to the universe of UNIX and open-source, becom-
ing seriously addicted to it. In his professional life he has developed systems and products built
with Visual Basic, C, C++, Java, PHP, Ruby, and JavaScript for big telecommunications companies,
banks, hotel chains, and others.

He has been a Node.js enthusiast since its initial development, having authored many applications
and many well-known modules like Fugue, Alfred.js, Carrier, Nock, and more.

ffirs.indd ixffirs.indd ix 22/09/12 10:16 AM22/09/12 10:16 AM

ffirs.indd xffirs.indd x 22/09/12 10:16 AM22/09/12 10:16 AM

ABOUT THE TECHNICAL EDITOR

MANUEL KIESSLING is a software development and systems administration team lead, using and
teaching agile practices in both domains. He runs several open-source projects, is an active blogger,
and wrote the freely available Node Beginner Book. He currently lives near Cologne, Germany, with
his wife and two children.

He is the co-author of Chapter 22, “Making Universal Real-Time Web Applications Using Socket.IO,”
and Chapter 23, “Connecting to MySQL Using node-mysql.”

ffirs.indd xiffirs.indd xi 22/09/12 10:16 AM22/09/12 10:16 AM

ffirs.indd xiiffirs.indd xii 22/09/12 10:16 AM22/09/12 10:16 AM

CREDITS

ACQUISITIONS EDITOR

Mary James

PROJECT EDITOR

Tora Estep

TECHNICAL EDITOR

Manuel Kiessling

PRODUCTION EDITOR

Daniel Scribner

COPY EDITOR

Kezia Endsley

EDITORIAL MANAGER

Mary Beth Wakefi eld

FREELANCER EDITORIAL MANAGER

Rosemarie Graham

ASSOCIATE DIRECTOR OF MARKETING

David Mayhew

MARKETING MANAGER

Ashley Zurcher

BUSINESS MANAGER

Amy Knies

PRODUCTION MANAGER

Tim Tate

VICE PRESIDENT AND EXECUTIVE

GROUP PUBLISHER

Richard Swadley

VICE PRESIDENT AND EXECUTIVE

PUBLISHER

Neil Edde

ASSOCIATE PUBLISHER

Jim Minatel

PROJECT COORDINATOR, COVER

Katie Crocker

PROOFREADER

Nicole Hirschman

INDEXER

Ron Strauss

COVER DESIGNER

Ryan Sneed

COVER IMAGE

© Gregory Olsen/iStockPhoto

ffirs.indd xiiiffirs.indd xiii 22/09/12 10:16 AM22/09/12 10:16 AM

ffirs.indd xivffirs.indd xiv 22/09/12 10:16 AM22/09/12 10:16 AM

ACKNOWLEDGMENTS

FIRST, I WANT TO THANK my wife, Susana, and my kids, Henrique and Beatriz. You have given me
 courage and persistence by reminding me what is really important in life.

I’d also like to thank my Acquisitions Editor at Wiley, Mary E. James, for having faith in me and
signing me up to write this book.

I want to thank my good friend and former colleague, programmer and photographer Pedro
Mendes, who persuaded me to start writing a book about Node.js over a few beers in Lisbon.

I also want to thank my good friend Nuno Job, who has been my companion in this open-source
and Node.js crusade for these last few years.

A big word of appreciation also goes out to the Node.js community in general. You are the best,
most welcoming, appreciative, and fun programming community I have been a part of.

Lastly, I want to thank you, the reader, for buying this book. I hope it helps you in learning about
the ins and outs of the wonderful world of programming in Node.js.

ffirs.indd xvffirs.indd xv 22/09/12 10:16 AM22/09/12 10:16 AM

ffirs.indd xviffirs.indd xvi 22/09/12 10:16 AM22/09/12 10:16 AM

CONTENTS

INTRODUCTION xxvii

PART I: INTRODUCTION AND SETUP

CHAPTER 1: INSTALLING NODE 3

Installing Node on Windows 4

Installing on Mac OS X 5

Installing Node Using the Source Code 6

Choosing the Node Version 6

Downloading the Node Source Code 6

Building Node 7

Installing Node 7

Running Node 8

Setting Up and Using Node Package Manager 8

Using NPM to Install, Update, and Uninstall Packages 9

Summary 13

CHAPTER 2: INTRODUCING NODE 15

Introducing the Event-Driven Programming Style 16

How Node and JavaScript Make Writing Asynchronous
Applications Easier 17

What Are Closures? 18

How Closures Help When Programming Asynchronously 19

Summary 19

PART II: NODE CORE API BASICS

CHAPTER 3: LOADING MODULES 23

Understanding How Node Loads Modules 24

Exporting a Module 24

Loading a Module 25

Summary 28

ftoc.indd xviiftoc.indd xvii 21/09/12 6:42 PM21/09/12 6:42 PM

xviii

CONTENTS

CHAPTER 4: USING BUFFERS TO MANIPULATE, ENCODE,
AND DECODE BINARY DATA 29

Creating a Buff er 30

Getting and Setting Bytes in a Buff er 30

Slicing a Buff er 32

Copying a Buff er 32

Decoding a Buff er 32

Summary 33

CHAPTER 5: USING THE EVENT EMITTER PATTERN
TO SIMPLIFY EVENT BINDING 35

Understanding the Standard Callback Pattern 36

Understanding the Event Emitter Pattern 36

Understanding Event Types 37

Using the Event Emitter API 38

Binding Callbacks Using .addListener() or .on() 38

Binding Multiple Event Listeners 39

Removing an Event Listener from an Event Emitter
Using .removeListener() 40

Getting a Callback Executed at Most Once Using .once() 40

Removing All Event Listeners from an Event Emitter
Using .removeAllListeners() 41

Creating an Event Emitter 41

Inheriting from Node Event Emitter 42

Emitting Events 42

Summary 43

CHAPTER 6: SCHEDULING THE EXECUTION
OF FUNCTIONS USING TIMERS 45

Using setTimeout to Defer the Execution of a Function 46

Using clearTimeout to Cancel the Execution of a Function 46

Scheduling and Canceling the Repetitive Execution of a Function 47

Using process.nextTick to Defer the Execution
of a Function Until the Next Event Loop Iteration 47

Blocking the Event Loop 48

Escaping the Event Loop 49

Using setTimeout Instead of setInterval
to Force Serialization 49

Summary 50

ftoc.indd xviiiftoc.indd xviii 21/09/12 6:42 PM21/09/12 6:42 PM

xix

CONTENTS

PART III: FILES, PROCESSES, STREAMS, AND NETWORKING

CHAPTER 7: QUERYING, READING FROM, AND WRITING TO FILES 53

Manipulating File Paths 54

Normalizing Paths 54

Joining Paths 54

Resolving Paths 55

Finding the Relative Path Between Two Absolute Paths 55

Extracting Components of a Path 55

Determining the Existence of a Path 56

Introducing the fs Module 57

Querying File Statistics 57

Opening a File 58

Reading from a File 59

Writing to a File 60

Closing a File 60

Summary 62

CHAPTER 8: CREATING AND CONTROLLING
EXTERNAL PROCESSES 63

Executing External Commands 64

Spawning Child Processes 69

Creating the Child Process 69

Listening for Data from the Child Process 69

Sending Data to the Child Process 70

Receiving Notifi cation When the Child Process Exits 72

Signaling and Killing Processes 73

Summary 74

CHAPTER 9: READING AND WRITING STREAMS OF DATA 75

Using a Readable Stream 76

Waiting for Data 76

Pausing and Resuming a Stream 77

Knowing When the Stream Ends 77

Using Writable Streams 77

Writing Data into a Stream 78

Waiting for a Stream to Drain 78

Considering Some Stream Examples 78

Creating File-System Streams 79

Understanding Networking Streams 80

ftoc.indd xixftoc.indd xix 21/09/12 6:42 PM21/09/12 6:42 PM

xx

CONTENTS

Avoiding the Slow Client Problem and Saving Your Server 80

Understanding the Slow Client Problem 80

Avoiding the Slow Client Problem 81

Using stream.pipe() to Prevent the Slow Client Problem and Assembling
Readable and Writable Streams Using pipe() 82

Summary 82

CHAPTER 10: BUILDING TCP SERVERS 83

Creating a TCP Server 83

Using the Socket Object 85

Understanding Idle Sockets 86

Setting Up Keep-Alive 87

Using Delay or No Delay 87

Listening for Client Connections 88

Closing the Server 88

Handling Errors 88

Building a Simple TCP Chat Server 89

Accepting Connections 89

Reading Data from a Connection 90

Collecting All the Clients 90

Broadcasting Data 91

Removing Closed Connections 92

Using Your TCP Chat Server 93

Summary 93

CHAPTER 11: BUILDING HTTP SERVERS 95

Understanding the http.ServerRequest Object 97

Understanding the http.ServerResponse Object 98

Writing a Header 98

Changing or Setting a Header 99

Removing a Header 99

Writing a Piece of the Response Body 99

Streaming HTTP Chunked Responses 99

Piping a File 100

Piping the Output of Another Process 100

Shutting Down the Server 101

Example 1: Building a Server that Serves Static Files 101

Example 2: Making Use of HTTP Chunked
Responses and Timers 102

Summary 102

ftoc.indd xxftoc.indd xx 21/09/12 6:42 PM21/09/12 6:42 PM

xxi

CONTENTS

CHAPTER 12: BUILDING A TCP CLIENT 103

Connecting to a Server 104

Sending and Receiving Data 105

Ending the Connection 105

Handling Errors 106

Building an Example Command-Line TCP Client 106

Connecting to the Server 107

Sending the Command Line to the Server 107

Printing Server Messages 107

Reconnecting if the Connection Dies 108

Closing the Connection 109

Putting the Client Together 111

Summary 112

CHAPTER 13: MAKING HTTP REQUESTS 113

Making GET Requests 113

Using Other HTTP Verbs 114

Inspecting the Response Object 115

Obtaining the Response Body 116

Streaming the Response Body 116

Pooling Sockets Using http.Agent 116

Using a Third-Party Request Module to Simplify
HTTP Requests 118

Installing and Using Request 118

Creating a Testing Server 120

Following Redirects 121

Setting Some Request Options 123

Encoding the Request Body 125

Streaming 127

Using a Cookie Jar 127

Summary 128

CHAPTER 14: USING DATAGRAMS (UDP) 129

Understanding UDP 129

Understanding the Uses of UDP 130

Building a Datagram Server 130

Listening for Messages 130

Testing the Server 131

Inspecting Additional Message Information 132

Creating a Simple Datagram Echo Server 132

ftoc.indd xxiftoc.indd xxi 21/09/12 6:42 PM21/09/12 6:42 PM

xxii

CONTENTS

Waiting for Messages 132

Sending Messages Back to Senders 132

Putting the Echo Server Together 133

Building a Datagram Client 134

Creating the Client 134

Sending Messages 134

Closing the Socket 134

Creating a Simple Datagram Command-Line Client 135

Reading from the Command Line 135

Sending Data to the Server 135

Receiving Data from the Server 136

Putting the Command-Line UDP Client Together 136

Understanding and Using Datagram Multicast 136

Receiving Multicast Messages 137

Sending Multicast Messages 138

Understanding Maximum Datagram Size 138

Summary 138

CHAPTER 15: SECURING YOUR TCP SERVER WITH TLS/SSL 139

Understanding Private and Public Keys 139

Generating a Private Key 140

Generating a Public Key 140

Building a TLS Server 141

Initializing the Server 141

Listening for Connections 141

Reading Data from the Client 142

Sending Data to the Client 142

Ending the Connection 142

Building a TLS Client 143

Initializing the Client 143

Connecting to the Server 143

Verifying the Server Certifi cate 143

Sending Data to the Server 144

Reading Data from the Server 144

Ending the Connection 144

Building Some Examples 145

Creating a TLS Chat Server 145

Creating a TLS Command-Line Chat Client 146

Verifying the Client Certifi cate 147

Summary 148

ftoc.indd xxiiftoc.indd xxii 21/09/12 6:42 PM21/09/12 6:42 PM

xxiii

CONTENTS

CHAPTER 16: SECURING YOUR HTTP SERVER WITH HTTPS 149

Building a Secure HTTP Server 149

Setting Up the Server Options 150

Listening for Connections 150

Validating the HTTPS Client Certifi cate 151

Creating an HTTPS Client 152

Initializing the Client 152

Making the Request 152

Validating the HTTPS Server Certifi cate 153

Summary 154

PART IV: BUILDING AND DEBUGGING MODULES AND APPLICATIONS

CHAPTER 17: TESTING MODULES AND APPLICATIONS 157

Using a Test Runner 157

Writing Tests 158

Running Tests 159

Using an Assertion Testing Module 159

Using the assert Module 159

Using the Built-in Assertion Functions in Node-Tap 161

Testing Your Asynchronous Module 163

Summary 166

CHAPTER 18: DEBUGGING MODULES AND APPLICATIONS 167

Using console.log 167

Using Node’s Built-in Debugger 169

Using Node Inspector 173

Summary 175

CHAPTER 19: CONTROLLING THE CALLBACK FLOW 177

Understanding the Boomerang Eff ect 177

Avoiding the Boomerang Eff ect
by Declaring Functions 179

Using the async Flow Control Library 183

Executing in Series 184

Executing in Parallel 185

Cascading 186

Queuing 187

Iterating 189

Mapping 190

ftoc.indd xxiiiftoc.indd xxiii 21/09/12 6:42 PM21/09/12 6:42 PM

xxiv

CONTENTS

Reducing 191

Filtering 192

Detecting 193

Summary 194

PART V: BUILDING WEB APPLICATIONS

CHAPTER 20: BUILDING AND USING HTTP MIDDLEWARE 197

Understanding the Connect HTTP Middleware Framework 198

Building Your Own HTTP Middleware 198

Creating Asynchronous Middleware 200

Registering Callbacks Inside Middleware 201

Handling Errors Inside Middleware 203

Using the HTTP Middleware Bundled in Connect 206

Logging Requests 206

Handling Errors 208

Serving Static Files 209

Parsing the Query String 210

Parsing the Request Body 211

Parsing Cookies 212

Using a Session 213

Other Available Middleware 216

Summary 216

CHAPTER 21: MAKING A WEB APPLICATION USING EXPRESS.JS 217

Initializing Your Express.js Application 218

Setting Up Middleware in Your Application 220

Routing Requests 222

Handling Routes 222

Using Sessions 229

Using Route Middleware 234

Summary 238

CHAPTER 22: MAKING UNIVERSAL REAL-TIME
WEB APPLICATIONS USING SOCKET.IO 241

Understanding How WebSockets Work 242

Using Socket.IO to Build WebSocket Applications 243

Installing and Running Socket.IO on the Server 243

Building a Real-Time Web Chat with Socket.IO 245

Extending the Chat Application 250

Detecting Disconnections 254

ftoc.indd xxivftoc.indd xxiv 21/09/12 6:42 PM21/09/12 6:42 PM

xxv

CONTENTS

Separating Users into Rooms 255

Using Namespaces 259

Distributing the Server-Side Application Using Redis 259

Summary 263

PART VI: CONNECTING TO DATABASES

CHAPTER 23: CONNECTING TO MYSQL USING NODE-MYSQL 267

Using a Library to Connect to and Communicate
with a MySQL Database 268

Adding Data to the Database with
Security Concerns in Mind 270

Reading Data Effi ciently 272

Summary 276

CHAPTER 24: CONNECTING TO COUCHDB USING NANO 277

Installing Nano 278

Connecting and Creating a Database 281

Storing Documents 285

Creating and Using CouchDB Views 286

Attaching Files to a CouchDB Document 298

Summary 310

CHAPTER 25: CONNECTING TO MONGODB USING MONGOOSE 311

Installing Mongoose 313

Understanding How Mongoose Uses Models
to Encapsulate Database Access 313

Connecting to MongoDB 314

Defi ning a Schema 314

Defi ning a Model 315

Using Validators 324

Using Modifi ers 330

Using Getters 331

Using Virtual Attributes 332

Using Default Values 338

Defi ning Indexes 340

Referencing Other Documents Using DB Refs 341

Defi ning Instance Methods 347

Defi ning Static Methods 348

Summary 349

INDEX 351

ftoc.indd xxvftoc.indd xxv 21/09/12 6:42 PM21/09/12 6:42 PM

flast.indd xxviflast.indd xxvi 21/09/12 7:59 PM21/09/12 7:59 PM

INTRODUCTION

IN 1995, WHEN I WAS IN MY SECOND YEAR IN COLLEGE, I was introduced to UNIX network program-
ming. In C, you could create sockets to open TCP connections to servers and code the servers that
accepted these connections. I remember the excitement I felt the fi rst time I created a TCP server: I
could accept connections and receive and send messages on them.

If I wanted my server to accept many concurrent connections, the common solution was to use
threads, and soon I had created my fi rst multi-threaded TCP server. This server accessed a shared
data structure, which needed to synchronize the access to all the client threads that had been
spawned. Getting the synchronization fi ne-grained (to maximize resources and time) and right
(to avoid deadlocks) proved to be more diffi cult than anticipated.

A couple of years later, I entered the working world to become a consultant, programming and
 leading teams of programmers to implement various client projects. At fi rst I continued to work
within the UNIX world, but soon I was diverted to Java and all its enterprise fl avors and fi nally
landed on the fertile plains of web development, using scripting languages like PHP and Ruby.
Doing web development, I slowly became familiar with JavaScript and the event-driven program-
ming model, never realizing it would later connect me back to the world of UNIX.

Fast-forwarding to early 2010, a good friend of mine talked to me about Node.js. It was fast, he
said, and you can program it in JavaScript. It transported the event-driven browser programming
into the UNIX network programming world.

Curious, I went to take a look at the API documents and was immediately hooked. The ease with
which you could create highly scalable servers without using threads and mix-and-match client and
server code made me take a deep dive into Node’s source code and surrounding modules. Node.js
connected the ease of a scripting language with all the power of UNIX network programming, and I
felt like I was fi nally home.

WHO THIS BOOK IS FOR

This book was written for the developer who is familiar with JavaScript, either browser or server-
side programming. The reader should be familiar with some introductory concepts of how TCP and
HTTP works. For the later chapters on web application development, it also helps if the reader is
familiar with classic development for the web (HTML, CSS, and JavaScript).

If you already have Node.js installed, you may skip to Chapter 2, “Introducing Node.”

If you already know the basics of how Node.js works internally and know about server-side event
programming in JavaScript, you may skip to Chapter 3, “Loading Modules.”

flast.indd xxviiflast.indd xxvii 21/09/12 7:59 PM21/09/12 7:59 PM

xxviii

INTRODUCTION

After introducing core Node.js concepts and API subsets, I go into application building starting in
Chapter 17 (“Testing Modules and Applications”) and cover debugging (Chapter 18, “Debugging
Modules and Applications”), and I present some tips on controlling asynchronous fl ow
(Chapter 19, “Controlling the Callback Flow”).

Next, I address the necessary parts of building web applications, starting in Chapter 20, “Building
and Using HTTP Middleware,” passing through Express.js (Chapter 21), and creating real-time
web allocations using Socket.IO (Chapter 22).

Finally, I also address how to access and use databases from Node.js, including MySQL
(Chapter 23), CouchDB (Chapter 24), and MongoDB (Chapter 25).

WHAT THIS BOOK COVERS

This book covers Node.js v0.8, Express.js v2.5, Socket.io 0.9, Node-mysql v0.9, Nano v3.1, and
Mongoose v2.7.

HOW THIS BOOK IS STRUCTURED

The book starts with setting up and introducing Node.js.

It then explains the Node core fundamentals, which include modules, buffers, the Event Emitter
pattern, and timers, after which the fundamental Node core specifi c fi le and networking APIs are
introduced and explained, all complemented with practical examples.

After covering core Node concepts, the book continues with some best practices for developing
applications with Node.js, such as testing modules, debugging applications, and maintaining control
of the asynchronous callback fl ow.

Building real-time web applications is one of the main use cases of Node, and this book shows you
how to do it using Connect, Express.js, and Socket.IO.

Because most applications need to connect to a database, the book explains how to connect to and
use MySQL, CouchDB, and MongoDB from your Node.js application.

WHAT YOU NEED TO USE THIS BOOK

To install and run Node.js applications, you need a PC or Macintosh computer running a recent
version of either Windows, Linux, or MacOS.

The source code for the samples is available for download from the Wrox website at: www.wrox
.com/remtitle.cgi?isbn=P010093766.

flast.indd xxviiiflast.indd xxviii 21/09/12 7:59 PM21/09/12 7:59 PM

http://www.wrox.com/remtitle.cgi?isbn=P010093766
http://www.wrox.com/remtitle.cgi?isbn=P010093766

xxix

INTRODUCTION

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, we’ve used a number of
conventions throughout the book.

WARNING Warnings hold important, not-to-be-forgotten information that is
directly relevant to the surrounding text.

NOTE Notes indicates notes, tips, hints, tricks, and asides to the current
discussion.

 ➤ We italicize new terms and important words when we introduce them.

 ➤ We show keyboard strokes like this: Ctrl+A.

 ➤ We show fi le names, URLs, and code within the text like so: persistence.properties.

We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use bold to emphasize code that is particularly important in the present context
or to show changes from a previous code snippet.

SOURCE CODE

As you work through the examples in this book, you may choose either to type in the code manu-
ally, or to use the source code fi les that accompany the book. All the source code used in this book
is available for download at www.wrox.com. Specifi cally for this book, the code download is on
the Download Code tab at: http://www.wrox.com/WileyCDA/WroxTitle/Professional-Node-js-
Building-Javascript-Based-Scalable-Software.productCd-1118185463.html.

You can also search for the book at www.wrox.com by ISBN to fi nd the code. And a complete list
of code downloads for all current Wrox books is available at www.wrox.com/dynamic/books/
download.aspx.

Throughout each chapter, you’ll fi nd references to the names of code fi les as needed in listing titles
and text.

Most of the code on www.wrox.com is compressed in a .ZIP, .RAR archive, or similar archive for-
mat appropriate to the platform. Once you download the code, just decompress it with an appropri-
ate compression tool.

flast.indd xxixflast.indd xxix 21/09/12 7:59 PM21/09/12 7:59 PM

http://www.wrox.com
http://www.wrox.com/WileyCDA/WroxTitle/Professional-Node-js-Building-Javascript-Based-Scalable-Software.productCd-1118185463.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-Node-js-Building-Javascript-Based-Scalable-Software.productCd-1118185463.html
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com

xxx

INTRODUCTION

NOTE Because many books have similar titles, you may fi nd it easiest to search
by ISBN; this book’s ISBN is 978-1-118-18546-9.

Once you download the code, just decompress it with your favorite compression tool. Alternately,
you can go to the main Wrox code download page at www.wrox.com/dynamic/books/download
.aspx to see the code available for this book and all other Wrox books.

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake
or faulty piece of code, we would be very grateful for your feedback. By sending in errata, you may
save another reader hours of frustration, and at the same time, you will be helping us provide even
higher quality information.

To fi nd the errata page for this book, go to http://www.wrox.com/WileyCDA/WroxTitle/
Professional-Node-js-Building-Javascript-Based-Scalable-Software

.productCd-1118185463.html and click the Errata link. On this page you can view all errata that
has been submitted for this book and posted by Wrox editors.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml and complete the form there to send us the error you have found. We’ll check the information
and, if appropriate, post a message to the book’s errata page and fi x the problem in subsequent
editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at http://p2p.wrox.com. The forums are a
web-based system for you to post messages relating to Wrox books and related technologies and
interact with other readers and technology users. The forums offer a subscription feature to e-mail
you topics of interest of your choosing when new posts are made to the forums. Wrox authors, edi-
tors, other industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com, you will fi nd a number of different forums that will help you, not only
as you read this book but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to http://p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join, as well as any optional information you wish to
provide, and click Submit.

flast.indd xxxflast.indd xxx 21/09/12 7:59 PM21/09/12 7:59 PM

http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/WileyCDA/WroxTitle/Professional-Node-js-Building-Javascript-Based-Scalable-Software.productCd-1118185463.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-Node-js-Building-Javascript-Based-Scalable-Software.productCd-1118185463.html
http://www.wrox.com/WileyCDA/WroxTitle/Professional-Node-js-Building-Javascript-Based-Scalable-Software.productCd-1118185463.html
http://www.wrox.com/contact/techsupport.shtml
http://www.wrox.com/contact/techsupport.shtml
http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com

xxxi

INTRODUCTION

 4. You will receive an e-mail with information describing how to verify your account and com-
plete the joining process.

NOTE You can read messages in the forums without joining P2P, but to post
your own messages, you must join.

Once you join, you can post new messages and respond to messages other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e-mailed to you, click the Subscribe to This Forum icon by the forum name in the forum listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works, as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxiflast.indd xxxi 21/09/12 7:59 PM21/09/12 7:59 PM

flast.indd xxxiiflast.indd xxxii 21/09/12 7:59 PM21/09/12 7:59 PM

PART I
Introduction and Setup

 � CHAPTER 1: Installing Node

 � CHAPTER 2: Introducing Node

c01.indd 1c01.indd 1 22/09/12 12:23 PM22/09/12 12:23 PM

c01.indd 2c01.indd 2 22/09/12 12:23 PM22/09/12 12:23 PM

1
Installing Node

WHAT’S IN THIS CHAPTER?

 ➤ Getting Node up and running

 ➤ Installing Node Package Manager (NPM)

 ➤ Using NPM to install, uninstall, and update packages

At the European JSConf in 2009, Ryan Dahl, a young programmer, presented a project he had
been working on. This project was a platform that combined Google’s V8 JavaScript engine,
an event loop, and a low-level I/O API. This project was not like other server-side JavaScript
platforms where all the I/O primitives were event-driven and there was no way around it.
By leveraging the power and simplicity of JavaScript, this project turned the diffi cult task of
 writing event-driven server-side applications into an easy one. The project received a standing
ovation and has since then been met with unprecedented growth, popularity, and adoption.

The project was named Node.js and is now known to developers simply as Node. Node
provides a purely event-driven, non-blocking infrastructure for building highly concurrent
software.

NOTE Node allows you to easily construct fast and scalable network services.

Ever since its introduction, Node has received attention from some of the biggest players in the
industry. They have used Node to deploy networked services that are fast and scalable. Node
is so attractive for several reasons.

c01.indd 3c01.indd 3 22/09/12 12:23 PM22/09/12 12:23 PM

4 ❘ CHAPTER 1 INSTALLING NODE

When you click Run, the Installation Wizard starts (see Figure 1-3).

Click on the Next button and Node will start installing. A few moments later you will get the
confi rmation that Node was installed (see Figure 1-4).

One reason is JavaScript. JavaScript is the most widely used programming language on the planet.
Most web programmers are used to writing JavaScript in the browser, and the server is a natural
extension of that.

The other reason is Node’s simplicity. Node’s core functionalities are kept to a minimum and all the
existing APIs are quite elegant, exposing the minimum amount of complexity to the programmers.
When you want to build something more complex, you can easily pick, install, and use several of the
available third-party modules.

Another reason Node is attractive is because of how easy it is to get started using it. You can
download and install it very easily and then get it up and running in a matter of minutes.

The typical way to install Node on your development machine is by following the steps on the
http://nodejs.org website. Node installs out of the box on Windows, Linux, Macintosh, and
Solaris.

INSTALLING NODE ON WINDOWS

Node supports the Windows operating system since version 0.6.0. To install Node on Windows,
point your browser to http://nodejs.org/#download and download the node-v*.msi
Windows installer by clicking on the link. You should then be prompted with a security dialog box,
as shown in Figure 1-1.

Click on the Run button, and you will be prompted with another security dialog box asking for
confi rmation. If you agree, the Node install wizard begins (see Figure 1-2).

FIGURE 1-1 FIGURE 1-2

c01.indd 4c01.indd 4 25/09/12 4:09 PM25/09/12 4:09 PM

http://nodejs.org
http://nodejs.org

Installing on Mac OS X ❘ 5

FIGURE 1-3 FIGURE 1-4

INSTALLING ON MAC OS X

If you use Mac OS X you can install Node using an Install Wizard. To start, head to
http://nodejs.org/#download and download the node-v*.pkg Macintosh installer by clicking on
the link. Once the download is fi nished, click on the downloaded fi le to run it. You will then get the
fi rst wizard dialog box, as seen in Figure 1-5.

Choose to continue and install. The wizard will then ask you for the system user password, after
which the installation will start. A few seconds later you’ll get the confi rmation window stating that
Node is installed on your system (see Figure 1-6).

FIGURE 1-5 FIGURE 1-6

c01.indd 5c01.indd 5 22/09/12 12:23 PM22/09/12 12:23 PM

http://nodejs.org/#download

6 ❘ CHAPTER 1 INSTALLING NODE

INSTALLING NODE USING THE SOURCE CODE

If you have a UNIX system, you can install Node by compiling the source code. First you need to
select which version of Node you will be installing, then you will download the source code and
build, install, and run Node.

NOTE Node depends on several third-party code libraries, but fortunately most
of them are already distributed along with the program. If you are building from
source code, you should need only two things:

 ➤ python (version 2.4 or higher) — The build tools distributed with Node run
on python.

 ➤ libssl-dev — If you plan to use SSL/TLS encryption in your networking,
you’ll need this. libssl is the library used in the openssl tool. On Linux
and UNIX systems it can usually be installed with your favorite package
 manager. The libssl library comes pre-installed on Mac OS X.

Choosing the Node Version

Two different versions of Node are usually available for download on the nodejs.org website: the
latest stable and the latest unstable.

In Node, the minor version numbering denotes the stability of the version. Stable versions have an even
minor version (0.2, 0.4, 0.6), and unstable versions have an odd minor version (0.1, 0.3, 0.5, 0.7).

Not only might an unstable version be functionally unstable, but the API might also be mutating.
The stable versions should not change the public API. For each stable branch, a new patch should
include only bug fi xes, whereas APIs sometimes change in the unstable branch.

Unless you want to test a new feature that is only available in the latest unstable release, you should
always choose the latest stable version. The unstable versions are a battleground for the Node Core
Team to test new developments in the platform.

More and more projects and companies successfully use Node in production (some of the most
 relevant are on the nodejs.org home page), but you might have to put some effort into keeping up
with the API changes on each new minor stable release. That’s the price of using a new technology.

Downloading the Node Source Code

After you choose a version to download, copy the source code tarball URL from the
http://nodejs.org website and download it. If you’re running in a UNIX system, you probably
have wget installed, which means that you can download it by using a shell prompt and typing the
following:

$ wget http://nodejs.org/dist/v0.6.1/node-v0.6.12.tar.gz

c01.indd 6c01.indd 6 22/09/12 12:23 PM22/09/12 12:23 PM

http://nodejs.org
http://nodejs.org/dist/v0.6.1/node-v0.6.12.tar.gz
http://nodejs.org
http://nodejs.org

Installing Node Using the Source Code ❘ 7

If you don’t have wget installed, you may also use the curl utility:

$ curl -O http://nodejs.org/dist/v0.6.1/node-v0.6.12.tar.gz

If you don’t have either of these tools installed, you have to fi nd another way to download the
tarball fi le into your local directory — such as by using a browser or transferring it via the local
network.

(The examples in this book use the latest stable version at the time of writing, which is 0.6.12.)

Building Node

Now that you have the source code in your computer, you can build the Node executable. First you
need to unpack the source fi les like this:

$ tar xfz node-v0.6.12.tar.gz

Then step into the source directory:

$ cd node-v0.6.12

Confi gure it:

$./configure

You should get a successful output like this:

'configure' finished successfully (9.278s)

Then you are ready to compile it:

$ make

You should get a successful output like this:

'build' finished successfully (0.734s)

Installing Node

When you have built Node, you can install it by running the following command:

$ make install

This will copy the Node executable into /usr/local/bin/node.

If you have a permissions problem when issuing this command, run it as the root user or using sudo:

$ sudo make install

c01.indd 7c01.indd 7 22/09/12 12:23 PM22/09/12 12:23 PM

http://nodejs.org/dist/v0.6.1/node-v0.6.12.tar.gz

8 ❘ CHAPTER 1 INSTALLING NODE

Running Node

Now you are ready to start using Node. First you can simply experiment running Node as a
command-line interface (CLI). For that you need only to call the Node executable with no argu-
ments like this:

$ node

This will start the CLI, which will then wait for you to input an expression. Just to test the installa-
tion and see Node actually doing something, you can type:

> console.log('Hello World!');
Hello World!
> undefined

You can also run a JavaScript script from a fi le. For instance, if you create a fi le with this content:

console.log('Hello World!');

Name the fi le hello_world.js. Then run the fi le by passing the fi le path as fi rst argument to the
Node executable while inside a shell prompt. For example:

$ node hello_world.js
Hello World!

You can quit the CLI by typing Ctrl+D or Ctrl+C.

SETTING UP AND USING NODE PACKAGE MANAGER

You can only get so far using the language features and the core functions. That’s why most
 programming platforms have a system in place that allows you to download, install, and manage
third-party modules. In Node, you have Node Package Manager (NPM).

NPM is three things — a third-party package repository, a way to manage packages installed in
your computer, and a standard to defi ne dependencies on other packages. NPM provides a public
registry service that contains all the packages that programmers publish in NPM. NPM also
provides a command-line tool to download, install, and manage these packages. You can also use
the standard package descriptor format to specify which third-party modules your module or
 application depends on.

You don’t need to know about NPM to start using Node, but it will become necessary once you
want to use third-party modules. Because Node provides only low-level APIs, including third-party
modules is almost always necessary to fulfi ll any complex application without having to do it all
yourself. As you will see, NPM allows you to download and play with modules without installing
packages globally, which makes it ideal for playing around and trying things.

NPM and Node once required separate installs, but since Node version 0.6.0, NPM is already
included.

c01.indd 8c01.indd 8 22/09/12 12:23 PM22/09/12 12:23 PM

Setting Up and Using Node Package Manager ❘ 9

Using NPM to Install, Update, and Uninstall Packages

NPM is a powerful package manager and can be used in many ways. NPM maintains a centralized
repository of public modules, which you can browse at http://search.npmjs.org. A Node
 opensource module author may choose, as most do, to publish the module to NPM, and in the
installation instructions should be the NPM module name you can use to remotely download
and install it.

This section covers the most typical uses of NPM, which are installing and removing packages. This
should be just enough for you to start managing your application dependencies on third-party
modules published on NPM. However, fi rst you need to understand the differences between global
and local modes of operation and how these affect module lookups.

Using the Global versus the Local Mode

NPM has two main modes of operation: global and local. These two modes change target
directories for storing packages and have deep implications for how Node loads modules.

The local mode is the default mode of operation in NPM. In this mode, NPM works on the local
directory level, never making system-wide changes. This mode is ideal for installing the modules
your application depends on without affecting other applications you might also have installed
locally.

The global mode is more suited for installing modules that should always be available globally,
like the ones that provide command-line utilities and that are not directly used by applications.

Always use the default local mode if you are in doubt. If module authors intend for one specifi c
module to be installed globally, generally they will tell you so in the installation instructions.

The Global Mode

If you installed Node using the default directory, while in the global mode, NPM installs packages
into /usr/local/lib/node_modules. If you type the following in the shell, NPM will search for,
download, and install the latest version of the package named sax inside the directory /usr/local/
lib/node_modules/sax:

$ npm install -g sax

NOTE If your current shell user doesn’t have enough permissions, you will need
to login as the root user or run this command within sudo:

$ sudo npm install -g sax

If you then have the requirement for this package in any Node script:

var sax = require('sax');

c01.indd 9c01.indd 9 22/09/12 12:23 PM22/09/12 12:23 PM

http://search.npmjs.org

10 ❘ CHAPTER 1 INSTALLING NODE

Node will pick up this module in this directory (unless you have it installed locally, in which
case Node prefers the local version).

The local mode is the default mode, and you have to explicitly activate the global mode in NPM by
using the –g fl ag.

The Local Mode

The local mode is the default mode of operation in NPM and the recommended dependency
 resolution mechanism. In this mode NPM installs everything inside the current directory — which
can be your application root directory — and never touches any global settings. This way you can
choose, application by application, which modules and which versions to include without polluting
global module space. This means that you can have two applications that depend on different ver-
sions of the same module without them confl icting.

In this mode, NPM works with the node_modules directory under the current working directory. If
you are inside /home/user/apps/my_app, NPM will use /home/user/apps/my_app/node_modules
as fi le storage for the modules.

If you run a Node application installed in the directory /home/user/apps/my_app, Node will
search this /home/user/apps/my_app/node_modules directory fi rst (before trying the parent
directories and fi nally searching for it inside the global one). This means that, when Node is
resolving a module dependency, a module installed using the local mode will always take precedence
over a module installed globally.

Installing a Module

Using the following command, you can download and install the latest version of a package:

$ npm install <package name>

For example, to download and install the latest version of the sax package, you should fi rst change
your current directory to your application root directory and then type:

$ npm install sax

This will create the node_modules directory if it doesn’t already exist and install the sax module
under it.

You can also choose which version of a specifi c module to install by specifying it like this:

$ npm install <package name>@<version spec>

You can use a specifi c version number in the <version spec> placeholder. For instance, if you want
to install version 0.2.5 of the sax module, you need to type:

$ npm install sax@0.2.5

Under <version spec> you can also specify a version range. For instance, if you want to install the
latest release of the 0.2 branch, you can type:

c01.indd 10c01.indd 10 22/09/12 12:23 PM22/09/12 12:23 PM

Setting Up and Using Node Package Manager ❘ 11

$ npm install sax@0.2.x

If you want to install the latest version before 0.3 you should type:

$ npm install sax@"<0.3"

You can get more sophisticated and combine version specifi cations like this:

$ npm install sax@">=0.1.0 <0.3.1"

Uninstalling a Module

When you use the following command, NPM will try to fi nd and uninstall the package with the
specifi ed name.

$ npm uninstall <package name>

If you want to remove a globally installed package, you should use:

$ npm uninstall -g <package name>

Updating a Module

You can also update an installed module by using the following command:

$ npm update <package name>

This command will fetch the latest version of the package and update it. If the package does not
exist, it will install it.

You can also use the global switch (-g) to update a globally installed module like this:

$ npm update –g <package name>

Using the Executable Files

It’s possible that a module includes one or more executable fi les. If you choose to install a module
globally and you used the default installation directory settings, NPM installs the executables inside
/usr/local/bin. This path is usually included in the default executable PATH environment variable.

If you installed a package locally, NPM installs any executables inside the ./node_modules/.bin
directory.

Resolving Dependencies

NPM not only installs the packages you request but also installs the packages that those packages
depend on. For instance, if you request to install package A and this package depends on
package B and C, Node will fetch packages B and C and install them inside ./node_modules/A/
node_modules.

c01.indd 11c01.indd 11 22/09/12 12:23 PM22/09/12 12:23 PM

12 ❘ CHAPTER 1 INSTALLING NODE

For instance, if you locally installed the nano package like this:

$ npm install nano

NPM outputs something like:

nano@0.9.3 ./node_modules/nano
├── underscore@1.1.7
└── request@2.1.1

This shows that the nano package depends on the underscore and request packages and indicates
which versions of these packages were installed. If you peek inside the ./node_modules/nano/
node_modules directory, you’ll see these packages installed there:

$ ls node_modules/nano/node_modules
request underscore

Using package.json to Defi ne Dependencies

When coding a Node application, you can also include a package.json fi le at the root. The
package.json fi le is where you can defi ne some of your application metadata, such as the
name, authors, repository, contacts, and so on. This is also where you should specify extraneous
dependencies.

You don’t need to use it to publish the application to NPM — you may want to keep that application
private — but you can still use package.json to specify the application dependencies.

The package.json is a JSON-formatted fi le that can contain a series of attributes, but for the pur-
poses of declaring the dependencies you only need one: dependencies. An application that depends
on the sax, nano, and request packages could have a package.json fi le like this:

{
 "name" : "MyApp",
 "version" : "1.0.0",
 "dependencies" : {
 "sax" : "0.3.x",
 "nano" : "*",
 "request" : ">0.2.0"
 }
}

Here you are specifying that your application or module depends on sax version 0.3, on any version
of nano, and on any version of request greater than 0.2.0.

NOTE You may also fi nd that if you omit the name and version fi elds, NPM will
not work. This happens because NPM was initially conceived to describe public
packages, not private applications.

c01.indd 12c01.indd 12 22/09/12 12:23 PM22/09/12 12:23 PM

Summary ❘ 13

Then, on the application root, type:

$ npm install

NPM will then analyze the dependencies and your node_modules directory and automatically
download and install any missing packages.

You can also update all the locally installed packages to the latest version that meets your depen-
dency specifi cations, like this:

$ npm update

In fact you can always use this last command, because it will also make NPM fetch any missing
packages.

SUMMARY

You’ve learned how to install Node and the Node Package Manager. You can now use NPM to
install, uninstall, and remove third-party packages. You can also use the package.json fi le together
with NPM to manage the third-party packages you depend on.

Now that you have Node and NPM installed, you are ready to experiment with them. But fi rst you
need some background on Node and the event-driven programming style.

c01.indd 13c01.indd 13 22/09/12 12:23 PM22/09/12 12:23 PM

c01.indd 14c01.indd 14 22/09/12 12:23 PM22/09/12 12:23 PM

Introducing Node

WHAT’S IN THIS CHAPTER?

 ➤ What is the event-driven programming style and what are the

advantages of using it

 ➤ How Node.js and JavaScript make event-driven programming easy

Traditional programming does I/O the same way as it does local function calls: Processing
cannot continue until an operation fi nishes. This programming model of blocking when doing
I/O operations derives from the early days of time-sharing systems in which each process
 corresponded to one human user. The purpose was to isolate users from one another. In those
systems, a user would typically need to fi nish one operation before deciding what the next
operation would be. But with widespread use of computer networks and the Internet, this
model of “one user, one process” did not scale well. Managing many processes places a big
burden on the operating system — in memory and context switching costs — and the
performance of these tasks starts to decay after a certain number is reached.

Multi-threading is one alternative to this programming model. A thread is a kind of light-
weight process that shares memory with every other thread within the same process. Threads
were created as an ad hoc extension of the previous model to accommodate several concurrent
threads of execution. When one thread is waiting for an I/O operation, another thread
can take over the CPU. When the I/O operation fi nishes, that thread can wake up, which
means the thread that was running can be interrupted and eventually be resumed later.
Furthermore, some systems allow threads to execute in parallel in different CPU cores.

This means that programmers do not know what set of threads is executing at any given time,
so they must be careful with concurrent access to the shared memory state. They have to use
synchronization primitives like locks and semaphores to synchronize access to some data

2

c02.indd 15c02.indd 15 21/09/12 8:46 AM21/09/12 8:46 AM

16 ❘ CHAPTER 2 INTRODUCING NODE

structures, forcing them to foresee every possible way threads can be scheduled to execute to try to
prevent problems. If the application relies heavily on a shared state between threads, this type of
 programming can easily lead to strange bugs that happen at random and are usually diffi cult to fi nd.

An alternative to having the operating system scheduling the thread execution for you is to use
cooperative multi-threading. In this scheme you are responsible for explicitly relinquishing the CPU
to give time for another thread to execute. Because you are now responsible for thread scheduling,
this can relax the synchronization requirements. However, this approach can become complex and
error-prone for the same reasons as regular multi-threading.

INTRODUCING THE EVENT-DRIVEN PROGRAMMING STYLE

Event-driven programming is a programming style whereby the fl ow of execution is determined by
events. Events are handled by event handlers or event callbacks. An event callback is a function that
is invoked when something signifi cant happens — such as when the result of a database query is
available or when the user clicks on a button.

Consider how a query to a database is completed in typical blocking I/O programming:

result = query('SELECT * FROM posts WHERE id = 1');
do_something_with(result);

This query requires that the current thread or process wait until the database layer fi nishes process-
ing it.

In event-driven systems, this query would be performed in this way:

query_finished = function(result) {
 do_something_with(result);
}
query('SELECT * FROM posts WHERE id = 1', query_finished);

Here you are fi rst defi ning what will happen when the query is fi nished and storing that in a
 function named query_finished. Then you are passing that function as an argument to the query.
When it’s fi nished, the query will invoke the query_finished function, instead of simply returning
the result.

This style of programming — whereby instead of using a return value you defi ne functions that
are called by the system when interesting events occur — is called event-driven or asynchronous
programming. This is one of the defi ning features of Node. This style of programming means the
current process will not block when it is doing I/O. Therefore, several I/O operations can occur in
parallel, and each respective callback function will be invoked when the operation fi nishes.

The event-driven programming style is accompanied by an event loop. An event loop is a
construct that mainly performs two functions in a continuous loop — event detection and event
handler triggering. In any run of the loop, it has to detect which events just happened. Then, when
an event happens, the event loop must determine the event callback and invoke it.

c02.indd 16c02.indd 16 21/09/12 8:46 AM21/09/12 8:46 AM

How Node and JavaScript Make Writing Asynchronous Applications Easier ❘ 17

This event loop is just one thread running inside one process, which means that, when an event hap-
pens, the event handler can run without interruption. This means the following:

 ➤ There is at most one event handler running at any given time.

 ➤ Any event handler will run to completion without being interrupted.

This allows the programmer to relax the synchronization requirements and not have to worry about
concurrent threads of execution changing the shared memory state.

A WELL-KNOWN SECRET

For quite some time, the systems-programming community has known that
 event-driven programming is the best way to create a service that can handle many
concurrent connections. It has been known to be more effi cient regarding memory
because there is less context to store, and more effi cient regarding time because
there is less context switching.

This knowledge has infi ltrated other platforms and communities; some of the
most well-known event loop implementations are Ruby’s Event Machine, Perl’s
AnyEvent, and Python’s Twisted. There are also others for these and other
languages.

Implementing an application using one of these frameworks requires framework-
specifi c knowledge and framework-specifi c libraries. For example, when using Event
Machine, you should avoid using synchronous libraries. To gain the benefi t of not
blocking, you are limited to using asynchronous libraries built specifi cally for Event
Machine. If you use any blocking library (like most of the ones in the Ruby standard
library), your server will not be able to scale optimally because the event loop will
be constantly blocking, which prevents timely processing of I/O events.

Node was devised as a non-blocking I/O server platform from day one, so generally
you should expect everything built on top of it to be non-blocking. Because
JavaScript itself is very minimal and does not impose any way of doing I/O (it does
not have a standard I/O library), Node has a clean slate to build upon.

HOW NODE AND JAVASCRIPT MAKE WRITING ASYNCHRONOUS
APPLICATIONS EASIER

Ryan Dahl, the author of Node, began his project building a C platform, but maintaining the con-
text between function calls was too complicated and led to complex code. He then turned to Lua,
but Lua already had several blocking I/O libraries. This mix of blocking and non-blocking could
confuse developers and prevent many of them from building scalable applications, thus Lua was not
ideal either.

c02.indd 17c02.indd 17 21/09/12 8:46 AM21/09/12 8:46 AM

18 ❘ CHAPTER 2 INTRODUCING NODE

Dahl then turned to JavaScript. JavaScript has closures and fi rst-class functions, which makes it a
powerful match for event-driven programming. The power of JavaScript is one of the main reasons
Node has become so popular.

What Are Closures?

Closures are functions that inherit variables from their enclosing environment. When you pass a
function callback as an argument to another function that will do I/O, this callback function will
be invoked later, and this function will — almost magically — remember the context in which it
was declared, along with all the variables available in that context and any parent contexts. This
 powerful feature is at the heart of Node’s success.

The following example shows how a closure works when programming JavaScript in the web
browser. For instance, if you want to listen for an event — a button click, for instance — you can do
something like:

var clickCount = 0;
document.getElementById('myButton').onclick = function() {
 clickCount += 1;
 alert("clicked " + clickCount + " times.");
};

Or, using jQuery:

var clickCount = 0;
$('button#mybutton').click(function() {
 clickedCount ++;
 alert('Clicked ' + clickCount + ' times.');
});

In JavaScript, functions are fi rst-class objects, which means you can pass functions as arguments to
other functions. In both examples you assigned or passed a function as an argument to be executed
later. The click handling function — your callback function — has every variable in scope at
the point where the function was declared, which means that, in this case, it has access to the
clickCount variable declared in the parent closure.

The variable clickCount stores the number of times that the user has clicked on the button.
This variable is stored in the global scope (the outermost scope you can get to in JavaScript). Storing
variables in the global scope is generally bad practice because they can easily collide with other
code; you should keep variables in a scope that is local to the functions that need to use them. Most
of the time you can easily avoid global scope pollution by wrapping all of your code inside another
function to create an additional closure, as in the next example:

 (function() {
 var clickCount = 0;
 $('button#mybutton').click(function() {
 clickCount ++;
 alert('Clicked ' + clickCount + ' times.');
 });
}());

c02.indd 18c02.indd 18 21/09/12 8:46 AM21/09/12 8:46 AM

Summary ❘ 19

How Closures Help When Programming Asynchronously

In event-driven programming you start by defi ning the code that will be executed when an event
occurs, then put that code inside a function, and fi nally pass that function as an argument to be
called later.

In JavaScript, a function operates not by working in isolation but by remembering the context where
it was declared, which enables manipulation of any variable present in that or any parent context.

When you pass a callback function as an argument, that function will be invoked some time later,
but it can manipulate any variable present in that or in the parent scope, even if these scopes have
already returned. In the last example, the callback function was able to access and manipulate the
clickCount variable, even though it was invoked from within the jQuery click() function.

This shows that by using the closure pattern, you can have the best of both worlds: You can do
event-driven programming without having to maintain the state by passing it around to functions.
A JavaScript closure keeps the state for you.

SUMMARY

Event-driven programming is a programming style whereby the fl ow is determined by the
 occurrence of events. Programmers register callbacks to be used as event handlers for events they
are interested in, and the system invokes these handlers when those events occur. This model of
 programming has some advantages over the traditional blocking paradigm where, to scale, you have
to use multiple processes or threads.

JavaScript is a powerful language, which is well suited for this style of programming, mainly
because it has fi rst-class functions and closures.

NOTE Line 7 invokes a function immediately after defi ning it. This is a
 common JavaScript pattern where you create a function just to create a new
scope.

c02.indd 19c02.indd 19 21/09/12 8:46 AM21/09/12 8:46 AM

c02.indd 20c02.indd 20 21/09/12 8:46 AM21/09/12 8:46 AM

PART II
Node Core API Basics

 � CHAPTER 3: Loading Modules

 � CHAPTER 4: Using Buff ers to Manipulate, Encode, and

Decode Binary Data

 � CHAPTER 5: Using the Event Emitter Pattern to Simplify

Event Binding

 � CHAPTER 6: Scheduling the Execution of Functions Using Timers

c03.indd 21c03.indd 21 21/09/12 8:47 AM21/09/12 8:47 AM

c03.indd 22c03.indd 22 21/09/12 8:47 AM21/09/12 8:47 AM

Loading Modules

WHAT’S IN THIS CHAPTER?

 ➤ Loading modules

 ➤ Creating modules

 ➤ Using the node_modules folder

JavaScript is one of the most frequently deployed programming languages in the world; it’s the
web’s lingua franca, used by all the browsers. The core of the language was created quickly
back in the Netscape days, in a rush to beat Microsoft during the heat of the browser wars.
The language was released prematurely, which inevitably meant it came out with some bad
features.

Despite its short development time, JavaScript also shipped with some really powerful
 features. The sharing of a global namespace among scripts is not one of them, though.

Once you load JavaScript code into a web page, it is injected into the global namespace, which
is a common addressing space shared by all other scripts that have been loaded. This can lead
to security issues, confl icts, and general bugs that are hard to trace and solve.

Thankfully, Node brings some order in this regard to server-side JavaScript and implements
the CommonJS modules standard. In this standard each module has its own context, separated
from the other modules. This means that modules cannot pollute a global scope — because
there is none — and cannot interfere with other modules.

In this chapter, you will learn about different types of modules and how to load them into
your application.

Dividing your code into a series of well-defi ned modules can help you keep your code under
control. You will also see how you can create and use your own modules.

3

c03.indd 23c03.indd 23 21/09/12 8:47 AM21/09/12 8:47 AM

24 ❘ CHAPTER 3 LOADING MODULES

UNDERSTANDING HOW NODE LOADS MODULES

In Node, modules are referenced either by fi le path or by name. A module that is referenced by a
name will eventually map into a fi le path unless the module is a core module. Node’s core modules
expose some Node core functions to the programmer, and they are preloaded when a Node process
starts.

Other modules include third-party modules that you installed using NPM (Node Package Manager)
or local modules that you or your colleagues have created.

Each module of any type exposes a public API that the programmer can use after the module is
imported into the current script. To use a module of any type, you have to use the require function
like this:

var module = require('module_name');

This will import a core module or a module installed by NPM. The require function returns
an object that represents the JavaScript API exposed by the module. Depending on the module, that
object can be any JavaScript value — a function, an object with some properties that can be
functions, an array, or any other type of JavaScript object.

 EXPORTING A MODULE

The CommonJS module system is the only way you can share objects or functions among fi les in
Node. For a suffi ciently complex application you should divide some of the classes, objects, or
functions into reusable well-defi ned modules. To the module user, a module exposes exactly what
you specify it to.

In Node, fi les and modules are in one-to-one correspondence, which you can see in the following
example. Start by creating a fi le named circle.js, which just exports the Circle constructor:

function Circle(x, y, r) {

 function r_squared() {
 return Math.pow(r, 2);
 }

 function area() {
 return Math.PI * r_squared();
 }

 return {
 area: area
 };
}

module.exports = Circle;

The important bit here lies on the last line, where you defi ne what is to be exported by the module.
module is a variable that represents the module you are currently in. module.exports is the object

c03.indd 24c03.indd 24 21/09/12 8:47 AM21/09/12 8:47 AM

 Exporting a Module ❘ 25

that the module will export to other scripts that require this module. You can export any object. In
this case, you are just exporting the Circle constructor function, which a module user can use to
create fully functional Circle instances.

You can also export more complex objects. module.exports is initialized with an empty object,
which you can populate with the attributes you want to export. For instance, you can devise a
module that exports a set of functions:

function printA() {
 console.log('A');
}

function printB() {
 console.log('B');
}

function printC() {
 console.log('C');
}

module.exports.printA = printA;
module.exports.printB = printB;
module.exports.pi = Math.PI;

This module exports two functions (printA and printB) and a number (pi). A client of this module
would look something like this:

var myModule2 = require('./myModule2');
myModule2.printA(); // -> A
myModule2.printB(); // -> B
console.log(myModule2.pi); // -> 3.141592653589793

Loading a Module

As explained previously, you can use the require function to load a module. Having a require
function call in your code does not change the state of the global namespaces, because there is no
such thing in Node. If the module is found and doesn’t contain a syntax or initialization error,
calling require()simply returns the module object, which you can then assign to any local variable
you choose.

There are several ways to reference modules, depending on which kind of module it is — a core
module, a third-party module installed via NPM, or a local module. Let’s take a look at the
 different methods.

Loading a Core Module

Node has several modules compiled into its binary distribution. These are called the core modules,
are referred to solely by the module name — not the path — and are preferentially loaded even if a
third-party module exists with the same name.

c03.indd 25c03.indd 25 21/09/12 8:47 AM21/09/12 8:47 AM

26 ❘ CHAPTER 3 LOADING MODULES

For instance, if you wanted to load and use the http core module, you would do the following:

var http = require('http');

This returns the http module object that implements the API described in the Node API
documentation.

Loading a File Module

You can also load a non-core module from the fi le system by providing the absolute path like this:

var myModule = require('/home/pedro/my_modules/my_module');

Or you can provide a path relative to the current fi le:

var myModule = require('../my_modules/my_module');
var myModule2 = require('./lib/my_module_2');

Notice here that you can omit the .js fi le termination. When it fails to fi nd such a fi le, Node will
look for the path by adding the .js extension. So, if the fi le my_module.js exists inside the current
directory, the two following lines are equivalent:

var myModule = require('./my_module');
var myModule = require('./my_module.js');

Loading a Folder Module

You can use the path for a folder to load a module like this:

var myModule = require('./myModuleDir');

If you do so, Node will search inside that folder. Node will presume this folder is a package and will
try to look for a package defi nition. That package defi nition should be a fi le named
package.json.

If that folder does not contain a package defi nition fi le named package.json, the package entry
point will assume the default value of index.js, and Node will look, in this case, for a fi le under
the path ./myModuleDir/index.js.

However, if you place a fi le named package.json inside the module directory, Node will try to
parse that fi le and look for and use the main attribute as a relative path for the entry point. For
instance, if your ./myModuleDir/package.json fi le looks something like the following, Node will
try to load the fi le with the path./myModuleDir/lib/myModule.js:

{
 "name" : "myModule",
 "main" : "./lib/myModule.js"
}

c03.indd 26c03.indd 26 21/09/12 8:47 AM21/09/12 8:47 AM

 Exporting a Module ❘ 27

Loading from the node_modules Folder

If the module name is not relative and is not a core module, Node will try to fi nd it inside the
node_modules folder in the current directory.

For instance, if you do the following, Node will try to look for the fi le ./node_modules/myModule.js:

var myModule = require('myModule.js');

If Node fails to fi nd the fi le, it will look inside the parent folder called ../node_modules/myModule
.js. If it fails again, it will try the parent folder and keep descending until it reaches the root or
fi nds the required module.

You can use this feature to manage the contents of the node_modules directory or, preferentially,
you can leave it up to NPM (see Chapter 1) to manage the modules for you. This local
node_modules directory is the default place where NPM installs modules, and this functionality
is what ties Node and NPM together. Typically, as a programmer, you won’t care much about this
feature. You can simply use NPM to install, update, and remove packages, and it will manage the
node_modules directory for you.

Caching Modules

Modules are cached the fi rst time they are loaded, which means that every call to
require('myModule') returns exactly the same module if the module name resolves to the exact
same fi lename.

For instance, say you have the following module inside the fi le called my_module.js:

console.log('module my_module initializing...');
module.exports = function() {
 console.log('Hi!');
};
console.log('my_module initialized.');

If the following script loads the script once:

var myModuleInstance1 = require('./my_module');

It will print the following:

module my_module initializing...
my_module initialized

If you require the module two times:

var myModuleInstance1 = require('./my_module');
var myModuleInstance2 = require('./my_module');

c03.indd 27c03.indd 27 21/09/12 8:47 AM21/09/12 8:47 AM

28 ❘ CHAPTER 3 LOADING MODULES

You will notice that the output is still the same:

module my_module initializing...
my_module initialized

This means that the module initialization runs only once, which may be important to know when
you are building a module that produces some side effects when being initialized.

SUMMARY

Node sets aside JavaScript’s default global namespace and uses CommonJS modules instead. This
enables you to better organize your code, thus avoiding security issues and bugs. You can use
require() to load a core module, a third-party module, or your own module from a fi le or a folder.

You can load non-core modules using relative or absolute fi le paths. You can also load your modules
by name if you place them inside the node_modules folder or install them using NPM.

You can create your own modules by authoring a JavaScript fi le that exports the objects that repre-
sent the module API.

c03.indd 28c03.indd 28 21/09/12 8:47 AM21/09/12 8:47 AM

Using Buff ers to Manipulate,
Encode, and Decode
Binary Data

WHAT’S IN THIS CHAPTER?

 ➤ Understanding why you need buff ers in Node

 ➤ Creating a buff er from a string

 ➤ Converting a buff er to a string

 ➤ Manipulating the bytes in a buff er

 ➤ Slicing and copying a buff er

JavaScript is good at handling strings, but because it was initially designed to manipulate
HTML documents, it is not very good at handling binary data. JavaScript doesn’t have a byte
type — it just has numbers — or structured types, or even byte arrays: It just has strings.

Because Node is based on JavaScript, Node can handle text protocols like HTTP, but you can
also use it to talk to databases, manipulate images, and handle fi le uploads. As you can
imagine, doing this using only strings is very diffi cult. In the early days, Node handled binary
data by encoding each byte inside a text character, but that proved to be wasteful, slow,
unreliable, and hard to manipulate.

To make these types of binary-handling tasks easier, Node includes a binary buffer
 implementation, which is exposed as a JavaScript API under the Buffer pseudo-class. A buffer
length is specifi ed in bytes, and you can randomly set and get bytes from a buffer.

4

c04.indd 29c04.indd 29 21/09/12 8:48 AM21/09/12 8:48 AM

30 ❘ CHAPTER 4 USING BUFFERS TO MANIPULATE, ENCODE, AND DECODE BINARY DATA

CREATING A BUFFER

You can create a buffer from a UTF-8-encoded string like this:

var buf = new Buffer('Hello World!');

You can also create a buffer from strings with other encodings as long as you specify the encoding
on the second argument of the constructor:

var buf = new Buffer('8b76fde713ce', 'base64');

Accepted encodings and their identifi ers are:

 ➤ ascii— ASCII. This encoding is limited to the ASCII character set.

 ➤ utf8—UTF-8. This is a variable width encoding that can represent every character in the
Unicode character set. It has become the dominant encoding on the web. This is the default
encoding if you don’t specify one.

 ➤ base64—Base64. This encoding is used to represent binary data in an ASCII string format
by translating it into a radix-64 representation. Base64 is commonly used to embed binary
data into textual documents in a way that ensures that the data remains intact during
transport.

If you don’t have the initial content for a buffer and you need to create a buffer with a certain
 capacity to hold data in the future, you can create a new buffer by specifying its length like this:

var buf = new Buffer(1024); // creating a 1024 byte buffer

GETTING AND SETTING BYTES IN A BUFFER

After you create or receive a buffer, you might want to inspect and change its contents. You can
access the byte value on any position of a buffer by using the [] operator like this:

var buf = new Buffer('my buffer content');
// accessing the 10th position of buf
console.log(buf[10]); // -> 99

NOTE Another thing that is special about this buffer class is that the memory
where the data sits is allocated outside of the JavaScript VM memory heap. This
means that these objects will not be moved around by the garbage-collection
algorithm: It will sit in this permanent memory address without changing, which
saves CPU cycles that would be wasted making memory copies of the buffer
contents.

c04.indd 30c04.indd 30 21/09/12 8:48 AM21/09/12 8:48 AM

Getting and Setting Bytes in a Buff er ❘ 31

You can also manipulate the content of any position:

buf[99] = 125; // set the 100th byte to 125

NOTE When you create an initialized buffer, keep in mind that it will contain
random bytes, not zeros.

var buf = new Buffer(1024);
console.log(buf[100]); // -> 5 (some random number)

NOTE In certain cases, some buffer operations will not yield an error. For
instance:

 ➤ If you set any position of the buffer to a number greater than 255, that
position will be assigned the 256 modulo value.

 ➤ If you assign the number 256 to a buffer position, you will actually be
assigning the value 0.

 ➤ If you assign a fractional number like 100.7 to a buffer position, the buffer
position will store the integer part — 100 in this case.

 ➤ If you try to assign a position that is out of bounds, the assignment will fail
and the buffer will remain unaltered.

You can obtain a buffer length by inquiring the length property like this:

var buf = new Buffer(100);
console.log(buf.length); // -> 100

You can then use a buffer length to iterate over the buffer content and set or get each individual byte
value:

var buf = new Buffer(100);

for(var i = 0; i < buf.length; i++) {
 buf[i] = i;
}

Here, you create a new buffer with the capacity of 100 bytes and then set each byte with a value
starting from 0 to 99.

c04.indd 31c04.indd 31 21/09/12 8:48 AM21/09/12 8:48 AM

32 ❘ CHAPTER 4 USING BUFFERS TO MANIPULATE, ENCODE, AND DECODE BINARY DATA

SLICING A BUFFER

Once you have created or received a buffer, you may want to extract a part from it. You can slice a
buffer to create another smaller buffer, specifying the starting and ending positions like this:

var buffer = new Buffer("this is the content of my buffer");
var smallerBuffer = buffer.slice(8, 19);
console.log(smallerBuffer.toString()); // -> "the content"

Notice that when you slice a buffer no new memory is allocated and nothing is copied. The new
 buffer uses the parent buffer memory and just references different start and/or end positions. This
has some implications.

First, if your program changes the parent buffer and any of that change touches any of the bytes of
the child buffer, the child buffer will change. Because the parent and the child buffer are different
JavaScript objects, this may not be obvious to you and can introduce some bugs.

Second, when you create a smaller buffer from a parent buffer this way, the parent buffer has to
be kept around after the operation and not be reclaimed by the garbage collector, which can easily
introduce a memory if you’re not careful.

NOTE If you are concerned that you will leak memory by keeping an old buffer
around, you should use the copy method instead, covered in the next section.

COPYING A BUFFER

You can also copy part of a buffer into another buffer by using the copy method like this:

var buffer1 = new Buffer("this is the content of my buffer");
var buffer2 = new Buffer(11);

var targetStart = 0;
var sourceStart = 8;
var sourceEnd = 19;

buffer1.copy(buffer2, targetStart, sourceStart, sourceEnd);
console.log(buffer2.toString()); // -> "the content"

Here, you are copying position 8 to 19 of the source buffer into position 0 of the target buffer.

DECODING A BUFFER

A buffer can be converted into a UTF-8-encoded string like this:

var str = buf.toString();

c04.indd 32c04.indd 32 21/09/12 8:48 AM21/09/12 8:48 AM

Summary ❘ 33

If you specify an encoding you can convert the buffer to another encoding. For instance, if you want
to convert a buffer to a base64-encoded string, you can do so this way:

var b64Str = buf.toString("base64");

Using the toString method you can, for instance, transcode a UTF-8 string into base64 like this:

var utf8String = 'my string';
var buf = new Buffer(utf8String);
var base64String = buf.toString('base64')

SUMMARY

Sometimes you have to deal with binary data, but native JavaScript does not provide a clean way to
do that.

The Node Buffer class encapsulates access to a continuous memory chunk. You can manipulate the
bytes in that memory, obtain slices of it, and then copy that memory between two buffers.

You can also transform a buffer into an encoded string representation or go the other way around:
transform a string into a buffer to access or manipulate the individual bits.

c04.indd 33c04.indd 33 21/09/12 8:48 AM21/09/12 8:48 AM

c04.indd 34c04.indd 34 21/09/12 8:48 AM21/09/12 8:48 AM

Using the Event Emitter Pattern
to Simplify Event Binding

WHAT’S IN THIS CHAPTER?

 ➤ Introducing the event emitter pattern

 ➤ Binding and unbinding event listeners

 ➤ Creating your own event emitter

In Node many objects emit events. For instance, a TCP server can emit a “connect” event
every time a new client connects, or a fi le stream can emit a “data” event every time a new
chunk of data is read. These objects are, in Node nomenclature, event emitters. Event emitters
allow programmers to subscribe to events they are interested in. The programmer attaches a
callback function that will be invoked every time a relevant event in that event emitter
occurs. This publisher/subscriber pattern is very similar to the typical GUI pattern, whereby
a program gets notifi ed that a certain button was clicked. By using this pattern, a server-side
program can react when, for instance, a client connects to the server, data is available on a
socket, or a fi le gets closed.

You can also create your own event emitters. In fact, Node supplies an EventEmitter pseudo-
class that can work as a base for creating your own event emitters.

5

c05.indd 35c05.indd 35 21/09/12 8:49 AM21/09/12 8:49 AM

36 ❘ CHAPTER 5 USING THE EVENT EMITTER PATTERN TO SIMPLIFY EVENT BINDING

UNDERSTANDING THE STANDARD CALLBACK PATTERN

Asynchronous programming does not use function return values to denote that a function is
fi nished. Instead it uses the continuation-passing style (CPS):

Continuation-passing style (CPS) is a style of programming in which control is
passed explicitly in the form of a continuation. (…)

A function written in continuation-passing style takes as an extra argument
an explicit “continuation,” that is, a function of one argument. When the CPS
function has computed its result value, it “returns” it by calling the continuation
function with this value as the argument.

Wikipedia — http://en.wikipedia.org/wiki/Continuation-passing_style

This is a style in which a function invokes a callback after the operation is complete so that your
program can continue. As you will see, JavaScript lends itself to this type of programming. Here is
an example in Node that involves loading a fi le into memory:

var fs = require('fs');
fs.readFile('/etc/passwd', function(err, fileContent) {
 if (err) {
 throw err;
 }
 console.log('file content', fileContent.toString());
});

Here, you are passing an anonymous inline function as the second argument of the fs.readFile
function, and you’re making use of the CPS, because you are continuing the execution of the
program inside that function.

As you can see here, the fi rst argument to the callback function is an error object, which will have an
instance of the Error class if an error occurs. This is a common pattern in Node when using CPS.

UNDERSTANDING THE EVENT EMITTER PATTERN

The standard callback pattern — whereby you pass a callback function as an argument of the function
you are executing — works well when you want the client to be notifi ed when a function completes.
But if several events take place during execution, or if they happen several times, this style doesn’t
work as well. For instance, if you are interested in being notifi ed every time data is available on a
socket, the standard callback pattern is not very helpful. This is when the event emitter pattern can
help. You can use a standard interface to clearly separate the event emitter and the event listener.

When you use an event emitter pattern, two or more objects are involved — the event emitter and
one or more event listeners.

An event emitter is an object that — as the name says — emits events. An event listener is a part of
the code that binds to the event emitter and listens for certain types of events, like in this example:

c05.indd 36c05.indd 36 21/09/12 8:49 AM21/09/12 8:49 AM

http://en.wikipedia.org/wiki/Continuation-passing_style

Understanding Event Types ❘ 37

var req = http.request(options, function(response) {
 response.on("data", function(data) {
 console.log("some data from the response", data);
 });
 response.on("end", function() {
 console.log("response ended");
 });
});
req.end();

Here, you are looking at some of the steps required to make an HTTP request to a remote HTTP server
using the Node http.request API (which is covered later). Line 1 uses the continuation-passing style,
passing in an inline function that will be executed once the response is available. The HTTP request API
uses the CPS here because the program continues to execute after the http.request function completes.

When complete, the http.request function invokes the callback, passing a response object. This
response object is an event emitter and, according to the Node documentation, can emit, among
others, the data and end events. You are then registering callback functions that will be invoked
every time any of these events happen.

As a rule of thumb, use CPS when you want to regain control after the requested operation
 completes and use the event emitter pattern when an event can happen multiple times.

UNDERSTANDING EVENT TYPES

Notice that emitted events always have a type, which is represented by a string. In this example you
have the “data” and “end” event types. These are arbitrary strings dictated by the event emitter; by
convention, event types are usually lowercase words with no spaces.

