

Building and Managing the Metadata Repository: A Full

Lifecycle Guide

by David Marco ISBN: 0471355232

Clearly and cogently, Marco demystifies the design and use

of data dictionaries in a business environment.

Table of Contents

 Building and Managing the Meta Data Repository: A Full Lifecycle Guide

 Foreword

 Introduction

 Part I Laying the Foundation

 Chapter 1 - Introducing Meta Data and Its Return on Investment

 Chapter 2 - Meta Data Fundamentals

 Chapter 3 - Meta Data Standards

 Part II Implementing a Meta Data Repository

 Chapter 4 - Understanding and Evaluating Meta Data Tools

 Chapter 5 - Organizing and Staffing the Meta Data Repository Project

 Chapter 6 - Building the Meta Data Project Plan

 Chapter 7 - Constructing a Meta Data Architecture

 Chapter 8 - Implementing Data Quality through Meta Data

 Chapter 9 - Building the Meta Model

 Chapter 10 - Meta Data Delivery

 Chapter 11 - The Future of Meta Data

 Appendix A - Tool Evaluation Checklist

 Appendix B - Meta Data Project Plan

 Appendix C - DDL Sample Model Code

 Glossary

TE
AM
FL
Y

Team-Fly®

Building and Managing the Meta Data

Repository: A Full Lifecycle Guide
David Marco

Wiley Computer Publishing

John Wiley & Sons, Inc.

New York • Chichester • Weinheim • Brisbane • Singapore • Toronto
Publisher: Robert Ipsen

Editor: Robert M. Elliott

Managing Editor: John Atkins

Associate New Media Editor: Brian Snapp

Text Design & Composition: North Market Street Graphics

Designations used by companies to distinguish their products are often claimed as trademarks. In

all instances where John Wiley & Sons, Inc., is aware of a claim, the product names appear in initial

capital or ALL CAPITAL LETTERS. Readers, however, should contact the appropriate companies

for more complete information regarding trademarks and registration.

Copyright © 2000 by David Marco. All rights reserved.

Published by John Wiley & Sons, Inc.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form

or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except

as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the

prior written permission of the Publisher, or authorization through payment of the appropriate

per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)

750-8400, fax (978) 750-4744. Requests to the Publisher for permission should be addressed to the

Permissions Department, John Wiley & Sons, Inc., 605 Third Avenue, New York, NY 10158-0012,

(212) 850-6011, fax (212) 850-6008, E-Mail : <PERMREQ@WILEY.COM.>

This publication is designed to provide accurate and authoritative information in regard to the

subject matter covered. It is sold with the understanding that the publisher is not engaged in

professional services. If professional advice or other expert assistance is required, the services of a

competent professional person should be sought.

Library of Congress Cataloging-in-Publication Data is available from publisher.

ISBN 0-471-35523-2

10 9 8 7 6 5 4 3 2 1

Advance praise for David Marco's Building and Managing the Meta Data Repository: A Full

Lifecycle Guide

"David Marco's book provides the pragmatic view of a consultant who has earned his stripes in the

trenches and the predictions of the visionary. As organizations begin to understand the importance

of meta data to the cost-effective management of the enterprise, this book will be invaluable to the

novice, to the manager, and to the IT professional. Even if your organization is not yet ready to

define an enterprise-wide meta data strategy, this book will provide readers with the concepts

required to enable them to assess how their plans today can help or hinder their path to the

knowledge-enabled enterprise."

Katherine Hammer

President & CEO

Evolutionary Technologies International

Co-Chair of the Meta Data Coalition

Author of Workplace Warrior

"This is the first book to tackle the subject of meta data in data warehousing, and the results are

spectacular. Even though 'meta data' is one of those topics that can bring confused looks to even

knowledgeable technologists, David Marco has written about the subject in a way that is

approachable, practical, and immediately useful. Building and Managing the Meta Data Repository:

A Full Lifecycle Guide is an excellent resource for any IT professional."

Steve Murchie

Group Product Manager

Microsoft Corporation

"David Marco, a meta data guru, has yet again demonstrated his mastery of the topic in this new

book— a must-read for those wanting to understand the strategic importance and implementation of

a meta data repository. He addresses the critical issues with laser-focused principles and practical

solutions."

Charlie Chang

Senior Vice President

Informix Software

"If you believe that meta data is the glue that holds a data warehouse together, then this book is the

key ingredient that data warehousing managers need to make their projects stick. Like good meta

data, the information in this book is accurate, comprehensive, and understandable. It should be

required reading for data warehousing developers."

Wayne Eckerson

Director of Education and Research

The Data Warehousing Institute

"Meta data is one of the critical success factors for a successful data warehouse. Its implementation

has eluded most organizat ions because they have no clear direction of how to make it happen.

David Marco's book sets that direction and is a blueprint for implementation."

Sid Adelman

President

Sid Adelman & Associates

"Meta data management is key to the future success of eBusiness. Marco's book is packed with

practical experience. Everyone considering or implementing a meta data strategy for data

warehousing, business intelligence, or eBusiness should have this book on their desk."

G. Allen Houpt

Business Manager, Knowledge Management

Computer Associates International, Inc.

"I thank God for blessing me in every way a person can be."

David Marco

February 8, 2000

Acknowledgments

Several people deserve my gratitude for their hard work in making this book a reality. In particular, I

would like to thank the following individuals for their help and support throughout this endeavor:

§ Sid Adelman, Adelman & Associates

§ Mark Cooper, Federal Express

§ Jon Geiger, Intelligent Solutions

§ Kiumarse Zamanian, Informatica

I was also fortunate to have an outstanding pair of "Mikes" working with me on this effort:

§ Mike Jennings, Hewitt Associates

§ Mike Needham, Enterprise Warehousing Solutions, Inc.

Mike Jennings is one of the brightest people in this industry, and he did an outstanding job worki ng

with me on the data quality and data delivery chapters. Mike is a fantastic writer, a great

technologist, and an even better person. Second is Mike Needham, a truly exceptional technical

architect and data modeler. His work on the chapters on meta data modeling and meta data tool

evaluation is without peer.

I would also be remiss if I did not thank several people who have made a tremendous difference in

my professional career. From the first person who thought that one of my articles was worth

publishing, to the first person who thought I was qualified to go to a conference and speak to their

membership about data warehousing, I thank them all for their support:

§ Bill Inmon, Pine Cone Systems

§ Frank McGuff, Informix

§ Ron Powell, DM Review

§ Jean Schauer, DM Review

Last I'd like to thank the entire team at John Wiley & Sons, and specifically I'd like to express my

deepest gratitude to my editor, Bob Elliott, who from day one has always believed in this project and

my ability to make it happen. He has contributed to making this book the very best that it can be.

Bob is simply the best editor there is.

Foreword

In the beginning were punch cards and paper tape. Then came disks and random

access. Databases soon appeared, followed by online applications. Next we had

spider web environments, which led to data warehouses. From warehouses came

data marts, operational data stores, and exploration warehouses.

Each form of information processing led to another more sophisticated form. And

eventually these forms of processing grew into a framework called the corporate

information factory.

But cohesion across the different forms of processing was not so easily achieved.

Each form of processing had its own objectives and techniques, most of which were

peculiar to itself. Trying to create and maintain a sense of unity across the different

forms of information processing was very difficult to do.

The only hope for enterprise-wide cohesion lies in meta data. But meta data is an

illusive topic because it comes in so many forms. Each form of processing in the

enterprise— in one way or another— has its own form of meta data. But meta data for

magnetic tapes is quite different than meta data for near line storage, which in turn is

different from meta data for data marts, and so forth. In addition, meta data that

needs to connect a data warehouse with an ODS is different from meta data that is

found in an ETL.

What we need is a little order and organization around here. If we are ever to

achieve integration and harmony across the enterprise, the starting point surely is

meta data.

But trying to come to grips with meta data is like trying to wrestle an octopus.

Underwater. Holding your breath. There simply are so many facets that achieving

progress becomes a very difficult thing to do. Drowning is a distinct possibility.

David Marco's book represents a milestone effort in attempting to confront the beast.

From the conceptual to the mundane, David comes to terms with the many facets of

meta data. The willingness to face first one aspect and then another sets David apart

from unidimensional efforts to date that have addressed one or maybe two aspects

of meta data, usually from the perspective of a given tool.

For a modern look at meta data, read what David Marco has to say.

— W.H. Inmon

Chief Technology Officer;

Pine Cone Systems

Introduction

Overview
When we first started building computer systems in the 1950s and 1960s, we realized that

a "bunch of stuff" (knowledge) was needed to build, use, and maintain these systems. But

we didn't know how to integrate this computer system's knowledge with "the other stuff"

we needed to know about the markets and industries that we were competing in.

Fortunately, over time we learned that what our information systems needed was data

about the business data we were using. In other words, we needed meta data.

When we talk about meta data, we are really talking about knowledge. Knowledge of our

systems, business, competition, customers, products, and markets. In our era such

knowledge can provide the competitive edge that determines business success or failure.

In this era, more than ever before, companies must be smarter than their competitors in

order to survive and, hopefully, thrive. Meta data can provide a very real competitive edge,

but only if we thoroughly understand it and know how to use it effectively.

How This Book Is Organized

When I purchase a book on information technology (or any other subject, for that matter) I

look for several things, but mostly, I look for a book that I can personally connect with ...

one that both entertains and teaches. I also look for a book that gives me solid, practical

advice along with its theoretical foundation. I particularly look for information that can be

gained only through experience— if a book can teach me even one useful lesson or

prevent a possible mistake on one of my projects, then it is worth its weight in gold. In

writing this book, I've tried to keep my own preferences in mind, offering readers a solid

foundation in meta data (without assuming pre-existing knowledge of the topic) and

drawing on my years as a consultant to provide practical and useful information.

In addition to providing a foundation for understanding meta data, Part One of this book

discusses the specific value that meta data can bring to an organization; that is, how meta

data can help a company to increase revenue or decrease expenses. This information

should be particularly useful for anyone trying to sell the concept of meta data to

executive -level management. Part One also examines some of the major trends that are

affecting the meta data industry, such as the ongoing standards battle and the

emergence of Extensible Markup Language (XML). Meta data is inarguably one of the

fastest-changing areas of information technology, and it is crucial to understand (as much

as possible) the changes that are coming down the road so that we can build repositories

that are flexible enough to adapt to these changes.

In Part Two, I focus on how to implement a meta data repository, providing the details on

planning an appropriate architecture, staffing a repository team, building a meta data

model, and choosing the necessary meta data tools. This section also includes detailed

information on using meta data to ensure the quality of the data in your data warehouse

and data marts and for generating useful information from the repository and decision

support system (DSS).

We all know that truth can be stranger than fiction and that real life is often funnier than

any fictional comedy. Some of the "war stories" that I've included in Parts One and Two of

the book may convince you that decision support and meta data repository projects are

often stranger and funnier than fiction too. Many of these stories provide some

entertaining moments, but all of them are intended to teach what to do and at other times

what not to do.

Who Should Read This Book

Meta data repositories can provide tremendous value to organizations if they are used

appropriately and if everyone understands what they can, and can't, do. "Everyone," of

course, is a broad term, but specifically, the following indivi duals are likely to benefit from

reading all or at least parts of this book:

§ Business Users. A meta data repository can significantly increase the

value of information residing in decision support and operational

systems because it provides a semantic link between the information

technology (IT) systems and business users. When business users

understand how to use meta data effectively, they have more

confidence in the accuracy and completeness of the decision support

information and are more likely to rely on it for strategic business

decisions.

§ IT Managers. IT managers can use a meta data repository to deliver

significantly more value to the business units that they support and to

ensure the quality of the information in the data warehouse, thereby

helping business users and executive management make solid

decisions based on accurate, timely information. In addition, a repository

can make an IT development staff more productive and reduce

development costs for the department.

§ Developers. Developers need to learn the key tasks for implementing a

meta data repository project. These tasks include physical meta data

modeling, project plan development, program design, meta data tool

evaluation metrics, meta data access techniques, and advanced

technical architecture design.

§ Project Sponsors. These individuals need to understand how meta

data can benefit an organization so they can sell the concept to

executive management. Underestimating the scope of a repository

project is one of the primary reasons for the failure of such projects, and

sponsors need a clear understanding of meta data and its potential

return on investment (ROI) to ensure ongoing levels of funding and

personnel as well as the initial project commitment. Without this

understanding, sponsors cannot be effective advocates for meta data.

About the Web Site
This book will be accompanied by the Web site www.wiley.com/compbooks/marco.

This free Web site will have links from the various meta data integration and access tools

vendors, plus other meta data related features. In addition, all readers of this book are

encouraged to sign up for a free subscription to Real-World Decision Support (RWDS) at

www.EWSolutions.com/newsletter.asp. RWDS is an electronic newsletter dedicated to

providing informative, vendor-neutral, real-world solutions to the challenges of

implementing decision support systems and meta data repositories.

Part I: Laying the Foundation

Chapter List
Chapter 1: Introducing Meta Data and Its Return on Investment

Chapter 2: Meta Data Fundamentals

Chapter 3: Meta Data Standards

Chapter 1: Introducing Meta Data and Its Return on

Investment

Overview

Before deciding to build a meta data repository, you need to fully understand what meta

data is and isn't, and what value a meta data repository can bring to your organization. In

this chapter, we look briefly at the history of meta data and then move quickly to examine

why it is needed and how it can provide competitive advantages to businesses that use it

wisely.

In the Beginning

Information technology (IT) is still in its infancy and, like an infant, growing at an incredibly

rapid pace. Worldwide spending for IT was forecasted to be $2.2 trillion in 1999, and is

expected to climb to $3.3 trillion by 2002. The growth is even more apparent if we step

back and look at the past. The first general purpose electronic computers were created in

the late 1940s, and only a little more than 20 years ago we were still programming with

punch cards. (Many of us still have nightmares about dropping our punch cards and

having to put them back in order!)

Today, our industry is in the crawling stage of development. Computers have changed

virtually every aspect of our lives, but we're still just learning to walk.

Information Technology Begins to Walk

Our existing IT systems are sophisticated enough to run our day -to-day business

transactions for our companies. If our businesses were static entities, this would be

enough. But we all know that business is anything but static. Businesses change

continually in response to social, technical, political, and industrial forces. Because our

companies are controlled by our IT systems, these systems must change accordingly, or

our companies will not be able to respond to the many and varied market forces.

Unfortunately, our computer systems are anything but changeable. In fact, we have built

systems that are nothing more than islands of data and are about as easy to change as it

is to move an island. This is true of even our most sophisticated systems. It's easy to

understand how this happened. Think back to the late 1970s and early 1980s. Data

storage was very expensive, and IT developers were relatively cheap, so we, the

"brilliant" programmers, decided to save storage space wherever we could, even if we

knew that doing so made the IT system more cumbersome to maintain or could cause

problems in the future. The most obvious example of attempting to conserve storage

space was using two digits for the year/date field. When we did this we never expected to

TE
AM
FL
Y

Team-Fly®

be using these same IT systems in the new millennium. We firmly believed that "in 20

years we'll have replaced this old system with a shiny new one." Boy, were we wrong!

The task of building new and better systems was more difficult than we ever anticipated.

The problem I just mentioned is obviously the infamous Year 2000 (Y2K) issue that we

have heard and read so much about. Y2K clearly illustrated that our systems do not easily

adapt to change. It also helped us to realize that we don't understand the data in our

systems or our business processes. But we do know that in order for our systems to

support our business needs, we must have a better understanding of our data, and better

control of our systems so as to be able to adapt them for our ever-changing business

requirements. Fortunately, as our industry grows older, it also grows wiser. We now see

that meta data offers an answer to these needs, and it is now garnering the industry

attention that it so richly deserves.

Defining Meta Data
The most simplistic definition of meta data is data about data. I have always had

problems with this definition because it does not truly encapsulate the full scope

of meta data. In Chapter 2, Meta Data Fundamentals, I will provide a detailed

definition of meta data, but for now let's start with this short definition:

Meta data is all physical data and knowledge-containing information about

the business and technical processes, and data, used by a corporation.

Now let's expand this definition a little further.

Meta data is all physical data (contained in software and other media) and

knowledge (contained in employees and various media) from inside and

outside an organization, including information about the physical data,

technical and business processes, rules and constraints of the data, and

structures of the data used by a corporation.

When we talk about meta data, we are really talking about knowledge. We are

talking about knowledge of our systems, of our business, and of our

marketplace. On the other hand, when we talk about a meta data repository, we

are talking about the physical database tables used to store the meta data that

will be delivered to its business and technical users (see Figure 1.1). While the

physical implementation of a meta data initiative requires many activities, the

meta data repository is the backbone of the physical implementation.

Figure 1.1: Meta data interaction.

Meta Data— The Beginnings
Many people believe that meta data and meta data repositories are new concepts, but in

fact their origins date back to the early 1970s. The first commercial meta data repositories

that appeared then were called data dictionaries. These data dictionaries were much

more data focused than knowledge focused. They provided a centralized repository of

information about data, such as definitions, relationships, origin, domain, usage, and

format. Their purpose was to assist database administrators (DBAs) in planning,

controlling, and evaluating the collection, storage, and use of data. For example, early

data dictionaries were used mainly for defining requirements, corporate data modeling,

data definition generation, and database support.

One of the challenges we face today is differentiating meta data repositories from data

dictionaries. While meta data repositories perform all of the functions of a data dictionary,

their scope is far greater (see Figure 1.2).

Commercial Evolution of Meta Data

Computer aided software engineering (CASE) tools, introduced in the 1970s, were

among the first commercial tools to offer meta data services.

Figure 1.2: 1970s: Repositories masquerading as data dictionaries.

CASE tools greatly aid the process of designing databases and software applications;

they also store data about the data they manage. It didn't take long before users started

asking their CASE tool vendors to build interfaces to link the meta data from various

CASE tools together. These vendors were reluctant to build such interfaces because they

believed that their own tool's repository could provide all of the necessary functionality

and, understandably, they didn't want companies to be able to easily migrate from their

tool to a competitor's tool. Nevertheless, some interfaces were built, either using vendor

tools or dedicated interface tools (see Figure 1.3).

Figure 1.3: 1980s: CASE tool–based repositories.

In 1987, the need for CASE tool integration triggered the Electronic Industries Alliance

(EIA) to begin working on a CASE data interchange format (CDIF), which attempted to

tackle the problem by defining meta models for specific CASE tool subject areas by

means of an object-oriented entity relationship modeling technique. In many ways, the

CDIF standards came too late for the CASE tool industry.

During the 1980s, several companies, including IBM, announced mainframe-based meta

data repository tools. These efforts were the first metadata initiatives, but their scope was

limited to technical meta data and almost completely ignored business meta data. (See

Chapter 2, Meta Data Fundamentals, for a detailed discussion of business and technical

meta data.) Most of these early meta data repositories were just glamorized data

dictionaries, intended, like the earlier data dictionaries, for use by DBAs and data

modelers. In addition, the companies that created these repositories did little to educate

their users about the benefits of these tools. As a result, few companies saw much value

in these early repository applications.

It wasn't until the 1990s that business managers finally began to recognize the value of

meta data repositories (Figure 1.4).

Figure 1.4: 1990s: Decision support meta data repositories.

The meta data repositories of the 1990s operated in a client-server environment rather

than on on the traditional mainframe platform that had previously been the norm. The

introduction of decision support tools requiring access to meta data reawakened the

slumbering repository market. Vendors such as Rochade, RELTECH Group, and

BrownStone Solutions were quick to jump into the fray with new and exciting repository

products. Many older, established computing companies recognized the market potential

and attempted, sometimes successfully, to buy their way in by acquiring these pioneer

repository vendors. For example, Platinum Technologies purchased RELTECH,

BrownStone, and LogicWorks, and was then swallowed by Computer Associates in 1999.

As Figure 1.5 indicates, meta data repository technology has come a long way in the past

40 years.

Figure 1.5: Evolution of meta data and meta data repositories.

Aliases

Over the years meta data repositories have had many aliases. The terms information

library, data dictionary, and information directory have all been used to refer to the same

thing— a meta data repository. Similarly, the teams that build and administer meta data

repositories are known by many names too, including:

§ Central architecture team

§ Data administration team

§ Data architecture team

§ Data management team

§ Data resource management team

§ Information architecture team

For our purposes we'll simply call ourselves the "Meta Data Repository team."

Factors Shaping Today's Meta Data Market

Three major factors are shaping the current state of the meta data market:

§ Myths and misunderstandings

§ Shortage of professionals with real-world experience

§ Complex integration architectures

Myths and Misunderstandings

In the meta data industry, a great deal of misleading marketing comes from consultants

and software vendors alike. I remember hearing a consulting vendor give a presentation

to a large consumer electronics company, in which he proposed building a meta data

repository using only three data entry people to type static hyper text markup language

(HTML) into a Web page. This type of solution is no solution at all. It's purely a manual

effort that is likely to provide limited, short-term value, and virtually no long-term value.

(Fortunately I knew the company managers very well and was able to dissuade them from

adopting this solution.) It pays to be wary of vendors who are promising a quick fix!

Many vendors claim that their product or suite of products is a meta data solution (and in

their limited definition of meta data, this may be true). These types of solutions generally

do a credible job of capturing the meta data used in the vendor's products, but not meta

data from sources outside these product suites.

Shortage of Professionals with Real-World Experience

One of the biggest challenges facing chief information officers (CIOs) and IT directors

today is attracting and retaining qualified IT personnel. The need for qualified IT

professionals is growing at a tremendous rate, with worldwide IT spending expected to

reach $3.3 trillion by 2002. Many companies are justifiably concerned about locating

talented IT people as we experience our most severe workforce shortage ever.

A study by International Technology of America discovered that we currently have a

negative 10 percent unemployment rate in IT— meaning that as an industry, we're unable

to fill 10 percent (about 346,000 specific jobs) of the available positions with qualified

people.

Meta data repository teams are particularly hard-hit by the personnel shortage. The

demand for experienced project managers and repository architects is very high, and the

number of qualified people is all too low. This situation presents a difficult challenge for

any organization attempting to build a meta data repository or extend its existing data

warehouse with such a repository.

Complex Integration Architectures

Today's meta data integration architecture does not involve seamlessly integrated

products. Instead, it is composed of a series of proprietary vendor products that use the

IT equivalent of chewing gum, string, and paper clips to link to one another. Two major

initiatives on the horizon do, however, hold hope for resolving this integration issue in the

future. One effort is headed by the Meta Data Coalition (MDC) and the other by the Object

Management Group (OMG). Both are attempting to define an industry standard version of

the meta models. A broadly supported set of meta models would enable data

warehousing products from different vendors to share data and information. If successful,

these standard models would provide the data warehousing market with an open,

common infrastructure across all data warehouse tool vendors. In Chapter 4,

Understanding and Evaluating Meta Data Tools, we examine both of these efforts in

detail.

Until a standard is established, however, and software vendors adopt and implement it, a

complex integration strategy is required to bring the various sources of meta data

together. The issue of meta data integration is one of the primary factors that is

preventing many organizations from achieving successful data warehouse and data mart

implementations.

Why Meta Data Is Needed

Several factors have triggered the need for meta data in businesses today. These include

the following:

§ Current systems are inflexible and nonintegrated.

§ Existing data warehouses and data marts need to grow.

§ Business users' needs are not being fulfilled.

§ Companies need to reduce the impact of employee turnover.

§ Businesses need to increase user confidence in data.

Inflexible and Nonintegrated Systems

Global competition, changing distribution channels, and ever-growing consumer

demands are forcing companies to reevaluate and change the methods they use to

compete. As a result, businesses are demanding more functionality and shorter

development cycles from their IT departments to attain and maintain a competitive

advantage in the marketplace. These demands have forced chief information officers and

IT directors to take a much closer look at their organizations' information systems.

In the vast majority of cases, this investigation reveals that the great majority of systems

were built as "stovepipe" applications. Stovepipe applications form their own system

islands and do not communicate easily with each other. Often, these islands have their

own hardware platforms, databases, and development languages. As a result, when a

systems change is needed in a particular application, it is exceedingly difficult to

anticipate and manage the downstream effects of this change on other systems. I recall a

situation several years ago in which a company had made a minor change to a field

length in its logistics system. Unfortunately, the developers were not aware that the table

they had modified was being used by the inventory management system to calculate the

company's ability to fulfill future customer orders. This minor table modification triggered

errors in the interfaces between the logistics system and the inventory management

system, causing the inventory management system to lose all data on future overseas

shipments. Because this error occurred in production, the company was forced to inform

its customers that it could not fulfill their orders as scheduled. Needless to say, this

situation is not good for business!

We are all aware of the Year 2000 (Y2K) problem. When we stop to think about it, Y2K is

merely a date field that was designed without proper regard for future requirements. The

solution to the problem is merely a change in a field's length to hold a four-digit year (e.g.,

2000). When we consider the problem in these terms, it doesn't appear to be highly

significant. So, how significant is this problem? Federal Reserve Chairman Alan

Greenspan estimated that businesses spent several hundred billion dollars trying to fix

the computer glitch. David Wyss, chief economist of consultants Standard & Poor's DRI,

was quoted by Rich Miller in USA Today as saying the computer bug could reduce

economic growth by $66 billion in a two-year span (i.e., 1999 and 2000). So much for an

insignificant problem. Personally, I was happy that the Y2K issue occurred, because it

revealed the inflexibility of our existing systems' architectures.

Similarly, the current mergers and acquisitions craze also helps to illuminate the

weaknesses in our systems architectures. Corporations look for merger and acquisition

opportunities to enhance shareholder value. The concept is that a sound merger or

acquisition offers a quick and easy method of enhancing a company's core strengths or of

correcting weaknesses. Mergers or acquisitions enable companies to avoid substantial

internal capital outlay and costly start-up business phases and often allow them to reduce

IT spending by consolidating their IT infrastructure and resources. These concepts are

solid, but the task of achieving IT economies of scale is easier said then done. Because

there is remarkably little information about a company's systems (i.e., its meta data), the

task of integrating the systems with another firm's applications is extremely challenging.

To understand the system impact of a Y2K change requires a careful analysis of the

current operational and decision support systems (DSSs). A meta data repository

significantly reduces both the time and cost of analysis and development by documenting

the data transformation rules, data sources, data structures, and context of the data in the

data warehouse and data marts. This information is critical because without the repository,

the transformation rules often reside only in the IT staff's collective memory. Because the

results of the analysis and developmental changes are captured and retained in the meta

data repository, the benefits are long-lasting, helping to reduce the costs of future

releases and the likelihood of developmental errors.

Growth of Existing Data Warehouses and Data

Marts

Meta data provides a corporation's IT department with the ability to maintain and grow its

systems over time. During the past several years, many companies have built decision

support systems to help them make better strategic decisions. And, although there is no

question of the value of these decision support systems, their proliferation puts a great

deal of stress on an organization's IT department. Decision support systems and the data

warehouses that typically serve as their foundations are organic structures; they grow

very quickly and in directions that are difficult (or even impossible) to predict, which

makes the IT department's task of maintaining and extending them very difficult.

Decision support systems and their underlying data warehouses and data marts are likely

to continue to grow in size and complexity as corporations become more

customer-focused and demand a better understanding of their competitors and their

customer base in order to reach sound strategic decisions.

The proliferation of decision-support systems across all enterprises caused the average

data warehouse budget to increase by 150 percent (see Table 1.1) from 1996 to 1998.

And, the Palo Alto Management Group projects that the decision support market will grow

to $113 billion by the year 2002.

Table 1.1: Data Warehouse Project Budgets

COMPANY

SIZE

1996

ACTUAL

1997

ACTUAL

1998

ACTUAL

$10M to

<$100M

$1,145 $450 $2,110

$100M to

<$500M

$890 $1,415 $3,820

$500M to <$1B $2,065 $1,950 $3,780

$1B to <$5B $2,535 $1,845 $5,105

$5B to <$10B $2,905 $2,780 $7,225

>$10B $3,970 $4,155 $6,370

Source: META Group

Increasing Data Warehouse Size

Data warehouses and data marts do not shrink over time; they only grow. As the

databases that manage these systems grow in size, the need for meta data to help

manage that data also increases because it is vital for showing what data is used most

often and for locating dormant data (i.e., data in the database that is not accessed). The

average data warehouse size jumped from 216GB (gigabytes) in 1997 to 834GB in 1998.

This trend is not likely to slow down as business users continue to demand more and

more detailed analysis. In addition, many data warehouses are being used for click

stream analysis, which requires storage of a tremendous amount of data. Click stream

analysis is the examination of the manner that a user accesses a company's Web site.

The data warehouse stores all of the user's clicks, which are then analyzed to identify

usage patterns.

Companies have stated that they expect to have an average data warehouse size of

1.6TB (terabytes) by the end of 1999 (see Table 1.2). Even today we are hearing about

companies that are planning to store 100TB by the year 2001. With ever-increasing user

TE
AM
FL
Y

Team-Fly®

demands, and improved hardware and relational database technology, we can expect to

see the first 1PB (petabyte) data warehouse go online before long.

Table 1.2: Data Warehouse Database Size

SIZE IN

GB

1996

ACTU

AL

1997

ACTU

AL

1998

ACTU

AL

1999

PLANNE

D

<10 36% 40% 14% 5%

10 to

<100

31% 29% 33% 14%

100 to

<250

13% 12% 13% 22%

250 to

<500

6% 4% 9% 8%

500 to

<1,000

7% 5% 12% 21%

>1 TB

(terabyt

e)

6% 10% 19% 30%

Source: META Group

Increasing Number of Data Warehouse Users

As data warehouse database size increases dramatically, so too does the number of

business users (see Table 1.3). As the decision support industry matures, we find that

more and more business users need valid, timely information— and those needs continue

to increase rapidly. Business usersare just now beginning to understand the potential

benefits of decision support systems, and as that understanding grows, so too do their

demands for information.

Table 1.3: Data Warehouse Users

NUMBER

OF

USERS

1996

ACTU

AL

1997

ACTU

AL

1998

ACTU

AL

1999

PLANN

ED

<10 30% 36% 17% 3%

10 to 49 25% 29% 26% 12%

50 to 99 15% 13% 22% 19%

100 to 499 16% 13% 27% 35%

500 to 999 4% 4% 7% 16%

Table 1.3: Data Warehouse Users

NUMBER

OF

USERS

1996

ACTU

AL

1997

ACTU

AL

1998

ACTU

AL

1999

PLANN

ED

>1,000 10% 5% 1% 14%

Source: META Group

Poor Decision Support Architecture

Meta data allows corporations a much greater level of knowledge about their decision

support architecture. This information enables companies to make better architectural

decisions and add greater flexibility to change their decision support systems.

When the decision support movement took hold in the early 1990s, many companies built

independent data marts without the proper data warehouse architecture to support these

marts over time. Companies tried to build their decision support systems in the least

expensive manner possible, eliminating many of the up-front steps that are necessary to

understand the data as it exists beyond the walls of their individual departments. In

addition, in order to sell the concept of building independent data marts, many vendors

used the fact that they are easier to implement. The lack of thorough analysis and

long-term planning prevented independent data marts from providing an effective and

sustaining business intelligence system. All too often, companies built their decision

support systems on this architecture that cannot be properly scaled to meet business

users' ever-increasing needs.

When these companies attempt to scale (grow) these flawed architectures, they realize

that a major development effort is necessary to restructure their decision support system.

This effort is greatly simplified when meta data exists.

Building a well-designed and scalable business intelligence system is a complex task that

requires sophisticated software, expensive hardware, and a highly skilled and

experienced team. Finding data warehouse architects and project leaders who truly

understand data warehouse architecture is a daunting challenge, both in the corporate

and consulting ranks. In order to build a data warehouse, a corporation must truly come to

terms with its data and the business rules that apply to that data. While this task is

challenging, it is a necessary step and one upon which the true value of the decision

support process depends.

Unfulfilled Needs of Business Users

The reason we exist as IT professionals is to meet the informational needs of our

business users. As an industry, we have been less successful than we would like. I

remember that during a plane flight I was reading a survey that asked chief executive

officers (CEOs), "Do you feel your IT systems meet the needs of your business?"

Eighty-four percent of CEOs felt that their IT systems did not meet the needs of their

businesses. As an IT consultant for more than 12 years, I was truly hurt by this statistic.

(In truth, my first impulse was to reach for the airsick bag!) Fortunately, these same CEOs

were also asked, "Do you feel your IT systems are important?" Eighty-five percent said

"Yes, they are important." Across the board, our systems are not meeting the needs of

our business users. These numbers also point to a major trend in our industry: Business

executives are forcing CIOs to pay greater attention to the value that IT brings to a

business.

Mergers and acquisitions are also fueling the need for IT systems to speak to their

business users in business terms. When companies merge or one

Learning the Hard Way

A large insurance company headquartered in the Midwest relied on a consulting vendor

to build its corporate decision support system. Unfortunately, the vendor built the

system with little regard to sound architecture. Within a year, the insurance company's

decision support manager had accumulated a long list of system modifications and

enhancements requested by the business users. Because of the poor architecture and

the lack of meta data, the manager could not modify the system. At that point, the

company hired me to completely rebuild its decision support system.

Because business users were still relying on the decision support system, we had to

maintain the integrity and accuracy of all the existing reports. The facts that (1) there

was no meta data of any sort to work from and (2) the consultants who initially built the

system had failed to transfer any knowledge to the client compounded the problem

immeasurably. We had only one option for identifying the business rules: print out every

program and manually walk through every line of code. This task was incredibly

time-consuming and tedious, requiring the full-time efforts of four developers over the

course of three and a half months just to document about 90 percent of the business

rules. We discovered the remaining 10 percent of the rules after a long, drawn-out

parallel testing effort. The testing effort required four months to achieve two consecutive

clean, parallel system runs.

I believe that if the original data warehouse development team had populated a meta

data repository, we could have generated a variety of impact analysis reports that would

have let us reduce the design time by more than 70 percent. We also would have had a

much more accurate design that would have shortened the parallel testing effort by

half— and that's a conservative estimate. Obviously, after this experience, the client was

fully convinced of the value of a meta data repository.

acquires another, the business users generally need to be able to use the information

generated by the information systems of both, or to merge the information from both

systems into a single report. Although company A's business users may know from

experience that report XC001AB gives them information on product sales by region,

company B's users would not have any idea what report XC001AB is all about, or know

how to elicit the information they need on product sales by region.

Meta data holds the key to this challenge. Meta data provides the semantic layer between

the technical systems and the business users. In simple terms, meta data translates the

technical terminology used in IT systems into terms a business user can understand.

Not Meeting Business User Needs

I was brought in to assess a data warehouse for a large financial services company in

the Midwest. When I met with their decision support manager, I was told that they had a

very good decision support system. However, none of the business users were

accessing the reports they had created. The project leader told me they had a report

that showed product sales over time by region and by marketing campaign. This

sounded like an valuable report, so I asked to see him access it through the system.

The project manager clicked on a report entitled "XC001AB." That's right— XC001AB! I

asked, "How would a business user know that report XC001AB showed product sales

over time by region and by marketing campaign!" Clearly a marketing analyst would

much rather see this report titled "Product sales, by region, by marketing campaign,

over time." This example illustrates why so few senior executives believe that their

company's IT systems meet the needs of their business.

High IT Employee Turnover

One of the major challenges that businesses face today is the high rate of employee

turnover in their IT departments. When a company loses an employee, it is losing much

more than an individual who has coded Java for the past three years. In reality, it is losing

an individual who has accumulated three years' worth of knowledge about the company

business and its business systems. Meta data seeks to capture the knowledge— both

business and technical— that is stored in our employees, and to make it accessible to

everyone in the organization.

Lack of User Confidence in Data

Meta data increases business users' confidence in the data that they rely on in the

corporate decision support and operational systems. Meta data accomplishes this feat by

providing a semantic layer between these systems and the users. (See the section on

meta data–driven business user interfaces later in this chapter for additional discussion of

this topic.)

Emergence of Customer Relationship Management

Managing a global company is more difficult than ever before. In today's market,

it is not enough to produce a quality product in an efficient manner, and price it

appropriately and distribute it effectively. Instead, companies

Missing Meta Data: The cost of incorrect decisions

Anyone who doubts that users need meta data to describe their data

need look no further than the National Aeronautics and Space

Administration's (NASA's) 1999 Mars Climate Orbiter mission. The

orbiter spent nine months coasting toward Mars. NASA engineers on

the ground calculated the size of periodic rocket firings for midcourse

adjustments using feet per second of thrust, a value based on the

English measure of feet and inches. However, the spacecraft's

computer interpreted the instructions in Newtons per second, a metric

measure of thrust. The difference (and resulting error) was a whopping

4.4 feet per second. These rockets firings happened 12 to 14 times a

week over the nine-month voyage. "Each time there was a burn (rocket

firing) the error built up," said Art Stephenson, director of the Marshall

Spaceflight Center and head of a NASA investigation team.

As the spacecraft approached its rendezvous with Mars and the

engineers prepared for a final rocket firing, there were indications that

something was seriously wrong with the navigation, but no corrective

action was taken. When the Mars Climate Orbiter did fire its rockets,

the craft went too low into the planet's atmosphere— and has not been

heard from since. "We entered the Mars atmosphere at a much lower

altitude [than planned]," said Ed Weiler, NASA's chief scientist. "It [the

spacecraft] either burned up in the Martian atmosphere or sped out

[into space]. We're not sure which happened." Stephenson said that the

problem was not with the spacecraft, but with the engineers and the

systems used to direct it. Obviously the NASA space program could

use a meta data repository to provide that semantic layer between its

systems and its engineers.

"The spacecraft did everything we asked of it," said Stephenson. He

said the mathematical mismatch was "a little thing" that could have

been easily fixed if it had been detected. "Sometimes the little things

can come back and really make a difference," he said. A little thing like

meta data could have saved everyone a great deal of pain and a very

significant amount of money. The cost of the misinformation in this case:

$300 million!

must understand, anticipate, and exceed their customer's needs better than

their competition can.

To put it a bit differently, a company's success is determined by its ability to

market the right products to the right people, at the right time, in the right place,

and at a lower price than its competitors. The old business philosophy of "if we

build it, they will come" is not effective in today's business climate (if, indeed, it

ever was). Mass production alone can no longer sustain long-term corporate

growth, or even survival. Increasing consumer expectations and global

competition are demanding that companies differentiate their offerings to

individual consumer groups in order to offer relevant products and services to

those customers that represent the most value to the business.

Today's companies must deliver goods and services that are directly relevant to

their target market. Of course, to do this, companies need to be able to identify

who their market is, and understand what needs their product or service can

satisfy for that market. In short, companies need to make their products relevant

to the consumers who represent the greatest potential value for their business.

Making the transformation to this customer relationship management or

one-to-one marketing approach is vital to the long-term viability of any company

competing in today's market, but the shift requires CIOs and IT directors to

radically change their information management strategies to support it.

Making the transformation from a product-centric company to a

customer-centric company (as illustrated in Figure 1.6) is impeded by outdated

systems

Figure 1.6: Marketing evolution.

What Is Customer Relationship Management?

A customer relationship management strategy simply states "create

products or services that satisfy your individual customer's consumer or

commercial needs." This is a key corporate paradigm shift as

companies move from being product-centric to customer-centric.

Nearly any business can benefit from customer relationship

management. The experience of a friend of mine provides one example

of a missed opportunity for this strategy. My friend, who recently moved

into a new area of the country, went to her local grocer to purchase

various food items for her family. This grocer, like many others,

provides coupons to entice customers back to the store. Grocers

provide different coupons depending on the consumer's purchases.

Among other things, my friend purchased her favorite brand of waffles

(Brand A), which she has been buying exclusively for the past 20 years.

At the checkout, she received a coupon for waffles, but the coupon was

for Brand B rather than her favorite waffles. If the store had insight into

her buying habits, it would have known that Brand A waffles are the

only kind she is going to buy. If it had given her coupons for Brand A

rather than Brand B, she would almost certainly return to redeem the

coupons, and very possibly begin to buy her family's groceries there on

a regular basis. But without consumer information about my friend's

buying habits, the grocer was unable to focus on her specific needs and

offer the right enticement to lure her back to the store.

Customer relationship management tries to understand our individual

buying trends and individual circumstances, and then market

appropriately to them. Making the transformation to this new approach

is forcing CIOs and IT directors to radically change their IT strategy to

support this new customer relationship management strategy.

designed to manage a company's products and day -to-day operations rather

than its customer base. These operational systems have evolved over the years

to process transactions that produce, deliver, and invoice products/services.

Unfortunately, they cannot handle remedial questions like, "Which products are

most profitable for us?" or "Which customers buy product X most often?" These

systems cannot easily or quickly provide answers to these fundamental

questions, which are redefining the world of business. Decision support

systems go a long way toward helping companies to get the kinds of information

they need for customer relationship management from their operational

systems, but they don't provide a complete solution. We'll discuss decision

support systems in some detail later in this chapter, and explain what they can

and can't do, and how they relate to meta data.

Decision Support Moves to the Forefront

Decision support systems are a key ingredient for effectively meeting the needs of

customers as well as quickly responding to changing market conditions. Operational

systems, which are primarily designed to produce, deliver, and invoice products or

services, are incapable of answering questions like:

§ "Which customers are most profitable for our company?"

§ "Which segment of our market offers the greatest future potential profit?"

§ "Which of our products are complementary (i.e., market basket analysis)?"

§ "Which competitors pose the greatest threat to our existence?"

§ "Which of our products or services provides the greatest value to our

customers?"

Decision support systems, which are designed to manage customer information rather

than product information, can handle these types of questions; they provide the link

between legacy operational systems and business users' needs to support one-to-one

marketing.

Many companies now understand that they cannot compete effectively in today's (and

tomorrow's) market without a DSS. I believe that in the near future (i.e., within 5 to 10

years) decision support will be a key component in every major IT initiative. The growth in

IT decision support budgets between 1996 and 1998 (see Table 1.4) supports this

opinion; note that the expenditure more than doubled between 1997 and 1998.

Companies are no longer deciding whether to build a DSS, but determining how quickly

they can build it.

Table 1.4: IT Decision Support Systems Budget ($ in Thousands)

1996

ACTUAL

1997

ACTUAL

1998

ACTUAL

Consulting $585 - 26% $495 - 25% $1,154 -

24%

Software $779 - 34% $656 - 34% $1,733 -

37%

Hardware $913 - 40% $795 - 41% $1,840 -

39%

Total $2,277 $1,946 $4,727

Source: Meta Group

Components of a Decision Support System

To understand meta data repositories, you need to understand the various components of

a decision support architecture. Because there are many fine books dedicated to this

topic, we'll merely summarize the components illustrated in Figure 1.7, and recommend

that you research these in more detail on your own if you are not familiar with DSS

architecture.

Figure 1.7: Decision support systems architecture.

Data Warehouse

The data warehouse is the foundation of a decision support system architecture (see

Figure 1.8). A data warehouse is a single, enterprise-wide collection of data that has the

following four key characteristics (taken from the classic book by W. H. Inmon, Building

the Data Warehouse, second edition, Wiley, 1996, p. 33):

Figure 1.8: Data warehouse components.

§ Subject-oriented. By subject-oriented, we mean the "nouns" of the

organization (e.g., customers, logistics, manufacturing, finance, marketing,

and sales). Companies typically have between 20 and 30 subject areas,

depending on their industry and the scope of the DSS.

§ Integrated. A data warehouse provides an integrated view of the

enterprise's major subject areas. The test for integrating all of this

operational data is the usually the largest (and most daunting) task in the

decision support lifecycle, because data commonly resides in multiple

operational systems. For example, one of my international clients has 28

separate order entry systems around the world, with each of these

systems maintaining its own view of the customer, and using different

record formats.

§ Nonvolatile. Data warehouse data is not updated directly by its users. It is

for access purposes only.

§ Time variant. Data warehouses hold historical (snapshot) views of data,

even as it changes over time. This allows the decision support users to

compare sales numbers over the life of the company.

One of the primary uses of a data warehouse is to fulfill the data needs of the data marts

that it supports. Data marts, which I'll describe in more detail in the next section, are

designed for quick user access but are cumbersome for loading other data structures (i.e.,

data tables). Data warehouses, on the other hand, provide comparatively slow user

access, but contain the detailed, transaction-level corporate data, and are excellent for

TE
AM
FL
Y

Team-Fly®

loading other data structures (i.e., data marts). Most data warehouses limit business user

access to one-time or ad hoc queries.

Data Marts

Data marts (see Figure 1.9) are sets of data designed and constructed for optimal

decision support business user access. They can be sourced from a data warehouse or

directly from a company's operational systems. Data marts are generally designed to

serve the needs of a specific, homogenous business user group (e.g., marketing, finance,

human resources, etc.). Data in the data marts is usually summarized and designed for

specific reporting needs.

Figure 1.9: Data mart components.

Operational Data Stores

An operational data store (see Figure 1.10) is a set of integrated data without history or

summarization provided for tactical decision support. Architecturally operational data

stores look very much like a data warehouse

Figure 1.10: Operational data store components.

with two key differences: (1) the data in an operational data store is volatile, as it is

updated on a real-time or near real-time basis, and (2) the data in the operational data

store is current-valued and not historical. This is because historical data is simply too

voluminous to store and still have real-time updates (see W. H. Inmon, Building the

Operational Data Store, second edition, Wiley, 1999, p. 15).

Meta Data and Decision Support

Meta data defines the contents of the DSS and helps business users locate relevant

information for their analysis. Meta data also allows users to trace data from the DSS to

its operational source systems (i.e., drill-down) and to related data in other subject areas

(i.e., drill-across). By managing the structure of the data over a broad spectrum of time, it

provides a context for interpreting the meaning of the information. As meta data is

extracted and stored over several years, snapshots of the data exist for each year. To

accomplish this, the meta model tables must allow the users to easily trace back through

the meta data repository (i.e., the database for meta data) to earlier versions of the meta

data.

Decision Support Challenges

It's easy to see the need for decision support systems, but implementing them is anything

but easy. The challenges for implementing a DSS come from both the business and

technical arenas.

Business Challenges

The most common cause for DSS project failure is that, once built, the systems don't

meet the business objectives or needs of the organization. Decision support systems that

don't satisfy the business users' needs eventually die from lack of interest.

An enterprise DSS requires consent and commitment from all of the key departments

within an organization. Decision support systems pull data from all of the key operational

systems from across the enterprise and create an integrated view of the organization.

Gaining enterprise-wide support for the initial release can be challenging, especially if the

various departments don't agree on what that view should look like.

Defining clear, measurable business objectives is critical for building a DSS and justifying

its cost to the organization. Once the initial DSS release can be cost-justified, it is

relatively easy to gather management support and funding for follow-up releases. (Note

that most decision support systems more than double in size and number of users in their

first year of production, so the success of the initial release is crucial for the long-term

survival of the system.)

Technical Challenges

Decision support projects technically stress an organization in very different ways than do

traditional system projects. Data warehouses typically source data from most, if not all, of

an organization's key operational systems. Integrating this data is extremely complex and

requires considerable effort on the part of the DSS implementation team and IT staff. For

example, most companies want to store customer data in the data warehouse. This data

often resides in several of the firm's operational systems, and must be integrated and

cleansed before it can be loaded into the data warehouse. The process of integrating the

data is, in itself, complicated and requires a significant amount of knowledge about the

data just to integrate it.

Decision support systems typically store and access large quantities of data; one or more

terabytes is not uncommon. Such massive amounts of data can significantly increase the

chance of failure. In addition, massive volumes of data often push the envelope of the

database management system (DBMS), middleware, and hardware, and may force

developers to use parallel development techniques. The answer to many of these

technical challenges comes in the form of a hefty price tag. As a result, adding the

dimension of size can be both painful and costly.

Many legacy systems contain redundant or inaccurate data. The lack of data quality in the

operational systems has caused more than one decision support effort to fail. In a perfect

world, the IT staff would go back to the operational systems and clean the data, but this

rarely occurs in the real world. As a result, to ensure its usability, the operational data

must be cleaned before it is loaded into the data warehouse. Meta data is critical for

monitoring and improving the quality of the data coming from the operational systems.

Meta data tracks the number of errors that occur during each data warehouse load run

and can report when certain error thresholds are reached. In addition, the DSS data

quality metrics should be stored over the history of the DSS. This allows corporations to

monitor their data quality over time. See Chapter 8, Implementing Data Quality through

Meta Data, for a detailed presentation on this topic.

As Figure 1.11 illustrates, a DSS typically incorporates a wide variety of tools from

multiple vendors, including one or more of the following:

Figure 1.11: Decision support technology.

§ ETL (extraction, transformation, and load)

§ Meta data integration

§ Data modeling

§ Data quality

§ Access (OLAP, ROLAP, or MOLAP)

§ Corporate information portal

§ Data mining

A company's IT personnel need a thorough understanding of the tools used in the DSS,

and they typically require training to achieve this understanding. Multiple levels of training

are not uncommon, including initial education to convey the underlying concepts (e.g.,

data warehouse, data mart, operational data store, star schema design, and meta data),

and specialized training for specific DSS roles. For example, data acquisition developers

generally need training on an ETL tool, and data warehouse access developers may

require training on an access tool (e.g., OLAP, ROLAP, or MOLAP). In addition, users

may require training on the Web component used to access the data warehouse and the

meta data repository. Remember, these are only the DSS-specific training issues;

additional training may be required on the hardware, middleware, desktop, RDBMS, and

coding language (e.g., SQL, COBOL, C++, etc.) used for the ETL tool.

Meta Data ROI
Few statistics are available on the deployment of meta data solutions. However, a 1999

Data Warehouse Institute survey of 175 respondents (listed in Figure 1.12) revealed two

important statistics. Though the vast majority (86 percent) of companies responding to the

survey agreed that meta data is

Figure 1.12: Deploying a meta data strategy.

very important, only 25 percent have deployed or are currently deploying a meta data

repository solution.

One of the reasons more companies have not implemented meta data repositories is that

they do not understand the potential return on investment (ROI) that meta data offers (see

Figure 1.13).

Figure 1.13: Meta data ROI curve.

In the following paragraphs, we'll illustrate meta data's value by walking through these

key solutions to common business problems:

§ Data definition reporting

§ Data quality tracking

§ Business user access to meta data

§ Decision support impact analysis

§ Enterprise-wide impact analysis

As we look at these solutions, remember that the more valuable the solution, the more

complex the meta data initiative is likely to be (as shown in Figure 1.13). Although meta

data–controlled systems (represented at the top of the curve in Figure 1.13) do not yet

exist, major companies are working very hard to make them a reality. We discuss this

topic in detail in Chapter 11, The Future of Meta Data.

Data Definition Reporting

Data definition reporting is one of the most basic meta data solutions. In some ways, it

resembles the early data dictionary initiatives that attempted to create a central repository

for storing and accessing technical definitions for the attributes and entities used in a

company's IT systems. Figure 1.14 illustrates a sample data definition report on the order

entry system for a company.

Figure 1.14: Meta data ROI— data definition reporting.

Database administrators, programmers, data modelers, and business analysts all

commonly use data definition reporting. And, while these reports are a good beginning for

a meta data initiative, their value to the company is relatively limited because they do not

truly target the business. Most IT departments that successfully implement data definition

reports experience only mild productivity gains from their experienced developers,

butless-experienced IT staff members and business users find the reports highly valuable

(see Table 1.5).

Table 1.5: Meta Data ROI— Data Definition Reporting

BUSINESS/TECHNICAL VALUE ROI MEASURES

Reduce IT staff's learning curves Cost savings through

productivity gains

Reduce IT-related problems Cost savings through

reduction in IT staff errors

Reduce impact of IT staff turnover Cost savings through better

training

Data Quality Tracking

Data quality is a significant issue in many, if not all, businesses competing in today's

market. Companies realize the strategic value of their IT systems, but if the data in these

systems is redundant, inaccurate, or incomplete, it can seriously damage the company's

competitive position. Also, mission critical initiatives like e-business, customer

relationship management, and decision support frequently depend on data from the

company's existing legacy systems. If the quality of the data in these systems is poor, it

will directly impact the reliability, accuracy, and effectiveness of any of these initiatives.

The old IT saying of "garbage in, garbage out" summarizes the fact that data quality, or

the lack thereof, is critical to any enterprise (see Table 1.6).

Table 1.6: Meta Data ROI— Data Definition Reporting

BUSINESS/TECHNICAL VALUE ROI MEASURES

Improved business decision making Data quality is improved,

which provides business

users with more accurate

systems and reports.

Reduction of IT-related problems Improved data quality

reduces many system-related

problems and IT expenses.

Increased system value to the business DSS business users are likely

to make better decisions if

they are aware of possible

errors skewing report

numbers.

Improved system performance As data quality improves,

system errors are reduced,

which improves system

performance.

Meta data is a critical component to any data quality initiative. Meta data provides the

mechanism for monitoring and improving the quality of the data coming from the

operational systems into the DSS. Meta data tracks the number of errors that occur

during each data warehouse/data mart load run and can report to the IT staff when

prespecified error thresholds are exceeded. If, for example, we are loading transactional

sales records into a DSS for the Marketing department, we may decide that if more than 2

percent (i.e., our threshold) of the dollar amounts of all of the sales transactions are in

error, we need to stop the DSS load processes and investigate the problem. It is

important to note that on data records that have dollar amount fields in them, it is

generally advisable to set the error thresholds on the dollar values of the records in error

rather than on the number of records in error. Let's suppose, for example, that typically

100,000 records, totaling $20,000,000 in transactional sales, are loaded into the DSS

every month. If 2,000 of these sales records (i.e., 2 percent), totaling $20,000 (i.e., 0.1

percent of sales dollars), erred out without loading into the DSS, the business users may

not feel that this is a large enough error to skew their decision-making process. However,

if 10 records (i.e., .01 percent) erred out, totaling $2,000,000 (i.e., 10.0 percent of sales

dollars) in sales, then it is

What Happens When Data Quality Is Skipped?

Unfortunately, companies are often reluctant to spend the necessary time or money to

research, evaluate, and resolve their data quality issues. I had one such client, a very

large international company, that had multiple DSS projects underway simultaneously.

In my initial proposal, I allocated time and resources to conduct a data quality study to

gauge the quality of the company's source system data during the feasibility phase of

the decision support initiative. However, the client's decision makers did not want to

spend either the time or the money on an activity that they felt had minimal value.

Despite my urgings to the contrary, the company refused to conduct the evaluation. In

its view, there were no data quality issues— so it wasn't worthwhile spending valuable

time and money to evaluate the data.

During the course of the project, however, when we were well down the design path for

one of the data marts, our development team discovered that the quality of the data in

the source system was so poor that the reports were unlikely to have accurate

computations. Further, the data was of such poor quality that it did not even have the

information necessary to clean it. To make a bad situation even worse, our project

sponsor did not have the authority to go back to the IT team responsible for maintaining

the source system to ask them to change it.

As a result, I was left with a task that every consultant dreads. I recommended to senior

management that the project be stopped. Because of the severity of the data quality

problem, senior management supported my recommendation. Our one saving grace

was that our other DSS projects met with much better success than this particular

effort— but the client lost approximately $225,000 in consulting fees and employee

salaries, above and beyond what it would have cost to evaluate the data early in the

development process.

highly probable that the business users would be unable to make accurate decisions.

Remember that the business must define what the error threshold should be, because

this is a business decision. Figure 1.15 illustrates a sample of a detailed data quality

tracking report for the ETL process of a company.

Figure 1.15: Meta data ROI— data quality tracking sample report.

In addition, all of the decision support system's data quality metrics should be stored in

the meta data repository and retained throughout the life of the DSS. This allows

companies to monitor their data quality over time and to determine whether the quality is

improving or declining.

In decision support systems, it is common to compare field values from different time

periods. Figure 1.16 illustrates a decision support report that indicates global corporate

sales on a monthly basis for a consumer electronics manufacturer. Business users can

use this report to compare U.S. sales from October 1998 to November 1998 for the

holiday buying season and, during the comparison, determine that the sales figures for

November seem a bit low. They could then check the data quality statistics and see that

8.4 percent of the records in the November decision support load run erred out and were

not loaded. This would let them know their margin for error when making decisions based

on this report.

TE
AM
FL
Y

Team-Fly®

Figure 1.16: Meta data ROI— data quality tracking reveals margin for error.

Data quality tracking is valuable to many people within an organization, including

corporate executives, project managers, database administrators, programmers, data

modelers, business analysts, and business users in many and varied departments.

Chapter 8, Implementing Data Quality through Meta Data, provides a detailed discussion

of the issues associated with using meta data to enhance data quality.

Business User Access to Meta Data

As IT professionals, we need to understand that our users don't care whether the

information they need comes from a data warehouse, a datamart, an operational data

store, or a meta data repository. They just want to be able to find the information they

need quickly and with minimal searching. Meta data can help us to meet our business

users' needs and speak to them in business terms they understand by providing a

semantic layer between our IT systems and our business users. Figures 1.17 through

1.20 illustrate a Web-enabled DSS that meets this goal. This Web front -end is designed

with the business user in mind. If, for example, a business user wants to view the

numbers for monthly product sales, he or she need only access the decision support Web

site called "Corporate Information Access" (as in Figure 1.17) and indicate a search target,

in this case, Monthly Product Sales (Figure 1.18).

Figure 1.17: Meta data ROI— meta data–driven business user interface.

Figure 1.18: Meta data ROI— meta data–driven business user interface search request.

At this point, meta data comes into play. Meta data in the meta data repository contains

business definitions for each of the DSS reports. When the business user searches for

reports that have the words Monthly Product Sales in their meta data definitions, the

system returns a list of reports containing that search string (Figure 1.19).

Figure 1.19: Meta data ROI— meta data–driven business user interface search response.

The user can then select one or more reports for viewing or enter a new query, which

would generate a new response meeting the search criteria. Inthis case, let's say our user

chooses to display global product sales, by month, by region (Figure 1.20).

Figure 1.20: Meta data ROI— meta data–driven business user interface target report display.

This report presumably provides our user with the information he or she is looking for, but

it may also raise some questions about just how the U.S. sales dollar figure is calculated.

Thanks to meta data, this information is also available. The meta data repository can

store business definitions (i.e., calculation for U.S. sales dollars) along with the report

totals. Integrating this meta data into the decision support report enables the business

user to understand exactly what goes into U.S. sales dollar calculation (as in Figure 1.21).

In this case, the report clearly indicates that U.S. sales dollars includes sales from

Canada and Mexico, but does not subtract sales dollars from returned product orders.

Figure 1.21: Meta data ROI— meta data–driven business user interface integrated business

definition.

As the following series of figures illustrates, meta data can significantly improve the value

and accessibility of information in the DSS for business users.

A meta data business user interface directly targets the business side of an organization,

which is a piece of the puzzle that meta data has been sorely lacking for many years. This

functionality is important to many people within the organization, including corporate

executives, senior man

agers of lines of business (i.e., marketing, finance, etc.), business analysts, and business

users (see Table 1.7).

Table 1.7: Meta Data ROI— Meta Data–Driven Business User Interface

BUSINESS/TECHNICAL VALUE ROI MEASURES

Reduction of IT-related problems Easier information access,

thereby reducing IT-related

questions and problems

Table 1.7: Meta Data ROI— Meta Data–Driven Business User Interface

BUSINESS/TECHNICAL VALUE ROI MEASURES

Increased system value DSS has greater relevance

for the business users,

letting them do their jobs

more efficiently

Improved business decision making Users are able to access and

specifically understand the

information they need to

make business decisions

Decision Support Impact Analysis

A meta data repository can significantly reduce both the costs and time involved in

development by allowing the IT development staff to run technical impact analysis reports

across all corporate systems stored in the meta data repository. Because many

companies are currently trying to implement DSS impact analysis, we'll specifically

discuss this functionality, then explain how to roll the concept out into other systems.

Impact analysis reports help developers to thoroughly understand the effect of proposed

changes to the DSS environment. This functionality is critical for any company trying to

manage its DSS over time. Not long ago, I was working with an East Coast insurance

company that has conducted several decision support efforts over a four-year span.

During that time, one of the IT managers took the time to map out the flow of data from

their operational systems to their data staging areas, and finally to their data mart

structures. Figure 1.22 illustrates the actual results of the investigation.

Figure 1.22: Information infrastructure.

I know when you look at Figure 1.22 it looks and is unreadable. What is interesting is that

this data flow chart is an accurate representation of this company's decision support

architecture! This figure is by far my favorite picture, and I use it in nearly all of the

presentations I give on decision support and meta data. In a single image, it manages to

communicate several important messages about:

§ Redundant data

§ Redundant processes

§ Lack of hardware/software platform consolidation

§ Strain on the IT organization

§ Maintenance nightmare

§ Tremendous waste of money

And, people's response to this image is even scarier than the architecture itself. When I

show it to clients, they typically ask me where I got a copy of their information

architecture.

Decision support systems collect their data from the operational systems of a business. It

is quite common for these operational systems to undergo changes in their business rules

and data structures, and these changes can directly impact the decision support systems

that they feed. Impact analysis reports help to control the effect of these changes. Let's

suppose that the table used to store customer data in a company's order entry system

needs to be modified. Meta data in the repository allows me to run an impact analysis

(Figure 1.23) to indicate all of the decision support tables/files, programs, and fields that

may be affected by a change to the order entry system.

