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INTRODUCTION
OpenStack	is	a	set	of	software	packages	that	manage	virtualized	resources,
including	computing,	networking,	and	storage.	It	enables	you	to	create	and
destroy	virtual	machines,	connect	them	together	with	private	networks,	provide
network-based	storage,	and	make	them	available	to	the	rest	of	your	network	and
the	world.	OpenStack	provides	consistent,	uniform	API	services	for	all	of	this,
hiding	hypervisor	and	vendor	specific	details	from	the	applications	that	are	using
the	APIs.	It	also	provides	a	user	interface,	built	on	top	of	the	same	APIs,	that
allows	users	to	see	and	manage	their	virtual	resources.



WHO	THIS	BOOK	IS	FOR
This	book	is	for	application	developers	that	are	interested	in	learning	more	about
OpenStack	and	how	it	will	transform	the	application	design	and	development
process.	It	is	for	someone	who	is	new	to	the	cloud	environment,	who	wants	a
broad	understanding	of	that	environment,	as	well	as	a	deep	enough	knowledge	to
make	practical	use	of	OpenStack.



WHAT	THIS	BOOK	COVERS
This	book	will	provide	a	broad	understanding	of	cloud	concepts	and	how	they	fit
into	the	life	of	an	application	developer.	It	will	drill	in	deeply	to	the	OpenStack
services	that	are	most	important	to	an	application	developer,	and	show	you	how
these	services	will	change	not	only	how	you	deploy	applications,	but	also	how	you
design	them.	It	will	provide	detailed	information	on	each	service,	and	provide
examples	of	how	each	service	may	be	used	by	an	application	developer.



HOW	THIS	BOOK	IS	STRUCTURED
This	book	was	written	in	two	parts.	Part	1	provides	an	overview	of	OpenStack.	The
purpose	of	this	part	is	to	lay	the	groundwork,	covering	all	of	the	OpenStack
technologies	and	what	is	most	important.

Part	2	takes	the	reader	through	developing	and	deploying	applications	with
OpenStack.	In	this	part	you	will	build	an	example	on	top	of	OpenStack	that	drills
down	much	deeper	on	the	technologies,	provides	tips,	and	helps	you	learn	about
OpenStack	through	the	lens	of	these	same	technologies.

Here	is	a	list	of	the	chapters:

Part	I:	OpenStack	Overview

Chapter	1:	Introduction	to	OpenStack

Chapter	2:	Understanding	the	OpenStack	Ecosystem:	Core	Projects

Chapter	3:	Understanding	the	OpenStack	Ecosystem:	Additional	Projects

Part	II:	Developing	and	Deploying	Applications	with	OpenStack

Chapter	4:	Application	Development

Chapter	5:	Improving	on	the	Application

Chapter	6:	Deploying	the	Application



WHAT	YOU	NEED	TO	USE	THIS	BOOK
You	should	understand	the	basics	of	application	development	-	how	applications
are	composed	of	multiple	servers	like	web	servers,	application	servers,	and
database	servers.	You	do	not	need	any	cloud-specific	knowledge,	though	you
should	be	aware	of	what	virtualization	and	virtual	machines	are,	and	have	a	basic
understanding	of	networks.



CONVENTIONS
To	help	you	get	the	most	from	the	text	and	keep	track	of	what’s	happening,	we’ve
used	a	number	of	conventions	throughout	the	book.

Examples	that	you	can	download	and	try	out	for	yourself	generally	appear	in	a	box
like	this:

EXAMPLE	TITLE
This	section	gives	a	brief	overview	of	the	example.



Source

This	section	includes	the	source	code.

Source	code

Source	code

Source	code



Output

This	section	lists	the	output:

Example	output

Example	output

Example	output

NOTE	Notes	indicates	notes,	tips,	hints,	tricks,	or	and	asides	to	the	current
discussion.

As	for	styles	in	the	text:

We	highlight	new	terms	and	important	words	when	we	introduce	them.

We	show	code	within	the	text	like	so:	persistence.properties.



SOURCE	CODE
As	you	work	through	the	examples	in	this	book,	you	may	choose	either	to	type	in
all	the	code	manually,	or	to	use	the	source	code	files	that	accompany	the	book.	All
the	source	code	used	in	this	book	is	available	for	download	at	www.wrox.com.
Specifically	for	this	book,	the	code	download	is	on	the	Download	Code	tab	at:

www.wrox.com/go/openstackcloudappdev

and	at:

https://github.com/johnbelamaric/openstack-appdev-book

You	can	also	search	for	the	book	at	www.wrox.com	by	ISBN	(the	ISBN	for	this
book	is	978-1-119-19431-6)	to	find	the	code.	And	a	complete	list	of	code	downloads
for	all	current	Wrox	books	is	available	at
www.wrox.com/dynamic/books/download.aspx.

Note	Because	many	books	have	similar	titles,	you	may	find	it	easiest	to
search	by	ISBN;	this	book’s	ISBN	is	978-1-119-19431-6.

Once	you	download	the	code,	just	decompress	it	with	your	favorite	compression
tool.	Alternately,	you	can	go	to	the	main	Wrox	code	download	page	at
www.wrox.com/dynamic/books/download.aspx	to	see	the	code	available	for	this
book	and	all	other	Wrox	books.

http://www.wrox.com
http://www.wrox.com/go/openstackcloudappdev 
https://github.com/johnbelamaric/openstack-appdev-book
http://www.wrox.com
http://www.wrox.com/dynamic/books/download.aspx
http://www.wrox.com/dynamic/books/download.aspx


ERRATA
We	make	every	effort	to	ensure	that	there	are	no	errors	in	the	text	or	in	the	code.
However,	no	one	is	perfect,	and	mistakes	do	occur.	If	you	find	an	error	in	one	of
our	books,	like	a	spelling	mistake	or	faulty	piece	of	code,	we	would	be	very	grateful
for	your	feedback.	By	sending	in	errata,	you	may	save	another	reader	hours	of
frustration,	and	at	the	same	time,	you	will	be	helping	us	provide	even	higher
quality	information.

To	find	the	errata	page	for	this	book,	go	to

www.wrox.com/go/openstackcloudappdev

And	click	the	Errata	link.	On	this	page	you	can	view	all	errata	that	has	been
submitted	for	this	book	and	posted	by	Wrox	editors.

If	you	don’t	spot	“your”	error	on	the	Book	Errata	page,	go	to
www.wrox.com/contact/techsupport.shtml	and	complete	the	form	there	to	send
us	the	error	you	have	found.	We’ll	check	the	information	and,	if	appropriate,	post
a	message	to	the	book’s	errata	page	and	fix	the	problem	in	subsequent	editions	of
the	book.

http://www.wrox.com/go/openstackcloudappdev
http://www.wrox.com/contact/techsupport.shtml


P2P.WROX.COM
For	author	and	peer	discussion,	join	the	P2P	forums	at	http://p2p.wrox.com.	The
forums	are	a	Web-based	system	for	you	to	post	messages	relating	to	Wrox	books
and	related	technologies	and	interact	with	other	readers	and	technology	users.
The	forums	offer	a	subscription	feature	to	e-mail	you	topics	of	interest	of	your
choosing	when	new	posts	are	made	to	the	forums.	Wrox	authors,	editors,	other
industry	experts,	and	your	fellow	readers	are	present	on	these	forums.

At	http://p2p.wrox.com,	you	will	find	a	number	of	different	forums	that	will	help
you,	not	only	as	you	read	this	book,	but	also	as	you	develop	your	own	applications.
To	join	the	forums,	just	follow	these	steps:

1.	 Go	to	http://p2p.wrox.com	and	click	the	Register	link.

2.	 Read	the	terms	of	use	and	click	Agree.

3.	 Complete	the	required	information	to	join,	as	well	as	any	optional	information
you	wish	to	provide,	and	click	Submit.

4.	 You	will	receive	an	e-mail	with	information	describing	how	to	verify	your
account	and	complete	the	joining	process.

NOTE	You	can	read	messages	in	the	forums	without	joining	P2P,	but	in
order	to	post	your	own	messages,	you	must	join.

Once	you	join,	you	can	post	new	messages	and	respond	to	messages	other	users
post.	You	can	read	messages	at	any	time	on	the	Web.	If	you	would	like	to	have	new
messages	from	a	particular	forum	e-mailed	to	you,	click	the	Subscribe	to	this
Forum	icon	by	the	forum	name	in	the	forum	listing.

For	more	information	about	how	to	use	the	Wrox	P2P,	be	sure	to	read	the	P2P
FAQs	for	answers	to	questions	about	how	the	forum	software	works,	as	well	as
many	common	questions	specific	to	P2P	and	Wrox	books.	To	read	the	FAQs,	click
the	FAQ	link	on	any	P2P	page.

http://p2p.wrox.com
http://p2p.wrox.com
http://p2p.wrox.com
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1	
Introducing	OpenStack
WHAT’S	IN	THIS	CHAPTER?																			

Models	of	cloud	computing

Relevance	of	cloud	computing	to	application	developers

Why	OpenStack	is	a	good	cloud	platform	choice

How	OpenStack	is	put	together



WHAT	IS	CLOUD	COMPUTING?
There	is	so	much	hype	around	cloud	computing	that	it	is	often	difficult	to	get	a
clear	sense	of	what	anyone	means	by	those	words.	Is	it	just	virtualization?	Is	it
Software-as-a-Service	(SaaS),	such	as	Microsoft’s	Office	365	and	Salesforce.com?
Or	is	it	the	ability	to	get	a	virtual	machine	instantly	from	Amazon	Web	Services
(AWS)	or	Azure?	And	what	about	online	storage	such	as	Dropbox?

Types	of	Cloud	Computing
The	reality	is	that	cloud	computing	refers	to	all	of	these	things	just	described	and
more.	The	National	Institute	of	Standards	and	Technology	(NIST)	has	come	up
with	an	“official”	definition	based	upon	five	key	components:	on-demand	self-
service,	broad	network	access,	pooled	resources,	elasticity,	and	metered	service.	In
general,	these	characteristics	may	be	provided	in	several	different	models.	These
models	help	sort	out	the	confusion	and	hype.	In	fact,	these	can	be	thought	of	as
layers	in	a	stack,	with	each	layer	being	built	on	top	of	the	previous	one	(see	Figure
1.1).

Figure	1.1		

In	Figure	1.1,	“Manually	Provisioned	Infrastructure”	represents	the	traditional
method	of	building	your	information	technology	infrastructure—this	is	not	cloud
computing.	In	this	environment,	physical	machines	are	racked,	connected,	and
configured	on	a	one-by-one	basis.	This	provides	complete	control,	but	requires
substantial	time	and	effort	to	build	out,	or	to	change	when	necessary.	Of	course,
all	clouds	need	to	run	on	physical	gear	at	some	point,	so	this	provides	the	basic
foundation	for	everything	else.	One	of	the	keys	to	making	cloud	computing
successful,	however,	is	to	move	the	complexity	out	of	this	layer	and	up	higher	in
the	stack.

Infrastructure-as-a-Service	(IaaS)	is	the	most	basic	layer	in	the	cloud	computing



stack.	This	is	OpenStack’s	primary	focus,	as	well	as	the	primary	focus	for	AWS.	It
enables	automated	or	self-service	provisioning	of	compute,	networking,	and
storage.	Typically,	these	resources	are	provided	as	Virtual	Machines	(VMs),	but
you	could	also	use	it	to	spin	up	bare	metal	servers	(i.e.	physical	hosts).	This	is
known	as	“Metal-as-a-Service,”	and	OpenStack	provides	a	project	for	managing
this	service	as	well.	Alternatively,	you	can	also	spin	up	containers	rather	than	VMs
or	bare	metal	servers.	The	essential	point	is	that	it	enables	the	provisioning	of
compute	instances,	with	(optionally)	attached	networking	and	storage.

Platform-as-a-Service	(PaaS)	builds	on	top	of	IaaS	to	enable	the	provisioning	of
applications,	rather	than	simply	the	infrastructure	that	might	be	used	to	run	the
application.	So,	a	PaaS	provides	core	common	services	needed	by	applications,
along	with	the	machinery	to	configure	and	deploy	applications	to	use	those
services.	A	PaaS	typically	will	provide	a	complete	application	stack	(web	server,
application	server,	database	server,	etc.)	into	which	you	can	easily	deploy	your
application.	Heroku	(https://www.heroku.com)	is	an	example	of	a	popular	PaaS	for
applications	built	with	a	variety	of	standard	frameworks,	such	as	Ruby-on-Rails.
With	Heroku	you	can	deploy	your	application	to	the	Internet	with	a	simple	git
push.	As	the	application	author	and	deployer,	you	don’t	need	to	worry	about
configuring	and	deploying	the	different	tiers,	or	even	worry	about	how	to	scale
them.	If	you	follow	the	Heroku	conventions,	everything	is	handled	by	the	PaaS.

Software-as-a-Service	(SaaS)	is	the	layer	farthest	from	the	underlying	physical
infrastructure.	It	may	be	built	on	IaaS	or	a	PaaS,	but	need	not	be—the	point	is	the
user	never	really	knows.	This	is	the	simplest	form	of	cloud	computing	from	the
point	of	view	of	the	user	because	they	have	no	insight	into	the	actual	mechanics	or
systems	behind	the	service.	It’s	just	a	service	they	use.	Often	this	is	provided	in	the
form	of	a	website,	such	as	Salesforce.com.	But	you	can	also	get	lower-level	services
such	as	Database-as-a-Service,	where	you	simply	request	via	an	API	(or	website)
for	a	database	with	certain	parameters,	and	are	given	an	IP	and	port	to	connect	to.
As	a	user	of	the	service,	you	don’t	need	to	worry	about	how	to	scale	that	service—
though	you	will	need	to	pay	more	as	your	use	of	the	service	increases.

Put	succinctly,	IaaS	provides	the	tools	to	“build”	your	systems	from	the	ground	up.
PaaS	allows	you	to	“deploy”	your	applications,	without	needing	to	worry	about	the
underlying	infrastructure.	SaaS	allows	you	to	“buy”	your	applications—you	do	not
even	need	to	deploy	or	manage	them	at	all.	This	is	a	steady	progression	of
decreasing	control	and	complexity,	while	increasing	direct	business	value.

While	these	are	general	models	for	cloud	computing,	in	reality	the	distinctions
between	them	are	not	always	crystal	clear.	The	relationship	of	SaaS	to	PaaS	in
particular	can	be	complicated.	A	specific,	complex	Software-as-a-Service	may	use
PaaS	or	even	other	more	granular	Software-as-a-Service.	Even	a	PaaS	may
assemble	lower-level	pieces	as	a	collection	of	software	services.	For	example,	most
services	will	require	an	identity	management	(authentication,	authorization,	and
accounting)	service.	This	identity	service	is	one	of	the	key	features	a	PaaS	provides

https://www.heroku.com


to	applications.	However,	there	is	no	reason	that	service	cannot	be,	in	turn,
provided	by	some	external	SaaS!	In	this	case,	a	key	function	of	the	PaaS	is
provided	via	a	low-level	SaaS.

Cloud	Infrastructure	Deployment	Models
In	addition	to	the	functionality	provided	by	a	cloud,	there	are	several	different
deployment	models	for	clouds.	Public	clouds	are	the	ones	familiar	to	most
developers.	These	cloud	services	are	made	available	to	the	general	public	for	a	fee.
The	fee	is	generally	on	a	usage	basis,	enabling	organizations	to	utilize	their
operating	budgets	rather	than	their	capital	budgets.	The	customers	have	no	need
to	maintain	or	operate	the	hardware	or	cloud	infrastructure,	leaving	that
responsibility	completely	to	the	cloud	operator.

Amazon	Web	Services	(AWS)	is	currently	the	largest	public	cloud	and	dominates
the	industry.	Microsoft	and	VMware	also	operate	public	clouds,	and	a	number	of
service	providers	do	as	well.	Rackspace,	in	particular,	provides	an	OpenStack-
based	public	cloud,	and	is	one	of	the	primary	contributors	to	the	OpenStack
project.

Private	clouds,	on	the	other	hand,	are	internal	to	an	organization.	They	represent
the	evolution	of	the	traditional	corporate	data	center.	Only	internal	customers
within	the	enterprise,	and	perhaps	close	partners,	use	private	clouds.	The
corporate	IT	department	or	a	contractor	will	purchase,	setup,	and	maintain	the
hardware	and	software	for	the	cloud.	The	cloud	infrastructure	may	use	chargeback
to	distribute	costs	among	the	business	units,	but	the	cloud	itself	is	still	dedicated
to	the	single	enterprise.

Organizations	may	operate	private	clouds	for	a	number	of	reasons.	The	cost	of	a
private	cloud,	if	well	run,	may	be	less	than	utilizing	the	public	clouds.
Additionally,	many	industries	have	security	or	regulatory	reasons	that	disallow	the
use	of	a	public	cloud	for	many	workloads.	These	organizations	are	required	to	run
those	workloads	in	a	private	cloud.	See	Figure	1.2	for	a	look	at	the	structure	of
public,	private,	and	hybrid	clouds.



Figure	1.2

Hybrid	clouds	combine	both	private	and	public	clouds.	The	goal	with	hybrid
clouds	is	to	keep	general	operating	costs	low	by	using	the	private	cloud	for	most	of
the	workloads,	but	to	enable	spillover	into	the	public	cloud	when	necessary.	The
spillover	could	happen	due	to	capacity	reasons—perhaps	during	the	holiday
season	your	private	cloud	doesn’t	have	enough	capacity—or	for	disaster	recovery.
This	model	avoids	the	capacity	constraints	of	a	private	cloud	while	still	keeping
costs	under	control.



WHY	SHOULD	I	CARE?
As	an	application	developer	or	architect,	you	may	wonder—why	does	all	of	this
matter	to	me?	All	of	this	discussion	covered	so	far	focuses	on	the	reason	a
business	may	want	to	move	to	the	cloud.	But	why	should	that	affect	the
application	developer?	The	answer	lies	in	a	couple	of	different	areas:	the	effect	on
the	development	process,	and	the	effect	on	your	application	architecture.

Cloud	services	enable	much	more	efficient	processes	for	managing	development,
test,	and	production	environments.	These	updated	processes	and	methods
represent	the	“DevOps”	mentality—applying	standard	software	development
practices,	such	as	source	code	version	control,	to	the	operational	aspects	of	the
application.	This	means	capturing	all	of	the	configuration	and	deployment
information	in	scripts	and	templates,	and	controlling	their	changes	just	as	you
would	application	code.

Scripts	and	templates	can	be	built	that	produce	a	complete	application
environment.	These	can	be	used	to	automatically	deploy	not	only	the	application,
but	also	infrastructure	required	for	the	application,	including	virtual	machines,
networking,	firewalls,	load	balancers,	domain	name	services—you	name	it,	and
someone	is	working	on	making	it	available	“as-a-Service.”	By	automating	the
creation	and	destruction	of	these	environments,	you	can	ensure	consistency
between	development,	test,	and	production	environments.	For	complex
applications	with	many	different	services	running	on	different	machines,	this	can
be	a	dramatic	time	saver.

OpenStack,	and	“as-a-Service”	thinking	in	particular,	will	also	end	up	changing
the	software	and	deployment	architectures	of	your	application.	By	relegating	the
common	and	routine	functions	to	the	cloud	infrastructure,	you	free	your	time	and
thought	to	focus	on	the	most	important	thing—your	application’s	functionality.
For	example,	a	traditional	application	that	allows	large	file	uploads	will	need	to
designate	temporary	and	permanent	storage	locations	for	those	files,	and	manage
the	storage	resources	to	ensure	that	the	disk	doesn’t	fill.	The	system	administrator
or	deployer	will	need	to	devise	a	strategy	to	backup	that	data	or	replicate	it	to
other	data	centers.	But	with	the	right	cloud	platform,	you	can	simply	delegate	that
function	to	the	infrastructure,	and	get	all	of	the	benefits	without	devoting	special
effort.

Designing	your	application	to	work	with	the	cloud	services	also	dramatically
simplifies	scaling	the	application.	The	scalability	of	the	individual	services
becomes	the	responsibility	of	the	cloud	operator,	not	the	application	developer	or
administrator.	As	long	as	the	application	makes	effective	use	of	those	services,	it
will	scale	as	needed	with	little	to	no	work	from	the	developers	themselves.

Being	able	to	utilize	“as-a-Service”	functions	is	one	way	your	design	will	shift.
Another	is	to	plan	for	horizontal	scaling	rather	than	vertical	scaling.	That	is,
scaling	by	adding	more	machines	(horizontally)	rather	than	creating	bigger



machines	(vertically).	With	most	applications	today,	it	is	easiest	to	scale	by	getting
a	bigger,	faster	machine.	This	locks	you	into	planning	for	peak	capacity	of	each
application	individually.	For	each	application	you	need	to	provision	the	largest
machine	you	may	need	at	peak	load.	But	with	applications	built	for	the	cloud,	you
instead	scale	by	adding	more	machines.	These	machines	can	be	smaller,	and	with
cloud	automation,	can	be	added,	removed,	or	resized	as	needed.	This	ability	to
scale	up	and	down	as	needed	is	called	elastic	scaling,	and	is	one	of	the	key
features	of	cloud	computing.

A	frequently	used	analogy	is	that	traditional	servers	are	like	“pets,”	while	cloud-
based	servers	are	“cattle.”	This	describes	a	necessary	shift	in	mentality	for	a
traditional	application	architect.	The	idea	is	that	a	pet	is	unique	and	special,	with
its	own	unique	name.	A	lot	of	resources	are	spent	to	raise	and	nurture	one,	and	if
it	is	sick,	it	will	be	nursed	back	to	health.	Cattle,	on	the	other	hand,	are	not	treated
specially	or	carefully	raised.	They	are	treated	en	masse—they	are	given	numbers,
not	names—and	a	sick	one	is	culled	to	prevent	any	spread	of	disease	through	the
herd.

The	implication	here	is	that	cloud-based	servers	should	be	disposable	and	easily
re-deployed,	and	not	require	careful	hand	configuration.	That	way,	if	there	is	a
problem	with	one,	you	do	not	spend	time	trying	to	figure	it	out	and	fix	it—you
simply	replace	it	with	a	new	one.	This	is	the	logical	extension	of	the	ability	to	scale
elastically.	Why	take	the	time	to	figure	out	what’s	wrong	with	a	machine	when	it’s
behaving	badly?	Just	pull	it	out	of	the	application	and	replace	it	with	a	new	one
while	you	debug	the	problem	(not	to	fix	that	machine,	but	to	prevent	the	issue	in
the	future).

What	Is	OpenStack?
OpenStack	bills	itself	as	a	“cloud	operating	system.”	Fundamentally,	it	solves	the
IaaS	problem.	It	provides	the	ability	to	abstract	the	physical	compute,	storage,	and
networking	resources	into	pools.	Those	resources	can	then	be	divvied	up	among
users	in	a	secure	way.	Users	only	need	to	pay	for	what	they	are	using,	rather	than
having	to	provision	their	applications	for	peak	load.

OpenStack	is	a	collection	of	open	source	software	projects,	backed	by	a	non-profit
organization,	the	OpenStack	Foundation.	These	projects	work	together	to	provide
a	consistent	API	layer,	while	enabling	the	actual	services	to	be	provided	by	a
variety	of	different	vendor	or	open	source	implementations.	At	the	core,	these
services	include	the	functionality	you	need	to	run	a	cloud,	that	is,	the	ability	to
spin	up	virtual	machines,	the	ability	to	allocate,	manage,	and	share	storage	among
those	machines,	and	the	ability	enable	these	machines	to	communicate	with	one
another	securely	over	the	network.



KEEPING	TRACK	OF	RELEASES
OpenStack	has	official	releases	every	six	months.	In	order	to	make	it	easier	to
keep	track	of	all	these	releases,	they	are	given	names	in	alphabetical	order.
Below	is	the	name	of	each	release,	and	its	release	date,	through	the	Liberty
release.

Austin:	October	2010

Bexar:	February	2011

Cactus:	April	2011

Diablo:	September	2011

Essex:	April	2012

Folsom:	September	2012

Grizzly:	April	2013

Havana:	October	2013

Icehouse:	April	2014

Juno:	October	2014

Kilo:	April	2015

Liberty:	October	2015

In	addition	to	the	release	name,	each	release	is	identified	by	the	year	and
release	during	that	year—<year>.<release>.<patch>.	For	example,	Kilo	is	also
known	as	2015.1,	as	the	first	release	in	2015.	Patch	releases	for	Kilo	are
2015.1.1,	2015.1.2,	etc.	The	second	major	release	of	2015	is	Liberty,	which	is
also	known	as	2015.2.

All	of	these	services	are	accessible	via	RESTful	APIs,	as	well	as	command-line
interfaces	and	a	web-based	user	interface	called	Horizon.	Horizon	is	convenient
for	setting	up	things	on	an	ad-hoc	basis,	but	doesn’t	offer	the	full	capabilities	of
the	APIs—and	of	course	the	APIs	and	CLI	tools	can	be	easily	scripted	(see	Figure
1.3).



Figure	1.3

The	next	table	shows	the	major	services	provided	by	OpenStack,	along	with	their
names.	OpenStack	community	members	will	usually	refer	to	each	service	by	its
name,	so	it’s	helpful	to	see	them	all	in	one	place	and	get	a	handle	on	what	each	one
does.	In	fact,	there	are	many	more	services,	but	these	are	the	most	common	ones
you	will	find.



Name Service Description

Horizon Dashboard A	graphical	user	interface	for	managing	your	cloud

Keystone Identity Authentication,	authorization,	and	OpenStack	service
information

Nova Compute Spin	up,	manage,	and	terminate	virtual	machines

Cinder Block	Storage Disk	volumes	(that	outlive	an	instance)	and	snapshots
of	instances

Swift Object
Storage

Shared,	replicated,	redundant	storage	for	images,	files,
and	other	media	accessible	via	Hypertext	Transfer
Protocol	(HTTP)

Neutron Network Provide	secure	tenant	networking

Glance Image Provide	storage	and	access	to	VM	images	and
snapshots

Heat Orchestration Spin	up	groups	of	machines,	networks,	and	other
resources	via	templates

Designate DNS Create	domains	and	records	in	the	DNS	infrastructure

Ceilometer Telemetry Monitor	resources	usage	across	the	cloud

Trove Database Provide	access	to	private	tenant	databases

Ironic Bare	Metal Spin	up	instances	on	physical	hardware

Magnum Containers Manage	containers	within	instances

Murano Application Deploy	packaged	applications	across	multiple
instances

Sahara Data
Processing
Cluster

Provides	a	Hadoop	or	Spark	cluster	as	a	service

A	default	installation	of	OpenStack	will	include	“reference”	versions	of	each
service.	For	example,	by	default	an	OpenStack	cloud	will	use	the	Kernel-based
Virtual	Machine	(KVM)	hypervisor	to	manage	virtual	machines.	One	of	the	most
important	aspects	of	the	OpenStack	architecture,	however,	is	the	driver	or	plugin-
based	nature	of	each	service.	With	this	design,	you	can	use	an	implementation
other	than	the	reference	one.	In	your	cloud,	you	can	swap	out	KVM	with	ESXi,
Xen,	or	other	hypervisors.	The	APIs	used	to	launch	and	manage	VMs	remain	the
same,	regardless	of	the	underlying	hypervisor.	This	same	concept	extends	across
OpenStack	services,	enabling	the	same	APIs	with	different	service
implementations.

This	level	of	flexibility	behind	the	scenes,	while	providing	a	consistent	API,	is	one
of	the	keys	to	the	success	of	OpenStack.	Users	can	build	their	applications	and
automation	on	top	of	OpenStack,	without	having	to	worry	that	they	are	locking



themselves	into	a	single	backend	provider	of	computer,	networking,	or	storage.
The	APIs	won’t	change	even	if	they	swap	out	the	backend.

OpenStack	is	frequently	used	in	enterprises	for	private	clouds,	though	there	are
some	public	cloud	services	that	are	based	on	it.	There	are	also	companies	that	will
create	and	operate	a	private	OpenStack	cloud	for	you	within	their	data	centers.	In
this	case,	the	hardware	is	not	shared	with	other	customers,	so	you	have	the
predictability	and	security	of	the	private	cloud	but	do	not	have	to	find	and	hire	the
experts	to	maintain	it.

Even	in	private	cloud	environments,	OpenStack	is	a	multi-tenant	cloud	platform.
This	means	that	multiple	users	or	groups	of	users—tenants—can	utilize	the
physical	resources	of	the	cloud,	while	keeping	all	of	their	virtualized	resources
private.	For	a	tenant,	the	OpenStack	environment	appears,	for	the	most	part,	to	be
theirs	and	theirs	alone.	But	for	the	operator,	the	underlying	physical	resources
and	software	systems	are	shared.	In	OpenStack,	tenants	are	also	sometimes
referred	to	as	projects.

In	a	multi-tenant	OpenStack	cloud,	each	tenant	is	allocated	a	quota	for	the	various
types	of	resources	that	may	be	used.	The	quota	provides	a	maximum	limit	for	that
tenant	for	that	particular	resource.	You	will	have	a	quota	for	CPUs,	memory,
storage,	networks,	subnets,	and	floating	IPs,	among	other	resources.	This	prevents
any	single	tenant	from	consuming	all	of	the	resources.

Why	OpenStack?
There	are	a	number	of	cloud	management	platform	options	out	there.	The	most
obvious	and	dominant	player	is	VMware	with	their	vRealize	suite	of	software.	So,
why	should	you	take	your	time	to	learn	about	OpenStack	rather	than	vRealize,
AWS,	Azure,	CloudStack,	or	any	of	the	other	solutions?

About	15	years	ago,	IT	professionals	faced	a	very	similar	set	of	questions	about
Linux	and	proprietary	UNIX	systems.	Solaris,	HP-UX,	AIX	and	their	competitors
were	solid,	well	known,	and	widely	deployed	products,	whereas	Linux	was	a
graduate	student’s	project	that	was	difficult	to	install	and	operate	and	was	fairly
immature,	with	driver	and	other	compatibility	issues.	It	was	not	clear	at	all	at	the
time	that	spending	effort	learning	and	understanding	Linux	was	worth	it.	History
though,	has	proven	that	such	a	choice	would	have	been	the	right	one.	All	of	those
expensive,	proprietary	UNIX	implementations	have	lost	their	value	proposition—
they	really	don’t	have	much	that	is	unique	to	offer	anymore.	Linux	has	continued
to	grow	and	has	taken	over	most	of	the	environments	where	those	systems	once
thrived.

This	isn’t	just	a	simple	analogy.	There	is	a	relentless	pressure	in	this	industry	to
reduce	costs,	and	to	increase	the	velocity	of	feature	delivery—deliver	more,	faster,
and	cheaper.	The	way	to	achieve	“more,	faster”	is	standardization.	This	is	the	same
basic	principle	as	building	libraries	and	frameworks	in	programming.	A	standard
architecture	behaves	in	a	predicable	manner,	providing	core	services	on	which	you



can	rely	and	build.	There	is	no	need	to	repeat	the	process	of	developing	that
architecture	over	and	over,	allowing	you	to	focus	on	the	new	functionality.

The	way	you	achieve	“cheaper”	is	to	make	those	standards	open	and	free.	This
combination	of	open	and	standard	leads	to	commoditization—essentially	the
development	of	interchangeable	components	that	are	the	same	regardless	of	the
manufacturer	or	vendor.	Commodities	imply	a	lot	of	competition,	and	there	is
little	or	no	product	differentiation	for	which	to	charge	extra.	This	drives	down	the
costs	dramatically.

Linux	has	both	of	these	characteristics—open	and	standard—in	UNIX-like
operating	systems,	and	that	is	why	it	won.	Not	because	it	was	better,	but	because	it
was	cheaper	and	faster	to	use	as	a	base	for	building	new	functionality.	Linux	is	just
one	example,	of	course.	This	story	has	repeated	over	and	over	in	the	technology
industry.	With	machine	architectures	we	have	the	x86	platform,	and	standard
architectures	for	memory,	disks,	and	serial	bus-based	peripherals.

In	fact,	if	you	take	the	broader	view,	you	can	see	that	the	commoditization	has
continuously	moved	up	the	value	chain.	It	started	with	hardware,	moved	to
operating	systems,	and	these	days	even	sophisticated	databases	and	distributed
system	components	are	being	commoditized.	In	databases,	we	used	to	have
Informix,	DB2,	Oracle,	Sybase,	and	others.	But	MySQL	and	PostgresSQL	are	open
and	standard,	and	they	have	completely	dominated	the	low-end	of	the	database
market.	Oracle	still	leads	in	the	high-end,	and	is	able	to	provide	value	in	those
more	specialized	environments,	but	as	the	open	source	products	improve,	the
space	for	the	proprietary	vendors	constricts.

In	some	way,	cloud	computing	is	the	culmination	of	this	commoditization	process
in	the	industry.	Broadly,	you	can	think	of	the	revolution	happening	in	the
computing	industry	as	a	refocusing	of	the	industry	on	the	core	functions	of
computing.	The	abstraction	of	the	computing	infrastructure	into	simply	compute,
storage,	and	networking	components,	and	breaking	of	these	out	from	being
vertically	integrated,	to	horizontally	integrated,	is	truly	transformative.	It	brings
full	commoditization	to	these	elements,	which	are	the	basic	foundation	of	the
industry.

Cloud	platform	management	will	follow	the	same	pattern.	The	proprietary
platforms	like	vRealize	will	thrive	for	a	time,	but	in	the	long	run	the	open	and
standard	systems	will	win.	While	there	may	always	be	a	place	for	the	proprietary
solutions	in	more	specialized	environments,	the	most	common	platforms	will	be
open	source.	You	can	see	this	already	happening:	the	Zenoss	2014	State	of	the
Open	Source	Cloud	Survey	(http://www.zenoss.com/resource-center/white-
papers)	found	that	30	percent	of	respondents	were	already	using	an	open	source
cloud,	up	72	percent	from	17.2	percent	in	2012.	Another	34	percent	of	the
respondents	planned	to	implement	an	open	source	cloud	in	the	future.
Understanding	this	gives	you	an	advantage	to	focus	on	the	eventual	winner,
instead	of	chasing	what	will	ultimately	be	a	setting	star.

http://www.zenoss.com/resource-center/white-papers


There	are	several	open,	standard	cloud	management	platforms.	So	even	if	you
believe	that	the	bet	on	open	and	standard	is	the	way	to	go,	why	should	you	bet	on
OpenStack?	The	answer	here	is	simple—momentum.	OpenStack	is	by	far	the	most
widely	used	and	supported	open	source	cloud	management	platform,	and	it	has
the	largest	community	of	developers	and	vendors	push	it	forward.	The	same
survey	mentioned	above	found	that	69	percent	of	respondents	with	an	open
source	cloud	were	using	OpenStack	in	2014,	up	from	51	percent	in	2012.	An
amazing	86	percent	of	those	considering	an	open	source	cloud	deployment	are
looking	at	OpenStack.

The	OpenStack	developer	and	user	communities	have	grown	dramatically	as	well.
The	OpenStack	Foundation	2014	Annual	Report
(https://www.openstack.org/assets/reports/osf-annual-report-2014.pdf)	provides
detailed	insight	into	this	growth.	In	2013,	the	best	quarter	for	mean	monthly
active	developers	had	391	developers—in	2014	this	measure	was	up	45	percent	to
569	developers.	Large	investments	from	HP,	Cisco,	RedHat,	IBM,	Dell,	Mirantis,
Rackspace,	and	many	other	vendors	have	driven	this	surge.	The	incredible	growth
in	the	number	of	users,	developers,	and	other	interested	parties	can	be	seen	from
the	attendance	at	the	twice	annual	OpenStack	Summits,	seen	in	Figure	1.4
(source:	openstack.org).

Figure	1.4

Clearly	OpenStack	has	the	momentum	to	succeed.

https://www.openstack.org/assets/reports/osf-annual-report-2014.pdf


UNDERSTANDING	THE	ARCHITECTURE
OpenStack	is	built	on	a	loosely	coupled	architecture.	Each	component	is	built
independently	and	runs	its	own	services.	These	services	may	be	distributed	among
a	number	of	different	machines	with	different	responsibilities.	This	enables
scaling	of	particular	functions,	by	adding	machines	with	particular	roles.	It	also
enables	redundancy;	a	highly	available	deployment	will	contain	several	of	each
type	of	machine.

Software	Architecture
Individual	components	interact	with	one	another	via	well-defined	application
programming	interfaces	(APIs)—typically	based	on	representational	state	transfer
(REST)	conventions,	though	in	some	cases	using	remote	procedure	calls	(RPC)	or
notifications	over	a	message	bus.	Typically,	these	services	will	maintain	data	in	a
relational	database—usually	MySQL	or	PostgreSQL.	The	message	bus	and
database	are	shared	across	services,	but	the	interactions	between	those	services
remain	clearly	delineated.	This	enables	different	services	to	grow	and	change
independently	from	the	others,	so	long	as	they	provide	backward-compatibility	in
the	APIs.

Each	of	the	major	services—compute	(Nova),	networking	(Neutron),	block	storage
(Cinder),	etc.—have	several	internal	processes	and	components.	Generally,	they
will	each	have	an	API	service	that	provides	an	HTTP-based	RESTful	API.	This	API
service	will	communicate	with	the	other	components	via	the	message	bus.

The	Horizon	service	is	a	web-based	UI	that	interacts	with	the	various	services.
Similarly,	there	are	command-line	tools	to	interact	with	each	service.	These	tools
are	optional;	you	can	build	your	own	interface	directly	to	the	service	APIs	if	you
wish.	Horizon	and	the	official	CLI	clients	do	not	have	any	special	access;	everyone
uses	the	same	APIs.	Each	client	really	only	needs	to	be	informed	of	the	location	of
Keystone,	the	identity	service.	This	service	contains	a	catalog	of	all	services	and
API	endpoints	available	in	the	OpenStack	platform	(see	Figure	1.5).



Figure	1.5

In	Figure	1.5,	what	you	see	is	a	simplified	depiction	of	how	the	services	interact.
Each	service	has	an	API	component,	which	communicates	with	Keystone’s	API	via
HTTPS	to	provide	authentication	and	authorization	information.	Each	API	service
uses	the	message	bus	to	communicate	with	several	other	processes	for	that	service
(just	called	“Services”	in	the	diagram).	As	needed,	these	downstream	service
processes	will	call	the	APIs	of	other	services.	For	example,	Nova	will	call	the
Neutron	API	to	acquire	a	port	on	a	particular	network.

Deployment	Architecture
How	are	all	of	these	different	pieces	of	software	deployed	on	the	hardware?	This	is
actually	pretty	flexible.	For	development	or	just	experimentation,	you	can	even
run	everything	on	a	single	machine.	However,	a	more	typical	deployment	will	have
several	controller	nodes	(for	high	availability	purposes),	along	with	additional
network,	compute,	and	controller	nodes.

Each	high-level	service	(compute,	networking,	storage,	and	others)	consists	of
multiple	daemons	(background	processes).	These	daemons	are	spread	out	across
the	various	types	of	nodes.	That	is,	you	do	not	run	individual	services	on
individual	nodes,	but	rather	spread	each	service	out	across	different	types	of
nodes.

For	example,	all	of	the	services	share	the	database	and	messaging	components
(typically	MySQL	and	RabbitMQ,	respectively).	You	may	run	these	each	on



separate	clusters,	with	each	cluster	spread	over	different	failure	domains.
Additionally,	you	may	have	several	physical	nodes	that	provide	the	API	endpoints,
behind	a	physical	load	balancer.	Different	daemons	for	Nova	and	Neutron	will	be
spread	across	the	network	and	compute	nodes.	Figure	1.6	shows	a	simplified
diagram	of	this	layout.

Figure	1.6

Notice	the	different	types	of	nodes	in	Figure	1.6.	Compute	nodes	run	the
hypervisor	and	therefore	the	actual	VM	instances,	as	well	as	provide	the
ephemeral	storage	for	instances.	They	will	also	run	Neutron	networking	agents	to
manage	the	connectivity	between	VMs	(called	east-west	traffic).

The	network	nodes	usually	provide	the	connectivity	between	VMs	and	outside	the
cloud	(called	north-south	traffic),	as	well	as	the	advanced	network	services	like
load	balancing	and	VPN	access.	Depending	on	the	choices	made	by	the
administrators	and	users,	there	may	be	agents	providing	network	routing	services
on	the	network	nodes,	directly	on	the	compute	nodes,	or	both.

The	block	storage	nodes	provide	volume	services	to	the	instances—that	is,	they
provide	access	to	persistent	storage	for	disk	volumes	that	can	be	attached	and



detached	to	instances.	Clouds	that	offer	object	storage	will	also	have	separate
clusters	for	that.	Object	storage	provides	shared,	replicated,	redundant	storage	for
images,	files,	and	other	media	accessible	via	HTTP.

Various	segregated	networks	connect	all	of	these	nodes.	Every	node	is	accessible
via	the	management	network,	which	is	used	for	different	parts	of	OpenStack	to
communicate	with	one	another.	All	of	the	message	bus,	database,	and	cross-
project	API	traffic	go	over	the	management	network.	The	data	network	connects
all	of	the	compute	nodes,	network	nodes,	and	block	storage	nodes.	The	internal
cloud	tenant	traffic	is	carried	on	this	network,	whereas	the	external	network
provides	access	to	the	outside	world.	Since	the	compute	nodes	do	not
communicate	with	the	outside	world,	but	only	with	other	nodes	in	the	cloud
infrastructure,	they	need	not	have	connectivity	to	the	external	network,	but	only
need	access	to	the	data	network.	Only	the	network	nodes	need	to	connect	to	the
external	network.	Finally,	some	installations	will	use	an	API	network,	which
provides	access	between	the	outside	world	and	the	OpenStack	end	points	(API	and
Horizon),	separate	from	the	external	network	used	by	tenants.

Pros	and	Cons
This	architecture	provides	a	great	deal	of	flexibility.	This	enables	the	scalability	by
letting	the	cloud	operator	deploy	additional	nodes	to	scale	the	infrastructure.	It
also	allows	the	ability	to	create	highly	available	services,	since	you	can	split	each
service	out	and	make	them	redundant	across	failure	domains.	However,	it	is	very
complex,	and	can	be	quite	difficult	to	set	up	and	maintain.

As	a	user	of	the	cloud,	this	will	be	transparent	to	you.	But	a	properly	run	cloud	will
have	enough	redundancy	built	in	that	you	can	expect	a	high-level	of	reliability
from	the	OpenStack	infrastructure.

Another	substantial	benefit	to	this	architecture	is	avoiding	vendor	lock-in.	Each
service	provides	a	plugin	or	driver-based	architecture.	This	enables	each	service	to
work	with	any	number	of	vendor	platforms	to	provide	the	actual	service.	For
compute,	you	can	use	the	default	KVM	hypervisor,	ESXi,	Xen,	or	one	of	many
other	hypervisor	choices.	The	networking	service	defaults	to	using	Open	vSwitch
to	provide	Layer	2	(the	data	link	or	MAC	address	layer)	connectivity,	and	the
Linux	networking	stack	(iptables,	routing,	and	namespaces)	to	implement	Layer	3
(IP	layer)	functionality.	However,	there	are	more	than	20	different	vendor	plugins
to	swap	all	or	part	of	that	default	implementation.	In	fact,	these	vendor
implementations	can	be	used	at	the	same	time,	in	the	same	cloud.

By	avoiding	vendor	lock-in,	OpenStack	enables	more	competition	between	the
vendors,	pushing	down	prices	in	the	market.	The	ability	to	use	multiple	vendors	at
once	makes	transitioning	from	one	vendor	to	another	more	feasible,	and	also
allows	the	choice	of	vendor	for	solving	specific	use	cases.

An	interesting	feature	introduced	with	the	Kilo	release	of	OpenStack	is	federated
identity.	This	takes	the	distributed	nature	of	OpenStack	and	allows	it	to	span



across	multiple	clouds,	even	from	different	providers.	Two	cloud	providers	can	set
up	a	trust	relationship,	enabling	users	of	one	provider	to	use	the	same	credentials
with	another,	trusted	provider.	Thus	the	same	workload	management	tools	you
use	for	a	single	cloud	can	theoretically	be	used	to	manage	workloads	across
multiple	clouds.	For	capacity	burst	use	cases,	this	is	a	powerful	feature.

OpenStack	Distributions
With	the	complexity	of	the	architecture,	a	number	of	companies	have	stepped	in
to	help	with	installation	and	management	of	an	OpenStack	platform	in	a	private
cloud.	These	include	names	familiar	from	the	Linux	distribution	world,	such	as
RedHat,	SUSE,	and	Canonical	(Ubuntu),	as	well	as	new	players	that	are	focused
only	on	OpenStack,	such	as	Mirantis.

INDUSTRY	CONSOLIDATION
In	fact	the	OpenStack	industry	has	seen	a	great	deal	of	consolidation	in	2014
and	2015.	Several	pure-play	OpenStack	companies	have	been	gobbled	up	by
the	bigger	players.

Many	large	integrators	and	enterprise	software	vendors	are	also	jumping	into	the
OpenStack	distribution	game,	with	the	likes	of	IBM,	HP,	and	Oracle	joining	the
fray.

If	you	don’t	have	an	OpenStack	cloud	available	already,	or	you	want	to	learn	more
about	the	architecture	and	how	all	of	the	pieces	fit	together,	you	can	setup	your
own	OpenStack	playground.	You	can	use	one	of	these	distributions	to	setup	your
own	small	cloud.	Each	of	the	distribution	vendors	provides	their	own	tools	for
setup	of	OpenStack.	They	are	primarily	targeted	at	production	environments,	and
as	such	can	be	pretty	hard	to	get	started	with	on	your	own.	For	example,
Canonical’s	offering	requires	a	minimum	of	seven	physical	nodes	just	to	bring	up
the	environment.

If	you	are	setting	something	up	small,	your	best	options	are	probably	RedHat’s
open	source	distribution	(as	opposed	to	their	supported	version	running	on
RedHat	Enterprise	Linux),	called	RDO	(www.rdoproject.org).	The	nice	thing
about	this	distribution	is	that	it	offers	a	simple	“all	in	one”	option	to	deploy	the
entire	environment	on	a	single	node.

If	you	would	like	to	tinker	with	the	actual	code	of	the	various	OpenStack	services,
you	could	also	setup	a	devstack	environment.	Devstack	(www.devstack.org)	is	a
powerful	set	of	scripts	to	create	and	configure	an	OpenStack	development
environment.

While	the	detailed	instructions	online	are	quite	good,	here	are	a	few	hints	to	make
your	devstack	setup	go	smoothly.	You’ll	want	a	fresh	Ubuntu
(http://www.ubuntu.com)	or	Fedora	(www.fedoraproject.org)	installation.	Don’t

http://www.rdoproject.org
http://www.devstack.org
http://www.ubuntu.com
http://www.fedoraproject.org


try	to	run	devstack	on	your	regular	machine—you’ll	want	a	dedicated	machine
(virtual	or	physical).	If	you	have	a	virtualization	product	like	VMware	Workstation
or	Fusion,	or	the	free	VirtualBox	for	your	laptop	or	desktop,	the	best	thing	to	do	is
create	a	base	server	installation	of	your	OS	of	choice	(enabling	all	of	the	extra
repositories),	and	then	snapshot	it.	This	will	make	it	easy	to	start	over	if	you	trash
your	environment.

The	instructions	will	have	you	create	a	local.conf	file,	which	the	devstack	scripts
use	to	capture	all	of	the	specifics	of	your	installation.	There	are	only	a	few	items
you	need	to	set	in	your	local.conf.

[[local|localrc]]

ADMIN_PASSWORD=stack

DATABASE_PASSWORD=$ADMIN_PASSWORD

RABBIT_PASSWORD=$ADMIN_PASSWORD

SERVICE_PASSWORD=$ADMIN_PASSWORD

SERVICE_TOKEN=some-random-string

FIXED_RANGE=10.0.0.0/24

FLOATING_RANGE=192.168.20.0/25

PUBLIC_NETWORK_GATEWAY=192.168.20.1

LOGFILE=/opt/stack/logs/stack.log

disable_service	n-net

enable_service	neutron	q-svc	q-agt	q-dhcp	q-l3	q-meta

The	first	section	here	sets	up	the	networking.	You	should	pick	a	FIXED_RANGE	that
does	not	overlap	your	existing	network.	Your	FLOATING_RANGE	can	correspond	to	an
existing	unused	subnet	on	your	network,	with	the	PUBLIC_NETWORK_GATEWAY	being
the	local	default	gateway	on	your	subnet.

The	LOGFILE	setting	simply	helps	you	debug	if	your	devstack	does	not	come	up
properly,	whereas	the	remainder	of	the	file	disables	Nova	networking	and	enables
Neutron	networking.

You	will	need	access	to	either	devstack	or	another	OpenStack	instance	to	follow
the	examples	throughout	this	book.



GETTING	THE	OPENSTACK	CLI	CLIENTS
To	follow	along	with	the	examples,	you’ll	need	access	to	a	machine	with	the
OpenStack	clients	installed.	You	can	learn	how	to	install	the	clients	at
http://docs.openstack.org/cli-reference/content/,	which	will	include
instructions	for	a	variety	of	operating	systems.	The	examples	in	this	book	will
use	Linux.