You cannot infer programmatically what types of events a given event emitter emits: The event
emitter API provides no such introspection mechanism. The API you are using should document
which event types it is emitting.

The event emitter will invoke the listener once a relevant event occurs, and it will pass in any relevant
data. In the previous http.request example, the “data” event callback function received the data
object as its fi rst and sole argument, whereas the “end” event didn’t receive any. These are also
arbitrary arguments that are part of the specifi c API contract. The callback argument signature
should be documented in the API specifi cation of each event emitter.

Event emitter is a generic interface that serves any type of event, but there is a special case in the
Node implementation, and that’s the “error” event. Most event emitter implementations in Node
will emit an “error” event every time there is an error. If the programmer chooses to not listen to
that event type and an event with the “error” type occurs, the event emitter will notice it and
raise that error as an uncaught exception.

You can test that effect by running the following code in the Node REPL, which simulates an event
emitter emitting two types of events:

var em = new (require('events').EventEmitter)();
em.emit('event1');
em.emit('error', new Error('My mistake'));

c05.indd 37c05.indd 37 21/09/12 8:49 AM21/09/12 8:49 AM

38 ❘ CHAPTER 5 USING THE EVENT EMITTER PATTERN TO SIMPLIFY EVENT BINDING

You will see the following output:

> var em = new (require('events').EventEmitter)();
undefined
> em.emit('event1');
false
> em.emit('error', new Error('My mistake'));
Error: My mistake
 at repl:1:18
 at REPLServer.eval (repl.js:80:21)
 at repl.js:190:20
 at REPLServer.eval (repl.js:87:5)
 at Interface.<anonymous> (repl.js:182:12)
 at Interface.emit (events.js:67:17)
 at Interface._onLine (readline.js:162:10)
 at Interface._line (readline.js:426:8)
 at Interface._ttyWrite (readline.js:603:14)
 at ReadStream.<anonymous> (readline.js:82:12)
>

Emitting an arbitrary event1 event did not have any effect, but when you emitted the “error” event,
that error was thrown down the stack. If this program were running outside of a REPL, it would
have halted because of the uncaught error.

As a rule of thumb, you should always listen to error events and handle them appropriately.

USING THE EVENT EMITTER API

Any object that implements the event emitter pattern (like a TCP Socket, an HTTP request, and
many others) implements a set of methods:

 ➤ .addListener and .on — To add an event listener to an event type

 ➤ .once — To attach an event listener to a given event type that will be called at most once

 ➤ .removeEventListener — To remove a specifi c event listener of a given event

 ➤ .removeAllEventListeners — To remove all event listeners of a given event type

Let’s take a closer look at them.

Binding Callbacks Using .addListener() or .on()

By specifying an event type and a callback function, you can register to be called when one of these
events occur. For instance, a fi le read stream may emit a “data” event when some data chunk is
available. Here is how you can be informed of that by passing in a callback function:

function receiveData(data) {
 console.log("got data from file read stream: %j", data);
}
readStream.addListener(“data”, receiveData);

c05.indd 38c05.indd 38 21/09/12 8:49 AM21/09/12 8:49 AM

Using the Event Emitter API ❘ 39

Instead of using the .addListener function, you can use .on, which is simply a shortcut. The
following code is equivalent:

function receiveData(data) {
 console.log("got data from file read stream: %j", data);
}
readStream.on(“data”, receiveData);

Here, you are using a named function that you declare in advance, but instead you can use an inline
anonymous function to be more succinct:

readStream.on("data", function(data) {
 console.log("got data from file read stream: %j", data);
});

As pointed out before, the arguments that are passed into the callback depend on the specifi c event
emitter object and event type and are not standardized. A “data” event might emit the data buffer,
an “error” event might emit the error object, and the stream “end” event might not emit any value
to the event listener.

Binding Multiple Event Listeners

The event emitter pattern allows multiple event listeners to listen to the same event type on the same
event emitter. For instance:

readStream.on("data", function(data) {
 console.log('I have some data here.');
});
readStream.on("data", function(data) {
 console.log('I have some data here too.');
});

In this example you bind two functions to the readStream “data” event type. Every time the
readStream object emits the “data” event, you will see printed out:

I have some data here.
I have some data here too.

The event emitter is then responsible for calling all the registered listeners for a given event type, and
it will call them in the order in which they were registered. This means two things:

 ➤ An event listener might not be called immediately after the event is emitted. There might be
other event listeners called before it.

 ➤ Throwing exceptions into the stack is not normal behavior, but it might be caused by a bug
in your code. When an event is emitted, if one of the event listeners throws an error when
invoked, some event listeners might never be called. In that case, the event emitter will catch
the error and may handle it.

c05.indd 39c05.indd 39 21/09/12 8:49 AM21/09/12 8:49 AM

40 ❘ CHAPTER 5 USING THE EVENT EMITTER PATTERN TO SIMPLIFY EVENT BINDING

As an example, consider this:

readStream.on("data", function(data) {
 throw new Error("Something wrong has happened");
});
readStream.on("data", function(data) {
 console.log('I have some data here too.');
});

In this example, the second listener will not be invoked because the fi rst one throws an error.

Removing an Event Listener from an Event Emitter
Using .removeListener()

If and when you no longer want to be informed of a specifi c event on a specifi c object, you can
unregister by specifying the event type and the callback function like this:

function receiveData(data) {
 console.log("got data from file read stream: %j", data);
}
readStream.on("data", receiveData);
// ...
readStream.removeListener("data", receiveData);

In this last example, the last line where you are removing the event listener may happen at any
time in the future, as a reaction to another event.

Removing a specifi c event listener forces you to name your callback function because it will be used
in at least two places — when adding the listener and when removing it.

Getting a Callback Executed at Most Once Using .once()

If you are listening for an event that will happen at most once, or even if you are only interested in
listening to the fi rst occurrence of any given event type, you can use .once().

This method adds the event listener and removes it right after the fi rst event occurs.

function receiveData(data) {
 console.log("got data from file read stream: %j", data);
}
readStream.once("data", receiveData);

Here, the receiveData function will be called only once. If a data event is emitted on the
readStream object, the receiveData callback will be triggered only once.

This is a convenience method, because you could easily implement it like this:

var EventEmitter = require("events").EventEmitter;

EventEmitter.prototype.once = function(type, callback) {
 var that = this;

c05.indd 40c05.indd 40 21/09/12 8:49 AM21/09/12 8:49 AM

Creating an Event Emitter ❘ 41

 this.on(type, function listener() {
 that.removeListener(type, listener);
 callback.apply(that, arguments);
 });
};

Here, you are redefi ning the EventEmitter.prototype.once function, which redefi nes the once
method for every object that inherits from EventEmitter. You are simply using the .on() method
and, once you get the event, you use .removeEventListener() to unregister the callback and call
the original callback.

NOTE Here you use the function.apply() method, which takes an object to
be used as the implicit variable this and an array of arguments. In this case, you
are passing in the unmodifi ed arguments array, allowing for transparent hando-
ver of all arguments originally passed to the callback by the event emitter.

Removing All Event Listeners from an Event Emitter
Using .removeAllListeners()

You can remove all registered listeners for a particular event type from an event emitter like this:

emitter.removeAllListeners(type);

For instance, if you want to remove all event listeners for the process interruption signal, you could
do this:

process.removeAllListeners("SIGTERM");

NOTE As a rule of thumb, I recommend you use this function only if you know
exactly what you are removing. Otherwise, you might remove event listeners set
by other parts of the application. Instead, those parts of the application should
themselves be responsible for removing them. However, there could be some rare
cases when this function would be useful, such as when you’re orderly shutting
down an event emitter or even the whole process.

CREATING AN EVENT EMITTER

The event emitter provides a great way of making a programming interface more generic. When you
use a common understood pattern, clients bind to events instead of invoking functions, making
your program more fl exible.

c05.indd 41c05.indd 41 21/09/12 8:49 AM21/09/12 8:49 AM

42 ❘ CHAPTER 5 USING THE EVENT EMITTER PATTERN TO SIMPLIFY EVENT BINDING

Also, by using the event emitter, you get some features for free, like having multiple independent
listeners for the same events.

Inheriting from Node Event Emitter

If you are interested in using Node’s event emitter pattern throughout your application, you can.
You can create a pseudo-class and make it inherit from EventEmitter like this:

util = require('util');
var EventEmitter = require('events').EventEmitter;

// Here is the MyClass constructor:
var MyClass = function() {
}

util.inherits(MyClass, EventEmitter);

NOTE util.inherits sets up the prototype chain so that you get the
EventEmitter prototype methods available to your MyClass instances.

Emitting Events

By creating a class that inherits from EventEmitter, instances of MyClass can emit events:

MyClass.prototype.someMethod = function() {
 this.emit("custom event", "argument 1", "argument 2");
};

Here, when the someMethod method is called on an instance of MyClass, the example emits an event
named custom event. The event also emits some data, in this case two strings: "argument 1" and
"argument 2". This data will be passed along as arguments to the event listeners.

Clients of MyClass instances can listen to the event named custom event like this:

var myInstance = new MyClass();
myInstance.on('custom event', function(str1, str2) {
 console.log('got a custom event with the str1 %s and str2 %s!', str1, str2);
});

For example, you could build a pseudo-class named Ticker that emits a “tick” event every second:

var util = require('util'),
EventEmitter = require('events').EventEmitter;

var Ticker = function() {
 var self = this;

c05.indd 42c05.indd 42 21/09/12 8:49 AM21/09/12 8:49 AM

Summary ❘ 43

 setInterval(function() {
 self.emit('tick');
 }, 1000);
};
util.inherits(Ticker, EventEmitter);

Clients of this class could instantiate this Ticker class and listen for the “tick” events like so:

var ticker = new Ticker();
ticker.on("tick", function() {
 console.log("tick");
});

SUMMARY

The event emitter pattern is a recurrent pattern in Node. You can use it to decouple event emitter
objects from the code interested in certain events.

You can use event_emitter.on() to register listeners for certain types of events and
event_emitter.removeListener() to unregister them.

You can create your own event emitters by inheriting from the EventEmitter class and simply using
the .emit() function.

c05.indd 43c05.indd 43 21/09/12 8:49 AM21/09/12 8:49 AM

c05.indd 44c05.indd 44 21/09/12 8:49 AM21/09/12 8:49 AM

Scheduling the Execution
of Functions Using Timers

WHAT’S IN THIS CHAPTER?

 ➤ Deferring the execution of a function

 ➤ Canceling a scheduled execution

 ➤ Scheduling a periodic execution of a function

 ➤ Deferring the execution of a function until the next event loop tick

If you are accustomed to programming in browser JavaScript, you probably use the
setTimeout and setInterval functions. These functions allow for the deferred execution
of a function after a given period of time. For example, the following snippet of code, once
loaded into a web page, appends the string "Hello there" after one second has elapsed:

var oneSecond = 1000 * 1; // one second = 1000 x 1 ms
setTimeout(function() {
 document.write('<p>Hello there.</p>');
}, oneSecond);

setInterval allows for the repetitive execution of a function spaced by a given time
interval. If you inject the following snippet into a web page, it will also append the phrase
"Hello there" to the document and keep doing so every second:

var oneSecond = 1000 * 1; // one second = 1000 x 1 ms
setInterval(function() {
 document.write('<p>Hello there.</p>');
}, oneSecond);

6

c06.indd 45c06.indd 45 21/09/12 8:49 AM21/09/12 8:49 AM

46 ❘ CHAPTER 6 SCHEDULING THE EXECUTION OF FUNCTIONS USING TIMERS

The need for these functions has arisen because the web has become a platform for building
 applications instead of static web pages. These scheduling functions help developers build periodic
form validation, deferred remote data syncing, and all sorts of user interface interactions that
require a delayed reaction. Node implements this exact set of functions. On the server side they can be
used for assisting in repetitive or deferred execution of many different procedures that include cache
expiration, connection pool cleanup, session timeout, polling, and others.

I will now go over these functions and then discuss some of their limitations.

USING SETTIMEOUT TO DEFER THE EXECUTION
OF A FUNCTION

The setTimeout function lets you schedule any other function to be executed once in the future.
Here is an example:

var timeout_ms = 2000; // 2 seconds
var timeout = setTimeout(function() {
 console.log("timed out!");
}, timeout_ms);

Exactly as in browser JavaScript, setTimeout accepts the deferred function as a fi rst argument and
the time after which the function is executed — in milliseconds — as the second argument.

The call to setTimeout returns a timeout handler, which is an internal object that cannot be used
for anything except canceling the execution using clearTimeout.

USING CLEARTIMEOUT TO CANCEL THE EXECUTION
OF A FUNCTION

Once you have obtained a timeout handler, you can use it to cancel the scheduled function call using
the clearTimeout function like this:

var timeoutTime = 1000; // one second
var timeout = setTimeout(function() {
 console.log("timed out!");
}, timeoutTime);
clearTimeout(timeout);

In this case the timeout will never be fi red and "timed out!" will never be printed to the console.
You can also cancel the scheduled execution at some time in the future. The following code snippet
shows an example where this happens:

var timeout = setTimeout(function A() {
 console.log("timed out!");
}, 2000);

setTimeout(function B() {
 clearTimeout(timeout);
}, 1000);

c06.indd 46c06.indd 46 21/09/12 8:49 AM21/09/12 8:49 AM

Using process.nextTick to Defer the Execution of a Function Until the Next Event Loop Iteration ❘ 47

Here you are scheduling two functions to be executed in the future, A and B. Function A is scheduled
to run in two seconds, and function B is scheduled to run in one second. In this case, function A
never fi res because when function B runs, it unschedules function A.

SCHEDULING AND CANCELING THE REPETITIVE
EXECUTION OF A FUNCTION

setInterval is similar to setTimeout, but instead schedules a function to run every given period of
time. You may want to use it to periodically trigger routines that perform some type of cleanup,
collection, logging, fetching, polling, or any other procedure you may fi nd useful to run on a
repetitive basis.

The following snippet of code outputs "tick" to the console every second:

var period = 1000; // 1 second
setInterval(function() {
 console.log("tick");
}, period);

If you don’t want to keep running this process indefi nitely or until it ends, you can unschedule it by
calling clearInterval().

setInterval returns a scheduling handler, which you can provide as an argument to clearInterval
to unschedule it.

var interval = setInterval(function() {
 console.log("tick");
}, 1000);
// …
clearInterval(interval);

USING PROCESS.NEXTTICK TO DEFER THE EXECUTION
OF A FUNCTION UNTIL THE NEXT EVENT LOOP ITERATION

Sometimes browser JavaScript programmers use setTimeout(callback, 0) as a way to defer
tasks until the near future. The zero value in the millisecond argument tells the JavaScript runtime
that it should execute the callback function as soon as possible after all pending events have been
 processed. This technique is sometimes used to defer operations that don’t need run immediately.
For instance, they are sometimes used to start animations or do some computation after the user
event has been processed.

In Node, the event loop runs, as the name indicates, in a loop that processes the event queue. Every
time the event loop executes, it’s called a tick.

You can schedule a callback function to be invoked on the next run of the event loop, that is, the
next tick. Whereas setTimeout uses a JavaScript runtime that has its own scheduling queue,
the process.nextTick function is specifi c to the Node event loop.

c06.indd 47c06.indd 47 21/09/12 8:49 AM21/09/12 8:49 AM

48 ❘ CHAPTER 6 SCHEDULING THE EXECUTION OF FUNCTIONS USING TIMERS

By using process.nextTick(callback) instead of setTimeout(callback, 0), your callback runs
immediately after all the events in the event queue have been processed, which is much sooner (in
the CPU time scale) than when the JavaScript timeout queue is activated.

You can defer the execution of a function until the next event loop tick like this:

process.nextTick(function() {
 my_expensive_computation_function();
});

NOTE The process object is one of the few Node global objects.

BLOCKING THE EVENT LOOP

Node and JavaScript runtimes in general are single-threaded event loops. On each loop, the runtime
processes the next event in queue by calling the associated callback function. When that event
is done, the event loop fetches and processes the next event; this pattern continues until the queue is
empty. If one of these callbacks takes a long time, the event loop won’t process pending events in the
meantime. This can lead to a slow application or service.

Using memory- or processor-intensive functions when handling events can lead to the event loop
becoming slow and the events becoming queued up and unserved or even blocked.

Here is an example of blocking the event loop:

process.nextTick(function nextTick1() {
 var a = 0;
 while(true) {
 a ++;
 }
});

process.nextTick(function nextTick2() {
 console.log("next tick");
});

setTimeout(function timeout() {
 console.log("timeout");
}, 1000);

In this case, the nextTick2 and timeout functions will never have the chance to run no matter how
long you wait because the event loop is blocked by an infi nite cycle inside the fi rst nextTick function.
Even the scheduled timeout function that was supposed to run after one second does not run.

When using setTimeout, the callback function goes into a scheduling queue, which, in this
case, doesn’t even get to be dispatched. This is an extreme case, but you can see how running a
 processor-intensive task may block or slow down your event loop.

c06.indd 48c06.indd 48 21/09/12 8:49 AM21/09/12 8:49 AM

Using setTimeout Instead of setInterval to Force Serialization ❘ 49

ESCAPING THE EVENT LOOP

By using process.nextTick, you can now defer the execution of a non-crucial task to the next tick,
freeing the event loop to execute other pending events.

As an example, if you need to remove a temporary fi le you created, but perhaps you don’t need to do
it before replying to the client, you can defer it like this:

stream.on("data", function(data) {
 stream.end("my response");
 process.nextTick(function() {
 fs.unlink("/path/to/file");
 });
});

USING SETTIMEOUT INSTEAD OF SETINTERVAL
TO FORCE SERIALIZATION

Let’s say you want a function that does some I/O — such as parsing a log fi le — that will periodically
be executed. Let’s give that function the generic name my_async_function. You could start by
using setInterval like this:

var interval = 1000;
setInterval(function() {
 my_async_function(function() {
 console.log('my_async_function finished!');
 });
});

However, you must ensure that none of these functions execute at the same time. You really can’t
guarantee that if you are using setInterval. If my_async_function takes one millisecond longer
than the interval you are using, they would run at the same time.

You need to enforce that the interval between the end of one my_async_function and the start of
the next is the desired interval. Here is how you can do this:

var interval = 1000; // 1 second

(function schedule() {
 setTimeout(function do_it() {
 my_async_function(function() {
 console.log('async is done!');
 schedule();
 });
 }, interval);
}());

Here you are declaring a function named schedule (line 3) and invoking it immediately after
it is declared (line 10). This schedule function schedules the do_it function to be executed in
one second (the chosen interval). After one second passes, this anonymous function fi res, calling

c06.indd 49c06.indd 49 21/09/12 8:49 AM21/09/12 8:49 AM

50 ❘ CHAPTER 6 SCHEDULING THE EXECUTION OF FUNCTIONS USING TIMERS

my_async_function (line 5). When this function fi nishes, the anonymous callback you passed to it
is invoked (line 6), calling the schedule function, which will again schedule the do_it function to
be executed in one second, thus restarting the cycle.

SUMMARY

You can use setTimeout() to schedule the future execution of a function, which you can cancel
with clearTimeout(). You can also schedule the periodic execution of a function by using
setInterval() and unschedule it by using clearInterval().

If you block the event loop with a processor-intensive operation, your scheduled functions will be
delayed or never execute. You learned that you shouldn’t perform CPU-intensive operations inside
the event loop and that you can defer the execution of a function until the next iteration of the event
loop by using process.nextTick().

Using I/O and setInterval() does not guarantee that there won’t be more than one pending call at
any given time. However, you can circumvent this potential issue by using a recursive function and
setTimeout().

c06.indd 50c06.indd 50 21/09/12 8:49 AM21/09/12 8:49 AM

PART III
Files, Processes, Streams, and
Networking

 � CHAPTER 7: Querying, Reading from, and Writing to Files

 � CHAPTER 8: Creating and Controlling External Processes

 � CHAPTER 9: Reading and Writing Streams of Data

 � CHAPTER 10: Building TCP Servers

 � CHAPTER 11: Building HTTP Servers

 � CHAPTER 12: Building a TCP Client

 � CHAPTER 13: Making HTTP Requests

 � CHAPTER 14: Using Datagrams (UDP)

 � CHAPTER 15: Securing Your TCP Server with TLS/SSL

 � CHAPTER 16: Securing Your HTTP Server with HTTPS

c07.indd 51c07.indd 51 21/09/12 8:50 AM21/09/12 8:50 AM

c07.indd 52c07.indd 52 21/09/12 8:50 AM21/09/12 8:50 AM

Querying, Reading from, and
Writing to Files

WHAT’S IN THIS CHAPTER?

 ➤ Manipulating fi le paths

 ➤ Extracting information from a fi le path

 ➤ Understanding fi le descriptors

 ➤ Using fs.stat() to capture fi le statistics

 ➤ Opening, reading, writing, and closing fi les

 ➤ Avoiding leaking fi le descriptors

Node has a streaming API for dealing with fi les as if they were network streams. It is very
 convenient, but it only allows you to deal with fi les in a continuous way. This doesn’t work if
you need to write in or read from specifi c positions inside a fi le. For that, you need to go down
a level and deal with the fi lesystem itself.

This chapter covers fi le-handling basics, including how to open a fi le, read specifi c parts from
it, write to it, and close it.

Much of Node’s fi le API is an almost direct translation of the UNIX (POSIX) APIs, such as
the way that fi le descriptors are used. Just like in UNIX, a fi le descriptor handle in Node is an
integer representing the index of an entry on the process fi le descriptor table.

There are three special fi le descriptors — 1, 2, and 3. They represent, respectively, the standard
input, standard output, and standard error fi le descriptors. Standard input is, as the name
indicates, a read-only stream that the process can use to read from the console or from data
piped from another process. Standard output and standard error are output-only fi le descriptors,

7

c07.indd 53c07.indd 53 21/09/12 8:50 AM21/09/12 8:50 AM

54 ❘ CHAPTER 7 QUERYING, READING FROM, AND WRITING TO FILES

and they can be used to output to the console or into another process or fi le. Standard error is
reserved for outputting errors, whereas standard output is for normal process output.

These fi le descriptors are available to the process as soon as it starts and do not really represent fi les.
You can write to and read from specifi c positions within the fi le. With these fi le descriptors — much
like network streams — you can only read and output continuously. What is written is written and
cannot be overridden.

Files are not limited in this way. For instance, in Node you can have append-only fi les, yet you can
also write to a specifi c position.

Nearly all the code that handles fi les has to handle and manipulate fi le paths. This chapter covers
these utility functions fi rst and then dives into fi le reading and content manipulation.

MANIPULATING FILE PATHS

File paths represent fi les, and these paths come in relative or absolute formats. You can concatenate
fi le paths, extract fi lename information, and even detect fi le existence.

In Node you can manipulate fi le paths by using strings, but that can become diffi cult, for instance,
when you want to join path components. For example, path components can be terminated with /,
but they don’t have to be, and accounting for those cases can be cumbersome. Path separators also
vary according to the OS.

Fortunately, Node has a module named path that enables you to normalize, join, and resolve paths,
as well as fi nd relative paths between absolute paths, extract components from paths, and determine
the existence of paths. In general, the path module simply manipulates strings and does not interact
with the fi lesystem to validate the strings (with the exception of the path.exists() function).

Normalizing Paths

Normalizing paths before you store or use them is often a good idea. For example, fi le paths that were
input by users or are present in a confi guration fi le, as well as paths that are the result of joining two
or more paths, usually need to be normalized. To do so, you can use the normalize function present
in the path module to normalize a path string, thus taking care of .., ., and //. For instance:

var path = require('path');
path.normalize('/foo/bar//baz/asdf/quux/..');
// => '/foo/bar/baz/asdf'

Joining Paths

By using path.join(), you can concatenate path strings. You can concatenate as many as you like,
passing all of them as consecutive arguments like so:

var path = require('path');
path.join('/foo', 'bar', 'baz/asdf', 'quux', '..');
// => '/foo/bar/baz/asdf'

As you can see, path.join() also normalizes the path.

c07.indd 54c07.indd 54 21/09/12 8:50 AM21/09/12 8:50 AM

Manipulating File Paths ❘ 55

Resolving Paths

You can resolve a series of paths into a normalized absolute path by using path.resolve(). It
works like an iterative cd command for every argument, except that it also works on fi les and it’s
abstract — it does not tap into the underlying fi lesystem to try to see if the path exists; it simply
manipulates paths.

For instance:

var path = require('path');
path.resolve('/foo/bar', './baz');
// => /foo/bar/baz
path.resolve('/foo/bar', '/tmp/file/');
// => /tmp/file

If the resulting path is not absolute, path.resolve will prepend the current working directory to
the path, as in this example:

path.resolve('wwwroot', 'static_files/png/', '../gif/image.gif');
// if currently in /home/myself/node, it returns
// => /home/myself/node/wwwroot/static_files/gif/image.gif'

Finding the Relative Path Between Two Absolute Paths

By using path.relative(), you can also determine how to get from one absolute path to another
absolute path. For example:

var path = require('path');
path.relative('/data/orandea/test/aaa', '/data/orandea/impl/bbb');
// => ../../impl/bbb

Extracting Components of a Path

If you have a fi le path such as /foo/bar/myfile.txt, you may need to retrieve the parent directory
contents (the contents of /foo/bar) or read another fi le inside the same directory. For that you have
to obtain the directory part of the fi le path by using path.dirname(filePath). For example:

var path = require('path');
path.dirname('/foo/bar/baz/asdf/quux.txt');
// => /foo/bar/baz/asdf

In some cases, you might want to extract the fi lename from the fi le path, which is the last portion of
a path. You can do this by using the path.basename function:

var path = require('path');
path.basename('/foo/bar/baz/asdf/quux.html')
// => quux.html

A fi le path can also include an extension, which is usually the string in the base name after and
including the last . character.

c07.indd 55c07.indd 55 21/09/12 8:50 AM21/09/12 8:50 AM

56 ❘ CHAPTER 7 QUERYING, READING FROM, AND WRITING TO FILES

You can subtract the fi le extension from the result by passing in an optional second argument with
the expected extension, like this:

var path = require('path');
path.basename('/foo/bar/baz/asdf/quux.html', '.html');
// => quux

When you use path.basename this way, you have to know the extension beforehand. You can deter-
mine the extension by using path.extname() like so:

var path = require('path');
path.extname('/a/b/index.html');
// => '.html'
path.extname('/a/b.c/index');
// => ''
path.extname('/a/b.c/.');
// => ''
path.extname('/a/b.c/d.');
// => '.'

Determining the Existence of a Path

All the path manipulations and extractions you have seen so far don’t touch the underlying fi lesystem.
However, you might at some point need to determine whether a given path exists. For example, you
might need to ensure that a directory or fi le does not already exist before you create it. You can do
that by using path.exists(), like so:

var path = require('path');
path.exists('/etc/passwd', function(exists) {
 console.log('exists:', exists);
 // => true
});
path.exists('/does_not_exist', function(exists) {
 console.log('exists:', exists);
 // => false
});

NOTE In Node v0.8 path.exists was replaced by fs.exists, with the exact
same semantics.

To use it you can simply import the “fs” module instead:

var fs = require('fs');
fs.exists('/does_not_exist', function(exists) {
 console.log('exists:', exists);
 // => false
});

c07.indd 56c07.indd 56 21/09/12 8:50 AM21/09/12 8:50 AM

Introducing the fs Module ❘ 57

Because the path.exists() function does I/O, it is asynchronous, which implies that you have to
pass a callback to be informed of the result once it is ready. If you are not inside an I/O callback,
you can use the synchronous version path.existsSync(), which behaves the same way but returns
the result instead of using a callback:

var path = require('path');
path.existsSync('/etc/passwd');
// => true

INTRODUCING THE FS MODULE

The fs module is where all the fi le query and manipulation functions are stored. With these
functions, you can query fi le statistics, as well as open, read from, write to, and close fi les.

You can require the fs module like this:

var fs = require('fs');

Querying File Statistics

Sometimes you may need to know some characteristics of a fi le like its size, creation time, or
 permissions. You can query some meta-information on a fi le (or directory) by using the fs.stat
function like this:

var fs = require('fs');
fs.stat('/etc/passwd', function(err, stats) {
 if (err) { throw err;}
 console.log(stats);
});

Running this snippet should output something like the following:

{ dev: 234881026,
 ino: 95028917,
 mode: 33188,
 nlink: 1,
 uid: 0,
 gid: 0,
 rdev: 0,
 size: 5086,
 blksize: 4096,
 blocks: 0,
 atime: Fri, 18 Nov 2011 22:44:47 GMT,
 mtime: Thu, 08 Sep 2011 23:50:04 GMT,
 ctime: Thu, 08 Sep 2011 23:50:04 GMT }

c07.indd 57c07.indd 57 21/09/12 8:50 AM21/09/12 8:50 AM

58 ❘ CHAPTER 7 QUERYING, READING FROM, AND WRITING TO FILES

The fs.stat() function call passes an instance of the stats class into the callback function,
which you can use to call any of the following:

 ➤ stats.isFile()— Returns true if the fi le is a standard fi le and not a directory, a socket, a
symbolic link, or a device.

 ➤ stats.isDirectory()—Returns true if the fi le is a directory.

 ➤ stats.isBlockDevice()—Returns true if the fi le is a device of the type block; in most
UNIX systems this is generally under the /dev directory.

 ➤ stats.isCharacterDevice()—Returns true if the fi le is a device of the character type.

 ➤ stats.isSymbolicLink()—Returns true if the fi le is a symbolic link to another fi le.

 ➤ stats.isFifo()— Returns true if the fi le is a FIFO (a special kind of UNIX named pipe).

 ➤ stats.isSocket()—Returns true if the fi le is a UNIX domain socket.

OPENING A FILE

Before you can read or manipulate fi les, you have to open them using the fs.open function. Then, a
callback function you provide is invoked with the fi le descriptor, which you can later use to read or
write to the opened fi le.

var fs = require('fs');
fs.open('/path/to/file', 'r', function(err, fd) {
 // got fd file descriptor
});

The fi rst argument to fs.open() is the fi le path. The second argument contains the fl ags, which
indicate the mode with which the fi le should open. The fl ags can be r, r+, w, w+, a, or a+. Here are
the semantics of these fl ags (taken from the fopen UNIX manual page):

 ➤ r—Opens the text fi le for reading. The stream is positioned at the beginning of the fi le.

 ➤ r+—Opens the fi le for reading and writing. The stream is positioned at the beginning of the
fi le.

 ➤ w—Truncates the fi le to zero length or creates a text fi le for writing. The stream is
positioned at the beginning of the fi le.

 ➤ w+—Opens the fi le for reading and writing. The fi le is created if it does not exist. Otherwise
it is truncated. The stream is positioned at the beginning of the fi le.

 ➤ a—Opens the fi le for writing. The fi le is created if it does not exist. The stream is
positioned at the end of the fi le. Subsequent writes to the fi le will always end up at the
current end of fi le.

 ➤ a+—Opens the fi le for reading and writing. The fi le is created if it does not exist. The
stream is positioned at the end of the fi le. Subsequent writes to the fi le will always end up at
the current end of fi le.

c07.indd 58c07.indd 58 21/09/12 8:50 AM21/09/12 8:50 AM

Reading from a File ❘ 59

READING FROM A FILE

Once a fi le is open, you can read a part of it, but before you do so, you have to create a buffer that
will contain the data. That buffer will be passed to the fs.read function to be fi lled with the
fi le data.

var fs = require('fs');
fs.open('./my_file.txt', 'r', function opened(err, fd) {
 if (err) { throw err }
 var readBuffer = new Buffer(1024),
 bufferOffset = 0,
 bufferLength = readBuffer.length,
 filePosition = 100;
 fs.read(fd,
 readBuffer,
 bufferOffset,
 bufferLength,
 filePosition,
 function read(err, readBytes) {
 if (err) { throw err; }
 console.log('just read ' + readBytes + ' bytes');
 if (readBytes > 0) {
 console.log(readBuffer.slice(0, readBytes));
 }
 });
});

Here you are opening the fi le, and when it’s opened (calling the opened function), you are asking to
read a chunk of 1,024 bytes from it, starting at position 100 of the buffer you provided (line 11).

The last argument to the fs.read() call is a callback function (line 16), which is invoked when
one of the following three things happen:

 ➤ There is an error.

 ➤ Something has been read.

 ➤ Nothing could be read.

With the fi rst argument, the callback gets an error object if something went wrong; otherwise, the
argument is null. If the read succeeds, the second argument (readBytes) gets the number of bytes
read into the buffer. If the read byte count is zero, the fi le has reached the end.

NOTE Once you pass the buffer to fs.open(), that buffer becomes under the
control of the read command. The control of the buffer will return to you once
your callback is invoked. Don’t read, write, or use that buffer in another call
before that; otherwise, you may read incomplete data, or worse, you may write
concurrently into the same buffer.

c07.indd 59c07.indd 59 21/09/12 8:50 AM21/09/12 8:50 AM

60 ❘ CHAPTER 7 QUERYING, READING FROM, AND WRITING TO FILES

Writing to a File

To write into an open fi le, you can use fs.write(), passing in a buffer with data:

var fs = require('fs');
fs.open('./my_file.txt', 'a', function opened(err, fd) {
 if (err) { throw err; }
 var writeBuffer = new Buffer('writing this string'),
 bufferPosition = 0,
 bufferLength = writeBuffer.length, filePosition = null;
 fs.write(fd,
 writeBuffer,
 bufferPosition,
 bufferLength,
 filePosition,
 function wrote(err, written) {
 if (err) { throw err; }
 console.log('wrote ' + written + ' bytes');
 });
});

In this example, you are opening the fi le in append mode (a) on line 3, and then writing into it on
line 9. You are passing in a buffer with the following information:

 ➤ The data you want written to the buffer

 ➤ The position inside the buffer where the data should start

 ➤ The length of the data you want to write

 ➤ The fi le position you want to start writing from

 ➤ A callback function called wrote that will be invoked once the operation ends

In this case, you are passing in a fi le position of null, which indicates that the write will happen at
the current fi le cursor. Because you are opening the fi le in append mode, the fi le cursor is positioned
at the end of the fi le.

Again, as in the read operation, you should not use the buffer you provide after the fs.write
operation has been commanded. Once you pass it in, the buffer is in control of that operation, and
you should only reuse it after your callback has been invoked.

Closing a File

With all the examples you’ve seen so far in this chapter, you might have noticed that the code did
not close the fi les. This is because these are small simple examples destined to be run once. When
your Node process exits, the operating system will make sure all the fi les are closed.

In real applications, however, once you open a fi le, you will eventually need to close it. For that
you just keep track of all the open fi le descriptors and eventually close them using fs.close(fd[,
callback]) when you no longer need them. It’s quite easy to leak fi le descriptors if you’re not
careful. Next is an example that provides a function named openAndWriteToSystemLog with careful
fi le closing:

c07.indd 60c07.indd 60 21/09/12 8:50 AM21/09/12 8:50 AM

Reading from a File ❘ 61

var fs = require('fs');
function openAndWriteToSystemLog(writeBuffer, callback) {
 fs.open('./my_file', 'a', function opened(err, fd) {
 if (err) { return callback(err); }
 function notifyError(err) {
 fs.close(fd, function() {
 callback(err);
 });
 }
 var bufferOffset = 0,
 bufferLength = writeBuffer.length,
 filePosition = null;
 fs.write(fd, writeBuffer, bufferOffset, bufferLength, filePosition,
 function wrote(err, written) {
 if (err) { return notifyError(err); }
 fs.close(fd, function() {
 callback(err);
 });
 }
);
 });
}
openAndWriteToSystemLog(
 new Buffer('writing this string'),
 function done(err) {
 if (err) {
 console.log("error while opening and writing:", err.message);
 return;
 }
 console.log('All done with no errors');
 }
);

Here, you are providing a function named openAndWriteToSystemLog that takes a buffer to write
and a callback function to be invoked once the operation is complete or when an error occurs. If an
error occurs, it will be passed as the fi rst argument of the callback function.

Note that the notifyError internal function takes care of closing the fi le descriptor and reporting
an error.

NOTE Up to this point, you have learned about low-level fi le opening, reading,
writing, and closing primitives. However, Node has a higher-level set of
 constructs that allows you to address some fi les in a simpler way.

For example, when you want to append data to a fi le and you want to do it in a
way that is safe to use concurrently, where you may have, at any given time, two
or more pending write operations, you should use a WriteStream.

Also, if you want to read a region of one fi le, consider using a ReadStream.

Both these use cases are covered in Chapter 9, “Reading and Writing Streams of
Data.”

c07.indd 61c07.indd 61 21/09/12 8:50 AM21/09/12 8:50 AM

62 ❘ CHAPTER 7 QUERYING, READING FROM, AND WRITING TO FILES

Summary

When you’re working with fi les, most of the time you have to manipulate and extract parts of
the fi le paths. By using the path module you can join paths, normalize them, calculate differences
between them, and resolve relative paths into absolute ones. You can also extract path components
like the fi le extension, the base name, the extension, and the directory path of any given fi le path.

Node provides a low-level API to the fi lesystem in the fs module. Low-level fi lesystems use fi le
descriptors to handle their fi les. You can use fs.open to open a fi le, fs.write to write to it,
fs.read to read from it, and fs.close to close it.

In error situations, you should always close your fi les by handling errors correctly — be sure to close
all the fi le descriptors before calling back.

c07.indd 62c07.indd 62 21/09/12 8:50 AM21/09/12 8:50 AM

Creating and Controlling
External Processes

WHAT’S IN THIS CHAPTER?

 ➤ Launching commands and child processes

 ➤ Sending and receiving data from a child process

 ➤ Sending signals to and then terminating a child process

Node is designed to handle I/O effi ciently, but, as you’ve seen, some types of programs are not a
good fi t for this model. For instance, if you were to perform a CPU-intensive task using Node,
you would be blocking the event loop, thus limiting your application responsiveness. Instead,
CPU-intensive tasks should be assigned to a different process, freeing the event loop. Node
allows you to spawn processes that become children of the process that launched them — the
parent. In Node, a child process has a two-way channel to communicate with the parent process,
and the parent process can monitor and control the child to some degree.

Another instance of when you may want to use a child process is when you want to simply
execute an external command from Node and get back the results once the command fi nishes.
For instance, you may want to spawn a UNIX command, a script, or another type of utility
that is not directly executable inside Node.

This chapter shows you how to spawn external commands and create, communicate with,
and terminate child processes. The point is to enable you to accomplish multiple tasks outside
of the Node process.

8

c08.indd 63c08.indd 63 21/09/12 8:51 AM21/09/12 8:51 AM

64 ❘ CHAPTER 8 CREATING AND CONTROLLING EXTERNAL PROCESSES

EXECUTING EXTERNAL COMMANDS

When you need to launch an external shell command or an executable fi le, you may do so by using
the child_process module. You can import this module like this:

var child_process = require('child_process');

You can then use the exec function that is defi ned in this module like this:

var exec = child_process.exec;
exec(command, callback);

The fi rst argument to the exec function is a string with the command as you would launch it from
the shell. The second argument is a function callback. This callback will be later called by the exec
function once the command terminates or an error occurs. You should expect three arguments in
this callback: error, stdout, and stderr. Here is an example:

exec('ls', function(err, stdout, stderr) {
 // ...
});

If an error occurs, the fi rst argument will be an instance of the Error class. If the fi rst argument
does not contain an error, the second argument, stdout, will contain the command output. The
last argument will contain the command error output.

Listing 8-1 shows a more complete example of executing an external command.

LISTING 8-1: Executing an external command. (chapter8/01_external_command.js)

// import the exec function defined on the child_process module
var exec = require('child_process').exec;
// launch the command "cat *.js | wc -l"
exec('cat *.js | wc -l', function(err, stdout, stderr) {
 // the command exited or the launching failed
 if (err) {
 // we had an error launching the process
 console.log('child process exited with error code', err.code);
 return;
 }
 console.log(stdout);
});

On line 4, you pass in cat *.js | wc -l as the command in the fi rst argument to the exec
 invocation. You can use it to launch any other command, written as you would type it inside the
shell prompt.

You then pass a callback function as the second argument, which will be invoked if an error occurs
or once the child process has terminated.

You can also pass an optional argument containing some confi guration options before the callback
function, like this:

c08.indd 64c08.indd 64 21/09/12 8:51 AM21/09/12 8:51 AM

Executing External Commands ❘ 65

var exec = require('child_process').exec;
var options = {
 timeout: 10000,
 killSignal: 'SIGKILL'
};
exec('cat *.js | wc -l', options, function(err, stdout, stderr) {
 // ...
});

The available options are:

 ➤ cwd — current working directory. Use this if you want to force the current working
directory.

 ➤ encoding — the expected encoding for the child output. Defaults to the string uft8,
which identifi es the UTF-8 encoding. Use this if the process you are executing outputs
data in an encoding other than UTF-8. Node supports these encodings:

 ➤ ascii

 ➤ utf8

 ➤ ucs2

 ➤ base64

If you want more information about the supported Node encodings, refer to Chapter 4,
“Using Buffers to Manipulate, Encode, and Decode Binary Data.”

 ➤ timeout — the timeout in milliseconds for the execution of the command. Defaults to 0,
which waits indefi nitely for the child process to end.

 ➤ maxBuffer — specifi es the maximum size in bytes of the output allowed on the stdout or
the stderr streams. If exceeded, the child is killed. Defaults to 200 * 1024.

 ➤ killSignal — the signal to be sent to the child if it times out or exceeds the output buffers.

The default value for this is SIGTERM, which sends a termination signal to the process. This
is usually the orderly way of ending processes. When using the SIGTERM signal, the process is
able to handle and override the default behavior. If the target process expects it, you can
send it another signal altogether (like SIGUSR1, for instance). You can also send it a SIGKILL
signal, which is handled by the operating system and forces the process to terminate
immediately, without a cleanup routine being triggered.

If you want to handle process termination more closely, you should use the child_process
.spawn function instead, which is covered later.

 ➤ env — environment variables to be passed into the child process. Defaults to null, which
means the child process inherits all the parent environment variables that are defi ned right
before spawning it.

c08.indd 65c08.indd 65 21/09/12 8:51 AM21/09/12 8:51 AM

66 ❘ CHAPTER 8 CREATING AND CONTROLLING EXTERNAL PROCESSES

NOTE With the killSignal option you can pass a string identifying the
name of the signal you want to send to the target process. Signals are identifi ed
in Node as strings. Here is a complete list of UNIX signals and their default
actions:

NAME DEFAULT ACTION DESCRIPTION

SIGHUP Terminate process Terminal line hangup

SIGINT Terminate process Interrupt program

SIGQUIT Create core image Quit program

SIGILL Create core image Illegal instruction

SIGTRAP Create core image Trace trap

SIGABRT Create core image Abort program

SIGEMT Create core image Emulate instruction executed

SIGFPE Create core image Floating-point exception

SIGKILL Terminate process Kill program

SIGBUS Create core image Bus error

SIGSEGV Create core image Segmentation violation

SIGSYS Create core image Nonexistent system call invoked

SIGPIPE Terminate process Software termination signal

SIGALRM Terminate process Real-time timer expired

SIGTERM Terminate process Software termination signal

SIGURG Discard signal Urgent condition present on socket

SIGSTOP Stop process Stop (cannot be caught or ignored)

SIGTSTP Stop process Stop signal generated from keyboard

SIGCONT Discard signal Continue after stop

SIGCHLD Discard signal Child status has changed

SIGTTIN Stop process Background read attempted from

control terminal

SIGTTOU Stop process Background write attempted to

control terminal

SIGIO Discard signal I/O is possible on a descriptor

c08.indd 66c08.indd 66 21/09/12 8:51 AM21/09/12 8:51 AM

Executing External Commands ❘ 67

You may want to provide the child process with a set of environment variables that is an extension
of the parent ones. If you change the process.env object directly, you will change it for every
module of your Node process, which is undesirable. Instead, create a new object that is the
augmented copy of process.env, as seen in Listing 8-2.

LISTING 8-2: Executing a command with augmented environment variables. (chapter8/02_

env_vars_augment.js)

var env = process.env,
 varName,
 envCopy = {},
 exec = require('child_process').exec;
// Copy process.env into envCopy
for (varName in env) {
 envCopy[varName] = env[varName];
}

// Assign some custom variables
envCopy['CUSTOM ENV VAR'] = 'some value';
envCopy['CUSTOM ENV VAR 2'] = 'some other value';

// Execute some command with process.env and my custom variables
exec('ls -la', { env: envCopy }, function(err, stdout, stderr) {
 if (err) { throw err; }
 console.log('stdout:', stdout);
 console.log('stderr:', stderr);
});

Here you are creating an object stored on the variable named envCopy, which will initially contain
a copy of the contents of the process.env object. Then you will add or replace the environment
 variables you want to see changed. Finally you execute the command, passing in the envCopy object
as the environment object specifi cation to the exec function.

NAME DEFAULT ACTION DESCRIPTION

SIGXCPU Terminate process CPU time limit exceeded

SIGXFSZ Terminate process File size limit exceeded

SIGVTALRM Terminate process Virtual time alarm

SIGPROF Terminate process Profi ling timer alarm

SIGWINCH Discard signal Window size change

SIGINFO Discard signal Status request from keyboard

SIGUSR1 Terminate process User defi ned signal 1

SIGUSR2 Terminate process User defi ned signal 2

c08.indd 67c08.indd 67 21/09/12 8:51 AM21/09/12 8:51 AM

68 ❘ CHAPTER 8 CREATING AND CONTROLLING EXTERNAL PROCESSES

Keep in mind that the environment variables are passed between processes using the operating
system, and thus all the values arrive at the child process as strings. For instance, if the parent
process passes the number 123 as an environment variable, the child process will receive it as the
string 123.

As an example you’ll set up two Node scripts in the same folder. One you can name parent.js and
the other child.js. The fi rst one will launch the second one, so you need the two scripts in place
for this to work.

Listing 8-3 shows a quick example of where this happens.

LISTING 8-3: Parent process setting environment variable. (chapter8/03_environment_

number_parent.js)

var exec = require('child_process').exec;
exec('node child.js', {env: {number: 123}}, function(err, stdout, stderr) {
 if (err) { throw err; }
 console.log('stdout:\n', stdout);
 console.log('stderr:\n', stderr);
});

Save this fi le as parent.js. Next is the source code for the child process, which you should place
inside a fi le named child.js (see Listing 8-4).

LISTING 8-4: Child process parsing environment variable. (chapter8/04_environment_

number_child.js)

var number = process.env.number;
console.log(typeof(number)); // → "string"
number = parseInt(number, 10);
console.log(typeof(number)); // → "number"

After you have saved this code into a fi le named child.js, you can launch it by using the command
line when inside the folder with the source code:

$ node parent.js

It should output the following:

stdout:
 string
number

stderr:

Here you can see that, in spite of the parent process passing a number into the name environment
variable, the child process receives it as a string (as you can see in line 2 of the output). In line 3 you
parse the string into a number.

c08.indd 68c08.indd 68 21/09/12 8:51 AM21/09/12 8:51 AM

Spawning Child Processes ❘ 69

SPAWNING CHILD PROCESSES

As you have seen, you can use the child_process.exec() function to launch external processes.
You get your callback invoked when that process ends. This approach is very simple, but it has some
drawbacks:

 ➤ Except for the command-line arguments and the environment variables, using exec() does
not allow you to communicate with the child process.

 ➤ The child process output is buffered. As a result, you cannot stream it, and it can consume
memory.

Fortunately, Node’s child_process module allows for fi ner-grained control when launching,
stopping, and generally interacting with child processes. You may launch a new process, called the
child process, from your application, which is called the parent process. Once you’ve launched a
new child process, Node establishes a two-way communication channel, which both processes can
use to send and receive data strings to and from each other. The parent process can also exercise
some control over the child, sending it signals and forcing it to terminate.

Creating the Child Process

You can spawn a new child process based on the child_process.spawn function, shown in
Listing 8-5.

LISTING 8-5: Spawning a child process. (chapter8/05_spawning_child.js)

// Import the spawn function defined on child_process module
var spawn = require('child_process').spawn;

// Launch a child process with a "tail -f /var/log/system.log" command
var child = spawn('tail', ['-f', '/var/log/system.log']);

Here you spawn a child process to run a tail command, passing in arguments -f and /var/log/
system.log. This tail command will monitor the fi le in /var/log/system.log — if it exists —
and output every new data appended to it into the stdout stream. The spawn function call returns
a ChildProcess object, which is a handler object that encapsulates access to the real process.
Here you assign this new descriptor to the variable named child.

Listening for Data from the Child Process

Any child process handler has a property named stdout that represents the child process standard
output as a stream. You can then bind to the data event on that stream, which is the same as saying
“for every data chunk you get from the child output, invoke this callback.” Here is an example of
that happening:

// print child output to the console
child.stdout.on('data', function(data) {
 console.log('tail output: ' + data);
});

c08.indd 69c08.indd 69 21/09/12 8:51 AM21/09/12 8:51 AM

70 ❘ CHAPTER 8 CREATING AND CONTROLLING EXTERNAL PROCESSES

Every time the child process outputs any data into its standard output, the parent process gets
notifi ed and prints it to the console.

Besides the standard output, processes also have another output stream by default named standard
error stream, which is usually the stream processes use to output error messages.

In this case, if the fi le /var/log/system.log does not exist, the tail process will output something
like tail: /var/log/system.log: No such file or directory. By listening to the stderr
stream, the parent process can be notifi ed of these errors.

The parent process can also listen for data from that stream using something like this:

child.stderr.on('data', function(data) {
 console.log('tail error output:', data);
});

The stderr property is also a read stream, just like stdout. In this example, every time the child
process writes to the standard error output, the parent process gets notifi ed and prints out that data.

Sending Data to the Child Process

Besides receiving data from a child process’s output streams, the parent process can also send data
to the child by writing to the child’s standard input stream, represented by the childProcess
.stdin property.

The child can listen for that data using the process.stdin read stream, but note that fi rst you must
resume this stream, because it is on a paused state by default.

In Listing 8-6 you will build an example with these parts:

 ➤ +1 app: A simple application that receives integers on its standard input stream, increments
them, and outputs the integers incremented by one into the standard output stream. This
application serves as an example of a process that does some computation work that a Node
process can use to outsource specifi c work.

 ➤ A test client that spawns the +1 app, sends it random integers, and prints the results. This
serves as an example of how a Node process can spawn a child process and order it to
perform specifi c tasks.

Create a fi le named plus_one.js with the code in Listing 8-6.

LISTING 8-6: The +1 app example application. (chapter8/06_plus_one.js)

// unpause the stdin stream
process.stdin.resume();
process.stdin.on('data', function(data) {
 var number;
 try {
 // parse the input data into a number
 number = parseInt(data.toString(), 10);

c08.indd 70c08.indd 70 21/09/12 8:51 AM21/09/12 8:51 AM

Spawning Child Processes ❘ 71

 // increment by one
 number += 1;

 // output the number
 process.stdout.write(number + "\n");
 } catch(err) {
 process.stderr.write(err.message + "\n");
 }
});

Here you are waiting for data on the stdin stream. Every time you get it, presume it is an integer,
parse the data into an integer variable named number, increment it, and then output it to the stdout
stream.

You can run this simple program by calling:

$ node plus_one.js

Now your application is waiting for input. If you type an integer and press Return, you should get
that integer incremented by one back on the screen.

You can quit your application by typing Ctrl-C.

A Test Client

Now you are about to create a Node process that uses the +1 application you created to outsource
these calculations.

Start by creating a fi le named plus_one_test.js with Listing 8-7.

LISTING 8-7: Testing the +1 app application. (chapter8/07_plus_one_test.js)

var spawn = require('child_process').spawn;

// Spawn the child with a node process executing the plus_one app
var child = spawn('node', ['plus_one.js']);

// Call this function every 1 second (1000 milliseconds):
setInterval(function() {

 // Create a random number smaller than 10.000
 var number = Math.floor(Math.random() * 10000);

 // Send that number to the child process:
 child.stdin.write(number + "\n");

 // Get the response from the child process and print it:
 child.stdout.once('data', function(data) {
 console.log('child replied to ' + number + ' with: ' + data);
 });
}, 1000);

continues

c08.indd 71c08.indd 71 21/09/12 8:51 AM21/09/12 8:51 AM

72 ❘ CHAPTER 8 CREATING AND CONTROLLING EXTERNAL PROCESSES

child.stderr.on('data', function(data) {
 process.stdout.write(data);
});

Here you launch the +1 app as a child process on lines 1 to 4.

Then you use the setInterval function to do the following every second:

 ➤ Create a random natural number smaller than 10,000.

 ➤ Send that number as a string to the child process.

 ➤ Wait for the child process to reply with a string.

Because you want to listen for data back from the child only once per number, you will use
child.stdout.once and not child.stdout.on. If you used the latter function, you would register
multiple callback functions as time went by. Each callback function would be called every time you got
data from on the child stdout, which would end up printing the data multiple times and erroneously.

Receiving Notifi cation when the Child Process Exits

When a child process exits, an event is triggered on the parent. Listing 8-8 shows how to listen to
this event.

LISTING 8-8: Listening for the child exit event. (chapter8/09_listen_child_exit.js)

var spawn = require('child_process').spawn;

// Spawn the child with a "ls -la" command
var child = spawn('ls', ['-la']);

child.stdout.on('data', function(data) {
 console.log('data from child: ' + data);
});

// When child exits:
child.on('exit', function(code) {
 console.log('child process terminated with code ' + code);
});

Here, on the last lines in bold, you are listening to the child exit event, and, when it occurs, you
print that fact to the console. The child process exit code is passed into the callback function as
the fi rst argument. Some programs use an exit code other than 0 as a way of signaling failures.
For instance, if you try to execute the command ls -la filename.txt and there is no fi le named
filename.txt on your current working directory, you get an exit code of 1, as you will if you try
running the example in Listing 8-9.

LISTING 8-7 (continued)

c08.indd 72c08.indd 72 21/09/12 8:51 AM21/09/12 8:51 AM

Signaling and Killing Processes ❘ 73

LISTING 8-9: Getting the child process exit code. (chapter8/10_child_exit_code.js)

var spawn = require('child_process').spawn;

// Spawn the child with a "ls does_not_exist.txt" command
var child = spawn('ls', ['does_not_exist.txt']);

// When the child process exits:
child.on('exit', function(code) {
 console.log('child process terminated with code ' + code);
});

In this case the exit event triggers your callback with the child process exit code as the fi rst
 argument. If your child process died from a signal and not from an orderly exit, the guilty signal is
passed as a string into the second argument of that callback, as in Listing 8-10.

LISTING 8-10: Getting the child process exit signal. (chapter8/11_child_exit_signal.js)

var spawn = require('child_process').spawn;

// Spawn the child with a "sleep 10" command
var child = spawn('sleep', ['10']);

setTimeout(function() {
 child.kill();
}, 1000);

child.on('exit', function(code, signal) {
 if (code) {
 console.log('child process terminated with code ' + code);
 } else if (signal) {
 console.log('child process terminated because of signal ' + signal);
 }
});

Here you are launching a child that will execute a sleep command for 10 seconds, but before those
10 seconds elapse, you are sending it a SIGKILL signal, which makes it print the following:

child process terminated because of signal SIGTERM

SIGNALING AND KILLING PROCESSES

In this section you will learn how you can control your child process using signals. Signals are a
simple way for the parent process to communicate with the child process, or even to kill the child
process.

Different signal codes have different meanings, and there are many of them. The most common ones
are for killing processes. If a process receives a signal that it doesn’t know how to handle, it will

c08.indd 73c08.indd 73 21/09/12 8:51 AM21/09/12 8:51 AM

74 ❘ CHAPTER 8 CREATING AND CONTROLLING EXTERNAL PROCESSES

terminate. Some signals can be handled by the child process, and some others are solely handled
by the operating system.

Generally, you can send a signal to a child process using the child.kill method, which by default
sends the child a SIGTERM signal like this:

var spawn = require('child_process').spawn;
var child = spawn('sleep', ['10']);
setTimeout(function() {
 child.kill();
}, 1000);

You can also specify which signal to send by passing in a string identifying the signal as the sole
argument like this:

child.kill('SIGUSR2');

Note that even though this method is called kill, the signal might not end up killing your process.
If the child process handles the signal, the default signal behavior is overridden. A child
process written in Node can override a signal by defi ning a signal handler like this:

process.on('SIGUSR2', function() {
 console.log('Got a SIGUSR2 signal');
});

Now, when you’re defi ning a signal handler for SIGUSR2, your process will not die if it receives such
a signal, but should print Got a SIGUSR2 signal instead. Using this mechanism, you can devise a
simple way of communicating with or even commanding child processes, which is not as rich as
when using the input stream, but is much simpler.

SIGKILL and SIGSTOP are special signals that are handled by the operating system, and the
 processes cannot override the default behavior. They end up terminating the process, even if you
defi ne a signal handler for them.

SUMMARY

In this chapter you executed external commands using the child_process.exec function, which
allows you to defi ne the environment variables that you pass into the child process without using
command-line arguments.

You also learned to spawn child processes that execute external commands by using the
child_process.spawn method. Doing this allows you to interact with child processes using the
input and output streams, and to further communicate with or even kill a child process using
signals.

c08.indd 74c08.indd 74 21/09/12 8:51 AM21/09/12 8:51 AM

Reading and Writing Streams
of Data

WHAT’S IN THIS CHAPTER?

 ➤ Introducing the streams interface

 ➤ Getting data from a readable stream

 ➤ Controlling the fl ow of a readable stream

 ➤ Writing to a writable stream

 ➤ Solving the slow client problem

 ➤ Using pipe to stitch streams together

Node has a useful abstraction: streams. More specifi cally, two very useful abstractions:
readable streams and writable streams. They are implemented throughout several Node
objects, and they represent inbound (readable stream) or outbound (writable stream) fl ows of
data. An example of a stream is a TCP socket that you read from and write to, or a fi le that
you append or read from sequentially. You have already come across some of them, but
this chapter introduces them in a more formal and abstract way, paving the way for some more
concrete examples.

9

c09.indd 75c09.indd 75 21/09/12 8:51 AM21/09/12 8:51 AM

76 ❘ CHAPTER 9 READING AND WRITING STREAMS OF DATA

USING A READABLE STREAM

A readable stream is like a data faucet. After you have created or obtained one — the method of
 creating or obtaining one depends on the type of stream — you can control it. You can control the
fl ow by pausing and resuming it, you can get notifi ed when data is available, and you can close it
and get notifi ed when the stream ends.

Waiting for Data

Streams can send data in chunks. By listening to the “data” event, you can be notifi ed every
time a stream delivers a chunk. You can get the data as a buffer or as a string, depending on your
stream-encoding settings.

Data is passed via the event handler function that you bind to the “data” event. Depending on
the stream encoding, the data may be delivered in the raw form using a byte buffer or, if you defi ne
the stream encoding by using the stream.setEncoding() function, be passed in as an encoded
string, as in the following examples:

var readable stream1 = ...
readable stream1.on('data', function(data) {
 // data is a buffer;
 console.log('got this data:', data);
});

var readable stream2 = ...
readable stream2.setEncoding('utf8');
readable stream2.on('data', function(data) {
 // data is a utf8-encoded string;
 console.log('got this data:', data);
});

In the fi rst example, data is passed as a buffer because you didn’t specify an encoding. In the second
example, data is passed as a UTF-8-encoded string.

NOTE A stream is an abstract construct that is implemented by several Node
objects. The way you create or obtain a stream depends on the type of stream
you are using. For instance, you can explicitly create a read or write stream based
on a fi le, but a server-side TCP socket is a stream that is handed to you when a
client connects.

Besides having the characteristics of a readable or a writable stream, an object
can contain other properties or behaviors that are particular to it. For instance,
a fi le readable stream also contains a “path” property that may not be present in
other streams.

c09.indd 76c09.indd 76 21/09/12 8:51 AM21/09/12 8:51 AM

Using Writable Streams ❘ 77

Pausing and Resuming a Stream

A readable stream is like a faucet, and you can keep the data from coming by pausing it like this:

stream.pause();

After you have done this, you will not receive any further “data” events. This feature can help you
to avoid implicit buffering, as you will see later.

NOTE Because UTF-8 characters can be multibyte, you may receive a character in
two separate “data” events when you are expecting UTF-8 characters. If you set
the encoding to utf8, the stream takes care of delivering a character only when it
is complete.

NOTE Pausing a stream translates to different behaviors under the hood.
For instance, if the stream is a fi le stream, Node will stop reading from that fi le.
If the stream is a TCP socket, Node will stop reading new data packets, which
has the effect of stopping the packet fl ow from the other end. Other object types
implement pause differently.

When you want to resume a paused stream, you can simply call the stream.resume() method. This will
reopen the faucet and data will be emitted again — until you pause it again or the stream ends.

Knowing When the Stream Ends

A stream can end. For instance, if you have a readable stream that is streaming fi le content, when
the fi le ends the stream emits an “end” event. Similarly, if you have an HTTP stream that is
delivering the requested body data, when the request ends that stream will also emit the “end”
event. You can listen to that event like so:

var readable stream = ...
readable stream.on('end', function() {
 console.log('the stream has ended');
});

After a readable stream ends, you will receive no more “data” events.

USING WRITABLE STREAMS

A writable stream is an abstraction of something you can send data to. It can be a fi le or a TCP
network connection or even an object that outputs transformed data, such as a zipped fi le. A
writable stream is an object that allows you to write data to it. In this section, you learn to write
data to a writable stream and learn about drain events.

c09.indd 77c09.indd 77 21/09/12 8:51 AM21/09/12 8:51 AM

78 ❘ CHAPTER 9 READING AND WRITING STREAMS OF DATA

Writing Data into a Stream

You can write to a writable stream by passing it a buffer or a string like this:

var writable_stream = ...;
writable_stream.write('this is an UTF-8 string');

If you are passing in a string as the fi rst argument, you can specify the string encoding by passing it
in the second argument. Otherwise, the stream assumes the string is UTF8-encoded.

Here is an example of passing in an alternative encoding:

var writable_stream = ...;
writable_stream.write('7e3e4acde5ad240a8ef5e731e644fbd1', 'base64');

As stated earlier, you can simply pass in a buffer to write:

var writable_stream = ...;
var buffer = new Buffer('this is a buffer with some string');
writable_stream.write(buffer);

Once you write to a stream, Node can immediately fl ush the data to the kernel buffer or, if that’s
not possible at the time, Node will store it in a queue in memory. You can determine which event
occurred by observing the return value of the call to writable_stream.write(). The write
command returns a boolean value that is true when the buffer was fl ushed and false when the
buffer was queued. Later in this chapter you’ll see how this information can become helpful.

Waiting for a Stream to Drain

Because Node does not block on I/O, it does not block on read or write commands. As you’ve
seen, on write commands you know if the buffer was immediately fl ushed. If it was not fl ushed, it’s
stored in your process memory.

Later, when the stream manages to fl ush all the pending buffers, it emits a drain event that you can
listen to:

var writable stream = ...;
writable stream.on('drain', function() {
 console.log('drain emitted');
});

Later in this chapter you’ll see how draining notifi cations combined with the pause and resume
capabilities can come in handy for limiting the memory growth of your Node process.

CONSIDERING SOME STREAM EXAMPLES

So far you’ve been introduced to the abstract streams interface. Let’s look at some examples where
Node implements this.

c09.indd 78c09.indd 78 21/09/12 8:51 AM21/09/12 8:51 AM

Considering Some Stream Examples ❘ 79

Creating File-System Streams

You can create a readable stream for a fi le path by doing something like this:

var fs = require('fs');
var rs = fs.createReadStream('/path/to/file');
...

You can pass a second argument with options to fs.createReadableStream(), where you can
specify the start and end position on your fi le, the encoding, the fl ags, and the buffer size. Here are
the options arguments:

 ➤ encoding — The encoding of the strings emitted in “data” events, or null if you want raw
buffers.

 ➤ fd — If you already have an open fi le descriptor, you can pass it in here and the stream will
assume it. Defaults to null.

 ➤ bufferSize — The size in bytes of the buffer of each chunk of the fi le to be read. Defaults
to 64KB.

 ➤ start — The fi le position of the fi rst byte to be read. Used to read a range of the fi le instead
of the whole fi le.

 ➤ end — The fi le position of the last byte to be read. Used to read a range of the fi le instead of
the whole fi le.

NOTE If you already have an open fi le, you can create a readable stream from it
using the fd option:

var fs = require('fs');

var path = '/path/to/my/file';
fs.open(path, 'r', function(err, fd) {
 fs.createReadStream(null, {fd: fd, encoding: 'utf8'});
 fs.on('data', console.log);
});

Also, if you want to read just a segment of a fi le, you can use the start and end options. For instance,
for the stream to start at byte 10 and continue until the fi le ends:

var fs = require('fs');
var path = '/path/to/my/file'
var readStream = fs.createReadStream(path, {start: 10});
…

Or if you want the fi le stream to stop reading at byte 20:

var fs = require('fs');
var path = '/path/to/my/file'
var readStream = fs.createReadStream(path, {end: 20});
…

c09.indd 79c09.indd 79 21/09/12 8:51 AM21/09/12 8:51 AM

80 ❘ CHAPTER 9 READING AND WRITING STREAMS OF DATA

You can also create a fi le writable stream:

var fs = require('fs');
var rs = fs.createWriteStream('/path/to/file', options);

fs.createWriteStream() also accepts a second argument with an options object that has these
default values:

{ flags: 'w',
 encoding: null,
 mode: 0666 }

 ➤ The flags option contains the fl ags to be used when opening the fi le, so all the fl ags
accepted by fs.open() are valid here.

 ➤ The mode option specifi es the permission mode the fi le will be opened with if the fi le has to
be created.

You can also use the encoding option to force a specifi c encoding. For instance, you can use the fol-
lowing to create a fi le writable stream that assumes UTF-8 encoding:

var fs = require('fs');
var rs = fs.createWriteStream('/path/to/file', { encoding: 'utf8' });

Understanding Networking Streams

Several kinds of streams are on the networking API of Node. For instance, a client TCP connection
is both a writable stream and a readable stream, and also is a server connection.

An HTTP request object is a readable stream. An HTTP response object is a writable stream.

Each of these stream types is covered in later chapters. For now, bear in mind that these stream
types have a common interface, which means that you can use some of these objects interchangeably
and also that you can abstract some problems and solve them only once. The slow client problem
(covered in the next section) is one of these problems.

AVOIDING THE SLOW CLIENT PROBLEM AND SAVING
YOUR SERVER

Every time you have a process that reads some data and then has to send that data (or some
transformation of it) to another consumer, you have what’s usually called the slow client problem.

Understanding the Slow Client Problem

Node does not block while doing I/O. This means that Node does not block on reads or writes — it
buffers the data for you if the write cannot be fl ushed into the kernel buffers. Imagine this scenario:
You are pumping data into a writable stream (like a TCP connection to a browser), and your source
of data is a readable stream (like a fi le readable stream):

c09.indd 80c09.indd 80 21/09/12 8:51 AM21/09/12 8:51 AM

Avoiding the Slow Client Problem and Saving Your Server ❘ 81

require('http').createServer(function(req, res) {
 var rs = fs.createReadStream('/path/to/big/file');

 rs.on('data', function(data) {
 res.write(data);
 });

 rs.on('end', function() {
 res.end();
 });
}).listen(8080);

If the fi le is local, the readable stream should be fast. However, if the network connection to the
client is slow, the writable stream will be slow. The readable stream “data” events will happen
quickly, and the data will be sent to the writable stream. However, Node will eventually have to
start buffering the data because the kernel buffers will fi ll up.

What happens in practice is that the fi le will be buffered in memory for each write command.
Multiply this for every request you have, and soon you will have memory growth problems.
Generally, every time you have a data producer and a data consumer and the producer is faster than
the consumer, you have to buffer data. That is, unless you can pause the producer until the
consumer catches up.

Avoiding the Slow Client Problem

In most cases you can avoid fi lling up the memory with unfl ushed buffers by pausing the
producer — the readable stream — so that the consumer’s data — the writable stream — does not
get fl ushed into the kernel. Fortunately Node readable streams have exactly the required functionality:
You can pause and resume them. Here is an example of how you can control the fl ow:

require('http').createServer(function(req, res) {

 var rs = fs.createReadStream('/path/to/big/file');

 rs.on('data', function(data) {
 if (!res.write(data)) {
 rs.pause();
 }
 });

 res.on('drain', function() {
 rs.resume();
 });

 rs.on('end', function() {
 res.end();
 });

}).listen(8080);

Here you are creating an HTTP server listening on port 8080 that serves the content of the
fi le /path/to/big/file to all HTTP requests.

c09.indd 81c09.indd 81 21/09/12 8:51 AM21/09/12 8:51 AM

82 ❘ CHAPTER 9 READING AND WRITING STREAMS OF DATA

Line 7 pauses the readable stream if the write command cannot fl ush it to the kernel. Line 11
resumes the readable stream when the writable stream is drained.

Using stream.pipe() to Prevent the Slow Client Problem and
Assembling Readable and Writable Streams Using pipe()

This process of pausing the readable stream until the writable stream catches up and then resum-
ing it is a recurring pattern that fortunately has been captured in Node, under the stream.pipe()
command.

This command is part of the readable stream interface — making the called object the pipe
source — and accepts a destination writable stream as fi rst argument.

Here is the previous example using pipe:

require('http').createServer(function(req, res) {
 var rs = fs.createReadStream('/path/to/big/file');
 rs.pipe(res);
}).listen(8080);

By default, end() is called on the destination when the readable stream ends. You can prevent that
behavior by passing in end: false on the second argument options object like this:

require('http').createServer(function(req, res) {

 var rs = fs.createReadStream('/path/to/big/file');

 rs.pipe(res, { end: false });

 rs.on('end', function() {
 res.write("And that's all, folks!");
 res.end();
 });

}).listen(8080);

Here you are pushing the string "And that's all, folks!" when the fi le ends, and then ending
the request yourself instead of relying on the stream.pipe() method to do it for you.

SUMMARY

A stream is a wonderful abstraction that allows you to leverage Node’s architecture to easily
implement streaming from any object that implements the API.

The stream interface allows you to control the fl ow to mitigate the slow client problem, whereby
you can pause and resume a readable stream. You can automate this process by using the
stream.pipe() method, also available in any readable stream instance.

c09.indd 82c09.indd 82 21/09/12 8:51 AM21/09/12 8:51 AM

Building TCP Servers

WHAT’S IN THIS CHAPTER?