Figure 1.23: Meta data ROI— sample decision support impact analysis report.

The table type field on our sample report can equal one of three values: S, I, or T. S

indicates that the table is a source table/file from the operationalsystem to the DSS. I

signifies that the table is an intermediate table/file between the operational system and

the DSS, and T indicates that the table/file is the target decision support table. The DSS

development team can use this data to gauge the effect that the change to the

operational system will have on the DSS, thereby reducing the amount of time required

for the DSS team to modify the DSS. In addition, the likelihood of development errors is

significantly reduced because the impact analysis identifies all programs affected by the

change.

Impact analysis reports are available in a very wide variety of flavors. For example, the

decision support team may want to analyze how the sales amount field in the marketing

data mart is being populated. Figure 1.24 illustrates an impact analysis report showing all

of the systems, tables/files, programs, and fields used to populate the sales amount field

in the marketing data mart.

Figure 1.24: Meta data ROI— decision support impact analysis sample field population report.

Impact analysis reporting minimizes the costs of the system enhancement and helps to

reduce the propensity of new development errors (see Table 1.8).

Table 1.8: Meta Data ROI— Decision Support Impact Analysis

BUSINESS/TECHNICAL VALUE ROI MEASURES

Reduction of IT related problems IT staff much less likely to

make programming errors

when making system

enhancements, since all

affected programs,

tables/files, and fields are

identified

Reduce IT development lifecycles and

costs

IT development lifecycles are

greatly reduced, since all

affected programs,

tables/files, and fields are

identified

Reduce redundant data IT staff can identify redundant

data in systems, and reduce

the likelihood of building

redundant systems or

TE
AM
FL
Y

Team-Fly®

Table 1.8: Meta Data ROI— Decision Support Impact Analysis

BUSINESS/TECHNICAL VALUE ROI MEASURES

populating systems with

redundant data

Reduce redundant processes IT staff can identify redundant

processes in systems, and

reduce the likelihood of

building redundant system

processes in the first place

Reduce impact of employee turnover Documents the knowledge

that may otherwise be known

only by the developer who

built the programs, and

makes it available to the

entire IT staff

Improved system performance Removes redundant data and

processes, thereby improving

system performance

The decision support team should be able to limit the amount of information contained in

the impact analysis by performing record selection on the following report attributes:

§ Source system

§ Source system table

§ Source system field

§ DSS table

§ DSS field

§ Table type

Enterprise-Wide Impact Analysis

Enterprise-wide impact analysis expands the scope of DSS impact analysis to include all

of a company's IT systems, not just those involved in the decision support process. We've

separated these two topics because it is much easier for a company to build a meta data

repository that stores meta data on the DSS. This is because these systems are relatively

new and, as such, typically use advanced design and technology, as compared to older

operational systems. However, meta data is every bit as important to the older systems

as it is to our newer ones.

Understanding the system-wide impact of a major IT change requires a careful analysis of

the current operational and decision support systems. Ameta data repository can

significantly reduce both the cost and time frame required for this effort by storing

complete documentation on the data transformation rules, data sources, data structures,

and the context of the data in the data warehouse and data marts. This information is

critical because without the repository, the transformation rules may exist only in the

staff's memory. Meta data helps the analysts to understand the effect of proposed

changes to the decision support system's environment, thereby reducing the costs of

future releases and helping to reduce the likelihood of new development errors (see

Table 1.9). For example, let's suppose that a company wants to expand the lengt h of its

customer number field to a 30-byte alphanumeric value throughout all of its systems.

Figure 1.25 presents an enterprise-wide impact analysis report listing all of the systems,

tables/files, fields, and their domains affected by a change to the length of all occurrences

of the customer number field. This report clearly identifies those systems and fields that

cannot handle a 30-byte alphanumeric.

Table 1.9: Meta Data ROI— Enterprise -Wide Impact Analysis

BUSINESS/TECHNICAL VALUE ROI MEASURES

Reduction of IT-related problems IT staff much less likely to

make programming errors

when making system

enhancements, since all

affected programs,

tables/files, and fields are

identified

Reduce IT development lifecycles and

costs

IT development lifecycles are

significantly reduced,

because all affected

programs, tables/files, and

fields are identified

Reduce redundant data IT staff can identify redundant

data in their systems and

reduce the likelihood of

building redundant systems

containing redundant data in

the first place

Reduce redundant processes IT staff can identify redundant

processes in their systems

and reduce the likelihood of

building redundant system

processes in the first place

Reduce impact of employee turnover Documents the knowledge

that may otherwise be known

only by the developers who

built the programs, and

Table 1.9: Meta Data ROI— Enterprise -Wide Impact Analysis

BUSINESS/TECHNICAL VALUE ROI MEASURES

makes it available to the

entire IT staff

Improved system performance As redundant data and

processes are removed the

performance of the system is

vastly improved

Figure 1.25: Sample enterprise-wide impact analysis report.

A meta data repository enables the IT development staff to run a technical impact

analysis report across all corporate systems stored in the repository.This type of

functionality is critical for any company trying to ensure that its IT systems are sufficiently

flexible and maintainable to support its ever-changing business information needs.

Like DSS impact analysis reports, enterprise-wide impact analysis reports are generally

quite technical. This isn't a problem because they are used primarily by the IT staff that

supports the company's information systems. The IT staff should be able to limit the

amount of information on the impact analysis reports by having record selection on the

following report attributes:

§ System

§ System table

§ System field

§ Table type

Enterprise-wide impact analysis reports provide a company with the system flexibility to

meet its current and future businesses needs. This functionality is important to many

people within the organization, including project managers, database administrators,

programmers, data modelers, and business analysts.

Successful business executives realize that knowledge is one of the primary factors that

differentiate companies in the information age. Meta data is all about knowledge, and

capturing and using it. With meta data and a meta data repository, companies can move

from the crawling stage of IT development to the walking stage. The next chapter

illustrates the fundamental concepts of meta data that we will use throughout the

remainder of the book.

Chapter 2: Meta Data Fundamentals

Overview

This chapter defines the fundamental concepts of meta data that are at the core of this

book. These concepts, which include a meta data repository, business and technical

meta data, meta data users, and meta data security, are important for understanding

what meta data is and how companies can use it effectively. In addition, this chapter

identifies structured and unstructured sources of meta data.

Meta Data and the Meta Data Repository

While the concept of meta data is not new; meta data's role and importance in the

decision support environment certainly is. Because meta data captures the historical

changes to the data in decision support systems, it enables companies to trace those

changes over time and understand both the origins of the data and the trends that shape

their business decisions.

For the purposes of this book, we use the term meta data repository to refer to the

physical database tables that contain the meta data. A meta data repository supports

every phase of development of an IT system, from requirements gathering, data model

design, data mapping, user access, and data warehouse maintenance through future

development and historical data needs definition.

We've all heard that meta data is "data about data," which is a simple enough

definition— but what exactly does that mean? To understand meta data's vital role in the

data warehouse, consider the purpose of a card catalog in a library (see Figure 2.1). The

card catalog identifies what books are in the library and where they are physically located.

It can be searched by subject area, author, or title. By showing the author, number of

pages, publication date, and revision history of each book, the card catalog helps you

determine which books will satisfy your needs. Without the central card catalog

information system, finding books in the library would be a cumbersome and

time-consuming chore.

Figure 2.1: Meta data repository and card catalog parallel.

Meta data is the card catalog in a data warehouse. By defining the contents of a data

warehouse, meta data helps users locate relevant information for analysis. In addition,

meta data enables users to trace data from the data warehouse to its operational source

(i.e., drill-down) and to related data in other subject areas (i.e., drill-across). By managing

the structure of the data over a broad spectrum of time, it provides a context for

interpreting the meaning of the information. As meta data is extracted and stored over

several years, snapshots of the data exist for each year. To accomplish this, though, the

meta model tables need to be captured with a From and To date on each column. These

allows users to easily trace back through the repository to past versions of the meta data.

The concept and language of meta data originated in operational systems. However,

since operational systems contain a single, correct definition of data, the need for meta

data is not as relevant. Decision support systems, on the other hand, contain historical

data, which in turn contains multiple structures and content that change over a period of

time (see Figure 2.2). Since it is common for a user of the decision support system to look

at data over a broad spectrum of time, it is important to understand what changes have

occurred, and when. Meta data provides this information.

Figure 2.2: Operational versus data warehouse meta data requirements.

Technical and Business Meta Data

A meta data repository contains two types of meta data: technical and business.

Technical meta data is meta data that supports a company's technical users and IT staff,

whereas business meta data is meta data that supports a company's business users.

Technical meta data provides developers and technical users with information about their

decision support and operational systems that they will need in order to maintain and

grow these systems over time. If, for example, the company needs to reconfigure its

geographic sales regions, the IT managers can use the technical meta data to list all of

the programs, tables, and systems that contain geographic sales data. This information

enables the managers to better and more quickly estimate the amount of development

resources and time that their team will need to make the changes. It also helps the

managers to identify any other systems that are likely to be affected by the change and

bring those managers into the project. The IT developers then use other technical meta

data to identify specific lines of code that will need to be changed to implement the new

geographic sales regions. In this way, technical meta data is absolutely critical for

maintaining and growing our information systems. It helps the IT staff to plan for

additional releases of the decision support and operational systems and helps the

developers to actually implement those changes. Without it, the task of analyzing and

implementing such changes becomes significantly more difficult and time consuming.

(See Table 2.1 for a list of examples of technical meta data.)

Table 2.1: Examples of Technical Meta Data

EXAMPLES OF TECHNICAL META DATA

User report and query access patterns, frequency, and execution time

Audit controls and balancing information

Technical structure of data

System of record feeding the decision support system

Identification of source system fields

Mappings and transformations from the operational system(s) of record to the

decision support system

Encoding/reference table conversions

Data models, both physical and logical

Decision support system table names, keys, and indexes

Operational systems table names, keys, and indexes

Domain values

Operational system's table structures and attributes

Decision support system's table structures and attributes

Relationship between the data model and the decision support system

History of extracts

Decision support system table access patterns

Decision support system archiving

Job dependencies

Program names and descriptions

Version maintenance

Security

Purge criteria

Business meta data supports the business users of the operational and decision support

systems. Business meta data provides the decision support analysts with a road map for

access to the information in the decision support system's underlying data warehouses

and data marts. Business users are usually executives or business analysts and tend to

be relatively nontechnical, so they need to have the decision support system defined in

the business terms that they understand. If, for example, an executive in the sales

department wants to look at sales dollars, by product category, by geographic sales

region, the business meta data lets him or her locate the various decision support reports

that contain this information. The sales executive can then choose the report that best

suits his or her needs. For a graphic walk through this process, see the "Meta

Data–Driven Business User Interface" section in Chapter 1. In essence, business meta

data gives business users a greater understanding of the information in the decision

support system and thereby increases their confidence in the data. (Table 2.2 lists

examples of business meta data.)

Table 2.2: Examples of Business Meta Data

EXAMPLES OF BUSINESS META DATA

Structure of data as known to the business analyst (product hierarchy may

have a meaning to the business user that differs from the IT developer)

Common access routines for the information in the decision support system

Subject areas (e.g., product, sales, customer, etc.)

Business definitions for table names ("CUST" table would become "Active

customers that have placed orders in the past two years")

Attribute names and definitions in business terms

Data quality statistics

Decision support system field mappings, transformations, and summarization

Rules for drill-down, drill-up, drill-across, and drill-through

Domain values

Data stewards (who owns the data)

Data location

Decision support system refresh dates

Meta Data and External Data

External data is brought into a company from an outside source, and may come into a

decision support or operational system in electronic form (e.g., Dun & Bradstreet and

Dow Jones reports) or in nonelectronic form (e.g., white papers, magazine articles, or

reports). Companies typically have little control over external data sources, but they do

need to capture meta data from the external sources that describes the incoming data,

including the following:

§ Document ID

§ Date of entry into the decision support and/or operational system

§ Source of the external data

§ Classification of the external data (e.g., marketing, financial, etc.)

§ Index words

§ Purge date

§ Physical location reference

§ Length of the external data

Meta Data Users
Meta data users fall into three broad categories: business users, technical users, and

power users (see Figure 2.3). All of these groups contain a variety of decision support

and operational users and all need meta data to identify and effectively use the

information in their company's systems.

Figure 2.3: Meta data users.

Business Users

The majority of business users are not very technical. They typically have a business

background and get the information they need from the decision support system's

predefined queries and reports. These users typically needmeta data that enables them

to identify and locate information in the decision support system, such as business names,

TE
AM
FL
Y

Team-Fly®

definitions of the decision support tables and columns, and descriptions of existing

reports. In addition, many business users are interested in receiving estimates of query

and report execution times in order to decide if they want to run their query/report.

Common examples of these users include:

§ Marketing analysts

§ Sales analysts

§ Financial decision makers

Technical Users

Technical users, like business users, fill many roles within an organization. They may be

programmers, data acquisition developers, data access developers, data modelers,

senior analysts, or members of the meta data repository team. The IT staff that builds,

maintains, and administers the decision support and operational systems use the meta

data differently than do business users. They need to understand how the programs

extract, transform, and load the data into the data warehouse and data marts. They need

to determine which programs, files, and tables are affected by changes to the decision

support system. The technical meta data allows the decision support staff to more

efficiently and accurately plan for additional development releases of the decision support

system.

Power Users

While the majority of business users are not particularly technical, there are nearly always

some power business users that are more technically inclined. In fact, these are often

technical IT people that reside in the business area. These users access the decision

support system on a regular basis, understand the business data, and become intimately

familiar with the decision support system tables. They understand relational database

concepts, structured query language (SQL), and use sophisticated query tools in the

normal course of their jobs. These users also need to understand any changes in the

decision support system content, and how the data is extracted, transformed, and loaded

into the warehouse so they will have confidence in the information results they derive

from the decision support system.

Common Meta Data Sources
One of the biggest challenges with meta data is that it exists in many different sources,

and each source has its own meta data repository. While many vendors market their tools

as meta data solutions, in reality most of the tools are sources of meta data rather than

solutions. The exception to this rule has traditionally been ETL (extraction, transformation,

and load) technology; some ETL tools do have a repository, which can be a meta data

solution if the repository has a very limited scope. These tools tend to have limited

functionality because typically they can only bring in meta data that comes from other

software vendors that they have formed alliances with. When it comes to loading meta

data from a source other than these vendors' partners, these tools tend to fall short. As a

result, any company that uses an ETL tool's meta data repository technology should

understand that it will eventually need to move away from that tool and into a full-scale

meta data integration tool (see Chapter 4, Understanding and Evaluating Meta Data

Tools). Table 2.3 lists the most common sources of meta data by location.

Table 2.3: Meta Data Locations and Types

COMMON META DATA

LOCATIONS

TYPES OF META DATA

ETL tool/process Data transformation rules

Program job dependencies

Decision support system balancing

statistics

Decision support system load

statistics

Data lineage

Data modeling tools Logical and physical data models

Technical entity definitions

Technical attribute definitions

Domain values

Reporting tools User access patterns

Report execution time

Business entity definitions

Business attribute definitions

Business metric definitions

Data quality tools Data quality statistics

Audit controls

Vendor applications Logical and physical data models

Data dictionary

Documents Business policies

Business entity definitions

Business attribute definitions

Business metric definitions

Data stewardship

Employees Business policies

Table 2.3: Meta Data Locations and Types

COMMON META DATA

LOCATIONS

TYPES OF META DATA

Business entity definitions

Business attribute definitions

Data stewardship

Data lineage

ETL Tools

ETL tools extract data from operational sources, clean it, transform it, and load it into a

decision support system's operational data store, data warehouse,or data marts. These

tools simplify the largest decision support task, that of data integration, which accounts for

75 percent of the work in a decision support system. The ETL process generates some of

the meta data that is most valuable to the technical and power users.

Although ETL tools do a fairly good job of automatically capturing meta data, there are

two caveats to consider. First, as the decision support developers use these tools, there

are quite a few fields that they will not be required to enter as they build their ETL

processes. But the more time that these developers take to enter meaningful values into

these fields, the better the meta data will be. Second, these tools have gaps in the meta

data that they capture. For example, each of these tools allows the developer to write a

custom program, typically called a user exit, that the tool can call. Any processes that this

program executes are not reflected in the tool's meta data. Decision support developers

should be careful to limit the processes in the user exit to only those tasks that the ETL

tool does not have the ability to perform.

Examples of ETL tools include:

§ Ardent DataStage

§ Evolutionary Technologies, Inc. (ETI) Extract

§ Informatica Powermart

§ Sagent Solution

§ SAS Institute

Data Modeling Tools

Data modeling tools assist in logical data and process modeling as well as physical

database and system design. These tools enable companies to capture the data

requirements of the business, including many of the business rules, that should be

incorporated into the meta data repository. It is important to note, however, that

companies use these tools differently, which affects the meta data that is actually

available in the repository. One company, for example, may store physical models, logical

models, indexes, business table definitions, business attribute definitions, and attribute

domain values in its data modeling tool. This company would accumulate a wealth of

valuable meta data in its data modeling tool. Another company, however, may choose to

store only physical data models in its modeling tool, which would result in a repository

with much less valuable meta data.

Examples of data modeling tools include:

§ Oracle Designer 2000

§ Platinum Erwin (at the time of this writing, Computer Associates, which

owns Platinum Technologies, has indicated its intention to retain the

Platinum name)

§ Silverrun

Reporting Tools

When we refer to reporting tools, we are speaking about the tools that business users

work with in their decision support system. These tools provide access to the underlying

data warehouse and data marts, eliminating the need to manually write SQL code. Many

reporting tools feature a point-and-click graphical user interface (GUI) that insulates the

users from most of the complexities of the decision support system's database.

Although some tools are quite limited in their functionality and are not able to handle

complex queries, most allow users to create libraries of predefined queries that they can

invoke as necessary. This eliminates the need for most users to write their own queries.

In addition, most reporting tools are available in a Web version that can be launched from

a Web site. This is particularly useful for applications that need remote, extranet access.

Many of these tools also have multidimensional capabilities that permit users to analyze

the data along multiple dimensions such as customer, time, region, and product. They

share all of the features of the query tools and provide additional functions that enable

users to slice and dice the data. By slice and dice, I mean that users can interactively

change the dimensions on a report or query.

Reporting tools are often used to access the data in the meta data repository and enable

users to collect information (i.e., meta data) about which meta data in the repository is

most frequently used. This meta-meta data (i.e., meta data about meta data) can then be

fed back into the repository. Examples of reporting tool software vendors include:

§ Brio

§ Business Objects

§ Cognos

§ Hummingbird

§ Information Advantage

§ Microsoft

§ Microstrategy

Data Quality Tools

Data quality tools analyze the source data for noncompliant data values. Noncompliant

data values include data that does not match expected data characteristics (e.g., a

character value in a numeric field), data outside of acceptable ranges, data that is

inconsistent with valid values, data that does not conform to business rules, or

inconsistent address data (e.g., Chicago, II). The task of cleaning data is a highly complex

one. Companies often hand code this logic or use an ETL tool to build it. Data quality

tools are designed to vastly simplify the common cleansing tasks such as name and

address cleansing.

The meta data about the data cleansing activities is very valuable to the repository.

Unfortunately, however, the data quality tool vendors have not done nearly as good a job

as the ETL vendors have in capturing this meta data and making it available to a meta

data repository. Often data quality tools have only limited capabilities for extracting meta

data from them. Users must generally perform a significant amount of manipulation in

these tools to put the meta data into a form that can be useful to the repository.

Examples of data quality tools include:

§ i.d. Centric

§ Trillium

§ Vality

Vendor Applications

Meta data often exists in third-party applications such as customer relationship

management (CRM) systems, various types of e-business applications, Enterprise

Resource Planning (ERP) systems, campaign management systems, and health care

systems.

While the meta data can differ widely across these applications, there do tend to be some

common threads. First, these applications contain a great deal of valuable meta data,

including physical table/attribute names, domain values, and business rules. Second,

most of these applications use proprietary databases rather than open relational

databases such as Oracle, Informix, SQL Server, or IBM DB2. As a result, extracting

meta data from these applications and preparing it for the repository is generally quite

difficult. In addition, custom coding is generally required because the meta data

integration tools cannot directly read from these sources. Examples of vendor application

tools include:

§ Peoplesoft

§ SAP

§ Siebol Systems

Miscellaneous Sources

There are two other important but easily overlooked sources of meta data in most

companies: documents and employees.

A wide variety of company documents contain important meta data. I've often found

valuable meta data in corporate procedures, competitor writeups, handbooks, and white

papers. Typically, this type of meta data exists in Microsoft Word documents, Excel

spreadsheets, or on internal or external Web sites.

A company's employees may prove to be its most vital source of meta data. Employees

know all of the tricks that the systems don't necessarily tell you and are often the only

source for the vast majority of the business meta data. For example, I have worked at

several large consumer electronics manufacturing companies that tend to ship 80 percent

of their products during the last week of a month. Although this fact is critical for managing

the business, it is not something that is readily apparent from studying the information

systems.

While employees possess a vast amount of valuable meta data, they are also the most

difficult source from which to extract this information. Unfortunately, there is no easy way

to extract meta data from employees. The process— which is largely one of identifying

key employees and interviewing them to elicit their internal knowledge of business

operations— is definitely challenging, but likely to be worth the effort if done correctly, as I

discuss later in this chapter in "Unstructured Meta Data Sources."

Structured and Unstructured Meta Data

An organization's technical and business meta data comes from two broad sources:

structured and unstructured.

Structured Meta Data Sources

Structured meta data sources are those that the organization's decision makers have

discussed, documented, and agreed upon. Meta data from these sources is commonly

stored in tools or documents that are maintained, distributed, and recognized throughout

the organization. Structured meta data sources populate both technical and business

meta data, as the examples listed in Table 2.4 illustrate.

Table 2.4: Examples of Structured Meta Data Sources

SOURCE OF STRUCTURED META

DATA

COMMON LOCATIONS

Extraction/Transformation tools Informatica Powermart,

Ardent DataStage, ETI

Extract, programs and SQL

Logical and physical data models Data modeling tools (Erwin,

Table 2.4: Examples of Structured Meta Data Sources

SOURCE OF STRUCTURED META

DATA

COMMON LOCATIONS

PowerDesigner, Silverrun)

and vendor applications

(SAP, Peoplesoft)

Business policies Microsoft Word, Microsoft

Excel

Data dictionary Data modeling tools,

Microsoft Access, Microsoft

Excel

Unstructured Meta Data Sources

Unstructured meta data sources are those that fall outside of standard models and tools.

Much of this information is unwritten; it consists of the information that people "just know"

and is generally located in the "company consciousness." It may even exist as a Post-It

note on a key employee'sdesk, or on a Web site. In fact, most information on the Web is

pretty unstructured. Unstructured meta data is often found in business policies,

competitor information, and business rules. Because unstructured meta data sources are

generally business-related, they are key to compiling good business meta data.

Unstructured meta data sources are not formally documented or agreed upon, but the

knowledge derived from these sources is every bit as valuable as that from the structured

meta data sources. Capturing meta data from the many and varied unstructured sources

is, however, considerably more challenging than capturing meta data from structured

sources. Meta data derived from unstructured sources must be documented, formalized,

and accurately reflected in the decision support system. In this respect, an unstructured

source is transformed to a structured source. Although organizations differ widely and

have many unstructured sources of meta data, the following list suggests some of the

unstructured sources that warrant consideration:

§ Data stewardship (which we discuss later in this chapter)

§ Decision support load and refresh history (see Chapter 8, Implementing

Data Quality through Meta Data, for a detailed discussion on this topic)

§ Business rules

§ Business definitions

§ Naming conventions

§ Competitor product lists

§ Some transformations and summarizations

Data Stewardship

Data is the most important asset of any business, but in order for data to have value, it

must be delivered promptly, concisely, and accurately, and be formatted in a way that it

can be used. Preparing data (that is, cleansing it and integrating it) is a crucial step in

constructing a decision support system, and data stewards play a key role in this task.

A data steward acts as the conduit between IT and the business users, aligning the

business needs with the IT systems that support them— both decision support and

operational. Among other things, data stewards ensure that companies use their data

effectively and to its fullest capacity. The goal of data stewardship is to improve the

accessibility, reusability, and most important, the quality of the data. Table 2.5 lists data

stewardship responsibilities.

Table 2.5: Data Steward Responsibilities

TASKS

Assigning and maintaining business entity/attribute definitions

Creating and maintaining business naming standards

Defining business rules

Establishing data quality metrics

Creating and maintaining purge and archive rules

Developing business metrics and derivations

Enforcing data security rules

Assigning data aliases

Typically, a data steward is assigned to a specific subject area of a company (e.g.,

customer, product, order, market segment, etc). In some situations, however, an

individual may be the data steward for multiple subject areas, or multiple data stewards

may be needed for the same subject area. For example, the marketing department may

have a completely different definition of customer than the manufacturing department has.

As a result, they may require different data stewards.

While a specific data steward needs to have responsibility for specific data, it is generally

advisable for the data steward to work with a defined group of key employees that

represent all of the facets of the assigned subject area. This group of peers is responsible

for working with the data steward on the tasks listed in Table 2.5.

The meta data project leader should initially work with all of the data stewards in an

organization, at least until one of the stewards can assume leadership of the stewardship

group. In situations where it is not politically wise to have stewards from one department

reporting to a steward in another department, the meta data project leader should retain

leadership of the data stewardship function.

Identifying Your Data Steward

When I talk about data stewardship, I am often asked two questions: "How do you identify

a data steward?" and "We don't have anyone that has sufficient knowledge to do that job.

What should we do?" The answer to both questions is the same…You already have your

data stewards. All companies have people that we turn to when we have a question about

our customers, products, services, and so forth. These people are our data stewards;

most companies just don't formally identify them as such. However, more and more

companies are beginning to recognize the critical role that stewardship serves in the

overall quest for high-quality, readily available data. Data stewards, whether they are

formally recognized as such or not, are critical as information resources for the

companies' knowledge workers and operational staffers. Just as the demand for better

systems has increased, so too has the need for data stewardship.

Data stewards are typically subject matter experts who come from the business side of

the house. They need to have a thorough understanding of how the company works and

be well-respected by the business user community. In addition, data stewards must have

excellent communication skills. These skills are sometimes overlooked— but they are

crucial because data stewards need to work effectively with people from a variety of

departments, with a variety of needs and points of view. When push comes to shove, the

data steward is responsible for forging agreements between differing factions.

Meta Data Security

Security is vitally important for all aspects of meta data and the associated data

warehouse, but all too often companies consider meta data security too late (i.e., after the

meta data has been compromised) or in the final stages of the data warehouse

development process. It is important to remember that the meta data contains highly

sensitive, proprietary information about the underlying data warehouse and the business

that it is describing. If this data were to fall into the wrong hands, such as a business

competitor, the results could be disastrous.

Meta data security is most likely to be compromised in either of two places. The first area

of vulnerability is the physical location where the data is actually stored. For example, a

competent thief can access a meta data repository by accessing the physical file that the

data is stored in, bypassing all RDBMS security measures. The second area of

vulnerability is the data transmission between platforms, such as the data transfer

between an MVS (multiple virtual storage) mainframe and a UNIX workstation. Again, a

competent thief can intercept the transmission and use the data.

So, planning a security system that integrates tightly with that of the decision support

system and communications system is crucial. There are several ways in which to

implement such a system— all of which should be considered early in the development

phase. There are two prevailing philosophies of meta data security: (1) proactive security,

which prevents unwanted access before it occurs, and (2) reactive security, which audits

access on a continual basis to check what accesses have occurred. The sensitivity of the

meta data determines the type and extent of security that is required.

In the next chapter we examine the current state of meta data and its marketplace. To

accomplish this, we will review the forces driving the meta data industry today and

provide an overview of the numerous factors that affect virtually all meta data repository

development efforts.

TE
AM
FL
Y

Team-Fly®

Chapter 3: Meta Data Standards

Overview
In this chapter we discuss why the meta data industry needs a standard meta model of

the repository. (The term meta model refers to the physical data model, either object or

relational, that stores the meta data.) We then examine the efforts of two vendor-driven

groups— the Meta Data Coalition (MDC) and the Object Management Group (OMG)— to

make a meta model standard a reality. These two groups have some very different

concepts regarding a meta model, possibly because of the driving forces behind them;

the MDC is backed by Microsoft while the OMG is fueled by Oracle. Lastly, we examine

XML and its implications for the meta data arena. All of these initiatives are changing the

meta data landscape faster than ever before. Anyone involved with IT needs to follow

these developments closely because they are changing the way in which we build and

integrate computer systems.

Why Are Meta Model Standards Important?

Storing meta data in a standard meta model is crucial for resolving many of the IT

challenges that exist in businesses today. Standard meta data models accomplish two

important goals:

§ Tool meta data sharing

§ Tool interoperability

Tool Meta Data Sharing

It would be wonderful to say that tools available today are able to seamlessly integrate all

of your company's sources of meta data into one integrated and architected repository.

Unfortunately, that utopia just doesn't exist. Today's meta data integration architecture

does not involve seamlessly integrated products, but rather a series of proprietary vendor

products attached to one another with the IT equivalent of chewing gum, string, and paper

clips (see Chapter 7, Constructing a Meta Data Architecture). Most companies purchase

best-of-breed tools for use in their decision support projects rather than purchasing

integrated tool suites. While this is a sound concept for building a decision support system,

it does present some technical challenges. Because best-of-breed tools are not typically

integrated with one another, they do not easily communicate data to each other, if at all.

Even those tools that can be integrated generally require a good deal of

resource-intensive, manual programming to get them to share data. Figure 3.1 illustrates

the interfaces that may need to be built to integrate best-of-breed tools in a decision

support environment.

Figure 3.1: Best-of-breed tool interfaces.

To build these interfaces, quite often tool vendors form alliances with other vendors that

offer complementary products. While these alliances are certainly valuable, they typically

do not provide complete meta data sharing between the tools. This is because it is very

difficult for these tool vendors to keep their interfaces up-to-date with each version of their

software and with each version of the alliance vendor's software.

Once a meta model standard is established and widely adopted, the number of interfaces

needed to allow these best-of-breed tools to share data will be significantly reduced. In

fact, it should be reduced enough to allow tool vendors to make these interfaces a

standard feature of their tools. (See Figure 3.2 for an illustration of this future

architecture.)

Figure 3.2: Standardized meta data architecture.

Sharing meta data among various repositories and software tools is particularly desirable

for global enterprises with dispersed teams using an integrated computing approach to

solving similar or related data analysis problems. In such enterprises, coordination is

largely dependent on network computing and effective use of knowledge and resources

developed by the various teams. The ability to share meta data within and across

repositories is extremely important as the repositories become interdependent. Like any

other integrated approach to collaboration, information sharing must be managed so as to

minimize the duplication of effort while efficiently and accurately capturing and

propagating changes to shared information.

Complex software applications such as customer relationship management and decision

support generally involve many types of data obtained from a wide range of sources and

transformed for various groups with different data needs. Until a meta model standard is

established and widely adopted, companies will continue to need an integration strategy

to bring the various sources of meta data together. This issue of tool data sharing is a

major mitigating factor that has prevented some organizations from achieving successful

DSS implementations.

Tool Interoperability

A standard meta model will allow vendor tools to plug into the model to support

bidirectional meta data. Today, achieving bidirectional meta data is a very challenging

task (which we discuss in some detail in Chapter 7, Constructing a Meta Data

Architecture). Bidirectional meta data refers to meta data that can be changed in the

repository, then fed back into third-party decision support (and potentially other) tools. For

example, if a user goes through the repository and changes the name of an attribute in

one of the DSS data marts, this change would be fed back into the data modeling tool to

update the physical data model for that specific data mart. When meta data is

bidirectional, we will be able to manage all of the tools from a centralized data repository,

thereby creating true tool interoperability (as illustrated in Figure 3.3).

Figure 3.3: Tool interoperability.

Meta Model Standards

After several years of disjointed efforts by various alliances and organizations, two major

initiatives hold the promise of finally developing a meta model standard capable of

resolving this need. The efforts, both of which aim to define an industry standard version

of the meta models, would— if successful— enable decision support products from

different vendors to share data and information. This, in turn, would provide the data

warehousing market with an open, common infrastructure across all data warehouse tool

vendors. These two initiatives have brought us closer than ever before to a unified

standard for meta data definition and interchange.

The first of these two efforts is the Open Information Model (OIM) from the Meta Data

Coalition. This effort was originally spearheaded by Microsoft and later signed over to the

MDC. The second effort was initiated by Oracle, IBM, Hyperion, Unisys, and NCR, and

subsequently handed off to the Object Management Group. Before examining these two

initiatives, let's first take a look at what makes a good standard in the first place.

What Constitutes a Good Standard?

Many factors contribute to a good standard, and certainly, there is some disagreement

within IT as to exactly what those factors are. However, nearly everyone agrees that a

standard should be independent of any specific technology, platform, or vendor

implementation. These factors are paramount to a good meta model standard.

To be successful (i.e., widely adopted and implemented), the meta model standard must

be developed in collaboration with a majority of key software vendors. Just what

constitutes a majority of key vendors, however, is also open to interpretation, and the two

groups (MDC and OMG) currently attempting to develop such a standard are likely to

have very different interpretations.

Technology-Independent

A sound meta model standard should not be based on any specific technology or be

required to be implemented on any specific platform. For example, the standard should

be able to be implemented on a mainframe, Unix, or Windows NT environment, with

nothing more than minimal environment-specific tweaks to the models.

Vendor Neutral

The standard for the meta model must be developed in collaboration with all of the key

software vendors. In addition, and most important, the standard must not be designed

with any specific vendor in mind.

Realistic In Scope

One of the mistakes that many of the early meta data standards efforts made was trying

to be all-encompassing. These efforts spent so much time trying to capture every kind of

meta data imaginable that they never could get their standard off the ground. A good

standard goes after the big 95 percent of the common meta data that corporations need.

That last 5 percent can take forever to accomplish.

Widely Implemented

The most important aspect of any standard is that it becomes widely implemented. More

than any of the other factors on this list, the market has always dictated what standard

becomes reality (e.g., Microsoft Windows and IBM OS2). No standard is valuable if it just

stays on the drawing board.

Meta Data Coalition

The Meta Data Coalition is a not-for-profit corporation composed of approximately 50

industry-leading software vendors and user companies concerned with defining and

implementing a meta data interchange format standard. This group, led by Microsoft, has

worked for more than two years to define the de facto industry standard for the meta

models. The result of this ongoing cooperative effort, the Open Information Model, is

intended to be the standard meta model that will house meta data. Microsoft transferred

the rights to the OIM to the MDC in 1998 but continues to play an active role in the MDC.

To complement its meta model effort, the MDC is also attempting to create standard

definitions for business rules and knowledge representation. These efforts are likely to go

a long way toward alleviating the pain involved in creating a meta data infrastructure for

data warehousing. In an attempt to garner industry-wide support for the OIM, the MDC

has released the OIM to approximately 300 software companies for review and comment.

To date, the OIM has garnered a wide array of industry endorsements.

The MDC is chartered to maintain and evolve the OIM as a technology-independent and

vendor-neutral meta data standard, but the model is intended to extend beyond decision

support. The MDC is attempting, over the long haul, to encompass component modeling,

knowledge management, and application development in a series of models using SQL

as a query language and XML as an interchange format between OIM -compliant

repositories. In an early implementation of this effort, Microsoft currently ships OIM as

standard with its SQL Server 7 and Visual Studio 6.0.

Evolution of OIM

The MDC released its own meta data standard, the Meta Data Interchange Specification,

in 1997. Although MDIS (which uses an ASCII-based interchange format and specifies a

lowest common denominator meta model) was a noteworthy attempt, it never gained

sufficient industry-wide acceptance to become a standard. Because of this

less-than-successful first effort, the MDC eagerly embraced the OIM as its

next-generation meta model and interchange specification. A key difference between

MDIS and OIM is that OIM provides programmatic access to a meta data repository,

giving meta data the power to truly help organizations in their decision support efforts.

The primary purpose of OIM is to support vendor tool interoperability via a shared meta

data model. OIM's submodels are grouped by subject area and can be customized. Each

submodel is designed to encompass all phases of a project's development lifecycle, from

analysis through deployment. Examples of OIM subject areas include Enterprise

Resource Planning, on-line analytical processing (OLAP), data transformation services,

and semantic information models. In addition, the MDC is currently reviewing three new

models (all originally presented by Microsoft) intended to extend OIM:

§ Business engineering model. Provides a means to formally document an

organization's structure and processes

§ Business rule model. Provides a means to capture, classify, and store

business rules used in various applications and business processes

§ Knowledge description model. Provides a thesaurus or common

vocabulary for describing information contained in a taxonomy of end-user

resources

The following section describes some of the specific OIM models in the standard.

Database Model

The Database Model describes information about data maintained in an enterprise's

databases and provides mechanisms for extending the information model to support

easier evolution. The goal of the Database Model is to make meta data readily available

and to provide the infrastructure to enable enterprise-wide data management and tool

interoperability.

The Database Model covers the basic elements of a SQL data provider, such as tables,

columns, and relationships, and includes a modest amount of deployment information for

locating a data provider in a network. It does not, however, address most physical or

implementation details.

Through OLE DB, meta data from any relational database can be imported into the

Database Model through a single interface. Examples include Microsoft Access, Excel,

and Plato.

The Database Model provides mechanisms for extending the meta model to enable

easier customization. A set of published interfaces for manipulating the meta data is

stored in the repository, independent of the on-disk storage format and completely

transparent to the user. It is, essentially, a shared database that spans many database

source descriptions, allowing the expression of relationships between different database

schemas.

The interfaces of the repository completely encapsulate the stored information. This

makes it possible to evolve data in response to information model changes, since tools

depend only on the information model, not on the stored representation of data. It also

enables vendors to tailor interfaces to support extensions, since extensions do not affect

the interface to nonextended objects.

Database Transformation Model

Data warehouses and data marts derive their data from existing production, operational

systems. Before this data can be loaded into a data warehouse or data mart, however, it

must be integrated and transformed into information that has value to the business users

and can be efficiently queried.

The Database Transformation Model, which is an extension of the Database Model,

describes the transformations that occurred and the data sources that were accessed.

This model is intended to enable sharing of meta data about transformation activities by

making that information readily available in a standardized format for third-party ETL tools.

This gives the customer a single place to view all of their warehouse transformations,

regardless of which ETL tool is in use.

OLAP Model

OLAP is the area of decision support that focuses on the analysis of multidimensional

data in a data warehouse setting. The OLAP Model supports sharing meta data across

vendor tools and applications.

A multidimensional database stores information that is associated with a variety of

dimension attributes, such as time, region, product type, and customer type. Such

databases are typically used in a DSS setting, where users can explore summaries of the

data across each dimension (e.g., total sales by region for each product type or total

sales per quarter for each region). The user is essentially exploring a data cube, where

each dimensional attribute defines one dimension of the cube.

The OLAP Model has several purposes. It provides a place for multidimensional tools to

store their schema information, thereby giving the user a single place to view all

multidimensional data, regardless of the tool. Database design tools, OLAP query tools,

data transformation tools, and OLAP database engines all need schema information

about multidimensional databases. The OLAP Model allows any of these applications to

store this type of information for reuse or modification by other applications. The OLAP

Model also allows the exchange of this multidimensional information.

The OLAP Model covers basic multidimensional schemas based on relational sources,

and can be used to store information about MOLAP (multidimensional OLAP), ROLAP

(relational OLAP), and HOLAP (hybrid OLAP) tools.

Legacy Model

The Legacy Model stores meta data about legacy system record definitions. These

definitions can represent delimited files (like tab, space, and comma), legacy language

definitions (e.g., COBOL and PL/I), and record layouts for databases used in legacy

systems.

The primary purpose of this model is to allow data warehousing ETL tools to use common

(i.e., nonrelational) legacy sources of data trans formations. These sources are often

sequential files, VSAM files, IMS, or IDMS, and are usually defined using legacy

languages.

Semantic Model

The Semantic Model accommodates meta data from linguistic processors and tools that

superimpose semantic models onto database schema. The Semantic Model is an

extension of the Database Model.

With a semantic or linguistic processor, users can use the English language to interact

with the data in databases without learning data manipulation languages. For example, a

business user can ask the question, "Give me product sales, by region, by marketing

campaign, over time." The linguistic processor takes this sentence and creates data

manipulation language to extract the data from the supporting database schema in order

to supply the information. The Semantic Model accommodates such English-to-schema

mappings.

Because it describes information irrespective of any technology, semantic information is

independent of any particular tool. Accordingly, the Semantic Model stores semantic

information in a commonly agreed-upon format so that multiple tools can share this

information and allows users to employ tools from different vendors. Further, because the

Semantic Model inherits information from the Database Model, tools that understand the

Database Model can view and access an instance type in the Semantic Model, even if

they don't understand the types of the Semantic Model itself.

Object Management Group

The second major initiative to create a meta data model standard, the Object

Management Group, was originated by Oracle, IBM, Unisys, NCR, and Hyperion. The

meta model standard proposed by this group is the Common Warehousing Metadata

(CWM). In early 1999 the group issued a request for proposal (RFP) calling for a decision

support meta data standard that conforms with the OMG's Meta Object Facility (MOF),

which is a framework for defining meta models, and a meta model interchange

mechanism based on the XML Meta Data Interchange (XMI) specification. All responses

to the RFP had to be submitted to the OMG by March 2000.

MOF is a subset of the Unified Modeling Language (UML) that defines a set of interface

description language (IDL) mappings to meta models and a set of Common Object

Request Broker Architecture (CORBA) interfaces that can be used to define and

manipulate MOF-compliant meta models. The IDL interfaces automatically generate Java,

COM, C, C++, COBOL, Smalltalk, and Ada interfaces to MOF-compliant meta data

repositories. The interfaces enable users to automatically generate repository server

implementations from MOF meta models or to support repository interoperability. MOF is

presently restricted to providing meta data for CORBA-based systems, since the only

defined way to interchange MOF meta data is through the CORBA interfaces produced

by the MOF's IDL mapping. However, XMI's use of XML provides a way to lift this

restriction. Furthermore, because the adopted OMG UML specification defines the UML

meta model as a MOF meta model, the XMI proposal could also lead to a model

interchange format for UML.

XMI uses the standard means in XML to describe elements and their attributes. In other

words, every attribute of a MOF meta model class is represented in the Document Type

Definition (DTD) by an XML element whose name is the attribute name. In turn, the

attributes are listed in the content model of the XML element corresponding to the meta

model class in the same order as they are declared in the MOF meta model. Each

association between two meta model classes is represented by two XML elements that

represent the roles of the association ends. The multiplicities of the association ends are

in turn translated to the XML multiplicities that are valid for specifying the content models

of XML elements.

XMI uses three optional attributes— xmi.id, xmi.label, and xmi.uuid— to identify the

elements in a document. The id attribute must be unique within a document, but not

necessarily unique globally. The uuid attribute, on the other hand, must be globally

unique, while the label attribute is intended to hold a user-defined string with any

desirable string. XMI requires the use of several XML attributes to enable XML elements

to refer to other XML elements using the values of the these three attributes. These

attributes allow XML elements to act as simple XLink or to hold a reference to an XML

element in the same document using the XML IDREF mechanism.

In October 1998, a detailed specification of XIF was submitted to OMG for review. Shortly

after the OMG committee ratified the specification, a group of OMG vendors, including

IBM, NCR, and Oracle, demonstrated a prototype of an XIF-based software tool for

exchanging UML-based meta data. In the near future, XIF is likely to gain momentum and

product support among the non-Microsoft alliance.

The Bottom Line

Several years ago while I was speaking about meta data at a conference in Chicago, an

attendee asked me if the latest committee-brokered meta data standard was likely to be

successful. My response, then and now, is that a meta data standard will not be

successful until one of the major players in the industry decides that such a standard is

TE
AM
FL
Y

Team-Fly®

absolutely necessary. We need a 500-pound gorilla to get all of the vendors moving in the

same direction. Microsoft's Open Information Model represents such an attempt.

We have to remember that no effort is perfect, and that no company is going to expend

tremendous resources if it is not likely to reap a significant profit. To give credit where it is

due, if it were not for Microsoft's participation in the arena, we would be unlikely to have a

standard at all. In truth, Oracle and the other members of OMG did not give meta data a

second thought until Microsoft recognized the need for a meta model standard. Whether

Microsoft's standard is the best is irrelevant— Microsoft has made the meta data market a

reality. For the first time, our industry will have a real standard for meta data.

The real question is whether we will have a single standard, two standards, or some

combination of the evolving standards. Keep in mind that the oxymoron of two standards

would not necessarily be a bad thing. Software vendors could without much difficulty

create OIM–CWM interfaces that automatically bridge the two meta models.

I strongly urge, however, that the standards be merged for the good of our industry. A

merged standard would accomplish several goals: It would allow both parties to claim

victory for making a meta data standard a reality, and the decision support and IT

industries would benefit because organizations would be able to efficiently manage their

data warehouses and be able to better cost-justify further decision support development

efforts. Increased business intelligence efforts translate to increased revenues for all of

the software vendors.

The good news is that the MDC and OMG are making overtures to begin the process of

aligning the competing standards. To foster this convergence, the OMG has become a

member of MDC and vice versa. On the negative side, however, we hear grumbling from

both sides; the MDC complains that the OMG standard requires the use of CORBA, and

the OMG is gripes that the OIM requires the Component Object Model (COM). Of course,

each side disputes the other's claim.

Despite the grumbling, I believe that the groups will eventually put their differences aside

and do the right thing— create a single standard for decision support that is both platform

and software independent. Maybe I'm too much of an optimist, but I know that the folks on

both sides of this fence are highly intelligent people, and I believe that in the end they will

do what is right.

The XML Standard

XML is a subset of SGML (Standard Generalized Markup Language), which attempts to

define a universal standard for electronically exchanging data. XML maintains the

important architectural aspects of contextual separation while removing nonessential

features of SGML. Furthermore, XML is an open technology standard of the World Wide

Web Consortium (W3C), the standards group responsible for maintaining and advancing

HTML and other Web-related standards. This section discusses the potential uses of

XML for exchanging meta data across a variety of software systems.

How XML Works

XML offers a text-based mechanism to represent the structure inherent in data in order to

author and interpret that data unambiguously. It uses a tag-based approach similar to that

of HTML to handle the presentation of the online content. However, because each XML

tag name describes the characteristic of the data it specifies, XML is more flexible and

extensible than HTML at handling the meta data associated with information content. The

following examples, which describe information about a textbook, illustrate this concept.

The first is in HTML and the second is in XML:

 <HTML>

 <BODY>

 <TABLE>

 <TR>

 <TD>Building and Managing the Meta Data Repository</TD>

 <TD>David Marco</TD>

 <TD>2000
 John Wiley & Sons
New York
First Edition</TD>

 </TR>

 </TABLE>

 </BODY>

 </HTML>

 <?xml version="1.0"?>

 <Book>

 <Name> Building and Managing the Me ta Data Repository</Name>

 <Author>

 <Name> David Marco</Name>

 </Author>

 <Year>2000</Year>

 <Publisher> John Wiley & Sons</Publisher>

 <PubCity>New York</PubCity>

 <Edition>First</Edition>

 </Book>

From these examples, it is clear that HTML is best-suited as a data presentation

language, while XML is intended as a tree-based data representation language. In

addition to content, each XML element (e.g., Author) may have attributes. An element's

attributes are expressed in its opening tag as a list of name value pairs. So, the attributes

of the element <Author> would be expressed as:

 <Author xmx.label="bsj99"> David Marco </Author>

The attributes of an element can also be specified by means of the ATTLIST. Using our

same example, the following DTD component specifies the optional (keyword #IMPLIED)

xmx.label attribute of the Author element consisting of a character data string:

 <!ATTLIST Book xmx.label CDATA #IMPLIED >

XML defines a special attribute called ID, which can be used as a unique identifier for an

element within a document. The IDs can, in turn, be used for cross-referencing elements

in an arbitrary way beyond the inherent tree-based structure of XML.

The Document Type Definition (DTD) provides a means by which an XML proc essor can

validate the syntax and some of the semantics of an XML document (i.e., the various

types of elements that a document can have and the kinds of element nesting that is

permitted). Thus, we may have the following DTD declaration for our example:

 <!Element Book (Name, Author, Year, Publisher, PubCity, Edition)>

Of course, a DTD grammar may be more complex than this if it includes, for instance,

multiplicities, logical or, and the attribute types permitted for each element. DTDs are

often stored in external files and referenced by the XML documents that use them by

means of the Universal Resource Identifier (URI), such as:

 "http://www.EWSolutions.com/xmx.dtd" or simply "file:xmx.dtd"

An XML document is well-formed if it conforms to the XML's tree-based (hierarchical)

structure and its tags are properly nested. If the document also complies with a DTD

grammar, it is called a valid XML document. The ultimate level of correctness for an XML

document is semantic correctness, which applies if the data values for each label conform

to some criteria that is domain-specific. For our book example, perhaps the values for the

publisher label must be within an acceptable range (e.g., John Wiley & Sons). An XML

document need not reference a DTD however, even if one exists. The resulting document

can be processed more quickly, but at the cost of some loss of confidence in the quality of

the document.

XML documents are processed by XML parsers that use XML rules along with any

referenced DTD grammars. Such parsers are commercially available from major software

vendors, such as IBM and Microsoft, and are part of the most recent releases of the major

Web browser programs (e.g., Internet Explorer 5.0).

Unlike HTML, an XML document does not include presentation information. Instead, an

XML document may be rendered for visual presentation by applying layout-style

information with technologies such as XSL (Extensible Style Language). Web sites and

browsers are rapidly adding XML and XSL to their functionality. Finally, DTD is being

superseded by DCD (Document Content Definition), which is a proposal to provide

data-type support and a new syntax for DTDs. DCD will help to provide richer meta data

for data described by means of XML.

Why Use XML for Meta Data Exchange?

XML offers many advantages as a format for meta data exchange. These include:

§ XML is already established as an open, platform-independent and

vendor-independent standard by an international organization.

§ XML supports the international character set standards of extended ISO

Unicode.

§ XML does not rely on any programming language or proprietary API, and a

range of XML APIs are available to create, view, and integrate XML

information. Leading XML APIs presently include DOM, SAX, and

Web-DAV.

§ The cost of entry for XML information providers is low. XML documents can

even be created by hand using any text editor. In the future, XML-based

WYSIWYG editors with support for XSL rendering will allow creation of XML

documents.

§ XML's tag structure and textual syntax are easy to read and are clearly

superior to HTML for conveying structured information.

§ The cost of entry for automatic XML document producers and consumers is

low, with the set of available development tools already growing. Major

computer vendors, including IBM, currently offer complete, free,

commercially unrestricted XML parsers written in Java. A variety of other

XML support tools, including implementations of the XML APIs, are

available on the Internet.

XML does have two disadvantages that potential users need to be aware of. First, the

meta data tags attached to the meta data add a significant amount of overhead to the

meta data and to the meta data storage requirements. Second, users need to maintain a

listing of the meta data tags, a task which can become problematic for companies that

define their own custom tags.

XML-Based Initiatives for Meta Data Exchange

Several key initiatives have already begun using XML for meta data exchange, further

indicating the importance of this emerging standard. Two such initiatives are worth

reviewing here: one spearheaded by Microsoft, and the other driven by the OMG.

Microsoft

Microsoft claims to be committed to XML as an open standard and provides support for it

in versions 4.x and 5.x of its Internet Explorer Web browser. On the meta data front,

Microsoft has proposed the XML Interchange Format (XIF) as the mechanism for

exchanging meta data. XIF consists of a set of rules for encoding meta data objects

described by OIM in XML. XIF can, in turn, be generated and parsed automatically from

any implementation of OIM, which means that all import and export activity is driven by

the meta model.

XIF uses various DTDs that correspond to different subject areas of OIM. DTD is not

intended to describe higher-level semantic concepts (e.g., cardinality or multiple

inheritance). XIF uses DTDs only for documentation purposes to make it easier for

developers to understand the structure of an XML document. Furthermore, XIF ensures

that all OIM instance information is represented as content, references between objects,

and all OIM modeling and support information as begin/end tags and attributes of tags.

This ensures that XML browsers and applications are able to process XIF documents,

even if they do not understand the semantics expressed by the OIM.

The DTD grammar in turn uses various encoding concepts, such as Character Set and

Element, for mapping the OIM interfaces, their properties, and their relationships to the

corresponding XML-based syntax. This grammar also extends the standard XML syntax

to handle the inheritance model across various subject areas of OIM. Furthermore,

relationships and references are resolved by means of the required ID attribute of an

element, which must be unique within an XML document.

Microsoft presently provides both an XIF importer and an XIF exporter as COM interfaces

for the Microsoft Repository 2.1. These interfaces can be called from any program in C,

C++, VB, or Java to import and export XML-based meta data into the Microsoft

Repository based on the OIM-compatible DTDs supplied as part of the Microsoft

Repository.

With the increasing popularity of XML as the format for representing Web-based and

E-commerce data, XML files are likely to become a distinct source of data and meta data

for many software products. As a result, the ability to interchange the meta data

associated with an XML file while validating some or all of that meta data against

predefined (and potentially standardized) grammars is a key requirement for

interoperating with the emerging E-commerce and Web-based information systems.

Therefore, the ability to effectively manage the meta data sharing and interchange

processes with various software tools and by means of standard protocols is a

fundamental requirement of any meta data repository architecture for an enterprise

solution.

The Bottom Line

XML is fast becoming a standard for information exchange and vendor tool

interoperability among different software systems. Its platform independence and

vendor-neutral nature, combined with its ease of use and low overhead, make XML a

prime candidate for supporting interactions between the growing family of thin-client

Web-based applications and their servers. As data warehousing and decision support

systems are merging with Web-based applications, particularly for E-commerce, XML is

becoming an indispensable part of the new multitier architectures for supporting such

systems. The DTD validation rules of XML, in turn, provide a viable framework for

creating common vocabularies for exchanging meta data across different classes of

software applications and meta data repositories. A number of efforts for standardizing

such XML-based grammars, such as Microsoft XIF and OMG XMI, are gaining

momentum and are likely to be used to facilitate meta data interoperability across

different software systems which operate in heterogeneous computing environments.

In the next chapter, we examine meta data integration and access tools, and illustrate the

techniques for evaluating and selecting these tools.

Part II: Implementing a Meta Data Repository

Chapter List
Chapter 4: Understanding and Evaluating Meta Data Tools

Chapter 5: Organizing and Staffing the Meta Data Repository Project

Chapter 6: Building the Meta Data Project Plan

Chapter 7: Constructing a Meta Data Architecture

Chapter 8: Implementing Data Quality through Meta Data

Chapter 9: Building the Meta Model

Chapter 10: Meta Data Delivery

Chapter 11: The Future of Meta Data

Chapter 4: Understanding and Evaluating

Meta Data Tools

Overview
This chapter explores the requirements that you may have for meta data

tools and examines the two types of meta data tools currently on the

market: integration tools that let you integrate your various meta data

sources into a central repository, and access tools that let you perform

inquiries against the repository. Integration is particularly challenging

because the tools must be able to interface with the many and varied types

of meta data that exist within most organizations. We also look at the

current state of the meta data tool market and explore the various

components that make up a good tool. Last, we walk through a vendor tool

checklist that helps you to organize and document your tool requirements

and rate the various vendors' offerings (see Appendix A for the complete

checklist, including detailed Comments section).

The Meta Data Tool Market
The meta data tool market has been in a state of flux and not well coordinated to serve

the needs of meta data repositories. Tools typically perform specialized integration or

access functions for a particular market niche, but no one or even two tools exist that fill

the requirements for a majority of meta data repositories. Further, most tools are not

integrated with one another and cannot easily share information, which significantly

complicates the process of selecting tools. This lack of coordination and integration is

largely attributable to the lack of a globally accepted meta model standard (i.e., a physical

data model of the repository). As we discussed in Chapter 3, Meta Data Standards, one

of the two model standards currently under development (by the Meta Data Coalition and

the Object Management Group) is likely to emerge as a de facto standard in the near

future. Once this occurs, we are likely to see some cohesion in the meta data tools market,

and products from different vendors will be able to share information much more easily.

Two other factors play major roles in the current lack of market coordination and tool

integration: the lack of an XML standard and the fact that the meta data tool market is

experiencing consolidation. Corporate buyouts are occurring on a regular basis as

industry giants like Computer Associates and Compuware swallow previously unknown

meta tool vendors and acquire their product lines. Eventually, this consolidation will help

to stabilize the market and contribute to standardization, but in the meantime it's difficult

to keep track of the vendors and their respective offerings. And, many of the vendors are

rushing to add support for XML to their products, but because the XML standard (which

we also discussed in Chapter 3) is not yet finalized, each vendor's version of XML varies

slightly, causing incompatibilities in the XML and making the tools incompatible with one

another. Although the tool vendors have all pledged to support an XML standard when

one emerges, vendor support for XML is questionable in the interim.

So, while the wide-open meta data tool market offers lots of opportunities for vendors, it is

a complex and constantly changing arena that presents users with difficult choices for

acquiring appropriate tools. The market situation is likely to improve, from the users'

perspective, in the near future, but few companies can wait for the market to stabilize

before selecting tools. The best course in the interim is to select tools that meet your

current repository requirements but have sufficient flexibility to change in concert with the

market and underlying technology.

Requirements for Repository Tools

Selecting meta data repository tools can be very difficult if you don't do some homework

before you begin. To select appropriate tools, you need to consider all of your meta data

requirements as well as each tool's capabilities. You have to determine not only what

types of meta data you need to capture, but also such factors as how the tools integrate

into your system architecture, how the repository data can be accessed and displayed,

and how to provide security and maintain the repository. The first step in selecting

repository tools is determining what meta data exists within your organization and what

sources you need to deal with.

Determining Types of Meta Data

A repository tool must be able to handle the meta data that your business users need; this

is key to the success of integrated systems such as data warehouses that depend upon

meta data. Identifying what types of meta data your business users need can be difficult,

however, given the wide variety of meta data types that exist within an organization.

There are two ways to determine what types of meta data your project needs:

§ Top-down. In the top-down approach, you talk to the users and administrators

who are going to work with the repository tools and base your selection criteria on

their requirements, regardless of the software or repositories that are already

deployed in your organization. This approach is most suitable for a new project that

has very little dependency on existing software.

§ Bottom-up. The bottom-up approach, on the other hand, focuses on satisfying

the meta data needs of existing software and repositories, and requires an in-depth

study of documentation, such as the data dictionary, or in a worse case, the software

code and database catalogues.

It is important for you to understand both the technical and business meta data

requirements for your repository in order to accurately evaluate the types and sources of

meta data available to you. As we discussed in Chapter 2, technical meta data is meta

data about your systems, and business meta data is the business definitions and rules

about your organization. Technical meta data contains information about programs and

databases, scheduling, and control totals, as well as anything else that pertains to the

design, running, and monitoring of your systems. The amount of technical meta data that

you need to capture varies depending on your specific requirements. Business meta data

is the real-world definitions for the complex systems that exist at your company. Be sure

to choose the most important types of meta data first, because you will not be able to

gather all of the required meta data in your initial effort. A meta data repository, like any

other large DSS project, involves numerous iterations.

Administrative Facilities

Meta data tools must incorporate administrative facilities to allow business users and

developers to manage the repository. The primary administrative functions that need to

be addressed are:

§ Security. Security is extremely important for meta data access and manipulation,

particularly when various teams in a distributed environment use the repository.

Security is often managed by granting various privileges to different users or classes

of users, depending on the type of operations they need to perform on the meta data.

The tool must be able to control access to the various types and sources of meta

data.

§ Concurrent access. If the users and administrators in your project need to

concurrently access the meta data, the repository tool must provide the means to

manage conflicts that may arise when two or more users attempt to manipulate the

same meta data. Conflicts occur when multiple users attempt to update the

repository or when two departments differ in their interpretation of a meta data fact.

In these cases, the tool should be able to capture the fact that there is a conflict and

provide some method of resolving the difference. Most tools provide some type of

locking mechanism to ensure that when a user has checked-out a particular piece of

meta data for editing, other users can only view that piece of meta data, not change it.

Other tools provide an automated alert to notify the meta data administrator when a

conflict occurs or generate a report listing all conflicts within a given period of time.

§ Change management. Meta data is dynamic and changes frequently throughout

a project lifecycle. The repository tool you select should be sufficiently flexible to

effectively handle change by providing a means to store and track various versions

of the meta data. Furthermore, it is generally very useful to be able to find differences

between two versions of the same meta data, thereby facilitating the synchronization

process.

§ Validate integrity and consistency. Meta data must remain valid and consistent

throughout the entire project lifecycle. Any defects in the meta data can have very

grave consequences for everyone involved in the project, as well as for the end

users of the software products that rely on the repository. Be sure that the repository

tool you select has an effective means for regularly checking and validating the

integrity and consistency of the repository's meta data throughout the various

phases of the project.

§ Error recovery. Most meta data repositories rely on some type of database

management system for storing and managing the content in a physical medium,

such as files. A repository tool should provide the necessary means for recovering

from errors that may occur due to problems with saving and restoring the meta data

from the physical medium.