The	easiest	way	to	use	these	clients	is	to	set	the	necessary	authentication
information	in	environment	variables:

$	export	OS_USERNAME=username	OS_PASSWORD=password	

		OS_TENANT_NAME=tenant-name

$	export	OS_AUTH_URL=http://keystone-ip:keystone-port/v2.0

This	allows	you	to	call	the	clients	without	passing	those	parameters:

$	openstack	flavor	list

+----+-----------+-------+------+-----------+-------+-----------+

|	ID	|	Name						|			RAM	|	Disk	|	Ephemeral	|	VCPUs	|	Is	Public	|

+----+-----------+-------+------+-----------+-------+-----------+

|	1		|	m1.tiny			|			512	|				1	|									0	|					1	|	True						|

|	2		|	m1.small		|		2048	|			20	|									0	|					1	|	True						|

|	3		|	m1.medium	|		4096	|			40	|									0	|					2	|	True						|

|	4		|	m1.large		|		8192	|			80	|									0	|					4	|	True						|

|	42	|	m1.nano			|				64	|				0	|									0	|					1	|	True						|

|	5		|	m1.xlarge	|	16384	|		160	|									0	|					8	|	True						|

|	84	|	m1.micro		|			128	|				0	|									0	|					1	|	True						|

+----+-----------+-------+------+-----------+-------+-----------+

If	your	services	endpoints	are	using	HTTPS,	you’ll	need	to	change	the
OS_AUTH_URL	to	reflect	that.	If	you	are	using	self-signed	certificates,	you	also
need	to	pass	in	the	–insecure	option.

http://docs.openstack.org/cli-reference/content/


SUMMARY
In	this	chapter,	you	have	learned	about	the	various	types	of	cloud	computing—
IaaS,	PaaS,	and	SaaS—and	how	they	related	to	one	another.	OpenStack	fills	the
IaaS,	and	perhaps	in	the	future	the	PaaS	functions,	in	the	clouds.	More
importantly	you	learned	that	driving	costs	lower	while	delivering	more	features,
more	quickly	is	the	driving	force	behind	the	cloud	computing	revolution.	Finally,
you	learned	about	the	major	components	of	OpenStack—Nova,	Neutron,	Glance,
and	Keystone,	and	how	to	set	up	a	playground	for	experimenting	with	OpenStack.





2	
Understanding	the	OpenStack	Ecosystem:	Core
Projects
WHAT’S	IN	THIS	CHAPTER?																			

How	the	different	OpenStack	components	work	together	and	how
authentication	works	within	the	infrastructure

A	look	at	how	a	compute	instance	is	composed	and	the	different	hypervisors
supported	in	OpenStack

How	data	is	stored	in	the	infrastructure	and	understanding	the	differences
between	Block	Storage	and	Object	Storage

How	instance	templates	and	snapshots	are	created	and	where	they	are	stored

The	different	ways	to	manage	your	OpenStack	resources:	GUI	versus	CLI
versus	APIs

How	the	network	is	designed	in	OpenStack	and	the	different	network
components	available	and	exposed	through	the	APIs

At	this	point,	you	have	an	understanding	of	why	cloud	computing	is	important	to
application	developers,	and	a	general	overview	of	OpenStack.	In	this	chapter,	you
will	learn	the	core	services	in	more	detail.	These	are	the	services	most	critical	to
running	an	application—compute,	network,	and	storage.	You	will	also	learn	about
the	management	services	to	make	those	possible,	such	as	the	identity	service,
which	allows	you	to	authenticate	in	order	to	create	your	applications.

Sometimes,	it	may	seem	that	the	descriptions	in	this	chapter	go	into	more	detail
than	you	need	to	run	an	application.	However,	you	can	think	of	these	features	as
tools	and	building	blocks.	You	need	to	have	a	solid	understanding	of	what	is
possible,	so	you	can	see	new	ways	to	build	flexible,	scalable,	and	robust
applications	(see	Figure	2.1).



Figure	2.1		



IDENTITY
The	identity	service	within	OpenStack,	named	Keystone,	is	responsible	for
authentication,	authorization	and	accounting	(AAA)	and	currently	implements
and	provides	the	OpenStack	Identity	API.

The	main	goal	of	this	identity	service	is	to	process	and	validate	authentication	and
authorization	requests,	then	return	an	“authentication	token,”	which	is	used	to
authenticate	the	user	against	the	APIs	and	can	be	used	to	contact	the	other
services	of	an	OpenStack	infrastructure.	These	services	can	be	discovered	using
the	catalog	returned	in	the	authentication	response	(detailed	later	in	this	chapter).

Keystone	currently	implements	two	versions	of	the	Identity	API	(v2,	v3).	The
second	version	has	been	used	for	years	and	is	still	mainly	used	today	in	the
different	libraries	and	clients	supporting	OpenStack.	The	third	version	is	quite
recent	and	provides	a	more	pluggable	and	flexible	design,	allowing	using	multiple
authentication	mechanisms	(the	original	“password”	method,	but	moreover	well-
known	and	used	mechanisms,	such	as	OAuth	or	SAML2),	and	the	ability	to
combine	these	methods	in	a	single	request.

This	last	Identity	API	has	a	multi-tenant	design	and	has	simple	resources:

Region:	an	OpenStack	infrastructure	that	optionally	may	have	sub-regions

Service	with	Endpoints:	an	OpenStack	registered	service	in	Keystone	that
can	have	zero,	one,	or	multiple	endpoints	to	reach	this	one	(e.g.	public,
internal,	admin)

Domain:	a	container	for	the	users,	groups,	and	projects

Project	(known	as	“Tenant”	in	the	second	version	of	the	API):	owning	a	set	of
OpenStack	resources

User:	a	single	API	consumer,	which	should	have	really	restricted
authorizations	in	your	application

Group:	a	collection	of	different	users	of	the	same	domain

Role:	an	authorization	that	a	user	or	a	group	of	users	can	obtain	on	a	project
or	a	domain

All	of	these	resources	can	be	managed	using	the	Identity	Admin	API,	which	is
available	as	a	create,	read,	update,	and	delete	(CRUD)	RESTful	API.

Using	Tokens	and	Re-Authentication
The	authentication	against	the	different	OpenStack	services	is	based	on	tokens
provided	by	the	identity	service	(Keystone)	or	configured	in	the	service	itself	(e.g.
admin	tokens).

A	token	provided	by	an	identity	service	is	an	arbitrary	string	that	contains	the
User	identity	and	optionally	an	authorization	called	scope.	The	authorization



attached	to	this	token	grants	access	to	a	Project	or	a	Domain,	allowing	you	to
access	Project	or	Domain-related	resources.

You	can	easily	create	a	token	using	the	Identity	API	with	the	method	POST
/auth/tokens	with	a	user	identity	and	the	wanted	scope:

{

				"auth":	{

								"identity":	{	...	},

								"scope":	{	...	}

				}

}

Token	Identities
When	requesting	a	new	token,	the	identity	parameter	will	contain	the	used
authentication	mechanisms.	Here	is	an	example	using	password.	The	unique
identifier	of	the	user	is	used	here,	however	it	is	possible	to	use	the	username	if	the
domain	is	explicitly	specified.

{

				"auth":	{

								"identity":	{

												"methods":	[

																"password"

												],

												"password":	{

																"user":	{

																				"id":	"042042",

																				"password":	"secret-password"

																}

												}

								}

				}

}

Scoped	and	Non-Scoped	Tokens
If	specified	in	the	request,	the	authorization	scope	must	contain	the	project
identifier	or	the	domain	identifier.

{

				"auth":	{

								"scope":	{

												"project":	{

																"id":	"123456"

												}

								}

				}

}

If	a	scope	has	been	provided	in	the	token	creation	request,	the	Identity	API	will
return	a	catalog	containing	the	different	OpenStack	services	that	can	be	used	by
the	user	with	the	token	and	the	roles	granted	to	this	user.



X-Subject-Token:	ff00ff84

{

				"token":	{

								"catalog":	[

												{

																"endpoints":	[

																				{

																								"id":	"c3ac301342a381b895743659d0956de1",

																								"interface":	"public",

																								"region":	"RegionOne",

																								"url":	"http://my.identity.service:5000"

																				}

																],

																"id":	"	9192d6fb0f120a188133cb569b8db832",

																"type":	"identity",

																"name":	"keystone"

												}

								],

								"expires_at":	"2015-07-14T13:37:00.000000Z",

								"issued_at":	"2015-07-15T13:37:00.000000Z",

								"methods":	[

												"password"

								],

								"user":	{

												"id":	"042042"

								}

				}

}

If	no	scope	is	specified	in	the	token	creation	request,	the	Identity	API	will	return	a
non-scoped	token	that	can	be	used	to	identify	the	user	in	a	next	Identity	API
request.	One	example	would	be	to	create	a	scoped	token	using	the	token
authentication	mechanism.

A	scoped	token	can	be	re-scoped	using	the	token	authentication	mechanism	with	a
smaller	scope,	for	example	this	is	extremely	useful	to	provide	a	limited	authorized
token	to	an	application	sub-component	or	another	API	client	that	doesn’t	need	the
full	authorization	of	the	original	token	to	operate.

Using	an	Authentication	Token
The	obtained	authentication	tokens	can	be	passed	in	all	of	the	HTTP	requests
against	the	different	REST	APIs	as	a	X-Auth-Token	HTTP	header.	These	tokens	will
be	checked	by	the	requested	OpenStack	service	to	ensure	their	validity	(i.e.
expiration,	revocation,	etc.)	and	if	the	authorization	of	this	token	allows	access	to
the	requested	resource	with	the	policy	of	the	service	applied	to	the	user	role.

How	Various	Pieces	of	OpenStack	Communicate	with	Each	Other
OpenStack	has	a	modular	architecture	where	all	of	the	different	components	are
separate	services	that	communicate	together	using	standardized	REST	APIs	(see
Figure	2.2).	This	principle	is	fundamental	and	required	in	the	OpenStack	project

http://my.identity.service:5000


life	because	different	teams	led	by	different	people	are	developing	each
component.	All	of	the	OpenStack	components’	features	and	updates	start	by	an
API	design	discussion.	All	of	these	APIs	should	be	simple,	standard,	re-usable	and
re-implementable	by	any	developer	who	would	want	to	use	them	and	have	custom
services	that	would	implement	the	API	open-specifications.	Moreover,	these
standard	REST	APIs	have	features	that	use	a	messaging	queue	to	internally
process	the	different	actions	and	events.

Figure	2.2		

The	requests	processed	between	the	different	OpenStack	services	are
authenticated	with	the	tokens	of	the	original	request	(see	the	earlier	section	about
authentication	token	generation)	and	the	authorization	of	these	requests	between
the	OpenStack	services	are	checked	as	a	direct	request	to	the	end-service.

For	example,	when	a	user	creates	a	snapshot	of	a	compute	instance,	the	compute
service	processes	a	request	against	the	image	service	to	store	this	snapshot.	When
creating	this	request,	the	original	authentication	token	is	passed	in	the	REST	API
request	between	the	two	services.	If	this	image	service	uses	the	object	storage
service	as	a	storage	backend,	an	authenticated	request	is	generated	between	these



two	services	using	the	original	authentication	token	(see	Figure	2.2).

Can	Applications	Use	Keystone?
When	creating	an	application	that	uses	OpenStack,	the	usage	of	Keystone	is
required	to	ensure	appropriate	authorizations	and	structure	of	the	different
services	or	parts	of	the	application.

Let’s	take	the	example	of	an	application	that	would	have	documents	(e.g.	pictures)
uploaded	by	a	guest	user.	So,	we	need	a	service	to	convert	or	resize	these	pictures.
We	also	need	to	store	the	pictures	(that	we	call	objects)	using	an	OpenStack	object
storage	service.	We	then	need	to	automatically	provision	and	manage	the
instances	using	the	compute	instances.	We’ll	have	two	different	roles	or	projects
and	two	different	users	because	we	don’t	want	the	public	accessible	application	to
manage	our	instances	for	security	reasons.

DEMO	APPLICATION	SOURCE	CODE
You	can	access	the	source	code	from	our	demo	application	via	GitHub:
https://github.com/johnbelamaric/openstack-appdev-book.

https://github.com/johnbelamaric/openstack-appdev-book


COMPUTE
The	Compute	project	in	OpenStack,	named	Nova,	includes	all	of	the	APIs	and
tools	to	provision	and	manage	the	instances	(the	virtual	machines	provisioned	on
physical	compute	nodes)	across	multiple	physical	hosts	at	scale.	This	project
provides	an	abstraction	of	the	configuration	of	the	main	used	hypervisors	in	the
world,	allowing	you	to	easily	provision	virtual	machines	with	a	standard	API,
independent	of	a	specific	hypervisor	technology.

In	this	part,	you’ll	discover	the	different	pieces	that	compose	an	instance	on
OpenStack,	how	the	instances	models	are	managed	(called	flavors),	how	the
instances	are	scheduled	in	a	compute	infrastructure	and	the	main	hypervisors
supported	by	the	project	(See	Figure	2.3).

Figure	2.3		

Pieces	of	an	Instance
In	OpenStack,	an	instance	has	the	traditional	components	of	a	virtualized	server
provided	by	a	hypervisor.	These	characteristics	are	defined	by	the	flavors	in	the
compute	service:

One	or	multiple	allocated	dedicated	or	virtual	CPUs	(vCPUs)

Some	allocated	memory	(RAM)

A	root	disk	that	can	be	any	device	attached	to	the	host	server	(virtual	or	not
virtual,	local,	remote,	or	distributed)

The	instances	have	usually	one	or	multiple	networks	configured.	These	networks
can	be	configured	using	the	network	service	(Neutron),	and	the	network	devices



can	be	provisioned	by	the	Nova	service	in	the	host	using	the	Network	API	and
configured	in	the	instance	by	the	hypervisor.

The	instances	can	have	persistent	block	storages	attached	to	them	(i.e.	a	virtual
hard	drive	in	the	instance),	which	can	be	provisioned	and	managed	using	the
volume	service	and	attached	by	the	hypervisor	to	the	instance.

The	console	(screen)	of	an	instance	can	be	viewed	using	the	VNC	service	in	Nova,
which	can	be	compared	to	a	physical	keyboard,	video	and	mouse	(KVM)	for	a
physical	server.	KVM	was	traditionally	used	to	share	these	devices	with	multiple
computers	(https://en.wikipedia.org/wiki/KVM_switch).	Today	the	same	term	is
used	to	describe	the	virtual	access	to	these	input/outputs	of	an	OpenStack
instance.	This	Nova	service	is	presented	as	a	good	way	to	abstract	the	way	to
access	all	of	the	graphical	interfaces	and	consoles	of	all	the	instances,	regardless	of
the	used	virtualization	technology	and	the	instances’	operative	systems.	There	are
different	protocols	to	access	an	instance’s	interface	and	Nova	provides	a	unified
and	transparent	way	to	access	them.	For	example,	this	service	can	also	proxy	a
RDP	(Remote	Desktop	Protocol)	for	the	instances	that	run	Microsoft	Windows.

Understanding	Flavors
A	flavor	in	OpenStack	represents	a	model	of	an	instance:	a	set	of	allocated
resources	for	a	virtual	machine	and	its	specificities.	In	public	cloud	services	where
host	servers	are	shared	across	multiple	projects	or	tenants	(customers),	the	flavors
can	be	compared	to	commercial	offers,	where	the	billed	resources	are	calculated
using	the	total	time	the	instances	of	a	specific	flavor	run	during	a	month.	This
information	is	calculated	using	the	OpenStack	Telemetry	Service	(Ceilometer,	see
section	3.6).

A	compute	flavor	contains	some	of	the	following	resource	details:

The	name	of	a	unique	identifier

The	amount	of	cores	(vCPUs)	and	the	weight	if	they	are	shared	with	multiple
instances

The	memory	(RAM)	and	the	swap	size

The	root	disk	and	ephemeral	disk	space

A	flavor	may	contain	extra	specifications	that	are	useful	to	make	decisions	during
the	scheduling	of	an	instance	in	a	compute	infrastructure,	and	to	allocate	the
required	resource	to	run	the	instance	(e.g.	processor	architecture,	over-
provisioning,	PCI	devices	required	etc.).	The	flavors	may	be	public	or	linked	to
some	specific	OpenStack	projects.	Since	we	can	associate	this	to	a	commercial
offer	or	a	compute	instance	model,	a	specific	model	(or	compute	instance)	can	be
limited	to	a	simple	project	or	can	be	public	and	used	by	any	project	in	an
OpenStack	infrastructure.	For	example,	when	you	launch	a	new	processor	model
for	customers	in	a	public	cloud,	you	could	create	dedicated	flavors	to	allow	them

https://en.wikipedia.org/wiki/KVM_switch


to	use	these	new	physical	server	models	to	create	new	instances.

Scheduling	Filters
When	an	instance	is	provisioned	on	an	OpenStack	compute	infrastructure,	one
task	of	Nova,	and	especially	of	its	scheduler,	is	to	choose	the	compute	node
(physical	host)	where	the	instance	will	be	created	or	moved.	You	can	find	an
overview	of	the	scheduler	operations	(Filtering	and	Weighting)	in	Figure	2.4.

Figure	2.4		

Filtering
This	task	is	processed	using	a	simple	concept:	the	compute	scheduler	takes	a	set	of
nodes	available	to	use	and	applies	a	set	of	filters	to	this	list	to	eliminate	the	ones
that	don’t	match	the	different	criteria	of	the	required	configuration	(refer	to
Figure	2.4).

Here	are	some	examples	of	scheduling	filters:

Skip	the	hosts	that	are	full	(no	CPU,	Memory	or	disk	available)



Match	only	a	host	that	has	the	exact	amount	of	resources	available

Use	the	same	host	of	another	instance

Use	a	physical	host	where	some	specific	PCI	devices	are	available

The	physical	hosts	can	be	added	in	aggregation	groups	that	are	usually	used	to
match	one	or	multiple	specific	flavors	or	projects	using	a	scheduling	filter.	Here
are	two	common	use	cases	of	this	feature:

An	aggregation	group	can	be	created	for	a	customer	with	some	dedicated	hosts
and	hardware.	Using	extra	specifications	in	a	dedicated	flavor	(private	for	a
domain,	a	project,	or	multiple	projects),	when	the	user	will	create	an	instance
using	this	specific	flavor	the	scheduler	will	filter	only	the	hosts	contained	in
this	specific	aggregation	group.

Some	hosts	with	specific	hardware	(e.g.	SSD	hard	drives,	specific	CPU
architecture,	etc.)	or	allocation	rules	(e.g.	dedicated	resources,	over-
provisioned	resources)	can	be	set	in	an	aggregation	group	and	the	matching
flavors	created.	Here	the	hosts	may	be	shared	with	all	of	the	projects
(customers)	of	the	compute	infrastructure	and	the	flavor	will	act	as	a	public
commercial	offer	where	the	hosts	are	shared	with	some	specifies.

Weights
Once	the	hosts	are	filtered,	the	scheduler	applies	some	weights	on	each	resource	of
the	host	or	instance	to	determine	the	best	host	to	choose	to	allocate	and	install	the
instance.	For	example,	we	could	add	a	higher	weight	to	fill	an	almost	full	physical
server	with	an	instance	that	exactly	matches	the	remaining	amount	of	reserved
and	allocable	resources,	or	conversely	to	set	higher	weight	to	the	less-used	servers
and	get	the	one	that	is	currently	the	less	loaded.

Types	of	Hypervisors
The	companies	or	contributors	of	hypervisor	products	or	projects	are	usually	the
main	contributor	of	compute	virtualization	drivers.	It	is	easy	to	add	a	custom
driver	that	implements	one	part	or	all	of	the	features	abstracted	by	the	compute
service,	which	is	available	via	the	compute	API.

Libvirt
The	libvirt	in	Linux	is	an	abstraction	library	to	access	and	manage	the	virtual
machines	and	containers	in	a	Linux	server	and	their	network	and	storage
configuration.	It	supports	multiple	technologies:	KVM/QEMU,	Xen,	VirtualBox,
VMware	ESX,	Hyper-V,	OpenVZ,	LXC,	etc.

This	is	the	default	driver	used	by	OpenStack	and	the	most	popular	one	for	the
kernel-based	virtual	machine/quick	emulator	(KVM/QEMU)	virtualization.	One
of	the	pro	arguments	is	managing	the	virtual	machines	regardless	of	the
virtualization	technology.	But	using	the	libvirt	and	its	OpenStack	driver	has	some



weaknesses,	especially	given	how	it	is	mainly	designed	for	KVM/QEMU,	and	some
features	provided	by	other	virtualization	technologies	might	be	hidden	by	this
abstraction	layer.	Hopefully	other	virtualization	technologies	are	directly
supported	using	their	own	Nova	drivers.

VMware
Using	VMware	in	OpenStack	allows	you	to	enjoy	the	advantages	of	both
technologies:	virtualization	features	for	VMware	and	management/standard	APIs
for	OpenStack.

VMware	provides	a	great	virtualization	technology	that	provides	the	following:

High	Availability	(HA);	the	ability	to	automatically	reboot	an	instance	on	a	full
working	hardware	when	an	issue	is	detected	by	the	hypervisor.	In	the
marketed	world	of	VMware,	the	“HA”	is	more	branded	as	“fault	tolerance.”

Fault	tolerance	(the	live	migration	without	restart	of	an	instance	on	a	working
host	when	a	host	is	down).

Distributed	Resource	Scheduler	(DRS),	the	smart	dispatching	of	the	running
instances	depending	of	the	resources	usage	in	real	time.

For	storage	you	can	directly	use	the	VMware	datastore	technology	in	Cinder	and
Glance,	allowing	you	to	manage	all	of	your	blocks	using	the	standard	block	storage
APIs.



STORAGE
The	concept	of	object	storage	(named	Swift	in	OpenStack)	can	be	quite
complicated	to	understand	for	an	application	developer	when	you	are	using	a	local
file	system	to	store	all	of	the	static	medias	(e.g.	images,	videos,	music,	etc.)	and
documents	created	and	used	by	your	application.	But	this	is	often	one	of	the	main
steps	to	horizontally	scale	an	application	that	uses	these	medias.

Good	examples	are	the	traditional	content	management	systems	(CMS)	and	blog
engines	that	by	default	store	locally	all	of	the	medias	uploaded	using	the	web
application.	This	transition	to	an	object	storage	infrastructure	for	any	application
is	not	always	easy	to	realize	since	the	code	often	needs	to	be	partially	rewritten	to
support	this	new	storage	system.	It	needs	to	be	re-written	because	an	application
needs	to	change	the	way	it	accesses	files	(objects),	for	instance	accessing	local	files
in	a	hard	drive	is	not	the	same	as	accessing	objects	using	a	REST	API.

There	are	advantages	for	switching	to	object	storage:

You	don’t	have	to	worry	about	the	total	space	size;	this	is	the	job	of	the
infrastructure	provider,	and	an	object	storage	service	like	Swift	easily	scales
horizontally.

You	can	split	objects	into	multiple	small	blocks	and	the	size	of	an	object	can
almost	be	unlimited.

You	can	store	an	unlimited	number	of	objects	in	a	single	container	or	bucket	of
objects.

The	replication	of	the	objects	is	done	at	the	infrastructure	level;	it	can	even	be
done	across	multiple	infrastructure	regions.

Here	are	some	potential	blocking	design	and	implementation	points	when	you
want	to	switch	an	application	using	a	local	file	system	to	an	object	storage	service:

You	can	access	your	objects	only	using	HTTP(s),	but	this	can	be	great	when	the
clients	of	your	application	are	already	using	the	HTTP	protocol:	you	can
provide	access	to	an	object	without	having	to	download	it	in	your	application
server.

Object	storage	is	not	a	file	system	and	should	not	be	used	like	one.	One	of	the
worst	examples	is	to	try	to	match	an	existing	file	system	hierarchy	when
developing	an	application	using	an	application.	In	many	use	cases,	the
hierarchy	logic	should	be	on	the	application-side	and	the	object	storage	should
only	contain	the	object	data	(blobs).	The	best	example	of	this	bad	usage	is
renaming	(moving)	objects	in	OpenStack	Swift.	Since	the	dispatching	of	the
objects	across	the	storage	infrastructure	is	based	on	a	hash	of	the	object	name,
the	object	will	be	copied	between	two	servers	and	deleted	from	the	source
server.	Moreover	renaming	a	virtual	directory	(in	fact	an	object	with	a	mime-
type	specific	to	a	directory)	means	renaming	each	object	of	the	directory.



Introducing	OpenStack	Swift
The	Swift	service	(OpenStack’s	object	storage)	provides	all	of	the	OpenStack
projects	with	a	HTTP	REST	API,	allowing	the	processing	of	all	the	common
operations	on	a	stored	object	using	the	standard	HTTP	design	and	features	to
manage	the	resources	(see	Figure	2.5).

Figure	2.5		

This	project	is	horizontally	scalable,	distributed	and	highly	available	by	design
with	different	main	components:

Swift	proxy	server:	this	service	dispatches	the	HTTP	requests	accessing	the
different	objects	to	all	the	backend	nodes.	This	component	can	be	easily	scaled
since	the	positions	of	an	object	in	an	infrastructure	are	determined	by	hashing
its	name	and	finding	its	position	using	a	ring	algorithm.

Swift	account	server:	this	service	is	responsible	for	storing	the	listing	of	the
containers	in	the	different	existing	accounts.

Swift	container	server:	this	is	similar	to	the	account	server,	but	responsible
for	listing	the	objects	in	a	container.

Swift	object	server:	this	is	a	storage	backend	installable	on	a	physical	host
that	provides	an	internal	object	storage	API	to	manage	the	objects	stored	on
the	local	server.

All	of	these	components	must	be	replicated	and	can	be	horizontally	replicated	to
infinity	(see	Figure	2.6).



Figure	2.6		

Eventual	Consistency
OpenStack	Swift	is	eventually	consistent.	For	example,	if	a	container	server	is
under	a	heavy	load	and	an	object	is	PUT,	the	object	will	be	available	to	GET	as
soon	as	the	object	is	stored	in	different	object	servers,	and	as	soon	as	the	Swift
proxy	server	handling	the	HTTP	request	responds	to	the	client	with	success.	In
other	words,	the	proxy	stores	the	object	in	several	objects’	servers,	and	then
responds	to	the	PUT	with	a	successful	HTTP	response.	However,	the	addition	of
the	object	in	the	listing	by	the	container	server	may	be	queued	and	delayed,	and	a
GET	request	on	the	container	may	not	list	this	new	object.	Another	example	is	that
by	deleting	an	object	(DELETE),	an	empty	object	is	created	with	a	more	recent
modification	timestamp	to	ensure	that	the	file	can’t	be	synchronized	again	if
object	server	replica,	where	the	object	is	stored,	is	down.	Depending	upon	the
synchronization	delay	between	the	different	object	servers	storing	the	object,	this
might	be	available	for	a	moment	after	the	DELETE	operation.

Storing	Your	First	Object	In	Swift
The	first	step	to	store	an	object	in	your	Swift	account	is	to	create	a	container	for	it.
Containers	regroup	multiple	objects	with	the	same	purpose	using	a	specific	set	of
settings.	The	grant	to	publicly	read	it	or	list	it	is	an	example.	You	can	easily	create
it	using	the	API	with	curl	as	the	HTTP	client:

							$	curl	–I	-X	PUT	$swift/my-container	-H	"X-Auth-Token:	$token"

							HTTP/1.1	202	Accepted

							Content-Length:	76

							Content-Type:	text/html;	charset=UTF-8

							X-Trans-Id:	5B44C388:EB0D_05C4F7D0:01BB_55AEDF79_18A38C8:4451

							Date:	Mon,	27	Jul	2015	22:25:40	GMT



							Connection:	close

As	mentioned	earlier,	the	authentication	is	done	using	a	token	created	using	the
identity	service	and	specified	as	a	X-Auth-Token	HTTP	header.

Once	the	container	is	created,	it	is	now	possible	to	store	the	objects	inside	of	it.	To
realize	this	action,	another	PUT	request	can	be	processed	against	the	new	stored
resource	path:

							$	curl	-I	-X	PUT	-T	$object	$swift/my-container/my-object

							HTTP/1.1	201	Created

							Last-Modified:	Mon,	27	Jul	2015	22:25:43	GMT

							Content-Length:	0

							Etag:	168e1afe97b471eb8948a1b612283d04

							Content-Type:	text/html;	charset=UTF-8

							X-Trans-Id:	5B44C388:35C8_05C4F7D0:01BB_55B6AFE5_2125569:444C

							Date:	Mon,	27	Jul	2015	22:25:42	GMT

							Connection:	close

That’s	all!	Your	first	object	is	stored	in	your	OpenStack	object	storage	service	and
is	now	privately	accessible	using	the	HTTP	API:

							$	curl	-X	GET	-i	$swift/my-container/my-object.json	\

											-H	"X-Auth-Token:	$ktoken"

							HTTP/1.1	200	OK

							Content-Length:	42

							Accept-Ranges:	bytes

							Last-Modified:	Mon,	27	Jul	2015	22:25:43	GMT

							Etag:	168e1afe97b471eb8948a1b612283d04

							X-Timestamp:	1438035942-04822

							Content-Type:	application/json

							X-Trans-Id:	5B44C388:CCFA_05C4F7C0:01BB_55B6B352_1039A1B:637A

							Date:	Mon,	27	Jul	2015	22:40:18	GMT

							Connection:	close

							[…]

All	of	these	requests	can	be	executed	using	the	command	line	from	the	Python
Swift	Client	(https://github.com/openstack/python-swiftclient).	This	provides	a
simple	way	to	browse	your	accounts,	containers,	and	objects:

					#	Upload	an	object

							$	swift	upload	<container>	<file_or_directory>

							#	Download	an	object

							$	swift	download	<container>	<object>

Temporary	Swift	URLs
Any	request	processed	against	the	OpenStack	Swift	API	can	be	pre-authenticated
with	a	cryptographic	signature.	This	mechanism	allows	the	sharing	of	an
authorization	to	access	a	single	resource	with	a	single	HTTP	method	(e.g.	POST
swift/my-container/my-object)	that	can	be	used	by	third-party	software,	or	a
browser.	This	mechanism	is	really	convenient	if	your	application	is	multi-tenant

https://github.com/openstack/python-swiftclient


and	shares	a	single	Swift	Account	for	multiple	users.

Let’s	take	the	example	of	an	application	that	will	store	some	PDF	bills	in	an	object
container	and	will	return	to	a	customer	of	this	application	a	temporary	link	to
download	one	of	them.	The	application	will	be	able	to	return	to	the	browser	a
signed	URL	to	only	GET	the	object	for	a	limited	time.

The	signature	will	be	verified	using	a	secret	key	set	in	your	account.

#	Set	the	key	as	a	account	metadata	"X-Account-Meta-Temp-Url-Key"

$	swift	post	-m	"Temp-URL-Key:92cfceb39d57d914ed8b14d0e37643de0797ae56"

#	Display	the	account	information	(returned	as	HTTP	headers	when

#	processing	a	'GET	/v1/AUTH_account'	request)

$	swift	stat

Account:	AUTH_account

Containers:	1

Objects:	42

Bytes:	4200

Meta	Temp-Url-Key:	92cfceb39d57d914ed8b14d0e37643de0797ae56

Connection:	close

X-Timestamp:	1365615113.11739

X-Trans-Id:	5B44C388:D669_5CDEF184:01BB_55C72581_2160:50A3

Content-Type:	text/plain;	charset=utf-8

Accept-Ranges:	bytes

Here	is	an	example	of	a	temporary	URL	that	contains	two	additional	query
strings:	the	timestamp	representing	the	link	expiration	date	(temp_url_expires)
and	the	cryptographic	signature	itself	(temp_url_sign):

/v1/AUTH_acount/c/o?temp_url_sig=9da40a8a7e288027809129d03ea2e5b09be70

d57&temp_url_expires=1439116248

For	testing	purposes	and	when	using	a	terminal,	you	can	easily	create	temporary
links	by	using	the	swift-temp-url
(	https://github.com/openstack/swift/blob/master/bin/swift-temp-url)	tool	from
the	OpenStack	Swift	project.	Here,	though,	is	a	programmatic	example	in	Python
that	could	be	used	in	your	application:

#!	/usr/bin/env	python

import	hmac

from	hashlib	import	sha1

from	time	import	time

#	Expiration	timestamp	for	the	link,	here	this	one	is	in	1h

expires	=	int(time()	+	60	*	60)

#	Method	authorized	by	the	signed	URL

method	=	'GET'

#	Relative	path	of	the	object	from	the	server	origin

path	=	'/v1/AUTH_account/c/o'

#	The	'X-Account-Meta-Temp-URL-Key'	meta	of	your	Swift	account

key	=	'92cfceb39d57d914ed8b14d0e37643de0797ae56'

https://github.com/openstack/swift/blob/master/bin/swift-temp-url


#	Signature	calculation

hmac_body	=	'%s\n%s\n%s'	%	(method,	expires,	path)

signature	=	hmac.new(key,	hmac_body,	sha1).hexdigest()

#	Format	temporary	URL

u	=	'https://{host}/{path}?temp_url_sig={sig}&temp_url_expires={expires}'

url	=	u.format(

				host='swift.example.com',	path=path,

				sig=signature,	expires=expires

)

Public	Containers	and	Access	Control	List	(ACLs)
If	your	application	will	only	store	public	documents	in	a	container,	you	can	mark
this	one	as	public	by	using	OpenStack	Swift	ACLs.

In	a	similar	fashion	the	temporary	URL	key	can	be	stored	as	an	account
metadata.	These	ACLs	are	stored	at	the	container	level	as	container	metadata	X-
Container-Read	to	allow	public	access	or	listing	of	the	container,	or	at	the	account
level	X-Account-Access-Control	to	allow	other	accounts	of	the	infrastructure	to
access	to	the	account.

Let’s	focus	on	the	container-level	ACLs.	They	have	the	following	format:
[item[,item…]]	and	thus	can	be	combined.	Two	concepts	are	usable:	the	referral	to
grant	(.referrer:example.com,	or	.r:example.com	to	reduce	the	length	of	the	list)
and	the	ability	to	list	the	container	object	(.rlistings).

Here	is	how	you	can	allow	anyone	to	access	your	public	documents	in	your
container	and	list	them.

#	Set	the	new	ACL

$	swift	post	-r	'.r:*,.rlistings'	os-book

#	List	the	container	"os-book"	metadatas

$	swift	stat	os-book

Account:	AUTH_account

Container:	os-book

Objects:	42

Bytes:	0

Read	ACL:	.r:*,.rlistings

Write	ACL:

Sync	To:

Sync	Key:

Accept-Ranges:	bytes

X-Trans-Id:	5B44C388:D847_5CDEF18E:01BB_55C72C0D_155E:1586

X-Storage-Policy:	Policy-0

Connection:	close

X-Timestamp:	1439116292-30845

Content-Type:	text/plain;	charset=utf-8

Understanding	Block	Storage
Sometimes	when	you	use	an	OpenStack	compute	instance,	you	may	need
additional	storage	that	can	be	mounted	as	volume	in	the	instance.	This	type	of



storage	is	called	“block”	or	“block	storage.”

Each	block	acts	and	is	available	in	a	single	instance	as	an	individual	volume.	A
block	is	provisioned	by	the	OpenStack	block	storage	service	(Cinder),	which
provides	a	target	to	access	and	mount	the	volume	in	the	host	and	make	it
accessible	in	an	instance.

Multiple	storage	backend	drivers	are	available	that	allow	you	to	have	almost	any
storage	infrastructure	behind	a	standard	abstraction	layer.	Here	are	the	main
storage	backend	technologies	that	can	be	used	with	Cinder.

Ceph
Ceph	is	a	distributed	a	scalable	storage	solution	that	replicates	its	data	across
multiple	storage	servers.	Ceph	can	be	used	as	object	storage	(RADOS),	block
storage	(RBD,	RADOS	block	device),	and	a	shared	file	system	(Ceph	FS).	Ceph
block	devices	(RBD)	are	resizable,	thin-provisioned,	store	the	data	in	RADOS,	and
are	striped	across	multiple	storage	daemons	(OSD).

Gluster
Gluster	is	a	distributed	and	shared	file	system	that	can	be	used	both	as	a	block
storage	backend	and	object	storage	backend.	In	OpenStack,	Gluster	is	exposed	in	a
similar	way	as	network	file	storage	(NFS).

ZFS
ZFS	(or	Zettabyte	File	System)	is	a	huge	evolution	compared	to	all	of	the	existing
file	systems.	As	its	name	suggests,	this	one	supports	an	almost	unlimited	storage
size	and	simplifies	the	administration	and	the	security	of	the	files	systems.

To	achieve	this	goal,	an	extra	abstraction	level	exists	between	the	hard	drives	and
the	file	system	itself:	the	volume	manager	that	allows	virtualizing	multiple	hard
drives	as	a	single	volume.

On	the	top	of	this	abstraction	layer,	ZFS	provides	a	system	of	pools,	which	is	a
really	powerful	system	of	snapshotting	(a	read-only	version	of	a	file	system	stored
on	the	same	volume).	The	space	used	by	the	ZFS	snapshots	is	the	delta	between
the	snapshotted	version	and	the	current	version	of	the	file	system	(similar	to	an
incremental	backup),	that	allows	really	small	backups	of	the	whole	file	system.

One	of	the	methods	used	to	ensure	the	integrity	of	the	data	is	the	checksums	in	the
file	system.	Each	block	of	data	has	a	checksum	that	is	stored	in	its	parent	block
pointer	that	is	stored	in	the	block	itself.	Another	method	is	to	use	the	copy	on
write	method	to	limit	the	possibility	of	creating	errors	when	writing	data.

ZFS	provides	scrub,	which	replaces	the	traditional	fsck	(file	system	check)	to
check	the	integrity	of	the	data.	It	has	multiple	advantages,	for	example,	the	ability
to	run	it	without	having	to	unmount	the	file	system	and	check	the	metadata	and
the	data,	unlike	fsck	that	only	checks	the	metadata.



LVM
LVM	(or	Logical	Volume	Management)	allows	you	to	manage	multiple	local	hard
drives	as	a	single	volume,	in	a	similar	way	as	ZFS,	but	on	a	single	server.	This
technology	is	supported	as	a	Nova	driver,	allowing	you	to	provision	local	hard
drives	of	Nova	hosts	in	instances	of	this	host.



IMAGING
The	OpenStack	compute	service	(Nova)	stores	and	accesses	two	types	of	instances
images:	the	templates	used	to	create	the	instances	and	the	snapshots	you	can	take
of	an	instance.

The	compute	service	actually	uses	the	imaging	service	(Glance)	to	get	and	store
the	data	and	the	details	of	these	images.	The	image	details	include	the	following
information:

The	displayable	name	of	the	image	(e.g.	Debian	Jessie)

The	disk	format	(e.g.	QCOW2,	RAW)

The	size	of	the	image	and	the	minimum	resources	required	to	run

The	status	of	the	image	indicating	a	potential	operation	and	its	availability	(e.g.
queued,	saving,	active)

A	checksum	of	the	image

The	images	can	be	used	to	create	new	instances	from	existing	data,	and	the	three
main	use	cases	are:

The	base	images	of	your	infrastructure	used	to	create	a	new	instance	and
configure	it	from	scratch,	using	for	example	a	provisioning	tool	or	a
configuration	management	tool	(see	section	6).

The	snapshot	you	take	from	an	existing	instance	you	can	reuse	to	create	an
instance	with	the	same	configuration,	to	restore	a	backup	of	an	instance,	or
moreover	it	can	be	a	way	to	resize	an	instance	(i.e.	changing	flavor).

Migrate	your	instance	between	infrastructures,	regions,	providers,	and	even
between	hypervisors	using	standard	images	f	ormats.

Where	Is	It	Stored?
The	details	of	the	images	are	stored	in	a	relational	database	(by	default	MySQL,
which	is	the	default	for	all	OpenStack	projects).

The	data	of	the	images	can	be	stored	in	different	ways:	a	local	file	system	(the
default	storage	solution),	block	storage,	and	objects	storage,	or	VMware
datastores.	In	fact,	the	images	data	can	be	stored	anywhere;	the	only	requirement
is	to	have	a	backend	storage	driver	implemented	to	support	the	operations	on	the
stored	data.

The	most	common	way	to	store	the	different	images	of	the	instances	is	to	use	the
infrastructure	itself	to	store	them:	by	flattening	them	as	single	files	(QCOW2,
RAW,	etc.)	and	storing	them	in	the	object	storage	service	(see	Figure	2.7),	or	to
keep	them	stored	as	blocks	by	using	the	block	storage	service	(Cinder).



Figure	2.7		

Storing	images	as	blocks	can	be	great	if	you	want	to	use	the	same	storage
infrastructure	as	the	one	used	by	the	block	storage	service	and	have	the	ability	to
directly	attach	an	image	without	having	to	download	it.	In	this	case	the	block	data
will	be	the	exact	same	one	as	the	original	block	or	the	original	device	data.

If	you	are	using	a	Ceph	infrastructure	behind	your	block	storage	service	or	beside
your	OpenStack	infrastructure,	you	may	want	to	directly	use	the	Ceph	RBD
(RADOS	Block	Device)	driver	in	Glance.	By	“behind,”	we	mean	that	the	Ceph
infrastructure	is	abstracted	by	the	Cinder	API	and	used	with	the	Cinder	driver.	By
“beside,”	we	mean	that	the	Ceph	infrastructure	is	not	used	in	OpenStack,	but	as	a
block	storage	service	but	can	still	be	used	to	store	the	images	with	Glance.	This
will	avoid	you	having	an	extra	API	between	your	imaging	service	and	your	final
storage	backend	of	the	images,	and	potentially	it	can	add	the	ability	to	separate
your	production	storage	backend	used	to	run	your	block	storage	service	from	your
imaging	service	that	will	contain	your	template	and	snapshot.	This	could	be,	for
example,	different	Ceph	infrastructures,	different	Ceph	OSD	(object	storage
nodes),	or	different	Ceph	storage	pools	with	different	resources	allocated	inside	of
the	same	infrastructure.

Conversely,	you	may	want	to	store	flatten	versions	of	your	images	in	an	object
storage	service.	For	example,	when	using	mainly	the	imaging	service	to	store	a	lot
of	snapshots	as	backups,	the	image	will	be	simply	store	as	files,	allowing	you	to
easily	upload	and	download	them	without	having	to	create	a	block	device	or
reading	all	of	the	data	from	a	block	device	to	return	it	over	the	image	service
HTTP	API.	Moreover,	you	can	store	images	in	a	format	that	uses	an	optimization
strategy,	which	can	be	great	if	you	generate	a	lot	of	download	requests	on	the
Imaging	API.

If	you	want	to	store	the	images	in	an	external	object	storage	service	of	your
OpenStack	infrastructure,	you	can	use	the	S3	storage	driver	in	Glance	to	put	your
images	(templates	and	snapshots)	into	the	AWS	S3	(Amazon	Web	Services	Simple
Storage	Service).	This	can	be	an	interesting	solution	to	store	some	backups	of	your
infrastructure	in	an	external	secure	service,	allowing	you	to	potentially	have	a
disaster	recovery	plan	on	AWS	EC2	(Elastic	Cloud	Computing,	the	Compute
Service	from	AWS)	using	the	data	from	your	OpenStack	infrastructure.

Different	Image	Formats
Stored	images	on	the	imaging	service	can	have	different	formats,	depending	upon
the	ones	that	are	supported	by	your	hypervisor	and	the	features	you	want	to	use.



The	notion	of	image	format	includes	two	different	notions:	the	disk	format,	which
corresponds	to	the	real	data	of	the	disk	image	and	the	container	format	that
contains	the	metadata	information	of	a	disk	image.

Here	are	the	most	used	disk	formats:

Raw:	the	most	simple	format	possible–an	unstructured	and	exact	copy	of	a
device	data.	This	one	is	usually	huge	since	it	needs	to	allocate	the	whole	image
space	in	a	single	file,	so	some	parts	are	unused	and	empty.

QCOW2:	stands	for	QEMU	Copy	on	Write.	This	format	uses	a	strategy	to
compress	the	data	contained	in	the	image.	The	allocation	of	the	storage	size	is
delayed	until	the	space	is	actually	required	to	store	the	data.	Thus	this	format
is	flexible	since	this	one	can	be	expanded	if	some	data	is	added,	unlike	the	raw
image	of	a	device.	Moreover,	it	is	possible	to	store	the	additional	changes	in
another	file	that	will	contain	the	difference	from	the	original	base	QCOW2
image,	using	the	Copy	on	Write	feature	provided	by	this	format.

VHD:	stands	for	Virtual	Hard	Disk,	which	is	almost	standard	for	the
Microsoft	technologies	(Windows	and	Hyper-V).	For	example,	it	is	possible	to
easily	attach	a	VHD	image	to	a	Windows	system	without	having	a
virtualization	engine	because	the	Operating	System	natively	supports	this
format.	A	VHD	image	can	be	modified	directly,	thus	changing	some	files,	and
making	a	backup	or	a	recovery	inside	the	image.

VMDK:	the	default	VMware	image	format,	which	is	supported	by	other
virtualization	solutions	like	QEMU	or	VirtualBox.	This	supports	multiple
provisioning	strategies	including	the	thin	provisioning,	and	allowing
provisioning	the	block	only	when	these	ones	are	written	in	the	image.

The	additional	information	of	the	images,	such	as	the	metadata	information,	can
be	stored	in	external	containers	if	they	are	not	in	the	image	file.	In	the	same	way
as	the	images	data	format,	the	multiple	container	format	exists	and	are	supported
by	OpenStack	and	the	virtualization	drivers.	The	most	used	is	the	OVF	(Open
Virtualization	Format),	an	open	standard	based	on	an	XML	descriptor	file
detailing	the	packaged	virtual	machine.



DASHBOARD
OpenStack	includes	a	dashboard	project	named	Horizon,	which	is	a	web	interface
built	with	the	Django	framework	and	the	different	OpenStack	APIs	from	the
OpenStack	services.

The	Graphical	User	Interface	(GUI)	provided	by	the	Horizon	dashboard	is	a	great
way	to	get	started	with	OpenStack	and	its	different	components.	It	allows	booting
your	first	instance	with	a	simple	setup	assistant,	and	then	creates	your	first	Swift
container,	thus	managing	a	few	resources	(see	Figure	2.8).

Figure	2.8		

Using	this	GUI	can	simplify	your	everyday	life	if	your	OpenStack	projects	are
small	or	use	only	the	main	features.	It	doesn’t	scale	well,	however,	when	you	start
to	have	hundreds	or	thousands	of	instances	and	networks,	and	want	to	use
features	that	are	not	considered	basic.	For	example,	creating	a	new	network	port
with	a	specific	configuration	and	attaching	it	to	an	existing	instance	would	not	be
basic.

The	next	step	is	then	to	use	the	command	line	(CLI)	or	the	different	OpenStack
APIs	to	administrate	your	account	or	infrastructure	and	start	to	automate	the
deployment,	management	and	the	use	of	your	OpenStack	resources.

Because	the	command	line	implements	all	of	the	APIs,	this	is	a	good	way	to	test	all
of	the	features,	and	discover	the	API	methods,	their	requests,	and	response
formats	before	starting	to	develop	and	use	it	in	an	application.	Otherwise	this	one
can	be	easily	scripted	to	simply	automate	and	repeat	your	everyday	administrative



tasks	using	OpenStack.



NETWORKING
The	networking	service	within	OpenStack	is	responsible	for	providing	network
connectivity	within	the	cloud	as	well	as	between	instances	in	the	cloud	and	the
outside	world.	OpenStack	provides	two	different	networking	services.	The	legacy
solution	is	part	of	the	Nova	compute	module,	and	is	referred	to	as	nova-network
or	“Nova	networking.”	The	Neutron	project	provides	the	new	networking	solution,
and	includes	much	more	functionality	and	flexibility.

Both	solutions	provide	two	different	types	of	IP	addresses:	private	IP	addresses
and	floating	IP	addresses.	The	private	addresses	are	the	ones	that	the	VMs
instances	themselves	see.	That	is,	running	ip	addr	on	a	Linux	VM	instance	will
show	you	the	private	address.	Instances	communicate	within	the	cloud	using	their
private	addresses.	In	OpenStack,	each	VM	will	have	at	least	one	private	IP
address,	but	it	doesn’t	need	a	floating	IP	address.

The	floating	addresses	are	those	available	from	outside	the	cloud	(and	often	the
public	Internet),	and	are	directed	to	a	specific	VM	instance	using	the	Network
Address	Translation	(NAT).	Floating	IP	addresses	may	be	associated	with	a	VM	at
the	time	of	its	creation,	or	any	time	thereafter.	They	may	also	be	moved	to	a
different	VM–this	is	what	makes	them	“floating”	IP	addresses.	They	are	not	fixed
to	a	specific	VM	or	even	tenant,	and	may	be	freely	moved	from	one	to	another.

Another	important	concept	in	OpenStack	networking	is	the	distinction	between
provider	networks	and	tenant	networks.	Provider	networks	are	objects	defined	in
OpenStack	that	provide	information	about	a	part	of	the	physical	network
infrastructure,	and	can	only	be	created	by	administrators.	The	cloud	administrator
creates	provider	networks	within	OpenStack	that	correspond	to	the	physical
networks	configured	within	the	infrastructure.	This	allows	OpenStack	to	manage
the	connectivity	between	the	cloud	and	the	physical	network.	These	networks	can
be	used	to	provide	external	access	via	floating	IP	addresses,	or	they	can	provide
VMs	with	IP	addresses	on	the	physical	infrastructure	subnets	(thus	avoiding	the
use	of	floating	IPs	for	those	VMs).

In	contrast,	ordinary	users	create	tenant	networks.	These	networks	are	isolated
from	other	tenants,	and	are	under	the	control	of	the	owner.	They	may	or	may	not
map	directly	to	the	underlying	physical	networks,	depending	upon	the
segmentation	strategy	set	up	by	the	cloud	administrator.	That	strategy	is	defined
by	the	cloud	operator	and	hidden	from	the	tenant.	From	an	application
developer’s	point	of	view,	the	particular	segmentation	strategy	is	not	important.
What	is	important	is	to	understand	that	the	tenant	networks	are	accessible	only	to
the	tenant	that	creates	them,	except	through	floating	IP	addresses.

Nova	Networking
Nova	networking	is	deprecated	in	favor	of	Neutron	networking,	but	some	existing
clouds	still	use	it,	so	having	some	familiarity	with	it	can	be	useful.



Nova	networking	provides	a	simple	networking	solution	with	limited	flexibility	in
the	topology	and	configuration.	In	particular,	tenants	have	little	control	over	the
topology	and	cannot	create	complex	networking	environments.

In	most	installations,	Nova	networking	will	be	configured	with	either	a	single
“flat”	network	shared	by	all	tenants,	or	with	a	VLAN	per	tenant	(See	Figure	2.9).

Figure	2.9		

In	Nova	networking,	as	an	application	developer,	you	have	little	control	over
building	out	the	topology.