 ➤ Creating a TCP server

 ➤ Closing server-side TCP connections

 ➤ Handling network errors

 ➤ Piping data to or from a TCP connection

 ➤ Building a TCP chat server

The transmission control protocol (TCP) is one of the fundamental protocols of the Internet. It
sits on top of the Internet protocol (IP) and provides a transport mechanism for the application
layer. HTTP, for instance, works on top of TCP, as do many other connection-oriented
applications such as iRC, SMTP, and IMAP.

Node has a fi rst-class HTTP server implementation in the form of a pseudo-class in http
.Server, which descends from the TCP server pseudo-class in net.Server. This means that
everything described in this chapter applies to the Node HTTP server as well.

CREATING A TCP SERVER

You can create a TCP server using the net module like this:

require('net').createServer(function(socket) {
 // new connection

 socket.on('data', function(data) {
 // got data
 });

 socket.on('end', function(data) {

10

c10.indd 83c10.indd 83 21/09/12 8:52 AM21/09/12 8:52 AM

84 ❘ CHAPTER 10 BUILDING TCP SERVERS

 // connection closed
 });

 socket.write('Some string');

}).listen(4001);

On line 1 you use the createServer() method on the net package, which you bind to TCP port
4001 on line 14. You can pass in a callback function to createServer to be called every time there
is a “connection” event. Inside this callback you will be handed a socket object, which you can use
to send and receive data to and from the client.

Because the server object is also an event emitter, and you can listen to events during its lifecycle,
net.Server emits the following events:

 ➤ “listening” — When the server is listening on the specifi ed port and address.

 ➤ “connection” — When a new connection is established. The callback to this function will
receive the corresponding socket object. You can also bind to this event by passing a func-
tion to net.createServer(), like you did in the last example.

 ➤ “close” — When the server is closed, that is, it’s not bound to that port any more.

 ➤ “error” — When an error occurs at the server level. An error event happens, for instance,
when you try to bind to an occupied port or to a port you don’t have permission to bind to.

Listing 10-1 has an example of outputting the lifecycle of a server.

LISTING 10-1: Lifecycle example of a TCP server.

var server = require('net').createServer();

var port = 4001;

server.on('listening', function() {
 console.log('Server is listening on port', port);
});

server.on('connection', function(socket) {
 console.log('Server has a new connection');
 socket.end();
 server.close();
});

server.on('close', function() {
 console.log('Server is now closed');
});

server.on('error', function(err) {
 console.log('Error occurred:', err.message);
});

server.listen(port);

c10.indd 84c10.indd 84 21/09/12 8:52 AM21/09/12 8:52 AM

Creating a TCP Server ❘ 85

You can launch this example and, while the server is running, connect to it by using telnet or nc
like so:

$ telnet localhost 4001

or

$ nc localhost 4001

Once you connect, the server will disconnect you (because you told it to in line 11) and then close
(in line 12). You should see the following output on the server console:

Server is listening on port 4001
Server has a new connection
Server is now closed

Using the Socket Object

When you get a “connection” event you are also handed the socket object as the fi rst argument of
the callback function. This socket object is both a read and a write stream, which means that it
emits “data” events when it gets a package of data and emits the “end” event when that connection
is closed.

Because the socket object is also a writable stream, that means you can write buffers or strings to
the socket by using socket.write(). You can tell the socket that it should terminate the connection
after all data has been written by calling socket.end(). Listing 10-2 has an example TCP server
that simply echoes what you write.

LISTING 10-2: Simple echo TCP server.

var server = require('net').createServer(function(socket) {
 console.log('new connection');

 socket.setEncoding('utf8');

 socket.write("Hello! You can start typing. Type 'quit' to exit.\n");

 socket.on('data', function(data) {
 console.log('got:', data.toString())
 if (data.trim().toLowerCase() === 'quit') {
 socket.write('Bye bye!');
 return socket.end();
 }
 socket.write(data);
 });

 socket.on('end', function() {
 console.log('Client connection ended');
 });

}).listen(4001);

c10.indd 85c10.indd 85 21/09/12 8:52 AM21/09/12 8:52 AM

86 ❘ CHAPTER 10 BUILDING TCP SERVERS

Again, you can start this server, connect to it using telnet or nc, as you did before, and play
around with it. You can type quit<enter> to terminate the connection.

Because the socket object is a readable stream, you can control the fl ow by calling socket.pause()
and socket.resume(), or even pipe it into a writable stream, as shown in Listing 10-3.

LISTING 10-3: Piping out a socket.

var ws = require('fs').createWriteStream('mysocketdump.txt');

require('net').createServer(function(socket) {
 socket.pipe(ws);
}).listen(4001);

As before, you can test Listing 10-3 by using telnet or nc like this:

$ nc localhost 4001

You can type as much as you want, pressing <enter> at least once to fl ush to the server. You can
then open the mysocketdump.txt fi le and fi nd the text you typed there.

You can also accomplish the reverse, whereby you pipe a readable stream into the socket, as shown
in Listing 10-4. For that to work you have to create a fi le on the local folder named hello.txt, fi ll
it with some random text, and then run the Listing 10-4 example.

LISTING 10-4: Piping into a socket.

require('net').createServer(function(socket) {
 var rs = require('fs').createReadStream('hello.txt');
 rs.pipe(socket);
}).listen(4001);

If you try to connect to the server, you should see the text you inserted in the hello.txt fi le. The
connection will also be immediately closed. That’s because, as explained in Chapter 9, “Reading
and Writing Streams of Data,” pipe will by default also end the destination when the source ends. If
you want to keep the connection open, you should pass { end : false } into the second argument
of the pipe() command.

Understanding Idle Sockets

By default, when a new connection is set up between two peers, it is kept open until one of them
closes it or until the underlying link is lost. However, in Node you can set TCP connections to
time out because of inactivity. You can automatically close the connection when no traffi c
is being sent or received for some time. You can activate and defi ne the timeout by calling
setTimeout(milliseconds) on the connection. You can also listen for the timeout event on the
socket object.

c10.indd 86c10.indd 86 21/09/12 8:52 AM21/09/12 8:52 AM

Creating a TCP Server ❘ 87

var timeout = 60000; // 1 minute
socket.setTimeout(timeout);
socket.on('timeout', function() {
 socket.write('idle timeout, disconnecting, bye!');
 socket.end();
});

Or, you can use this shorter form by passing the event listener in the second argument of socket
.setTimeout():

socket.setTimeout(60000, function() {
 socket.end('idle timeout, disconnecting, bye!');
});

Setting Up Keep-Alive

In Node, a net.Socket can implement a keep-alive mechanism to prevent timeouts from occurring
on the network or on the peer. Node does that by sending an empty TCP packet with the ACK fl ag
turned on to trigger an empty reply from the other side. This activity will keep the connection alive
on both peers.

You can enable the keep-alive functionality by:

socket.setKeepAlive(true);

You can also specify the delay between the last packet received and the next keep-alive packet. You
do so on the second argument to the socket.keepAlive() call like this:

socket.setKeepAlive(true, 10000); // 10 seconds

NOTE This keep-alive setting is not related to the socket timeout setting
discussed earlier. The socket.setKeepAlive() setting periodically sends an
empty packet to keep the connection alive, whereas socket.setTimeout()is
used to defi ne a local inactivity timeout.

Using Delay or No Delay

The kernel buffers the data before sending the TCP packets, and it uses Nagle’s algorithm to
determine when to actually send the data. This algorithm is used to reduce the number of packets
that are sent across the network when an application sends small chunks of data. Depending on the
application, this feature may turn out to be quite useful, but it introduces some delay in sending
the data, which may add up to overall latency in your application.

c10.indd 87c10.indd 87 21/09/12 8:52 AM21/09/12 8:52 AM

88 ❘ CHAPTER 10 BUILDING TCP SERVERS

If you want to turn this off and force data to be sent immediately after each write command,
use this:

socket.setNoDelay(true);

Of course, you can always revert this setting like this:

socket.setNoDelay(false);

Listening for Client Connections

As you saw, after the server is created, you can bind it to a specifi c TCP port like this:

var port = 4001;
var host = '0.0.0.0';
server.listen(port, host);

The second argument (host) is optional. If it’s omitted, the server will accept connections directed to
any IP address:

server.listen(port);

Closing the Server

This method closes the server, preventing it from accepting new connections. This function is
asynchronous, and the server will emit the close event when it closes:

var server = ...
server.close();
server.on('close', function() {
 console.log('server closed!');
});

Handling Errors

When handling a socket on the client or the server you can (and should) handle errors by listening to
the error event like this:

require('net').createServer(function(socket) {
 socket.on('error', function(error) {
 // do something
 });
});

If you fail to catch an error, Node will handle an uncaught exception and terminate the current
process.

c10.indd 88c10.indd 88 21/09/12 8:52 AM21/09/12 8:52 AM

Building a Simple TCP Chat Server ❘ 89

NOTE You can choose to catch uncaught exceptions — preventing your Node
process from being terminated — by doing something like this:

process.on('uncaughtException', function(err) {
 // do something
});

However, this practice is generally not a good idea because when an exception
happens and you don’t handle it properly, your application may get into an
unknown state, which may later introduce more and stranger errors. Also, errors
can lead to more errors, making it harder to understand the root cause. If you
do this, you will also probably leak memory or resources (like fi le descriptors)
because errors were not handled when they should have been.

In general, you should use this event only to report everything you can about
your application and then shut down your process.

BUILDING A SIMPLE TCP CHAT SERVER

Now you should be prepared to start building a TCP-based chat server. You can start by instantiating
the server, logging some important events, and then binding the server to port 4001:

LISTING 10-5: The TCP chat server — step 1.

var net = require('net');

var server = net.createServer();

server.on('error', function(err) {
 console.log('Server error:', err.message);
});

server.on('close', function() {
 console.log('Server closed');
});

server.listen(4001);

Accepting Connections

Next, you need to accept new client connections:

c10.indd 89c10.indd 89 21/09/12 8:52 AM21/09/12 8:52 AM

90 ❘ CHAPTER 10 BUILDING TCP SERVERS

LISTING 10-6: The TCP chat server — step 2.

var net = require('net');

var server = net.createServer();

server.on('connection', function(socket) {
 console.log('got a new connection');
});

server.on('error', function(err) {
 console.log('Server error:', err.message);
});

server.on('close', function() {
 console.log('Server closed');
});

server.listen(4001);

Reading Data from a Connection

Every time the server gets a new connection, you need it to listen for the incoming data by binding
to the data event.

LISTING 10-7: The TCP chat server — step 3.

var net = require('net');

var server = net.createServer();

server.on('connection', function(socket) {
 console.log('got a new connection');
 socket.on('data', function(data) {
 console.log('got data:', data);
 });
});

server.on('error', function(err) {
 console.log('Server error:', err.message);
});

server.on('close', function() {
 console.log('Server closed');
});

server.listen(4001);

Collecting All the Clients

Because you’re creating a chat server in which you have to broadcast the user data to everyone, the
fi rst step is to store all the connections in a central place.

c10.indd 90c10.indd 90 21/09/12 8:52 AM21/09/12 8:52 AM

Building a Simple TCP Chat Server ❘ 91

LISTING 10-8: The TCP chat server — step 4.

var net = require('net');

var server = net.createServer();

var sockets = [];

server.on('connection', function(socket) {
 console.log('got a new connection');

 sockets.push(socket);

 socket.on('data', function(data) {
 console.log('got data:', data);
 });

});

server.on('error', function(err) {
 console.log('Server error:', err.message);
});

server.on('close', function() {
 console.log('Server closed');
});

server.listen(4001);

Broadcasting Data

Every time a connected user types anything, you need to send it to every other connected user.

LISTING 10-9: The TCP chat server — step 5.

var net = require('net');

var server = net.createServer();

var sockets = [];

server.on('connection', function(socket) {
 console.log('got a new connection');

 sockets.push(socket);

 socket.on('data', function(data) {
 console.log('got data:', data);

 sockets.forEach(function(otherSocket) {
 if (otherSocket !== socket) {
 otherSocket.write(data);

continues

c10.indd 91c10.indd 91 21/09/12 8:52 AM21/09/12 8:52 AM

92 ❘ CHAPTER 10 BUILDING TCP SERVERS

 }
 });
 });

});

server.on('error', function(err) {
 console.log('Server error:', err.message);
});

server.on('close', function() {
 console.log('Server closed');
});

server.listen(4001);

Removing Closed Connections

You’re still missing at least one step — you also have to remove the connection when it gets closed,
as shown in Listing 10-10.

LISTING 10-10: Simple TCP chat server.

var net = require('net');

var server = net.createServer();

var sockets = [];

server.on('connection', function(socket) {
 console.log('got a new connection');

 sockets.push(socket);

 socket.on('data', function(data) {
 console.log('got data:', data);

 sockets.forEach(function(otherSocket) {
 if (otherSocket !== socket) {
 otherSocket.write(data);
 }
 });
 });

 socket.on('close', function() {
 console.log('connection closed');
 var index = sockets.indexOf(socket);
 sockets.splice(index, 1);
 });

LISTING 10-9 (continued)

c10.indd 92c10.indd 92 21/09/12 8:52 AM21/09/12 8:52 AM

Summary ❘ 93

});

server.on('error', function(err) {
 console.log('Server error:', err.message);
});

server.on('close', function() {
 console.log('Server closed');
});

server.listen(4001);

Using Your TCP Chat Server

Now you should be ready to test your server. You can save the fi le to chat_server.js and launch it
through the command line:

$ node chat_server.js

You can now connect to that server using nc or telnet:

$ nc localhost 4001

If you can, try launching several of these in separate terminal windows. You can then see the chat
server in action.

SUMMARY

A TCP server will emit certain events during its lifecycle, namely, “listening” events when you set
it to listen on a certain port, “close” events when it gets closed, and “error” events when an error
occurs. You can also listen for “connection” events, which occur when a new client connects.
This connection event will serve you a socket object that is both a readable stream and a writable
stream. You can use this object to listen for data, send data, end the connection, and even pipe the
connection data into another stream. You can also do the opposite, piping a readable stream into
the connection.

The socket object allows you to control its fl ow by using socket.pause() and socket.resume().
It also allows you to tweak some of its parameters. For example, you can close the connection
when it’s been idle for some time, frequently send a keep-alive packet, or turn on or off Nagle’s
algorithm.

You can also create a TCP server that handles many connections and can use it for clients to
communicate with each other in some form, as in the example of the chat server you created here.

c10.indd 93c10.indd 93 21/09/12 8:52 AM21/09/12 8:52 AM

c10.indd 94c10.indd 94 21/09/12 8:52 AM21/09/12 8:52 AM

11
Building HTTP Servers

WHAT’S IN THIS CHAPTER?

 ➤ Creating an HTTP server

 ➤ Making an HTTP server listen on a port

 ➤ Handling HTTP requests

 ➤ Observing request headers

 ➤ Listening for and piping request data

 ➤ Replying with a status code and headers

 ➤ Replying with a body

 ➤ Using HTTP chunked responses to stream the response body

HTTP is an application-level protocol for content and application delivery. It uses TCP as its
transport protocol, and it is the foundation of data communication for the World Wide Web.
One of the preferred application deployment mechanisms is to provide an HTTP service on the
Internet that answers HTTP client requests.

You can easily create an HTTP server in Node. Here is the famous “Hello World!” HTTP
server example, as seen in Listing 11-1.

LISTING 11-1: A “Hello World!” HTTP server.

var http = require('http');

var server = http.createServer();

server.on('request', function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});

continues

c11.indd 95c11.indd 95 21/09/12 8:52 AM21/09/12 8:52 AM

96 ❘ CHAPTER 11 BUILDING HTTP SERVERS

 res.write('Hello World!');
 res.end();
});

server.listen(4000);

On line 1 you obtain the http module, from which you can create a server object by calling
http.createServer() (line 3).

You then listen for request events, which happen when a new client connects. The event callback
you provide gets called with two arguments: the request and the response objects. You can then
use the request object to learn details about this request and use the response object to write back
to the client.

On line 6 you write a header ('ContentType': 'text/plain') and the HTTP status 200, which
is a code that indicates the request succeeded.

On line 7 you reply with the string “Hello World!”, and on line 8 you terminate the request.

On line 11 you bind the server to the TCP port 4000.

You can then save this script into a fi le named server.js and start it like this:

$ node server.js

Then you can point your browser to http://localhost:4000, and you should see the “Hello
World!” string on it.

This whole example can be shortened, as seen in Listing 11-2.

LISTING 11-2: A shortened “Hello World!” HTTP server.

require('http').createServer(function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World!');
}).listen(4000);

Here you are giving up the intermediary variables for storing the http module (because you need
to call it only once) and the server (because you only need to make it listen on port 4000). Also, as
a shortcut, the http.createServer() function accepts a callback function that will be invoked on
every request.

Here is one last shortcut: The response.end() function can accept a string or buffer, which it will
write to the response before ending the request.

When a client makes a request, the HTTP server emits a request event, passing in HTTP
request and HTTP response objects. The HTTP request object allows you to query some of
the request properties, and the HTTP response allows you to build an HTTP response that will be
sent to the client. In the next sections, you will learn about these objects and how you can use them
to accomplish these tasks.

LISTING 11-1 (continued)

c11.indd 96c11.indd 96 21/09/12 8:52 AM21/09/12 8:52 AM

http://localhost:4000

Understanding the http.ServerRequest Object ❘ 97

UNDERSTANDING THE HTTP.SERVERREQUEST OBJECT

When listening for request events, the callback gets an http.ServerRequest object as the fi rst
argument. This object contains some properties you can inspect, including the url, method, and
headers properties:

 ➤ req.url: This property contains the requested URL as a string. It does not contain the
schema, hostname, or port, but it contains everything after that. Try running the following
server to analyze the request property:

require('http').createServer(function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end(req.url);
}).listen(4000);

Open http://127.0.0.1:4000/abc using a browser. Change the path in the URL to see
how it behaves.

 ➤ req.method: This contains the HTTP method used on the request. It can be, for example,
GET, POST, DELETE, or HEAD.

 ➤ req.headers: This contains an object with a property for every HTTP header on the
request. To analyze it, you can run this server:

var util = require('util');
require('http').createServer(function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end(util.inspect(req.headers));
}).listen(4000);

Connect your browser to http://127.0.0.1:4000 to inspect the headers of your request.
Your server should output something like this:

{ host: 'localhost:4000',
 connection: 'keep-alive',
 'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_2)
AppleWebKit/535.2
(KHTML, like Gecko) Chrome/15.0.874.121 Safari/535.2',
 accept:
'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
 'accept-encoding': 'gzip,deflate,sdch',
 'accept-language': 'en-US,en;q=0.8',
 'accept-charset': 'ISO-8859-1,utf-8;q=0.7,*;q=0.3' }

Here you are using util.inspect(), a utility function that analyzes the properties of any
object.

The header object property keys are lowercase. For instance, if the browser sent
a "Cache-Control: max-age=0" header, req.headers will have a property named
"cache-control" with the value "max-age=0". Values are untouched.

c11.indd 97c11.indd 97 21/09/12 8:52 AM21/09/12 8:52 AM

http://127.0.0.1:4000/abc
http://127.0.0.1:4000

98 ❘ CHAPTER 11 BUILDING HTTP SERVERS

When you get the request event on a server, you don’t immediately get the body of that request,
simply because it has not arrived yet. But if you want to, you can listen for data events, or even pipe
the request body into a WriteStream, such as a fi le or a TCP connection, because the request object
is a ReadStream:

var writeStream = ...

require('http').createServer(function(req, res) {
 req.on('data', function(data) {
 writeStream.write(data);
 });
}).listen(4001);

UNDERSTANDING THE HTTP.SERVERRESPONSE OBJECT

The response object (the second argument for the request event callback function) is used to reply
to the client. With it you can write the headers and write the body.

Writing a Header

To write a header, use res.writeHead(status, headers), where headers is an optional argument
with an object containing a property for every header you want to send. Consider this example:

require('http').createServer(function(req, res) {

 res.writeHead(200, {
 'Content-Type': 'text/plain',
 'Cache-Control': 'max-age=3600' });

 res.end('Hello World!');

}).listen(4000);

This example sets two headers, one labeled "Content-Type: text/plain" and another labeled
"Cache-Control: max-age=3600".

If you save the previous source code into http_server.js and run it with:

$ node http_server.js

you can query it by using your browser or using a command-line HTTP client like curl:

$ curl -i http://localhost:4000
HTTP/1.1 200 OK
Content-Type: text/plain
Cache-Control: max-age=3600
Connection: keep-alive
Transfer-Encoding: chunked
Hello World!

c11.indd 98c11.indd 98 21/09/12 8:52 AM21/09/12 8:52 AM

http://localhost:4000

Streaming HTTP Chunked Responses ❘ 99

Changing or Setting a Header

You can change a header you already set or set a new one by using the following:

res.setHeader(name, value);

This works only if you haven’t already sent a piece of the body by using res.write() or
res.end(). This also fails to work if you have already used res.writeHead() on that response
object, because the headers also will have already been sent.

Removing a Header

You can remove a header you have already set by calling res.removeHeader and providing the
header name:

res.removeHeader('Cache-Control');

Again, this works only if the headers for that response haven’t already been sent.

Writing a Piece of the Response Body

An HTTP server sends the response body after sending the response headers. Two ways to do this
are to write a string:

res.write('Hello');

or use an existing buffer:

var buffer = new Buffer('Hello World');
res.write(buffer);

STREAMING HTTP CHUNKED RESPONSES

One of the great features of Node is the ability to consume and produce streams easily from differ-
ent sources. Because HTTP is a fi rst-class protocol in Node, the HTTP responses are no different.

HTTP chunked encoding allows a server to keep sending data to the client without ever sending the
body size. Unless you specify a Content-Length header, the Node HTTP server sends the following
header to the client:

Transfer-Encoding: chunked

According to the HTTP specifi cation, this header makes the client accept several chunks of data
as the response body, sending a fi nal chunk with a length of 0 before the client can terminate the
response. This can be useful for streaming text, audio, or video data into the HTTP client.

Some examples of streaming using this HTTP server feature are piping a fi le and piping the output
of another process, both described next.

c11.indd 99c11.indd 99 21/09/12 8:52 AM21/09/12 8:52 AM

100 ❘ CHAPTER 11 BUILDING HTTP SERVERS

Piping a File

You can pipe any ReadStream into the response. Here is an example that pipes a fi le into the
response. First you have to have an .mp4 fi le (a movie) named “test.mp4” in your current directory.
Then run the server shown in Listing 11-3.

LISTING 11-3: Piping a movie to the HTTP response.

var fs = require('fs');

require('http').createServer(function(req, res) {
 res.writeHead(200, {'Content-Type': 'video/mp4'});
 var rs = fs.createReadStream('test.mp4');
 rs.pipe(res);
}).listen(4000);

With every request in Listing 11-3, you are writing the header response status and setting the
 content type header so that the browser correctly identifi es the type of stream you are delivering
to it. Then you are opening the movie fi le as a ReadStream and piping it to the response
WriteStream.

If you open your browser to http://127.0.0.1:4000 on any modern browser, the movie should
start playing immediately, even though it’s not fully loaded.

Piping the Output of Another Process

Listing 11-4 shows an example that pipes the output of a child process into the client.

LISTING 11-4: Piping the output of a process to the HTTP response.

var spawn = require('child_process').spawn;

require('http').createServer(function(req, res) {
 var child = spawn('tail', ['-f', '/var/log/system.log']);
 child.stdout.pipe(res);
 res.on('end', function() {
 child.kill();
 });
}).listen(4000);

Here, when there is a new request, you launch a new child process by executing the command
tail -f /var/log/system.log (line 4), which produces a child process. Then you are piping the
output of that child process into the response body (line 5).

When the response ends (because the browser window was closed, or the network connection
was severed, for instance), you need to kill the child process so it does not hang around afterward
indefi nitely.

So Listing 11-4 — in nine lines of code — shows you the power of Node by building a streaming
server that spawns, pipes the output of a process, and then kills the child process as needed.

c11.indd 100c11.indd 100 21/09/12 8:52 AM21/09/12 8:52 AM

http://127.0.0.1:4000

Example 1: Building a Server that Serves Static Files ❘ 101

SHUTTING DOWN THE SERVER

You can stop an HTTP server from accepting new connections by unbinding it from the port like this:

server.close();

If you want it to start listening again, you have to repeat the following:

server.listen(port[, hostname]);

Following are some examples of simple HTTP servers you can build without any third-party modules.

EXAMPLE 1: BUILDING A SERVER THAT SERVES STATIC FILES

In this example, you’ll be building an HTTP server that serves static fi les (see Listing 11-5). The fi le
path is provided in the URL like this:

http://localhost:4000/path/to/my/file.txt

LISTING 11-5: Simple HTTP static fi le server.

var path = require('path'),
 fs = require('fs');

require('http').createServer(function(req, res) {
 var file = path.normalize('.' + req.url);
 console.log('Trying to serve', file);

 function reportError(err) {
 console.log(err);
 res.writeHead(500);
 res.end('Internal Server Error');
 }

 path.exists(file, function(exists) {
 if (exists) {
 fs.stat(file, function(err, stat) {
 var rs;

 if (err) {
 return reportError(err);
 }

 if (stat.isDirectory()) {
 res.writeHead(403); res.end('Forbidden');
 } else {
 rs = fs.createReadStream(file);

 rs.on('error', reportError);

 res.writeHead(200);

continues

c11.indd 101c11.indd 101 21/09/12 8:52 AM21/09/12 8:52 AM

http://localhost:4000/path/to/my/file.txt

102 ❘ CHAPTER 11 BUILDING HTTP SERVERS

 rs.pipe(res);
 }
 });
 } else{
 res.writeHead(404);
 res.end('Not found');
 }
 });
}).listen(4000);

EXAMPLE 2: MAKING USE OF HTTP CHUNKED
RESPONSES AND TIMERS

In this example, you’ll be making an HTTP server that outputs plain text with 100 newline-
 separated timestamps every second (see Listing 11-6).

LISTING 11-6: HTTP chunked response and timers example.

require('http').createServer(function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 var left = 10;
 var interval = setInterval(function() {
 for(var i = 0; i< 100; i++) {
 res.write(Date.now() + " ");
 }
 if (-- left === 0) {
 clearInterval(interval);
 res.end();
 }
 }, 1000);
}).listen(4000);

SUMMARY

The Node http allows you to create an HTTP server and make it listen on a specifi c port and host.
You can then listen to new request events where, for each request, a callback function gets the
 corresponding ServerRequest and ServerResponse objects.

You can observe some properties from the request object like the request URL and the headers. The
ServerRequest object is also a ReadStream, meaning that you can, among other things, listen for
data events containing streamed body data parts, and even pipe that data into another stream.

With the ServerResponse object you can reply to the client by setting the HTTP response status
and sending the response headers. You can also write to the response body or even pipe any
ReadStream into it. In cases where you don’t know the content length or you want a continuous
response stream, you can use the HTTP chunked response protocol to stream the content body,
where the server sends several chunks of the response body.

LISTING 11-5 (continued)

c11.indd 102c11.indd 102 21/09/12 8:52 AM21/09/12 8:52 AM

12
Building a TCP Client

WHAT’S IN THIS CHAPTER?

 ➤ Connecting to a TCP server

 ➤ Sending and receiving data from a TCP server

 ➤ Reconnecting a broken connection

Sitting a level above IP, TCP is one of the most used transport protocols on the Internet, on
top of which sit application protocols like HTTP. TCP is a connection-oriented protocol,
which means that one endpoint requests and establishes a dedicated connection to another
endpoint. This connection is a two-way dedicated stream into which both endpoints can send
and receive data to/from each other at the same time. TCP guarantees that the messages you
receive are in order. It has built-in mechanisms for fl ow control, making it a good platform for
supporting machine-to-machine and human-to-machine protocols.

As you will see, Node makes it easy to build a TCP client that establishes a connection to
another endpoint, usually what is called a TCP server. This connection then forms two
streams of data that allow you to interact with the remote endpoint: One is a readable stream
that receives data, and the other is a writable stream that writes data.

NOTE One point you should keep in mind is that when you write to a TCP
stream, you receive no acknowledgment that the other side has received the data.
Even worse, because the underlying network implementation may chop and
route your packets haphazardly, the other endpoint may have received only part
of the message you sent (even though TCP internally tries to resend the packets
that have been lost or corrupted). Remember that TCP guarantees only that the
packets are received in order by the application, not that they are received at all.

continues

c12.indd 103c12.indd 103 21/09/12 8:52 AM21/09/12 8:52 AM

104 ❘ CHAPTER 12 BUILDING A TCP CLIENT

(continued)

Furthermore, TCP is not message-oriented; it just provides a continuous
stream of data. If you need to distinguish individual messages, you need to
implement a framing protocol that specifi es where each message starts and
ends.

HTTP, for instance, solves these problems whereby an application needs
a request-response workfl ow from a server and request and response messages
are clearly delimited.

CONNECTING TO A SERVER

You can connect to a TCP server using the net module like this:

var net = require('net');
var port = 4000;
var conn = net.createConnection(port);

Note that the second argument for the net.createConnection function is omitted, which is the
hostname that you want to connect to. If absent, this hostname defaults to “localhost.”

var net = require('net');
var port = 4000;
var host = "www.acme.com";
var conn = net.createConnection(port, host);

You can be notifi ed when the connection is established by passing a callback function as the last
argument, like this:

function connectionListener(conn) {
 console.log('We have a new connection');
}

var conn = net.createConnection(port, host, connectionListener);

If you are connecting to the local host, you can omit the host argument, passing the connection
 listener callback function as the second argument.

var conn = net.createConnection(port, connectionListener);

You can instead listen for the connect event emitted by the conn object:

conn.once('connect', connectionListener);

c12.indd 104c12.indd 104 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.acme.com

Ending the Connection ❘ 105

SENDING AND RECEIVING DATA

The return value of the call to net.createConnection()is an instance of net.Socket, which
 represents the connection to the server and is both a readable and a writeable stream. It allows you
to send some data:

conn.write('here is a string for you!');

You can also pass a string and specify the string encoding:

conn.write('SGVsbG8gV29ybGQh', 'base64');

You can also write a raw buffer to the server:

var buffer = new Buffer('Hello World!');
conn.write(buffer);

In any of these variants you can pass in a callback function:

conn.write('Hey!', function() {
 console.log('data was written out');
});

Note that the callback is not invoked when the server receives the data, only when the data is
 written to the network.

You can receive data from the server by listening to the data event emitted by the connection every
time data is available:

conn.on('data', function(data) {
 console.log('some data has arrived:', data);
});

If you don’t specify the stream encoding, the data that is passed in will be a buffer. If you want that
buffer to be encoded before being emitted, you need to specify it by using setEncoding:

conn.setEncoding('base64');

As covered in Chapter 4, “Using Buffers to Manipulate, Encode, and Decode Binary Data,” you can
use ascii, utf8, or base64 as your encoding identifi ers.

ENDING THE CONNECTION

You can close the connection from your endpoint by using the connection end method:

conn.end();

c12.indd 105c12.indd 105 21/09/12 8:52 AM21/09/12 8:52 AM

106 ❘ CHAPTER 12 BUILDING A TCP CLIENT

This will schedule the connection to end after all the data has been written out. As you’re ending the
connection, you can also send some data (a buffer or a string):

conn.end('Bye bye!', 'utf8');

This is equivalent to:

conn.write('Bye bye!', 'utf8');
conn.end();

WARNING When you’re ending the connection you’re queuing that operation,
which means that the connection does not end immediately. Also, when the
 connection gets “ended,” a FIN packet is sent, which means that the server can
still send some data through.

For these two reasons, you can still receive “data” events after you have ended
the connection.

HANDLING ERRORS

Errors can happen when you are trying to establish a connection — the hostname is not found on DNS,
the target host is not reachable, or the connection is rejected — or a network error happens when you
already had an established connection. You can trap errors by listening to the error event like this:

conn.on('error', function(err) {
 console.error('this error happened:' + err.message +
 ', code: ' + err.code);
});

Besides the message property, networking-related errors also have the code property, which is a
string that you can inspect and test against. For instance, if the requested connection is refused, you
get an ECONNREFUSED code.

var net = require('net');
var conn = net.createConnection('82837');
conn.on('error', function(err) {
 console.log('I got this error code: ' + err.code);
});

This last piece of code should output the following:

I got this error code: ECONNREFUSED

BUILDING AN EXAMPLE COMMAND-LINE TCP CLIENT

Next you will build a simple TCP client that tries to connect to a server and then you will send
and receive some data from it. You will use the TCP server you built in Chapter 10, “Building TCP
Servers,” and implement a client to it.

c12.indd 106c12.indd 106 21/09/12 8:52 AM21/09/12 8:52 AM

Building an Example Command-Line TCP Client ❘ 107

First you need to launch the TCP server in the background and leave it listening on port 4000, ready
for your client-to-be to connect to.

Connecting to the Server

Here you are connecting to the server port 4000 in the local host. You are also listening for any
error that may occur.

var net = require('net');
var port = 4000;
var conn = net.createConnection(port);

conn.on('connect', function() {
 console.log('connected to server');
});

conn.on('error', function(err) {
 console.log('Error in connection:', err);
});

Sending the Command Line to the Server

When a Node process starts, process.stdin is a stream prepared to accept user keyboard input.
This ReadStream will emit “data” events, but only after you resume it; that stream is initialized in
the paused state. You can resume it by calling the resume method on the stream:

process.stdin.resume();

Now you have a writable stream to the server and a readable stream from the user input. You can
glue them together by using the pipe method like this:

process.stdin.pipe(conn);

Now, every time the process.stdin stream is fl ushed — which usually happens after the user
enters a new line character — the data is piped to the server through the conn writable stream.

Printing Server Messages

You can print every message that the server sends to the process standard output stream. The easiest
way to do that is to pipe the connection output like this:

conn.pipe(process.stdout);

However, there is one problem with the last command. It happens that, by default, sourceStream
.pipe(targetStream) ends the target stream as soon as the source stream ends, which means
that the process standard output stream will close after the connection is closed, which is not the
effect you are looking for. Fortunately, the .pipe() method accepts an end option that, when set to
false, prevents that from happening.

conn.pipe(process.stdout, {end: false});

c12.indd 107c12.indd 107 21/09/12 8:52 AM21/09/12 8:52 AM

108 ❘ CHAPTER 12 BUILDING A TCP CLIENT

Reconnecting if the Connection Dies

A TCP connection may be closed by the remote server or in the event of a network problem or even
if your connection is idling for too long. In any case, if your application so requires, it’s easy to
reconnect to the server, as seen in Listing 12-1.

LISTING 12-1: A TCP client that reconnects immediately.

var net = require('net');
var port = 4000;
var conn;

process.stdin.resume();

(function connect() {
 conn = net.createConnection(port);

 conn.on('connect', function() {
 console.log('connected to server');
 });

 conn.on('error', function(err) {
 console.log('Error in connection:', err);
 });

 conn.on('close', function() {
 console.log('connection got closed, will try to reconnect');
 connect();
 });

 conn.pipe(process.stdout, {end: false});
 process.stdin.pipe(conn);
}());

Here you are connecting by immediately invoking the local function named connect.

When an error on the connection occurs, you will get an error event, then the connection will
close, which will then trigger a close event. When the close event happens, this code tries to
 reconnect immediately (you will later see why this may be a bad idea) by invoking the local function
named connect, which goes through all the connecting logic again.

You can test this process. While connected, terminate the server and then start it again. You should
then see the client reconnecting successfully.

However, it is not recommended that you reconnect immediately after you get disconnected or that
you keep retrying to connect forever. Doing so can create a kind of loop, fl ooding your network
with connection requests. The server will probably be unreachable for a few milliseconds after
the disconnection. Instead, wait a bit for the network conditions to improve or for the service to
come back online. You should also quit trying to reconnect after a number of failed attempts have
occurred — at this point, the problem is probably not going to be solved by reconnecting: It can be
a permanent network or server problem. The user should be informed and your program should
stop trying to reconnect automatically, at least for a considerable amount of time.

c12.indd 108c12.indd 108 21/09/12 8:52 AM21/09/12 8:52 AM

Building an Example Command-Line TCP Client ❘ 109

In Listing 12-2 you set the retry interval to an arbitrary value of three seconds. You also cap the
number of repeated failed retries to 10. These are both arbitrary numbers that you should defi ne
based on your specifi c application.

LISTING 12-2: A TCP client that attempts to reconnect.

var net = require('net');
var port = 4000;
var conn;

var retryInterval = 3000; // 3 seconds
var retriedTimes = 0;
var maxRetries = 10;

process.stdin.resume();

(function connect() {
 function reconnect() {
 if (retriedTimes >= maxRetries) {
 throw new Error('Max retries have been exceeded, I give up.');
 }
 retriedTimes += 1;
 setTimeout(connect, retryInterval);
 }

 conn = net.createConnection(port);

 conn.on('connect', function() {
 retriedTimes = 0;
 console.log('connected to server');
 });

 conn.on('error', function(err) {
 console.log('Error in connection:', err);
 });

 conn.on('close', function() {
 console.log('connection got closed, will try to reconnect');
 reconnect();
 });

 process.stdin.pipe(conn, {end: false});
}());

Here you are tracking how many times you have tried to connect after the last successful
 connection by storing a counter in the retriedTimes variable. Once you connect successfully,
the retriedTimes variable is reset to 0.

Closing the Connection

To close the connection you just have to call conn.end() like this:

conn.end();

c12.indd 109c12.indd 109 21/09/12 8:52 AM21/09/12 8:52 AM

110 ❘ CHAPTER 12 BUILDING A TCP CLIENT

In this simple application, you know that the application user wants to disconnect when he or she
types quit in the console. You can detect this event and act accordingly:

process.stdin.on('data', function(data) {
 if (data.toString().trim().toLowerCase() === 'quit') {
 conn.end();
 process.stdin.pause();
 }
});

Note that you are also ending the standard input stream, letting Node know you are not interested
in it.

This does not work very well because you are still trying to pipe everything to the server regardless
if it is the string quit or not, which means you might be sending data to a closed connection.
Instead you need to remove the following piping command:

process.stdin.pipe(conn);

You must send that data only when the user is not quitting:

process.stdin.on('data', function(data) {
 if (data.toString().trim().toLowerCase() === 'quit') {
 console.log('quitting...');
 conn.end();
 process.stdin.end();
 } else {
 conn.write(data);
 }
});

When the connection is closed, the client will try to reconnect, overriding the user instructions.
You therefore have to keep a fl ag indicating that the user wants to exit, which will guard against
 reconnecting in this case:

var quitting = false;
// ...

process.stdin.on('data', function(data) {
 if (data.toString().trim().toLowerCase() === 'quit') {
 quitting = true;
 console.log('quitting...');
 conn.end();
 process.stdin.pause();
 } else {
 conn.write(data);
 }
});

// ...

conn.on('close', function() {

c12.indd 110c12.indd 110 21/09/12 8:52 AM21/09/12 8:52 AM

Building an Example Command-Line TCP Client ❘ 111

 if (! quitting) {
 console.log('connection got closed, will try to reconnect');
 reconnect();
 }
});

Putting the Client Together

Listing 12-3 shows the full source code for a TCP client that reconnects and quits.

LISTING 12-3: A new version of the command-line TCP client that reconnects when disconnected.

var net = require('net');
var port = 4000;
var quitting = false;
var conn;
var retryTimeout = 3000; // 3 seconds

var retriedTimes = 0;
var maxRetries = 10;

process.stdin.resume();

process.stdin.on('data', function(data) {
 if (data.toString().trim().toLowerCase() === 'quit') {
 quitting = true;
 console.log('quitting...');
 conn.end();
 process.stdin.pause();
 } else {
 conn.write(data);
 }
});

(function connect() {
 function reconnect() {
 if (retriedTimes >= maxRetries) {
 throw new Error('Max retries have been exceeded, I give up.');
 }
 retriedTimes += 1;
 setTimeout(connect, retryTimeout);
 }

 conn = net.createConnection(port);

 conn.on('connect', function() {
 retriedTimes = 0;
 console.log('connected to server');
 });

 conn.on('error', function(err) {
 console.log('Error in connection:', err);

continues

c12.indd 111c12.indd 111 21/09/12 8:52 AM21/09/12 8:52 AM

112 ❘ CHAPTER 12 BUILDING A TCP CLIENT

 });

 conn.on('close', function() {
 if (! quitting) {
 console.log('connection got closed, will try to reconnect');
 reconnect();
 }
 });

 conn.pipe(process.stdout, {end: false});

}());

SUMMARY

TCP is a connection-oriented protocol that handles message ordering and fl ow-control for you. TCP
can be a good transport layer on top of which you can build client-server protocols.

Building a TCP client in Node is easy. When you try to establish a connection to a TCP server,
net.createConnection() returns a net.Socket instance, which is both a readable and a
 writable stream that you can pipe data from and to. You can then send and receive data from that
 connection, either as raw buffers or as encoded strings.

You should listen to error events coming from a connection, and you can also detect when a
 connection is closed. You can use the close event to try to reestablish a connection, but you must be
careful when trying to do this. Wait some time between retries and set a maximum number of failed
attempts to prevent your app from looping indefi nitely.

LISTING 12-3 (continued)

c12.indd 112c12.indd 112 21/09/12 8:52 AM21/09/12 8:52 AM

13
Making HTTP Requests

WHAT’S IN THIS CHAPTER?

 ➤ Making GET requests to an HTTP server

 ➤ Using various HTTP verbs on HTTP requests

 ➤ Inspecting request response status and headers

 ➤ Using the third-party request module

HTTP has become a central part of the infrastructure of many private and public services on
the Internet. Not only used to serve static content, HTTP has become the preferred way of
serving and consuming public-facing API calls.

Because it is good at handling I/O, Node is a good fi t not only for providing but also for using
these HTTP services. In the following sections you will learn to perform and control HTTP
requests using the core http module and a useful third-party request module.

In the HTTP protocol, the request has two important properties: the URL and the method.
The most common method used is the GET method, which is mainly used to request content,
but other methods exist like POST (mainly used for submitting web forms), PUT, DELETE,
and HEAD. Each one gets different results from the server.

MAKING GET REQUESTS

This example uses http.get to make an HTTP GET request to the URL
www.google.com:80/index.html.

var http = require('http');

var options = {

c13.indd 113c13.indd 113 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.google.com:80/index.html

114 ❘ CHAPTER 13 MAKING HTTP REQUESTS

 host: "www.google.com",
 port: 80,
 path: "/index.html"
};

http.get(options, function(res) {
 console.log('Got response:' + res.statusCode);
});

Here you are specifying that you want to perform a GET request to the hostname www.google
.com and path /index.html, using TCP port 80. The callback is invoked when a response arrives,
handing you the response object. Later in this chapter you’ll learn what you can do with this
response object.

USING OTHER HTTP VERBS

http.get is a shortcut for the generic http.request. The options are as follows:

 ➤ host — The hostname or IP address you want to make the request to.

 ➤ port — The TCP port of the remote server.

 ➤ method — A string specifying the HTTP request method. Possible values are GET (which
is the default method), POST, PUT, DELETE, HEAD, or any other verb the target will
understand.

 ➤ path — The request path, which should include a query string and fragments, if any, for
example, /index?page=2.

 ➤ headers — An object containing the request headers in value-name pairs. An example of
a headers object is as follows:

{
 "Accept" : "text/json",
 "If-Modified-Since" : "Sat, 28 Jan 2012 00:00:52 GMT"
}

The http.request function returns an http.ClientRequest object, which is a writable stream.
You can use this stream to send data as part of the request body. When you are fi nished writing the
request body, end the stream to terminate the request.

Here is an example where you write some body content into http://my.server.com/upload:

var http = require('http');
var options = {
 host: "www.google.com",
 port: 80,
 path: "/upload",
 method: "POST"
};

var request = http.request(options, function(response) {

c13.indd 114c13.indd 114 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.google.com
http://www.google.com
http://www.google.com
http://www.google.com
http://my.server.com/upload

Using Other HTTP Verbs ❘ 115

 console.log('STATUS:', response.statusCode);
 console.log('HEADERS:', response.headers);
 response.setEncoding('utf8');
 response.on('data', function (chunk) {
 console.log('BODY:', chunk);
 });
});
request.write('This is a piece of data.\n');
request.write('This is another piece of data.\n');
request.end();

The http.request function returns the ClientRequest object to which you can write the body
parts by calling request.write(). You can pass in an encoded string — by using request
.write(str, encoding)— a UTF-8 string, or even a raw buffer. You must end the request with
request.end(). If you don’t end the request, the server will not recognize this request as complete
and will not reply.

If the server is accessible and functioning, you should get a response that triggers the response
event. You can bind to the response event on the request object like so:

function responseHandler(res) {
 console.log('I got a response:', res);
}

request.on('response', responseHandler);

You can also pass a callback function as the second argument to the http.request() call. That
callback function will also be invoked when there is a response from the server.

This callback will have the response object as the fi rst and sole argument. By looking at this object, you
can fi nd out about the response status code the server assigned to your request and what headers it sent.

Inspecting the Response Object

When the HTTP server response comes back, the response event is fi red, triggering all the registered
callbacks for this event, and passing along the response object. This object is an instance of
http.ClientResponse. You can immediately inspect some attributes of this object:

 ➤ response.statusCode — Contains the integer number of the HTTP response status code.

 ➤ response.httpVersion — The HTTP version implemented by the server on this response.
Probably 1.1 or 1.0.

 ➤ response.headers — A plain object containing the headers’ name-value pairs. The names
are lowercase. Here is an example of the response headers object:

{ date: 'Wed, 01 Feb 2012 16:47:51 GMT',
 expires: '-1',
 'cache-control': 'private, max-age=0',
 'content-type': 'text/html; charset=ISO-8859-1',
 'set-cookie': ['NID=56=rNJVRav-ZW1Sd4f9NPsjLhaybMSzTOfbMPNHCqLeYXwKAvs4_f...],
 p3p: 'CP="This is not a P3P policy! See http://www.google.com/support/accou...',
 server: 'gws',

c13.indd 115c13.indd 115 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.google.com/support/accou

116 ❘ CHAPTER 13 MAKING HTTP REQUESTS

 'x-xss-protection': '1; mode=block',
 'x-frame-options': 'SAMEORIGIN',
 connection: 'close' }

Obtaining the Response Body

As stated, the response body is not present when the request response event is fi red. If you are
interested in the response body, you have to register for “data” events on the response like this:

http.request(options, function(response) {
 response.setEncoding('utf8');
 response.on('data', function(data) {
 console.log('I have a piece of the body here', data);
 });
});

Here you are registering for the “data” event on the response as soon as you get the response event.
You will then get called back as the pieces of the response body arrive. The data can be a buffer or,
if you specify an encoding on the response object (like you did here), it will be an encoded string.

Streaming the Response Body

The HTTP response is a readable stream that represents the response body data stream. As with
any readable stream, you can pipe it into any writable stream like an HTTP request or a fi le. For
instance, the following example shows how to pipe the response body into an open fi le:

var http = require('http');
var fs = require('fs');
var options = {
 host: "www.google.com",
 port: 80,
 path: "/",
 method: "GET"
};

var file = fs.createWriteStream('/tmp/test.txt');

http.request(options, function(res) {
 res.pipe(file);
}).end();

Here you are creating a fi le write stream and piping the response body into it. As body data arrives
from the server response, it’s written into the fi le. When the body ends, the fi le stream is ended,
which then closes the fi le.

POOLING SOCKETS USING HTTP.AGENT

When making HTTP requests, Node internally uses an agent. An agent is the entity in Node that
makes HTTP requests for you. This agent is responsible for maintaining a pool of live TCP sockets.
This pool will contain open but out-of-use network connections for a given hostname and port

c13.indd 116c13.indd 116 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.google.com

Pooling Sockets Using http.Agent ❘ 117

pair. When a new HTTP request happens, the agent will ask to keep the connection alive. When the
request is completed and no additional requests are waiting on a socket to become free, the socket is
closed. This means that you don’t have to manually close the HTTP client and that TCP connections
will tend to be reused when Node is under load.

When you make a request and an available socket gets selected or a new connection is created for
that request, the http.ClientRequest emits a socket event. After the request is done, sockets are
removed from the agent’s pool when the socket emits a close event or an agentRemove event. If
you want to keep an HTTP request open for a long time, you can remove it from the pool by doing
something like this:

function handleResponseCallback(res) {
 console.log('got response:', res);
}

var req = http.request(options, handleResponseCallback);

req.on('socket', function(socket) {
 socket.emit('agentRemove');
});

Node allows a maximum of fi ve open sockets per host-port pair on a given process. That means,
under heavy load, Node will serialize the requests to the same host-port to reuse the sockets. If this
process is not optimal for your usage pattern, you can disable agent socket pooling by passing in
agent: false in the options object:

var options = {
 host: "my.server.com",
 port: 80,
 path: "/upload",
 method: "POST",
 agent: false
};

http.request(options, handleResponseCallback);

You can also change the maximum number of open sockets allowed in the socket pool per host-port
pair by changing http.Agent.defaultMaxSockets like this:

var http = require('http');
http.Agent.defaultMaxSockets = 10;

The default is changed globally, which means that new HTTP agents, when created, will use this
default. Note that, if you have already made requests to a given hostname and port, the respective
HTTP agent instance will have already been created, so changing this default will have no effect.

When making a request you can also specify the HTTP agent like this:

var http = require('http');
var agentOptions = {
 maxSockets: 10
};

c13.indd 117c13.indd 117 21/09/12 8:52 AM21/09/12 8:52 AM

118 ❘ CHAPTER 13 MAKING HTTP REQUESTS

var agent = new Agent(options);

// Use our agent for this request:
var requestOptions = {
 host: 'www.google.com',
 port: 80,
 agent: agent
};
var req = http.request(requestOptions);
// ...
req.end();

This code will make an HTTP request with a given agent, which will have the socket pool stored inside
it. You can share this agent you created and use it on other HTTP requests to reuse its socket pool.

USING A THIRD-PARTY REQUEST MODULE
TO SIMPLIFY HTTP REQUESTS

The Node HTTP client is very powerful, but it can be somewhat cumbersome to operate. First you
have to provide the object with all the options containing the URL severed into pieces and then
you have to collect the response body if you want to process it. If the response is a redirect, you have
to manually handle the redirect yourself.

You can avoid these issues and many others by simply using a module named request, authored by
Mikeal Rogers, a Node core contributor.

Installing and Using Request

To install the third-party request module inside the current directory, use this command:

$ npm install request

Then you can include it in your app or module:

var request = require('request');

You can make a request by simply providing an URL and a callback function like this:

request('http://www.acme.com:4001/something?page=2',
 function(error, response, body) {
 // ...
 }
);

This performs an HTTP GET request to the specifi ed URL and collects the response and body
buffers, providing these two on one simple callback signature.

You can also use other convenience methods to change the HTTP verb as follows:

c13.indd 118c13.indd 118 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.google.com
http://www.acme.com:4001/something?page=2

Using a Third-Party Request Module to Simplify HTTP Requests ❘ 119

 ➤ request.put(url) — Issues a PUT request.

 ➤ request.post(url) — Issues a POST request.

 ➤ request.head(url) — Issues a HEAD request.

 ➤ request.del(url) — Issues a DELETE request.

 ➤ request.get(url) — Issues a GET request; exists just for uniformity, and you can instead
use the default request().

Instead of using a string containing a URL, you can also use an options object. This object can be
something like the following:

{
 url: 'http://www.acme.com:4001/something',
 method: 'DELETE',
 headers: {Accept: 'application/json'},
 body: new Buffer('Hello world!')
}

Here is a list of some accepted arguments:

 ➤ uri or url — Fully qualifi ed URI or a parsed URL object from url.parse(). For example,
https://my.server.com/some/path?a=1&b=2.

 ➤ method — HTTP method; defaults to GET.

 ➤ headers — HTTP headers; defaults to {}.

 ➤ qs — A name-value pair to be appended as a query string into the URL; for example, {a:1,
b:2}.

 ➤ body — A request body for POST and PUT requests. Must be a buffer or a string.

 ➤ form — Sets the body to a query-string representation of the value and adds the content-
type application/x-www-form-urlencoded; charset=utf-8 to the header.

 ➤ json — Sets the body to a JSON representation of the value and adds the content-type
application/json header.

 ➤ followRedirect — Follows HTTP 3xx responses as redirects. Defaults to true.

 ➤ maxRedirects — The maximum number of redirects to follow; defaults to 10.

 ➤ onResponse — If onResponse is true, the callback will be fi red on the response event
instead of on end. If onResponse is a function, it will be called on response and not affect
the regular semantics of the main callback on end.

 ➤ encoding — Encoding to be used on setEncoding of the response data. If encoding is set
to null, the body is returned as a buffer.

 ➤ pool — A hash object containing the agents for these requests. If this option is omitted, this
request will use the global pool that’s set to Node’s default maxSockets.

c13.indd 119c13.indd 119 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.acme.com:4001/something

120 ❘ CHAPTER 13 MAKING HTTP REQUESTS

 ➤ pool.maxSockets — Integer containing the maximum number of sockets in the pool.

 ➤ timeout — Integer containing the number of milliseconds to wait for a request to respond
before aborting.

Creating a Testing Server

To fully understand how this third-party request module works, you’ll create a simple
HTTP server that prints some important information about the HTTP request, as shown in
Listing 13-1.

LISTING 13-1: Request introspector HTTP server.

require('http').createServer(function(req, res) {

 function printBack() {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end(JSON.stringify({
 url: req.url,
 method: req.method,
 headers: req.headers
 }));
 }

 switch (req.url) {

 case'/redirect':
 res.writeHead(301, {"Location": '/'});
 res.end();
 break;

 case'/print/body':
 req.setEncoding('utf8');
 var body = '';
 req.on('data', function(d) {
 body += d;
 });
 req.on('end', function() {
 res.end(JSON.stringify(body));
 });
 break;

 default:
 printBack();
 break;

 }
}).listen(4001);

Save this server into a fi le named server.js and run it on the command line:

$ node server.js

c13.indd 120c13.indd 120 21/09/12 8:52 AM21/09/12 8:52 AM

Using a Third-Party Request Module to Simplify HTTP Requests ❘ 121

You can then make a simple call to this server, as shown in Listing 13-2.

LISTING 13-2: Making a simple request.

var request = require('request');
var inspect = require('util').inspect;

request(
 'http://localhost:4001/abc/def',
 function(err, res, body) {
 if (err) { throw err; }
 console.log(inspect({
 err: err,
 res: {
 statusCode: res.statusCode
 },
 body: JSON.parse(body)
 }))
 }
);

Without stopping the server, you should save this into a fi le named simple.js and run it from the
command line:

$ node simple.js

The result should be:

{ err: null,
 res: { statusCode: 200 },
 body:
 { url: '/abc/def',
 method: 'GET',
 headers:
 { host: 'localhost:4001',
 'content-length': '0',
 connection: 'keep-alive' } } }

You can see which headers, URLs, and methods the server derived from your request. You can
see that because you are not piping anything into the request stream or writing to it, request
assumes that your request body has length 0.

Following Redirects

One of the many features of the request module is that it follows redirects by default. You can
observe this feature with the request introspection server that you have running, which is coded so
that when the URL is /redirect, it will reply with a 301 redirect response status code. Using this
client, you can see that request follows that URL in Listing 13-3.

c13.indd 121c13.indd 121 21/09/12 8:52 AM21/09/12 8:52 AM

http://localhost:4001/abc/def

122 ❘ CHAPTER 13 MAKING HTTP REQUESTS

LISTING 13-3: Making a request that will be redirected by the server.

var request = require('request');
var inspect = require('util').inspect;

request(
 'http://localhost:4001/redirect',
 function(err, res, body) {
 if (err) { throw err; }
 console.log(inspect({
 err: err,
 res: {
 statusCode: res.statusCode
 },
 body: JSON.parse(body)
 }))
 });

Save Listing 13-3 into a fi le named redirect.js and run it with:

$ node redirect.js

You can see that the output is the following:

{ err: null,
 res: { statusCode: 200 },
 body:
 { url: '/',
 method: 'GET',
 headers:
 { 'content-length': '0',
 host: 'localhost:4001',
 connection: 'keep-alive' } } }

You can see that the URL echoed by the server is / and not the original /redirect. This means that
request followed the server redirect to /.

If you need to be informed about the redirects that happen, you can disable this feature by setting
the request options property followRedirect to false.

Some servers can be faulty and keep redirecting in a loop. This is why request defi nes a maximum
number of redirects by default, which is 10, but you can tweak this number as needed. For instance,
you may be expecting only a maximum number of three redirects per request and want the
operation to fail if that number is exceeded. However, you may be willing to endure a larger number
of redirects on each request. In this case, you can set the options property maxRedirects to the
desired number.

var options = {
 url: 'http://www.example.com',
 maxRedirects = 3
};
request(options, callback);

c13.indd 122c13.indd 122 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.example.com
http://localhost:4001/redirect

Using a Third-Party Request Module to Simplify HTTP Requests ❘ 123

Setting Some Request Options

You can perform HTTP methods other than GET in request. For example, you can use the options
method attribute and encode the HTTP method there, much like with the native Node http
.request method. You can also use the following shortcuts:

request.get
request.put
request.post
request.del

Listing 13-4 shows an example using a POST request.

LISTING 13-4: Making a POST request.

var request = require('request');
var inspect = require('util').inspect;

request.post(
 'http://localhost:4001/abc/def',
 function(err, res, body) {
 if (err) { throw err; }
 console.log(inspect({
 err: err,
 res: {
 statusCode: res.statusCode
 },
 body: JSON.parse(body)
 }))
 });

Save this into a fi le named post.js and run it:

$ node post.js

You should get the following output:

{ err: null,
 res: { statusCode: 200 },
 body:
 { url: '/abc/def',
 method: 'POST',
 headers:
 { host: 'localhost:4001',
 'content-length': '0',
 connection: 'keep-alive' } } }

This output confi rms that the server understood this was a POST request.

More generically, request accepts an options object instead of a string URL:

c13.indd 123c13.indd 123 21/09/12 8:52 AM21/09/12 8:52 AM

http://localhost:4001/abc/def

124 ❘ CHAPTER 13 MAKING HTTP REQUESTS

var request = require('request');
var inspect = require('util').inspect;

var options = {
 url: 'http://localhost:4001/abc/def',
 method: 'PUT'
};

request(options, function(err, res, body) {
 if (err) { throw err; }
console.log(inspect({
 err: err,
 res: {
 statusCode: res.statusCode
 },
 body: body
 }))
});
options.js

By using the options object, you can also send some custom headers, as shown in Listing 13-5.

LISTING 13-5: Sending some custom headers.

var request = require('request');
var inspect = require('util').inspect;

var options = {
 url: 'http://localhost:4001/abc/def',
 method: 'PUT',
 headers: {

 'X-My-Header': 'value'
 }
};

request(options, function(err, res, body) {
 if (err) { throw err; }
 console.log(inspect({
 err: err,
 res: {
 statusCode: res.statusCode,
 headers: res.headers
 },
 body: JSON.parse(body)
 }))
});

You can save Listing 13-5 into a fi le named headers.js and run it with this:

$ node headers.js

c13.indd 124c13.indd 124 21/09/12 8:52 AM21/09/12 8:52 AM

http://localhost:4001/abc/def
http://localhost:4001/abc/def

Using a Third-Party Request Module to Simplify HTTP Requests ❘ 125

You will then get this output:

{ err: null,
 res:
 { statusCode: 200,
 headers:
 { 'content-type': 'text/plain',
 connection: 'keep-alive',
 'transfer-encoding': 'chunked' } },
 body:
 { url: '/abc/def',
 method: 'PUT',
 headers:
 { 'x-my-header': 'value',
 host: 'localhost:4001',
 'content-length': '0',
 connection: 'keep-alive' } } }

You can see that the server got the header.

Encoding the Request Body

Sometimes you have to send some data on the request body. You can use form-encoding to encode
the body, which mimics how the browser encodes arguments in the body string. See Listing 13-6.

LISTING 13-6: Sending a form-encoded request body.

var request = require('request');
var inspect = require('util').inspect;

body = {
 a: 1,
 b: 2
};

var options = {
 url: 'http://localhost:4001/print/body',
 form: body
};

request(options, function(err, res, body) {
 if (err) { throw err; }
 console.log(inspect({
 err: err,
 res: {
 statusCode: res.statusCode,
 headers: res.headers
 },
 body: JSON.parse(body)
 }))
});

c13.indd 125c13.indd 125 21/09/12 8:52 AM21/09/12 8:52 AM

http://localhost:4001/print/body

126 ❘ CHAPTER 13 MAKING HTTP REQUESTS

Save this code snippet into a fi le named form.js and run it:

$ node form.js

You will then get the following output:

{ err: null,
 res:
 { statusCode: 200,
 headers: { connection: 'keep-alive', 'transfer-encoding': 'chunked' } },
 body: 'a=1&b=2' }

You can see that request encoded the qs object into the body.

You can also JSON-encode some arguments into your body, as shown in Listing 13-7.

LISTING 13-7: Sending a JSON-encoded request body.

var request = require('request');
var inspect = require('util').inspect;

body = {
 a: 1,
 b: 2
};

var options = {
 url: 'http://localhost:4001/print/body',
 json: body
};

request(options, function(err, res, body) {
 if (err) { throw err; }
 console.log(inspect({
 err: err,
 res: {
 statusCode: res.statusCode,
 headers: res.headers
 },
 body: JSON.parse(body)
 }))
});

Save this code snippet into a fi le named json.js and run it:

$ node json.js

You will get the following output:

{ err: null,
 res:
 { statusCode: 200,

c13.indd 126c13.indd 126 21/09/12 8:52 AM21/09/12 8:52 AM

http://localhost:4001/print/body

Using a Third-Party Request Module to Simplify HTTP Requests ❘ 127

 headers: { connection: 'keep-alive', 'transfer-encoding': 'chunked' } },
 body: { a: 1, b: 2 } }

Streaming

A request returns a client request object, which you can pipe into a writable stream (just like I
showed for Node core HTTP request function earlier in this chapter), or even into another request.
For instance, if you want to pipe a request response into a fi le stream, you can do something like this:

var fs = require('fs');
var request = require('request');
var file = fs.createWriteStream('/path/to/my/file');

request.get('http://www.example.com/tmp/test.html').pipe(file);

You can also pipe a request into another request. For instance, you can pipe a GET request into
another POST request like this:

var request = require('request');
var source = request.get('http://my.server.com/images/some_file.jpg');
var target = request.post('http://other.server.com/images/some_file.jpg');
source.pipe(target);

Using a Cookie Jar

By default, request interprets and stores all HTTP cookies in a global cookie jar. This means that,
for your application, all the requests send the cookies that were received from a given hostname.

This behavior can sometimes be useful; however, you may not want to collect every single cookie
because they may not be important to your application. You can choose to disable cookies globally
by changing request defaults:

request.defaults({jar: false});

You can also turn this behavior off on a per-request basis by setting the options jar attribute to
false:

var options = {
 url: 'http://www.example.com/',
 jar: false };
request(options, callback);

You can also defi ne a specifi c cookie jar to use in each request by constructing and specifying it in
the options object:

var jar = request.jar();
var options = {
 url: 'http://www.example.com/',
 jar: jar };
request(options, callback);

c13.indd 127c13.indd 127 21/09/12 8:52 AM21/09/12 8:52 AM

http://www.example.com/tmp/test.html
http://www.example.com/
http://www.example.com/

128 ❘ CHAPTER 13 MAKING HTTP REQUESTS

SUMMARY

Making HTTP requests in Node is easy by using the http module request() function. This
method returns an http.ClientResponse object that emits a response event once the server
replies. You can also stream the response body and pipe it into another writable stream if you want.
You can also inspect the response headers, status code, and HTTP version.

To simplify making HTTP requests, you should probably use Mikeal Roger’s request module, which
lets you use a URL in most cases. It has some useful features like following redirects, remembering
cookies, buffering the response body, setting query-string values, setting a form-encoded or a JSON-
encoded request body, and streaming.

c13.indd 128c13.indd 128 21/09/12 8:52 AM21/09/12 8:52 AM

Using Datagrams (UDP)

WHAT’S IN THIS CHAPTER?

 ➤ When and why to use UDP

 ➤ Receiving UDP messages

 ➤ Sending UDP messages

 ➤ Multicasting UDP messages

 ➤ Understanding UDP limitations

TCP is connection-oriented protocol that provides a reliable, ordered stream of bytes from
one network node to another. User Datagram Protocol (UDP), however, is a connection-less
protocol that does not provide the delivery characteristics of TCP. When sending UDP packets,
you are not guaranteed of the order they arrive in or even whether they arrive at all.

Despite these limitations, UDP can be quite useful; for instance, when you need to broadcast
messages, you don’t need hard delivery guarantees or message ordering, or when you don’t
know the addresses of your peers.

UNDERSTANDING UDP

UDP is a transport layer, much like TCP, that sits on top of IP. It allows you to send messages
(in this case referred to as datagrams) to other hosts without requiring prior communications
to set up the required transmission channels or data paths. Unlike TCP, UDP is not
connection-oriented and does not provide any semantics for reliability, message ordering, or
even data integrity. UDP provides an unreliable service, and datagrams can arrive out of order,
appear duplicated, or even go missing without notice. UDP assumes that error checking either
is not necessary or is performed at the application layer.

14

c14.indd 129c14.indd 129 21/09/12 8:53 AM21/09/12 8:53 AM

130 ❘ CHAPTER 14 USING DATAGRAMS (UDP)

UNDERSTANDING THE USES OF UDP

Time-sensitive applications often use UDP because dropping packets is preferable to waiting for
delayed ones, which may not be an option in a real-time system.

UDP’s stateless nature is also useful for servers answering small queries from large numbers
of clients. Unlike TCP, UDP supports packet broadcast (sending to all on local network) and
multicasting (sending to all subscribers).

Common network applications that use UDP include DNS (Domain Name System), streaming
media applications such as IPTV (Internet Protocol Television), VoIP (Voice over IP), IP tunneling,
TFTP (Trivial File Transfer Protocol), Simple Network Management Protocol (SNMP), Dynamic
Host Confi guration Protocol (DHCP), and others. Other common applications include message
logging when strong reliability is not a requirement and clearing a distributed cache.

BUILDING A DATAGRAM SERVER

Datagram support in Node lies inside the dgram module. So fi rst you have to import it:

var dgram = require('dgram');

Then you have to create the server:

var server = dgram.createSocket('udp4');

The dgram.createSocket function accepts the socket type as the fi rst argument, which can be
either udp4 (UDP over IPv4) or udp6 (UDP over IPv6). In this example, you are sticking to Ipv4.

NOTE Also note that there is no actual server in UDP; it’s just a peer listening
for messages on a socket. A server generally provides some kind of feedback
about receipt of a message. Later in this chapter you will see how you can reply
to a UDP message.

For simplicity and disambiguation I’ll keep calling this piece of software you are
building a “server.”

Listening for Messages

A UDP server will emit a message event when a new message is coming in, so you have to register a
callback function for that event:

server.on('message', function(message) {
 console.log('server got message: ' + message);
});

c14.indd 130c14.indd 130 21/09/12 8:53 AM21/09/12 8:53 AM

Building a Datagram Server ❘ 131

Now you should bind the server to a specifi c UDP port like this:

var port = 4000;server.on('listening', function() {
 var address = peer.address();
 console.log('peer listening on ' + address.address + ':' + address.port);
});
server.bind(port);

You can also listen for the listening event, which is triggered after the server actually starts
listening for messages.

Testing the Server

Listing 14-1 contains the full UDP server code.

LISTING 14-1: A simple UDP server.

var dgram = require('dgram');

var server = dgram.createSocket('udp4');

server.on('message', function(message) {
 console.log('server got message: ' + message);
});

var port = 4000;

server.on('listening', function() {
 var address = server.address();
 console.log('server listening on ' + address.address + ':' + address.port);
});
server.bind(port);

You can save the code in Listing 14-1 to a fi le named udp_server_1.js and run it:

$ node udp_server_1

This script should output the server address and the port and then just wait for messages:

server listening on 0.0.0.0:4000

You can test the script using a tool like nc to send:

$ echo hello | nc -u 0.0.0.0 4000

This call sends a UDP packet with hello to the local host port 4000. You should then get server
output that’s something like the following:

server got message: hello

c14.indd 131c14.indd 131 21/09/12 8:53 AM21/09/12 8:53 AM

132 ❘ CHAPTER 14 USING DATAGRAMS (UDP)

Inspecting Additional Message Information

Because a UDP server can get messages from many senders, it may be interesting, depending on
the application, that you can retrieve the message-originating address. Besides sending the message
itself, the message event also transports some basic remote sender information, passed in as the
second argument to the callback function, which you can inspect like this:

server.on('message', function(message, rinfo) {
 console.log('server got message: %s from %s:%d',
 message,
 rinfo.address,
 rinfo.port);
});

As you will see later in this chapter, you can use this origin information to reply to the remote
server.

CREATING A SIMPLE DATAGRAM ECHO SERVER

Now that you have the originating address available on the message event, you may want to send a
message back. For instance, you may want to acknowledge a command or give some kind of status
back to the originating server.

As an example, you will create a simple UDP server that sends received messages back to its sender.

Waiting for Messages

You can start by creating the UDP socket and binding it to a port:

var dgram = require('dgram');
var server = dgram.createSocket('udp4');
var port = 4000;

server.on('message', function(message, rinfo) {
 console.log('server got message: %s from %s:%d',
 message,
 rinfo.address,
 rinfo.port);
});

server.bind(port);

Sending Messages Back to Senders

Then, when your server receives a message, you can return it to the sender:

server.on('message', function(message, rinfo) {
 server.send(message,
 0,
 message.length,

c14.indd 132c14.indd 132 21/09/12 8:53 AM21/09/12 8:53 AM

Creating a Simple Datagram Echo Server ❘ 133

 rinfo.port,
 rinfo.address);
});

Here you are using the server’s send function, which sends a message to a specifi c address and port.

The fi rst three arguments specify the message — fi rst the buffer, then the initial offset of the
message inside the buffer (0 in this case because the message starts at the beginning of the buffer),
and then the message length in bytes (which is the actual length of the buffer you have).