TE
AM
FL
Y

Team-Fly®

Finally, a repository tool that offers a Graphical User Interface can be very beneficial for

situations in which data administrators need an easy-to-use interface or scripted

language to perform the administrative tasks. If the administrators or users are not

comfortable with a tool's administrative facilities, they may neglect many of these very

necessary functions, which can have serious consequences if the repository contains

sensitive data, such as personnel and salary records.

Sharing and Reusing Meta Data

An effective meta data repository must be able to share the information in the repository

among various groups and across teams and software products deployed within the

organization. Such sharing saves time and prevents errors and inconsistencies that can

occur throughout the project's life cycle, and is, after all, the whole reason for the

existence of the repository. By allowing other groups to access the repository, we are able

to reuse critical business definitions and calculations and ensure that we maintain a

consistent view of the data throughout the organization.

Most large projects require effective reuse of meta data within and across teams and

software products deployed throughout the project's life cycle. For example, your project

team may decide to create some templates that can be instantiated multiple times in

various phases of the project. Chances are good that you'll want to be able to propagate

the changes automatically by simply modifying the parent template. The ability to reuse

existing calculation logic and business definitions helps to reduce the time it takes for

project analysis and increases the consistency with which data is calculated. (If everyone

calculates sales totals using the formula that resides in the repository, the apples to

oranges syndrome that exists in many companies today can largely be eliminated.)

Reuse is one of the holy grails of computing, and a repository can play a major role in

helping us to achieve it— but only if the meta data tools support the capability.

If your project requires sharing and/or reusing the meta data in your repository with other

groups or repositories in the organization, you'll need a meta data tool that supports these

capabilities. Depending on how and with whom you are sharing your meta data, your

requirements may be as simple as allowing one or more other parties to access your

entire repository, or as complex as writing specific meta data interchange bridges

between your repository and another party's software. In any event, a tool's ability to

share and reuse meta data is crucial and, therefore, a very important aspect of the

selection process. Unfortunately, there is a lot of misinformation about the capabilities of

various tools in this regard. Be sure to carefully study and document your meta data

sharing and reuse requirements, then diligently evaluate the capabilities of the various

repository tools on the market using real-world meta data to test them, if possible.

Extensibility and Compliance with Emerging

Standards

For any tool to be successful, it needs to be able to change as industry standards emerge

and evolve. This is particularly true of meta data tools because of the ongoing standards

battle. The tool that you select must be able to support whichever standard, or blend of

standards, the industry ultimately embraces. Because nearly all software projects change

over time, the tool must also be able to add extended features and capabilities to cope

with such changes. You should, therefore, carefully evaluate the repository tools you are

considering to ensure they comply with an open architecture that can be extended easily

and effectively without requiring a major overhaul of the system or the purchase of costly

upgrades or new products.

Over that past several years, several industry standards have emerged that directly affect

meta data repository tools. These standards include meta model content and

organization, and delivery. The major new standards in these categories are OIM for the

meta model and XML for delivery. If you are planning to deploy your repository tool in an

environment that depends (or will depend in the near future) on these standards, be sure

that the tool has the appropriate infrastructure and features to properly support these

standards. Refer back to Chapter 3, Meta Data Standards, for a thorough discussion of

the evolving standards.

Using the Repository

Once it's completed, the repository contains a vast amount of knowledge about your

company's inner workings. But the repository doesn't have much value if you can't view its

contents. The ability to easily browse the meta data and generate reports is crucial to the

repository's success. If possible, you should try to make the repository access tool the

same tool that business users currently depend on to access their data warehouse or

data marts. Using the same tool eliminates the need for users to learn another tool and

helps to ensure that they 're comfortable using the repository.

A repository access tool should be capable of easily generating and maintaining a variety

of reports. You'll need to evaluate the reporting capabilities of the meta data repository

tools you're considering for a number of specific criteria, including:

§ Ability to handle different types of data

§ Support for various presentation styles

§ Ease of use

§ Support for Web-based formats (e.g., HTML and XML)

§ Ability to be customized

§ Interoperability with other reporting tools

Although all of these capabilities are important, some will be more important than others

for your specific repository environment, so you need to have a thorough understanding

of the user access and reporting requirements in order to effectively evaluate the

repository tools that are available. For example, your users may need a tool that can

publish one or more reports to a central location for viewing by other users and/or

departments. This feature, which is becoming increasingly popular, can help to ensure

that all users have the same up-to-date information about the repository contents. Table

4.1 lists some advanced capabilities to look for in a repository access tool.

Table 4.1: Repository Access Capabilities

CAPABILITY DETAIL

Data dependency Because meta data typically

contains a complex web of

information in which changes to

one object are likely to affect one

or more other objects, the

repository tool should be able to

analyze the dependencies among

related meta data. The ability to

track dependencies allows the

developer or business user to

examine the affect that a change

on one element is likely to have

on the rest of the system. This

impact analysis helps future

development by reducing the

number of unknowns in a project.

Lineage analysis Data lineage lets you follow a

data element from its source all

the way through the various

processes until it reaches its

destination. Business users like

this feature because it allows

them to see exactly what is

happening to the data.

Searching A repository tool should provide

effective and efficient means for

searching the repository content

by name, category, keyword, and

other means that are important to

your users and administrators.

This is particularly important

because most projects use a

Table 4.1: Repository Access Capabilities

CAPABILITY DETAIL

variety of names to refer to

different meta data in the

repository, and it is often difficult

(if not impossible) for users and

administrators to remember all of

the names and their addresses in

the repository.

Many individuals in the company may need to easily browse and interrogate the meta

data using user-friendly, Web-enabled access tools. Web access capability is a crucial

requirement of a repository tool and, because most tools offer some type of browser

access, one that you'll have to care fully evaluate. Web access facilities vary widely in

their capabilities and compatibilities, and many fail to deliver the features that they

promise. From a user standpoint, however, Web access is a basic requirement of a meta

data access tool and one that can literally make or break your repository project.

Meta Data Integration

Meta data integration is one of the least understood and most misrepresented topics in

the entire decision support arena. Despite the many and varied types of meta data that

typically reside in different databases, files, and software programs used throughout an

organization by many and varied teams, we are constantly assured by tool vendors that a

tool seamlessly integrates all of the meta data sources. In reality, however, most tools fall

short of delivering on this promise.

This section presents a real-world example of meta data integration and discusses the

challenges of today's meta data integration tools market. Before we begin reviewing the

strengths and limitations of these meta data integration tools though, I'd like to emphasize

that it is much easier to purchase an integration tool and work around its limitations than it

is to build custom programs to populate and support the meta data repository.

Meta Data Integration Tools

A dizzying array of meta data repository tools is available today. (See Table 4.2 for a list,

and see this book's companion Web site [www.wiley.com/compbooks/marco] for updates.)

Most of these tools claim to seamlessly integrate all meta data sources into a repository.

Reality delivers a different message, however. Although it is true that most of these tools

do a pretty good job of integrating formal meta data sources (i.e., CASE tools,

extraction/transformation tools, and other repositories), the majority of them do not have

meta models that provide an adequate foundation for business meta data, and they lack

an overall vision for the complete data administration process. Specifically, most of the

meta models for these tools are strong on the technical side of the meta data equation but

relatively weak on the business side. The meta model that eventually emerges as a

standard must be equally strong on both sides.

Table 4.2: Meta Data Tools

INTEGRATION TOOLS ACCESS TOOLS

Ardent MetaStage (Informix) Brio Enterprise

IBM Information Catalog Business Objects

Informatica MX2

Cognos Impromptu and

Powerplay

Platinum Repository (Computer

Associates)

Information Advantage Business

Intelligence

Unisys Universal Repository Microsoft OLAP Services ("Plato")

Viasoft Rochade

Microstrategy DSS Web and

Server

A meta data integration tool must have a fully extensible meta model that will let the tool

interface with any source that you have, with little or no modification to the meta model.

Most tools do include their own meta model and provide the ability to extend that model

as needed, but the task of extending the model is often complex, much like modifying the

data model in a decision support system. As a result, many meta data administration

teams include a full-time data modeler to handle the model extension chores.

Few repository tools provide a Web-enabled access layer that can satisfy the needs of

typical business users. In many cases, the meta data access piece is provided by a "true"

reporting tool, such as Microstrategy DSS or Cognos Impromptu. Whichever repository

tool is selected, it should be fully Web-enabled, have the ability to capture user access

patterns and frequency of report and table use, and be able to store this information in the

repository.

Integrating Meta Data Sources

Within any organization, many different sources of meta data exist— each of which

requires varying levels of integration complexity and meta model changes. For example, if

you may have a CASE tool that stores technical meta data in its own repository, you

probably need to write your own extracts in order to get the data out of the proprietary

repository. This type of source is considered nonsupported because it doesn't fit with any

industry standards that facilitate loading into the meta model.

Meta data sources fall into three broad categories of integration:

§ Certified sources. Certified sources are those that a tool can directly read,

properly interpret, and load into the correct attributes of the meta model.

These sources are easily integrated and do not require an extension of the

base meta model. Because tools are typically designed to accept these

sources, there is no need for additional programming or analysis. Common

examples of certified meta data sources include technical meta data from

CASE tools and transformation rules from extraction/transformation engines.

Repository tools are generally certified for several vendor tools in each of

these categories.

§ Generic sources. Generic meta data sources are those that are in a common

format (i.e., tab delimited, space delimited, or comma delimited) that a tool

can read. Most tools support one or more generic meta data sources.

However, while most tools can easily read the source, programming is often

required to map the source elements to the correct attributes in the meta

model. It is important, therefore, for a tool to have an interface that can be

easily changed to map these sources. In addition, these sources frequently

require extensions to the meta model. The process for extending the model

can range from simple (i.e., adding an attribute to an existing table) to

complex (i.e., building new tables, and/or adding foreign keys for other tables

to reference). Common examples of generic sources include the technical

and business meta data in databases and spreadsheets, which can be easily

extracted into industry-standard formats.

§ Nonsupported sources. Nonsupported sources are those that are neither

certified nor generic and may require sophisticated analysis for design and

programming. These sources present the same challenges as generic

sources, along with the possibility of an additional complicated programming

step to transform the nonsupported source into a generic source.

Nonsupported sources are common sources of informal business meta data

and of meta data stored in vendor applications.

It is important to identify all of the various sources of meta data that you need to integrate

into your repository. If you classify each of your meta data sources using these three

categories, you'll be able to quickly determine the complexity of your project, then

determine how well the tools you're evaluating integrate each of the sources. Some tools

handle some source categories better than others, so you'll need to prioritize your source

categories and find a tool that best addresses those categories.

Meta Data Integration Architecture

You should have a basic understanding of your repository integration architecture when

you are evaluating integration tools. Chapter 7, Constructing a Meta Data Architecture,

offers a detailed discussion of meta data architecture, but you need to consider the

various sources that you'll be integrating as early as possible in the process in order to

select an appropriate integration tool.

An Integration War Story

Figure 4.1 illustrates an actual integration strategy implemented at one of my company's

client sites. This client acquired a vendor tool to integrate its various sources of meta

data. As you can see, the client had a dizzying array of meta data sources (see Table

4.3), and the process of integrating all of these sources left us quite light-headed.

Figure 4.1: Meta data integration architecture.

Table 4.3: Typical Sources of Meta Data in an Organization

META

DATA

SOURCE

S

META

DATA

DESCRI

PTION TYPE

MODEL

EXTEN

SION

CASE

tool

Physical

and

logical

models,

domain

values,

technical

entity

definition

s, and

technical

Certified No

Table 4.3: Typical Sources of Meta Data in an Organization

META

DATA

SOURCE

S

META

DATA

DESCRI

PTION TYPE

MODEL

EXTEN

SION

attribute

definition

s

Extraction

Transfor

mation

tool

Technical

transform

ation

rules

Certified No

Custom

data

dictionary

Business

attribute

and

entity

definition

s

Non-supported No

MS Excel Data

steward's

list

Generic Yes

Reporting

tool

Access

patterns

and

frequenc

y of use

Generic Yes

On the positive side, we verified that the repository tool was certified with both the

CASE tool and the integration tool that we used. Integrating the data dictionary,

however, was more challenging. Because the data dictionary resided in a third-party

application using a proprietary database format, its format was not supported by the

integration tool. To resolve this problem we had to design and write two complex

programs to extract and manipulate the data dictionary into a generic format (comma

delimited) that the repository tool could integrate. This task took one fully dedicated

programmer one month to accomplish.

The last source of meta data that we addressed was the data stewards' spreadsheet.

This source was originally housed in Microsoft Excel and could be extracted in space

delimited format, so we manually recreated it. Finally, we used an OLAP tool to access

the information in the meta data repository. This tool captured user access patterns and

frequency of use, which the data administration staff used to guide them on future

repository development phases.

Tool Vendor Interview Process

When you are ready to begin selecting your meta data tools, you'll need to

identify the vendors that you want to speak with. You can narrow the field of

potential vendors and products by doing some preliminary research. Use

product information that is readily available on the Internet and in industry

magazines and journals to determine which vendors have tools that meet your

general criteria (i.e., perform the functions that you'll need and are compatible

with your hardware/software environment). Once you've prepared a preliminary

list of potential vendors, you're ready to start interviewing the candidates and

evaluating the products. Remember that each of these vendors' tools will have

its strengths and weaknesses, so you'll need to thoroughly understand your

project requirements and priorities in order to choose the tool or tools that best

suit your needs. Nothing is perfect; be prepared to compromise along the way,

but if you keep your requirements and priorities clearly in mind throughout the

selection process— and manage to ignore the bells and whistles that vendors

will wave in front of you— you can't go wrong.

In this section, we present a comprehensive tool selection checklist (Tables 4.4

through 4.15) to help you evaluate the vendors' positions in the market, their

long-term viability, and the strengths and weaknesses of the individual tools.

This checklist is primarily a guide to help you organize your thinking and

compare the vendor offerings on a level playing field. Use this list to begin

organizing your own search and translating your repository requirements onto

paper. Be sure to tailor this checklist to your own environment, reflecting the

points that are relevant for your repository and minimizing or eliminating those

that are not.

To help you make an unbiased decision about which tool meets your criteria,

the checklist includes a method for assigning a numerical level that corresponds

to each item's importance. The Weight, Percentage Met , and Score columns let

you numerically compare how each of the various products ranks. First, assign

a weight to each checklist item, using a value between 1 and 5, where 1 is least

important and 5 is most important. Then, as you interview vendors, specify the

percentage amount that each checklist item satisfies your requirements. The

Score then reflects the product of the Weight and the Percentage Met columns.

Use the Comment column to note any details that may have a bearing on your

decision, like an additional feature in the next release, or the results of a product

trial— either positive or negative. When the checklist is complete, you can use

the scores to determine how well a product fits your priorities.

The first section of the vendor checklist is dedicated to obtaining specific

information about the vendor company (see Table 4.4). Information about the

company, like the number of years it has been in business and the number of

people it employs, can help you to determine whether the company is well

established or just starting up. Information about employees is also useful for

determining whether the company is likely to dedicate sufficient resources to

customer support and product development to meet future needs.

Table 4.4: Vendor Background Checklist

VENDOR

BACKGROUND

COMMENTS

1 Full name and

business address of

vendor.

2 Parent company.

3 Number of years

company has been in

business.

4 Company structure. Is

it a corporation,

partnership, or

privately held? List

names associated with

structure if different

from Question #1.

5 Public or privately held

company? If public,

which exchange is

company traded on,

and what is company's

market symbol?

6 When did the company

go public, or when is it

expected to go public?

7 Total number of

employees worldwide.

8 Total number of U.S.

employees.

TE
AM
FL
Y

Team-Fly®

Table 4.4: Vendor Background Checklist

VENDOR

BACKGROUND

COMMENTS

9 Web site URL.

10 Number of developers

supporting proposed

product solution.

11 Company profit/loss for

past three years (if

available).

Profit and revenue information is useful for gauging a vendor's financial health

and determining whether the company is likely to continue operating long

enough to support your long-term needs. While financial health by itself does

not ensure a company's long-term survival or its continued support of a

particular product line, poor financial health may warn of imminent decline

and/or an inability to commit sufficient resources to product support and

development. While it may be difficult to obtain solid financialson each of the

vendor companies (especially in light of the large number of mergers and

acquisitions in the market), the more information you can obtain, the better off

you are. The last thing you want to do is to purchase a product, only to find that

the company is nearly bankrupt and trying to sell off its product lines.

Remember that the tool market is changing rapidly and that vendors must be

able to change with it.

The next section of the interview checklist (represented in Table 4.5) addresses

the specifics of the vendor's proposed solution, which may be a single product

or combination of products and services. During the interview process, try to

find out as much as possible about the proposed solution, including the number

of other clients using precisely the same solution, specifics about any limitations

of the solution, and plans for future enhancements or upgrades. Ask the

repository architect and infrastructure architect on the meta data administration

team to carefully review all the components of the proposed solution and

compare them to the repository's technical environment and support structure

(Question #13). You'll need to determine how well the various components in

the proposed solution communicate

Table 4.5: Checklist for Proposed Vendor Solution

PROPOSED

SOLUTION

OVERVIEW

COMMENTS

12 Provide a summary of

the vendor's proposed

Table 4.5: Checklist for Proposed Vendor Solution

PROPOSED

SOLUTION

OVERVIEW

COMMENTS

solution and explain

how it meets the needs

specified in this

document.

13 What are the names

and versions of the

product(s)

component(s)

comprising the

vendor's proposed

solution?

14 Number of worldwide

production installations

using precisely this

proposed solution

configuration.

15 Number of U.S.

production installations

using precisely this

proposed solution

configuration.

16 What hardware,

operating system,

DBMS, and Web

browser limitations do

each of the product(s)

component(s) have in

the proposed solution

on client and server

platforms?

17 What is the release

date and version

number history of each

of the product(s)

component(s) over the

past 24 months?

Table 4.5: Checklist for Proposed Vendor Solution

PROPOSED

SOLUTION

OVERVIEW

COMMENTS

18 What is the anticipated

release date and new

feature list for each of

the product(s)

component(s) for the

next 12 months?

19 Provide a list of known

software bugs, errors,

or other technical

issues associated with

each of the product(s)

component(s).

with one another; and what hardware platforms, DBMSs, Web servers, and

communication protocols are required. Last, don't neglect the all-important

aspects of migration and security, particularly as they relate to the individual

components.

Be especially mindful of any requirements you have for downloading Java

applets and/or ActiveX controls (Question #16) to the business users' PCs. This

requirement may conflict with either your company's Web policy or your clients',

if you intend to deploy the solution externally. You'll also want to know whether

your firm is going to be the first to attempt using this solution (Question #15).

No vendor interview would be complete without a look at the costs associated

with the tools. The next section of the checklist should help you to understand

all of the costs involved with this tool, as well as the costs of upgrades and

maintenance (see Table 4.6). Many vendors obtain a significant portion of their

revenues from maintenance and product upgrades. Annual maintenance fees

associated with a product can be quite substantial,

Table 4.6: Checklist for Determining Cost

COST OF

PROPOSED

SOLUTION

WEIGHT %

M

E

T

SCORE COMMENTS

20 Total cost of

proposed

solution.

21 Cost of

Table 4.6: Checklist for Determining Cost

COST OF

PROPOSED

SOLUTION

WEIGHT %

M

E

T

SCORE COMMENTS

consulting

services

required for

installation.

22 Cost of

consulting

services for

initialproject

setup.

23 What is the

vendor's daily

rate for

consulting

services

without

expenses?

24 Annual

maintenance

cost/fee.

25 Are all new

product

component

releases/upgra

des provided

while under an

annual

maintenance

agreement? If

not, explain in

detail.

and typically range from 14 to 18 percent (Question #24). Be sure to understand

all of these costs before you commit to a tool solution. Hidden costs can make a

seemingly attractive solution totally impractical— but you may not discover how

impractical until it's too late! Also, try to negotiate consulting time early in the

purchase process (Question #21) to get your staff trained and the repository up

and running quickly.

The next portion of the checklist (Table 4.7) addresses the specifics of the

vendor's hardware and software proposal. First, you'll need to ensure that the

proposed tool will work in your environment without requiring any major

changes in your existing system architecture. After all, the best tool in the world

won't do you much good if it doesn't work with your other system components or

if you have to upgrade your existing system components to support the vendor

solution. This is the time to determine performance benchmarks, memory and

disk requirements, and operating system requirements. Make sure that the

proposed tool can support the various DBMS techniques (e.g., parallel threads,

dirty reads, and other unique DBMS features) you need to support the DSS

environment. Determine whether security can be centrally controlled (Question

#32) or distributed; how various DSS projects can be separated; and how

access is controlled through the Web. Does the product provide row-level

security to allow users to access a repository table (Question #37) but not all

rows in the table? Last, be sure to address issues that are likely to affect the

user training curve, such as the programming languages (Question #45) used

by the repository, so that you fully understand the level of training that will be

Table 4.7: Evaluating the Details of Proposed Solution

TECHNICAL

REQUIREME

NTS

WEIGHT %

M

E

T

SCORE COMMENTS

26 Are there any

database

schema design

requirements

for the

DSSdata

model in order

to function with

the repository

product?

27 How does the

tool control the

various

versions of the

meta data (i.e.,

development,

quality

assurance,

and

production)

stored in the

Table 4.7: Evaluating the Details of Proposed Solution

TECHNICAL

REQUIREME

NTS

WEIGHT %

M

E

T

SCORE COMMENTS

repository?

28 How is meta

data from

multiple DSS

projects

controlled and

separated?

How can

various

projects share

meta data?

29 Describe how

meta data

repository

contents are

migrated from

one system

engineering

phase to the

next (i.e.,

development,

quality

assurance,

and

production).

How does this

processing

sequence

differ when

dealing with

multiple

projects on

various time

lines?

30 What DBMS

privileges does

the product

Table 4.7: Evaluating the Details of Proposed Solution

TECHNICAL

REQUIREME

NTS

WEIGHT %

M

E

T

SCORE COMMENTS

support (e.g.,

roles,

accounts, and

views)?

31 Can

DBMS-specific

SQL

statements be

incorporated

into queries?

32 Describe the

security model

used with the

product.

33 Can

administration

and use

privileges be

assigned at a

user,

workgroup,

project, and

enterprise

level?

Describe.

34 How does the

product use

existing

infrastructure

security

systems?

35 Does the

product use

any type of

single sign-on

authentication

Table 4.7: Evaluating the Details of Proposed Solution

TECHNICAL

REQUIREME

NTS

WEIGHT %

M

E

T

SCORE COMMENTS

(e.g., LDAP)?

36 Are all user IDs

and passwords

centrally

located for all

product

components?

Where?

37 Where are

user security

constraints for

the product

stored?

38 Can a user

have access to

the repository

tool for one

project but no

access for

another

project?

39 Can a user

view the SQL

generated by

the product?

40 Is the product

Web-enabled?

Describe.

41 Can the

product be fully

used through

Web browser

on the client?

42 Can the

product be fully

Table 4.7: Evaluating the Details of Proposed Solution

TECHNICAL

REQUIREME

NTS

WEIGHT %

M

E

T

SCORE COMMENTS

administered

through a Web

browser?

Describe.

43 Which Web

browsers does

the product

support?

Which Web

server

products does

the product

support?

44 What ActiveX

controls and/or

Java applets

are required on

the client PC?

How large are

these controls

and/or

applets?

45 What

programming

requirements

are required to

support the

proposed meta

data repository

solution (e.g.,

script, SQL,

etc.)?

46 What

scalability

options are

available in the

Table 4.7: Evaluating the Details of Proposed Solution

TECHNICAL

REQUIREME

NTS

WEIGHT %

M

E

T

SCORE COMMENTS

solution to

determine

where

processing is

performed for

optimization?

47 What

collaborative

support comes

with the

proposed

solution (e.g.,

e-mail, pagers,

etc.)?

48 Describe what

processing

functions run

on the client

versus the

server.

49 Does the

product allow

multiple meta

data

developers to

work

simultaneously

with the same

DSS project?

Describe

facilities.

50 What

scheduling

tools does the

product

interface with

TE
AM
FL
Y

Team-Fly®

Table 4.7: Evaluating the Details of Proposed Solution

TECHNICAL

REQUIREME

NTS

WEIGHT %

M

E

T

SCORE COMMENTS

(CA-7, CRON,

Control-M,

JES/2, etc.)?

51 Does the

product use

any

middleware

components?

If so, how do

they improve

overall

performance of

the product?

52 Do new

upgrades or

releases of the

product come

with automated

repository

DBMS

conversion

routines?

53 What is an

average

hardware

configuration

(number of

processors,

speed of

processors,

hard disk

space, RAM)

for the client

and server

components of

the proposed

architecture?

Table 4.7: Evaluating the Details of Proposed Solution

TECHNICAL

REQUIREME

NTS

WEIGHT %

M

E

T

SCORE COMMENTS

Specify

assumptions.

required for users and administrative staff. Also be sure to determine the

memory and processing requirements for each user desktop and understand

how the vendor calculates these needs (Question 53).

Examining the technical information about the tool will help you to assess the

impact that the proposed solution is likely to have on your existing environment.

If, for example, the tool requires large amounts of network bandwidth and your

network is already stressed, then this tool may not be appropriate for your

environment. Be sure to walk through this section of the interview slowly and

carefully, making sure that the vendor answers your questions. If you miss

anything here, it is likely to come back to haunt you. If, for example, you fail to

ascertain that the tool supports ActiveX and Java, you'll have a hard time

categorizing your Web application. Although this would not have mattered a few

years ago, it could be crucial in today's Web-conscious world.

The next section of the checklist (Table 4.8) addresses the tool's meta data

management capabilities. Because most tools interact with a large number of

systems, the information in this section may be harder to nail down than most of

the other sections. As meta data management evolves, tools are providing

more and better facilities. A few years ago, we would not have thought to ask

about bidirectional meta data or active versus passive

Table 4.8: Meta Data Management Capabilities

META DATA

MANAGEMENT WEIGHT

%

M

E

T SCORE COMMENTS

54 Is the meta data

repository tool

active or passive

in controlling the

processes of the

DSS

environment? If

active, explain.

55 Can the meta

Table 4.8: Meta Data Management Capabilities

META DATA

MANAGEMENT WEIGHT

%

M

E

T SCORE COMMENTS

data repository

tool's meta model

be extended to

include additional

tables or

columns?

56 What types of

source system

data can the

repository directly

read and capture

meta data from

(e.g., DBMS, flat

files, DDL,

spread-sheets,

copybooks, etc.)?

57 What CASE tools

or data modeling

tools can the

repository tool

directly read and

capture?

58 How are business

rules captured

and stored in the

repository?

59 How are

calculations

captured and

stored in the

repository?

60 What front-end

query reporting

and/or OLAP

tools can access

and store meta

Table 4.8: Meta Data Management Capabilities

META DATA

MANAGEMENT WEIGHT

%

M

E

T SCORE COMMENTS

data directly from

the repository?

61 What data

monitoring tools

can the repository

directly access

meta data

information from?

62 Describe the

types of user

interfaces that the

repository tool

has for manual

entry of meta

data.

63 Can the

repository tool

read and write

CASE Data

Interchange

Format (CDIF)

compliant meta

data files?

64 Describe how

data mappings

between source

operational and

target decision

support data are

captured and

maintained in the

repository tool.

65 What reporting

capabilities does

the meta data

repository tool

Table 4.8: Meta Data Management Capabilities

META DATA

MANAGEMENT WEIGHT

%

M

E

T SCORE COMMENTS

include as

standard? Can

data from the

repository be

exported

externally to other

applications (e.g.,

spreadsheets)?

66 Does the tool

support

predefined and/or

ad hoc reporting?

Describe.

67 How does the

repository share

and separate

meta data needed

for various DSS

projects (e.g.,

atomic data

warehouse

versus various

departmental-spe

cific data marts)?

68 What facilities

does the

repository tool

have for analyzing

the impact of a

change on a

source

operational

system to the

DSS

environment?

69 What notification

Table 4.8: Meta Data Management Capabilities

META DATA

MANAGEMENT WEIGHT

%

M

E

T SCORE COMMENTS

or alert utilities

does the tool

provide in

response to

changes to

operational

systems, data

mappings, DSS

data model, or

reports?

70 How does the tool

support the base

components of a

meta data

repository (i.e.,

operational

source system,

logical DSS data

model, physical

DSS data model,

source to target

data mapping,

ETL load

statistics,

business subject

area views, query

statistics)?

systems, but these capabilities are becoming increasingly important as

companies try to leverage every last ounce of competitive edge out of their

repositories. Be sure to ask about such data management features as agents or

triggers (Question #54) to make the repository more proactive. And, because

organizations' requirements differ widely, be sure that the tool's meta model can

be easily expanded (Question #55) to support any future additions to your

repository. You'll also need to have a clear understanding of your firm's current

and future meta data requirements to determine the likelihood that you'll need

support for advanced capabilities such as closed loop architecture or

bidirectional meta data in the future.

Be sure to ask the vendor about any competitive advantages that the tool offers

(see Table 4.9). Does this tool offer any features that make it significantly better

than others on the market? It is also advisable to ask the vendor to tell you

about the tool's shortcomings. If the vendor tells you that the tool doesn't have

any shortcomings, you're probably not hearing the whole story— or getting all

the information you need. When I conduct vendor interviews, I tell the vendors

up front that I expect to walk away knowing about at least three problems with

the tool, and that I'm not really comfortable with the tool (or the vendor) unless

that happens. Vendors shouldn't be afraid to tell you what they know about the

tool, including its weaknesses (and every tool has weaknesses!). After all, it's

better for everyone concerned if you hear the whole story during the evaluation

process than later, just weeks away from implementation. In any case,

whatever you hear from the vendor, it's best to do some additional research and

check some third-party information sources such as Gartner Group and Meta

Group to hear what these experts have to say about the vendor company and

proposed solution.

Table 4.9: Vendor Differentiating Factors

DOCUMENTATION: WEIGHT %

M

E

T

SCORE COMMENTS

71 Discuss the extent to

which the vendor's

proposed solution

fits the needs of a

meta data repository

tool for a decision

support environment.

72 Discuss the

advantages of the

proposed solution

has over other

vendor products in

this DSS market

space.

73 What is the vendor's

company's market

share in this DSS

market space?

Source of market

share?

The next section of the checklist (Table 4.10) addresses an area that is often

overlooked in the tool evaluation phase— vendor support. All too often,

companies get caught up in evaluating a product's neat bells and whistles and

forget to ask about the vendor's ability or willingness to provide

Table 4.10: Evaluating Vendor Technical Support

TECHNICAL

SUPPORT

WEIGHT %

M

E

T

SCORE COMMENTS

74 Discuss in

detail the

technical

support

offered in the

proposed

solution.

75 Where is the

primary

technical

support

center

located?

76 What times

and days of

the week is

the support

center

available for

customer

support?

77 Describe the

technical

support

center's

guaranteed

response

time.

78 Describe the

escalation

procedures

used to

Table 4.10: Evaluating Vendor Technical Support

TECHNICAL

SUPPORT

WEIGHT %

M

E

T

SCORE COMMENTS

resolve

customer

problems.

79 Are technical

support costs

included in

the annual

maintenance

agreements?

If not, how

are technical

support costs

charged

backed to

the

customer?

80 Are all

product

components

comprising

the proposed

solution

supported

out of a

single

technical

support

center? If

not, explain.

81 Is an online

database(s)

of previously

closed

issues and/or

frequently

asked

questions

Table 4.10: Evaluating Vendor Technical Support

TECHNICAL

SUPPORT

WEIGHT %

M

E

T

SCORE COMMENTS

(FAQs) and

their

solutions

available for

customer

review?

82 Describe

how

upgrades

can be

installed in

parallel with

existing

versions.

ongoing support. The questions in this section are designed to help you

determine what support is available from the vendor, and how readily the

vendor provides support when you need it. For example, does the vendor offer

on-site problem resolution? Is this type of support included in the basic product

price? If so, for how long? What happens if a problem cannot be resolved in a

timely fashion? Is support available on holidays or weekends if your repository

suddenly will not load or if data corruption occurs? Good support is invaluable

when you need it. Try to determine what type of vendor support you can expect

before you actually need it.

Product documentation is another aspect that is often overlooked during the

evaluation and selection phase (see Table 4.11). Always be sure to determine

what types of documentation the vendor supplies with the tool(s) and what

supplemental information is available. Very often, vendors provide only a single

CD-ROM with user and technical documentation. If you're going to need

multiple copies of the documentation or printed copies, find out if there is an

additional charge for these. You should also ask about the availability of other

types of documentation, such as Internet documentation, newsgroups, and

fax-back support.

Table 4.11: Evaluating Vendor Documentation

DOCUMENTATION: WEIGHT %

M

E

T

SCORE COMMENTS

TE
AM
FL
Y

Team-Fly®

Table 4.11: Evaluating Vendor Documentation

DOCUMENTATION: WEIGHT %

M

E

T

SCORE COMMENTS

83 Discuss the quality

and availability of all

forms of software

documentation (i.e.,

user, technical, and

installation).

84 What media/format

is documentation

provided in (e.g.,

online, CD-ROM, or

hard copy)? Are

multiple copies or

alternative

media/formats

available at no

charge?

Most vendors provide some type of training facilities with their products, even if

they're only computer-assisted courses or hard copy manuals, but you'll need to

determine (Table 4.12) just what is included as standard with the product and

what is optionally (i.e., for additional cost) available. This is particularly

important if you've determined from answers to questions in earlier portions of

the questionnaire that the product may involve a significant amount of user or

staff training or multiple levels of training. I remember one client that had

purchased a great tool and proceeded to implement it, only to

Table 4.12: Evaluating Vendor Training

TRAINING WEIGHT %

M

E

T

SCORE COMMENTS

85 What

training

classes are

included in

the cost of

the

proposed

Table 4.12: Evaluating Vendor Training

TRAINING WEIGHT %

M

E

T

SCORE COMMENTS

solution?

How many

students

does the

solution

include?

86 What is the

training cost

for each

class?

87 Where are

training

classes

held?

88 Are any

computer-ba

sed training

(CBT)

courses

available? If

so, what is

the CBT

cost?

89 What

training

classes are

recommend

ed for the

repository

architect,

data

administrator

,

infrastructur

e developer,

and

Table 4.12: Evaluating Vendor Training

TRAINING WEIGHT %

M

E

T

SCORE COMMENTS

business

users, based

on the

contents of

the

proposed

solution?

find that the users required one type of training, the developers another type,

and the administrators yet another type of training. To top this off, the product

involved separate training courses for beginner, intermediate, and advanced

levels of each training track. The client, who had failed to investigate the training

requirements and offerings during the product selection phase, was

understandably unhappy with the prospect of spending thousands of dollars

and untold numbers of staff hours just to get the tool into general use.

Selecting a tool is, of course, only the first step. Lots of other questions may

arise when you actually begin to implement the tool into your environment. If

you ask the right questions up front (see Table 4.13) during the selection

process, you're less likely to encounter some nasty surprises during the

implementation phase. For example, you may want to ask the vendor to supply

copies of sample implementation plans (Question #91), then compare them to

your environment to determine whether this product is really appropriate for

your firm.

Table 4.13: Evaluating Product Implementation

IMPLEMENTATION WEIGHT %

M

E

T

SCORE COMMENTS

90 Describe the

sequence of events

and level of effort

recommended for

clients to consider in

planning their

implementation

strategy.

91 What is typical

Table 4.13: Evaluating Product Implementation

IMPLEMENTATION WEIGHT %

M

E

T

SCORE COMMENTS

duration of

implementation

cycle?

92 How well does

proposed product

solution handle the

number and types of

data sources

described in this

document?

93 How many DSS

database schema

dimensions and

facts can the

proposed product

solution handle?

94 Provide a sample

project plan for

implementing the

proposed solution

for a single DSS

project.

95 What repository

implementation

reports can the

proposed product

solution generate?

96 What client resource

skill sets need to be

in place for

installation and

implementation?

Ask the vendor to provide you with a skill set list so that you know precisely

what types of skills are required to implement this tool. If your current staff does

not possess the necessary skills, ask if the vendor can supply skilled personnel

on a temporary basis to help you get through the implementation cycle, and

what cost is involved in renting the necessary skills. Also, ask the vendor about

the likely duration of the implementation cycle for a company and configuration

similar to yours. If the vendor can't provide this information, you may want to

research the implementation issues more closely to get a thorough

understanding of the time and personnel requirements.

The vendor may have alliances and/or partnerships with other companies that

may be beneficial to your firm. Be sure to ask about these arrangements (Table

4.14), as well as any strategic partnerships that the vendor has

Table 4.14: Evaluating Vendor Partnerships and Alliances

STRATEGIC

PARTNERSHIPS WEIGHT

%

M

E

T SCORE COMMENTS

97 Identify and describe

the vendor's strategic

partnerships with

computer aided

software engineering

(CASE) or data

modeling tool vendors.

98 Identify and describe

the vendor's strategic

partnerships with DSS

extraction,

transformation, and

loading (ETL) tool

vendors.

99 Identify and describe

the vendor's strategic

partnerships with DSS

data cleansing tool

vendors.

100 Identify and describe

the vendor's strategic

partnerships with DSS

query reporting and/or

OLAP vendors.

101 Identify and describe

the vendor's strategic

partnerships with DSS

Table 4.14: Evaluating Vendor Partnerships and Alliances

STRATEGIC

PARTNERSHIPS WEIGHT

%

M

E

T SCORE COMMENTS

data monitoring tool

vendors.

102 Identify and describe

the vendor's strategic

partnerships with

hardware vendors.

103 Identify and describe

the vendor's strategic

partnerships with

DBMS vendors.

104 Identify and describe

the vendor's strategic

partnerships with

value-added resellers

(VARs).

105 Identify and describe

the vendor's strategic

partnerships with

integrators.

106 Identify and describe

the vendor's strategic

partnerships with

consulting/implementa

tion providers.

with other meta data specialists. Does the vendor work closely with other tool

vendors or industry associations to continue product development within the

framework of emerging standards? Can the vendor offer an end-to-end solution

comprised of other vendors' tools? Being aware of partnerships and alliances

also helps you to avoid those sticky situations in which a vendor may

recommend another company's tool just because the two organizations have a

strategic alliance, not because the tool is necessarily appropriate for your

environment. You want to make sure that the tools you select are the right ones

for you, not the right ones for the vendor.

Finally, at the end of the interview process, you'll need to obtain references from

each of the vendors under consideration (see Table 4.15). The best way to get

a good feel for a tool is to talk to people who use it. Ask the vendor to provide

references of other companies (Question #107) that use the tool in an

environment similar to yours. You may be able to meet other users (current or

previous) at trade shows and industry conferences; this too is an excellent

source of hands-on information. Understandably, vendors typically provide

references to customers who are satisfied with the products; the users you

meet and speak with at conferences and seminars may not fall into this

category. These users, as well as those that the vendor references, may help

you to avoid a lot of pitfalls. They may have already been down the road you're

on and can offer sound advice for selecting or implementing the product. In

addition, you may want to see if there are any organized user groups for the

product in your area and try to talk to people there.

Table 4.15: Evaluating Customer References

CUSTOMER

REFERENCES

WEIGHT %

M

E

T

SCORE COMMENTS

107 Obtain from

vendor at least

three customer

references that

may be contacted

regarding quality

of software,

upgrades, proper

sizing,

implementation,

and training.

Each should

include the

following:

§ Company

name and

address

§ Contact

name,

title, and

phone

number

§ Type of

services

offered

§ Modules

Table 4.15: Evaluating Customer References

CUSTOMER

REFERENCES

WEIGHT %

M

E

T

SCORE COMMENTS

installed

(names of

modules)

§ Installation

date(s)

Look on the Internet for any information on the tool. Search engines like

www.deja.com can help you find discussions about any number of things.

When all of the vendor interviews are complete, I like to lay out all the pluses

and minuses of each tool on a white board. This helps me to determine which

products meet our specified needs and offer the best solution. Be sure to spend

sufficient time to find out all you can about all of the tools. The more information

you have now, the better off you will be in the long term.

Now that you have a firm grasp of what is required to select your repository

tools, we're ready to move on to the next important aspect of building a

repository— organizing and staffing, which are every bit as important as tool

selection. Remember, a tool is only as good as the people who use it.

Chapter 5: Organizing and Staffing the Meta

Data Repository Project

Overview

Researching the needs of repository users and understanding how to incorporate the

types and sources of meta data that they need is crucial for successfully implementing a

repository. But understanding the need for these factors is much easier than actually

accomplishing them. Many repository projects fail, not for lack of understanding, but for

lack of organization and implementation expertise. In the first part of this chapter, I

discuss several of the common mistakes that companies make in implementing meta

data repository projects and explain how to avoid these pitfalls. Then I examine the

specific roles and skill sets required to staff and organize the meta data repository project

team, as well as the organizational support that these team members need. Last, I

discuss some of the generic qualities that are necessary for developing a real working

team.

Why Meta Data Projects Fail

Too often, companies believe that they can purchase a tool that will make a fully

functional meta data repository magically appear. If only it were that simple! A meta data

repository, like any other significant IT initiative, takes a great deal of knowledge and

investment, as well as a methodical development approach.

The fact is that meta data management is not a project; it is a cultural shift that requires

the active participation of its users. If users are not actively involved in the process of

capturing and maintaining meta data, the overall quality of the meta data is likely to be

poor, and the meta data repository will not be able to provide the value that business

users— and CEOs and CIOs— demand.

In my experience, companies that fail make several common mistakes when starting their

meta data projects. Although there is certainly wide variation in the ways that repository

projects can go awry, the following list summarizes the most common mistakes that

companies— especially those that lack experience implementing data warehouse

architectures— are likely to make:

§ Failing to define objectives

§ Evaluating meta data tools prior to defining project requirements

§ Selecting meta data tool(s) without a thorough evaluation

§ Failing to create a meta data repository team

§ Failing to automate meta data integration processes

§ Allowing a meta data tool vendor to manage the project

§ Failing to appoint an experienced meta data project manager to lead the effort

§ Trivializing the meta data repository development effort

§ Failing to create standards that supporting teams can follow

§ Failing to provide open access to the meta data

I'll describe each of these common mistakes in detail in the following pages, explaining

the effect that they typically have on the overall project, and ways to avoid the pitfall.

Failing to Define Objectives

The meta data repository team often fails to clearly define the specific business and

technical objectives of the meta data repository. Because these objectives serve as a

guide for all project activities, it is essential to clearly define them at the beginning of the

project.

Good business and technical objectives are both definable and measurable. They not

only serve as a guide for implementing the repository; they are also imperative for

justifying the cost of the entire project. If the initial release of the repository can be

cost-justified, the challenge of attaining funding for the inevitable follow-up releases is

greatly simplified. And, the repository will inevitably grow to support the ever-expanding

role of the associated data warehouse/data marts and the increasing demands of its

users. Remember, like a data warehouse, a meta data repository is not a project, it is a

process. (See the "Project Scope Document" section in Chapter 6, Building the Meta Data

Project Plan.)

Evaluating Meta Data Tools Prior to Defining Project

Requirements

This is the most common mistake that organizations make when beginning meta data

repository projects. I am always surprised by the number of phone calls I receive from

companies asking me to suggest a meta data tool for their repository project. My standard

response is, "What are your repository's requirements?" Typically, the reply from the

other end of the line is silence. This situation is very disturbing. Meta data repository

requirements must guide the tool selection process, not precede it. Meta data

requirements determine which tools should be purchased and what functionality is

required from each tool. Selecting the tool (or tools) before defining the project

requirements often leads companies to purchase unnecessary tools, which then become

"shelfware," or— even worse— cause the companies to implement their repositories with

the wrong tools, severely limiting the capabilities of their meta data repository.

Chapter 6, Building the Meta Data Project Plan, contains a detailed description of the

requirements definition process and explains where in the project lifecycle meta data

tools should be evaluated and purchased.

TE
AM
FL
Y

Team-Fly®

Selecting Meta Data Tools without a Thorough

Evaluation

All of the major meta data tools maintain and control repositories in different ways.

Finding the tool (or tools) that best suits your company requires careful analysis.

Educated consumers are likely to be most satisfied because they understand exactly

what they're buying and how it's likely to operate in their systems environment. They also

understand what it is that they're not buying, which eliminates a lot of misunderstanding in

the future.

It is important to remember that no matter how careful you are in the selection process, no

meta data tool can make the repository effort easy, despite what the tool salespeople or

marketing literature may say. A successful meta data project requires knowledge,

discipline, talented employees, and good old-fashioned hard work— just like any other

major IT endeavor. While none of the tools eliminate these needs, most companies are

still better off purchasing a tool and working around its limitations than trying to build

everything from scratch.

In Chapter 4, Understanding and Evaluating Meta Data Tools, I present a step-by-step

approach for selecting the best tool for your company.

Failing to Create a Meta Data Repository Team

Companies often fail to form a dedicated team to build the meta data repository. This

team, which should include members from other IT teams as well as business users,

should be responsible for building and maintaining the meta data repository, and for

managing access to the repository. In my experience, companies use a variety of

organizational structures for these teams and assign a wide variety of names, but for the

most part the employees are not dedicated solely to the meta data repository initiative.

After the meta data team is formed, its leader should report to the same manager as the

head of the decision support team, so that the two teams can operate on a peer level with

one another. If the meta data project manager reports to the decision support manager,

the meta data repository often becomes a subset of the decision support system and all

too often is neglected. The meta data project team and the decision support system team

must work together as equals because each team's work directly affects the other. A

muddled data warehouse architecture directly (and negatively) affects the quality of the

technical meta data in the repository, and, conversely, a poorly designed repository can

greatly reduce the effectiveness of the decision support system.

The second half of this chapter provides detail on establishing and administering an

effective meta data repository implementation team.

Failing to Automate the Meta Data Integration

Processes

The process of loading and maintaining the meta data repository should be as automated

as possible. All too often, meta data repositories contain many manual processes in their

integration architectures, and these repositories are almost sure to be less than

successful. The task of manually keying in meta data is far too time-consuming for the

meta data repository team, and it typically makes the repository nonscalable and

impossible to maintain over time. With careful analysis and some development effort, the

vast majority of manual processes can be automated.

A significant portion of business meta data resides within the employees of a company.

As a result, some manual processes may be required to initially capture this type of

business meta data. If this is the case, it is advisable to build a front end to enable the

business users and analysts to directly modify their business meta data. This front end

must be kept simple. I often build the front end using Microsoft Excel or Visual Basic

because most business users are comfortable with this technology.

Remember that you want the business users to take an active role in maintaining their

meta data. The meta data repository manager should not require an IT person to approve

changes that are input by business users. When this occurs, the IT person becomes the

data steward of the business meta data and the business users do not feel like they own it.

As an IT person, you really don't want to be the data steward of the business meta data.

Allowing the Meta Data Tool Vendors to Manage the

Project
Tools vendors often convince companies to let them manage the meta data repository

project. Doing so is nearly always a critical mistake because the tool vendors become far

too focused on using their particular tool or tool suite for the project rather than focusing

on building a solution to deliver value to the business. After all, the tool vendors are not

true integrators; they are tool experts— and the same is true of consultants employed by

the tool vendors. They are most concerned with making their tools work (which is what

they should be focused on). While the meta data integration tool is at the heart of the

meta data process, much more than a tool is required to create a fully functional, scalable

repository.

Failing to Appoint an Experienced Meta Data Project

Manager

An experienced meta data project manager keeps the vision of the project in concert with

the realities of meta data and decision support. This may sound obvious, but is really

quite difficult when implementing a repository in a real-world environment. The repository

architect must be knowledgeable about building a robust, maintainable repository that

can suit immediate needs and be scalable to accommodate the ever-expanding and

changing user requirements. These fundamental challenges typically require a

highly-experienced, senior-level individual.

In some cases, it may be practical to hire an outside consultant to get the repository

project up and running, but the person should be highly skilled at knowledge transfer and

work closely with an in-house employee right from the onset of the project. Be wary of

consultants without real-world, hands-on experience. Writing or speaking about meta

data is very different from having the necessary experience to navigate through the

political quagmires and the knowledge of actually designing and implementing a meta

data repository.

I describe the various project roles in detail later in this chapter and offer some

suggestions for filling the required positions.

Trivializing the Meta Data Repository Development

Effort

Too often, companies underestimate the amount of work required to build a meta data

repository. All of the tasks required to build a data warehouse— including defining

business and technical requirements, data modeling, source system analysis, source

data extraction and capture, data transformation and cleansing, data loading, and user

data access— are also required to build a meta data repository. An iterative approach

usually provides the best hope of keeping the scope of the data repository project under

control. You don't have to do everything at once, but you do have to keep the end result in

mind at all times, because it will be your guiding light.

Like most other major IT efforts, a meta data repository project often involves significant

political challenge that should not be overlooked in the planning phase. Politics can cause

the best-planned meta data and DSS projects to go astray. Remember that you'll need

cooperation from multiple IT and business teams to support the meta data effort, and be

sure to keep the other players in mind as you begin to plan and implement the repository.

Failing to Create Standards That Supporting Teams

Can Follow

The meta data repository team must develop standards for capturing the key business

and technical meta data. These standards should be clear, concise, and easy for

business users and members of the data warehouse team to follow. If the meta data

repository team creates standards that are too complex and tedious for other teams to

easily follow, the meta data repository team will be perceived as a bottleneck to the

decision support development process. Once this happens, it is probably only a matter of

time before the meta data repository team is disbanded.

Keep It Simple

I was contacted by a midsized health care company on the East Coast to help it improve

the business users' satisfaction with their meta data repository and to conduct an

assessment of the meta data repository team. During the assessment, I met with the

meta data project manager and asked him if he had implemented any corporate meta

data standards for the development teams to follow. At this point he got very excited

and opened his desk drawer and proceeded to hand me a binder that was more than

two inches thick! He then said, "Just read through the binder. It tells you all you need to

know about our standards and how to follow them." I asked if he handed this same

binder to the project managers of the development teams. He answered yes. I then

discovered that none of the development teams were following the standards (which

wasn't any surprise). Why should a project manager, who already is working 50 or 60

hours a week, take time out to read a two-inch-thick manual on something that he is not

aware can help him? I also wasn't surprised when I spoke to the development team

leaders and discovered that they viewed the meta data project manager as a roadblock

to their success.

The golden rule is to keep the standards exceedingly simple to understand and follow.

Then meet with each of the team heads and personally show him or her how to follow

the standards. In addition, keep the amount of time needed to complete each of the

procedures to a minimum, and do not neglect to create a feedback loop so the other

teams can let you know how you're doing.

Failing to Provide Open Access to the Meta Data

A key goal for all meta data repository projects must be to provide open access to the

meta data, permitting any and all business and technical users to access it with little or no

effort. Many of the early meta data repository efforts did a decent job of integrating

valuable meta data, but got sidetracked by failing to roll the meta data out to the users. In

some cases, users had to go to the meta data repository team to beg for access to the

information that they needed. Clearly, this technique is doomed to failure.

Meta Data Repository Team Responsibilities

A meta data repository team functions best as a dedicated group reporting

directly to the CIO. It is important for the team to reside at a high level in the IT

organization because it has to work with other IT teams to define procedures

that everyone must follow. The meta data repository team has many

responsibilities, including:

§ Building and maintaining the meta data repository

§ Selecting meta data integration and access tools

§ Working with tool vendors

§ Working with the data stewards to define business meta data

§ Administering meta data procedures for other teams to follow

Organizing the Meta Data Repository Team
Although meta data repository efforts differ in size and scope, there are 10 key roles that

must typically be filled in order for a project to be successful. These roles require specific,

qualified resources assigned to them, and an interactive organization that has the

confidence and support of executive management, as well as cooperation from end user

departments that may not be directly involved in the implementation. (Figure 5.1

illustrates a typical hierarchy for a meta data project implementation.) The 10 key roles

are:

Figure 5.1: Meta data repository project team hierarchy.

§ Project champion

§ Project manager

§ Repository architect

§ Data modeler

§ Business analyst

§ Data acquisition developer (back-end)

§ Data delivery developer (front-end)

§ Middleware developer

§ Infrastructure developer

§ Tool architect

In large repository implementations, each role is likely to require a dedicated full-time

resource, and multiple resources may be required for some roles, such as the data

acquisition and data delivery developer roles. Some roles may be filled from the central IT

group— for example, the middleware developer and infrastructure developer. In many

repository implementations, certain key roles can be combined and served by the same

resource. Table 5.1 presents some typical role combinations that have proven effective in

implementing repository projects. In most cases, however, it is not advisable to assign

more than two roles to the same resource.

Table 5.1: Typical Role Combinations

Project manager

Repository architect

Repository architect

Data modeler

Project manager

Business analyst

Data modeler

Business analyst

Data modeler

Data acquisition developer

Data modeler

Data delivery developer

Middleware developer

Infrastructure developer

Tool architect

Repository architect

Tool architect

Data acquisition developer

Tool architect

Data delivery developer

Tool architect

Data modeler

Data acquisition developer

Data delivery developer

Whether you are just beginning a meta data repository project or maintaining an existing

repository, you need to assign at least one resource to each of these roles. The biggest

difference between developing a repository and maintaining one is that during the

maintenance period more roles can be filled by the same resource.

The following sections describe the functions and responsibilities of the key roles and

summarize the position requirements and recommended skill sets for each.

Project Champion

The project champion, who is typically part of executive management (e.g., a vice

president or director of a key line of business) is usually the person who attains the initial

funding for the repository project. This individual is responsible for articulating the value of

building a meta data repository, using business terms to convince the relevant

departments and upper management that the project can help the company to achieve its

major goals. Table 5.2 lists the professional and technical skill sets required for this

position.

Table 5.2: Project Champion Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Ability to articulate the benefits of

meta data to the organization None

Ability to acquire funding for the

project and ongoing maintenance

Ability to obtain a capable,

experienced project manager to lead

the effort

Ability to rally support from other

Table 5.2: Project Champion Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

departments

Ability to remove political obstacles

to the repository's success

Typically, the project champion does not initiate the meta data concept within the

organization. A business manager or member of the IT group may bring the concept to

the attention of executive management and enlist the support of a project champion.

Sometimes the meta data project may be initiated from outside the organization, with a

consultant or software vendor introducing the idea to an IT or business manager, who

then presents the idea to executive management and seeks a project champion.

Organizations often enlist the aid of a consultant to help cost-justify a repository project

and prepare the initial proposal to executive management.

The role of the project champion is crucial in helping the development team enlist support

and assistance from other departments that may initially be unwilling to commit resources

to the meta data repository effort. Any major, cross-departmental IT initiative, whether it's

a decision support system or customer relationship management (CRM) package,

requires the support of executive management as well as the departmental managers

that will be called upon to commit resources. Executive-level support is imperative for

overcoming the barriers and ivory towers that exist in all corporations. Any substantial

project that lacks executive -level support and interdepartmental cooperation has a high

probability of failure. Table 5.3 summarizes the requirements of the project champion role

and the project phases in which this role participates.

Table 5.3: Project Champion Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1

Years of work experience 10+ years

Difficulty filling position Medium to high

Experience required

Prior experience with major system

development efforts

Orientation and feasibility phases Yes

Design phase No

Construction phase No

Rollout phase Yes

Project Manager

The meta data repository project manager role is very similar to that of any project leader

in a major IT implementation, with one key difference— the meta data repository project

manager's work does not substantially decrease once the repository is rolled out to

production. On the contrary, as is common in any DSS initiative, the responsibilities of the

project manager typically increase over time. Meta data repositories, like decision support

systems, grow in an organic manner (very rapidly and in directions that are seldom

anticipated), thereby presenting the repository project manager with a continuum of new

challenges and tasks. Table 5.4 summarizes the professional and technical skills that a

project manager should possess, and Table 5.5 lists the requirements for the project

manager position and the project phases in which he participates.

Table 5.4: Project Manager Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Ability to articulate the benefits of

meta data to the project team and

the organization

Familiarity with the major meta

data tools and vendors

Ability to obtain and mentor staff

Ability to manage software and

consulting vendors

Excellent written and verbal skills

Good organizational skills

Concern for quality and be a quick

study, a team player, and highly

motivated

Ability to define and maintain project

scope

Ability to identify positive ROI

opportunities that can be served by

the meta data repository

Table 5.5: Project Manager Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1

Years of work experience

8+ years, including significant

project planning and control

Difficulty in filling position High

Experience required Prior experience leading

Table 5.5: Project Manager Requirements Overview

DESCRIPTION REQUIREMENT

successful meta data repository

implementations

Orientation and feasibility phases Yes

Design phase Yes

Construction phase Yes

Rollout phase Yes

The project manager should have prior experience leading successful meta data

repository implementations. This individual is responsible for planning the project phases,

configuring and assembling the staff, and establishing the short- and long-term strategies

for the repository. The project manager needs to have strong communication skills, both

written and verbal, and the ability to select and develop an effective repository staff. It's

important to realize that the project manager's job is not to make a star out of everyone on

the team, but to assign the team members to the roles that best fit their experience, skills,

and professional goals, thereby getting the most out of each employee.

The project manager should be capable of managing outside vendors, both software and

consulting. The importance of this ability cannot be understated. While there are many

software and consulting companies that do not oversell their products or services, many

others do not have such admirable ethics. The best vendors are usually the ones that tell

you about the challenges, as well as the potential benefits, of their product. In general, if

the vendor doesn't mention any product limitations, you're probably hearing marketing

speak. A project manager needs to be able to differentiate between the good vendors and

the less-than-good vendors, and partner only with those firms that fit the needs of the

company and have high ethical standards. In selecting a vendor or consultant, it is

important to remember that just because a firm is large, it is not necessarily good or the

best choice for your particular implementation. When a project manager is able to select

the best vendors for the project and work closely with them as part of a team, everyone

benefits from the win-win situation.

The project manager must also be able to manage user expectations, keeping users

informed throughout the project life cycle to ensure that they are prepared to take

advantage of the repository when it is available and that they thoroughly understand what

the repository can— and can't— do. In addition, the project manager needs to provide for

end-user training, either by hiring an outside vendor or by training appropriate trainers

within the organization.

Additionally, the project manager should be able to define standardized procedures for

other IT and business teams to follow to prepare data for the repository. This is where the

project manager's communication skills are crucial. He or she must work closely with the

other departments to develop procedures that are easy to understand and follow. If the

TE
AM
FL
Y

Team-Fly®

need for standardization and the standards themselves are not clearly communicated to

other members of the organization, they are likely to be misinterpreted, or worse yet,

simply ignored. If the repository team and its emphasis on standardized procedures is

perceived as an obstacle to success by other members of the organization, the repository

project is probably doomed to failure. An old meta data repository joke (actually I believe

it is the only meta data repository joke) emphasizes the need to communicate rather than

dictate to users:

1. What is the difference between a data

administrator and a terrorist?

Answers

1. You can negotiate with a terrorist!

Change Management

The project manager is also responsible for implementing a change management

process. Despite everyone's good intentions, project scope creep is as certain as death

and taxes. Projects that do not maintain scope are usually doomed to fail. To prevent this,

the project manager must create a process to capture any desired changes to the

repository. These changes need to be analyzed to gauge their impact on the project's

schedule and staff. The project champion and the key decision makers must then decide

whether the change should be (1) implemented in the current release of the repository, (2)

implemented in the next release, (3) implemented in some future release, or (4) rejected

because it is not cost effective and/or beneficial for the majority of users.

Repository Architect
The repository architect is responsible for the technical architecture that the physical meta

data repository and its access schema is based upon. Because the architect is

responsible for defining and enforcing the construction standards that the data acquisition

and data delivery developers will use during implementation, prior experience designing

successful meta data repositories is mandatory. (The development standards define how

the meta data will be extracted, trans formed, loaded, and accessed.) Also, the repository

architect should know how to evaluate the physical data model used to store the business

and technical meta data so as to be able to provide the data modeler with sound feedback

on the proposed model. The architect must be knowledgeable about trends in the meta

data industry, and understand their implications for the future. This is especially true of

the ongoing battle between the Meta Data Coalition and the Object Management Group

for meta model standards, since the outcome of this controversy is likely to shape the

meta data landscape in the future and provide direction for meta data tool developers.

(See Chapter 3, Meta Data Standards, for a detailed discussion on the battle for meta

data standards.) On this same note, the repository architect must also have a thorough

understanding of the various meta data tools, including both integration and access tools,

and understand how each of the tools plugs into the overall architecture that is required to

sustain the meta data repository. Table 5.6 summarizes the recommended skill set for a

repository architect, and Table 5.7 lists the basic requirements for this position.

Table 5.6: Repository Architect Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Ability to mentor data developers

and data modeler

Familiarity with major meta data

integration and access tools and

data modeling techniques

Ability to work with software,

hardware, and middleware vendors

Ability to design and build the

meta data architecture

Concern for quality and be a quick

study, a team player, and highly

motivated

Knowledge of meta models and

ability to review them in detail

Good communications skills

Understanding of the various

extraction, integration, and load

strategies

Knowledge of programming

languages and platforms, and

understanding of which work best

together

Knowledge of data quality

controls and ability to implement

them in the meta data load

process

Table 5.7: Repository Architect Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1

Years of work experience 8+ years

Difficulty in filling position High

Experience required Prior successful experience

building a meta data repository

Orientation and feasibility phases Yes

Design phase Yes

Construction phase Yes

Rollout phase Yes

Data Modeler

The data modeler's responsibilities include the initial design and construction of the meta

model (i.e., the physical data model) that will hold the business and technical meta data.