Neutron	Networking
Neutron	networking	is	the	new,	standalone	networking	service	within	OpenStack.
As	a	software-defined	networking	solution,	it	provides	the	ability	to	create
complex	tenant	topologies,	and	it	integrates	with	a	wide	variety	of	vendor	SDN
products.	The	idea	is	to	be	able	to	reproduce	physical	network	topologies	in	a
completely	virtual	environment.	Just	like	Nova	Compute,	which	lets	you	virtualize
machine	instances,	Neutron	Networking	lets	you	virtualize	networking
components	such	as	routers,	firewalls,	and	load	balancers,	as	shown	in	Figure	2-
10.

In	Neutron,	there	are	separate	Network	nodes	(shown	in	Figure	2.10),	as	opposed
to	Nova	Networking,	which	relies	solely	on	the	compute	nodes.	The	Network



nodes	handle	the	advanced	services	such	as	Load	Balancer-as-a-Service,	Firewall-
as-a-Service,	and	Virtual	Private	Network-as-a-Service.	Additionally,	they	provide
the	connectivity	to	the	external	world	outside	the	cloud.	In	early	versions	of
Neutron	(prior	to	Juno),	all	Layer	3	traffic	between	different	subnets	went	through
the	network	node,	even	if	it	was	between	VMs	on	the	same	compute	node.	Only
Layer	2	traffic	could	transit	from	directly	between	the	compute	nodes,	or	even
within	a	compute	node.	In	Juno,	the	Distributed	Virtual	Router	(DVR)
functionality	was	added	to	provide	local	routing	on	the	compute	node.	However,
traffic	still	goes	through	the	network	nodes	to	leave	the	cloud,	or	to	access
advanced	services.

Figure	2.10		

How	Neutron	Helps	Applications
Consider	deploying	a	three-tier	application	in	a	traditional	environment.	You	need
to	buy	servers,	switches,	routers,	firewalls,	load	balancers,	and	SSL	offload	load
balancers–and	you’ll	need	them	in	pairs	for	redundancy.	Each	of	them	needs	to	be
racked,	connected	in	the	exact	manner	needed	for	the	application,	and	manually
configured.	You’ll	need	to	plan	out	the	space,	power,	and	cooling	needs	created	by
the	new	application.	Even	if	you	virtualize	the	servers,	you	still	need	to	setup	all	of
the	networking	gear.	This	requires	a	lot	of	expense	in	capital	equipment	as	well	as
a	lot	of	time	for	setup.



A	Practical	Note	In	practice,	you	wouldn’t	use	all	of	this	equipment.
Modern	network	devices	can	serve	several	of	these	purposes,	either	directly	or
through	service	modules.	In	that	case	you	can	use	VLAN	tagging	to	create
isolated	segments,	so	from	a	security	perspective	it	is	equivalent.	However,
even	in	that	case,	Figure	2.11	illustrates	the	complexity	of	this	deployment,	as
each	of	these	services	still	needs	manual	configuration.

Figure	2.11		

In	a	software-defined	world,	all	of	that	complexity	moves	to	the	software	layer.	At
the	hardware	layer,	we	have	uniform	racks	of	servers,	with	top-of-rack	switches,
typically	connected	to	a	spine-and-leaf	networking	fabric	(see	Figure	2.12).



Figure	2.12		

The	servers	here	are	the	compute,	network,	storage	and	other	physical	nodes	in
your	cloud.	The	leaves	are	the	top-of-rack	switches	that	all	of	these	plug	into.	The
spines	aggregate	all	of	the	traffic	from	the	leaves,	and	every	leaf	can	reach	every
other	leaf	with	just	two	hops,	since	every	leaf	connects	to	every	spine.
Additionally,	inter-leaf	traffic	can	be	spread	across	the	spines	without	taking	a
longer	path.	This	helps	reduce	bottlenecks.	In	this	layout,	you	still	have	full
redundancy	as	each	server	is	dually	connected	to	two	leaves.

None	of	the	hardware	layer	changes	are	based	upon	application	deployments,	as
long	as	there	is	capacity.	And	when	there	is	a	change,	you	can	add	a	servers	or
racks	in	a	simple	and	consistent	way,	without	having	to	know	anything	about	the
applications	that	will	be	running	on	them.

As	new	applications	are	provisioned	and	decommissioned,	there	is	no	longer	a
need	to	rack,	cable	and	configure	specific	hardware	devices	for	those	applications.
Networks	are	overlaid	on	top	of	the	consistent	hardware	via	automation	and	pure
software-based	network	devices.	You	create	virtual	routers,	load	balancers,	and
firewalls	in	software,	and	connect	them	via	API	calls.	This	can	dramatically	cut
down	on	the	time	it	takes	to	deploy	an	application,	as	well	as	enable	repeatable,
template-based	deployment.

Of	course,	software	may	not	perform	as	well	as	specialized	hardware.	Additionally,
there	are	many	features	that	the	standard	OpenStack	reference	implementation
doesn’t	support.	Neutron	provides	a	rich	set	of	pluggable	interfaces	to	address
these	concerns.	These	plugins	enable	third-party	vendors	to	integrate	directly	into



the	Neutron	service,	extending	its	functionality.	Plugins	can	interact	with	external
SDN	controllers	or	existing	physical	networking	gear,	provide	advanced	services
such	as	VPN-as-a-Service,	or	integrate	with	external	IP	Address	Management
platforms.	The	difference	between	this	and	setting	up	a	traditional	network	for	an
application,	though,	is	that	it	is	still	all	done	with	the	same,	simple	APIs,	rather
than	through	vendor-specific	proprietary	configuration	protocols.

Understanding	Core	Neutron	Objects
The	Neutron	object	model	consists	of	some	familiar	analogs	with	the	physical
world,	such	as	ports,	subnets,	and	routers.	There	are	also	some	logical	concepts
that	really	only	exist	in	OpenStack,	such	as	subnet	pools	and	address	scopes.

A	Neutron	network	corresponds	to	a	Layer	2	broadcast	domain.	If	you’re	not	that
familiar	with	networking,	in	the	physical	world	you	can	think	of	this	as	essentially
a	single	“wire”	for	nodes	to	talk	over.	Layer	2	deals	exclusively	with	MAC
addresses–there	is	no	need	for	IP	addresses	in	this	layer.	Switches	provide
optimizations	on	top	of	the	“single	wire”	model	by	forwarding	Ethernet	frames
down	only	the	necessary	links.	They	also	provide	VLANs–or	Virtual	Local	Area
Networks–which	allow	you	to	divide	a	single	switch	into	multiple	broadcast
domains.	Essentially,	you	get	to	say	which	ports	“go	together”.	In	Neutron,	the
network	model	captures	this	concept.

A	Neutron	subnet	provides	the	Layer	3	connectivity.	That	is,	it	provides	the	IP
addressing	and	enables	Neutron	routers	to	pass	traffic	between	Neutron	networks.
This	is	very	similar	to	the	standard	networking	model.	A	subnet	is	associated	with
a	particular	Layer	2	network,	and	a	Neutron	router	is	used	to	interconnect
subnets,	just	like	in	the	physical	world.

In	Neutron,	when	creating	a	router	you	can	additionally	specify	that	it	provide
high	availability	(HA),	or	that	it	be	a	distributed	virtual	router,	which	as
mentioned	above	is	spread	out	across	all	of	the	compute	nodes.	DVR	is	a	more
recent	implementation	than	the	standard	router,	and	as	such	has	some
limitations.	As	of	the	Kilo	release,	DVR	does	not	work	with	FWaaS	for	east-west
(between	VM)	traffic.	Also,	it	requires	compute	nodes	to	have	a	public	IP	to
handle	distributed	floating	IP	addresses.

A	Neutron	port	is	associated	with	a	network.	Its	analog	in	the	real	world	is	an
actual	switch	port	where	you	would	plug	in	an	Ethernet	cable.	It	is	the	point	of
attachment	to	a	network.	Neutron	will	provide	Nova	with	a	port	to	“plug	in”	the
instance	interface.	One	distinction	though	between	the	real	world	and	Neutron	is
that	in	Neutron	a	port	is	also	automatically	associated	with	one	or	more	IP
addresses	(one	for	each	subnet	on	the	network).	This	is	a	blurring	of	the	Layer	2
and	Layer	3	semantics,	and	may	be	resolved	in	a	later	release	of	Neutron.

A	Neutron	security	group	provides	simple,	firewall-like	functionality.	Rules	may
be	defined	for	ingress	and	egress	traffic,	and	those	rules	will	be	applied	at	the
Neutron	port.	There	is	a	default	security	group	that	will	allow	traffic	between



instances	in	that	group,	and	traffic	outbound	from	instances	in	the	group	(egress
traffic),	but	it	restricts	all	inbound	traffic.	You	can	utilize	the	Firewall-as-a-Service
project	for	more	sophisticated	features.

The	Kilo	release	of	Neutron	added	another	concept	that	is	more	abstract	than
those	described	previously–the	subnet	pool.	A	subnet	pool	is	a	collection	of	IP
network	prefixes	from	which	a	tenant	may	allocate	subnets.	That	is,	in	Juno	and
earlier,	the	tenant	had	to	specify	a	specific	subnet–like	10.10.10.0/24–to	allocate.
In	Kilo,	the	cloud	administrator	can	create	a	subnet	pool–say	10.10.0.0/16–from
which	the	tenant	can	ask	for	“any	subnet”	of	a	particular	size.	This	way,	the	tenant
really	does	not	need	to	figure	out	ahead	of	time	what	the	subnet	should	be–they
can	just	ask	the	subnet	pool	to	figure	it	out.	For	example,	without	subnet	pools,
you	would	use	this	API	call	to	create	a	new	subnet:

neutron	subnet-create	private-network	10.1.0.0/24

This	requires	the	caller	to	know	that	10.1.0.0/24	is	a	valid,	available	subnet	that
can	be	used.	With	subnet	pools,	the	administrator	can	create	a	pool	for	specific
uses–say,	for	web	servers.	This	pool	contains	a	wide	range	of	addresses	from
which	to	allocate	subnets,	as	well	as	a	default	prefix	length	(the	“/24”	above,	which
corresponds	to	the	subnet	mask).	So,	instead	of	the	above,	you	can	execute	a
simpler	command:

neutron	subnet-create	private-network	–subnetpool	web-pool

This	completely	separates	the	decisions	about	IP	address	and	subnet	allocation
from	the	subnet	creation	process.	This,	along	with	the	Pluggable	IP	Address
Management	feature	added	in	Liberty,	is	critical	to	using	clouds	in	larger
organizations	that	have	different	groups	managing	IP	space	and	applications.

In	Liberty,	one	more	concept	is	added,	called	an	address	scope.	This	represents	a
unique	Layer	3	address	space.	In	Neutron,	you	can	create	the	same	subnet	CIDR
(for	example,	10.0.0.0/24)	on	two	different	networks.	This	can	lead	to	overlapping
IP	addresses.	This	is	perfectly	valid	in	Neutron,	except	that	you	cannot	connect
those	two	networks	to	the	same	router.	If	you	did,	then	Neutron	would	not	be	able
to	distinguish	between	the	same	IP	address	on	each	network.	The	address	scope
generalizes	this,	providing	an	object	within	Neutron	to	represent	the	address
space	to	which	a	subnet	belongs.	By	doing	this,	Neutron	enables	better	control
over	routing,	and	prevents	multiple	users	from	accidentally	creating	overlapping
space.	It	also	lets	Neutron	know	when	Network	Address	Translation	(NAT)	may
be	needed	even	between	non-overlapping	subnets–this	can	prevent	accidental
overlap	between	other	subnets	on	the	router.

Understanding	Overlay	Networks
One	of	the	key	features	provided	by	Neutron	is	the	concept	of	overlay	networks.
An	overlay	network	is	just	a	segmentation,	or	segregation,	of	the	network	traffic
that	rides	on	the	physical	network.	The	key	part	is	that	from	the	point	of	view	of



the	VM,	there	is	a	single,	ordinary	network.	But	in	fact,	this	is	an	illusion	created
by	Neutron,	since	the	data	is	actually	moving	across	various	physical	boundaries
in	the	data	center.	For	example,	when	a	VM	sends	out	a	Layer	2	broadcast	such	as
an	ARP	request,	that	request	may	be	packaged	up	and	sent	across	the	physical
network	to	several	different	compute	nodes.	Then,	it	is	unwrapped	on	those	nodes
and	delivered	to	each	VM	on	the	same	overlay	network.	It	is	overlay	networks	that
provide	the	ability	to	separate	tenant	traffic,	enabling	us	to	share	the	underlying
physical	infrastructure	and	thus	make	full	use	of	it	(See	Figure	2.13).

Figure	2.13		

The	simplest	and	most	familiar	form	of	an	overlay	network	is	the	VLAN.	A	VLAN
tags	Ethernet	frames	with	a	12-bit	number,	and	this	enables	the	physical
networking	gear	to	differentiate	between	the	traffic	that	belongs	with	individual
VLANs.	When	a	user	creates	a	tenant	network	in	Neutron,	it	can	be	assigned	a
particular	VLAN	tag,	and	Neutron	can	then	keep	all	of	that	traffic	segregated	from
other	traffic	within	the	network.

A	big	drawback,	however,	is	that	a	12-bit	tag	provides	at	most	4096	VLANs.	In	a
large	multi-tenant	cloud,	there	may	be	many	more	separate	networks	required.
Other	technologies	have	been	developed	to	address	this	gap.	The	two	you	will	see
in	OpenStack’s	reference	implementation	are	Virtual	Extensible	Local	Area
Network	(VXLAN)	and	Generic	Routing	Encapsulation	(GRE).	While	VLANs	are
based	on	Layer	2	technology–they	tag	Ethernet	frames–these	two	technologies	are
based	upon	Layer	3	technology.	That	is,	they	work	by	encapsulating	the	data	in	IP
packets	rather	than	by	tagging	Ethernet	frames.	This	can	allow	the	overlay
networks	to	stretch	across	larger	networks.	Additionally,	the	VXLAN	protocol
provides	a	24-bit	number	to	differentiate	networks,	allowing	over	16	million
distinct	overlay	networks.



BRINGING	IT	ALL	TOGETHER
To	help	understand	how	these	different	pieces	interact,	let’s	step	through	what
happens	when	you	launch	a	VM	and	see	how	all	of	the	pieces	fit	together.	This	is	a
simplified	workflow	that	the	user	and	the	various	services	will	go	through	in	a
typical	case	of	launching	a	VM	with	ephemeral	storage	only	(i.e.,	the	storage	and
all	disk	contents	go	away	when	the	VM	is	terminated).	Many	internal	steps	are
glossed	over	here,	since	the	focus	is	on	the	interaction	between	the	services.

In	order	to	boot	any	VM,	you’ll	need	to	prepare	a	few	things	first.	For	this
example,	we	will	use	the	individual	service	CLI	clients.	There	is	also	a	general
openstack	client	but	it	does	not	offer	all	of	the	features	of	the	separate	service
clients.

First,	you	need	to	decide	on	the	flavor	of	the	VM	you	want.	The	flavor	represents
the	combination	of	CPUs,	memory,	and	storage	for	the	VM.	The	flavors	can	be
retrieved	from	Nova	(some	columns	omitted	for	brevity):

$	nova	flavor-list

+----+-----------+-----------+------+-----------+------+-------+

|	ID	|	Name						|	Memory_MB	|	Disk	|	Ephemeral	|	Swap	|	VCPUs	|

+----+-----------+-----------+------+-----------+------+-------+

|	1		|	m1.tiny			|	512							|	1				|	0									|						|	1					|

|	2		|	m1.small		|	2048						|	20			|	0									|						|	1					|

|	3		|	m1.medium	|	4096						|	40			|	0									|						|	2					|

|	4		|	m1.large		|	8192						|	80			|	0									|						|	4					|

|	42	|	m1.nano			|	64								|	0				|	0									|						|	1					|

|	5		|	m1.xlarge	|	16384					|	160		|	0									|						|	8					|

|	84	|	m1.micro		|	128							|	0				|	0									|						|	1					|

+----+-----------+-----------+------+-----------+------+-------+

$

We	will	use	m1.tiny.

Next,	you	need	to	know	what	image	to	use.	The	image	contains	the	bootable
operating	system	for	the	VM.	Until	we	need	to	actually	build	an	application,
examples	in	this	book	will	generally	use	CirrOS	(https://launchpad.net/cirros),
which	is	a	very	small,	minimal	OS	that	is	useful	for	testing	of	the	cloud	platform.	If
you	are	following	along,	then	other	images	may	be	available	on	your	OpenStack
instance.	Choose	a	small	one	for	experimentation.

$	glance	image-list

+---------+---------------------------------+...+----------+--------+

|	ID						|	Name																												|...|	Size					|	Status	|

+---------+---------------------------------+...|----------+--------+

|	6d…e0	|	cirros-0.3.4-x86_64-uec									|...|	25165824	|	active	|

|	5f…92	|	cirros-0.3.4-x86_64-uec-kernel		|...|	4979632		|	active	|

|	06…c6	|	cirros-0.3.4-x86_64-uec-ramdisk	|...|	3740163		|	active	|

+---------+---------------------------------+...+----------+--------+

$

Since	we	want	to	be	able	to	access	our	instance	over	the	network,	rather	than	just

https://launchpad.net/cirros


via	the	console,	you	need	to	attach	it	to	a	network.	So,	call	the	Neutron	service	to
find	out	the	available	networks.

$	neutron	net-list

+---------+---------+------------------------------------------------------

----+

|	id						|	name				|	subnets																																																		

|

+-------------------+------------------------------------------------------

----+

|	50…56	|	public		|	09c872aa-02fa-4e81-9cb1-846399938c64	2001:db8::/64							

|

|																			|	b9d882f3-8378-42cc-b5fa-4cb2576c7fb4	192-168.20.0/25					

|

|	fa…ea	|	private	|	5bd94138-3a4a-4966-b216-b4530a0f489d	

fddc:b6e3:ede0::/64	|

|																			|	ece9ba64-cf28-424c-8187-8df763301a56	10.0.0.0/24									

|

+---------+---------+------------------------------------------------------

----+

Now	we	have	everything	Nova	needs	to	know	at	boot	time,	so	we	simply	run	the
nova	boot	command	(output	has	been	abbreviated).

$	nova	boot	–flavor	m1.tiny	–image	cirros-0.3.4-x86_64-uec	\

												–nic	net-id=fa3282e4-64ba-44fa-9644-46da784234ea	i-1

+--------------------------------------+-----------------------------------

---+

|	Property																													|	Value																																

|

+--------------------------------------+-----------------------------------

---+

|

|	OS-EXT-STS:power_state															|	0																																				

|

|	OS-EXT-STS:task_state																|	scheduling																											

|

|	OS-EXT-STS:vm_state																		|	building																													

|

|	OS-SRV-USG:launched_at															|	-																																				

|

|	OS-SRV-USG:terminated_at													|	-																																				

|

|	created																														|	2015-07-24T05:52:20Z																	

|

|	flavor																															|	m1.tiny	(1)																										

|

|	id																																			|	a9d9e891-e85a-471b-9844-

cd3eda0659a0	|

|	image																																|	cirros-0.3.4-x86_64-uec	(6d…e0)				

|

|	key_name																													|	-																																				

|

|	metadata																													|	{}																																			

|



|	name																																	|	i-1																																		

|

|	progress																													|	0																																				

|

|	security_groups																						|	default																														

|

|	status																															|	BUILD																																

|

|	tenant_id																												|	56082fc3830e43d4af307bed5d1d5f90					

|

|	updated																														|	2015-07-24T05:52:20Z																	

|

|	user_id																														|	e749c12a525d4b259e0e291fd91ca53a					

|

+--------------------------------------+-----------------------------------

---+

$

So	what	does	Nova	do	when	we	initiate	the	boot	command?	First,	it	validates	our
credentials	with	Keystone,	to	make	sure	we	have	the	authority	to	launch	the	VM.
After	that,	the	boot	process	is	a	state	machine	that	takes	the	instance	state	from
BUILD	to	ACTIVE	under	normal	circumstances.	Nova	first	stores	the	instance	in	the
database	with	Status	BUILD	and	Task	State	scheduling.	The	primary	Status	remains
BUILD,	so	to	see	the	progress	of	the	boot	we	need	to	look	at	the	secondary	Task
Status.	Both	statuses	are	tracked	in	the	Nova	database.

$	nova	list

+---------+------+--------+------------+-------------+--------------+

|	ID						|	Name	|	Status	|	Task	State	|	Power	State	|	Networks					|

+---------+------+--------+------------+-------------+--------------+

|	a9…a0	|	i-1		|	BUILD		|	scheduling	|	NOSTATE					|														|

+---------+------+--------+------------+-------------+--------------+

Next,	nova	sends	a	request	to	the	Nova	scheduler	(running	on	the	controller	node)
via	the	message	queue.	It	is	the	scheduler’s	job	to	figure	out	the	physical	compute
node	on	which	to	run	the	instance.	It	will	select	a	node	based	upon	the
characteristics	of	the	VM–how	much	CPU	and	memory	it	needs,	for	example–and
the	available	capacity	of	each	host.	It	will	then	post	a	request	back	to	the	message
queue	that	includes	the	selected	host.	The	command	results	above	show	the
scheduling	state,	however,	in	practice	scheduling	will	likely	be	fast	enough	that
you	won’t	catch	it	in	that	state.

Nova	picks	the	scheduled	instance	request	off	the	queue	and	updates	the	database,
then	sends	a	message	across	the	queue	again	–	this	time	to	the	nova-compute
process	that	sits	on	the	selected	compute	host.	The	nova	compute	agent	makes	a
RESTful	API	call	to	the	Glance	image	service	to	retrieve	the	image.

Each	time	one	service	talks	to	another,	Keystone	may	be	invoked	to	validate	the
token	(the	details	depend	on	the	type	of	token).	In	this	case,	Glance	would	verify
that	the	user	has	permission	to	the	selected	image.	If	so,	Nova	downloads	the
image	to	its	image	cache.



Now	the	host	is	selected	and	the	image	is	available	on	that	host.	But	Nova	still
needs	to	know	how	to	connect	the	instance	to	a	network.	It	sets	the	task	status	to
networking,	and	then	calls	the	Neutron	networking	service	to	create	a	port.	The
port	can	be	thought	of	just	like	a	real,	physical	switch	port.	It	provides	a	place	to
“plug	in”	the	instance	network	interface	to	the	virtual	switching	fabric.	Again,	this
between-service	interaction	is	done	via	the	same	RESTful	APIs	that	other	clients
use.	In	fact,	we	could	have	created	the	port	ahead	of	time,	and	provided	a	port_id
to	Nova	instead	of	a	network_id.

Neutron	creates	the	port	and	allocates	and	IP	address	on	a	subnet	associated	with
the	supplied	network_id.	Like	Nova,	Neutron	has	agents	running	on	each	compute
node.	It	is	on	that	node	that	it	will	create	the	virtual	port.

Finally	Nova	takes	all	of	this	information,	sets	the	task	status	to	spawning,	and
calls	the	hypervisor	(KVM	by	default)	to	actually	spin	up	the	instance.



SUMMARY
In	this	chapter	you	learned	in	detail	about	the	core	components	of	OpenStack	and
how	they	work	together	to	create	a	cloud.	Finally,	you	put	it	all	together	to
understand	the	details	of	how	Nova	interacts	with	Keystone,	Neutron,	Glance,	and
Cinder	to	spin	up	virtual	machines.	These	are	the	basic	services	you	will	find	in
most	OpenStack	clouds,	but	there	are	a	host	of	other	services.	In	the	next	chapter,
we	will	look	at	some	of	the	less	core–but	still	important–services	offered	in	some
OpenStack	clouds.
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Understanding	the	OpenStack	Ecosystem:	Additional
Projects
WHAT’S	IN	THIS	CHAPTER?																			

Understanding	Cloud	Orchestration

Orchestration	capabilities	in	OpenStack

OpenStack	Heat	in	details

Software-defined-storage	(SDS)

Cloud	databases	as	a	use	case	of	SDS

Cloud	databases:	maintain	or	consume

OpenStack	Database	as	a	Service:	Trove

A	look	at	Magnum	and	Containers	as	a	Service

Coverage	of	Murano	and	Ceilometer

The	core	components	discussed	in	Chapter	2	cover	the	basic	IaaS	functionality	of
OpenStack.	Just	using	those	features,	OpenStack	enables	you	to	set	up	and	run
applications.	However,	there	is	more	to	building,	deploying,	and	supporting	an
application	than	is	covered	in	those	components.	This	chapter	will	discuss
additional	OpenStack	projects	that	enable	you	to	define	repeatable	application
deployments	on	VMs	or	containers,	make	those	applications	available	via	DNS,
and	monitor	the	virtual	infrastructure	on	which	those	applications	are	hosted.
Although	these	aren’t	labeled	as	orchestration,	such	applications	also	require
manual	configuration	and	deployment	in	some	manner.	This	chapter	will	cover
how	to	use	OpenStack	to	manage	container-based	applications,	how	to	package
applications	for	use	by	others,	and	how	to	take	advantage	of	the	Database-as-a-
Service	feature	to	shift	more	complexity	from	your	application	to	the	cloud
infrastructure.

DEMO	APPLICATION	SOURCE	CODE
You	can	access	the	source	code	from	our	demo	application	via	GitHub:
https://github.com/johnbelamaric/openstack-appdev-book.

https://github.com/johnbelamaric/openstack-appdev-book


OPENSTACK	HEAT
In	cloud	computing	theory,	it	is	well	known	that	there	is	more	than	one	type	of
service.	One	of	the	most	popular	and	interesting	(in	terms	of	flexibility)	services	is
the	Platform-as-a-Service	(PaaS),	which	allows	you	to	tap	into	cloud	capabilities	in
different	ways,	such	as	with	a	cloud	orchestration	service.	Let’s	take	a	look	at	the
scientific	definition	of	cloud	orchestration:

It	provides	you	with	the	ability	to	control	and	arrange	a	set	of	underlying
technology	infrastructures	(hardware	and	hypervisor).	You	can	match	the
intended	commands	inputted	by	the	users	to	create	a	set	of	automated	events
that	deliver	the	request	with	the	maximum	efficiency	(source:
http://howtobuildacloud.com/cloud-enablement/cloud-orchestration-starts-
to-play-its-tune/)

It	provides	you	with	the	ability	to	manage,	coordinate,	and	provision	all	parts
of	a	customer	solution	automatically,	with	no	administrative	intervention,
ideally	from	a	self-service	interface.	This	is	much	like	a	conductor	who
conducts	an	orchestra	making	sure	that	all	of	the	instruments/performers	are
in	tune	and	in	time	(source:	https://www.flexiant.com/).

Putting	definitions	aside,	the	most	important	point	of	cloud	orchestration	services
is	not	what	they	are,	but	what	they	do.	As	a	cloud	consumer,	a	provider,	or	a
reseller	of	cloud	services,	all	that	matters	is	that	cloud	orchestration	makes	your
cloud	consumption	experience	better.	If	you	are	looking	for	some	service	or
capability	that	will	make	your	cloud	application	resources	more	scalable,	instantly
deployable,	efficient,	simpler	to	use,	and	easier	to	bill	and	manage,	you	are	looking
at	cloud	orchestration	service	capabilities.

You	may	question	the	idea	that	an	orchestration	service	is	a	platform	service,	but
cloud	orchestrators	were	the	first	services	that	gave	us	an	ability	to
consume/operate	cloud	resources	in	a	pre-defined	way	(specific	DSL)	within	a
single	API	specification	(just	remember	old	days,	when	you	had	to	learn	tons	of
API	specs	to	accomplish	your	business	needs).

Orchestration	Capabilities	in	OpenStack
So,	cloud	orchestration	is	something	that	you	can’t	live	without,	but	what	about
OpenStack?	Can	you	say	the	same	thing?	Let’s	examine	the	OpenStack
orchestration	service,	called	Heat.

Heat	is	the	main	project	in	the	OpenStack	orchestration	program.	It	implements
an	orchestration	engine	to	launch	multiple	composite	cloud	applications	based
upon	templates	in	the	form	of	text	files	that	can	be	treated	like	code.	A	native	Heat
template	format	is	evolving,	but	Heat	also	provides	the	compatibility	with	the
AWS	CloudFormation	template	format.	This	allows	many	existing
CloudFormation	templates	to	be	launched	on	OpenStack.	Heat	provides	both	an
OpenStack-native	REST	API	and	a	CloudFormation-compatible	Query	API

http://howtobuildacloud.com/cloud-enablement/cloud-orchestration-starts-to-play-its-tune/
https://www.flexiant.com/


(source:	https://wiki.openstack.org/wiki/Heat).

OpenStack	Heat	in	Details
Let’s	examine	what	Heat	can	do	for	you.	Below	you	can	see	a	list	of	template	types
that	Heat	supports:

HOT:	(Heat	Orchestration	Template).	HOT	templates	are	a	new	generation	of
templates	that	aren’t	backwards-compatible	with	AWS	CloudFormation
templates,	and	can	only	be	used	with	OpenStack	(DSL	for	HOT—YAML).

CFN:	Short	for	AWS	CloudFormation.	This	type	was	initially	supported	since
Heat’s	first	releases	(DSL	for	CFN-JSON).

Each	template	defines	infrastructure	resource	requirements,	the	relationship
between	each	of	the	resources,	and	any	software	configuration	necessary	in	order
to	manage	a	complete	application	resource	lifecycle.

Before	looking	at	a	template	it	is	necessary	to	understand	a	few	terms:	stack,
resource,	parameter,	and	output.

Stack:	a	collection	of	objects	described	by	a	template	with	its
relationships/dependencies	that	will	be	deployed	in	the	cloud.	stack	includes
instances	(VMs),	networking,	block	storage,	object	storage	buckets,	and	auto-
scaling	rules.

Resource:	an	element	of	stack.	For	example,	VM,	security	group,	subnet,	and
block	storage	are	the	resources	of	stack.

Parameters:	these	are	tidbits	of	information,	like	a	specific	image	ID,	flavor,
volume	size,	or	a	particular	network	ID	that	is	passed	to	the	Heat	template	by
the	user.	In	general	cases,	templates	are	parameterized	to	allow	some	flavor	of
flexibility,	yet	in	common	cases	it	is	up	to	the	user.	The	general	application	of
parameters	lays	in	configuring	resources.	For	example,	if	you	need	to	deploy	a
virtual	machine	(VM)	resource,	you	have	to	explicitly	define	the	flavor	and	the
image	ID.	These	are	parameters	for	resources	and	in	the	template	it	is	possible
to	have	a	huge	section	for	parameters	in	real	life.	Parameters	are	not	a
mandatory	thing,	however,	but	it	is	possible	that	the	resource	definition	puts
some	default	values	in	resource	configuration.

Outputs:	this	is	interesting,	since	in	common	cases	it	outputs	a	fully	custom
data	structure	that	is	being	defined	at	the	end	of	a	successful	deployment.	Let’s
just	review	a	small	example.	Let’s	say	you	have	three	resources:	VM,	security
group	with	rules,	and	software	deployment.	The	idea	here	is	to	deploy	a	VM
with	software	in	it	(Nodecellar,	Wordpress,	MySql	or	whatever)	and	we	need	to
restrict	the	access	to	that	deployed	application.	This	deployment	configuration
assumes	that	we’re	deploying	a	PaaS	application	and	users	are	able	to	access	it
within	specific	connection	strings.	Here	are	the	template	outputs:	once
deployment	is	ready,	Heat	will	try	to	get	outputs	according	to	its	definition

https://wiki.openstack.org/wiki/Heat


from	the	template	using	built-in	template	DSL	functions.

Now	it’s	time	to	take	a	look	at	a	real-life	example	of	a	Heat	template:

heat_template_version:	2013-05-23

	

description:	>

		A	HOT	template	that	holds	a	VM	instance	with	an	attached

		Cinder	volume.		The	VM	does	nothing,	it	is	only	created.

	

parameters:

	

		key_name:

				type:	string

				description:	Name	of	an	existing	key	pair	to	use	for	the	instance

				constraints:

						-	custom_constraint:	nova.keypair

								description:	Must	name	a	public	key	(pair)	known	to	Nova

	

		flavor:

				type:	string

				description:	Flavor	for	the	instance	to	be	created

				default:	m1.small

				constraints:

						-	custom_constraint:	nova.flavor

								description:	Must	be	a	flavor	known	to	Nova

	

		image:

				type:	string

				description:	>

						Name	or	ID	of	the	image	to	use	for	the	instance.

						You	can	get	the	default	from

						http://cloud.fedoraproject.org/fedora-20.x86_64.qcow2

						There	is	also

						http://cloud.fedoraproject.org/fedora-20.i386.qcow2

						Any	image	should	work	since	this	template

						does	not	ask	the	VM	to	do	anything.

				constraints:

						-	custom_constraint:	glance.image

								description:	Must	identify	an	image	known	to	Glance

	

		network:

				type:	string

				description:	The	network	for	the	VM

				default:	private

	

		vol_size:

				type:	number

				description:	The	size	of	the	Cinder	volume

				default:	1

	

resources:

	

		my_instance:

				type:	OS::Nova::Server

				properties:

http://cloud.fedoraproject.org/fedora-20.x86_64.qcow2
http://cloud.fedoraproject.org/fedora-20.i386.qcow2


						key_name:	{	get_param:	key_name	}

						image:	{	get_param:	image	}

						flavor:	{	get_param:	flavor	}

						networks:	[{network:	{get_param:	network}	}]

	

		my_vol:

				type:	OS::Cinder::Volume

				properties:

						size:	{	get_param:	vol_size	}

	

		vol_att:

				type:	OS::Cinder::VolumeAttachment

				properties:

						instance_uuid:	{	get_resource:	my_instance	}

						volume_id:	{	get_resource:	my_vol	}

						mountpoint:	/dev/vdb

	

outputs:

		instance_networks:

				description:	The	IP	addresses	of	the	deployed	instance

				value:	{	get_attr:	[my_instance,	networks]	}

As	you	can	see,	this	template	was	written	using	HOT	DSL,	and	here	is	the	list	of
parameters:

key_name

flavor

image

network

vol_size

And	here	is	the	list	of	resources:

my_instance

my_vol

vol_attr

Here	are	the	stack	outputs	(as	you	can	see	now,	HOT	DSL	provides	a	set	of
functions	to	retrieve	specific	resource	attributes	or	get	deployment	parameters):

instance_networks

Let’s	figure	out	what	this	template	does.	It	deploys	a	VM,	provisions	a	block
storage	(data	volume),	attaches	volume	to	the	VM,	and	as	part	of	the	output,	it
returns	an	IP	address	of	the	VM.	As	for	OpenStack	operators,	let’s	examine	the
architecture	of	Heat	(see	Figure	3.1):

heat-api	is	an	OpenStack-native	RESTful	API.	This	component	processes	API
requests	by	sending	them	to	the	Heat	engine	service	via	AMQP.

heat-api-cfn	is	similar	to	the	CloudFormation-compatible	RESTful	API.



heat-engine	provides	the	main	orchestration	functionality.

Figure	3.1		

This	chapter	is	not	about	the	hands-on	best	practices	for	deploying	Heat	into	your
OpenStack	environment.	You’ve	seen	what	Heat	can	do,	though,	and	how	it	can	do
it.	If	you	are	interested	in	developing	or	consuming	Heat,	it	is	necessary	to	learn
its	API	and	technology	stack.

Let’s	sum	up	what	we’ve	learned	about	orchestration	in	OpenStack.	It	has	a	rich
ecosystem	of	modules	available	to	facilitate	automation	throughout	all	stages	of
the	stack’s	resources	and	their	lifecycle,	resulting	in	greatly	reduced	time-to-
market	for	many	IT	demands/projects.	Heat	is	the	leading	orchestration	tool	for
OpenStack-based	clouds,	and	it	is	an	official	part	of	the	OpenStack	distribution.
With	strong	enterprise	support	and	substantial	on-going	contribution,	Heat	is	fast
becoming	the	great	tool	of	choice	for	OpenStack	private	and	public	clouds.



OPENSTACK	DATABASE	AS	A	SERVICE:	TROVE
We	have	covered	orchestration	in	the	cloud	and	how	it	can	help	your	business.
Let’s	spend	some	time	covering	the	differences	between	creating	applications	in
and	out	of	a	cloud.	As	a	software	architect	you	need	to	give	everyone	the	basic	idea
of	how	your	application	should	be	deployed	and	how	it	should	work,	especially	in
a	cloud	infrastructure.	In	general,	you	need	a	persistent	storage	for	your	app—you
need	a	database.	So,	what	cloud	can	give	that	to	you?	Would	that	be	a	cloud
database	or	just	Infrastructure-as-a-Service	(IaaS)?

Cloud	Database	As	Use	Case	of	Software-Defined-	Storage	(SDS)
You	may	wonder	if	Heat	is	able	to	be	the	software	that	defines	storage	with	the
help	of	its	DSL.	This	is	true,	but	it	is	necessary	to	have	an	ability	to	manage
storage	in	a	very	specific	way.	For	example,	given	that	software	should	enable	a
software-defined	storage	environment,	it	may	also	provide	policy	management	for
feature	options	such	as	deduplication,	replication,	clustering,	fault-tolerance,	thin
provisioning,	snapshots,	and	backup.

In	the	case	of	Heat,	it	is	pretty	complicated	to	provide	all	of	these	capabilities,
since	it	would	make	cloud	orchestration	very	complicated	and	hardly
maintainable.	That	is	why	you	should	use	Heat	or	implement	your	own
orchestration,	since	a	custom	engine	for	services	will	do	the	storage	provisioning.
Within	OpenStack,	you	can	find	a	big	variety	of	services	that	do	storage
provisioning:	Cinder,	Swift,	and	Manila.

Speaking	of	persistent	storage,	as	a	developer	you	need	to	have	the	capability	of
delivering	a	database	as	a	specific	use	case	of	software-defined	storage.	This	is
great	having	a	service	that	uses	database	delivery	using	concepts	of	SDS,	and
taking	all	deployments	and	maintaining	them	behind	the	scene.

A	cloud	database	is	a	database	that	typically	runs	on	a	cloud	computing	platform,
in	our	case	that	is	OpenStack,	and	provides	limited	access,	allowing	users	to
interact	with	the	database	through	its	native	API.	For	a	long	period	of	time	there
were	no	cloud	databases,	so	database	consumers	tried	to	deal	with	it	in	their	own
way.	There	are	two	common	deployment	models:	users	can	run	databases	on	the
cloud	independently,	using	a	pre-configured	virtual	machine	image,	or	they	can
purchase	access	proprietary	solutions	that	are	working	above	different	cloud
platforms.	So	what’s	the	problem	with	the	last	approach?

OpenStack	and	Trove
There	are	problems	with	using	proprietary	solutions	that	are	working	on	different
cloud	platforms.	It	is	not	enough	to	buy	a	product,	since	within	some	period	of
time	the	product	must	be	supported.	And	if	you	are	aware	of	software	services	and
software	product	business	models,	you	would	definitely	choose	a	service	that
provides	databases	instead	of	developing	and	supporting	your	own	custom



solution.	This	is	because	it	seems	that	products	always	cost	less	because	of	a	one-
time	purchase	and	no	support,	yet	every	problem	is	your	personal	headache,	and
support	for	products	in	general	becomes	more	expensive	than	the	cost	of	the
product.	On	the	other	hand,	purchasing	a	service	subscription	takes	less	money
due	to	its	time	access	restrictions,	but	in	the	case	of	software	services	support,	it	is
being	handled	by	the	service	provider.

Note	that	the	first	cloud	database	service	was	provided	by	Amazon	AWS,	called
Amazon	RDBS.	It	is	only	relational,	NoSQL	not	even	once,	but	when	RDBS	was
released,	NoSQL	was	not	widely	available,	so	Amazon	AWS	customers	were
completely	satisfied	by	SQL	databases.	Currently,	RDBS	is	still	alive	and	popular,
and	nothing	much	has	changed	(new	flavors	of	databases	were	added,	which	are	a
replication	for	MySQL).

Enterprises	need	clusters	and	datacenters	full	of	clusters,	and	they	need	them	as
quickly	as	possible.	So,	here	are	our	demands:	we	need	new	SQL/NoSQL
solutions,	we	need	clusters,	and	we	need	automated	management	operations	(see
SDS	capabilities),	and	finally,	we	need	it	all	in	OpenStack	by	the	end	of	today.	So,
OpenStack	definitely	missed	such	abilities,	primarily	the	way	to	declare	storage	as
a	database	using	a	specific	language.	There	are	a	couple	of	possible	ways	to
accomplish	database	installation	within	OpenStack:

Firstboot.d	or	cloud-init

Chef

Puppet

Ansible

Post-provisioning	scripts	execution	with	fabric

It	is	easy	to	deploy	a	database.	But	what	about	the	cost	of	your	time	to	automate
management	tasks?	If	you	choose	this	path,	eventually	you	would	end	up	spending
time/money	to	update	your	scripts	to	adopt	them	to	new	requirements.

Obviously,	enterprise	customers	would	love	to	consume	services	and	resources
instead	of	maintaining	them.	Custom	and	very	specific	solutions	may	not	work	in
terms	of	SDS,	however,	since	SDS	DSL	should	be	flexible.	So,	we	need	a	service	for
databases	that	meet	the	concepts	of	SDS.	Let’s	go	back	to	2012.	Rackspace	and	HP
decided	to	collaborate	and	implement	such	a	service	for	OpenStack:	OpenStack
database	service,	Trove.

Before	describing	the	concepts	of	Trove	itself,	please	keep	in	mind	that	Trove	is
not	a	database.	Even	if	it	was	defined	as	a	database	as	a	service,	Trove	is	not	a
database.	Trove	is	a	tool	that	delivers	and	manages	database	instances	in	a	cloud
environment.	OpenStack’s	Database	as	a	Service	(DBaaS)	project	is	in	active
development	but	holds	a	real	treasure.	This	service	is	designed	to	provide	all	of	the
goods	of	both	SQL	and	NoSQL	databases	without	the	hassle	of	having	to	handle
complex	administrative	tasks.	It	is	necessary	to	have	a	dedicated	service	that



completely	implements	all	SDS	management	operations.	The	idea	was	to	provide
a	scalable	and	reliable	cloud	database	as	a	service	provisioning	functionality	for
both	relational	and	non-relational	database	engines,	and	to	continue	to	improve
its	fully-featured	and	extensible	open	source	framework	(including	replication,
clustering,	backup,	restore,	user/databases	CRUD	operations).

So,	what	are	those	differences	between	Trove	and	Amazon	RDBS?	Trove	does
NoSQL	bootstrapping,	however,	starting	with	the	Juno	release	Trove	does
replication	for	MySQL	and	Percona	5.5,	as	well	as	sharded	clustering	for
MongoDB	2.x.x.

OpenStack	DBaaS	In	Detail
Let’s	define	what	Trove	is.	In	cloud	computing	there	are	two	definitions	for	cloud
databases:	a	datasource	API	service	and	a	data	plane	API	service.	Let’s	take	a	close
look	at	the	cloud	pioneer,	Amazon.	Amazon	AWS	provides	two	different	types	of
database	services:	Amazon	RDBS	and	Amazon	DynamoDB	(and	SimpleDB,	the
cheap	version	of	DynamoDB).	Both	of	these	services	are	database	services,	and
both	deal	with	databases,	but	in	completely	different	ways:

Amazon	RDBS:	a	data	plane	API	service	that	deploys	databases	within	a
single	account.	This	is	best	for	deployment	on	demand.

Amazon	DynamoDB:	a	datasource	API	service	that	creates	schema	entities
over	pre-deployed	NoSQL	database	clusters.

From	this	perspective	Trove	is	not	a	database.	Trove	is	instead	a	database	instance
delivery	service.	Trove	does	instant	database	deployment	on	demand.

Before	looking	at	Trove’s	API,	you	need	to	understand	a	few	terms	that	Trove	uses.

Datastore:	a	data	structure	that	describes	a	set	of	datastore	versions,	which
consists	of:

ID:	simple	auto-generated	UUID

Name:	user-defined	attribute;	actual	name	of	a	datastore

Default	datastore	Versions	ID

Example:	Mysql,	Cassandra,	Redis,	etc.

Datastore	Version:	a	data	structure	that	describes	a	version	of	a	specific
database	pinned	to	datastore,	which	consists	of:

ID:	simple	auto-generated	UUID

Datastore	ID:	reference	to	datastore

Name:	user-defined	attribute;	actual	name	of	a	database	version

Datastore	manager:	trove-guestagent	manager	that	is	used	for	datastore
management



Image	ID:	reference	to	a	specific	Glance	image	ID

Packages:	database	distribution	packages	that	would	be	deployed	onto	a
datastore	VM

Active:	boolean	flag	that	defines	if	a	version	can	be	used	for	instance
deployment	or	not

Example:	Name	-	5.6

Packages:	mysql-server=5.5,	percona-xtrabackup=2.1

So,	both	of	these	terms	are	describing	which	database	flavor	version	should	be
deployed.

Also	it	is	necessary	to	understand	which	images	should	be	used.	Unfortunately,
Trove	is	not	able	to	work	with	pure	cloud-ready	images	due	to	its	architectural
specialties—each	Glance	image	should	contain	Trove’s	guest	agent	(an	RPC	service
that	manages	a	database	instance	where	it	was	installed).	For	more	information
on	how	to	create	images	for	Trove,	please	take	a	look	at	this	document:
https://github.com/openstack/trove/blob/master/doc/source/dev/building_guest_images.rst

Now	it	is	time	to	proceed	to	Trove’s	API	and	what	it	can	do:

Database	instance	management	(within	supported	datastores)

Database	backup/restore	(for	MySQL	and	Percona	it	is	also	supported	to
create	an	incremental	backup)

Post-provisioning	configuration	management

Clustering	(starting	with	the	Juno	release	for	MongoDB	2.x.x,	VerticaDB)

Replication	(from	MySQL	and	Percona)

Users/database	CRUD	operations	(note,	when	this	book	was	written	not	all
supported	data-store	drivers	in	Trove	were	able	to	provide	such	ability)

Let’s	take	a	precise	look	at	Trove’s	workflow	and	which	OpenStack	services	are
involved	with	instance	provisioning.	In	Figure	3.2	you	can	see	important	Trove
elements.

https://github.com/openstack/trove/blob/master/doc/source/dev/building_guest_images.rst


Figure	3.2		

It	is	necessary	to	explain	what	happens	when	a	user	submits	an	instance
provisioning	task	to	Trove.	First	of	all,	we	have	to	deal	with	how	each	new	instance
is	a	new	VM	with	an	attached	block	storage.	So,	there	is	no	bare	metal	(say
goodbye	to	Oracle	and	its	license),	and	no	containers.	Secondly,	for	provisioning,
Trove	requires	special	images	with	additional	software,	which	will	be	described
later	in	this	chapter.

So,	each	time	a	user	creates	an	instance,	Trove	does	the	following:

Nova	VM	bootstrap

Cinder	block	storage	provisioning

Once	the	VM	is	ready	and	the	volume	provisioned,	Trove	sends	over	an	AMQP
RPC	message	to	the	Trove	agent	that	is	being	deployed	at	the	VM	to	setup	the
database.	So,	if	it’s	not	installed,	install	it,	do	additional	configuration,	and	report
that	the	database	is	ready.	You	probably	noted	that	Trove	does	its	own
orchestration,	so	this	is	a	community	decision.	For	now	Trove	doesn’t	support
fully	Heat-based	provisioning.	In	Figure	3.3	you	can	see	CLI	calls	to	Trove	for
instance	creation	using	python-troveclient.



Figure	3.3		

Database	Backup
Now	let’s	take	a	look	at	how	the	instance	backup	procedure	is	implemented.	Once
a	user	submits	a	backup	request,	it	asks	its	agent	to	perform	a	backup.	Depending
upon	its	implementation	backup,	it	can	be	online	or	off-line.	So,	the	agent	uses
native	database	tools	to	perform	backups	(xtrabackup	for	MySQL	flavors,
nodetool	for	Cassandra,	etc.).	Once	backup	is	ready,	the	agent	packages	it	into	an
archive	and	then	sends	it	to	remote	bucket	storage:	Swift.	In	terms	of	security
concerns	the	agent	encrypts	the	backup	using	an	AES	block	cipher.	But	there’s	a
problem.	All	instances	are	using	the	same	AES	key	within	any	deployment.	In
Figure	3.4	you	can	see	CLI	calls	for	backing	up	to	Trove	using	python-troveclient
(https://pypi.python.org/pypi/python-troveclient/1.2.0).

Figure	3.4		

Trove	Instance	Restore
Actually	the	Trove	instance	restore	is	an	interesting	operation.	You	should	take
into	account	that	you	can	restore	data	only	into	a	new	Trove	instance.	So,	in	this
key,	the	restore	differs	from	instance	provisioning	only	by	applying	a	pulled
backup	from	Swift.	In	Figure	3.5	you	can	see	CLI	calls	to	Trove	for	restoring	a	new
instance	using	python-troveclient.

https://pypi.python.org/pypi/python-troveclient/1.2.0


Figure	3.5		

Trove	Instance	Configuration	Management
Taking	into	account	that	Trove	is	a	pure	PaaS,	there’s	no	access	to	any	other
services	on	an	instance	instead	of	a	database,	and	there’s	only	one	way	to	manage
your	instance—through	Trove’s	API.	One	of	the	available	API	endpoints	is
configuration	management	that	is	being	deployed.	For	different	types	of	databases
Trove	provides	an	ability	to	modify	different	types	of	configurations.	For	example,
in	MySQL	flavors	it	is	possible	to	modify	dynamic	system	variables	that	are	not
required	to	put	the	database	into	maintenance	mode,	but	there	are	also	options
that	require	the	database	service	to	be	shutdown	(datadir,	logging,	etc.).	In	Figure
3.6	you	can	see	an	example	of	a	changing	database	configuration	right	after	its
deployment.

Figure	3.6		

So,	you	may	think	that	with	the	help	of	configuration	management	you	can	easily
create	a	replication	group	for	MySQL	flavors.	Actually,	Trove	developers	did	that
for	you,	as	shown	in	Figure	3.7—you	can	see	how	Trove	addresses	replication
within	its	API.