The remaining two arguments specify the destination of that message, namely, the port and address.
Here you are retrieving the remote sender information contained on the rinfo argument — which
contains the remote server address info — and using that information to address the receiver.

Putting the Echo Server Together

This is what the UDP echo server now looks like:

var dgram = require('dgram');
var server = dgram.createSocket('udp4');
var port = 4000;

server.on('message', function(message, rinfo) {
 server.send(message, 0, message.length, rinfo.port, rinfo.address);
});

server.bind(port);

You can test it by using the nc utility in the shell command line:

$ nc -u 0.0.0.0 4000

You can then start typing strings and pressing Enter. You should see the strings printed back.

NOTE Be careful not to change the buffer you pass on client.send before the
message has been copied into the kernel. If you need to know when your message
has been fl ushed to the kernel and when it’s safe to reuse the buffer, you have to
pass a last argument to client.send with a callback function like this:

var message = new Buffer('blah blah');
client.send(message,
 0,
 message.length,
 4000,
 'localhost',
 function() {
 // you can reuse the message buffer
 });

c14.indd 133c14.indd 133 21/09/12 8:53 AM21/09/12 8:53 AM

134 ❘ CHAPTER 14 USING DATAGRAMS (UDP)

BUILDING A DATAGRAM CLIENT

Depending on your application, you may just want to send one or more UDP messages and not care
about listening to a response or any other UDP messages. In this case you would create a send-only
UDP client.

Creating the Client

To create a UDP client to send UDP packets, you can simply create a UDP socket and send
messages from it like this:

var dgram = require('dgram');
var client = dgram.createSocket('udp4');

Here you are creating a client using the same dgram.createSocket function that was also used on
the server, except that you don’t bind. Because you are not binding to a specifi c port, the message
is sent from a random UDP port. If you wanted to send from a specifi c port, you could have used
client.bind(port).

Sending Messages

Next you can create a buffer containing your message and send it to the server through the client
socket.

var message = new Buffer('this is a message');
client.send(message, 0, message.length, 4000, 'localhost');

Closing the Socket

When you no longer need to send messages, you can close the datagram socket, which in this case
happens when the message is fl ushed into the network. Fortunately the client.send function
accepts a callback for when that happens, which you can use in this case:

client.send(message,
 0,
 message.length,
 4000,
 'localhost',
 function(err, bytes) {
 if (err) { throw err; }
 client.close();
 }
);

As you can see, the callback function you pass into client.send gets called with two arguments:
an error if one occurs and the number of bytes that were sent.

c14.indd 134c14.indd 134 21/09/12 8:53 AM21/09/12 8:53 AM

Creating a Simple Datagram Command-Line Client ❘ 135

CREATING A SIMPLE DATAGRAM COMMAND-LINE CLIENT

Now you are ready to replace the nc client with a Node-based command-line UDP client. This client
program should accept the target hostname and port as command-line arguments and then read
from the standard input stream, piping this stream as messages to the UDP target.

Start by creating the script fi le and typing the following:

#!/usr/bin/env node

Save this into a fi le named udp_client.js and change it to be executable:

$ chmod +x udp_client.js

Your client should be called from the shell command-line like this:

$ udp_client.js <host> <port>

Then parse the command-line arguments. Those are available inside the process.argv, which is an
array containing all the command-line arguments. The fi rst argument will always contain the path
for the Node executable, and the second one will always contain the main script fi le path. The third
will then contain the host argument, and the fourth contains the port argument.

var host = process.argv[2];
var port = parseInt(process.argv[3], 10);

Reading from the Command Line

To read from the command line after your Node process is up, you must use the process.stdin
readable stream. However, the process.stdin stream starts in the paused state, which means that
before you can start using it, you need to resume it like this:

process.stdin.resume();

Then you should have the standard input stream available to get lines:

process.stdin.on('data', function(data) {
 console.log('user typed:', data);
});

Sending Data to the Server

Now you can pipe the user input into the target UDP server:

var dgram = require('dgram');

var client = dgram.createSocket('udp4');

process.stdin.on('data', function(data) {
 client.send(data, 0, data.length, port, host);
});

c14.indd 135c14.indd 135 21/09/12 8:53 AM21/09/12 8:53 AM

136 ❘ CHAPTER 14 USING DATAGRAMS (UDP)

Receiving Data from the Server

To receive messages back from the server, you need to subscribe to the message event:

client.on('message', function(message) {
 console.log('Got message back:', message.toString());
});

Putting the Command-Line UDP Client Together

Listing 14-2 shows what the complete UDP command-line client looks like.

LISTING 14-2: A command-line UDP client.

#!/usr/bin/env node
var dgram = require('dgram');

var host = process.argv[2];
var port = parseInt(process.argv[3], 10);
var client = dgram.createSocket('udp4');

process.stdin.resume();

process.stdin.on('data', function(data) {
 client.send(data, 0, data.length, port, host);
});

client.on('message', function(message) {
 console.log('Got message back:', message.toString());
});

console.log('Start typing to send messages to %s:%s', host, port)

You can fi re it up using the shell command line:

$./udp_client.js 0.0.0.0 4000

You should see the following:

Start typing to send messages to 0.0.0.0:4000

If you type some characters and then press Enter, you should then see your message printed back as
a response.

UNDERSTANDING AND USING DATAGRAM MULTICAST

One of the interesting uses of UDP is to distribute messages to several network nodes using only one
network message. You can use this to perform logging and clean the cache and in any case where
you can afford to lose some messages.

c14.indd 136c14.indd 136 21/09/12 8:53 AM21/09/12 8:53 AM

Understanding and Using Datagram Multicast ❘ 137

NOTE Message multicasting can be useful when you don’t need to
know the address of all peers. Peers just have to “tune in” and listen to that
channel.

For instance, you could have an event logging server listening on multiple
“channels.” When another process needs to log in to a “channel,” it would
multicast a message containing the event details into that “channel.”

You could also have multiple servers set up to listen to the same channel. For
instance, one server could be responsible for storing the events, and another
would be responsible for sending them to an analytics engine.

Nodes can report their interest in listening to certain multicast channels by
tuning in to that channel. In IP addressing, a space is reserved for multicast
addresses. In IPv4 the range is between 224.0.0.0 and 239.255.255.255, but
some of these are reserved.

Addresses from 224.0.0.0 through 224.0.0.255 are reserved for local purposes
(such as administrative and maintenance tasks), and addresses from 239.0.0.0 to
239.255.255.255 are also reserved for administrative scoping.

Receiving Multicast Messages

To join a multicast address like 230.1.2.3, you can do something like this:

var server = require('dgram').createSocket('udp4');

server.on('message', function(message, rinfo) {
 console.log('server got message: ' + message + ' from ' + rinfo.address +
 ':' + rinfo.port);
});

server.bind(4000);
server.addMembership('230.1.2.3');

Line 9 tells the kernel that this UDP socket should receive multicast messages for the multicast
address 230.1.2.3. When you’re calling the addMembership method on the server, you can pass the
listening interface as an optional second argument. If this argument is omitted, Node will try to
listen on every network interface.

Then you can test the server using your new UDP client like this:

$./udp_client.js 230.1.2.3 4000

Every line of text you input here should appear on the server console log.

c14.indd 137c14.indd 137 21/09/12 8:53 AM21/09/12 8:53 AM

138 ❘ CHAPTER 14 USING DATAGRAMS (UDP)

Sending Multicast Messages

To send a multicast message, you simply have to specify the multicast address like this:

var dgram = require('dgram');
var client = dgram.createSocket('udp4');

var message = new Buffer('this is a multicast message');

client.bind(4000);
client.setMulticastTTL(10);
client.send(message, 0, message.length, 4000, '230.1.2.3'); client.close();

Recall that you previously set the multicast time-to-live (TTL) to 10, an arbitrary value. This TTL
tells the network how many hops (routers) the datagram can travel through before it is discarded.
Every time a UDP packet travels through a hop, the TTL counter is decremented, and if 0 is reached,
the packet is discarded.

Understanding Maximum Datagram Size

UDP is lightweight and can be a great solution if your application can tolerate some data loss and
disordering, but you should be aware of some additional limitations.

The maximum datagram size depends on the network it travels through. The UDP header allows
up to 65,535 bytes of data, but if your packets cross an Ethernet network, for instance, the Ethernet
MTU (Maximum Transmission Unit) is 1,500 bytes, limiting the maximum datagram size to that
number as well. Also, some routers will attempt to fragment large UDP packets into 512 byte
chunks, so you should really limit yourself to that maximum size if you want to avoid fragmenting
your datagram.

SUMMARY

UDP is a lightweight transport protocol that can serve you well if you can relax some reliability
constraints. It’s not connection-oriented, so it involves less overhead than TCP and can multicast
and broadcast messages with just one network packet.

If you want to send or receive UDP messages, you must fi rst create a socket into which you can send
messages to other UDP peers. If you need to listen to incoming messages, you have to bind your
socket to a UDP port, and then wait for message events.

Also, you can listen to multicast messages by attaching a multicast address membership to that
socket.

c14.indd 138c14.indd 138 21/09/12 8:53 AM21/09/12 8:53 AM

15
Securing Your TCP Server
with TLS/SSL

WHAT’S IN THIS CHAPTER?

 ➤ Understanding how the Public Key Infrastructure works

 ➤ Creating a TLS server

 ➤ Connecting to a TLS server

 ➤ Validating the server and client certifi cates

 ➤ Receiving and sending data securely

TLS (Transport Layer Security) and SSL (Secure Socket Layer) allow client/server applications
to communicate across a network in a way designed to prevent eavesdropping (others looking
into your messages) and tampering (others changing your message). TLS/SSL encrypts the
segments of network connections above the transport layer, enabling both privacy and
message authentication.

TLS is based on earlier SSL specifi cations developed by Netscape. In fact, TLS 1.0 is also
known as SSL 3.1, and the latest version (TLS 1.2) is also known as SSL 3.3. This chapter uses
TLS instead of the deprecated SSL nomenclature.

UNDERSTANDING PRIVATE AND PUBLIC KEYS

Public key cryptography refers to a cryptographic system that requires two separate keys.
One key is used to encrypt the plaintext, and the other key is used to decrypt the encrypted
message. One of these keys is public, and the other is private. If the plaintext is encrypted
using the public key, only the private key can unlock it, enabling private communication from
the public to the private key owner. If the plaintext is encrypted using the private key, the

c15.indd 139c15.indd 139 21/09/12 8:53 AM21/09/12 8:53 AM

140 ❘ CHAPTER 15 SECURING YOUR TCP SERVER WITH TLS/SSL

public key can decrypt it. In this case the system verifi es the signatures of the documents signed by
the owner of the private key.

A public key certifi cate (also known as a digital certifi cate) uses a digital signature to bind a public
key to an identity — a person or an organization. The document will be signed by a Certifi cate
Authority (CA) that went through the process of certifying that the identity information matches the
public key. That Certifi cate Authority corresponds to another certifi cate that either was self-signed
or was endorsed by another Certifi cate Authority, possibly forming a chain of delegation that forms
part of the Public Key Infrastructure (PKI).

Each computer defi nes a root set of Certifi cate Authorities that are used by default when validating
certifi cates and certifi cate chains. When using Node’s TLS library you can use these default
Certifi cate Authorities or defi ne your own.

Generating a Private Key

NOTE Node TLS implementation is based on the OpenSSL library. Chances
are you have the library installed. To check, open a terminal and try using the
openssl command. If it’s not installed, look for a package named openssl and
install it.

TLS relies on the public/private key infrastructure where each client and server must have a private
key to sign messages. The openssl utility can create a private key on the command line like this:

$ openssl genrsa -out my_key.pem 1024

This creates a fi le named my_key.pem with your private key.

Generating a Public Key

Servers and clients involved in TLS must have a certifi cate if they are validating each other.
Certifi cates are public keys signed by a Certifi cate Authority or are self-signed. The fi rst step in
getting a certifi cate is to create a Certifi cate Signing Request (CSR) fi le. This can be done by:

$ openssl req -new -key my_key.pem -out my_csr.pem

This will create a CSR fi le named my_csr.pem, but fi rst you will need to answer some identifi cation
questions prompted by openssl.

To create a self-signed certifi cate with the CSR, you can do this:

$ openssl x509 -req -in my_csr.pem -signkey my_key.pem -out my_cert.pem

This will create a self-signed certifi cate fi le named my_cert.pem based on your private key and your
certifi cate request. Alternatively you can send the CSR to a Certifi cate Authority for signing, but for
you to work on this chapter’s examples, a self-signed certifi cate is enough.

c15.indd 140c15.indd 140 21/09/12 8:53 AM21/09/12 8:53 AM

Building a TLS Server ❘ 141

BUILDING A TLS SERVER

A TLS server is a subclass of net.Server, which I introduced in Chapter 10 — “Building TCP
Servers.” You can make everything with a TLS server that you can with net.Server. When you use
a TLS server, however, you are using a secure connection.

Initializing the Server

Initializing a TLS server is a bit more complicated than initializing a plain TCP server because you
have to pass in the content of the server private key and certifi cate fi les:

var tls = require('tls');
var fs = require('fs');

var serverOptions = {
 key: fs.readFileSync('./my_key.pem'),
 cert: fs.readFileSync('./my_certificate.pem')
};

var server = tls.createServer(serverOptions);

Here you are using the synchronous version of fs.readFile, which reads a whole fi le into memory
to obtain the key and certifi cate that are on the fi lesystem.

NOTE Here you’re using fs.readFileSync, a synchronous function. Won’t this
block the event loop? No, this will just run on the initialization phase of Node,
before the event loop starts. As long as you don’t use blocking functions inside
an event handler, you won’t block the event loop.

But wait, what if this is a module you’re writing and someone requires it inside
a callback? You shouldn’t require modules inside callbacks. They perform
synchronous fi lesystem access and will block the event loop.

Besides the key and cert options, tls.createServer also accepts:

 ➤ requestCert — If true the server will request a certifi cate from clients that connect and
attempt to verify that certifi cate. The default value is false.

 ➤ rejectUnauthorized — If true the server will reject any connection that’s not authorized
with the list of supplied Certifi cate Authorities. This option has an effect only if
requestCert is true. The default value is false.

Listening for Connections

Just like a simple TCP server, you can bind a TLS server to a TCP port like this:

var port = 4001;
server.listen(port);

c15.indd 141c15.indd 141 21/09/12 8:53 AM21/09/12 8:53 AM

142 ❘ CHAPTER 15 SECURING YOUR TCP SERVER WITH TLS/SSL

When a new connection arrives, the server emits the secureConnection event, passing in the socket
to the registered callback functions:

function connectionListener(stream) {
 console.log('got a new connection');
}

server.on('secureConnection', connectionListener);

Reading Data from the Client

When a client connects, the server emits a secureConnection event, passing an instance of the
tls.CleartextStream class into the callback function. Much like the net.Socket object, this
object implements a duplex stream interface, which means that you have all the readable stream and
writeable stream methods and events available to you. You can simply bind to the data event to get
the decrypted data sent from the client like this:

function secureConnectionListener(clientStream) {
 clientStream.on('data', function(data) {
 console.log('got some data from the client:', data);
 });
}
server.on('secureConnection', secureConnectionListener);

Sending Data to the Client

You can also use the CleartextStream object to send data to a connected client like this:

server.on('secureConnection', function(clientStream) {
 clientStream.write('Hey Hello!\n');
});

Ending the Connection

You may end a secure connection by simply calling .end() on the client stream. For instance, if the
client types “quit” you can end the connection like this:

server.on('secureConnection', function(clientStream) {
 clientStream.on('data', function(data) {
 if (data.toString().trim().toLowerCase() === 'quit') {
 clientStream.end('Bye bye!');
 }
 });
});

As in the TCP case, you can pass a string or a buffer into the clientStream.end function, which
will be the last thing that is written out to the client before the connection is closed.

c15.indd 142c15.indd 142 21/09/12 8:53 AM21/09/12 8:53 AM

Building a TLS Client ❘ 143

BUILDING A TLS CLIENT

To make a connection to a TLS server, your key and certifi cate need to be issued fi rst. If you have not
done this yet, please create them as explained at the beginning of this chapter.

Initializing the Client

You must initialize the client connection with some options, which you need to gather fi rst.
Previously you should have generated the private key and digital certifi cate into some local fi les,
which you must fetch using fs.readFileSync, the synchronous version of fs.readFile.

var fs = require('fs');
var options = {
 key: fs.readFileSync('/path/to/my/private_key.pem'),
 cert: fs.readFileSync('/path/to/my/certificate.pem')
};

Connecting to the Server

When you have the private key and the digital certifi cate, you can connect to a TLS server using the
tls.connect function:

var tls = require('tls');
var host = 'localhost';
var port = 4001;

var client = tls.connect(port, host, options, function() {
 console.log('connected');
});

Verifying the Server Certifi cate

Private and public keys allow you to establish a secure channel between a client and a server. This
means that the channel is secure from eavesdroppers and message changers. After a connection is
established, though, you may want to ensure that the server really is the server you wanted to talk
to. For this you can inspect the server certifi cate.

To do this, you need to learn about some TLS connection options you haven’t seen yet. One of them
is ca, which stands for Certifi cate Authority. If you omit this option, a default set of root certifi cates
will be used.

NOTE Unless an internal Certifi cate Authority issued the certifi cates for your
own operation, omit this option and use the default CAs.

If you want to override these certifi cates with your own certifi cates, you must
pass in an array of buffers or strings containing each CA’s certifi cate.

c15.indd 143c15.indd 143 21/09/12 8:53 AM21/09/12 8:53 AM

144 ❘ CHAPTER 15 SECURING YOUR TCP SERVER WITH TLS/SSL

This default set of certifi cates will be used for authenticating the server. The server will send its
identifi cation, and the TLS client will check the signature of that identifi cation against any of the
trusted Certifi cate Authorities.

If the certifi cate is authorized, the CleartextStream instance (which you assigned back to a
variable named client) will have the property named authorized set to true. If not, the stream
will have that property set to false, and the stream authorizationError property will be set
with the reason for the error. You can, if you want, reject the connection to the server if the server
certifi cate is not authorized according to your root CAs, like this:

var client = tls.connect(port, host, options, function() {
 console.log('authorized: ' + client.authorized);
 if (! client.authorized) {
 console.log('client denied access:', client.authorizationError);
 } else {
 // ...
 }
});

Sending Data to the Server

Recall that the object returned from the tls.connect function call is a tls.CleartextStream
instance, which is also a writable stream. That means you can use the write() function to send
data to the server.

var client = tls.connect(port, host, options, function() {
 console.log('connected');
 client.write('Hey, hello!');
});

Reading Data from the Server

Once you are connected and the server starts sending data, you will get “data” events emitted by the
CleartextStream object.

var client = tls.connect(port, host, options, function() {
 client.on('data', function(data) {
 console.log('got some data from the server:', data);
 });
});

Ending the Connection

Depending on your application and the agreed-upon protocol between the server and the client, the
client may end the connection after it no longer needs it.

Because this only closes your end of the connection, you may still continue to receive messages from
the server.

c15.indd 144c15.indd 144 21/09/12 8:53 AM21/09/12 8:53 AM

Building Some Examples ❘ 145

var client = tls.connect(port, host, options, function() {
 client.end('Bye bye!');
});

BUILDING SOME EXAMPLES

It’s time to put everything together and create a TLS chat server and client. You need to create a separate
directory for the client and the server so you can easily separate the script, key, and certifi cate fi les.

Creating a TLS Chat Server

Create a project directory named chat_server into which you’ll place the key and certifi cate fi les.

First create the server key:

$ openssl genrsa -out server_key.pem 1024

Then create the certifi cate request:

$ openssl req -new -key server_key.pem -out server_csr.pem

To create a self-signed certifi cate with the CSR, you can do this:

$ openssl x509 -req -in server_csr.pem -signkey server_key.pem \
-out server_cert.pem

Now that you have the fi le server_cert.pem fi le sitting in the chat_server directory, you can put
the server script together inside a fi le named server.js. See Listing 15-1.

LISTING 15-1: A TLS chat server.

var tls = require('tls');
var fs = require('fs');
var port = 4001;

var clients = [];

var options = {
 key: fs.readFileSync('server_key.pem'),
 cert: fs.readFileSync('server_cert.pem')
};

function distribute(from, data) {
 var socket = from.socket;
 clients.forEach(function(client) {
 if (client !== from) {
 client.write(socket.remoteAddress + ':' + socket.remotePort +
 ' said: ' + data);
 }

continues

c15.indd 145c15.indd 145 21/09/12 8:53 AM21/09/12 8:53 AM

146 ❘ CHAPTER 15 SECURING YOUR TCP SERVER WITH TLS/SSL

 });
}

var server = tls.createServer(options, function(client) {

 clients.push(client);

 client.on('data', function(data) {
 distribute(client, data);
 });

 client.on('close', function() {
 console.log('closed connection');
 clients.splice(clients.indexOf(client), 1);
 });

});

server.listen(port, function() {
 console.log('listening on port', server.address().port);
});

This server keeps a list of all connected clients in a module-global array stored on a variable named
clients. Each time a client connects it is added to that array. Each time a client sends any data, that
data is distributed to all the other clients, prefi xed with the source IP address and TCP port. Also,
when the client is disconnected, that client is removed from the list.

Now you simply have to start up your script:

$ node server.js

Creating a TLS Command-Line Chat Client

After you have created the chat_client directory, you can start creating the client key and
certifi cates:

$ openssl genrsa -out client_key.pem 1024
$ openssl req -new -key client_key.pem -out client_csr.pem
$ openssl x509 -req -in client_csr.pem -signkey client_key.pem -out client_cert.pem

With your client key and certifi cate fi les you can create the client code inside a fi le named client.js.
See Listing 15-2.

LISTING 15-2: A TLS chat client.

var tls = require('tls');
var fs = require('fs');

var port = 4001;
var host = '0.0.0.0';

LISTING 15-1 (continued)

c15.indd 146c15.indd 146 21/09/12 8:53 AM21/09/12 8:53 AM

Building Some Examples ❘ 147

var options = {
 key: fs.readFileSync('client_key.pem'),
 cert: fs.readFileSync('client_cert.pem')
};

process.stdin.resume();

var client = tls.connect(port, host, options, function() {
 console.log('connected');
 process.stdin.pipe(client, {end: false});
 client.pipe(process.stdout);
});

The client is simple — it connects to the TLS server in a local host and then pipes the process
standard input into the server, which writes every line you type to the server. It also pipes the server
stream into the standard output, which makes it output every character the server sends.

You can test the client on multiple windows by launching

$ node client.js

You will then see what you type in the client window appear on all the other clients.

Verifying the Client Certifi cate

One thing that your server does not do yet is verify client credentials. If you turn on the requestCert
option, you will see that the authorized property on the client stream is set to false:

var options = {
 key: fs.readFileSync('server_key.pem'),
 cert: fs.readFileSync('server_cert.pem'),
 requestCert: true
};

var server = tls.createServer(options, function(client) {
 console.log('client.authorized:', client.authorized);
 // ...
});

If you make these changes to the server and then execute the client, you will see that the server
outputs the following:

client.authorized: false

You can also resolve not to accept any unauthorized client by setting the rejectUnauthorized
option to true:

var options = {
 key: fs.readFileSync('server_key.pem'),
 cert: fs.readFileSync('server_cert.pem'),
 requestCert: true,
 rejectUnauthorized: true
};

c15.indd 147c15.indd 147 21/09/12 8:53 AM21/09/12 8:53 AM

148 ❘ CHAPTER 15 SECURING YOUR TCP SERVER WITH TLS/SSL

This ensures that the clients that fail to pass the certifi cation chain are not served. If you try this
option, you will see that the client does not enter the server callback.

This happens because the client certifi cate is self-signed, and the server is using the default
Certifi cate Authorities. These default CAs don’t validate the self-signed certifi cate of the client.

You can do a small trick to test this feature on the server — copy the client certifi cate and say that it
is a Certifi cate Authority:

$ cd chat_server
$ cp ../chat_client/client_cert.pem fake_ca.pem

Then override the Certifi cate Authority option on the server:

var options = {
 key: fs.readFileSync('server_key.pem'),
 cert: fs.readFileSync('server_cert.pem'),
 ca: [fs.readFileSync('fake_ca.pem')],
 requestCert: true
};

Then, if you start the server and connect with a client, you will see that the client is authorized:

client.authorized: true

SUMMARY

TLS provides an encrypted stream of communication on top of TCP and uses a public/private key
infrastructure to authenticate clients and servers. To communicate you need to have a private
key and a signed certifi cate. This certifi cate can be self-signed or, if the server or client demands it,
can be signed by a Certifi cate Authority.

A TLS server and client follow the existing pattern in the net module but have some extensions
to allow the specifi cation of the principal private key and the certifi cate. They also allow you to set
whether to perform authentication.

c15.indd 148c15.indd 148 21/09/12 8:53 AM21/09/12 8:53 AM

16
Securing Your HTTP Server
with HTTPS

WHAT’S IN THIS CHAPTER?

 ➤ Setting up an HTTPS server

 ➤ Making requests to an HTTPS server

 ➤ Validating client and server certifi cates

HTTPS adds the security capabilities of TLS to the standard HTTP protocol. In Node HTTPS
is implemented as a separate module from HTTP. The HTTPS API is very similar to the
HTTP one, with some small differences.

The https Node core module extends the core http module and uses the tls module as a
transport mechanism. For instance, the https.Server pseudo-class simply inherits from the
http.Server pseudo-class, overriding the way that connections are constructed inside the
corresponding Agent class, which instantiates a TLS connection instead of a plain TCP one.

BUILDING A SECURE HTTP SERVER

In this section you will set up an HTTP server that talks to clients through a secured encrypted
channel. This HTTP server can provide self-authentication to clients and authenticate client
identifi cation.

First you have to create the server private key and self-signed certifi cate like you did in the
previous chapter:

$ openssl genrsa -out server_key.pem 1024
$ openssl req -new -key server_key.pem -out server_csr.pem
$ openssl x509 -req -in server_csr.pem -signkey server_key.pem
 -out server_cert.pem

The second step prompts you with some questions — you can answer them as you like.

c16.indd 149c16.indd 149 21/09/12 8:53 AM21/09/12 8:53 AM

150 ❘ CHAPTER 16 SECURING YOUR HTTP SERVER WITH HTTPS

Setting Up the Server Options

To create a server, you can do something like this:

var fs = require('fs');
var https = require('https');

var options = {
 key: fs.readFileSync('server_key.pem'),
 cert: fs.readFileSync('server_cert.pem')
};

var server = https.createServer(options, function(req, res) {
 res.writeHead(200, {'Content-Type': 'text/plain'});
 res.end('Hello World!');
});

The fi rst argument of https.createServer is an options object that, much like with the
TLS module, provides the private key and the certifi cate strings. Just as you did in Chapter 15,
“Securing Your TCP Server with TLS/SSL,” you are loading the private key and certifi cate from the
fi lesystem using the fs.readFileSync function, which, as the name indicates, loads the fi le content
synchronously.

NOTE As mentioned in Chapter 15, the fact that you do this synchronously does
not create any danger of blocking the event loop because it is done during the
module loading phase, which happens before the Node event loop starts.

Listening for Connections

You can then — as with the bare HTTP server model — register your server to listen to a specifi c
TCP port:

var port = 4001;
server.listen(port);

You can also specify which interface you want to listen on:

port = 4001;
var address = '192.168.1.100';
server.listen(port, address);

If you don’t specify an address, the server will listen on all network interfaces.

This listen command is asynchronous, which means that the server will not listen for connections
immediately after you command it to. You can, however, provide a callback function that will be

c16.indd 150c16.indd 150 21/09/12 8:53 AM21/09/12 8:53 AM

Building a Secure HTTP Server ❘ 151

invoked once the server does start listening, which you pass in as the second or third argument of
the server.listen function (whether you are specifying a network interface to bind to or not):

server.listen(port, address, function() {
 console.log('Server is listening on port', server.address().port);
});

Validating the HTTPS Client Certifi cate

If you are building an HTTPS server, your main concern may be that the communication channel
between the server and each client be encrypted. You might also need each client to be able to
identify the server in a certifi ed way. You might require the server to verify the authenticity of the
clients. This last example is not a very common use case, but it can be helpful when you want to
build a highly secured machine-to-machine communication scheme or even if you want to issue
identifi cation certifi cates to clients like some home-banking services do.

You can require that the server verify the clients’ authenticity by simply specifying some option
arguments on the server startup:

var options = {
 key: fs.readFileSync('server_key.pem'),
 cert: fs.readFileSync('server_cert.pem'),
 requestCert: true,
 rejectUnauthorized: true
};

You are now using two new options — requestCert and rejectUnauthorized — and setting them
both to true. The fi rst one asks the client to send over the certifi cate. The second one tells the server
to reject certifi cates that are not validated by the Certifi cate Authority chain.

NOTE For more information about Certifi cate Authorities, consult Chapter 15,
“Securing Your TCP Server with TLS/SSL.”

Also, if you omit the rejectUnauthorized attribute, you can still determine whether the client was
authenticated by inspecting the authorized attribute on the client stream:

var server = https.createServer(options, function(req, res) {
 console.log('authorized:', req.socket.authorized);
});

You can also access the client certifi cate, but note that you will only be able to trust the authenticity
of that information if socket.authorized is true. Here is how you can do that:

var server = https.createServer(options, function(req, res) {
 console.log('authorized:', req.socket.authorized);
 console.log('client certificate:', req.socket.getPeerCertificate());
});

c16.indd 151c16.indd 151 21/09/12 8:53 AM21/09/12 8:53 AM

152 ❘ CHAPTER 16 SECURING YOUR HTTP SERVER WITH HTTPS

By inquiring if the stream is authenticated (req.socket.authorized) and by obtaining the peer
certifi cate (req.socket.getPeerCertificate()), you can identify and authenticate the client
connection.

CREATING AN HTTPS CLIENT

In Node, making an HTTPS request is very similar to making an HTTP one. In fact, it can be
exactly the same because you don’t really need to pass in the client private key or client certifi cate
unless the server requires it.

Initializing the Client

You can make an HTTPS request to an HTTPS server like this:

var fs = require('fs');
var https = require('https');

var options = {
 host: '0.0.0.0',
 port: 4001,
 method: 'GET',
 path: '/'
};

Much like the HTTP counterpart, you need to construct an object containing the options for your
request. This should include values for host, port, and path. You can also specify the method if you
want to make a request using a method other than GET.

Making the Request

You have to pass these last options that specify host, port, method, and path to the request function
in the https module, which accepts the options object and a function callback and returns an
http.ClientRequest instance.

var request = https.request(options, function(response) {
 console.log('response.statusCode:', response.statusCode);

 response.on('data', function(data) {
 console.log('got some data back from the server:', data);
 });
});

request.write('Hey!\n');
request.end();

This client request is a writable stream to which you can write, or into which you can pipe a readable
stream. You should then end the request so that the server can respond.

c16.indd 152c16.indd 152 21/09/12 8:53 AM21/09/12 8:53 AM

Creating an HTTPS Client ❘ 153

Once a response from the server is received — triggering the response event on the request
object — the callback gets the response object. If you are interested in the body content, this
response object is a readable stream, which means that you can pipe it into a writable stream or
simply register a callback function for any data events.

Validating the HTTPS Server Certifi cate

Besides the secure communication channel, client-side validation of the server certifi cate is the most
common reason for using HTTPS on the web. Most web browsers want to be sure that the server
they are talking to is the same one that shows up in the URL bar. You can perform this kind of
validation using the built-in Node HTTPS client.

While performing a request, when you get a response event and the response object, you can
inspect that object. The response object has the stream object embedded inside its socket
attribute. Because this is a TLS stream, you can invoke the getPeerCertificate function on it to
obtain the server certifi cate like this:

var fs = require('fs');
var https = require('https');

var options = {
 host: 'google.com',
 method: 'GET',
 path: '/'
};

var req = https.request(options, function(res) {
 console.log('res.socket.authorized:', res.socket.authorized);
 console.log('peer certificate:');
 console.log(res.socket.getPeerCertificate());
});

req.end();

If you run this small HTTPS client, you will get output similar to this:

res.socket.authorized: true
peer certificate:
{ subject:
 { C: 'US',
 ST: 'California',
 L: 'Mountain View',
 O: 'Google Inc',
 CN: '*.google.com' },
 issuer: { C: 'US', O: 'Google Inc', CN: 'Google Internet Authority' },
 subjectaltname: 'DNS:*.google.com, DNS:google.com, DNS:*.youtube.com, ...',
 modulus: 'CAB66CCEFADF0EF63AC7B5DC1647EB9F31E196929391D28DAB0747C42276...',
 exponent: '10001',
 valid_from: 'Jul 26 00:34:27 2012 GMT',
 valid_to: 'Jun 7 19:43:27 2013 GMT',
 fingerprint: '56:7E:72:30:90:DB:16:E1:A9:65:8F:5A:7B:18:59:52:01:F7:64:D7',
 ext_key_usage: ['1.3.6.1.5.5.7.3.1', '1.3.6.1.5.5.7.3.2'] }

c16.indd 153c16.indd 153 21/09/12 8:53 AM21/09/12 8:53 AM

http://google.com
http://google.com
http://google.com
http://youtube.com
http://google.com

154 ❘ CHAPTER 16 SECURING YOUR HTTP SERVER WITH HTTPS

This identifi cation data, together with the fact that res.socket.authorized is true, enables you to
securely assert that the subject’s common name matches the hostname or the domain to which you
made the request.

SUMMARY

HTTPS is a way to secure the communication channel and to provide an authentication framework
between communicating peers. With HTTPS you can authenticate the client or the server. The Node
https module extends the functionality of the HTTP module and uses the TLS module to provide
the underlying transport on top of HTTP.

You can identify servers and clients by tapping into the underlying TLS socket and extracting the
peer certifi cate identifi cation data.

c16.indd 154c16.indd 154 21/09/12 8:53 AM21/09/12 8:53 AM

PART IV
Building and Debugging Modules
and Applications

 � CHAPTER 17: Testing Modules and Applications

 � CHAPTER 18: Debugging Modules and Applications

 � CHAPTER 19: Controlling the Callback Flow

c17.indd 155c17.indd 155 21/09/12 3:33 PM21/09/12 3:33 PM

c17.indd 156c17.indd 156 21/09/12 3:33 PM21/09/12 3:33 PM

Testing Modules and
Applications

WHAT’S IN THIS CHAPTER?

 ➤ Running tests using node-tap

 ➤ Using the Node assert module

 ➤ Testing a sample module

To minimize the number of errors that users encounter while using your software, you must
test the code you produce. You can do some of this testing manually, but optimally, you need a
program that automates this process.

Automated testing is one of the most important practices that improve code quality. The goal
is to have a series of tests that cover your entire code base, including the main and edge cases
of your software. Some disciplines like TDD (test-driven development) even advocate that you
write your tests, make them fail, and then implement the code that makes them work.

Whatever your approach, writing automated tests is a good investment. This chapter shows
you how to do that in your Node modules and programs.

USING A TEST RUNNER

To create an automated test, you fi rst need a way to defi ne your tests. Then you need a tool
that compiles and runs these tests, outputting the results.

Many such tools for Node.js and JavaScript exist. This chapter features one called node-tap. I
picked it for several reasons: It’s simple, it easily supports asynchronous testing, and the output
format is based on a standard.

17

c17.indd 157c17.indd 157 21/09/12 3:33 PM21/09/12 3:33 PM

158 ❘ CHAPTER 17 TESTING MODULES AND APPLICATIONS

You can install node-tap by including it inside the dev-dependencies section of your package
.json fi le:

{
 "name": "MyApp",
 "version": "0.1.0",
 "devDependencies": {
 "tap": "*"
 }
}

You then issue this command:

$ npm install

When NPM downloads and installs node-tap and its dependencies, you can start using it.

NOTE If you declare a dependency in the devDependencies property of your
package.json fi le, you are telling your program that it does not need that
 dependency once it’s running in production.

This is a good place to store all dependencies that will be used solely for developing
and testing your application.

When you install your application in a production environment, you can use
the –production option to skip the installation of the modules listed in the
devDependencies section:

$ npm install –production

Writing Tests

To create tests, you need fi rst to set up a directory where you place the test scripts. As a general rule,
this directory is usually called tests and contains one fi le per module you want to test.

You create your fi rst test script inside this directory. To do so, require the tap module and obtain
the test constructor as follows:

var test = require('tap').test;

Then you can defi ne your fi rst test. For that you need to provide a test name and a function that
contains the test code:

test("addition of 2 and 2 works", function(t) {
 t.equal(2+2, 4, "2+2 should be 4");
 t.end();
});

c17.indd 158c17.indd 158 21/09/12 3:33 PM21/09/12 3:33 PM

Using an Assertion Testing Module ❘ 159

In this code, you are declaring a test named addition of 2 and 2 works and then passing a
 function that contains the test code. The function receives an argument named t, which contains
the control object for this test. With this object you can test your expectations and end the current
test. It’s important that you end the test explicitly. Node-tap supports asynchronous tests, which
means that if you’re performing any IO, the test will still run after your test function returns.
Node-tap ends a test only when you call the end method on it.

Running Tests

Save the fi le you created in the previous section and name it my_test.js. You can run this test by
invoking the test script directly:

$ node my_test

You should then get output that is similar to this:

addition of 2 and 2 works
ok 1 2+2 should be 4

1..1
tests 1
pass 1

ok

USING AN ASSERTION TESTING MODULE

To build a valid test, you need a way to verify that the results you are getting match your expectations.
For this, the previous example used node-tap’s built-in assertion functions — which you’ll learn about
later — but for now you can use Node’s built-in assert module.

Using the assert Module

Node uses the built-in assert module in its tests. Node also exposes the assert module, which
means you can use it to verify assumptions inside your own tests.

To use the assert module, import the module into your test script:

var assert = require('assert');

Now you can use the assertion functions. Each of these functions sets an expectation, and an
exception will be thrown if the expectation is not met.

First, you can test if a value is truthy:

var a = true;
assert(a);

c17.indd 159c17.indd 159 21/09/12 3:33 PM21/09/12 3:33 PM

160 ❘ CHAPTER 17 TESTING MODULES AND APPLICATIONS

NOTE In JavaScript, a value that can be used successfully inside an if statement
is said to be truthy. Truthy values are usually defi ned by all possible values,
minus the falsy values, which are:

 ➤ false

 ➤ null

 ➤ undefi ned

 ➤ The empty string “ ”

 ➤ The number 0

 ➤ The number NaN

In this and other assertion functions, you can also provide a message as the last argument, providing
more information that is shown when the test fails:

assert(a, 'a should be truthy');

You can also use this alias to determine whether a value is truthy:

assert.ok(a, 'a should be truthy');

assert also tests for equality in two ways: shallow or deep. Shallow equality just tests the two
objects you provide and doesn’t test the equality of objects embedded inside the objects you
provided. In contrast, deep equality recursively tests all the nested objects. Shallow equality is
normally used to compare scalar objects like strings and numbers, while deep equality is normally
used to compare two objects.

You test shallow equality like this:

assert.equal(a, 10, 'a should be 10');

This operator is equivalent to the JavaScript equality operator (==), which means that the following
assertion is valid:

assert.equal('10', 10);

You can also use the reverse — the inequality assertion — which is the equivalent of the JavaScript
coercive inequality operator (!=). It makes the following assertion fail:

assert.notEqual('10', 10);

The assert module also supports the strict equality semantics, similar to the JavaScript strict
equality operator (===). The following assertion fails:

assert.strictEqual('10', 10, 'string 10 should equal to number 10');

c17.indd 160c17.indd 160 21/09/12 3:33 PM21/09/12 3:33 PM

Using an Assertion Testing Module ❘ 161

and the following assertion is valid:

assert.notStrictEqual('10', 10, 'string 10 should not be equal to number 10');

So far you have tested for shallow equality. In shallow equality, if you are testing two objects, these
two object references have to point to the same object for the equality assertion to be valid:

assert.equal({a:1}, {a:1});

The previous assertion fails with this:

AssertionError: {"a":1} == {"a":1}

Shallow comparison fails here because, even though these two objects appear identical, they are in
fact two different objects.

If you wish to compare object properties, you need to use deep comparison.

For deep comparison, you can use the assert.deepEqual function. The following assertion is valid:

var obj = {b:1, a:[1,2,3,4]};
assert.deepEqual(obj, {a:[1,2,3,4], b:1});

You can also use it to compare dates:

var a = new Date(),
 b = new Date();
assert.deepEqual(a, b);

Since version 0.7 you can also use it to compare regular expressions. If you are using Node 0.7 or
greater, the following assertion is valid:

assert.deepEqual(/a/ig, /a/gi);

The deepEqual function verifi es only the object’s enumerable properties, which means that if two
objects have different prototypes but all the enumerable properties are the same, they won’t register
as different. For instance, the following assertion is valid:

var EventEmitter = require('events').EventEmitter;
var ee = new EventEmitter();
assert.deepEqual(ee, {});

This happens because the following assertion is valid:

assert.strictEqual(Object.keys(ee).length, 0);

Using the Built-in Assertion Functions in Node-Tap

The node-tap module also provides a set of assertion-testing functions. By using them instead of the
ones defi ned in the Node core module, you can take advantage of the built-in test count metrics,
error reporting, and aggregated reports of node-tap. The testing functions are somewhat similar

c17.indd 161c17.indd 161 21/09/12 3:33 PM21/09/12 3:33 PM

162 ❘ CHAPTER 17 TESTING MODULES AND APPLICATIONS

to the native assert module, but they are different enough that it’s worth taking a look at them
separately.

By using t.ok() and t.notOk, you can test for truthyness:

test("truthyness of numbers", function(t) {
 t.ok(1, '1 should be truthy');
 t.notOk(0, '0 should not be truthy');
 t.end();
});

You can also test for strict equality by using the t.equal function:

test("sum works", function(t) {
 var a = 2 + 2;
 t.equal(a, 4, '2 + 2 should be equal to 4');
 t.notEqual(a, '4', '2 + 2 should not be equal to the string "4"');
 t.end();
});

You can also use t.equal to test for shallow equality. The following test fails:

test("object equality", function(t) {
 var a = {a:1};
 t.equal(a, {a:1});
 t.end();
});

In this case you should use the equivalency test. This test succeeds:

test("object equivalency", function(t) {
 var a = {a:1, b:2};
 t.equivalent(a, {b:2, a:1});
 t.end();
});

You can also test for object similarity. For instance, you may want to determine if an object contains
a series of attributes and then assert their values. For that you can use t.similar like this:

test("object similarity", function(t) {
 a = {a:1, b:2};
 t.similar(a, {a:1});
 t.similar('abc', 'abc');
 t.similar(10, 10);
 t.end();
});

Object similarity also works for number and string objects:

test("object similarity", function(t) {
 t.similar('abc', 'abc');
 t.similar(10, 10);
 t.end();
});

c17.indd 162c17.indd 162 21/09/12 3:33 PM21/09/12 3:33 PM

Testing Your Asynchronous Module ❘ 163

You can also test for object types using t.type() like this:

test("object type", function(t) {

 t.type(1, "number");

 t.type('abc', 'string');

 t.type({}, Object);

 var EventEmitter = require('events').EventEmitter;
 var ee = new EventEmitter();
 t.type(ee, EventEmitter);
 t.type(ee, Object);

 t.end();
});

You can see in the previous example that you can determine whether an object inherits from a
certain constructor by passing the constructor into the t.type() assertion function.

TESTING YOUR ASYNCHRONOUS MODULE

Now that you know how to use node-tap, you can build an example of an interesting module to
test. To make it even more interesting, this module can perform some I/O so you can do some
 asynchronous tests.

This module adds two integers by invoking a remote HTTP service. First, create an HTTP server
that takes two integers and adds them, as in Listing 17-1:

LISTING 17-1: An HTTP server that sums two integers.

var parse = require('url').parse;

require('http').createServer(function(req, res) {
 params = parse(req.url, true).query;
 var a = parseInt(params.a, 10);
 var b = parseInt(params.b, 10);
 var result = a + b;
 res.end(JSON.stringify(result));
}).listen(8080);

Create two directories: one named “client” and another named “server.” You can then save
Listing 17-1 into a fi le named server/sum_server.js, which the following will launch:

$ node server/sum_server.js

This starts the integer-adding HTTP service.

c17.indd 163c17.indd 163 21/09/12 3:33 PM21/09/12 3:33 PM

164 ❘ CHAPTER 17 TESTING MODULES AND APPLICATIONS

Then you need to create a client module that uses this service and exposes a client API. First you
will declare the dependencies in the package.json manifest inside the “client” directory, as in
Listing 17-2:

LISTING 17-2: Client package.json manifest.

{
 "name": "sum-client",
 "version": "1.0.0",
 "dependencies": {
 "request": "*"
 }
}

Now you need to install the dependencies, which in this case are only for the “request” module:

$ npm install
request@2.10.0 ./node_modules/request

Now you can plant the client module in a fi le named index.js inside the client directory by copying
Listing 17-3 into a fi le named sum_client.js inside the client directory.

LISTING 17-3: The sum client module.

var request = require('request');

function sum(a, b, callback) {
 var options = {
 uri: 'http://localhost:8080/',
 qs: {
 a: a,
 b: b
 }
 };

 request(options, function(err, res, body) {
 var result;
 if (err) {
 return callback(err);
 }
 try {
 result = JSON.parse(body);
 } catch(err) {
 return callback(err);
 }
 return callback(null, result);
 });
}

module.exports = sum;

c17.indd 164c17.indd 164 21/09/12 3:33 PM21/09/12 3:33 PM

http://localhost:8080/

Testing Your Asynchronous Module ❘ 165

This module simply exports a function that provides the sum service.

Now you’re ready to test this module. Create a “tests” directory at the same level as the “client” and
“server” directories.

Then you have to create a package.json manifest inside that directory where you list “tap” as a
development dependency:

{
 "name": "sum-tests",
 "version": "1.0.0",
 "devDependencies": {
 "tap": "*"
 }
}

Step into the “tests” directory and install the development dependencies:

$ cd tests
$ npm install
tap@0.3.0 node_modules/tap
├── buffer-equal@0.0.0
├── deep-equal@0.0.0
├── mkdirp@0.3.3
├── slide@1.1.3
├── nopt@2.0.0 (abbrev@1.0.3)
├── difflet@0.2.1 (charm@0.0.8, traverse@0.6.3)
└── runforcover@0.0.2 (bunker@0.1.2)
$ cd ..

Then save the contents of Listing 17-4 inside the fi le tests/sum.js.

LISTING 17-4: The sum client tests.

var sum = require('../client/sum_client');
var test = require('tap').test;

test('sums 1 and 2', function(t) {
 sum(1, 2, function(err, result) {
 t.notOk(err, 'no error');
 t.equal(result, 3, '1 + 2 should be equal to 3');
 t.end();
 });
});

test('sums 5 and 0', function(t) {
 sum(5, 0, function(err, result) {
 t.notOk(err, 'no error');
 t.equal(result, 5, '5 + 0 should be equal to 3');
 t.end();
 });
});

continues

c17.indd 165c17.indd 165 21/09/12 3:33 PM21/09/12 3:33 PM

166 ❘ CHAPTER 17 TESTING MODULES AND APPLICATIONS

test('sums 5 and -2', function(t) {
 sum(5, -2, function(err, result) {
 t.notOk(err, 'no error');
 t.equal(result, 3, '5 + -2 should be equal to 3');
 t.end();
 });
});

In this test fi le, you fi rst import your sum client module, which you use further down in the test
defi nitions.

Then you perform a series of tests, invoking the sum client module function with varying arguments
for each one, always checking to see that there is no error and that the result matches the expected
value, and fi nally ending the test.

Making sure that your sum server is still running, run these tests:

$ node tests/sum.js

You will then get the output of a successful test run:

...
1..6
tests 6
pass 6

ok

SUMMARY

Testing your application and modules not only is considered a best practice but is imperative to
minimize the defects in the code you produce. In Node you can use, among others, the node-tap
module for running your tests.

To test your expectations in your tests, you can use Node’s native assert module, or you can use
the functions provided with the node-tap module.

LISTING 17-4 (continued)

c17.indd 166c17.indd 166 21/09/12 3:33 PM21/09/12 3:33 PM

Debugging Modules
and Applications

WHAT’S IN THIS CHAPTER?

 ➤ Formatting and outputting variables

 ➤ Using variable interpolation

 ➤ Using the Node debugger

 ➤ Using a visual Node debugger

Building functional software is not a trivial task. Dividing your application code into small
modules and testing each one thoroughly can help, but you’re still bound to fi nd problems. If
you fi nd yourself in a situation where you need to inspect the inner workings of your Node
application or module code, several tools can help. This chapter covers several of those
debugging tools — console.log, Node’s built-in debugger, and Node Inspector.

USING CONSOLE.LOG

Node has some global objects that you can use without requiring them explicitly. One of them
is the console object, which enables you to output formatted strings.

The simplest debugging tool at your disposal is console.log. This function call does two
things — it serializes and concatenates your objects into a string and outputs the result to the
standard output stream. You can use it to inspect objects like this:

var obj = {a: 1, b: 2};
console.log(obj);

18

c18.indd 167c18.indd 167 22/09/12 12:25 PM22/09/12 12:25 PM

168 ❘ CHAPTER 18 DEBUGGING MODULES AND APPLICATIONS

This last snippet prints the following:

{ a: 1, b: 2 }

This simple example passes in an object that is translated into a literal string representation. You
can pass in any type of object, and console.log will inspect its properties and values.

NOTE Actually, console.log does not do any formatting. All the formatting
is done by the util.format function. Whatever arguments you pass in to
 console.log are handed over to util.format, and the result is fl ushed to the
standard output stream. This means that any of these example calls to console
.log can be directly applied to util.format.

The console.log function inspects only the object’s own enumerable properties, which means
that properties on the prototype chain and properties that are not enumerable are not shown. As an
example, this code instantiates an EventEmitter object on the Node console:

> var EventEmitter = require('events').EventEmitter;
undefined
> var emitter = new EventEmitter();
undefined
> console.log(emitter);
{}
undefined
> emitter.on('data', function() { });
{ _events: { data: [Function] } }
> console.log(emitter);
{ _events: { data: [Function] } }
undefined

In the previous interactive example, you can see that the fi rst time you call console.log on the
emitter variable value, it prints an empty object. That is because the emitter object has no
 properties set at the time of construction. Then, after you attach an event listener, it gains a property
named _events, which is printed on the following console.log call.

The console.log function can also comprehensibly log arrays:

> var arr = [1, 2, 3];
undefined
> console.log(arr);
[1, 2, 3]
undefined

The console.log function also provides — via the util.format function — the ability to interpolate
values into strings, where you can specify placeholders that are prefi xed by % inside a string like this:

> console.log('an object: %j and a number: %d', {a:1, b:2}, 0xfa);
an object: {"a":1,"b":2} and a number: 250
undefined

c18.indd 168c18.indd 168 22/09/12 12:25 PM22/09/12 12:25 PM

Using Node’s Built-in Debugger ❘ 169

You can use %j to JSON-encode an object, %d to output a number (integer or fl oat), and %s to output
another string.

If you supply console.log with extra arguments that don’t have placeholders in the template string
or if you just supply a list of arguments with no template string, console.log will simply format
and concatenate them, separated by space characters.

> console.log({a:1, b:2}, 0xfa);
{ a: 1, b: 2 } 250
undefined
> console.log('an object: %j and a number:', {a:1, b:2}, 0xfa);
an object: {"a":1,"b":2} and a number: 250
undefined

NOTE The console.log function simply outputs the resulting string from
util.format, appends a newline character, and pushes it into the standard
output stream. However, writing to process output streams in Node is a blocking
operation, which means that you are blocking your event loop while you are
 logging. Depending on your application and on how frequently you use this
function, you may reduce responsiveness, which means that you should avoid
using console.log in production code.

USING NODE’S BUILT-IN DEBUGGER

Using console.log to inspect variables can quickly become unmanageable, especially when the
problem you are trying to fi x is nontrivial. When addressing a problem that is hard to fi nd, you
would probably have to add many log instructions and your program output would become too
verbose. Worst of all, you would have to run your program and try to reproduce the problem every
time you introduce new logging instructions.

Fortunately, the JavaScript V8 Virtual Machine exports a debugging interface, which Node also
supports. If you need to halt execution to carefully inspect your app, you can use Node’s built-in
debugger. Even though it’s simple and basic, it can be just enough to help you debug your app
without having to install another tool.

First, create a simple example application with an error so you can experiment with the debugger
(see Listing 18-1).

LISTING 18-1: An application with a bug.

var a = 0;

function init() {
 a = 1;
}

function incr() {

continues

c18.indd 169c18.indd 169 22/09/12 12:25 PM22/09/12 12:25 PM

170 ❘ CHAPTER 18 DEBUGGING MODULES AND APPLICATIONS

 var a = a + 1;
}

init();
console.log('a before: %d', a);

incr();
console.log('a after: %d', a);

If you run this application, you can see that the output is this:

a before: 1
a after: 1

You can see that the a variable was not incremented as you intended it to be. Your next step is to
start Node in debug mode so you can observe what is happening.

$ node debug my_app.js

This code snippet launches Node in debug mode and starts the debugger. This will start the app but
will break at the fi rst line of your main module. You should now get the debugger prompt and the
current instruction position:

< debugger listening on port 5858
connecting... ok
break in my_app.js:1
 1 var a = 0;
 2
 3 function init() {

You can use the prompt to list all the commands:

debug> help
Commands: run (r), cont (c), next (n), step (s), out (o), backtrace (bt),
setBreakpoint (sb), clearBreakpoint (cb), watch, unwatch, watchers,
repl, restart, kill, list, scripts, breakpoints, version

Now you can continue to the next instruction:

debug> next

This will continue and break the execution in the next instruction on the same scope:

break in my_app.js:11
 9 }
 10
 11 init();
 12 console.log('a before: %d', a);
 13

LISTING 18-1 (continued)

c18.indd 170c18.indd 170 22/09/12 12:25 PM22/09/12 12:25 PM

Using Node’s Built-in Debugger ❘ 171

Now, instead of using the next command to continue to the next instruction on the same scope, you
enter the init() function call:

debug> step
break in my_app.js:4
 2
 3 function init() {
 4 a = 1;
 5 }
 6

You can now see the state of the call stack like this:

debug> backtrace
#0 my_app.js:4:3
#1 my_app.js:11:1

You can also watch over a variable by adding a watch like this:

debug> watch('a')

This command adds a watch to the watch list, which you can inspect like this:

debug> watchers
 0: a = 0

Here you can see that the variable named a has a value of 0 in the local scope.

Now you can step into the next command like this:

debug> next
break in my_app.js:5
Watchers:
 0: a = 1

 3 function init() {
 4 a = 1;
 5 }
 6
 7 function incr() {

This debugger instruction runs the next command and shows the watch list and the next line of
execution. You can see that the a variable now has a value of 1.

You are now at the end of the init function, ready to return. You can use the out command to
skip to the next instruction on the parent scope, or — because you’ve reached the end of the current
scope — you can also use the next command:

debug> next
break in my_app.js:12
Watchers:
 0: a = 1

c18.indd 171c18.indd 171 22/09/12 12:25 PM22/09/12 12:25 PM

172 ❘ CHAPTER 18 DEBUGGING MODULES AND APPLICATIONS

 10
 11 init();
 12 console.log('a before: %d', a);
 13
 14 incr();

What if you wanted to skip line 12 and jump right into the execution of the incr function call? To
do so, you set a breakpoint on line 8 of the my_app.js fi le:

debug> sb ('my_app.js', 8)
 7 function incr() {
* 8 var a = a + 1;
 9 }
 10
 11 init();
 12 console.log('a before: %d', a);
 13
 14 incr();
 15 console.log('a after: %d', a);
 16 });

You can see that you have a breakpoint on line 8, and that the current instruction is on line 12.
Now you are ready to fast-forward to the breakpoint:

debug> cont
< a before: 1
break in my_app.js:8
Watchers:
 0: a = undefined

 6
 7 function incr() {
* 8 var a = a + 1;
 9 }
 10

By examining the output of the debugger, you can detect the problem in the application. The debugger
is saying that the previous value of the a variable was 1 and that the new value is undefi ned. That is
because you use the var keyword on line 8, which creates a local variable instead of using the global
one. Now that you know what you did wrong, you can exit the debugger by hitting Ctrl-D and fi x
the problem by removing the var keyword from line 8:

var a = 0;

function init() {
 a = 1;
}

function incr() {
 a = a + 1;
}

c18.indd 172c18.indd 172 22/09/12 12:25 PM22/09/12 12:25 PM

Using Node Inspector ❘ 173

init();
console.log('a before: %d', a);

incr();
console.log('a after: %d', a);

Run the application again:

$ node my_app.js
a before: 1
a after: 2

Now the output is what you expected; the bug is fi xed.

USING NODE INSPECTOR

Another debugging tool you might fi nd helpful is Node Inspector. Instead of using a text-only
debugger, this one provides a graphical interface by bringing the full-fl edged Google Chrome
inspector to your Node app using a web browser.

You can install Node Inspector globally like this:

$ npm install -g node-inspector

Node Inspector runs as a daemon by default on port 8080. You can launch it like this:

$ node-inspector &

This sends the node-inspector process to the background.

Next you need to fi re up your app, by using the --debug or --debug-brk option on the Node
executable like this:

$ node --debug-brk my_app.js

The --debug-brk option makes your app break on the fi rst line, whereas the --debug option simply
enables debugging.

NOTE When debugging servers you should use --debug, and when debugging
other scripts you might want to break on the fi rst line by using --debug-brk.

Now you can open your browser and point it to http://localhost:8080, and you should get
something like the screen shown in Figure 18-1.

c18.indd 173c18.indd 173 22/09/12 12:25 PM22/09/12 12:25 PM

http://localhost:8080

174 ❘ CHAPTER 18 DEBUGGING MODULES AND APPLICATIONS

FIGURE 18-1: Start screen of Node Inspector.

You can set and unset breakpoints by clicking on the line numbers.

When a breakpoint is reached, your app freezes and Node Inspector shows the context, as shown in
Figure 18-2.

FIGURE 18-2: Breakpoint reached in Node Inspector.

c18.indd 174c18.indd 174 22/09/12 12:25 PM22/09/12 12:25 PM

Summary ❘ 175

You can see the two most interesting context panes on the right:

 ➤ The call stack, where you can see which functions were invoked to get to this point.

 ➤ The scope variables, where you can inspect the local variables, the global variables, and the
closure variables, which are variables that are defi ned on a higher function scope.

Above those panes are some buttons that you can use to manipulate the executed instructions, as
shown in Figures 18-3 through 18-6.

NOTE Live Edit describes the process whereby you change code while you are
debugging. You simply double-click on a line of code and edit it. Change the code
and press the Tab key or click outside the edit area. You just changed the running
code!

However, note that changing the code using Live Edit will not save the
changes — use it only to test quick fi xes.

SUMMARY

You can use console.log() to output some state of your application to help you debug it. Using
this function you can format and output variables to expose the state of your application.

If you have a more complex problem, you can use Node’s built-in console debugger. If you prefer,
you can use Node Inspector, which is a graphical alternative that uses a browser and provides some
more complex options. Node Inspector also allows you to edit your code as you are debugging.

FIGURE 18-3: Fast-forward execution

until a breakpoint is reached.

FIGURE 18-4: Execute this function

and stop on the next line.

FIGURE 18-5: Step into this function.

FIGURE 18-6: Continue, and when this

function ends return to the caller.

c18.indd 175c18.indd 175 22/09/12 12:25 PM22/09/12 12:25 PM

c18.indd 176c18.indd 176 22/09/12 12:25 PM22/09/12 12:25 PM

Controlling the Callback Flow

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the boomerang eff ect

 ➤ Avoiding deeply nested callbacks

 ➤ Building an asynchronous fl ow control routine

 ➤ Using async to control callback fl ow

 ➤ Using async to iterate asynchronously

When Node is performing an asynchronous operation, the result of that operation is not
 communicated back using the function return value. Instead, asynchronous programming
relies on callback functions that are usually passed in as arguments.

When you need to leave your process and do some I/O, most of the time you need to specify a
callback function that gets invoked when that operation is fi nished.

If your task involves a lot of I/O operations, organizing the fl ow of callback functions can
become diffi cult and may lead to a pattern that is sometimes called “callback soup” or the
“boomerang effect.”

UNDERSTANDING THE BOOMERANG EFFECT

The “boomerang effect” happens when a group of callbacks is executed in chain — when
one I/O operation completes, the next operation starts. The name “boomerang” derives from
the shape of your code when there are many nested callback functions. The increasing left
 indentation and the return of that indentation makes a boomerang-like shape.

19

c19.indd 177c19.indd 177 21/09/12 8:55 AM21/09/12 8:55 AM

178 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

To illustrate the boomerang effect, you’ll build a script that appends bytes 0 to 10 from a fi le named
a.txt into a fi le named b.txt. Both fi les exist in the current directory. Listing 19-1 shows an
 example of the boomerang effect.

LISTING 19-1: A demonstration of the boomerang eff ect.

var fs = require('fs');

function append_some_a_to_b(callback) {
 fs.open(__dirname + '/a.txt', 'r', function(err, aFd) {

 if (err) {
 return callback(err);
 }

 var buffer = new Buffer(10);

 fs.read(aFd, buffer, 0, buffer.length, 0, function(err) {

 if (err) {
 return callback(err);
 }

 fs.close(aFd, function(err) {

 if (err) {
 return callback(err);
 }

 fs.open(__dirname + '/b.txt', 'a', function(err, bFd) {

 if (err) {
 return callback(err);
 }

 fs.fstat(bFd, function(err, bStats) {

 if (err) {
 return callback(err);
 }

 fs.write(bFd, buffer, 0, buffer.length, bStats.size,
 function(err) {
 if (err) {
 return callback(err);
 }

 fs.close(bFd, callback);

 });
 });

 });
 });

c19.indd 178c19.indd 178 21/09/12 8:55 AM21/09/12 8:55 AM

Avoiding the Boomerang Eff ect by Declaring Functions ❘ 179

 });

 });
}

console.log('starting...');

append_some_a_to_b(function(err) {

 if (err) {
 throw err;
 }

 console.log('done');
});

Note that the function named append_some_a_to_b, which implements the callback fl ow for the
task, places the declaration of the callback functions inline, which leads to this deeply nested code.
To the untrained eye, code structured this way can be hard to read.

Worse yet, if you needed to conditionally perform some I/O before the fi nal operation, structuring
the code this way could lead to a lot of duplication.

NOTE Declaring the callback functions inline has at least one advantage,
though. By visually placing the callback function code after you have started the
I/O call, you get a better sense of the actual sequence of operations.

As with most things in programming, this is not an all-or-nothing proposition — nested
callbacks can sometimes make sense, as long as you don’t abuse them.

AVOIDING THE BOOMERANG EFFECT
BY DECLARING FUNCTIONS

You can avoid the boomerang effect altogether by naming the functions and declaring them in the
same scope. Listing 19-2 shows the previous example, but this time, the functions are named and
declared in the same scope.

LISTING 19-2: Declaring named functions.

var fs = require('fs');

function append_some_a_to_b(callback) {

 var aFd, bFd,
 buffer = new Buffer(10);

 function open_a() {
 fs.open(__dirname + '/a.txt', 'r', read_from_a);

continues

c19.indd 179c19.indd 179 21/09/12 8:55 AM21/09/12 8:55 AM

180 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

 }

 function read_from_a(err, fd) {

 if (err) {
 return callback(err);
 }

 aFd = fd;
 fs.read(aFd, buffer, 0, buffer.length, 0, close_a);
 }

 function close_a(err) {

 if (err) {
 return callback(err);
 }

 fs.close(aFd, open_b);
 }

 function open_b(err) {

 if (err) {
 return callback(err);
 }

 fs.open(__dirname + '/b.txt', 'a', stat_b);
 }

 function stat_b(err, fd) {

 if (err) {
 return callback(err);
 }

 bFd = fd;
 fs.fstat(bFd, write_b);
 }

 function write_b(err, bStats) {

 if (err) {
 return callback(err);
 }

 fs.write(bFd, buffer, 0, buffer.length, bStats.size, close_b);
 }

 function close_b(err) {

 if (err) {

LISTING 19-2 (continued)

c19.indd 180c19.indd 180 21/09/12 8:55 AM21/09/12 8:55 AM

Avoiding the Boomerang Eff ect by Declaring Functions ❘ 181

 return callback(err);
 }

 fs.close(bFd, callback);
 }

 open_a();

}

console.log('starting...');

append_some_a_to_b(function(err) {

 if (err) {
 throw err;
 }

 console.log('done');
});

Listing 19-2 declares all the functions inside the same scope. Using this technique you lose the
closure nesting effect and now have to store the necessary values inside a scope that is above each
function.

You may have noticed, though, that this code has at least two problems:

 ➤ Each function must know the name of the next function in the fl ow.

 ➤ You always have to deal with the errors, which means there is a lot of repetitive code.

Because you are chaining all the callbacks, you can make this code more generic and fl exible, as
shown in Listing 19-3.

LISTING 19-3: Using a generic fl ow control mechanism.

var fs = require('fs');

function cascade(callbacks, callback) {

 // clone the array
 var functions = callbacks.slice(0);

 function processNext(err) {

 if (err) {
 return callback(err);
 }

 var args = Array.prototype.slice.call(arguments);

 var func = functions.shift();
 if (func) {

continues

c19.indd 181c19.indd 181 21/09/12 8:55 AM21/09/12 8:55 AM

182 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

 // remove first argument containing the error
 args.shift();
 } else {
 func = callback;
 }

 args.push(processNext);

 func.apply(this, args);
 }

 processNext.call(this);

}

function append_some_a_to_b(callback) {

 var aFd, bFd,
 buffer = new Buffer(10);

 cascade([
 function open_a(next) {
 fs.open(__dirname + '/a.txt', 'r', next);
 },

 function read_from_a(fd, next) {
 aFd = fd;
 fs.read(aFd, buffer, 0, buffer.length, 0, next);
 },

 function close_a(bytesRead, buf, next) {
 fs.close(aFd, next);
 },

 function open_b(next) {
 fs.open(__dirname + '/b.txt', 'a', next);
 },

 function stat_b(fd, next) {
 bFd = fd;
 fs.fstat(bFd, next);
 },

 function write_b(bStats, next) {
 fs.write(bFd, buffer, 0, buffer.length, bStats.size, next);
 },

 function close_b(bytesWritten, buf, next) {
 fs.close(bFd, next);
 }
], callback);

LISTING 19-3 (continued)

c19.indd 182c19.indd 182 21/09/12 8:55 AM21/09/12 8:55 AM

Using the async Flow Control Library ❘ 183

};

console.log('starting...');

append_some_a_to_b(function done(err) {

 if (err) {
 throw err;
 }

 console.log('done');
});

Listing 19-3 declares a function named cascade that takes two arguments. The fi rst argument
contains all the callback functions that should be invoked. The second argument contains a
fi nal callback function to be called when all the callbacks are done or in case of an error.

This cascade function will invoke the callbacks, one by one, passing in the processNext function
as the last argument for each callback. This way, each callback function does not have to know
which function to call next.

Then, the append_some_a_to_b function calls the cascade function with the list of callback
functions, plus a fi nal callback function.

USING THE ASYNC FLOW CONTROL LIBRARY

Sometimes, as in the previous example, you can roll your own generic fl ow control routines.
However, many third-party modules can simplify this and other asynchronous patterns. One of
these is a module called async.

To install async you include it in your package.json manifest or simply install it on your
 application root directory like this:

$ npm install async

The async module comes with a series of helper functions that allow you to perform asynchronous
iteration and fl ow control.

For example, Listing 19-4 implements an HTTP server that returns the square of the number you give it.

LISTING 19-4: A simple squaring server.

var port = process.argv[2] && parseInt(process.argv[2], 10) || 8080;

require('http').createServer(function(req, res) {

 var body = '';

 req.setEncoding('utf8');

 req.on('data', function(data) {

continues

c19.indd 183c19.indd 183 21/09/12 8:55 AM21/09/12 8:55 AM

184 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

 body += data;
 });

 req.once('end', function() {
 var number = JSON.parse(body);
 var squared = Math.pow(number, 2);
 res.end(JSON.stringify(squared));
 });

}).listen(port, function() {
 console.log('Squaring Server listening on port %d', port);
});

You can save this script into a fi le named server.js and start it by using the following:

$ node server.js
Squaring Server listening on port 8080

The next sections will cover several useful helper functions in the async library.

Executing in Series

You can execute a series of functions that return their results asynchronously. Use the squaring server
code from Listing 19-4 to learn how to use async to execute asynchronous functions in series.

First, for these examples, you need to install the request third-party module, as follows:

$ npm install request

Listing 19-5 shows an example of how you can chain the execution of two I/O operations using the
async.series helper function.

LISTING 19-5: Async.series example.

var async = require('async'),
 request = require('request');

function done(err, results) {
 if (err) {
 throw err;
 }
 console.log('results: %j', results);
}

async.series([

 function(next) {
 request.post({uri: 'http://localhost:8080', body: '4'},
 function(err, res, body) {

LISTING 19-4 (continued)

c19.indd 184c19.indd 184 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080

Using the async Flow Control Library ❘ 185

 next(err, body && JSON.parse(body));
 }
);
 },

 function(next) {
 request.post({uri: 'http://localhost:8080', body: '5'},
 function(err, res, body) {
 next(err, body && JSON.parse(body));
 }
);

 }

], done);

This listing performs two calls. The calls are similar, but one passes the body value of 4 and the
other one the body value of 5.

You can save the script into a fi le named series.js and run it:

$ node series.js
results: [16,25]

The done callback is invoked after all the functions are terminated with the asynchronous result of
each function. In this case, the results contain the output of each call to the squaring server, which
contains the square value of 4 and 5.

Executing in Parallel

In the previous example, the calls were performed one after another. However, these calls can
also be done in parallel. For that, you simply need to change the async.series call to a
async.parallel call, as shown in Listing 19-6.