This individual requires significant experience in data modeling, although not necessarily

in modeling meta data. Anyone with a thorough understanding of multidimensional and

third-normal modeling can be quite successful when working with an experienced meta

data project manager and repository architect. The data modeler should, however, have a

firm grasp of third-normal, star, and snowflake modeling techniques, since these

strategies generally form the basis of the meta data repository model and each of these

modeling techniques has advantages and disadvantages that the data modeler must

consider. Even if an organization purchases a meta data integration tool that incorporates

its own meta model (as many do), the data modeler will have to analyze this model to

ensure that it meets the requirements of the data repository implementation team.

The data modeler also needs to understand the database technology used for the

physical table implementation and the indexing strategies used for table loads and access.

For example, most tables require some sort of B-tree index; however other tables may be

better served by bitmap indexing, unless there is a centralized database administrator

group that can perform this function. Also, the data modeler needs to be familiar with the

functionality and quirks of the RDBMS so that he or she can assist the data acquisition

developers with their SQL load scripts if necessary. The data modeler also works closely

with the data delivery developers to modify the meta data table designs to facilitate faster

and more efficient access. This task may also include adding or modifying indexes and

tuning the SQL script used to access the meta model to load the end user reports.

Last, in order to construct the meta models, the data modeler needs to work closely with

the business and technical end users and the business analyst(s). Here, the data

modeler's communications skills are crucial. He or she must ask the right questions to

elicit the complete and accurate responses that are necessary for building meta models

that will meet the repository's present and future requirements. Table 5.8 lists the

recommended

Table 5.8: Data Modeler Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Ability to work well with the business

analyst and end users

Thorough understanding of

dimensional modeling, including

third-normal, star, and snowflake

strategies

Good communications skills Familiarity with RDBMs,

especially the one being

implemented during the project

 Experience in transitioning

business requirements into a

Table 5.8: Data Modeler Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

data model that can fulfill them

professional and technical skills for a data modeler, and Table 5.9 summarizes general

requirements for the position.

Table 5.9: Data Modeler Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1

Years of work experience 6+ years

Difficulty in filling position Medium

Experience required Significant DSS modeling

experience, preferably with meta

models

Orientation and feasibility phases No

Design phase Yes

Construction phase Yes

Rollout phase Yes

Business Analyst

The business analyst's primary responsibility is to meet with the business and technical

users to define the reporting requirements of the meta data repository. Because joint

application design (JAD) and workgroup sessions are generally the most effective

method for defining the end-user requirements for the project, the business analyst

should have experience leading such sessions. In addition to defining user requirements,

the sessions can be useful for shaping the users' expectations for the repository. More

than one repository project has failed because the end-users' expectations for the system

were unrealistically high.

The business analyst must also be able to translate the requirements that come from the

JAD and workgroup sessions into technical solutions that the data modeler, data

acquisition developers, and the data delivery developers can use to guide them during

the physical meta data repository implementation. It is an added bonus if the business

analyst is well versed in the company's business operations so that he or she can speak

to the business users in the business language they understand. Last, the business

analyst needs to have excellent communication skills and the ability to work closely with

the business and technical end users, as well as the development team for the meta data

repository. Table 5.10 summarizes the recommended skill set for the business analyst

position, and Table 5.11 lists the position requirements and project involvement.

Table 5.10: Business Analyst Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Ability to work well with the data

modeler, data developers, and end

users

Experienced in transitioning

business requirements into

detailed, technical design

documents

Ability to organize and facilitate

workgroup and JAD sessions

Ability to manage and control end

user expectations

Strong organizational skills and

detail orientation

Excellent written and verbal

communication skills

Concern for quality and be a quick

study, a team player, and highly

motivated

Table 5.11: Business Analyst Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1

Years of work experience 5+ years

Difficulty in filling position Low

Experience required Experience in information

gathering and transitioning into

meaningful requirements

documents

Orientation and feasibility phases No

Design phase Yes

Construction phase Yes

Rollout phase No

Data Acquisition Developer (Back-End)
The data acquisition developer for the back end of the meta data repository (i.e., the

process of getting data into the meta data repository) is responsible for extracting the

meta data from its sources, programmatically integrating it, and then loading it into the

meta data repository. Because this role is primarily a programming one, the data

acquisition developer typically should have a strong background in programming and

SQL. In some cases, however, an individual with minimal programming experience can fill

this role if a meta data integration tool is being used to build the repository. In this event,

the data acquisition developer needs to become intimately familiar with the tool and its

use for loading the repository's tables. In addition, because the repository tables are

usually loaded into a relational database (e.g., Oracle, Informix, SQL Server, DB2), the

data acquisition developer needs to be familiar with the particular RDBMS. In all cases, it

is crucial for this individual to have a strong concern for quality and the ability to work well

with the repository architect.

The data acquisition developer should also have experience in system testing and be

thoroughly familiar with the various testing strategies. All too often, organizations neglect

the testing phase of the meta data repository implementation, thereby failing to discover

problems until the system is rolled out into production. It is important to remember that

shortchanging the testing or design phases of the implementation project does not reduce

the project's lifecycle; any immediate time savings are more than offset by rework and

redesign during the production rollout phase. Table 5.12 summarizes the recommended

skill sets for the data acquisition developer, and Table 5.13 lists the general requirements

for the position.

Table 5.12: Data Acquisition Developer Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Conscientious about meeting project

timelines

Knowledge of the programming

language, and/or integration tool

being used to implement the

meta data repository

Ability to anticipate potential

technical problems

Strong SQL background

Concern for quality and be a quick

study, a team player, and highly

motivated

Excellent testing skills

 Familiarity with the operating

system used by the hardware

platform(s) where development

is taking place

Table 5.13: Data Acquisition Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1–3

Years of work experience 2+ years

Difficulty in filling position Low

Table 5.13: Data Acquisition Requirements Overview

DESCRIPTION REQUIREMENT

Experience required Programming and systems

development experience

Orientation and feasibility phases No

Design phase No

Construction phase Yes

Rollout phase Yes

Data Delivery Developer (Front-End)
The data delivery developer for the front end of the meta data repository (i.e., the means

for accessing the repository) is responsible for extracting themeta data from the meta

data repository and presenting it to the technical and business users. If a meta data

access tool is being used to prepare the meta data for presentation to the users, the data

delivery developer must be thoroughly familiar with the tool and its strengths and

weaknesses. In better meta data implementations, the meta data repository access tool is

the same as that used to access the data warehouse and/or data marts. This is important

because the reports that have the greatest value to end users typically incorporate both

meta data and data warehouse and/or data mart data.

The data delivery developer must have a strong background in programming and SQL,

because the meta data generally comes from a relational data base. Most meta data

repository projects use a meta data access tool that can generate its own SQL to present

the meta data to the end users. Even if one of these tools is used, the data delivery

developer is likely to have to tune the SQL that the tool generates. In addition, the

individual in this role needs to understand how to create user-friendly reports that present

the meta data and data warehouse or data mart data in a clear and logical manner that

end users can apply to their business decisions. Last, the data delivery developer must

have solid communications skills in order to work well with the business analyst and the

repository's end users. Table 5.14 lists the skill sets for the data delivery developer role,

and Table 5.15 summarizes the general requirements and phase involvement for this

position.

Table 5.14: Data Delivery Developer Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Conscientious about meeting project

timelines

Familiarity with the programming

language, and/or the meta data

access tool being used to

implement the meta data

repository

Table 5.14: Data Delivery Developer Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Ability to anticipate potential

technical problems

Strong SQL background

Concern for quality and is a quick

study, a team player, and highly

motivated

Excellent testing skills

 Familiarity with the operating

system used by the hardware

platform(s) where development

is taking place

Table 5.15: Data Delivery Developer Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1–3

Years of work experience 3+ years

Difficulty in filling position Low-Medium

Experience required Programming and systems

development experience

Orientation and feasibility phases No

Design phase No

Construction phase Yes

Rollout phase Yes

Middleware Developer

This commonly overlooked role is often staffed from a centralized IT department. In

today's development environment, it is usually necessary to source meta data from a

variety of hardware platforms (i.e., mainframe, PC, or UNIX). Quite often, this task is

significantly more difficult than expected, particularly when speed is of the essence (e.g.,

when the meta data is being sent to populate a business user report). Middleware often

provides the solution for linking these diverse platforms. This middleware developer must

be able to work well with the infrastructure developer and the repository architect, and

have a thorough understanding of the various hardware and software platforms being

used to source the meta data. Table 5.16 summarizes the recommended skill sets for this

position, and Table 5.17 lists the general requirements for a middleware developer.

Table 5.16: Middleware Developer Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Table 5.16: Middleware Developer Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Proactive approach to

implementation and problem

resolution

Experience implementing middleware

products (e.g., ODBC, JDBC, EDA

SQL, etc.)

Concern for quality and is a

quick study, a team player, and

highly motivated

Thorough understanding of such

fundamental middleware concepts

as:

§ Asynchronous RPC

§ Synchronous RPC

§ Publish/subscribe

§ Message-oriented

§ SQL-oriented

§ Object request brokers

Ability to anticipate and resolve

technical challenges

Table 5.17: Middleware Developer Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1

Years of work experience 5+ years

Difficulty in filling position Medium

Experience required

Significant experience using

middleware to link multiple, diverse

hardware/software platforms

Orientation and feasibility phases No

Design phase Yes

Construction phase Yes

Rollout phase Yes

Infrastructure Developer

The infrastructure developer position, like that of the middleware developer, is often

staffed from a centralized IT team. The infrastructure developer is responsible for making

sure all of the user PCs have the capacity (e.g., memory, CPU, and operating system) to

support the software that is being used in the meta data repository. The infrastructure

developer should be a proactive individual who is able to work well with other team

members, particularly the middleware developer and the repository architect, at the onset

of the implementation project to ensure that the hardware, software, and middleware work

in concert to support the repository architecture. Meta data repository projects often

experience problems because the end users' desktop PCs do not support the access

tools being used or the platform that the meta data is sourced from.

Table 5.18 summarizes the recommended skill set for the infrastructure developer, and

Table 5.19 lists the general requirements involved for this position.

Table 5.18: Infrastructure Developer Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Proactive approach to

implementation and problem

resolution

Prior experience implementing

hardwaresoftware, and

middleware technical solutions

Concern for quality and is a quick

study, a team player, and highly

motivated

Understanding of fundamental

hardware platforms and operating

environments (e.g., mainframes,

Unix, Microsoft Windows, AS 400,

and client/server architecture)

Ability to anticipate and resolve

technical challenges

Familiarity with fundamental

software implementation

concepts (e.g., hardware tuning

to aid software performance,

installation requirements, and

backup and recovery techniques)

 Familiarity with fundamental

middleware concepts (e.g.,

asynchronous RPC, synchronous

RPC, publish/subscribe, message

orientation, SQL orientation, and

object request brokers)

Table 5.19: Infrastructure Developer Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1

Years of work experience 6+ years

Difficulty in filling position Medium

Experience required Significant prior experience using

hardware, software, and

middleware to support major

technical implementations

TE
AM
FL
Y

Team-Fly®

Table 5.19: Infrastructure Developer Requirements Overview

DESCRIPTION REQUIREMENT

Orientation and feasibility phases Yes

Design phase Yes

Construction phase Yes

Rollout phase Yes

Tool Architect

An experienced tool architect is required for each meta data tool that is being used in the

repository project. Like most other software tools, the meta data integration and access

tools involve significant learning curves, which have contributed to the failure of more

then one repository initiative. An individual who is intimately familiar with each tool and

knows how to use it to its best advantage can greatly reduce the risk of this happening.

The role of tool architect(s) may be filled from inside the organization, hired from outside,

or, as is most common, staffed on a temporary basis by the tool vendor. Each of these

options involves some advantages and some disadvantages. Hiring an experienced tool

architect or borrowing one from the tool vendor can significantly shorten the development

cycle because there is little or no learning curve involved, but it can also be expensive.

Experienced tool architects, especially those familiar with the most popular meta data

tools, are in high demand and command a hefty fee. But the investment in a

top-of-the-line tool architect can save a considerable amount of time and effort in the

development phase, thereby justifying the expense. Borrowing a good tool architect from

the vendor can save money as well as time and effort, but the vendor's tool architect is

liable to be somewhat short-sighted. Remember, these individuals are experts in their

particular tools, not in your meta data repository project. They use the tool(s) to

implement your meta data repository, then move on to the next project. Because

borrowed tool architects are not likely to see the big picture of the repository in your

organization or look toward the repository's future requirements, the repository architect

and developers need to work closely with these individuals to ensure that their

implementation specifically meets the organization's current and future requirements.

The best time to determine how you're going to fill the role of tool architect is before you

purchase the meta data tool(s). Ideally, the project manager should have the opportunity

to interview the prospective tool architect before signing any contracts for the tool(s),

then— if the person seems like a good fit for the project team— make his or her

participation a condition of the sale.

Regardless of how the role is filled, it is vital for the tool architect to work closely with the

meta data repository architect during the initial implementation of the repository and

during the knowledge transfer phase. The repository architect must consider the specific

tool and its strengths and weaknesses when designing the repository's technical

architecture. And, the tool architect is the best person to reveal those strengths and

weaknesses. For that reason, it is important for the tool architect to be honest as well as

knowledgeable. He or she needs to thoroughly describe the tool's strengths and

weaknesses to the other members of the meta data repository project team as early in the

development lifecycle as possible. Table 5.20 summarizes the recommended skill set for

the tool architect, and Table 5.21 summarizes general requirements for the position.

Table 5.20: Tool Architect Skill Sets

PROFESSIONAL SKILLS TECHNICAL SKILLS

Ability to mentor repository project

team in effective use of the meta

data tool

Understand the meta data

integration/access tool inside and

out, including future releases

Concern for the success of the

project, rather than merely the

success of the tool

Experience with successful

implementations with the tool

Concern for quality and is a quick

study, a team player, and highly

motivated

Good communications skills

Table 5.21: Tool Architect Requirements Overview

DESCRIPTION REQUIREMENT

Number of resources required 1 per tool

Years of work experience 5+ years

Difficulty in filling position High

Experience required

Prior successful experience

implementing the tool at multiple

client sites

Orientation and feasibility phases No

Design phase Yes

Construction phase Yes

Rollout phase Yes

What Makes a Good Team?

Now that we've presented the 10 key roles of the meta data repository project

team, we need to look at the qualities that transform these individual role

players into a real team. First, five qualities are critical to all of the roles that

we've described:

§ Excellent organizational skills

§ Team player

§ Strong motivation

§ Quick study

§ Concern for quality

Personally, I've always preferred a team that has these qualities to a team that

has the technical know-how but is lacking in these areas. In my experience,

"Great talent finds a way!" If the people on your team are quick studies,

hardworking, team-oriented, with a strong concern for quality, they can and will

overcome any technical obstacles they encounter.

Second, it is important for all of the project managers and architects to take the

time to invest in the other members of the team. In other words, the

experienced members of the team should spend some time imparting their

knowledge to the other members. In addition, all of the team members should

have the opportunity to attend conferences and spend some time just learning

about the project and the underlying technologies. It is always

But, We Don't Have the Resources!

Because most companies have severe resource constraints, I'm often

asked, "How can we build a repository using only three resources?" If

necessary, it is possible to build a repository with a fairly decent project

scope using only three resources. In this situation, I would assign each

of the resources to the following roles:

§ Resource #1: project manager, business analyst

§ Resource #2: repository architect, data modeler, data acquisition

developer and/or data delivery developer

§ Resource #3: data acquisition developer, data delivery developer,

tool architect

As we look at these resources, Resource #1 would be responsible for

all of the project management, and the business side of the

development of the repository. Resource #2 would handle all of the

technical architecture and data modeling, and would fill in as an

additional programming resource. Resource #3 would be strictly a

heads-down programming resource. Lastly, the team roles of

infrastructure developer and middleware developer can be filled by a

centralized IT team.

important to remember that people, and their inherent knowledge, are an

organization's greatest assets. The paybacks are greatest when you invest in

them wisely, and treat them honestly and with respect.

Investing in the skills of the team members is particularly important in projects

like a meta data repository because experienced people are difficult to find and

keep (especially the project manager and repository architect). If you hire an

outside consultant to guide the project, be sure that he or she is willing and able

to share knowledge with the other team members so that they will be able to

maintain and grow the repository long after the consultant has moved on to

other clients.

In the next chapter, we describe the process of building a meta data project

plan, providing step-by-step guidelines for planning and implementing the

repository project, and assigning responsibilities for each of the steps and

deliverables.

Chapter 6: Building the Meta Data Project Plan

Overview

In this chapter, I take you step-by-step through the process of creating a project plan for

implementing a meta data repository. First though, I discuss the initial activities that you'll

need to complete before beginning the repository project and describe some of the pros

and cons of the two prevailing development methodologies. Then I describe each of the

five major phases of a typical repository project, explaining in detail the specific tasks,

dependencies, resources, and deliverables involved in each phase, and share some of

the techniques that I've used to accomplish the requisite tasks. This chapter is intended

for everyone working on a meta data repository implementation project, even nonproject

managers.

Identifying the Initial Activities

Before you can create a good project plan, you need to assess the goals of the project

and determine what activities must be completed before you can achieve those goals.

Typically, the initial activities include:

§ Educating the clients and/or prospective users

§ Adjusting the plan to staff capabilities

§ Funding and scheduling the project

§ Selecting a project methodology

Educating the Clients

Does the company have a solid understanding of meta data and decision support

concepts? This is the first question I ask myself when I begin working at a client site. This

is not to imply that the key personnel and the development staff need to be experts in this

area; it's just to assess their understanding of the key concepts that surround the project

we're about to undertake. For example, when I speak with a client, I often ask some or all

of the following questions:

§ What is the difference between a data warehouse and a data mart?

§ What is meta data?

§ Why is meta data important?

§ What makes a data warehouse successful?

Typically, there is a need for education of some sort in any meta data development effort.

Education is important to provide a clear picture of what meta data does and doesn't do.

Training courses are often necessary to ensure that everyone understands the basic

concepts. When a company skips this step, the end result is usually less than favorable.

Education provides two major benefits: (1) It helps the members of the meta data

implementation team and the people that they will be working with in the organization to

speak the same language, and (2) it can help the project champion and project manager

sell the idea of the meta data repository to their executive management. The individuals

working on the implementation project often come from different departments and

backgrounds. It is important for these people to use the same terms to refer to the same

things and to have a common view of the fundamental tasks involved in the project. We

discuss these benefits and techniques for realizing them in the orientation phase of our

project plan.

Adjusting the Plan to Staff Capabilities

A good staff is the key to any successful project. It is also the key to a good project plan. If

you are a data administrator, it is important for you to be able to step back and honestly

assess your team. I generally write out my team's strengths and weaknesses, in

accordance with the major project phases. Then I use this assessment as direct input for

the project plan. After I've completed this analysis, I adjust the project plan according to

my findings. For example, if the team is strong on the business analysis side, I may

reduce the allocated amount of time for the design phase by as much as

Practicing What I Preach

An honest analysis of the team's skill sets is crucial in that it can have a major impact on

the timelines of the project. The most dramatic case of this that I've experienced was at

a large retail business in the Midwest. As I was building the detailed project plan, I

decided to increase the construction phase of this project by 100 percent above my

typical estimate. This company had hired me to perform high-level project management,

but it was apparent to me very early on that the project was headed for rough water.

Theas business team and the development team were involved in a fierce political

struggle, and the people responsible for the detail work were very green and did not

seem amenable to training. Unfortunately, I had the unenviable task of explaining this to

the CIO who had asked me to work on the project. Giving a client this type of news is

not easy, but I felt strongly about the situation and prepared an estimate to correspond

with my negative impressions, confident that it would be accurate. As things turned out,

my estimate was within 3 percent of the actual number of hours the project required.

There is an important lesson to be learned from this situation. Don't be afraid to give bad

news. The CIO was not happy with the news I gave him, but he accepted it after I

demonstrated the reasoning behind my assessment. Because we knew early in the

development cycle how long the project was likely to take, we were able to manage our

business users' expectations and direct our efforts effectively. If I had not convinced the

company to modify the timelines for the project, the end users would have been

disappointed and the project would have floundered— or worse— as we continually

moved the project date further and further out. Remember, bad news only gets worse

over time. The sooner you deliver it, the less painful it is likely to be.

20 percent. Conversely, if, the programmers are a little raw and not accustomed to

working with one another, I may increase the time allowed for the construction phase by

15 percent.

People often ask me if the hour estimates in a project plan should be tailored to the

specific people on the development staff. If you are 100 percent sure of who will be doing

the work, there is nothing wrong with estimating for the specific individuals, and in many

cases it is the smart thing to do. For example, a developer in my company typically

completes his work 65 percent faster than most of the other developers I know. This

developer has worked on more than 15 data warehouse projects, so his skill set is truly

unique. When I estimate for him, I tend to cut his timelines by as much as 50 percent,

depending on the stability of the design specification and development environment. Fifty

percent may seem like a high number, but because he typically works 60 to 70 percent

faster than other good programmers, it is actually a rather conservative estimate.

One of the key things to keep in mind when evaluating your team's skill sets is how well

its members work together. Systems development requires a great deal of interaction

between staff members. Even if you have a group of wonderfully talented individuals, if

they can't function well as a team your project is likely to run into difficulties. Team

dynamics and communication are absolutely vital to the success of the project.

Funding and Scheduling the Project

Projects rarely have soft timelines and open funding. In fact, I've never encountered this

situation. Throughout my career, consulting at many sites for many clients,

someone— usually a director, CIO, or vice president— has provided me with project

timelines and budgets, or guidelines for developing these variables. Typically, funding

and timelines are predetermined, since they can have a major impact the scope of a

project. Companies often restrict new development systems from being rolled out during

certain peak business periods (e.g., the holiday buying season, end-of-fiscal year, etc.).

It is not uncommon for a company to say that it has $200,000 to purchase tools and

$500,000 for consulting, and the project must be finished before the end of the fiscal

year— now go build a repository. Constraints like these affect the number of requirements

that can be included in the first release of the project. When they exist, it is best to be

conservative about the amount of functionality that can be squeezed into the first release

of a project. Realize that unexpected events will arise to consume the available time and

money. By being conservative, you can provide the meta data implementation team with

the necessary flexibility to adapt.

Selecting a Project Methodology

There are two general methodologies for project development:

§ Big bang. This methodology, which is sometimes also referred to as a Waterfall

technique, involves building an entire, fully functional meta data application in one

huge development effort. This approach requires completing each step of the

process before moving on to the next step. In addition, it mandates a major

prototyping effort to identify the end user requirements. Because this methodology

tries to implement all of the known user requirements in one development effort, it

tends to be very expensive to undertake and significantly increases the probability

for project failure.

§ Iterative. This methodology, which is sometimes also referred to as a Spiral

technique, delivers software functionality in incremental (i.e., iterative) releases.

Improvements are identified by successful deployments of the software, with tight

controls but continually increasing functionality. Managers make decisions about the

feasibility of a project, the resources allocated to it, and the risks associated with

development. At each cycle of the spiral, a fresh decision is reached as to the

purpose and value in doing another cycle. The motto for this methodology is to "think

enterprise, plan enterprise, then implement in small iterations."

Table 6.1 summarizes the advantages and disadvantages of each of these two

approaches.

Table 6.1: Big Bang versus Iterative Development Methodologies

METHODOLOGY ADVANTAGES DISADVANTAGES

Big bang Provides the

fastest

development path

to fulfill all meta

data requirements

Requires a

large-scale

development team

effort

 Requires tremendous

coordination

 High complexity

 Highest risk

Iterative Reduces risk of

project failure

Long development

cycle to fulfill all meta

data requirements

 Lessons are

learned and

leveraged

 Allows for proof of

concept

The project plan that we will walk through in this chapter uses the iterative development

method, since this is the methodology that I usually try to implement. Table 6.2

summarizes the environmental factors that dictate which development method is most

appropriate for a particular environment.

Table 6.2: Selecting an Appropriate Methodology

METHODOLOGY OPTIMAL ENVIRONMENTAL

FACTORS

Big Bang Minimal internal politics

 IT and business groups must work

well together

 Company has a strong

understanding of meta data

 Executive level support exists

Iterative Significant pressure from internal

politics

 High corporate exposure

 Repository requirements are

highly complex

 Limited funding

Creating the Project Plan
The project plan that we will walk through is intended to be full lifecycle plan for

implementing a meta data repository (and is presented in its entirety in

Appendix B and the accompanying CD-ROM). This plan contains all of the

major sections that most meta data projects require. Although this project plan

focuses on implementing a new repository, the steps for enhancing an existing

repository are much the same. Remember that you can use all of the plan, or

just the sections that apply to your specific requirements.

A typical meta data implementation project involves the following five phases,

which we'll discuss in detail in the following sections:

1. Orientation

2. Feasibility

3. Design

4. Construction

5. Rollout

The timelines for a meta data repository project differ widely according to the

functionality required and the available staff. After the initial phases are

complete and funding is allocated, the design and construction phases for the

first repository iteration typically take about 80 to 90 workdays to complete. The

first iteration generally is relatively small but involves a significant amount of

work that, at its completion, provides definable value to the company. Obviously,

if the first iteration involves numerous or complex requirements, the project

timelines need to be extended.

Reading the Project Plan

Before we begin walking through the various phases of the sample project plan,

I'll explain a bit about how I've organized this particular plan. Your own plan may

differ somewhat from this one, but it will need to represent the same basic

entities to determine what tasks need to be completed and in what order, how

long those tasks are likely to take, and what resources are required to complete

them. The sample project plan uses the following fields to capture this

information:

§ Task ID

§ Duration

§ Dependency

§ Resource name

Task ID
The Task ID field represents the hierarchy of specific tasks of the meta data

repository project plan. Our project plan has four levels in its hierarchy (phase,

activity, task, and subtask), with phase at the top of this hierarchy.

Phase refers to a related group of major project endeavors (e.g., orientation,

feasibility, design, construction, and rollout). The Task ID field uses a one-digit

numeric (e.g., 1, 2, 3, etc.) to represent a phase. Each phase involves a series

of activities, which are represented in the Task ID field by a two-digit numeric,

with values separated by a decimal point (e.g., 1.1, 1.2, 1.3, etc.). Activities, in

turn, are composed of one or more tasks. Tasks are represented in the Task ID

field by three-digit numeric with values separated by decimal points (e.g., 1.1.1,

1.1.2, 1.2.1, etc.). Lastly, a task may involve multiple subtasks, which are

represented by a four-digit numeric, with each value separated by decimal

points (i.e., 1.1.1.1, 1.1.1.2, 2.1.1.1, etc.). Figure 6.1 illustrates this hierarchy.

TE
AM
FL
Y

Team-Fly®

Figure 6.1: Task ID hierarchy.

Duration
The Duration field estimates the number of workdays it will take to complete each phase,

activity, task, and subtask. Each value in the duration field is expressed in eight -hour

business days, and no task has a duration of less than one day, unless the activity, task,

or subtask is a milestone. Milestones are represented by the value of "0 days" in the

duration field.

It is important to note that the duration for a Task ID that has subordinate Task IDs (e.g.,

phases that have activities, activities that have tasks, etc.) may not equal the sum of all of

the subordinate Task IDs' duration because some of the subordinate Task IDs can be

performed concurrently. For example, Table 6.3 presents a Task ID (Phase 1: Orientation)

with subordinate Task IDs (Activities: 1.1, 1.2, 1.3, 1.4, and 1.5). Task ID 1 has a total

duration of 13 days, even though the sum of Task IDs 1.1, 1.2, 1.3, 1.4, and 1.5 equals 14

days. This is because Task IDs 1.1 and 1.2 do not have any dependencies so they can be

performed concurrently.

Dependency

The Dependency field indicates the Task ID for any activity or task that must be

completed before work on the current Task ID can begin.

Resource Name

The Resource field lists the names of the resources that will be required for the

particular Task ID. When a resource is named to a Task ID, assume that the

resource will need to allocate the number of days shown in the duration field to

complete the Task ID. The exception to this case is when the resource name is

followed by brackets (e.g., []). Brackets indicate the amount (percentage) of this

particular resource that will be required. For example, if a resource name field

shows "Project Champion [.5]" and the duration of the Task ID is 5 days, then

only 2.5 days or 20 hours of the project champion's time will be required for the

Task ID. On the other hand, if a resource name field shows "Data Acquisition

Developer [2.0]" and the duration for the Task ID is 5 days, then this means that

two full-time data acquisition developers need to be assigned to this Task ID in

order to complete it on time (i.e., within five days in this example).

Although I described most of the meta data repository project team roles in

Chapter 5, Organizing and Staffing the Meta Data Repository Project, there are

a few additional individuals who may play a role in developing and

implementing the project plan:

§ Database administrator. This individual is responsible for the physical

implementation of the relational and object databases. This role typically

includes physical design, capacity planning, monitoring response time and

resource usage (i.e., CPU and disk I/O), and identifying and evaluating

performance problems, as well as tuning the databases, and reviewing the

complex SQL statements written by the data acquisition and data delivery

developers.

§ Key executive management. These are the individuals within an

organization who provide budgetary and/or political support for the

repository implementation and who therefore are critical to its success.

While a repository project can succeed without the support of all of the

following individuals, the more they lend their active support to the project,

the greater the chances will be of the initiative succeeding. Individuals who

typically fall into this category include the chief executive officer (CEO),

chief information officer, line-of-business managers, and senior business

executives.

§ Key IT team leaders. Key IT team leaders are the managers of the major IT

projects. These individuals are vital to the success of the meta data

repository because the repository usually needs to capture meta data from

the IT systems that these managers maintain. The cooperation and

assistance of these individuals is crucial for ensuring that the repository

captures the meta data accurately from the correct sources. Key IT team

leaders generally include the decision support manager, operational

systems managers (e.g., logistics, invoicing, accounting, and order

fulfillment), customer relationship systems manager, and Internet systems

manager.

§ Subject matter experts. Subject matter experts usually come from the

business side of the organization and are responsible for the various

subject areas (e.g., customer, product, order, market segment, etc.) of a

company. Subject matter experts are very similar to data stewards in that

they act as conduits between IT and the business users, aligning the users'

business needs with the IT systems (i.e., decision support and operational)

that support those needs. Subject matter experts are heavily involved with

determining the requirements of the meta data repository and establishing

priorities for those requirements.

Orientation Phase
The orientation phase (see Table 6.3) is the first phase of the meta data

repository's lifecycle. The goal here is to ensure that key people in the

companyunderstand the fundamental concepts of meta data and the value of a

meta data repository. If I feel that the key people understand meta data and its

value and are likely to allocate funds to the project, I skip this phase. This happy

situation rarely occurs, however, because most companies are still discovering

meta data's intrinsic value. The orientation phase also gives the project

manager or project champion the opportunity to sell the concept of meta data to

the executives in the company. It is almost always necessary to sell the meta

data concept to the company before any funding is allocated. This is why the

orientation phase must occur before the feasibility phase.

Table 6.3: Orientation Phase

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

1 Orientation

phase

15 days

1.1 Gauge

organizatio

n's

understan

ding of

meta data

1 day Project

manager

1.2 Obtain

meta data

course

instructor

7 days Project

manager

[0.25]

1.3 Design

customize

d course

3 days 1.2 Trainer,

project

manager

[0.25]

1.4 Conduct

executive

training

1 day 1.3 Trainer,

project

champion,

subject

matter

expert, end

user

committee,

project

Table 6.3: Orientation Phase

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

manager,

key

executive

managemen

t, key IT

team leaders

1.5 Conduct

training for

key

developers

4 days 1.4 Trainer,

subject

matter

expert [0.5],

project

manager,

database

administrator

, data

modeler,

repository

architect,

business

analyst, data

acquisition

developers,

data delivery

developers

If the project manager has a strong background in meta data and repository

implementation, then he or she may be a fine instructor for an orientation class.

In most situations, however, it is advisable to bring someone in from outside the

company to teach the class. This is primarily because a good meta data course

(or any course for that matter) requires about 4 to 6 hours of development time

for each hour of class time. Because it usually takes a total of about 24 hours of

class time to prepare a company for a meta data repository implementation (i.e.,

8 hours for executive training [Table 6.3, Task ID # 1.4] and 32 hours for

detailed developer training [Table 6.3, Task ID # 1.5]), the project manager

would need between 160 and 240 hours (i.e., 4 to 6 hours × 40) to prepare for

the executive and developer courses. This time can be decreased slightly if the

development team is familiar with meta data; in this case, 8–16 hours of training

should be sufficient.

Of course, finding a qualified meta data course instructor (Table 6.3, Task ID #

1.2) also takes time; figure on spending about seven days to find the right

instructor for the course, to negotiate the statement of work, and to sign any

necessary paperwork. It's very important that the instructor has actual

experience building meta data repositories and not just a theoretical

background. In addition, it is best if the instructor is a senior individual, since

part of the training task is to sell the concept to executive management. Many

companies make the mistake of letting a meta data tool vendor conduct these

training sessions. In my experience, a trainer who is borrowed from the tool

vendor makes the course very tool-focused and far too technical for

management. On the other hand, if the person comes from the vendor's

marketing department, the training is likely to be relatively nontechnical— but

still very tool-focused. These individuals tend to greatly oversell the ease of

building a meta data repository. As we know, any major IT effort takes a good

deal of work.

The subject matter expert may attend both courses, or just developer training

(Table 6.3, Task ID # 1.5). If this individual will be working on a day-to-day basis

with the business analyst, then he or she should attend both sessions.

Feasibility Phase
The purpose of the feasibility phase is to ascertain whether it is cost beneficial for the

company to build a meta data repository. There are two key deliverables that occur during

the feasibility phase: the project scope document and the high-level project plan (see

Table 6.4).

Table 6.4: Feasibility Phase — High-Level Tasks

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

2 Feasibility

phase

26 days

2.1 Create

project

scope

document

17 days

2.2 High-level

planning

and

estimatin

g

9 days

Create Project Scope Document
The project scope document is the first, and possibly the most important, deliverable in

the meta data repository project. Unfortunately, it is also the deliverable that many

companies fail to produce. The project scope document should define the specific

business and technical drivers for implementing the meta data repository. It serves as the

project's compass and drives all subsequent project development work, thereby

minimizing the phenomenon of project creep. Project creep is a very common cause of

project failure; it occurs when the end-user requirements increase or change significantly

during the design and development phases. In creating the project scope document,

remember the three "Ss" of development: Staff, Scope, and Schedule. These three

elements are tightly integrated (as Figure 6.2 illustrates); if you change one, you have to

change them all. If you don't, then the quality of the project will suffer.

Figure 6.2: Project quality triangle.

Creating a project scope document typically requires between three and four weeks (as

shown in Table 6.5). If your company sign-off policy calls for multiple signatures and/or

there are strong political pressures among the decision makers, then it may take as much

as seven weeks to complete this deliverable. On the other hand, if the company is

essentially a dictatorship and requires only a single high-level signature, the entire project

scope document process can be completed in as little as two weeks.

Table 6.5: Feasibility Phase — Create Project Scope Document

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

2.1 Create

project

scope

document

17 days

2.1.1 Create

interview

questions

1 day Project

manager,

business

analyst

2.1.2 Conduct 10 days 2.1.1 Project

Table 6.5: Feasibility Phase — Create Project Scope Document

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

interview

s with key

personnel

manager

[0.5],

business

analyst,

subject

matter

expert

2.1.3 Evaluate

requirem

ents

3 days 2.1.2 Subject

matter

expert,

business

analyst,

project

champion,

project

manager

2.1.4 Generate

project

scope

document

2 days 2.1.3 Business

analyst,

project

manager

2.1.5 Meet with

key

personnel

to

approve

document

5 days 2.1.4 Business

analyst [0.5],

project

champion

[0.25],

project

manager

[0.5], key

executive

managemen

t [0.25],

subject

matter

expert [0.5]

2.1.6 Obtain

sign-off

1 day 2.1.5 Project

champion,

project

manager,

Table 6.5: Feasibility Phase — Create Project Scope Document

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

subject

matter

expert

I'll discuss each of the major sections of the project scope document in detail on the next

several pages, but briefly, the major sections are:

§ Project definition

§ Future meta data repository releases

§ Project scope

§ Critical success factors

§ Risk factors

§ Assumptions

§ Issues

§ Sign-off sheet

Create Interview Questions and Conduct Interviews

You'll need to conduct interviews (see Table 6.5, Task IDs # 2.1.1 and # 2.1.2) with each

of the key technical and business people in the company to determine the critical

technical and business drivers that will comprise the project scope document. The first

steps, then, are to identify these individuals, then compose questionnaires that focus on

the key information requirements that would help these people to perform their jobs more

efficiently. (Table 6.6 presents some sample interview questions.)

Table 6.6: Sample Interview Questions

QUESTION PURPOSE

What aspects of your current

decision support systems do you

find most beneficial and why?

Provides a good gauge as to what

really benefits the end user.

What aspects of your current

decision support systems could

use improvement?

This is an opportunity question

that begins to reveal the user's

"pain."

What information would help you

be more effective on your job?

Another way of asking the

previous question (but some

people find it easier to respond to

a more broad-based question).

What limits your effectiveness on This type of question tests the skill

Table 6.6: Sample Interview Questions

QUESTION PURPOSE

your job? of the interviewer. Most of the

answers are not likely to be

technology relat ed, so the

interviewer must be able to hear

broad answers and understand

how meta data technology could

aid in the situation. The reason for

the broadness of these questions

is to discover possible

opportunities.

In many ways, these interviews are similar to a trip to the doctor's office. At the doctor's

office, the physician pokes you all over to find out what hurts. After the physician has

identified the top two or three things that arewrong with you, he or she can begin treating

the problems. In much the same fashion, the project manager or business analyst who

typically conducts these interviews asks questions to discover the information needs of

these key individuals, then probes further to determine how well these needs are being

met and how improving the information flow would help them do their jobs better.

Keep in mind that the key to a good interview process is not just asking questions. You

must also be sure that the interviewee gives concrete answers. For example, if an

individual says that the information on a particular report is difficult to understand, a good

interviewer follows up with another question like: "Why is it difficult to understand?" Is the

information poorly formatted? Incorrect? Or are users not aware of what they are looking

at? Follow-up questions are actually more important than the base questions.

The interviewers also need to be able to recognize meta data requirements when they

hear them. If, for example, an interviewee says "Our analysts often make incorrect

decisions because we don't know how our report metrics are calculated," the interviewer

should recognize that meta data definitions may address this problem. I would suggest

asking the interviewee what percentage of errors does he or she feel that this problem

creates. Ideally, an empirical number can then be placed on this (e.g., approximately 40

each month or at least 2 a day), and a cost attributed to these mistakes from the

standpoint of expense (i.e., money lost) and/or opportunity lost (i.e., money that could be

made). If, however, the interviewer cannot elicit hard numbers (as is often the case), he or

she should continue to probe the issue, asking questions like, "Would business definitions

eliminate these errors and make your life significantly better?" If interviewees are not

willing to state that fulfilling such needs would significantly improve their work

performance, the requirement may not be urgent.

Generate Project Scope Document

After the information gathering and requirements evaluation steps are complete, you can

begin putting the project scope document together, starting with the project definition

section. Remember, you should tailor the project scope document to your particular

project; include all of the sections or only those that are directly relevant to your

implementation.

Project Definition

The project definition section should set the scope for the first phase of the meta data

repository project. As such, it typically lists the specific business and technical drivers and

benefits that the meta data repository should accomplish, along with the specific

high-level technical project deliverables that need to occur to satisfy these drivers.

When identifying business and technical drivers, it is important to highlight exactly how

the driver will benefit the company. Because companies typically increase their

profitability by reducing expenses or increasing revenues, each driver should show how it

accomplishes either or both of these goals. Examples of the most common technical and

business drivers include:

§ Reduce future IT development costs and shrink the system

development lifecycles

§ Improve the business users' access to the decision support

information by creating a meta data–driven decision support front end

to help them find the information that they need

§ Reduce turnaround time for production-related problems

§ Provide business user access to historical changes in the decision

support system to enable users to make better business decisions

After you have determined the business and technical drivers, it is important to list the

specific high-level technical deliverables that will be needed to satisfy these drivers.

Some examples of typical technical deliverables and the activities required to create them

are:

§ Technically integrate all of data models (physical and logical), data

transformation rules, and data sources

§ Implement a meta data access tool capable of capturing user access

patterns and frequency of use

§ Implement data administration standards, including data naming

standards, application descriptions, and business definitions

§ Create a front end for business users to define their report and field

definitions

TE
AM
FL
Y

Team-Fly®

§ Create a technical infrastructure capable of providing access to

technical and business meta data

§ Capture historical changes to the decision support system

§ Construct predefined meta data reports for the business and technical

users

Although it is important to capture the business definitions for business fields and reports,

it is usually very difficult to get a company to take the necessary time to construct all of

them. I deal with this situation by telling the business managers that the meta data

implementation team will create the initial definitions, but will need assistance from the

data stewards assigned by the various business units to review and, if necessary, modify

the definitions. I have found this strategy to be quite successful. If the definitions are not

created at the beginning of the project, the business is likely to fail to recognize their value

and never create them. On the other hand, repository implementation teams often create

the definitions, but fail to assign data stewards and/or fail to create a good front end to

support the definitions. If business users don't agree with some of the definitions, they

should be responsible for changing them, but they need an easy-to-use front end to

ensure that the definitions remain complete and consistent. A good front end also

eliminates the need for the repository implementation team to review and approve all

changes, thereby minimizing the team's ongoing support efforts.

Future Meta Data Repository Releases

This section of the project scope document is vital because it sets the future vision for the

meta data repository team. This section presents the ultimate goals for the meta data

repository and emphasizes the need to implement a flexible infrastructure that can grow

as user needs change and expand. For example, the future vision for the repository may

be to incorporate publish and subscribe capabilities, and roll the repository out to the

entire enterprise, providing access through a corporate portal. This section also identifies

the development activities that must be accomplished in each of the project phases to

attain the project vision.

I believe it is valuable to list some key high-level business and technical drivers for

Release 2 of the project in this section. While these drivers may change in the project

scope document for Release 2 of the project, it is often helpful to state the drivers here to

ensure that the repository that is created in Release 1 considers the needs of the future

releases.

Project Scope

This section of the project scope document defines, at a high-level, the technical plan for

the first phase of the project. It presents the initial meta data integration architecture that

will be used, along with the meta data needs that the repository will fill, and the meta data

sources. Lastly, the project scope section should list the meta data repository standards

that need to be established. These standards are very important because other groups

may need to follow them, and a signed document that clearly lists the standards is

extremely useful for ensuring compliance.

Figure 6.3 illustrates a high-level architecture for a meta data repository that is not directly

integrated into a data warehouse or data mart.

Figure 6.3: Meta data integration architecture 1.

If the first phase of the repository involves modifying new or existing data warehouse

reports and uses the same front end as the data warehouse, then the architecture would

be similar to that illustrated in Figure 6.4.

Figure 6.4: Meta data integration architecture 2.

Critical Success Factors Section

This section states the items that will be crucial for determining the success of the

implementation project. I include it on most of the project scope documents that I create,

and generally include such items as:

§ Lay the groundwork for an enterprise-wide meta data repository

§ Automate repository loading process

§ Establish scope control

§ Roll out the repository

I include the last three items on this list (automate repository loading process, establish

scope control, and roll out the repository) on every project scope document that I write

because they are critical in all projects. Unfortunately, automating the process for loading

the meta data sources into the repository is something that many meta data

implementation teams overlook. It is very important to limit the number of manual

processes for the meta data repository. Although a few manual processes are quite

common during the initial load of the repository, these should be one-time efforts.

Subsequent loads should be automated with a user friendly front end to automate the

process.

Scope control is critical to the success of any effort, IT or otherwise, because most

changes in scope have a direct effect on the schedule and staffing needs of a project. As

a result, I always include a statement in the project scope document emphasizing the

need for a change management process, which is a set of procedures that must be

followed in order to trigger any change to any defined phase of the repository project. The

change procedures should be easy to follow, but should be mandatory for any change

that is requested after the project scope document is signed off. After the change process

is complete, it should be subject to approval by the same individuals that signed off on the

original scope document.

The critical success factor of rolling out the repository is self-explanatory. If we don't roll

the repository out to the end users, we don't have a success.

Risk Factors Section

This section of the project scope document states the potential major roadblocks to the

success of the meta data repository project. I include this section on nearly all of the

project scope documents that I prepare. Some typical risks that might be listed include:

§ Support from other project teams is vital to the success of the meta

data project. This section lists the teams that need to assist the meta

data repository team.

§ Resource allocation and skills refers to the importance for the

company to allocate the necessary resources to build and maintain the

meta data repository. In addition, these resources need to have the

proper skill sets. These points help to attain better resources.

Assumptions

This section usually lists the basic environmental and operating conditions that exist when

you begin the repository project and that you assume will remain unchanged during the

course of the initial implementation. For example, you may specify the hardware and

software platforms that the integration architecture will be based on, or list the key

personnel resources (by position or name) who are assigned to work on the repository

project. While these factors may seem obvious, even a small change in the operating

system environment or the RDBMS that supports the DSS (e.g., upgrading to a new

version) or losing a project developer to some other assignment can have a significant

impact on the delivery schedule for the repository. (See "Obtaining Clear Management

Direction" in Chapter 7, Constructing a Meta Data Architecture, for an example of

assumptions that failed to materialize.)

Issues Section

This is a catchall section for any issues that arise during the creation of the project scope

document. If, for example, the implementation team intends to use a standard data

modeling tool, but is not sure if it can extract meta data from the tool, that question would

be noted in this section.

Sign-Off Sheet Section

The very last page of the project scope document is a sign-off sheet for the company's

decision makers to indicate their review and approval of the document (see Table 6.7 for

an example).

Table 6.7: Project Scope Document— Sign-Off Sheet

NAME SIGNATURE DATE

Perform High-Level Planning and Estimating

The high-level project plan is the second key deliverable of the feasibility phase. (Table

6.8 defines the tasks that lead to this deliverable.) This plan uses information from the

project scope document to lay out all of the activities and tasks that must be completed in

each phase of the project and estimates the costs involved in the initial release of the

meta data repository based on projected resource requirements. This plan is vital for

ensuring that company executives and IT managers understand the level of commitment

and resources that are required for implementing the meta data repository and for

cost-justifying the design and construction phases of the project. Table 6.9 illustrates a

sample high-level project plan.

Table 6.8: Feasibility Phase — High-Level Planning and Estimating

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

2.2 High-level

planning

and

estimating

9 days

2.2.1 Develop

high level

project

plan

3 days 2.1 Project

manager

2.2.2 Determine

resource

requireme

nts

2 days 2.1 Project

manager

2.2.3 Approve

project

2 days 2.2.2 Project

champion,

Table 6.8: Feasibility Phase — High-Level Planning and Estimating

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

plan,

resource

requireme

nts, and

funding

project

manager

2.2.4 Obtain

resources

(internal

and

external)

5 days 2.2.3 Project

manager

2.2.5 Initial

project

plan and

resourcing

complete

0 2.2.4

Table 6.9: Feasibility Phase — Sample High-Level Project Plan

TASK

ID

TASK

NAME DURATION DEPENDENCY

 Meta data

repository

project plan

81 days

1 Orientation

phase

15 days

2 Feasibility

phase

26 days

2.1 Create

project scope

document

17 days

2.2 High-level

planning and

funding

9 days

3 Design

phase

36 days 2

3.1 Meta data

tool

26 days

Table 6.9: Feasibility Phase — Sample High-Level Project Plan

TASK

ID

TASK

NAME DURATION DEPENDENCY

evaluation

and selection

3.1.1 Meta data

integration

tool

26 days

3.1.2 Meta data

access tool

26 days

3.2 Construct

integration

architecture

document

10 days

3.3 Create

detailed

design

document

17 days 2

3.4 Train

development

staff (if tool is

being used)

10 days 3.1

4 Construction

phase

77 days

4.1 Build meta

model

10 days 3.3

4.2 Design meta

data security

process

6 days 3.3

4.3 Develop

meta data

integration

processes

12 days 3, 3.4, 4.5.3

4.4 Develop

meta data

reports/acces

s method

10 days 3, 3.4, 4.5.3

4.5 Meta data 9 days 4.1

Table 6.9: Feasibility Phase — Sample High-Level Project Plan

TASK

ID

TASK

NAME DURATION DEPENDENCY

infrastructure

4.5.1 Desktop

setup and

configuration

9 days 3.1.2

4.5.2 Select and

implement

RDBMS

5 days

4.5.3 Meta data

tools setup

and

configuration

3 days 3.1.2

4.6 User

acceptance

testing (UAT)

11 days 4.3, 4.4

4.6.1 Business

user training

6 days

4.6.2 Technical

user training

6 days

4.7 Conduct user

acceptance

testing

5 days 4.6.1, 4.6.2

5 Rollout

phase

4 days 4.7

After the project plan is approved by the project champion, the meta data repository

project manager will have to obtain the resources to staff the plan. Ideally, the resource

requirements can be filled from the company's existing staff, but if the IT department does

not have sufficient resources to meet the demands of the project plan, the project

manager has three options for obtaining the necessary resources: (1) hire additional IT

staff, which can extend the project timelines; (2) extend the project timelines so that the

available staff can meet its requirements; or (3) hire a consultant to partner with on the

project.

Determining Project Costs

Some project planners include the orientation and feasibility phases in the cost

estimates for the high-level project plan because these phases have already occurred

and are considered sunk costs. Sunk costs are cash outlays that have already been

committed for a project and are irrecoverable regardless of whether the project is

accepted or rejected. Some senior managers believe that these costs need to be shown

in the high-level project plan to fully understand the project's return on investment.

In my experience, the costs incurred during the orientation and feasibility phases do not

need to be considered in the decision to fund the project. However, these costs do need

to be included when calculating the project's final ROI. The only exception to this is

when the orientation and feasibility phases have taken an inordinate amount of time.

For example, let's suppose that an inexperienced project manager wasted a great deal

of time and effort during these phases on activities of little or no benefit to the project. In

this case, the costs of these phases should probably be considered in the high-level

project plan just to give an accurate picture of the project's overall cost to the company.

My Strategy for Obtaining Sign-Off

Information technology development is as serious a business initiative as there is, but it

sometimes involves a little bit of humor, too. This can be particularly true of the senior

executive sign-off procedure.

Anyone who has ever had to obtain these signatures understands how difficult the task

can be. One of my business law professors in graduate school once asked the class to

provide the definition of a cosigner. A couple of students tried to answer the question,

but the instructor told each of them that their definition was inaccurate. According to the

professor, the definition of a cosigner is "an idiot with a pen." I have to say that his

comment has greatly limited my desire to ever cosign. This attitude shows that people

do not like to sign their names to anything, especially a project scope document that

they believe may come back to haunt them.

I have a process for attaining signatures that has proven to be invaluable over the years.

I first call a meeting of all the key decision makers to review the document and suggest

changes. This meeting typically needs to be scheduled well in advance because the

executives typically have very full schedules. The agenda for this meeting is to walk

through the project scope document and make any changes that are necessary for its

approval. At the end of the meeting, I ask the decision makers to sign off on the

document. At this point, they usually ask to have an opportunity to review the revised

document with some of their key people. I generally commit to revising the document no

later than 24 hours after the meeting and emphasize the importance of gaining approval

within five business days from the date of the meeting. Then, I add that anyone who

does not request additional changes or corrections within this time frame is giving

implicit consent to the document. In other words, "silence is consent."

As soon as the revised document is available (always within my promised time frame) I

personally hand a copy to each of the key decision makers. Everyone has one week to

review the document and return it to me with changes or corrections. During that week, I

seek out each executive and ask, in person, for his or her signature on the document.

Sometimes decision makers sign off on the document just to keep me from asking them

again. If, however, by the end of the week I haven't received signed documents or

feedback from each of the decision makers, I send e-mail reminding everyone that

silence is considered consent and that at this point everyone has consented fully to all

of the sections of the project scope document. This strategy forces the decision makers

to actually make decisions and helps to retain the integrity of the project timelines.

Getting the Decision

The two major deliverables of the feasibility phase— the project scope document and

high-level project plan— should provide executive management with sufficient justification

to approve (or reject) the meta data repository project. If approval is obtained, it's time to

move into the design phase, which brings the development team into the implementation.

If, however, the company's decision makers do not approve the repository project at this

point, the project manager needs to discover the reason for the rejection. In my

experience there are two common reasons why a project proposal is rejected after the

orientation and feasibility phases are complete:

§ Budgetary constraints. Companies often have budgetary constraints that

prevent executive management from funding the meta data repository. In

this situation, it is advisable to try to position the repository effort to attain

funding during the next fiscal year. In most cases, this means re-presenting

the repository project to executive management when funds for the

following year's IT initiatives are allocated, which may require reworking

some of the resource and cost estimates.

§ Repository is not perceived as valuable. Key management is likely to

reject a repository project if the majority of managers do not perceive the

repository's value to the organization. In this situation, the repository

project manager generally has three options: (1) reduce the cost of the

project by reducing its overall scope or scaling back on the initial

implementation, thereby reducing the amount of risk to the organization

while still meeting the major requirements for meta data; (2) expand the

scope of the project to fulfill specific needs expressed by key executives,

thereby satisfying a key executive's particular interest; or (3) try to resell

the concept of meta data, convincing the key executives of the benefits of

the repository project or, if necessary, enlisting the aid of a new or

additional project champion.

Design Phase
The purpose of the design phase is to document the specific processing and reporting

requirements of the meta data repository project, fleshing out the activities and tasks

enumerated on the high-level project plan. The key deliverables in this phase are (1) the

meta data tools evaluation; (2) an integration architecture document; (3) detail design

documents, which include delivery specifications; and (4) a development staff training

plan. (See Table 6.10 for details of the design phase.)

TE
AM
FL
Y

Team-Fly®

Table 6.10: Design Phase

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

3 Design phase 36 days 2

3.1 Meta data tool

evaluation and

selection

26 days

3.1.1 Meta data

integration tool

26 days

3.1.1.1 Identify major

integration tool

vendors

2 days Data

acquisition

developers,

repository

architect

[0.25],

project

manager

[0.25], data

modeler

3.1.1.2 Create

weighted

checklist and

interview

5 days Data

acquisition

developers,

repository

architect

[0.25],

project

manager

[0.25], data

modeler

3.1.1.3 Send checklist

and interview

to vendors for

completion

0 3.1.1.2 Data

acquisition

developers,

repository

architect

[0.25],

project

manager

[0.25], data

modeler

3.1.1.4 Receive 10 days 3.1.1.3 Data

Table 6.10: Design Phase

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

completed

vendor

checklist and

interview

acquisition

developers,

repository

architect

[0.25],

project

manager

[0.25], data

modeler

3.1.1.5 Receive tool

demo (check

demo to

checklist

answers)

5 days 3.1.1.4 Data

acquisition

developers,

repository

architect

[0.25],

project

manager

[0.25], data

modeler

3.1.1.6 Check vendor

references

1 day 3.1.1.4 Data

acquisition

developers,

repository

architect

[0.25],

project

manager

[0.25], data

modeler

3.1.1.7 Select tool 5 days 3.1.1.6 Data

acquisition

developers,

repository

architect

[0.25],

project

manager

[0.25], data

modeler

Table 6.10: Design Phase

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

3.1.1.8 Create

contract and

obtain vendor

signoff

5 days 3.1.1.7 Project

manager

[0.25], legal

department

[0.5], project

champion

[0.25]

3.1.2 Meta data

access tool

26 days

3.1.2.1 Identify major

integration tool

vendors

2 days Business

analyst, data

delivery

developers,

repository

architect

[0.25],

project

manager

[0.25]

3.1.2.2 Create

weighted

checklist and

interview

5 days Business

analyst, data

delivery

developers,

repository

architect

[0.25],

project

manager

[0.25]

3.1.2.3 Send checklist

and interview

to vendors for

completion

0 3.1.2.2 Business

analyst, data

delivery

developers,

repository

architect

[0.25],

project

manager

Table 6.10: Design Phase

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

[0.25]

3.1.2.4 Receive

completed

vendor

checklist and

interview

10 days 3.1.2.3 Business

analyst, data

delivery

developers,

repository

architect

[0.25],

project

manager

[0.25]

3.1.2.5 Receive tool

demo (check

demo to

checklist

answers)

5 days 3.1.2.4 Business

analyst, data

delivery

developers,

repository

architect

[0.25],

project

manager

[0.25]

3.1.2.6 Check vendor

references

1 day 3.1.2.4 Business

analyst, data

delivery

developers,

repository

architect

[0.25],

project

manager

[0.25]

3.1.2.7 Select tool 5 days 3.1.2.6 Business

analyst, data

delivery

developers,

repository

architect

[0.25],

Table 6.10: Design Phase

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

project

manager

[0.25]

3.1.2.8 Create

contract and

obtain vendor

signoff

5 days 3.1.2.7 Project

champion

[0.25],

project

manager

[0.25], legal

department

[0.5]

3.2 Construct

integration

architecture

document

10 days

3.2.1 Identify

sources of

meta data to

be integrated

3 days Repository

architect

[0.5], project

manager

[0.5]

3.2.2 Identify meta

data needs

each source

shall provide

2 days 3.2.1 Repository

architect

[0.5], project

manager

[0.5]

3.2.3 Detail the

specific

integration

method each

source of meta

data will need

3 days 3.2.2 Repository

architect

[0.5], project

manager

[0.5]

3.2.4 Map out

hardware/softw

are

architecture

2 days 3.2.3 Repository

architect

[0.5], project

manager

[0.5]

3.3 Create detailed 17 days 2

Table 6.10: Design Phase

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

design

documents

3.3.1 Identify

business users

of the

repository

1 day Subject

matter

expert,

business

analyst, data

modeler

[0.5], project

manager

[0.25], data

delivery

developers

3.3.2 Identify

technical users

of the

repository

1 day Subject

matter

expert,

business

analyst, data

modeler

[0.5], project

manager

[0.25], data

delivery

developers

3.3.3 Meet with

users to define

specific

reporting

needs

(business and

technical)

10 days 3.3.1, 3.3.2 Business

analyst, data

modeler

[0.5], project

manager

[0.25], data

delivery

developers,

subject

matter

expert

3.3.4 Review and

approve user

requirements

1 day 3.3.3 Subject

matter

expert,

Table 6.10: Design Phase

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

business

analyst, data

modeler,

project

manager,

data delivery

developers,

project

champion,

repository

architect

3.3.5 Create detailed

data delivery

specifications

5 days 3.3.4 Subject

matter

expert,

business

analyst, data

modeler

[0.5], project

manager

[0.25], data

delivery

developers

3.4 Train

development

staff (if tools

are being

used)

10 days 3.1

3.4.1 Train

development

staff on meta

data

integration tool

10 days Data

acquisition

developers,

repository

architect,

tool vendor

3.4.2 Train

development

staff on meta

data access

tool

10 days Repository

architect,

data delivery

developers,

tool vendor

Evaluate and Select Meta Data Tools

One of the primary activities of the design phase (Task ID 3.1 in Table 6.10) is evaluating

and selecting appropriate meta data tools— both access and integration tools. Although

all meta data tools have some drawbacks, I believe that such tools are beneficial for

nearly all meta data repository implementation projects and generally advise my clients to

purchase and incorporate these tools in their meta data architecture. However, if a

company is relatively small and/or has a limited IT budget, purchasing such tools and

spending sufficient time and effort to learn them may not be practical. In this situation, it

may be beneficial for the company to manually integrate all of its meta data sources and

build custom reports.

Chapter 4, Understanding and Evaluating Meta Data Tools, provides detailed guidelines

for evaluating and selecting meta data tools, but you should be aware that this can be a

lengthy process that requires considerable effort on the part of the business analyst, data

developers, and repository architect. The entire evaluation and selection process (i.e.,

access and integration) typically requires close to a month for each type of tool.

Be sure to document the reasons for each tool's selection. All too often, after tools are

selected, the technical environment changes and the tools are no longer appropriate.

Questions then arise as to why the tool was selected in the first place. Having an official

record of the reasoning behind the selection goes a long way toward protecting the

credibility of the implementation project team and provides a foundation for selecting a

different tool.

Create Meta Data Integration Architecture

Document
The repository architect is responsible for creating the integration architecture document

(Task ID 3.2 in Table 6.10), which provides a detailed technical outline of the repository

architecture. Because meta data tools play an important role in the repository architecture,

this document should be created in concert with the tools evaluation process. The major

sections of the integration architecture document are nearly identical to those of the

project scope document, with the exception of the first two sections, which I describe in

the following pages:

§ Meta data integration architecture

§ Future meta data repository releases

§ Critical success factors

§ Risk factors

§ Assumptions

§ Issues

§ Sign-off sheet

Meta Data Integration Architecture Section

The meta data integration architecture section is the key portion of this document. It

presents the technical meta data architecture for the initial release of the repository, along

with detailed descriptions of the various sources of meta data and an explanation of how

they will be technically integrated (see Figure 6.5 for an example).

Figure 6.5: Detailed meta data integration architecture.