Figure	3.7		

Speaking	of	replication,	as	part	of	its	replication	capabilities,	Trove	provides	an
ability	to	promote	slave	to	master	and	vice	versa	(i.e.,	the	demotion).	For	the	sake
of	stability	and	predictability	it	was	decided	to	implement	this	feature	for	manual
mode	only	to	let	users	decide	whether	they	want	or	don’t	want	to	do	that.	Also,
starting	with	the	Kilo	release	Trove	is	able	to	perform	replication	in	two	different
ways	(for	MySQL	flavors):	regular	binlog	replication	(binlogs	are	being	transferred
through	remote	storage,	by	the	default—Swift	buckets)	and	a	new	type	of
replication	that	is	supported	by	MySQL	5.6	and	greater—GTID	replication	(see
more	info	at	https://dev.mysql.com/doc/	refman/5.6/en/replication-gtids-
concepts.html).

There’s	nothing	much	to	say	about	Trove	cluster	provisioning.	Basically,	Trove
creates	a	set	of	single	instances	of	a	specific	datastore	and	its	version.	Once	they
are	ready,	Trove	starts	to	execute	operations	for	each	instance	to	join	them	into	a
cluster.	The	set	of	operations	always	follows	the	industry	best	practices	for	cluster
bootstrapping	(specific	to	each	datastore).

Trove	Architecture
Like	most	OpenStack	services	Trove	itself	is	divided	into	multiple	services:

trove-api:	A	service	that	provides	a	RESTful	API	that	supports	JSON	to
provision	and	manages	Trove	instances.

trove-taskmanage:	A	service	that	does	the	heavy	lifting	as	far	as
provisioning	instances,	managing	the	lifecycle	of	instances,	and	performing
operations	on	the	database	instance.

trove-conductor:	A	service	that	is	middleware	between	the	guestagent	and
Trove’s	backend.

trove-guestagent:	A	VM-site	service	that	manages	database	instances	within
its	lifecycle.

In	Figure	3.8	you	can	see	how	Trove’s	architecture	is	organized.

https://dev.mysql.com/doc/refman/5.6/en/replication-gtids-concepts.html


Figure	3.8		

In	the	database	world,	outside	of	clouds,	it	is	necessary	to	automate	tasks	such	as
a	daily	backup,	but	it	does	seem	that	Trove	misses	such	ability	due	to	heavy
decisions	on	which	technology	to	pick	or	creating	from	scratch.	Implementing	a
scheduler	is	in	the	roadmap,	but	it	is	not	clear	when	it	will	happen.	So,	stepping
aside	of	the	community	plans,	it	is	obvious	that	someday	Trove’s	architecture	will
be	extended	by	that	scheduler.	So	here	is	the	future	of	its	architecture—Figure	3.9
explicitly	describes	how	a	scheduler	will	be	integrated.

Figure	3.9		

Here	are	some	last	words	about	Trove.	The	idea	for	Trove	was	to	create	a
competitive	(against	Amazon	AWS	or	other	proprietary	solution)	service	that	is
part	of	the	OpenStack	ecosystem.	Yes,	it	does	support	the	provisioning	of	multiple
database	flavors	and	their	versions	(datastores	with	datastore	versions	in	Trove



terms).	And	yes,	it	does	backup/restore	for	supported	databases.	It	can	do
clustering	for	MongoDB	and	VerticaDB.	But	are	all	of	these	features	needed	by	the
enterprise?	The	answer	is	yes.	And	are	those	supported	databases	being	requested
and	wanted	by	the	enterprise?	Unfortunately	no.	Trove	only	partially	meets
customer	needs	(at	least	the	upstream	version).	So	OpenStack	must	support
widely	used	databases	such	as	Oracle	12c,	MySQL	and	others.



DESIGNATE:	DNS	AS	A	SERVICE
Being	able	to	quickly	deploy	virtual	machines	and	applications	is	the	promise	of
OpenStack	and	cloud	computing	in	general.	However,	if	it	still	takes	a	phone	call
or	service	ticket	to	create	a	Domain	Name	Service	(DNS)	entry	for	the	application,
a	lot	of	the	effectiveness	of	automation	is	lost.	That’s	where	DNS-as-a-Service
comes	into	play.	It	enables	application	deployments	scripts	to	create	DNS	zones
and	records	as	needed.	Designate	is	the	project	in	OpenStack	that	makes	this
possible.

Understanding	the	Designate	Architecture
Like	other	OpenStack	services,	Designate	contains	several	components:	an	API
end	point	(designate-api),	a	centralized	logical	controller	(designate-central),	an
internal	DNS	server	(MiniDNS	or	designate-mdns),	and	a	manager	(designate-
pool-manager)	to	configure	downstream,	outward-facing	DNS	servers.	There	is
also	an	optional	designate-sink	service	that	watches	the	message	queue	and	can
take	other	actions	as	needed	based	upon	fired	events	(see	Figure	3.10).

Figure	3.10		



Designate	can	be	backed	by	a	variety	of	open	source	and	commercial	DNS	servers,
such	as	BIND,	Infoblox,	or	PowerDNS.	This	is	not	visible	to	the	tenant—the	tenant
simply	has	access	to	APIs	to	create	and	manage	domains	(zones)	and	the	records
in	those	zones.	Each	of	these	services	is	accessed	via	a	“backend”	plugin,	which
contains	the	specific	logic	for	interacting	with	that	DNS	server.

When	a	user	makes	a	request	via	Horizon,	the	CLI	client,	or	the	API	directly,	the
request	will	go	to	the	designate-api	service.	This	service	manages	the	inbound
HTTP	connections,	serving	up	the	RESTful	API.	It	communicates	with	designate-
central	over	the	message	bus.

The	designate-central	service	is	the	hub	of	activity,	coordinating	the	actions
required	to	carry	out	the	API	requests,	and	managing	the	persistent	storage	for	the
Designate	data.	When	an	API	call	requires	a	configuration	change	on	one	of	the
backend	DNS	servers,	designate-central	will	send	an	RPC	request	to	designate-
pool-manager,	which	modifies	the	DNS	server	configurations.	The	specifics	of	what
actions	it	takes	will	depend	on	the	backend	plugin.

When	domains	or	records	are	created	or	modified,	designate-central	will	also
update	the	designate-mdns	service.	This	is	a	small	DNS	server	that	works	as	a
“hidden	master”	server	for	all	Designate	managed	domains.	That	means	that	it	is
authoritative	for	the	domain,	but	it	does	not	show	up	as	an	NS	record	for	the
domain—in	other	words,	it	is	hidden	from	view.	Clients	cannot	find	it	to	directly
access	it	(it’s	also	not	accessible	externally)—only	other	name	servers	can	access	it.
The	backend	DNS	servers,	which	actually	serve	requests	from	clients,	are
configured	to	see	designate-mdns	as	the	primary	server,	and	accept	zone	transfers
from	it.	DNS	zone	transfers	are	a	standard	DNS	method	for	sharing	zone	data
among	servers.

Using	Designate
As	an	application	developer,	your	interaction	with	Designate	will	primarily	be	to
create,	modify,	and	delete	zones	and	records.	Let’s	look	at	the	designate	CLI	client
and	how	to	use	it.	Like	other	services,	the	client	name	is	simply	the	service	name,
designate.	It	uses	the	same,	consistent	authentication	means	as	other	CLI	clients.
It	also	provides	quotas	on	the	number	of	entities	you	can	create.

$	designate	quota-get	tenant-id

+-------------------+-------+

|	Field													|	Value	|

+-------------------+-------+

|	domains											|	10				|

|	domain_recordsets	|	500			|

|	recordset_records	|	20				|

|	domain_records				|	500			|

+-------------------+-------+

$

The	domains	entry	is	just	what	you	might	expect	—	it	refers	to	domain	names	such



as	example.com.	Most	likely,	you	will	be	restricted	to	creating	sub-domains	of	your
organization’s	domain	(e.g.,	foo.example.com	or	foobar.example.com).	To
understand	the	entries	in	this	quota	list,	you	need	to	know	a	little	more	about
DNS.

FULLY	QUALIFIED	DOMAIN	NAMES
Designate	requires	you	to	use	fully	qualified	domain	names—this	includes	the
trailing	“.”.	Strictly	speaking,	a	name	is	not	a	FQDN	without	that,	and
Designate	will	enforce	this.

For	each	domain,	the	DNS	server	holds	records.	Each	record	has	a	type,	a	name,	a
time-to-live	and	any	associated	data.	While	there	are	many	record	types,
Designate	supports	nine	common	types	as	of	the	Kilo	release,	shown	in	the
following	table.	Remember,	each	record	also	has	a	name—the	example	data	shown
here	is	the	result	of	a	query	for	that	name.



Record
Type

Example	Data Description

A 10.0.0.1 An	IPv4	Address	record.

AAAA 2001:DB8::1 An	IPv6	Address	record.

CNAME foo.example.com. A	canonical	name—this	is	an	entry	used	to	map	one
name	to	another.	For	example,	if	there	is	a	DNS	A
record	named	bar.example.com,	referring	to	10.0.0.1,
then	you	can	create	a	CNAME	record	named
foo.example.com.	referring	to	bar.example.com.	(the
true,	or	canonical,	name	of	the	resource).

MX 10	mail.example
.com.

A	mail	exchange	server	for	the	domain.	This	is	used
by	mail	agents	to	decide	how	to	send	mail	to	email
addresses	in	this	domain.

NS ns1.example.com. A	name	server	record.	The	NS	records	on	a	domain
specify	which	name	servers	are	authoritative	for	the
domain.

SSHFP 1	2	a4b1a288…
8821ab33ef

A	public	SSH	host	key	fingerprint.	This	can	be	used
to	help	verify	hosts	are	who	they	say	when	using	ssh.

SPF v=spf1
ip4:192.0.2.0/24
a	–all

A	Sender	Policy	Framework	record,	used	to	help
prevent	email	spoofing.	It	enables	you	to	specify	rules
to	filter	out	incoming	email.	TXT	records	are	often
used	for	this	instead.

SRV 20	5	5060
sip.example.com.

A	general	service	locator	record.	This	is	used	to	locate
newer	services	rather	than	using	a	service-specific
type	like	MX.	See	RFC	2782.

TXT Some	example
text.

Arbitrary	text,	either	for	human	or	machine
consumption.

Most	often,	you	will	use	the	A,	AAAA,	CNAME	and	perhaps	MX	records.	For
deploying	some	applications	you	may	also	take	advantage	of	SRV	records	to
advertise	the	availability	of	the	application	service	to	the	rest	of	the	organization.
The	remainder	are	primarily	used	by	the	administrator	or	for	special	purposes.

Record	sets	are	groups	of	records	with	the	same	type,	name,	and	TTL,	but	with
different	data.	So,	you	can	define	an	A	record	set	with	multiple	IP	addresses	as
data.	The	name	is	what	you	are	actually	using	when	you	lookup	a	resource.	For
example,	to	lookup	the	address	(A)	record	name	blue.foobar.example.com	from
the	DNS	server	at	172.16.98.136,	you	can	use	the	host	utility	in	Linux:

$	host	-t	A	blue.foobar.example.com.	172.16.98.136

Using	domain	server:

Name:	172.16.98.136

Address:	172.16.98.136#53

Aliases:



	

blue.foobar.example.com	has	address	10.1.0.100

$

In	the	quota	list,	the	domain_recordsets	entry	indicates	the	maximum	number	of
record	sets	(ie,	unique	type/name	combinations)	you	may	have	in	a	single	domain.
The	recordset_records	indicates	the	maximum	number	of	records	in	a	single
record	set.	And	finally	the	domain_records	entry	puts	an	additional	constraint	on
total	records	in	a	domain.

Creating	a	domain	using	the	CLI	is	straightforward—you	use	the	domain-create
command.

$	designate	domain-create	--ttl	3600	--name	foobar.example.com.	

		--email	info@example.com

+-------------+--------------------------------------+

|	Field							|	Value																																|

+-------------+--------------------------------------+

|	description	|	None																																	|

|	created_at		|	2015-08-10T19:11:22.000000											|

|	updated_at		|	None																																	|

|	email							|	info@example.com																					|

|	ttl									|	3600																																	|

|	serial						|	1439233882																											|

|	id										|	7254c2b3-187c-428e-974d-03bac08cb2af	|

|	name								|	foobar.example.com.																		|

+-------------+--------------------------------------+

$

You	will	notice	that	you	must	specify	an	email	address	as	the	contact	for	the
domain.	You	also	may	specify	the	TTL	value.	This	value	is	used	by	downstream
caching	name	servers	to	know	how	long	to	hold	on	to	the	data	before	refreshing
their	cache.	The	value	is	in	seconds;	the	longer	you	specify,	the	more	time	it	will
take	for	changes	to	go	into	effect	across	the	entire	Internet.	However,	specifying
too	low	of	a	value	for	a	frequently	looked	up	domain	can	overburden	your	DNS
servers.	The	default	value	in	Designate	is	3600,	or	one	hour.

Once	you	have	created	a	domain,	you	can	start	creating	records.	When	you	spin	up
a	new	VM,	you	can	create	a	DNS	entry	for	it	so	that	other	VMs	within	the	cloud
can	access	it	by	name,	rather	than	by	IP	address.	To	create	the	record	we	used	in
the	example	lookup	earlier,	use	this	command.

$	designate	record-create	--type	A	--name	blue.foobar.example.com.	\

																									--data	10.1.0.100	foobar.example.com.

+-------------+--------------------------------------+

|	Field							|	Value																																|

+-------------+--------------------------------------+

|	description	|	None																																	|

|	type								|	A																																				|

|	created_at		|	2015-08-10T19:18:59.000000											|

|	updated_at		|	None																																	|

|	domain_id			|	7254c2b3-187c-428e-974d-03bac08cb2af	|

|	priority				|	None																																	|



|	ttl									|	None																																	|

|	data								|	10.1.0.100																											|

|	id										|	fc83692a-f484-41fa-81c8-25300a908f7b	|

|	name								|	blue.foobar.example.com.													|

+-------------+--------------------------------------+

$

You	will	notice	that	the	statement	above	says	“within	the	cloud.”	The	VM	IP
address	at	spin	up	is	typically	a	private	address,	so	machines	external	to	the	cloud
will	not	be	able	to	access	the	address	directly.	To	enable	external	systems	to	access
the	VM	via	the	name	lookup,	you	need	to	associate	a	DNS	entry	with	the	floating
IP	address,	not	the	private	IP	address.

One	option	to	handle	this	cleanly	is	to	use	two	different	domain	names	for	internal
and	external	references.	For	example,	if	you	want	others	in	your	organization	to
access	your	application	from	outside	the	cloud,	you	could	create	a	domain
cloud.example.com	and	another	cloud-local.example.com.	When	you	provision	a
VM	(or	a	port	in	Neutron),	you	create	an	entry	in	the	cloud-local.example.com
domain.	When	you	associate	a	floating	IP	address	with	that	VM,	you	create	a
separate	entry	for	the	floating	IP	in	cloud.example.com.	Your	internal	cloud
applications	can	refer	to	the	cloud-local.example.com	domain	and	the	external
clients	to	the	cloud.example.com	domain.

This	works,	but	it’s	a	pretty	cumbersome	solution.	The	alternative	typically	used	in
DNS	is	called	split-horizon	DNS.	In	this	configuration,	the	DNS	server	can	look	at
information	about	the	inbound	request,	such	as	the	DNS	server	IP	address	it	came
in	through,	or	the	source	IP	address	of	the	query.	It	uses	this	information	to
choose	the	DNS	view	in	which	to	evaluate	the	query	response.	DNS	views	enable
you	to	define	a	different	response	for	the	same	query—one	in	each	view.	So,	you
can	define	an	A	record	for	www.cloud.example.com.	In	the	internal	view	that
resolves	to	10.1.0.100,	and	an	A	record	for	www.cloud.example.com	in	the	external
view	that	resolves	to	the	floating	IP	address.

Unfortunately,	as	of	the	Kilo	release,	Designate	does	not	yet	support	split-horizon
DNS.	However,	it	is	on	the	roadmap	so	we	can	look	forward	to	it	in	a	future
release.

Designate	is	a	powerful	and	important	part	in	automating	your	deployments.	The
ability	to	make	your	application	immediately	accessible	via	a	DNS	entry	is	critical
to	the	rapid	spin	up	of	applications.	Without	the	capabilities	of	Designate,
application	deployments	in	OpenStack	would	be	limited	by	the	often	manual	DNS
entry	creation	process.

http://www.cloud.example.com
http://www.cloud.example.com


MAGNUM
One	of	the	newest	and	most	interesting	components	in	the	OpenStack	ecosystem
is	a	container	focused	project	called	Magnum.	If	you	are	unfamiliar	with	them,
containers	are	a	virtualization	technology	similar	to	virtual	machines,	only	they
work	without	a	hypervisor.	A	more	detailed	conversation	about	exactly	what
containers	are,	how	they	compare	to	virtual	machines,	and	the	challenges/
solutions	they	provide	can	be	found	at	the	beginning	of	Chapter	6.	In	truth,	when
used	in	an	OpenStack	environment,	containers	actually	have	to	live	on	top	of
classically	provisioned	instances.	However,	for	the	purposes	of	understanding
what	Magnum	is	and	why	it	is	important,	containers	can	simply	be	looked	at	as
another	type	of	virtual	machine	that	cannot	be	managed	via	Nova	or	Neutron.

Containers	As	A	Service
Magnum	is	generally	defined	as	a	service	that	provides	containers	and	container
management	within	OpenStack.	It	allows	you	to	programmatically	provision,
delete,	and	network	containers	without	having	to	rely	on	a	specific	vendor,	and
does	so	in	a	multi-tenant	capable	manner.

There	are	currently	a	number	of	these	vendor	specific	container	orchestration
systems.	Google’s	Kubernetes,	and	Docker’s	Swarm	are	the	most	well	known,	and
are	both	supported	by	Magnum.	More	recent	offerings	like	Mesos	and	others	are
not	yet	supported,	but	are	likely	to	be	implemented	at	some	point	in	the	near
future.	One	of	the	major	concepts	behind	Mangum	though,	is	that	you	don’t	have
to	rely	on	any	specific	vendor.	Instead,	OpenStack	provides	a	set	of	agnostic	APIs
and	interfaces	that	allow	you	to	choose	your	own	container	type	and	orchestration
system.	This	prevents	vendor	lock-in	and	allows	you	to	more	easily	adopt	new
technology	as	it	comes	along.

Its	ability	to	manage	containers	in	a	multi-tenancy	fashion	means	that	Magnum’s
functionality	can	be	extended	to	consumers	within	an	OpenStack-backed	public
cloud.	Until	now,	in	addition	to	being	vendor	specific,	all	of	the	prevailing
solutions	for	container	management	would	provide	anyone	with	access	to	the
orchestration	layer,	access	to	every	container	within	it.	With	Magnum,	containers
are	isolated	by	tenant,	and	their	access	is	backed	by	Keystone.

Built	Using	Flannel,	Kubernetes,	and	Docker?
Magnum	is	created	from	of	a	number	of	different	components,	but	you	will	often
hear	that	it	is	built	upon	three	rather	enigmatic	technologies:	flannel,	Kubernetes,
and	Docker.	It	is	helpful	to	know	what	each	of	these	things	are,	but	as	you	will	see,
it’s	a	bit	of	a	misnomer	to	consider	Magnum	as	simply	a	combination	of	these
things.

The	first	of	these	technologies,	flannel	(yes	it’s	a	lowercase	f),	was	created	by	the
people	at	CoreOS	Inc.	It	is	a	virtual	network	that	gives	a	subnet	to	each	host	for



use	with	container	runtimes.	It	provides	a	network	binding	between	the	classically
provisioned	host	server	and	the	multiple	containers	that	exist	on	top	of	it,	allowing
traffic	to	be	routed	to	and	from	specific	containers.	flannel	is	transparent	in
Magnum.	There	are	no	flannel	APIs	to	speak	to,	nor	is	there	any	specific	flannel
functionality	that	has	been	exposed.	Rather,	flannel	simply	provides	the
networking	to	containers	that	Neutron	could	not.

The	next	one,	Kubernetes,	is	a	Google-backed	open	source	project	that	provides
Magnum	with	a	driver	for	the	orchestration	of	Docker	containers.	Like	flannel,
you	don’t	interact	directly	with	Kubernetes.	Instead,	you	interact	with	the
Magnum	API,	which	can	then	use	Kubernetes	to	provision,	alter,	or	remove
containers,	pods	and	bays.	Unlike	flannel,	by	using	alternate	drivers	such	as
Swarm	or	Mesos,	it	is	possible	to	actually	use	Magnum	without	Kubernetes	at	all.

Lastly,	there	is	Docker.	Docker	is	the	technology	you	have	most	likely	heard	of,	but
it	can	also	be	the	most	confusing	since	it	is	a	number	of	different	things.	When
people	refer	to	Docker,	they	can	be	referring	to	it	as	a	company.	Docker	actually
offers	a	number	of	products	centered	around	containers	including	Docker	Hub	(a
hosted	registry	service)	and	Docker	Swarm	(mentioned	earlier	as	an	alternative	to
Kubernetes).	The	Docker	Engine	is	also	often	referred	to	as	just	Docker.	The
Docker	Engine	is	a	runtime	as	well	as	a	number	of	tools	that	allow	you	to	build
and	run	Docker	containers.

In	the	case	of	OpenStack	Magnum,	Docker	is	basically	a	container	format	or
software	to	run	this	format	of	containers	on	a	host	when	using	Swarm,	which	is	an
orchestration	driver	for	these	Docker	formatted	containers.	While	not	supported
currently,	it	is	also	possible	that	other	container	formats	like	Rocket	could	allow
you	to	use	Magnum	without	Docker	at	all.

The	reference	to	these	technologies	as	the	basis	for	Magnum	is	not	deceptive.	It’s
meant	to	explain	Magnum	in	its	most	common	use	case.	Any	reference	on	how	to
use	Magnum	will	likely	demonstrate	how	to	deploy	Docker	containers	using
Kubernetes	and	flannel	will	back	the	networking	behind	the	scenes.	In	truth
though,	they	are	simply	more	technology	in	an	array	of	technical	options	that
OpenStack	and	Magnum	provide	in	a	simplified	way	to	use.

Built	Using	OpenStack
In	addition	to	using	Keystone	for	authentication	and	permissions,	Magnum	is
actually	built	using	a	number	of	the	other	OpenStack	projects	that	have	already
been	discussed.	It	employs	Heat	for	creating	pods	and	bays	where	containers	can
live,	Nova	as	its	compute	backbone,	and	Neutron	to	handle	networking	outside	of
the	containers	themselves.	This	can	provide	you	with	a	lot	of	flexibility	on	exactly
how	containers	are	implemented	in	your	environment.

For	example,	the	computational	unit	that	runs	a	cluster	of	containers	(or	node)
can	be	anything	that	Nova	can	supply	as	a	server.	This	means	containers	can	be
provisioned	on	top	of	bare	metal	severs	or	virtual	machines.	So	not	only	does



Magnum	provide	vendor	agnostic	containers,	but	it	can	be	backed	by	vendor
agnostic	computing.	The	same	can	be	said	for	its	networking	and	even	storage
components.	This	is	intentional,	and	is	a	great	illustration	of	how	OpenStack
allows	you	to	work	with	whatever	assets	you	have	available.

Building	on	top	of	the	existing	tools	within	OpenStack	provides	familiar
interfaces,	but	that	is	not	to	say	that	using	Magnum	is	no	different	than
provisioning	a	VM	and	throwing	it	on	a	private	network.	The	specific	needs	of
containers	that	made	them	a	poor	fit	for	Nova,	also	make	their	orchestration	and
configuration	a	slightly	different	process.

Bay,	Pods,	Nodes,	and	Containers
As	mentioned	before,	all	containers	that	are	part	of	Magnum	run	on	top	of	Nova
provisioned	servers.	What	wasn’t	mentioned,	was	that	these	containers	actually
run	on	top	of	something	called	Bays	that	actually	provides	the	container
orchestration	itself.	Depending	on	the	driver/vendor,	containers	or	pods	are	then
created	on	top	of	these	bays	in	groups	called	nodes.	Figure	3.11	may	make	this	a
little	clearer.

Figure	3.11		

To	provision	a	container,	you	must	first	select	and	provision	a	bay	type.	This	will
normally	be	done	using	one	of	several	bay	models	that	can	be	self-defined,	but	will
most	likely	be	provided	by	the	system	natively.	Bay	models	are	similar	to	Flavors
when	dealing	with	virtual	machines.	There	will	likely	be	one	bay	model	available
for	each	vendor/driver	that	has	been	configured	in	the	system,	and	like	most
assets	within	OpenStack	the	bay	models	can	be	listed	with	a	command.	However,
for	now,	selecting	a	bay	model	essentially	means	choosing	between	Kubernetes
and	Swarm.



Whatever	the	choice,	the	bay	model	is	specified	within	a	heat	template	and	the
actual	bay	is	created	through	Heat.	Bays	are	then	available	as	stacks	within	the
heat	API	or	in	the	Horizon	interface.

From	this	point,	the	Magnum	API	takes	over.	Within	a	bay	you	can	call	the
magnum	API	to	create	containers	(or	pods),	stop,	start	and	reboot	them	like	you
can	with	VM’s	in	Nova.	This	covers	the	basics,	so	you	should	have	some	idea	of
what	Magnum	is	and	how	it	works.

Magnum	as	the	Future	of	OpenStack
There	have	been	a	lot	of	questions	in	the	container	community	lately	as	to	the
need	for	OpenStack	in	the	face	of	projects	such	as	Kubernetes.	After	all,
Kubernetes	and	Docker	both	provide	nearly	complete	orchestration	solutions.

A	few	reasons	have	already	been	mentioned	as	to	why	you	might	look	toward
OpenStack	as	a	solution.	Multi-tenancy	and	vendor	agnostic	APIs	are	both	highly
desirable	qualities.	Not	having	to	acquire	in-depth	knowledge	of	some	of	the	more
esoteric	technologies	such	as	flannel	can	also	be	a	big	plus.

The	big	win	here	though	is	that	OpenStack	is	trying	to	build	a	more	future-proof
platform	and	Magnum	is	likely	to	be	a	big	part	of	OpenStack’s	future.	Containers
are	excellent	technology,	but	they	are	one	of	the	fastest	changing	solutions	out
there.	Like	any	new	technology	the	initial	winners	are	often	long	term	losers,	so
it’s	risky	to	get	in	deep	with	any	single	container	vendor/format/platform	just	yet.
Because	it	is	largely	provider	agnostic,	placing	a	bet	on	Magnum	is	thus	a	much
less	risky	venture.	For	example,	the	ability	to	shift	gears	from	Kubernetes	to
Swarm	without	having	to	modify	your	deployment	system	could	be	a	huge	win,
and	while	virtual	machines	are	likely	to	be	a	big	part	of	the	landscape	for	many
years	to	come,	containers	are	here	to	stay.



MURANO:	APPLICATION	AS	A	SERVICE
From	a	cloud	user	perspective	since	OpenStack	got	its	own	orchestrator	it	made
user	experience	more	solid.	It	gave	lots	of	improvements,	but	from	cloud	apps	the
integration	process	was	too	complicated	due	to	specific	limitations	regarding	the
way	Heat	allows	you	to	describe	the	infrastructure	that	needs	to	be	deployed.	So,
even	using	the	latest	Heat	HOT	DSL	cloud,	consumers	still	can	create	a	specific
configuration,	but	writing	a	template	would	become	a	nightmare.

So,	to	improve	user	experience	and	provide	more	flexible	capabilities	for	cloud
users	to	deploy	and	maintain	their	own	cloud-ready	application	it	was	decided	to
implement	a	new	type	of	OpenStack	service	that	would	use	Heat	as	the
deployment	tool	that	provides	an	API	that	will	allow	you	to	define	applications
using	the	same	environment	templates.

Application	Catalog
Murano	was	designed	to	provide	a	way	to	make	third-party	applications	and
services	running	on	VMs	or	even	external	services	available	as	self-service	for
OpenStack.	These	applications	may	be	a	simple	multi-tier	application	with	auto-
scaling	and	self-healing	(within	Heat	capabilities).	From	the	third-party	tool
developer’s	perspective,	the	application	catalog	will	provide	a	way	to	publish
applications,	including	deployment	rules	and	requirements,	suggested
configurations,	output	parameters	and	billing	rules.	From	the	user’s	perspective,
the	application	catalog	will	be	a	place	to	find	and	self-provision	third-party
applications	and	services,	and	integrate	them	into	their	environment,	including
billing	costs.

The	Application	Catalog	service	was	provided	to	simplify	the	process	of	creating
applications	and/or	services	on	OpenStack.	Installing	third-party	services	and
applications	can	be	difficult	in	any	environment,	but	the	dynamic	nature	of	an
OpenStack	environment	can	make	this	problem	worse.	Murano	is	designed	to
solve	this	problem	by	providing	an	additional	integration	layer	between	third
party	components	and	the	OpenStack	infrastructure.	This	integration	layer	makes
it	possible	to	provide	both	Infrastructure-as-a-Service	and	Platform-as-a-Service
from	a	single	control	plane.	For	users,	this	control	plan	is	a	single	interface	from
which	you	can	provision	an	entire	fully-functional	cloud-based	application
environment.	The	Application	Catalog	service	was	integrated	to	all	OpenStack
components	directly	and	indirectly	via	orchestrator	(OpenStack	Heat).	The
Ceilometer	service	collects	usage	information,	which	the	Murano-API	uses	during
billing	rules	processing	to	calculate	billing	information.	The	Murano	API	will
expose	API	calls	to	manage	(CRUD)	services	available	for	deployment.	This	API
will	be	used	by	the	Service	administrator	user	interface	to	simplify	service
management.

Application	Publisher



The	process	begins	when	an	Application	Publisher	creates	a	new	application
description	and	publishes	to	the	Application	catalog.	Once	the	application	is
uploaded	then	it’ll	be	available	within	any	application	catalog	instances,
depending	on	the	policies	for	that	instance.	Application	Publishers	should	be	able
to	create	new	applications	by	defining	service	metadata,	describing	properties	and
specifying	all	of	the	steps	necessary	for	deploying	the	application	and	its
dependencies.	The	developer	can	create	this	definition	from	scratch	or	use	an
existing	definition	by	extending	it,	similar	to	inheritance	in	the	object-oriented
paradigm.	The	Application	Publisher	can	define	the	external	dependencies	of	an
application.	This	list	of	dependencies	defines	the	other	services	(specified	by	their
type)	that	must	be	present	in	the	environment	when	an	application	is	being
deployed.

The	Application	Publisher	may	define	additional	terms	of	use	for	an	application.
For	example,	the	developer	may	limit	its	usage	and	extensibility	(via	inheritance
or	referencing	from	another	application)	or	specify	billing	rules.	Another
important	set	of	parameters	that	the	Application	Publisher	may	specify	in	the
Service	Definition	are	the	usage	metrics.	These	usage	metrics	define	which	aspects
of	the	service	should	be	monitored	by	Ceilometer	or	other	monitoring	tools
supported	by	Murano	when	its	instances	are	running.	The	Application	Publisher
can	then	specify	the	billing	rules	used	with	those	metrics,	essentially	defining	how
much	service	usage	will	cost	the	user.	A	service	definition	is	not	bound	to	any
particular	OpenStack	deployment	or	instance	of	Murano.	The	developer	may
create	a	service	definition	and	then	publish	that	definition	in	several	service
catalog	instances.

Application	Catalog	Administrator
A	published	service/application	definition	is	managed	by	the	catalog
administrator.	Catalog	administrators	are	the	maintainers	of	the	application
service	catalog.	They	have	the	ability	to	manually	add	or	remove	service
definitions	in	a	catalog,	or	act	as	moderators	allowing	or	disallowing	other
Application	Publishers	to	publish	their	service	definitions.	This	control	can	be
granular	or	not,	as	the	administrator	chooses.	For	example,	the	administrator	may
specify	that	any	new	submissions	must	be	approved	before	being	available	to	any
end	users,	or	the	administrator	may	instead	choose	to	make	services	available	only
to	the	OpenStack	tenant	associated	with	the	application	publisher	until	a	service	is
approved.

Administrators	may	define	their	own	billing	rules,	which	will	be	in	addition	to	the
billing	rules	specified	by	the	application	publisher	(if	they	were	defined).	This
enables	catalog	administrators	to	cover	the	costs	involved	in	running	and
maintaining	the	cloud.

Catalog	administrators	configures	Role-Based	Access	Control	rules	(RBAC),	which
defines	which	users	(which	are	associated	with	tenants)	of	the	cloud	have	access	to



which	services	in	the	catalog,	and	whether	they	may	be	directly	deployed	or	must
be	approved.

Application	Catalog	End	Users
OpenStack	users	should	be	able	to	create	environments	composed	of	one	or	more
available	services.	Application	catalog	consumptions	by	end	users	follows:

The	user	browses	a	list	of	available	services/applications	and	selects	one	or
more	for	deployment.	If	a	selected	service	has	dependencies	that	require	other
services	to	be	deployed	in	the	same	environment,	the	user	may	either	select	an
instance	of	the	necessary	service	from	instances	of	that	type	that	are	already
present	in	the	environment,	or	add	a	new	instance	of	that	type	instead.
Dependencies	may	include	other	services,	or	they	may	include	resources	such
as	a	floating	IP	address	or	license	key.	Each	service	added	to	the	environment
must	be	properly	configured;	the	user	is	prompted	to	provide	all	required
properties,	and	the	input	is	validated	according	to	the	rules	defined	in	each
service	definition.	When	the	user	has	finished	configuring	the	environment,	he
or	she	can	deploy	the	environment—if	he	or	she	has	the	appropriate
permissions.	Deployment	of	the	environment	means	that	instances	are
created,	services	are	deployed,	and	all	required	configuration	actions	take
place	and	are	accomplished	properly.

In	some	environments,	it	will	be	more	appropriate	for	end	users	to	submit
their	deployments	to	IT	as	a	ticket.	The	IT	department	can	then	sanity-check
the	definitions,	determine	whether	they	are	appropriate,	and	approve,	modify,
or	reject	the	deployment.	If	the	request	is	approved	or	modified,	the	IT
department	can	then	initiate	the	deployment,	rather	than	the	user.

Users	can	browse	any	deployed	environments	for	which	they	have
permissions,	and	inspect	their	state.	Inspection	includes	the	ability	to
determine	which	services	are	running	on	which	nodes,	how	the	services	are
configured,	and	so	on.	Users	can	modify	service	settings,	add	new	services	or
remove	existing	ones,	validate	the	changes	(i.e.	check	that	all	the	required
properties	are	set	to	valid	values,	all	the	service	dependencies	exist	and	so	on),
and	redeploy	the	environment	by	propagating	these	changes	into	the	Cloud.
The	user	can	also	inspect	the	usage	metrics	of	the	services	running	in	his	or	her
environments,	and	see	billable	activities	and	the	total	amount	of	money	spent
for	a	particular	service.

It	sounds	good	when	we’re	saying	“an	application”	or	“service,”	but	we	haven’t
defined	what	an	application	or	service	is,	so	it	would	be	very	useful	to	mention	a
few	examples	of	an	application	that	may	be	deploy	within	Murano:

RDBS	and	NoSQL	databases	provided	by	Trove

Hadoop	Cluster	provided	by	Sahara

OpenShift	PaaS	Cluster	provisioned	through	Heat



MS	SQL	Cluster

Chef	Server	or	Puppet	Master	node	installed	my	Murano	workflows

Nagios	or	Zabbix	monitoring	managed	by	Murano	workflows

Murano	Architecture
Following	best	practices	in	OpenStack,	Murano	was	designed	that	way	to	have	its
components	decoupled	(see	Figure	3.12),	and	it	does	consist	of:

murano-api,	a	RESTful	service	that	faces	to	users

murano-conductor,	an	actual	engine	that	does	most	of	heavy	work	for	creating
deployments

murano-agent,	a	VM-side	service	that	does	software	deployment	and
configuration	according	to	a	given	application	description

backing	service	(MySQL)

deployment	engine	(Heat)

Figure	3.12		

Murano	Usage	Example
Murano	as	an	Application	catalog	intends	to	support	applications,	defined	in
different	formats.	One	such	example	is	Heat	HOT	DSL	templates	support.	It
means	that	any	Heat	template	could	be	added	as	a	separate	application	into	the
Application	Catalog.

Before	uploading	an	application	into	the	catalog,	it	should	be	prepared	and
packaged	appropriately.	The	Murano	command	line	will	do	all	of	that	preparation
for	you.	Just	choose	the	desired	Heat	Orchestration	Template	and	perform	the
following	command:

murano	package-create		–template	WordPress_2_Instances.yaml



Note	that	the	Murano	REST	client	allows	you	to	specify	additional	parameters
during	package	creation:

application	name

application	logo	(used	at	UI)

application	description

application	author(s)

output	(local	storage	path	to	save	created	package)

full	name

But	under	the	hood	Murano	does	more	than	can	be	seen;	it	creates	a	manifest
according	to	a	given	description,	so	in	our	case	the	manifest	for	given	template
would	look	something	like	this:

Format:	Heat.HOT/1.0

Type:	Application

FullName:	io.murano.apps.linux.Wordpress

Name:	Wordpress

Description:	|

	WordPress	is	web	software	you	can	use	to	create	a	beautiful	website	or	

blog.

		This	template	installs	a	single-instance	WordPress	deployment	using	a	

local

		MySQL	database	to	store	the	data.

Author:	'Openstack,	Inc'

Tags:	[Linux,	connection]

Logo:	logo.png

Once	the	manifest	has	been	created,	the	user	would	need	to	package	the
application	package	before	uploading	it	to	Murano.	Users	must	name	the	template
file	as	template.yaml,	and	the	name	for	the	manifest	file	should	be	manifest.yaml.
The	user	then	needs	to	package	an	archive	*.zip	or	tar.gz	or	whatever.	You	can
do	application	importing:

murano	package-import		–category	Web	–template	wordpress.tar.gz

This	is	only	a	basic	example	of	how	users	can	consume	Murano	and	its	capabilities
as	an	Application	catalog	for	OpenStack.	For	other	use	cases	and	usage	examples
please	take	a	look	at	http://murano.readthedocs.org/.

From	a	cloud	users	perspective	Murano	is	very	useful.	Outside	of	the	OpenStack
ecosystem	you	should	look	at	RedHat	OpenShift,	which	is	a	PaaS	platform	for
application	deployment	and	management.	You	might	also	look	at	Gigaspaces
Cloudify,	which	is	a	PaaS	solution	that	aims	to	be	a	complete	substitution	for
Heat,	Murano,	and	Solum	for	OpenStack	enterprise	customers/consumers.	But
Murano	is	an	official	part	of	OpenStack,	so	it	means	that	Murano	is	free	and
comes	out	of	the	box	for	any	OpenStack	distributions.

http://murano.readthedocs.org


CEILOMETER:	TELEMETRY	AS	A	SERVICE
Applications	and	systems	require	monitoring.	In	order	to	ensure	continuous
service	delivery,	you	need	to	know	whether	your	applications	or	infrastructure
running	those	applications	have	encountered	any	faults,	and	whether	they	are
experiencing	heavy	utilization.	Ceilometer	is	primarily	focused	on	the	latter
function—monitoring	resource	utilization	across	the	cloud,	although	it	does
provide	some	alarming	and	notification	functionality	as	well.	Ceilometer
monitoring	may	be	used	for	capacity	planning,	billing	and	chargeback,	as	well	as
elastic	scaling.

Ceilometer	Architecture
The	major	components	of	the	Ceilometer	architecture	include	the	API,	the	polling
agents,	collectors	for	storing	agent	results,	alarm	evaluators,	alarm	notifiers,	and
possibly	several	different	backend	databases	(see	Figure	3.13).

Figure	3.13		

There	are	two	basic	types	of	Ceilometer	agents:	notification	receivers	and	pollers.



The	polling	agents	periodically	request	various	metrics	from	other	services.	For
example,	the	ceilometer-agent-compute	will	run	on	a	compute	node	and	gather
guest	CPU	statistics	from	the	hypervisor	on	that	compute	node.	The	notification
receiver	agents	simply	listen	on	the	message	bus,	and	gather	information	about
the	inner	workings	of	other	OpenStack	systems	based	on	their	notification
outputs.

All	of	this	data	collected	by	the	agents	is	sent	back	to	the	ceilometer-collector,
which	is	a	daemon	(or	many	instances	of	the	daemon)	that	transforms	and	stores
the	data	into	the	backend	databases.	There	may	be	several	different	databases
used,	based	upon	the	different	types	of	data.

The	ceilometer-alarm-evaluator	process	is	configured	to	look	at	the	data	in	the
system	and	evaluate	whether	alarming	criteria	are	met.	These	criteria	are	user-
defined	and	configurable.	Once	the	criteria	are	met,	then	ceilometer-alarm-
notifier	will	take	an	action	based	upon	the	raised	alarm.	This	could	be	calling	a
specific	URL,	or	another	user-specified	action.

Elastic	Scaling	with	Ceilometer
In	Chapter	6,	you	will	see	in	detail	how	your	applications	can	scale	elastically	by
combining	the	telemetry	data	from	Ceilometer	with	the	orchestration	capabilities
of	Heat.	In	short,	you	configure	Heat	and	Ceilometer	to	monitor	the	Ceilometer
metrics	for	a	group	of	resources	(say,	VMs	and	you	are	monitoring	CPU
utilization).	When	a	threshold	is	reached,	an	alarm	fires,	which	in	turn	calls	out	to
Heat	to	scale	up	(or	down)	the	number	of	instances.	This	is	a	powerful	way	to
meet	uneven	demand,	while	optimizing	the	costs	associated	with	an	application.



SUMMARY
There	is	a	lot	to	be	said	about	using	OpenStack	as	simply	a	platform	for
provisioning	servers	and	networks.	In	doing	so,	it	would	be	easy	to	discount	many
of	the	projects	discussed	in	this	chapter.	After	all,	most	of	us	have	made	it	this	far
without	application	packaging,	containers,	or	any	sort	of	orchestration	system.
However,	the	expanded	ecosystem	of	technology	presented	here	hints	at	a	larger
goal	for	OpenStack.	It	is	trying	to	be	more	than	just	an	IAAS	provider.	In	fact,
many	of	these	projects	offer	solutions	to	the	fundamental	needs	of	web
development.	It’s	almost	uncommon	these	days	for	an	application	not	to	involve	a
database	(Trove),	DNS	entries	(Designate),	and	alerts	(Ceilometer).	Even	though
it	isn’t	scripted	and	labeled	as	orchestration,	such	applications	also	require
manual	configuration	and	deployment	in	some	manner.

In	this	sense,	OpenStack	is	attempting	to	make	the	process	of	developing	and
deploying	cloud	based	applications	not	just	possible,	but	easier	and	more
formalized.	It’s	also	trying	to	provide	scriptable	self-service	solutions	for	some	of
the	more	common	tasks	in	web	development	in	general.	For	that	reason	alone,
these	secondary	components	are	worth	learning	about	and	experimenting	with.	So
before	we	move	on	and	start	looking	at	what	a	cloud	application	looks	like,	take
another	look	at	this	chapter	and	ask	yourself	if	these	projects	provide	solutions	for
problems	you	frequently	encounter.	In	all	likelihood,	they	do,	and	utilizing	them
can	make	you	more	productive,	and	your	applications	less	proprietary.
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4	
Application	Development
WHAT’S	IN	THIS	CHAPTER?																			

Legacy	applications

Why	do	you	need	migration	to	clouds?

Migrate-to-cloud	methodology

Convert	your	application	into	an	OpenStack	app

Building	applications	from	scratch

Development	stack

Application	network	connectivity

Application	security

Hands-on	application	deployment

In	this	chapter	you	will	be	explicitly	shown	how	to	perform	a	legacy	application
migration	from	a	self-maintained	proprietary	environment	to	an	OpenStack
environment.	But	before	diving	in,	let’s	make	sure	we	understand	the	full	meaning
of	the	term	“legacy	application.”	In	computer	science,	legacy	applications	are
those	that	come	from	platforms	and	techniques	that	exist	earlier	than	the	current
technology	stack,	and	in	general	these	are	applications	that	are	serving	critical
business	needs	in	an	organization.	Okay,	let’s	get	started.



CONVERTING	A	LEGACY	APP	TO	AN	OPENSTACK
APP
When	the	word	“legacy”	appears	within	any	context,	the	first	thought	is	that	we’re
talking	about	something	very	old	that	can’t	be	adjusted	to	the	current	state	of
things.	But	if	we’re	talking	about	software,	a	legacy	application	is	not	necessarily
defined	by	age.	Legacy	may	refer	to	the	lack	of	vendor	support	or	a	system’s
incapacity	to	meet	organizational	requirements.	Legacy	conditions	refer	to	a
system’s	difficulty	(or	inability)	to	be	maintained,	supported	or	improved.	A	legacy
application	is	usually	incompatible	with	newly	purchased	systems.	An
organization	might	continue	to	use	legacy	applications	for	a	wide	range	of	reasons,
such	as	the	following:

It	works,	so	why	should	we	invest	more?

The	legacy	system	is	complex,	and	documentation	is	poor.	Simply	its	defining
scope	can	be	difficult.	

A	redesign	is	costly,	due	to	complexity	or	a	monolithic	architecture.

Why	Migrate	to	Clouds?
In	most	cases,	it	is	really	complicated	to	keep	apps	running	during	updates
without	a	maintenance	window.	In	the	case	of	legacy	applications,	“update”	even
means	that	the	whole	application	was	re-written	using	new	programming
languages,	and	involving	new	types	of	services	(for	example,	switching	from	self-
maintained	databases	to	cloud	databases).	This	should	make	legacy	applications
easier	to	maintain	in	the	future,	given	that	you	can	update	applications	without
having	to	entirely	rewrite	them,	which	allows	a	company	to	use	their	applications
on	any	environments	or	operating	systems.

Yet,	for	the	enterprise	and	their	legacy	applications,	a	system	redesign	would	take
a	lot	of	effort	(money,	time,	and	an	unclear	value-add).

Enterprise	IT	organizations	are	facing	critical	challenges	maintaining	legacy
applications:

Cost	of	proprietary	hardware	and	software

Attrition	in	people	with	qualified	skills	and	experience

Inability	to	support	the	modern	computing	demands	of	mobile	and	big	fast
data

Cloud	computing	can	help	with	legacy	applications	in	terms	of	maintenance	for
the	IT	department.	Unfortunately,	many	IT	organizations	see	the	prospect	of
modernizing	legacy	applications	as	a	“mission	impossible”	with	the	path	forward
“too	cloudy”	and	the	costs	and	risks	too	great.	They	have	a	point,	but	there	are
some	factors	that	can	help	determine	if	our	legacy	applications	can	migrate	to	the
cloud:



Structure:	A	large,	single-tiered,	monolithic	legacy	application	isn’t	a	good	fit
for	clouds.	Efficiencies	are	gained	when	the	application	is	modular	or	the	load
can	be	spread	out	over	several	application	instances	to	allow	high	availability
(HA)	and	scalability.

Software	and	hardware	dependencies:	A	particular	chip	set	or	an
external	device	such	as	an	eye	scanner	might	not	be	a	good	fit	for	the	cloud.
The	same	thing	can	apply	to	software,	since	a	legacy	application	may	require
the	use	of	a	specific	operating	system	or	set	of	libraries	that	can’t	be	used	in	a
cloud	nor	be	virtualized.	If	this	is	the	case,	then	definitely	an	app	like	this	is	not
a	good	fit	for	the	cloud.

Durability	and	fault-tolerance:	Despite	application	Service	Level
Agreements	(SLA),	we’re	living	in	a	world	where	everything	breaks:	networks
are	disrupted,	servers	fail,	and	the	multi-tenant	usage	of	an	application	looks
like	a	Distributed	Denial-of-Service	attack	(DDoS)	instead	of	showing	regular
behavior.	Applications	must	survive	or	be	sturdy	enough	to	contend	with	any
given	issues.

As	a	result,	many	enterprise	companies	are	resigning	themselves	to	live	with
legacy	applications	because	moving	to	the	cloud	is	not	a	step	forward	due	to	the
amount	of	effort	that	is	required.	Eventually,	the	business	loses	confidence	in	IT’s
ability	to	deliver,	and	the	costs	continue	to	rise	without	corresponding	value	or
any	visible	benefit.	Let’s	examine	some	specific	advantages	for	moving	from	a
legacy	app	to	a	cloud	app.

First,	moving	your	legacy	app	to	the	cloud	lowers	the	total	cost	of	ownership.
Maintaining	mainframe	license	leasing	costs	is	one	area	to	look	at.	Since	the	cloud
further	commoditizes	the	infrastructure,	modernizing	mainframe	apps	to	the
cloud	should	decrease	the	total	cost	due	to	the	absence	of	needing	to	maintain	the
environment	by	itself.

In	clouds,	flexibility	defines	the	rate	at	which	legacy	application	needs	can	be
successfully	adjusted	to	meet	the	ever-changing	needs	of	the	business.	In	the	case
of	environment	delivery,	clouds	come	out	on	top	compared	to	self-managed
hardware.	This	is	due	to	the	flexibility	of	the	cloud	environment	definition	and	the
pace	of	provisioning	as	well.

From	a	business	perspective	it’s	always	better	to	spend	less	and	achieve	more.	In
the	case	of	clouds,	hardware	costs	less	because	cloud	consumers	don’t	need	to
manage	their	hardware	themselves,	so	they	can	avoid	spending	money	for
electricity	and	hardware	upgrades.

In	the	case	of	proprietary	hardware,	to	scale	up	you	need	to	buy	new	hardware,	set
it	up,	and	manage	it.	At	the	point	when	you	must	scale	down,	the	organization	will
end	up	with	unused	hardware.	With	a	cloud	solution	you	can	scale	your	operation
and	you	don’t	need	to	buy	hardware,	all	of	which	saves	time.

Developers	of	course	create	the	code	that	must	be	tested	in	the	environment	that



is	close	to	production.	In	the	case	of	proprietary	hardware	it	is	necessary	to	have	a
dedicated	development/testing	environment	maintained	by	the	IT	department,
probably	on	one	server.	Developing	in	the	cloud,	however,	only	requires
developers	to	have	a	separate	account	to	work	with	and	it	is	easy	to	create
production-like	environments	to	run	new	code	and/or	reproduce	bugs.