LISTING 19-6: Async.parallel example.

var async = require('async'),
 request = require('request');

function done(err, results) {
 if (err) {
 throw err;
 }
 console.log('results: %j', results);
}

async.parallel([

 function(next) {
 request.post({uri: 'http://localhost:8080', body: '4'},
 function(err, res, body) {

continues

c19.indd 185c19.indd 185 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080
http://localhost:8080

186 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

 next(err, body && JSON.parse(body));
 }
);
 },

 function(next) {
 request.post({uri: 'http://localhost:8080', body: '5'},
 function(err, res, body) {
 next(err, body && JSON.parse(body));
 }
);

 }

], done);

If you save this into a fi le named parallel.js and run it, you will get the same results:

$ node parallel.js
results: [16,25]

Cascading

You can also execute a series of functions where the execution of the next callback depends on the
result of the previous one. For instance, say that you want to calculate 34 using the squaring HTTP
server. You can easily do this using the async.waterfall function, as shown in Listing 19-7.

LISTING 19-7: Cascading using async.waterfall.

var async = require('async'),
 request = require('request');

function done(err, res, body) {
 if (err) {
 throw err;
 }

 console.log("3^4 = %d", body);
}

async.waterfall([

 function(next) {
 request.post({uri: 'http://localhost:8080', body: "3"}, next)
 },

 function(res, body, next) {
 request.post({uri: 'http://localhost:8080', body: body}, next);
 }

], done);

LISTING 19-6 (continued)

c19.indd 186c19.indd 186 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080
http://localhost:8080
http://localhost:8080

Using the async Flow Control Library ❘ 187

You can see that each callback gets all the callback arguments of the last operation, minus the fi rst
error argument. If an error occurs, the fi nal callback (which is named done in this case) gets called
with an error in the same argument.

Queuing

If you need to perform some repetitive asynchronous jobs and you want to control the
concurrency — the maximum number of pending jobs that exist at any given time — you can use
the async.queue function.

This function lets you create a queue that will process elements based on a function. The clients of
the queue can push work into it, and a maximum number of concurrent workers perform each of
them in order.

Listing 19-8 creates a queue to calculate the square value of a number using the squaring server.

LISTING 19-8: Using async.queue.

var async = require('async'),
 request = require('request');

function done(err, results) {
 if (err) {
 throw err;
 }
 console.log('results: %j', results);
}

var maximumConcurrency = 5;

function worker(task, callback) {
 request.post({uri: 'http://localhost:8080',
 body: JSON.stringify(task)},
 function(err, res, body) {
 callback(err, body && JSON.parse(body));
 }
);
}

var queue = async.queue(worker, maximumConcurreny);

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10].forEach(function(i) {

 queue.push(i, function(err, result) {

 if (err) {
 throw err;
 }

 console.log(i + '^2 = %d', result);

 });
});

c19.indd 187c19.indd 187 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080

188 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

This listing declares a function named worker that receives a task and processes it. In this case, the task
is a number and the worker is calling the squaring server to obtain the square value of this number.

The code then creates a queue based on the worker function and defi nes a maximum concurrency. The
maximum concurrency is set to 5 in this example, but it’s an arbitrary value and you should defi ne it
for your own cases.

Then the example pushes 10 jobs as numbers 1 through 10 into the queue by using queue.push. This
function accepts a callback to receive the result of this job once the job is done.

You can run this script by saving it into a fi le named queue.js and running it:

$ node queue.js
5^2 = 25
1^2 = 1
2^2 = 4
3^2 = 9
4^2 = 16
6^2 = 36
10^2 = 100
8^2 = 64
9^2 = 81
7^2 = 49

NOTE You can see here that the results are not in the order you placed them.
That’s the nature of asynchronicity: The results are shown in the order in which
they fi nish. If you want to order the results, you should use async.forEach or a
similar function — which is covered later in this chapter.

One of the nice things about using a queue is that it limits the number of concurrent requests. You
can use it to limit concurrent access to some resources like a database, preventing fl ooding, and
so on. But how can you determine and adapt the optimal maximum concurrency? Determining it
depends on your application. The maximum concurrency can be, for instance, a function of the
observed latency, or it can be provided by an external setting. Any way you do this, it’s good to
know that you can change the maximum concurrency after the queue is created by changing the
concurrency property on the queue:

queue.concurrency = 10;

A queue also emits some events regarding its state. You can know when a queue has reached the
maximum concurrency limit — and further tasks have to wait to start — by plugging a function
into the queue’s saturated property, like this:

queue.saturated = function() {
 console.log('queue is saturated');
};

Likewise, you can know when the last item in the queue is given to a worker by listening to the
empty event like this:

c19.indd 188c19.indd 188 21/09/12 8:55 AM21/09/12 8:55 AM

Using the async Flow Control Library ❘ 189

queue.empty = function() {
 console.log('queue is empty');
};

When the worker returns the last work in the queue, the queue emits the drain event:

queue.drain = function() {
 console.log('queue is drained, no more work!');
};

This event and others can be emitted many times throughout the lifetime of a queue, because you
can add jobs to a queue at any point in the future.

Iterating

JavaScript has some nice functions for synchronously iterating over collections. async provides
some of these functions but with asynchronous semantics. For example, in JavaScript, if you have an
array, you can use array.forEach to iterate over it:

 [1, 2, 3, 4].forEach(function(i) {
 var squared = Math.pow(i, 2);
 console.log('%d ^ 2 is %d', i, squared);
});

If, instead of using a synchronous function, you need to perform some I/O based on the value of
each element, this approach doesn’t work.

You can use async.forEach to iterate asynchronously over a collection of objects, as shown in
Listing 19-9.

LISTING 19-9: Iterating over a collection using async.forEach.

var async = require('async'),
 request = require('request');

var results = {};

function done(err) {
 if (err) {
 throw err;
 }
 console.log('done! results: %j', results);
}

var collection = [1, 2, 3, 4];

function iterator(value, callback) {
 request.post({
 uri: 'http://localhost:8080',
 body: JSON.stringify(value)
 },

continues

c19.indd 189c19.indd 189 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080

190 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

 function(err, res, body) {
 if (err) {
 return callback(err);
 }
 results[value] = JSON.parse(body);
 callback();
 });
}

async.forEach(collection, iterator, done);

This example defi nes an iterator function that you use in async.forEach. This function will take
an element, perform the required I/O, and call the callback when it’s done. When asynchronous
iteration over all of the elements is complete, the fi nal callback (called done in this example) is called.

If you use this async.forEach function, you are invoking an iterator for each element in parallel. If
you want async to wait for the completion of one iteration before starting the next, you can use
async.forEachSeries. In this case you can simply replace the last line in the previous listing with
the following:

async.forEachSeries(collection, iterator, done);

You can also do the calls in parallel, but control the maximum concurrency. By using async
.forEachLimit, you can set the maximum number of pending iterators at any given time. In this
case, you replace the last line in the previous listing with the following:

var maximumConcurrency = 5;
async.forEachLimit(collection, maximumConcurrency, iterator, done);

Mapping

JavaScript also provides an array.map() function for synchronously iterating over all elements,
gathering the results.

You can use async.map to make the same thing, but asynchronously, as shown in Listing 19-10.

LISTING 19-10: Mapping a collection using async.map.

var async = require('async'),
 request = require('request');

var collection = [1, 2, 3, 4];

function done(err, results) {
 if (err) {
 throw err;
 }
 console.log('done! results: %j', results);
}

LISTING 19-9 (continued)

c19.indd 190c19.indd 190 21/09/12 8:55 AM21/09/12 8:55 AM

Using the async Flow Control Library ❘ 191

function iterator(value, callback) {
 request.post({
 uri: 'http://localhost:8080',
 body: JSON.stringify(value)
 },

 function(err, res, body) {
 callback(err, body && JSON.parse(body));
 });
}

async.map(collection, iterator, done);

This example is similar to the previous one, except that you don’t have to manually gather the
results — you just have to pass each result to the callback inside the iterator function. Each iteration
can take an arbitrary amount of time to complete, but async.map provides the results to the done
callback function in the correct order when all of them are fi nished.

Reducing

JavaScript also has an array.reduce function that takes an initial value and an iterator function
and returns a new value that is fed into the next iteration alongside the new element.

For instance, a typical use of the reduce function is to sum elements:

var collection = [1, 2, 3, 4];
function iterator(sum, elem) {
 return sum + elem;
}
var sum = collection.reduce(iterator, 0);
console.log('sum is %d', sum);

The async.reduce function offers these same semantics, but for asynchronous iterators.
For instance, if you wanted to sum the square value of all elements in a collection using the squaring
server, you can use the code in Listing 19-11 to do so.

LISTING 19-11: Reducing a collection asynchronously using async.reduce.

var async = require('async'),
 request = require('request');

var collection = [1, 2, 3, 4];

function done(err, result) {
 if (err) {
 throw err;
 }
 console.log('The sum of the squares of %j is %d', collection, result);
}

function iterator(memo, item, callback) {
 request.post({

continues

c19.indd 191c19.indd 191 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080

192 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

 uri: 'http://localhost:8080',
 body: JSON.stringify(item)
 },

 function(err, res, body) {
 callback(err, body && (memo + JSON.parse(body)));
 });
}

async.reduce(collection, 0, iterator, done);

Like the synchronous array.reduce version, async.reduce takes the initial value as the second
argument, which in this case is 0. Then it goes on to call the iterator on each element of the collection,
one at a time, passing the new memo value into a callback when the operation is fi nished. In this case
the new memo value is the squared value of the element, plus whatever the memo value was.

Filtering

In JavaScript you can also fi lter a collection based on a fi ltering function like this:

var collection = [1, 2, 3, 4];
function isEven(value) {
 return value % 2 === 0;
}
var evenElements = collection.filter(isEven);
console.log('even elements of %j are: %j', collection, evenElements);

This last example fi lters a collection of numbers and returns the even ones.

The async.filter function behaves similarly for asynchronous operations. You can, for instance,
use the squaring server to fi lter all the elements whose square value is greater than 10, as shown in
Listing 19-12.

LISTING 19-12: Using async.fi lter.

var async = require('async'),
 request = require('request');

var collection = [1, 2, 3, 4, 5];

function done(results) {
 console.log('These are the elements of %j whose ' +
 'square value is greater than 10: %j', collection, results);
}

function test(value) {
 return value > 10;
}

function filter(item, callback) {

LISTING 19-11 (continued)

c19.indd 192c19.indd 192 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080

Using the async Flow Control Library ❘ 193

 request.post({
 uri: 'http://localhost:8080',
 body: JSON.stringify(item)
 },

 function(err, res, body) {
 if (err) {
 throw err;
 }
 callback(body && test(JSON.parse(body)));
 });
}

async.filter(collection, filter, done);

The filter function has to call the callback with a boolean stating whether that value should
remain or not. You can see that the filter function has to call the callback with the boolean value
as the fi rst argument. If there is an error in the fi ltering function, you have to handle it yourself.

async also provides the inverse function, which is named reject. By changing async.filter
to async.reject on the last line of the previous listing, you can fi lter all numbers whose square
value is less than or equal to 10.

The async.filter and async.reject functions invoke the filter function for each element in
parallel. Async provides a serialized version of these functions:

async.filterSeries(collection, filter, done);

and

async.rejectSeries(collection, filter, done);

Using any of these functions, you will have at most one filter function pending at any given time.

Detecting

You might want to stop iterating when you have reached a certain point. For example, you might
want to detect the fi rst value in a collection whose squared value is greater than 10. Listing 19-13
shows how to do this.

LISTING 19-13: Using async.detect.

var async = require('async'),
 request = require('request');

var collection = [1, 2, 3, 4, 5];

function done(result) {
 console.log('The first element on %j whose square value '+
 'is greater than 10: %j', collection, result);
}

continues

c19.indd 193c19.indd 193 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080

194 ❘ CHAPTER 19 CONTROLLING THE CALLBACK FLOW

function test(value) {
 return value > 10;
}

function detect(item, callback) {
 request.post({
 uri: 'http://localhost:8080',
 body: JSON.stringify(item)
 },

 function(err, res, body) {
 if (err) {
 throw err;
 }
 callback(body && test(JSON.parse(body)));
 });
}

async.detect(collection, detect, done);

Here, async.detect invokes the detect function in parallel for each element, which means that
you might not get the fi rst item in the list that meets the criteria — it depends on the order in which
the asynchronous operations fi nish.

If order is important to you or you just want to have one pending active operation at any given time,
you can use the serialized version of this function: async.detectSeries. You can replace the last
line of the listing with the following:

async.detectSeries(collection, detect, done);

Here, async.detectSeries invokes the detect function and waits for it to fi nish. Then, if the
element fails the detection test, async.detectSeries goes on to the next element until one is
detected or until there are no more elements.

SUMMARY

It can be diffi cult to control asynchronous fl ow, and it can easily lead to poorly structured code. One
way to avoid these issues is to declare callbacks as named functions beforehand and avoid nesting them.

You can also create a generic fl ow-control routine or use one of the many provided by the async
third-party module. Using them, you can perform function calls in series or in parallel, or you can
iterate over a collection in an asynchronous fashion. This chapter covered some of the most
commonly used functions, but async provides more than these. If you’re interested, check out the
offi cial async documentation at

https://github.com/caolan/async#readme

LISTING 19-13 (continued)

c19.indd 194c19.indd 194 21/09/12 8:55 AM21/09/12 8:55 AM

http://localhost:8080
https://github.com/caolan/async#readme

PART V
Building Web Applications

 � CHAPTER 20: Building and Using HTTP Middleware

 � CHAPTER 21: Making a Web Application Using Express.js

 � CHAPTER 22: Making Universal Real-Time Web Applications Using

Socket.IO

c20.indd 195c20.indd 195 21/09/12 8:56 AM21/09/12 8:56 AM

c20.indd 196c20.indd 196 21/09/12 8:56 AM21/09/12 8:56 AM

Building and Using HTTP
Middleware

WHAT’S IN THIS CHAPTER?

 ➤ Understanding how Connect works

 ➤ Making Connect-compatible middleware

 ➤ Making a middleware component that handles errors

 ➤ Using some of the built-in middleware components bundled

in Connect

 ➤ Serving static fi les using Connect middleware

 ➤ Parsing query string, request body, and cookies

 ➤ Maintaining a session

Node is particularly fi t to be an HTTP server. It has a great HTTP parser and can effi ciently
handle many concurrent connections in one single process.

When you are building an HTTP application server, you usually need it to perform some
routine tasks like parsing the cookie headers, parsing the query string on the request URL,
maintaining and associating a session, persisting session data, serving static fi les, parsing the
request body, logging the request and response, and others. When coding the core logic of
your application, you shouldn’t have to explicitly perform these tasks; these should be handled
by the HTTP server application logic.

Some of these tasks involve inspecting the request — headers or body — others involve
inspecting and changing the response, and some involve both. An example of where you may
want to do both is when you want to log the details of each incoming request together with

20

c20.indd 197c20.indd 197 21/09/12 8:56 AM21/09/12 8:56 AM

198 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

the respective response HTTP status code. In this case you need to inspect both the request and the
response objects. You may also want to set or change the response headers, as is the case of when
you are maintaining a session ID using browser cookies.

In typical HTTP application frameworks like Django, Cake, Rails, or Sinatra, components generally
called middleware perform these tasks. These middleware components wrap the request-response
cycle, extending the request object before your application code is reached or changing the response
before or after it.

UNDERSTANDING THE CONNECT HTTP MIDDLEWARE
FRAMEWORK

Node also includes some frameworks that ease the development of an HTTP-based application. One
of the most popular is called Connect. Connect defi nes a model for middleware components and an
engine to run them.

In general, middleware components are pieces that the programmer can stack together. When
Connect receives an HTTP request, the middleware engine calls each of these components in order.
Any of these components has access to the request object, which means that they can parse some
headers and buffer and parse the request body. They can also change the response headers, write a
part of the body, or end the response.

Connect comes bundled with a series of middleware components, but you can easily build your own.

BUILDING YOUR OWN HTTP MIDDLEWARE

As you will see, a middleware component is not much more than a function that receives the request
and response objects, much like the standard Node HTTP server request listener. To run an
example of a simple middleware component, you need to fi rst install the connect module inside a
working directory you choose:

$ npm install connect

Listing 20-1 shows a simple middleware component that responds with the string "Hello World!"
and ends the response.

LISTING 20-1: A simple HelloWorld middleware.

function helloWorld(req, res) {
 res.end('Hello World!');
}

module.exports = helloWorld;

You can save this code listing as a local fi le named hello_world.js to be used later.

c20.indd 198c20.indd 198 21/09/12 8:56 AM21/09/12 8:56 AM

Building Your Own HTTP Middleware ❘ 199

This middleware component simply exports a function that will be called by Connect to handle new
requests. This function writes the string "Hello World" into the body and then ends the request.

You can test this middleware component by creating a Connect server, as shown in Listing 20-2.

LISTING 20-2: A Connect server that uses the HelloWorld middleware.

var connect = require('connect');

// import middlewares
var helloWorld = require('./hello_world');

var app = connect.createServer(helloWorld);
app.listen(8080);

Here you are creating a Connect HTTP server and initializing it with the HelloWorld middleware
component. Save this listing as a fi le named hello_world_app.js and run it:

$ node hello_world_app

Point your browser to http://localhost:8080, and you will see the "Hello World!" response
rendered.

You can also create a more generic component that responds with any optional text, as shown in
Listing 20-3.

LISTING 20-3: A more generic ReplyText middleware.

function replyText(text) {
 return function(req, res) {
 res.end(text);
 };
}

module.exports = replyText;

Instead of directly exporting a function that handles the request, this middleware component
exports a function that, when invoked, returns a function that replies with a custom text string.

You can change the server code to use this more generic component to behave the same way, as
shown in Listing 20-4.

LISTING 20-4: A Connect server that uses the ReplyText middleware.

var connect = require('connect');

// import middlewares
var replyText = require('./reply_text');

var app = connect.createServer(replyText('Hello World!'));
app.listen(8080);

c20.indd 199c20.indd 199 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080

200 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

Save this listing as a fi le named hello_world_app_v2.js and run it:

$ node hello_world_app_v2

By pointing your browser to http://localhost:8080, you should see the "Hello World!"
response rendered again.

Creating Asynchronous Middleware

A middleware function can be asynchronous: When the work is done, it needs to call a callback
for the middleware engine to continue to do its work. The previous example didn’t use this feature
because it just ended the response without handing over control to the next middleware in line.

To practice, you can create a middleware component that introduces a header into the response
header section, as shown in Listing 20-5.

LISTING 20-5: A Connect middleware that writes a header.

function writeHeader(name, value) {
 return function(req, res, next) {
 res.setHeader(name, value);
 next();
 };
}

module.exports = writeHeader;

This middleware component uses a third argument that contains the callback to be invoked when
this component is done.

Save this listing as a fi le named write_header.js.

You can now incorporate this middleware component into your HelloWorld app by including it in
the middleware stack you pass into the server constructor, right before the ReplyText middleware, as
shown in Listing 20-6.

LISTING 20-6: Including the WriteHeader middleware in the HelloWorld app.

var connect = require('connect');

// import middlewares
var writeHeader = require('./write_header');
var replyText = require('./reply_text');

var app = connect.createServer(
 writeHeader('X-Powered-By', 'Node'),
 replyText('Hello World!')
);

app.listen(8080);

c20.indd 200c20.indd 200 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080

Building Your Own HTTP Middleware ❘ 201

You can save this listing as a fi le named hello_world_app_v3.js and run it.

$ node hello_world_app_v3

You can then run a command-line utility to make an HTTP request where you can inspect the
headers like curl:

$ curl -i http://localhost:8080HTTP/1.1 200 OK
X-Powered-By: Node
Connection: keep-alive
Transfer-Encoding: chunked

Hello World!

Here you can see that the header is written out into the response as expected.

Here it’s important that the middleware that writes the header is inserted before the middleware
that writes and ends the response. If you placed the ReplyText middleware fi rst, the second
middleware would never be called because ReplyText does not invoke the “next” callback.

Registering Callbacks Inside Middleware

Besides inspecting the request and changing the response, middleware components can register some
callbacks to be executed later. As an example, you can create one that saves all the data of each
request into a fi le (see Listing 20-7).

LISTING 20-7: A middleware that saves every request into a fi le.

var fs = require('fs'),
 path = require('path'),
 util = require('util');

function saveRequest(dir) {

 return function(req, res, next) {

 var fileName = path.join(dir, Date.now().toString() + '_' +
 Math.floor(Math.random() * 100000) + '.txt');
 var file = fs.createWriteStream(fileName);
 file.write(req.method + ' ' + req.url + '\n');
 file.write(util.inspect(req.headers) + '\n');
 req.pipe(file);
 next();
 }
}

module.exports = saveRequest;

For every request this middleware component gets, it creates a new fi le inside a specifi ed directory
and saves all the headers into it. Then, it pipes the request into that fi le. No part of the request body
is written out at this time. The data and other event listeners are set up so that when future data
arrives, that data is sent into the fi le writable stream.

c20.indd 201c20.indd 201 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080HTTP/1.1200

202 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

Now you can modify the server to include this middleware component, as shown in Listing 20-8.

LISTING 20-8: This HelloWorld server includes the SaveRequest middleware.

var connect = require('connect');

// import middlewares
var saveRequest = require('./save_request');
var writeHeader = require('./write_header');
var replyText = require('./reply_text');

var app = connect.createServer(
 saveRequest(__dirname + '/requests'),
 writeHeader('X-Powered-By', 'Node'),
 replyText('Hello World!')
);

app.listen(8080);

Here you are commanding the SaveRequest middleware to save all the requests into a directory
named requests, under the local directory. You can save this code listing into a fi le named
hello_world_app_v4.js and create the directory for storing the requests:

$ mkdir requests

Now you can start the server:

$ node hello_world_app_v4

You can then feed the server with a local fi le using curl:

$ curl -T hello_world_app_v4.js http://localhost:8080

This command is telling curl to upload the fi le into this URL. After this command is done, you can
look in the requests directory. There should be a fi le similar to “1340373961878_15062.txt” that
contains something like the following:

PUT /hello_world_app_v4.js
{ 'user-agent': 'curl/7.21.4 (universal-apple-darwin11.0) libcurl/7.21.4
OpenSSL/0.9.8r zlib/1.2.5',
 host: 'localhost:8080',
 accept: '*/*',
 'content-length': '349',
 expect: '100-continue' }

var connect = require('connect');

// import middlewares
var saveRequest = require('./save_request');
var writeHeader = require('./write_header');
var replyText = require('./reply_text');

c20.indd 202c20.indd 202 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080

Building Your Own HTTP Middleware ❘ 203

var app = connect.createServer(
 saveRequest(__dirname + '/requests'),
 writeHeader('X-Powered-By', 'Node'),
 replyText('Hello World!')
);

As expected, this fi le contains the HTTP method, the URL, the headers, and the request body.

Handling Errors Inside Middleware

A middleware component can also handle errors. To test one of these, fi rst you must create a
“faulty” middleware component that throws an error, as shown in Listing 20-9.

LISTING 20-9: A middleware component that throws an error.

function errorCreator() {
 return function(req, res, next) {
 throw new Error('This is an error');
 }
}

module.exports = errorCreator;

This component just throws an exception back into the stack. You can do this because Connect
catches the exceptions and hands it to the next middleware error handler. But if you are inside
a callback and you catch an error, you should call the “next” callback with the error as the fi rst
argument, as shown in Listing 20-10.

LISTING 20-10: Another middleware component that throws an error.

function errorCreator() {
 return function(req, res, next) {
 next(new Error('This is an error'));
 }
}

module.exports = errorCreator;

By default, if no middleware is set up to handle errors, Connect will present the error trace in
plaintext. You can try this by including the error creator middleware, as shown in Listing 20-11.

LISTING 20-11: A server with a middleware that throws an error.

var connect = require('connect');

// import middlewares
var errorCreator = require('./error_creator');
var saveRequest = require('./save_request');

continues

c20.indd 203c20.indd 203 21/09/12 8:56 AM21/09/12 8:56 AM

204 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

var writeHeader = require('./write_header');
var replyText = require('./reply_text');

var app = connect.createServer(
 errorCreator(),
 saveRequest(__dirname + '/requests'),
 writeHeader('X-Powered-By', 'Node'),
 replyText('Hello World!')
);

app.listen(8080);

Save this listing as a fi le named hello_world_app_v5.js and run it:

$ node hello_world_app_v5

Refresh the browser. You should get an error similar to this one:

Error: This is an error
 at Object.handle (/Users/pedroteixeira/projects/wiley-node/code/20/error_creato
r.js:3:10)
 at next (/Users/pedroteixeira/projects/wiley-node/code/20/node_modules/connect/
lib/proto.js:190:15)
 at Function.handle (/Users/pedroteixeira/projects/wiley-node/code/20/node_modul
es/connect/lib/proto.js:198:3)
 at Server.app (/Users/pedroteixeira/projects/wiley-node/code/20/node_modules/co
nnect/lib/connect.js:66:31)
 at Server.emit (events.js:70:17)
 at HTTPParser.onIncoming (http.js:1514:12)
 at HTTPParser.onHeadersComplete (http.js:102:31)
 at Socket.ondata (http.js:1410:22)
 at TCP.onread (net.js:374:27)

Now you can build your custom error handler. Error handlers in Connect must take four
arguments — the error, the request, the response, and the “next” callback (see Listing 20-12).

LISTING 20-12: An error handling middleware.

function errorHandler() {
 return function(err, req, res, next) {
 if (err) {
 res.writeHead(500, {'Content-Type': 'text/html'});
 res.end('<h1>Oh no! We have an error!</h1>\n<pre>' + err.stack + '</pre>');
 } else {
 next();
 }
 }
}

module.exports = errorHandler;

LISTING 20-11 (continued)

c20.indd 204c20.indd 204 21/09/12 8:56 AM21/09/12 8:56 AM

Building Your Own HTTP Middleware ❘ 205

You can save this listing as a fi le named error_handler.js.

This error handler formats the error and outputs it as HTML. Now you can integrate this
middleware into the server by placing it in the last position, as shown in Listing 20-13.

LISTING 20-13: An application with a custom error handler.

var connect = require('connect');

// import middlewares
var errorCreator = require('./error_creator');
var saveRequest = require('./save_request');
var writeHeader = require('./write_header');
var replyText = require('./reply_text');
var errorHandler = require('./error_handler');

var app = connect.createServer(
 errorCreator(),
 saveRequest(__dirname + '/requests'),
 writeHeader('X-Powered-By', 'Node'),
 replyText('Hello World!'),
 errorHandler()
);

app.listen(8080);

You can save this listing as a fi le named hello_world_app_v6.js and run it:

$ node hello_world_app_v6

If you refresh the browser, you will get an HTML output of the error. You can also use the curl
command-line utility to inspect the response:

$ curl http://localhost:8080
HTTP/1.1 500 Internal Server Error
Content-Type: text/html
Connection: keep-alive
Transfer-Encoding: chunked

<h1>Oh no! We have an error!</h1>
<pre>Error: This is an error
 at Object.handle (/Users/pedroteixeira/projects/wiley-node/code/20/error_creato
r.js:3:10)
 at next (/Users/pedroteixeira/projects/wiley-node/code/20/node_modules/connect/
lib/proto.js:190:15)
 at Function.handle (/Users/pedroteixeira/projects/wiley-node/code/20/node_modul
es/connect/lib/proto.js:198:3)
 at Server.app (/Users/pedroteixeira/projects/wiley-node/code/20/node_modules/co
nnect/lib/connect.js:66:31)
 at Server.emit (events.js:70:17)
 at HTTPParser.onIncoming (http.js:1514:12)
 at HTTPParser.onHeadersComplete (http.js:102:31)
 at Socket.ondata (http.js:1410:22)
 at TCP.onread (net.js:374:27)</pre>

c20.indd 205c20.indd 205 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080

206 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

Here you can see that the header does not contain the custom “X-Powered-By” entry. This is
because when an error happens, Connect executes the fi rst error-handling middleware in the next
middleware components, skipping all the other “normal” middleware components.

In fact, Connect only executes error-handling middleware components when there is an error, which
means that you can reduce the error-handling middleware, as shown in Listing 20-14.

LISTING 20-14: A simplifi ed error-handling middleware component.

function errorHandler() {
 return function(err, req, res, next) {
 res.writeHead(500, {'Content-Type': 'text/html'});
 res.end('<h1>Oh no! We have an error!</h1>\n<pre>' + err.stack + '</pre>');
 }
}

module.exports = errorHandler;

USING THE HTTP MIDDLEWARE BUNDLED IN CONNECT

Connect not only lets you fabricate and use HTTP middleware components but also comes with a
set of some commonly used ones. You can pick and choose which ones fi t the requirements of your
application, customizing your stack, and perhaps mixing in some of your own with these generic
middleware components.

Logging Requests

Connect has a middleware component for logging some request and response data. You can simply
use it, as shown in Listing 20-15.

LISTING 20-15: Using a logger middleware.

var connect = require('connect');

var app = connect();

// setup logger middleware
app.use(connect.logger());

// actually respond
app.use(function(req, res) {
 res.end('Hello World!');
});

app.listen(8080);

c20.indd 206c20.indd 206 21/09/12 8:56 AM21/09/12 8:56 AM

Using the HTTP Middleware Bundled in Connect ❘ 207

NOTE You see here that you are using an alternative syntax for creating the server
and attaching the middleware. Here you’re creating the server by invoking
the module function directly and then adding middleware to it by using the
.use() method. This is an alternative to the previous syntax you saw, which
can be more convenient because it doesn’t require you to pass all the middleware
components at the time of creation.

You can save this code listing as a fi le named logger.js and run it like this:

$ node logger

Now, if you point your browser to http://localhost:8080, you will observe something like this in
your server output:

127.0.0.1 - - [Sat, 23 Jun 2012 15:23:07 GMT] "GET / HTTP/1.1" 200 - "-" "Mozilla/5
.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/536.5
(KHTML, like Gecko) Chrome/19.
0.1084.56 Safari/536.5"
127.0.0.1 - - [Sat, 23 Jun 2012 15:23:08 GMT] "GET /favicon.ico HTTP/1.1" 200 - "-"
"Mozilla/5.0 (Macintosh; Intel Mac OS X 10_7_4) AppleWebKit/536.5
(KHTML, like Gecko
) Chrome/19.0.1084.56 Safari/536.5"

You can see that your server is outputting some request and response details. You will probably see
that the server is outputting two requests. This is because the browser also requests the /favicon.ico
URL, looking for a favorite icon to show in the URL bar.

Here you can also see that the logger is outputting the remote client address, followed by the current
date, the HTTP method, the HTTP version, the response status code, the response content length,
the referrer, and the user agent string. This is the default format of the logging statement, and you
can change it at will. You can choose to log almost every element available on the request (and you’ll
soon see how), but there are some predefi ned shortcuts for the short and tiny formats. You need to
specify the format when creating the middleware component:

app.use(connect.logger('tiny'));

If you change the format to tiny and restart the server, it will output something like:

GET / 200 - - - ms
GET /favicon.ico 200 - - 2 ms

This format will output the HTTP method, URL, HTTP status code, content length header (not
present in this case), and response time.

You can choose a more verbose output than the “short” one, which will output something like the
following:

127.0.0.1 - GET / HTTP/1.1 200 - - - ms
127.0.0.1 - GET /favicon.ico HTTP/1.1 200 - - 1 ms

c20.indd 207c20.indd 207 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080

208 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

It adds the remote address and the HTTP version.

You can also defi ne your own custom format by specifying a string containing any of the following
tokens:

 ➤ :req[header] — You can specify any request header, such as :req[Accept]. You can also
output as many headers as you want throughout the format string.

 ➤ :http-version — The HTTP version.

 ➤ :response-time — The difference between the time the request reaches the logger and the
time when the request is ended, in milliseconds.

 ➤ :remote-addr — The remote IP address of the client making the request.

 ➤ :date — The formatted date of when the log was created.

 ➤ :method — The HTTP method (GET, PUT, DELETE, HEAD, and so on).

 ➤ :url — The requested URL.

 ➤ :referrer — The content of the referrer header.

 ➤ :user-agent — The user agent string.

 ➤ :status — The numeric HTTP response status code.

For instance, if you want to output only the method, URL, status code, and response time, you can
use the following format:

var format = ':method :url - :status - :response-time ms';
app.use(connect.logger(format));

Handling Errors

Connect comes with a more elaborate error handler. One of its capabilities is using content negotiation
to understand what output is best. For instance, if the client accepts the text/html content type, it
outputs the content as HTML. If the client accepts application/json, it will output the error as
a JSON-encoded object containing the error and stack properties. If any of these content types is
not supported by the client, the error handler outputs the error as plaintext.

You can use this error handler middleware by adding it to the server, as shown in Listing 20-16.

LISTING 20-16: Using the Connect error handler.

var connect = require('connect');

var app = connect();

app.use(function(req, res, next) {
 next(new Error('Hey!'));
});

// actually respond

c20.indd 208c20.indd 208 21/09/12 8:56 AM21/09/12 8:56 AM

Using the HTTP Middleware Bundled in Connect ❘ 209

app.use(function(req, res) {
 res.end('Hello World!');
});

app.use(connect.errorHandler());

app.listen(8080);

Here you are provoking an error and setting up the error handler middleware at the end of the
middleware stack. If you save this listing as a fi le named errorHandler.js, you can run it like this:

$ node errorHandler

If you refresh your browser, you will see a formatted HTML page containing the title Connect, the
error message, and the error trace. You can change the title by setting the errorHandler title
property and introducing a line of code like this:

connect.errorHandler.title = 'My Application';

Serving Static Files

An HTTP application usually needs to serve some static assets like CSS, JavaScript, images, and HTML
fi les. Connect already has a middleware component that provides this function (see Listing 20-17).

LISTING 20-17: Using the Connect static server middleware.

var connect = require('connect');

var app = connect();

// setup the static file server
app.use(connect.static(__dirname + '/public'));

// actually respond
app.use(function(req, res) {
 res.end('Hello World!');
});

app.listen(8080);

Here you are saying that the static fi le server should look for fi les under the public directory. If a
fi le is found, that fi le is served, and the middleware chain is interrupted.

Now you can create a directory named public inside the current folder and put a static fi le there
that you can rename pic.jpg. Just pick any JPEG picture you have. Then, save this previous listing
into a fi le named static.js on the parent folder and run it like this:

$ node static

Then point your browser to the URL http://localhost:8080/pic.jpg. You should see the
picture rendered in your browser.

c20.indd 209c20.indd 209 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080/pic.jpg

210 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

Now point the browser to any other URL, such as http://localhost:8080/abc. You should see
the "Hello World" string rendered. This means that the static component passes control to the next
one, which in this case is the "Hello World!" renderer.

NOTE Just as an interesting experiment, if you remove the "Hello World!"
renderer and then try a URL that the static server can’t reply to, you will fi nd
that Connect replies with the following:

Cannot GET <URL>

This happens when Connect can’t fi nd any middleware that responds to the
request.

Parsing the Query String

A typical convention for passing arguments into a server-side page generator is using a query
string. A query string is where you encode a string containing name and value pairs. It comes at the
end of a URL, after the ? character. Here is an example of a URL with a query string:

/search?q=node.js&where=mailinglist

Connect has a middleware component that parses this string if available and then populates the
query property on the request, making it available for subsequent middleware components.

Listing 20-18 shows an example.

LISTING 20-18: Using the Connect query string parser middleware.

var connect = require('connect');

var app = connect();

// setup the query middleware
app.use(connect.query());

// actually respond
app.use(function(req, res) {
 res.end(JSON.stringify(req.query));
});

app.listen(8080);

Here you are setting up the query string parser middleware and then replying with the content of
req.query. You can save this listing as a fi le named query.js and then run it:

$ node query

c20.indd 210c20.indd 210 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080/abc

Using the HTTP Middleware Bundled in Connect ❘ 211

If you point your browser to the URL http://localhost:8080/?a=b&c=d, you should see the
 following response rendered:

{"a":"b","c":"d"}

You can now change the query string part of the URL and see how it refl ects the req.query object.

Parsing the Request Body

In HTTP, the request body is the part of the request that comes right after the header. It can contain
any content the application chooses and is typically used to upload fi les, post forms, and pass remote
API arguments.

When posting forms, there are two types of request body encoding: URL-encoded and multipart.
The URL-encoded format is similar to the query string format, and the multipart encoding is a more
complex format that is mainly used to upload fi les and pass more complex data types.

When passing arguments to an API call that is hosted by your server, the remote client can encode
the call arguments as a JSON-encoded body.

All of these main types of encoding are specifi ed by the request content type string, and you would
have to switch between these body decoders depending on it. Fortunately, Connect comes with a
generic body parser middleware component that makes this for you, providing a fi nal body property
on the request object that can be consumed later in the request.

You can use it as shown in Listing 20-19.

LISTING 20-19: Using the Connect body parser middleware.

var connect = require('connect');

var app = connect();

// setup the middlewares
app.use(connect.logger(':method :req[content-type]'));
app.use(connect.bodyParser());

// actually respond
app.use(function(req, res) {
 res.end(JSON.stringify(req.body));
});

app.listen(8080);

Here you also added the logger middleware so you can inspect the HTTP method and the request
content type header.

You can save this listing as a fi le named body.js and run it like this:

$ node body

c20.indd 211c20.indd 211 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080/?a=b&c=d

212 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

Now you can make some requests to your server using the curl utility. First, post using the simple
URL encoding:

$ curl -X POST --data-urlencode a=b --data-urlencode c=d http://localhost:8080

Here you are saying that the argument named a will have the value b and that the argument named
c will have the value d. You can see that the response is what is expected:

{"a":"b","c":"d"}

You should also see that the server logs the following:

POST application/x-www-form-urlencoded

Now you can test the multipart encoding:

$ curl -X POST -F a=b -F c=d http://localhost:8080

The response should also be the following:

{"a":"b","c":"d"}

And the server should contain a new log message similar to:

POST multipart/form-data; boundary=----------------------------cfb73467cea3

Now you can test the JSON encoding. curl doesn’t natively support this encoding; you have to do it
yourself:

$ curl -d '{"a":"b","c":"d"}' http://localhost:8080
{"{\"a\":\"b\",\"c\":\"d\"}":""}

Here you can see that req.body contains a string; Connect failed to parse the request body and
handed you a string instead. That’s because you didn’t indicate that the content type would be
application/json. You should set this request header when using curl like this:

$ curl -d '{"a":"b","c":"d"}' -H 'Content-Type: application/json' \
http://localhost:8080
{"a":"b","c":"d"}

Now you can see that the bodyParse middleware was able to recognize the content type and decode
it properly.

Parsing Cookies

Cookies are a standard used to store data as short strings on the web browser. A server can send
one or many cookies, and each cookie has a name. The server can send one or more of these in the
response of any request by using Set-Cookie response headers. The web browser has to store each
of them and send them along as a single Cookie header on the following requests until the cookie

c20.indd 212c20.indd 212 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080
http://localhost:8080
http://localhost:8080
http://localhost:8080

Using the HTTP Middleware Bundled in Connect ❘ 213

expires. The Cookie header has its own encoding mechanism because many name-value pairs can be
encoded there. Setting a cookie with a name of a cookie that is already stored on the browser
overrides the original cookie.

Connect comes with a cookie middleware that takes care of parsing the request cookies, setting the
cookies property on the request object. You can use it as shown in Listing 20-20.

LISTING 20-20: Using the Connect body parser middleware.

var connect = require('connect');

var app = connect();

// setup middleware
app.use(connect.cookieParser());

// actually respond
app.use(function(req, res) {
 res.end(JSON.stringify(req.cookies));
});

app.listen(8080);

Here you are replying with the content of req.cookies, which should contain an object with a
property for each cookie that the client sends. To test this save the previous listing into a fi le named
cookie.js and start it:

$ node cookie

You can test this server with the curl command-line utility, using the -b option, which sets the
 content on a cookie header:

$ curl -b 'a=b; c=d' http://localhost:8080
{"a":"b","c":"d"}

Here you can see that the cookies were correctly parsed into the req.cookie object.

Using a Session

Connect has a middleware component that allows you to keep a session on the server side, allowing
you to save session values that can be used on future requests. When the client fi rst connects, a
session identifi er is created, and Connect sends a browser cookie containing it to associate that
browser with the created session. In future requests, the browser sends that cookie, which allows the
server to identify the session and retrieve the stored session objects to be further used and modifi ed.

On the server side, a session is an object that allows you to store name-value pairs. By default,
Connect stores the session in memory but has a pluggable interface that allows you to defi ne
a different store. Several third-party session stores allow you to use Memcache, Redis, and other
database servers as a session store for Connect.

c20.indd 213c20.indd 213 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080

214 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

NOTE If you use a memory store, the sessions won’t survive a process restart. If
you use a persistent session store, you will have an external service where
the sessions will be kept and survive a Node process restart. Also, using an external
session store allows you to force two or more Node processes to share the session
state, which means that if you use a load balancer, any request can hit any Node
process running your app at any given time and always have the session data
available.

For this example, though, you will use the built-in and default memory store,
but you should use an external persistent store if your production setup involves
more than one Node process.

Listing 20-21 shows how you can set up the session middleware.

LISTING 20-21: Using the Connect session middleware.

var connect = require('connect');
var format = require('util').format;

var app = connect();

// setup middleware
app.use(connect.query());

app.use(connect.cookieParser('this is my secret string'));

app.use(connect.session({
 cookie: { maxAge: 24 * 60 * 60 * 1000 }
}));

// actually respond
app.use(function(req, res) {
 for (var name in req.query) {
 req.session[name] = req.query[name];
 }
 res.end(format(req.session) + '\n');
});

app.listen(8080);

In this listing, you are setting up some middleware components.

First, you are using the query string parser. This is only because the example requires it, as you will
see later.

Then you set up the cookie parser, but you pass a string into the middleware constructor. This string
contains a secret that will be used for the server to sign the data in the cookies, ensuring that the
data cannot be modifi ed by the client.

After this you set up the session middleware, where you defi ne the cookie.maxAge option, which
defi nes how long the session cookie can live in the browser before expiring.

c20.indd 214c20.indd 214 21/09/12 8:56 AM21/09/12 8:56 AM

Using the HTTP Middleware Bundled in Connect ❘ 215

Then, when a request arrives, you cycle through every attribute on the req.query object and copy
it into the session. This is an easy (and not very secure) way for you to easily test the session object
later by changing the query string portion of the request URL.

Finally, you reply to the request by serializing the contents of the req.session property.

You can save this code listing into a fi le named session.js and run it:

$ node session

Then point your browser to http://localhost:8080. You should see something similar to this
rendered:

{ cookie:
 { path: '/',
 _expires: Sun, 24 Jun 2012 10:58:24 GMT,
 originalMaxAge: 60000,
 httpOnly: true } }

This shows that the session has a cookie property that stores some cookie information. This inter-
nal data is used by the session middleware.

Now you can set the session by using the query string. Try loading the following URL in the
browser:

http://localhost:8080/?a=b

You will then see something like this rendered:

{ cookie:
 { path: '/',
 _expires: Sun, 24 Jun 2012 11:02:22 GMT,
 originalMaxAge: 60 * 60 * 1000,
 httpOnly: true },
 a: 'b' }

Here you can see that the session is getting the names and values that were present on the query
string.

Now you can try passing a URL with no query string (like http://localhost:8080), just to
observe the session data. You should see something like this rendered:

{ cookie:
 { path: '/',
 _expires: Sun, 24 Jun 2012 11:04:17 GMT,
 originalMaxAge: 60000,
 httpOnly: true },
 a: 'b' }

You can now see that the session is being successfully recorded and restored on subsequent requests.

c20.indd 215c20.indd 215 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080
http://localhost:8080/?a=b
http://localhost:8080

216 ❘ CHAPTER 20 BUILDING AND USING HTTP MIDDLEWARE

You can try now to perform another request, setting a different variable name, like
http://localhost:8080/?c=d. You should now see the previous session data plus the new
name-value pair you just provided:

{ cookie:

 { path: '/',
 _expires: Sun, 24 Jun 2012 12:06:44 GMT,
 originalMaxAge: 3599999,
 httpOnly: true },
 a: 'b',
 c: 'd' }

Other Available Middleware

This chapter describes some of the most popular and useful middleware components available in
Connect, but others provide things like CSRF (cross-site request forgery) protection, Gzip
compression, static fi le memory cache, virtual-host support, a request body size limiter, and others.

You already read about a session store using Redis or Memcache, but others are also available for
various databases like MongoDB, CouchDB, and MySQL.

Also, many third-party middleware components are compatible with Connect that allow you to do
things like provide JSONP support, render templates, support request timeout, integrate with various
methods of authentication, support LESS (the CSS DSL), and others. A list of these is maintained by
the Connect project patron at the following URL:

https://github.com/senchalabs/connect/wiki

SUMMARY

Connect has become a bit of a standard for defi ning and running middleware components in an
HTTP server on Node. You can easily create components that respond, log data, pipe the request
body, handle errors, and do other things in a reusable way.

You can also use the middleware components provided by Connect. These include modules for
parsing the query string, parsing the request body, parsing cookies, serving static fi les, handling
errors, and maintaining sessions.

Also, many third-party modules allow you to easily extend the functions provided by your Node
HTTP server.

c20.indd 216c20.indd 216 21/09/12 8:56 AM21/09/12 8:56 AM

http://localhost:8080/?c=d
https://github.com/senchalabs/connect/wiki

Making a Web Application
Using Express.js

WHAT’S IN THIS CHAPTER?

 ➤ Installing Express

 ➤ Starting a web application using Express

 ➤ Defi ning Express middleware

 ➤ Rendering Jade templates

 ➤ Defi ning URL route listeners

 ➤ Creating route middleware

For some languages and platforms there are frameworks that simplify the job of crafting an
HTTP-based application. Perhaps the best known is Rails (for the Ruby language), but
countless others include Django, Sinatra, and Cake. Most have the goal of simplifying and
structuring the development of HTML applications and solving some common problems like
routing the HTTP request to the correct controller code, serving static assets, and rendering
HTML templates.

In the Node world several modules and frameworks also solve some of these and other
problems. Some are separate modules that you can glue together, and some, like Express.js,
offer an integrated solution that you can rapidly implement.

Express.js is based on the Connect middleware engine: Any Connect-specifi c middleware
will also work with Express. Besides allowing you to set up middleware to respond to HTTP
requests, Express.js allows you perform different actions based on the HTTP method and
URL — by letting you defi ne a routing table. It also allows you to dynamically render HTML
documents based on supplying arguments to templates.

21

c21.indd 217c21.indd 217 21/09/12 8:57 AM21/09/12 8:57 AM

218 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

INITIALIZING YOUR EXPRESS.JS APPLICATION

This section shows you how to create an Express application from scratch, but fi rst you must install
Express globally using npm:

$ npm install -g express@2.5.x

NOTE If this command fails because it doesn’t have enough permissions,
depending on your system, you may be able to run it using sudo like this:

$ sudo npm install -g express@2.5.x

If you can’t do it, try fi xing the permissions in your fi le system.

Now you can use the express binary module to locally initialize your application:

$ express my_app
 create : my_app
 create : my_app/package.json
 create : my_app/app.js
 create : my_app/public
 create : my_app/public/javascripts
 create : my_app/public/images
 create : my_app/public/stylesheets
 create : my_app/public/stylesheets/style.css
 create : my_app/routes
 create : my_app/routes/index.js
 create : my_app/views
 create : my_app/views/layout.jade
 create : my_app/views/index.jade

Express creates a directory named my_app, followed by a set of fi les on which you can base your
new application. Step into that directory and open your code editor to analyze what Express
created.

First there is the package.json manifest fi le, which contains something like this:

{
 "name": "application-name"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "express": "2.5.11"
 , "jade": ">= 0.0.1"
 }
}

c21.indd 218c21.indd 218 21/09/12 8:57 AM21/09/12 8:57 AM

Initializing Your Express.js Application ❘ 219

This manifest fi le’s main purpose is to contain the module dependency list that NPM can use to
install dependencies. Let’s install those dependencies now:

$ npm install
...
jade@0.26.2 ./node_modules/jade
├── commander@0.5.2
└── mkdirp@0.3.0

express@2.5.11 ./node_modules/express
├── qs@0.4.2
├── mime@1.2.4
├── mkdirp@0.3.0
└── connect@1.9.0 (formidable@1.0.11)

This code will download and install the Express module and the Jade templating language modules
and their dependencies into the local node_modules directory. You can see that Express depends on,
among others, the Connect module.

Next, by exploring the public directory Express created for you, you can see that it contains directories
for the static fi les you may need in your app. These are somewhat standard directories for separating
the location of style sheets, images, and client-side JS fi les, but you can change them at will.

$ ls public
images javascripts stylesheets

You will also fi nd that Express created a fi le named app.js containing some initialization code for
your server, as seen in Listing 21-1.

LISTING 21-1: The app.js fi le Express creates for you.

/**
 * Module dependencies.
 */

var express = require('express')
 , routes = require('./routes');

var app = module.exports = express.createServer();

// Configuration

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(express.static(__dirname + '/public'));
});

continues

c21.indd 219c21.indd 219 21/09/12 8:57 AM21/09/12 8:57 AM

220 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

app.configure('development', function(){
 app.use(express.errorHandler({ dumpExceptions: true, showStack: true }));
});

app.configure('production', function(){
 app.use(express.errorHandler());
});

// Routes

app.get('/', routes.index);

app.listen(3000, function(){
 console.log("Express server listening on port %d in %s mode", app.address().port,
 app.settings.env);
});

After the initial dependency has loaded, you will fi nd that you are instantiating an Express server
using express.createServer(). This server inherits from the Connect HTTP server, which in turn
inherits from the Node HTTP server.

After this the code goes into confi guring some application settings. First it sets the views setting to
the root of the template fi les used for composing HTML pages. Then it sets the view engine
setting to jade. Jade is a templating language for HTML that does what you would expect from a
templating language — it allows you to render HTML blocks, render dynamic values, perform
loops, and include other templates. You can take a look at some simple Jade templates that are inside
the views directory that Express just created.

In the next section, you learn how to defi ne the middleware for your application.

SETTING UP MIDDLEWARE IN YOUR APPLICATION

Continuing with the code in the app.js fi le, you can see that some middleware components are
added to the app:

app.configure(function(){
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(app.router);
 app.use(express.static(__dirname + '/public'));
});

This code is wrapped inside a callback function passed to the app.configure call. This callback is
invoked synchronously and is shown here to make the code more consistent with the environment-
specifi c confi guration part that follows.

LISTING 21-1 (continued)

c21.indd 220c21.indd 220 21/09/12 8:57 AM21/09/12 8:57 AM

Setting Up Middleware in Your Application ❘ 221

Inside this callback you are setting up the body parser middleware component — covered in the previous
chapter — which is used to parse the request body according to the content type defi ned in the request.

NOTE The Connect framework is bundled with a set of useful middleware
components that Express simply exposes. For instance, express.bodyParser
exposes the Connect body parser middleware. This prevents you from needing to
install the Connect module dependency to use the middleware.

The method override middleware is then added to the app. This middleware component enables
browsers to simulate using HTTP methods other than GET and POST. The HTTP standard defi nes
many methods like GET, POST, DELETE, PUT, and others, but web browsers are not capable of using
them. When posting a form or making an AJAX request, most browsers are capable of using only
GET or POST requests. But placing the pretend HTTP method inside a hidden argument named
_method, they can, with the help of the server and the method override middleware, pretend to be
using any other method.

NOTE There are several advantages of using the method overriding middleware.
First, you can make your routing decisions richer based on a standard HTTP
method. Second, you can treat HTTP clients that can request this method the
same way you treat browsers, which may lead to simplifi ed server-side code.

Next in the list is the router middleware. This middleware component dispatches each request to the
proper listener as defi ned in a routing table, depending on HTTP method and URL. You will return
to this subject later.

The code then sets up a static fi le server middleware, which will serve static fi les inside your public
directory.

After this block of code in app.js, you proceed to some parts that are environment-specifi c:

app.configure('development', function(){
 app.use(express.errorHandler({ dumpExceptions: true, showStack: true }));
});

app.configure('production', function(){
 app.use(express.errorHandler());
});

In Express, you can have independent initialization code blocks for each environment your app runs
on. For instance, you may want to use the in-memory session store in the development environment,
but you may want to use an external service like Memcache or Redis as the session store in a
production environment.

In this case you want the error handler to dump exceptions and show the stack trace in a
development environment, but you want to keep those private when you are running in production.

c21.indd 221c21.indd 221 21/09/12 8:57 AM21/09/12 8:57 AM

222 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

NOTE You can change the environment by setting the NODE_ENV environment
variable. For instance, set the environment to production when you start your
Node process in this way:

$ NODE_ENV=production node my_app

In Express, the environment defaults to development.

You can also specify many environments where you want that block of code to run by listing them
before the last argument:

app.configure('production', 'staging', function(){
 app.use(express.errorHandler());
});

ROUTING REQUESTS

When you defi ne an HTTP server request listener or a middleware component, that piece of code is
invoked for every request. But obviously, different parts of your application need to trigger
different server behaviors. For instance, GET requests should probably be treated differently than
POST requests, and a different URL should also trigger different responses. For instance, if you want
some part of the application you’re building to show user profi les, you would want the following
combinations of method and URLs to behave differently:

 ➤ GET /users — To show a list of users or to search for users.

 ➤ GET /users/:username — Generally, show the profi le of the user with the given username,
like in the next line.

 ➤ GET /users/joe — To show the profi le of the user who has the name “joe.”

 ➤ POST /users — To create a user profi le.

 ➤ PUT /users/:username — Generally, to update a profi le of a user with the specifi ed user-
name, like in the next line.

 ➤ PUT /users/joe — Update profi le of user with name “joe.”

The list above defi nes what is called a routing table. This table maps HTTP methods and URL
patterns into actions. The next section shows how to defi ne these methods and patterns in Express.

Handling Routes

In line 32 of the app.js fi le that Express created (Listing 21-1), the code reads as follows:

app.get('/', routes.index);

This code indicates to the app that, if a GET request is sent to the / URL, the routes.index handler
should be called. This routes object is imported in line 7 and defi ned in the fi le routes/index.js.
You need to change this model a bit to accommodate the new set of routes.

c21.indd 222c21.indd 222 21/09/12 8:57 AM21/09/12 8:57 AM

Routing Requests ❘ 223

Change the routes/index.js fi le to the one shown in Listing 21-2.

LISTING 21-2: The new version of routes/index.js.

/*
 * GET home page.
 */

module.exports = function(app) {
 app.get('/', function(req, res){
 res.render('index', { title: 'Express' })
 });
};

Then you should change line 32 of app.js to the following:

require('./routes/index')(app);

Then you can defi ne the new routes in the fi le routes/users.js, as shown in Listing 21-3.

LISTING 21-3: The users routes.

/*
 * User Routes
 */

module.exports = function(app) {

 app.get('/users/:name', function(req, res){
 res.render('users/profile', {title: 'User profile'});
 });

};

Then you need to add the following line to app.js, right after line 32:

require('./routes/users')(app);

NOTE This model of setting up the routes delegates the route setup to each
route group. This keeps the app.js fi le from being cluttered with all the routes.

Here you are defi ning two new route handlers for your application. The fi rst is activated when a
request has the GET method and the URL /users. In this case you render the template users/index,
passing the title as an available argument.

The next one is a dynamic route. It matches any route that begins with /users/ followed by a
non-empty string. This fi nal string will be available to the route handler in req.params.name.

c21.indd 223c21.indd 223 21/09/12 8:57 AM21/09/12 8:57 AM

224 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

In Express routing, strings prefi xed by : are handled as placeholders, and the captured value will
match any string except for the / character.

Now you can start the server:

$ node app

Then you can point a web browser to http://localhost:3000. You should then see the default
index view rendered. If you go to the URL http://localhost:3000/users, you will see an error
message rendered, and the server output should contain something like this:

failed to locate view "users/index", tried:
 - /Users/myusername/projects/my_app/views/users/index.jade
 - /Users/myusername/projects/my_app/views/users/index/index.jade
 - /Users/myusername/projects/my_app/views/users/../index/index.jade

Express helps you with the location of the missing template fi le. Now you must create the fi le shown
in Listing 21-4 within views/users/index.jade.

LISTING 21-4: The users list view.

h1 Users

p User list should be here

After you have saved this fi le and refreshed the page, you will see a simple HTML page containing
a placeholder for the user list. Just to simplify rendering, you will now create a list of fake user data
under data/users.json. Create a project root directory named data and then a fi le named users
.json with some content, as shown in Listing 21-5.

LISTING 21-5: Fake users.

{

 "frank": {
 "username": "frank",
 "name": "Frank Sinatra",
 "bio": "Singer"
 },

 "jobim": {
 "username": "jobim",
 "name": "Antonio Carlos Jobim",
 "bio": "Composer"
 },

 "fred": {
 "username": "fred",
 "name": "Fred Astaire",
 "bio": "Dancer and Actor"
 }

}

c21.indd 224c21.indd 224 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:3000
http://localhost:3000/users

Routing Requests ❘ 225

Now you can complete the user route listeners, as shown in Listing 21-6.

LISTING 21-6: Completed user route listeners.

/*
 * User Routes
 */

var users = require('../data/users');

module.exports = function(app) {

 app.get('/users', function(req, res){
 res.render('users/index', {title: 'Users', users: users});
 });

 app.get('/users/new', function(req, res) {
 res.render('users/new', {title: "New User"});
 });

 app.get('/users/:name', function(req, res, next){
 var user = users[req.params.name];
 if (user) {
 res.render('users/profile', {title: 'User profile', user: user});
 } else {
 next();
 }

 });

 app.post('/users', function(req, res) {
 if (users[req.body.username]) {
 res.send('Conflict', 409);
 } else {
 users[req.body.username] = req.body;
 res.redirect('/users');
 }
 });

 app.del('/users/:name', function(req, res, next) {
 if (users[req.params.name]) {
 delete users[req.params.name];
 res.redirect('/users');
 } else {
 next();
 }
 });

};

This code implements all the basic functions of listing, showing, creating, and removing users. Let’s
go through each block of code, one at a time.

c21.indd 225c21.indd 225 21/09/12 8:57 AM21/09/12 8:57 AM

226 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

In the beginning, the listing imports the user’s fake database, which is just a JSON structure you
parse and load into memory.

 app.get('/users', function(req, res){
 res.render('users/index', {title: 'Users', users: users});
 });

The listener for the GET /users route simply passes the users “database” into the views/users/
index.jade template. Now you need to change that template to render the users, as shown in
Listing 21-7.

LISTING 21-7: User list template.

h1 Users

p
 a(href="/users/new") Create new profile

ul
 - for(var username in users) {
 li
 a(href="/users/" + encodeURIComponent(username))= users[username].name
 - };

This listing iterates over the users object, rendering for each user a list item that contains a link to
the detail URL. Here you can see an example of a Jade template and how you can intersperse code
with markup.

You can now restart the server to test this new code.

When you point your browser to http://localhost:3000/users you should see the user list ren-
dered. If you click on one of those user links, you activate the following route listener:

 app.get('/users/:name', function(req, res, next){
 var user = users[req.params.name];
 if (user) {
 res.render('users/profile', {title: 'User profile', user: user});
 } else {
 next();
 }
 });

This route listener uses the request param containing the username and uses it to look up the user
object. If a user is found, it is applied to the users/profile.jade template. If not, the control is
passed back to the middleware engine, which in this case will render a "Not found" message.

If you click on one of the users in the list, you will get an error screen stating that Express failed to
locate the users/profile template. You need to create this under views/users/profile.jade, as
shown in Listing 21-8.

c21.indd 226c21.indd 226 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:3000/users

Routing Requests ❘ 227

LISTING 21-8: User profi le template.

h1= user.name

h2 Bio
p= user.bio

form(action="/users/" + encodeURIComponent(user.username), method="POST")
 input(name="_method", type="hidden", value="DELETE")
 input(type="submit", value="Delete")

In the fi rst section, you are showing the username and bio. Then you are providing a simple form
with a button to delete the user from the database. You are also taking advantage of the method
override middleware component to pass in a body parameter named _method containing the string
"DELETE". When this middleware sees this parameter, it will change the request method from POST
to DELETE, thereby activating this route listener:

 app.del('/users/:name', function(req, res, next) {
 if (users[req.params.name]) {
 delete users[req.params.name];
 res.redirect('/users');
 } else {
 next();
 }
 });

This listener will look up the user in the database, and if the user exists, the listener will delete it
from the database and redirect the request to the users list.

From the users list you can also create a new user by clicking on the Create new profile link,
which directs you to the GET /users/new route listener:

 app.get('/users/new', function(req, res) {
 res.render('users/new', {title: "New User"});
 });

This listener simply renders the views/users/new.jade template, which you need to create, as
shown in Listing 21-9

LISTING 21-9: New user form template.

h1 New User

form(method="POST", action="/users")
 p
 label(for="username") Username

 input#username(name="username")
 p
 label(for="name") Name

 input#name(name="name")
 p
 label(for="bio") Bio

continues

c21.indd 227c21.indd 227 21/09/12 8:57 AM21/09/12 8:57 AM

228 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

 textarea#bio(name="bio")
 p
 input(type="submit", value="Create")

This template contains a simple form for creating a user. When pressing the Create button, a POST
request is made to the /users URL, activating this route listener:

 app.post('/users', function(req, res) {
 if (users[req.body.username]) {
 res.send('Conflict', 409);
 } else {
 users[req.body.username] = req.body;
 res.redirect('/users');
 }
 });

In the fi rst line of this listener function you are checking whether this username is already in the
“database.” If it is, you respond with a 409 status code, which indicates to the client that there was
a confl ict. The code also renders a "Conflict" string as the body response by using res.send, a
utility provided by Express that allows you to respond with a string and set the response status code.

If there was no confl ict, you save the user object in the database and then redirect the user to the
/users URL by using the res.redirect utility function.

NOTE Here you are storing the user database in memory. In a real application
you would obviously want to keep this data, which would imply doing I/O and
going asynchronous. If you have a generic and simple key-value store module to
access the database, your code for this last route listener would look something
like this:

 app.post('/users', function(req, res, next) {
 db.get(req.body.username, function(err, user) {
 if (err) {
 return next(err);
 }
 if (user) {
 res.send('Conflict', 409);
 } else {
 db.set(req.body.username, req.body, function(err) {
 if (err) {
 return next(err);
 }
 res.redirect('/users');
 });
 }
 }

In Chapters 23, 24, and 25, you will learn how to connect to some popular
 databases using Node.

LISTING 21-9 (continued)

c21.indd 228c21.indd 228 21/09/12 8:57 AM21/09/12 8:57 AM

Routing Requests ❘ 229

Using Sessions

Now you have a very basic HTTP-based user management application (or part of an application)
that can be improved in many ways. One way is to provide some sort of authentication mechanism
and session management, allowing the users to log in with a username and password. First you need
to set up the session middleware in the app.js fi le:

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(express.cookieParser('my secret string'));

 app.use(express.session({
 secret: 'my secret string',
 maxAge: 3600000
 }));
 app.use(app.router);
 app.use(express.static(__dirname + '/public'));
});

Here you are setting up the cookie parser middleware with a secret string (which you should change)
because, as covered before, the session middleware requires the cookie parser middleware to be set
up because it maintains the session using cookies.

You are also setting up the session middleware and defi ning the shared secret and the maximum
session age. The maximum session defi nes the maximum amount of time a session will be kept alive
on the server without any user HTTP activity.

Then you need to create a session routing listener, which you can put in a fi le with the path routes/
session.js (see Listing 21-10).

LISTING 21-10: Session routes.

/*
 * Session Routes
 */

var users = require('../data/users');

module.exports = function(app) {

 app.dynamicHelpers({
 session: function(req, res) {
 return req.session;
 }
 });

 app.get('/session/new', function(req, res) {
 res.render('session/new', {title: "Log in"});

continues

c21.indd 229c21.indd 229 21/09/12 8:57 AM21/09/12 8:57 AM

230 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

 });

 app.post('/session', function(req, res) {
 if (users[req.body.username] &&
 users[req.body.username].password === req.body.password) {
 req.session.user = users[req.body.username];
 res.redirect('/users');
 } else {
 res.redirect('/session/new')
 }
 });

 app.del('/session', function(req, res, next) {
 req.session.destroy();
 res.redirect('/users');
 });

};

Going through each block of code in this last listing, you have the following:

 app.dynamicHelpers({
 session: function(req, res) {
 return req.session;
 }
 });

This is an alternative way of passing local variables into views. Instead of explicitly inserting an
argument on every res.render call, you can defi ne a dynamic helper that will be evaluated for each
request whose result will be available as a local variable. Here you are exposing the session, which
can be later used inside any view template.

Now you can change the layout and create a header that will, for every page, show the user’s login
status. For this you will create a new fi le under views/session/user.jade with the code shown in
Listing 21-11.

LISTING 21-11: The app.js fi le Express creates for you.

- if (session.user) {

 p
 span Hello
 span= session.user.name
 span !
 p
 form(method="POST", action="/session")
 input(type="hidden", name="_method", value="DELETE")
 input(type="submit", value="Log out")

LISTING 21-10 (continued)

c21.indd 230c21.indd 230 21/09/12 8:57 AM21/09/12 8:57 AM

Routing Requests ❘ 231

- } else {

 p
 a(href="/session/new") Login
 span or
 a(href="/users/new") Register

- }

This partial renders in two modes: when a user is present in the session and when no one is in the
session. In the fi rst case, you present some user data and a button to end the session. In the last case
you present a link for the user to log in.

Now you need to include this partial in the views/layout.jade fi le, as shown in Listing 21-12.

LISTING 21-12: Changed layout fi le to include user info on header.

!!!
html
 head
 title= title
 link(rel='stylesheet', href='/stylesheets/style.css')
 body
 header!= partial('session/user')
 section#main!= body

Here you’re assigning the content of the partial in views/session/user.jade into the header tag.

NOTE In Jade, content that is assigned in a tag can be HTML-encoded or not.
If you want to assign a string that should appear exactly as that string in the
browser (even HTML-specifi c characters like < and >), use the = operator. It will
encode these special characters for you:

span= session.user.name

If your content has HTML you want to see rendered as tags (as is the case of the
result of a partial), you should use !=:

header!= partial('session/user')

If you click on the login link, you will activate the following route:

 app.get('/session/new', function(req, res) {
 res.render('session/new', {title: "Log in"});
 });

This will simply render the views/session/new.jade template fi le, which is a login form, as shown
in Listing 21-13.

c21.indd 231c21.indd 231 21/09/12 8:57 AM21/09/12 8:57 AM

232 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

LISTING 21-13: The login form.

h1 Log in

form(method="POST", action="/session")
 p
 label(for="username") User name:

 input#username(name="username")
 p
 label(for="password") Password:

 input#password(type="password", name="password")
 p
 input(type="submit", value="Log in");

This form will post this data into the /session URL, activating the following route:

 app.post('/session', function(req, res) {
 if (users[req.body.username] &&
 users[req.body.username].password === req.body.password) {
 req.session.user = users[req.body.username];
 res.redirect('/users');
 } else {
 res.redirect('/session/new')
 }
 });

This route listener checks the username and password against the fake user database and, if there is
a match, saves the user object in the session and then redirects the user to the /users URL.

When the user is logged in, the header part of the page shows the username and a button to log out.
This button makes a DELETE request (again, using the method override middleware trick) to the /
session URL, activating this route:

 app.del('/session', function(req, res, next) {
 req.session.destroy();
 res.redirect('/users');
 });

This route listener simply destroys the session and redirects to the /users URL.

Next, add these new session routes’ initialization to app.js by adding the following line on the
routes section:

require('./routes/session')(app);

Now you should be able to log in, except that none of the existing users in the fake database have a
password. You can insert a password for them and try restarting the app.

To insert a password you need to change each user record in the data/users.json fi le to something
like this:

c21.indd 232c21.indd 232 21/09/12 8:57 AM21/09/12 8:57 AM

Routing Requests ❘ 233

{

 "frank": {
 "username": "frank",
 "name": "Frank Sinatra",
 "bio": "Singer",
 "password": "theladyisatramp"
 },

 "jobim": {
 "username": "jobim",
 "name": "Antonio Carlos Jobim",
 "bio": "Composer",
 "password": "garotadeipanema"
 },

 "fred": {
 "username": "fred",
 "name": "Fred Astaire",
 "bio": "Dancer and Actor",
 "password": "tophat"
 }

}

Also, you’ll need to add a password fi eld to the signup form (views/users/new.jade), seen in
Listing 21-14:

LISTING 21-14: The new version of the user signup form.

h1 New User

form(method="POST", action="/users")
 p
 label(for="username") Username

 input#username(name="username")
 p
 label(for="name") Name

 input#name(name="name")
 p
 label(for="password") Password

 input#password(type="password", name="password")
 p
 label(for="bio") Bio

 textarea#bio(name="bio")
 p
 input(type="submit", value="Create")

Now you can create users with passwords and log in and out.

Now you should restrict user access to some of the routes. For instance, users should be able to
create a profi le only if they aren’t logged in and should only be able to remove only their own
profi les. For these tasks, you need to use a new feature called route middleware.

c21.indd 233c21.indd 233 21/09/12 8:57 AM21/09/12 8:57 AM

234 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

Using Route Middleware

You might want to restrict certain actions based on session info. You might, for instance, restrict the
execution of some routes to users who are logged in or even users who have certain internal profi le
characteristics (like being the administrator).

You can make each of the relevant route listeners perform this task, but this would lead to repetitive
or inelegant code. Instead, you can defi ne route middleware that can be executed on chosen routes.

For instance, if you want to restrict access to the GET /users/new, POST /users, GET /sessions/
new, and POST /session to users who are not logged in, you can create the following generic route
middleware that you can save into routes/middleware/not_logged_in.js (see Listing 21-15).

LISTING 21-15: The not_logged_in middleware.

function notLoggedIn(req, res, next) {
 if (req.session.user) {
 res.send('Unauthorized', 401);
 } else {
 next();
 }
}

module.exports = notLoggedIn;

This middleware piece simply checks if a user is in the session. If there is one, it sends a
401 Unauthorized status. If there is no user, it proceeds to the next middleware in place.

You can then import this middleware piece at the top of the routes/session.js fi le and proceed to
include the middleware piece in every route needed (see Listing 21-16).

LISTING 21-16: New version of the session routes.