This section walks through each of the meta data sources and specifically explains what

meta data is being brought into the repository, how the meta data will be integrated, and

how often the meta data will be updated in the repository. Let's use the sample integration

architecture from Figure 6.5 as an example. In the meta data integration architecture

section, I would describe the data dictionary portion of the architecture as: "The custom

data dictionary contains business field definitions that are embedded in a third-party

packaged application which uses a non-open database structure and is located on an

IBM mainframe. The meta data repository team will use COBOL (Common Business

Oriented Language) and JCL (Job Control Language) to extract the data and FTP to

transfer the information to the Windows NT directory where we will integrate it into the

meta data repository."

The meta data integration architecture section of the integration architecture document

also describes any manual integration processes that are involved in the integration effort

and explains why they exist. If a manual process is a one-time occurrence, the integration

architecture document should say so. Similarly, if there are manual processes that are not

one-time occurrences, the document needs to describe how these processes will be

converted to automatic processes in the future.

This section also describes any meta data tools that are being used, including an

explanation of the tool(s) strengths and weaknesses, and a brief explanation of why the

tool was chosen.

Future Meta Data Architecture Section

Because the first release of a meta data repository project does not usually implement all

of the desired functionality, it is necessary to document the plan for handling the

remaining requirements in future project releases. This section provides a picture of the

future meta data repository.

While this section does not have to include a detailed discussion of each projected meta

data source, it is vital to highlight any anticipated future changes to the architecture.

These changes may include moving from the current front end to a corporate portal

concept or plans to technically integrate new sources of meta data into the repository.

This section is intended to focus on the future of the repository and to reduce as many

throw-away efforts as possible. Even if the architecture changes during the next release,

this section is helpful for keeping future releases of the repository in mind while designing

the architecture for the first release.

The critical success factors, risk factors, issues, and assumptions sections are similar to

those in the project scope document. For details on these sections, refer back to the

description of the project scope document. The sign-off section for this document differs

somewhat from the project scope document sign-off in that only the project champion,

project manager, and repository architect need to sign off on this document.

Create Detail Design Documents

The repository's front-end report specifications and back-end program specifications are

also constructed during the design phase and, along with the delivery specifications,

constitute the third deliverable of the design phase (Task ID 3.3 in Table 6.10). While the

process for capturing detailed designs has been around for a long time and is well

understood, I want to share a couple of techniques that I use to reduce the likelihood of

extending this process longer than necessary and to avoid scope creep:

1. Always bring a copy of the project scope document to each design session

with the end users to ensure that all design work relates directly to the

business and technical drivers listed in the project scope document.

2. When the design documents are complete, obtain signature approval from

the end users who have attended the design sessions. All too often, users

suffer from analysis paralysis during the design sessions; they are

unwilling or unable to commit to firm requirements that are necessary for

TE
AM
FL
Y

Team-Fly®

good design. Try to overcome their reluctance to make hard decisions by

citing executive -level support and through judicious scheduling. If all else

fails, try my wear them out technique (see sidebar), which I developed

after spending too many hours in unproductive design meetings where

users were unable— or unwilling— to make decisions about their reporting

requirements.

Develop Detailed Data Delivery Specifications

The detail design documents should include delivery specifications for all of the field-level

elements necessary to satisfy the repository users' requirements. These delivery

specifications serve as guidelines for the data delivery developers to build the actual

report/query programs. The major elements of these specifications include:

§ Input tables/files

§ Output tables/files

§ Detailed processing summary

§ Report prototypes

§ Issues

Prepare Training Plan for Development Staff

If the meta data repository is going to use data access or integration tools that the

development staff is unfamiliar with, the implementation plan should include sufficient

time to train the staff to use these tools effectively.

The "Wear Them Out" Technique

I developed this technique while working with a client whose end users were extremely

reluctant to make decisions about their requirements. After leading numerous, lengthy

detail design meetings (i.e., three to four hours each) in which users rambled on

endlessly about unrelated business issues without reaching any meaningful decisions, I

resorted to this technique to finally capture their requirements.

When I use this approach, I schedule a design meeting to begin in the afternoon,

usually about 1:00 P.M. or later, and make sure that all attendees understand that the

goal of the meeting is to capture all of the end user reporting requirements. I also inform

all attendees, up front, that the meeting won't end until all of the requirements are

captured. My standard warning is that if I'm the only one left in the room making

decisions at 3:00 A.M., then that's how the decisions will be made. In this case, my

meeting with the end users began like all of the others. There were petty discussions

and great deal of talk about business processes, but no decisions about requirements.

When dinner was delivered at 5:00 P.M. (no reason to starve anyone to death), we had

accomplished absolutely nothing and the attendees began to realize that the meeting

really would not end until we had defined the requirements. By 6:00 P.M., an amazing

metamorphosis occurred; people stopped arguing and began to make decisions about

their requirements. In the next two or three hours, we reached a consensus regarding

the user reporting requirements and made the design decisions. The meeting

concluded by 10:00 P.M., which is usually the case with this technique. We managed to

define all of the requirements, and as a good warden, I finally let my prisoners free to

see their families. This technique has served me well, and I've used it many times over

the years with wonderful results.

In general, it is advisable to plan on at least two weeks of intensive training on each

tool(s), and training must be completed before the staff can begin to use the tools to build

the repository. And, a word of warning: If the tool vendor tells you that it offers an

intensive three-day boot camp–style course that teaches the developers everything they

need to know, don't believe it! I've attended many of these courses, and every one of

them was more like summer camp than boot camp. The vendor should, however, be

willing to create a really useful course targeted specifically at your development staff. Just

be sure that the course instructor is an on-site implementer with real hands-on experience,

rather than a full-time trainer who is familiar with the tool but knows little or nothing about

your particular repository project. Full-time trainers often lack the necessary expertise to

make the tools function effectively in a real-world situation.

Construction Phase
After the design phase is complete, and the detailed design documents are

approved and signed off, it is time to begin constructing the back-end programs

that will populate the meta data repository and the front-end programs that will

present this information to the end users. During this phase, the project

manager must ensure that the developers adhere to the repository

implementation schedule as spelled out in the delivery specifications. At the

same time, the repository architect must work closely with the developers to

ensure that all of the programs that they build run efficiently and are

maintainable. Table 6.11 summarizes the major endeavors in the construction

phase.

Table 6.11: Construction Phase

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

4 Construction

phase

77 days

4.1 Build meta

model

10 days 3.3

4.2 Implement

meta data

security

6 days 3.3

Table 6.11: Construction Phase

TASK

ID

TASK

NAME DURATION DEPENDENCY

RESOURCE

NAMES

process

4.3 Implement

meta data

integration

processes

12 days 3, 3.4, 4.5.3

4.4 Implement

meta data

reports/acce

ss method

10 days 3, 3.4, 4.5.3

4.5 Implement

meta data

infrastructur

e

9 days 4.1

4.6 User

acceptance

testing

(UAT)

11 days 4.3, 4.4

4.6.1 Conduct

business

user training

6 days

4.6.2 Conduct

technical

user training

6 days

4.6.3 Conduct

user

acceptance

testing

5 days 4.6.1, 4.6.2

User acceptance testing is a key activity in the construction phase and can be

crucial to the ultimate success of the project. User acceptance testing is

intended to gain end user approval for the meta data repository. It should

closely follow the completion of user training so as to ensure that business and

technical users fully understand how and when to use the repository. It is

important not to skip or gloss over this step. The success of the repository

implementation project depends as heavily on user support as it does on the

technical design and construction of the system. The repository project

manager needs to work closely with the business and technical users before,

during, and after acceptance testing to ensure that the repository meets their

ever-changing needs and that they understand what the repository can— and

can't— do.

Management and User Support is Critical to Success

At one time I was part of a team hired to implement a new,

enterprise-wide, order entry system for a large, global conglomerate

with multiple, wholly owned subsidiaries throughout the United States.

The implementation team spent two years building the system, which

we planned to initially roll out to one of the conglomerate's smaller U.S.

companies (we'll call it Subsidiary A for convenience). Subsidiary A was

relatively large, with annual revenues of about $1 billion, but its

management and end users were reluctant to institute any change and

viewed the new system as a threat to their jobs. Management and

users joined forces to oppose the implementation effort, and eventually

convinced the conglomerate not to implement the system. This decision

was highly unfortunate because the system was designed to help

Subsidiary A overcome one of it's major problems— a lack of customer

service. Features such as automated product pricing, which was

designed to calculate price when a clerk keyed in the customer, product

code, and quantity, would have helped to compensate for this

shortcoming and would have increased Subsidiary A's revenues.

Having failed in our implementation effort at Subsidiary A, the team

moved on to Subsidiary B, the largest of the conglomerate's U.S.

companies, with annual revenues of about $7 billion. A month before

we began rolling the system out at Subsidiary B, the conglomerate

initiated a major reorganization of all its U.S. holdings, which had a

major negative impact on our system and its internal hierarchies and

caused many problems during user acceptance testing. Fortunately for

us, the end users at Subsidiary B were absolutely the best I have ever

worked with. They spent little or no time looking to assign blame.

Instead they stayed focused on the problems and worked as true

partners. The result was a highly successful system implementation for

Subsidiary B. Sadly for Subsidiary A, it never did implement the new

system and experienced poor financial returns, which resulted in major

employee layoffs. I firmly believe that if it had been more amenable to

change, it might have avoided those layoffs.

Rollout Phase
The rollout phase is the final step of the meta data repository development effort.

Three key tasks occur during this phase (as illustrated in Table 6.12):

Table 6.12: Rollout Phase

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

5 Rollout phase 4 days 4.6.3

5.1 Roll out repository

to clients

0

5.2 Postimplementation

review

4 days

5.2.1 Plan review agenda

and materials

1 day Project

manager

5.2.2 Conduct review 2 days 5.2.1 Project

manager,

project

champion,

subject

matter

expert, key

executive

managemen

t

5.2.3 Publish results 1 day 5.2.2 Project

manager,

project

champion

5.3 Meta data

repository in

production

0 5.2

1. The repository is rolled into production and is accessible to end users

(Task ID 5.1 in Table 6.12).

2. The meta data repository team, the project champion, and key

executive management conduct a postimplementation review (Task ID

5.2 in Table 6.12) to compare the meta data repository with the

objectives of the original project scope document. If the "live" repository

matches the scope document and any change requests that occurred

during the development phase, the project should be considered a

success. If there are differences between the two, the review should

reveal where and how the discrepancies occurred and determine what

effect (if any) they had on the success of the repository. Of course, the

results of the review should be thoroughly documented and, if possible,

the results of the project quantified. This information is extremely

helpful in obtaining funds for subsequent project releases.

3. Planning begins for the next release of the repository project (Task ID

5.3 in Table 6.12), using the original project scope document and the

meta data integration architecture document as the foundation for the

second release.

In the next chapter, I describe the fundamentals of meta data repository

architecture and discuss how the architecture relates to that of the data

warehouse. In addition, I touch on some of the advanced meta data techniques

that are likely to drive the use of meta data in the future.

Chapter 7: Constructing a Meta Data

Architecture

This chapter describes the key elements of a meta data repository architecture

and explains how to tie data warehouse architecture into the architecture of the

meta data repository. After reviewing these essential elements, I examine the

three basic architectural approaches for building a meta data repository and

discuss the advantages and disadvantages of each. Last, I discuss advanced

meta data architecture techniques such as closed-loop and bidirectional meta

data, which are gaining popularity as our industry evolves.

What Makes a Good Architecture

A sound meta data architecture incorporates five general characteristics:

§ Integrated

§ Scalable

§ Robust

§ Customizable

§ Open

It is important to understand that if a company purchases meta data access

and/or integration tools, those tools define a significant portion of the meta data

architecture. Companies should, therefore, consider these essential

characteristics when evaluating tools and their implementation of the

technology.

Integrated

Anyone who has worked on a decision support project understands that

the biggest challenge in building a data warehouse is integrating all of the

disparate sources of data and transforming the data into meaningful

information. The same is true for a meta data repository. A meta data

repository typically needs to be able to integrate a variety of types and

sources of meta data and turn the resulting stew into meaningful,

accessible business and technical meta data. For example, a company

may have a meta data requirement to show its business users the

business definition of a field that appears on a data warehouse report. The

company probably used a data modeling tool to construct the physical data

models to store the data presented in the report's field. Let's say the

business definition for the field originates from an outside source (i.e., it is

external meta data) that arrives in a spreadsheet report. The meta data

integration process must create a link from the meta data on the table's

field in the report to the business definition for that field in the spreadsheet.

When we look at the process in this way, it's easy to see why integration is

no easy feat. (Just consider creating the necessary links to all of the

various types and sources of data and the myriad delivery forms that they

involve.) In fact, integrating the data is probably the most complex task in

the meta data repository implementation effort.

Scalable

If integration is the most difficult of the meta data architecture

characteristics to achieve, scalability is the most important characteristic. A

meta data repository that is not built to grow, and grow substantially over

time, will soon become obsolete. Three factors are driving the current

proliferation of meta data repositories:

§ Continuing growth of decision support systems. As we discussed in

Chapter 1, businesses are constantly demanding greater and greater

functionality from their decision support systems. It is not unusual for

both the size of a data warehouse database and the number of users

accessing it to double in the first year of operation. As these decision

support initiatives continue to grow, the meta data repository must be

able to expand to address the increasing functional requirements.

§ Recognition of the value of enterprise -wide meta data. During the

past three or four years, companies have begun to recognize the

value that a meta data repository can bring to their decision support

initiatives. Companies are now beginning to expand their repository

efforts to include all of their information systems, not just decision

support. I am aware of two Fortune 100 firms that are looking to

initiate an enterprise-wide meta data solution. As soon as one of

these major companies builds a repository to support all of its

information systems, many others are likely to follow suit. Chapter 11,

The Future of Meta Data, addresses the value of applying

enterprise-wide meta data to corporate information systems.

§ Increasing reliance on knowledge management. Knowledge

management is a discipline that promotes the application of

technology to identifying, capturing, and sharing all of a company's

information assets (e.g., documents, policies, procedures, databases,

and the inherent knowledge of the company's workforce). The

concept of knowledge management is a good one: Capture the

information assets and make them available throughout the

enterprise. However, knowledge management is generating mixed

reviews in the real world. Companies are just now beginning to

understand that a meta data repository is the technical backbone that

is necessary to implement a knowledge management effort. Software

vendors and corporations alike are now expanding their meta data

solutions to provide a real-world approach to knowledge management.

(Once again, Chapter 11, The Future of Meta Data, offers a detailed

discussion of this topic.)

Meta Data: It's Not Just for Decision Support

A number of years ago I was speaking at a conference in Chicago

about the value that meta data can bring to a decision support

system. After the talk, a member of the audience approached me

and asked why I limited my meta data discussion to only those

topics under decision support, since meta data can support all of a

company's IT systems. I agreed that meta data can significantly

aid a corporation's IT systems, but explained that I did not address

it during the talk because it was difficult enough to convince people

that meta data can help a decision support system, let alone

provide value to every information system in the company.

My stance on this topic and my presentations have changed

dramatically in the past few years. Now that people understand the

value, they're looking for the specifics of how to use

enterprise-wide data most effectively and leverage it to their

information systems.

Robust

As with any system, a meta data repository must have sufficient

functionality and performance to meet the needs of the organization that it

serves. The repository's architecture must be able to support both

business and technical user reports and views of the meta data, as well as

providing acceptable user access to these views. Some of the other

functionality required from the meta data architecture includes:

§ Ability to handle time- or activity-generated events

§ Import/export capability

§ Support for data lineage

§ Security setup and authorization facilities

§ Archival and backup facilities

§ Ability to produce business and technical reports

Customizable

If the meta data processes are home-grown (i.e., built without the use of

meta data integration or access tools), then customization is not a problem

since the entire application is tailored for the specific business environment.

If, however, a company uses meta data tools to implement the repository

architecture (as most do), the tools need to be customized to meet the

specific current and future needs of the meta data initiative.

Customization is a major issue for companies that purchase prepackaged

meta data solutions from software vendors. These solutions are generally

so rigid in their architecture that they cannot fill the specific needs of any

company. In the case of a meta data solution, one size definitely does not

fit all! To be truly effective, these prepackaged solutions require a

significant amount of customization to tailor them for each business

environment.

Open

The technology used for the meta data integration and access processes

must be open and flexible. For example, the database used to store the

meta data is generally relational, but the meta data architecture should be

sufficiently flexible to allow a company to switch from one relational

database to another without massive architectural changes.

Also, an open meta data repository enables a company to share meta data

externally, and most important, make it accessible to all users. If, for

example, a company decides to Web-enable all of its meta data reports,

the processes for providing access to these reports should be able to use

any standard Web browser.

Key Elements of Meta Data Architecture

In addition to the general characteristics of good architecture, all good data repositories

share a set of key elements that are essential for success, regardless of the architectural

approach used to build the repository. In short, all good repositories:

§ Are based on clear, well-defined management direction

§ Use the same front end as the data warehouse

§ Use the same entity and attribute naming standards throughout

§ Incorporate multiple sources of meta data

§ Include automated and reusable processes

§ Use a standardized integration process

§ Use a flexible meta model

§ Manage multiple versions of meta data

§ Incorporate update facilities

§ Use a component-based multitier architecture

§ Incorporate a security management scheme

§ Incorporate cross-tool meta data dependency and lineage

Clear Management Direction

TE
AM
FL
Y

Team-Fly®

A set of clear, well-defined repository requirements are critical to the success of the meta

data project. While this may not seem like an architectural issue, it is. I have seen more

than one repository effort in which management changes in direction caused severe

changes in the repository architecture.

Probably the most extreme case of misdirection that I dealt with involved a company that,

for many years, depended on UNIX-based hardware and a Sybase database. When we

began to evaluate meta data tools, therefore, we focused on tools that would be

compatible with UNIX and Sybase. After we had selected the tools and finished designing

the repository architecture, the company hired a new CIO, who quickly decided to replace

Sybase and the UNIX boxes with IBM DB2 running on a mainframe. This edict absolutely

devastated our repository project and threw the IT department into general disarray since

the staff was configured to support Sybase and UNIX. The tools we had selected would

have worked well with a UNIX box, but were likely to be far less satisfactory on a

mainframe. This change in management direction made the tools that we had selected far

less than optimal for the company's environment, but the new CIO was reluctant to allow

us to go through the tool selection process a second time. As a result, we had to

implement using tools that were not well suited for the environment. See Chapter 6,

Building the Meta Data Project Plan, for details on how to clearly define the project scope.

The Same Front End

Whenever possible, the meta data repository should use the same front end as the data

warehouse. Business users do not like to learn new tools, so it's always best to limit the

number of tools that they need to use.

There is a caveat to this, however. If the decision support system's front end cannot meet

the needs of the meta data repository, it is far better to select or build a new one than to

try to make do just to eliminate the need for users to learn a new tool. Using an

inappropriate front end can severely limit the functionality of the data repository and is

sure to cause more user dissatisfaction than learning a new tool.

Entity and Attribute Naming Standards

The vast majority of most companies' data is stored in relational databases of some sort.

The physical names used to represent the entities (i.e., tables) and attributes (i.e., fields)

in these databases should be standardized. For example, policy number is a common

attribute in an insurance company database. Policy number may be physically named

Policy_Num, Policy_Nbr, or Policy_No. If an insurance company is not consistent is its

naming standards, that is, if it uses more than one of these names to refer to the attribute

policy number, problems arise when we use a meta data integration tool to prepare the

company's data for a repository. Meta data integration tools compare entity and attribute

names across transformation programs to see if they represent the same data element.

Most tools would interpret Policy_Num, Policy_Nbr, and Policy_No as three different data

elements, thereby causing the meta data in the repository to look "cluttered" and difficult

to use.

Ideally, businesses should standardize their database naming conventions throughout

the enterprise, but, after many years of consulting, I've yet to find a Global 2000 company

that has done this across all systems. At a minimum, though, companies should

standardize their database and file naming standards across their data warehousing

projects— and many manage to do this.

Multiple Sources of Meta Data
Business and technical meta data is stored at numerous locations throughout an

organization and exists in a wide variety of formats, including diverse software

applications and tools. Table 7.1 lists some typical locations for the most common types

of meta data.

Table 7.1: Meta Data Locations and Types

COMMON META DATA

LOCATIONS

TYPES OF META DATA

ETL tool/process Data transformation rules

Program job dependencies

Data warehouse balancing

statistics

Data warehouse load statistics

Data lineage

Data modeling tools Logical and physical data models

Technical entity definitions

Technical attribute definitions

Domain values

Documents Business policies

Employees Business policies

Business entity definitions

Business attribute definitions

Data stewardship

Data lineage

Reporting and OLAP tools User access patterns

Report execution time

Vendor applications Logical and physical data models

Data dictionary

Data quality tools Audit controls

These sources of meta data should flow directly into the repository and be integrated

through the meta data repository build process, as Figure 7.1 illustrates.

Figure 7.1: Meta data source flow.

Automated and Reusable Processes

I can't say this often enough! The process for loading and maintaining the meta data

repository should be as automated as possible. Many of the less-than-successful meta

data implementations contain far too many manual processes in their integration

architectures. The task of manually keying in meta data becomes much too time

consuming for the meta data repository team to perform, and over time usually capsizes

the repository initiative. With careful analysis and some development effort, the vast

majority of these manual processes can be automated.

Typically, a significant amount of the business meta data needs some type of manual

activity to initially capture it. Unfortunately, this activity is usually unavoidable and requires

a good deal of time. In these situations, it is usually best to create a front end for the

business users and let them become the data stewards and create and maintain their

own business meta data. Although the users may be reluctant to create meta data, at

least until the repository is built and functioning, a good front end and lots of

encouragement and assistance from the meta data implementation team go a long way

toward convincing users to create and/or modify their own meta data. The two key

elements here are: a good front end and a clear understanding on the part of the users

that they are responsible for their own meta data. The project manager needs to make

this clear to the business users. Don't make the mistake of forcing them to attain approval

from the meta data repository team to change the meta data. Requiring such approval

sends a very clear message to the users that the repository team, not the users, are

responsible for the meta data.

Standardized Integration Process
The architectural process for integrating sources of meta data is based on the same

concepts as the ETL (extraction, transformation, and load) process of a data warehouse.

In the next several pages, we'll walk through each layer of the process and discuss the

architectural reasons for each. Keep in mind, however, there is no absolute formula for

the physical architecture of a meta data repository (or for any other IT system, for that

matter). The physical architecture depends entirely on, and is unique to, the individual

environment. It is, however, crucial to understand and enforce the sound architectural

concepts for each layer. When this architecture is implemented, it is highly flexible and

easily distributed as the need arises. Figure 7.2 illustrates the entire ETL process.

Figure 7.2: Meta data ETL process.

Extraction (Data Acquisition) Layer

The primary activity of the extraction layer (sometimes referred to as the data acquisition

layer) in the meta data architecture is getting the data out of the various sources with

minimal impact on those sources. Figure 7.3 illustrates this layer.

Figure 7.3: Meta data extraction layer.

The resulting extraction file or table closely resembles the source of the meta data. No

meta data integration or cleansing should take place at this level; those functions properly

belong in the next layer, the transformation layer. In fact, only two changes should occur

to the data in the extraction layer. The repository architect must decide if record selection

should be used in this layer or in the transformation layer. I generally try to avoid record

selection criteria at this step unless the data in the meta data source is rather voluminous

and the amount of data we will ultimately load into the repository is a significantly smaller

subset. Second, the developer can add the specific fields to be used in the repository at

this point. These fields typically include: From Date, To Date, and Load Parameter.

Although there is some additional storage overhead in creating a copy of the meta data

source, this overhead tends to be quite minimal since data in the meta data source files is

rarely very large. On the other hand, there are three distinct advantages to separating the

extraction layer from the transformation layer:

§ Timeliness. The extraction layer is critical for keeping the meta data in the

repository in sync. To illustrate this point, let's suppose that we have three

meta data repository tables that need data from the same meta data

source. If we construct a process to build each of the three meta data

tables directly from the same meta data source, the data in the meta data

source may have changed by the time we execute the process to build the

table. This is especially probable if the source for the meta data is highly

dynamic (i.e., constantly changing) and occurs because the direct reads

on the meta data sources files occur at different points in time. As a result,

the information in the meta data repository will not be in sync. By creating

an extract file once in the integration process, all of the meta data tables

can be built from that extract fi le, which eliminates any possible timeliness

problem.

§ Scalability. Because we are creating an extraction file that very closely

resembles the meta data source file or table, we only need to read from the

meta data source one time. Without the extraction file or table, each table

in the meta data repository would have to have separate reads into the

meta data source itself, which may not be desirable.

§ Backup. Creating an extraction file provides a natural backup copy of the

source meta data. Therefore, if a situation occurs that causes us to have to

stop the meta data integration process, we can easily roll back our

changes and rerun the process without affecting the meta data sources

again.

Transformation (Cleansing) Layer

The transformation or cleansing layer is the backbone of the repository's architecture.

The most significant activity in the meta data repository effort occurs at this level:

integrating and cleansing the meta data sources. After these activities are complete, the

meta data is ready to be loaded into the repository.

Figure 7.4 illustrates the transformation layer. As the figure shows, the transformation and

cleansing activities should occur on the same physical platform as the meta data

repository. With this arrangement, as the requirements for the repository increase over

time, all of the meta data sources can be integrated in the same physical area, thereby

minimizing future changes to the extraction layer and reducing the changes requested in

the meta data source environments.

Figure 7.4: Meta data transformation layer.

The transformation and cleansing functions may occur in the same program or process or

may occur across several processes, but the files that result from the transformation

processes should always exactly mirror the meta data tables that they will be loaded into.

Any errors that may prevent the meta data repository from being loaded usually occur in

this layer. It is, therefore, important to create sound rollback procedures in case the load

run has to be halted.

Load Layer

The load layer takes the files that are generated in the transformation layer and loads

them into the repository. Rollback procedures are also critical in the layer in case

problems arise during the load process. I usually use the bulk loading mechanism that is

standard in all open relational database systems. If the need arises in the future to switch

relational databases, the processes in the extraction and transformation layers are not

affected, but the processes in this layer need to be modified. Fortunately, because

minimal processing occurs here, the modifications are likely to be relatively easy. Figure

7.5 illustrates this layer.

Figure 7.5: Meta data load layer.

Flexible Meta Model
Meta models usually use an entity-relationship schema to store a repository's meta data

content and organization. (Chapter 9, Building the Meta Model, offers a step-by-step

approach to constructing a meta model.)

A meta model provides the framework for establishing a protocol for meta data access,

administration, and interchange among various teams and software that access the

repository. The meta model must be able to capture the various meta data abstractions

that are of interest to the applications that use that meta data repository. For example, in

a data warehousing or decision support environment, abstractions such as relational and

nonrelational data objects, multidimensional concepts, transformation logic, business

rules, and job scheduling parameters are key meta data content that must be handled by

the repository architecture. The meta modeling methodology must be able to

accommodate various types of relationships, such as one-to-one, one-to-many,

many-to-many, aggregation, and inheritance. Last, compatibility with the emerging model

standards being developed by the Meta Data Coalition and Object Management Group is

a key requirement for any meta data repository architecture.

Multiple Versions of Meta Data
Because meta data provides a context for interpreting the meaning of information, the

meta data repository must manage the structure of the data in the data warehouse over a

broad spectrum of time. For that reason, it is necessary to know the period of time that the

meta data covers as it is extracted and stored in the repository. To accomplish this, the

meta model tables should be captured with a From and To date on each column. (Refer

to Chapter 9 for more details on building a meta model.) These dates enable users to

easily trace back through the repository to past versions of the meta data (data lineage).

Update Facilities
Inevitably, changes will occur in the applications that support the various sources of meta

data after the repository is initially loaded. The repository implementation team needs to

decide when to update the meta data repository from each meta data source. As a

general rule, I like to update the repository on a monthly basis with those sources of meta

data that are highly static. For most meta data sources, there is no need to update the

repository every time a change occurs. For example, if an additional index is added to

one of the data warehouse tables, it probably isn't necessary to update the meta data

repository. If, however, a major data warehouse enhancement occurs, the meta data

repository should be updated to incorporate the new data models, business definitions,

and so forth. Of course, some meta data types, such as data warehouse load statistics

and user access patterns, are continually updated in the repository. Table 7.2

summarizes the most common meta data updating frequencies.

Table 7.2: Meta Data Update Frequency

META DATA

LOCATIONS

TYPES OF META

DATA

UPDATE

FREQUENCY

ETL tool/process Data transformation

rules

Program job

dependencies

Data warehouse

balancing statistics

Data warehouse

load statistics

Data lineage

As changes occur

As changes occur

As changes occur

As changes occur

As changes occur

Data modeling tools Logical data models

Physical data

models

Technical entity

definitions

Technical attribute

definitions

Domain values

With major system

enhancement

As changes occur

As changes occur

As changes occur

As changes occur

Documents Business policies As changes occur

Table 7.2: Meta Data Update Frequency

META DATA

LOCATIONS

TYPES OF META

DATA

UPDATE

FREQUENCY

Employees Business policies

Business entity

definitions

Business attribute

definitions

Data stewardship

Data lineage

As changes occur

As changes occur

As changes occur

As changes occur

As changes occur

Reporting and

OLAP tools

User access

patterns

Report execution

time

As changes occur

As changes occur

Vendor applications Logical data models

Physical data

models

Data dictionary

With major system

enhancement

As changes occur

With major system

enhancement

Data quality tools Audit controls As changes occur

Some companies are expanding the use of their repositories to have changes to the meta

data in the repository sweep backward through the originating applications and/or tools.

Because the repository serves as a

Version Numbers Versus Dates

Some meta data integration tools use version numbers rather than From and To dates

to accomplish data lineage. By version number, I mean a numeric value that represents

a specific release of the decision support system.

In my opinion, version numbers are not the best way to control meta data versions. I say

this because I've yet to meet a business user who cared what version of the data

warehouse software he or she was looking at. Instead, users want real information.

They want to see any changes in the way that we calculate sales dollars on their

domestic sales report between 1995 and 1998. If your integration tool utilizes version

numbers, it is a simple matter to add an additional table to the meta model to

cross-reference the version numbers to the actual period of time they represent. The

key lesson to remember here is that business users understand time, not warehouse

version numbers.

TE
AM
FL
Y

Team-Fly®

central hub for storing all of a company's information, this trend is likely to continue. We

address the advantages of bidirectional meta data architecture later in this chapter.

Component-Based Multitier Architecture

Most existing meta data repository architectures are based on a two-tier client/server

foundation, such that the repository runs on a database server, which in turn is accessed

by a number of client applications. However, a multitier, component-based architecture

provides a more open and extensible architecture for inputting, extracting, and modifying

the repository meta data. This architecture includes a repository server that encapsulates

the underlying physical database management system (either relational or

object-oriented) and provides several component -based tiers to handle the various

interoperability interfaces (e.g., XML, COM, CORBA, or OLE-DB). A component-based

architecture must also provide mechanisms for accessing and managing the meta data

through local area networks (LANs) and wide area networks (WANs) to effectively

accommodate various distributed computing environments. With the rapid emergence

and adoption of Web-based applications, such as those used for electronic commerce, a

component-based multitier architecture is an important requirement for an advanced

meta data repository.

Security Management Scheme

It is important to remember that meta data is a priceless asset of an organization, given

that it represents a knowledge-base that has been created over time by many individuals.

Access to meta data must be carefully controlled to protect the enterprise's intellectual

assets and ensure the validity and integrity of the meta data for all of its users for all time.

The security management scheme for a meta data repository is similar to that of many

database management systems; however, it must be tailored for the specific needs of the

meta data creators, users, and administrators. Furthermore, it may restrict access to meta

data according to type, or by the operations that users and administrators of that meta

data intend to perform. A robust security management scheme is a critical requirements

for a meta data repository architecture.

Cross-Tool Meta Data Dependency and Lineage

Given that most enterprises deploy multiple tools in their data warehousing and decision

support environments, it is important for them to be able to track the meta data

dependencies and lineage across the various tools. It is also important to be able to

capture and store the mappings between related meta data as it flows among the various

modeling, ETL, and analysis tools used in the lifecycle of a project.

Meta data content should also be able to incorporate critical information about itself, such

as when and from what source it was created, how and when it was updated, what

business rules were used in creating it, and what dependencies exist. This

self-awareness pays off in meta data integrity in that it gives the user a tool for checking

the likelihood of validity. Lineage awareness also permits the meta data architects to

perform impact analysis, evaluating the enterprise-wide impact that may result from a

change such as a modification to a business rule. Cross-tool meta data dependency and

lineage awareness are important requirements for any meta data repository architecture.

A Real-World Architecture Example
Figure 7.6 illustrates an actual integration architecture that was implemented by

one of the companies my firm works with. This company purchased a meta data

integration tool to integrate its various sources of meta data. As you can see,

the company has an array of meta data sources (which are listed in Table 7.3),

but the process for integrating all of these sources thoroughly amazed us.

Figure 7.6: Detailed meta data integration architecture.

Table 7.3: Meta Data Sources

META

DATA

SOURCE

S

META DATA

DESCRIPTI

ON

SOURCE

TYPE

META

MODEL

EXTENSI

ON

Data

modeling

Physical and

logical

Certified No

Table 7.3: Meta Data Sources

META

DATA

SOURCE

S

META DATA

DESCRIPTI

ON

SOURCE

TYPE

META

MODEL

EXTENSI

ON

tool models,

domain

values,

technicalentit

y definitions,

and technical

attribute

definitions.

ETL tool Technical

transformatio

n rules. Job

dependencie

s.

Certified No

Custom

Data

Dictionary

Business

attribute and

entity

definitions.

Nonsupported No

MS Excel Data

steward's list.

Generic Yes

Reporting

tool

Database

and report

access

patterns and

frequency of

use statistics.

Generic Yes

Because we used a data integration tool, we needed to understand which meta

data sources were generic or not supported by the tool. (Chapter 4,

Understanding and Evaluating Meta Data Tools, describes how meta data

integration tools function.) It is vital to identify these sources and their

integration requirements early in the project because they may require

modifications to the base meta model supported by the meta data integration

tool. On the positive side, we made sure that the repository tool was certified

with the current version of the data modeling tool and on the version of theETL

tool that the company was using. It is always critical to make sure that the meta

data integration tool supports the same version of the tool that holds the meta

data.

Integrating the data dictionary, however, was not quite as easy. The data

dictionary was located in a third-party application in a proprietary database

format. The answer to this problem was to design and write a complex program

to manipulate the data dictionary into a format that could be integrated by the

repository tool. This process took a dedicated programmer one full month to

accomplish. Fortunately, the base meta model supported by the meta data

integration tool had the fields necessary to support this meta data.

The data steward's list was the next source of meta data to tackle. Because this

information did not initially exist as a spreadsheet, we had to create it manually,

then modify the base meta model to hold the data. Luckily, we only needed to

add one field to the meta model, so the time for this modification was negligible.

On a final note, we used an OLAP tool to access the information in the meta

data repository. This tool captured access patterns and frequency. We fed the

final pieces of meta data back into the repository and provided the decision

support staff with access to it. The staff used this information to guide them on

their future data warehouse development phases. We did need to add two

additional tables to our meta model and modify three others to accommodate

this change. It is extremely important to document any and all changes to the

base meta model that the meta data integration tool supports to facilitate the

upgrade to the new meta model when the next version of the meta data

integration tool is released. Of course this expansion will not contain the

changes that you have made to the model.

Structuring the Meta Data Architecture

Now that we've discussed the basic characteristics of meta data architecture

and the fundamental elements of good repositories, we need to talk about the

various ways that we can assemble those elements. Essentially, there are two

basic approaches to meta data repository architecture:

§ Centralized

§ Decentralized

All of our discussions in this chapter, to this point, have focused on a centralized

approach to meta data architecture. This is because the concepts that govern

the centralized approach also apply to the decentralized approach.

A meta data repository is the logical place for uniformly retaining and managing

corporate knowledge within or across different organizations. For most small to

medium-sized organizations, a single meta data repository (centralized

approach) is sufficient for handling all of the meta data required by the various

groups in the organization. This architecture, in turn, offers a single and

centralized approach for administering and sharing meta data by various teams.

However, in most large enterprises that deploy multiple information

management applications (e.g., for data warehousing and decision support),

several meta data repositories (decentralized approach) are often necessary to

handle all of the company's various types of meta data content and

applications.

Centralized Meta Data Repository Architecture
The underlying concept of a centralized meta data architecture (like the

one illustrated in Figure 7.7) is a uniform and consistent meta model that

mandates that the schema for defining and organizing the various meta

data be stored in a global meta data repository, along with the meta data

itself. In a

Figure 7.7: Centralized meta data architecture.

typical repository installation, the meta data repository shares a hardware

platform (e.g., mainframe, AS400, UNIX, etc.) with the DSS or some other

application(s). This is because the repository database usually requires

only about 5 gigabytes (GB) to 15 GB of raw, physical database storage,

with perhaps another 5 to 15 GB for data staging areas, indexes, and so

forth.

Decentralized Meta Data Repository Architecture
The objective of a decentralized architecture, like the one illustrated in

Figure 7.8, is to create a uniform and consistent meta model that

mandates the schema for defining and organizing the various meta data be

stored in a global meta data repository and in the shared meta data

elements that appear in the local repositories. All meta data that is shared

and reused among the various repositories must first go through the

central global repository, but sharing and access to the local meta data are

independent of the central repository.

Figure 7.8: Decentralized meta data architecture.

Keep in mind that the global repository is a subset of the meta data stored

in the local repositories. The reason for this is that if all meta was stored

globally, there wouldn't be the need to have local repositories. This

architecture is highly desirable for those companies that have very distinct

and nonrelated lines of business.

While this architecture provides the means for centrally managing the

administration and sharing of meta data across multiple meta data

repositories, it also allows each local repository to be autonomous for its

own content and administration requirements. This architecture is similar

to a federated management in that its central governing architecture

provides the guidelines that are common to all of its members, and each of

its members can also create localized guidelines for their specific needs.

Looking Ahead: Advanced Architectural Techniques

In the earlier sections of this chapter we discussed the architectural elements

that are applicable to all successful meta data repository efforts. In this section,

we address the challenges of implementing some advanced meta data

repository requirements. While most repository efforts do not attempt to

implement these features, sophisticated users are beginning to demand the

type of functionality that these features offer. It is also important to note these

features can be implemented separately or in conjunction with one another.

Bidirectional Meta Data
A bidirectional meta data architecture, like the one illustrated in Figure 7.9,

allows meta data to be changed in the repository, then fed back from the

repository into the original source. For example, if a user goes through the

repository and changes the name of an attribute for one of the decision

support system's data marts, if the repository has a bidirectional

architecture, the change is fed back into the data modeling tool to update

the physical model for that specific data mart.

Figure 7.9: Bidirectional meta data architecture.

Bidirectional architecture is highly desirable for two key reasons. First, it

allows tools to share meta data, which is particularly desirable in the data

warehousing market. Because most companies that built decision support

systems did so with best-of-breed tools rather than integrated tool sets, the

tools are not integrated with one another and do not communicate easily.

Bidirectional meta data resolves this lack of integration and communication

by letting the tools share meta data. Second, because bidirectional meta

data enables companies to sweep meta data changes throughout the

enterprise, it is extremely attractive for organizations that want to

implement a meta data repository on an enterprise-wide level. (See

Chapter 11, The Future of Meta Data, for a detailed discussion on

enterprise-wide meta data.) This would allow a corporation to make global

changes in the meta data repository and have them sweep throughout the

enterprise.

There are three obvious challenges to implementing bidirectional meta

data: (1) it forces the meta data repository to contain the latest version of

the meta data source that it will feed back into; (2) changes need to be

systematically trapped and resolved because one user may be changing

the meta data in the repository at the same time that another user is

changing the same meta data at its source; and (3) additional sets of

process interfaces need to be built to tie the meta data repository back to

the meta data source.

Closed-Loop Meta Data
A closed-loop meta data architecture allows the repository to feed its meta

data back into a company's operational systems. (Figure 7.10 illustrates

this

Figure 7.10: Closed-loop meta data architecture.

type of architecture.) This concept is similar to bidirectional meta data

architecture, but in this case the meta data repository is feeding its

information into operational systems rather than into other applications.

Closed-loop meta data architecture is gaining popularity among

organizations that want to implement an enterprise-wide data repository

because it allows them to make global changes in the meta data repository

and have those changes sweep throughout the operational systems of the

enterprise.

Closed-loop meta data architecture adds some of the same complexities to

the meta data repository initiative as does bidirectional meta data

architecture. If the meta data that will be fed from the repository to the

operational system can also be maintained in the operational system, the

meta data repository must contain the latest version of that meta data. If

the repository does not contain the latest version, there is no assurance

that the repository user is updating the latest copy of the meta data. Also,

one user may make changes to the meta data in the repository at the same

time that another user is changing the operational system. These conflicts

must be systematically trapped and program interfaces built to tie the meta

data repository back to operational systems. Although relatively few

companies are using closed-loop architecture at this time, it is a natural

progression in the architecture of meta data repositories.

Now that we have explored the fundamental elements of a sound meta

data repository architecture, in the next chapter we'll address the question

of how to best implement data quality standards through the meta data

repository initiative.

TE
AM
FL
Y

Team-Fly®

Chapter 8: Implementing Data Quality through

Meta Data

Overview

Few data warehouse implementations fully exploit the advantages of incorporating

specialized technical meta data into their decision support data model and ETL processes.

This missed opportunity often leads to a reduction in the flexibility of the data warehouse

architecture, which leads to additional time and expense for maintenance, data

acquisition design, and reconciliation and auditing of information. It can also cause

business users to incorrectly interpret the information stored in the warehouse. In this

type of situation, it is advisable to revisit the meta data repository and look for

opportunities to improve the data identification and quality before information is merged

into the data warehouse.

This chapter focuses on the use of meta data to control the quality of information stored in

the data warehouse. The topics I cover in this chapter include the use of specialized

technical meta data (sometimes referred to as operational meta data) in the decision

support data model and extraction, transformation and load processes. The meta data

operators enable administrators to precisely control what and how data is added to the

warehouse based on the business rules stored in the meta data repository. They also

provide the technical administrators a means for measuring the content quality of the data

warehouse. Using these technical meta data operators can also help to identify process

improvement opportunities in the ETL procedures used to load the warehouse.

Regardless of whether you have developed your own home-grown meta data repository

solution or purchased a commercial product, you can use these techniques to improve

data quality in your data warehouse.

This chapter is primarily directed toward the repository architect, data acquisition

developer, and data modeler responsible for implementing the meta data repository. If

these individuals apply these quality controls correctly during the repository

implementation, the business and technical users involved with the data warehouse will

be able to use the technical meta data components in their various functions.

Expanding the Use of Technical Meta Data
As I explained in Chapter 1, many companies use a meta data repository with their data

warehouses to access information for business and technical requirements. In this

respect, the meta data repository serves as the information card catalog for the decision

support environment, providing a guide to the information stored in the warehouse. While

this is an important function of the environment, the functionality of the repository can be

expanded beyond this passive role of information identification and collection to that of an

active participant in data processing.

The meta data repository maintains information on the decision support data model,

operational source systems, ETL processes, and load statistics that populate the data

warehouse. Integration between these components in the repository is at a fairly high

level. For example, I can use the repository information to determine that a particular

order management operational system is the source that feeds a specific target table in

the warehouse. By reviewing load statistics from the repository, I can determine when

and how often the data warehouse is updated. This information enables users of the

warehouse to maintain a macro-level view of the decision support environment, but this

level of information is insufficient when a technical or business user needs a more

detailed view of the data content in the warehouse.

To achieve a micro-level view of the information content in the data warehouse, the

repository architect, data modeler, and data acquisition developer use extended technical

meta data as a method to forge a tighter relationship between the repository and the

decision support database. This is accomplished by incorporating technical meta data

into the data warehouse design. This technique is used to extend the design and

architecture of the data warehouse to provide increased processing optimizations for data

acquisitions, maintenance activities, and data quality measurement opportunities.

Tagging Technical Meta Data

In order to facilitate the use of technical meta data as a bridge between the repository and

data warehouse data model, the repository architect must select operators to be

incorporated into the physical data model design. This technical meta data, unlike

information stored in the repository, is referenced at a row level of granularity in the data

warehouse. These meta data tags provide a detailed, micro-level explanation of the

information content in the data warehouse. This direct association of meta data to each

row of information in the data warehouse is a key distinction of extended meta data.

To select operators, each row of data is tagged from the operational source systems

during ETL processing with extended technical meta data. The technical meta data tags

on each row in the warehouse provide a clearer semantic meaning to the data by placing

the information in context with the repository. Take, for example, the case of a customer

dimension table that derives its information from two operational sources. The customer

information is extracted either from a sales force automation application or an enterprise

resource planning application, depending on availability. Without extended technical meta

data in the dimension table, you can only use the information as it is, without

consideration of the operational system that provides it. Technical meta data tagging

allows you to determine which rows of information were derived from the two sources.

Answers to business questions that relate to possible customer prospects or where to

focus customer relationship management attention is easily identifiable due to the use of

the operators.

The repository architect, data modeler, and data acquisition developer need to carefully

consider the planned use of technical meta tags in the decision support model. The

technical and business users of the data warehouse must identify and agree on a clear,

consistent method of tagging the data originating from the operational systems. Any

technical meta data tied to the row must be applicable to the entire row, not just the

majority of columns in the table.

I like to keep technical meta data tagging to a minimum in simple dimensional data model

designs, such as those in which there are only one or two fact tables, or where a single

source system feeds the warehouse. I prefer to increase its use in very complex schema

designs that use multiple fact tables with several conformed dimension tables, or when

numerous operational source systems need to be integrated to load a decision support

table. These intricate schemas make tracing the origin of meta data from the source

operational systems more challenging.

The data warehouse staff is responsible for evaluating the design and maintenance

impact caused by the use of meta data tagging to the repository, ETL processes, data

model design, DBMS sizing, and front -end data access tools. For example, some

front-end OLAP tools require a very strict adherence in the design of the decision support

data model in order to function properly or fully. This may preclude the use of some or all

technical meta data tags on certain tables such as the time dimension in the warehouse.

Certain types of extended technical meta data can require substantial additional ETL

processing to occur, which may interfere with restrictive processing window time frames.

For example, you need to carefully consider ETL processing times in cases where rows in

the warehouse are flagged to indicate whether they are still active in the operational

source system.

Can your repository tool manage the incorporation of extended technical meta data into

the warehouse design? If your repository is developed in-house, the answer should be a

resounding yes, depending on the flexibility built into the design. The repository architect

is responsible for evaluating the extensibility of a meta data repository in the case of a

purchased vendor or in-house developed solution.

Extended Technical Meta Data

A variety of technical meta data tags can be incorporated into the design of the decision

support data model in order to increase the micro-level knowledge of the warehouse

information. Depending on the business requirements of the application, the number of

operational source systems feeding the warehouse, or the complexity of the decision

support model, inclusion of certain technical meta data tags may make more or less

sense. For example, adding a column into a dimension table of the warehouse to identify

the operational system, where only a single source of information exists to populate the

table, may seem counterproductive and to provide little value. But you need to carefully

consider the possible effects of not incorporating this meta data tag. First, just because

the data warehouse has only one source today does not ensure that will be the case later.

Second, it is difficult to change a large warehouse table schema once it has been loaded.

Finally, having the operational system tag on all tables, regardless of the number of

sources, provides consistency to all your decision support models and promotes

discipline in your methodology implementation.

Incorporating technical meta data into the design of the data warehouse model occurs

during the transformation of the business logical data model. During this modeling

exercise, the physical columns are added to the appropriate tables as determined by the

business requirements and technical evaluation previously completed. Technical meta

data is incorporated into the physical model based on the type of table being addressed.

Certain tags that make sense for use with a dimension or entry point table do not

necessarily make sense for a fact or associative join table. For example, placing an

update date on a fact row typically provides little value since these type of rows are never

updated in a standard decision support architecture design. In contrast, a load date

provides enormous value, particularly for ensuring report consistency.

The following sections describe technical meta data columns that I have found useful in

implementing decision support systems. Depending on the business requirements of your

own project, these columns may provide an additional semantic layer of knowledge about

information in your warehouse. The extended technical meta data columns I am going to

discuss include:

§ Load date

§ Update date

§ Load cycle identifier

§ Current flag indicator

§ Operational system identifier

§ Active in operational system flag

§ Confidence level indicator

Load Date

One of the most fundamental differences between a third-normal form operational system

data model and a data warehouse model is the addition of time to all data in the database.

The most commonly used and understood extended technical meta data field in data

warehouse designs is the load date column. It denotes when (i.e., date and/or time) a row

of information was loaded into the data warehouse. This snapshot date is used to

maintain temporal integrity of the data in the warehouse as new information is added

during each refresh cycle. This column is usually added to the data model during

transformation of the business logical model into the physical data warehouse model. The

column can be referenced by warehouse administrators to identify candidate rows for

archival or purge processing. End users can also use this column to reconcile and audit

information in the data warehouse with the operational source systems.

Some of the warehouse projects I've been involved with have used a variation in this

technique. In these cases, the date that the data was loaded to the warehouse had little

relevance to the business scenario. The effective date of the data extracted from the

operational system was more important. This is an important distinction to keep in mind

when determining what technical meta data tags to add to your data model. First, you can

capture the effective date of the dat a from the operational system. This is typically a

column in the source system. For example, benefits enrollment data extracted from

human resources application may not be effective until the beginning of a new fiscal year.

Second, you can capture the date when the data was extracted from the operational

system. This can be important where data is extracted and stored in a staging area for

some period of time prior to being ETL processed to the warehouse. Third, you can

capture the date the data was actually loaded into the warehouse. Administrators can

often use all three of these date columns to measure the quality of the content of the data

warehouse.

Update Date

Another common technical meta data column is the update date. This column indicates

when a row was last updated in the warehouse during a refresh cycle. This column, like

load date, is used to maintain the temporal integrity of information in the data warehouse.

It is routinely used in dimension table designs that implement slowly changing dimensions

(SCD) type 1 or 3 processing methods, to identify when the row was refreshed or updated.

For those not familiar with the implementation of SCD, type 1 maintains a single row per

production key(s) in the dimension table which is updated as required over writing any

history about the row. Type 3 also maintains one row per production key(s) but doubles

the number of columns to keep both a current and previous view of the information. The

column, like load date, is used in administrative activities such as archival/purge

processing or reconciliation/audit by end users.

Load Cycle Identifier

One of the technical meta data columns a data warehouse development team can

incorporate is the load cycle identifier. This column is a sequential identifier assigned

during each load cycle to the data warehouse regardless of the refresh frequency. As a

sequential identifier, it can be used to easily remove data from a particular load cycle run

if data corruption or other data quality issues arise. The load cycle identifier is typically

used in conjunction with a look-up or meta data repository table that describes other

operational statistics about the load cycle. Using the meta data repository alone you can

determine how many load cycles have occurred against the warehouse, and when they

occurred. Then, by tying the repository statistics to the actual warehouse content, you

know exactly which rows were loaded and when. Figure 8.1 illustrates an example of load

cycle identifier statistics collected in a meta data repository table.

Figure 8.1: Load cycle identifier example.

Current Flag Indicator

The current flag indicator column identifies the latest version of a row in a table. It

facilitates quick identification of the latest version of a row as compared to performing

date comparisons. This flag is especially useful for managing the processing of SCD, type

2, where history of a production record is maintained. This tag is also very useful in

nonstar-like schema, data model designs such as an atomic data warehouse where

structures tend to conform closer to third-normal form. Instead of querying a table for the

latest date field, the ETL process assigns a Y to the latest record loaded for a particular

production key field while setting any previously loaded record to a N. This provides an

efficient means for users to get at the latest information loaded into the warehouse. The

challenge here for the data acquisition developer, particularly using a SCD method, is to

identify the previous or old row that the new data supercedes.

Operational System Identifier
One of the most useful technical meta data fields for both the warehouse administrators

and the end user is the operational system identifier. This column is used to track the

originating source or sources of a data row in the data warehouse. In cases where your

ETL process is required to extract and integrate data from more than one source, this

column uses an integration designator to denote which operational systems were used.

This field allows you to individually identify, for each row in a warehouse table, what

sources were used in its construction. This provides the business user, repository

architect, and data acquisition developer with a powerful tool for identifying and

measuring the quality of the data received from an operational source.

For example, in cases where a row of data is integrated from more than one operational

source system, a column value denoting the combination of these systems can be

assigned. It can be used by business users that are questioning the quality and/or validity

of data in the warehouse to trace back information to the operational source system that

furnished the information. The suspect data can then be corrected by the operational

system or easily tagged with a lower reliability factor in the warehouse for measurement

purposes.

In certain cases, administrators can use this column to identify and remove corrupt data

from a particular operational source system(s). I have had situations where, during an

overnight ETL process, the data loaded into the warehouse became corrupted due to

operating system or database errors. The corruption errors found in the data required me

to remove the previous night's load and repeat the ETL process once the source of the

problem was rectified. Fortunately, I was able to easily identify and quickly remove the

corrupted data using this technical meta data tag feature in the database. Figure 8.2

illustrates an example of operational system identifiers collected in a meta data repository

table.

Figure 8.2: Operational system identifier example.

Active Operational System Flag

This flag is used to indicate whether the production keys in a warehouse table are still

active in the originating operational system or systems. The active operational system

flag provides an intriguing analysis alternative to queries posed to the data warehouse.

This column can be used effectively in a variety of analysis activities to identify dormant

data or data that should be constrained in reporting.

For example, let's imagine that you are performing a churn analysis of former customers

to identify potential candidates for a new marketing campaign. Running a query against

the customer table using the active operational system flag would easily identify previous

clients. Another example is when an operational system flag is used to identify and filter

out products that are no longer supported by the manufacturer. Yet another example is

when the tag is used in a query to identify items that have not been ordered by any

customer in the past 90 days. I am continually amazed by the innovative ways that

business users employ this column in their analysis efforts.

Confidence Level Indicator

One of the more controversial technical meta data fields is the confidence level indicator.

This column is used to indicate how business rules or assumptions were applied during

the ETL processes for a particular row of data. This field provides a means for the end

user to measure the credibility level of a data row based on the transformation processing

performed.

Confidence level indicators are often used to identify potential problems with data quality

from operational source systems and to facilitate correcting these issues. Each decision

support organization and/or project differs in how it ranks this particular technical meta

data field. Figure 8.3 illustrates an example of confidence level indicators collected in a

meta data repository table.

Figure 8.3: Confidence level indicator example.

I use the confidence level indicator column to clearly identify rows of information where

information has had to be integrated or derived during transformation. I also use this

column to identify data that has had to be estimated, forecasted, or trended. If the

business requirements dictate that all operational system data is to be loaded into a fact

table, I use this column to identify rows that have "not available" surrogate keys due to

missing information in dimension tables.

On one decision support project I was involved in, this technical meta data tag was used

to identify the various data loaded into the warehouse based on stability. Data from a

relatively stable source like customer and product were loaded at the highest level. Data

that was considered more volatile, easy to clean, or relatively moderate to define, was

loaded at the second level. The third level consisted of data that was considered more

problematic to define, such as planning or forecasting data. The fourth level consisted of

data that did not originate from one of the corporate operational systems but was

provided by management, usually in the form of a spreadsheet. The last, or fifth, level

was used to tag the data from external sources such as news services or commercial

sources. I have found this tagging schema to be particularly useful on

telecommunications and human resource decision support engagements.

Technical Meta Data Column Assignment

Now that you have a better understanding of the importance and measurement

potential of using technical meta data in your decision support data model, I will

describe how to derive these columns. In the next phase of development, the

repository architect, data modeler, and data acquisition developer move forward

by incorporating these technical meta data columns into the design of the data

warehouse data model, meta data repository, and ETL processes. This is not

as easy a task as it may first appear. If you have purchased a meta data

repository product or ETL tool, it may have unique requirements for integration

with other warehouse components in order to allow you to add these columns to

the model. ETL processes may need extensive work in order to be able to

properly tag data that is being collected or derived from the various operational

systems.

There are several ways to assign value to these columns. Some examples of

the methods used to assign the various technical meta data columns include:

§ Load cycle identifier. The value for this column is assigned by inserting a

new row in a meta data or look-up table that is created within the data

model to capture operational statistics. The primary key on the table

consists of a serial or sequence data type. Regardless of the completion

status, the value to the data warehouse is incremented during each refresh

cycle.

§ Current flag indicator. The value of this column is assigned by comparing

data that is currently in the data warehouse to data in a new load cycle.

The two data files are sorted and then consecutively read to determine the

current record. The current record has a Y value assigned to it, while

historical records are assigned an N.

§ Load date. The value of this column is determined at the beginning of the

load cycle. If a load cycle or ETL statistics table is available in the meta

data repository or has been added to the model, the value for this column

can be extracted for this source. In many cases, this column value can be

derived one time at the beginning of the ETL load cycle. In some cases,

depending on business requirements, the value assigned may be the

extraction or effective date from the operational system rather than the

actual date the information was loaded into the data warehouse.

§ Update date. The value of this column, like that of load date, is determined

at the beginning of the load cycle, but is applied only to historical rows.

§ Operational system identifier. The value of this column is assigned

according to the operational system or systems that provided the

information to the data warehouse. If two or more sources are integrated to

construct a single row in a data warehouse table, the assigned value

should represent the multiple operational systems.

§ Active operational system flag. The value of this column is determined by

comparing the natural or production keys of the operational system to data

rows in the data warehouse table. A value of Y is assigned to a record that

currently exists in the operational system.

§ Confidence level indicator. The value of this column is assigned during

ETL processing based on conformance to the business rules associated

with the data warehouse target table. If business rule validation indicates

that transformation occurred correctly without any unknown or missing

information, the confidence level can be set high. If derived or estimated

data is inserted during ETL processing, the confidence level may need to

be set lower.

Strategies for Using Technical Meta Data Tags

Incorporating technical meta data tags into the architecture makes it possible to perform a

variety of processing optimizations in data acquisition design, maintenance activities,

quality measurements, and end user reconciliation and information auditing against the

data warehouse. In this section of the chapter, I will walk through the following examples

of using this technique:

§ Extracting current dimension table data

§ Identifying rows for archive/purge processing

§ Rolling back the load cycle

§ ETL processing of slowly changing dimensions type 2 records

§ Slowly changing fact table ETL processing

§ Performing current and history-dimension ETL processing

These are not the only tasks that can benefit from the use of technical meta data columns

in your decision support data model, but these examples demonstrate a good starting set

for your review. Chapter 10, Meta Data Delivery, provides several repository report

examples that use these technical meta data columns; pay special attention to the ETL

statistics repository report for further ideas on how to use this type of information.

Extracting Current Dimension Table Data

The typical data warehouse data model requires the use of the load date column in order

to maintain a unique perspective of history for a row of data in a table. Although this

column maintains referential integrity, it causes a high degree of processing overhead

when a user attempts to determine which row in a dimension table is most current. The

DBMS must determine, by sequentially reading each row of data in the table, which row

has the most current load date. Figure 8.4 illustrates an example of a employee

dimension table that uses the current indicator technical meta data tag to extract data.

Figure 8.4: Extraction of current dimension table data example.

An alternative to this brute-force method is the use of the current flag indicator column.

Through ETL processing and comparison of natural or production keys, this column helps

business users to quickly identify which row of information from the operational systems

is most current. The last row added to a data warehouse table for a particular production

key is given an assignment of Y for the current indicator flag, while historical records are

set to N or null. Business users can use this column in their queries as a constraint to

TE
AM
FL
Y

Team-Fly®

retrieve only the most up-to-date information. For certain reporting requirements, RDBMS

views can be established to constrain the current indicator column, tagging it with a value

of Y, to automatically avoid the use of Where clauses in SQL statements and potential

interpretation issues by business users.

Rolling Back the Load Cycle

The implementation of extended meta data columns offers administrators several options

for removing corrupt or suspect data from a data warehouse. Let us suppose, for example,

that a monthly load cycle occurs against the data warehouse. During ETL processing of

the load cycle, an error is detected in the RDBMS, or data from an operational source

system is suspected of being corrupt, or some other data quality measurement issue is

discovered in the data. Before technical meta data columns were incorporated into the

data model design, the infrastructure developer and data acquisition developer had

limited options for isolating and removing such corrupt or suspect information. Technical

meta data tags allow developers to be selective in their methods for removing the

erroneous data from the database.

One rollback option is to use the load cycle indicator to completely remove the last refresh

cycle to the data warehouse. This can be accomplished simply by constraining the value

of the load cycle in question and removing the affected rows in each table from the data

warehouse. This same method can be tailored, in certain circumstances, to remove rows

from a particular load cycle for a specific operational system by further constraining the

operational system indicator in question. Figure 8.5 illustrates an example of an employee

dimension table that uses the load cycle indicator technical meta data tag to remove data.

Figure 8.5: Load cycle rollback example.

Regardless of the method used, once the suspect rows are removed from the data

warehouse, the rollback process needs to accommodate the reassignment of the current

indicator for rows that were flagged with a Y prior to the last load cycle.