These	are	all	great	reasons	why	you	should	consider	moving	from	a	legacy
environment	to	a	cloud	environment,	and	the	cloud	does	virtualize	and
orchestrate	a	lot	of	the	manual	jobs	that	are	being	performed	by	an	IT	department.
These	include	processes	such	as	networking,	software	installation,	VM	hardware
customization,	scaling,	and	more.	And	don’t	forget	updating	to	a	cloud-ready
application	can	be	the	right	business	model	for	enterprise	customers.

Migrate-To-Clouds	Methodology
So,	if	your	application	is	lucky	enough	to	be	a	cloud-ready	application,	and	it
seems	like	you	have	convinced	your	company	to	move	from	self-maintained
hardware	to	the	cloud,	it	is	important	to	understand	the	widely-applied	strategies
that	you	can	use	to	switch	to	the	cloud:

Lift	and	shift:	If	your	application	environment	can	easily	migrate	from	a
legacy	environment	to	the	cloud	then	you	just	need	to	lift	it	and	shift	it	to	the
cloud	environment.

GreenField	approach
(http://www.thegreenfieldorganisation.com/approach2.html):	From	the
definition,	you	can	see	that	this	is	risky.	This	approach	of	rewriting	an	entire
legacy	application	is	the	most	expensive	and	critical	modernization	approach.	
However,	automated	code	analysis,	code	conversion,	testing,	and	cloud
deployment	tools	can	greatly	reduce	the	risks	and	costs	associated	with	this.
So,	in	this	case	it	is	strongly	recommended	that	you	figure	out	the	true	risk	rate
before	implementing	this	approach.

Incremental	replacement:	This	approach	requires	you	to	replace	the	single
unit	of	an	application	at	a	time.	This	has	proven	to	be	cost-effective	and	less
risky.	Unfortunately,	there	are	no	guidelines	that	can	really	help	you	since
most	every	application	is	unique.

Consider	all	of	the	integrations	between	the	legacy	application	infrastructure	and
other	applications—integrating	applications	will	need	to	be	updated	and	tested
taking	into	account	the	cloud	capabilities.	This	is	a	very	important	step	since	it’s
necessary	to	implement	deployment	architecture.	Once	complete,	you	should
define	the	hardware	configuration	for	each	application’s	component	(clouds	offer
various	types	of	business	models:	paying	for	resources	on	demand	or	paying	for	a
year/month	subscription).

You	next	thing	to	consider	is	accessibility.	This	step	defines	the	networking
configuration,	exposing	which	components	of	an	application	should	be	accessible

http://www.thegreenfieldorganisation.com/approach2.html


to	other	services.	It	is	important	to	leave	an	application	networking	configuration
in	the	same	configuration	that	was	applied	before,	so	you	end	up	with	the
expected	behavior	that	was	observed	with	the	legacy	application	hardware.

For	software	configuration	on	cloud	instances	there	are	two	steps:	software
installation	(can	be	done	on	pre-provisioning	or	post-provisioning)	and	post-
installation	(post-provisioning)	configuration.	Cloud	providers	are	offering	base
images	with	operating	systems,	but	this	is	not	what	should	be	used,	because	of	the
availability	of	more	advanced	ways	of	software	installation	at	the	pre-provisioning
stage.	It	is	more	than	recommended	to	create	custom	images	for	VM	provisioning,
and	for	this	task	please	take	a	look	at
http://docs.openstack.org/developer/diskimage-builder/.	At	this	point	we’re
ready	to	deploy	the	cloud-ready	application	and	do	post-provisioning	software
configuration	to	start	the	application.

The	last	step	is	to	apply	monitoring	systems	to	track	the	environment	state	during
its	work.	Here’s	the	short	list	of	what	should	be	taken	into	account	for	this:

Hardware	configuration	for	application	components

Application	components	deployment	strategy

Networking	configuration

Custom	image	composing

Environment	deployment

Post-provisioning	software	configuration

Applying	monitoring

Testing	an	application

It	doesn’t	seem	like	this	list	is	complete,	but	if	you	combine	it	with	the	already	pre-
defined	list	of	application	dependencies	you	should	be	able	to	observe	the	full	list
of	application	needs.	Once	you	have	this	full	list,	then	you	should	begin	the	actual
converting	(in	this	case	converting	means	applying	a	migration	strategy	to	an
application	and	doing	the	actual	deployment)	of	the	legacy	application	to	a	full-
gear	OpenStack	application.

http://docs.openstack.org/developer/diskimage-builder/


BUILDING	APPS	FROM	SCRATCH
Not	every	application	in	the	world	is	a	legacy	application	because	many	of	them
were	developed	when	clouds	became	popular	and	applications	themselves	were
already	hardware-agnostic,	but	not	built	for	clouds	at	all.	So	it	is	possible	that
migrating	to	the	cloud	may	not	give	the	necessary	value	add	expected	by	a	cloud-
oriented	business	model.	And	this	means	that	creating	a	new	application	from
scratch	may	give	that	benefit,	but	in	a	longer	period	of	time.

Application	Design	Guidelines	for	OpenStack
Developing	a	new	application	that	will	go	to	the	cloud	requires	specific	guidelines
when	developing	and	integrating	applications	specifically	to	OpenStack:

Be	a	pessimistic	as	possible.	Everything	breaks	so,	“love	your	chaos	monkey”	(a
chaos	monkey	is	a	service	that	identifies	groups	of	systems	and	randomly
terminates	one	of	the	systems	in	a	group).

Put	your	eggs	into	multiple	baskets.	Leverage	multiple	regions,	availability
zones,	and	compute	hosts.	Design	portability	(remember	lift	and	shift).

Think	of	scalability.

When	integrating	into	OpenStack	don’t	forget	to	be	paranoid—design	security
wisely.

Manage	your	data	wisely.	Data	is	always	a	critical	resource,	so	don’t	hesitate	to
enable	data	replication/clustering,	and	do	a	regular	backup.

Be	dynamic.	Let	your	application	be	smart	by	enabling	auto-scaling.

Hands	off—automate	all	business	processes	to	increase	consistency.

Not	all	applications	require	the	same	high	level	of	security.

Predictability	and	elasticity—with	increasing/decreasing	amount	of	resources
the	application	should	act	in	a	predictable	way.

Divide	and	conquer.	Make	your	application	granular	as	much	as	possible,
especially	when	integrating	HA	solutions.

Due	to	networking	latency	it	is	necessary	to	keep	your	data	partitions	close	to
each	other	but	not	on	the	same	compute	host	or	region.

Loose	coupling,	service	interfaces,	separation	of	concerns,	abstraction	and	well
defined	APIs	deliver	flexibility.

Be	cost	aware:	autoscaling,	data	transmission,	virtual	software	licenses,
reserved	instances,	and	so	on	can	rapidly	increase	monthly	usage	charges.
Monitor	usage	closely.

Best	Practices	in	Cloud-Ready	App	Development



If	your	application	is	divided	into	a	server	and	client	side	you	need	to	consider	if	it
is	necessary	to	consume	the	OpenStack	API	(managing	cloud	resources).	You
must	decide	if	you	want	to	use	existing	client	bindings	for	OpenStack	services	or
implement	your	own.	For	example,	if	you	are	reusing	existing	ones,	it	is
recommended	that	you	use	Python,	because	the	OpenStack	community	does
development	and	delivery	for	client	bindings	for	you.	If	you	don’t	use	Python,	you
will	have	to	research	if	there	are	supported	up-to-date	client	bindings	or	you	must
implement	your	own.	So	it	is	up	to	your	development	team	to	decide	which
language	should	be	used	for	development,	including	all	given	points	(ability	to
code	fast,	work	on	virtualized	hosts,	etc.).

Once	you	have	made	a	decision	regarding	base	development	technologies
(including	coding	language,	additional	software,	SDKs,	etc.)	it	is	time	to	figure	out
your	best	practices	for	application	development.

Manage	Your	Code	Appropriately
Applications	that	are	being	developed	should	be	version-controlled	using	any
software	such	as	GIT,	Mercurial,	or	SVN.	It	is	very	important	if	the	application	is
distributed	that	each	of	its	components	should	be	treated	as	separate	cloud
applications.	Note	that	multiple	applications	that	are	sharing	the	same	codebase	is
a	violation	of	this	methodology.	So,	basically,	keep	your	applications	separate.
Going	back	to	the	version	control	system,	it	is	more	than	obvious	to	use	them
because	there	would	be	a	need	to	have,	for	example,	a	stable	production	version	or
staging	that	is	being	recently	developed.

Dependency	Management
For	any	cloud-ready	applications	it	is	necessary	that	you	explicitly	define	their
dependencies	in	a	manner	that	is	understandable	to	the	packaging	system	of	the
distribution.	A	golden	rule	is	to	never	rely	on	a	deployment	environment,	since	it
is	possible	that	from	version	to	version	there	are	some	packages	that	might	not	be
presented,	which	means	explicit	is	better	than	implicit.	A	simple	example	is	how
Ubuntu	12.04	has	PostgreSQL	9.1	in	its	source	repositories,	but	Ubuntu	14.XX
doesn’t.

Configuration	Management
Make	your	application	configurable.	It	is	possible	that	the	deployment
environment	may	vary	(deployment	host	name,	credentials,	IP	addresses	in	case
of	Switches,	NATs,	etc.).	There	are	also	application	configuration	parameters	that
are	remaining	the	same	across	deployments,	so	it	doesn’t	mean	they	should	not	be
configurable,	but	use	some	sort	of	default	values.	Another	important	item	to	take
advantage	of	is	configuration	parameter	grouping.	For	example,	if	an	application
uses	a	database	and	an	AMQP	service	for	its	internal	needs,	please	put	those
options	into	different	sections	such	as	[database],[messaging],	and	for	different
types	of	deployments	it	would	be	nice	to	have	sections	like	[production],



[staging],	if	necessary.

Build,	Release,	and	Have	Fun
There	are	four	main	stages	before	allowing	access	to	an	application:

Build:	Simple,	right?	Make	a	distribution	of	your	source	code,	and	it	doesn’t
matter	what	it	will	be:	DEB,	RPM,	Python	EGG,	GitHub	Tag,	or	whatever.

Staging:	Often	takes	a	couple	iterations.	In	the	real	world,	a	staging
environment	with	an	installed	build	is	being	examined	using	post-deployment
verifications.	By	saying	“post-deployment”	verification	we	mean	that	the	QA
team	runs	a	set	of	scenarios	that	mimic	user	behavior.	During	staging	it	is
possible	to	discover	certain	bugs	or	unexpected	application	behavior.	In	this
case	the	QA	team	prepares	an	additional	set	of	test	scenarios	for	new	staging
deployment.

Release:	The	Kraken!	Often	the	release	stage	involves	new	version	publishing,
so	prepare	version	release	documentation,	and	do	any	announcements	within
any	available	communication	channels.	Before	doing	a	release	it	is	necessary	to
prepare	a	mechanism	for	the	user	reports	(JIRA,	Slack	channel,	or	a	mailing
list).

Have	fun:	Yes,	have	fun	with	user	reports,	issues,	and	new	requested	version
features.

Prepare	Your	App	to	Work	at	Scale	or	Die
Most	distributed	applications	are	distributed	because	keeping	a	single	instance	of
an	application	gives	a	zero	fault-tolerance.	But	let’s	figure	out	how	an	application
can	scale	without	consuming	more	VMs.	Almost	all	development	frameworks	have
multithreaded,	processed	libraries	for	creating	a	services	like	RESTful	services	or
application	engines	that	can	handle	multiple	requests	at	the	same	time.	The	term
“worker”	is	an	entity	that	is	being	managed	by	a	task	broker.	Here’s	a	simple
example:	the	Python	library	Flask	supports	processes	and	threads,	but	because	of
its	implementation	it	is	not	recommended	to	use	it	as	a	user	accessible	service.	In
production	it	is	recommended	to	use	Nginx	+	Python	Gunicorn	+	Flask,	but	let’s
understand	why.	Nginx	works	as	a	proxy	and	it	does	a	good	job,	but	Python
Gunicorn	works	as	a	local	RESTful	service	wrapper	and	allows	you	to	run	an
application	within	multiple	workers	that	are	being	executed	as	separate	processes
with	a	common	task	distributor.	The	Flask	application	holds	an	implementation	of
the	RESTful	application.

Speaking	of	the	number	of	workers,	take	into	account	that	it’s	strongly	suggested
to	run	only	one	type	services	per	VM	instance.	So,	your	application	should	run	a
number	of	workers	equal	to	the	number	of	vCPU.	However,	we	are	still	talking
about	a	single	VM	with	multiple	workers	in	it,	and	we	still	at	the	point	where	we
are,	an	application	should	survive	and	be	available	for	its	users.	And	here	comes
load	balancing	and	high	availability—cloud-ready	applications	should	be	ready	to



work	correctly	within	multiple	instances	behind	a	load	balancer	(each	application
doesn’t	store	data	locally,	but	does	persist	into	a	backing	service)	within	an	HA
mode.

Why	is	high	availability	and	load	balancing	needed?	First	of	all,	HA	mode	gives
you	the	ability	to	access	applications	within	its	multiple	instances	(example,
Galera	master-2-muster	replication),	so	you	have	an	instance	for	an	A	to	Z	user
who	can	get	the	same	data	from	any	of	them.	This	is	how	HA	mode	works.	But	in
developing	an	application	that	is	consuming	a	cloud	application,	it	is	not	very
useful	to	remember	a	set	of	IP	addresses	or	domain	names	for	each	application
instance.	Load	balancing	provides	you	with	the	ability	to	hide	the	cloud
application	behind	one	IP	address	or	DNS	name.	This	is	beneficial	because	the
load	balancer	distributes	requests	between	cloud	application	instances.	Because	of
this,	your	application	should	not	have	to	worry	about	accessibility	of	a	specific
instance.

Maximize	Robustness	with	Fast	Bootstrapping	and	Graceful	Shutdown
OpenStack	applications	should	strive	to	minimize	bootstrap	time.	In	an	ideal
world,	an	application	takes	a	few	seconds	from	the	bootstrap	execution	until	the
process	is	up	and	ready	to	receive	tasks.	A	short	startup	time	provides	more	agility
for	the	release	process	and	scaling	up;	and	it	helps	to	improve	robustness,	because
the	application	instance	manager	can	more	easily	move	it	to	new	physical
machines	(by	auto-scaling	events).	Applications	shut	down	gracefully	when	they
receive	a	SIGTERM	signal	from	their	manager.	Unfortunately	most	application
developers	are	putting	worries	about	a	graceful	shutdown	to	the	backlog.

Keep	Development,	Staging,	Pre-Production	and	Production	As	Close	As
Possible
As	developers	you	need	to	keep	in	mind	the	following:

Make	your	time	gap	small	between	writing	code	and	putting	it	into
staging/pre-production/production.

Make	the	personnel	gap	small.	You	are	the	committer	of	new	code,	so	you	are
responsible	for	deployment	within	any	environment.

Make	the	tools	gap	small.	Each	developer	should	keep	their	environment
almost	similar	to	a	production	environment.

Keep	this	in	mind	when	testing	your	code.	As	a	developer	you	should	resist	the
urge	to	use	different	backing	services	between	development	and	production,	even
when	adapters	theoretically	abstract	away	any	differences	in	backing	services.
Differences	between	backing	services	means	that	tiny	incompatibilities	crop	up,
causing	code	that	worked	and	passed	any	types	of	tests	in	development	or	staging
to	fail	in	production.

Test	As	Much	As	Possible



In	application	development	that	involves	the	use	of	attached	resources	it	is
necessary	to	write	the	next	types	of	testing:

Fake-mode	integration	tests:	This	type	of	testing	allows	you	to	examine
your	code	not	involving	attached	resources	(for	on-demand	services	that	cost
you	money)	but	use	instead	their	fake	implementation	stubs.

Real-mode	tests:	Handle	any	API	backing	services.

Post-deployment	checks:	This	type	examines	user	stories,	scenarios
against	deployed	application,	and	often	takes	part	at	staging	and	pre-
production.

Continuous	Integration/Continuous	Delivery
Continuous	Integration	(CI)	is	the	practice	of	testing	each	change	done	to	your
codebase	automatically	and	as	early	as	possible.	So,	for	the	sake	of	stability
insurance,	your	project	should	use	CI	votes	as	part	of	code	review,	because	CI
would	prevent	you	from	merging	code	that	doesn’t	work	correctly.	Continuous
Delivery	(CD)	follows	your	tests	results	to	push	your	changes	to	either	a	staging	or
pre-production	(pushing	into	production	may	cause	problems).	In	any	case,	CD
makes	sure	a	version	of	your	code	is	always	accessible.	It	is	possible	that	you	need
to	keep	your	own	CI/CD	due	to	specific	reasons.	But	if	your	organization	is	small
and	you	don’t	have	enough	resources	to	invest	into	building	your	own
environment,	you	can	use	any	CI-as-a-Service.	There	are	two	well-known	services:
Travis	CI	(https://travis-ci.org/)	and	Circle	CI	(https://circleci.com/).	Feel	free	to
pick	the	one	you	like.

So,	you	have	SDKs,	and	you	have	guidelines	on	how	to	do	this,	and	how	not	to.
You	have	CI	and	CD.	It	is	now	time	to	do	some	tricky	magic—deploy	an
application,	a	real	cloud	application.

https://travis-ci.org/
https://circleci.com/


OPENSTACK	APP	DESCRIPTION	AND	DEPLOYMENT
STRATEGIES
So,	this	is	a	good	time	to	talk	a	bit	about	legacy	application	description.

Coming	back	to	the	methodology	of	migrating	an	application	to	the	cloud,	you
need	to	have	all	of	the	steps	implemented	that	we	have	covered	in	this	chapter	for
your	application	to	become	cloud-ready.	Let’s	assume	that	you	have	these	inputs:

Application	consists	of	these	components:	Web	UI,	RESTful	service,	back-end
service,	and	a	backing	service.

Web	UI	and	RESTful	service	are	facing	to	users.

Back-end	service	is	accessible	only	by	a	RESTful	service.

Backing	service	can	be	an	attached	service	or	it	can	be	the	part	of	an
application.	Only	application	back-end	services	talk	to	the	backing	service.

So,	what	would	be	the	best	solution	to	make	this	application	cloud-ready?

DEMO	APPLICATION	SOURCE	CODE
You	can	access	the	source	code	from	our	demo	application	via	GitHub:
https://github.com/johnbelamaric/openstack-appdev-book.

Cloud-Ready	App	Description
Following	the	migration	steps,	you	need	to	decouple	your	legacy	application	into
multiple	nodes.	Let’s	assume	that	your	application	consists	of	these	nodes	(see
Figure	4.1):

Web	UI	node

RESTful	service	node

Back-end	service	node

Backing	service	(MySQL)

https://github.com/johnbelamaric/openstack-appdev-book


Figure	4.1		

You	need	to	define	the	hardware	requirements,	i.e.	in	terms	of	OpenStack	–	define
specific	instance	flavors	that	describe	the	number	of	vCPUs,	RAM,	ephemeral	and
root	disk.	For	the	sake	of	simplicity	let’s	assume	that	you	are	ok	with	only	one
flavor,	but	most	real-world	cases	must	define	flavor	parameters	for	each
application	service,	because	of	the	workflows.	In	most	cases,	some	instances
would	require	a	lot	of	vCPUs	to	do	calculations,	and	other	instances	would	require
tons	of	RAM	and	a	root	disk	to	do	data	processing	(Hadoop	and	its	HDFS	with
map-reduce	would	be	a	good	example	here).

For	the	cursory	glance	it	looks	fine.	Users	are	able	to	access	the	application	within
the	Web	UI	or	RESTful	service.	Such	an	application	would	be	a	good	example	of
how	to	integrate	into	the	cloud	since	that	given	app	is	multi-tiered.

When	we’re	talking	about	MySQL	and	backing	services	in	general	we	have	to
consider	that	this	type	of	service	should	be	durable,	and	available	no	matter	what
happens.	So,	based	on	given	inputs	we	need	to	figure	out	which	operating	system
is	needed,	how	much	resources	(RAM,	vCPU	are	needed),	and	do	we	want	to	keep
MySQL	data	as	an	attached	block	storage	provided	by	Glance	(these	steps	and
decisions	are	very	important,	because	all	of	this	affects	the	lifecycle	of	the	service).
So,	relying	on	background	knowledge	we	strongly	recommend	you	use	a	flavor



that	does	have	at	least	4	vCPUs	and	at	the	very	least	8GB	RAM.	Regarding	storage,
we	recommend	you	use	a	block	storage	volume	to	allow	for	quick	fail	recovery	and
consistency.

The	application	components	are	the	Web	UI,	RESTful	service,	and	back-end
service	nodes.	By	itself	the	RESTful	service	node	is	not	a	standalone	application
that	is	being	deployed	as	part	of	application	delivery.	According	to	best	practices
of	application	development,	it	should	be	treated	as	a	separate	application.	Coming
back	to	what	we’ve	discussed	for	MySQL,	we	need	to	figure	out	what	would	be	the
best	options	for	deploying	this	application.	By	itself,	the	RESTful	service	is	a
stateless	application,	but	it	has	to	work	fast	to	serve	multiple	users	at	the	same
time.	It	is	recommended	that	you	use	a	flavor	that	has	lots	of	RAM,	a	vCPU
question	is	not	critical	for	now,	and	we	don’t	need	block	storage	for	now	because
there’s	nothing	to	store,	because	we	just	process	the	requests.	Speaking	of	an
application	back-end	service,	this	part	of	the	application	is	tough,	since	it	does
almost	all	of	the	heavy	work.	So	this	node	should	be	very	powerful,	and	it	has	to
have	lots	of	vCPUs,	RAM,	and	disk	space	that	are	required	by	an	application’s
workflow	definition	(not	block	storage,	but	flavor	root	disk).	There	is	nothing
different	about	the	Web	UI	node—it	should	be	fast,	and	there	are	no	other
demands.

Once	the	RESTful	service	and	Web	UI	nodes	get	deployed,	users	will	be	able	to
access	the	RESTful	service	within	the	RESTful	service	node	by	its	IP	address	and
Web	UI	independently	(according	to	a	given	schema,	UI	can	work	with	single
instance	of	a	RESTful	service	at	the	same	time).	Please	keep	in	mind	that	in	the
real	world,	each	service	that	is	facing	to	a	user	needs	must	be	solid	and	ready	to	be
stress-tested,	because	in	some	cases	users	are	acting	like	DDoS	attackers.

After	completing	this	section	we	have	a	cloud-based	application	that	has	been
deployed,	taking	into	account	all	best	practices	and	application	demands.

Network	Deployment	Strategy
Let’s	go	back	and	describe	the	application	deployment	schema.	We	have	three
types	of	services,	in	other	words	three	different	cloud	applications,	and	each
application	deserves	its	own	access	level	from	the	outside.	For	example,	the
current	schema	describes	an	application	deployment	within	a	single	network	that
seems	ok	for	an	example,	but	such	SLA	doesn’t	look	good	for	other	cases.	Web	UI
and	RESTful	services	are	facing	to	users	within	a	public	network,	so	the	user	can
access	both	of	them	and	such	things	break	the	concepts	of	a	secure	SLA.

Public	and	Private	(Management)	Network
You	might	suggest	that	each	component	use	its	own	network,	but	it	will	add	an
overhead	since	you’d	need	to	do	routing	and	might	eventually	end	up	with
complex,	hardly	maintainable	solution.	Of	course	you	are	not	trying	to	link
multiple	datacenters	into	a	single	network	for	this	solution.	In	this	case	it	would



be	enough	to	define	two	networks—public	(with	Internet,	and	accessible	from	the
outside)	and	private	(no	Internet,	and	accessible	from	a	public	network).	First	of
all,	it	is	necessary	to	figure	out	which	network	each	service	belongs	to.	It’s	easy
with	our	example:	network	placement	is	described	in	Figure	4.2;	Web	UI	as	public
NIC	in	Figure	4.3;	RESTful	services	as	private	NIC	in	Figure	4.4;	application	back-
end	service	as	private	NICs	in	Figure	4.5;	and	MySQL	node	as	private	NIC	in
Figure	4.6.

Figure	4.2		



Figure	4.3		

Figure	4.4		



Figure	4.5		

Figure	4.6		

As	you	can	see,	based	upon	the	description	given	above,	application	tiers	may	have
a	couple	of	networks	attached	to	prevent	unwanted	access.	Now,	let’s	take	a	look
at	each	component,	starting	with	the	Web	UI.	Since	this	type	of	application	tier
needs	to	be	available	to	users	it	should	have	a	public	IP	address	and	it	doesn’t
have	internal	network	access	to	prevent	security	risks.	So,	the	green	color	wire
corresponds	to	the	public	network	shown	in	Figure	4.3.

The	RESTful	service	tier	is	similar	to	the	Web	UI	tier	for	this	application,	since	the
component	should	be	accessible	within	the	public	IP	address.	But,	since	these
components	are	tied	to	the	backend	service,	it	has	to	have	access	to	the	private
network	(see	Figure	4.4).	The	red	line	wire	corresponds	to	the	private	network
access.



Going	forward,	let’s	examine	the	application	back-end	service	tier	and	its
networking,	shown	in	Figure	4.5.	This	part	of	the	application	is	only	accessible
within	the	private	network.

Take	a	look	at	the	last	component	of	our	application—MySQL	(see	Figure	4.6).
This	part	of	the	application	follows	a	similar	networking	strategy	as	the	back-end
service.	The	private	network	and	this	component	are	accessible	only	by	the	back-
end	service.

Keep	in	mind	that	the	accessibility	of	the	application	component	and	the	network
strategy	requires	an	SLA	setup	for	an	application	within	given	networks.	In	the
case	of	OpenStack	it	is	recommended	that	you	use	security	groups	(available	in
Nova-network	and	Neutron):

For	the	Web	UI	instance:	Suppose	we	use	Nginx	for	hosting	the	UI	code
and	default	ports	for	HTTP	and	HTTPS.	It	would	be	necessary	to	close	any
ports	except	80	and	443	for	inbound	connections	and	open	the	port	for	the
load	balancer	for	outbound	connections.

For	RESTful	service	nodes:	Security	groups	for	inbound	connections
require	a	load	balancer	port	only.	Security	groups	for	outbound	connections
require	AMQP	broker	ports	or	direct	access	ports	to	the	application	back-end
service.

For	the	application	back-end	service:	Security	groups	for	inbound
connections	require	a	RESTful	service	for	nodes	ports	from	their	IPs	only	or	no
rules	(in	the	case	of	AMQP	transport,	there	would	be	only	outbound
connections	to	the	AMQP	broker).	Security	groups	for	outbound	connections
require	MySQL	ports	with	a	MySQL	master	instance	IP	as	CIDR,	and	in	the
case	of	AMQP,	broker	instance(s)	port(s).

For	MySQL	node:	Security	groups	for	inbound	connections	require	an
application	back-end	service	port,	and	MySQL	slave	ports	with	their	IPs	as
CIDRs.	Security	groups	for	outbound	connections	require	a	master	node	port
and	an	IP	as	CIDR.



SUMMARY
In	this	chapter	we	covered	how	to	do	a	migration,	including	limitations	and
critical	points,	but	it	wasn’t	just	a	simple	lift	and	shift.	We	tried	to	explicitly
explain	how	to	decouple	application	services,	and	how	to	implement	a	deployment
strategy,	including	networking	and	SLA.	We’ve	amended	steps	like	application
testing	and	software	configuration,	due	to	the	variety	of	techniques	applicable	for
such	cases,	and	also	we’ve	skipped	monitoring	because	of	the	complexity	of	trying
to	describe	the	generic	use	case	for	cloud	application	monitoring.	But	every	other
case	and	technique	described	in	this	chapter	are	applicable	for	any	types	of	cloud-
ready	applications,	regardless	if	they	are	a	legacy	application	in	the	past	or	a
completely	new	application	that	is	under	design	right	now.





5	
Improving	on	the	Application
WHAT’S	IN	THIS	CHAPTER?																			

Understanding	the	types	of	failure	scenarios	that	can	affect	applications
running	in	the	cloud

Providing	access	into	the	application	and	understanding	how	hostname	and	IP
addresses	play	an	important	role

Methods	for	scaling	an	application	to	multiple	instances	and	regions	and
adapting	to	events	in	the	environment

Improving	the	basic	application

It	is	common	for	applications	to	be	initially	developed	for	the	cloud	in	a	very
simple	manner.	The	developer	may	start	with	deploying	the	application	as	a	single
instance	in	the	cloud.	If	the	application	has	different	types	of	functions,	such	as	a
web	front-end	and	a	database	back-end,	these	functions	can	be	broken	into	a
couple	different	instances.

This	chapter	discusses	what	you	as	the	developer	need	to	do	next.	You	need	to
know	what	kind	of	failures	occur	in	the	cloud	and	how	those	failures	could	affect
the	application.	You	also	need	to	understand	the	application	components	and	how
they	relate	to	failures	in	order	to	build	a	more	robust	and	reliable	application.

Different	techniques	are	examined	on	how	to	scale	the	application	in	the	cloud.
The	chapter	also	takes	a	look	at	performance	and	why	it	is	important	to	know
when	and	where	performance	issues	occur.	Often,	scaling	the	application	in	the
right	places	can	mitigate	performance	issues	when	they	occur.

The	chapter	also	takes	a	look	at	data	protection.	How	important	is	the	data	to	the
application?	Is	it	important	that	data	is	never	lost?	Can	some	data	be	lost	and
recreated	or	replaced	later?	How	important	is	the	data?	The	answers	to	these
questions	can	affect	decisions	on	how	data	is	protected	in	the	cloud.

High	availability	means	that	the	application	is	always	available	and	minimizes
downtime.	It	also	means	that	the	application	should	run	reliably	and	be
performant.	This	chapter	takes	a	look	at	what	it	means	to	build	a	highly	available
application	and	some	of	the	challenges	developers	may	run	into	along	the	way.

Finally,	we	take	a	basic	application	and	improve	upon	it	to	demonstrate	the
concepts	in	this	chapter.	Three	different	components	are	examined	as	they	are
taken	to	the	next	level	in	providing	high	availability.



DEMO	APPLICATION	SOURCE	CODE
You	can	access	the	source	code	from	our	demo	application	via	GitHub:
https://github.com/johnbelamaric/openstack-appdev-book.

https://github.com/johnbelamaric/openstack-appdev-book


FAILURE	SCENARIOS
Operators	of	the	OpenStack	cloud	understand	that	it	is	difficult	to	keep	the	cloud
running	problem-free.	The	larger	a	cloud	environment	is,	the	more	likely
problems	will	occur.	Developers	need	to	understand	what	types	of	problems	can
affect	the	application	and	how	to	deal	with	them.	Applications	that	take	these
failure	scenarios	into	account	will	suffer	less	downtime	and	continue	to	run,	even
when	problems	do	occur.

Hardware	Failure
A	typical	OpenStack	environment	contains	a	few	administrative	servers	to	help
run	the	cloud,	as	well	as	a	bunch	of	other	servers,	called	compute	nodes,	that
provide	the	means	for	applications	to	be	deployed	to	the	cloud.	The	bigger	the
environment,	the	more	hardware	that	will	be	required	to	run	it.

Eventually,	a	server’s	hardware	is	going	to	fail.	The	most	common	types	of
hardware	failure	include	disk	drives,	memory,	CPU,	power	supplies,	and	network
interfaces.	Some	hardware	failures	can	bring	the	server	down	entirely.	Some
hardware	failures	may	result	in	a	reduced	server	performance.	Other	failures	may
not	affect	the	server	at	all,	such	as	one	of	the	power	supplies	failing.

If	an	application	is	built	without	high	availability	in	mind,	it	is	likely	that	the
application	has	many	single	points	of	failure	built	into	it.	If	a	server	fails	and	any
one	of	those	single	points	of	failures	is	on	that	server,	the	application	will	fail	as
well.

Network	Failure
There	are	several	different	ways	that	a	network	can	be	setup	and	operated	within
an	OpenStack	environment.	However,	from	the	perspective	of	the	instance
running	in	the	cloud,	it	has	a	network	interface	card	with	an	active	network	link
and	an	assigned	IP	address.	All	that	matters	to	the	instances	is	that	it	is	connected
to	the	network	and	that	it	can	access	other	instances	or	devices	on	the	network
reliably.

One	way	that	instances	experience	network	failures	is	when	something	breaks	in
the	OpenStack	network	stack.	The	instance	still	sees	a	network	and	still	has	an	IP
address,	but	it	is	unable	to	connect	to	any	other	devices	on	the	network	and	other
devices	are	unable	to	connect	to	the	instance.	The	root	cause	of	the	network	issue
will	affect	how	network	connectivity	is	restored	in	the	instance.	For	example,
issues	with	Neutron	or	OVS	on	the	compute	node	where	the	instance	exists	may
require	the	instance	to	be	rebooted	in	order	to	restore	connectivity.

Another	way	that	instances	experience	network	failures	is	through	the	loss	of	the
IP	address	on	its	network	interface	card.	The	IP	address	is	provided	to	the
instance	by	a	DHCP	service	that	runs	on	the	network	node.	It	is	rare	for	the	DHCP
service	itself	to	go	down,	but	issues	in	the	OpenStack	network	stack	may	disrupt



the	ability	for	the	DHCP	service	to	communicate	to	the	instance.	Default
configurations	of	OpenStack	tend	to	expire	DHCP	leases	very	quickly,	which
results	in	the	instance	renewing	its	DHCP	lease	often.	Network	communication
issues	can	disrupt	the	renewal	process,	which	results	in	the	IP	address	being
released	from	the	instance	and	ultimately	taking	its	network	down.

The	operating	system	installed	on	the	instance	can	make	a	difference	on	how	it
responds	to	network	issues	as	well.	For	example,	when	an	instance	loses	a	DHCP
address,	Ubuntu	typically	continues	to	retry	renewing	the	DHCP	address.	When
the	network	issues	are	resolved,	the	renewal	process	succeeds	and	the	IP	address
is	restored.	However,	RedHat	and	CentOS	are	commonly	configured	by	default	to
give	up	after	the	renewal	process	fails,	which	means	that	even	if	the	network
issues	are	resolved,	the	instance	is	no	longer	attempting	to	renew	the	DHCP	lease
and	permanently	stays	off	the	network.	The	easiest	way	to	resolve	the	network
connectivity	issue	with	the	instance	is	to	reboot	the	instance.	A	better	solution
would	be	to	adjust	the	DHCP	client	for	RedHat	and	CentOS	instances	to	always
retry	DHCP	renewals	instead	of	giving	up.

External	network	issues	can	also	occur.	A	typical	OpenStack	environment	will	be
set	up	with	a	set	of	administrative	nodes,	numerous	compute	nodes,	one	or	more
switches	to	connect	all	the	nodes	together,	and	a	router	for	the	switches	to	connect
to	for	traffic	coming	in	or	leaving	the	OpenStack	environment.	The	switches	are
critical	to	the	operation	of	the	environment,	as	that	is	the	lifeline	between	the
compute	node	and	the	network	node.	A	switch	problem	can	disrupt
communication	between	the	nodes.	An	issue	at	the	router	may	not	disrupt
communication	between	nodes,	but	it	may	prevent	access	to	other	things	on	the
network,	such	as	DNS	lookups,	access	to	authentication	servers,	and	any	other
network	services	the	instances	may	depend	on.

Storage	Failure
An	OpenStack	instance	makes	use	of	either	ephemeral	storage	or	persistent
storage,	or	even	a	combination	of	both.	Ephemeral	storage	is	defined	as	storage
that	may	not	be	permanent.	For	example,	the	storage	associated	with	the	instance
could	be	deleted	if	the	instance	itself	is	terminated.	Persistent	storage	is	defined	as
storage	that	is	permanent.	If	an	instance	is	terminated,	the	persistent	storage
associated	with	the	instance	is	typically	not	deleted,	but	may	be	detached	and
made	available	to	be	attached	to	another	instance.

Persistent	storage	is	typically	implemented	as	object	storage	or	block	storage.
Object	storage	is	often	implemented	using	Swift	or	some	other	product	that
implements	the	Swift	API,	such	as	Ceph.	When	using	object	storage,	containers
are	created	and	binary	objects	are	stored	inside	the	containers.	Instances	can
retrieve	the	stored	objects	using	the	API	implemented	by	the	object	storage
system.	Block	storage	shows	up	to	instances	as	block	devices	in	the	operating
system,	which	can	then	be	mounted	on	a	directory	or	used	as	a	raw	device.



Ephemeral	storage	is	similar	to	block	storage	in	the	way	that	it	appears	to	the
instance	as	block	devices.	This	means	that	instances	can	mount	the	block	device
on	a	directory	or	use	it	as	a	raw	device.	Ephemeral	is	configured	by	default	in
OpenStack	to	use	the	storage	from	the	disks	in	the	compute	nodes.	It	is	possible	to
configure	ephemeral	storage	using	other	architectures	too,	but	using	compute
node	disks	for	ephemeral	storage	is	the	most	common	usage.	Unless	an	instance	is
launched	using	a	“boot	from	volume”	method,	the	instance	will	be	created	using
the	compute	node	ephemeral	storage.

One	of	the	most	common	hardware	failures	encountered	in	an	OpenStack
environment	is	disk	failure.	Disk	failures	can	have	a	wide	effect	on	instances,
depending	on	how	OpenStack	is	configured	and	how	the	disk	failure	affects	the
device	it	is	installed	in.	Ephemeral	storage	will	likely	have	a	greater	effect	on
instances	than	persistent	storage.	With	ephemeral	storage,	data	is	very	unlikely	to
be	replicated	and	the	chance	for	data	loss	will	be	higher.	For	persistent	storage,
data	is	often	replicated	and	can	be	accessed	in	multiple	ways.	If	a	single	disk	fails
in	a	persistent	storage	cluster,	the	instance	may	not	even	notice,	since	the	data
remains	available	and	consistent.

Let’s	look	at	the	case	where	the	instance	is	running	on	ephemeral	storage.	The
operating	system	is	on	an	ephemeral	root	disk	that	lives	on	a	compute	node.	The
compute	node	could	be	configured	with	some	kind	of	RAID	that	replicates	data
behind	the	scenes.	A	single	disk	failure	may	not	affect	the	instance	at	all,	much
like	a	single	disk	failure	in	persistent	storage.	However,	it	is	not	uncommon	to	see
a	RAID	device	experience	a	disk	failure	that	results	in	the	block	device	going	into
read-only	mode	inside	the	instance.	Even	though	the	data	is	still	available	and	can
be	read	by	the	instance,	writes	are	blocked.	Read-only	mode	usually	occurs	at	the
compute	node	level,	which	affects	all	the	instances	running	on	that	node.
Rebooting	the	compute	node	is	often	needed	to	fix	the	issue.

If	the	compute	node	is	not	configured	with	RAID	or	some	kind	of	data	replication
for	ephemeral	storage,	then	a	loss	of	a	disk	is	usually	catastrophic	to	the	instance.
If	the	failed	disk	is	where	that	instance’s	storage	was	located,	then	that	data	is
permanently	lost.	The	instance	will	need	to	be	terminated	and	rebuilt.

For	block	storage,	instances	may	experience	problems	with	the	mounted	volume.
If	there	are	serious	issues	in	the	persistent	storage	cluster,	a	volume	may	become
unavailable	to	the	instance.	If	the	volume	is	mounted,	any	reads	and	writes	may
hang,	waiting	for	a	response.	If	the	volume	is	not	mounted,	it	may	refuse	to	mount
or	be	detected	as	a	valid	disk.	This	is	seen	more	often	when	an	instance	is	being
launched	or	rebooted.	If	the	volume	is	unavailable	for	some	reason,	the	instance
may	fail	to	launch	or	need	administrator	interaction	to	get	the	instance	to	boot	the
rest	of	the	way.

Most	volume	issues	occur	because	of	issues	within	the	OpenStack	environment
and	not	necessarily	with	the	persistent	storage	cluster.	There	may	be	an	issue	with
Cinder	or	an	issue	with	the	communication	between	Nova	and	Cinder.	Many	of



these	issues	may	not	affect	a	volume	that	is	already	mounted	in	an	instance	and
currently	being	used.	However,	these	issues	will	likely	affect	the	launching	or
rebooting	of	instances.	This	also	affects	the	ability	to	detach	volumes	from	one
instance	so	that	they	can	be	attached	to	another	instance.	In	most	cases,	this	only
affects	the	ability	to	access	the	data	and	does	not	result	in	data	loss.

Object	storage	is	accessed	in	a	different	manner	than	for	block	storage.	Objects	are
pushed	into	storage	or	fetched	from	storage.	If	there	are	any	issues	in	the	object
storage	system,	it	usually	manifests	as	objected	being	unavailable	or	operations
timing	out.

Persistent	storage	is	most	often	configured	with	some	kind	of	replication.
Replication	factors	of	2	or	3	are	common,	but	there	may	be	cases	where
replication	is	disabled	for	some	reason.	It	is	important	to	ask	the	administrators
about	how	replication	is	configured	in	order	to	better	understand	how	failures
could	affect	access	to	data	and	the	potential	for	data	loss.

Instances	have	a	difficult	time	dealing	with	storage	devices	becoming	unavailable.
If	the	application	depends	on	data	always	being	available,	it	is	important	that
monitoring	is	configured	to	monitor	storage	available	and	integrity.	For
ephemeral	storage,	most	failures	results	in	the	instance	going	down	as	well.
However,	instances	should	monitor	for	when	filesystems	go	into	a	read-only	state.
Instances	may	operate	fine	with	a	read-only	filesystem,	especially	if	the
application	only	reads	data	and	doesn’t	write	data.	Monitoring	may	not	see	the
issue	either,	nor	will	the	issue	be	seen	in	any	of	the	logs.	Since	a	read-only
filesystem	is	an	indication	that	there	is	an	underlying	problem	with	the	compute
node,	catching	it	early	so	the	application	can	adapt	around	it	is	a	good	idea.

Software	Failure
Another	type	of	failure	scenario	is	purely	software	specific.	For	example,	a	kernel
bug	within	the	operating	system	of	the	compute	node	may	cause	it	to	crash	or
hang.	This	will	result	in	the	instance	becoming	unavailable.	Sometimes,	it	may	be
because	of	a	kernel	bug	in	the	instance’s	operating	system.	The	instance	itself	will
crash	or	hang,	requiring	a	reboot	to	put	it	back	into	operation.

Issues	in	the	OpenStack	software	suite	may	also	cause	problems.	Most	problems
of	this	nature	don’t	affect	an	instance,	unless	it	is	an	issue	that	will	affect	the
instance’s	network	or	ability	to	access	its	storage.	Common	OpenStack	software
issues	include	problems	with	RabbitMQ,	Cinder	and	Ceilometer.	These	issues	may
not	affect	current	instances,	but	they	could	very	likely	affect	the	user’s	ability	to
launch	new	instances,	terminate	instances,	or	do	any	other	OpenStack	related
management.	For	applications	that	make	use	of	the	elastic	nature	of	the	cloud	to
dynamically	grow	and	shrink	instances	based	on	demand,	software	problems	can
reduce	cloud	elasticity	significantly.

Another	issue	that	could	occur	is	a	lack	of	resource	availability.	If	an	instance	is
running	an	application	that	is	leaking	memory,	that	instance	will	eventually	run



out	of	memory	and	fail.	If	an	application	is	launching	lots	of	processes	and	does
not	properly	clean	up	after	itself,	the	instance	can	run	out	of	process	slots	and	be
unable	to	launch	new	processes.	If	an	application	fails	to	close	files	that	it	opens
and	is	no	longer	used	and	opens	a	lot	of	files	over	time,	the	application	may	use	up
all	the	available	file	descriptors.	This	can	cause	the	application	to	fail	or	even
possibly	the	instance.	When	an	instance	runs	out	of	resources,	it	may	result	in	the
instance	crashing,	but	it	more	often	results	in	the	instance	becoming	unavailable.
Monitoring	may	detect	multiple	alarms	and	attempts	to	login	may	be
unsuccessful.	Rebooting	the	instance	often	fixes	the	problem.	However,	if	the
problem	occurs	repeatedly,	the	application	needs	to	be	examined	for	bugs	and
potential	configuration	tweaks.	It	is	better	to	fix	the	problem	with	the	application
than	to	try	solving	the	problem	by	launching	larger	instances	with	more	resources.

External	Failures
Instances	may	experience	DNS	lookup	issues	due	to	some	external	issue.	This
could	be	the	result	of	a	network	outage	between	the	OpenStack	environment	and
the	DNS	servers.	It	could	also	be	an	issue	with	the	DNS	servers	themselves.	DNS
issues	can	look	like	a	general	network	issue	from	the	perspective	of	the	instance.
Nearly	everything	an	instance	does	on	the	network	requires	a	DNS	lookup.	When
a	DNS	issue	exists,	lookups	generally	do	not	just	fail,	rather	they	timeout.	If	the
instance	is	configured	to	do	lookups	on	multiple	servers,	the	timeouts	can	stack	up
for	each	request,	compounding	problems	for	applications	trying	to	connect	to
services	on	the	network.

Instances	can	reduce	the	effect	that	DNS	issues	have	by	tuning	timeout	settings	in
the	/etc/resolv.conf	file	and	by	doing	some	kind	of	DNS	caching	inside	the
instance	itself.	If	caching	is	used,	once	a	hostname	is	resolved	to	an	IP	address,	it
will	be	kept	in	the	cache	for	a	period	of	time	so	future	DNS	lookups	for	that
hostname	can	be	skipped.	Many	instances	are	configured	without	caching
enabled.	Depending	on	the	operating	system	installed	in	the	instance,	NSCD	or
dnsmasq	may	need	to	be	tweaked	in	order	to	enable	DNS	caching.

Another	common	issue	that	can	occur	to	instances	is	its	inability	to	talk	to
important	services	on	the	network.	A	good	example	of	a	common	service	is	an
authentication	service.	Active	Directory,	LDAP,	Kerberos	and	Radius	are	all
examples	of	authentication	services	that	could	be	used.	Network	issues	and	issues
with	the	authentication	service	itself	can	cause	an	application	to	misbehave	or	fail.
Distributed	applications	may	see	periodic	failures	if	only	a	portion	of	the	instances
experience	authentication	issues.	For	example,	users	may	see	a	periodic	web	page
failure	if	their	click	resulted	in	an	action	that	talks	an	instances	that	is	unable	to
do	authentication.

Authentication	service	issues	are	difficult	to	overcome	in	the	instance.	The	best
way	to	deal	with	authentication	service	issues	is	to	detect	them	when	they	occur,
understand	whether	or	not	it	is	transient	or	if	the	issue	is	trending	from	bad	to



worse,	and	react	to	the	issue.	A	distributed	application	could	detect	authentication
issues	in	a	portion	of	the	instances	and	choose	to	remove	those	instances	from	the
pool,	working	around	the	problem	until	authentication	service	has	been	restored.
At	the	very	least,	there	should	be	monitoring	that	alerts	the	application	owners	to
the	issue	so	that	the	root	cause	can	be	investigated	and	the	necessary
administrators	involved.

Instances	can	also	experience	issues	with	time	skew.	This	is	a	subtle	problem	that
may	not	be	noticed	without	proper	monitoring.	Many	applications	may	not	even
care	about	time	skew,	especially	for	instances	that	are	running	portions	of	an
application	that	does	not	require	state.	However,	authentication	commonly	does
require	the	instance’s	time	to	be	very	close	to	the	time	the	authentication	server
sees.	Some	authentication	methods	are	very	strict,	resulting	in	failed
authentication	attempts	if	the	instance’s	time	is	more	than	a	minute	or	two	off.
Some	applications,	such	as	financial	applications,	require	accurate	time	as	well.

Running	NTP	inside	the	instances	can	help	keep	the	instance’s	clock	synchronized
to	the	correct	time.	However,	NTP	is	not	fully	reliable,	because	it	depends	on	the
performance	of	the	compute	node	the	instance	runs	on	and	it	depends	on	the
network	performance	between	the	instance	and	the	NTP	servers.	If	the	compute
node	becomes	CPU	bound,	the	instance’s	time	may	stay	out	of	sync,	even	with
NTP	running.	By	the	time	NTP	adjusts	the	time	for	the	instance,	the	adjusted	time
could	be	wrong.	Network	issues	can	disrupt	time	updates.	The	NTP	service	could
also	be	having	an	issue.	For	example,	one	of	the	NTP	servers	could	be	out	of	time
sync	itself	and	reporting	the	wrong	time.	Some	of	these	issues	can	be	solved	by
configuring	the	instance	to	point	to	several	reliable	NTP	servers.	If	time
synchronization	is	important	to	the	application’s	operation,	it	is	essential	that
monitoring	is	configured	to	catch	these	issues	so	that	appropriate	actions	can	be
taken.



HOSTNAME	AND	IP	ADDRESSING
Applications	tend	to	be	very	complex,	and	comprised	of	many	functional	units,
with	one	unit	talking	to	another.	Users	also	need	a	way	to	use	the	application.	This
is	accomplished	by	assigning	hostnames	and	IP	addresses	to	all	of	the	difference
pieces	of	an	application	that	need	it.	An	example	for	a	simple	application	might	be
a	web	server	that	talks	to	a	back-end	database.	The	web	server	has	an	IP	address
that	users	connect	to,	and	the	database	has	an	IP	address	that	the	web	server	talks
to.

What	happens	when	the	web	service	is	actually	a	whole	bunch	of	instances?	What
happens	if	the	database	back-end	is	actually	a	database	cluster	running	several
servers?	It	would	certainly	be	possible	to	assign	public	IPs	to	all	instances	so	that
every	single	instance	is	accessible.	However,	if	a	user	is	connecting	to	the	web
interface	of	an	application,	it	would	be	bad	practice	to	provide	all	the	IPs	to	the
user	and	force	the	user	to	select	which	one	to	use.

Single	Point	of	Entry
Normally,	an	application	has	a	single	point	of	entry	for	the	users.	If	it	is	a	web
application,	it	is	a	URL	they	enter	in	the	web	browser.	If	it	is	a	client/server	type
application	the	client	is	configured	to	hit	a	particular	server	address.	What
happens	when	a	web	application	is	now	a	bunch	of	instances?	If	the	database
back-end	is	several	servers	running	in	a	cluster,	how	is	the	web	front-end
configured	to	talk	to	the	database	back-end?	There	are	a	couple	techniques	that
can	be	used	to	deal	with	application	connectivity	and	the	communication	between
the	functional	units	within	the	application.