/*
 * Session Routes
 */

var users = require('../data/users');
var notLoggedIn = require('./middleware/not_logged_in');

module.exports = function(app) {

 app.dynamicHelpers({
 session: function(req, res) {
 return req.session;
 }
 });

 app.get('/session/new', notLoggedIn, function(req, res) {

c21.indd 234c21.indd 234 21/09/12 8:57 AM21/09/12 8:57 AM

Routing Requests ❘ 235

 res.render('session/new', {title: "Log in"});
 });

 app.post('/session', notLoggedIn, function(req, res) {
 if (users[req.body.username] &&
 users[req.body.username].password === req.body.password) {
 req.session.user = users[req.body.username];
 res.redirect('/users');
 } else {
 res.redirect('/session/new')
 }
 });

 app.del('/session', function(req, res, next) {
 req.session.destroy();
 res.redirect('/users');
 });

};

Here you are placing the new route middleware callback function right before the fi nal listener one.
Express will take care of chaining the route middleware calls for you.

You also need to use this function inside the user routes, as shown in Listing 21-17.

LISTING 21-17: New version of the user routes.

/*
 * User Routes
 */

var users = require('../data/users');
var notLoggedIn = require('./middleware/not_logged_in');

module.exports = function(app) {

 app.get('/users', function(req, res){
 res.render('users/index', {title: 'Users', users: users});
 });

 app.get('/users/new', notLoggedIn, function(req, res) {
 res.render('users/new', {title: "New User"});
 });

 app.get('/users/:name', function(req, res, next){
 var user = users[req.params.name];
 if (user) {
 res.render('users/profile', {title: 'User profile', user: user});
 } else {
 next();
 }

continues

c21.indd 235c21.indd 235 21/09/12 8:57 AM21/09/12 8:57 AM

236 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

 });

 app.post('/users', notLoggedIn, function(req, res) {
 if (users[req.body.username]) {
 res.send('Conflict', 409);
 } else {
 users[req.body.username] = req.body;
 res.redirect('/users');
 }
 });

 app.del('/users/:name', function(req, res, next) {
 if (users[req.params.name]) {
 delete users[req.params.name];
 res.redirect('/users');
 } else {
 next();
 }
 });

};

You can use this strategy and take this opportunity to remove some redundant code where you load
the user. To do so, create a new route middleware component in fi le routes/middleware/load_
user.js that loads the user based on the username parameter, as shown in Listing 21-18.

LISTING 21-18: Load user route middleware.

var users = require('../../data/users');

function loadUser(req, res, next) {
 var user = req.user = users[req.params.name];
 if (! user) {
 res.send('Not found', 404);
 } else {
 next();
 }
}

module.exports = loadUser;

This piece of middleware loads the user into the req.user attribute, making it available to the mid-
dleware that will execute next.

Now you can include this middleware and reuse some redundant code in the routes/users.js fi le,
as shown in Listing 21-19.

LISTING 21-17 (continued)

c21.indd 236c21.indd 236 21/09/12 8:57 AM21/09/12 8:57 AM

Routing Requests ❘ 237

LISTING 21-19: New version of the user routes.

/*
 * User Routes
 */

var users = require('../data/users');
var notLoggedIn = require('./middleware/not_logged_in');
var loadUser = require('./middleware/load_user');

module.exports = function(app) {

 app.get('/users', function(req, res){
 res.render('users/index', {title: 'Users', users: users});
 });

 app.get('/users/new', notLoggedIn, function(req, res) {
 res.
/*
 * User Routes
 */

var users = require('../data/users');
var notLoggedIn = require('./middleware/not_logged_in');
var loadUser = require('./middleware/load_user');

module.exports = function(app) {

 app.get('/users', function(req, res){
 res.render('users/index', {title: 'Users', users: users});
 });

 app.get('/users/new', notLoggedIn, function(req, res) {
 res.render('users/new', {title: "New User"});
 });

 app.get('/users/:name', loadUser, function(req, res, next){
 res.render('users/profile', {title: 'User profile', user: req.user});
 });

 app.post('/users', notLoggedIn, function(req, res) {
 if (users[req.body.username]) {
 res.send('Conflict', 409);
 } else {
 users[req.body.username] = req.body;
 res.redirect('/users');
 }
 });

 app.del('/users/:name', loadUser, function(req, res, next) {
 delete users[req.user.username];
 res.redirect('/users');
 });

};

c21.indd 237c21.indd 237 21/09/12 8:57 AM21/09/12 8:57 AM

238 ❘ CHAPTER 21 MAKING A WEB APPLICATION USING EXPRESS.JS

You now need to protect some of the user profi le actions from other users. For this you can create
a new piece of middleware that checks whether the loaded user is the same as the one logged in, as
shown in Listing 21-20 in routes/middleware/restrict_user_to_self.js.

LISTING 21-20: New middleware to restrict user to the session user.

function restrictUserToSelf(req, res, next) {
 if (! req.session.user || req.session.user.username !== req.user.username) {
 res.send('Unauthorized', 401);
 } else {
 next();
 }
}

module.exports = restrictUserToSelf;

 Now you can import this new piece of routing middleware at the top of the user routes:

var restrictUserToSelf = require('./middleware/restrict_user_to_self');

And use this middleware in the last listener in the user routes:

 app.del('/users/:name', loadUser, restrictUserToSelf, function(req, res, next) {
 delete users[req.user.username];
 res.redirect('/users');
 });

 You can then restart the server and ensure that, when you’re logged in, you cannot delete any profi le
other than your own.

NOTE This application needs many improvements before it is safe.
Improvements include sanitizing and validating the user input, providing
 feedback messages when actions are performed, and rendering more friendly
messages when an error happens.

You should also use a persistent database for storing user data, which is covered
later in the book.

SUMMARY

Express is one of the most popular web frameworks used to build HTML-based websites. It builds
up on the middleware functionality provided by Connect and allows you to view rendering and
routing on top of that.

c21.indd 238c21.indd 238 21/09/12 8:57 AM21/09/12 8:57 AM

Summary ❘ 239

You can start your project by using the Connect command-line and evolve from there, adding or
removing middleware components and defi ning the routing table.

Routing uses a simple form of pattern-matching against the method and request URL. You should
not stick all the routes in your main module. Instead, use separate modules for different sets of
functionality.

In Express, routing works much like global middleware, where you can defi ne a stack of listener
functions listening on a certain route. Using this feature you can make your fi nal route listeners
more secure and less redundant.

c21.indd 239c21.indd 239 21/09/12 8:57 AM21/09/12 8:57 AM

c21.indd 240c21.indd 240 21/09/12 8:57 AM21/09/12 8:57 AM

22
Making Universal Real-Time Web
Applications Using Socket.IO

WHAT’S IN THIS CHAPTER?

 ➤ Understanding the history of HTTP in relation to real-time

applications

 ➤ Understanding how WebSockets enable real-time applications on

the web

 ➤ Using Socket.IO to write real-time applications for Node.js

 ➤ Writing a web-based real-time chat with Socket.IO for Node.js

 ➤ Using namespaces to separate Socket.IO apps

 ➤ Scaling to several Node processes with Redis

For many years, HTTP and real-time applications didn’t really go together very well. The
reason lies in the very nature of the HTTP protocol, which is stateless and based on a request-
response cycle — an HTTP server only reacts upon requests from the client but doesn’t have a
stateful continuous connection to the client.

An HTML and JavaScript-based application is capable of reacting to client events and sending
them to the server, but the reverse is not easy. If an event on the server occurs, the server has
no way of actively informing its clients about this event in real time. Only when clients ask the
server for its current state can the information be delivered from the server to its clients.

A browser-based chat is a good example of a web-based real-time application that shows
the limitations of HTTP. Multiple users share a chatroom, which technically means that a
message sent by any of the participating users needs to be delivered to all other users in the
same room.

c22.indd 241c22.indd 241 21/09/12 8:57 AM21/09/12 8:57 AM

242 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

To achieve real-time, or at least near real-time, behavior in traditional web chats, certain
workarounds were common. In its simplest form, the traditional request-response fl ow was used:
The browser of every chat user polled the HTTP server at regular intervals for new messages.
Polling fast enough, such as every second or less, gave the impression of interacting in real time.

However, this technique was highly ineffi cient; the client had to poll every second, even if no new
messages were available, and the server had to handle a request from all connected chat users every
second, even if no new messages were available. In a chatroom where new messages where posted
only every 10 seconds, the clients and the server had to do a lot of computation, which in 90 percent
of the cases wasn’t necessary.

More clever workarounds were developed, but they were all still based on the request-response
cycle, only using it in slightly more effi cient ways. Long polling is a technique whereby the client
sends a request to the server only once, and then the server keeps this connection open, sending
new data whenever it’s available. But because HTTP was never designed for this kind of use,
implementations remained hacky — browsers showed different behaviors when faced with long-
running request responses, and keeping the connection open usually resulted in ineffi cient load
behavior on the server.

Today, the situation is much better. The WebSocket protocol was developed (and recently
standardized) to overcome the shortcomings of HTTP in relation to real-time applications, which
now enables HTTP clients and browsers to talk to each other in an effi cient and full-duplex way,
without the need for workarounds.

For the fi rst time, real-time web applications can use only web technologies, without the need to for
external technologies like Java Applets, Flash, or ActiveX.

UNDERSTANDING HOW WEBSOCKETS WORK

At its core, a WebSocket connection is just a conventional TCP connection between an HTTP server
and an HTTP client. It’s established using a handshake protocol, which is very similar to an HTTP
handshake.

The client initializes the connection. To do this, the browser sends a special HTTP/1.1 request to the
server, asking it to turn the connection of this request into a WebSockets connection:

GET /chat HTTP/1.1
Host: server.example.com
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Key: dGhlIHNhbXBsZSBub25jZQ==
Origin: http://example.com
Sec-WebSocket-Protocol: chat, superchat
Sec-WebSocket-Version: 13

c22.indd 242c22.indd 242 21/09/12 8:57 AM21/09/12 8:57 AM

http://example.com
http://server.example.com

Using Socket.IO to Build WebSocket Applications ❘ 243

Although this starts out as a regular HTTP connection, the client asks to “upgrade” this connection
to a WebSocket connection. If the server supports the WebSocket protocol, it answers like this:

HTTP/1.1 101 Switching Protocols
Upgrade: websocket
Connection: Upgrade
Sec-WebSocket-Accept: s3pPLMBiTxaQ9kYGzzhZRbK+xOo=
Sec-WebSocket-Protocol: chat

This marks the end of the handshake, and the connection switches to data transfer mode. Both
sides can now send messages back and forth without any HTTP overhead or additional handshakes,
making it a bi-directional full-duplex communication connection in which both client and server
can send messages to one another at any time without having to wait for one another.

USING SOCKET.IO TO BUILD WEBSOCKET APPLICATIONS

Although implementing your own WebSocket server for Node.js is possible, it’s not necessary. Many
low-level details need to be taken care of before you can implement an actual application on top of
it, which makes using a library a lot more practical.

The de facto standard library for building WebSocket Node.js applications is Socket.IO. Not only
is it a wrapper library that makes building WebSocket servers very convenient, it also provides
transparent fallback mechanisms like long polling for clients that don’t support the WebSocket
protocol. Furthermore, it ships with a client-side library that provides a convenient API for
developing the browser part of the application.

Using Socket.IO, you never need to grapple with the low-level implementation details of a
WebSocket server or client. You get a clean and expressive API on both sides, which allows
writing real-time applications with ease.

Installing and Running Socket.IO on the Server

Like many other Node.js libraries, Socket.IO ships as an NPM module and can therefore be
installed with the following:

$ npm install socket.io

After you’ve installed it, you can implement a very basic WebSocket server, as shown in Listing 22-1.

LISTING 22-1: Setting up a Socket.IO server.

var io = require('socket.io').listen(4000);

io.sockets.on('connection', function (socket) {
 socket.on('my event', function(content) {
 console.log(content);
 });
});

c22.indd 243c22.indd 243 21/09/12 8:57 AM21/09/12 8:57 AM

244 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

Save this code to server.js.

The corresponding client part looks like Listing 22-2.

LISTING 22-2: A basic Socket.IO client.

<html>
 <head>
 <title>Socket.IO example application</title>
 <script src="http://localhost:4000/socket.io/socket.io.js"></script>
 <script>
 var socket = io.connect('http://localhost:4000');
 socket.emit('my event', 'Hello world.');
 </script>
 </head>
 <body>
 </body>
</html>

Save this in the same directory as index.html.

As you can see, both sides use a similar vocabulary. On the server, the fi rst step is to bind to a
TCP port, 4000 in this case. As soon as the server is running, it listens to incoming WebSocket
connections. The connection event is triggered as soon as a new client connects. The server then
listens for incoming messages on this connection, logging the content of any message it receives.

NOTE As you can see, Socket.IO provides a message-oriented communication
mechanism. This is an improvement over the underlying WebSockets protocol,
which doesn’t provide message framing.

You can also see that Socket.IO does not distinguish between a client that is
connected using WebSockets or any other type of mechanism: It provides a
unifi ed API that abstracts away those implementation details.

The event name my event is arbitrary — it’s just a label the client gives the messages it sends, and it
is used to distinguish among different types of messages within an application.

On the client, a WebSocket connection is created by connecting to the server. This socket is then
used to emit (or send) a message with the label my event to the server. This triggers the listener in
the server code and results in the message content being logged to the console.

Now, it would be great if you could just open the HTML fi le locally via file:///path/to/index
.html, but that doesn’t work reliably in all browsers because of security constraints that apply when
opening local fi les.

Therefore, you need to serve the HTML through the Node.js server, which allows you to request
http://localhost:4000/, which doesn’t impose any security restrictions because it’s a “real”
HTTP request.

c22.indd 244c22.indd 244 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:4000/socket.io/socket.io.js
http://localhost:4000
http://localhost:4000/

Using Socket.IO to Build WebSocket Applications ❘ 245

You can achieve this by piggybacking the Socket.IO server on a regular Node.js HTTP server and
serving the HTML through this HTTP server. Sounds complicated? It’s not, as Listing 22-3 shows.

LISTING 22-3: Serving the HTML fi le with Node.js HTTP server.

var httpd = require('http').createServer(handler);
var io = require('socket.io').listen(httpd);
var fs = require('fs');

httpd.listen(4000);

function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
}

io.sockets.on('connection', function (socket) {
 socket.on('my event', function(content) {
 console.log(content);
 });
});

What happens here is that the WebSocket server links into the HTTP server and listens to
certain requests. Whenever a client requests anything below /socket.io, Socket.IO handles
these requests, returning the socket.io.js script or setting up a WebSocket connection. Any
other request receives the index.html fi le as a response.

Now you can point your browser to http://localhost:4000/ — the string "Hello World." will
be logged to the console of your server.

Next, you will see how to rewrite this example code as a full application.

Building a Real-Time Web Chat with Socket.IO

Node.js provides the building blocks for any real-time application on the web: It’s based on the
web standard JavaScript and is non-blocking at heart, which is crucial for enabling real-time
behavior.

Therefore it’s no surprise that the poster child of real-time web applications, that is, browser-
based chatrooms, have become the most popular example application for demonstrating Node.js
capabilities.

c22.indd 245c22.indd 245 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:4000/

246 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

The example application is a good starting point for a basic chat application. It needs to be extended
on the server and the client side, which is explained step by step in the following sections.

Application Structure and Use Case

The application is very simple. The user interacts with the chat system through a very frugal
interface that provides only two elements — the text input fi eld and an area that displays all received
chat messages.

When the user types text into the input fi eld and presses Enter, the entered text is sent to the server
via Socket.IO. Whenever a message is received on the Socket.IO connection, the client will add it to
the message area.

Every client will receive all messages sent by any other client, and these messages are echoed
back as well.

The Chat Server

You’ll fi rst rewrite the server application created in Listing 22-3. You need to listen for new
connections and new messages. Whenever a new message from a client arrives, you need to echo
it back to the client, and then broadcast it to all other connected clients. You could implement the
broadcasting part by keeping an array of all currently connected clients, but this is not necessary —
Socket.IO already provides a convenient broadcast mechanism that sends messages to all connected
sockets, except the one that sent the message.

Because the fi le serving part of the chat server doesn’t need to be changed, you just need to rewrite
the part that handles socket connections:

io.sockets.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);
 socket.broadcast.emit('serverMessage', socket.id + ' said: ' +
 content);
 });
});

You now need to listen to clientMessage events on each connection socket, handle these events by
echoing the content back to the sender, and emit them to all other clients. To make chat messages
distinguishable on the client, you prefi x messages with either You said: or <client id> said:,
whereby client id is the internal socket ID number for now.

Again, the name of the incoming event is not a special keyword that bears any meaning in regard to
Socket.IO — it’s a label that can be chosen at will. Of course, you need to make sure that the client
uses the same label when emitting messages on the socket.

Listing 22-4 shows how the full server code looks at this point.

c22.indd 246c22.indd 246 21/09/12 8:57 AM21/09/12 8:57 AM

Using Socket.IO to Build WebSocket Applications ❘ 247

LISTING 22-4: A simple Socket.IO chat server.

var httpd = require('http').createServer(handler);
var io = require('socket.io').listen(httpd);
var fs = require('fs');

httpd.listen(4000);

function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
}

io.sockets.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);
 socket.broadcast.emit('serverMessage', socket.id + ' said: ' +
 content);
 });
});

The Chat Client

Because message handling on the server side of the application is still basic, most of the heavy lifting
actually happens on the client side.

Therefore, you need to rewrite large parts of the previous example code. The client needs an element
that allows the user to enter chat messages and an area that displays all incoming chat messages. First,
you should style and position these on the page with some CSS in the <head> section of the page:

<style type="text/css">
 #input {
 width: 200px;
 }
 #messages {
 position: fixed;
 top: 40px;
 bottom: 8px;
 left: 8px;
 right: 8px;
 border: 1px solid #EEEEEE;
 padding: 8px;
 }
</style>

c22.indd 247c22.indd 247 21/09/12 8:57 AM21/09/12 8:57 AM

248 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

The input element, which is a simple text input fi eld, will sit at the top of the page, followed by a
div for the messages that fi lls the rest of the page:

Your message:
<input type="text" id="input">

<div id="messages"></div>

Before the closing body tag, you need to load the Socket.IO client library and add the client-side
application logic. It’s crucial to have the JavaScript at the end of the document to make sure that all
DOM elements are available to the JavaScript code.

First, you need to load the Socket.IO client library:

<script src="http://localhost:4000/socket.io/socket.io.js"></script>

Then, after opening another script block with <script type="text/javascript"> for your code,
you need to handle two use cases — a message from the server arrives and a message has to be sent to
the server. Let’s start with a function that knows how to append new messages to the message area:

var messagesElement = document.getElementById('messages');
var lastMessageElement = null;

function addMessage(message) {
 var newMessageElement = document.createElement('div');
 var newMessageText = document.createTextNode(message);

 newMessageElement.appendChild(newMessageText);
 messagesElement.insertBefore(newMessageElement, lastMessageElement);
 lastMessageElement = newMessageElement;
}

New messages arrive on the Socket.IO wire, so you need to connect to the backend and add a
handler for the serverMessage events that the server code emits:

var socket = io.connect('http://localhost:4000');
socket.on('serverMessage', function(content) {
 addMessage(content);
});

The last step is to emit clientMessage events with the message of the users as their content. This
can be achieved by binding to the onkeydown event of the input text fi eld and writing to the socket
whenever the user presses Enter:

var inputElement = document.getElementById('input');

inputElement.onkeydown = function(keyboardEvent) {
 if (keyboardEvent.keyCode === 13) {
 socket.emit('clientMessage', inputElement.value);
 inputElement.value = '';

c22.indd 248c22.indd 248 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:4000/socket.io/socket.io.js
http://localhost:4000

Using Socket.IO to Build WebSocket Applications ❘ 249

 return false;
 } else {
 return true;
 }
};

When everything is put together, index.html looks Listing 22-5.

LISTING 22-5: A simple Socket.IO chat client.

<html>
 <head>
 <title>Node.js WebSocket chat</title>
 <style type="text/css">
 #input {
 width: 200px;
 }
 #messages {
 position: fixed;
 top: 40px;
 bottom: 8px;
 left: 8px;
 right: 8px;
 border: 1px solid #EEEEEE;
 padding: 8px;
 }
 </style>
 </head>

 <body>

 Your message:
 <input type="text" id="input">

 <div id="messages"></div>

 <script src="http://localhost:4000/socket.io/socket.io.js"></script>
 <script type="text/javascript">
 var messagesElement = document.getElementById('messages');
 var lastMessageElement = null;

 function addMessage(message) {
 var newMessageElement = document.createElement('div');
 var newMessageText = document.createTextNode(message);

 newMessageElement.appendChild(newMessageText);
 messagesElement.insertBefore(newMessageElement,
 lastMessageElement);
 lastMessageElement = newMessageElement;
 }

 var socket = io.connect('http://localhost:4000');
 socket.on('serverMessage', function(content) {

continues

c22.indd 249c22.indd 249 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:4000/socket.io/socket.io.js
http://localhost:4000

250 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

LISTING 22-5 (continued)

 addMessage(content);
 });

 var inputElement = document.getElementById('input');

 inputElement.onkeydown = function(keyboardEvent) {
 if (keyboardEvent.keyCode === 13) {
 socket.emit('clientMessage', inputElement.value);
 inputElement.value = '';
 return false;
 } else {
 return true;
 }
 };
 </script>

 </body>
</html>

This implements the simplest chat use case. When you start the chat server with node server.
js and open http://localhost:4000/, you will be presented with a very Spartan interface that
allows sending and receiving messages from other users. It makes sense to open another browser
window or tab to simulate real multi-user interaction.

Extending the Chat Application

At this point, the chat exchange protocol between client and server isn’t exactly vast — each side
emits one type of message and reacts to one type of message. This will change when the use cases
within the application become more complex.

For example, it’s not convenient that chat users are identifi ed by their internal socket connection ID.
It would be nice if before entering the chat, users could identify themselves by name.

This can be implemented by adding another type of client-to-server Socket.IO message type, which
could be called login.

The server needs to handle this message by associating the name of the user — which is the content
part of the login message — with the socket connection.

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' logged in');
 });
 });

This code on the server is setting the username on the socket. Using socket.set you can set any
key-value pair on the socket, keeping any information around you may fi nd useful for the current
socket connection.

c22.indd 250c22.indd 250 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:4000/

Using Socket.IO to Build WebSocket Applications ❘ 251

Then you need to send a login message from the client. For that, the browser asks the user for the
username. Now you need something to trigger this question, which can be a login server event.

 socket.on('login', function() {
 var username = prompt('What username would you like to use?');
 socket.emit('login', username);
 });

The server then needs to send a login event when the user connects:

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' logged in');
 });
 });

And the server emits a login event when the user connects:

 socket.emit('login');

The login fl ow works like this now: The user connects and the server sends a login event. The
browser, upon receiving this event, prompts the user about the username and then sends it to
the server with a login event. The server processes this event, associating the username with
that socket, to be used in the future.

Listing 22-6 contains the full server code, and Listing 22-7 contains the complete client code.

LISTING 22-6: A Socket.IO chat server that supports user login.

var httpd = require('http').createServer(handler);
var io = require('socket.io').listen(httpd);
var fs = require('fs');

httpd.listen(4000);

function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
} continues

c22.indd 251c22.indd 251 21/09/12 8:57 AM21/09/12 8:57 AM

252 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

LISTING 22-6 (continued)

io.sockets.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', username + ' said: ' +
 content);
 });
 });

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' logged in');
 });
 });

 socket.emit('login');

});

LISTING 22-7: A Socket.IO chat client that supports user login.

<html>
 <head>
 <title>Node.js WebSocket chat</title>
 <style type="text/css">
 #input {
 width: 200px;
 }
 #messages {
 position: fixed;
 top: 40px;
 bottom: 8px;
 left: 8px;
 right: 8px;
 border: 1px solid #EEEEEE;
 padding: 8px;
 }
 </style>
 </head>

 <body>

c22.indd 252c22.indd 252 21/09/12 8:57 AM21/09/12 8:57 AM

Using Socket.IO to Build WebSocket Applications ❘ 253

 Your message:
 <input type="text" id="input">

 <div id="messages"></div>

 <script src="http://localhost:4000/socket.io/socket.io.js"></script>
 <script type="text/javascript">
 var messagesElement = document.getElementById('messages');
 var lastMessageElement = null;

 function addMessage(message) {
 var newMessageElement = document.createElement('div');
 var newMessageText = document.createTextNode(message);

 newMessageElement.appendChild(newMessageText);
 messagesElement.insertBefore(newMessageElement,
 lastMessageElement);
 lastMessageElement = newMessageElement;
 }

 var socket = io.connect('http://localhost:4000');
 socket.on('serverMessage', function(content) {
 addMessage(content);
 });

 socket.on('login', function() {
 var username = prompt('What username would you like to use?');
 socket.emit('login', username);
 });

 var inputElement = document.getElementById('input');

 inputElement.onkeydown = function(keyboardEvent) {
 if (keyboardEvent.keyCode === 13) {
 socket.emit('clientMessage', inputElement.value);
 inputElement.value = '';
 return false;
 } else {
 return true;
 }
 };
 </script>

 </body>
</html>

Now you can save the client as a fi le named index.html and the server code as a fi le named app.js,
running it like this:

$ node app.js

Then, open several browser windows pointing to http://localhost:4000. You should be able to
run different chat sessions, all communicating with each other.

c22.indd 253c22.indd 253 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:4000/socket.io/socket.io.js
http://localhost:4000
http://localhost:4000

254 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

Detecting Disconnections

The only way users can now leave the chat is by closing the browser window. That will trigger a
disconnect event on the server-side socket. It would be interesting for other connected users to be
informed that a certain user has left the chat.

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', 'User ' + username + ' disconnected');
 });
 });

Now, when a given socket is disconnected, the server broadcasts that information to all other
connected clients. Listing 22-8 contains the full server code.

LISTING 22-8: A Socket.IO chat server that detects disconnections.

var httpd = require('http').createServer(handler);
var io = require('socket.io').listen(httpd);
var fs = require('fs');

httpd.listen(4000);

function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
}

io.sockets.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', username + ' said:' +
 content);
 });
 });

c22.indd 254c22.indd 254 21/09/12 8:57 AM21/09/12 8:57 AM

Using Socket.IO to Build WebSocket Applications ❘ 255

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' logged in');
 });
 });

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' disconnected');
 });
 });

 socket.emit('login');

});

You can test this by saving the changes to app.js, restarting your Node server, and then opening
several browser windows into the chat app. If you close one of those windows, the other ones should
be informed.

Separating Users into Rooms

You can also provide several chatrooms that users can join, limiting the chat messages to only the
users who have joined that room. You could implement this by keeping track of which sockets are in
which room, but fortunately Socket.IO supports this exact functionality.

But fi rst, the client has to allow a user to join a room. For that, the browser command line has to be
able to accept some commands like in the iRC protocol, where the user can enter a command that
starts with the character /, followed by a verb and some arguments. Listing 22-9 has the client code
that allows that.

LISTING 22-9: A Socket.IO chat client that accepts the /j <room> command.

<html>
 <head>
 <title>Node.js WebSocket chat</title>
 <style type="text/css">
 #input {
 width: 200px;
 }
 #messages {
 position: fixed;
 top: 40px;
 bottom: 8px; continues

c22.indd 255c22.indd 255 21/09/12 8:57 AM21/09/12 8:57 AM

256 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

LISTING 22-9 (continued)

 left: 8px;
 right: 8px;
 border: 1px solid #EEEEEE;
 padding: 8px;
 }
 </style>
 </head>

 <body>

 Your message:
 <input type="text" id="input">

 <div id="messages"></div>

 <script src="http://localhost:4000/socket.io/socket.io.js"></script>
 <script type="text/javascript">
 var messagesElement = document.getElementById('messages');
 var lastMessageElement = null;

 function addMessage(message) {
 var newMessageElement = document.createElement('div');
 var newMessageText = document.createTextNode(message);

 newMessageElement.appendChild(newMessageText);
 messagesElement.insertBefore(newMessageElement,
 lastMessageElement);
 lastMessageElement = newMessageElement;
 }

 var socket = io.connect('http://localhost:4000');
 socket.on('serverMessage', function(content) {
 addMessage(content);
 });

 socket.on('login', function() {
 var username = prompt('What username would you like to use?');
 socket.emit('login', username);
 });

 function sendCommand(command, args) {
 if (command === 'j') {
 socket.emit('join', args);
 } else {
 alert('unknown command: ' + command);
 }
 }

 function sendMessage(message) {
 var commandMatch = message.match(/^\/(\w*)(.*)/);
 if (commandMatch) {
 sendCommand(commandMatch[1], commandMatch[2].trim());
 } else {

c22.indd 256c22.indd 256 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:4000/socket.io/socket.io.js
http://localhost:4000

Using Socket.IO to Build WebSocket Applications ❘ 257

 socket.emit('clientMessage', message);
 }
 }

 var inputElement = document.getElementById('input');

 inputElement.onkeydown = function(keyboardEvent) {
 if (keyboardEvent.keyCode === 13) {
 sendMessage(inputElement.value);
 inputElement.value = '';
 return false;
 } else {
 return true;
 }
 };
 </script>

 </body>
</html>

Here the function sendMessage is applied to the user input, and if it matches a command, the
sendCommand function is invoked; otherwise a normal text message is sent to the server. In turn,
the sendCommand function parses the command and invokes the proper server message. In this
example, you only support the /j <room> command, which makes the user join a given room.

Then, the server has to interpret the join command, inserting the user into the room. When joining
a room, that user may already be in another room, in which case the user needs to leave. Also, you
store which room the user is currently in by associating the room name with the socket object.
Listing 22-10 has the modifi ed server code that allows this process.

LISTING 22-10: A Socket.IO chat server that allows users to join a room.

var httpd = require('http').createServer(handler);
var io = require('socket.io').listen(httpd);
var fs = require('fs');

httpd.listen(4000);

function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
}

io.sockets.on('connection', function (socket) { continues

c22.indd 257c22.indd 257 21/09/12 8:57 AM21/09/12 8:57 AM

258 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

LISTING 22-10 (continued)

 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) { throw err; }
 var broadcast = socket.broadcast;
 var message = content;
 if (room) {
 broadcast.to(room);
 }
 broadcast.emit('serverMessage', username + ' said: ' + message);
 });
 });
 });

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' logged in');
 });
 });

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' disconnected');
 });
 });

 socket.on('join', function(room) {
 socket.get('room', function(err, oldRoom) {
 if (err) { throw err; }

 socket.set('room', room, function(err) {
 if (err) { throw err; }
 socket.join(room);
 if (oldRoom) {
 socket.leave(oldRoom);
 }
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 });

c22.indd 258c22.indd 258 21/09/12 8:57 AM21/09/12 8:57 AM

Using Socket.IO to Build WebSocket Applications ❘ 259

 socket.emit('serverMessage', 'You joined room ' + room);
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.to(room).emit('serverMessage', 'User ' +
 username + ' joined this room');
 });
 });
 });
 });

 socket.emit('login');

});

Here, when receiving a message, the server checks if the user has joined a room. If so, the server
modifi es the broadcast object to scope it to a given room by using the broadcast.to(room)
modifi er. If the user has not checked into a room yet, the message is broadcast to all users who have
not yet joined a room.

You can save these changes into the client and server fi les, restart your Node server, and reload the
chat application windows you may have open. Now you can use commands like /j chatroom1 to
join chatrooms.

Using Namespaces

This simple chat application could be a part of a larger website. If that website provided some near-
real-time interactions that used Socket.IO, you would need to be careful and separate all server and
client event names so they don’t clash.

Fortunately, Socket.IO allows you to use namespaces to separate different applications on the server
and on the client. First you have to connect to a specifi c namespaced Socket.IO URL on the client:

var socket = io.connect('http://localhost:4000/chat');

And then the chat server has to scope the sockets to only those that use this namespace:

var chat = io.of('/chat');

chat.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 // …

Now you can easily add another application to the client and server using the same technique
without having to worry about whether the event names clash.

Distributing the Server-Side Application Using Redis

By using Socket.IO you allow all users to be connected using this one Node process. But in
real production applications, you might need to have more than one Node process serving your
application. For redundancy and/or load distribution, you may have a cluster of machines running
your application server behind a load balancer.

c22.indd 259c22.indd 259 21/09/12 8:57 AM21/09/12 8:57 AM

http://localhost:4000/chat

260 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

NOTE If you are running a load balancer in front of a set of Node.js processes
that run Socket.IO servers, you need to use one that supports WebSockets.

If you want to run a Node-based Socket.IO server, I recommend looking at the
node-http-proxy module, which is very malleable and feature rich. You can fi nd
more about it at:

https://github.com/nodejitsu/node-http-proxy

The problem with having a distributed set of processes like this is that any user can connect to any
given Node.js process at any given time. That user will only be able to communicate with the other
users who are also connected to that server. Other users will be connected to different servers and
will be unreachable.

Fortunately, Socket.IO has a pluggable store. By default it uses a memory store that uses local
process memory, but you can set the store to anything that conforms to a given protocol. For
instance, a popular choice is to use the Redis database as a store.

Redis is a powerful in-memory key-value database with some advanced features. One of these
features is to support pub-sub, where clients can publish events and several subscribers are notifi ed
of these events. Socket.IO already comes with support for a Redis store baked in, but you need to
install the redis module:

$ npm install redis

Now the only thing you need to install is the Redis server itself.

NOTE Installing a Redis server is out of the scope of this book, but heading to
the offi cial website documentation should get you started:

http://redis.io/topics/quickstart

Once you have a Redis server installed and running, you are ready to confi gure your Socket.IO
server so that it uses a Redis store:

var redis = require('redis'),
 RedisStore = require('socket.io/lib/stores/redis'),
 pub = redis.createClient(),
 sub = redis.createClient(),
 client = redis.createClient();

io.set('store', new RedisStore({
 redisPub : pub,
 redisSub : sub,
 redisClient : client
}));

c22.indd 260c22.indd 260 21/09/12 8:57 AM21/09/12 8:57 AM

https://github.com/nodejitsu/node-http-proxy
http://redis.io/topics/quickstart

Using Socket.IO to Build WebSocket Applications ❘ 261

And that’s it. Just restart your server, and you should be using Redis. If your setup requires more than
one server, Redis will now act as a centralized server for your messages, but because the redis module
connects to the local host by default, you need to confi gure the server name for the Redis server:

var redisPort = 6379;
var redisHostname = 'my.host.name';

var redis = require('redis'),
 RedisStore = require('socket.io/lib/stores/redis'),
 pub = redis.createClient(redisPort, redisHostname),
 sub = redis.createClient(redisPort, redisHostname),
 client = redis.createClient(redisPort, redisHostname);

If you replace my.host.name with the hostname of the server that is running Redis, Listing 22-11
would then be the complete server code.

LISTING 22-11: A Socket.IO chat server that uses a Redis store.

var httpd = require('http').createServer(handler);
var io = require('socket.io').listen(httpd);
var fs = require('fs');

var redisPort = 6379;
var redisHostname = 'my.host.name';

var redis = require('redis'),
 RedisStore = require('socket.io/lib/stores/redis'),
 pub = redis.createClient(redisPort, redisHostname),
 sub = redis.createClient(redisPort, redisHostname),
 client = redis.createClient(redisPort, redisHostname);

io.set('store', new RedisStore({
 redisPub : pub,
 redisSub : sub,
 redisClient : client
}));

httpd.listen(4000);

function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
} continues

c22.indd 261c22.indd 261 21/09/12 8:57 AM21/09/12 8:57 AM

262 ❘ CHAPTER 22 MAKING UNIVERSAL REAL-TIME WEB APPLICATIONS USING SOCKET.IO

LISTING 22-11 (continued)

var chat = io.of('/chat');

chat.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) { throw err; }
 var broadcast = socket.broadcast;
 var message = content;
 if (room) {
 broadcast.to(room);
 }
 broadcast.emit('serverMessage', username + ' said: ' + message);
 });
 });
 });

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' logged in');
 });
 });

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' disconnected');
 });
 });

 socket.on('join', function(room) {
 socket.get('room', function(err, oldRoom) {
 if (err) { throw err; }

 socket.set('room', room, function(err) {
 if (err) { throw err; }
 socket.join(room);
 if (oldRoom) {
 socket.leave(oldRoom);
 }
 socket.get('username', function(err, username) {

c22.indd 262c22.indd 262 21/09/12 8:57 AM21/09/12 8:57 AM

Summary ❘ 263

 if (! username) {
 username = socket.id;
 }
 });
 socket.emit('serverMessage', 'You joined room ' + room);
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.to(room).emit('serverMessage', 'User ' +
 username + ' joined this room');
 });
 });
 });
 });

 socket.emit('login');

});

SUMMARY

Socket.IO is a great cross-browser solution for providing near-real-time bi-directional
communication between the browser and the server.

You can connect several clients to each other by broadcasting into all connected sockets, and you
can also have the socket join and leave particular rooms and choose to broadcast to those rooms
only.

By using namespaces you can also have several Socket.IO-based apps living safely together in the
same client and server applications.

Also, you can distribute a Socket.IO application to many Node.js processes by using a Redis store
that uses a Redis server as the central point of communication.

c22.indd 263c22.indd 263 21/09/12 8:57 AM21/09/12 8:57 AM

c22.indd 264c22.indd 264 21/09/12 8:57 AM21/09/12 8:57 AM

PART VI
Connecting to Databases

 � CHAPTER 23: Connecting to MySQL Using node-mysql

 � CHAPTER 24: Connecting to CouchDB Using Nano

 � CHAPTER 25: Connecting to MongoDB Using Mongoose

c23.indd 265c23.indd 265 21/09/12 8:57 AM21/09/12 8:57 AM

c23.indd 266c23.indd 266 21/09/12 8:57 AM21/09/12 8:57 AM

23
Connecting to MySQL Using
node-mysql

WHAT’S IN THIS CHAPTER?

 ➤ Connecting to MySQL databases from Node

 ➤ Leveraging Node’s asynchronous, non-blocking style when

exchanging data with the database

 ➤ Avoiding security and performance pitfalls

As in many other programming environments, you will sooner or later want to persist certain
types of data your application generates. This is especially true with multi-user server-client
applications, in which information one user provides needs to be presented to one or many
other users at a later point in time.

Although saving data in fl at fi les or memory works in Node just as well as in other
environments, it doesn’t scale when structured access is needed for large amounts
of data.

Relational databases like MySQL provide a reliable and fast solution to save and retrieve
information in a structured manner by storing data on the hard drive and making it accessible
through the standardized SQL language.

If your Node applications need to be able to communicate with MySQL databases and
exchange data with them, the following sections on using the node-mysql library, reading
from a MySQL database effi ciently, and passing in data in a secure way will enable you to
accomplish these tasks.

c23.indd 267c23.indd 267 21/09/12 8:57 AM21/09/12 8:57 AM

268 ❘ CHAPTER 23 CONNECTING TO MYSQL USING NODE-MYSQL

USING A LIBRARY TO CONNECT TO AND COMMUNICATE
WITH A MYSQL DATABASE

As installing and setting up a MySQL database is not within the scope of this book, it’s
assumed that you have a working MySQL instance running on your localhost or on another
reachable host.

To connect to your database, you must install the node-mysql package in your local directory with
the following command:

$ npm install mysql

Once you have done this, write a simple application that connects to your server, as shown in
Listing 23-1.

LISTING 23-1: Connecting and querying MySQL.

var mysql = require('mysql');

var client = mysql.createClient({
 host: 'localhost',
 user: 'root',
 password: 'root'
});

client.query(
 'SELECT "Hello, world!"',
 function (err, results, fields) {
 console.log(results);
 console.log(fields);
 client.end();
 }
);

Before saving and running this listing, you need to change lines 4, 5, and 6 to specify the host and
credentials for accessing your MySQL server. If your installation is local, you may not need any
credentials to connect to your MySQL server, in which case you can remove the user and password
fi elds from the createClient options.

You can then save this code into a fi le named hello_world.js and run it:

$ node hello_world
[{ 'Hello, world!': 'Hello, world!' }]
{ 'Hello, world!':
 { length: 35,
 received: 35,
 number: 2,
 type: 4,
 catalog: 'def',
 name: 'Hello, world!',
 charsetNumber: 192,

c23.indd 268c23.indd 268 21/09/12 8:57 AM21/09/12 8:57 AM

Using a Library to Connect to and Communicate with a MySQL Database ❘ 269

 fieldLength: 39,
 fieldType: 253,
 flags: 1,
 decimals: 31 } }

Even with this rudimentary example, you can see how the typical asynchronous callback fl ow is
used once again to make the database request non-blocking. This is especially important in this
context because — depending on the query and the size of the result set — database requests
can be somewhat slow, putting the responsiveness of the application at risk if handled
synchronously. Later in this chapter you’ll look into an even more effi cient way to retrieve
results from the database.

When connecting to the database using mysql.createClient(), you can provide a set of options:

 ➤ host: The IP address or DNS name of the server that is to be connected. Defaults to
localhost if omitted.

 ➤ port: The TCP port to connect to. Defaults to 3306 if omitted.

 ➤ user: The username used to authenticate against the server. Defaults to root if omitted.

 ➤ password: The password used to authenticate against the server. If omitted, a password-less
connection is attempted.

 ➤ database: The database to be used upon successful connection. If omitted, no database is
selected, and must be selected using a SELECT database query.

 ➤ debug: If set to true, node-mysql prints all incoming and outgoing data packets to the
console. Defaults to false.

 ➤ flags: The MySQL connect protocol supports several fl ags that infl uence the low-level
details of the connection handshake, such as which protocol version to use, whether to use
compression or not, and so on. node-mysql ships with a sensible default, so unless your
server is confi gured in a non-standard way, you don’t need to set any of these fl ags. See
http://forge.mysql.com/wiki/MySQL_Internals_ClientServer_Protocol#Handshake_

Initialization_Packet for a list of available fl ags.

You have not yet queried for any real data. To do so, you need to create a database with a table and
then add rows to the table:

client.query('CREATE DATABASE node', function(err) {
 if (err) {
 client.end();
 throw err;
 }
});

This shows how errors trigger the callback function. Here, you close the connection to the server if
an error occurs. You can trigger an error case by running this script more than once. Because the
database exists after the fi rst run, it cannot be created again. Therefore, the second query fails.

c23.indd 269c23.indd 269 21/09/12 8:57 AM21/09/12 8:57 AM

http://forge.mysql.com/wiki/MySQL_Internals_ClientServer_Protocol#Handshake_Initialization_Packet
http://forge.mysql.com/wiki/MySQL_Internals_ClientServer_Protocol#Handshake_Initialization_Packet

270 ❘ CHAPTER 23 CONNECTING TO MYSQL USING NODE-MYSQL

ADDING DATA TO THE DATABASE WITH
SECURITY CONCERNS IN MIND

Now, create a table and insert two rows of data:

client.query('USE node');

client.query('CREATE TABLE test ' +
 '(id INT(11) AUTO_INCREMENT, ' +
 ' content VARCHAR(255), ' +
 ' PRIMARY KEY(id))'
);

client.query('INSERT INTO test (content) VALUES ("Hello")');
client.query('INSERT INTO test (content) VALUES ("World")');

client.end();

This works well but has one problem. If queries are constructed this way and you have no direct
control over the values used for the query (maybe because the value for content is provided by users
inputting it through a form on a web page), your application becomes vulnerable to SQL injection.
A malicious user can submit data to your application that, if passed on to the database unfi ltered,
breaks out of the intended SQL statement and allows the attacker to execute arbitrary statements
that could cause harm.

Here is an example of SQL injection in action:

client.query('USE node');

var userInput = '"); DELETE FROM test WHERE id = 1; -- ';

client.query('INSERT INTO test (content) VALUES ("' + userInput + '")');

client.end();

It’s a bit complicated to see what’s actually going on, but this is what happens.

The code is written with the intent to supply a text string — entered by the user — to the query
value for the content fi eld. Of course, the actual user input is only simulated, but imagine that the
value of userInput originates from a fi eld of an HTTP form.

In this case, the attacker does not supply a simple text string, but instead prematurely closes
the original query by closing the quotation mark and bracket with ");. She then starts her own
query that deletes the row with id 1. Because the second part of the original query — the closing
quotation marks and the closing bracket — would result in invalid SQL, the attacker prefi xes these
with two dashes. This results in everything after these dashes being treated as a comment and
therefore being ignored.

Thus, the complete statement received by the server is:

INSERT INTO test (content) VALUES (""); DELETE FROM test WHERE id = 1; -- ")

c23.indd 270c23.indd 270 21/09/12 8:57 AM21/09/12 8:57 AM

Adding Data to the Database with Security Concerns in Mind ❘ 271

This results in one new row being inserted to the table, and the row with id 1 being deleted.

You can, and should, protect your application against these kinds of attacks on several levels. The
most important thing to do is to always treat incoming data as potentially harmful and reject any
data that does not match a strict defi nition of “harmless” as early as possible.

At the point in your application where foreign data will make up parts of a database query, there
is an additional precaution you can leverage to protect against certain attack scenarios. Using
placeholders with value assignments, you can guarantee that any part of your query that is supposed
to be treated as a value is indeed interpreted by the database as a value and can never be interpreted
as, for example, a DELETE command.

Placeholders enable you to do this because, instead of concatenating your own commands together
with user input into a fi nal SQL statement (which allows an attacker to break out of the SQL
structure), you write a SQL statement that only contains the commands you intend and doesn’t
contain any values. The placeholders denote the location of values, the values are provided
separately, and the database combines both into a working statement.

This way, the query isn’t digested as a whole but instead becomes semantically enriched — the
database knows which parts of the query are to be treated as values and values only. Looking at the
fi rst example, the lack of this semantic allowed the attacker to execute a command instead of enter a
value.

Here is how you can issue a statement with placeholders and value replacement:

client.query('USE node');

var userInput = '"); DELETE FROM test WHERE id = 1; -- ';

client.query('INSERT INTO test (content) VALUES (?)', [userInput]);

client.end();

Although the user input is still malicious, it cannot harm the database anymore. Because the server
knows that anything in userInput is to be treated as the value for the content fi eld, you don’t end
up with a deleted row 1 but with a new row whose content fi eld has the value "); DELETE FROM
test WHERE id = 1; --.

Although this is probably not the content you wished for, you have stopped the attack itself.

Value assignment in node-mysql works by writing a SQL statement with quotation marks
as placeholders for values and by additionally supplying an array of values that replace each of
the placeholders in sequence. Matching multiple placeholders with multiple values works by
simply traversing the supplied array from lower to higher keys, thus the following statement will
result in the same data being written.

var data = [100, "the content"];

client.query('INSERT INTO test (id, content) VALUES (?, ?)', data);

is equal to

c23.indd 271c23.indd 271 21/09/12 8:57 AM21/09/12 8:57 AM

272 ❘ CHAPTER 23 CONNECTING TO MYSQL USING NODE-MYSQL

var data = [];
data[1] = "the content";
data[0] = 100;

client.query('INSERT INTO test (id, content) VALUES (?, ?)', data);

Sometimes, you need to retrieve certain information when inserting or updating rows, like the ID
of the last inserted record or the number of rows affected by a query. node-mysql provides this
information to an optional callback:

client.query('INSERT INTO test (content) VALUES (?)', ['the content'],
 function(err, info) {
 if (err) {
 return handle_error(err);
 }
 console.log(info.insertId);
 }
);

client.query('UPDATE test SET content = ?', ['new content'], function(err, info) {
 if (err) {
 return handle_error(err);
 }
 console.log(info.affectedRows);
});

You can see here that the callback provides a fi rst argument containing an error object in case of an
error, as usual. If no error occurred, the second argument contains an object with the results of your
query. If you insert into a table with an auto-incremented fi eld, that object will contain an insertId
property with the value of that fi eld. If the query you performed deleted, updated, or removed rows,
the property affectedRows will contain the number of affected rows.

READING DATA EFFICIENTLY

You can and should read from the database using placeholders, too. node-mysql provides the result
set in two different ways. Providing a callback to the query call is the most straightforward way:

query = client.query(
 'SELECT id, content FROM test WHERE id IN (?, ?)',
 [1, 100], function(err, results, fields) {
 if (err) {
 throw err;
 }
 console.log(results);
 }
);

The resulting output looks like this:

[{ id: 1, content: 'the content' },
 { id: 100, content: 'the content' }]

c23.indd 272c23.indd 272 21/09/12 8:57 AM21/09/12 8:57 AM

Reading Data Effi ciently ❘ 273

As you can see, you receive the complete set of rows as an array of objects, in one go. When
querying for large result sets, this can become problematic, because Node.js has to buffer the whole
result set in memory.

To circumvent this, you can handle the result set row by row, by utilizing node-mysql’s streaming API.

When sending a query to the server using client.query, a Query object is returned that emits
several events to which you can listen: error, field, row, and end.

You can use these events as follows:

query = client.query('SELECT id, content FROM test WHERE id IN (?, ?)', [1, 100]);

query.on('error', function(err) {
 throw err;
});

query.on('field', function(field) {
 console.log('Received field:');
 console.log(field);
});

query.on('row', function(row) {
 console.log('Received row:');
 console.log(row);
});

query.on('end', function(result) {

 console.log('Finished retrieving results');

});

Which results in the following output:

Received field:
{ length: 38,
 received: 38,
 number: 2,
 type: 4,
 catalog: 'def',
 db: 'node',
 table: 'test',
 originalTable: 'test',
 name: 'id',
 originalName: 'id',
 charsetNumber: 63,
 fieldLength: 11,
 fieldType: 3,
 flags: 16899,
 decimals: 0 }
Received field:
{ length: 48,
 received: 48,

c23.indd 273c23.indd 273 21/09/12 8:57 AM21/09/12 8:57 AM

274 ❘ CHAPTER 23 CONNECTING TO MYSQL USING NODE-MYSQL

 number: 3,
 type: 4,
 catalog: 'def',
 db: 'node',
 table: 'test',
 originalTable: 'test',
 name: 'content',
 originalName: 'content',
 charsetNumber: 192,
 fieldLength: 765,
 fieldType: 253,
 flags: 0,
 decimals: 0 }
Received row:
{ id: 1, content: 'the content' }
Received row:
{ id: 100, content: 'the content' }
Finished retrieving results

Why is the result parameter passed to the end event callback? It’s passed only if the query didn’t
yield any results and contains the content of the MySQL OK packet.

Having learned about the streaming query API and building queries with placeholders, you can put
everything together into a simple yet complete application, as shown in Listing 23-2.

LISTING 23-2: A MySQL application.

var mysql = require('mysql');

var client = mysql.createClient({
 host: 'localhost',
 user: 'root',
 password: 'root',
});

client.query('DROP DATABASE IF EXISTS node');
client.query('CREATE DATABASE node');
client.query('USE node');

client.query('CREATE TABLE test ' +
 '(id INT(11) AUTO_INCREMENT, ' +
 ' content VARCHAR(255), ' +
 ' PRIMARY KEY(id))'
);

for (var i = 0; i < 10000; i++) {
 client.query('INSERT INTO test (content) VALUES (?)', ['content for row ' +
 (i + 1)]);
}

client.query('UPDATE test SET content = ? WHERE id >= ?', ['new content', 9000],

c23.indd 274c23.indd 274 21/09/12 8:57 AM21/09/12 8:57 AM

Reading Data Effi ciently ❘ 275

 function(err, info) {
 console.log('Changed content of ' + info.affectedRows + ' rows');
 }
);

query = client.query('SELECT id, content FROM test WHERE id >= ? AND id <= ?',
 [8990, 9010]);

query.on('error', function(err) {
 throw err;
});

query.on('row', function(row) {
 console.log('Content of row #' + row.id + ' is: "' + row.content + '"');
});

query.on('end', function(result) {
 console.log('Finished retrieving results');
});

client.end();

Again, you probably need to change the hostname and credentials at the beginning of the fi le. Then,
save this into a fi le named app.js and run it:

$ node app.js

Doing so results in the following output:

Content of row #8990 is: "content for row 8990"
Content of row #8991 is: "content for row 8991"
Content of row #8992 is: "content for row 8992"
Content of row #8993 is: "content for row 8993"
Content of row #8994 is: "content for row 8994"
Content of row #8995 is: "content for row 8995"
Content of row #8996 is: "content for row 8996"
Content of row #8997 is: "content for row 8997"
Content of row #8998 is: "content for row 8998"
Content of row #8999 is: "content for row 8999"
Content of row #9000 is: "new content"
Content of row #9001 is: "new content"
Content of row #9002 is: "new content"
Content of row #9003 is: "new content"
Content of row #9004 is: "new content"
Content of row #9005 is: "new content"
Content of row #9006 is: "new content"
Content of row #9007 is: "new content"
Content of row #9008 is: "new content"
Content of row #9009 is: "new content"
Content of row #9010 is: "new content"
Finished retrieving results

c23.indd 275c23.indd 275 21/09/12 8:57 AM21/09/12 8:57 AM

276 ❘ CHAPTER 23 CONNECTING TO MYSQL USING NODE-MYSQL

WARNING The MySQL protocol is sequential, which means that when using a
connection you are executing each query in series. If you are building an applica-
tion that performs many MySQL operations, having them all wait for each other
is probably not a good solution.

In that case you need to create more than one connection to MySQL. You
can choose to have one connection per application user, but depending on the
number of concurrent users and the capacity of your MySQL server, this might
not work well.

You can also choose to create a connection pool, whereby you have a number of
connections to your MySQL server and distribute the queries to them.

SUMMARY

Exchanging data with a MySQL database is straightforward and effi cient, thanks to the node-mysql
module. However, you must be careful and pay close attention when dealing with external and
therefore potentially malicious data. By listening to asynchronous events, large result sets can be
handled effi ciently row by row.

c23.indd 276c23.indd 276 21/09/12 8:57 AM21/09/12 8:57 AM

Connecting to CouchDB
Using Nano

WHAT’S IN THIS CHAPTER?

 ➤ Creating a CouchDB database

 ➤ Creating and updating a CouchDB view

 ➤ Inserting or updating a document

 ➤ Querying a view and presenting the results

 ➤ Attaching binary fi les to documents

In the last few years, a series of projects has tried to solve some relational database problems
by providing a different approach to database management systems design. This movement
has been named NoSQL. Not only does it reject a query language, it also rejects the relational
model and, in most cases, simplifi es that model and relaxes some of its assumptions.

24

NOTE For instance, in most relational databases, when making several
 modifi cations inside one transaction, it can be guaranteed that all the changes are
done atomically, that is, that either all of them occur or they have no effect. In
most NoSQL databases, when inserting or updating several documents,
atomicity may not be guaranteed in exchange for a simpler and less problematic
concurrency model.

Right in the middle of the NoSQL “revolution” stands the successful poster child and Open
Source project named CouchDB. CouchDB is a database that embraces web standards; it uses
JSON for object storage and JavaScript for making queries.

c24.indd 277c24.indd 277 21/09/12 8:58 AM21/09/12 8:58 AM

278 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

CouchDB also uses HTTP for client-server communication. In fact, when using CouchDB from
Node, you need nothing more than the Node HTTP Client API even though, in the end, you will
probably want to create some sort of library code to reduce code duplication.

Nano is just that — it’s a third-party module that builds on top of Mikeal Rogers’s request module
(covered in Chapter 13, “Making HTTP Requests”), which has some helper functions for the most
common CouchDB actions, minimizing abstraction in favor of simplicity.

This chapter builds on top of the Socket.IO-based chat application you developed in Chapter 22,
“Making Universal Real-Time Web Applications Using Socket.IO,” and provides message persistence
and some other nice applications.

INSTALLING NANO

You can install Nano using the NPM install command, or you can add it to a package.json
manifest like this:

{
 "name": "couch-socketio-chat",
 "version": "1.0.0",
 "dependencies": {
 "nano": "3.1.x",
 "socket.io": "0.9.x"
 }
}

In addition to the Nano module, you also have the Socket.IO dependency so you can build on top of
the Socket.IO chat app.

You can now install the dependencies by running:

$ npm install

NOTE Installing and learning how to fully operate a CouchDB database is out of
the scope of this book. If you opt to use an Internet service that offers CouchDB
hosting (like IrisCouch), you won’t need to install CouchDB in your local
machine.

If you need to install it, though, head to http://couchdb.apache.org/ and
learn more about it.

NOTE At the end of Chapter 22, you had a dependency on the Redis module, but
now you can leave it out because you will only build using the memory store. If
you want to use Redis later as a Socket.IO store, you can refer back to Chapter 22.

c24.indd 278c24.indd 278 21/09/12 8:58 AM21/09/12 8:58 AM

http://couchdb.apache.org/

Installing Nano ❘ 279

You can get the code from Chapter 22 and copy the index.html fi le containing the client code and
the app.js file containing the server code, which you’ll build upon. Listing 24-1 shows the server
example.

LISTING 24-1: The Socket.IO-based server example you’ll build upon.

var httpd = require('http').createServer(handler);
var io = require('socket.io').listen(httpd);
var fs = require('fs');

httpd.listen(4000);

function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
}

var chat = io.of('/chat');

chat.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) { throw err; }
 var broadcast = socket.broadcast;
 var message = content;
 if (room) {
 broadcast.to(room);
 }
 broadcast.emit('serverMessage', username + ' said: ' + message);
 });
 });
 });

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' +

continues

c24.indd 279c24.indd 279 21/09/12 8:58 AM21/09/12 8:58 AM

280 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

LISTING 24-1 (continued)

username + ' logged in');
 });
 });

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', 'User ' +
 username + ' disconnected');
 });
 });

 socket.on('join', function(room) {
 socket.get('room', function(err, oldRoom) {
 if (err) { throw err; }

 socket.set('room', room, function(err) {
 if (err) { throw err; }
 socket.join(room);
 if (oldRoom) {
 socket.leave(oldRoom);
 }
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 });
 socket.emit('serverMessage', 'You joined room ' + room);
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.to(room).emit('serverMessage', 'User ' + username + '
 joined this room');
 });
 });
 });
 });

 socket.emit('login');

});

NOTE If you’re having problems connecting from the client to the server, it may
be because you need to make a small modifi cation that I asked you to do by the
end of Chapter 22, which was connect to http://localhost:4000/chat instead
of http://localhost:4000/:

var socket = io.connect('http://localhost:4000/chat');

c24.indd 280c24.indd 280 21/09/12 8:58 AM21/09/12 8:58 AM

http://localhost:4000/chat
http://localhost:4000/
http://localhost:4000/chat

Connecting and Creating a Database ❘ 281

CONNECTING AND CREATING A DATABASE

Now you need to create a database connection. Unlike most database management servers,
CouchDB clients don’t use a connection-oriented protocol. Instead they use plain HTTP. HTTP
is a stateless protocol, which means that each transaction is performed inside an independent
HTTP request.

In this sense, there is no real “connection” to the database in Nano; there is only the reference to a
CouchDB server and a database. This implies that any connectivity problems that arise happen only
when an individual request is performed.

NOTE Installing and managing a CouchDB server is out of the scope of this
book, but Internet services are available to provide a remote CouchDB server.
One of these services is IrisCouch, which you can reach at www.iriscouch.com/.

You can use IrisCouch to create and use a small database for free (if your usage
is modest). When signing up, you will get a URL of the type:

http://myiriscouchserver.iriscouch.com

Once your CouchDB server is running, you need to import the nano module into the app.js fi le:

var nano = require('nano');

Then you need to create a database server reference:

var couchdb = nano('https://myiriscouchserver.iriscouch.com');

You should replace the default URL with the URL of your CouchDB database. If your database
requires authentication to be able to create databases and insert or modify documents, you should
add credentials to the URL like this:

var couchdb = nano('https://username:password@myiriscouchserver.iriscouch.com');

Next, make sure that a database named chat exists. For that you need to do the following:

couchdb.db.create('chat', function(err) {
 if (err) { console.error(err); }
 var db = couchdb.use('chat');
 // ...
});

Now, once the database is created, the callback is invoked. You can place the rest of the server
initialization inside this callback.

Notice that you are just logging the error and proceeding anyway. This is because, if the data-
base already exists, CouchDB will complain and yield an error, and you will get this error in the

c24.indd 281c24.indd 281 21/09/12 8:58 AM21/09/12 8:58 AM

http://www.iriscouch.com/
http://myiriscouchserver.iriscouch.com
https://myiriscouchserver.iriscouch.com

282 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

callback. You can try watching the error happen if you save Listing 24-2 into the fi le app.js and
then stop and start your application twice. This will force your code to attempt to create a database
that already exists, yielding the corresponding CouchDB error.

LISTING 24-2: The Socket.IO-based server that creates the CouchDB client when initializing.

var nano = require('nano');
var couchdb = nano('https://myiriscouchserver.iriscouch.com');

couchdb.db.create('chat', function(err) {
 if (err) { console.error(err); }
 var chatDB = couchdb.use('chat');

 var httpd = require('http').createServer(handler);
 var io = require('socket.io').listen(httpd);
 var fs = require('fs');

 httpd.listen(4000);

 function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
 }

 var chat = io.of('/chat');

 chat.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) { throw err; }
 var broadcast = socket.broadcast;
 var message = content;
 if (room) {
 broadcast.to(room);
 }
 broadcast.emit('serverMessage', username + ' said: ' + message);
 });

c24.indd 282c24.indd 282 21/09/12 8:58 AM21/09/12 8:58 AM

https://myiriscouchserver.iriscouch.com

Connecting and Creating a Database ❘ 283

 });
 });

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' + username + ' logged in');
 });
 });

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' disconnected');
 });
 });

 socket.on('join', function(room) {
 socket.get('room', function(err, oldRoom) {
 if (err) { throw err; }

 socket.set('room', room, function(err) {
 if (err) { throw err; }
 socket.join(room);
 if (oldRoom) {
 socket.leave(oldRoom);
 }
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 });
 socket.emit('serverMessage', 'You joined room ' + room);
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.to(room).emit('serverMessage', 'User ' +
 username + ' joined this room');
 });
 });
 });
 });

 socket.emit('login');

 });

});

c24.indd 283c24.indd 283 21/09/12 8:58 AM21/09/12 8:58 AM

284 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

The second time you start your application, you will get an error like this one:

$ node app.js
{ [Error: Unspecified error]
 name: 'Error',
 scope: 'couch',
 status_code: 412,
 'status-code': 412,
 request:
 { method: 'PUT',
 headers:
 { 'content-type': 'application/json',
 accept: 'application/json' },
 uri: 'https://myiriscouchserver.iriscouch.com/chat',
 jar: false,
 callback: [Function] },
 headers:
 { date: 'Fri, 13 Jul 2012 14:21:55 GMT',
 'content-type': 'application/json',
 'cache-control': 'must-revalidate',
 'status-code': 412,
 uri: 'https://myiriscouchserver.iriscouch.com/chat' },
 errid: 'non_200',
 error: 'file_exists',
 reason: 'The database could not be created, the file already exists.',
 description: 'Unspecified error',
 stacktrace:
 ['Error: Unspecified error',
 ' at Request._callback (/Users/pedroteixeira/projects/wiley-node/code/24/no
de_modules/nano/nano.js:290:39)',
 ' at Request.callback (/Users/pedroteixeira/projects/wiley-node/code/24/nod
e_modules/nano/node_modules/request/main.js:120:22)',
 ' at Request.<anonymous> (native)',
 ' at Request.emit (events.js:70:17)',
 ' at Request.<anonymous> (/Users/pedroteixeira/projects/wiley-node/code/24/
node_modules/nano/node_modules/request/main.js:555:16)',
 ' at Request.emit (events.js:67:17)',
 ' at IncomingMessage.<anonymous> (/Users/pedroteixeira/projects/wiley-node/
code/24/node_modules/nano/node_modules/request/main.js:517:14)',
 ' at IncomingMessage.emit (events.js:88:20)',
 ' at HTTPParser.onMessageComplete (http.js:137:23)'] }

You can see that this error has an HTTP status code of 412 and a sentence stating that "The
 database could not be created, the file already exists." You can then be more
 thorough and check that the error status code is the expected one:

 if (err && err.status_code !== 412) {
 throw err;
 }

c24.indd 284c24.indd 284 21/09/12 8:58 AM21/09/12 8:58 AM

https://myiriscouchserver.iriscouch.com/chat
https://myiriscouchserver.iriscouch.com/chat

Storing Documents ❘ 285

Now you have a reference to the chat database that was sent in line 9:

 var chatDB = couchdb.use('chat');

You can use this database reference to send queries and commands.

STORING DOCUMENTS

Next you will persist messages into the database. Every time a user sends a message, you need to
store it in the chat database.

chat.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) { throw err; }
 var broadcast = socket.broadcast;
 var message = content;
 if (room) {
 broadcast.to(room);
 }

 var messageDoc = {
 when: Date.now(),
 from: username,
 room: room,
 message: content
 };

 chatDB.insert(messageDoc, function(err) {
 if (err) { console.error(err); }
 });

 broadcast.emit('serverMessage', username + ' said: ' + message);
 });
 });
 });

Here, you are building a simple document that contains the message and some meta-data — when
the message was emitted, who emitted it, and in which chat room.

NOTE Even though you are creating a simple fl at document in this example, in
CouchDB you can have documents as complex as you want, with as many nested
levels as you need.

c24.indd 285c24.indd 285 21/09/12 8:58 AM21/09/12 8:58 AM

286 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

CREATING AND USING COUCHDB VIEWS

Now that you have every message persisted, it would be nice if the users received the most recent
messages every time they connect or join a room. CouchDB is just a simple key-value store. Given
the correct ID, you could retrieve one single document by using the following:

chatDB.get(messageID, function(err, doc) {
 console.log('got document!', doc);
});

But that is of no use. You need to retrieve, say, the latest 10 messages for a given chat room, and for
that you have to create a more complex query.

The way to create more complex queries is by creating indexes using map-reduce functions, which
are JavaScript functions that reside in the CouchDB server. To create a mapping function, you need
to think about which keys you’ll be mapping each document to so that CouchDB can serve your
queries. In this case, you want to index messages by room, so a mapping function like the following
one works well:

function(doc) {
 emit([doc.room, doc.when], doc);
}

This mapping function will be invoked every time there is a new document or a document is
changed, and every time it will emit the document indexed by a key containing the room identifi er
and the timestamp. This will allow CouchDB to order the index by room and creation time, allow-
ing you not only to get all the messages pertaining to a certain room but also, in conjunction, to
retrieve the messages created between two given dates.

Now you can wrap the server initialization to a function named startServer. This function will be
called once the database initialization operations are fi nished. Then you can add some initialization
code after you are sure that the chat database is created.

Now you need to insert this mapping function in a design document so that CouchDB creates the
corresponding view.

couchdb.db.create('chat', function(err) {
 if (err && err.status_code !== 412) {
 throw err;
 }

 var designDoc = {
 language: "javascript",
 views: {
 by_room: {
 map: couchMapReduce.toString()
 }
 }
 };

 var chatDB = couchdb.use('chat');

c24.indd 286c24.indd 286 21/09/12 8:58 AM21/09/12 8:58 AM

Creating and Using CouchDB Views ❘ 287

 (function insertOrUpdateDesignDoc() {
 chatDB.insert(designDoc, '_design/designdoc', function(err) {
 if (err) {
 if (err.status_code === 409) {
 chatDB.get('_design/designdoc', function(err, ddoc) {
 if (err) { return console.error(err); }
 designDoc._rev = ddoc._rev;
 insertOrUpdateDesignDoc();
 });
 } else {
 return console.error(err);
 }
 }
 startServer();
 });
 }());
});

Here you are building a design document. A design document is a special document type in
CouchDB where you defi ne, among other things, the views. Each view is composed of a mapping
function (and an optional reducing function, which you don’t need here). You then insert this design
document into the _design/designdoc path. The path called _design is, in CouchDB, where all
the design documents of a certain database go to live. The design document created here is simply
called designdoc.

Beware that the insertion of the design document can fail, especially when a design document is
already in CouchDB, in which case the error will indicate a 409 Conflict HTTP response status
code. In that case you need to update the design document revision so that there is no versioning
confl ict and try again.

NOTE Even though this book does not aim to teach you CouchDB inside and
out, you need to understand some basic principles. One of them is the way
CouchDB uses versioning.

In CouchDB each document has a version number. To update a certain document,
you need to pass in the latest version number. If you don’t, CouchDB will return
a 409 Conflict HTTP response status code. This prevents two clients from
updating the same document twice without each one knowing about the other.

For instance, say that clients A and B have version 1 of document D.
Clients A and B modify the document and order an update at the same
time. Document D will have a ._rev property with something like
1-76e555f270676c7f20a73726875c50b8.

The server processes A’s request fi rst and creates the second revision of the docu-
ment, let’s say 2-676c7f20a73726875c50b876e555f270. When the edits from
client B try to update document D, those edits still refer to version 1 (plus a
checksum number). The database now has a revision number 2 for document D,
so client B’s update will be rejected with a 409 Conflict status code.

c24.indd 287c24.indd 287 21/09/12 8:58 AM21/09/12 8:58 AM

288 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

Listing 24-3 contains the full server code, which adds the necessary design documents for
these views.