Archiving and Purging

Let us imagine that our data warehouse has been up and running for some period of time,

and monthly load cycles are being processed successfully. Our business users or our

database monitoring tool alerts us to data that has become dormant over time or which is

inactive for some other reason. Because we are not currently using this data on any type

of regular basis, we must decide to either archive it to a near-line storage device or purge

it from the data warehouse for size and performance reasons.

Once again, if we are using technical meta data columns, we (or actually, our data

warehouse administrator) have a variety of options for isolating and flagging candidate

rows for archiving or purging. First, the load date can be interrogated to isolate rows of

data from a particular period. This method again requires additional overhead on the part

of the RDBMS to analyze the load date. The second option is to constrain rows of data

from a particular set of load cycles. This method provides a more efficient means of

flagging candidate rows and avoids tokenizing a date column to identify a particular

period. Figure 8.6 illustrates an example of an employee dimension table that uses the

load date or load cycle indicator technical meta data tag to purge and archive data.

Figure 8.6: Archiving and purging example.

Slowly Changing Dimensions (Type 2)

Data warehouses or marts that employ some variant of a star schema data model design

can use the current flag indicator to aid in SCD type 2 processing for dimension table

loads.

The established method for processing of SCD type 2 records is to sort both sources of

information, operational system versus data warehouse/mart, based on the production or

natural key of the dimension table. The current flag indicator can be used to constrain

those records from the dimension table that will be compared to the current load cycle

data being processed to the warehouse. Only dimension records containing a Y in the

current indicator column need to be compared to the load cycle data since they contain

the most updated information for the specific production key(s).

A consecutive comparison is made between the two data files based on these key

column(s). Current load cycle records with production key values not found in the

dimension table are loaded as new rows. These rows receive new surrogate keys for the

dimension and have their current indicator flag set to Y. The current flag setting is due to

the fact that no other occurrence of the production key(s) combination exists in the

dimension table to date. Figure 8.7 illustrates the initial steps for ETL processing of a

slowly changing dimension type 2 using technical meta data.

Figure 8.7: SCD type 2, part 1 example.

Production key(s) found in both the load cycle data and the dimension table are further

interrogated based on columns deemed relevant to track changes by the business users.

The two sources (i.e., the load cycle data and the dimension table) are sorted by the key

and relevant columns, then a consecutive comparison is made against these files.

Current load cycle records that have relevant columns that do not match their

corresponding dimension table rows are flagged as new rows. These rows are inserted

with new surrogate keys and have the current flag indicator set to Y due to an update

made to a relevant column since the last load cycle. Figure 8.8 illustrates the final steps

for ETL processing of a slowly changing dimension type 2 using technical meta data.

Figure 8.8: SCD type 2, part 2 example.

Previously loaded dimension rows that have a matching production key(s) when

compared to the current load cycle file but which have differences in relevant columns are

assigned a current indicator of N. These rows receive this setting due to the fact that new

information on relevant columns of the dimension have been received in the most recent

load cycle.

This same process of constraining on the current flag indicator and performing a

comparison on production keys between the dimension table and load cycle is repeated

during each update process to the data warehouse.

Slowly Changing Fact Table ETL Processing

Many data warehouse design teams are faced with the challenge of keeping track of

dimension table columns over the course of time while also providing direct access to the

latest version of the data. Initial iterations of these dimensional models often use standard

data warehouse modeling techniques, such as SCD type 2 or 3, in an attempt to address

this businessrequirement. An alternative method is to maintain two sets of surrogate keys,

one for current and one for history, on the fact tables. However, the front-end tool must be

capable of selecting between the alternative sets of surrogate keys on the fact table. This

technique allows all dimension tables that require information from either a current or a

historical perspective to use the SCD 2 design method. This method also depends

heavily on the use of technical meta data columns on the dimension tables to distinguish

current versus historical rows. Referential integrity between the dimension and fact tables

is maintained through the ETL processing method. Updates to the fact table surrogate

keys should use a DSS-optimized DBMS that has a high-speed or parallel load option.

You should complete successful ETL processing of all dimension and fact tables for the

current load cycle before beginning this process. Then, you may begin the task of

restating history on the previously loaded fact table rows by sorting and splitting the

dimension table rows into two groups.

Dimension table rows are separated through use of the current flag indicator (a technical

meta data column). Dimension records containing a Y are grouped into one set and those

with an N are grouped into another with the production keys of the dimension table. A

consecutive comparison is made between the two dimension table file sets that

associates the current surrogate key to all corresponding historical surrogate keys based

on the production keys. The current surrogate key for an equally matching production key

is appended onto the resulting file set. This output file provides a cross-reference of the

current surrogate key to all historical surrogate key occurrences for the same production

key. You must build surrogate key cross-reference files for each dimension table that has

a current and history surrogate key on the fact table (see Figure 8.9). The dimension table

record file, with current indicator set to Y, is saved for normal fact table record insert

processing later in this method. Figure 8.9 illustrates the initial process of building

surrogate key cross-reference table file using technical meta data.

Figure 8.9: Slowly changing facts ETL process, part 1.

The cross-reference files are then consecutively compared, one dimension at a time, to

the previously loaded fact table rows history surrogate keys. When matches are found on

a history surrogate key between the two files, the current surrogate key on the fact row is

updated from the cross-reference file created from the dimension table. Figure 8.10

illustrates the process of comparing the fact table keys to the dimension cross reference

surrogate key file looking for modifications.

Figure 8.10: Slowly changing facts ETL process, part 2.

Fact rows that have had no updates to their current surrogate keys, after comparison to

all dimension cross reference files, are dropped from further processing (see Figure 8.11).

Removing these rows reduces overall update processing because only fact rows that

have new current surrogate keys assigned during this particular load cycle are updated.

Figure 8.11: Slowly changing facts ETL process, part 3.

The resulting file set is formatted for use with the DBMS high-speed parallel load function

and updates to the current surrogate key are applied to the affected fact rows. The fact

rows now have the latest surrogate key values for a dimension in their current surrogate

key set. Figure 8.11 illustrates the process of updating the fact table current surrogate

keys to match the latest value found in the corresponding dimension table.

ETL processing of the new load cycle fact table records is initiated by consecutively

comparing production codes between the current load cycle fact records, from the

operational system, to each dimension table that has an associated current surrogate key

(see Figure 8.12). This comparison appends the current surrogate key of the dimension

to the new fact table rows being processed. Before insertion into the fact table, these new

fact rows have the history surrogate key set to match the current surrogate key. These

records are then formatted to match the target fact table and inserted into the fact table

using the DBMS load facility. Figure 8.12 illustrates the final ETL processing of new fact

table records using the technical meta data tags.

Figure 8.12: Slowly changing facts ETL process, part 4.

This technique does not require as much additional storage space as maintaining both

current and history fact tables, the technique that I describe in the next example. However,

ETL processing of fact tables is more complex and updates will, in most cases, depend

on the availability of a high-speed parallel DBMS load function. I have seen update

speeds of better than a half million rows per minute on a fact table that uses the RDBMS's

high speed parallel load function. Insert speed processing is also impressive, running at

about 3 million rows per minute. This type of performance measured on a 24-node

Symmetrical MultiProcessing (SMP) UNIX box with 6 gigabytes of RAM. The database

contained no indexes or referential integrity, which is performed during ETL, but made

use of the light scan option available with this particular RDBMS.

Maintaining Current and History Dimension Tables

Another alternative for maintaining current and history fact data is simply maintaining two

sets of dimension tables, one for current use and one for historical purposes. This

technique requires the front-end tool to easily choose which set of dimension tables to

use in a report, based on a selection of either history or current outlook. The two sets of

tables share common column names and are distinguished only by the actual table

names.

ETLs for the two sets of tables require different processing methods. The history table

uses the SCD 2 technique for maintaining a history on production keys and makes

extensive use of technical meta data columns to perform processing. New records

inserted into the history dimension table, due to new production code(s) or changes to

relevant columns from previously loaded production code(s), need to also be inserted into

the current dimension table. This is done to maintain balance in surrogate key

assignments between the two tables. Figure 8.13 illustrates the ETL processing of current

and history dimension tables utilizing SCD type 2 and the technical meta data tags.

Figure 8.13: Current and history dimension tables ETL processing, part 1.

The current table's ETL technique uses the updated old relevant fields file from the SCD 2

process (Figure 8.13, reference E) and the newly inserted rows from the history table,

with the current indicator flag equal to Y, to build update records for the current table

(Figure 8.14, reference D). These two sources are consecutively compared, and the old

surrogate key is overlaid to match the newly loaded records where the production code(s)

were the same but other relevant field changes occurred (see Figure 8.14). The resulting

file can then be used to update the surrogate key on the current dimension table to match

the surrogate value of the newly inserted records. Figure 8.14 illustrates the update

processing of current dimension tables surrogate using the technical meta data tags.

Figure 8.14: Current and history dimension tables ETL processing, part 2.

You must follow the sequence of the ETL processing steps carefully or the two tables'

surrogate keys can shift out of balance and cause erroneous results in a report from the

current versus the historical dimension table. This technique requires additional storage

space and the creation of supplementary ETL processes for the second set of tables.

Additionally, this technique goes beyond the SCD 3 method because it allows reporting of

all occurrences of history to a production code(s), not just two. It also surpasses the SCD

2 method in that all fact table records can be related to the most current values of a

particular production code or natural key from a dimension table. Finally, this technique

may affect query development where historical cross-sectors, which may include current

data, are required.

Using Technical Meta Data to Resolve Quality Issues

Incorporating technical meta data columns into the data warehouse architecture

enables business users and warehouse administrators to efficiently resolve a

number of administrative and data quality measurement issues. These issues,

many of which would have been difficult or impossible to resolve without the

addition of technical meta data columns, include questions like:

§ What operational system or systems provided this particular row of

information to the data warehouse?

§ Purpose: Data quality measurement and publishing of ETL load

cycle results.

§ When was this particular row of information last refreshed by the

operational systems?

§ Purpose: Data quality measurement.

§ How many rows of information will be affected by an archive to near-line

storage or a purge process?

§ Purpose: Administrative and maintenance.

§ What is the growth rate for a table per load cycle?

§ Purpose: Administrative, maintenance, and publishing of ETL

load cycle results.

§ What effect on growth rate is being experienced from a particular

operational system on the data warehouse?

§ Purpose: Administrative, maintenance, and publishing of ETL

load cycle results.

§ What is the relative confidence level of the data currently loaded in the data

warehouse?

§ Purpose: Data quality measurement.

§ What percentage effect on confidence level would be measured if dirty

data from an operational system was corrected at the source instead of

through ETL processing?

§ Purpose: Data quality measurement.

The positive effect that technical meta data fields can have on a data

warehouse is readily apparent. The depth and scope of the questions that

administrators and data warehouse users can ask is significantly increased

through the use of technical meta data fields. Can you answer these questions

in your own decision support environment today? Would you need to consult

multiple sources of information, then compile the results? Would you like to be

able to quickly reference and measure this type of information?

Chapter 10 provides some examples of meta data repository reports for your

consideration. You may want to especially note those reports that illustrate

some uses of technical meta data tags in reporting information from the

repository. In particular, look closely at Figure 10.7, the ETL Statistics

Repository Report example on page 292, which uses some examples of

technical meta data tags from this chapter.

Too Much of a Good Thing?

Technical meta data columns should not be universally and blindly incorporated

throughout all the tables of the data warehouse. The repository architect, data

modeler, and data acquisition developer need to work together closely to

determine what makes sense to incorporate for a particular project and table.

Remember, adding these columns into your decision support data model can

affect how some ETL, meta data repository, and front-end access tools function.

You should consult with the tool vendors to determine how they support such

extensibility in their products. I have yet to see a meta data repository tool that

can support this type of expansion in its content. In several scenarios, technical

meta data tags contribute little to the design of the data model and ETL

processes.

§ Consider the case of an aggregation table added to the database to

improve the performance of the front-end reporting tool. Using a load

cycle identifier, current flag indicator, operational system identifier, load

date, or update date would not be beneficial since the context of the

technical meta data would be lost after aggregation is performed. It might

be possible to maintain some type of reference to their technical meta

data origins by keeping the values from the lowest level of granularity of

the surrogate dimension key.

§ In the case of a fact table, it would not be helpful to use the current flag

indicator on a row since the concept of slowly changing dimension does

not apply to a fact. This is also true for the active in operational system

flag, since the fact row points to many dimensions, each of which usually

has its own production or natural key.

§ In very simple cases, identifying an operational system may provide little

value to an end user due to a very limited number of sources with

insignificant integration requirements. For example, a data warehouse

project that uses an ERP application as its principal source of operational

information would not benefit greatly from the addition of a source system

identifier tag.

Summary

After reading this chapter, you should have a better understanding of how to tie the meta

data repository and decision support data model closer together by using technical meta

data to improve overall quality of the data content. Technical meta data tags provide

warehouse administrators and business users with a means for measuring the content

quality of the data in the warehouse and can also help to identify process improvement

opportunities, such as removing dirty data from operational systems.

Adding these types of data tags into the decision support data model and ETL processes

can help you to reconcile data quality issues in your environment. Such reconciliation

promises an increase in data integrity that can benefit both the data warehouse

administration and your business users by increasing the level of confidence in the quality

of the information provided through the data warehouse. Additionally, data warehouse

developers benefit from the use of technical meta data tags by gaining increased options

and flexibility in accomplishing administrative and maintenance tasks.

Numerous ETL processing methods use technical meta data tags to increase capability

and efficiency when loading information to the data warehouse. Standard ETL techniques

such as SCD 1, 2, and 3 can benefit from use of these operators, as can some less

traditional routines. You should be able to use these tags to interrogate your entire

infrastructure and data acquisition environment by asking questions that find

opportunities for improvement in it. Finally, use the techniques described in this chapter

only where it makes sense. If your decision support environment is relatively simple, keep

it that way by not overcomplicating the processing requirements it needs to fulfill. These

methods provide the most benefit to data warehouse environments where a large number

of operational source systems exist or complexity of the decision support model requires

this type of organization. Keep the complexity level at a minimum for your environment by

doing only what makes sense for your enterprise and project.

The next chapter discusses building the meta data repository model. It examines the

basic components that comprise the model and explores the integration among the

components. It also discusses a variety of meta data repository elements, including the

operational source systems, decision support logical and physical data models, data

mappings, subject areas, ETL statistics, and query statistics. The chapter is particularly

relevant for repository architects, infrastructure developers, and data modelers.

Chapter 9: Building the Meta Model

Overview

Building a meta model can be a difficult task at the best of times. There are

many factors to consider, such as what types of meta data you need to

store, how you are going to store it, who has access to it, and who is going

to build it. In this first part of this chapter, I discuss the types of information

that you need to identify so you can start designing your meta model, then

I examine some of the factors that can influence your choice of a design.

In the second part of the chapter, I describe two approaches to modeling

meta data— generic object models and traditional relational models— and

discuss the factors that you need to consider when choosing a model type.

Then, to help you determine which modeling approach is best for your

company, I walk through the differences between object models and

traditional models and build a sample model using a theoretical company.

(If you are already familiar with basic data modeling concepts, you may

wish to briefly skim over these sections.) Last, I explain how to apply the

modeling concepts in this chapter to a real-world decision support system

environment.

Note If you are not

familiar with any of

the modeling terms

and structure

names used in this

chapter, please refer

to the Glossary.

What Is a Meta Model?

Let's begin by examining exactly what the meta model is. A meta model is the physical

database model that is used to store all of the meta data. A meta model differs from

typical models in that it contains the business functions and rules that govern the data in

our systems. Therefore, a meta model is simply a model created at a higher level of

abstraction than the thing being modeled. In this case, you make a model of the business

functions and rules that form the data you use every day. In a nutshell, this is a model to

store information about your information. As with most things, of course, there are some

trade-offs involved.

In an object model, the actual model is very atomic and generic in nature. The object

model comprises a fixed number of entities that hold the relationships and entity

information in their structure. The actual layout of information is stored in the meta model,

forming a model within a model, if you like. This allows for great flexibility in storing just

about anything because the model does not need to change.

TE
AM
FL
Y

Team-Fly®

In a traditional model, you have entities that have relationships to other entities. These

entities form the basis for the physical design of the database. In the traditional model, the

model is very specific and detailed but can only store the specific information that is

modeled. Any additions or changes to the meta data require changes to the model as well.

Thus, the trade-offs for an object model versus a traditional model are the ability to store

anything without having to change the model (object) versus the ability to store only

predetermined things and having to change the model (traditional). Figure 9.1 depicts the

increase in complexity as you move from a traditional model to an object model.

Figure 9.1: Model complexity.

As you can see, the traditional model starts with a more complex model, but has less

complex programs that use it. The object model has a very simple model, but all of the

smarts go into the programs that use it. To determine which model is better suited for your

needs, you need to examine the specifics of your organization in more detail.

Goals for Your Meta Model

To determine which model is better suited for your project, you need to consider the goals

that your repository has to meet. Far too many people want to just jump in and start

modeling. How many times have you heard someone say, "We don't have the time to look

at requirements," or, "We will get back to it later." Well, guess what? You had better make

the time to do it atthe beginning of the project or you'll spend a lot of time doing rework, or

worse yet, produce a final deliverable that is unusable. I remember working with a

company that was in such a hurry to get the model done that the project managers

couldn't stop long enough to talk to the business users to determine if what they were

doing was what the business users wanted. In every meeting, major design issues were

decided solely by IT people who didn't really understand what the data was or how it was

going to be used. The users were consulted only after the IT team had put its

interpretation of what was needed into the design. The end result was a model in which

users could not tie together such basic information as orders and invoices. The users

could not use the data, and the model was a flop. If the team members had done more

analysis, they would have known that linking orders and invoices was critical to the kinds

of information that the users need to get out of the model. In the end the project failed,

and the model had to be redesigned. This is the type of situation that can be avoided if full

requirements are documented and reviewed regularly.

If you examine the goals that you have for the model, you are likely to gain a better

understanding of what it is that you are trying to model. Table 9.1 shows some common

business goals and the type of model that may be appropriate.

Table 9.1: Common Business Goals

BUSINESS GOAL MODEL TYPE

Gather meta data about application

ABC

Object or traditional

Empower business users to query

the decision support system

Object or traditional

Allow future developers to see

what was done and why

Object or traditional

Capture everything in the company Object

Quickly deploy a small meta data

solution

Traditional

You can see that just looking at the very high level requirements does not yield sufficient

information to make a decision about the model type. You need to closely examine what

you expect to get out of the repository to answer the question of which model is most

appropriate for your project. You will also have to examine other factors that may

influence your choice of model styles. Table 9.2 lists some of the other factors that you

need to consider before you begin the task of modeling the repository. For example,

suppose you ask management what the time frame for deployment is and they answer

"ASAP." This response might lead you to a traditional model because the access

programs and logic are easier (and quicker) to build. After you have examined all of these

factors, you can make an informed decision about which model is right for you.

Table 9.2: Influential Factors in Your Choice of a Model

FACTOR QUESTION ANSWER CONSEQUENCES

Data

architect/

modeler

experience

level

Can the data

architect/mod

eler build an

effective

model?

No A model built by an

inexperienced staff

or without good

management

supervision is

unlikely to be

usable for very long

and will be difficult

Table 9.2: Influential Factors in Your Choice of a Model

FACTOR QUESTION ANSWER CONSEQUENCES

to change in the

future.

Time frame

for

deployment

Does this

repository

need to be

built quickly

or is the time

frame

flexible?

Quickly Trying to build a

meta data

repository quickly

leads to problems

in understanding

the data inputs and

formats, which

makes a traditional

model hard to

design.

Programmer

experience

level

Can the

programmers

writing the

front end that

will access

the repository

perform the

task?

No The programmers

will be unable to

extract meaningful

information from

the repository.

Programmers need

to have advanced

SQL knowledge

and query tuning

knowledge.

Program

complexity

versus

model

complexity

Do you prefer

a model that

is easy to

maintain and

access

programs that

are complex,

or a model

that is

somewhat

complex and

access

programs that

are simple?

Simple

access

programs

An object model

allows you to have

a predefined set of

queries and pass

them the

parameters for

specific meta data

elements.

IT

infrastructur

e

Can the

current

environment

No The infrastructure

needs to be in

place before you

Table 9.2: Influential Factors in Your Choice of a Model

FACTOR QUESTION ANSWER CONSEQUENCES

support the

model being

proposed?

start building the

repository; other-

wise performance

will not be

acceptable and the

repository will not

be used.

Flexibility Do you want

to be able to

add anything

at anytime to

the repository

without

changing its

structure?

Yes An object model,

because of its

design, allows for

any item to be

stored in it without

major modifications

to the model itself.

There are many things to consider when building a meta model, such as the personnel,

project time lines, current IT infrastructure…the list can go on and on. Personally, I

believe that if you spend the time up front, and answer as many of the questions as

possible, you can design a product that precisely meets your needs. It is important to note

that you are unlikely to ever have all of the answers that you need. Be wary of ending up

in analysis paralysis. There must be a point at which you stop analyzing the model and

start building it. Also be wary of scope creep. Be sure that you have defined a deliverable

that contains a set of requirements that can be met. Do not attempt to address every

request at one time. Enough said about analysis and deliverables; I will now begin to

explain the basic differences between the object model and the more traditional entity

relationship (ER) model.

Object Model Example

In an object model, the relationships and facts that your business is driven by are stored

in a series of tables. To better see just what an object model is, let's look at a real-world

example. The system catalog tables of your favorite RDBMS are a real-world example of

an object model. The system catalog tables are a series of tables that store in their

structure the information about the database. The system catalog contains the details of

the tables, columns, column data types, indexes, relationships, and all the other

information about the database. When you are using the database of your favorite

RDBMS, the image of the database that you see is really just the representation of the

information contained in the system catalog. This is an example of an object model. The

object model's strength lies in its ability to capture the objects themselves and the

relationships among them. Its weakness is that the programs that use the object model

must understand how to piece the information together again so that it makes sense. If

you take a look at the system catalog tables of your favorite RDBMS, you might see

tables like those illustrated in Figure 9.2.

Figure 9.2: Sample object model from a RDBMS.

Can you make much sense out of the tables of model? Can you work with this model?

This model requires a good understanding of what is in it, as well as how to get

information out of it. You cannot tell by looking at this model what any of the tables,

columns, or indexes are in your relational database. With the proper query, you can

retrieve the information that will tell you the structure of your database, but you have to

understand what is stored in the database first. I remember being at a client site that was

just getting used to using relational databases. I was invited to attend a requirements

gathering session with the business users, the analysts, and the database administrators.

One of the DBAs brought along the system catalog diagram. (I think he was going to try to

impress the business users with it.) He did not get the response he was expecting,

because the business users went nuts right away. They said that they could not use this

database, and how were they ever going to get anything out of it? What they did not know

(and what the ill-fated DBA did not tell them) was that they did not need to worry about

using this database. This was the meta model for their databases. My point is that the

object model does not easily reveal the secrets that are stored within its structure. You

must be very well versed in the contents of the model to make any sense out of it, or have

an application that can take care of all the extractions for you.

You are probably asking yourself why you would use an object model. An object model is

useful when all the data elements are not known or will be added at a later time. If you

think back to the RDBMS system catalog example, you have no idea what databases you

are going to design in the future, so the RDBMS's object model (system catalog) allows

you to add the databases as you need them without changing the system catalog's

structure. Now, let's look at a model that may be more familiar to most of you.

Traditional Model Example

The traditional model is made up of entities, or tables if you prefer, and the relationships

among them. This makes the traditional model easier to understand than an object model.

A traditional model can be extended by the addition of entities and relationships. Since

the traditional model is based on normalization theory, you end up with lots of tables that

contain specific data about that table. To stay within the scope of this chapter, I will not go

into detail here about the rules of normalization, but you can refer to the Glossary if you

want to read up on the rules before proceeding. I believe I heard normalization summed

up best as "one fact in one place." By following the rules of normalization, you can

successfully build a model that will store your meta data. One thing to be aware of is that

some denormalization may occur in the model when the physical design is done.

Denormalization is the process of combining entities or objects to speed up access to the

data. This occurs because you have fewer joins to perform in a denormalized structure.

Let's look at another example of a model from a RDBMS. The model in Figure 9.3 shows

you what the tables, columns, primary keys, and foreign keys are for the example.

Figure 9.3: Sample entity relationship diagram.

As you can see, this is much easier to understand than the object model in Figure 9.2.

You can quickly see the tables that make up your database. Adding another table is just a

matter of adding another entity to the model. It is important to note that this style of model

can quickly become unreadableto the business users if too many entities are modeled in

one diagram. Can you imagine users looking at a model with more than 100 entities on it?

They would be very confused by the model. This is what can happen to your traditional

model when it is used to store meta data. If the requirements for your meta data

repository are large, then the model will be very complex because each object of your

repository is stored in a separate entity. As you add more and more to the traditional

model, it becomes increasingly difficult to scale the database and access requirements to

this new larger database.

Summary of Meta Data Models

Clearly, there is no one right answer in choosing a model to store your meta data. Every

company has many factors to consider when choosing a model. Table 9.3 compares the

major attributes of the two types of models.

Table 9.3: Object Model versus Traditional Model

OBJECT

MODEL

TRADITIONAL

MODEL

Model Complexity The object model

is very simplistic

in its design. The

model consists of

very generic

entities that are

capable of storing

anything. The

actual complexity

is in the

relationships in

the data.

The traditional model

has entities for each

type of information

that you want to store.

The model is more

complex because of

all the relationships

and tables that must

be defined.

Access Program

Complexity

The access

programs for the

generic object

model are

complex. The

programs must

understand the

rules that allow

the data to be put

back into

information.

The access programs

for the traditional

model are quite

straightforward.

Depending on the

information that is

required, the access

program may simply

be a series of joins.

Expandability The object model The traditional model

Table 9.3: Object Model versus Traditional Model

OBJECT

MODEL

TRADITIONAL

MODEL

is infinitely

expandable

because of its

generic nature. It

is designed to

allow anything to

be added into its

structure.

is expandable but

becomess

increasingly complex

as the number and

types of information

required expand. The

model could easily

grow to incorporate

tens or hundreds of

tables.

Development Time The majority of

the development

time for the object

model is in

understanding the

information

required and the

rules that define

that information.

Most of the

development time for

the traditional model

is spent

understanding the

information that is

required.

Ease of

Understanding

The object model

is not easy to

understand just

by looking at it. It

reveals none of

the information

contained within

it. To understand

the information in

an object model,

you need to

examine the

values contained

in the model.

The traditional model

is much easier to

understand. By

examining it, you can

see the kinds of

information contained

in it and the

relationships among

that information.

The influencing factors differ from company to company, but if you spend sufficient time

analyzing the factors and business requirements, you can be pretty sure that you're not

overlooking anything. Otherwise, you are likely to end up with a model that does not fulfill

your business needs. I remember one client who just wanted to start building the

repository without spending any time gathering requirements or talking to the business

community. After many months of attempting to model the repository, we had to stop

working and meet with the managers to inform them that we did not know what we were

building. We had no idea of the data that was available or any of the business rules that

would shape the way things were done. The company's management answered this by

hiring more people, assuming that more people could solve the problem. Last I heard,

that company still hadnot successfully created the meta model. This illustrates what can

happen if you do not have any idea of the available data or the repository requirements.

As we move on to the actual building of the meta model, we'll examine the object and

traditional models in more depth and show the strengths and weaknesses of each.

Building the Meta Model
To begin building a sample model, we need to have an example company. The

example that I will be using in this chapter is ABC Corporation. ABC is a small

consulting and training company looking to capture the meta data about its

organization. Let's pretend that we, as IT professionals, have been asked to

design a model that will store ABC's meta data. ABC would like to have meta

data about all of its employees, projects, and courses that are in progress at

client sites as well as those under way at their own offices. To understand the

full requirements, we begin by interviewing the managers at the company, then

conduct business and technical user interviews. After reviewing all the

information from the business users and managers, we produce a diagram

showing the hierarchy of business at ABC. Figure 9.4 shows the relationships

among the various operations at ABC.

Figure 9.4: ABC Corporation operational structure.

As you can see from Figure 9.4, ABC has two types of employees: consultants

and trainers. In this figure you can see that consultants work at client sites and

that clients have projects for the consultants to work on, and the projects have

requirements that must be met for the client to be happy. Consultants can also

work at an ABC office on projects, and those projects also have requirements.

The trainers can teach a course at a client site or perform the same duties at an

ABC office. We can gather quite a bit of information from the simple diagram in

Figure 9.4. This method of examining the people and places in your

organization can help you identify the different types of meta data that you need

to capture. As you investigate further and break things down more to show the

actual relationships among the people, places, systems, and other components

of your organization, you are determining the meta data that is available for you

to use in your repository. Table 9.4 shows the people, companies, and tasks

that are occurring at ABC, based on the information gathered from the

interviews and requirements. From this point on in the chapter, I'll use the term

object to refer to the actual people, companies, and work that is going on at

ABC. For example, if I am just talking about the employees at ABC, I'll refer to

them as the employee object.

The preliminary object list in Table 9.4 is just the starting point from which you

can derive other objects and relationships that further expand the meta data

TE
AM
FL
Y

Team-Fly®

available to the repository. Because we've only defined the basic objects, we

must determine the details of the relationships among these objects. Figure 9.5

depicts the current assignments and projects that are being worked on by ABC

employees. From Figure 9.5 we can see that ABC currently has six employees.

Four of them are consultants and two are trainers. The consultants are working

on two projects at two different client sites and one project at the ABC office.

One trainer is working at a client site and the other is working at the ABC office.

As you examine all of the information

Table 9.4: Preliminary Object List for ABC

OBJECT

Employees

Consultants

Trainers

Clients

ABC Offices

Projects

Course

Requirements

Figure 9.5: Current ABC employee assignments.

that is available from the business users and managers, you can determine the

types of meta data that is available to be stored in the repository. If you break

the information down into objects, as we have done in this example, you can

determine the meta data that exists.

Expanding on the object list in Table 9.4, we can further divide the objects and

requirements. Table 9.5 lists the object type, subtype, and meta data

requirements about those objects that we need based on the preliminary list

from Table 9.4. The listing in Table 9.5 is by no means extensive, and has been

kept small to keep in line with the scope of this chapter. I am sure that each of

you could come up with a different list for ABC. As an exercise, you might want

to try to come up with other types of meta data that you would need for your

company and use them in our ABC example. This way, you can start thinking

about your own situation as you are working along with the example.

Table 9.5: Meta Data Requirements by Object Type

OBJECT

OBJECT

SUBTYPE

BUSINESS META

DATA DEFINITION

Consultants Name Consultant's full

name in last-name,

Table 9.5: Meta Data Requirements by Object Type

OBJECT

OBJECT

SUBTYPE

BUSINESS META

DATA DEFINITION

first-name format

 Address Current address for

the employee

 Skills Listing of all current

skills

 Pay range Current pay range

or pay classification

Trainers Name Trainer's full name

in last-name,

first-name format

 Address Current address for

the employee

 Certifications Listing of all current

training

certifications

 Pay range Current pay range

or pay classification

Client Address Client's full address

 Name Client's name, as

well as any aliases

 Business Business function

the client is in (e.g.,

insurance, finance)

 Contact Business contact at

the client

ABC Corporation

Offices

Address Full office location

 Manager Office manager's

name and

information

 Office specifics Office-specific

information (e.g.,

number of

Table 9.5: Meta Data Requirements by Object Type

OBJECT

OBJECT

SUBTYPE

BUSINESS META

DATA DEFINITION

classrooms, number

of PCs)

Projects Definition Business definition

for the project

 Project plan Location of actual

project plan

 Budget Budgeted amount

for the project (this

can be for the entire

project or just the

amount allocated for

the consultants)

Courses Definition Description of the

course and the need

it tries to fulfill

 Dates offered Current course

schedule

 Prerequisites Any previous

knowledge that

attendee would

need to take this

course

Requirements Program

specifications

Actual program

specifications that

the programmer will

be working from

 Contacts Any business

contacts at the client

The listing in Table 9.5 shows you some of the types of objects that are

available to be used in the repository model. From this example, we could have

gone even further and broken down subtypes like addresses into their basic

elements (e.g., address line one, city, state, and zip). It is up to you to determine

the granularity, or smallest detail level, of the meta data that you are storing. It is

important to understand what is available and what is required, so that the

model can accommodate all things. And, going through this process helps you

to start thinking about all of the information that is available and helps you to

make informed decisions. The ABC example is very small in comparison to

today's corporations. The requirements at your company may include hundreds

or even thousands of objects that need to be modeled. After you have

established the meta data and the objects that exist in the organization, you can

proceed to the task of building of the meta model. This way, you have a fairly

complete picture from which to build your model. It may be impossible to fully

model a whole corporation. One strategy is to model a small part first, then

evolve that model by adding new areas incrementally. I have seen many

repository projects fail because the developers tried to "swallow the whole

whale."

Using the Model

In this section I build on the information from the previous section and apply this

information to the models that were discussed earlier. I will begin with the generic object

model and walk through the process of incorporating the meta data requirements from

ABC into the generic object model. Then I'll walk through the more traditional model and

its requirements at ABC and the process of incorporating them into the model. It is

important to remember that each model has some advantages and disadvantages, and

that there is no wrong choice when building a model. If the model suits the needs of your

company, then it cannot be deemed a failure. As we examine how to apply the models to

our example, the differences between the two model types (object and traditional) will

become more apparent.

Generic Object Model
Using the ABC example, we will look at how you would store the meta data in the generic

object model as it is shown in Figure 9.6. Figure 9.6 illustrates a basic, generic object

model structure composed of three entities. We'll explain the entities in the object model

and their purpose as we work through the section. In the ABC requirements, we identified

7 distinct object types and 23 subtypes from the listing in Table 9.5 that we need to store

in the repository. The meta data objects that we need to store are all types of business

meta data. The object list could be further expanded to include all of the technical meta

data about the systems at ABC, but to keep the scope

Figure 9.6: Storing meta data in a generic object model.

of the example small, we've left this information out. Earlier sections of the book offer

examples of business and technical meta data that you can use to expand the ABC

example.

We have already identified the objects for our example so now we can look for the

relationships among these objects. Because every object is going to contain some

relationship to some other object, it is important to ensure that we identify all of these

relationships. Identifying the relationships may also reveal other object types that we

need to store. An example of a relationship is that a client cannot be the same as an ABC

location and a course does not have project requirements. Table 9.6 lists some of the

relationships that we can identify from Figure 9.4.

Table 9.6: ABC Corporation Relationships

RELATIONSHIP

ABC Corporation employs two types of employees: consultants and trainers.

A consultant can work at a client site or an ABC office.

The client can have projects as well as courses.

Each project contains requirements.

A trainer can work at a client site or an ABC office.

A trainer teaches a course.

The object relationships help highlight the business rules that exist in an organization.

Our generic object model in Figure 9.6 contains three entities or tables: the OBJECT table,

the OBJECT TYPE table, and the OBJECT HIERARCHY table. Figure 9.7 illustrates the

definition of the columns for the OBJECT TYPE table. The OBJECT TYPE table is used

to store the lowest-level objects that we need in our repository; you can think of it as

defining the objects' subclasses. Using our ABC example, we have objects for the

address, the pay range, the course, the course dates, and so on. This can lead to a very

large object type table, but it is helpful for identifying what is really needed.

Figure 9.7: Column descriptions of object type table.

The first column in our object type table is the OBJECT_TYPE_ID. This is a synthetic

identifier that uniquely identifies this object type in our database. It is most often a

sequence number that is defined when the row is inserted into the table. It is important to

be sure that you do not have duplicate objects in this table. A periodic review of all objects

in the table is useful for ensuring that there are no duplicates or widowed or orphaned

objects. A widowed or orphaned object is an object that has no parent and is not a root

object. An object that is in this state can cause unpredictable problems when a query is

run against the repository.

The second column is the OBJECT_TYPE_DESCRIPTION. This column contains a brief

description of the object type that you are storing. It does not need to be lengthy but it

must be meaningful to anyone looking at the data. Try to keep it generic because you

never know who the intended audience for the meta data repository may be.

The third column is the PARENT_OBJECT_TYPE_ID. This column is used to define the

hierarchy of object types that exist. It is useful for avoiding holes in your meta data. An

example of appropriate use for this column is to ensure that the parent object type for a

project is a client. It is importantto note that this column defines the meta data hierarchy.

Make sure that this hierarchy is correct; otherwise you will be unable to extract the

information you want.

The final column in the table is the OBJECT_TYPE_META DATA. This column can be

used to store any business information about the object type that you need. For example,

the client object might contain a detailed description of what a client is to ABC.

Table 9.7 lists some sample data for the object type table based on the ABC example.

Table 9.7: Sample Content of Object Type Table

OBJECT

TYPE ID

OBJECT

TYPE

DESCRIPTI

ON

PARENT

OBJECT

TYPE ID

OBJECT

TYPE META

DATA

1 ABC

Corporation

N/A ABC

Corporation

information

2 Client

company

1 The client

company that

we deal with

directly,

cross-referenc

ed into the

company table

3 Employee 1 The

employee's

name

4 Consultant 3 Any specific

information

about the

consultant

5 Trainer 3 Any specific

information

about the

trainer

6 Employee

address

3 The

employee's

address

7 Skills 4 The

employee's

skills

Because the OBJECT_TYPE table is used to represent the hierarchy of the objects in the

model, we can see that an OBJECT_TYPE_ID of 1 indicates that this is an ABC

Corporation type. The ROOT_OBJECT in the hierarchy is determined by finding the

object that has no PARENT_OBJECT_TYPE_ID. The root object is just as it sounds, the

object at the beginning of everything for this hierarchy. It is important to note that a

repository that is created in an iterative fashion can have multiple hierarchies or root

objects. This allows all the other objects in the hierarchy to be owned by one high-level

object. As you look at Table 9.6, you can see a hierarchy of object types being defined. A

client company is under the ABC Corporation. An employee is under the ABC

Corporation. A consultant is under the employee at ABC Corporation. Constructing a

hierarchy like this defines the relationships that exist between our objects and the

business rules.

The next table in our generic object model is the OBJECT table. Figure 9.8 illustrates the

definition of the columns for the object table.

Figure 9.8: Column descriptions of object table.

The OBJECT table holds all of the meta data about the objects that we need to store. It

contains rows for every piece of meta data that we need to store for all of the objects

defined in the OBJECT TYPE table.

The first column is the OBJECT_ID. This is a synthetic identifier that uniquely identifies

this object type in our database. It is generally a sequence number that is defined when

the row is inserted into the table. This identifier serves no purpose except to allow us to

join the information together so that we can retrieve it later. The OBJECT_ID is unique in

this table and is the primary key for this table and is referenced as a foreign key from the

OBJECT_HIERARCHY table.

The second column is the OBJECT_TYPE_ID. This is a reference to the OBJECT_TYPE

table's primary key. This is how we know what type of object we are working with. The

OBJECT_TYPE_ID must contain a value that is in the OBJECT TYPE table, or we will

have a lost piece of meta data. This is known as referential integrity. Referential integrity

means that the foreign key in any referencing table must always refer to a valid row in the

referenced table. Referential integrity ensures that the relationship between two tables

remains synchronized during updates and deletes.

The third column is the OBJECT_DESCRIPTION. This column contains a brief

description of the object. It can contain things like the company name, employee name,

skill name, and so forth. The fourth and final column of the object table is the

OBJECT_META DATA. This is where you store the meta data about the object; it

contains the business rule or business information that is important to you.

Table 9.8 lists some sample data for the object table based on the ABC example. Each

row in this table contains meta data about a specific instance of an object.

Table 9.8: Sample Contents of Object Table

OBJECT

ID

OBJECT

TYPE ID

OBJECT

DESCRIPTIO

N

OBJECT

META

DATA

11 1 ABC

Corporation

description

ABC

Corporation

is in the

business of

providing

consultants

to help in

the design

of widget

systems

and to help

in the

training of

business

users in the

widget

systems.

12 2 Widget

Corporation

Widget

Corporation

is in the

business of

distributing

widgets to

its many

clients

around the

world.

13 3 Bill Bill is a

systems

analyst at

ABC

corporation.

14 4 Consultant Bill Bill has

been a

consultant

since 1988.

15 7 Meta data Six years of

TE
AM
FL
Y

Team-Fly®

Table 9.8: Sample Contents of Object Table

OBJECT

ID

OBJECT

TYPE ID

OBJECT

DESCRIPTIO

N

OBJECT

META

DATA

meta data

experience.

16 7 Oracle Seven

years of

Oracle.

17 6 Bill's address 123

Anywhere

Street,

Lostville,

MA

99999-2345

18 3 Susan Susan is a

senior

technical

trainer at

ABC

Corporation

.

19 5 Trainer Susan Susan has

been a

trainer

since 1990.

20 8 Lotus Notes Level 3

notes guru.

21 8 Microsoft

Exchange

Level 2

exchange

guru.

22 6 Susan's

address

999

Partytown

Road,

Somewhere

, CA

66666-9999

In Table 9.7 we have identified Object 11 as an object type of 1. If we look in the object

type table, we see that this is defined as the ABC Corporation object. The meta data for

ABC Corporation is listed in the OBJECT_META DATA column for this row. We can also

see the definitions for most of the other meta data that we need for our ABC example. We

have the employees' information, indicating their skills and certifications, and the clients

and projects in process, and so forth.

The last table in our generic object model is the OBJECT HIERARCHY table. Figure 9.9

illustrates the definition of the columns for the OBJECT HIERARCHY table.

Figure 9.9: Column descriptions of object hierarchy table.

The object hierarchy table holds the relationships between specific instances of the

objects. It defines the chain that links all the information together. Without this table we

would be unable to determine which address object belongs to which employee object or

which project belongs to which client.

The first column is the OBJECT_ID. This column is a foreign key back to the main object

table. It identifies which object we are currently on. The second column is the

PARENT_OBJECT_ID. This is used to identify which instance of the object in the

hierarchy is above this one or the parent to this object. The last column is the

OBJECT_HIERARCHY_META DATA. This column is used to store any specific

information about the relationship between these two objects. In practice, it may not be

used very often, but we include it here for completeness.

Table 9.9 lists a sample of the object hierarchy table contents based on the ABC example.

Each row in this table contains a relationship between two of the meta data objects.

Table 9.9: Sample Contents of the Object Hierarchy Table

OBJECT ID

PARENT OBJECT

ID

OBJECT

HIERARCHY

META DATA

11 N/A Top-level object.

12 11 Widget Corporation

is a client of ABC

Corporation.

13 11 Bill is an employee

at ABC Corporation.

14 13 The employee Bill is

Table 9.9: Sample Contents of the Object Hierarchy Table

OBJECT ID

PARENT OBJECT

ID

OBJECT

HIERARCHY

META DATA

a consultant.

15 14 Bill has meta data

skills.

16 14 Bill has Oracle skills.

17 13 Address of

employee Bill.

18 11 Susan is an

employee at ABC

Corporation.

19 18 The employee

Susan is a trainer.

20 19 Susan has Lotus

Notes certification.

21 19 Susan has MS

Exchange

certification.

22 18 Address of

employee Susan.

The OBJECT_HIERARCHY table contains a linked list, which allows us to follow the

chain and piece together the information that we need. Let's say that we want to

determine the specific skills that employee Bill has. We could follow the chain starting at

OBJECT_ID 11 and work our way down until we came across the rows for OBJECT_ID

15 and 16. These identify the skills that Bill has as an employee of ABC. By browsing up

and down the chains, we can put together the specific meta data that we are looking for.

Taking the data that is stored in the tables and turning it back into useful information can

be a difficult task, depending on the levels of complexity inthe object hierarchy. The last

section on the generic object model deals briefly with the possible techniques to extract

data from this model.

Extracting Data from a Generic Object Model

Now that we have fully explored the object model, let's investigate how we would extract

data from this model. Because this model is extremely generic and abstract, we need to

use a more advanced method to get the information out. We can explore this model from

many different views to gather information. Let's say that we're interested in finding all the

addresses of employees; we would start with the employee objects and proceed to find all

of the children objects for the employees. We would then filter all of those objects to

select only the address objects. Similarly, if we were interested in seeing if anyone at

ABC had experience with Visual Basic, we could query the object table and select only

where the object type is equal to the skill VB. We would next select all of the parent

objects that were of an employee type. Voila, we have our list! For a final example, we

might want to find all the meta data we have on a given employee. We could do this by

creating a recursive join on the object hierarchy table. A recursive join is a join in which

one occurrence of an entity or table is related to one or more occurrences of the same

entity or table. We would apply as our first-level filter the employee that we were looking

for; then by using the recursive join we could see all the meta data associated with that

employee. The following listing is an example of a recursive query to select all of the meta

data about the employee Bill. The example has specific Oracle enhancements for

performing recursive queries and will only work on Oracle 7.3 and higher.

 SELECT o.object_id,

 o.object_description

 ot.object_type_id

 , ot.object_type_desc

 FROM object o

 , object_type ot

 , (SELECT object_id

 FROM object_hierarchy

 START WITH object_id = (SELECT object_id FROM object

 WHERE

 object_description = 'Bill')

 CONNECT BY PRIOR object_id = parent_object_id) b

 WHERE o.object_id = b.object_id

 AND o.object_type_id = ot.object_type_id

 /

This query would produce the following output if we were using the example data for ABC.

As you can see, it has navigated the hierarchy and returned all of the meta data about

Bill.

 OBJECT_ID OBJECT_DESCRIPTION OBJECT_TYPE_ID

OBJECT_TYPE_DESC

 13 Bill 3 Employee

 14 Consultant Bill 4 Consultant

 15 Meta Data 7 Skills

 16 Oracle 7 Skills

 17 Bills Address 6 Employee Address

The same example using IBM DB2© would look like this:

 WITH parent (object_id, parent_object_id) AS

 (SELECT object_id,

 parent_object_id

 FROM object_hierarchy

 WHERE object_id = (SELECT object_id

 FROM object

 WHERE object_description =

 'Bill')

 UNION ALL

 SELECT c.object_id,

 c.parent_object_id

 FROM object_hierarchy c,

 parent p

 WHERE p.object_parent_id = c.object_id)

 SELECT o.object_id,

 o.object_description,

 o.object_type_id,

 ot.object_type_desc

 FROM parent p

 , object o

 , object_type ot

 WHERE p.object_id = o.object_id

 AND o.object_type_id = ot.object_type_id;

In another example, if we want to see all of the employees that have a certain skill, we

can modify the preceding queries to return the results that we need. The following is an

Oracle query that will return all of the parent objects given a child object. In this example,

we want to find all of the employees with Oracle experience.

 SELECT o1.object_description

 FROM object o

 , object o1

 , object_hierarchy oh

 , object_type ot

 , (SELECT object_id

 FROM object_hierarchy

 START WITH object_id = 11

 CONNECT BY PRIOR object_id = parent_object_id) b

 WHERE o.object_id = b.object_id

 AND o.object_type_id = ot.object_type_id

 AND UPPER(ot.object_type_desc) = 'SKILLS'

 AND UPPER(o.object_description) = 'ORACLE'

 AND o.object_id = oh.object_id

 AND oh.parent_object_id = o1.object_id

 /

This query would produce the following output if we were using the example data for ABC.

As you can see, it has navigated the hierarchy and returned all of the employees that

have Oracle experience.

 OBJECT_DESCRIPTION

 Consultant Bill

 Consultant Mark

By modifying these sample queries, we can retrieve nearly anything that we need from

the repository. You may need to do cursor processing or use recursive stored procedure

calls to extract the results that you want for more advanced processing. Please refer to

your database documentation for more information about recursive SQL and stored

procedures. As you can see from these examples, we can perform some powerful

database extracts by modifying these sample queries. By being able to traverse up and

down the hierarchy of objects, we can find any of the information that we need. It just

takes a little bit of up-front thinking to figure out how to get it. This is why the object model

is a more complex model to work with than the traditional model but is much more

scalable and flexible.

Traditional Model
The traditional model is based on standard Entity Relationship (ER) diagrams. (We will

not go into details about ER diagrams— there are plenty of good books that explain how

to develop ER models.) Figure 9.10 illustrates a possible design based on our ABC

Corporation requirements. Because modeling is almost as much an art as a science,

there are many different ways in which to model this data. Your design could be very

different from the example in Figure 9.10 and still perform the same function. As you can

see, this model has many more tables and relationships than the object model from the

previous section.

Figure 9.10: Traditional model.

The trade-offs that we talked about in the beginning of the chapter are becoming easier to

see now that we can compare a traditional model to the generic object model. The

traditional model is easy to read, and we can almost instantly determine the kinds of meta

data that will be stored in its structure. The price that we pay for this ease of

understanding is that the model is not easily expandable and can present maintenance

problems if it continues to grow. This type of model may be particularly attractive for the

first iteration of the repository, but as the environment expands, you may have no choice

but to move to an object model.

In the traditional model, it is relatively easy to see the types of meta data that are going to

be stored in the repository. We can look at the entity names like location and employee

and know immediately that these are going to store meta data about locations and

employees. The generic object model that we described in the previous section did not

give us this luxury. We will not go into great detail about the entities and attributes in the

traditional model because they are self-explanatory and are based on the meta data that

you need to capture. The attributes can be very specific or very generic, depending on the

meta data requirements. The employee entity would contain an employee name attribute,

date of birth, and any other employee specificdata that we need. The skills entity would

contain the skills that the employee has, and all of the other entities would contain

attributes that are specific to that entity.

Some specific modeling techniques allow the traditional model to more easily

accommodate change. An example of one such technique is the concept of subtype and

supertype. In a subtype/supertype relationship, the supertype (or parent) contains the

specific attributes that are common to all subtypes. The subtype (or children) entities

contain the attributes that are specific to that entity. As you can see in Figure 9.10, we

have a subtype/supertype relationship with the employee, consultant, and trainer entities.

The employee entity is the supertype, which contains all of the specific employee

information that is common to all employees at ABC. The children entities contain the

specific information about that employee type. In this case, it contains the specific trainer

and consultant information. This technique allows for a greater flexibility if other types are

needed later and does not greatly disrupt the model.

The use of associative entities is another technique that helps the traditional model to

accommodate change. An associative entity is one that helps resolve many -to-many

relationships in the model. The entity usually contains only the keys from the entities on

each side of it. In our sample model, the associative entity (work location) allows an

employee's work to be carried out at any location. In this model, each entity contains the

specific meta data facts that we need for that part of the business. If you refer back to the

generic object example you can see how the meta data requirements could easily be fit

into this model. Appendix C contains the detailed DDL to create the full traditional model.

A traditional meta model allows your business users to easily understand the contents of

your meta data repository and to answer fairly simple meta data questions without much

IT involvement. As the meta data requests become more complex, however, the query

required to extract the data also becomes more complex, and performance deteriorates

as the query complexity increases. Generous use of indexing can help alleviate some of

the performance problems associated with the multiple joins that occur in a traditional

model.

Extracting Data from a Traditional Model

To extract the meta data from a traditional model, we need to write queries that join

across all of the tables that we're interested in. This is one of the main disadvantages of

using a traditional ER model for storing meta data information. If we needed to extract all

of the meta data from the ABC example, we would have a very large query that joins all of

the tables together. Database performance would be very poor and might not run at all

depending on the RDMS. On the other hand, if we are interested in a very specific piece

of meta data, we can query just the relevant table without having to worry about anything

else. We should also consider using indexes in this type of model in order to speed up our

queries as much as possible. (If we join two nonindexed columns together, we may wait a

very long time for a response.)

The following are sample queries that extract meta data information from a traditional

model. In the first example, we select all the meta data about an employee.

 Query to extact employee information

 SELECT e1.emp_id,

 e1.emp_name,

 e1.emp_dob,

 e1.emp_classification,

 e3.skill,

 e2.emp_address

 FROM employees e1

 , skills e3

 , address e2

 WHERE e1.emp_id = e2.emp_id

 AND e1.emp_id = e3.emp_id

In the preceding query, we could add filters, or predicates, to restrict which employees we

want to see. For example, if we were only interested in seeing the employee named Bill,

we could add a filter to the emp_name field to select only those records.

 SELECT e1.emp_id,

 e1.emp_name,

 e1.emp_dob,

 e1.emp_classification,

 e3.skill,

 e2.emp_address

 FROM employees e1

 , skills e3

 , address e2

 WHERE e1.emp_id = e2.emp_id

 AND e1.emp_id = e3.emp_id

 AND UPPER(el.emp_name) = 'BILL'

For another example, we could:

 SELECT e1.emp_id,

 e1.emp_name,

 e1.skill

 FROM employees e1

 , skills e2

 WHERE upper(e2.skill_name) = 'ORACLE'

 AND e2.emp_id = e1.emp_id

By modifying these queries, we should be able to retrieve any of the information

contained in the repository. There are, however, some important things to remember: The

traditional model uses simpler queries, but it requires a number of joins to get the facts

that you want. Also, if you need changes or different data, you have to write a whole new

query rather than just changing some parameters.

Meta Models and Decision Support Systems
A decision support system is the perfect project for the meta data repository because a

DSS generally encompasses all parts of an organization and is typically fed from

disparate systems throughout the organization. Applyingeither of these models to a

real-world DSS can, however, be an incredibly large and difficult undertaking because the

data that you want is likely to be stored in many computer systems, and the business

rules may only be known by the business users, and not documented at all. Implementing

a meta data repository for your DSS can have a multitude of benefits, though, letting your

users do a lot of the fact-finding that the IT staff normally performs to determine what data

exists. Business users can query the repository to find the business definitions of specific

columns in the DSS, look into the transformations that the data has gone through, and

track a specific data element back to its source system. A sample object list in Table 9.10

shows some of the kinds of information that can be stored in the repository.

Table 9.10: Repository Meta Data Facts

OBJECT DESCRIPTION

Query access patterns, frequency, and execution time

User report name and definitions

Audit controls and balancing information

The structure of data as known to the data administrator

The system of record feeding the decision support system

Identification of source system fields

Mappings and transformations from the system of record to the decision

support system

Encoding/reference table conversions

The data model, both physical and logical

Decision support system table names, keys, and indexes

TE
AM
FL
Y

Team-Fly®

Table 9.10: Repository Meta Data Facts

OBJECT DESCRIPTION

Decision support system tables structures and table attribution

The relationship between the data model and the decision support system

The history of extracts

Decision support system table access patterns

Decision support system archiving

Job dependencies

Program names and descriptions

Version maintenance

Security

Purge criteria

The structure of data as known to the business analyst

Common access routines for the data in the warehouse/mart

Subject areas

Table names and business definitions

Attribute names and definitions in business terms

Decision support system field mappings, transformations, and summarization

Rules for drill-down, drill-up, drill-across, and drill-through

Domain values

Data owner

Data location

Decision support system refresh dates

Imagine being able to simply give your users access to the repository, along with some

predefined queries that would let them determine anything they want about the data

warehouse. If, for example, a business user needs a new report that requires some very

specific data, he or she could query the meta data repository and find all occurrences of

that data without needing the IT department to determine whether the data is available

and where it resides. In addition, the user could trace the data back to the source systems

and determine which DSS field(s) contains the necessary information. Wouldn't that be

great!

Real-World Example of a Meta Model

Now that we have explored both types of models and discussed how to access

information from either, let's look at a real-world example of a traditional model that is

used to store meta data. This model would allow you to store meta data about the

following DSS components:

§ Source system data definitions

§ Logical DSS model

§ Physical DSS model

§ Source/target data mapping and semantic resolution

§ Business subject areas

§ Query statistics

§ ETL statistics

Figure 9.11 illustrates a meta model that would allow you to store basic meta data about a

DSS environment. It outlines the fundamental components that are necessary to keep

track of meta data from the source systems thatfeed the DSS systems to the statistics of

the queries that the end users run against the DSS tables. I depict this basic model in the

traditional ER format and will explain it in this format. After I've fully explained it, you

should be able to see, based on the previous sections, how you could take this model and

convert it to a generic object model to store the same information.

Figure 9.11: Simple meta model.

First, we need to look at the key entities that will store the meta data. The key entities are

those that contain data values and are not comprised totally of foreign keys from other

entities. Table 9.11 lists the entities (tables) in the model and provides a brief description

of the purpose of each. Table 9.12 lists the associative entities from the model.

Table 9.11: Key Entity Listing from Traditional ER Model

ENTITY NAME PURPOSE

Subject area Subject area information

Target table Information about the target table

Target column Information about the columns in

the target table

Target domain Information about the target

domains

Source domain Information about the source

domains

Source column Information about the source

columns

Table 9.11: Key Entity Listing from Traditional ER Model

ENTITY NAME PURPOSE

Source Information about the source

systems

ETL process Information about an extraction,

transformation, and load procedure

ETL process statistics Statistics about the ETL process

Query statistics Information about end user queries

Table 9.12: Associative Entity Listing from Traditional ER Model

ASSOCIATIVE ENTITIES PURPOSE

Subject area table map The same target table can belong

to multiple subject areas.

Table column map Table columns can belong to

multiple tables.

Source to target column map Source columns can belong to

multiple target columns.

Source to target domain map Source domains can belong to

multiple target domains.

ETL process source map Source systems can have

multiple ETL processes.

Query table column hits Allows query statistics to be

stored for the same table

columns multiple times.

The associative entities in the model allow for the many-to-many situations to be resolved.

This way the same table name can be used in multiple subject areas and can be used

more than once in the target tables. The source systems column can be mapped to

multiple target tables, and those target tables can have the same name if they are in

different databases.

The entities in Table 9.11 are the main entities for the meta model. To fully understand

this model, let's examine each of the key entities to understand its purpose in the model.

Table 9.13 outlines the SUBJECT_AREA entity and briefly describes the attributes of the

entity. The SUBJECT_AREA entity contains the definitions of the subject areas in the

DSS environment. The attributes in the primary key are a unique identifier and the date

that the subject area became effective. Subject areas like finance, orders, sales, and so

forth are contained here, along with the date that they became effective and their status.

The SUBJECT_AREA_DESCRIPTION attribute is included to allow for a detailed

description of the subject area if it is not readily apparent, or if some definitions about the

scope of the subject area are needed.

Table 9.13: List of SUBJECT_AREA Attributes and Purpose

ENTITY NAME ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

Subject area Subject area ID

(PK)

The subject area

unique identifier

 Subject area

effective date (PK)

The date the subject

area became effective

 Subject area status The status of the

subject area

 Subject area

description

A description about

the subject area

The next entity that we look at is the TARGET_TABLE. Table 9.14 shows the

TARGET_TABLE and its attributes. The TARGET_TABLE entity is used to store

information about the tables in the DSS environment. The primary key contains the table's

name, the type of table it is (i.e., logical or physical), and the date that the table became

effective in the system. The remainder of

Table 9.14: List of TARGET_TABLE Attributes and Purpose

ENTITY NAME ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

Target table Target table name

(PK)

The target table

definitions

 Target table type

(PK)

Stores the type of

target table (logical,

physical)

 Target table

effective date (PK)

The date the target

table became

effective

 Status code If the table is active or

not

 Table business

name

Any business name

the table is referred to

by

 Table business

alias

Any other business

names or aliases

 Table business The business purpose

Table 9.14: List of TARGET_TABLE Attributes and Purpose

ENTITY NAME ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

definition of this table

 Table business

rules

Any business rules

about this table or

how it is used

 Business data

steward

The person or

department

responsible for this

table

 Integration flag Indicates if two or

more rows are used to

create the target row

the attributes store business information about the target table. The first attribute stores

information about the TABLE_BUSINESS_NAME for the table. The table name in the

system might be SALES, but to the business this means SALES_ORDER table. The

TABLE_BUSINESS_ALIAS attribute stores any other business names that this table is

known by. If, for example, the sales department refers to it as the money table or the

monthly numbers, that information should be stored in the alias.

The TABLE_BUSINESS_DEFINITION attribute is used to store a business definition

about the purpose of this table. This should be more than just restating the name of the

column. Stating "This table store the sales information" is not very helpful. A definition

significantly more helpful to the users would be: "This table stores the monthly sales

numbers from the northeast region broken down by region, county, city, and zip. It

contains three months of information that is archived to backups." The more business

information you include, the easier it becomes for the next person to figure it out.

The TABLE_BUSINESS_RULES attribute contains any business rules that apply to the

table, such as if the business excluded certain sales information because it has not been

paid or if other information is included or excluded for a business reason.

The BUSINESS_DATA_STEWARD attribute is used to track the businessperson

responsible for this table. The steward may be the person who initially requested the table,

the person most familiar with the data in the table, or the person who uses the data the

most. It is up to you to decide who the data steward is and to keep track of the person as

the responsibility changes. Of course, you also have to make sure that the data steward

knows that he or she is responsible for the data and may be fielding questions from users

about it.

The last attribute in this entity is the INTEGRATION_FLAG. The integration flag is used to

indicate that two or more source mappings were used to create a target table row.

The TARGET_COLUMN and SOURCE_COLUMN entities store all of the information

about the target table and source table columns. Tables 9.15 and 9.16 list the attributes of

the target and source column entities. The primary key is comprised of the TARGET or

SOURCE_COLUMN_NAME and the date that the column name became effective. The

remaining attributes are used to describe the information about the target or source

column:

Table 9.15: List of TARGET_COLUMN Attributes and Purposes

ENTITY NAME ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

Target column Target column

name (PK)

Target column name

 Target column

effective date (PK)

The date the target

column became

effective

 Base unit The base unit for the

column (dollars,

inches, etc.)