Most	applications	should	have	just	a	single	point	of	entry	for	connections	to	come
into,	which	is	usually	a	hostname.	When	a	connection	to	the	application	is	made
using	a	hostname,	the	hostname	is	converted	into	an	IP	address	through	the	use	of
DNS	service,	which	is	a	service	that	provides	hostname	and	IP	address	mappings.
The	DNS	lookup	occurs	behind	the	scenes	and	is	transparent	to	the	user	or	service
connecting	to	the	application.	The	DNS	service	may	return	a	single	IP	address	or	a
list	of	IP	addresses	for	that	hostname.	An	IP	address	is	then	chosen	and	the
connection	made	to	the	application.

Round	Robin	DNS
When	it	comes	to	assigning	more	than	one	IP	address	to	a	single	hostname,	there
are	a	couple	techniques	that	can	be	employed.	The	first	technique	is	to	use	DNS	to
assign	multiple	“A	records”	to	the	hostname.	An	A	record	in	DNS	is	essentially	an
IP	address	assignment.	When	a	DNS	lookup	occurs	and	there	are	multiple	A
records	assigned	to	the	name,	the	DNS	server	returns	all	of	the	IP	addresses
assigned	to	that	name.	However,	each	time	the	DNS	server	is	queried,	the	list	is
rotated	by	one	so	that	the	first	IP	address	in	the	list	is	always	different.	This	is
known	as	“round	robin.”



For	example,	the	name	myweb	has	three	A	records	assigned	to	it,	1.1.1.1,	2.2.2.2	and
3.3.3.3.	The	first	time	DNS	is	queried,	the	server	responds	with	1.1.1.1,	2.2.2.2,
3.3.3.3.	The	second	time	DNS	is	queried,	the	server	responds	with	2.2.2.2,
3.3.3.3,	1.1.1.1.	The	third	time	DNS	is	queried,	the	server	responds	with
3.3.3.3,	1.1.1.1,	2.2.2.2.	The	fourth	time	DNS	is	queried,	the	server	responds
with	1.1.1.1,	2.2.2.2,	3.3.3.3	again.

The	client	that	is	doing	the	DNS	query	will	get	back	a	list	of	IP	addresses	and	then
has	to	choose	which	IP	address	it	will	use.	Generally,	clients	always	pick	the	first
IP	address	in	the	list,	which	is	why	the	DNS	server	rotates	the	list	every	time	the
list	is	returned.	However,	there	is	a	downside	to	doing	round	robin	in	DNS.	If	any
of	the	servers	in	the	IP	address	list	is	not	responding,	the	client	will	not	know	that
and	will	attempt	the	connection	anyways.	Clients	very	rarely	have	extra	logic	in
their	code	that	tries	to	connect	to	the	first	IP	and	when	that	fails,	tries	the	next	IP
in	the	list.

It	may	be	difficult	for	the	administrator	to	react	quickly	to	server	unavailability	or
performance	issues.	If	a	server	is	going	to	be	down	for	an	extended	time	period,
the	bad	IP	address	can	be	pulled	out	of	the	list.	However,	DNS	servers	are	often
configured	to	cache	IP	address	information	for	a	period	of	time.	It	is	common	for
DNS	entries	to	be	cached	for	24	hours	or	more.	If	that	is	the	case,	removing	an	IP
address	from	the	list	could	take	up	to	a	day	or	more	to	be	reflected	in	the	DNS
queries	made	by	the	client.

If	a	server	is	going	to	be	down	for	planned	maintenance	and	the	administrator
knows	that	an	IP	address	will	need	to	come	out	of	the	list,	a	common	technique	is
to	reduce	the	cache	time	to	a	short	period	of	time,	such	as	1	minute,	well	ahead	of
the	scheduled	maintenance	time.	When	maintenance	is	about	to	begin,	the	IP	can
be	removed,	which	clients	will	see	within	a	minute	of	the	update.	Maintenance	can
occur	and	the	IP	address	re-added	back	to	the	list.	If	maintenance	is	successful,
the	cache	time	can	be	adjusted	back	up	to	its	original	setting.

Global	Server	Load	Balancing	(GSLB)
Round	Robin	DNS	is	a	cheap	and	easy	means	to	allow	access	to	multiple	instances
that	provide	an	important	piece	of	functionality	to	an	application.	It	was	already
mentioned	that	if	one	of	the	instances	is	down,	clients	may	still	try	to	connect	to
the	instance,	being	unaware	of	that	issue.	However,	there	are	other	limitations	to
Round	Robin	DNS	that	can	also	affect	the	application.	For	example,	there	might
be	no	ability	to	guide	the	client	in	selecting	an	appropriate	IP	address	out	of	the
list	based	on	performance	or	possibly	how	close	an	instance	is	to	the	client.

Global	Server	Load	Balancing	(GSLB)	is	a	service	that	provides	a	combination	of
DNS	and	load	balancing	functionality.	GSLB’s	are	often	setup	in	a	similar	fashion
as	Round	Robin	DNS.	A	hostname	may	be	assigned	to	multiple	IP	addresses.
However,	instead	of	the	GSLB	returning	a	rotating	list	of	IPs	to	the	client,	the
GSLB	will	return	the	list	of	IPs	in	an	order	that	makes	the	most	sense	for	the	client



that	is	doing	the	DNS	query.	If	an	instance	is	down	in	the	IP	list,	the	GSLB	will
remove	the	IP	entirely	from	the	list	until	the	instance	is	back	up.	IPs	are	often
ordered	by	geographic	location	so	that	the	first	IP	address	is	physically	closest	to
the	client	doing	the	lookup.	IPs	may	also	be	ordered	based	on	performance	or
number	of	connections	going	to	those	IPs.

Enterprises	may	also	combine	GSLBs	with	Round	Robin	DNS	and	use	both
techniques.	This	is	useful	when	an	application	is	hosted	at	multiple	sites.	For
example,	an	application	hosted	in	the	United	States	and	in	Europe	could	have	the
GSLB	provide	only	the	list	of	IPs	associated	with	the	United	States	when	client
from	North	America	queries	DNS.	Furthermore,	the	trimmed	down	list	could	be
rotated	in	the	same	fashion	as	standard	Round	Robin	DNS.	Since	the	GSLB	is
aware	of	server	uptime	and	performance,	IPs	can	still	be	removed	when	a	server	is
down.

GSLB	can	be	affected	by	some	of	the	same	issues	as	Round	Robin	DNS.	Since
GSLB	is	essentially	providing	IPs	back	to	the	client	via	DNS	requests,	making
changes	to	the	list	of	IP	addresses	can	be	affected	by	cache	time.	For	GSLBs
designed	for	failover	when	an	issue	occurs,	cache	times	may	be	set	to	small	times
already.	However,	clients	often	cache	DNS	lookups	as	well.	This	means	that	when
an	IP	address	is	removed	from	the	list	by	the	GSLB,	a	client	may	not	notice	that
until	its	internal	cache	has	expired	for	that	list.

GSLB	provides	another	level	of	service	beyond	what	DNS	provides	by	itself.
However,	GSLB	often	comes	with	extra	cost,	so	it	may	not	be	feasible	to	take
advantage	of	it.	If	GSLB	is	available,	it	is	the	best	way	to	run	portions	of	the
application	across	multiple	sites	in	a	reliable	way.

Fixed	and	Floating	IP	Addresses
OpenStack	makes	use	of	two	types	of	IP	addresses	for	its	instances.	A	fixed	IP
address	is	automatically	assigned	by	OpenStack	when	an	instance	is	first
launched.	The	fixed	IP	address	can	be	either	a	public	or	a	private	address,
depending	on	how	the	environment	is	configured.	Public	addresses	allow
connections	from	outside	the	environment	to	connect	directly	to	the	instances.
Private	addresses	do	not	allow	outside	connections,	but	often	do	allow
connections	to	other	instances	within	the	same	environment	to	be	made.

The	other	type	of	IP	address	OpenStack	supports	is	a	floating	IP	address.	Floating
IP	addresses	are	not	automatically	assigned	to	an	instance	when	they	are	first
launched.	When	OpenStack	is	configured	to	use	floating	IPs,	a	global	floating	IP
pool	is	setup	with	all	of	the	IP	addresses	permitted	to	be	used	as	a	floating	IP.
Users	will	then	pull	IP	addresses	out	of	the	global	pool	and	into	their	tenant	pool,
marking	those	IPs	as	only	useable	by	that	specific	tenant.	Users	can	then	assign	IP
addresses	from	their	tenant	pool	to	specific	instances	running	in	the	tenant.
Floating	IP	addresses	are	most	often	public	IP	addresses	which	allows	outside
connections	to	be	made	to	that	IP	address.	OpenStack	environments	that	make



use	of	floating	IP	addresses	will	often	configure	fixed	IP	addresses	to	be	private
addresses	and	floating	IP	addresses	to	be	public	addresses.

One	advantage	that	floating	IP	addresses	have	over	fixed	IP	addresses	is	that	the
user	can	assign	and	unassign	them	at	any	time.	The	user	can	move	a	floating	IP
address	from	one	instance	to	another	without	having	to	terminate	and	relaunch	an
instance.	It	is	also	possible	to	have	more	than	one	floating	IP	address	assigned	to
an	instance.	This	gives	the	user	a	lot	of	flexibility	in	how	a	connection	comes	into
the	application.	If	an	instance	is	having	problems	or	crashes,	the	floating	IP
address	can	be	moved	to	a	working	instance.	It	is	also	useful	in	maintenance.	For
example,	a	patch	can	be	applied	to	all	instances.	An	instance	can	be	patched	and
then	have	the	floating	IP	moved	to	it	so	that	the	other	instance	can	be	patched
without	affecting	service	availability.

Another	advantage	that	floating	IPs	have	is	that	they	can	be	used	as	a	means	to
conserve	IP	address	usage	in	a	network.	The	fixed	IP	network	is	often	bigger,	sized
to	be	larger	than	the	number	of	instances	likely	to	ever	be	launched	in	that
environment.	The	floating	IP	network	may	not	be	as	big	and	may	be	a	finite
valuable	resource.	If	that	is	the	case,	users	could	assign	floating	IPs	to	only	the
instances	that	need	outside	connectivity	and	rely	only	on	fixed	IPs	for	instances
that	only	rely	on	connections	inside	the	environment.

For	example,	a	particular	OpenStack	setup	has	a	public	network	assigned	to	the
floating	IP	addresses	and	a	private	internally	routed	network	assigned	to	the	fixed
IP	addresses.	The	developer	sets	up	an	instance	running	HAProxy	and	assigns	a
floating	IP	address	to	it.	The	developer	also	sets	up	a	bunch	of	web	instances
providing	the	web	front-end	for	the	application.	The	web	instances	are	configured
with	fixed	IP	addresses	only	and	are	not	accessible	from	the	outside	world.	The
fixed	IPs	are	added	to	the	HAProxy	setup	and	anytime	somebody	connects	to	the
floating	IP’s	of	the	HAProxy	instance,	HAProxy	connects	to	one	of	the	web
instances	and	proxies	the	traffic	between	them.	If	one	of	the	web	instances	goes
down,	HAProxy	sends	traffic	to	another	web	instance.	If	the	developer	needs	to	log
into	any	of	the	web	instances,	this	can	be	done	by	first	logging	into	the	HAProxy
instance	and	then	from	there,	by	logging	into	the	desired	web	instance.

Neutron	Port	Reservation
Neutron	assigns	IP	addresses	to	instances	using	the	concept	of	port	assignments.
A	port	is	essentially	a	virtual	switch	port	that	the	instance	connects	to.	A	port	is
assigned	a	MAC	address	and	a	fixed	IP	address.	When	an	instance	connects	to	a
port,	the	instance’s	network	interface	inherits	the	MAC	address	and	IP	assignment
as	well.

By	default,	when	an	instance	is	launched,	a	port	is	created	with	a	MAC	address
and	a	fixed	IP	address	and	then	assigned	to	that	instance.	When	the	instance	is
terminated,	the	port	is	destroyed,	which	frees	the	fixed	IP	address	up	for	future
use.	If	floating	IPs	are	not	used,	there	is	no	way	to	predict	what	IP	address	the



instance	will	get.	Nor	is	it	possible	to	guarantee	that	if	an	instance	is	rebuilt	by
being	terminated	and	then	relaunched	that	it	will	get	the	same	IP	address	it
originally	had.

Neutron	provides	a	mechanism	to	allow	the	user	to	create	a	port	ahead	of	time
and	assign	that	port	to	an	instance	as	it	is	being	launched.	When	the	port	is
created,	the	user	has	the	option	of	specifying	an	IP	address	or	let	OpenStack	chose
the	IP	address	instead.	To	create	a	port,	use	the	“neutron	port-create”	command.
When	the	instance	is	launched,	the	port	ID	of	the	newly	created	port	can	be
assigned	using	nova	boot	––nic	port-id=PORT_ID.	When	the	instance	come	up,	it
should	have	a	network	interface	configured	using	the	MAC	address	and	fixed	IP
address	associated	with	the	user-created	port.

However,	be	aware	that	if	the	instance	is	terminated,	OpenStack	will	happily
destroy	both	the	instance	and	any	associated	port.	If	the	user	wants	to	preserve
the	IP	address	associated	with	the	instance,	the	port	must	be	detached	from	the
instance	first	before	the	instance	is	terminated.	This	can	be	done	by	using	neutron
port-update	PORT_ID	––device_id	''	––device_owner	''.	This	should	work	on	any
port,	including	a	port	that	was	created	at	the	time	the	instance	was	launched.	After
the	port	is	detached,	it	can	be	used	again	when	launching	another	instance.

In	older	versions	of	OpenStack,	Neutron	port	reservation	wasn’t	very	reliable.
Ports	could	be	detached	from	instances,	but	they	sometimes	may	not	work
properly	when	attached	to	a	newly	launched	instance,	especially	if	the	instance	the
port	was	originally	attached	to	is	still	running.	Also,	ports	could	only	be	attached
to	instances	when	they	were	launched.	It	may	be	possible	to	attach	a	port	to	an
existing	instance	by	using	neutron	port-update.	Consult	the	OpenStack
documentation	and	test	vigorously	before	using	port	reservations	for	production
work.

Permanent	IP	Addresses
Users	are	accustomed	to	having	a	single	known	IP	address	associated	with	their
application.	A	hostname	is	usually	assigned	to	that	IP	address,	but	the	IP	address
rarely	changes.	Once	they	have	an	IP	address,	firewall	ports	are	opened	up
specifically	for	that	IP	address	and	that	address	may	potentially	be	embedded	in
application	code.	Of	course,	if	that	IP	address	ever	changes,	it	can	be	a	nightmare
to	update	the	application	to	support	that	change,	as	firewalls	have	to	be	updated
and	source	code	scoured	to	find	all	the	hardcoded	entries.

When	users	are	developing	applications	for	the	cloud,	it	is	hard	for	them	to	let	go
of	the	concept	that	all	their	instances	should	have	a	permanent	IP	address
assigned.	Even	if	an	application	is	built	with	multiple	instances	and	regions	in
mind,	users	may	still	have	to	open	firewall	ports	for	all	the	IP	addresses	associated
with	their	instances.

If	the	OpenStack	environment	supports	floating	IP	addresses,	then	having	a
permanent	IP	may	still	be	possible.	If	an	instance	needs	to	be	destroyed	and



rebuilt,	the	user	can	move	the	floating	IP	address	from	the	doomed	instance	to	a
new	one.	The	firewall	rules	associated	with	that	IP	address	continues	to	work.	The
same	thing	can	be	accomplished	by	creating	and	assigning	Neutron	ports	to	new
instances.	However,	it	is	critical	to	make	sure	that	port	is	detached	from	the
instance	before	the	instance	is	terminated,	otherwise	the	port	will	be	destroyed
and	the	IP	address	put	back	into	the	global	IP	pool.

Another	thing	users	should	be	cautious	of	is	if	an	IP	address	is	lost	and	firewall
rules	are	associated	with	that	address,	some	other	user	and	application	may	get
that	IP	address	and	all	the	associated	firewall	rules	with	it.	The	other	application
will	have	no	idea	what	ports	have	been	opened	up	in	the	firewall.	This	may	not	be
an	issue	if	the	security	groups	are	properly	set	up	and	restrict	inbound	traffic.
However,	it	is	common	for	developers	to	save	network	security	for	last	or	not
address	it	at	all	and	not	be	aware	of	the	additional	exposures	that	IP	address	reuse
may	bring	to	their	application.



SCALING
Once	a	basic	application	has	been	built	for	the	cloud,	it	needs	to	evolve	so	that	it
can	survive	failures	in	the	cloud,	as	well	as	to	grow	so	that	it	can	continue	to	meet
user	demand	and	performance	requirements.	Scaling	an	application	vertically
may	address	performance	issues,	but	it	rarely	improves	on	its	ability	to	deal	with
cloud	failures.	Scaling	the	application	horizontally	can	address	both	performance
and	resiliency	to	cloud	failures.

What	does	it	mean	to	scale	an	application	horizontally?	It	means	that	the
application	is	scaled	by	adding	more	instances	to	it.	This	is	different	from	vertical
scaling	where	the	instances	themselves	are	made	bigger.	Horizontal	scaling
doesn’t	mean	making	additional	copies	of	the	application	and	running	those
copies	in	the	cloud.	It	means	taking	a	single	application	and	spreading	it	out	to
run	in	more	instances.

How	can	an	application	be	spread	across	multiple	instances?	The	first	step	is	to
understand	all	the	different	pieces	that	make	up	an	application	and	then	take	each
piece	and	run	each	of	them	in	their	own	instance.	Then	each	piece	is	expanded	to
run	in	multiple	instances.	Some	pieces	may	be	easier	to	run	in	multiple	instances
than	others.	Once	an	application	can	scale	successfully	in	a	single	region,	then
steps	can	be	taken	to	scale	the	application	to	other	regions.	An	application
running	in	multiple	regions	can	increase	performance	by	having	users
communicate	with	instances	physically	closer	to	them	and	increases	its	resiliency
in	dealing	with	potential	region-wide	outages.

Application	Anatomy
Applications	are	typically	very	complex,	often	containing	multiple	programs
working	in	concert	to	provide	a	set	of	services	to	the	end-user.	It	is	rare	to	find	an
application	that	is	a	single	program	that	does	everything,	such	as	providing	a	web
interface	and	a	database	service	all	in	one.	Understanding	all	of	the	different
pieces	of	an	application	is	important	when	trying	to	build	and	deploy	it	to	the
cloud.

Most	applications	provide	some	kind	of	user	interface.	User	interfaces	can	take
many	forms,	such	as	a	client	interface	that	runs	on	the	user’s	desktop,	a	web
interface	accessed	from	a	browser,	a	command-line	program	the	user	runs	from
an	operating	system	prompt,	or	maybe	an	API	that	the	user	uses	from	within	a
script	or	program.

User	interfaces	provide	a	mechanism	for	accessing	and	manipulating	the	data	the
application	manages.	This	data	is	often	stored	in	a	database.	Many	applications
use	relational	databases	that	provide	better	organization	and	faster	access	to	the
data,	such	as	with	Oracle	and	MySQL.	Some	applications	also	make	use	of
document	store	databases,	such	as	with	MongoDB.	Document	store	databases
provide	a	means	of	storing	unstructured	data	and	objects.	Applications	may	also



make	use	of	multiple	databases	and	database	types,	further	adding	to	the
complexity	of	the	application.

Some	applications	also	make	use	of	an	application	layer	called	middleware.
Middleware	contains	software	that	typically	is	used	to	connect	application
components	to	other	application	components.	Middleware	provides	a	consistent
means	of	connecting	different	pieces	of	the	application	to	each	other,	making	it
easier	to	switch	components	out	for	other	components	in	the	future.

Applications	may	have	other	components	too.	For	example,	there	may	be	a
network	or	security	component	that	monitors	traffic	in	some	way.	There	may	be	a
logging	component	that	aggregates	the	logs	of	all	the	other	components	into	a
single	searchable	location.	There	may	be	a	monitoring	component	that	checks
application	functionality	and	performance.

Each	component	needs	to	address	potential	failure	scenarios	as	appropriate.	A
web-based	user	interface	can	deal	with	failure	scenarios	by	simply	scaling	out.
Since	most	web-based	user	interfaces	can	be	stateless	with	respect	to	data,
instances	can	be	lost	with	little	impact	to	the	application,	as	long	as	there	are
enough	instances	to	handle	the	incoming	load.	Databases	often	deal	with	failure
scenarios	by	having	a	number	of	instances	participating	in	a	cluster.	As	long	as	the
majority	of	the	instances	in	the	cluster	remain	available,	the	database	is	likely	to
remain	up	and	available.

Each	component	can	also	deal	with	problems	independently	of	each	other.	For
example,	if	a	performance	issue	is	found	in	the	middleware	component,	that
component	can	be	scaled	out	more	to	address	the	performance	issue.	There	isn’t	a
need	to	scale	out	the	web	component	or	the	database	component,	since	the
problem	was	isolated	only	to	the	middleware	component.	Adjusting	components
independently	when	needed	gives	the	application	tremendous	flexibility	in	dealing
with	failure	scenarios	and	performance	issues.

Multiple	Instances
An	application	that	runs	in	a	single	instance	or	in	just	a	few	instances	is	more
likely	to	be	affected	by	simple	failure	scenarios,	such	as	hardware	failure	or
maintenance.	A	single	compute	node	failure	could	rob	the	application	of	an
important	piece	of	functionality,	resulting	in	users	not	being	able	to	reach	the
application	or	important	data	being	available	to	them.

The	best	way	to	deal	with	most	failure	scenarios	is	to	have	the	application	run	in
as	many	instances	as	possible.	If	one	instance	in	a	group	goes	down,	the	other
instances	in	that	group	continue	to	provide	the	same	functionality	so	the
application	remains	operational.

Most	applications	can	be	broken	down	into	smaller	pieces	based	on	functions	that
can	be	isolated	from	other	functions.	For	example,	a	web-based	user	interface	can
often	be	separated	from	a	database	back-end	since	users	do	not	need	direct	access



to	the	database	and	the	database	doesn’t	care	about	how	the	users	see	or	make	use
of	that	data.	Breaking	an	application	into	smaller	functional	units	is	the	first	step
in	running	an	application	in	multiple	instances.	The	web	interface	can	run	in	one
instance	and	the	database	can	run	in	another	instance.

Once	the	application	has	been	broken	into	smaller	functional	units	and	each
functional	unit	separated	into	multiple	instances,	the	instances	can	then	be	scaled
out	so	that	each	functional	unit	also	runs	in	multiple	instances.	For	example,	the
web-based	user	interface	can	run	in	several	instances	instead	of	just	a	single
instance.

Running	the	application	across	many	instances	adds	a	considerable	amount	of
complexity	to	the	application.	However,	it	also	provides	two	key	improvements	to
the	application.	The	first	key	improvement	is	that	it	should	make	the	application
more	resilient	to	failures	occurring	in	the	cloud.	A	compute	node	failure	is	not
likely	to	take	out	all	the	instances	of	that	functional	unit.	The	other	key
improvement	is	that	it	is	easier	to	scale	the	application	horizontally.	For	example,
if	user	demand	increases	to	the	point	a	particular	functional	unit	is	becoming
performance-bound	or	running	into	resource	a	limit,	the	number	of	instances	for
that	functional	unit	could	be	increased	to	handle	the	user	demand.	This	not	only
spreads	performance	across	more	instances,	but	if	an	instance	can	only	handle	a
certain	number	of	users,	multiple	instances	can	increase	the	total	number	of	users
that	can	be	handled.

Stateless	applications	are	much	easier	to	run	in	a	multiple	instance	setup.	Data
kept	in	an	instance	is	not	important	enough	to	protect	against	loss	if	there	is	a
failure	in	the	cloud.	Furthermore,	one	instance	doesn’t	depend	on	data	in	another
instance.	If	an	instance	goes	away,	a	user	can	be	routed	through	another	instance
seamlessly	without	having	to	know	what	that	user	was	doing	in	the	other	instance
before	that.

Stateful	applications	are	more	difficult	to	run	in	a	multiple	instance	setup.	Data
needs	to	be	kept	about	what	is	happening	and	what	has	already	occurred	so	that
what	happens	next	can	be	determined.	For	example,	you	can	have	a	multi-request
transaction	that	is	occurring	in	the	application.	If	all	of	the	requests	go	through	a
single	instance,	the	instance	has	all	of	the	data	about	the	transaction	and	can
handle	the	transaction	end-to-end	without	difficulty.	However,	if	one	request	goes
through	one	instance	and	another	request	goes	through	other	instances,	how	does
one	instance	know	about	the	requests	that	went	through	the	other	instances?	A
stateful	application	needs	to	track	all	the	requests	of	a	transaction,	no	matter	how
many	instances	the	requests	went	through.

Multiple	Locations
Just	as	an	application	needs	to	run	in	multiple	instances	in	order	to	scale	and	be
more	resilient	to	failures	in	the	cloud,	the	application	also	needs	to	be	deployed	in
multiple	locations.	As	discussed	previously,	there	are	all	kinds	of	failures	that	can



occur	in	the	cloud,	or	even	outside	the	cloud,	that	can	affect	a	cloud	application.
For	example,	an	outage	in	the	data	center	can	take	out	an	entire	location	or	region.
Even	if	the	application	runs	in	many	instances,	if	all	of	those	instances	ran	in	the
same	location,	the	application	is	still	unavailable.

It	is	important	to	understand	the	OpenStack	environment	that	the	application	is
going	to	be	deployed	to.	If	there	are	multiple	regions	available,	find	out	where	the
regions	are	physically	located.	The	application	should	be	deployed	to
geographically	diverse	locations,	such	as	on	the	east	coast	and	on	the	west	coast.	If
a	power	or	network	outage	takes	out	all	of	the	data	centers	in	a	particular	region,
other	regions	can	pick	up	the	load	and	allow	the	application	to	continue	operating.

It	is	also	important	to	understand	how	regions	may	differ	from	each	other	with
respect	to	speed,	redundancy	and	reliability,	and	location	with	respect	to	the	users
that	may	need	to	use	the	application.	An	OpenStack	region	can	be	installed	in	a
really	nice	data	center	that	offers	high	speed	network,	lots	of	bandwidth,	power
and	network	redundancy.	It	can	also	be	installed	in	a	lower	tier	facility	where
there	may	not	be	as	much	bandwidth	or	redundancy,	which	means	that	failures
could	happen	more	often	and	have	a	greater	effect	on	applications	deployed	there.
However,	those	regions	may	be	closer	to	the	end-user	or	provide	lower	latency
connections	and	ultimately	provide	more	plusses	than	minuses	for	being	in	those
regions.	Knowing	how	regions	differ	may	result	in	an	application	being	deployed
with	fewer	instances	in	one	region	versus	another,	or	maybe	certain	functions	of
an	application	may	be	deployed	to	a	higher	risk	region.

Managing	an	application	that	runs	in	multiple	regions	is	even	more	complex	than
just	managing	an	application	that	runs	in	multiple	instances.	Some	of	the
challenges	can	be	reduced	if	all	the	requests	of	a	transaction	or	all	the	transactions
for	a	user	can	be	kept	to	the	same	region.	Data	access	and	integrity	can	also	be
challenging.	If	a	database	is	going	to	run	in	multiple	regions,	data	needs	to	be
replicated	and	synced.	If	the	application	requires	real-time	data	access,	ensuring
the	data	is	current	in	all	locations	at	all	times	can	be	difficult,	especially	if	the
regions	are	separated	geographically	by	a	large	distance.

Load	Balancing
Load	balancing	provides	a	means	to	direct	traffic	flow	to	those	instances	that
should	receive	it.	In	the	most	basic	form,	incoming	traffic	can	be	split	equally	to	all
of	the	instances,	which	spreads	load	evenly	and	allows	for	better	scaling.	In	more
advanced	forms,	instances	can	be	monitored	so	that	traffic	is	split	based	on
availability,	performance	and	level	of	activity.	In	particular,	if	an	instance	goes
down,	it	can	be	excluded	from	receiving	additional	traffic	until	that	instance	is
restored	back	to	service.

Load	balancers	typically	provide	an	easy	means	to	configure	how	traffic	should
flow	inside	an	application.	A	pool	is	created	to	monitor	a	particular	service	and
servers	can	be	added	and	removed	from	the	pool	on	the	fly.	Load	balancers



monitor	the	services	of	each	server	and	determine	what	traffic	should	go	to	it,	if
any.	A	pool	often	has	an	IP	address	and	port	assigned	to	it.	As	long	as	at	least	one
server	in	the	pool	is	able	to	receive	traffic,	the	pool’s	IP	address	and	port	is	active.

Load	balancers	monitor	the	services	in	a	pool	by	connecting	to	the	service.
Monitoring	can	be	as	simple	as	just	connecting	successfully	to	the	service,	or	it	can
be	as	complex	as	connecting	to	the	service	and	expecting	a	specific	banner	or
string	to	be	returned.	Some	load	balancers	provide	a	means	of	attaching	custom
scripts	to	the	checks	so	that	complex	checks	can	be	performed,	such	as
authenticating	to	the	service	and	performing	some	kind	of	action.	Load	balancers
can	also	monitor	performance	in	a	way,	by	looking	at	how	long	its	checks	are
taking	and	basing	decisions	on	that.	Successful	checks	mark	the	service	as
available	and	unsuccessful	checks	mark	the	service	as	unavailable.

Once	the	load	balancer	has	collected	all	of	the	data	from	the	checks	performed	on
the	service,	it	needs	to	decide	how	to	distribute	the	incoming	traffic.	A	pool	set	up
to	use	a	round	robin	algorithm	will	send	traffic	to	each	service,	one	after	the	other
in	sequential	rotating	fashion.	A	pool	set	up	to	use	a	least	connections	algorithm
will	send	traffic	to	the	service	that	has	the	fewest	active	connections.	A	pool	could
also	be	setup	to	send	traffic	to	the	service	with	the	least	network	latency.	More
complex	algorithms	can	also	be	supported,	combining	simple	algorithms,	or
setting	up	a	priority	of	services	that	should	get	traffic	before	other	services	get
traffic.

There	are	many	types	of	load	balancers	available.	Hardware	load	balancers	usually
provide	the	most	capabilities,	reliability	and	ability	to	handle	large	amounts	of
traffic.	However,	they	are	also	more	expensive	than	any	other	type	of	load
balancer.	Also,	hardware	load	balancers	managed	by	another	team	may	add
additional	complexity	to	its	use.	Nonetheless,	if	hardware	load	balancers	are
available,	it	is	recommended	to	take	advantage	of	them.

Software	load	balancers	are	cheaper	and	can	be	more	flexible	than	hardware	load
balancers.	You	can	build	and	incorporate	software	load	balancers	into	the
application,	tightly	coupling	how	load	balancing	is	done	with	the	needs	of	the
application.	There	are	many	types	of	software	load	balancers.	One	of	the	more
popular	choices	is	HAProxy.	There	are	a	number	of	load	balancers	available	using
Apache	and	Java	as	well.

OpenStack	also	provides	a	Load-Balancing-as-a-Service	(LBaaS),	which	is
implemented	using	Neutron.	It	supports	many	of	the	same	features	that	regular
load	balancers	support,	such	as	service	monitoring,	management	of	the	services	in
the	pool,	managing	connection	limits,	and	providing	session	persistence.	Check
with	the	OpenStack	cloud	administrators	to	see	if	LBaaS	is	available	and	how	it
can	be	used.

One	of	the	things	that	need	to	be	considered	when	setting	up	load	balancing	for	an
application	is	what	kind	of	traffic	will	be	going	through	it.	Not	all	network
protocols	may	be	supported	by	load	balancers.	If	session	tracking	is	used,	either



the	application	needs	to	share	session	information	across	all	of	the	needed	servers,
or	the	load	balancer	needs	to	be	configured	to	send	a	single	session’s	traffic	to	the
same	back-end	server	until	that	session	is	terminated.

Another	thing	to	be	considered	is	that	load	balancing	will	increase	logging	quite	a
bit	on	the	servers	in	the	pool.	Generally,	load	balancers	like	to	check	services	every
few	seconds	to	make	sure	they	are	up.	In	an	enterprise	environment,	there	may	be
two	or	more	load	balancers	configured	identically,	all	of	them	checking	every	few
seconds	on	those	same	services.	Unless	the	application	is	configured	to	not	log
those	connections,	logs	can	grow	quite	a	bit.

Ultimately,	load	balancing	provides	a	valuable	way	to	improve	an	application.	It
provides	a	means	to	monitor	the	services	and	remove	servers	from	a	pool	that	are
no	longer	working.	It	also	provides	a	means	to	add	and	remove	servers	on	the	fly,
which	is	an	important	part	of	application	scalability.

Performance
When	an	application	is	architected	so	that	its	various	pieces	can	scale	to	multiple
instances	and	those	different	types	of	instances	can	scale	independently	of	each
other,	the	complexity	of	the	application	increases	dramatically.	When	problems
occur	within	the	application,	it	becomes	more	difficult	to	identify	where	the
problem	is	actually	occurring.	Sometimes,	problems	manifest	as	broken
functionality	within	the	application.	However,	more	often	than	not,	problems
manifest	as	performance	issues.

What	kind	of	performance	issues	could	an	application	experience?	Performance
issues	can	take	many	forms.	For	example,	a	backup	system	has	to	backup	all	the
data	of	an	application	every	night	and	has	to	be	completed	before	the	next
business	day.	However,	over	time,	backups	are	taking	longer	and	eventually	risk
not	finishing	in	time.	Another	example	maybe	an	application	that	accepts	file
uploads	and	it	has	to	virus	check	the	application	before	confirming	to	the	user	it
was	successful.	It	may	be	that	virus	checking	is	taking	longer	and	longer	and
uploads	are	failing	because	they	are	timing	out	or	the	user	doesn’t	wait	around
long	enough	for	it	to	complete.

Application	performance	is	often	characterized	as	the	amount	of	time	to	perform
specific	actions.	For	example,	a	web	user	clicking	on	a	link	within	a	web	page	will
expect	the	click	to	immediately	respond	with	a	new	page	and	expect	to	see	the	new
page	completely	loaded	within	a	short	period	of	time.	Perceived	slowness	can
sometimes	be	attributed	to	the	accumulation	of	all	the	different	things	that	has	to
happen	behind	the	scenes.	If	a	single-user	click	results	in	twenty	different	actions
occurring,	each	action	may	be	quick,	but	the	total	time	to	process	all	twenty
actions	may	be	too	long.

It	is	incredibly	important	to	monitor	every	aspect	of	an	application.	Data	can	be
collected	on	how	long	database	transactions	take.	Data	can	be	collected	on	how
long	data	is	transferred	over	the	network	or	written	to	disk.	Data	can	be	collected



on	the	number	of	successful	or	failed	events.	Data	can	be	collected	on	number	of
connections	and	logins.	All	of	this	data	should	be	collected	over	time	so	that	it	can
be	analyzed	for	potential	issues	and	understood	in	context	with	other	events,	such
as	holidays,	special	events	or	abnormally	high	usage.

When	performance	issues	are	discovered,	a	number	of	things	can	be	done.	Some
performance	issues	may	be	related	to	higher	activity	and	can	be	solved	by	simply
adding	more	instances	to	the	pool	to	handle	it.	Other	performance	issues	may	be
related	to	a	change	in	the	usage	pattern.	For	example,	users	may	be	searching	on
something	in	a	different	way,	and	the	SQL	query	created	to	do	that	search	is
somehow	searching	inefficiently	in	the	database.	Fine	tuning	the	search	capability
or	creating	a	new	index	in	the	database	or	fine	tuning	database	settings	may	be	the
more	appropriate	way	to	fix	the	performance	issue	than	simply	adding	more
instances	to	the	database	service.

Operating	system	performance	should	also	be	heavily	monitored.	For	Linux
servers,	it	is	a	good	idea	to	run	SAR	and	collect	data	on	CPU,	memory	and	disk
performance.	A	good	metric	to	monitor	is	the	CPU	steal	time,	which	can	be	seen	in
the	SAR	data	as	%steal.	If	this	value	is	consistently	non-zero,	it	usually	means	CPU
cycles	are	being	stolen	from	that	instance	and	given	to	another.	Looking	at	that
metric	in	combination	with	the	%idle	metric	and	looking	at	these	values	across	all
the	instances	collectively	can	provide	clues	as	to	whether	the	hypervisor	is
overloaded	or	that	maybe	the	instance	is	undersized.

OpenStack	provides	some	metrics	data	for	application	developers	to	take
advantage	of.	Ceilometer	collects	information	about	CPU	and	RAM	usage,	disk
activity,	network	bandwidth	and	other	data.	It	is	possible	that	Monasca	is	being
used	as	well,	which	provides	many	of	the	same	metrics	as	Ceilometer.	Be	sure	to
talk	with	the	OpenStack	cloud	administrators	to	see	if	metrics	are	being	collected
in	the	cloud	and	how	they	can	be	used	by	the	application.

Data	Storage
In	OpenStack	there	are	a	number	of	different	ways	that	data	can	be	stored.	By
default,	when	an	instance	is	launched,	it	uses	ephemeral	storage.	Ephemeral
storage	is	usually	storage	associated	with	the	compute	nodes	where	the	instance
runs.	If	the	instance	is	terminated,	all	the	ephemeral	storage	associated	with	that
instance	is	also	deleted.	Ephemeral	storage	is	the	least	protected	data	within
OpenStack.	The	storage	is	likely	not	backed	up	or	replicated.	A	lost	disk	or
compute	node	could	lead	to	data	loss.

Block	storage	is	provided	by	Cinder	in	OpenStack	and	presents	that	storage	as
volumes	that	can	be	attached	to	the	instances.	Volumes	show	up	as	block	devices
inside	the	instances	and	can	be	mounted	as	disks	or	filesystems.	Volumes	can	be
attached,	unattached	and	moved	to	different	instances.	When	an	instance	is
terminated,	the	volumes	are	detached	from	the	instance	and	is	not	deleted.	The
volume	can	then	be	attached	to	a	new	instance	if	need	be.	Block	storage	is



implemented	in	Cinder	through	the	use	of	drivers,	many	of	which	are	vendor
specific.	Very	often,	block	storage	is	set	up	to	be	performant	and	to	replicate	data
to	prevent	issues	resulting	in	data	loss.

Object	storage	is	provided	by	OpenStack	through	the	Swift	API.	Data	is	stored	in	a
completely	different	way	than	with	block	storage.	The	application	creates
containers	and	then	uploads	files	into	those	containers.	Access	to	the	files	requires
them	to	be	downloaded	from	the	container	and	into	the	instance.	Containers	and
their	associated	files	have	no	concept	of	instances.	If	an	instance	that	uses	a
container	is	terminated,	nothing	happens	to	the	containers	or	its	files,	remaining
accessible	by	other	instances	in	the	cloud.	In	fact,	one	of	the	advantages	Swift	has
over	Cinder	is	that	containers	can	be	accessed	by	many	instances,	but	a	block
storage	volume	can	only	be	attached	and	accessed	by	only	one	instance	at	a	time.
Object	storage	is	also	often	set	up	to	be	performant	and	to	replicate	data	to	protect
against	data	loss.

When	building	an	application	that	needs	to	store	data	permanently,	selecting	the
appropriate	data	storage	back-end	is	extremely	important.	How	important	is	the
data?	Is	it	okay	for	the	data	to	be	lost	if	an	instance	dies?	Can	the	data	be	replaced
or	rebuilt	if	a	new	instance	is	created?	How	long	is	the	data	needed?	Does	the	data
need	to	be	always	immediately	available?	How	much	data	needs	to	be	stored?
These	questions	can	play	a	big	role	in	deciding	what	is	used	to	store	data	and	how
it	is	stored.	Be	sure	to	talk	to	the	storage	administrators	to	better	understand	the
available	options.	In	particular,	discuss	with	them	about	their	data	replication
settings,	how	much	storage	they	have	and	what	your	application’s	long	term	needs
are	so	they	can	plan	accordingly.

If	data	is	stored	in	an	environment	that	replicates	data,	the	application	should
take	care	not	to	do	its	own	data	replication.	If	the	storage	cluster	replicates	data
three	times	and	the	application	is	also	replicating	data	three	times,	this	really
means	that	the	data	is	being	stored	a	total	of	nine	times	in	the	cluster!	This	can
affect	application	performance	due	to	unnecessary	replication,	as	well	as	consume
way	more	disk	space	than	is	really	needed.

Applications	can	take	advantage	of	multiple	storage	options	at	the	same	time.
Since	ephemeral	storage	is	often	faster	than	using	block	or	object	storage,	an
instance	can	keep	its	more	often	used	data	on	ephemeral	storage	and	the	less	used
data	on	block	storage.	Data	that	is	rarely	used	could	be	put	into	object	storage	for
long	term	storage.	Be	sure	to	consider	all	options	when	building	an	application
that	requires	storing	data.

High	Availability
To	build	an	application	for	high	availability	in	mind	means	that	the	application
has	to	be	available	as	much	as	possible	and	that	it	needs	to	run	properly	and
performant	at	all	times.	A	highly	available	application	often	runs	everywhere	and
is	able	to	adapt	to	the	changes	in	the	environment	where	it	runs.	Building	an



application	is	hard	enough,	but	building	a	highly	available	application	is	even
harder.

What	are	some	of	the	techniques	involved	in	running	a	highly	available
application?	One	of	the	most	important	techniques	is	to	ensure	the	application
and	all	of	its	pieces	can	run	in	many	instances,	and	that	those	instances	can	also
run	in	multiple	environments.	The	more	places	the	application	runs	in,	the	more
resilient	to	hardware	or	even	data	center	failures.	Multiple	instances	also	allows
the	application	to	scale	appropriately	as	needed.

Another	technique	is	to	put	services	behind	load	balancers	so	that	traffic	can	be
appropriately	distributed.	Furthermore,	if	any	instances	become	unavailable,	the
load	balancers	will	automatically	remove	those	services	from	the	pool	and
redistribute	traffic	to	the	remaining	services.	Using	GSLB	can	also	further	increase
high	availability	by	redirecting	traffic	to	different	data	centers	based	on	were
connections	are	coming	from.	If	a	data	center	goes	offline,	GLSBs	can
automatically	redirect	all	traffic	to	another	data	center	until	the	issue	is	resolved.

It	is	also	wise	to	understand	application	usage	and	how	that	ties	in	with	the	bigger
picture.	External	events	can	cause	significant	increases	in	traffic	usage.	Holidays
can	result	in	increases	for	holiday	shopping,	especially	on	days	like	Black	Friday
and	Cyber	Monday.	Sporting	events,	like	the	Super	Bowl,	can	increase	web	site
activity	for	viewing	on-demand	data.	Universities	can	see	increased	activity
associated	with	the	beginning	of	the	school	year	or	changes	in	quarters	and
semesters.	Major	news	events	could	drive	up	stock	activity.	All	of	these	need	to	be
considered	when	building	an	application	for	high	availability.	Ideally,	if	an	event
can	be	anticipated	ahead	of	time,	the	application	can	be	scaled	upwards
accordingly	ahead	of	that	event	to	deal	with	expected	demand	and	then	scaled
back	down	after	that	event	has	passed.

How	can	the	application	scale	to	meet	demand?	One	way	is	for	somebody	to
actively	monitor	the	services	and	manually	add	instances	as	needed	until	the
application	can	handle	that	need.	This	can	be	an	expensive	way	to	address	the
problem	and	introduces	a	human	element	and	risk	to	the	overall	process.	Another
and	better	way	is	to	monitor	the	applications	for	problems	and	performance	and
auto-scale	the	application	in	a	pragmatic	way.	OpenStack	provides	many	APIs	for
managing	instances	and	services	in	the	cloud.	The	application	can	detect	when	it
needs	to	grow	a	particular	service	and	use	the	API	to	do	that.	When	demand
subsides,	the	application	can	reduce	the	number	of	instances	running	in	an
automatic	way.

Another	important	thing	to	consider	is	building	in	extra	capacity	in	the
application	ahead	of	time.	Instead	of	expecting	each	instance	to	be	100	percent
busy	and	only	deploy	the	number	of	instances	needed	to	handle	all	of	the	load,
build	each	instance	to	be	60	percent	busy	and	run	more	instances.	One	advantage
to	this	strategy	is	that	brief	spikes	in	capacity	can	occur	that	might	not	trigger
auto-scaling.	With	extra	headroom	built	into	the	instances	themselves,	spikes	can



be	handled	without	causing	any	issues	with	performance	in	the	application.	The
key	is	to	over-provision	and	under-utilize.

High	availability	does	present	other	challenges	though.	Taking	a	look	at	a	case
where	a	particular	service	runs	in	multiple	instances	with	one	instance	acting	as	a
master	and	the	other	instances	acting	in	a	passive	role.	Very	often,	the	instances
are	talking	to	each	other	all	the	time,	ensuring	the	master	is	alive	and	well.	What
happens	if	something	breaks	the	communication	between	the	master	and	passive
instances?	The	master	may	not	be	aware	of	this	issue	and	continues	to	operate
normally.	The	passive	instance	sees	the	master	go	away	and	immediately	puts
itself	into	master	mode.	What	if	the	other	passive	instance	does	the	same	exact
thing?	There	could	be	three	master	servers	all	at	the	same	time.	This	is	commonly
known	as	split-brain	syndrome	and	can	be	a	hard	problem	to	avoid	in	certain
failure	scenarios.	This	problem	can	be	even	more	pronounced	between	regions
when	network	communication	is	disrupted.

Now,	we’re	going	to	see	how	we	can	implement	what	we’ve	discussed	in	this
chapter	to	improve	our	sample	application.



IMPROVING	OUR	APPLICATION
Starting	with	the	simple	application	concept	introduced	in	the	previous	chapter,
we	want	to	build	on	that	and	show	how	it	can	be	improved	upon.	Conceptually,
the	process	isn’t	that	difficult.	However,	not	all	of	it	is	easy	either.	For	example,	an
application	that	requires	persistent	sessions	needs	to	work	in	a	multi-instance
environment.	In	any	case,	if	the	application	can	be	broken	into	its	basic
components,	each	component	can	be	improved	upon	independently	and	in	a	way
that	makes	the	most	sense	for	that	component.

Simple	Application
Let’s	take	the	application	that	was	started	in	the	previous	chapter.	The	application
has	three	components	to	it:	a	web-based	front-end	that	users	will	access,	an	API
layer	that	the	front-end	talks	to,	and	a	database	back-end.	The	application	may
look	something	like	Figure	5.1.

Figure	5.1		

Initially,	the	application	may	have	been	kept	simple	in	order	to	provide	a	proof	of
concept	so	the	application	is	viable	in	the	cloud	and	to	seek	approval	for
continuing	its	development.	Each	component	may	exist	as	a	single	instance.	For
the	above	example,	the	application	would	exist	in	three	instances,	one	for	each	of
the	different	components.

Complex	Application
The	above	example	could	be	considered	overly	simplistic.	More	complex
applications	may	use	an	API	layer	to	abstract	access	to	multiple	types	of	back-
ends.	The	API	provides	a	consistent	means	to	access	different	types	of	data,
making	it	easier	to	extend	functionality	or	even	to	allow	back-ends	to	be	swapped
out	without	having	to	recode	any	of	the	front-ends.	The	API	could	also	take	input
from	more	than	just	a	web	front-end.	Users	could	access	the	API	using	command
line	tools	or	a	client	program.	This	application	may	look	like	Figure	5.2.



Figure	5.2		

When	looking	at	the	components	to	build	this	application,	it	turns	out	that	it	really
isn’t	that	complex.	The	API	layer	is	still	just	a	single	instance.	The	web	front-end
and	the	database	are	also	each	their	own	instance.	The	client	program	and
command	line	tools	don’t	need	their	own	instances.	They	are	just	abstract
methods	for	the	user	to	access	the	API	directly.	The	API	can	also	access	file
storage	directly	and	communicate	to	other	applications	in	the	environment.	The
end	result	is	that	this	application	is	still	only	three	instances,	even	with	more
“stuff”	going	on	with	it.

Improving	the	Web	UI	Component
In	order	to	improve	on	the	web	front-end,	the	application	needs	to	be	scaled	out	to
multiple	instances.	The	number	of	users	expected	to	use	the	application	can	be
used	as	a	guideline	to	determine	the	number	of	instances	that	likely	will	be	needed
to	run	the	web	front-end.	Also,	users	need	a	consistent	means	of	accessing	the	web
service	without	having	to	worry	about	which	instance	they	are	connecting	to.	This
is	accomplished	by	putting	the	web	instances	behind	a	load	balancer	(see	Figure
5.3).



Figure	5.3		

One	challenge	that	may	need	to	be	addressed	when	putting	a	web	service	behind	a
load	balancer	is	when	the	web	service	does	session	management	in	order	to	track
user	activity	during	the	lifetime	of	the	session.	A	session	starts	with	the	user
logging	into	the	web	service	and	gets	assigned	a	Session	ID.	The	user’s	Session	ID
may	be	tracked	by	embedding	it	in	the	URLs	or	a	hidden	form,	or	maybe	even
through	the	use	of	web	browser	cookies.	The	web	service	maintains	information
about	the	session	while	the	user	is	logged	in.	The	session	ends	when	the	user	logs
out	or	there	is	no	activity	from	the	user	after	some	time.

The	difficulty	with	session	management	is	often	in	its	implementation.	What
happens	if	a	user	logs	in	using	one	instance,	but	the	next	click	on	a	web	page	sends
the	user	to	a	different	instance.	How	is	session	information	shared	between
instances?	If	session	information	is	stored	locally	within	an	instance,	other
instances	may	not	even	have	that	user’s	information.

Most	load	balancers	have	a	way	of	dealing	with	this	issue,	implementing	a	feature
called	session	affinity,	persistent	sessions,	or	sticky	sessions.	One	method	used	in
the	feature	assigns	the	source	IP	of	the	user	to	a	specific	instance	and	all	traffic
coming	from	that	source	IP	will	always	go	to	that	instance.	Another	method	uses	a
tracking	cookie	the	load	balancer	creates	and	assigns	all	traffic	containing	that
cookie	to	a	specific	instance.	One	drawback	by	using	session	persistence	in	a	load
balancer	is	that	pinning	traffic	to	specific	instances	significantly	reduces	the	load
balancer’s	ability	to	balance	traffic	in	meaningful	ways.	Over	time,	some	instances
may	be	significantly	busier	than	other	instances	simply	because	of	how	users	are
using	the	application.	If	an	instance	becomes	overloaded,	adding	more	instances
to	the	Web	UI	layer	may	not	help	because	those	users	are	permanently	pinned	to
the	overloaded	instance.