LISTING 24-3: The Socket.IO-based server that creates the database and the view you need.

var nano = require('nano');
var couchdb = nano('https://myiriscouchserver.iriscouch.com');

var couchMapReduce = function (doc) {
 emit([doc.room, doc.when], doc);
};

couchdb.db.create('chat', function(err) {
 if (err && err.status_code !== 412) {
 throw err;
 }

 var designDoc = {
 language: "javascript",
 views: {
 by_room: {
 map: couchMapReduce.toString()
 }
 }
 };

 var chatDB = couchdb.use('chat');

 (function insertOrUpdateDesignDoc() {
 chatDB.insert(designDoc, '_design/designdoc', function(err) {
 if (err) {
 if (err.status_code === 409) {
 chatDB.get('_design/designdoc', function(err, ddoc) {
 if (err) { return console.error(err); }
 designDoc._rev = ddoc._rev;
 insertOrUpdateDesignDoc();
 });
 } else {
 return console.error(err);
 }
 }
 startServer();
 });
 }());
});

function startServer() {
 var chatDB = couchdb.use('chat');

 var httpd = require('http').createServer(handler);
 var io = require('socket.io').listen(httpd);
 var fs = require('fs');

c24.indd 288c24.indd 288 21/09/12 8:58 AM21/09/12 8:58 AM

https://myiriscouchserver.iriscouch.com

Creating and Using CouchDB Views ❘ 289

 httpd.listen(4000);

 function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
 }

 var chat = io.of('/chat');

 chat.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {
 socket.emit('serverMessage', 'You said: ' + content);

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) { throw err; }
 var broadcast = socket.broadcast;
 var message = content;
 if (room) {
 broadcast.to(room);
 }

 var messageDoc = {
 when: Date.now(),
 from: username,
 room: room,
 message: content
 };

 chatDB.insert(messageDoc, function(err) {
 if (err) { console.error(err); }
 });

 broadcast.emit('serverMessage', username + ' said: ' + message);
 });
 });
 });

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 socket.emit('serverMessage', 'Currently logged in as ' + username);
 socket.broadcast.emit('serverMessage', 'User ' + username + ' logged in');
 });

continues

c24.indd 289c24.indd 289 21/09/12 8:58 AM21/09/12 8:58 AM

290 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

LISTING 24-3 (continued)

 });

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.emit('serverMessage', 'User ' + username +
 ' disconnected');
 });
 });

 socket.on('join', function(room) {
 socket.get('room', function(err, oldRoom) {
 if (err) { throw err; }

 socket.set('room', room, function(err) {
 if (err) { throw err; }
 socket.join(room);
 if (oldRoom) {
 socket.leave(oldRoom);
 }
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 });
 socket.emit('serverMessage', 'You joined room ' + room);
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.broadcast.to(room).emit('serverMessage', 'User ' +
 username + ' joined this room');
 });
 });
 });
 });

 socket.emit('login');

 });
}

Now you can use the following URL to query the latest 10 messages on the chat room named room1:

/chat/_design/designdoc/_view/by_room?end_key=[%22room1%22,0]&start_key=
[%22room1%22,9999999999999]&limit=10&descending=true

This URL is querying CouchDB by_room view in the chat database. It gets all the objects with
keys between ["room1", 0] and ["room1", 9999999999999] in ascending order, limited to
10 elements. This is a range query on the view, where you’re getting every document with a key

c24.indd 290c24.indd 290 21/09/12 8:58 AM21/09/12 8:58 AM

Creating and Using CouchDB Views ❘ 291

where the fi rst place is room1 and the second place can range from 0 (the beginning of time) to
9999999999999 (sometime in the future). You can place the call to this view inside a function
named sendBackLog, which makes this query and sends it to a client socket:

 function sendBackLog(socket, room) {
 var getOptions = {
 start_key: JSON.stringify([room, 9999999999999]),
 end_key: JSON.stringify([room, 0]),
 limit: 10,
 descending: true
 };

 chatDB.get('_design/designdoc/_view/by_room', getOptions,
 function(err, results) {
 var messages = results.rows.reverse().map(function(res) {
 return res.value;
 });
 socket.emit('backlog', messages);
 });
 }

This function will then need to be invoked when the user logs in and enters a room. Once the
response from CouchDB arrives, you get an object that contains the document count and the offset
of the result. In this case you don’t need these values. In the response object you also get the docu-
ments inside a rows property, which you collect and emit inside a backlog event sent to the socket.

You may have noticed that you are no longer emitting a string message. Instead you are emitting a
message document that contains several attributes, including the message text and the author, room,
and timestamp.

Next you need to change the front-end code to accept this document as the message format instead
of a string. Using this, you can enhance the presentation of your messages by styling the message
components differently. The front-end code for printing a message now is the following:

 function addMessage(message) {
 var newMessageElement = document.createElement('div');

 newMessageElement.className = "message";

 if (message.when) {
 message.when = new Date(message.when);
 }

 ['when', 'from', 'message'].forEach(function(prop) {
 var newPart = document.createElement('span');
 newPart.className = prop;
 var messageText = message[prop];
 if (prop !== 'message') {
 messageText = '[' + messageText + ']';
 if (prop === 'from' && message[prop] === username) {
 newPart.className += ' self';
 }

c24.indd 291c24.indd 291 21/09/12 8:58 AM21/09/12 8:58 AM

292 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

 }
 messageText += ' ';
 var newPartText = document.createTextNode(messageText);
 newPart.appendChild(newPartText);
 newMessageElement.appendChild(newPart);
 });

Also, you need to add some CSS defi nitions for styling the content and use separate colors with each
message component:

 .message .when {
 color: grey;
 }
 .message .from {
 color: red;
 }
 .message .from.self {
 color: green;
 }

Listing 24-4 now contains the complete front-end code.

LISTING 24-4: A new version of the Socket.IO-based chat client that formats the messages.

<html>
 <head>
 <title>Node.js WebSocket chat</title>
 <style type="text/css">
 #input {
 width: 200px;
 }
 #messages {
 position: fixed;
 top: 40px;
 bottom: 8px;
 left: 8px;
 right: 8px;
 border: 1px solid #EEEEEE;
 padding: 8px;
 }
 .message .when {
 color: grey;
 }
 .message .from {
 color: red;
 }
 .message .from.self {
 color: green;
 }

 </style>
 </head>

c24.indd 292c24.indd 292 21/09/12 8:58 AM21/09/12 8:58 AM

Creating and Using CouchDB Views ❘ 293

 <body>

 Your message:
 <input type="text" id="input">

 <div id="messages"></div>

 <script src="http://localhost:4000/socket.io/socket.io.js"></script>
 <script type="text/javascript">
 var messagesElement = document.getElementById('messages');
 var lastMessageElement = null;
 var username;

 function addMessage(message) {
 var newMessageElement = document.createElement('div');

 newMessageElement.className = "message";

 if (message.when) {
 message.when = new Date(message.when);
 }

 ['when', 'from', 'message'].forEach(function(prop) {
 var newPart = document.createElement('span');
 newPart.className = prop;
 var messageText = message[prop];
 if (prop !== 'message') {
 messageText = '[' + messageText + ']';
 if (prop === 'from' && message[prop] === username) {
 newPart.className += ' self';
 }
 }
 messageText += ' ';
 var newPartText = document.createTextNode(messageText);
 newPart.appendChild(newPartText);
 newMessageElement.appendChild(newPart);
 });

 messagesElement.insertBefore(newMessageElement, lastMessageElement);
 lastMessageElement = newMessageElement;
 }

 var socket = io.connect('http://localhost:4000/chat');
 socket.on('serverMessage', function(content) {
 addMessage(content);
 });

 socket.on('login', function() {
 username = prompt('What username would you like to use?');
 socket.emit('login', username);
 });

 socket.on('backlog', function(messages) {
 messages.forEach(addMessage);
 }); continues

c24.indd 293c24.indd 293 21/09/12 8:58 AM21/09/12 8:58 AM

http://localhost:4000/socket.io/socket.io.js
http://localhost:4000/chat

294 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

LISTING 24-4 (continued)

 function sendCommand(command, args) {
 if (command === 'j') {
 socket.emit('join', args);
 } else {
 alert('unknown command: ' + command);
 }
 }

 function sendMessage(message) {
 var commandMatch = message.match(/^\/(\w*)(.*)/);
 if (commandMatch) {
 sendCommand(commandMatch[1], commandMatch[2].trim());
 } else {
 socket.emit('clientMessage', message);
 }
 }

 var inputElement = document.getElementById('input');

 inputElement.onkeydown = function(keyboardEvent) {
 if (keyboardEvent.keyCode === 13) {
 sendMessage(inputElement.value);
 inputElement.value = '';
 return false;
 } else {
 return true;
 }
 };
 </script>

 </body>
</html>

Now you need to change the server to use this message format with every server-sent message. This
means that you have to make subtle changes to every function that emits these messages, resulting in
the server-side code shown in Listing 24-5.

LISTING 24-5: A new version of the Socket.IO-based chat server that sends structured message

documents.

var nano = require('nano');
var couchdb = nano('https://myiriscouchserver.iriscouch.com');

var couchMapReduce = function (doc) {
 emit([doc.room, doc.when], doc);
};

couchdb.db.create('chat', function(err) {
 if (err && err.status_code !== 412) {
 throw err;
 }

c24.indd 294c24.indd 294 21/09/12 8:58 AM21/09/12 8:58 AM

https://myiriscouchserver.iriscouch.com

Creating and Using CouchDB Views ❘ 295

 var designDoc = {
 language: "javascript",
 views: {
 by_room: {
 map: couchMapReduce.toString()
 }
 }
 };

 var chatDB = couchdb.use('chat');

 (function insertOrUpdateDesignDoc() {
 chatDB.insert(designDoc, '_design/designdoc', function(err) {
 if (err) {
 if (err.status_code === 409) {
 chatDB.get('_design/designdoc', function(err, ddoc) {
 if (err) { return console.error(err); }
 designDoc._rev = ddoc._rev;
 insertOrUpdateDesignDoc();
 });
 } else {
 return console.error(err);
 }
 }
 startServer();
 });
 }());
});

function startServer() {
 var chatDB = couchdb.use('chat');

 var httpd = require('http').createServer(handler);
 var io = require('socket.io').listen(httpd);
 var fs = require('fs');

 httpd.listen(4000);

 function handler(req, res) {
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
 }

 function sendBackLog(socket, room) {
 var getOptions = {
 start_key: JSON.stringify([room, 9999999999999]),

continues

c24.indd 295c24.indd 295 21/09/12 8:58 AM21/09/12 8:58 AM

296 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

LISTING 24-5 (continued)

 end_key: JSON.stringify([room, 0]),
 limit: 10,
 descending: true
 };

 chatDB.get('_design/designdoc/_view/by_room', getOptions,
 function(err, results) {
 var messages = results.rows.reverse().map(function(res) {
 return res.value;
 });
 socket.emit('backlog', messages);
 });
 }

 var chat = io.of('/chat');

 chat.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) { throw err; }
 var broadcast = socket.broadcast;
 var message = content;
 if (room) {
 broadcast.to(room);
 }

 var messageDoc = {
 when: Date.now(),
 from: username,
 room: room,
 message: content
 };

 socket.emit('serverMessage', messageDoc);

 chatDB.insert(messageDoc, function(err) {
 if (err) { console.error(err); }
 });

 broadcast.emit('serverMessage', messageDoc);
 });
 });
 });

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 var message = {
 from: username,

c24.indd 296c24.indd 296 21/09/12 8:58 AM21/09/12 8:58 AM

Creating and Using CouchDB Views ❘ 297

 message: 'Logged in',
 when: Date.now()
 };
 socket.emit('serverMessage', message);
 socket.broadcast.emit('serverMessage', message);

 sendBackLog(socket, null);

 });
 });

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 var message = {
 from: username,
 message: 'disconnected',
 when: Date.now()
 };
 socket.broadcast.emit('serverMessage', message);
 });
 });

 socket.on('join', function(room) {
 socket.get('room', function(err, oldRoom) {
 if (err) { throw err; }

 socket.set('room', room, function(err) {
 if (err) { throw err; }
 socket.join(room);
 if (oldRoom) {
 socket.leave(oldRoom);
 }
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 var message = {
 from: username,
 message: 'joined room ' + room + '. Fetching backlog...',
 when: Date.now()
 };
 socket.emit('serverMessage', message);
 socket.broadcast.to(room).emit('serverMessage', message);
 });

 sendBackLog(socket, room);
 });
 });
 });

 socket.emit('login');

 });
}

c24.indd 297c24.indd 297 21/09/12 8:58 AM21/09/12 8:58 AM

298 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

ATTACHING FILES TO A COUCHDB DOCUMENT

Imagine allowing each user to defi ne an avatar picture to be presented in every message. The
user, after logging in, uploads an image fi le using a simple web form and the server saves it into
CouchDB.

The fi rst change you need to make is to provide the user with a form for uploading a fi le. For
simplicity, this form can be placed on the bottom of the screen. Listing 24-6 contains the modifi ed
front-end code.

LISTING 24-6: A new version of the Socket.IO-based chat client that presents avatars.

<html>
 <head>
 <title>Node.js WebSocket chat</title>
 <style type="text/css">
 #input {
 width: 200px;
 }
 #messages {
 position: fixed;
 top: 40px;
 bottom: 50px;
 left: 8px;
 right: 8px;
 border: 1px solid #EEEEEE;
 padding: 8px;
 overflow: hidden;
 }
 form {
 position: fixed;
 bottom: 0;
 }
 .message .when {
 color: grey;
 }
 .message .from {
 color: red;
 }
 .message .from.self {
 color: green;
 }
 .message .avatar {
 width: 80px;
 }

 </style>
 </head>

 <body>

 Your message:

c24.indd 298c24.indd 298 21/09/12 8:58 AM21/09/12 8:58 AM

Attaching Files to a CouchDB Document ❘ 299

 <input type="text" id="input" />

 <div id="messages"></div>

 <form action="/avatar" enctype="multipart/form-data"
 method="POST" target="avatar-target" id="avatar-form">
 <label for="avatar">Set avatar:</label>
 <input type="file" id="avatar" name="avatar" />
 <input type="submit" />
 </form>

 <iframe style="width:0;height:0;visibility:hidden" id="avatar-target"></iframe>

 <script src="http://localhost:4000/socket.io/socket.io.js"></script>
 <script type="text/javascript">
 var messagesElement = document.getElementById('messages');
 var lastMessageElement = null;
 var username;

 function addMessage(message) {
 var newMessageElement = document.createElement('div');

 newMessageElement.className = "message";

 if (message.when) {
 message.when = new Date(message.when);
 }

 message.avatar = '/avatar?username=' + encodeURIComponent(message.from);

 ['avatar', 'when', 'from', 'message'].forEach(function(prop) {
 var newPart = document.createElement('span');
 newPart.className = prop;
 var messageText = message[prop];
 if (prop !== 'message') {
 messageText = '[' + messageText + ']';
 if (prop === 'from') {
 if (message[prop] === username) {
 newPart.className += ' self';
 }
 } else if (prop === 'avatar') {
 var avatarImage = document.createElement('img');
 avatarImage.src = message.avatar;
 avatarImage.className = 'avatar';
 newPart.appendChild(avatarImage);
 messageText = '';
 }
 }
 messageText += ' ';
 var newPartText = document.createTextNode(messageText);
 newPart.appendChild(newPartText);
 newMessageElement.appendChild(newPart);
 });

 messagesElement.insertBefore(newMessageElement, lastMessageElement);

continues

c24.indd 299c24.indd 299 21/09/12 8:58 AM21/09/12 8:58 AM

http://localhost:4000/socket.io/socket.io.js

300 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

LISTING 24-6 (continued)

 lastMessageElement = newMessageElement;
 }

 var socket = io.connect('http://localhost:4000/chat');
 socket.on('serverMessage', function(content) {
 addMessage(content);
 });

 socket.on('login', function() {
 username = prompt('What username would you like to use?');
 socket.emit('login', username);
 });

 socket.on('backlog', function(messages) {
 messages.forEach(addMessage);
 });

 function sendCommand(command, args) {
 if (command === 'j') {
 socket.emit('join', args);
 } else {
 alert('unknown command: ' + command);
 }
 }

 function sendMessage(message) {
 var commandMatch = message.match(/^\/(\w*)(.*)/);
 if (commandMatch) {
 sendCommand(commandMatch[1], commandMatch[2].trim());
 } else {
 socket.emit('clientMessage', message);
 }
 }

 var inputElement = document.getElementById('input');

 inputElement.onkeydown = function(keyboardEvent) {
 if (keyboardEvent.keyCode === 13) {
 sendMessage(inputElement.value);
 inputElement.value = '';
 return false;
 } else {
 return true;
 }
 };
 </script>

 <script>
 var form = document.getElementById('avatar-form');
 form.onsubmit = function() {
 if (! username) {
 alert('You must first log in')

c24.indd 300c24.indd 300 21/09/12 8:58 AM21/09/12 8:58 AM

http://localhost:4000/chat

Attaching Files to a CouchDB Document ❘ 301

 } else {
 form.action = '/avatar?username=' + encodeURIComponent(username);
 form.submit();
 console.log('submitted form');
 }
 return false;
 }
 </script>

 </body>
</html>

Here you are creating a form that will submit the avatar fi le into a hidden iframe element inside the
document. You can use this trick when you don’t want to leave a page and want to submit multipart
data (such as when there is a fi le or more to upload).

In the last part you have a script that changes the URL before the form is submitted to pass the
 username in the query string so that the server knows which user you are talking about.

NOTE Note that this form can be very easily hacked. A user could easily submit
pictures for other users. Because the site is not password-protected, the security
requirements are very lax.

For a session-based authentication example, check out Chapter 21, “Making a
Web Application Using Express.js.”

The server needs to accept this fi le upload and insert it in a user database in CouchDB. First,
you need to ensure that the users database is created. You can do that like you did for the chat
database:

couchdb.db.create('chat', function(err) {
 if (err && err.status_code !== 412) {
 throw err;
 }

 couchdb.db.create('users', function(err) {
 if (err && err.status_code !== 412) {
 throw err;
 }

 //...
});

Now you need to accept and parse form uploads. For that you will use the formidable third-party
module by Felix Geisendörfer. Add it to the package.json manifest:

{
 "name": "couch-socketio-chat",
 "version": "1.0.0",
 "dependencies": {

c24.indd 301c24.indd 301 21/09/12 8:58 AM21/09/12 8:58 AM

302 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

 "nano": "3.1.x",
 "socket.io": "0.9.x",
 "formidable": "1.0.x",
 "bufferedstream": "1.0.x"
 }
}

You will also need the bufferedstream module. This module buffers the request data and makes it
available when you need it.

Now that you’ve made these changes to the package.json fi le, you can install these two missing
modules by doing:

$ npm install

Now you need to change the handler function that processes new requests:

 function handler(req, res) {
 var username;
 if (req.method === 'POST' && req.url.indexOf('/avatar') === 0) {

 var currentUserDocRev;

 console.log('got avatar');

 var bufferedRequest = new BufferedStream();
 bufferedRequest.headers = req.headers;
 bufferedRequest.pause();
 req.pipe(bufferedRequest);

 // parse username
 console.log(url.parse(req.url).query);
 username = url.parse(req.url, true).query.username;

 userDB.insert({username: username}, username, function(err, user) {
 if (err) {
 if (err.status_code === 409) {
 userDB.get(username, function(err, user) {
 if (err) {
 console.error(err);
 res.writeHead(500);
 return res.end(JSON.stringify(err));
 }
 currentUserDocRev = user._rev;
 bufferedRequest.resume();

 });
 return;
 } else {
 res.writeHead(500);
 return res.end(JSON.stringify(err));
 }
 }
 console.log('username inserted, rev = ', user.rev);

c24.indd 302c24.indd 302 21/09/12 8:58 AM21/09/12 8:58 AM

Attaching Files to a CouchDB Document ❘ 303

 currentUserDocRev = user.rev;
 console.log('currentUserDocRev:', currentUserDocRev);
 bufferedRequest.resume();

 });

 // handle avatar upload

 var form = new formidable.IncomingForm();
 form.encoding = 'utf8';
 form.parse(bufferedRequest);

 form.onPart = function(part) {
 if (part.name !== 'avatar') {
 return;
 }
 var attachment = userDB.attachment.insert(
 username, 'avatar', null, part.mime, {rev: currentUserDocRev});

 part.pipe(attachment);

 attachment.on('error', function(err) {
 console.error(err);
 res.writeHead(500);
 return res.end(JSON.stringify(err));
 });

 attachment.on('end', function() {
 res.end();
 });
 };

 } else if (req.url.indexOf('/avatar') === 0){
 // serve the avatar
 username = url.parse(req.url, true).query.username;
 userDB.attachment.get(username, 'avatar').pipe(res);
 } else {
 // serve the index page
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
 }
 }

When there is a POST request to the /avatar URL, you instantiate a formidable form to parse
the content. But fi rst you need to pause the request — that’s where the bufferedstream module

c24.indd 303c24.indd 303 21/09/12 8:58 AM21/09/12 8:58 AM

304 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

comes. You pipe the request data into a buffered stream, which you set in the paused state. This
guarantees that the buffered stream will keep buffering data and will not emit any before you
resume the stream.

Then, you make sure a CouchDB document is created for the username in the users database. If
such a user already exists, you get a 409 Conflict status code, and you must get the user document
version number. Once you have that, you can resume the request data stream, which will activate
the formidable handlers you have set up for the fi le upload part.

Once formidable starts parsing the part of the request that contains the avatar image, the follow-
ing code is activated:

 form.onPart = function(part) {
 if (part.name !== 'avatar') {
 return;
 }
 var attachment = userDB.attachment.insert(
 username, 'avatar', null, part.mime, {rev: currentUserDocRev});

 part.pipe(attachment);

 attachment.on('error', function(err) {
 console.error(err);
 res.writeHead(500);
 return res.end(JSON.stringify(err));
 });

 attachment.on('end', function() {
 res.end();
 });
 };

Here, you create an attachment using nano db.attachment.insert(documentID, attachment
name, mime_type, options), but this statement doesn’t really do anything yet. Instead, it returns
a writable stream that you can pipe the fi le to by using the following:

part.pipe(attachment);

Once the attachment stream ends, the avatar attachment is uploaded, and you end the response.

Now the front-end code will construct avatar image URLs to your server in the form of
/avatar?username=abc. The browser expects an image to be returned by URLs like this.
What you need to do is simply pipe the image from CouchDB like so:

 // serve the avatar
 username = url.parse(req.url, true).query.username;
 userDB.attachment.get(username, 'avatar').pipe(res);

Listing 24-7 contains the new version of the server code. You need to restart the server and refresh
the chat page.

c24.indd 304c24.indd 304 21/09/12 8:58 AM21/09/12 8:58 AM

Attaching Files to a CouchDB Document ❘ 305

LISTING 24-7: A new version of the Socket.IO-based chat server that presents avatars.

var url = require('url');

var nano = require('nano');
var couchdb = nano('https://myiriscouchserver.iriscouch.com');

var formidable = require('formidable');
var BufferedStream = require('bufferedstream');

var couchMapReduce = function (doc) {
 emit([doc.room, doc.when], doc);
};

couchdb.db.create('chat', function(err) {
 if (err && err.status_code !== 412) {
 throw err;
 }

 couchdb.db.create('users', function(err) {
 if (err && err.status_code !== 412) {
 throw err;
 }

 var designDoc = {
 language: "javascript",
 views: {
 by_room: {
 map: couchMapReduce.toString()
 }
 }
 };

 var chatDB = couchdb.use('chat');

 (function insertOrUpdateDesignDoc() {
 chatDB.insert(designDoc, '_design/designdoc', function(err) {
 if (err) {
 if (err.status_code === 409) {
 chatDB.get('_design/designdoc', function(err, ddoc) {
 if (err) { return console.error(err); }
 designDoc._rev = ddoc._rev;
 insertOrUpdateDesignDoc();
 });
 return;
 } else {
 return console.error(err);
 }
 }
 startServer();
 });
 }());
 });
}); continues

c24.indd 305c24.indd 305 21/09/12 8:58 AM21/09/12 8:58 AM

https://myiriscouchserver.iriscouch.com

306 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

LISTING 24-7 (continued)

function startServer() {
 console.log('starting server');
 var chatDB = couchdb.use('chat');
 var userDB = couchdb.use('users');

 var httpd = require('http').createServer(handler);
 var io = require('socket.io').listen(httpd);
 var fs = require('fs');

 httpd.listen(4000);

 function handler(req, res) {
 var username;
 if (req.method === 'POST' && req.url.indexOf('/avatar') === 0) {

 var currentUserDocRev;

 console.log('got avatar');

 var bufferedRequest = new BufferedStream();
 bufferedRequest.headers = req.headers;
 bufferedRequest.pause();
 req.pipe(bufferedRequest);

 // parse username
 console.log(url.parse(req.url).query);
 username = url.parse(req.url, true).query.username;

 userDB.insert({username: username}, username, function(err, user) {
 if (err) {
 if (err.status_code === 409) {
 userDB.get(username, function(err, user) {
 if (err) {
 console.error(err);
 res.writeHead(500);
 return res.end(JSON.stringify(err));
 }
 currentUserDocRev = user._rev;
 bufferedRequest.resume();

 });
 return;
 } else {
 res.writeHead(500);
 return res.end(JSON.stringify(err));
 }
 }
 console.log('username inserted, rev = ', user.rev);
 currentUserDocRev = user.rev;
 console.log('currentUserDocRev:', currentUserDocRev);
 bufferedRequest.resume();

 });

c24.indd 306c24.indd 306 21/09/12 8:58 AM21/09/12 8:58 AM

Attaching Files to a CouchDB Document ❘ 307

 // handle avatar upload

 var form = new formidable.IncomingForm();
 form.encoding = 'utf8';
 form.parse(bufferedRequest);

 form.onPart = function(part) {
 if (part.name !== 'avatar') {
 return;
 }
 var attachment = userDB.attachment.insert(
 username, 'avatar', null, part.mime, {rev: currentUserDocRev});

 part.pipe(attachment);

 attachment.on('error', function(err) {
 console.error(err);
 res.writeHead(500);
 return res.end(JSON.stringify(err));
 });

 attachment.on('end', function() {
 res.end();
 });
 };

 } else if (req.url.indexOf('/avatar') === 0){
 // serve the avatar
 username = url.parse(req.url, true).query.username;
 userDB.attachment.get(username, 'avatar').pipe(res);
 } else {
 // serve the index page
 fs.readFile(__dirname + '/index.html',
 function(err, data) {
 if (err) {
 res.writeHead(500);
 return res.end('Error loading index.html');
 }

 res.writeHead(200);
 res.end(data);
 }
);
 }
 }

 function sendBackLog(socket, room) {
 var getOptions = {
 start_key: JSON.stringify([room, 9999999999999]),
 end_key: JSON.stringify([room, 0]),
 limit: 10,
 descending: true
 };

continues

c24.indd 307c24.indd 307 21/09/12 8:58 AM21/09/12 8:58 AM

308 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

LISTING 24-7 (continued)

 chatDB.get('_design/designdoc/_view/by_room', getOptions,
 function(err, results) {
 var messages = results.rows.reverse().map(function(res) {
 return res.value;
 });
 socket.emit('backlog', messages);
 });
 }

 var chat = io.of('/chat');

 chat.on('connection', function (socket) {
 socket.on('clientMessage', function(content) {

 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 socket.get('room', function(err, room) {
 if (err) { throw err; }
 var broadcast = socket.broadcast;
 var message = content;
 if (room) {
 broadcast.to(room);
 }

 var messageDoc = {
 when: Date.now(),
 from: username,
 room: room,
 message: content
 };

 socket.emit('serverMessage', messageDoc);

 chatDB.insert(messageDoc, function(err) {
 if (err) { console.error(err); }
 });

 broadcast.emit('serverMessage', messageDoc);
 });
 });
 });

 socket.on('login', function(username) {
 socket.set('username', username, function(err) {
 if (err) { throw err; }
 var message = {
 from: username,
 message: 'Logged in',
 when: Date.now()
 };

c24.indd 308c24.indd 308 21/09/12 8:58 AM21/09/12 8:58 AM

Attaching Files to a CouchDB Document ❘ 309

 socket.emit('serverMessage', message);
 socket.broadcast.emit('serverMessage', message);

 sendBackLog(socket, null);

 });
 });

 socket.on('disconnect', function() {
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 var message = {
 from: username,
 message: 'disconnected',
 when: Date.now()
 };
 socket.broadcast.emit('serverMessage', message);
 });
 });

 socket.on('join', function(room) {
 socket.get('room', function(err, oldRoom) {
 if (err) { throw err; }

 socket.set('room', room, function(err) {
 if (err) { throw err; }
 socket.join(room);
 if (oldRoom) {
 socket.leave(oldRoom);
 }
 socket.get('username', function(err, username) {
 if (! username) {
 username = socket.id;
 }
 var message = {
 from: username,
 message: 'joined room ' + room + '. Fetching backlog...',
 when: Date.now()
 };
 socket.emit('serverMessage', message);
 socket.broadcast.to(room).emit('serverMessage', message);
 });

 sendBackLog(socket, room);
 });
 });
 });

 socket.emit('login');

 });
}

c24.indd 309c24.indd 309 21/09/12 8:58 AM21/09/12 8:58 AM

310 ❘ CHAPTER 24 CONNECTING TO COUCHDB USING NANO

SUMMARY

You can connect to a CouchDB server using Nano, a third-party module installable via NPM.

Using Nano you can create a database and views on documents by inserting design documents that
contain map and reduce functions.

You can also insert documents and query these documents by accessing the generated views.

CouchDB also allows documents to have binary fi le attachments, and Nano allows you to write and
read them using streams.

c24.indd 310c24.indd 310 21/09/12 8:58 AM21/09/12 8:58 AM

25
Connecting to MongoDB
Using Mongoose

WHAT’S IN THIS CHAPTER?

 ➤ Installing and using Mongoose

 ➤ Defi ning schemas and models

 ➤ Understanding Mongoose data types

 ➤ Using schema validation

 ➤ Searching, inserting, and updating documents

 ➤ Paginating query results

 ➤ Defi ning indexes

 ➤ Using getters, setters, and virtual attributes

 ➤ Referencing documents

 ➤ Enriching models and document objects with higher-level methods

Document-oriented databases have regained popularity in recent years, being at the front and
center of the NoSQL movement. These types of databases, unlike relational ones, don’t require
you to specify the structure of your data ahead of time. Instead, you can change it organically
as your project requires. Another important difference from a relational database is that the
document is generally the atomic unit and can be as complete as needed, eliminating the need
to make costly joins and transactions across tables.

MongoDB is a popular document-oriented database that enables you to perform rich dynamic
queries using a powerful query language.

c25.indd 311c25.indd 311 21/09/12 8:58 AM21/09/12 8:58 AM

312 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

In MongoDB, data is organized such that one MongoDB database holds a series of collections.
Each collection has a series of documents, and each document comprises a set of fi elds. A fi eld is a
key-value pair, where the key is a string and the value can be a basic type (like a string,
integer, fl oat, timestamp, binary, and so on), an embedded document, or a collection of any
of these.

A MongoDB query can be described using a JavaScript document literal. For instance, say you have
a collection of users and want to fi nd all the users with the fi rst name “John” and the last name
“Doe,” you could apply the following query:

{name: {first: 'John', last: 'Doe'}}

You could also fi nd all users with “Doe” as the last name by using this query:

{'name.last': 'Doe'}

You can also use regular expressions instead of static values. For instance, to fi nd all users whose
last name starts with a “D,” you can use:

{'name.last': /^D/}

This also works for array values. For instance, if you are searching in a collection of articles for
those that have the keyword node.js, you can use the query:

{keywords: 'node.js'}

You could also match all the documents with at least one of a set of keywords by using the
following:

{keywords: {'$in' : ['node.js', 'javascript']}

There are several operators like this that you can use inside queries, such as to fi nd all documents
where the fi eld count has a value that is greater than 10 and less than or equal to 100:

{count: {'$gt' : 10, '<e': 100}

NOTE This book does not aim to make you profi cient in installing and querying
MongoDB; that would be the subject of a whole other book.

If you don’t have MongoDB installed in your system and you want to
install it, use the information provided on the MongoDB home page at
http://www.mongodb.org/.

As an alternative, you can try using a MongoDB external service like the one
provided by MongoHQ at https://mongohq.com/.

c25.indd 312c25.indd 312 21/09/12 8:58 AM21/09/12 8:58 AM

http://www.mongodb.org/
https://mongohq.com/

Understanding How Mongoose Uses Models to Encapsulate Database Access ❘ 313

INSTALLING MONGOOSE

In this chapter you create code that accesses a MongoDB server. To do this in Node, you will
use the Mongoose third-party module. Mongoose allows you to access MongoDB using an
object model.

In Chapter 21, “Making a Web Application Using Express.js,” you had several route listeners for
managing users, which were the public interface for managing a user database. This database
was a fake in-memory object, making it obviously non-persistent and only suited for a prototype.
However, now that you can use a MongoDB database using Mongoose, you can replace it with a
real persisted data access layer.

Start by copying the fi nal application code from Chapter 21 into the new project directory
and start from there. Now you need to change the application manifest package.json fi le and
add the Mongoose dependency, as shown in Listing 25-1.

LISTING 25-1: The application package.json manifest fi le.

{
 "name": "application-name"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "express": "2.5.11"
 , "jade": ">= 0.0.1"
 , "mongoose": ">=2.7.0"
 }
}

This fi le notes that the scripts you are building require any version of Mongoose greater or equal to
2.7.0. Now you can actually install Mongoose by:

$ npm install
…
mongoose@2.7.1 ./node_modules/mongoose
├── hooks@0.2.1
└── mongodb@1.0.2 (bson@0.0.6)

UNDERSTANDING HOW MONGOOSE USES MODELS TO
ENCAPSULATE DATABASE ACCESS

Mongoose is a tool for modeling objects that interact with the database. A database has many
collections, and a collection has many documents. Nothing requires two documents in the same
collection to have a similar structure, but, for instance, if a “user” collection contains user records,
all documents in that collection will be similar.

c25.indd 313c25.indd 313 21/09/12 8:58 AM21/09/12 8:58 AM

314 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

In Mongoose you defi ne document schemas. Each schema can contain a list of fi elds and their
constraints. Each fi eld can have a type and some type-specifi c constraints, like a minimum value, for
example, if the presence of a value is required, if the value should be unique throughout the other
documents in the collection, if a validation rule is required, and so on.

A model represents a database connection to a collection that uses a schema.

CONNECTING TO MONGODB

First you need to connect to your MongoDB server, whether you installed it locally or subscribed to
an external service over the Internet. For this you need to specify a MongoDB database URL with
the scheme:

mongodb://username:password@hostname:port/database

If you are connecting to MongoDB on your local machine, the server probably doesn’t need a
password, in which case you can simply use the following:

mongodb://localhost/database

Then you need to tell Mongoose to connect to the database, and you can do so in the app.js fi le:

var dbURL = 'mongodb://localhost/database';
var db = require('mongoose').connect(dbURL);

If you haven’t created a MongoDB database for this application, you need to do so now.

DEFINING A SCHEMA

You now need to create a schema module to defi ne what a user document will look like. You’ll
use the data/schemas directory to host the schema modules, where you will create a fi le named
user.js, as shown in Listing 25-2.

LISTING 25-2: The user schema in data/schemas/user.js.

var mongoose = require('mongoose');

var UserSchema = new mongoose.Schema({
 username: String,
 name: String,
 password: String
});

module.exports = UserSchema;

Here you are defi ning a basic schema with three fi elds, all of them strings. Later in this chapter, you’ll
learn how you can evolve this schema to be more helpful and to support more complex documents.

c25.indd 314c25.indd 314 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 315

DEFINING A MODEL

Now you need to defi ne a model that will map into the user collection in the database. You will also
defi ne this as a module under data/models/user.js, as shown in Listing 25-3.

LISTING 25-3: The user model in data/models/user.js.

var mongoose = require('mongoose');
var UserSchema = require('../schemas/user');

var User = mongoose.model('User', UserSchema);

module.exports = User;

Now you need to use this model in your route listeners. But fi rst you need to update some routing
middleware to support the new user document model. First, create a module located in routes/
middleware/load_user.js that defi nes a piece of middleware used to load users, as shown in
Listing 25-4.

LISTING 25-4: The load user route middleware using the user model.

var User = require('../../data/models/user');

function loadUser(req, res, next) {
 User.findOne({username: req.params.name}, function(err, user) {
 if (err) {
 return next(err);
 }
 if (! user) {
 return res.send('Not found', 404);
 }
 req.user = user;
 next();
 });
}

module.exports = loadUser;

Here you are using the findOne method provided in the user model object. The fi rst argument to
it is the query parameters, which in this case is an exact match with the name request parameter.
The second argument is a callback function that is invoked when there is an error or the fi nd
operation has terminated. If there is an error, it is forwarded to the next callback. If no such user
is found in the user collection, you reply with a 404 Not Found status code and stop execution.
Otherwise, if the user is found, you assign it to the req.user property so other route listeners can
use it later.

Now you can modify the user’s route behavior, as shown in Listing 25-5.

c25.indd 315c25.indd 315 21/09/12 8:58 AM21/09/12 8:58 AM

316 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

LISTING 25-5: The user routes now using the user Mongoose model.

/*
 * User Routes
 */

var User = require('../data/models/user');
var notLoggedIn = require('./middleware/not_logged_in');
var loadUser = require('./middleware/load_user');
var restrictUserToSelf = require('./middleware/restrict_user_to_self');

module.exports = function(app) {

 app.get('/users', function(req, res,next){
 User.find({}, function(err, users) {
 if (err) {
 return next(err);
 }
 res.render('users/index', {title: 'Users', users: users});
 });
 });

 app.get('/users/new', notLoggedIn, function(req, res) {
 res.render('users/new', {title: "New User"});
 });

 app.get('/users/:name', loadUser, function(req, res, next){
 res.render('users/profile', {title: 'User profile', user: req.user});
 });

 app.post('/users', notLoggedIn, function(req, res, next) {
 User.findOne({username: req.body.username}, function(err, user) {
 if (err) {
 return next(err);
 }
 if (user) {
 return res.send('Conflict', 409);
 }
 User.create(req.body, function(err) {
 if (err) {
 return next(err);
 }
 res.redirect('/users');
 });
 });
 });

 app.del('/users/:name', loadUser, restrictUserToSelf,
 function(req, res, next) {
 req.user.remove(function(err) {
 if (err) { return next(err); }

c25.indd 316c25.indd 316 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 317

 res.redirect('/users');
 });

 });

};

Now you’ll analyze the changes done here, one route listener at a time. First is the route listener for
listing users:

 app.get('/users', function(req, res){
 User.find({}, function(err, users) {
 if (err) {
 return next(err);
 }
 res.render('users/index', {title: 'Users', users: users});
 });
 });

Here you are using the find method on the model and passing an empty query object, which means
that MongoDB should fi nd every user and return him or her. There are at least two problems with
this: First, you don’t sort the results. By not specifying the sorting order, MongoDB will use the
natural order, which is the order in which the documents are stored internally. This is most probably
not what the user is expecting. You can sort the query results by doing this:

User.find({}).sort('name', 1).exec(function(err, users) {
 if (err) {
 return next(err);
 }
 res.render('users/index', {title: 'Users', users: users});
});

Here you are making use of the query chaining API, where you can defi ne the constraints, specify
the sort order, and then execute the query in separate builder method calls. Here you are specifying
that the results should be sorted by the name property in ascending order (hence the 1 value). If you
used 21 instead of 1, the results would be sorted in descending order.

You can additionally sort by any other fi elds; just add them to the query object before executing. If,
for instance, you wanted to sort users by age (descending order) and then by name (ascending order),
you would use the following code:

User.find({})
 .sort('age', -1)
 .sort('name', 1)
 .exec(function(err, users) { ...

The second problem with this listener code is that, because you are telling MongoDB to fetch every
object in the collection, the time this query takes to execute will grow as the user collection grows.

c25.indd 317c25.indd 317 21/09/12 8:58 AM21/09/12 8:58 AM

318 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

The user interface list needs to be paginated, which means you present slices of the list of users.
You can use the skip and limit options to retrieve only one page worth of data:

 app.get('/users', function(req, res, next){
 var page = req.query.page && parseInt(req.query.page, 10) || 0;
 User.find({})
 .sort('name', 1)
 .skip(page * maxUsersPerPage)
 .limit(maxUsersPerPage)
 .exec(function(err, users) {
 if (err) {
 return next(err);
 }
 res.render('users/index', {title: 'Users', users: users, page: page});
 });
 });

Here you are retrieving the current page from the query string in the request URL. If there is no
such element in the query string, you use the default value of 0. Then you tell MongoDB to skip the
fi rst x elements — x being the number of users on the previous pages — and to limit the results to
the maximum number of elements in the page you want.

NOTE For this code to work, you need to defi ne the maxElementsPerPage
 confi guration variable in the module scope with a value that suits your needs:

var maxUsersPerPage = 5;

Then you need to pass the current page to the rendering template so that the UI knows
which page the user is at so it can craft the “previous” and “next” page links. Now you
need to change the views/users/index.jade template to accommodate the paging, as
shown in Listing 25-6.

LISTING 25-6: Users list with paging in views/users/index.jade.

h1 Users

p
 a(href="/users/new") Create new profile

ul
 - for(var username in users) {
 li
 a(href="/users/" + encodeURIComponent(username))= users[username].name
 - };

- if (page > 0) {
 a(href="?page=" + (page - 1)) Previous

- }

a(href="?page=" + (page + 1)) Next

c25.indd 318c25.indd 318 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 319

There is still a small problem with this code — the “Next” page link appears even when there are no
more users on the next page. You can fi x this by counting all the user records in the collection and
fi guring out how many pages are left. This can be done in the route listener in routes/users.js:

 app.get('/users', function(req, res, next){
 var page = req.query.page && parseInt(req.query.page, 10) || 0;
 User.count(function(err, count) {
 if (err) {
 return next(err);
 }

 var lastPage = (page + 1) * maxUsersPerPage >= count;

 User.find({})
 .sort('name', 1)
 .skip(page * maxUsersPerPage)
 .limit(maxUsersPerPage)
 .exec(function(err, users) {
 if (err) {
 return next(err);
 }
 res.render('users/index', {
 title: 'Users',
 users: users,
 page: page,
 lastPage: lastPage
 });
 });

 });
 });

Here you are requesting a document count using the model count method. Once this operation
is fi nished, you determine whether there are more pages and then pass that indication into the
template.

The user index view template needs to be changed to the example shown in Listing 25-7.

LISTING 25-7: New version of the users list with paging in views/users/index.jade.

h1 Users

p
 a(href="/users/new") Create new profile

ul
 - users.forEach(function(user) {
 li
 a(href="/users/" + encodeURIComponent(user.username))= user.name
 - });

continues

c25.indd 319c25.indd 319 21/09/12 8:58 AM21/09/12 8:58 AM

320 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

- if (page > 0) {
 a(href="?page=" + (page - 1)) Previous

- }

- if (! lastPage) {
 a(href="?page=" + (page + 1)) Next
- }

There is still one situation in the route listener code that you can avoid — there is no reason why
both queries (the count and the user fetch) be executed in series. You could execute them in parallel,
reducing the average time it takes to respond to the user request.

NOTE One of the many advantages of using Node is that you can easily make
parallel I/O requests. Take advantage of it!

For this you can use the async module you learned about in Chapter 19, “Controlling the Callback
Flow.” First you need to add it to the package.json manifest, as shown in Listing 25-8.

LISTING 25-8: New version of the package.json manifest containing the async dependency.

{
 "name": "application-name"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "express": "2.5.11"
 , "jade": ">= 0.0.1"
 , "mongoose": ">=2.7.0"
 , "async": "0.1.22"
 }
}

Then, install the missing dependencies:

$ npm install
async@0.1.22 ./node_modules/async

You are ready to import the module and use it in the route listener. Place the module importing at
the top of routes/users.js:

var async = require('async');

Now you can parallelize the requests using async.parallel like this:

 app.get('/users', function(req, res, next){
 var page = req.query.page && parseInt(req.query.page, 10) || 0;
 async.parallel([

LISTING 25-7 (continued)

c25.indd 320c25.indd 320 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 321

 function(next) {
 User.count(next);
 },

 function(next) {
 User.find({})
 .sort('name', 1)
 .skip(page * maxUsersPerPage)
 .limit(maxUsersPerPage)
 .exec(next);
 }
],

 // final callback
 function(err, results) {

 if (err) {
 return next(err);
 }

 var count = results[0];
 var users = results[1];

 var lastPage = (page + 1) * maxUsersPerPage >= count;

 res.render('users/index', {
 title: 'Users',
 users: users,
 page: page,
 lastPage: lastPage
 });

 }
);
 });

The fi nal callback (the last argument to async.parallel) is called when both operations are
fi nished or when an error happens, and you get the results as an array, one for each operation. If
no error happens, the fi rst element in this array will contain the user count and the second one will
contain the user list.

Next you are going to take a look at the user creation route listener:

 app.post('/users', notLoggedIn, function(req, res, next) {
 User.findOne({username: req.body.username}, function(err, user) {
 if (err) {
 return next(err);
 }
 if (user) {
 return res.send('Conflict', 409);
 }
 User.create(req.body, function(err) {

c25.indd 321c25.indd 321 21/09/12 8:58 AM21/09/12 8:58 AM

322 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

 if (err) {
 return next(err);
 }
 res.redirect('/users');
 });
 });
 });

Here you are checking if a username is taken and, if it’s not, you create the user using the create
method on the user model. This code has at least one problem — another request can create a user
with the same username between the time that you check whether a given username exists and the
time that the database actually creates the user. This would result in more than one user with the
same username inserted in the database, which cannot happen because you are looking up users
based on that value.

You can avoid this problem entirely by adding an option to the user schema where you say that the
username fi eld is unique, as shown in Listing 25-9.

LISTING 25-9: New version of the user schema with a unique index in data/schemas/user.js.

var mongoose = require('mongoose');

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: String,
 password: String
});

module.exports = UserSchema;

When you use this option, Mongoose will ensure that a unique index is created on that fi eld. Now
you can remove the code that checks whether that username already exists and simply rely on
MongoDB returning you an error in file routes/user.js:

 app.post('/users', notLoggedIn, function(req, res, next) {
 User.create(req.body, function(err) {
 if (err) {
 if (err.code === 11000) {
 res.send('Conflict', 409);
 } else {
 next(err);
 }
 return;
 }
 res.redirect('/users');
 });
 });

When MongoDB yields an error, Mongoose captures the error code and passes it inside the error
object. Here you are interpreting that error code, presenting a 409 Conflict HTTP status code
when that code signifi es a Duplicate Key Error.

c25.indd 322c25.indd 322 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 323

NOTE You can fi nd out more about the MongoDB error codes at the
 documentation at the mongodb.org website.

For the login to work you have to integrate it with Mongoose. To do so, change the fi le in routes/
session.js to the following:

/*
 * Session Routes
 */

var User = require('../data/models/user');
var notLoggedIn = require('./middleware/not_logged_in');

module.exports = function(app) {

 app.dynamicHelpers({
 session: function(req, res) {
 return req.session;
 }
 });

 app.get('/session/new', notLoggedIn, function(req, res) {
 res.render('session/new', {title: "Log in"});
 });

 app.post('/session', notLoggedIn, function(req, res) {
 User.findOne({username: req.body.username, password: req.body.password},
 function(err, user) {
 if (err) {
 return next(err);
 }

 if (user) {
 req.session.user = user;
 res.redirect('/users');
 } else {
 res.redirect('/session/new');
 }
 });
 });

 app.del('/session', function(req, res, next) {
 req.session.destroy();
 res.redirect('/users');
 });

};

Now that the user routes are working with MongoDB, you can continue evolving your user schema
to embody validators, document nesting, and more.

c25.indd 323c25.indd 323 21/09/12 8:58 AM21/09/12 8:58 AM

http://mongodb.org

324 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

Using Validators

When users register a new user account on the website, they can enter whatever data they want in
these fi elds — Mongoose makes no validations. You can, however, introduce constraints into your
user schema. For instance, you can introduce a new email fi eld that is required and has to match a
regular expression, as shown in Listing 25-10.

LISTING 25-10: New version of the user schema with a new validated e-mail fi eld in data/schemas/

user.js.

var mongoose = require('mongoose');

// simple but incomplete email regexp:
var emailRegexp = /.+\@.+\..+/;

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: String,
 password: String,
 email: {
 type: String,
 required: true,
 match: emailRegexp

 }
});

module.exports = UserSchema;

Now, to see the validator in action, you need to add the email fi eld to the user creation form in
views/users/new.jade:

h1 New User

form(method="POST", action="/users")
 p
 label(for="username") Username

 input#username(name="username")
 p
 label(for="name") Name

 input#name(name="name")
 p
 label(for="email") Email

 input#email(name="email")
 p
 label(for="password") Password

 input#password(type="password", name="password")
 p
 label(for="bio") Bio

 textarea#bio(name="bio")
 p
 input(type="submit", value="Create")

c25.indd 324c25.indd 324 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 325

You can now test the web application by starting your server:

$ node app

Point your browser to http://localhost:3000/users and try to create user profi les with correct
and incorrect e-mail addresses. You will see that a validation error will trigger the callback with an
error. If you print a Mongoose error when a validation error occurs, it will look something
like this:

{ message: 'Validation failed',
 name: 'ValidationError',
 errors:
 { email:
 { message: 'Validator "regexp" failed for path email',
 name: 'ValidatorError',
 path: 'email',
 type: 'regexp' } } }

You can test for this type of error and handle it in the routes/users.js fi le:

 app.post('/users', notLoggedIn, function(req, res, next) {
 User.create(req.body, function(err) {
 if (err) {
 if (err.code === 11000) {
 res.send('Conflict', 409);
 } else {
 if (err.name === 'ValidationError') {
 return res.send(Object.keys(err.errors).map(function(errField) {
 return err.errors[errField].message;
 }).join('. '), 406);
 } else {
 next(err);
 }

 }
 return;
 }
 res.redirect('/users');
 });
 });

This will present a crude message to the users, but you can easily evolve this code and present a
proper in-context message instead.

You can also enumerate the allowed values for a certain fi eld. For instance, if you wanted to store
the user’s gender in a gender fi eld, you can make the changes shown in Listing 25-11 to the user
schema.

c25.indd 325c25.indd 325 21/09/12 8:58 AM21/09/12 8:58 AM

http://localhost:3000/users

326 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

LISTING 25-11: New version of the user schema with a new enumerated gender fi eld in the data/

schemas/user.js fi le.

var mongoose = require('mongoose');

var emailRegexp = /.+\@.+\..+/;

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: String,
 password: String,
 email: {
 type: String,
 required: true,
 match: emailRegexp
 },
 gender: {
 type: String,
 required: true,
 uppercase: true,
 'enum': ['M', 'F']
 }
});

module.exports = UserSchema;

Here, you are defi ning that the gender fi eld should be a required string value equal to M or F. Before
validating the values, though, you are requesting that the value be transformed into uppercase,
which makes the lowercase values f and m also valid.

To test this change you need restart your server and add the gender fi eld to the user creation form,
as shown in Listing 25-12.

LISTING 25-12: New version of the user creation form with the gender fi eld in views/users/

new.jade.

h1 New User

form(method="POST", action="/users")
 p
 label(for="username") Username

 input#username(name="username")
 p
 label(for="name") Name

 input#name(name="name")
 p
 label(for="email") Email

 input#email(name="email")
 p
 label(for="password") Password

 input#password(type="password", name="password")
 p

c25.indd 326c25.indd 326 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 327

 label(for="gender") Gender

 input#gender(name="gender")
 p
 label(for="bio") Bio

 textarea#bio(name="bio")
 p
 input(type="submit", value="Create")

Besides enumerating the possible values or providing a regular expression, you can provide a custom
function that will validate the fi eld. For instance, you may want to add a birth date to the user
profi le and, for some reason, validate that the user is at least 18 years old.

First, because JavaScript stores dates in milliseconds, you need to convert 18 years to milliseconds.
You should do this at the beginning of your users routes module in data/schemas/user.js:

var TIMESPAN_YEAR = 31536000000;
var TIMESPAN_18_YEARS = 18 * TIMESPAN_YEAR;

Then you need to provide the validation function, which you should also provide at the top of your
user’s schema module in data/schemas/user.js:

function validate_18_years_old_or_more(date) {

 return (Date.now() - date.getTime()) > TIMESPAN_18_YEARS;
}

This function takes a date and returns a boolean that notes whether the date is more than 18 years old.

These are the required schema changes:

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: String,
 password: String,
 email: {
 type: String,
 required: true,
 match: emailRegexp
 },
 gender: {
 required: true,
 type: String,
 uppercase: true,
 'enum': ['M', 'F']
 },
 birthday: {
 type: Date,
 validate: [
 validate_18_years_old_or_more,
 'You must be 18 years old or more']
 }
});

c25.indd 327c25.indd 327 21/09/12 8:58 AM21/09/12 8:58 AM

328 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

Notice that, in the validate fi eld option, you are passing an array that contains two positions — the
validation function and a message. This is how you can specify a custom message that will override
the one that is automatically generated by Mongoose.

To test this you must again restart your server and add a date fi eld to the views/users/new.jade
template, as shown in Listing 25-13.

LISTING 25-13: New version of the user creation form with the birthday fi eld in the views/users/

new.jade fi le.

h1 New User

form(method="POST", action="/users")
 p
 label(for="username") Username

 input#username(name="username")
 p
 label(for="name") Name

 input#name(name="name")
 p
 label(for="email") Email

 input#email(name="email")
 p
 label(for="password") Password

 input#password(type="password", name="password")
 p
 label(for="gender") Gender

 input#gender(name="gender")
 p
 label(for="birthday") Birthday

 input#birthday(name="birthday")
 p
 label(for="bio") Bio

 textarea#bio(name="bio")
 p
 input(type="submit", value="Create")

NOTE Mongoose accepts any date format that is compatible with
Date.parse(), which means that it accepts the standard RFC2822 format
and the ISO 8601 syntax. This means that you can introduce the dates with
many alternative formats but, to simplify your tests, you can use the generic
YYYY/MM/DD format.

You can also defi ne asynchronous validators if your validation function needs to do I/O. For
instance, you may want to contact an external service to make some kind of validation. To simplify,
you will add a fi eld to contain a Twitter handle, and you want to simply validate that this handle
exists using the Twitter API.

c25.indd 328c25.indd 328 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 329

For this, simply emit an HTTP request to the Twitter user page and then observe the response
HTTP status. If the response status is a 404 Not Found, you can conclude that the Twitter handle is
invalid.

To simplify the way you do HTTP, use Mikeal Rogers’s request third-party module (covered in
Chapter 13, “Making HTTP Requests”), which you must include in the package.json manifest
(see Listing 25-14).

LISTING 25-14: A new version of the package.json manifest containing the request dependency.

{
 "name": "application-name"
 , "version": "0.0.1"
 , "private": true
 , "dependencies": {
 "express": "2.5.11"
 , "jade": ">= 0.0.1"
 , "mongoose": ">=2.7.0"
 , "async": "0.1.22"
 , "request": "2.10.0"
 }
}

Install the missing package:

$ npm install
…
request@2.10.0 ./node_modules/request

Import the module at the top of the user schema fi le in data/schemas/user.js:

var request = require('request');

And then, in the same fi le, defi ne the validation function that takes a value and a callback and then
calls back with a boolean when a response from Twitter arrives:

function twitterHandleExists(handle, done) {
 request('http://twitter.com/' + encodeURIComponent(handle), function(err, res) {
 if (err) {
 console.error(err);
 return done(false);
 }
 if (res.statusCode > 299) {
 done(false);
 } else {
 done(true);
 }
 });
}

c25.indd 329c25.indd 329 21/09/12 8:58 AM21/09/12 8:58 AM

http://twitter.com/

330 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

Here you are simply making an HTTP call to the twitter.com user URL. If there is an error or the
HTTP status code is not 2xx OK, you presume that the fi eld’s value is invalid. Here, when using
an asynchronous validator, instead of returning the value you invoke a callback function with a
boolean noting whether the fi eld is valid.

Using Modifi ers

Sometimes you want to change the value of a fi eld before you validate and save a document. For
instance, the gender fi eld has a declared uppercase modifi er that capitalizes the string before
entering the validation and saving step.

For fi elds of the String type, you can use the uppercase modifi er, the lowercase modifi er, and
the trim modifi er. The last one removes the leading and trailing white space from a string using the
string.trim() method.

You can also use a custom modifi er by defi ning a function that transforms and returns the value.
For instance, the user can prefi x the Twitter handle with @ or not:

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: String,
 password: String,
 email: {
 type: String,
 required: true,
 match: emailRegexp
 },
 gender: {
 required: true,
 type: String,
 uppercase: true,
 'enum': ['M', 'F']
 },
 birthday: {
 type: Date,
 validate: [validate_18_years_old_or_more, 'You must be 18 years old or more']
 },
 twitter: {
 type: String,
 validate: [twitterHandleExists, 'Please provide a valid twitter handle'],
 set: function(handle) {
 if (! handle) {
 return;
 }

 handle = handle.trim();
 if (handle.indexOf('@') === 0) {
 handle = handle.substring(1);
 }
 return handle;
 }
 }
});

c25.indd 330c25.indd 330 21/09/12 8:58 AM21/09/12 8:58 AM

http://twitter.com

Defi ning a Model ❘ 331

Here you are fi rst trimming the handle (if the user hasn’t already) and then removing the fi rst
character if it is an @. This way, users can input @mytwitterhandle or mytwitterhandle and both
will map to mytwitterhandle.

Using Getters

You can also fi lter what is stored in the database after MongoDB hands it to Mongoose, but before
the object is available, by defi ning getters. Use a getter to fi lter or transform the value any way you
want by providing a custom function. This can be useful, for instance, when you are performing
data migrations.

Say you once allowed users to store Twitter handles that were prefi xed by the @ character. At a later
point, you decided that you would use a setter to fi lter them out. You have, in your user collection,
some Twitter handles that are prefi xed with @ and others that are not. You could do a complete data
migration, although depending on your user collection size, that could take a long while and would
have an impact on service performance. You could also learn to live with this inconsistency by
changing the view code to allow both variations, but that would place the data fi ltering code on the
wrong part of the application.

You could then defi ne a fi ltering function like this at the top of the user schema module in data/
schemas/user.js:

function filterTwitterHandle(handle) {
 if (! handle) {
 return;
 }
 handle = handle.trim();
 if (handle.indexOf('@') === 0) {
 handle = handle.substring(1);
 }
 return handle;
}

This function can now be used as both the setter and the getter of the twitter fi eld, like this:

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: String,
 password: String,
 email: {
 type: String,
 required: true,
 match: emailRegexp
 },
 gender: {
 required: true,
 type: String,
 uppercase: true,
 'enum': ['M', 'F']
 },
 birthday: {

c25.indd 331c25.indd 331 21/09/12 8:58 AM21/09/12 8:58 AM

332 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

 type: Date,
 validate: [validate_18_years_old_or_more, 'You must be 18 years old or more']
 },
 twitter: {
 type: String,
 validate: [twitterHandleExists, 'Please provide a valid twitter handle'],
 set: filterTwitterHandle,
 get: filterTwitterHandle
 }
});

Using Virtual Attributes

You can also have some attributes that are not present in the document, but are computed
dynamically, as Mongoose loads the document. For instance, the front-end code has to build the
Twitter URL string based on a Twitter handle, but the Twitter URL is an attribute of the user, and
as such should belong in the user document. However, because this attribute can be easily computed
based on the Twitter handle, you can create what is called a virtual attribute. You do this by
adding the following to the user schema module in the fi le data/schemas/user.js, immediately
before the module exports:

//...
UserSchema
 .virtual('twitter_url')
 .get(function() {
 if (this.twitter) {
 return 'http://twitter.com/' + encodeURIComponent(this.twitter);
 }
 });

NOTE Virtual attributes aren’t saved into the document.

Now you can change the user profi le view template to use all the new attributes, as shown in
Listing 25-15.

LISTING 25-15: New version of the user profi le template using the twitter_url virtual attribute in

views/users/profi le.jade.

h1= user.name

h2 Bio
p= user.bio

h2 Email
p= user.email

c25.indd 332c25.indd 332 21/09/12 8:58 AM21/09/12 8:58 AM

http://twitter.com/

Defi ning a Model ❘ 333

h2 Gender
p= user.gender

h2 Birthday
p= user.birthday

- if (user.twitter) {
 h2 Twitter
 p
 a(href= user.twitter_url)="@" + user.twitter
- }

form(action="/users/" + encodeURIComponent(user.username), method="POST")
 input(name="_method", type="hidden", value="DELETE")
 input(type="submit", value="Delete")

You can also defi ne a setter for a virtual attribute. For instance, you might want to split the users’
fi rst and last names in the document, but keep the names as a single fi eld in the user interface. You
can then redefi ne a part of the user schema in fi le data/schemas/user.js like this:

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: {
 first: String,
 last: String
 },
 password: String,
 email: {
 type: String,
 required: true,
 match: emailRegexp
 },
 gender: {
 required: true,
 type: String,
 uppercase: true,
 'enum': ['M', 'F']
 },
 birthday: {
 type: Date,
 validate: [validate_18_years_old_or_more, 'You must be 18 years old or more']
 },
 twitter: {
 type: String,
 validate: [twitterHandleExists, 'Please provide a valid twitter handle'],
 set: filterTwitterHandle,
 get: filterTwitterHandle
 }
});

c25.indd 333c25.indd 333 21/09/12 8:58 AM21/09/12 8:58 AM

334 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

UserSchema
 .virtual('full_name')
 .get(function() {
 return [this.name.first, this.name.last].join(' ');
 })
 .set(function(fullName) {
 var nameComponents = fullName.split(' ');
 this.name.last = nameComponents.pop();
 this.name.first = nameComponents.join(' ');
 });

UserSchema
 .virtual('twitter_url')
 .get(function() {
 if (this.twitter) {
 return 'http://twitter.com/' + encodeURIComponent(this.twitter);
 }
 });

Here, you are defi ning that the user document has a name fi eld with an embedded object containing
the fi rst and the last names. Then, later, you’re defi ning that any user document has a virtual
attribute called full_name that is both of these values joined by a space character. This attribute
can also be set, and the reverse operation is performed in the setter, splitting the name into the fi rst
and last names.

Now you need to make a slight modifi cation in the view template, changing the attribute name to
full_name, as shown in Listing 25-16.

LISTING 25-16: New version of the user creation form using the full_name virtual attribute in

views/users/new.jade.

h1 New User

form(method="POST", action="/users")
 p
 label(for="username") Username

 input#username(name="username")
 p
 label(for="full_name") Full name (first and last)

 input#full_name(name="full_name")
 p
 label(for="email") Email

 input#email(name="email")
 p
 label(for="password") Password

 input#password(type="password", name="password")
 p
 label(for="gender") Gender

c25.indd 334c25.indd 334 21/09/12 8:58 AM21/09/12 8:58 AM

http://twitter.com/

Defi ning a Model ❘ 335

 input#gender(name="gender")
 p
 label(for="birthday") Birthday

 input#birthday(name="birthday")
 p
 label(for="twitter") Twitter Handle

 input#twitter(name="twitter")
 p
 label(for="bio") Bio

 textarea#bio(name="bio")
 p
 input(type="submit", value="Create")

You need to make the same change in the user profi le view template, as shown in Listing 25-17.

LISTING 25-17: New version of the user profi le template using the full_name virtual attribute

in views/users/profi le.jade.

h1= user.full_name

h2 Bio
p= user.bio

h2 Email
p= user.email

h2 Gender
p= user.gender

h2 Birthday
p= user.birthday

- if (user.twitter) {
 h2 Twitter
 p
 a(href= user.twitter_url)="@" + user.twitter
- }

form(action="/users/" + encodeURIComponent(user.username), method="POST")
 input(name="_method", type="hidden", value="DELETE")
 input(type="submit", value="Delete")

You also need to update the user list template in views/users/index.jade, where you can take the
opportunity to transform the for cycle into a foreach iterator, as shown in Listing 25-18.

c25.indd 335c25.indd 335 21/09/12 8:58 AM21/09/12 8:58 AM

336 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

LISTING 25-18: New version of the user list template using the full_name virtual attribute.

h1 Users

p
 a(href="/users/new") Create new profile

ul
 - users.forEach(function(user) {
 li
 a(href="/users/" + encodeURIComponent(user.username))= user.full_name
 - });

- if (page > 0) {
 a(href="?page=" + (page - 1)) Previous

- }

- if (! lastPage) {
 a(href="?page=" + (page + 1)) Next
- }

You also have to change a view partial that shows the username at the top of the page when the user
is logged in. Change the fi le views/session/user.jade to this:

- if (session.user) {

 p
 span Hello
 span= session.user.name.first
 span !
 p
 form(method="POST", action="/session")
 input(type="hidden", name="_method", value="DELETE")
 input(type="submit", value="Log out")

- } else {

 p
 a(href="/session/new") Login
 span or
 a(href="/users/new") Register

- }

You might still have old documents in which the name fi eld still has a string value instead of an
embedded name document. Those documents will not have a name.first or a name.last attribute.
Instead, the name attribute will contain a single string with the whole name.

To solve this inconsistency, you need to change three things. First, you need to declare that the
name fi eld is of Mixed type in the fi le data/schemas/user.js. This way, Mongoose allows you to
sometimes have a string or an object (or any value, really):

c25.indd 336c25.indd 336 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 337

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: mongoose.Schema.Types.Mixed,
 password: String,
 email: {
 type: String,
 required: true,
 match: emailRegexp
 },
 gender: {
 required: true,
 type: String,
 uppercase: true,
 'enum': ['M', 'F']
 },
 birthday: {
 type: Date,
 validate: [validate_18_years_old_or_more, 'You must be 18 years old or more']
 },
 twitter: {
 type: String,
 validate: [twitterHandleExists, 'Please provide a valid twitter handle'],
 set: filterTwitterHandle,
 get: filterTwitterHandle
 }
});

You also have to change the full_name virtual attribute getter function to accommodate the old
documents in which the name fi eld still contains a string. In that case, you simply return the string:

UserSchema
 .virtual('full_name')
 .get(function() {
 if (typeof this.name === 'string') {
 return this.name;
 }
 return [this.name.first, this.name.last].join(' ');
 })
 .set(function(fullName) {
 var nameComponents = fullName.split(' ');
 this.name = {
 last: nameComponents.pop(),
 first: nameComponents.join(' ')
 };
 });

You also need to change the full_name virtual attribute setter to create the embedded name
document when it is set. You have to do this because now Mongoose makes no assumptions —
previously it knew that you had an embedded document, so it pre-populated the name attribute with
an object. Now that the type is not defi ned, so you have to do it yourself.

You can now restart your application by pressing Ctrl+C and relaunching Node:

$ node app.js

c25.indd 337c25.indd 337 21/09/12 8:58 AM21/09/12 8:58 AM

338 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

You can now refresh the initial URL (http://localhost:3000/users) and try creating and
showing the users’ fi rst names and watch the content of the database while you do so.

Using Default Values

You may want to track which date and time the user record was created. In this case, you can insert
a created_at fi eld of the Date type. This value should be automatic — you don’t want the user to
submit or even modify it. You can insert this fi eld into the user document on the user creation route
listener, but this is not the right place for this code. If you need to create a user somewhere else in
your application, you would have to perform that again, which would lead to duplicate code and
possibly some inconsistencies.

The right place for this is the user schema in fi le data/schemas/user.js, which would require
some changes:

var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: mongoose.Schema.Types.Mixed,
 password: String,
 email: {
 type: String,
 required: true,
 match: emailRegexp
 },
 gender: {
 required: true,
 type: String,
 uppercase: true,
 'enum': ['M', 'F']
 },
 birthday: {
 type: Date,
 validate: [validate_18_years_old_or_more, 'You must be 18 years old or more']
 },
 twitter: {
 type: String,
 validate: [twitterHandleExists, 'Please provide a valid twitter handle'],
 set: filterTwitterHandle,
 get: filterTwitterHandle

 meta: {
 created_at: {
 type: Date,
 'default': Date.now
 },
 updated_at: {
 type: Date,
 'default': Date.now
 }
 }
});

c25.indd 338c25.indd 338 21/09/12 8:58 AM21/09/12 8:58 AM

http://localhost:3000/users

Defi ning a Model ❘ 339

Here you populate, by default, the meta.created_at and meta.updated_at fi elds with the current
timestamp (which is cast into a proper date value before it’s saved).

But this approach has one problem: If the user submits a form that changes the meta.created_at
record, this value gets saved into the document, overriding the original value that you intended to be
immutable. To prevent mutation of the value, you need to remove the meta.created_at and meta
.updated_at values and insert the default values, all before the document is saved. To do so, add
this snippet before the module exports at the end of the fi le data/schemas/user.js:

UserSchema.pre('save', function(next) {
 if (this.isNew) {
 this.meta.created_at = undefined;
 }

 this.meta.updated_at = undefined;
 next();
});

The user schema emits events before and after the object is saved or removed. In this case you are
attaching a listener that is called before the object is saved. In this function, the this keyword is
bound to the document.

You can also determine whether a document will be saved for the fi rst time by observing the is
New property. In this case, you only want to remove the meta.created_at value when the
object is created.

NOTE This code still doesn’t work if the user somehow manages to override the
meta.created_at value when the object is updated. To prevent this, you can cre-
ate an attribute setter that doesn’t allow any change in the value:

 //...

 meta: {
 created_at: {
 type: Date,
 'default': Date.now,
 set: function(val) {
 return undefined;
 }
 },
 updated_at: {
 type: Date,
 'default': Date.now
 }
 }

c25.indd 339c25.indd 339 21/09/12 8:58 AM21/09/12 8:58 AM

340 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

Defi ning Indexes

Unlike some other document-oriented databases, MongoDB lets you perform ad hoc queries, where
the database creates a plan for running that query and tries to optimize it. To speed queries you can
create indexes. You can index single fi elds or have compound indexes where you combine two or
more fi elds.

An index can be unique or not. In the user schema, the username has the unique option set to true,
which instructs Mongoose to ensure a unique index is created for that fi eld before any queries run. It
happens that you already have a unique index in the user’s username property:

// ...
var UserSchema = new mongoose.Schema({
 username: {type: String, unique: true},
 name: mongoose.Schema.Types.Mixed,
// ...

As discussed, a unique index ensures that all documents have a different value for that fi eld.

Also, an index can be sparse or not. If you defi ne an index on a fi eld, a normal index will contain
an entry for all documents: those that contain the fi eld and those that don’t. But if you set the
sparse option to true on a fi eld, Mongoose will ensure an index is created that contains only the
documents that contain the specifi ed fi eld.

Using sparse indexes has an impact on the result of queries that use this fi eld. For instance, if you
defi ne a sparse index on the Twitter handle for the user schema, and then you order the results of
a query by Twitter handle, the results will only contain documents for which the Twitter handle
is defi ned. Try changing the user schema module in data/schemas/user.js, setting the sparse
property to true:

 // ...
 twitter: {
 type: String,
 sparse: true,
 validate: [twitterHandleExists, 'Please provide a valid twitter handle'],
 set: filterTwitterHandle,
 get: filterTwitterHandle
 },
// …

Running the following query will only fetch documents that contain the twitter fi eld:

User.find({}).sort({twitter: 1}, callback);

You can combine sparse with unique indexes to create a unique constraint that ignores documents
with a missing fi eld. For instance, if you want the email fi eld to be unique but not mandatory, you
can create a sparse unique index, which uses that fi eld by setting the following properties in the user
schema in the fi le data/schemas/user.js:

c25.indd 340c25.indd 340 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 341

// ...
email: {
 type: String,
 sparse: true,
 unique: true,
 match: emailRegexp
},
// ...