 Business unit The business

department of group

 Business rules Any business rules

that apply to this

column in the target

table

 Calculation formula Any calculations that

are applied to get the

column

 Column business

acronym

Any business

acronym that the

column is known by

 Column business

name

The business name

for the column

 Degree of accuracy The degree to which

this column is

assumed to be

correct

 Maximum range The maximum value

for the column

 Minimum range The minimum value

Table 9.15: List of TARGET_COLUMN Attributes and Purposes

ENTITY NAME ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

for the column

 Status code If the column is active

or not

 Length The length of the data

item

 Data type The column data type

(character, integer,

float, etc)

 Null flag Can this column be

null (Y,N)

Table 9.16: List of SOURCE_COLUMN Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

Source column Source Column

name (PK)

Target column name

 Source column

effective date (PK)

The date the target

column became

effective

 Base unit The base unit for the

column (dollars,

inches, etc.)

 Business unit The business

department or group

 Business rules Any business rules

that apply to this

column in the target

table

 Calculation formula Any calculations that

are applied to get the

column

 Column business

acronym

Any business

acronym that the

column is known by

 Column business The business name

Table 9.16: List of SOURCE_COLUMN Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

name for the column

 Degree of accuracy The degree to which

this column is

assumed to be

correct

 Maximum range The maximum value

for the column

 Minimum range The minimum value

for the column

 Status code If the column is active

or not

 Length The length of the data

item

 Data type The column data type

(character, integer,

float, etc.)

 Null flag Can this column be

null (Y,N)

§ BASE_UNIT attribute states the basic measure used for the column.

§ BUSINESS_UNIT attribute refers to the department or group within your

organization that the data comes from.

§ BUSINESS_RULES attribute contains any business rules that apply to the

column, such as if the business excluded certain information or if other information

is included or excluded due to a business reason.

§ CALCULATION_FORMULA attribute is any calculation of formula that is used to

create the value.

§ COLUMN_BUSINESS_ACRONYM attribute is used to store any business

buzzword or abbreviation that describes the column. For example, the column may

be known as the EPD column, which means already shipped.

§ COLUMN_BUSINESS_NAME attribute is the name that this column is known by

the business. For example, the business may call this the "EPD42 indicator" but in

the source system it is known as the already shipped column, and in the target

table it is known as the shipment status column. This also helps to keep track of the

various names that different departments use to describe the same thing.

The DEGREE_OF_ACCURACY attribute is used to indicate just how accurate this data is.

The source system may be littered with incorrect data and may have an accuracy rating

of only 65 percent. The target table may have been scrubbed of the invalid data and have

an accuracy rating of 95 percent. This helps to identify sources of potential problems in

the system and indicates if one system is getting better or worse in terms of data quality.

The MAXIMUM_RANGE and MINIMUM_RANGE attributes are used to indicate the

range that the values can occupy. If, for example, the column is a salary column, the

maximum may be $200,000 and the minimum may be $10,000. This is useful if some

values are not appearing in your table and you see that this filter is excluding the records.

The STATUS_CODE attribute is used to describe the current state of this column: active,

inactive, or proposed. The DATA_LENGTH attribute is just the length of the defined

column or source value. The last attribute is the NULL_FLAG, which is used to indicate if

there has to be a value in this column for every row or source record or if it can be

missing.

Tables 9.17 and 9.18 list the TARGET_DOMAIN and SOURCE_DOMAIN entities. The

TARGET_DOMAIN and SOURCE_DOMAIN entities are used to list the allowable values

for a given column. The primary key for each entity is made up of the DOMAIN_VALUE

and the EFFECTIVE_DATE for

Table 9.17: List of TARGET_DOMAIN Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

Target domain Target domain

value (PK)

Target domain value

 Target domain

effective date (PK)

The effective date for

this target domain

value

 Target domain

description

A description about

the target domain

 Status code Whether the target

domain is active or not

 Business rules The business rules

used to build this

target domain

Table 9.18: List of SOURCE_DOMAIN Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

Source domain Source domain

value (PK)

Source domain value

 Source domain The effective date for

TE
AM
FL
Y

Team-Fly®

Table 9.18: List of SOURCE_DOMAIN Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

effective date (PK) this source domain

value

 Source domain

description

A description about

the source domain

 Status code Whether the source

domain is active or not

 Business rules The business rules

used to build this

source domain

that value. The target or source DOMAIN_DESCRIPTION attributes are used to describe

the details about the domain. This should be as descriptive as possible so that it is easy

to understand the domain value and its intended purpose. The STATUS_CODE attribute

is used to describe the current state of this column: active, inactive, or proposed. The

BUSINESS_RULES attribute is the final attribute in these entities, and is used to store

any business definitions or logic that go into the definition of this domain value.

The SOURCE entity describes the source systems that are used to feed the DSS

environment. Table 9.19 lists the source entity and its attributes. The primary key is made

up of the SOURCE_ID and the SOURCE_EFFECTIVE_DATE. The SOURCE_ID is a

unique identifying number that is usually

Table 9.19: List of SOURCE Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

Source Source ID (PK) Unique ID for the

source system

 Source effective

date (PK)

The date this row

became effective

 Source format type The format of the

source system code

 Source DBMS The source database

for this system

 Source description Description of the

source system

 Source update

frequency

How often the source

system data is

updated (monthly,

Table 9.19: List of SOURCE Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

daily, real-time)

 Status Code Whether it is active or

not

system generated. The effective date is the date that this source system became active in

the repository.

The remaining attributes are used to describe information about the source system. The

SOURCE_FORMAT_TYPE attribute is used to state the format that the source code is in.

This could be anything from COBOL, Java, C, or C++ to REXX and PERL. It allows you to

determine language the source system is written in, which can be helpful if you need to

look at the source code.

The SOURCE_DBMS attribute is used to describe the source database that is used. This

can be any form of database that is used in the source programs. Possible values are:

ORACLE, DB2, FLAT FILE, VSAM, IDMS, or IMS. The SOURCE_DESCRIPTION is used

to store a description about the source system purpose and use. It should not just restate

the name of the system. For example, rather than merely stating, "The sales system

stores sales information," it could say, "The sales system is the main business system

that is used for all incoming sales in the northeast region. The data is pulled from the

smaller sales systems and updated nightly to the main sales system."

The UPDATE_FREQUENCY attribute indicates the time frame used to update or refresh

the source system data. The update data may be a feed from a third-party company that

comes monthly, or a mailing list that comes quarterly, or the real-time order system that

you use on a day-to-day basis. The STATUS_CODE attribute describes the current state

of this column: active, inactive, or proposed.

The ETL_PROCESS entity describes the extract, transformation, and load procedures

that the source data goes through as it is moved to the target areas. Table 9.20 lists the

ETL_PROCESS entity and the attributes for it. The

Table 9.20: List of ETL_PROCESS Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

ETL process Process ID (PK) Unique ID for the ETL

process

 Process effective

date (PK)

The date the ETL

process became

active

 Process description Description about the

Table 9.20: List of ETL_PROCESS Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

ETL process and

purpose

 Process owner The person or

department

responsible for the

ETL process

primary keys are the PROCESS_ID and the PROCESS_EFFECTIVE_DATE. The

process ID is a unique system ID that is usually generated by the system. The effective

date is the date that this row became effective in the repository. The

PROCESS_DESCRIPTION attribute describes the ETL process and its purpose, in plain

English. Avoid using complex system terms and system specific jargon here, because

this type of language is likely to be meaningless to an executive trying to perform a query.

The PROCESS_OWNER attribute records the name of the current process owner. This

may be the person who wrote the process, the department that requested the process, or

the maintenance team at the company. Be sure that whoever is the owner of this process

is aware that he or she is listed as the owner and may receive inquires about the process.

Table 9.21 lists the ETL_PROCESS_STATISTICS and the attributes contained in that

entity. The ETL_PROCESS_STATISTICS entity is used to store the processing statistics

for a specific ETL process. The primary key is defined as the BATCH_CYCLE_ID and the

LOAD_DATE. The BATCH_CYCLE_ID is the identifier that the job is known by in the

system. The LOAD_DATE is the date that these statistics were loaded into the repository.

The ELAPSED_TIME attribute stores the amount of time the ETL process took for this run.

This is useful for determining if a certain process is getting extremely long or if some other

process is holding it up. The CPU_TIME attribute stores the amount of CPU time that the

process uses. This is useful for comparing actual elapsed time to the amount of time the

computer was working on the task. The last two attributes, PROCESS_RETURN_CODE

and PROCESS_RETURN_MESSAGE, store any information that is returned from the

ETL process. This may be a number such as zero, which indicates all went okay, or a

message like "System failure," which indicates that something catastrophic occurred.

Table 9.21: List of ETL_PROCESS_STATISTICS Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

ETL process

statistics

Batch cycle ID (PK) Unique ID for the ETL

process statistics

 Load date (PK) The date these

statistics were loaded

 Elapsed time The total time the ETL

Table 9.21: List of ETL_PROCESS_STATISTICS Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

process took to run

 CPU time The amount of CPU

time required by the

ETL process

 Process return

code

Any return codes the

ETL process returns

 Process return

message

Any error or

completion messages

returned

The final entity that we will look at is the QUERY_STATISTICS entity. Table 9.22 lists the

attributes of the QUERY_STATISTICS entity and briefly describes them. The primary key

for this entity is the QUERY_ID, which is a unique system-generated number. The

statistics about the query are stored in the remaining attributes. The

QUERY_START_TIME and QUERY_END_ TIME attributes keep track of the duration of

queries running against the DSS tables. The NUMBER_OF_ROWS_RETURNED

attribute shows the number of actual rows that were returned to the business user. If this

number is too high, some intervention may be required to reduce the size of the result set.

The USER_ID attribute stores the system ID of the person who initiated the query. The

DATABASE_NAME and SERVER_NAME attributes store the database that the query is

going against and the server that the database resides on. This information lets you see if

the query is using the proper server and databases, and also helps in tracking down

problems. The CPU_TIME and QUERY_ELAPSED_TIME attributes store the amount of

computer time the query took and the total elapsed time the query took.

Table 9.22: List of QUERY_STATISTICS Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

Query statistics Query ID (PK) Unique ID for the

query statistics table

 Query start time The system time the

query started

 Query end time The system time the

query ended

 Number of rows

returned

The total rows

returned by the query

 Size of result set

(Kb)

The estimated size of

the returned result set

Table 9.22: List of QUERY_STATISTICS Attributes and Purpose

ENTITY NAME

ENTITY

ATTRIBUTE

ATTRIBUTE

PURPOSE

 User ID The user ID of the

person who submitted

the query

 Database name The database that the

query was going

against

 Server name The server the query

was going against

 CPU time The amount of CPU

time the query took to

run

 Query elapsed time The wall clock time

that the query took

Now that we have examined all of the key entities in the traditional meta model, we see

that it can contain quite a bit of information about the DSS envi ronment. You can use this

model and build on it, or use it as a starting point to design your own object list to build a

repository that can accommodate all of your organization's needs. Remember, however,

that this model is only a guide to assist you in identifying the components that are

necessary to keep your DSS environment humming along. Your meta data needs may

require more specific attributes in some of the entities orentirely different entities. When

you complete your analysis, you should have a better idea of just what is needed for your

repository.

Summary

The choice of an appropriate model type depends on your particular environment and

requirements for the meta data and requires careful research on your part to make an

informed decision. Choosing the model type is, however, only the first step in the

development process. After that decision is made, you must identify the various objects

and subobjects that are required to define the model. This is a complex and

time-consuming process, but one that is absolutely necessary for building a meta model

that meets your users' current needs and is flexible enough to grow as those needs

increase or change.

Clearly, putting these models to use in your DSS environment requires lots of up-front

analysis to ensure that you've considered all of the complexitiesof your company's

information requirements. To determine precisely what types of information are required

in your meta model and how best to store it, you must identify the attributes of the entities

that compose the model, as we did in our ABC example. Finally, you'll need to cleanse

the data and load it into your model. We cannot overstate the importance of the data

quality. This issue, like those of determining appropriate model type and building a model

that fits your particular data requirements, is key to a successful meta data project.

In the next chapter, I address the issue of meta data delivery, describing the various

options available for providing user access to the repository and examining some of the

factors that you need to consider when selecting a delivery method.

Chapter 10: Meta Data Delivery

Overview

Okay, you understand the importance of maintaining a meta data repository in your

decision support solution. Now comes the question of how business users and the IT staff

are going to access it.

This chapter focuses on choosing a meta data delivery solution. It explores the various

options for integrating meta data information in the repository, the data warehouse, and

the World Wide Web, and suggests some questions you should ask to help determine

your meta data delivery needs before you select a particular delivery method. The

answers to these questions should help you to review the available options and provide

you with criteria for selecting the best method for your business needs. This chapter

provides information that is particularly relevant for the meta data repository architect,

infrastructure developer, and tool architect, but it should also benefit the data acquisition

and data delivery developers.

Evaluating Delivery Requirements

Before you dive into the process of selecting a meta data delivery method, I suggest that

you review the following series of questions, then use your answers to help guide you

through the process. In some cases the answers will help you select the appropriate

delivery method for your needs, but in most cases they will serve as comparison factors

to support your selection process. I have often seen political and budgetary constraints

within an organization sway the selection process more than any group of business

requirements. The initial questions you should be asking yourself are:

§ Who are the users of the meta data repository?

§ What level of integration does the repository have to other data warehouse

components?

§ What information do the repository users need?

§ Does the repository tool have a data delivery component?

§ How many users are going to use the repository tool?

§ Where are the repository users geographically located?

Who Are the Users?

You will need to review each type of data warehouse user to determine if they plan to

access information from the repository. This type of analysis often shows that certain user

groups contribute information to the repository but do not (yet) use it. This provides you

with an opportunity to do some marketing within the organization on the value of using an

enterprise-wide open source for meta data. During your review, you will need to

determine if the various users and the tools they are responsible for will be accessing the

repository. Use by the technical users usually depends on the level of integration between

the repository and other components, an issue that is weighed in our second question.

The first group of users to consider is the business users (as discussed in Chapter 2,

Meta Data Fundamentals). These are the primary users of the data warehouse. They are

your clients and can make or break a data warehouse project by simply not trusting, or

worse, not using the information in the data warehouse and meta data repository. This

user group includes your end users, subject matter experts, sponsors, project champions,

and executive management. These users need insulation from the various components

that make up the data warehouse environment through a seamless single point of access

to the information. They do not want to have to learn how to use more than one access

method for the data warehouse. Business users don't care if they are accessing

information from the data warehouse or from the meta data repository, and they do not

even need to know. If your user analysis reveals that business users require information

from the meta data repository, providing a single, common interface should become a

priority.

The second group of repository users are technical users and power users (see Chapter

2, Meta Data Fundamentals). These individuals are the primary creators of the data

warehouse environment and information. They are also potential secondary users of the

information stored in the data warehouse, depending on the level of integration with other

components. This user group includes the repository architect, middleware developer,

data delivery developer, data modeler, tool architect, infrastructure developer, and data

acquisition developer. The data warehouse components that these individuals are

responsible for form the bulk of the information that is stored in the repository.

What Is the Repository's Level of Integration?

The ever-increasing number of data warehousing tools include tools for data integrity and

cleansing, data modeling, extraction transformation, data movement, decision support,

and administration. Despite the numerous tools that address the data warehousing

environment, the foremost obstacle to the full potential of a meta data repository is the

lack of tool integration.

Tool users are wary of committing to a single vendor for all of their data warehousing tool

support. Because of the rapid changes in technology, users are concerned that by locking

into a single tool they may be unable to take advantage of new advances offered by other

vendors. Tool vendors typically do not have the resources or funding to provide a

complete tool suite that fully encompasses all of the development needs for a data

warehouse environment. However, as I discussed in previous chapters, vendors are now

beginning to embrace standards for tool integration in order to remain competitive. Figure

10.1 illustrates the interaction between data warehouse tools.

Figure 10.1: Data warehouse tool interaction.

The first level of integration to consider is in the presentation of information by the tools

and the repository. One of the most fundamental issues of integrating tools is the

availability of a common user interface. The cost that an organization incurs in selecting

the appropriate tool(s) is far greater than the purchase price of the tool(s). The cost of the

time spent for training and support must also be factored into the expense equation.

Fortunately, standardized user interfaces, such as the Web, help to control these costs

and provide greater flexibility for the users. If business users have to learn one interface

method to access the data warehouse information and another to access information in

the meta data repository, you will need to consider the training and support costs for both

interfaces when you select your specific delivery tool(s).

The second level of integration to consider is that of moving data between the tools. This

type of integration refers to the transfer of information between the various data

warehouse tools and the repository. This integration is usually accomplished by

transferring information through an agreed-upon data interface between the tools. The

approach is relatively easy to accomplish, but it is often impeded by the lack of standards

among data warehouse components. This data transfer method supports data exchange

but does not establish a link between the tools or maintain the semantic context of the

data. Recent advances in standardization for meta data repositories offer the chance of

integration through a shared repository model, which will eventually allow all of the data

warehouse tools to store and share their information. The repository maintains a common

semantic definition of the information as well as a tool-specific view that allows all of the

warehouse tools to work together through the single data store.

I also like to analyze the level of tool integration available between a meta data repository

tool and the other warehouse components. This type of analysis allows you to weigh the

reality of the technical use of the repository. If integration is complex or manual between

the repository and another component, technical users are likely to make only minimal

use of the repository's meta data delivery method. If the presentation interface between

the repository tool and another data warehouse component is not intuitive or does not

exist, technical users may resort to SQL queries between the two data sources to meet

their information needs.

What Information Do Users Need?

The answer to this question involves reviewing the information requirements of the

various users of the repository. This analysis should allow you to determine which

components of the repository need to fulfill information reporting requirements for the

organization. The meta data repository can be broken down into six major areas as

depicted in Figure 10.2.

TE
AM
FL
Y

Team-Fly®

Figure 10.2: Meta data repository components.

The first repository area is the source system area, which contains the physical content of

the operational applications that feed the data warehouse. Business analysts and subject

matter experts can access this area to document source system table and column

designs or extract fi le layout definitions. Changes made to this area can be used to report

upcoming source system modification impacts to extraction, transformation, and load

processes. This provides the data acquisition developer with an opportunity to prepare for

future changes from source systems before those changes take effect. The introduction

of new source systems or major changes to existing operational systems can be

communicated to the data modelers toalert them of potential design changes to the

warehouse model. See Figure 10.3 for examples of repository reports from this section.

Figure 10.3: Source system repository report examples.

The second repository area, the data warehouse model, contains the logical and physical

content of the target decision support database. The data modeler uses this area of the

repository to document changes in the warehouse design. Data acquisition and data

delivery developers monitor changes made in the warehouse design by the modeler

before implementing modifications to the data schema or ETL processes. Business meta

data is also stored in this area. The business analyst in this area documents changes in

business definitions. The data delivery developer monitors business rule and calculation

changes made to the warehouse to assess their impact on reports. See Figure 10.4 for

examples of repository reports from this section.

Figure 10.4: Data model repository report examples.

The third repository area, the source to target data map, contains the cross-reference and

semantic resolution criteria for transforming the data warehouse information. Data

acquisition developers use this area to document the results of their analysis between the

source systems and the target warehouse model. Information reports from this section of

the repository provide the business analyst and users with the necessary information for

auditing and reconciling data warehouse data. One project that I am familiar with uses the

source target data map information stored in the meta data repository in ETL processing

to convert data and avoid hard coding in programs. See Figure 10.5 for examples of

repository reports from this section.

Figure 10.5: Source/target data map repository report examples.

The fourth repository area, the business subject area, contains the logical groupings or

business views of information. This area provides business users with an intuitive means

of navigating the content of the data warehouse and gives a business-oriented view of the

warehouse information. See Figure 10.6 for examples of repository reports from this

section.

Figure 10.6: Subject area repository report examples.

The fifth repository area, the extraction, transformation, and load statistics area, contains

the record counts, load timings, and other processing results from each load cycle to the

data warehouse. The ETL statistics stored in this repository database are used by data

acquisition developers and database administrators to highlight issues related to

database sizing, index usage, and performance tuning. See Figure 10.7 for examples of

repository reports from this section.

Figure 10.7: ETL statistics repository report examples.

The sixth and final repository area, the report query statistics area, contains the timings,

SQL, and database usage results from each query run against the data warehouse. The

query statistics stored in this repository database are used by database administrators

and data delivery developers to measure activity and to flag potential issues related to

index usage, aggregation strategies, or data fragmentation designs. Correlation of query

statistics across various constraints such as user, organization unit, and time is useful for

indicating areas for improvements. See Figure 10.8 for examples of repository reports

from this section.

Figure 10.8: Query statistics repository report examples.

It is important to note that these information reporting examples are only fully applicable if

the meta data repository project team has managed to create an open and integrated

environment for all warehousing meta data. The warehouse architecture needs to be

structured such that the information in the repository drives the implementation process.

Your data delivery solution should consider the reporting requirements of all the business

and technical users throughout the entire lifecycle of the data warehouse. As such, your

information reporting needs should include not only the information content of the data

warehouse but also the context of the knowledge stored in the repository. This narrow

view often limits the success of the data warehouse project.

Does the Repository Tool Have a Data Delivery

Component?

If your meta data repository tool is from a vendor, chances are that it incorporates some

type of data delivery component. Of course, you will need to examine the data delivery

component to determine if it is suitable for your

TE
AM
FL
Y

Team-Fly®

environment. Be particularly careful in examining any tool that has recently been

Web-enabled; simply adding a middle tier to Web enable access to the repository does

not ensure adequate scalability, maintenance, or security capabilities.

Also, be sure to consider interface differences between the data delivery products for the

repository and the front end. Do both have intuitive user interfaces that can be easily

maintained and supported in the future? Even if

the two delivery products have a common user interface, such as the Web, you will need

to consider the architecture, infrastructure, operating system, and RDBMS requirements

of each. Depending on your project's needs and enterprise requirements, it may make

sense to use the data delivery component from a purchased repository product. Most of

the data warehouse projects I have been involved with use a front-end query or online

analytical processing tool for the warehouse to access the relational database of the

repository.

How Many Repository Tool Users Are There?

To answer this question, you will need to determine how many users plan to use the meta

data delivery system. Your users are more likely to accept the learning curve associated

with two or more data delivery products (i.e., for the warehouse and the repository) if you

have a relatively small project such as a departmental data mart. However, using two or

more delivery tools is not advisable for large, enterprise-wide implementations with

hundreds or thousands of users accessing the warehouse and repository.

Where Are Users Geographically Located?

This question considers the geographic location of the repository users. If all of your meta

data repository users are located at a single geographic location, technical issues such as

network bandwidth and software distribution are probably not an issue. However, if your

users are distributed globally or across a continent, the issues related to network

bandwidth, software distribution, technical support, and maintenance can be considerable.

A globally accessed meta data repository may dictate a larger support window to

accommodate the variety of user time zones. A 5 days-a-week, 12 hours-a-day technical

support window that works fine in the United States is inadequate if you have users in

Europe and Asia, because your window for updates and maintenance will be significantly

smaller in those locations. If your users are widely dispersed, you will need to seriously

consider your support requirements for the repository.

I know of one situation in which a group of remote users only had dial-up access to the

corporate LAN because network connectivity was unavailability in their particular country.

The dial-up connection to the LAN was only 14.4 kB through an X.25 connection.

Understandably, these users were never very happy accessing the repository or data

warehouse for their reporting needs. An investigation into the problem revealed that the

cost to provide adequate connection speed was prohibitively high due to the small

number of employees at this location. As a last resort, the company agreed to provide

these remote users with the information they needed to do their jobs in a series of

scheduled reports that are generated through the data warehouse.

Selecting the Delivery Architecture

After you have identified the delivery requirements for your meta data repository, you are

ready to select the delivery architecture. In this section, assume that the delivery method

available through your meta data repository product is insufficient for your needs and that

you want to use the same

delivery method as the data warehouse front end. If, however, the delivery method of the

meta data repository product meets your users' needs, the question of your architecture

solution is resolved for you.

If your company purchased an off-the-shelf repository tool, the repository architect should

be asking some questions to ensure sufficient functionality:

§ What types of import capabilities does the repository tool have to capture

source system information (e.g., copylibs)?

§ Can data mapping between the source and target data models be documented?

Can this information be imported/exported to a common media (e.g., MS

Excel, Lotus 123)?

§ Can the target data warehouse model be documented in the repository tool?

Does the product accept imports from popular data modeling tools (e.g., Erwin,

Silverrun, Designer 2000, CDIF)? Can the product reverse-engineer any

existing data warehouse database schema?

§ Can the repository tool capture statistics from off-the-shelf ETL products? Can

the capture process be augmented for in-house-developed ETL processes?

§ Can the repository tool capture or access operational statistics about queries

made to the data warehouse from query monitoring tools or OLAP products?

§ If you select an OLAP product that has its own business meta data layer, can

the repository tool populate it?

§ Is the repository tool's underlying storage method an open relational database

management system? If your organization does not currently support this

RDBMS, how will database administrator functions be performed? Is the

DBMS link native, ODBC, or Java Database Connectivity (JDBC)?

§ Which Web browsers does the product support (e.g., Netscape, Internet

Explorer)? On which operating systems (e.g., Windows 9x, NT, UNIX,

Macintosh)?

§ Which Web server products does the tool support (e.g., Apache, Netscape MS

IIS)? On which hardware platforms (e.g., Sun, HP, etc.)?

§ Are there any requirements for MS ActiveX and/or Java applets on the client PC

to support full functionality of the products? If yes, can downloading of these

plug-ins be controlled through the administrative facilities?

§ How is security controlled? Is administration and security of the repository

product done through a Web browser or through a client GUI interface? Is

security access based on user IDs, workgroups, projects, or some other

means? How is user sign-in authentication performed? Does the product

interact with other directory services to provide single sign-on across products

(e.g., Novell NDS/LDAP)?

§ How is migration handled between major releases? Between development, test,

and production environments?

§ What reporting capabilities does the repository product provide? Is reporting

based on interfaces to another third-party product? Can reports be exported to

other third-party products (e.g., spreadsheets)?

§ Does the product provide any persistent agents, alert, or trigger mechanisms to

notify users of critical changes to the repository data content? If so, can these

notifications be made through common e-mail channels (e.g., SMTP)? Where

in the architecture does this mechanism reside?

§ What types of change management and versioning capabilities does the

product support?

In some cases, the reporting capabilities of the Web-enabled repository tool may be

insufficient to meet the needs of your organization. In this case, you may decide to

implement the same front-end Web reporting tool used to access the data warehouse to

access the meta data repository.

Most of the data warehouse projects that I have worked on have used their front-end

reporting tool for delivery of meta data reports from the repository. This mechanism

simplifies the issues related to the data warehouse project by requiring only one decision

support product to be used for both meta and warehouse applications. This type of

arrangement can have several benefits, including:

§ Single decision support reporting product introduced into the enterprise

§ Lower training costs

§ Lower cost for administration and maintenance

§ Lower cost for hardware and support environments

The decision support product may consist of either a query reporting tool or an OLAP tool,

depending on the complexity of the front-end reporting needs of the warehouse. You

should make a careful review of any OLAP tool for use against a meta data repository.

While these tools work with relational databases in general, some require specialized

schema designs, additional types of tables, or alterations made to columns, in order to

function accurately. On the other hand, I have found with the products I have used that

query and reporting tools work with any type of relational database design.

Architectural Types to Consider

In this section, I examine three type of architecture and discuss some future trends on the

horizon. These architecture types encompass most of the various front-end decision

support tools that are on the market today. They include query reporting and OLAP

decision support tools for the desktop as well as for the Web. I am also going to look at

recent trends for providing information to users using enterprise information portals. The

tools that I discuss in this section should not be confused with the data mining tools that

apply artificial intelligence techniques (i.e., neural networks, fuzzy logic, and genetic

algorithms) to data warehouse databases to discover patterns in the information.

The three types of architectures that I will discuss are:

§ Fat client

§ Thin client or Web-enabled

§ Enterprise information portal

Fat Client

The popularity of client-server computing and the proliferation of PCs in the 1980s

brought decision support users an unforeseen wealth of capabilities. A decision support

product loaded onto a PC (or client) lets the user of that PC access information residing in

corporate decision support databases, even those on remote servers. This arrangement

reduces the processing load at the source as well as the user's reliance on support from

an information services department. This type of architecture is referred to as fat client.

The programs loaded on the PCs are often very large and require a significant

percentage of the machines' resources to function properly, thus the emphasis on fat.

The client tools on the PC are capable of managing connections to various decision

support databases and generating SQL requests. In addition, the DSS tools can apply

prompting, calculations, and filters to reports and control report formatting, including

graphical presentation of result sets. Last, these tools handle administration and security

functions.

Fat client architecture typically consists of a client PC running a popular operating system

such as Microsoft Windows. The PC is equipped with client software for a decision

support tool, which provides the primary user interface. The client PC is also equipped

with a network hardware card that provides local- or wide-area network (i.e., LAN or WAN)

access to a remote server. The remote server, which contains the decision support

database, includes a relational database management system. Depending on the level of

functionality of the decision support application, the remote server may also have an

application component to manage requests from multiple client PCs. Figure 10.9

illustrates fat client architecture.

Figure 10.9: Fat client architecture.

While fat client architecture offers vast improvements over previous architectures, it also

involves some drawbacks. The decision support desktop applications often have to

download large volumes of information from the remote server repository database,

forcing users with a complex array of large queries to wait until the download operation is

complete before they can access their own PCs again. This results in slow response

times for the users and saturation of corporate networks. In response to these processing

issues, vendors have moved some query functionality onto the remote server to help free

up resources on the desktop.

Further issues arise when it is necessary to deliver new or updated decision support

applications to the desktop clients. All of the DSS users must have an updated copy of the

software installed on their PCs whenever the server software is changed. Many users

experience conflicts with other application resources on their PCs during these update

procedures due to insufficient memory or hard disk space. In addition, companies that do

not have a standardized operating system environment encounter difficulties dealing with

a variety of operating systems and/or versions on the users' desktop PCs. These

administrative issues are compounded when dealing with remote sites, which involve

distributing new or upgraded versions of the decision support software, then installing it

on the client PCs and troubleshooting any installation errors.

While the fat client architecture provides improvements in data access, it also introduces

new issues related to administration, security, and performance across the enterprise.

Deploying a decision support tool across a corporate enterprise to access the meta data

repository is an expensive andlabor-intensive exercise. Despite these problems, however,

fat client architecture remained largely unchallenged until the mid-1990s, when the World

Wide Web and the Internet became the dominant forces for architectural design.

As companies struggle to make use of the Web, many still use fat client architecture for

much of their decision support reporting requirements. This type of architecture is still

feasible for projects or corporate environments that involve a small number of users

accessing reports from a central repository and where network capacity is not at a

premium. For some users, the functionality found in a client application on the desktop PC

has yet to be matched by a Web-enabled version running within a browser. One of the

first questions I like to ask a vendor supplying a Web-enabled decision support reporting

tool is: What are the differences between your client product and your Web tool with

regard to meta data repository access capabilities?

Web-Enabled or Thin Client

The Web browser on your users' desktops offers the most effective means today for

providing them with information from the meta data repository. The Web is recognized as

the most effective corporate delivery mechanism for information in the world, and the

Internet, with its extensive information resources, is considered the largest data

warehouse in the world. Its popularity has flourished in recent years due primarily to the

intuitive nature of the World Wide Web application.

The Web allows companies to deploy and manage enterprise information based on its

open and superior architecture. The implementation design allows corporate IT

departments to be responsive to the fast-paced global business environment.

Web-enabled applications with inherent hardware independence are providing the

catalyst to replace the old fat client application model design. The Web browser is

becoming the single entry point or portal to all internal corporate operational and decision

support knowledge.

The Web paradigm and data warehousing share a common implementation goal of

providing easy, intuitive access to data. Web-enabled access to the decision support

environment allows for consistent presentation of meta data across the enterprise. In the

fat client, distribution of meta data was cost-prohibitive and limited to a relatively small

number of decision support users. The Web provides a unique and unmatched

distribution channel for all repository users, efficiently providing access to the data at a

fraction of the cost per user of fat client solutions. Additionally, the Web allows the

repository architect to provide meta data access to all areas of the enterprise, including

remote sites.

Unlike the fat client architecture, the Web-enabled decision support application uses a

thin client, usually a desktop browser, to provide information from the meta data

repository. Thin client architecture requires fewer resources from the desktop PC, but

uses standard network file service and interfaces. It also supports centralized

development through a Web server application and realizes labor and cost savings by

reducing administration and distribution efforts.

Thin client architecture involves installing a standard desktop application (i.e., the

browser) on the client PCs. The client PC communicates with the corporate Intranet or

TE
AM
FL
Y

Team-Fly®

Internet through standard TCP/IP and HTTP protocol services. The Web server receives

a request from the desktop PC and routes it to the decision support application or query

engine. This application or engine may reside on the same server as the Web server

application or on a separate hardware platform. The decision support application takes

the request from the Web server and sends a query request to the meta data repository

database. The query results are received and formatted back to the user through the

desktop browser. Figure 10.10 illustrates a thin client Web-enabled architecture.

Figure 10.10: Web-enabled architecture.

The Web architecture for distributing meta data repository information has continually

evolved from its early days in the mid-1990s. First-generation designs consisted primarily

of a Web browser and Web server providing static, prepublished HTML reports to users.

Functionality could be extended through the use of plug-ins incorporated into the Web

browser to duplicate the capabilities provided by the client version of the decision support

reporting tool. (Plug-ins are browser extension programs that provide capabilitiesnot

possible through HTML and a Web browser.) Second-generation designs were capable

of dynamically accessing the meta data repository database through an applications

server or query engine. Further functionality is made available in this design by providing

prompting, calculations, and filters to the HTML reports. Third-generation Web

architecture designs use ActiveX objects or Java applets to improve query capabilities

and enhance the user interface through the browser. Some vendors use native Web

server interfaces to address performance and scalability problems associated with the

Common Gateway Interface, which is used to link Web servers to external programs. The

most recent, or fourth-generation designs, use Java to develop the application server.

This design can typically produce query results from the repository in either a proprietary

or HTML format. A Java server application running Java applets on the client and

accessing the meta data repository database through native Java drivers comprise this

design.

It is important to note, however, that the Web is by no means a perfect application design

environment. The repository architect needs to consider several issues related to Web

access to the meta data repository, including:

§ Network bandwidth requirements on the corporate wide area network

(WAN) and Intranet.

§ Ability to provide alerts or triggers, which are limited without the use of

downloaded programs.

§ Remote site access to the corporate Intranet. For example, if business

users in the Middle East have to access the corporate Intranet through a

dial-up X.25 line running at 14.4 kB, they will never be happy with the

DSS solution.

§ Inability of HyperText Transfer Protocol (HTTP), one of the most common

methods of transferring documents across the Web, to maintain a

persistent connection with the server (stateless connection). This

limitation makes HTTP somewhat unsatisfactory for client/server

applications. Every request to a server must contain state information,

which leads to performance degradation in response to user requests.

Cookies, a method of addressing the stateless nature of the Web

developed by Netscape, can maintain state information but requires

downloading to the client.

§ Limited Java performance and reliability. When executed in a Web browser,

Java is limited by its interpretive nature. Vendors of Web-enabled

applications have had to resort to providing dedicated client plug-ins to

execute various application functions. This solution weakens the basic,

open environment philosophy of the Web model and leads to additional

maintenance considerations during the application's lifecycle. Plug-ins

generally work only with one specific browser and/or hardware platform.

Additionally, many companies have policies that prohibit downloading

and using plug-ins within the security of the corporate WAN or Intranet.

This is due to security concerns; viruses and other risks can occur when

connecting to external sources such as the Web, or to business partners,

vendors, or customers that have been granted access to the warehouse

environment.

§ Lack of existing standard for emerging Web components such as Dynamic

Hypertext Markup Language (DHTML), resulting in requirements for

specific browsers and versions in order to fully exploit the component

functionality.

§ Performance degradation in the text character-based communication

channel between the client browser and the Web server. Because of

parsing requirements, the problem is particularly troublesome when

significant quantities of data are being transferred.

With the recent surge in Web-enabled business solutions, all of the major vendors of

decision support reporting products have spent the past year adapting their products for

use over the Web, with varying results. Some have simply added a middle tier to their

architectures to quickly Web-enable their product, in order to maintain market share.

Several new entries to the market have developed products from the ground up that are

specifically designed and optimized for use on the Web.

The architecture implementations of these relatively new Web-enabled decision support

products vary greatly. You will need to carefully examine the various architecture

components that define and support each product. Some areas of particular importance

to meta data repository access are:

§ How does the product solution support a three-tier thin client solution? Is

any information or code stored on the client? Can all design security,

administration, and query access be performed through a Web browser?

§ How do the product components promote the use of open systems

architecture components (e.g., CORBA, COM, Java)?

§ What DBMS products do the product components support? Do the product

components use common, open DBMSs?

§ Can the decision support reporting product access information in the meta

data repository for use in standard or ad hoc reports? Can the decision

support reporting product use the business meta data stored in the

repository for query presentation in the browser? Does the product allow

for drill-downs through the data warehouse content database across to

the repository database for use in reconciliation and auditing?

§ Can the decision support reporting product perform standard or ad hoc

reporting against the repository database without any additional and/or

modified tables or columns? Are there any restrictions to the number of

tables or to the database schema design?

§ What existing mechanisms are currently incorporated in the general

release version of the product to control security access by individuals or

groups to sensitive areas of the repository (e.g., bonus formulas in

business rule calculations)? If available, how is row-level security

implemented through the product?

§ What types of push and/or pull reporting capabilities does the product

support? What report scheduling capabilities are available?

In addition, you should thoroughly analyze any client decision support tools that have

recently been migrated to be Web-enabled. Review closely the architecture design and

technical limitations of the solution from the standpoint of administration, scalability,

performance, maintenance, and troubleshooting. I have seen tools that, from a business

user perspective, were very flashy and offered impressive presentation capabilities, but

were very difficult to administratively support. I also suggest reviewing your corporate

policy on the use of ActiveX objects or Java applets, since some organizations have

issues with their use. Finally, look very closely at how software migration is performed for

new software releases.

Enterprise Information Portal
The popularity of consumer portal paradigms like My Yahoo and My Excite on the Web

has led to a highly customizable category of Web products called Enterprise Information

Portals (EIP), which can be used to access information in the DSS environment. (New

York–based Merrill Lynch & Company coined the term EIP in a November 1998 report

entitled "Enterprise Information Portals" by Christopher Shilakes and Julie Tylman.)

Enterprise Information Portals are applications that enable companies to unlock internally

and externally stored information, and provide users a single gateway to personalized

information required to make informed business decisions. According to Shilakes and

Tylman, EIPs are: "an amalgamation of software applications that consolidate, manage,

analyze, and distribute information across and outside of an enterprise (including

Business Intelligence, Content Management, Data Warehouse & Mart and Data

Management applications.)"

Merrill Lynch believes the EIP market will eventually reach or exceed that of the

Enterprise Resource Planning market. In its 1998 estimates, Merrill Lynch put the total

EIP market at $4.4 billion, and forecasted that "revenues could top $14.8 billion by 2002."

EIPs allow an organization to share its business knowledge across the enterprise beyond

just the data that is available in the data warehouse and meta data repository. EIPs

categorize and group information from multiple sources into a value-added, personalized

view of knowledge for the decision support user. Ranking and filtering of information

content occurs through the portal to meet the specific needs of the business users, or of

the roles they perform in the organization. The portal presents decision support users with

information that is relevant to their business needs and ensures that they have authority

to access it. Most EIPs allow users to perform searches against the corporate knowledge

base to gather not only structured data from databases but also such unstructured data

as documents. The combined use of a search engine and the hyperlink paradigm allows

users to easily filter large quantities of data, which is perfect for meta data repositories.

The portal is integrated with the decision support reporting environment (i.e., query

reporting and/or OLAP) and used for meta data delivery. Most EIP products incorporate

publish and presentation components for distributing information.

Companies are not limiting portals to business intelligence applications; they are also

using them for knowledge management, competitive advantage, field and sales support

applications, and for best practices dissemination. EIPs are helping companies to further

capitalize on investments made over the past few years in enterprise resource planning

applications, data warehouses, and corporate intranets.

The current array of portal products falls into one of two categories: business intelligence

and collaborative. Business intelligence EIPs focus primarily on access to structured

corporate information to help users make strategic business decisions. This type of portal

often supports access to, or integrates with, decision support query reporting and OLAP

products. Collaborative EIPs focus primarily on organizing and sharing workgroup

information such as e-mail, memorandums, and other business documents. The two

types of EIPs are expected to merge as the market for these products matures and

becomes more competitive.

EIP products typically incorporate six components. The first is a taxonomy or category

component that contains a directory of the corporation's business information. The

category component allows a company to not only capture its business information, but

also to organize its content into channels and workgroups. Maintenance of the directory is

through the publishing component, the second portion of the EIP. The third component is

the integration component, which allows the meta data component, the fourth piece,

sometimes called meta data crawlers, to scan the corporate information servers for new

business content and to update the directory. The integration component allows

third-party vendors to interface with the portal to maintain directory information or run

program objects to produce business intelligence information such as decision support

query applications or OLAP reports on demand. The presentation component, the fifth

piece, controls how the information is presented to the user, adhering to the business

rules that affect the particular individual or role. The final portal component, the sixth

piece, is a search engine that is used to process user requests for business information.

The search engine uses the category component to find content in the directory. The

search engine can generally perform full text searches and can identify content through

meta data descriptions of items that are published on the portal. Figure 10.11 illustrates a

EIP architecture.

Figure 10.11: EIP architecture.

Second-generation portal products are beginning to support automated importing and

exporting of meta data across the enterprise through the interoperability of eXtensible

Markup Language, which is becoming a widely sanctioned technology standard for meta

data interchange amongdatabases, meta data repositories, business intelligence, and

knowledge management products. As I discussed in Chapter 3, Meta Data Standards,

XML uses tags to identify, label, and format textual information. The tags in XML describe

what the information is, and promote reuse between applications by combining both data

and meta data. The popularity of XML is apparent with its recent incorporation in the

latest versions of the Microsoft and Netscape Web browsers.

Future portal products are also looking into adoption of the XML Meta Data Interchange

(XMI) standard, which allows exchange of software development repository information

(sponsored by the Object Management Group). XMI can be used for meta data

management in distributed component-based applications, data warehousing, and

application integration environments. XMI unifies three industry standards for repositories

and meta data management: (1) OMG's Meta Object Facility standard for distributed

repositories, (2) Unified Modeling Language for object analysis/design, and (3) W3C XML

for Web-based meta data management.

There are several factors to consider before deciding to deploy an EIP in your enterprise.

Because the primary focus here is to provide reporting capabilities for the meta data

repository, you are already constrained to look at portal products that emphasize

business intelligence. The EIP's interface component needs to be able to interact with a

decision support reporting tool to present information from the data warehouse or

repository. Next, the portal product should be capable of defining the user, individually or

by workgroups, through profiling. An EIP administrator uses this profile to control the

business information content that the portal presents to the particular group or user. The

publishing component needs to support the variety of information types required by your

organization, such as relational databases, multidimensional databases, HTML, XML,

program objects, documents, spreadsheets, and other pertinent data. The interface

component needs to be capable of supporting interfaces to and from external products

targeting support of XML. This interface component should also facilitate the support of

profile changes for large numbers of users in the organization due to recurring business

changes, such as interfacing with a human resources ERP package. The security

functionality of the portal requires thorough analysis to determine what features are

available to control user access to company-sensitive or proprietary information. In some

implementations, individual user-level authentication through the portal is required to

ensure that sensitive information is not disseminated throughout the organization or to

competitors. Finally, the repository and/or infrastructure architects need to conduct a

careful review of the administration and software migration processing steps to avoid

future maintenance nightmares.

Summary

After reading this chapter, you should have a better understanding of the decision-making

process for selecting a meta data delivery method. You will need to evaluate and weigh

several factors in order to select the optimal solution for repository reporting.

Understanding your users' business requirements, your meta data repository architecture,

your users' reporting requirements, and the number of users and their locations will

provide you with valuable information to move forward on the selection process. Be sure

to carefully review purchased repository products for information delivery and architecture.

A simple delivery solution now may mean maintenance headaches down the line. The

additional effort of deploying a decision support reporting tool to access your meta data

repository may offer greater benefits in supportability, scalability, and performance in the

long run and provide your users with the benefits of a single interface.

If you decide to use your data warehouse front-end reporting tool, as a majority of

implementations do, spend the necessary time to understand the tool's architecture. Each

of the major architecture types (i.e., fat client, Web-enabled thin client, and enterprise

information portals) involve advantages and disadvantages, depending on your

organizational and technical environment. Your selection should consider support for

emerging standards like XML, XMI, Java servers, and others that are still on the horizon.

Remember, you are about to make a serious investment in a company and it is product

vision; be sure you are comfortable that it shares your vision. Nothing is more detrimental

to one's career than choosing a decision support product that cannot be supported

months after implementation. On the other hand, choosing a technology that offers

substantial benefits to the entire organization by offering new ways of looking at

information delivery can make you a hero. The technology that works around these

decision support reporting tools and meta data repositories is changing every day,

continually offering new capabilities and challenges for the repository architect.

In the concluding chapter, I discuss the future trends in meta data and data administration

and examine how meta data is being adopted in the knowledge management sector. In

addition, the chapter explores the continuing trend toward better integration of decision

support tools with the meta data repository and considers the increased visibility that

meta data repositories are receiving in the enterprise.

Chapter 11: The Future of Meta Data

Overview

Any company embarking on a meta data repository project needs to stay abreast of the

technological and political forces that are driving the market. This chapter discusses the

trends in the meta data industry that can be discerned from the current market direction.

First, I describe the evolution of the current meta data architectures into more advanced

architectures. I then show how the knowledge management and meta data arenas are

coming together, and how meta data is rapidly moving beyond decision support to span

all of the information systems across an enterprise. Last, I examine the growth of XML

and meta model standards and discuss how they will enable meta data to help control a

company's information systems in the future.

Looking Ahead

Companies involved in meta data development today must be able to anticipate how the

meta data market is likely to evolve in the next several years, or risk having to revisit (and

possibly redo) their meta data development efforts. It is important to recognize these

trends and build meta data repositories that are capable of adapting to them. I see

several significant trends occurring in the meta data industry right now:

§ Evolution of meta data architecture

§ Acceptance of enterprise-wide meta data

§ Convergence of meta data and knowledge management

§ Evolution of XML and meta model standards

§ Development of meta data–controlled systems

Evolution of Meta Data Architecture

The architecture of a meta data repository is critical for efficiently integrating all of the

various types and sources of meta data that exist in a company and for providing user

access to that meta data for all of the business and technical users. Two key trends are

driving the evolution of meta data architecture:

§ Simplified meta data integration architectures

§ Proliferation of advanced meta data architectures

Although, at first glance, these trends may seem to be diametrically opposed, they are

actually complementary. As the meta model standards evolve, the architecture used to

integrate the various sources of meta data is likely to become much simpler than it is

today. On the other hand, as integration becomes easier, businesses will demand a

higher-level of functionality from their repositories. As a result, more advanced meta data

repository architectures will be required to support these high-end requirements.

Simplified Meta Data Integration Architectures

As I discussed in Chapter 7, Constructing a Meta Data Architecture, meta data integration

architecture is very challenging because of the wide variety of meta data types and

sources that need to be brought together in the repository. Companies need to build

program interfaces to gather much of this meta data from the various sources, interpret it,

and integrate it into the meta data repository— all of which contributes to the complexity of

the integration architecture. Meta data integration architectures will become significantly

simpler and easier to implement when the dominant modeling groups (i.e., the OMG and

MDC) define a model standard, but until that happens, companies must rely on a variety

of nonstandard integration tools and custom interfaces to bring their meta data types and

sources together.

A global model standard will enable tool vendors to build program interfaces to integrate

most— but not all— types and sources of meta data and load it into a repository.

Realistically, even after the tool vendors adopt standardinterfaces, we can't expect the

tools to automatically load more than 80 to 90 percent of a company's existing meta data

into the repository. While this is certainly an improvement over the current tool capabilities,

integration architectures will still involve a significant amount of custom interfaces.

Proliferation of Advanced Meta Data Architectures

Of course, once the task of integrating meta data becomes easier, companies are likely to

want to add more functionality to their meta data repositories and implement their

repositories on an enterprise-wide scale. This activity will, in turn, spur the development

of even more advanced meta data architectures. The desire for greater functionality is a

basic human trait. It is something that all IT professionals understand. Has your executive

sponsor ever come to you and said: "I see that you estimate that it will take five months to

build the meta data repository. Don't overwork yourself. Eliminate a few features and feel

free to take six months for the build"? Of course not! Our users want more and more

functionality delivered in less time and at a lower cost. When I was consulting at a global

consumer electronics firm, a key person from one of the business units asked me how

long it was going to take to make a major enhancement to the company's decision

support system. I remember giving him a ballpark estimate of two months, explaining all

of the tasks that we needed to complete before the enhancement could be put into place.

After listening to my explanation, he turned to me and said, "I understand that we really

need to make a lot of changes and bring in a new tool to add the functionality that we

need, but is there any way to reduce the development time to...say a week?" My first

impulse, which I managed to stifle, was to tell him not without an act of God.

End users' demands continually increase as you deliver more features and functionality.

This desire will fuel the need for more bidirectional and closed-loop meta data

architectures. (See Chapter 7, Constructing a Meta Data Architecture, for an additional

discussion of these two architectures.)

TE
AM
FL
Y

Team-Fly®

Bidirectional Meta Data

In a bidirectional meta data architecture, meta data is changed in the meta data repository

and then fed back into the meta data's original source (as illustrated in Figure 11.1).

Figure 11.1: Bidirectional meta data architecture.

Bidirectional meta data will become a reality when a meta model standard emerges and

the various software vendors modify their applications to work with this standard.

Standardization will enable these applications toshare data, thereby creating tool

interoperability. Keep in mind, however, that even after we have a global meta model

standard for decision support, the tool vendors will need at least six months from that

point to adapt their tools to the new standard.

The key benefit of bidirectional meta data is that it allows vendor tools to reuse each

other's meta data. It will help businesses to reduce their system development life cycles

and thereby realize significant savings in their IT spending. Let's suppose, for example,

that a company needs to change the valid domain value for a key attribute in one of its

systems. Bidirectional meta data would allow the company to make the change once in

the meta data repository, then flow the change back to all of the tools that interact with the

repository. Without bidirectional meta data, the company would have to change all of the

tools manually.

Closed-Loop Meta Data

A closed-loop meta data architecture allows the meta data repository to feed its meta data

back into a company's operational systems. This concept is gaining a great deal of

momentum at the corporate level as businesses demand the ability to integrate all of their

information systems and have each system feed into the other corporate systems (as

illustrated in Figure 11.2).

Figure 11.2: Closed-loop meta data architecture.

Closed-loop meta data will enable companies to integrate their customer relationship

management systems, decision support systems, and e-business solutions with their

operational systems, providing a single, integrated business intelligence system. This

type of integration will, in turn, enable the entire organization to share information. This

capability is particularly useful for sharing customer and product information because it

can help companies to provide new, and significantly better, customer services. Similarly,

service intensive industries such as banks, brokerages, and retail institutions can use

closed-loop meta data to delegate many routine decision-making functions to their

information systems, thereby streamlining the decision process and freeing administrative

personnel for other activities.

Let's imagine, for example, that a consumer electronics retailer establishes an e-business

system with an Internet Web site to allow customers to search for and order whatever

components they want. When a customer selects one or more components, a program

interface fires off to the customer relationship management system to trigger a message

back to the customeroffering additional, related products. If the customer management

system indicates that the customer hasn't placed an order in a prespecified amount of

time, the system may offer a discounted price or free delivery as an incentive for the

customer to order additional items. When the customer places an order and completes

the shopping session, another interface sends a message to the corporate DSS to update

the customer file and check the credit rating, then returns this information to the

e-business system. Theoretically, this entire transaction can take place without operator

intervention and all information is automatically captured and shared with all associated

information systems. The applications for closed-loop meta data are limited only by

companies' imaginations, and we can all expect to see some innovative uses for this

technology in the not -too-distant future.

Meta Data Moves Enterprise-Wide

As business continues to change at an ever-increasing rate, corporate IT departments will

be hard-pressed to keep pace with the evolving needs for information. In Chapter 1,

Introducing Meta Data and Its Return on Investment, I discussed the need for businesses

to run impact analysis reports throughout all of the organization's information systems,

thereby enabling corporate IT departments to efficiently adapt their systems to

ever-changing requirements. A meta data repository significantly reduces the costs and

time for development by allowing the IT development staff to run technical impact

analysis reports across all corporate systems stored in the meta data repository. These

impact analysis reports help IT developers to recognize the impact of proposed changes

on their systems. This type of functionality is critical for any company looking to provide its

IT systems with the necessary flexibility and maintainability to keep pace with continually

changing business requirements. Forward-thinking companies understand the

competitive advantage that meta data offers for their total business, not just their DSS.

Convergence of Meta Data and Knowledge Management
Benjamin Franklin once said, "An investment in knowledge pays the best interest."

Something tells me that Ben didn't have knowledge management on his mind…but then

again maybe he did. Companies are beginning to understand what Ben Franklin knew all

those years ago; knowledge is their most valuable asset. Much of the push for knowledge

is coming directly from the senior executives. In a 1998 survey of Fortune 1000

executives, 97 percent of the respondents said that some critical business processes

would improve if more employees knew about them. In the same survey, 87 percent of

respondents said that costly mistakes are occurring because employees lack the right

knowledge at the right time. This tremendous desire to improve and maintain a

company's intellectual capital has triggered the field of study and vendor applications that

we know as knowledge management.

Knowledge management is the gathering and sharing of intellectual capital (i.e., data,

information, and knowledge) to generate a competitive advantage in the market.

Knowledge management can benefit a company in a number of ways, including:

§ Leverage lessons learned to lower expenses

§ Share information to generate new ideas and increase revenues or decrease

expenses

§ Improve the company's ability to adapt to change and opportunities in the market

§ Foster innovation by sharing previous solutions and collective ideas

I remember the first time I read about knowledge management. My first impression was,

"This sounds a lot like what I do with meta data." I view a meta data repository as the

backbone of a knowledge management solution, and don't see how a true

enterprise-wide knowledge management solution can exist without one. The objectives of

knowledge management are much the same as those of a meta data repository. After all,

a meta data repository is a means for implementing a technical solution that captures,

manages, and provides access to our corporate knowledge.

Knowledge Pyramid

As shown in Figure 11.3, the knowledge pyramid is at the heart of knowledge

management. As a company's IT systems mature, they progress from collecting and

managing data to collecting and managing knowledge.

Figure 11.3: Knowledge pyramid.

Of course, data is the basic building block of our IT systems. You capture a great deal of

data each time a customer calls your business to place an order, including, at a minimum,

the name and address of the customer, the product(s) that is being ordered, and the

amount of the order. Unfortunately, this data does not tell us anything about why the

customer purchased the product from our company rather than a competitor, or how

much the customer was willing to pay, or predict whether the customer is

Nothing Worthwhile Is Easy

Many people wonder if knowledge management is a cure-all or just another fad? I

believe that the concept of knowledge management is very sound, but like any other

major IT initiative, it takes a lot of discipline, hard work, and a shift in culture to make it

happen.

I often like to compare major IT initiatives like knowledge management to a similarly

daunting task...that of losing weight. The vast majority of us want to lose some amount

of weight. We would like to be able to just take a pill and still eat whatever we want while

losing all the weight we want. However, there is a proven method for losing weight that

works 100 percent of the time. It is called diet and exercise. If we just cut back on all the

"bad" stuff that we eat (like ice cream, my personal weakness) and exercise regularly,

we can lose weight.

Losing weight takes discipline and hard work; there is no magic bullet, just as there is no

magic bullet for implementing a knowledge management solution. We cannot just buy a

software program and automatically satisfy our need for knowledge management. While

I believe that knowledge management is not likely to go the way of the hula-hoop, I don't

think that it's a utopian solution either. But, when we combine knowledge management

efforts with the functionality of a meta data repository, we can provide great benefit to

business. The meta data repository provides the technical backbone that a sound

knowledge management effort requires. Although a meta data repository is not

generally recognized as a key component of a knowledge management solution, I

believe that for knowledge management to be successful, it must include a meta data

repository at its core.

likely to return. Nor do these data facts indicate whether the company is successful or if it

is efficiently managed.

In short, data by itself has little purpose and meaning. Information is data that has

meaning and purpose— it tells me about my business and how it functions. In the book

Working Knowledge (Harvard Business School Press, 1999), coauthors Thomas

Davenport and Laurence Prusak say that we add value to data in various ways:

§ Contextualize: tells us the purpose for which the data was gathered

§ Categorize: tells us the units of analysis or key components of the data

§ Calculate: tells us if the data was analyzed mathematically or statistically

§ Correct: tells us if errors have been removed from the data

§ Condense: tells us if the data was summarized in a more concise form

While this seems a bit theoretical for us technicians, it really relates to the process of

making our data have direct meaning to our businesses. For example, when we

summarize customer sales amounts, and subtract the expenses for serving those

customers, we attain profitability numbers. It we do this for each customer and then

compare them, we can see which customers are our most profitable ones. In this way,

we're turning data into information.

Knowledge takes us one step beyond information. When I go that extra step to transform

information into knowledge, I learn the three "I's" of my business:

§ Impacts

§ Interacts

§ Influences

I understand how my business impacts the market in which I compete. I realize how my

business interacts with the other companies in the same selling space, and last, I

understand how my company is influenced by the market in which we compete. So

knowledge is information about how my business relates to the overall, global picture.

Meta data helps us to bring data, information, and knowledge together in a meaningful

way, and a meta data repository enables us to capture and analyze these elements over

time to understand them in the context of our evolving business markets. Both meta data

and knowledge management provide measurable business value, and I expect interest in

both to increase substantially as businesses endeavor to leverage their corporate data,

information, and knowledge into a competitive advantage.

XML and Meta Model Standards Meet
Many companies (Sun Microsystems in particular) believe that the network is the

database. If this is true, then Internet Web pages comprise the biggest database of all.

With e-business solutions expected to grow into a $100+ billion industry by the year 2002,

and the number of Web users projected to reach 329 million by 2002 (see Figure 11.4),

we can expect to see this database continue to grow at an exponential rate.

Figure 11.4: Web users worldwide.

Besides being the largest database in the world, the Web is also the world's largest

distributed environment. As this heterogeneous environment continues to expand at an

ever-escalating rate, it becomes increasingly difficult to manage. Many forward-thinking

individuals and companies have already realized that the Web will need a way to make

the reams of disparate data on the web homogeneous. Meta data provides the answer to

this problem...it's called XML. That's right, XML is actually meta data. As I discussed in

Chapter 3, Meta Data Standards, XML and its related standards are attempting to resolve

the problem of heterogeneous data and enable organizations to share information without

designing custom interfaces. XML attaches data tags in HTML to describe the data (meta

data) on the Web page. The advantage of XML is that the data tag, not the location of the

data, describes the data's meaning. Thus, data can be placed on the Web in any order.

XML also facilitates the one off, customized (ad hoc) exchange of electronic commerce

transactions among businesses.

I consider XML to be even more important than the meta model standards being

developed by the MDC and OMG, primarily because it is visible to a much larger

audience— the Web. XML will enable companies to exchange documents (Web pages)

over the Internet without manual intervention orthe need for custom interfaces. Eventually,

XML and the meta model standards will converge, providing businesses with a Holy Grail

that will help them to manage the Web.

As the largest decision support system in the world, the Web is actually hindered by its

size, which is also it's greatest advantage. The biggest problem with the Web today is

finding the information we want. For example, in researching this book I needed to identify

any existing books that focus on the subject of meta data. I used various Internet search

engines to find books on meta data, firing up one search engine after another looking for

"meta data books." My searches returned literally thousands of matches, but none of the

matches pointed me to an actual book on meta data. I must admit that I gave up after

scrolling through the hundreds of web pages that were returned. XML's goal is to provide

the "glue" (meta data) that adds meaning to all of this "stuff" on the web, letting the

Internet search engines look at a Web page and differentiate between an actual book on

meta data and simply the appearance of the words "meta data book." In my search for

books on meta data, the XML data tags would have clearly indicated which sites had

information about meta data in the title of the book. Keep in mind that XML, like the meta

model standards, is still maturing, but there is a great deal of market pressure to develop

a solution quickly. XML is well on its way to becoming the meta data standard for the

Web.

Meta Data Controlled Systems

Sharing and exchanging meta data among various repositories and software tools is

particularly desirable for global enterprises with dispersed teams trying to solve similar or

related data analysis problems using an integrated computing approach. In such

enterprises, project coordination relies heavily on network computing and effective use of

knowledge and resources developed by the various teams. The ability to share meta data

within and across software tools becomes extremely important as these tools' repositories

become increasingly interdependent and the various groups using them try to collaborate

effectively. Like any other integrated approach to collaboration, information sharing must

be managed to minimize duplication of effort while capturing changes to the shared

information and propagating those changes efficiently and accurately. Complex software

applications, such as data warehousing and decision support, typically involve many

types of data obtained from a variety of sources and transformed for various groups with

different data analysis needs.