The	best	way	to	deal	with	session	management	using	multiple	instances	is	to
abstract	session	management	to	a	shared	database	that	all	instances	can	access.	If
session	information	is	not	kept	locally	within	an	instance,	it	no	longer	matters
which	instance	the	user	hits	or	even	if	the	users	hits	multiple	instances	in	the
same	session.	This	also	avoids	the	problem	that	load	balancers	have	with
persistent	sessions,	since	user	traffic	is	not	pinned	to	specific	instances.	The
drawback,	however,	is	that	the	database	used	to	store	session	information	needs
to	also	be	implemented	in	a	highly	available	manner.	This	prevents	a	single
database	instance	from	breaking	the	web	interface	completely.



Improving	the	API	Component
In	order	to	improve	on	the	API	layer,	it	also	needs	to	be	scaled	out	to	multiple
instances.	The	number	of	instances	can	be	chosen	based	on	how	performant	the
API	instance	is	in	dealing	with	incoming	connections,	communicating	with	its
various	back-ends,	and	passing	that	data	back	to	the	requesting	sources.	Since	the
API	layer	is	often	implemented	using	similar	technologies	employed	by	the	web
front-end,	the	method	for	running	the	API	using	multiple	instances	is	similar	to
that	used	by	the	web	front-end.	This	is	accomplished	by	putting	the	API	layer
behind	a	load	balancer	(see	Figure	5.4).

Figure	5.4		

One	advantage	that	the	API	layer	often	has	over	the	web	front-end	is	that	it
doesn’t	have	to	keep	track	of	user	sessions.	This	makes	it	easier	to	run	multiple
instances	behind	the	load	balancer,	since	it	doesn’t	matter	which	API	instance	is
being	hit	at	any	particular	time.

However,	APIs	may	implement	their	own	form	of	session	management	through
the	use	of	an	authentication	token.	The	user	receives	the	authentication	token
when	they	authenticate	successfully	with	the	API.	The	user	can	then	use	that	token
in	each	follow-up	call	to	the	API	without	having	to	authenticate	each	request.	After
a	period	of	time,	the	token	may	expire	and	force	the	user	to	re-authenticate,	which
either	renews	the	token	or	gives	the	user	a	new	token.

The	API	layer	often	manages	authentication	tokens	using	a	back-end	database.
This	means	that	if	a	database	is	being	used,	the	database	needs	to	be	highly
available	in	order	to	prevent	a	single	database	instance	from	disrupting	API
functionality.	If	the	API	is	only	making	use	of	the	database	for	token	management,
the	API	could	continue	to	function	without	tokens,	forcing	users	to	authenticate
each	API	request.

Improving	the	Database	Component
For	the	database	layer,	scaling	the	database	out	to	more	instances	is	not	as	simples
as	just	running	multiple	copies	of	the	database	instance.	For	the	web	and	API
layers,	the	instances	really	do	not	need	to	know	anything	about	the	other	instances
in	that	layer.	There	could	be	a	single,	several	or	many	web	and	API	instances	and
the	application	would	run	the	same	way.



So,	how	can	the	database	layer	be	improved?	The	database	layer	is	scaled	out,	but
it	is	scaled	on	a	much	smaller	level.	Where	the	web	and	API	layers	may	have
hundreds	of	instances,	the	database	layer	may	only	have	a	few	instances.	The
database	instances	often	replicate	data	so	that	each	instance	is	identical	to	the
other.	It	is	how	the	data	is	replicated	that	makes	the	database	layer	more	complex.
There	are	a	couple	different	ways	that	the	database	layer	can	be	put	together	to
provide	redundancy	and	increased	performance.

One	of	the	more	popular	methods	for	scaling	the	database	layer	is	to	run	a	Galera
Cluster	for	MySQL.	A	Galera	Cluster	allows	multiple	MySQL	instances	to
communicate	to	each	other	and	replicate	data.	It	runs	in	multimaster	mode,	which
means	that	read/write	communication	can	occur	with	any	instance	in	the	cluster.
When	a	transaction	is	committed,	the	data	is	replicated	to	all	instances	and
returns	successfully	only	when	that	data	was	written	to	all	of	the	databases
successfully	(see	Figure	5.5).

Figure	5.5		

Another	method	for	scaling	the	database	layer	is	to	run	a	MySQL	Cluster.
Generally,	MySQL	Clusters	are	setup	in	two	different	sets	of	nodes,	the	SQL	nodes
and	the	data	nodes.	The	API	layer	talks	to	the	SQL	nodes,	which	determines	where
the	data	is	stored	and	then	makes	the	necessary	queries	to	the	appropriate	data
nodes.	The	data	can	be	split	into	smaller	chunks,	called	partitions,	and	stored	on	a
subset	of	the	data	nodes.	Replication	occurs	within	pairs	of	data	nodes	within	the
cluster.	The	more	data	nodes	there	are,	the	more	partitions	there	are,	spreading
the	data	across	the	entire	cluster	(see	Figure	5.6).



Figure	5.6		

One	advantage	of	running	a	MySQL	Cluster	is	that	it	can	scale	to	more	instances.
The	more	instances	that	are	added,	the	more	the	data	can	be	spread	across	that
cluster.	However,	MySQL	Cluster	is	more	sensitive	to	latencies	and	requires	more
CPU	and	network	resources	to	run	efficiently.	The	application	may	also	need	to	be
reworked	to	take	advantage	of	the	partitioning	of	data,	otherwise,	a	single	query
could	hit	every	data	node	and	result	in	a	potentially	worse	performance.

For	Galera	MySQL	Cluster,	it	requires	very	little	change	from	the	application	point
of	view.	There	is	no	data	partitioning,	so	every	instance	has	a	complete	copy	of	the
data.	This	can	also	be	a	drawback,	however,	since	the	more	instances	there	are	in
the	cluster,	the	more	data	that	has	to	be	replicated	to	every	other	instance.	This	is
generally	why	Galera	Clusters	are	small,	usually	at	least	three	instances,	but	not
much	larger.	Another	consideration	when	running	a	Galera	Cluster	is	that	there
always	has	to	be	at	least	50	percent	of	the	instances	running	in	the	cluster	at	any
point	in	time.	If	the	cluster	drops	below	50	percent,	the	entire	cluster	stops	and
the	database	goes	offline.	It	can	sometimes	be	difficult	to	bring	the	cluster	back
online	without	making	changes	to	the	cluster	configuration	files.	This	is	why	a
cluster	needs	to	have	at	least	three	instances	in	it.	If	one	instance	is	lost,	there	is



still	majority	in	the	cluster	to	keep	it	operational.

Yet	another	method	combines	the	concept	of	a	cluster	above	with	multiple	read-
only	databases	on	the	back-end.	This	is	typically	called	a	write-master/read-slave
setup.	If	the	application	needs	to	write	data,	the	writes	always	go	to	the	write-
master	database.	If	the	application	needs	to	read	data,	then	the	reads	are	farmed
out	to	any	number	of	available	read-slaves.	The	write-master	could	be	set	up	as	a
Galera	Cluster	or	MySQL	Cluster,	which	the	read-slaves	could	be	setup	as
standalone	MySQL	servers	in	a	non-clustered	setup.	It	is	not	uncommon	to	see	the
read-slaves	use	caching	software,	such	as	with	Memcached,	to	further	speed	up
reads.	A	load	balancer	could	be	used	to	evenly	distribute	reads	across	all	the	read-
slaves.	When	a	read-slave	is	initially	launched,	it	can	pull	down	whatever	data
from	the	write-master	it	needs	to	have	and	once	all	the	data	is	loaded	and	verified,
it	can	add	itself	to	the	read-slave	collective	and	take	on	traffic.	This	model	is	more
complicated,	but	it	does	provide	more	flexibility	in	regards	to	scaling	(see	Figure
5.7).

Figure	5.7		

The	above	examples	use	MySQL	as	the	example	database.	Other	databases	can
also	be	put	into	the	OpenStack	cloud	as	well,	and	with	similar	types	of



configurations.	For	example,	MongoDB	and	PostgreSQL	support	native	clustering
and	replication.	Some	databases	even	have	native	support	for	the	master-
write/read-slave	model.	In	general,	you	should	research	what	types	of	capabilities
the	chosen	database	solution	has	and	take	advantage	of	whatever	high	availability
options	it	provides.

Finally,	it	would	be	remiss	to	point	out	another	potential	database	layer
improvement,	which	is	to	take	advantage	of	Database-as-a-Service	(DBaaS).	In
OpenStack,	this	is	Trove,	which	was	discussed	previously	in	Chapter	2.	If	there	is	a
DBaaS	solution	available	for	the	OpenStack	cloud,	take	a	look	at	what	features	it
provides	and	how	it	can	be	leveraged	in	the	application.	Offloading	the	database
piece	to	another	service	simplifies	the	application	tremendously	and	provides	the
additional	high	availability	and	data	protection	needed	without	having	to	reinvent
the	wheel.

Putting	It	All	Together
Now	that	each	of	the	layers	has	been	examined,	it	is	time	to	put	them	all	together.
Users	come	into	the	application	via	a	single	location,	the	load	balancer,	which	is
then	routed	to	one	of	several	Web	UI	instances.	The	Web	UI	layer	talks	to	the	API
instances	through	a	load	balancer	as	well,	each	API	request	distributed	amongst
all	the	API	instances.	The	API	layer	talks	to	the	database	through	a	load	balancer
to	a	back-end	cluster	(see	Figure	5.8).	The	cluster	is	set	up	as	multimaster,
allowing	any	database	instance	to	be	hit	by	the	API	instances.



Figure	5.8		

Multi-Region	Instances
Many	of	the	improvements	listed	above	are	typically	applied	at	a	region	level,
where	all	the	instances	are	in	the	same	region.	It	is	possible	that	parts	of	the
application	exist	in	multiple	regions.	For	example,	the	Web	UI	and	API	layers	may
exist	in	one	region,	but	the	database	layer	is	in	another	region.	However,	ideally,
all	of	the	layers	need	to	run	in	multiple	regions.

The	main	trick	to	running	any	layer	in	multiple	regions	is	load	balancing.	Each
layer	in	each	region	still	has	its	own	load	balancer,	but	then	there	is	a	global	load
balancer	that	routes	traffic	to	each	of	the	regional	load	balancers.	If	a	GSLB	is	able
to	be	used,	it	is	a	perfect	use	case	for	spreading	an	application	across	multiple
regions,	since	traffic	can	be	redirected	to	the	nearest	geographically	located	region
to	the	user.	Figure	5.9	shows	an	example	of	how	the	Web	UI	or	API	layer	can	be
organized	to	work	in	a	multi-region	OpenStack	cloud.



Figure	5.9		

For	the	database	layer,	it	similarly	uses	the	GSLB	to	redirect	traffic	to	the	nearest
geographically	located	database.	Instead	of	abstracting	each	of	the	regions	to	their
own	set	of	load	balancers	and	database	clusters,	however,	it	can	be	simplified	by
treating	the	GSLB	as	the	main	load	balancer	and	all	the	regional	databases	as
database	instances	within	the	same	cluster.	Another	simplification	that	comes
from	this	setup	is	that	only	two	database	instances	are	needed	for	each	region,
since	even	if	a	single	instance	goes	down,	there	are	plenty	of	instances	across	all
the	regions	to	ensure	more	than	50	percent	of	the	cluster	is	up.	Figure	5.10	shows
an	example	of	a	multi-region	database	setup.



Figure	5.10		



SUMMARY
We	have	now	pulled	together	our	example	app	created	for	the	OpenStack	cloud.	It
is	a	good	idea,	however,	to	assume	that	the	cloud	is	a	hostile	environment,
presenting	risk	to	the	application’s	uptime	and	the	integrity	of	its	data.	Knowing
what	kinds	of	things	can	happen	to	the	application	and	what	kinds	of	failures	that
can	occur	in	the	cloud	opens	the	door	to	improving	the	application	to	be	able	to
survive	when	things	do	happen.

One	of	the	basic	improvements	that	applications	undergo	in	the	cloud	is	to	enable
the	application	to	scale	when	it	needs	to.	The	application	needs	to	scale
horizontally	within	a	region	and	it	needs	to	scale	out	to	multiple	regions.	This
gives	more	resilience	to	the	application	so	that	pieces	of	it	shutting	down	don’t
take	out	the	whole	application.	Using	load	balancers	as	part	of	the	scaling	also
gives	the	application	a	type	of	self-healing	capability,	allowing	pieces	of	the
application	that	are	no	longer	accessible	or	functioning	properly	to	be	removed
from	the	pools	so	that	users	don’t	inadvertently	try	to	use	them.

When	looking	at	the	individual	components	of	an	application,	some	pieces	of	the
application	need	to	be	improved	in	different	ways	than	other	pieces.	For	example,
web	components	can	be	scaled	out	without	much	effort.	However,	database
components	typically	can’t	be	scaled	out	as	much,	since	scaling	can	make	it	more
difficult	to	manage	the	data	behind	it	and	affect	performance.	Databases	can	be
scaled	out,	but	they	are	scaled	out	differently	than	how	the	web	component	is
scaled	out.	Databases	are	best	managed	as	a	cluster	of	instances	and	this	chapter
presented	several	ways	that	databases	can	be	run	in	the	cloud.

The	suggestions	presented	in	this	chapter	are	just	the	tip	of	the	iceberg.	There	are
a	number	of	different	ways	an	application	can	be	improved,	and	developers	are
encouraged	to	reach	out	to	the	OpenStack	community	and	research	techniques
that	other	developers	are	using	when	building	applications	for	the	cloud.	The	next,
and	final,	chapter	takes	the	cloud	application	to	the	next	level,	since	simply
building	an	application	for	the	cloud	is	not	enough	to	just	run	it	there.	Deploying
the	application	to	the	cloud	in	an	automated,	dynamic	way	also	brings	challenges
to	the	developer.





6	
Deploying	the	Application
WHAT’S	IN	THIS	CHAPTER?																			

An	overview	of	the	different	virtualization	technologies	and	how	deployment
varies	between	them

A	look	at	the	orchestration	tools	available	in	OpenStack

A	discussion	on	the	role	of	configuration	management

The	minimum	role	of	monitoring	in	a	cloud	deployment

A	dive	into	application	scaling	and	elasticity

An	example	of	how	to	put	all	of	this	together	and	deploy	a	modern	app	in	an
OpenStack-driven	system

Considerations	for	updating	and	patching

Devops	is	a	term	you	have	probably	heard	of	recently.	It’s	a	description	of
someone	(or	a	team	of	people)	who	tackles	the	issues	of	both	developing	an
application	and	configuring/maintaining	the	environment	for	that	application.

For	years,	the	role	of	a	server	administrator	has	been	quite	different	from	that	of
an	application	programmer.	Each	role	takes	a	pretty	specific	skillset,	and	a	lot	can
be	said	about	devops	being	a	difficult	compromise.	The	term	however,	could	not
be	better	suited	to	what	it’s	like	to	deploy	applications	in	an	OpenStack-driven
environment.

When	we	talk	about	deploying	an	application	to	the	cloud,	it	has	a	slightly
different	definition	than	what	it	has	traditionally	meant.	Traditional	deployments
are	often	focused	on	deploying	changes	to	an	application,	or	on	the	initial
deployment	of	a	piece	of	software.	OpenStack	and	other	cloud-based	technologies,
however,	make	it	possible	to	programmatically	deploy	software	along	with	all	of
the	servers,	storage,	and	networking	necessary	to	run	that	application.

As	you	will	see,	this	has	a	number	of	advantages	and	can	be	accomplished	in	a
number	of	different	ways.	This	chapter	will	take	a	look	at	these	technologies,	how
to	choose	between	them,	and	how	to	use	them	to	quickly	deploy	an	elastic
application—something	nearly	impossible	to	do	in	a	hardware-based	world.	We
will	then	conclude	with	a	short	discussion	about	how	this	new	definition	of
deployment	affects	the	traditional	process	of	patching	and	updating	software.



BARE	METAL,	VIRTUAL	MACHINES,	AND
CONTAINERS
Before	you	can	determine	how	you’re	going	to	deploy,	you	first	have	to	determine
what	you’re	going	to	deploy.	Looking	at	the	demo	application	developed	in
Chapters	4	and	5,	the	first	thing	that	needs	to	be	deployed	is	a	number	of	servers.
What	wasn’t	discussed	much	in	those	chapters,	though,	was	what	type	of
virtualization	those	servers	would	use.

In	the	same	way	OpenStack	allows	those	who	implement	it	to	choose	their	own
hypervisor,	storage	devices,	and	networking	equipment,	it	also	allows	developers
to	determine	for	themselves	what	type	of	virtualization	they	want	to	use	for	any
given	project/application.	Instances,	or	servers,	can	be	launched	as	a	completely
physical	computer,	as	a	virtual	machine	(VM)	running	in	a	hypervisor,	or	as	a
container—an	isolated	processing	space	that	can	exist	on	top	of	a	virtual	machine
or	on	top	of	actual	hardware.

The	choice	you	make	between	these	three	technologies	will	be	the	biggest
determinant	of	how	you	deploy	your	application.	You	will	find	staunch	defenders
of	each,	but	the	choice	is	often	a	subtle	exercise	in	compromise	and	personal
preference.	Thus,	it’s	important	to	understand	their	differences	before	moving
forward.

Bare	Metal
Bare	metal	provisioning	is	exactly	what	it	sounds	like:	the	creation	of	a	server	on
physical	hardware.	As	of	the	Juno	release	of	OpenStack,	bare	metal	provisioning
has	been	moved	from	the	Nova	driver	to	its	own	service	called	Ironic.	Hardware	is
registered	through	the	Ironic	API,	but	once	properly	configured,	servers	are	still
deployed	in	the	same	manner	as	virtual	machines	though	the	Nova	API	or	Horizon
(see	Figure	6.1).



Figure	6.1		

Bare	metal	servers	are	primarily	used	when	you	need	the	absolute	highest
performance	and	stability	possible.	While	the	overhead	of	virtual	machines	and
containers	has	dropped	over	the	years,	there	is	no	such	thing	as	software	that
doesn’t	consume	memory	and	processor	time.	Disk	IO,	and	CPU	priority	are	all
guaranteed	in	a	bare	metal	scenario.	Bare	metal	servers	are	also	a	good	option	if
GPUs	or	other	hardware	devices	that	can’t	be	easily	virtualized	are	part	of	your
application.

Additionally,	even	if	performance	isn’t	of	the	highest	concern,	there	are	times	for
regulatory	purposes,	when	you	might	find	it	necessary	to	deploy	bare	metal
servers	anyway.	Hardware	isolation	provides	the	absolute	maximum	amount	of
server	security	in	any	OpenStack-driven	environment.

That	being	said,	if	performance	and	isolation	are	the	upside,	then	efficiency	and
flexibility	are	its	main	downsides.	Bare	metal	servers	cannot	be	subdivided	beyond
their	hardwired	components.	This	either	tends	to	leave	a	lot	of	underutilized
hardware	out	there,	or	results	in	developers	piggybacking	multiple	applications
onto	each	physical	server.



To	upgrade	an	application	running	on	bare	metal	to	bigger	hardware	often	means
taking	it	down	while	physical	changes	are	made,	or	having	a	large	variety	of
hardware	on	hand.	This	comes	with	its	own	set	of	headaches,	and	removes	many
of	the	benefits	provided	by	a	system	like	OpenStack.	The	ability	to	start	small,
grow	instantly,	and	offer	numerous	isolated	environments,	are	all	great	reasons	to
look	at	other	virtualization	options.

Virtual	Machines
From	the	perspective	of	deploying	a	server	in	OpenStack,	virtual	machines	are	still
the	industry	standard	at	the	moment.	Multiple	virtual	machines	run	on	top	of	a
single	hypervisor	that	itself	runs	on	top	of	a	single	operating	system	residing	on	a
single	piece	of	physical	hardware	(see	Figure	6.2).

Figure	6.2		

The	biggest	advantages	to	virtual	machines	were	already	touched	on	earlier	in	this
chapter.	Virtual	machines	allow	you	to	split	one	large	physical	server	into	many
smaller	isolated	servers.	These	can	each	have	a	unique	configuration	and	running
application.	This	avoids	piggybacking	and	helps	prevent	one	application	from



taking	down	another	that	runs	on	the	same	server.

Upgrading	or	downgrading	a	virtual	server	is	also	a	simple	matter	of	asking
OpenStack	for	a	different	flavor.	This	is	not	only	handy	for	testing	and	tuning
application	performance,	but	can	drastically	reduce	the	amount	of	hardware
required	for	any	given	environment.	After	all,	there	is	no	need	to	plan	for	the
worst	when	you	can	instantly	deploy	a	new	server	with	more	resources.

Of	course	there	are	trade-offs	when	it	comes	to	this	kind	of	virtualization.	While
OpenStack	can	be	configured	to	allow	for	over-subscription	of	resources,	generally
speaking,	once	either	all	of	the	memory,	CPU,	or	drive-space	has	been	allotted
from	a	given	piece	of	hardware,	the	remaining	assets	cannot	be	assigned	to
another	instance	and	essentially	go	to	waste.	It	is	also	possible	for	the	scheduler	to
fail	to	find	a	single	piece	of	hardware	that	meets	all	of	the	requested	criteria.	For
example,	even	if	a	cluster	has	hundreds	of	free	gigabytes	(GBs)	of	RAM	total,	if	no
single	box	has	more	than	15GB	free	and	a	16GB	server	is	requested,	then	the
creation	will	fail.	This	is	a	good	reason	to	always	deploy	the	smallest	computing
unit	possible.

Some	efficiency	is	also	lost	due	to	the	hypervisor.	While	there	have	been	great
improvements	in	this	technology	over	the	years,	routing	calls	to	and	from	the	host
OS	and	devices	isn’t	free.	The	overhead	here	is	difficult	to	calculate	and	can	vary
based	on	the	OS,	device,	and	the	software	involved,	but	can	easily	reach	as	high	as
15	percent.	For	smaller	environments,	this	doesn’t	amount	to	much,	but	for	larger
installations,	this	can	become	a	deal	breaker.	Enter	containers.

Containers
Containers	are	the	new	belle	of	the	ball.	While	they	are	based	on	old	technology
(various	forms	of	containers	have	been	around	for	years),	the	introduction	a	few
years	ago	of	the	Docker	toolset	to	easily	create	new	containers,	spurred	the	big
players	(Google,	Amazon,	and	Microsoft)	to	begin	adopting	the	technology.

There	are	several	types	of	container	including	LXC,	BSD	Jails,	and	OpenVZ.	LXC
has	gained	the	most	traction	and	can	be	packaged	in	several	formats—Docker	and
Rocket	being	the	most	common.	There	are	some	growing	differences	between
these	container	types,	formats	and	packaging	technologies,	but	generally	speaking
they	all	do	the	same	thing.	They	each	offer	software	that	creates	virtual
environments	mimicking	a	full	virtual	machine.	The	trick	is	that	each	container	is
missing	the	main	OS	kernel.	Calls	to	the	kernel	are	instead	sent	from	each
container	to	a	single	daemon,	which	runs	on	a	single	instance	of	the	host	OS	on
each	physical	server.	This	means	the	overhead	of	having	multiple	kernels	in	a	VM
scenario	is	gone	(See	Figure	6.3).



Figure	6.3		

There	is	no	denying	that	containers	have	many	advantages	over	virtual	machines
or	bare	metal	deployments.	Containers	allow	for	the	code	of	an	application	to	be
deployed	simultaneously	with	its	server	configuration	as	the	container	image	can
contain	both.	They	deploy	much	faster	than	a	full	OS	image,	as	they	are	only	a
fraction	of	the	size	(as	small	as	a	few	MBs),	and	they	can	provide	an	exact	copy	of
an	application	(and	its	configuration)	for	development	or	testing	(this	can	be	a
positive	or	a	negative	in	truth).

Depending	on	whom	you	ask,	and	the	specifics	of	your	application,	containers	can
also	be	much	faster	than	their	hypervisor-driven	counterparts.	The	native	host	OS
kernel	and	scheduler	decide	which	processes	get	CPU	time	instead	of	having	to	go
through	one	scheduler	per	VM	and	then	another	scheduler	where	the	host	OS
determines	which	VM	process	gets	CPU	time.	Greater	density	can	also	be	achieved
through	the	use	of	containers.	Smaller	images	and	fewer	kernels	in	memory	mean
smaller	computing	units	and	great	cost	savings	at	scale.

Generally	speaking,	the	renewed	excitement	surrounding	containers	is	well
deserved,	but	it’s	important	to	acknowledge	that	they	are	not	a	silver	bullet	for
OpenStack	Deployments.

Containers	on	a	machine	(or	pod)	must	share	the	exact	same	kernel/operating
system.	This	has	repercussions	if	an	application	needs	to	modify	the	kernel,	or	if
there	is	a	desire	to	host	various	operating	systems	(or	versions)	on	a	single	piece	of
hardware.

There	are	also	some	security	concerns	when	deploying	containers	if	any	of	them
are	to	be	given	to	an	untrusted	source.	Exploits	where	a	user	escapes	their
container	and	breaks	into	another	have	been	recently	demonstrated	and	reinforce
the	fact	that	containers	are	not	a	one-size-fits-all	solution,	at	least	not	yet.

The	biggest	hurdle	with	containers,	however,	is	that	they	aren’t	yet	available	as



first	order	objects	within	OpenStack.	For	now,	containers	have	to	be	deployed	and
configured	on	top	of	virtual	machines	that	are	themselves	managed	by	OpenStack.
The	diagram	for	this	looks	a	little	different	(See	Figure	6.4).

Figure	6.4		

This	can	provide	the	same	level	of	isolation/security	as	VMs	if	each	customer	is
given	their	own	VM	to	run	their	containers	on,	but	OpenStack	is	essentially
unaware	of	containers	in	this	scenario.	Resizing	and	provisioning	containers	has
to	be	done	outside	of	Nova.	Additional	configuration	outside	of	Neutron	is	needed
to	create	private	networks	and	handle	inbound	access.	Containers	can’t	be
managed	or	visualized	within	Horizon,	and	the	performance	penalty	of	a
hypervisor	in	addition	to	the	container	daemon	actually	makes	them	less
performant	than	virtual	machines	alone.

There	are	some	impressive	third-party	options	like	Cloudshift	and	Cloudify	that
can	provide	container	management	in	this	configuration.	However,	this	still
happens	outside	of	OpenStack,	and	it	remains	to	be	seen	what	place	these	tools
will	have	once	containers	on	bare	metal	becomes	available.



Containers	on	Bare	Metal
When	people	speak	about	containers	on	bare	metal	in	an	OpenStack-driven
environment,	they	are	generally	not	just	referring	to	the	concept	of	running
containers	directly	on	the	host	OS.

This	could	theoretically	be	achieved	by	provisioning	a	bare	metal	server,	loading
on	a	standard	Linux	distribution	(or	a	more	dedicated	one	for	containers	such	as
CoreOS	or	RancherOS),	and	running	Docker	or	another	container	system	on	top
of	that.	This	idea	has	some	advantages	over	bare	metal	alone,	like	being	able	to
subdivide	hardware.	Unfortunately,	it	still	lacks	the	orchestration	and
management	capabilities	provided	by	OpenStack.

More	often,	when	someone	speaks	about	containers	on	bare	metal,	they	are
referring	to	several	new	projects	that	attempt	to	provide	both	the	efficiency	of
eliminating	the	hypervisor	as	well	as	enabling	OpenStack	to	manage	these
containers	as	first	order	objects.

One	of	these	projects,	Magnum,	was	discussed	earlier	in	Chapter	3.	It	has	been
available	since	Kilo-2	and	makes	orchestration	engines	like	Google’s	Kubernetes
and	Docker’s	Swarm	available	for	container	management.	The	paradigm	is	slightly
different	and	involves	things	like	“pods”	and	“bays,”	but	generally	speaking,	it
provides	virtual	machine–style	management	for	containers	that	run	directly	on
host	operating	systems.

In	theory,	containers	on	bare	metal	provide	the	best	of	all	worlds.	You	get	the
efficiency/density	of	containers,	the	native	management	of	VMs,	and	(according
to	some	early	benchmarks)	nearly	bare	metal	performance.

Unfortunately,	as	with	a	lot	of	revolutionary	technology,	Magnum	isn’t	always
available,	and	supported	orchestration	engines	like	swarm,	Mesos,	and
Kubernetes	could	still	use	some	time	to	mature	and	stabilize.	There	are	also	some
third-party	options	outside	of	Mangum/OpenStack	like	Cloudify	that	provide
interesting	solutions	and	support,	but,	you	will	likely	find	yourself	choosing
between	bare	metal,	virtual	machines,	and	classically	managed	containers	for
quite	some	time.

Choosing	the	Right	Technology	for	the	Problem
From	a	deployment	perspective,	virtual	machines	are	usually	the	easiest	way	to	go.
Unlike	bare	metal,	they	are	efficient,	and	can	be	scaled	up	with	a	command.
Unlike	traditional	containers	they	can	be	managed	natively	through	OpenStack’s
Horizon	and	the	various	APIs.	Unlike	bare	metal	containers,	the	technology	is
mature,	and	Nova/Compute	(as	opposed	to	Magnum)	is	definitely	available.

In	our	demo	application,	there	are	no	specific	requirements	for	custom	hardware
or	GPU	utilization	in	either	the	web	or	rest	tiers.	Neither	of	these	seem	to	require
hardware	level	performance,	nor	do	they	need	hardware	level	isolation,	so	bare
metal	isn’t	really	necessary.	If	local	drives	are	used,	its	sometimes	popular	to	use



bare	metal	in	MySQL	servers	(for	performance	reasons),	but	generally	speaking
this	isn’t	an	issue	as	long	as	they	are	provisioned	with	enough	memory	to	keep
them	from	accessing	the	disk	too	frequently.	We	also	won’t	be	deploying	enough
servers	in	any	of	these	tiers	that	the	smaller	overhead	of	Containers	will	really
come	into	play.	This	leaves	us	little	reason	to	choose	anything	other	than	to	deploy
standard	virtual	machines	in	all	cases	here.

If	this	were	a	real	production	project,	you	would	want	to	consider	a	few	other
things	before	making	the	decision:	What	kind	of	expertise	is	available	on	your
team?	What	options	are	available	in	your	OpenStack	environment?	Are	you	going
to	distribute	this	application	internally	or	elsewhere?	The	answer	to	these
questions	should	impact	your	decision.	Most	of	the	time,	a	single	choice	will	make
things	easier,	but	a	mixed	environment	is	also	a	reasonable	response.	Certain
systems	(Hadoop,	MySql,	etc.)	may	benefit	from	the	maximized	performance	and
stability	of	bare	metal	provisioning,	while	you	may	want	to	deploy	preconfigured
containers	or	empty	virtual	machines	for	other	components.

Whatever	you	choose,	consider	how	this	will	affect	your	deployment.	For	example,
some	tools	like	Heat	are	only	available	to	first	order	objects	like	virtual	machines
and	not	containers	(for	now).	Alternatively	choosing	bare	metal	may	require	you
to	piggyback	some	of	your	application	on	to	a	single	server.	Regardless,	the
remaining	subjects	in	this	chapter:	orchestration,	configuration,	and	scaling	are
built	on	the	foundation	of	this	initial	choice,	so	choose	wisely.



ORCHESTRATION	AND	CONFIGURATION
MANAGEMENT
Now	that	a	virtualization	technology	has	been	chosen	for	each	of	our	server	types,
they	actually	need	to	be	provisioned	and	configured.	The	network	for	the
application	also	needs	to	be	setup	and	appropriate	security	groups	and	restrictions
put	in	place.	This	was	all	done	manually	in	the	examples	in	Chapters	4	and	5,	but
in	practice	it’s	important	to	look	at	deploying	a	cloud	application	as	more	than	just
using	OpenStack	as	a	self-service	portal	for	server	provisioning	(IAAS)	and/or	a
series	of	available	services	(PAAS).	Embracing	the	ability	to	script	the
construction	of	your	environment	has	huge	advantages.	Meanwhile,	treating	your
application	as	if	it	lives	within	a	classic	environment	(deploying	and	configuring	it
the	same	way)	can	result	in	absolute	disaster.

In	a	classically	provisioned	environment,	you	might	be	given	access	to	a	powerful
server,	spend	several	hours/days/weeks	manually	configuring	it,	and	then	deploy
your	application	to	that	server.	This	works	moderately	well.	Modern	servers	are
built	with	hard	drive	arrays,	multiple	power	supplies,	and	have	fault	tolerant	ram.
In	the	event	of	a	failure,	the	hope	is	that	the	redundant	components	can	take	over
and	downtime	can	be	avoided.

As	was	discussed	earlier	in	Chapter	5,	resilience	in	a	cloud-based	application
doesn’t	rely	on	redundant	hardware.	Instead,	commodity	hardware	is	often	used,
and	multiple	servers	and	isolated	application	tiers	creates	resiliency.	Expecting
any	given	server	to	lock	up,	stop	taking	requests,	or	just	disappear	is	all	part	of	the
plan.	Even	if	more	robust	hardware	were	used,	when	it	just	takes	the	push	of	a
button	to	permanently	delete	all	of	your	carefully	configured	servers,	it	is
important	to	be	able	to	recreate	them	quickly.

This	is	why	scripting	the	orchestration	and	configuration	of	your	environment	is	a
vital	part	of	deploying	any	cloud-based	application.	Doing	this	not	only	provides
the	previously	described	benefits,	but	it	also	ensures	consistency	between	servers,
self-documents,	and	is	a	perfect	opportunity	to	work	on	your	devops	skills.	It	is
also	the	basis	for	adding	elasticity	to	our	demo	application,	as	you	will	see	shortly.

Orchestration	Tools:	Heat,	Murano,	Cloudify,	and	More
Much	like	we	needed	to	look	at	all	of	the	virtualization	options	before	determining
what	was	going	to	be	deployed,	it’s	important	to	look	at	all	of	the	orchestration
options	before	making	a	decision	on	how	these	things	are	going	to	be	deployed.
With	respect	to	this,	there	are	a	number	of	options	that	are	commonly	employed
that	are	all	referred	to	as	orchestration	techniques	or	tools.

The	first	of	these	is	just	to	create	your	own	script	from	scratch.	There	is	nothing	to
stop	you	from	doing	this	in	the	language	of	your	choice.	The	compute,	networking,
and	platform	APIs	provide	all	of	the	basics	you	need.	As	long	as	a	1:1	ratio	is	kept
between	applications	and	Keystone	projects,	Horizon	will	even	provide	you	with	a



pretty	clear	visualization/inspection	of	your	environment.	This	is	a	perfectly	viable
option,	and	though	it	requires	a	lot	of	initial	effort	up	front,	it	is	a	common
orchestration	solution.	It	is	especially	useful	when	dealing	with	components	or
services	that	exist	outside	of	OpenStack.

As	far	as	integrated	solutions	go,	Heat	(being	the	main	orchestration	component
of	OpenStack)	is	the	obvious	choice.	Its	template	files	allow	you	to	describe	your
environment	in	a	well-documented	manner.	Using	Heat	eliminates	some	of	the
grunt	work	of	manual	scripting,	such	as	having	to	provide	detailed	output	and
error	handling.	Heat	also	supports	several	different	configuration	management
options,	making	the	next	step	in	the	deployment	process	easier	still.

Murano	is	another	option	for	somewhat	programmatic	orchestration.	As
discussed	earlier,	it	provides	both	an	application	catalog,	as	well	as	a	way	to	zip	up
applications	for	third-party	consumption.	Packaging	an	application	for	Murano
along	with	all	the	wizards	and	scripted	orchestration	is	generally	overkill	though,
unless	you	are	planning	on	distributing	to	users	in	other	OpenStack
environments.	Ultimately,	Murano	is	more	about	distribution	than	it	is	about
orchestration,	and	so	it	is	not	generally	a	recommended	deployment	mechanism
for	custom	applications.

Of	course,	no	concept	in	OpenStack	would	be	complete	without	a	healthy	dose	of
third-party	applications	that	provide	alternate	solutions.	Cloud	Foundry	and
Cloudify	both	offer	orchestration.	If	these	are	available	within	your	OpenStack
installation	they	are	definitely	worth	a	look.	Their	success	is	due	in	part	to	their
friendlier	UI	and	their	ability	to	simplify	the	orchestration	process.	However,
because	they	communicate	to	OpenStack	via	the	same	native	APIs	you	have	access
to,	there	is	little	they	can	accomplish	that	you	can’t	accomplish	yourself	with	a
little	manual	scripting	work	or	through	Heat.

Lastly,	there	are	new	companies,	such	as	Rancher	Labs	and	projects	like
Kubernetes	and	Mesos,	that	are	starting	to	provide	container-focused
orchestration	solutions	that	live	on	top	of,	or	work	with,	OpenStack.	These	are	the
bleeding	edge	of	virtualization	technology	and	as	such	are	likely	to	see	huge
changes	before	mainstream	adoption.	They	are,	however,	worth	mentioning	in
case	you	are	looking	for	a	container-focused	solution,	need	to	span	multiple
clouds,	and/or	have	experience	using	Rocket,	Docker	or	similar	technology.

Since	we	have	chosen	to	use	virtual	machines	over	containers	for	our	demo
application,	and	the	application	isn’t	meant	for	wide	distribution,	that	leaves	two
good	choices	for	orchestration:	manual	scripting	and	Heat.	If	the	demo	was	a
more	complex	application	or	if	there	were	components	that	simply	could	not	be
managed	within	Heat,	then	raw	scripting	would	be	the	go-to	solution.	It	is	also
possible	to	use	Heat	as	a	component	of	a	larger	script,	as	it	is	essentially	an	API	as
well.	As	is	though,	Heat	is	reasonably	well	documented	and	provides	a	single
simplified	system	for	communicating	to	all	of	the	different	OpenStack
components	the	demo	application	is	going	to	use.	This	makes	it	the	best	choice	for



now	and	the	remainder	of	this	book	will	focus	on	the	use	of	Heat	templates	for
deployment.

Configuration	Management	and	Cloud	Init
If	orchestration	is	anything	that	occurs	above	the	server	level,	configuration
management	can	generally	be	considered	to	be	anything	that	needs	to	be	modified
at	the	server	level	or	below	in	order	to	get	your	application	up	and	running.
Adding	specific	software,	updating	configuration	files,	or	even	pulling	down	an
application	from	Git	occurs	under	the	umbrella	of	configuration	management.	In
the	case	of	the	demo	application,	this	could	mean	Apache	for	the	web	tier	or
Node.js/Python	for	the	Rest	layer	and	MySQL	for	the	database(s)	along	with	all	of
their	respective	configuration	files.

Before	we	get	into	tools	like	Puppet	and	Chef,	which	really	are	the	standard	for
configuration	management	these	days,	there	is	another	option	called	Cloud-Init
that	is	well	worth	your	time	to	explore.	Technically	speaking,	it	is	just	a	Linux
package	that	handles	early	initialization	of	a	cloud	instance.	From	a	developer	(or
devops)	perspective,	it	is	also	one	of	the	simplest	ways	to	run	scripts	after	a	server
has	been	provisioned.

What	you	choose	to	do	in	these	scripts	and/or	what	language	you	want	to	employ
is	up	to	you.	Cloud-Init	simply	runs	what	you	tell	it	to	either	by	including	the
script	under	user_data	as	part	of	your	API	call	to	Nova,	or	though	Heat	as	follows:

heat_template_version:	2014-10-16

description:	Simple	template	to	deploy	a	single	compute	instance

parameters:

	image_id:

		type:	string

		label:	Image	ID

		description:	Image	to	be	used	for	compute	instance

resources:

	web_server:

		type:	OS::Nova::Server

		properties:

			image:	{	get_param:	image_id	}

							flavor:	m1.small

			user_data_format:	RAW

			user_data:

				#!/bin/bash

				echo	"You	just	ran	this	command!"

In	this	example	the	server	would	first	be	provisioned,	and	then	the	command	in
user_data	would	be	executed	and	“You	just	ran	this	command,”	would	be	output
to	the	command	line.	This	can	actually	be	viewed	though	the	spice-console	once	it
is	available	in	Horizon	as	part	of	the	boot	sequence.

It	should	be	pretty	easy	to	see	how	you	could	expand	on	this	concept	to	configure
a	server	to	meet	your	needs.	Instead	of	manually	installing	XYZ	after	provisioning
it,	you	could	simply	write	a	script	to	install	XYZ	and	include	it	as	part	of	your	Heat



template.	A	slightly	more	useful	example	might	look	like	the	following:

heat_template_version:	2014-10-16

description:	Simple	template	to	deploy	a	single	compute	instance

parameters:

	image_id:

		type:	string

		label:	Image	ID

		description:	Image	to	be	used	for	compute	instance

resources:

	web_server:

		type:	OS::Nova::Server

		properties:

			image:	{	get_param:	image_id	}

							flavor:	m1.small

			user_data_format:	RAW

			user_data:

				#!/bin/bash

				yum	install	–qy	git

				yum	install	–qy	npm

	

				git	clone	https:/github.com/folder/package.git	/var/usr/share/app

				node	/usr/share/app/server.js

	

				echo	"You	just	installed	and	started	a	node	app!"

Creating	a	stack	with	this	template	would	provision	a	single	small	server	with	the
specified	image.	It	would	then	be	configured	with	Git	and	NPM	(Node.js),	so	you
can	download	a	project	from	GitHub	and	start	it.	For	our	demo	application,
different	installation	and	configuration	scripts	would	be	inserted	for	each	of	the
server	types.

Depending	on	your	OpenStack	configuration	and	your	base	image,	Cloud-Init’s
Cloud	config	Yaml	format	may	also	be	available.	It	provides	some	excellent
functionality	without	having	to	write	a	lot	of	code.	Converting	our	earlier	example
would	result	in	something	like:

heat_template_version:	2014-10-16

description:	Simple	template	to	deploy	a	single	compute	instance

parameters:

	image_id:

		type:	string

		label:	Image	ID

		description:	Image	to	be	used	for	compute	instance

resources:

	web_server:

		type:	OS::Nova::Server

		properties:

			image:	{	get_param:	image_id	}

							flavor:	m1.small

			user_data_format:	RAW

			user_data:

				runcmd:

					-	yum	install	–qy	git



					-	yum	install	–qy	npm

					-	git	clone	https:/github.com/folder/package.git	/var/usr/share/app

					-	node	/usr/share/app/server.js

					-	echo	"You	just	installed	and	started	a	node	app!"

This	is	a	pretty	simple	example,	but	it	is	a	fairly	complex	and	powerful	system.	For
further	reading	on	Cloud-Init	and	some	great	examples	of	how	to	configure	a
server	with	the	Cloud	config	format	take	a	look	at
http://cloudinit.readthedocs.org/en/latest/topics/examples.html.

Puppet,	Chef,	Salt,	and	Ansible
While	Cloud-Init	is	a	general	system	for	running	scripts	for	whatever	purpose	you
like,	there	are	numerous	tools	dedicated	solely	to	configuration	management.
Puppet,	Chef,	Salt,	and	Ansible	aren’t	the	only	options	in	this	realm,	but	they	are
definitely	the	biggest	players,	and	they	have	some	important	similarities	and
differences	to	consider	if	they	are	to	be	used	as	part	of	an	OpenStack-backed
deployment.

First	off,	all	of	these	applications	share	the	idea	of	plug	and	play	modules	(called
recipes	in	Chef,	and	playbooks	in	Ansible).	These	prebuilt	blocks	are	the	biggest
thing	that	differentiates	them	from	configuring	a	server	with	Bash	or	other
scripting	tools	like	Cloud-Init.	Modules	are	available	from	public	repositories	that
anyone	can	submit	to	or	retrieve	from,	similar	to	PIP	in	Python	or	NPM	in
Node.js.	Additionally,	they	have	all	attempted	to	come	up	with	a	simple
language/structure	for	describing	a	server’s	configuration,	handle	installation
errors,	and	provide	different	configurations	for	servers	in	different	roles.	The
formats	are	familiar—JSON,	YAML,	etc.,	but	the	actual	syntax	and	methodology
are	proprietary	and	not	portable	across	solutions.

The	language	they	were	built	upon,	their	need	to	have	installed	clients	(Ansible,
for	example,	doesn’t	need	one),	and	the	breadth	and	depth	of	their	module
libraries,	are	really	what	differentiates	these	tools	from	each	other.	As	with	most
technologies,	you	will	find	enthusiastic	supporters	and	dissenters	of	each,	but	for
most	purposes	they	are	equivalent.	In	fact,	their	similarity,	and	the	ability	to
develop	a	generic	syntax	for	their	use,	is	a	big	reason	why	there	is	growing	support
for	all	of	these	tools	within	OpenStack.

Let’s	look	at	what	a	simple	Puppet	Manifest	might	look	like	to	configure	a	server
to	run	Apache	and	PHP:

#	install	apache

package	{	'apache2':

	ensure	=>	installed

}

	

#	start	apache	and	ensure	its	running

service	{	'apache2':,

	require	=>	Package['apache2'],

	ensure	=>	running

http://cloudinit.readthedocs.org/en/latest/topics/examples.html


}

	

#	install	php

package	{	'php5':

	require	=>	Package['apache2'],

	ensure	=>	installed

}

	

#create	an	info.php	file	to	show	that	this	all	worked

file	{	'/var/www/html/info.php':

	ensure	=>	file,

	content	=>	'<?php	phpinfo();	?>',

	mode	=>	0444,

	require	=>	Package['php5']

}

With	the	Puppet	client	correctly	installed	and	the	preceding	file	saved	as
manifest.pp,	you	could	then	execute	this	template	as	follows:

$	sudo	puppet	apply	./manifest.pp

Puppet	deals	with	any	error	handling,	determines	the	order	things	have	to	happen
in	based	upon	the	require	statements,	and	handles	all	of	the	differences	in	OS
types.	For	example,	using	these	tools,	you	don’t	have	to	write	one	script	for
CentOS	that	installs	software	via	Yum,	and	another	version	that	supports	apt-get
installation	on	Debian	or	Ubuntu.

As	was	mentioned	before,	Heat	actually	provides	hooks	for	all	of	these	tools	in	the
form	of	a	SofwareConfig	resource.	If	your	configuration	supports	Chef,	then	a
Heat	template	to	set	up	Wordpress	might	look	like	this:

resources:

	wordpress_config:

		type:	OS::Heat::SoftwareConfig::Chef

		properties:

			cookbook:	http://www.mycompanycom/hot/chef/wordpress.zip

			role:	wordpress

			#	input	parameters	that	the	chef	role(s)	need

			inputs:

				wp_admin_user:

					type:	string

					mapping:	wordpress/admin_user

				wp_admin_pw:

					type:	string

					mapping:	wordpress/admin_password

				db_endpoint_url:

					type:	string

					mapping:	wordpress/db_url

				#	various	other	input	parameters	…

			#	Have	chef	output	the	final	wordpress	url

			outputs:

				wp_url:

					type:	string

					mapping:	wordpress/url

http://www.mycompanycom/hot/chef/wordpress.zip


From	the	OpenStack	documentation	at
https://wiki.openstack.org/wiki/Heat/Blueprints/hot-software-config-spec:

The	resource	type	OS::Heat::SoftwareConfig::Chef	indicates	that	this	is	a
Chef-specific	Software	Config	definition.	The	cookbook	property	points	to	the
used	Chef	cookbook,	and	the	role	property	points	to	the	role	to	be	set	up	via
this	Software	Config.	The	inputs	section	contains	the	definition	of	input
parameters	that	have	to	be	passed	to	Chef	for	configuring	the	role.	Input
parameters	are	defined	in	terms	of	name	and	type.	In	addition,	a	mapping
specifies	to	which	role	attribute	the	respective	input	parameters	needs	to	be
assigned	(i.e.	Chef-specific	metadata).

If	this	seems	confusing,	don’t	worry.	This	example	is	simply	meant	to	show	the
developers	behind	OpenStack	are	aware	of	these	tools,	and	that	if	you	are	familiar
with	them,	there	are	a	number	of	ways	to	tightly	integrate	them	into	your
deployment.	Again,	exactly	how	you	choose	to	configure	your	servers	and	your
application	is	entirely	up	to	you.	Your	company	and/or	your	operations	team	may
have	a	lot	to	say	on	the	subject,	or	the	choice	might	be	yours	alone.	What’s
important	is	to	have	a	general	understating	of	the	options	available	and	form	a
game	plan.

With	that	in	mind,	let’s	to	go	over	two	other	important	pieces	of	functionality	that
all	of	these	configuration	management	solutions	provide.	First	off,	they	offer
centralized	management	of	servers.	Once	the	client	is	installed,	and	the	server	has
been	registered	into	the	master,	you	can	use	a	web	interface	to	do	things	like
search	for	a	server,	see	what	software	is	installed,	or	even	push/schedule	a	patch
for	it	(see	Figure	6.5).

https://wiki.openstack.org/wiki/Heat/Blueprints/hot-software-config-spec


Figure	6.5		

This	configuration	isn’t	required	though,	and	these	tools	can	all	be	used	in
masterless	mode	where	this	central	authority	is	entirely	absent.	There	is	a	lot	of
crossover	between	what	these	centralized	systems	and	what	OpenStack/Horizon
can	offer,	so	it’s	not	unusual	to	use	them	in	this	masterless	manner.

The	other	piece	of	functionality	they	all	offer	is	the	ability	to	execute	arbitrary
commands	on	remote	servers.	This	is	an	aspect	of	the	same	mechanism	that
allows	the	master	servers	to	patch	remote	computers.	Ansible	in	particular	can	be
an	indispensible	tool	when	used	for	this	purpose.