You can also defi ne an index that combines the values of two or more fi elds at the schema level, by
inserting it at the end of the fi le data/users/schema.js, before the module exports:

UserSchema.index({username: 1, 'meta.created_at': -1});

This creates an index that combines the values of username and meta.created_at, where
the username is indexed in ascending order and the meta.created_at values are indexed in
descending order. This index is useful for speeding up a query that uses these fi elds for
fi ltering or sorting.

NOTE If you now try to restart your app, you may encounter the following
problem:

MongoError: E11000 duplicate key error index: my_mongoose
.users.$email_1 dup key: { : "myemail@mail.com" }

This will happen if you have more than one user with the same e-mail address
in the database. To properly start the app, you have to change these duplicate
records.

Referencing Other Documents Using DB Refs

In Mongoose, a document can also contain a reference to another document. For instance, you may
want to have an article collection that contains, among other fi elds, an author. This author can be a
user. Instead of keeping the username, you can defi ne that a fi eld contains an object ID. Defi ne the
following schema under data/schemas/article.js, as shown in Listing 25-19.

LISTING 25-19: The article schema.

var Schema = require('mongoose').Schema;

var ArticleSchema = new Schema({
 title: {
 type: String,
 unique: true
 },
 body: String,

continues

c25.indd 341c25.indd 341 21/09/12 8:58 AM21/09/12 8:58 AM

342 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

 author: {
 type: Schema.ObjectId,
 ref: 'User',
 required: true
 },
 created_at: {
 type: Date,
 'default': Date.now
 }
});

module.exports = ArticleSchema;

Here you are defi ning a simple article schema that contains an author fi eld that is of type Schema
.ObjectId and references the model named User.

Defi ne the model in Listing 25-20 under a fi le named data/models/article.js.

LISTING 25-20: The article model.

var mongoose = require('mongoose');
var ArticleSchema = require('../schemas/article');

var Article = mongoose.model('Article', ArticleSchema);

module.exports = Article;

Now you need to create a simple set of route listeners in the fi le routes/articles.js for
responding to URLs under the /articles path (see Listing 25-21)

LISTING 25-21: The article route listeners.

/*
 * Article Routes
 */

var async = require('async');

var Article = require('../data/models/article');
var notLoggedIn = require('./middleware/not_logged_in');
var loadArticle = require('./middleware/load_article');
var loggedIn = require('./middleware/logged_in');

var maxArticlesPerPage = 5;

LISTING 25-19 (continued)

c25.indd 342c25.indd 342 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 343

module.exports = function(app) {

 app.get('/articles', function(req, res, next){
 var page = req.query.page && parseInt(req.query.page, 10) || 0;
 async.parallel([

 function(next) {
 Article.count(next);
 },

 function(next) {
 Article.find({})
 .sort('title', 1)
 .skip(page * maxArticlesPerPage)
 .limit(maxArticlesPerPage)
 .exec(next);
 }
],

 // final callback
 function(err, results) {

 if (err) {
 return next(err);
 }

 var count = results[0];
 var articles = results[1];

 var lastPage = (page + 1) * maxArticlesPerPage >= count;

 res.render('articles/index', {
 title: 'Articles',
 articles: articles,
 page: page,
 lastPage: lastPage
 });

 }
);
 });

 app.get('/articles/new', loggedIn, function(req, res) {
 res.render('Articles/new', {title: "New Article"});
 });

 app.get('/articles/:title', loadArticle, function(req, res, next){
 res.render('articles/article', {title: req.article.title,
 article: req.article});
 });

continues

c25.indd 343c25.indd 343 21/09/12 8:58 AM21/09/12 8:58 AM

344 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

 app.post('/articles', loggedIn, function(req, res, next) {
 var article = req.body;
 article.author = req.session.user._id;
 Article.create(article, function(err) {
 if (err) {
 if (err.code === 11000) {
 res.send('Conflict', 409);
 } else {
 if (err.name === 'ValidationError') {
 return res.send(Object.keys(err.errors).map(function(errField) {
 return err.errors[errField].message;
 }).join('. '), 406);
 } else {
 next(err);
 }

 }
 return;
 }
 res.redirect('/articles');
 });
 });

 app.del('/articles/:title', loggedIn, loadArticle, function(req, res, next) {
 req.article.remove(function(err) {
 if (err) { return next(err); }
 res.redirect('/articles');
 });

 });

};

Because this is mainly a CRUD (Create, Remove, Update, and Delete) application (except that you
didn’t provide a method for updating, just for simplifi cation), these route listeners are somewhat
similar to the User ones, except that, when creating a new article, you assign it the author user ID
by using the following code:

 article.author = req.session.user._id;

NOTE Each object, after it’s created in MongoDB, holds an _id fi eld that
 contains a unique ID of the object inside that collection. Unlike some databases,
this is not a sequential number; it’s a random string.

These route listeners use two new route middleware components — loggedIn and loadArticle.
The last one loads the article that you can create under routes/middleware/load_article.js, as
shown in Listing 25-22.

LISTING 25-21 (continued)

c25.indd 344c25.indd 344 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 345

LISTING 25-22: A middleware component for loading an article in routes/middleware/

load_article.js.

var Article = require('../../data/models/article');

function loadArticle(req, res, next) {
 Article.findOne({title: req.params.title})
 .populate('author')
 .exec(function(err, article) {
 if (err) {
 return next(err);
 }
 if (! article) {
 return res.send('Not found', 404);
 }
 req.article = article;
 next();
 });
}

module.exports = loadArticle;

This new route middleware component is similar to the load_user.js one, except that it instructs
Mongoose to load the author using the following:

 Article.findOne({title: req.params.title})
 .populate('author')
 //...

This makes the corresponding user object available under the property article.author, which you
can now use on the article-rendering template under views/articles/article.jade, as shown in
Listing 25-23.

LISTING 25-23: The article detail view template in views/articles/article.jade.

h1= article.title

div!= article.body

hr

p
 span Author:

 a(href="/users/" + encodeURIComponent(article.author.username))=
 article.author.full_name

p
 a(href="/articles") Back to all articles

You also need to add the loggedIn middleware component under routes/middleware/logged_
in.js, as shown in Listing 25-24.

c25.indd 345c25.indd 345 21/09/12 8:58 AM21/09/12 8:58 AM

346 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

LISTING 25-24: The article detail view template in views/articles/article.jade.

function loggedIn(req, res, next) {
 if (! req.session.user) {
 res.send('Forbidden. Please log in first.', 403);
 } else {
 next();
 }
}

module.exports = loggedIn;

For this to work you still need to add the new route listeners to the fi le app.js, as follows:

// Routes

require('./routes/session')(app);
require('./routes/index')(app);
require('./routes/users')(app);
require('./routes/articles')(app);

You need two new view templates as well:

 ➤ views/articles/index.jade contains the article list.

 ➤ views/articles/new.jade contains the article creation form.

See Listings 25-25 and 25-26.

LISTING 25-25: The article list template in views/articles/index.jade.

h1 Articles

p
 a(href="/articles/new") Create new article

ul
 - articles.forEach(function(article) {
 li
 a(href="/articles/" + encodeURIComponent(article.title))= article.title
 - });

- if (page > 0) {
 a(href="?page=" + (page - 1)) Previous

- }

- if (! lastPage) {
 a(href="?page=" + (page + 1)) Next
- }

c25.indd 346c25.indd 346 21/09/12 8:58 AM21/09/12 8:58 AM

Defi ning a Model ❘ 347

 LISTING 25-26: The article creation form in views/articles/new.jade.

h1 New Article

form(method="POST", action="/articles")
 p
 label(for="title") Title

 input#title(name="title")
 p
 label(for="body") Body

 textarea#body(name="body")
 p
 input(type="submit", value="Create")

Defi ning Instance Methods

Now you want to be able to list the most recent articles for a given user. To do this, you can create
the query directly inside the user route listener, but that would not be the right place to do so.
Instead, you’ll create an instance method on the user object by attaching a method to the user
schema before the module exports at the end of fi le data/schemas/user.js, like this:

UserSchema.methods.recentArticles = function(callback) {
 return this.model('Article')
 .find({author: this._id})
 .sort('created_at', 1)
 .limit(5)
 .exec(callback);
};

Now you can use this instance method to retrieve a list of the last fi ve articles of a given user.
Change the GET '/users/:name' route listener in fi le routes/users.js to retrieve the most recent
user articles so you can list them:

 app.get('/users/:name', loadUser, function(req, res, next){
 req.user.recentArticles(function(err, articles) {
 if (err) {
 return next(err);
 }
 res.render('users/profile', {
 title: 'User profile',
 user: req.user,
 recentArticles: articles
 });
 });

 });

c25.indd 347c25.indd 347 21/09/12 8:58 AM21/09/12 8:58 AM

348 ❘ CHAPTER 25 CONNECTING TO MONGODB USING MONGOOSE

Now you need to change the views/users/profile.jade template and add this snippet right at
the end:

h2 Recent Articles:
p!= partial('articles/list', {articles: recentArticles })

This makes use of the views/articles/list.jade partial template that you need to create, as
shown in Listing 25-27.

LISTING 25-27: The article list partial template.

ul
 - articles.forEach(function(article) {
 li
 a(href="/articles/" + encodeURIComponent(article.title))= article.title
 - });

Because you already have this partial template for listing, you can replace the explicit listing in the
views/articles/index.jade template with a call to this partial, as shown in Listing 25-28.

LISTING 25-28: A new version of the article list template that uses the article list partial.

h1 Articles

p
 a(href="/articles/new") Create new article

p!= partial('articles/list', {articles: articles})

- if (page > 0) {
 a(href="?page=" + (page - 1)) Previous

- }

- if (! lastPage) {
 a(href="?page=" + (page + 1)) Next
- }

Now is a good time to test the article creation and rendering by restarting your app and pointing
your browser to http://localhost:3000/articles. Try logging in, creating articles, and
browsing around.

Defi ning Static Methods

You can also expose methods on the model that provide higher-level operations or queries. For
instance, you may want to provide a search function that returns articles with that string on the
title or on the body. You can defi ne it at the end of the article schema module in data/schemas/
article.js, before the module exports:

c25.indd 348c25.indd 348 21/09/12 8:58 AM21/09/12 8:58 AM

http://localhost:3000/articles

Summary ❘ 349

ArticleSchema.statics.search = function(str, callback) {
 var regexp = new RegExp(str, 'i');
 return this.find({'$or': [{title: regexp}, {body: regexp}]}, callback);
};

Now you can create a route listener in fi le routes/articles.js to expose this functionality:

 app.get('/articles/search', function(req, res, next) {
 console.log('searching for', req.query.q);
 Article.search(req.query.q, function(err, articles) {
 if (err) {
 return next(err);
 }
 res.render('articles/index', {
 title: 'Article search results',
 articles: articles,
 page: 0,
 lastPage: true
 });
 });
 });

NOTE You should add this snippet before the app.get('/articles/:title')
route so that it takes precedence.

You can test this by restarting your server, logging in, creating some articles, and trying URLs like
this, where somestring is replaced by a part of an existing article title or body.

http://localhost:3000/articles/search?q=somestring

SUMMARY

Mongoose is a database access library that allows you to map objects into collections and
documents in a MongoDB database. Even though document-oriented databases allow unstructured
data, Mongoose requires you to defi ne a schema for each collection where you specify the data
types, the indexes, default values, various validation functions, and other options.

You can then use these schemas in collection models that provide methods of searching, inserting,
and modifying documents. Also, you can enrich these collection models and the returned document
objects by defi ning new methods they provide that build on top of the existing ones.

You can also have references from one document into another document in the same or a different
collection by using the Schema.ObjectId type and defi ning the target collection.

c25.indd 349c25.indd 349 21/09/12 8:58 AM21/09/12 8:58 AM

http://localhost:3000/articles/search?q=somestring

c25.indd 350c25.indd 350 21/09/12 8:58 AM21/09/12 8:58 AM

INDEX

bindex.indd 351bindex.indd 351 21/09/12 4:03 PM21/09/12 4:03 PM

bindex.indd 352bindex.indd 352 21/09/12 4:03 PM21/09/12 4:03 PM

353

INDEX

Symbols

[] operator, buffers and, 30
= operator

Jade encoding and, 231
string appearance and, 231

A

absolute fi le paths, 55
.addListener() function, binding

callbacks and, 38–39
age, validating (Mongoose), 327–328
AnyEvent (Perl), 17
app.js fi le (Express.js)

app.js fi le Express creates (listing),
219–220

middleware and, 220, 229
routes and, 223

applications
chat applications, extending, 250–253
debugging. See debugging modules and

applications
testing. See testing modules and

applications
web applications. See Express.js for web

applications
.apply() method, 41
array.forEach, iterating and, 189
array.map() function, 190
array.reduce function, 191, 192
arrays, logging with console.log

function, 168
articles schemas (Mongoose)

Article list partial template (listing), 348
Article schema (listing), 341–342
Detail view and (listings), 345–347
Loading (listing), 345

assertion testing modules
assert module, 159–161, 162
assertion functions in node-tap,

161–163
async dependency, Mongoose and, 320–321
async module

cascading, 186–187
detecting, 193–194
executing in parallel, 185–186
executing in series, 184–185
fi ltering, 192–193
installing, 183
iterating, 189–190
mapping, 190–191
queuing, 187–189
reducing, 191–192
Simple squaring server (listing),

183–184
async.forEach

Iterating over a collection using (listing),
189–190

ordering of results and, 188
asynchronous dependencies, 320
asynchronous middleware, 200–201
asynchronous modules, testing, 163–166
asynchronous programming

basics of, 16–17
JavaScript and, 17–19
ordering of results and, 188

async.parallel, 320–321

bindex.indd 353bindex.indd 353 21/09/12 4:03 PM21/09/12 4:03 PM

354

attributes – chats

attributes, virtual (Mongoose), 332–338
automated tests, writing. See testing modules

and applications
avatars, CouchDB documents and, 298–301,

304–309

B

binary buffer implementation. See buffers
binding callbacks, 38–39
birthdays, validating age and (Mongoose),

327–328
boomerang effect

avoiding, 179–183
basics, 177–179

bufferedstream module, 302, 303
buffers

bytes in, 30–31
copying, 32
creating, 30
decoding, 32–33
in Node, 29–30
reading from fi les and, 59
slicing, 32
UDP and, 133

building Node from source code, 7
buttons, for executed instructions

(debugging), 175
bytes, buffers and, 29, 30–31

C

caching modules, 27–28
call stack, debugging and, 175
callback fl ow, controlling

async module. See async module
boomerang effect, avoiding, 179–183
boomerang effect basics, 177–179

callback soup. See boomerang effect
callbacks

binding callbacks using
.addListener() or .on()
functions, 38–39

executing using .once() function, 40–41
external commands and, 64–65

http.request() call, 115
reading database data and, 272
registering inside middleware, 201–203
retrieving database information

and, 272
standard callback patterns, 36

cancelling execution of functions, 46–47
cascading

cascade function, 183
executing functions and, 186–187

Certifi cate Authority (CA), 143, 151
certifi cates

Certifi cate Signing Request (CSR) fi les,
140

HTTPS servers and, 150
public keys, 140
validating (HTTPS), 151–152, 153–154
verifying (TLS), 143–144, 147–148

changing headers (HTTP servers), 99
chat applications, extending, 250–253
chat servers. See also TCP chat servers,

building
detecting disconnections, 254–255
Socket.IO chat server that allows users to

join rooms (listing), 257–259
Socket.IO chat servers, 246–247,

251–252
TLS chat servers, creating, 145–146

chats, building with Socket.IO
application structure, 246
basics of, 245–246
chat application, extending, 250–253
chat clients, 247–249
chat servers, 246
disconnections, detecting, 254–255
namespaces and, 259
Redis, 260–263
server-side application, distributing,

259–263
Simple Socket.IO chat client (listing),

249–250
Simple Socket.IO chat server

(listing), 247
users, separating into rooms, 255–259

chats, HTTP and, 241–242

bindex.indd 354bindex.indd 354 21/09/12 4:03 PM21/09/12 4:03 PM

355

child processes – concurrency

child processes
basics of, 69
creating, 69
exit notifi cation, 72–73
listening for data from, 69–70
need for using, 63
sending data to, 70–72

child_process module
basics of, 69
importing, 64

child.kill method, 74
Chrome inspector (Google), debugging

and, 173
chunked encoding

HTTP chunked responses and
timers, 102

HTTP servers and, 99–100
clearTimeout function, for canceling

function execution, 46–47
CLI (command-line interface), running Node

as, 8
client connections (TCP)

accepting, 89–90
closing, 105–106, 109–111
collecting, 90–91
listening for, 88
reading data from, 90
removing closed, 92–93

clients. See also command-line clients
building (UDP), 134
chat clients, Socket.IO and, 247–250
client connections, accepting (TCP),

89–90
client connections, listening for (TCP), 88
collecting (TCP), 90–91
CouchDB clients, HTTP and, 281
creating (HTTPS), 152–154
data and (TLS), 142
initializing (HTTPS), 152
slow client problem, 80–82
Socket.IO basic client, 244
Socket.IO chat client that accepts /j

<room> command (listing), 255–257
Socket.IO chat client that supports user

login (listing), 252–253

Socket.IO-based chat client that formats
messages (listing), 292–294

Socket.IO-based chat client that presents
avatars (listing), 298–301

Socket.IO-based server that creates
CouchDB client when initializing
(listing), 282–284

TCP. See TCP clients, building; TCP
command-line clients, building
(example)

TLS clients, building, 143–145
closing

connections (TCP), 105–106, 109–111
connections (TLS), 142, 144–145
fi les, 60–61
servers (TCP), 88
sockets (UDP), 134
TCP servers, 88

closures
asynchronous programming and, 19
JavaScript and, 18–19

code. See also source code
modules and, 23

code listings. See listings
collections

databases, 313
detecting value of, 193–194
fi ltering, 192–193
iterating over, 189–190
mapping, 190–191
MongoDB, 312
squaring and, 191–192

command line, reading from (UDP), 135
command-line clients

building (TCP). See TCP command-line
clients, building (example)

creating (TLS), 146–147
creating (UDP), 135–136

command-line interface (CLI), running
Node as, 8

commands, external, executing,
64–68

CommonJS module system, 24
CommonJS modules standard, 23
concurrency, controlling, 187, 188

bindex.indd 355bindex.indd 355 21/09/12 4:03 PM21/09/12 4:03 PM

356

Connect HTTP middleware framework – data

Connect HTTP middleware framework.
See also HTTP middleware

basics of, 198, 206
Connect HTTP server, 199
Connect middleware that writes headers

(listing), 200
Connect server that uses HelloWorld

middleware (listing), 199
Connect server that uses ReplyText

middleware (listing), 199
cookies, parsing, 212–213
errors, handling, 208–209
Express.js and, 217, 221
logging requests, 206–208
middleware bundled in, installing, 198
query strings, parsing, 210–211
ReplyText middleware (listing), 199
request body, parsing, 211–212
sessions, using, 213–216
simple component, 198–199
static fi les, serving, 209–210

connecting. See also CouchDB, connecting
to with Nano; Mongoose, connecting to
Mongo DB with

to MySQL databases, 268–269
reconnecting to servers (TCP), 108–109
to TCP servers, 104, 107
to TLS servers, 143

connections. See also client connections
(TCP)

closing (TLS), 142, 144–145
connection pools, 276
listening for (HTTPS), 150–151
listening for (TLS servers), 141–142
multiple to MySQL, 276
WebSockets, 244

conn.end() method, 105–106, 110
console.log function, 167–169
continuation-passing style (CPS), 36
controlling external processes. See external

processes
cookies

basics of, 212–213
parsing (Connect), 212–213
request module and (HTTP), 127

copying buffers, 32
core modules, 25–26
CouchDB, connecting to with Nano

CouchDB basics, 277–278
databases, connecting to, 281
dependency and, 278
documents, storing, 285
fi les, attaching to documents. See

CouchDB documents, attaching fi les to
Nano, 278
Socket.IO-based server that creates

CouchDB client when initializing
(listing), 282–284

views. See CouchDB views
CouchDB documents, attaching fi les to

Socket.IO-based chat client that presents
avatars (listing), 298–301

Socket.IO-based chat server that presents
avatars (listing), 305–309

CouchDB views
basics of, 286–287
New version of Socket.IO-based chat

client that formats messages (listing),
292–294

New version of Socket.IO-based chat
server that sends structured message
documents (listing), 294–297

Socket.IO-based server that creates
database and view you need (listing),
288–290

CPS (continuation-passing style), 36
cryptography basics, 139–140
CSR (Certifi cate Signing Request) fi les, 140
curl utility, 7, 201, 202, 205, 212

D

Dahl, Ryan, 3, 17–18
data

broadcasting (TCP chat servers), 91–92
listening for from child processes, 69–70
reading effi ciently from databases,

272–276
reading from connections (TCP chat

servers), 90

bindex.indd 356bindex.indd 356 21/09/12 4:03 PM21/09/12 4:03 PM

357

databases – event callbacks

receiving from servers (UDP), 136
securely adding to databases, 270–272
sending and receiving (TCP), 105
sending to child processes, 70–72
sending to servers (UDP), 135
streams and, 76–77
TLS and, 142, 144
writing into streams, 78

databases. See also document-oriented
databases; relational databases

persistent, for storing user data, 238
datagrams. See also UDP (User Datagram

Protocol)
defi ned, 129

dates
comparing, 161
date fi elds, adding (Mongoose), 328
tracking (Mongoose), 338–339

--debug option, 173
--debug-brk option, 173
debugging modules and applications

with console.log, 167–169
with debugger, 169–173
with Node Inspector, 173–175

Declaring named functions (listing), 179–181
decoding buffers, 32–33
deep equality, 160–161
deferring execution of functions, 46, 47–48
delays/no delays (TCP servers), 87–88
dependencies

async dependency, Mongoose and,
320–321

installing (Express.js), 219
Nano and, 278
New version of package.json manifest

containing request dependency
(listing), 329

NPM and, 8
packages and, 11–13
testing applications and, 158

design documents (CouchDB), 287, 288
detecting

disconnections, chats and, 254–255
using async.detect, 193–194

disconnections, detecting (chats), 254–255

document-oriented databases. See also
MongoDB

basics of, 311
vs. relational databases, 311

documents
in database collections, 313
design documents, CouchDB and, 287
fi les, attaching to CouchDB documents.

See CouchDB documents, attaching
fi les to

referencing documents (Mongoose),
341–347

storing (CouchDB), 285
downloading. See also websites for

downloading
Node source code, 6–7

draining of streams, 78

E

echo server, creating (UDP), 132–133
email fi elds, validating (Mongoose), 324
emitting events. See event emitters
encoding

creating buffers and, 30
request body (HTTP middleware), 211
Sending form-encoded request body

(HTTP), 125–126
Sending JSON-encoded request body

(HTTP), 126–127
encryption. See public keys
equality, assertions and, 160–161, 162
error handling

Connect, 208–209
inside middleware, 203–206
TCP connections and, 106
TCP servers, 88–89

errors
buffer operations and, 31
CouchDB, 282, 284
MongoDB error codes, 322–323
standard error stream, child processes

and, 70
validation errors (Mongoose), 325

event callbacks, 16

bindex.indd 357bindex.indd 357 21/09/12 4:03 PM21/09/12 4:03 PM

358

event emitters – folder modules, loading

event emitters
basics of, 35
creating, 41–43
defi ned, 35, 36, 37–38
event emitter API, 38–41
event emitter pattern basics, 36–37
event types, 37–38
standard callback patterns, 36

event listeners
binding multiple, 39–40
.removeAllListeners() function and,

41
.removeListener() function and, 38,

40, 41
removing from event emitters, 40

event loops
basics of, 16–17
blocking, 48
deferring function execution and, 47–48
escaping, 49
ticks, 47–48

Event Machine (Ruby’s), 17
event-driven programming, Node and, 16–17
EventEmitter object, console.log and,

168
events

basics of, 16
client events and HTML, 241
client events and JavaScript, 241
data events, receiving through closed

connections, 106
emitting, 42–43. See also event emitters
event types, event emitters and, 37–38
net.Server, (TCP servers) and, 84

exec function, in child_process module,
64

executable fi les, modules and, 11
executing, callbacks using .once() function,

40–41
exporting

functions, 25
modules, 24–28

Express.js for web applications
basics of, 217
initializing, 218–220

installing globally, 218
middleware, setting up, 220–222
routing requests. See routes, handling

(Express.js); routing requests
(Express.js)

external processes
child processes, spawning. See child

processes
external commands, executing, 64–68
need for creation and control of, 63
signaling and killing, 73–74

extracting fi le path components, 55–56

F

falsy values, 160
fi elds (MongoDB)

defi ned, 312
email fi elds, validating (Mongoose), 324
gender fi elds, 326–327
modifi ers and, 330
unique username fi elds, 322

fi le modules, loading, 26
fi le paths

defi ned, 54
manipulating, 54–57

fi les
attaching to CouchDB documents. See

CouchDB documents, attaching fi les to
basics of dealing with, 53–54
closing, 60–61
fi les descriptors, 53–54
fs module, 57–58
opening, 58
reading from, 59–61
servers that serve static fi les, building,

101–102
static fi les, serving (Connect), 209–210
writing to, 60

fi le-system streams, 79–80
fi ltering

collections, 192–193
database storage and, 331–332

fl ushed streams, 78
folder modules, loading, 26

bindex.indd 358bindex.indd 358 21/09/12 4:03 PM21/09/12 4:03 PM

359

formats – HTTP (HyperText Transfer Protocol)

formats
New version of Socket.IO-based chat

client that formats messages (listing),
292–294

when creating middleware components,
207–208

formatting, util.format function
and, 168

formidable third-party module, 301,
303–304

fs module
basics of, 57–58
fs.close(fd[,callback]) function,

60 fs.createReadableStream()
function, 79–80

fs.exists function, 56
fs.open function, 58
fs.read function, 59
fs.readFile function, 141, 143
fs.stat function, 57–58
fs.write function, 60

functions
declaring to avoid boomerang effect,

179–183
executing in series, callback fl ow and,

184–185
exporting, 25
in JavaScript, 18, 19

functions, scheduling with timers
basics of, 45–46
cancelling execution of, 46–47
deferring execution of, 46, 47–48
event loops and, 47–49
scheduling or canceling repetitive

execution, 47
serialization, forcing, 49–50

G

Geisendörfer, Felix, 301
gender fi elds (Mongoose), 326–327
GET requests (HTTP), 113–114
getters, using (Mongoose), 331–332
global mode (NPM), 9–10

global namespaces, JavaScript and, 23
Google Chrome inspector, debugging

and, 173

H

handler function, 302
handshake protocol (WebSockets), 242–243
headers

changing or setting (HTTP servers), 99
Connect middleware that writes a header

(listing), 200
http.serverresponse object, 98–99
Including WriteHeader middleware in

HelloWorld app (listing), 200
removing (HTTP servers), 99
req.headers (http.ServerRequest

object), 97
Sending custom headers (listing), 124
showing user’s login (Express.js),

230–231
writing (HTTP servers), 98

Hello World
Hello World! HTTP server, 95–96
HelloWorld server includes SaveRequest

middleware, 201
helper functions, async module, 183, 184
history of Node, 3
HTML (HypertText Markup Language)

client events and, 241
HTML fi le with Node.js HTTP server,

serving (listing), 245
platforms that support, 217
serving though Node.js servers,

244–245
HTTP (HyperText Transfer Protocol)

application frameworks, 198
basics of, 95, 113, 197
chats and, 241–242
CouchDB clients and, 281
HTML fi le with Node.js HTTP server,

serving (listing), 245
limitations of, 241–242
platforms that support, 217

bindex.indd 359bindex.indd 359 21/09/12 4:03 PM21/09/12 4:03 PM

360

HTTP (continued) – Jade templating language

HTTP (continued)
real-time web applications and,

241, 242
HTTP middleware
asynchronous, 200–201
callbacks, registering inside,

201–203
Connect basics, 198. See also Connect

HTTP middleware framework
handling errors inside, 203–206
middleware basics, 197–198
need for, 197–198
other middleware, 216

HTTP requests
basics of, 113
CouchDB connections and, 281
GET, 113–114
HTTP basics, 95, 113, 197
http.request function options,

114–115
pooling sockets with http.Agent,

116–118
response body, 116
response object attributes, 115–116
simplifying. See request module for

simplifying HTTP requests
HTTP servers

chunked encoding, 99–100
chunked response and timers, 102
creating, 95–96
HTTP basics, 95, 113, 197
http.ServerRequest object,

97–98
http.ServerResponse object, 98–99
securing with HTTPS, 149–152
shutting down, 101
simple static fi le servers, building,

101–102
http.ClientRequest instance, 152
http.request function, 37
HTTPS

building secure HTTP servers with,
149–152

clients, creating, 152–154
http.Server, TCP and, 83

I

_id fi elds (MongoDB), 344
indexes, defi ning (Mongoose), 340–341
inequality assertions, 160–161
inheriting, from event emitter, 42
init() function, debugging and, 171
initialized buffers, creating, 31
initializing

Express.js applications, 218–220
HTTPS clients, 152
TLS clients, 143
TLS servers, 141

installation wizards, 4–5
installing

async module, 183
modules, 10–11
Mongoose, 313
Nano, 278
node-mysql, 268
node-tap, 158
packages. See Node Package Manager

(NPM)
Redis servers, 260
request module (HTTP), 118–120
Socket.IO, 243–245

installing Node, 3–13
on Mac OS X, 5
Node basics, 3–4
Node history, 3
using source code, 6–8
on Windows, 4–5

instance methods, defi ning (Mongoose),
347–348

IrisCouch, 281
iterating, asynchronously, 189–190
iteration, async module and, 183

J

/j <room> command, Socket.IO chat client
that accepts (listing), 255–257

Jade templating language
Express.js and, 219
HTML encoding and, 231

bindex.indd 360bindex.indd 360 21/09/12 4:03 PM21/09/12 4:03 PM

361

JavaScript – listings

JavaScript
asynchronous programming and, 17–19
client events and, 241
CouchDB and, 277
history of, 23
Node and, 3–4, 18
truthy values and, 160

join command, chat rooms and, 257
joining fi le paths, 54
.js extension, loading modules and, 26
JSON

CouchDB and, 277
Sending JSON-encoded request body,

126–127

K

keep-alive functionality (sockets), 87
killing, external processes, 74
killSignal option, 65, 66

L

libraries
basic for Node, 6
connecting/communicating with MySQL

databases with, 268–269
libssl-dev, installing Node and, 6
listening

for connections (HTTPS), 150–151
for connections (TLS servers), 141–142
for data from child processes, 69–70

listings
+1 app application, testing, 71–72
+1 app example application, 70–71
package.json manifest containing request

dependency, 329
app.js fi le Express creates for you

(listing), 219–220
Application package.json manifest

fi le., 313
Application with bug, 169–170
Application with custom error

handler, 205

Article detail view template in views/
articles/article.jade, 345, 346

Article list partial template, 348
Article list template in views/articles/

index.jade, 346–347
Article model, 342
Article route listeners, 342
Article schema, 341–342
async.detect, using, 193–194
async.filter, using, 192–193
Async.parallel example, 185–186
async.queue, using, 187
Async.series example, 184–185
Boomerang effect, demonstration of,

178–179
Cascading using async.waterfall, 186
Changed layout fi le to include user info

on header, 231
Child process parsing environment

variable, 68
Client package.json manifest, 164
Command-line TCP client that

reconnects when disconnected,
111–112

Command-line UDP client, 136
Completed user route listeners, 225
Connect body parser middleware,

211, 213
Connect error handler, 208–209
Connect middleware that writes a

header, 200
Connect query string parser

middleware, 210
Connect server that uses HelloWorld

middleware, 199
Connect server that uses ReplyText

middleware, 199
Connect session middleware, 214
Connect static server middleware, 209
Connecting and querying MySQL, 268
Declaring named functions, 179–181
Error handling middleware, 204
Executing a command with augmented

environment variables, 67
Executing an external command, 64

bindex.indd 361bindex.indd 361 21/09/12 4:03 PM21/09/12 4:03 PM

362

listings (continued) – listings

listings (continued)
Fake users, 224
Generic fl ow control mechanism,

181–183
Generic ReplyText middleware, 199
Getting child process exit code, 73
Getting child process exit signal, 73
Hello World! HTTP server, 95–96
HelloWorld server includes SaveRequest

middleware, 201
HTML fi le with Node.js HTTP server,

serving, 245
HTTP chunked response and timers

example, 102
HTTP server that sums two integers, 163
Including WriteHeader middleware in

HelloWorld app, 200
Iterating over a collection using async.
forEach, 189–190

Lifecycle example of a TCP server,
84–85

Listening for child exit event, 72
Load User route middleware, 236
Load user route middleware using user

model, 315
Logger middleware, using, 206
Login form, 232
Making POST requests, 123–124
Making requests that will be redirected

by servers, 122
Making simple requests, 121
Mapping a collection using async.map,

190–191
Middleware component for loading an

article in routes/middleware//nlload_
article.js, 345

Middleware component that throws
errors, 203

Middleware that saves requests into fi les,
201

MySQL application, 274–275
New middleware to restrict user to

session user, 238
New user form template, 227–228
Not_logged_in middleware, 234

Package.json manifest containing async
dependency, 320

Parent process setting environment
variable, 68

Piping a movie to HTTP response, 100
Piping into sockets, 86
Piping out sockets, 86
Piping output of a process to HTTP

response, 100
Reducing a collection asynchronously

using async.reduce, 191–192
Request introspector HTTP server, 120
Routes/index.js, 223
Sending custom headers, 124
Sending form-encoded request body,

125–126
Sending JSON-encoded request body,

126–127
Server with middleware that throws

error, 203–204
Session routes, 229–230, 234–235
Simple echo TCP server, 85
Simple HelloWorld middleware, 198
Simple HTTP static fi le server, 101–102
Simple Socket.IO chat client, 249–250
Simple Socket.IO chat server, 247
Simple squaring server, 183–184
Simple TCP chat server, 92–93
Simple UDP server, 131
Simplifi ed error-handling middleware

component, 206
Socket.IO basic client, 244
Socket.IO chat client that accepts /j

<room> command, 255–257
Socket.IO chat client that supports user

login, 252–253
Socket.IO chat server that allows users to

join a room, 257–259
Socket.IO chat server that detects

disconnections, 254–255
Socket.IO chat server that supports user

login, 251–252
Socket.IO chat server that uses a Redis

store, 261–263
Socket.IO client, 244

bindex.indd 362bindex.indd 362 21/09/12 4:03 PM21/09/12 4:03 PM

363

Live Edit – memory

Socket.IO servers, setting up, 243
Socket.IO-based chat client that formats

messages, 292–294
Socket.IO-based chat client that presents

avatars, 298–301
Socket.IO-based chat server that presents

avatars, 305–309
Socket.IO-based chat server that sends

structured message documents,
294–297

Socket.IO-based server example you’ll
build upon, 279–280

Socket.IO-based server that creates
CouchDB client when initializing,
282–284

Socket.IO-based server that creates
database and view you need, 288–290

Spawning a child process, 69
Sum client module, 164
Sum client tests, 165–166
TCP chat server, 89–92
TCP client that attempts to reconnect,

109
TCP client that reconnects immediately,

108
TLS chat client, 146–147
TLS chat server, 145–146
User creation form using full_name

virtual attribute in/nlviews/users/new.
jade, 334–335

User creation form with birthday
fi eld in views/users//nlnew.jade
fi le, 328

User creation form with gender
fi eld in views/users//nlnew.jade,
326–327

User list template, 226
User list template using full_name virtual

attribute, 336
User model in data/models/user.js, 315
User Partial for Headers, 230–231
User profi le template, 227
User profi le template using full_name

virtual attribute/nlin views/users/
profi le.jade, 335

User profi le template using twitter_url
virtual attribute in/nlviews/users/
profi le.jade, 332–333

User routes, 234–235, 237
User routes now using user Mongoose

model, 316–317
User schema in data/schemas/user.js., 314
User schema with new enumerated

gender fi eld in data//nlschemas/user.js
fi le, 326

User schema with new validated email
fi eld in data/schemas//nluser.js, 324

User schema with unique index in data/
schemas/user.js, 322

User signup form, 233
Users list view, 224
Users list with paging in views/users/

index.jade, 318, 319–320
Users routes, 223

Live Edit, debugging and, 175
load balancers, WebSockets and, 260
loading modules, 24–28
local mode (NPM), 9, 10
logging requests (Connect), 206–208
login

Express.js, 232
Mongoose and, 323
Socket.IO chat client that supports user

login (listing), 252–253
Socket.IO chat server that supports user

login (listing), 251–252
long polling, defi ned, 242
Lua, blocking and non-blocking and, 17

M

Mac OS X, installing Node on, 5
mapping

CouchDB and, 286
synchronous iteration and, 190–191

maxElementsPerPage confi guration
variable, 318

memory
buffers and, 30, 32
loading fi les into, 36

bindex.indd 363bindex.indd 363 21/09/12 4:03 PM21/09/12 4:03 PM

364

messages – net module

messages
listening for (UDP), 130–131
message information (UDP), 132
multicast (UDP), 137–138
sending (UDP), 134
sending back to senders (UDP), 132–133
UDP and, 130
waiting for (UDP), 132

methods
event emitter API and, 38
instance methods, defi ning (Mongoose),

347–348
req.method (http.ServerRequest

object), 97
static methods, defi ning (Mongoose),

348–349
middleware. See also HTTP middleware

Load User route middleware
(listing), 236

method override middleware, Express.js
and, 221

Middleware component for loading an
article in routes/middleware//nlload_
article.js (listing), 345

route middleware, 234–238
router middleware (Express.js), 221
setting up (Express.js), 220–222
types of, 216
updating for Mongoose, 315

models (Mongoose)
Article model (listing), 342
basics of defi ning, 315
database access and, 313–314

modifi ers, using (Mongoose), 330–331
modules

assertion testing modules, 159–163
asynchronous modules, testing,

163–166
debugging. See debugging modules and

applications
exporting, 24–28
installing/uninstalling, 10–11
loading with Node, 24, 25–28
Mongoose module. See Mongoose,

connecting to Mongo DB with

testing. See testing modules and
applications

MongoDB, 312. See also Mongoose,
connecting to Mongo DB with

MongoHQ, 312
Mongoose, connecting to Mongo DB with

async dependency and, 320–321
basics (MongoDB), 312
basics (Mongoose), 313
default values, using, 338–339
getters, using, 331–332
indexes, defi ning, 340–341
installing Mongoose, 313
instance methods, defi ning, 347–348
login and, 323
making connections, 314
models, database access and,

313–314
models, defi ning, 315
models, using in route listeners, 315
modifi ers, using, 330–331
paging and, 318–320
referencing documents, 341–347
route behavior, modifying,

315–318
schemas, defi ning, 314
static methods, defi ning, 348–349
user creation route listener and,

321–322
validators, using, 324–330
virtual attributes, using, 332–338

multicast (UDP), 136–138
multicasting, 137
multi-threading, 15–16
MySQL. See node-mysql

N

names in Mongoose, 333–338
namespaces, building chats and, 259
Nano, 278. See also CouchDB, connecting to

with Nano
net module

connecting to TCP servers with, 104
TCP servers and, 83

bindex.indd 364bindex.indd 364 21/09/12 4:03 PM21/09/12 4:03 PM

365

net.createConnection() function – pipe() function, slow client problem and

net.createConnection() function, 105
net.Server

TCP servers and, 83, 84
TLS and, 141

networking streams, 80
Node

asynchronous programming and, 17–19
basics of, 3–4
closures and, 18–19
event-driven programming and, 16–17
history of, 3
HTML fi le with Node.js HTTP server,

serving (listing), 245
installing on Mac OS X, 5
installing on Windows, 4–5
installing using source code, 6–8
JavaScript and, 17–19
programming limitations and, 15–16

Node Inspector, 173–175
Node Package Manager (NPM)

basics of, 8
to install/uninstall and update packages,

9–13
NODE_ENV environment variable, 222
node_modules folder, loading from, 27
node-http-proxy module, 260
Node.js

browser-based chatrooms and, 245
servers, serving HTML fi les with, 245

node-mysql
data, reading effi ciently, 272–276
data, securely adding to databases,

270–272
installing, 268
libraries for connecting to MySQL

databases, 268–269
MySQL application (listing), 274–275

node-tap, 157–158. See also testing modules
and applications

node-v.pkg Macintosh installer, 5
normalize function (path module), 54
NoSQL. See also CouchDB, connecting to

with Nano
basics of, 277
document-oriented databases and, 311

notifi cation of child processes exits,
72–73

NPM. See Node Package Manager (NPM)

O

.on() function, binding callbacks and,
38–39

.once() function, executing callbacks and,
40–41

opening fi les, 58
OpenSSL library, 140
options method attribute, HTTP requests

and, 123

P

package.json fi les, 12–13
packages

dependencies and, 11–13
NMP basics, 8
NPM to install/uninstall and update,

9–13
paging, Mongoose and, 318–320
parallel

executing in, callback fl ow and, 185–186
parallel I/O requests, 320
parallelizing requests, 320–321

parsing (Connect)
cookies, 212–213
query strings, 210–211
request body, 211–212

passwords, Express.js login, 232–233
path module, 54
path.exists() function, 54, 56–57
pausing streams, 77
Perl, AnyEvent, 17
permissions

command failures and, 218
error events and, 84
installing Express.js and, 218
installing Node and, 7
installing packages and, 9

pipe() function, slow client problem and, 82

bindex.indd 365bindex.indd 365 21/09/12 4:03 PM21/09/12 4:03 PM

366

pipes, process.stdin.pipe (conn) – removing

pipes, process.stdin.pipe(conn)
command, 107, 110

piping
fi les (HTTP servers), 99–100
output (HTTP servers), 100
Piping into a socket (listing), 86
Piping movies to HTTP response

(listing), 100
Piping out a socket (listing), 86
into streams, HTTP requests and, 127
user input into servers (UDP), 135

placeholders
database security and, 271
reading database data and, 272

pooling sockets with http.Agent, 116–118
printing server messages (TCP), 107
private keys

basics of, 139–140
generating, 140
HTTPS servers and, 150

process.nextTick function, for deferring
function execution, 47–49

process.stdin stream, 107
process.stdin.pipe(conn) command,

107, 110
programming. See also asynchronous

programming
event-driven programming and Node,

16–17
Node programming limitations, 15–16

public keys
certifi cates, 140
cryptography basics, 139–140
generating, 140

Python
installing Node and, 6
Twisted, 17

Q

queries
ad-hoc (Mongoose), 340
CouchDB and, 277, 286, 290–291
fi le statistics, querying, 57–58

MongoDB and, 312
query results, sorting (Mongoose), 317

query strings
basics of, 210
parsing (Connect), 210–211

queuing, async.queue function, 187–189

R

Rails, 217
readable streams

assembling, 82
basics of, 75, 76–77
fi le-system streams, 79
networking streams, 80
slow client problem and, 80–81

reading, from fi les, 59–61
ReadStream function, 61
redirects, request module and (HTTP),

121–122
Redis

distributing server-side applications
using, 259–263

Nano and, 278
reducing, array.reduce function, 191–192
rejectUnauthorized option (HTTPS), 151
relational databases. See also CouchDB,

connecting to with Nano
connecting to, CouchDB and, 281
connecting/communicating with

(MySQL), 268–269
data, securely adding to, 270–272
vs. document-oriented databases, 311
problems with, 277
pros and cons, 267, 277
reading data effi ciently, 272–276

relative fi le paths, 55
.removeAllListeners() function,

removing event listeners using, 41
.removeListener() function, removing

event listeners using, 38, 40, 41
removing

event listeners, 40–41
headers (HTTP servers), 99

bindex.indd 366bindex.indd 366 21/09/12 4:03 PM21/09/12 4:03 PM

367

request body – schemas (Mongoose)

request body
encoding (HTTP), 125–127
in HTTP, 211
parsing (Connect), 211–212

request module for simplifying HTTP
requests

basics of, 118
cookie jars, 127
cookies, 127
installing and using, 118–120
redirects, 121–122
request body, encoding, 125–127
request options, 123–125
streaming, 127
testing server, 120–121

request module, functions, executing in
series and, 184

requestCert option (HTTPS), 151
requests

HTTPS, 152–153
http.ServerRequest object, 97–98
parallelizing (Mongoose), 320–321

require function, 24, 25
resolving fi le paths, 55
response body (HTTP), 116
response object attributes (HTTP), 115–116
responses

chunked, 116
HTTP chunked responses and timers,

102
http.serverresponse object, 98–99
response body (HTTP servers), 99, 116

responses, streaming chunked responses,
99–100

resuming streams, 77
Rogers, Mikeal, 118, 278, 329
route listeners

adding, 349
Article route listeners (listing), 342–344
Completed user route listeners (Express.

js) (listing), 225
models, using in route listeners

(Mongoose), 315
pages and, 318–320

user creation route listener and
(Mongoose), 321–322

router middleware (Express.js), 221
routes (Mongoose). See also route listeners

route behavior, modifying, 315–318
routes, handling (Express.js)

basics of, 222–223
Completed user route listeners

(listing), 225
Fake users (listing), 224
Load User route middleware, 236
New user form template (listing),

227–228
New version of routes/index.js (listing),

223
New version of session routes (listing),

234–235
New version of user routes (listing),

234–235, 237
restricting routes, 234
User list template (listing), 226
User profi le template (listing), 227
Users list view (listing), 224
Users routes (listing), 223

routing requests (Express.js)
basics of, 222
route middleware, 234–238
routes, handling. See routes, handling

(Express.js)
routing tables, 222
sessions, 229–233

rows, inserting/updating, 272
Ruby’s Event Machine, 17
running Node, 8

S

scalable network services, Node and, 3–4
scheduling of functions. See functions,

scheduling with timers
schemas (Mongoose)

Article schema (listing), 341–342
basics of, 314
defi ning, 314

bindex.indd 367bindex.indd 367 21/09/12 4:03 PM21/09/12 4:03 PM

368

scope variables, debugging and – Socket.IO for real-time web applications

scope variables, debugging and, 175
scopes, creating functions and, 19
Secure Socket Layer (SSL). See also TLS/SSL

for securing TCP servers
basics of, 139
OpenSSL library, 140

security, CouchDB and, 301
serialization, forcing, 49–50
servers

building (HTTPS), 149–152
building (UDP), 130–132
chat servers. See chat servers
command line, sending to (TCP), 107
connecting to (TCP), 104, 107
connecting to (TLS), 143
data and (TLS), 144
data and (UDP), 135, 136
installing and running Socket.IO on,

243–245
reconnecting to (TCP), 108–109
Redis servers, installing, 260
server messages, printing (TCP), 107
simple echo server, creating (UDP),

132–133
Simple Socket.IO chat server, 247
Socket.IO chat server that allows users to

join a room (listing), 257–259
Socket.IO chat server that detects

disconnections (listing), 254–255
Socket.IO chat server that supports user

login (listing), 251–252
Socket.IO chat server that uses a Redis

store (listing), 261–263
Socket.IO-based server example (listing),

282–284
TCP, defi ned, 103
testing server (HTTP request module),

120–121
TLS servers, building, 141–142
UDP and, 130

server-side applications, distributing,
259–263

server-side TCP socket streams, 76
session stores, 213–214, 216

sessions
Connect and, 213–216
Express.js and, 229–233
Session routes (Express.js), 229–230

setInterval function
for canceling repetitive function

execution, 47
child processes and, 72
forcing serialization and, 49–50
for repetitive function execution, 45

setters
database storage and, 331–332
names and, 337
virtual attributes and (Mongoose), 333

setTimeout function
for deferring function execution, 45, 46
forcing serialization and, 49–50
idle sockets and, 86–87

shallow equality, 160–161, 162
shutting down HTTP servers, 101
signals, child processes and, 73–74
size, of datagrams, 138
slicing, buffers, 32
slow client problem, 80–82
Socket.IO, CouchDB and

Socket.IO-based chat client that formats
messages (listing), 292–294

Socket.IO-based chat client that presents
avatars (listing), 298–301

Socket.IO-based chat server that presents
avatars (listing), 305–309

Socket.IO-based chat server that sends
structured message documents (listing),
294–297

Socket.IO-based server example (listing),
282–284

Socket.IO-based server that creates
database and view you need (listing),
288–290

Socket.IO for real-time web applications
basics of, 241, 243
building chats with, 245
installing and running on servers,

243–245

bindex.indd 368bindex.indd 368 21/09/12 4:03 PM21/09/12 4:03 PM

369

socket.keepAlive () call – TCP chat servers, building

Redis and, 260–261
Socket.IO client, 244
WebSockets basics, 242–243

socket.keepAlive() call, 87
sockets

closing (UDP), 134
pooling with http.Agent (HTTP),

116–118
sockets, TCP servers and

delays/no delays, 87–88
idle sockets, 86–87
keep-alive functionality, and, 87
Piping out a socket (listing), 86
socket object basics, 85–86

sorting query results (Mongoose), 317
source code

TCP clients, 111–112
using to install Node, 6–8

sparse indexes, 340
spawning child processes. See child processes
SQL injection, defi ned, 270–271
squaring of numbers, 183–184
standard error stream, child processes and,

70
standard input/output and error fi le

descriptors, 53–54
static assets, serving (Connect), 209–210
static fi les

servers that serve static fi les, building,
101–102

serving (Connect), 209–210
static methods, defi ning (Mongoose),

348–349
storing

in databases, getters and, 331–332
documents (CouchDB), 285
user data in persistent databases (Express.

js), 238
users in database memory (Express.js),

228
streaming

chunked responses, 99–100
request module and (HTTP), 127
response body (HTTP), 116

stream.pipe() function, slow client
problem and, 82

stream.resume() method, 77
streams

basics of, 75–76
ending of, 77
fi le-system streams, 79–80
http.request function and, 114
networking, 80
readable. See readable streams
server-side TCP socket streams, 76
slow client problem and, 80–82
standard error stream, child processes

and, 70
streaming response body

(HTTP), 116
TCP connections and, 103–104
writable, 75, 77–78

stream.setEncoding() function, 76
strings

= operator, string appearance
and, 231

console.log function and, 169
event types and, 37
query strings, parsing, 210–211

T

tail command, 69
tarball URL, 6
TCP (transmission control protocol)

basics, 103–104
servers, securing. See TLS/SSL for

securing TCP servers
TCP servers, defi ned, 103
vs. UDP, 129

TCP chat servers, building
client connections, accepting, 89–90
clients, collecting, 90–91
closed connections, removing, 92–93
data, broadcasting, 91–92
data, reading from connections, 90
getting started, 89
using chat servers, 93

bindex.indd 369bindex.indd 369 21/09/12 4:03 PM21/09/12 4:03 PM

370

TCP clients, building – unregistering events

TCP clients, building
connections, closing, 105–106
data, sending and receiving, 105
errors, handling, 106
servers, connecting to, 104
streams, basics, 103–104

TCP command-line clients, building
(example)

client source code, 111–112
command line, sending to servers, 107
connections, closing, 109–111
reconnecting to servers, 108–109
server messages, printing, 107
servers, connecting to, 107

TCP servers, creating
basics of, 83–85
client connections, listening for, 88
delay/no delay, 87–88
errors, handling, 88–89
idle sockets, 86–87
keep-alive functionality, 87
servers, closing, 88
socket object and, 85–86

templates
Article detail view and (listings), 345–347
Article list partial template (listing), 348
modifying (Mongoose), 334–336
New user form template, 227–228
New user form template (listing), 227–228
User list template (listing), 226
views/users/index.jade template,

paging and, 318–319
testing

chat servers, 93
servers (UDP), 131
Sum client tests (listing), 165–166
testing server (HTTP request module),

120–121
testing modules and applications

assert module, 159–161, 162
assertion functions in node-tap, 161–163
asynchronous modules, 163–166
node-tap basics, 157–158
tests, running, 159
tests, writing, 158–159

threads, 15–16
ticks, defi ned, 47
time, tracking (Mongoose), 338–339
timeouts, idle sockets and, 86–87
timers

HTTP chunked responses and, 102
scheduling with. See functions,

scheduling with timers
tls.connect function, 143, 144
TLS/SSL for securing TCP servers

basics of, 139
private/public keys, 139–140
TLS chat servers, creating, 145–146
TLS clients, building, 143–145
TLS command-line chat client, creating,

146–148
TLS servers, building, 141–142

transmission control protocol (TCP). See TCP
(transmission control protocol)

Transport Layer Security (TLS). See TLS/SSL
for securing TCP servers

truthy values, 159–160, 162
Twisted (Python), 17
Twitter, asynchronous validators and,

328–330

U

UDP (User Datagram Protocol)
basics of, 129–130
clients, building, 134
multicast, 136–138
servers, building, 130–132
simple command-line client, creating,

135–136
simple echo server, creating, 132–133
vs. TCP, 129

uninstalling modules, 10–11
unique indexes, 340
UNIX

fopen UNIX manual page, 58
installing Node on, 6–8
Node fi les and, 53
signals and their options, 66–67

unregistering events, 40

bindex.indd 370bindex.indd 370 21/09/12 4:03 PM21/09/12 4:03 PM

V413HAV
Typewritten Text
V413HAV

371

updating – writing

updating
modules, 11
packages. See Node Package Manager

(NPM)
URLs, req.url property (http

.ServerRequest object), 97
.use() method, adding middleware to

servers and, 207
User Datagram Protocol. See UDP (User

Datagram Protocol)
users

New middleware to restrict user to
session user (listing), 238

New user form template (listing),
227–228

separating into chat rooms, 255–259
User Partial for Headers (listing),

230–231
User profi le template (listing), 227
User profi le template using full_name

virtual attribute/nlin views/users/
profi le.jade (listing), 335

User profi le template using twitter_url
virtual attribute in/nlviews/users/
profi le.jade (listing), 332–333

users/profi le template (Express.js), 226
UTF-8-encoding

buffers and, 30, 32–33
streams and, 77

util.format function, 168

V

validating
age (Mongoose), 327–328
certifi cates (HTTPS), 151–152, 153–154
email fi elds (Mongoose), 324

validators, using (Mongoose), 324–330
value assignment (node-mysql), 271–272
values

default (Mongoose), 338–339
of fi elds, combining, 341
truthy and falsy, 159–160

var keyword, debugging and, 172
variables, storing, 18

verbs (HTTP), 114–115, 118–119
versioning, CouchDB and, 287
versions of Node, 6
views. See CouchDB views
virtual attributes (Mongoose), 332–338

W

waterfall, async.waterfall function, 186
web applications. See Express.js for web

applications
web chats, HTTP and, 241–242. See also

chats, building with Socket.IO
websites for downloading

Node, 4
tarball URL, 6
wget, 6

websites for further information
installing CouchDB, 278
installing Redis servers, 260
IrisCouch, 281
MongoDB, 312
MongoHQ, 312
Node, 4
node-http-proxy module, 260
public modules, 9
third-party middleware components, 216

WebSockets
basics of, 242–243
HTTP and real-time applications and,

242
wget, installing Node and, 6
Windows, installing Node on, 4–5
writable streams

assembling, 82
basics of, 75, 77–78
fi le writable streams, 80
networking streams, 80
slow client problem and, 80

WriteStream function, 61
writing

to fi les, 60
headers (HTTP servers), 98
response body (HTTP servers), 99
tests, 158–159

bindex.indd 371bindex.indd 371 21/09/12 4:03 PM21/09/12 4:03 PM

badvert.indd 372badvert.indd 372 21/09/12 9:57 PM21/09/12 9:57 PM

badvert.indd 373badvert.indd 373 21/09/12 9:57 PM21/09/12 9:57 PM

badvert.indd 374badvert.indd 374 21/09/12 9:57 PM21/09/12 9:57 PM

badvert.indd 375badvert.indd 375 21/09/12 9:57 PM21/09/12 9:57 PM

Try Safari Books Online FREE
for 15 days and take 15% off

for up to 6 Months*
Gain unlimited subscription access to thousands of books and videos.

START YOUR FREE TRIAL TODAY!

Visit: www.safaribooksonline.com/wrox

With Safari Books Online, learn without limits
from thousands of technology, digital media and
professional development books and videos from
hundreds of leading publishers. With a monthly or
annual unlimited access subscription, you get:

• Anytime, anywhere mobile access with Safari
To Go apps for iPad, iPhone and Android

• Hundreds of expert-led instructional videos on
today’s hottest topics

• Sample code to help accelerate a wide variety
of software projects

• Robust organizing features including favorites,
highlights, tags, notes, mash-ups and more

• Rough Cuts pre-published manuscripts

*Discount applies to new Safari Library subscribers

only and is valid for the fi rst 6 consecutive monthly

billing cycles. Safari Library is not available in all

countries.

badvert.indd 376badvert.indd 376 27/09/12 11:29 AM27/09/12 11:29 AM

http://www.safaribooksonline.com/wrox

Beginning JavaScript, 4th Edition
ISBN: 978-0-470-52593-7

JavaScript allows you to enhance your web pages and web applications by providing dynamic, personalized,

and interactive content. Serving as a great introduction to JavaScript, this book offers all you need to start

using JavaScript on your web pages right away. It’s fully updated and covers utilizing JavaScript with the latest

versions of the Internet Explorer®, Firefox®, and Safari® browsers.

JavaScript 24-Hour Trainer
ISBN: 978-0-470-64783-7

This unique book-and-DVD package shows you how to use JavaScript to make web pages more dynamic and

interactive so that you can create a first-rate user experience. Packed with expertly written lessons, this

must-have book-and-DVD set provides instructional demonstrations on the DVD that enhance your Java Script

learning experience through tutorial demos and helpful examples.

Professional JavaScript for Web Developers, 3rd Edition
ISBN: 978-1-118-02669-4

This updated version of the bestseller by veteran author and JavaScript guru Nicholas C. Zakas covers

JavaScript from its very beginning to the present-day incarnations including the DOM, Ajax, and HTML5. Zakas

shows you how to extend this powerful language to meet specific needs and create dynamic user interfaces

for the web that blur the line between desktop and internet. By the end of the book, you’ll have a strong

understanding of the significant advances in web development as they relate to JavaScript so that you can

apply them to your next website.

Professional jQuery
ISBN: 978-1-118-02668-7

This book gives you the hard-core jQuery chops you’ll need to solve whatever problems the web throws

at you. It focuses on the core library and how to integrate jQuery into your web pages. You’ll then dive

into applying jQuery in the real world by learning how to use jQuery UI, plugin development, templates,

JavaScript design patterns and more. With this information, you’ll be able to simplify the critical tasks

needed to build interactive websites.

Related Wrox Books

Beginning JavaScript, 4th Edition
ISBN: 978-0-470-52593-7

JavaScript allows you to enhance your web pages and web applications by providing dynamic, personalized,

and interactive content. Serving as a great introduction to JavaScript, this book offers all you need to start

using JavaScript on your web pages right away. It’s fully updated and covers utilizing JavaScript with the latest

versions of the Internet Explorer®, Firefox®, and Safari® browsers.

JavaScript 24-Hour Trainer
ISBN: 978-0-470-64783-7

This unique book-and-DVD package shows you how to use JavaScript to make web pages more dynamic and

interactive so that you can create a first-rate user experience. Packed with expertly written lessons, this

must-have book-and-DVD set provides instructional demonstrations on the DVD that enhance your Java Script

learning experience through tutorial demos and helpful examples.

Professional JavaScript for Web Developers, 3rd Edition
ISBN: 978-1-118-02669-4

This updated version of the bestseller by veteran author and JavaScript guru Nicholas C. Zakas covers

JavaScript from its very beginning to the present-day incarnations including the DOM, Ajax, and HTML5. Zakas

shows you how to extend this powerful language to meet specific needs and create dynamic user interfaces

for the web that blur the line between desktop and internet. By the end of the book, you’ll have a strong

understanding of the significant advances in web development as they relate to JavaScript so that you can

apply them to your next website.

Professional jQuery
ISBN: 978-1-118-02668-7

This book gives you the hard-core jQuery chops you’ll need to solve whatever problems the web throws

at you. It focuses on the core library and how to integrate jQuery into your web pages. You’ll then dive

into applying jQuery in the real world by learning how to use jQuery UI, plugin development, templates,

JavaScript design patterns and more. With this information, you’ll be able to simplify the critical tasks

needed to build interactive websites.

Related Wrox Books

	Professional Node.js®: Building Javascript-Based Scalable Software
	Copyright
	About the Author
	About the Technical Editor
	Credits
	Acknowledgments
	Contents
	Introduction
	Who This Book Is for
	What This Book Covers
	How This Book Is Structured
	What You Need to Use This Book
	Conventions
	Source Code
	Errata
	P2P.Wrox.Com

	Part I: Introduction and Setup
	Chapter 1: Installing Node
	Installing Node on Windows
	Installing on Mac OS X
	Installing Node Using the Source Code
	Choosing the Node Version
	Downloading the Node Source Code
	Building Node
	Installing Node
	Running Node

	Setting Up and Using Node Package Manager
	Using NPM to Install, Update, and Uninstall Packages

	Summary

	Chapter 2: Introducing Node
	Introducing the Event-Driven Programming Style
	How Node and JavaScript Make Writing Asynchronous Applications Easier
	What Are Closures?
	How Closures Help When Programming Asynchronously

	Summary

	Part II: Node Core API Basics
	Chapter 3: Loading Modules
	Understanding How Node Loads Modules
	Exporting a Module
	Loading a Module

	Summary

	Chapter 4: Using Buffers to Manipulate, Encode, and Decode Binary Data
	Creating a Buffer
	Getting and Setting Bytes in a Buffer
	Slicing a Buffer
	Copying a Buffer
	Decoding a Buffer
	Summary

	Chapter 5: Using the Event Emitter Pattern to Simplify Event Binding
	Understanding the Standard Callback Pattern
	Understanding the Event Emitter Pattern
	Understanding Event Types
	Using the Event Emitter API
	Binding Callbacks Using .addListener() or .on()
	Binding Multiple Event Listeners
	Removing an Event Listener from an Event Emitter Using .removeListener()
	Getting a Callback Executed at Most Once Using .once()
	Removing All Event Listeners from an Event Emitter Using .removeAllListeners()

	Creating an Event Emitter
	Inheriting from Node Event Emitter
	Emitting Events

	Summary

	Chapter 6: Scheduling the Execution of Functions Using Timers
	Using setTimeout to Defer the Execution of a Function
	Using clearTimeout to Cancel the Execution of a Function
	Scheduling and Canceling the Repetitive Execution of a Function
	Using process.nextTick to Defer the Execution of a Function Until the Next Event Loop Iteration
	Blocking the Event Loop
	Escaping the Event Loop
	Using setTimeout Instead of setInterval to Force Serialization
	Summary

	Part III: Files, Processes, Streams, and Networking
	Chapter 7: Querying, Reading from, and Writing to Files
	Manipulating File Paths
	Normalizing Paths
	Joining Paths
	Resolving Paths
	Finding the Relative Path Between Two Absolute Paths
	Extracting Components of a Path
	Determining the Existence of a Path

	Introducing the fs Module
	Querying File Statistics

	Opening a File
	Reading from a File
	Writing to a File
	Closing a File

	Summary

	Chapter 8: Creating and Controlling External Processes
	Executing External Commands
	Spawning Child Processes
	Creating the Child Process
	Listening for Data from the Child Process
	Sending Data to the Child Process
	Receiving Notification When the Child Process Exits

	Signaling and Killing Processes
	Summary

	Chapter 9: Reading and Writing Streams of Data
	Using a Readable Stream
	Waiting for Data
	Pausing and Resuming a Stream
	Knowing When the Stream Ends

	Using Writable Streams
	Writing Data into a Stream
	Waiting for a Stream to Drain

	Considering Some Stream Examples
	Creating File-System Streams
	Understanding Networking Streams

	Avoiding the Slow Client Problem and Saving Your Server
	Understanding the Slow Client Problem
	Avoiding the Slow Client Problem
	Using stream.pipe() to Prevent the Slow Client Problem and Assembling Readable and Writable Streams Using pipe()

	Summary

	Chapter 10: Building TCP Servers
	Creating a TCP Server
	Using the Socket Object
	Understanding Idle Sockets
	Setting Up Keep-Alive
	Using Delay or No Delay
	Listening for Client Connections
	Closing the Server
	Handling Errors

	Building a Simple TCP Chat Server
	Accepting Connections
	Reading Data from a Connection
	Collecting All the Clients
	Broadcasting Data
	Removing Closed Connections
	Using Your TCP Chat Server

	Summary

	Chapter 11: Building HTTP Servers
	Understanding the http.ServerRequest Object
	Understanding the http.ServerResponse Object
	Writing a Header
	Changing or Setting a Header
	Removing a Header
	Writing a Piece of the Response Body

	Streaming HTTP Chunked Responses
	Piping a File
	Piping the Output of Another Process

	Shutting Down the Server
	Example 1: Building a Server that Serves Static Files
	Example 2: Making Use of HTTP Chunked Responses and Timers
	Summary

	Chapter 12: Building a TCP Client
	Connecting to a Server
	Sending and Receiving Data
	Ending the Connection
	Handling Errors
	Building an Example Command-Line TCP Client
	Connecting to the Server
	Sending the Command Line to the Server
	Printing Server Messages
	Reconnecting if the Connection Dies
	Closing the Connection
	Putting the Client Together

	Summary

	Chapter 13: Making HTTP Requests
	Making GET Requests
	Using Other HTTP Verbs
	Inspecting the Response Object
	Obtaining the Response Body
	Streaming the Response Body

	Pooling Sockets Using http.Agent
	Using a Third-Party Request Module to Simplify HTTP Requests
	Installing and Using Request
	Creating a Testing Server
	Following Redirects
	Setting Some Request Options
	Encoding the Request Body
	Streaming
	Using a Cookie Jar

	Summary

	Chapter 14: Using Datagrams (UDP)
	Understanding UDP
	Understanding the Uses of UDP
	Building a Datagram Server
	Listening for Messages
	Testing the Server
	Inspecting Additional Message Information

	Creating a Simple Datagram Echo Server
	Waiting for Messages
	Sending Messages Back to Senders
	Putting the Echo Server Together

	Building a Datagram Client
	Creating the Client
	Sending Messages
	Closing the Socket

	Creating a Simple Datagram Command-Line Client
	Reading from the Command Line
	Sending Data to the Server
	Receiving Data from the Server
	Putting the Command-Line UDP Client Together

	Understanding and Using Datagram Multicast
	Receiving Multicast Messages
	Sending Multicast Messages
	Understanding Maximum Datagram Size

	Summary

	Chapter 15: Securing Your TCP Server with TLS/SSL
	Understanding Private and Public Keys
	Generating a Private Key
	Generating a Public Key

	Building a TLS Server
	Initializing the Server
	Listening for Connections
	Reading Data from the Client
	Sending Data to the Client
	Ending the Connection

	Building a TLS Client
	Initializing the Client
	Connecting to the Server
	Verifying the Server Certificate
	Sending Data to the Server
	Reading Data from the Server
	Ending the Connection

	Building Some Examples
	Creating a TLS Chat Server
	Creating a TLS Command-Line Chat Client
	Verifying the Client Certificate

	Summary

	Chapter 16: Securing Your HTTP Server with HTTPS
	Building a Secure HTTP Server
	Setting Up the Server Options
	Listening for Connections
	Validating the HTTPS Client Certificate

	Creating an HTTPS Client
	Initializing the Client
	Making the Request
	Validating the HTTPS Server Certificate

	Summary

	Part IV: Building and Debugging Modules and Applications
	Chapter 17: Testing Modules and Applications
	Using a Test Runner
	Writing Tests
	Running Tests

	Using an Assertion Testing Module
	Using the assert Module
	Using the Built-in Assertion Functions in Node-Tap

	Testing Your Asynchronous Module
	Summary

	Chapter 18: Debugging Modules and Applications
	Using console.log
	Using Node's Built-in Debugger
	Using Node Inspector
	Summary

	Chapter 19: Controlling the Callback Flow
	Understanding the Boomerang Effect
	Avoiding the Boomerang Effect by Declaring Functions
	Using the async Flow Control Library
	Executing in Series
	Executing in Parallel
	Cascading
	Queuing
	Iterating
	Mapping
	Reducing
	Filtering
	Detecting

	Summary

	Part V: Building Web Applications
	Chapter 20: Building and Using HTTP Middleware
	Understanding the Connect HTTP Middleware Framework
	Building Your Own HTTP Middleware
	Creating Asynchronous Middleware
	Registering Callbacks Inside Middleware
	Handling Errors Inside Middleware

	Using the HTTP Middleware Bundled in Connect
	Logging Requests
	Handling Errors
	Serving Static Files
	Parsing the Query String
	Parsing the Request Body
	Parsing Cookies
	Using a Session
	Other Available Middleware

	Summary

	Chapter 21: Making a Web Application Using Express.js
	Initializing Your Express.js Application
	Setting Up Middleware in Your Application
	Routing Requests
	Handling Routes
	Using Sessions
	Using Route Middleware

	Summary

	Chapter 22: Making Universal Real-Time Web Applications Using Socket.IO
	Understanding How WebSockets Work
	Using Socket.IO to Build WebSocket Applications
	Installing and Running Socket.IO on the Server
	Building a Real-Time Web Chat with Socket.IO
	Extending the Chat Application
	Detecting Disconnections
	Separating Users into Rooms
	Using Namespaces
	Distributing the Server-Side Application Using Redis

	Summary

	Part VI: Connecting to Databases
	Chapter 23: Connecting to MySQL Using node-mysql
	Using a Library to Connect to and Communicate with a MySQL Database
	Adding Data to the Database with Security Concerns in Mind
	Reading Data Efficiently
	Summary

	Chapter 24: Connecting to CouchDB Using Nano
	Installing Nano
	Connecting and Creating a Database
	Storing Documents
	Creating and Using CouchDB Views
	Attaching Files to a CouchDB Document
	Summary

	Chapter 25: Connecting to MongoDB Using Mongoose
	Installing Mongoose
	Understanding How Mongoose Uses Models to Encapsulate Database Access
	Connecting to MongoDB
	Defining a Schema
	Defining a Model
	Using Validators
	Using Modifiers
	Using Getters
	Using Virtual Attributes
	Using Default Values
	Defining Indexes
	Referencing Other Documents Using DB Refs
	Defining Instance Methods
	Defining Static Methods

	Summary

	Index
	Advertisement