Unlike	Puppet,	Chef,	and	Salt	(to	some	extent),	Ansible	doesn’t	require	the
installation	of	a	specialized	client	to	support	remote	command	execution.	It	uses
SSH	and	private/public	keys	to	achieve	a	similar	result.	It	is	also	easy	to	configure
Ansible	with	a	local	file	to	push	these	commands	to	many	servers	at	once	(as
opposed	to	sequentially).	This	makes	remote	execution	quick	and	easy	from	any
computer	with	Ansible	installed.	A	configuration	file	for	Ansible	looks	like	this:

[devservers]

dev.cloud.mycompany.com



	

[prodservers]

prod01.cloud.mycompany.com

prod02.cloud.mycompany.com

prod03.cloud.mycompany.com

	

[otherservers]

server1.cloud.mycompany.com

server2.cloud.mycompany.com

This	file	defines	three	groups	of	servers	(devservers,	prodservers,	and
otherservers).	Commands	can	be	run	on	an	individual	box,	a	group,	or	all	groups
at	once.	You	can	also	determine	how	many	servers	to	run	the	command	on
simultaneously.	So	if,	for	example,	you	want	to	update	Git	on	all	of	your
production	servers	at	once	you	could	run:

$	ansible	prodservers	-a	"yum	update	-yq	git"	-f	3	-u	myusername	

		––sudo	––ask-sudo-pass	-i	/myuser/ansible_hosts

Since	Yum	often	requires	sudo	access,	the	ask-sudo-pass	value	has	been	invoked,
and	-f	3	indicates	that	you	want	to	run	it	on	three	servers	at	once.	If	there	were	6
servers	defined	in	the	prodservers	group,	then	it	would	run	this	in	two	separate
batches.	This	is	often	useful	to	avoid	things	like	cache	slamming	or	to	avoid
rebooting	all	of	your	servers	at	once,	making	your	application	temporarily
unavailable.

Ansible	is	highly	recommended	as	an	easy	way	to	execute	remote	commands,	but
this	does	not	make	it	a	shoe-in	for	the	configuration	solution	for	our	demo
application.	In	fact,	there	is	one	drastically	different	option	to	consider.

Where	Do	Snapshots	Fit	In?	Or	Should	They?
With	all	of	these	configuration	options	it’s	valid	to	ask	where	images	fit	in	to	a
deployment.	Rather	than	script	the	configuration	of	a	server	or	several	servers
with	different	roles,	it	is	definitely	possible	to	take	a	snapshot	of	a	server	once	it’s
configured	and	simply	deploy	it	in	this	configured	state.	While	there	are	a	few
caveats	to	that	and/or	building	a	custom	image,	this	will	usually	work.	Images	can
be	uploaded	through	Horizon	or	through	the	Glance	API,	and	a	number	of	pre-
configured	images	are	available	from	companies	like	Bitnami	to	make	this	even
easier.	Generally	speaking	though,	this	isn’t	a	great	solution.

Images	are	bulky	and	cumbersome.	If	you	want	to	modify	a	single	value	in	a	single
file,	you	can	end	up	having	to	re-create	an	entire	image	all	over	again.	This	is
actually	one	of	the	main	problems	that	Docker	is	attempting	to	solve	with	the
DockerFile	container	system.	Testing	changes,	debugging,	and	even	storing	all
these	images	can	be	a	time	and	space	consuming	process.	Configuration	scripts	on
the	other	hand,	act	like	tiny	zip	files	that	expand	on	a	server	to	create	fully
configured	boxes.	They	are	easy	to	edit,	store,	and	version.	Depending	on	the
software	involved,	it’s	even	possible	to	use	the	same	script	to	configure	windows



and	Linux	boxes.

There	are	at	least	a	few	situations,	though,	where	creating	custom	images	can	be
an	extremely	effective	solution.	If	you	are	not	using	containers,	your	configuration
scripts	take	a	long	time	to	run,	and	you	are	deploying	them	frequently,	then	using
images	or	snapshots	can	be	a	much	faster	option.	This	is	often	the	case	with	large
windows	builds.	.NET	components	and	enterprise	class	windows	software	can
take	hours	to	completely	install	and	get	running.	Images	can	also	be	useful	way	to
distribute	software.	Ensuring	software	such	as	Puppet,	or	Git	is	already	installed
can	prevent	any	number	of	teams	from	having	to	install	and	configure	these	items
themselves.	In	this	scenario,	a	combination	of	pre-configured	images	and	post
provisioning	configuration	scripts	are	used	effectively.

Because	the	needs	of	our	demo	application	are	relatively	simple,	and	the	tools	are
native	to	OpenStack,	the	rest	of	this	chapter	will	focus	on	using	Cloud-Init	and
user_data	within	Heat	to	handle	server	configuration.	This	will	keep	things	light,
and	won’t	require	a	deep	knowledge	of	any	of	the	configuration	management
tools.	When	it	comes	to	your	own	application	though,	we	encourage	you	to
experiment	and	choose	what	works	best	for	you,	your	team,	and	your	application.



MONITORING	AND	METERING
It	might	seem	odd	at	this	point	to	begin	a	discussion	on	monitoring.	We	have	yet
to	even	look	at	a	complete	deployment	solution.	However,	monitoring	is	a	pre-
requisite	of	elasticity	and	required	to	some	extent	to	make	scaling	useful.	After	all,
without	knowing	the	load	on	a	system,	it’s	hard	to	know	if	you	need	to	increase	the
server	or	stack	size.	This	holds	true	even	if	such	changes	are	done	manually	or
programmatically.

You	may	also	find	if	PAAS	or	external	components	aren’t	used,	that	your
deployment	actually	includes	its	own	monitoring	system.	This	may	seem	a	little
Inception-like,	but	it’s	not	very	complicated	in	practice.	Monitoring	servers	can	be
deployed	and	configured	in	a	second	project,	stack,	or	even	serially	before	the
application	servers	within	the	same	project.	It	is	also	likely,	if	you	work	within	a
larger	company,	that	some	sort	of	centralized	monitoring	is	available	for	you	to
use.

OpenStack	does	have	a	couple	of	built-in	monitoring	options	that	can	be	useful	for
deployments.	Monasca	is	a	PAAS	component	that	offers	monitoring	as	a	service.	It
consists	of	a	number	of	sub-components:	an	agent	that	runs	on	each	server,	a	CLI
to	speak	to	the	Monasca	REST	API,	a	storage	system	for	metrics,	an	alert	system,
and	an	analysis	engine	that	enables	the	alerts	and	a	number	of	other	features.

The	result	of	collaboration	between	HP	and	Rackspace,	Monasca,	can	be	a
capable,	but	stunningly	complex	monitoring	solution.	For	a	full	explanation	and
some	interesting	reading,	visit	https://wiki.openstack.org/wiki/Monasca.

The	other	first-party	system	that	offers	some	level	of	monitoring	is	Ceilometer.
Ceilometer	is	discussed	in	Chapter	3.	It	was	primarily	built	as	a	telemetry	service
to	measure	utilization	and	to	store	that	data	for	later	analysis.	Like	Monasca,
Ceilometer	can	measure	things	like	load,	and	trigger	alerts	when	certain
thresholds	are	met.	Unlike	Monasca,	it	can	also	report	detailed	information	on
things	like	how	much	processor	time	was	used	by	a	given	virtual	machine	or
project.	The	most	straightforward	use	of	this	is	to	enable	usage	based	billing	or
metering.	You	may	find	it	useful	for	things	like	comparing	the	efficiency	of	server
configurations	or	determining	which	applications	are	over	provisioned.	Further
documentation	on	Ceilometer	can	be	found	at
https://wiki.openstack.org/wiki/Ceilometer.

If	you	are	looking	for	an	off	the	shelf	solution	that	isn’t	integrated	with
OpensStack	(or,	as	is	often	the	case,	these	services	are	not	available),	then	both
Nagios	and	Sensu	are	worth	a	look.	These	solutions	both	function	by	adding	a
client	to	each	server	that	you	want	to	monitor	and	deploying	a	centralized
monitoring	server	that	collates	this	data	and	displays	it	within	a	web	based	GUI.
Similar	to	Puppet	and	Chef,	there	are	community	submitted	checks	that	can	be
run	on	the	client	servers.	These	commonly	watch	things	like	CPU	use	and
available	memory	and	send	results	or	alerts	to	handlers	on	the	central	hub.	There

https://wiki.openstack.org/wiki/Monasca
https://wiki.openstack.org/wiki/Ceilometer


are	also	a	number	of	community-built	handlers	available	to	send	things	like	SMS
or	email	messages,	or	log	results	to	a	database	for	later	analysis.

Nagios	is	currently	free	for	up	to	seven	monitored	servers,	while	Sensu	(being	the
new	kid	on	the	block)	is	free	for	the	non-enterprise	version.	Both	of	these	systems
are	completely	scriptable	and	can	thus	provide	any	level	of	monitoring	necessary,
as	well	as	any	functionality	required	to	trigger	elastic	changes	within	the
application.

Generally	speaking,	it’s	hard	to	recommend	any	of	these	as	great	solutions.
Monasca	should	be	a	slam	dunk,	but	it’s	rather	enigmatic	and	Ceilometer	doesn’t
provide	a	lot	of	flexibility	when	compared	to	systems	like	Sensu	and	Nagios.
Meanwhile,	the	external	solutions	both	offer	good	usability,	but	aren’t	natively
integrated	with	OpenStack.	Adding	these	to	our	demo	application	for	example,
would	mean	deploying	and	configuring	the	central	servers	and	clients	as	well.

Ceilometer	alerts,	though,	are	fairly	well	documented	and	can	be	configured	and
used	within	Heat	templates	to	enable	some	level	of	elasticity.	For	that	reason
alone	it’s	the	best	choice	for	the	demo	application.	In	a	real	world	scenario	you
would	want	to	see	performance	graphs,	and	be	able	to	log	and	alert	your	team
members	to	specific	app	related	metrics	(such	as	the	number	of	connections	or
session	counts).	As	a	free	solution,	Sensu	is	probably	a	great	place	to	start	if	you
need	to	push	beyond	what	will	be	demonstrated	here.



ELASTICITY
As	mentioned	in	Chapter	5,	elasticity	is	the	idea	that	applications	can
programmatically	shrink	and	grow	to	match	load.	In	a	non-cloud	scenario,	the	size
and/or	number	of	servers	deployed	are	generally	determined	by	the	maximum
capacity	you	want	to	accommodate.	In	an	elastic	cloud	app,	the	size	and/or
number	of	servers	should	ideally	be	the	minimum	required	to	accommodate	the
current	load,	and	grow	to	the	maximum	that	can	be	afforded	as	load	increases.
This	is	slightly	different	than	scalability,	which	is	simply	an	applications	capacity
to	grow.

The	primary	motivation	behind	elasticity	is	that	using	the	absolute	minimum
computing	units	needed	at	any	point	in	time	can	lead	to	great	savings	at	scale.
Even	if	you	aren’t	paying	by	the	server	at	a	hosted	solution,	being	able	to	scale	up
only	the	applications	that	need	it	at	any	time	can	lead	to	drastically	smaller	server
rooms.

There	are	other	benefits	as	well,	though,	beyond	cost	savings.	Elasticity	and
resiliency	are	very	intertwined.	Instead	of	dealing	with	downtime	on	an
application	that	is	getting	too	much	traffic,	elastic	applications	automatically	grow
to	meet	demand	and	stay	alive.	They	can	also	be	forced	scale	up	in	order	handle
hardware	and	network	failures	even	in	times	of	low/moderate	traffic.	Using
concepts	like	anti-affinity	(basically	using	servers	in	different	racks)	an	elastic	app
is	also	easier	to	keep	running	while	applying	patches,	or	when	servicing	hardware.
Additional	sets	of	servers	can	be	made	available	to	use	while	sets	of	them	are
taken	down	for	maintenance.

Of	course,	not	everything	needs	to	be	elastic.

Making	Sure	You	Need	Scaling/Elasticity
Something	you	won’t	hear	much	of	is	that	not	all	applications	need	to	scale.	Not
scaling	isn’t	interesting.	Not	scaling	isn’t	cool.	Not	scaling	won’t	win	you	any
awards.	However,	if	you	can	avoid	scaling,	then	you	can	focus	your	efforts
elsewhere	and	greatly	simplify	your	deployment.	Some	examples	of	applications
or	environments	that	may	not	need	to	scale:

Intranet	websites:	These	see	limited	traffic	and	downtime	doesn’t	affect
customers.

Post	processing	systems:	Systems	that	analyze	data	or	crunch	numbers	can
benefit	from	scaling	up	and	going	faster,	but	if	it’s	not	mission	critical	and	you
can	wait	for	the	result,	then	faster	results	aren’t	always	worth	the	effort.

Single/Fixed	Server	Applications:	Generally	speaking,	there	is	still	plenty
of	software	only	runs	well	on	big,	fast,	stable	hardware	and	can	provide	speed
benefits	when	extra	memory/processor	is	present.	If	the	requirements	of	your
application	won’t	allow	for	distributed	computing	across	multiple	servers,	and



it	can	soak	up	as	many	resources	as	you	can	give	it,	then	go	as	big	as	you	can
on	a	single	instance	and	move	on.

Even	if	your	application,	or	a	given	tier	of	your	application,	does	not	fit	into	one	of
these	categories	and	you	want	it	to	scale,	this	does	not	mean	it	needs	to	be	elastic.
Elasticity	is	great	for	cost	savings	and	can	allow	your	application	to	grow	rapidly
without	your	intervention,	but	that	is	not	always	desirable	or	necessary.	Elasticity
adds	yet	another	layer	to	an	already	complicated	list	of	technologies	and	takes
time	and	energy	to	implement	and	perfect.	Some	situations	that	may	not	be
appropriate	for	elasticity	include:

Anything	that	receives	manic	traffic	patterns:	Spinning	up	new	servers
is	fast,	but	even	when	using	containers	there	is	some	latency.	The	same	can	be
said	about	spinning	them	down.	Load	balancing	changes	and	configuration
updates	can	also	take	time	to	complete.	If	you	have	to	deal	with	quick,	massive
fluctuations	in	traffic,	it’s	best	to	simply	plan	for	maximum	capacity	and	let	it
run	24/7.

When	working	with	no	budget:	If	you’re	lucky	enough	to	have	no	budget
then	it’s	one	less	thing	on	the	todo	list.	Simply	scale	up	beyond	anything
reasonable	and	add	more	compute	if	things	ever	get	close	to	max	capacity	and
run	with	a	big	margin	of	error	at	all	times.

When	working	with	fixed	budgets:	It’s	unnecessary	to	grow	an
application	if	there	is	no	budget	to	pay	for	additional	servers.	It’s	also
unfortunately	common	to	loose	budget	if	less	servers	are	used	for	a	given
period	of	time.	If	you	absolutely	need	fixed	costs	for	fixed	periods	of	time,	then
a	scalable	but	non-elastic	application	is	a	reasonable	way	to	go.	You	can	just
scale	things	manually	each	quarter	or	when	the	budget	changes.

When	a	there	is	a	non-elastic	bottleneck:	There	is	no	point	in	quickly
scaling	your	app	up	and	down	to	handle	traffic	if	an	external	factor	limits	the
utility	in	this.	If	your	application	has	a	non-elastic	throttle	then	consider
scaling	manually	to	match	this.

In	the	end,	if	it’s	possible	to	scale	your	application,	it’s	worth	considering	doing	so,
and	doing	so	programmatically	in	an	elastic	fashion	as	part	of	your	deployment.	If
you	want	to	see	all	the	benefits	from	a	cloud	deployment,	then	this	is	all	but
mandatory.	Both	your	custom	applications,	as	well	as	many	off	the	shelf	systems
can	gain	speed,	resilience,	and	cost	savings	if	you	do.

Looking	once	again	at	our	demo	application,	it’s	easy	to	see	that	the	user	facing
web	tier	as	well	as	the	Rest	tier	could	both	benefit	from	elastic	scaling.	The
database	layer	though	isn’t	quite	as	scalable	and	would	not	immediately	benefit	in
performance	from	additional	servers.	It’s	also	not	a	trivial	process	to	add	a	server
to	an	existing	Galrea	cluster	as	the	replication	can	take	a	long	time	to	catch	up.	So
this	is	good	example	of	an	application	that	is	entirely	scalable,	but	only	benefits
from	elasticity	on	several	of	the	components.



Scripting	Vertical	Versus	Horizontal	Scaling
Before	you	can	add	elasticity	to	an	application,	it	must	first	be	scalable.	Before	you
can	scale,	you	must	first	determine	the	type	of	scaling	you	want	to	use.	The
simplest	form	of	this	is	just	to	increase	the	size	of	the	servers	involved,	adding
more	CPU,	Ram,	or	Disk	(depending	on	the	application).	This	is	called	vertical
scaling,	and	can	be	applied	to	almost	any	application	right	out	of	the	box.

By	letting	you	define	the	Flavor	(size)	of	any	given	instance	when	you	provision
the	server,	OpensStack	makes	vertical	scaling	rather	easy.	It’s	worth	noting	that
not	all	OpenStack	setups	will	let	you	increase	the	size	of	an	existing	server,	and	it
is	almost	always	necessary	to	create	a	new	instance	if	the	desired	size	is	smaller.
As	long	as	your	deployment	is	scripted	though,	it	shouldn’t	be	hard	to	create	and
configure	a	new	server.

Imagine	you	were	using	the	following	heat	template:

heat_template_version:	2014-10-16

description:	Simple	template	to	deploy	a	single	compute	instance

parameters:

	flavor_size:

		type:	string

		label:	Flavor	Size

		description:	The	size	fo	the	flavor	to	be	used

resources:

	web_server:

		type:	OS::Nova::Server

		properties:

			image:	CentOS6_64

			flavor:	{	get_param:	flavor_size	}

Saving	the	file	to	test.yaml	and	running	the	following	command	would	create	the
smallest	server	possible:

$	heat	stack-create	test_stack	-f	test.yaml	-P	"flavor_size=m1.tiny"

To	scale	this	vertically	to	a	larger	instance	you	could	simply	call:

$	heat	stack-update	test_stack	-f	test.yaml	-P	"flavor_size=m1.large"

Heat	would	then	handle	the	call	into	Nova	to	increase	the	size	of	this	instance	and
your	application	would	have	that	much	more	horsepower	to	run	with.	Horizontal
scaling	is	a	little	more	complicated.

Horizontal	scaling	involves	adding	extra	servers	to	an	application,	usually	behind
a	load	balancer	that	handles	the	initial	request	and	routes	it	to	an	individual
instance.	This	can	add	the	complexity	of	provisioning	and	configuring	the	load
balancer	as	part	of	your	deployment,	but	scaling	an	application	horizontally
usually	provides	much	greater	capacity.	It’s	not	uncommon	to	run	hundreds	of
servers	dedicated	to	a	specific	purpose	in	a	horizontally	scaled	application.	The
limit	of	a	vertically	scaled	application	meanwhile	is	the	maximum	size	of	a	single



instance/flavor.	Vertically	scaled	applications	also	miss	out	on	the	resiliency	and
maintainability	added	by	the	extra	servers	involved.

In	Chapter	5	we	determined	that	both	the	web	tier,	as	well	as	the	API	tier,	should
both	use	horizontal	scaling.	It	will	provide	much	greater	capacity,	and	the
application	will	benefit	from	the	added	resiliency	that	the	separate	servers
provide.	That	being	said,	it’s	worth	noting	that	most	of	the	techniques	that	follow
can	also	be	applied	to	scaling	in	a	limited	vertical	fashion.	After	all,	throwing
hardware	at	the	problem	is	sometimes	the	fastest	solution.

Load	Balancing	Revisited
Chapter	5	discusses	load	balancing	in	depth.	Hardware	solutions	such	as	A10,
software	solutions	such	as	HAProxy,	and	load	balancing	as	a	service	(LBAAS)
though	Neutron	are	all	options.	Your	choice	here	as	well	will	greatly	affect	your
deployment	solution.

Most	of	these	solutions	have	APIs	that	can	be	tapped	into	by	either	the
orchestration	or	configuration	management	solutions.	As	when	using	third	party
solutions	for	monitoring,	it	may	also	be	necessary	to	include	the	provisioning	and
configuration	of	your	load	balancer	as	part	of	your	deployment.	HAProxy
solutions	often	look	like	this,	as	the	proxy	server	can	simply	be	another	VM	within
an	OpenStack	project.

If	LBAAS	is	available	and	functioning	correctly	in	your	OpenStack	installation,	it
is	a	great	option.	It	is	easily	configurable	via	Heat,	and/or	can	be	tapped	directly
via	the	Neutron	API.	This	is	still	relatively	immature	technology	though,	and	for
many	people,	hardware	or	software	solutions	are	the	only	option.

The	deployment	of	our	demo	application	will	focus	on	LBAAS	and	Neutron.	As
time	goes	on,	this	solution	is	only	going	to	get	better	and	be	more	widely	available.
In	the	meantime,	if	for	any	reason	you	need	to	create	your	own	solution,	HAProxy
is	a	decent	choice.	It	does	expose	a	single	point	of	failure,	as	it	generally	exists	on
single	machine,	but	it	is	available	to	everyone	for	free,	and	it	makes	the	automatic
addition	or	removal	of	servers	relatively	easy.

A	nearly	infinite	amount	of	information	on	how	to	install	and	configure	HAProxy
is	available	at	http://www.haproxy.org/.	Assuming	that	it	is	already	deployed	and
configured,	the	following	Node.js	script	demonstrates	a	basic	auto-update	concept
that	could	eliminate	the	need	to	update	your	load	balancer	as	part	of	your
deployment:

#!/usr/bin/env	node

	

var	HAProxy	=	require("haproxy");

var	OSWrap	=	require("openstack-wrapper");

var	FS	=	require("fs");

	

var	user	=	'my_username';

var	pass	=	'my_password';

http://www.haproxy.org/


var	pid	=	'my_project_id';

var	kurl	=	'keystone_url';

var	proxy_cfg	='/etc/haproxy/haproxy.cfg';

	

var	haproxy	=	new	HAProxy('optional/socket/path.sock',	{});

	

OSWrap.getSimpleProject(user,	pass,	pid,	kurl,	function(error,	project){

	if(error){console.error(error);return;}

	project.nova.listServers(error,	server_array){

		if(error){console.error(error);return;}

		FS.writeFileSync('/etc/haproxy/haproxy.cfg',	'

listen	app	*:80	\n

			mode	http	\n

			balance	roundrobin	\n

			option	httpclose	\n',	'utf8');

		var	ip	=	'';

		for(var	i	=	0;	i	<	server_array.length;	i++)

		{

			//assuming	only	one	network	and	a	fixed	ip

			for	each(network	in	server_array[i].addresses)

			{ip	=	network[0].addr;	break;}

			FS.appendFileSync(proxy_cfg,	'server	'+i+'	'+ip+':80\n',	'utf8');

		}

	

		haproxy.reload(function(error){

			if(error){console.log(error);return;}

		});

	});

});

Installing	this	as	a	cron	job	on	the	proxy	server	would	cause	it	to	contact	your
OpenStack	installation	every	X	minutes,	retrieve	a	list	of	servers,	write	them	to	the
configuration	file,	and	hot	reload	the	proxy	with	the	new	configuration	file.

With	the	decision	on	load	balancing	out	of	the	way,	and	either	handled	via
LBAAS/Neutron	or	automatically	via	HAProxy,	we	can	move	forward	and	look
more	closely	at	some	options	for	programmatically	scaling	our	application.

Scaling	with	Heat	and	ResourceGroups
As	opposed	to	defining	every	server	as	an	individual	entry,	Heat	templates	allow
you	to	specify	a	ResourceGroup	and	the	number	of	duplicates	that	you	would	like
of	that	resource.	Reworking	our	Heat	template	from	earlier,	we	get:

heat_template_version:	2014-10-16

description:	Template	to	mulitple	servers	of	the	same	kind

parameters:

	server_count:

		type:	number

		label:	Server	Count

		description:	The	number	of	servers	do	deploy

resources:

	tiny_cluster:

		type:	OS::Heat::ResourceGroup



		properties:

			count:	{	get_param:	server_count	}

			resource_def:

				type:	OS::Nova::Server

				properties:

					image:	CentOS6_64

					flavor:	m1.tiny

					user_data_format:	RAW

					user_data:

						runcmd:

							-	yum	install	–qy	git

							-	yum	install	–qy	npm

							-	git	clone	https:/github.com/folder/package.git	/var/usr/share/app

							-	node	/usr/share/app/server.js

							-	echo	"You	just	installed	and	started	a	node	app!"

Saving	the	file	to	group.yaml	and	running	the	following	command	would	create	the
smallest	server	possible:

$	heat	stack-create	group_stack	-f	group.yaml	-P	"server_count=2"

To	increase	the	number	of	servers	in	this	stack	to	four	you	could	call:

$	heat	stack-update	group_stack	-f	group.yaml	-P	"server_count=4"

Using	this	technique,	different	types	of	ResourceGroups	can	be	defined	for	each
tier	of	the	demo	application	and	each	ResourceGroup	can	be	scaled
independently.	This	concept	provides	a	deployment	solution	that	covers
everything	except	load	balancing,	monitoring,	and	elasticity.	These	things	have
been	left	out	because	it	is	quite	possible	one	or	more	of	them	in	your	application
will	have	to	be	handled	outside	the	realm	of	OpenStack.	The	good	news	is	that	if
you	find	yourself	in	this	situation,	Heat	and	ResourceGroups	can	still	be	used	in
this	fashion	as	part	of	a	broader	deployment	script.	The	other	technologies
discussed	in	this	chapter,	such	as	an	external	A10,	can	then	be	included	in	that
script	to	fill	out	the	deployment	solution.

If	you	are	lucky	though,	and	LBAAS	through	Neutron	is	available	along	with
Ceilometer	alerts,	you	have	a	complete	deployment	solution	for	elastic	scaling	that
fits	neatly	within	a	Heat	template.

Putting	It	All	Together	with	Heat,	Ceilometer,	and
AutoScalingGroups
Before	we	go	into	the	final	example	and	demonstrate	a	complete	solution	for
deploying	an	elastic	application,	let’s	review	the	choices	that	have	been	made	in
this	chapter	regarding	how	the	demo	application	will	be	deployed.

Virtualization—Virtual	Machines	for	all	three	tiers

Orchestration—Heat

Configuration	Management—Cloud-Init/user_data



Monitoring—Ceilometer

Scaling—Horizontal	for	all	three	tiers

Elasticity—Viable	for	the	web	and	API	tiers

Load	Balancing—Neutron/LBAAS

With	that	in	mind	let’s	look	at	another	example.	This	one	will	consist	of	two
different	files.	The	first,	will	describe	a	single	server	as	a	resource.	For	the	second,
a	parent	file	will	use	this	resource	as	part	of	an	auto-scaling	group:

heat_template_version:	2014-10-16

description:	Simple	Web	Server	+	Load	Balancer	Member

parameters:

	network:

		type:	string

		description:	the	network	all	of	the	servers	will	use

	pool_id:

		type:	string

		description:	the	load	balancer	pool

	parent_stack_id:

		type:	string

		description:	the	ID	of	the	calling	stack

resources:

	server:

		type:	OS::Nova::Server

		properties:

			flavor:	m1.tiny

			image:	cirros-0.3.4-x86_64-uec

			metadata:	{"metering.stack":	{get_param:	parent_stack_id}}

			networks:	[{network:	{get_param:	network}	}]

			user_data_format:	RAW

			user_data:	|

				#!/bin/sh

				#	A	tiny	HTTP	server	that	responds	with	the	IP	address	of	the	server.

				IP='ip	-f	inet	addr	|	grep	inet	|	grep	-v	127.0.0.1	|	awk	'{print	$2}'	

				|	cut	-d	/	-f	1'

				LENGTH='echo	x$IP	|	wc	-c'

				cat	>	/tmp/http-response	<<EOF

				HTTP/1.0	200	OK

				Content-Type:	text/plain

				Content-Length:	$LENGTH

				$IP

				EOF

				unix2dos	/tmp/http-response

				nohup	nc	-p	80	-s	$IP	-n	-lk	-e	cat	/tmp/http-response	&

				#	now,	let's	add	some	load	to	trigger	CPU	alarms

				#	find	a	number	of	seconds	to	burn	based	upon	IP	address

				#	this	way	different	ones	will	burn	CPU	at	different	times

				#	60,	180,	300,	420	seconds	at	a	time

				#	then	sleep	120s

				SECONDS='echo	$IP	|	awk	-F	.	'{print	60	+	$4	%	4	*	120}''

				cat	>	/tmp/load.sh	<<EOF

				#!/bin/sh



				while	[	1	]

				do

				if	[	"0"	-eq	\'echo	|	awk	'{print	systime()	%	$SECONDS}'\'	];	then

					sleep	120

				fi

				done

				EOF

				chmod	777	/tmp/load.sh

				#	cirros	does	something	weird	to	/bin/sh	so	we	need	something	else	to	

run	us

				#	later	-	and	there	is	no	"at"

				nohup	watch	-t	/tmp/load.sh	&

	member:

		type:	OS::Neutron::PoolMember

		properties:

			pool_id:	{get_param:	pool_id}

			address:	{get_attr:	[server,	first_address]}

			protocol_port:	80

Let’s	call	this	file	web-server.yaml.	Looking	at	it	briefly,	it	takes	parameters	that
describe	which	network	and	load	balancing	pool	to	use	as	well	as	a	parameter	to
define	the	parent	stack	this	server	will	exist	on.	All	of	these	parameters	will
actually	be	supplied	by	the	parent	template,	which	we	will	look	at	momentarily.
First	though,	it’s	important	to	go	over	what’s	being	configured	in	user_data.	As
part	of	the	Cloud-Init,	this	server	will	be	configured	to	run	a	little	HTTP	service
that	just	returns	the	private	IP	of	the	instance.	So,	when	you	call	from	the	load
balancer	VIP,	you	can	see	which	instance	handled	the	request.	Each	instance	also
runs	a	background	process	that	alternately	burns	CPU	for	anywhere	from	60-480
seconds,	depending	on	its	IP	address,	and	then	sleeps	for	120	seconds.	This
simulates	load	and	triggers	the	elastic	scaling	up	and	down.

As	for	the	main/parent	heat	template,	that	would	look	something	like	this:

heat_template_version:	2014-10-16

description:	AutoScaling	Web	Application

parameters:

	network:

		type:	string

		description:	the	network	all	of	the	servers	will	use

	subnet_id:

		type:	string

		description:	the	load	balancer	subnet

	external_network_id:

		type:	string

		description:	the	UUID	of	the	external	Neutron	network

resources:

	web_server_group:

		type:	OS::Heat::AutoScalingGroup

		properties:

			min_size:	2

			max_size:	5

			resource:

				type:	web-server.yaml

				properties:



					pool_id:	{get_resource:	pool}

					network:	{get_param:	network}

					parent_stack_id:	{get_param:	"OS::stack_id"}

	scaleup_policy:

		type:	OS::Heat::ScalingPolicy

		properties:

			adjustment_type:	change_in_capacity

			auto_scaling_group_id:	{get_resource:	web_server_group}

			cooldown:	30

			scaling_adjustment:	1

	scaledown_policy:

		type:	OS::Heat::ScalingPolicy

		properties:

			adjustment_type:	change_in_capacity

			auto_scaling_group_id:	{get_resource:	web_server_group}

			cooldown:	30

			scaling_adjustment:	-1

	cpu_alarm_high:

		type:	OS::Ceilometer::Alarm

		properties:

			description:	If	the	avg	CPU	>	40%	for	30	seconds	then	scale	up

			meter_name:	cpu_util

			statistic:	avg

			period:	30

			evaluation_periods:	1

			threshold:	40

			alarm_actions:

				-	{get_attr:	[scaleup_policy,	alarm_url]}

			matching_metadata:	{'metadata.user_metadata.stack':	{get_param:	

"OS::stack_id"}}

			comparison_operator:	gt

	cpu_alarm_low:

		type:	OS::Ceilometer::Alarm

		properties:

			description:	If	the	avg	CPU	<	15%	for	90	seconds	then	scale	down

			meter_name:	cpu_util

			statistic:	avg

			period:	90

			evaluation_periods:	1

			threshold:	15

			alarm_actions:

				-	{get_attr:	[scaledown_policy,	alarm_url]}

			matching_metadata:	{'metadata.user_metadata.stack':	{get_param:	

"OS::stack_id"}}

			comparison_operator:	lt

	monitor:

		type:	OS::Neutron::HealthMonitor

		properties:

			type:	TCP

			delay:	5

			max_retries:	5

			timeout:	5

	pool:

		type:	OS::Neutron::Pool

		properties:

			protocol:	HTTP



			monitors:	[{get_resource:	monitor}]

			subnet_id:	{get_param:	subnet_id}

			lb_method:	ROUND_ROBIN

			vip:

				protocol_port:	80

	lb:

		type:	OS::Neutron::LoadBalancer

		properties:

			protocol_port:	80

			pool_id:	{get_resource:	pool}

	

	lb_floating:

		type:	OS::Neutron::FloatingIP

		properties:

			floating_network_id:	{get_param:	external_network_id}

			port_id:	{get_attr:	[pool,	vip,	port_id]}

	

outputs:

	scale_up_url:

		description:	>

			Invoke	the	scale-up	operation	by	doing	an	HTTP	POST	to	this

			URL;

		value:	{get_attr:	[scaleup_policy,	alarm_url]}

	scale_dn_url:

		description:	>

			Invoke	the	scale-down	operation	by	doing	an	HTTP	POST	to

			this	URL;

		value:	{get_attr:	[scaledown_policy,	alarm_url]}

	pool_ip_address:

		value:	{get_attr:	[pool,	vip,	address]}

		description:	The	IP	address	of	the	load	balancing	pool

	website_url:

		value:

			str_replace:

				template:	http://host/

				params:

					host:	{	get_attr:	[lb_floating,	floating_ip_address]	}

		description:	>

			This	URL	is	the	"external"	load	balanced	url

Let’s	call	this	file	final.yaml.	It	contains	all	of	the	necessary	instructions	to	create
multiple	servers	as	defined	by	the	web-server.yaml	file.	It	will	maintain	a
minimum	of	two	of	these	servers,	and	scale	up	to	a	maximum	of	five	as	defined	by
the	min	and	max	size	of	the	auto-scaling	group.	It	also	implements	the	Ceilometer
alarms	that	trigger	scaling	up	when	a	CPU	average	goes	above	40	percent	for	30
seconds,	trigger	scaling	down	when	CPU	average	goes	below	15	percent	for	90
seconds,	and	applies	these	alarms	to	the	sever	group	as	policies.

To	create/update	a	stack	with	this	template	you	would	first	need	to	manually
create	a	network,	subnet,	and	router	for	the	servers/load	balancer.	You	would
then	pass	these	values	in	as	parameters	like	this:

$	heat	stack-create	-f	final.yaml	-P	"network=web-net;subnet_id=$subnet_id;	



		external_network_id=$public_net_id"	autoscale;

That	should	output	a	number	of	things	including	the	web	address	of	the	load
balancer	that	will	round	robin	to	the	two	web	servers.	Hitting	that	URL	repeatedly
should	display	the	various	IP	addresses	of	the	provisioned	servers	in	round	robin
fashion.	After	a	short	period	of	time,	new	servers	should	be	added	and	new
addresses	will	appear,	then	as	load	decreases	they	should	disappear.	If	you	want	to
try	this	for	yourself,	these	templates	along	with	a	script	to	create	the	necessary
networks	are	available	in	the	final_deployment	folder	of	the	GitHub	repo	for	this
book	at:	https://github.com/johnbelamaric/openstack-appdev-book.

To	use	this	method	to	deploy	our	demo	application,	we	would	use	a	combination
of	two	AutoScalingGroups	(one	for	the	web	and	one	for	the	API	tier),	and	a
ResourceGroup	for	the	MySQL	tier.	The	user_data	portion	of	each	group	would
then	contain	the	configuration	commands	for	that	server	type	and	each	group
could	be	scaled	independently.	Scripts	like	this	generally	take	a	lot	longer	to	create
than	it	would	to	manually	provision	and	configure	an	environment	one	time.
Hopefully	though,	you	can	now	see	the	advantage	here	of	being	able	to
programmatically	recreate	everything	an	application	needs	at	the	push	of	a
button.	If	a	project	was	to	be	wiped	out,	or	a	dev/test	area	needed,	another
environment	could	be	instantly	created	and	put	to	work.

This	is	not	a	one	size	fits	all	solution.	The	choices	made	were	all	based	on	personal
preference,	ease	of	use,	and	the	requirements	of	the	demo	application	and
environment.	There	are	many	other	options,	and	when	deploying	your	own	cloud
application,	your	final	solution	will	likely	involve	different	choices	and	look	vastly
different.	This	is	to	be	expected.	Hopefully	though,	you	now	have	the	basic
knowledge	and	skills	to	make	those	choices,	and	script	the	deployment	of	your
own	cloud	based	application.

https://github.com/johnbelamaric/openstack-appdev-book


UPDATING	AND	PATCHING
There	are	times	when	you	will	deploy	an	application	and	your	work	is	essentially
done.	Applications	will	often	keep	themselves	up	to	date	via	automatic	update.
Modern	browsers	are	a	good	example	of	this.	Many	of	them	simply	check	for	an
update	on	startup,	download	the	patch	and	apply	it	before	starting.	Often	though,
applications	have	a	number	of	components	that	need	to	be	manually	updated
quite	frequently.	The	jQuery	library	within	many	web	based	application	is	a	good
example	of	this.	The	servers	themselves	may	also	need	to	be	patched.	Security
updates	for	exploits,	and	fixes	that	improve	performance	are	both	commonplace
in	any	company.

At	first,	it	may	seem	like	the	traditional	methods	should	simply	be	employed	here,
and	they	can	be.	Manually	updating,	and	rebooting	servers	will	definitely	patch
them.	Any	standard	methodology	for	promoting	code	changes	will	also	work.	Once
deployed,	an	OpenStack	backed	application	is	comparable	for	the	most	part	to	one
living	in	a	hardware	only	world.

The	minimal	cost	of	deploying	new	servers,	though,	and	the	ability	to
programmatically	script	networking	allows	for	some	unique	ways	handle	on-going
maintenance.

Patching	Options
If	you	work	within	a	larger	corporate	structure,	it’s	likely	that	some	kind	of
patching	mechanism	already	exists	for	you.	Allowing	even	a	few	machines	on	a
network	to	be	compromised	due	to	missing	security	updates	is	a	real	world
problem.	Even	if	you	are	in	this	situation	however,	it’s	unlikely	that	all	of	your
patching	will	be	taken	care	of	by	this	means.	Patches	for	specialized	software	for
your	application	and	updates	that	don’t	address	a	performance	or	security	issue
are	often	still	the	responsibility	of	devops.

One	option	for	patching	depends	on	your	configuration	management	choice.	If
you	opted	to	use	third	party	tools	like	Puppet	or	Chef,	their	centralized
administrative	features	can	make	patching	a	breeze.	They	both	allow	for	scheduled
updates,	and	as	was	mentioned	earlier,	remote	execution.	If	you	designed	your
application	with	multiple	regions	or	multiple	load-balanced	clusters	as	discussed
in	Chapter	5,	it	should	be	a	simple	matter	to	patch/reboot	one	region/cluster	at	a
time	and	avoid	any	down	time.

Ansible’s	remote	execution	ability	can	be	a	solid	solution	here	as	well.	Your
application	will	likely	contain	many	small	servers.	You	can	group	these	into
arbitrary	sets	in	an	Ansible	configuration	file	and	then	execute	update	commands
on	one	group	at	a	time.	This	is	a	good	way	to	avoid	both	downtime	and	the	need	to
re-provision	all	together.

OpenStack	doesn’t	provide	any	specific	first	party	tools	for	patching.	Instead,	the
components	we	have	already	discussed	can	be	used	and	Glance/Images	are



another	common	avenue	for	patching.	Though	still	not	recommended	as	a
complete	solution,	updated	images	are	frequently	available	and	can	be	used	to
handle	basic	OS	updates.	To	bring	a	system	to	compliance,	an	application	can
simply	be	re-deployed	in	part	or	in	total	with	these	new	images.

This	would	be	a	great	reason	to	include	the	image	as	a	parameter	in	your	Heat
template.	Running	the	following	command	could	then	update	all	of	the	servers
with	this	new	image:

$	heat	stack-update	test_stack	-f	test.yaml	-P	"image=CentOS64-Update2"

Of	course	this	may	re-provision	all	of	your	servers	at	once,	so	even	if	you	don’t
have	multiple	logical	clusters,	it	might	be	useful	to	split	your	servers	into	different
ResourceGroups	solely	for	patching	purposes.	This	way	it’s	possible	to	change	the
image	on	just	one	group	at	a	time:

$	heat	stack-update	test_stack	-f	test.yaml	-P	"group1_image=CentOS	

		64-Update2;group2_image=CentOS64-Update3"

CI/CD	in	an	OpenStack	World
No	modern	text	for	developers	(or	devops)	would	be	complete	without	at	least
some	mention	of	agile	methodology.	Its	tenants	are	pervasive	in	the	modern
workplace	and	technical	community.	The	need	to	frequently	release	updates,	to
A/B	test,	and	to	programmatically	test	the	codebase	of	an	application	as	part	of	a
deployment	are	all	challenging	aspects	of	CI/CD	(Continuous
Integration/Continuous	Delivery)	and	agile	philosophy	in	any	type	of
environment.	Fortunately,	with	OpenStack,	your	deployment	solution	can	actually
provide	some	unique	solutions	to	these	challenges.	Let’s	look	at	these	one	at	a
time.

The	first	requirement	here	is	for	frequent	releases.	If	you	are	migrating	an
application	to	the	cloud,	then	in	all	likelihood	your	current	mechanism	for
updating	production	code	will	continue	to	work.	This	can	be	handled	in	all	of	the
same	manners	discussed	previously	for	patching.	Once	an	application	has	passed
all	of	its	tests,	it	is	a	just	a	matter	of	contacting	any	of	OpenStack’s	APIs	such	as
Heat	or	Nova	to	provision	new	servers	and	tear	down	the	old	ones.	If	containers
are	your	virtualization	technology	of	choice,	you	will	almost	certainly	be	deploying
all	of	your	changes	in	this	manner.	If	not,	then	Ansible	or	similar	technology	can
also	be	used	remotely	execute	commands	on	batches	of	servers	to	update	code
from	a	central	repository.

OpenStack	presents	the	next	challenge	with	more	intriguing	solutions.	The	need
to	A/B	test	can	be	integral	to	making	informed	choices	in	an	application’s
evolution.	Traditional	methods	of	handling	this	include	buckets,	where	an
application	runs	several	different	versions	on	the	same	machine,	or	code	based
solutions	that	programmatically	present	different	options	to	different	users.	The
ability	to	actually	duplicate	portions	of	your	production	environment,	however,



can	allow	you	to	quickly	deploy	multiple	versions	of	the	application
simultaneously.	This	provides	a	complete	separation	of	the	codebase	A	from
codebase	B,	allowing	performance	comparisons	and	preventing	one	codebase
from	crashing	the	other.	Once	the	test	is	concluded,	A	or	B	can	then	be	torn	down
and	those	resources	dedicated	to	other	projects.

The	last	item,	application	testing,	which	usually	includes	unit	as	well	as	functional
tests,	also	has	some	unique	solutions	in	a	cloud-based	world.	Unit	tests	can	be	run
just	about	anywhere,	but	functional	tests	often	require	a	fully	functional
environment.	This	is	another	opportunity	to	use	your	deployment	script	to	create
another	working	environment	to	run	these	tests	in.	It’s	reasonable	to	picture	a
system	where	a	commit	hook	sets	off	a	call	to	create	an	environment,	tests	are	run,
results	are	published,	and	the	environment	is	then	torn	down.	Using	your
deployment	script,	template,	or	whatever	technology	chosen,	ensures	that	this	test
environment	can	perfectly	mimic	the	production	environment	and	is	never
affected	by	previous	tests.	It’s	even	possible	in	this	scenario	for	multiple	test
environments	to	be	running	multiple	versions	of	the	application	and	its	tests,	as
opposed	to	waiting	in	a	queue	for	a	single	dedicated	test	environment.

In	general,	OpenStack	should	make	both	CI/CD	and	patching	much	easier,	or	at
least	present	a	whole	host	of	solutions	that	were	unavailable	before.	Many	of	these
solutions	aren’t	specific	to	OpenStack	and	are	available	within	any	cloud
environment.	However,	your	deployment	solution	will	likely	be	very	OpenStack
specific,	and	will	impact	how	you	go	about	patching	and	updating	your
application/environment.	It	is	for	that	reason	that	this	chapter	is	concluded	with
this	discussion	on	maintenance.	It	is	one	last	thing	to	consider	before	settling	on	a
final	deployment	solution.



SUMMARY
If	you	have	been	in	the	role	of	a	developer	or	a	system	administrator,	making	all	of
the	necessary	choices	and	scripting	them	can	be	a	big	shift.	Bridging	these	two
worlds	comes	with	a	lot	of	benefit	though,	and	it	is	likely	to	be	the	way	things
move	going	forward,	since	these	benefits	often	arise	in	the	form	of	huge	cost
savings.	There	is	current	demand	for	devops	expertise	for	this	reason.	While	the
deployment	of	containers	and	third-party	development	will	continue	to	evolve,	the
fundamental	concept	of	provisioning	your	hardware	and	networking,	along	with
your	software,	is	here	to	stay	in	one	form	or	another.	The	fact	that	OpenStack	tries
to	provide	an	open-ended	platform	for	these	concepts	to	flourish,	makes	it	a	great
choice	regardless	of	which	technologies	end	up	winning	in	the	end.



BOOK	WRAP	UP
In	this	book	we	have	discussed	exactly	what	OpenStack	is	and	what	it	provides.
The	various	components	and	projects	that	comprise	the	bulk	of	OpenStack	have
been	described.	Examples	of	how	to	create	and	improve	applications	using	some
of	the	unique	aspects	of	the	cloud	have	been	covered.	We	have	also	provided
options	for	deploying	and	maintaining	these	applications,	all	of	which	will	help
you	get	started	using	OpenStack.

One	of	the	great	joys	of	working	within	an	OpenStack	backed	environment	is	the
ability	to	experiment	without	consequence.	You	can	lock	up	a	server	and	reboot	it
from	a	website	without	calling	down	to	the	server	room.	You	can	allocate	and	de-
allocate	assets	like	drive	space,	IP	addresses	and	databases	without	the	frustration
of	service	tickets.	Even	misconfiguring	a	server	to	the	point	where	it	is	unusable,
can	be	fixed	by	deleting	and	re-provisioning	it	in	seconds.	This	kind	of	self-service
infrastructure	is	at	the	heart	of	the	devops	movement	and	makes	learning
OpenStack	fun	and	exciting.	It	can	also	make	it	a	little	overwhelming.

The	sheer	breadth	of	what	can	be	accomplished	using	OpenStack	is	a	bit	daunting.
It’s	more	than	just	another	program	to	use	or	another	language	with	yet	another
way	of	writing	if	then	statements.	OpenStack	and	other	cloud-based	solutions
represent	a	fundamental	shift	in	how	the	web	is	created,	and	how	modern	web-
based	applications	are	designed.	It	requires	a	completely	new	skillset	as	well	as	the
ability	to	think	of	previously	physical	objects	like	servers,	and	networking
equipment	as	objects	in	a	software	program.	Even	the	names	of	these	things
themselves	can	get	overwhelming.	Sorting	out	the	Nova’s,	Neutrons,	Kilos,	and
Kubernetes	takes	both	time	and	dedication	as	well	as	some	interest	in	the	subject.

For	some,	this	may	come	naturally,	but	for	most	of	us	it	takes	a	lot	of
experimentation,	failure,	and	well…more	failure.	Mastery	comes	with	its	own
rewards,	and	in	the	case	of	OpenStack,	it	can	allow	you	to	do	things	that	you	have
wanted	to	do	for	years	and	give	you	control	over	your	environment	in	a	way	that
you	have	never	had	before.

In	addition	to	this	book,	there	are	a	number	of	resources	to	help	you	gain	this
mastery.	First	and	foremost,	the	web	is	full	of	tutorials,	blogs,	and	API
documentation	for	OpenStack.	Some	sites	you	might	find	useful	in	your	journey:

https://www.openstack.org/:	The	central	hub	for	all	things	OpenStack,	and
worth	exploring	even	if	you’re	not	looking	for	an	answer	to	a	specific	question.

http://developer.openstack.org/api-ref.html:	One	of	several	API	references
available.	It	always	seems	to	be	missing	a	few	things,	but	is	updated	frequently
and	is	probably	your	best	bet	for	API	documentation	and	examples.

https://developer.rackspace.com/blog/:	Rackspace	continues	to	provide	great
up	to	date	tutorials	and	interesting	discussions	on	all	topics	OpenStack.

https://wiki.openstack.org:	Covers	great	descriptions	of	all	of	the	major

https://www.openstack.org/
http://developer.openstack.org/api-ref.html
https://developer.rackspace.com/blog/
https://wiki.openstack.org


projects,	and	is	a	good	place	to	start	if	you	want	to	dig	deeper	into	any
individual	component.

If	you	want	to	go	beyond	the	web,	more	and	more	classes	and	physical	world
resources	are	becoming	available	as	OpenStack	adoption	increases.	Another	major
avenue	to	increase	your	OpenStack	knowledge	and	expertise	might	be	one	of	the
semi-annual	conferences	held	all	over	the	world.	You	can	see	where	these	are
being	held	at:	https://www.openstack.org/summit/.

Sharing	your	experiences	with	OpenStack	and	participating	in	the	community	is
also	a	great	gateway	of	actually	contributing	to	OpenStack.	This	can	be	as	simple
as	providing	documentation	on	a	missing	method	or	value,	or	as	complex	as
providing	a	patch	for	the	next	major	release.	Exactly	how	much	you	want	to	get
involved	is	up	to	you,	but	doing	so	can	be	rewarding	and	is	an	exciting	part	of
what	it	means	to	utilize	open	source	software.

In	the	end,	OpenStack	is	about	choice:	the	choice	of	how	to	implement	it,	the
choice	of	how	to	use	it,	and	the	choice	of	how	to	participate	in	its	lifecycle.	This,
more	than	anything	else,	is	what	makes	OpenStack	a	unique	offering	in	a
surprisingly	crowded	field.	Now	go	and	use	OpenStack	to	build	the	next	great
success	story!

https://www.openstack.org/summit/
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