As XML continues to gain popularity as the format of choice for representing Web-based

data, XML files are likely to become a distinct source of meta data for many software

products. As a result, the ability to interchange the meta data associated with an XML file

while validating some or all of that meta data against predefined XML standards is a key

requirement for interoperating with the emerging e-commerce and Web-based

information systems. The ability to effectively manage the meta data sharing and

exchange processes with various software tools and standard protocols is a fundamental

requirement of any meta data repository architecture for an enterprise solution.

As the meta models become standardized, the many and various tools that we use for our

IT systems will be able to share data, including all of the following:

§ Operating systems

§ Data modeling tools

§ Relational databases

§ Access tools (e.g., OLAP, ROLAP, and MOLAP)

§ ETL (extraction, transformation, and load) tools

§ Meta data integration tools

§ Data quality tools

§ Corporate information portals

§ Data mining tools

Once these tools can share data through standard meta models, organizations will realize

that changes to the information in their meta data repository will cascade to all of their

supporting tools. This capability will enable businesses to centralize much of their system

control processes through the meta data repository, creating a dependent relationship

between the decision support system and each application software product. Meta data in

this case establishes an interface for the tools, as illustrated in Figure 11.5.

Figure 11.5: Meta data–controlled systems.

The Meta Data Driven Enterprise

You are nearing the end of your journey into the depths of meta data. As you've learned,

meta data has come a long way from its early data dictionary days. With e-business

extending the traditional reach of IT systems to the Web, meta data is becoming more

important than ever before for managing our legacy system of the future...the Web.

Without meta data, our information systems are merely modern-day versions of

"stovepipe" applications. A meta data repository is vital to a company's ability to prosper

in our information-driven business environment, but the repository must be built with

specific business needs in mind to support business and technical users, and must be

built on a technologically sound architecture that will support future growth as applications

evolve into true business intelligence solutions.

As with any other major IT undertaking, you will encounter many obstacles in the path to a

truly usable and scalable meta data repository. After all, the shortest path between the

beginning and ending of a project is rarely a straight one. Just remember that the

paybacks are extremely high, so be disciplined, methodical, and work hard, and you will

be successful. To accomplish great things we must not only act, but also dream: not only

plan, but also believe.

Glossary
Numbers
24x7 operation
Refers to an application that is operational 24 hours a day, seven days a week.
3270 terminals
Character-based display terminals that are directly connected to a host computer, usually
a mainframe. These terminals have no internal computing capability; the host
accomplishes all processing. Also known as dummy terminals.

A
access
Operation of reading or writing data on a storage device.
access method
Technique used to access data from physical storage device.
access time
Interval between the instant a computer instruction initiates a request for data and the
instant the data satisfying the request is delivered.
activeX
A Microsoft standard for computer application components.
ad hoc processing
Query or analysis that is nonrecurring, or random.
address
Identification (e.g., number, name, etc.) for a physical storage location where data is
stored.
agent technology
Event-driven software that is structurally invisible to the business user and is always
active.
aggregate
Act of summarizing one or more data sources or dimensions to create a new dimension.
aggregation
Usually a sum, count, or average of underlying detail transactions or data from one or
more tables. Aggregations tend to be calculated along logical business dimensions (e.g.,
sales by product by region).
algorithm
Set of statements organized to solve a specific problem in a number of processing steps.
alias
Alternative label used to refer to a data element.
alphanumeric
Physical data that is represented by numbers and/or letters and/or punctuation.
ANSI
Acronym for American National Standards Institute.
API
Acronym for application programming interface; reference built into computer

TE
AM
FL
Y

Team-Fly®

applications to facilitate communication among applications.
application
Group of algorithms and data linked together to support specific computer processing.
archival database
Collection of data organized to support a specific application.
artificial intelligence (AI)
Ability of a computer program to mimic human intelligence.
ASCII
Acronym for american standard for computer information interchange; format for data
storage and transmission, commonly referred to as text format.
ATM
Acronym for asynchronous transfer mode; packet-based, switched point-to-point data
transmission protocol capable of transmitting data, voice, video, and audio
simultaneously at very high speeds.
atomic level data
Lowest (i.e., most detailed) level of data stored in a data warehouse.
attribute
Property that can assume values for physical database tables or entities; a table typically
has multiple attributes.
audit trail
Data that traces system activity to a physical database or application.
availability
(1) Amount of time a system is functioning and is accessible to its users, or (2) a
measurement of computer system reliability. The amount of time a system is accessible to
its users is divided by the amount of time that it is not accessible to its users.

B-C
backbone
Part of a communications network that usually links nodes or LANs in a diverse
arrangement of communications facilities that support multiple users, either inside a
building, across a city, or between countries. The backbone provides a central support
system and is generally one of the most permanent parts of a communications network.
backup
(1) Table or file that that stores a copy of the database tables used for an application, or (2)
process of copying a file or files to another storage device (e.g., disk or tape) to ensure
that the data can be restored if the primary copy is accidentally or intentionally destroyed
or damaged.
bandwidth
Transmission capacity of a communication channel or the amount of data that a
particular device or type of cable can carry (i.e., a measurement of its throughput).
batch
Computer application that runs in a sequential series of processing steps and is not
user-interactive.
binary element

Base element of data that either exists as two values or states true or false, or one or zero.
binary search
Technique for searching through physical data that is sorted sequentially. This search
partitions the data into two equal parts.
bit
One unit of binary information. A bit represents a one or a zero.
bitmap indexing
Efficient method of data indexing in which nearly all operations on database records can
be performed on the indices without resorting to looking at the actual data underneath.
The number of database reads is significantly reduced by performing operations
primarily on indices.
block
Basic unit of physical data storage. A block usually contains one or more records or the
space to store one or more records.
blocking
Combining two or more physical records so that they are physically collocated, enabling
the records to be accessed by a single machine instruction.
bottom -up
Data warehousing strategy that espouses building incremental data marts to test products,
methodologies, and designs first, then using these data marts to justify the construction
of an enterprise data warehouse.
browsers
"Thin-client" applications used to navigate and access the World Wide Web. Generally
end users' tools of choice for accessing and navigating data warehouses to extract
decision support information and meta data.
b-Tree
Binary storage structure and access method that maintains order in a database by
continually dividing possible choices into two equal parts and reestablishing pointers to
the respective sets, while prohibiting more than two levels of difference to exist
concurrently.
bus
Hardware connection that allows data to flow from one component to another in a
computer system (e.g., from a CPU to a printer).
business case (or business driver)
Business problem, situation, or opportunity that justifies the pursuit of a technology
project.
business process reengineering (BPR)
Process for analyzing and redesigning business processes and associated application
systems.
business rules
Logic applied to calculate or otherwise derive a business-related value.
byte
Unit of data storage; a byte is eight bits of data.
call

To invoke the execution of a program or process.
cardinality
Number of database table rows that correspond to the rows in another table
(relationship).
CASE
See computer aided software engineering.
catalog
Directory of all files available to a computer.
central processing unit (CPU)
Processor that contains the sequencing and processing facilities for instruction ex ecution,
interruption action, timing functions, initial program loading, and other machine-related
functions.
CGI
See comon gateway interface.
change data capture
Process of identifying and/or segmenting the incremental data generated from an OLTP
system over a given period of time.
checkpoint
Identified location in a database where the transactions against the database are frozen or
made inactive.
checkpoint/restart
Means of restarting a program or process at some point other than the beginning.
Checkpoints may be set at different intervals throughout application programs or
processes. When a failure or interruption occurs in a process, these checkpoints allow the
process to be restarted without rerunning all processes before the checkpoint.
child
Unit of data existing in a 1:n relationship with another unit of data called a parent; the
parent must exist before the child can exist, but a parent can exist even when no child
exists. Parent/child structures are common methods for representing a hierarchy.
CIO
Acronym for Chief Information Officer; individual in charge of all information processing
functions within an organization.
CISC
See complex instruction set computer.
client/server system
Software application in which application processing is jointly performed by components
that are physically separate (i.e., the client and the server). For example, a client
computer may communicate over a network to exchange data with a server computer that
stores a database.
clustering
Act of requiring physical database tables to reside adjacent to one another on a storage
media. Such physical location provides significant performance gains when accessing a
large number of rows in a sequential pre-fetch.
clusters

Grouping of interconnected SMP machines that partition the work among them.
COBOL
Acronym for Common Business Oriented Language; high-level, third-generation
programming language that is used primarily for business applications.
collision
Event that occurs when two or more data records are assigned to the same physical
location.
column
Vertical table where values are selected from the same domain. A row is composed of one
or more columns.
commit
Condition raised by the programmer signaling to the DBMS that all update activity
performed by the program should be executed against a database. Prior to the commit, all
update activity can be rolled back or cancelled with no adverse effects on the contents of
the database.
common gateway interface (CGI)
Industry -standard specification for communication between a Web server and a database
server.
communication network
Collection of transmission facilities, network processors, and so on, that provide for data
movement among terminals and information processors.
complex instruction set computer (CISC)
Central processing unit designed to support the direct execution of very complex
operations in one (or very few) processor cycles.
computer aided software engineering (CASE)
Computer application that automates the process of designing databases, developing
applications, and implementing software.
concatenate
To link two strings of characters, generally to use them as a single value.
conceptual schema
Consistent collection of data structures that express the data needs of an organization.
This schema is a comprehensive, base level, logical description of the environment in
which an organization exists, free of physical structure and application system
considerations.
concurrent operations
Activities executed simultaneously or during the same time interval.
CPU
See central processing unit.
current value data
Data that is accurate at the moment of execution.
cursor
(1) Indicator that designates a user's current position on a computer screen, or (2) System
facility that allows a program or process to go from one record to the next after the
program or process has retrieved a set of records.

cylinder
Storage area of DASD that can be read without mechanical movement.

D
DASD
See direct access storage device.
data
Recording of facts or instructions on a storage medium for communication, retrieval,
processing, or presentation.
data aggregate
Collection of data items.
data cleansing
Correcting errors or omissions in data extracted from a source system, usually before
attempting to load it into a data warehouse. Also known as scrubbing.
data cube
Proprietary data structure used to store data for an OLAP end-user data access and
analysis tool.
data definition
Specification of data entities, including their attributes and relationships, in a coherent
database structure to create a schema.
data definition language (DDL)
Language used to define a database and its schema to the DBMS.
data dictionary
Cross-reference of definitions and specifications for data categories and their
relationships.
data element
An attribute (i.e., field) of an entity (i.e., table).
data integrity
Condition that exists so long as there is no accidental or intentional destruction,
alteration, or loss of data.
data manipulation language (DML)
Programming language supported by a DBMS and used to access a database schema.
data marts
Set of data designed and constructed for optimal end-user decision support access. Data
marts can either be sourced from a data warehouse (i.e., dependent data marts) or from
legacy systems (i.e., independent data marts).
data mining
Process of examining large sets of detail data to determine relationships, trends, and
projections.
data model
Physical database model that stores the meta data, including the business functions and
rules that govern data in the associated information systems. A meta model is created at a
higher level of abstraction than the thing being modeled.
data modeling

Activity of representing data and its relationships in diagrammatic form.
data propagation/replication
Process of transmitting a copy of the data inside tables in a database to another, remotely
connected database. This process often involves keeping the two databases synchronized
for data changes.
data record
Identifiable set of data values (or fields) treated as a unit.
data refresh
Process of continuously updating a data warehouse's contents from its data sources.
data structure
A logical relationship among data elements that is designed to support specific data
manipulation functions.
data visualization
Process of displaying data in a graphical form (i.e., pie charts, scatter charts, bar graphs,
etc.) to facilitate analysis.
data warehouse
An enterprise-wide collection of data that is subject oriented, integrated, nonvolatile, and
time variant; organized for end user access and use.
database
Collection of interrelated data stored together with controlled redundancy according to a
schema to serve one or more applications.
database administrator (DBA)
Individual responsible for the design, development, operation, safeguarding,
maintenance, and use of a database.
database key
Unique value that exists for each record in a database table. The value is often indexed,
although it can be randomized or hashed.
database management system (DBMS)
Computer software application used to store and manage data.
decision support system (DSS)
Computer application that contains data sets used to help business users with strategic
planning and related business decisions.
decryption
Transformation of data from an unrecognizable form (i.e., encrypted) to a recognizable
form. Process that takes an encrypted record and restores it to its original form.
delimiter
Flag, symbol, or convention used to mark the boundaries of a record, field, or other unit
of storage.
delta
Difference between two values.
denormalization
Technique of placing normalized data in a physical location that optimizes the
performance of a computer system.
derived data

Data that results from calculations or processing applied by the data warehouse to
incoming source data.
dimension tables
Tables used in a star schema database design to store descriptive, hierarchical, and metric
information about an aspect of the business that is used for analysis (e.g., time, product,
or customer).
direct access storage device (DASD)
Mainframe disk drives that store information.
directory
A table that specifies the relationships between items of data. The directory may be a
table or index that provides the data addresses.
disaster recovery
Policies and plans for restoring a computer system following a system failure.
distributed database
A database controlled by a DBMS in which the data storage devices are geographically
dispersed or not attached to the same computer processor.
domain
Set of allowable values from which actual values are derived for an attribute of a data
element.
download
Act of moving of data from one data storage device to another.
drill-down
Act of exposing progressively more detail by making selections of items in a report or
query.
DSS
See decision support system.
dynamic SQL
SQL statements that are prepared and executed within a program during its execution.
dynamic storage allocation
Technique in which the storage areas assigned to computer programs or processes are
determined during execution.

E-F
EDI
Acronym for Electronic Data Interchange; standard for electronically exchanging
information among computer systems. Commonly used to pass order, billing, and
shipping information between corporations.
EIS
See executive information system.
encoding
Abbreviation of a physical value (e.g., M = male, F = female).
encryption
Transformation of data from a recognizable form to a form that is unrecognizable without
the algorithm used for the encryption. Commonly used to safeguard data in a database or

during transmission.
enterprise architecture
High-level, enterprise-wide data warehouse framework that describes the subject areas,
sources, business dimensions, metrics, business rules, and semantics of an organization.
Also identifies shared sources, dimensions, metrics, and semantics in an iterative data
mart or iterative subject area development methodology.
entity relationship diagram (ERD)
Data model or schema in a database that describes the attributes (fields) of entities
(tables) and the relationships that exist among them.
ETL
Acronym for extraction, transformation, and load. ETL tools are software applications
that assist in the task of gathering data from various sources and integrating the data for
storage in a database structure (typically a data warehouse or data mart).
event
Signal that an activity of significance has occurred.
executive information system (EIS)
Information system designed for top-level corporate executives; typically provides trend
and drill-down analysis capabilities.
extent
Physical unit of disk storage attached to a data set after the initial allocation of data has
been made.
fact table
Table used in a database star schema to store detail transaction level data.
fat client
Workstation that manages both the informational processing and the graphical user
interface in a client/server architecture.
FDDI
Acronym for Fiber Distributed Data Interface; an international standard for light wave
network physical topology devices using fiber optic connections for high-speed data
transmission.
field
See attribute.
file
Set of related records treated and stored together under a single file/table name.
file transfer protocol
Commonly used to transfer data files across TCP/IP networks, including the Internet and
intranets.
firewall
A computer, router, or other device that insulates an internal computer network from
Internet access. The firewall allows only specifically qualified traffic to pass into and out
of the internal network.
first normal form (1NF)
A table that satisfies the properties of a relation is said to be in first normal form. A
relation cannot have a composite key (multiple attributes) or more than one value

(atomic).
flag
Indicator or character that signals the occurrence of some condition.
flat file
Collection of records that are related to one another or that are not stored on a database
table.
foreign key
Unique identifier used to connect a table in a relational database to another external or
foreign table. An attribute that is not a primary key in a relational system, but whose
values are the values of the primary key of another relation.
format
Arrangement or layout of data on a storage device.
fragmentation
Condition in which storage areas on a hard disk are too small and too scattered to be used
productively.
frequency of update
Time period between updates of data sets in a data mart or data warehouse (e.g., daily,
weekly, monthly, etc.).
FTP
See file transfer protocol.

G-I
granularity
Refers to the level of detail in a data warehouse. The higher the granularity, the more
detailed the data (i.e., the higher the level of abstraction).
GUI
Acronym for Graphical User Interface; computer system interface that uses visual
elements, including icons and graphical controls, to facilitate interaction with end users.
hash
To convert the value of the key of a record into a location on disk.
header record
Record containing identification information for a group of records that follow.
heuristic
Type of analysis in which the next step is determined by the results of the current step of
analysis.
hierarchical model
Data schema that uses a tree structure to relate data elements or groups of data elements.
Each parent node in the structure represents a group of data elements.
history table
Table used to capture changing relationships in a decision support system. Commonly
used to capture slowly changing elements of a dimension table.
hit
Occurrence of data that satisfies a defined search criteria.
host

Processor receiving and processing a transaction.
HTML
Acronym for Hyper Text Markup Language; text tagging protocol that provides uniform
display of fonts, tables, and other WWW page elements on most browser applications.
HTTP
Acronym for Hyper Text Transfer Protocol; standard for transmitting and exchanging
HTML pages.
image copy
Process that physically copies a database to another storage device.
indexing
Technique for improving database performance by improving the access method for
finding and retrieving database records.
information
Data that human beings assimilate and evaluate to solve problems or make decisions.
integration
Process of combining data from multiple, nonintegrated OLTP systems to populate a data
warehouse or data mart.
integrity
Property of a database that ensures that the data contained in the database is as accurate
and consistent as possible.
interactive
Type of processing in which the end users interact with the data as it is being processed.
Internet
Worldwide system of interconnected computer networks. The Internet is built on a series
of low-level protocols (HTTP, HTML, FTP) and provides easy and powerful exchange of
information.
intranet
An organization's internal system of connected networks built on Internet-standard
protocols and usually connected to the Internet via a firewall.
ISDN
Acronym for Integrated Services Digital Network; a non-leased digital phone line. ISDN
is a digital standard that allows data transmission of up to 128Kbps over standard copper
twisted-pair wiring and is the most common means for delivering high-speed data
services to remote locations.

J-M
JAD
See joint application development.
Java
Powerful, cross-platform development language for building computer applications
developed by Sun Microsystems as a subset of the C language. Java is commonly used for
WWW, applet, and thin-client application development.
JCL
Acronym for Job Control Language; mainframe programming language used to control

TE
AM
FL
Y

Team-Fly®

the execution of applications.
join
Operation that takes two relations and produces one new relation by concatenating the
rows and matching the corresponding columns when a stated condition occurs between
the two.
joint application development (JAD)
Development technique in which end users and system developers work together to
define the system requirements for an application.
justify
To adjust the value representation in a character field to the right or to the left.
key
Data item or combination of data items used to identify or locate a record instance.
label
Set of symbols used to identify or describe a file, item, record, or message.
LAN
See local area network.
latency
Time taken by a DASD device to position the read arm over the data storage device.
legacy systems
Sources of historical data (e.g., existing OLTP systems) for a data warehouse.
linked list
Group of records where each record contains a pointer to the next record in the group.
local area network (LAN)
Short-distance data communications network used to link computers and peripheral
devices; usually limited to communication within a building or campus.
log
Journal of activity .
mainframe
Large-capacity computer that provides high levels of processing power, security, and
stability.
managed query environment
Informational processing capability in which the access and meta data tools hide the
complexity of the data structures with a "semantic layer" of business terms and rules.
massively parallel processor (MPP)
Interconnected group of processors with processing functions divided among the
individual processors.
Mbps (megabits per second)
1,000 kilobits per second. Usually used to express network bandwidth or throughput
rates.
meta data
All physical data and knowledge possessed by an organization, including that retained in
software and other media and possessed by employees. Includes information about the
physical data, technical and business processes, rules/constraints of the data, and
structures of the data used by an organization.

meta data repository
Physical database tables used to store meta data.
meta language
Language used to specify other languages.
methodology
Procedural documentation of the steps required for a successful design, implementation,
and maintenance of a data warehouse or data mart.
middleware
Layer that exists between the application and the underlying complexities of a network,
the host operating system, and any resource servers (e.g., database servers). Middleware
makes vastly different platforms appear the same to an application by placing an API
between the application and the resource that the application needs.
migration
Process by which data is moved to or from one data storage device to another.
MIPS
Acronym for Millions of Instructions per Second; measurement of computing power.
Refers to the number of instructions executed by a CPU within one second.
mission-critical system
Software applications that are considered essential to the continued operation of an
enterprise. If these systems experience failure, the very viability of the enterprise is
jeopardized.
MOLAP
See multidimensional online analytical processing.
MPP
See massively parallel processor.
multidimensional aggregation tables
Aggregation that contains metrics calculated along multiple business dimensions, such as
sales by product by customer across regions.
multidimensional online analytical processing (MOLAP)
OLAP analysis provided by a system relying on dedicated, precalculated data sets.

N-P
network
System of interconnected computing resources (computers, servers, printers, etc.).
network bandwidth
Measurement of the transmission speed of the interconnection medium of a network.
Usually expressed in Mbps (e.g., 10 Mbps).
network computer
"Thin-client" computer that relies on server resident computation, resources, data, and
applications to provide computing services to users.
normalized
Type of database design that disperses data into tables that contain only unique and
pertinent attributes of the subject of the table.
null

Data item or record for which no value currently exists.
numeric
Data representation using only numbers and a decimal point.
OLAP
Acronym for Online Analytical Processing; computer application that allows
multidimensional manipulation, display, and visualization of data for reporting purposes.
OLTP
Acronym for Online Transaction Processing; computer application that automates one or
more business processes, such as order entry.
OODB
Acronym for Object Oriented Data Base; database that allows the storage and retrieval of
multiple data types, such as text, video, audio, and tabular data.
operational data
Data used to support an organization's daily processing.
operational data store (ODS)
Set of integrated data; does not incorporate history or summarization for tactical decision
support.
optimizer
Element of database systems that seeks to optimize the use of the database resources and
speed the retrieval of data by controlling the order of processing and the use of internal
resources.
padding
Technique used to fill a field, record, o r blank with default data (e.g., zeros).
page
Basic unit of data on DASD or memory.
parallel query execution
Method for improving database performance that splits the database query into
components and permits all components to be simultaneously executed in parallel
through concurrent processes.
parameter
Data value that is sent to a program or process.
parent
Unit of data in a 1:n relationship with another unit of data (i.e., child) where the parent
can exist independently.
parsing
Algorithm that translates a program or process into meaningful machine instructions.
partition
Division of data into multiple physical units. Partitioning is used to divide a single table
from a source into two or more tables inside a data warehouse, typically using time as a
basis for the division (e.g., year-by-year partitions).
PERL
Acronym for Practical Extraction and Report Language; an interpreted programming
language common in the UNIX environment.
pointer

Physical address of a data record or other groupings of data that are contained in another
record. Enables a program to access the former record when it has retrieved the latter
record.
primary key
Portion of the first block of each record in an indexed data set that can be used to find the
record in the data set.
process
Any operation or combination of operations on data.
program
Sequence of instructions that tell the computer what processing to do.
protocol
Set of semantic and syntactic rules that determines the behavior of functions in achieving
communication.

Q-R
query
Clearly specified formal request posed by a user to retrieve information from a data
warehouse.
RAID
See redundant array of inexpensive disks.
RAM
Acronym for Random Access Memory; electronic computer component that stores data in
a very fast read/write environment. Operating systems and applications are loaded into
memory from disk, where the processor sequentially executes them.
RDBMS
See relational database management system.
record
Set of data that is treated as a unit.
recovery
The act of restoring a database or files to an earlier state or condition.
reduced instruction set computer (RISC)
Processor designed to execute a very limited set of instructions at very high speed.
redundancy
Storing more than one occurrence of data.
redundant array of inexpensive disks (RAID)
DASD that uses a series of interconnected disk drives to provide storage. RAID 1 and
RAID 5 are the two most common RAID implementations in data warehousing and data
marts. RAID 1 is a mirroring standard, where data is written to two identical disk arrays,
providing full backup of information. RAID 5 involves at least one parity disk drive,
which facilitates the re-creation of data if a primary data storage disk fails. RAID 1 is fast
but expensive; RAID 5 requires fewer drives, but is much slower.
referential integrity
Feature of some database systems that ensures that any record stored in the database is
supported by accurate primary and foreign keys.

regression analysis
Statistical operations that help to predict the value of the dependent variable from the
values of one or more independent variables.
relational data base management system (RDBMS)
Data storage system based on the relational model, which uses tables, columns, and views
to organize and store data in a series of joined tables.
relational online analytical processing (ROLAP)
Computer application that provides OLAP functionality from data stored in a relational
database.
repeating groups
Collection of data that can occur several times within a given record occurrence.
replication server
Dedicated computer system that executes a replication application.
RISC
See reduced instruction set computer.
ROLAP
See relational online analytical processing.
roll-up
Act of creating higher levels of summarization or aggregation for reports and queries.
rollout
Act of distributing the same data warehouse solution to a larger audience than the one
initially served by the first implementation. Rollout involves concerns of standardization
and scaling the DSS to many additional users.

S-T
scalability
Capability of a hardware/software system to expand to accommodate future
requirements.
schema
Diagrammatic representation of the data storage aspects of a database system.
second normal form (2NF)
A relation that is in first normal form (1NF) and every nonkey attribute is dependent on
each key of the relation. The goal of second normal form is to ensure that all information
in one relation is only about one thing.
semantic layer (SL)
GUI abstraction layer placed between the user and the technical structure of a database.
sequential file
File in which records are ordered according to values of one or more key fields.
serial file
Sequential file in which the records are physically adjacent to one another.
slice and dice
Analyzing data along many dimensions and across many subsets, including analyzing a
data warehouse from the perspective of fact tables and related dimensions.
SMP

See symmetrical multi processing.
snowflake schema
Extension of the star schema database design in which each of the points of the star
radiates out into additional points. The dimension tables in a snowflake schema are more
normalized than they are in a conventional star schema, which improves query
performance and minimizes disk storage by joining smaller, normalized tables rather
than large denormalized ones. Such normalization also increases the flexibility of
applications and lowers the granularity of the dimensions.
spiral development methodology
Iterative software development methodology that delivers software functionality in
incremental stages, identifying improvements by deploying the software with tight
controls but ever-increasing functionality.
SQL
Acronym for Structured Query Language; computer programming language used to
communicate with database systems.
staging area
Collection of data extracted from OLTP systems and provided for population into DSS
systems.
star schema
Modeling technique that uses a single table (i.e., the fact table) in the middle of the
schema to connect to a number of other tables (i.e., the dimension tables) encircling it.
This schema is optimized for end user business query and reporting access.
subject area
Set of data organized to reflect a specific area of business, such as expenses, finance, or
sales.
symmetrical multi processing (SMP)
Computer system design that uses multiple processors sharing memory and DASD
resources, thereby dividing the workload among multiple processors on one CPU.
syndicated data sources
Commercially available databases that contain representative data for specific vertical
markets; typically available as one-time database samples or as subscription services.
This information is useful for market assessment and simulation of proposed business
strategies.
system of record
OLTP system that has been identified as the sole and/or primary source for a target data
warehouse or data mart field.
T1/DS1
Dedicated, leased digital transmission facility capable of speeds of 1.544 Mbps.
T3/DS3
Dedicated, leased digital transmission facility capable of speeds of 45 Mbps.
table
Array of data in which each item can be unambiguously identified by means of a key.
TCP/IP
See transmission control protocol/internet protocol.

thick client
Workstation that manages the informational processing and graphical user interface in a
client/server architecture.
thin client
Workstation that principally manages the GUI in a client/server architecture while a
server handles the informational processing.
third normal form (3NF)
A relation that is in second normal form (2NF) and every nonkey attribute is
nontransitively dependent on each candidate key.
time stamping
Technique of tagging each record with a value that represents the time that the data was
accessed, processed, or stored.
time variant data
Data whose accuracy is relevant to some moment in time.
top-down
Data warehousing technique in which an enterprise data warehouse is constructed first,
then all dependent data marts are sourced off of it.
topology
Refers to the organization of physical devices and connections in a computer or network
system.
transformation engine
Computer application that transforms data dynamically via a direct connection to the
source system and a direct load of the target system.
transmission control protocol/Internet protocol (TCP/IP)
Networking protocol that supports communication across interconnected networks,
between computers with diverse hardware architectures, and various operating systems.
Generally regarded as the industry standard for PC and Internet connections.
trend analysis
Process of looking at homogeneous data over a duration of time.

U-W
UNIX
Multiuser, multitasking operating system commonly used to run complex data processing
or communications systems. Also offers the ability to move programs from one kind of
computer to another with little or no modification.
update
To add, change, or delete data values.
URL
Acronym for Uniform Resource Locator; Address for a resource on the WWW. All public
Web sites have URLs (e.g., http://www.ewsolutions.com). The first part of the URL
(before the colon) specifies the access method. The part after the color is interpreted
according to the access method (e.g., two slashes indicate a machine name), and the part
after the period indicates the type of organization that owns the site (e.g., COM indicates
a commercial site).

verification mode
Data analysis technique in which the contents of a data warehouse are used to verify the
accuracy of an existing hypothesis
VLDB
Acronym for Very Large Data Base; database containing a very large amount of data.
WAN
Acronym for Wide Area Network; network of computers that is usually privately owned
and covers a wide geographic area; may interconnect LANs.
waterfall development methodology
Development methodology that mandates that every step of the process be fully
completed before moving on to the subsequent step. This methodology is not appropriate
for developing data warehouses or data marts due to the inherently slow development
process.
www
Acronym for world wide web; huge body of information available through the Internet.
Although Web and Internet are often used synonymously, Web actually refers to the
software and related conventions that store information on the Internet.

Appendix A: Tool Evaluation Checklist
This appendix presents the Tool Evaluation Checklist introduced in Chapter 4,

Understanding and Evaluating Meta Data Tools, in its entirety. You may find it

helpful to review this complete checklist and compare it with your organization's

tool requirements, then copy and use all or portions of it as a guide when you

interview tool vendors. Refer back to Chapter 4 for an explanation of how to

apply the Weight, % Met, and Score columns to your own evaluation process.

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

A VENDOR

BACKGROUND

1 Full name and business

address of vendor.

2 Parent company.

3 Number of years company

has been inbusiness.

4 Company structure. Is it a

corporation,partnership, or

privately held? List names

associated with structure if

different from Question

#1.

5 Public or privately held

company? If public, which

exchange is company

traded on, and what is

company's market

symbol?

6 When did the company go

public, or when is it

expected to go public?

7 Total number of

employees worldwide.

8 Total number of U.S.

employees.

9 Web site URL.

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

10 Number of developers

supporting proposed

product solution.

11 Company profit/loss for

past three years (if

available).

B PROPOSED SOLUTION

OVERVIEW

12 Provide a summary of the

vendor's proposed

solution and explain how it

meets the needs specified

in this document.

13 What are the names and

versions of the product(s)

component(s) comprising

the vendor's proposed

solution?

 The repository

architect and

infrastructure

need to carefully

review all the

components in

theproposed

solution and

compare them

with thetarget

technical

environment and

support structure.

How do the

components

communicate?

What hardware

platforms,

DBMSs, Web

servers, and

communications

protocols do the

components

require? How is

security and

TE
AM
FL
Y

Team-Fly®

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

migration

handled among

the various

components?

14 Number of worldwide

production installations

using precisely this

proposed solution

configuration.

 The key word

here is precisely.

Be sure to

consider the

hardware, DBMS,

Web server, etc.

15 Number of U.S.

production installations

using precisely this

proposed solution

configuration.

 How many other

companies are

using same

configuration?

vendor going to

be the first?

16 What hardware, operating

system, DBMS, and Web

browser limitations do

each of the product(s)

component(s) have in the

proposed solution on

client and server

platforms?

 Be mindful of any

requirements to

download J

applets and/or

ActiveX controls

to the client.

17 What is the release date

and version number

history of each of the

product(s) component(s)

over the past 24 months?

18 What is the anticipated

release date and new

feature list for each of the

product(s) component(s)

for the next 12 months?

19 Provide a list of known

software bugs, errors or

other technical issues

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

associated with each of

the product(s)

component(s).

C COST OF PROPOSED

SOLUTION

20 Total cost of propos ed

solution.

21 Cost of consulting

services required

forinstallation.

 Negotiate

consulting time

up front to

complete staff

training and get

the repository up

and running as

quickly as

possible.

22 Cost of consulting

services for initial project

setup.

23 What is the vendor's daily

rate for consulting

services without

expenses?

24 Annual maintenance

cost/fee.

 Typically ranges

between 14 and

18 percent of

solution price.

25 Are all new product

component

releases/upgrades

provided while under an

annual maintenance

agreement? If not, please

explain in detail.

D TECHNICAL

REQUIREMENT

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

26 Are there any database

schema design

requirements for the DSS

data model in order to

function with the

repository product?

 Does the

proposed solution

require a change

in the existing

DSS schema

design in order to

function?

27 How does the tool control

the various versions of the

meta data (i.e.,

development, quality

assurance, and

production) stored in the

repository?

28 How is meta data from

multiple DSS projects

controlled and separated?

How can various projects

share meta data?

 The answer to

this question will

determine how

you administer

the product and

provide security.

29 Describe how meta data

repository contents are

migrated from one system

engineering phase to the

next (i.e., development,

quality assurance, and

production). How does

this processing sequence

differ when dealing with

multiple projects on

various time lines?

 In particular,

is meta data

migrated through

the various

design phases?

Can a single

project or portion

of a project be

migrated

forward? How?

30 What DBMS privileges

does the product support

(e.g., roles, accounts, and

views)?

31 Can DBMS-specific SQL

statements

 Be sure the

solution can

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

beincorporated into

queries?

support the

various DBMS

techniques

required to

support the DSS

environment. For

example, can

roles, parallel

threads, dirty

read, and other

unique DBMS

features be used

through the

repository?

32 Describe the security

model used with the

product.

 Can security be

centrally

controlled or

distributed?How

can various DSS

projects be

separated? Is

security based on

the DBMS, OS,

etc.? How is

access controlled

through the Web?

33 Can administration and

use privileges be assigned

at a user, workgroup,

project, and enterprise

level? Describe.

34 How does the product use

existinginfrastructure

security systems?

 Can existing

access methods

be used as

passthroughs?

Or does the

solution require

its own database

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

for security?

35 Does the product use any

type of single sign-on

authentication (e.g.,

LDAP)?

36 Are all user IDs and

passwords centrally

located for all product

components? Where?

37 Where are user security

constraints for the product

stored?

 Does the solution

provide row

security?

38 Can a user have access to

the repository tool for one

project but no access for

another project?

39 Can a user view the SQL

generated by the product?

 Also consider

controls imposed

on SQL

generation.

40 Is the product

Web-enabled? Describe.

41 Can the product be fully

used through Web

browser on the client?

 Be sure all

desktop client

features are

available with the

Web version of

the solution.

42 Can the product be fully

administered through a

Web browser? Describe.

43 Which Web browsers

does the product support?

Which Web server

products does the product

 And, what

hardware

platforms?

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

support?

44 What ActiveX controls

and/or Java applets are

required on the client PC?

How large are these

controls and/or applets?

45 What programming

requirements are required

to support the proposed

meta data repository

solution (e.g., script, SQL,

etc.)?

 Consider the

training curve.

46 What scalability options

are available in the

solution to determine

where processing is

performed for

optimization?

47 What collaborative

support comes with the

proposed solution (e.g.,

e-mail, pagers, etc.)?

48 Describe what processing

functions run on the client

versus the server.

 What options

does the solution

offer to

redistribute

processing?

49 Does the product allow

multiple meta data

developers to work

simultaneously with the

same DSS project?

Describe facilities.

 What memory

and processing

requirements are

needed for each

user? How does

the vendor

suggest

calculating these

needs?

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

50 What scheduling tools

does the product interface

with (CA-7, CRON,

Control-M, JES/2, etc.)?

51 Does the product use any

middleware components?

If so, how do they improve

overall performance of the

product?

52 Do new upgrades or

releases of the product

come with automated

repository DBMS

conversion routines?

53 What is an average

hardware configuration

(number of processors,

speed of processors, hard

disk space, RAM) for the

client and server compon-

ents of the proposed

architecture? Please

specify assumptions.

 Try to obtain

configuration

examples (even if

they do not

exactly match

your

configuration)

then extrapolate.

E META DATA

MANAGEMENT

54 Is the meta data

repository tool active or

passive in controlling the

processes of the DSS

environment? If active,

explain.

 What agents

and/or triggers

can be used to

make the

repository

proactive?

55 Can the meta data

repository tool's meta

model be extended to

include additional tables

or columns?

 How well does

the proposed

solution handle

the need for

customization?

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

56 What types of source

system data can the

repository directly read

and capture meta data

from (e.g., DBMS, flat

files, DDL, spreadsheets,

copybooks, etc.)?

57 What CASE tools or data

modeling tools can the

repository tool directly

read and capture?

58 How are business rules

captured and stored in the

repository?

59 How are calculations

captured and stored in the

repository?

60 What front-end query

reporting and/or OLAP

tools can access and

store meta data directly

from the repository?

61 What data monitoring

tools can the repository

directly access meta data

information from?

62 Describe the types of user

interfaces that the

repository tool has for

manual entry of meta

data.

63 Can the repository tool

read and write CASE Data

Interchange Format

(CDIF) compliant meta

data files?

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

64 Describe how data

mappings between source

operational and target

decision support data are

captured and maintained

in the repository tool.

65 What reporting

capabilities does the meta

data repository tool

include as standard? Can

data from the repository

be exported externally to

other applications (e.g.,

spreadsheets)?

66 Does the tool support

predefined and/or ad hoc

reporting? Describe.

67 How does the repository

share and separate meta

data needed for various

DSS projects (e.g., atomic

data warehouse versus

various

departmental-specific data

marts)?

68 What facilities does the

repository tool have for

analyzing the impact of a

change on a source

operational system to the

DSS environment?

69 What notification or alert

utilities does the tool

provide in response to

changes to operational

systems, data mappings,

DSS data model, or

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

reports?

70 How does the tool support

the base components of a

meta data repository (i.e.,

operational source

system, logical DSS data

model, physical DSS data

model, source to target

data mapping, ETL load

statistics, business

subject area views, query

statistics)?

F COMPETITIVE

ADVANTAGES

71 Discuss the extent to

which the vendor's

proposed solution fits the

needs of a meta data

repository tool for a

decision support

environment.

 How well does

the repository

product integrate

with existing

components

(e.g., DBMS,

query reporting

tool, OLAP, ETL,

and data

cleansing

products)?

72 Discuss the advantages

the proposed solution has

over other vendor

products in this DSS

market space.

73 What is the vendor's

market share in this DSS

market space? Source of

market share?

 Use research

sources such as

Gartner Group,

Meta, and Onum.

G TECHNICAL SUPPORT

74 Discuss in detail the

technical support offered

TE
AM
FL
Y

Team-Fly®

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

in the proposed solution.

75 Where is the primary

technical support center

located?

76 What times and days of

the week is the support

center available for

customer support?

77 Describe the technical

support center's

guaranteed response

time.

78 Describe the escalation

procedures used to

resolve customer

problems.

79 Are technical support

costs included in the

annual maintenance

agreements? If not, how

are technical support

costs charged backed to

the customer?

80 Are all product

components comprising

the proposed solution

supported out of a single

technical support center?

If not, explain.

81 Is an online database(s) of

previously closed issues

and/or frequently asked

questions (FAQs) and

their solutions available

for customer review?

82 Describe how upgrades Can two versions

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

can be installed in parallel

with existing versions.

of the product be

operated on the

same platform?

H DOCUMENTATION

83 Discuss the quality and

availability of all forms of

software documentation

(i.e., user, technical, and

installation).

84 What media/format is

documentation provided in

(e.g., online, CD-ROM, or

hard copy)? Are multiple

copies or alternative

media/formats available at

no charge?

I TRAINING

85 What training classes are

included in the cost of the

proposed solution? How

many students does the

solution include?

86 What is the training cost

for each class?

87 Where are training

classes held?

88 Are any computer-based

training (CBT) courses

available? If so, what is

the CBT cost?

89 What training classes are

recommended for the

repository architect, data

administrator,

infrastructure developer,

and business users,

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

based on the contents of

the proposed solution?

J IMPLEMENTATION

90 Describe the sequence of

events and level of effort

recommended for clients

to consider in planning

their implementation

strategy.

 Obtain as much

implementation

documentation as

possible from the

vendor to use as

a planning guide.

91 What is typical duration of

implementation cycle?

92 How well does proposed

product solution handle

the number and types of

data sources described in

this document?

93 How many DSS database

schema dimensions and

facts can the proposed

product solution handle?

94 Provide a sample project

plan for implementing the

proposed solution for a

single DSS project.

95 What repository

implementation reports

can the proposed product

solution generate?

96 What client resource skill

sets need to be in place

for installation and

implementation?

K STRATEGIC

PARTNERSHIPS

97 Identify and describe the

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

vendor's strategic

partnerships with CASE or

data modeling tool

vendors.

98 Identify and describe the

vendor's strategic

partnerships with DSS

extraction, transformation,

and loading tool vendors.

99 Identify and describe the

vendor's strategic

partnerships with DSS

data cleansing tool

vendors.

100 Identify and describe the

vendor's strategic

partnerships with DSS

query reporting and/or

OLAP vendors.

101 Identify and describe the

vendor's strategic

partnerships with DSS

data monitoring tool

vendors.

102 Identify and describe the

vendor's strategic

partnerships with

hardware vendors.

103 Identify and describe the

vendor's strategic

partnerships with DBMS

vendors.

104 Identify and describe the

vendor's strategic

partnerships with VARs.

105 Identify and describe the

NO. SECTION/DESCRIPTION WEIGHT %

M

E

T

SCORE COMMENTS

vendor's strategic

partnerships with

integrators.

106 Identify and describe the

vendor's strategic

partnerships with

consulting implementation

providers.

L CUSTOMER

REFERENCES

107 Obtain from vendor at

least three customer

references that may be

contacted regarding

quality of software,

upgrades, proper sizing,

implementation, and

training.

 For each

customer

reference obtain

the following

information:

§ Company

name and

address

§ Contact

name,

title, and

phone

number

§ Type of

services

offered

§ Modules

installed

(names of

modules)

§ Installation

date(s)

Appendix B: Meta Data Project Plan
This appendix presents the Meta Data Project Plan that is walked through in

detail in Chapter 6, Building the Meta Data Project Plan. This plan, which uses

an iterative development methodology, contains all of the major sections that

most meta data repository projects require. Although this project plan focuses

on implementing a new repository, the steps for enhancing an existing

repository are much the same.

The timelines for a meta data repository project differ widely according to the

functionality required and the available staff; however, the timelines presented

in this plan are common for a first release of a substantial value-providing meta

data repository project.

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

 Meta Data

Repository

Project Plan

81 days

1 Orientation

phase

15 days

1.1 Gauge

organization's

understanding

of meta data

1 day Project manager

1.2 Obtain meta

data course

instructor

7 days Project

manager[0.25]

1.3 Work with

instructor to

design

customized

course

3 days 1.2 Trainer, project

manager[0.25]

1.4 Conduct

executive

training to

teach about

meta data

1 day 1.3 Project champion,

subject matter

expert, end user

committee,

project manager,

key executive

management, key

IT team leaders

1.5 Conduct 4 days 1.4 Subject matter

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

training for key

developers

expert[0.5],

project manager,

DBA, data

modeler,

repository

architect,

business analyst,

data acquisition

developers, data

delivery

developers

2 Feasibility

phase

26 days

2.1 Create project

scope

document

17 days

2.1.1 Create

interview

questions

1 day Project manager,

business analyst

2.1.2 Conduct

interviews with

key personal

10 days 2.1.1 Project

manager[0.5],

business analyst,

subject matter

expert

2.1.3 Evaluate

requirements

3 days 2.1.2 Subject matter

expert, business

analyst, project

champion, project

manager

2.1.4 Generate

project scope

document

2 days 2.1.3 Business analyst,

project manager

2.1.5 Meet with key

personal to

approve

document

5 days 2.1.4 Business

analyst[0.5],

project

champion[0.25],

project

manager[0.5], key

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

executive

management[0.25

], subject matter

expert[0.5]

2.1.6 Obtain signoff 1 day 2.1.5 Project champion,

project manager,

subject matter

expert

2.2 High-level

planning and

funding

9 days

2.2.1 Develop

high-level

project plan

3 days 2.1 Project manager

2.2.2 Determine

resource

requirements

2 days 2.1 Project manager

2.2.3 Approve

project plan,

resource

requirements,

and funding

2 days 2.2.2 Project champion,

project manager

2.2.4 Obtain

resources

(internal and

external)

5 days 2.2.3 Project manager

2.2.5 Initial project

plan and

resourcing

complete

0 2.2.4

3 Design phase 36 days 2

3.1 Meta data tool

evaluation and

selection

26 days

3.1.1 Meta data

integration tool

26 days

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

3.1.1.1 Identify major

integration tool

vendors

2 days Data acquisition

developers,

repository

architect[0.25],

project

manager[0.25],

data modeler

3.1.1.2 Create

weighted

checklist and

interview

5 days Data acquisition

developers,

repository

architect[0.25],

project

manager[0.25],

data modeler

3.1.1.3 Send checklist

and interview

to vendors for

completion

0 3.1.1.2 Data acquisition

developers,

repository

architect[0.25],

project

manager[0.25],

data modeler

3.1.1.4 Receive

completed

vendor

checklist and

interview

10 days 3.1.1.3 Data acquisition

developers,

repository

architect[0.25],

project

manager[0.25],

data modeler

3.1.1.5 Receive tool

demo (check

demo to

checklist

answers)

5 days 3.1.1.4 Data acquisition

developers,

repository

architect[0.25],

project

manager[0.25],

data modeler

3.1.1.6 Check vendor

references

1 day 3.1.1.4 Data acquisition

developers,

repository

architect[0.25],

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

project

manager[0.25],

data modeler

3.1.1.7 Decide upon

tool

5 days 3.1.1.6 Data acquisition

developers,

repository

architect[0.25],

project

manager[0.25],

data modeler

3.1.1.8 Create

contract and

obtain vendor

signoff

5 days 3.1.1.7 Project

manager[0.25],

legal

department[0.5],

project

champion[0.25]

3.1.2 Meta data

access tool

26 days

3.1.2.1 Identify major

integration tool

vendors

2 days Business analyst,

data delivery

developers,

repository

architect[0.25],

project

manager[0.25]

3.1.2.2 Create

weighted

checklist and

interview

5 days Business analyst,

data delivery

developers,

repository

architect[0.25],

project

manager[0.25]

3.1.2.3 Send checklist

and interview

to vendors for

completion

0 3.1.2.2 Business analyst,

data delivery

developers,

repository

architect[0.25],

project

manager[0.25]

TE
AM
FL
Y

Team-Fly®

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

3.1.2.4 Receive

completed

vendor

checklist and

interview

10 days 3.1.2.3 Business analyst,

data delivery

developers,

repository

architect[0.25],

project

manager[0.25]

3.1.2.5 Receive tool

demo (check

demo to

checklist

answers)

5 days 3.1.2.4 Business analyst,

data delivery

developers,

repository

architect[0.25],

project

manager[0.25]

3.1.2.6 Check vendor

references

1 day 3.1.2.4 Business analyst,

data delivery

developers,

repository

architect[0.25],

project

manager[0.25]

3.1.2.7 Decide upon

tool

5 days 3.1.2.6 Business analyst,

data delivery

developers,

repository

architect[0.25],pro

ject

manager[0.25]

3.1.2.8 Create

contract and

obtain vendor

signoff

5 days 3.1.2.7 Project

champion[0.25],

project

manager[0.25],

legal

department[0.5]

3.2 Construct

integration

architecture

document

10 days

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

3.2.1 Identify

sources of

meta data to

be integrated

3 days Repository

architect[0.5],

project

manager[0.5]

3.2.2 Identify meta

data needs

each source

shall provide

2 days 3.2.1 Repository

architect[0.5],

project

manager[0.5]

3.2.3 Detail the

specific

integration

method each

source of meta

data will need

3 days 3.2.2 Repository

architect[0.5],

project

manager[0.5]

3.2.4 Map out

hardware/softw

are

architecture

2 days 3.2.3 Repository

architect[0.5],

project

manager[0.5]

3.3 Create detailed

design

document

17 days 2

3.3.1 Identify

business users

of the

repository

1 day Subject matter

expert, business

analyst, data

modeler[0.5],

project

manager[0.25],

data delivery

developers

3.3.2 Identify

technical users

of the

repository

1 day Subject matter

expert, business

analyst, data

modeler[0.5],

project

manager[0.25],

data delivery

developers

3.3.3 Meet w/users 10 days 3.3.1, 3.3.2 Business analyst,

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

to define

specific

reporting

needs

(business and

technical)

data modeler[0.5],

project

manager[0.25],

data delivery

developers,

subject matter

expert

3.3.4 Review and

approve user

requirements

1 day 3.3.3 Subject matter

expert, business

analyst, data

modeler, project

manager, data

delivery

developers,

project champion,

repository

architect

3.3.5 Create detailed

data delivery

specifications

5 days 3.3.4 Subject matter

expert, business

analyst, data

modeler[0.5],

project

manager[0.25],

data delivery

developers

3.4 Train

development

staff (if tool is

being used)

10 days 3.1

3.4.1 Train

development

staff on meta

data

integration tool

10 days Data acquisition

developers,

repository

architect, tool

vendor

3.4.2 Train

development

staff on meta

data access

tool

10 days Repository

architect, data

delivery

developers, tool

vendor

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

4 Construction

phase

77 days

4.1 Build meta

model

10 days 3.3

4.1.1 Construct meta

model

9 days DBA[0.25], data

modeler

4.1.2 Walk through

meta model

with team

1 day 4.1.1 DBA[0.25], data

modeler

4.2 Design meta

data security

process

6 days 3.3

4.2.1 Identify

business and

tech security

permissions

2 days Repository

architect[0.25],

subject matter

expert[0.25],

business

analyst[0.25], key

IT team leaders

4.2.2 Set up security

permissions

processes

3 days 4.2.1 Repository

architect[0.25],

subject matter

expert[0.25],

business

analyst[0.25], key

IT team leaders

4.2.3 Gather

business users

IDs and

provide

security

clearance

1 day 4.2.2 Repository

architect[0.25],

subject matter

expert[0.25],

business

analyst[0.25], key

IT team leaders

4.2.4 Gather

technical users

IDs and

provide

1 day 4.2.2 Repository

architect[0.25],

subject matter

expert[0.25],

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

security

clearance

business

analyst[0.25], key

IT team leaders

4.3 Develop meta

data

integration

processes

12 days 3, 3.4, 4.5.3

4.3.1 Build/unit test

meta data

integration

programs

10 days DBA[0.25], Data

acquisition

developers,

subject matter

expert[0.25],

business

analyst[0.25],

repository

architect[0.5],

data

modeler[0.25]

4.3.2 Load meta

data repository

2 days 4.3.1 DBA[0.25], data

acquisition

developers,

subject matter

expert[0.25],

business

analyst[0.25],

repository

architect[0.5],

data

modeler[0.25]

4.4 Develop meta

data

reports/access

method

10 days 3, 3.4, 4.5.3

4.4.1 Create

business views

and reports

5 days DBA[0.25],

subject matter

expert[0.5],

business analyst,

repository

architect[0.25],

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

data modeler[0.5],

data delivery

developers

4.4.2 Create

technical views

and reports

5 days 4.4.1 DBA[0.25],

subject matter

expert[0.5],

business analyst,

repository

architect[0.25],

architect[0.25],

data modeler[0.5],

data delivery

developers

4.5 Meta data

infrastructure

9 days 4.1

4.5.1 Desktop setup

and

configuration

9 days 3.1.2

4.5.1.1 Design

desktop

configuration

2 days Project

manager[0.25],

key IT team

leaders

4.5.1.2 Purchase

needed

desktop

hardware

5 days 4.5.1.1 Project

manager[0.25],

key IT team

leaders

4.5.1.3 Purchase

needed

desktop

software

5 days 4.5.1.1 Project

manager[0.25],

key IT team

leaders

4.5.1.4 Install

hardware on

desktops

2 days 4.5.1.2 Project

manager[0.25],

key IT team

leaders

4.5.1.5 Install software

on desktops

2 days 4.5.1.3 Project

manager[0.25],

key IT team

leaders

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

4.5.2 Select and

implement

RDBMS

5 days

4.5.2.1 Implement

physical

database

5 days DBA, key IT team

leaders

4.5.2.2 Physical

database

implemented

0 4.5.2.1 DBA, key IT team

leaders

4.5.3 Meta data tools

setup and

configuration

3 days 3.1.2

4.5.3.1 Install software 3 days Tool vendor, key

IT team leaders

4.5.3.2 Test software

connectivity to

desktop

3 days Tool vendor, key

IT team leaders

4.5.3.3 Meta data tools

are installed

and ready for

development

0 4.5.3.2

4.6 User

acceptance

testing

11 days 4.3, 4.4

4.6.1 Business user

training

6 days

4.6.1.1 Create meta

data access

documentation

(business)

2 days Business analyst

4.6.1.2 Prepare

training

program for

business users

2 days 4.6.1.1 Business analyst

4.6.1.3 Conduct

training

2 days 4.6.1.1, 4.6.1.2 Business analyst

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

program

4.6.2 Technical user

training

6 days

4.6.2.1 Create meta

data access

documentation

(technical)

2 days Business analyst

4.6.2.2 Prepare

training

program for

technical users

2 days 4.6.2.1 Business analyst

4.6.2.3 Conduct

training

program

2 days 4.6.2.1, 4.6.2.2 Business analyst

4.6.3 User

acceptance

testing (UAT)

5 days 4.6.1, 4.6.2

4.6.3.1 Identify UAT

participants

1 day Project manager,

business analyst

4.6.3.2 Plan UAT 1 day 4.6.3.1 Project manager,

business analyst

4.6.3.3 Conduct UAT 3 days 4.6.3.2 Project manager,

business analyst,

data delivery

developers[0.5],

data acquisition

developers[0.5]

4.6.3.4 End user

signoff

0 4.6.3.3

5 Rollout phase 4 days 4.6.3

5.1 Rollout

repository to

clients

0

5.2 Post

implementation

review

4 days

TASK

ID TASK NAME DURATION DEPENDENCY

RESOURCE

NAMES

5.2.1 Plan review

agenda and

materials

1 day Project manager

5.2.2 Conduct

review

2 days 5.2.1 Project manager,

project champion,

subject matter

expert, key

executive

management

5.2.3 Publish results 1 day 5.2.2 Project manager,

project champion

5.3 Meta data

repository in

production

0 5.2

Appendix C: DDL Sample Model Code
This appendix presents the detailed DDL code required to build the sample models in

Chapter 9, Building the Meta Model. You can use this code as a guide to create your own

model, but remember that your model must fulfill your organization's unique requirements

and is likely to differ significantly from the samples in our chapter.

Object Model Example
The following example illustrates the basic concepts that are required to implement an

object model. Although object models can be very complex (as we explained in Chapter

9), we've intentionally kept this SQL code example simple so that you can easily

understand the basic concepts.

To use this example as a guide for developing your own object model, first try loading

data into the model, then extract that information. This process will help you to gras p the

complexities in query design that are associated with object models.

 DROP TABLE object_hierarchy CASCADE CONSTRAINTS;

 ?

 ?

 CREATE TABLE object_hierarchy (

 ?

 object_id INTEGER NOT NULL,

 parent_object_id INTEGER NOT NULL,

 object_hierarchy_metadata LONG VARCHAR NULL

);

 DROP INDEX XPKobject_hierarchy;

 DROP INDEX XIF1object_hierarchy;

 DROP INDEX XIF2object_hierarchy;

 CREATE UNIQUE INDEX XPKobject_hierarchy ON object_hierarchy

 (

 object_id ASC,

 parent_object_id ASC

TE
AM
FL
Y

Team-Fly®

);

 CREATE INDEX XIF1object_hierarchy ON object_hierarchy

 (

 object_id ASC

);

 CREATE INDEX XIF2object_hierarchy ON object_hierarchy

 (

 object_id ASC

);

 DROP TABLE object CASCADE CONSTRAINTS;

 CREATE TABLE object (

 object_id INTEGER NOT NULL,

 object_type_id INTEGER NULL,

 object_description VARCHAR2 (20) NOT NULL,

 object_business_metadata LONG VARCHAR NULL

);

 DROP INDEX XPKobject;

 DROP INDEX XIF5object;

 CREATE UNIQUE INDEX XPKobject ON object

 (

 object_id ASC

);

 CREATE INDEX XIF5object ON object

 (

 object_type_id ASC

);

 DROP TABLE object_type CASCADE CONSTRAINTS;

 CREATE TABLE object_type (

 object_type_id INTEGER NOT NULL,

 object_type_description VARCHAR2 (20) NOT NULL,

 parent_object_type INTEGER NOT NULL,

 object_type_metadata LONG VARCHAR NULL

);

 DROP INDEX XPKobject_type;

 CREATE UNIQUE INDEX XPKobject_type ON object_type

 (

 object_type_id ASC

);

Real-World Model Example

The following model example illustrates the basic components that are required for

capturing meta data for a data warehousing environment. It should help you to

understand the types of information that you need to capture, and the relationships

among items. Use it as a starting point, then tailor it as necessary to fit your own, specific

needs. Again, we've intentionally kept this SQL code example simple to ensure that the

basic concepts are readily apparent.

 CREATE TABLE Query_Statistics (

 ?

 Query_Id CHAR (18) NOT NULL,

 Query_Start_Time DATETIME NOT NULL,

 Query_End_Time DATETIME NOT NULL,

 Number_of_rows_returned INTEGER NULL,

 Size_of_result_set DECIMAL NULL,

 User_Id CHARACTER NULL,

 Database_name CHARACTER NULL,

 Server_name CHARACTER NULL,

 Query_elapsed_time DECIMAL NULL

);

 ALTER TABLE Query_Statistics

 ADD (PRIMARY KEY (Query_Id)) ;

 CREATE TABLE ETL_Process (

 Process_Id SERIAL NOT NULL,

 Process_Effective_Date DATE NOT NULL,

 Process_Description CHARACTER NULL,

 Process_Owner CHARACTER NULL

);

 ALTER TABLE ETL_Process

 ADD (PRIMARY KEY (Process_Id, Process_Effective_Date)

) ;

 CREATE TABLE Source (

 Source_Id SERIAL NOT NULL,

 Source_Effective_Date DATE NOT NULL,

 Source_Format_Type CHARACTER NULL,

 Source_DBMS CHARACTER NULL,

 Source_Description CHARACTER NULL,

 Source_Update_Frequency CHARACTER NULL,

 Status_Code CHARACTER NULL

);

 ALTER TABLE Source

 ADD (PRIMARY KEY (Source_Id, Source_Effective_Date))

 ;

 CREATE TABLE ETL_Process_Source_Map (

 Source_Effective_Date DATE NOT NULL,

 Source_Id INTEGER NOT NULL,

 Process_Effective_Date DATE NOT NULL,

 Process_Id INTEGER NOT NULL

);

 ALTER TABLE ETL_Process_Source_Map

 ADD (PRIMARY KEY (Source_Effective_Date, Source_Id,

 Process_Effective_Date, Process_Id)) ;

 CREATE TABLE Target_Table (

 Target_Table_Name CHARACTER NOT NULL,

 Target_Table_Type CHARACTER NOT NULL,

 Target_Table_Effective_Date DATE NOT NULL,

 Status_Code CHARACTER NULL,

 Table_Business_Name CHARACTER NULL,

 Table_Business_Alias CHARACTER NULL,

 Table_Business_Definition CHARACTER NULL,

 Table_Business_Rules CHARACTER NULL,

 Business_Data_Steward CHARACTER NULL,

 Integration_Flag CHARACTER NULL

);

 ALTER TABLE Target_Table

 ADD (PRIMARY KEY (Target_Table_Name,

 Target_Table_Type,

 Target_Table_Effective_Date)) ;

 CREATE TABLE ETL_Process_Statistics (

 Batch_Cycle_Id INTEGER NULL,

 Load_Date DATE NULL,

 Elapsed_Time DECIMAL NULL,

 CPU_Time DECIMAL NULL,

 Process_Return_Code CHARACTER NULL,

 Process_Return_Message CHARACTER NULL,

 Target_Table_Effective_Date DATE NOT NULL,

 Target_Table_Type CHARACTER NOT NULL,

 Target_Table_Name CHARACTER NOT NULL,

 Process_Effective_Date DATE NOT NULL,

 Process_Id INTEGER NOT NULL

);

 ALTER TABLE ETL_Process_Statistics

 ADD (PRIMARY KEY (Process_Effective_Date, Process_Id,

 Target_Table_Effective_Date, Target_Table_Type,

 Target_Table_Name)) ;

 CREATE TABLE Target_Column (

 Target_Column_Name CHARACTER NOT NULL,

 Target_Column_Effective_Date DATE NOT NULL,

 Base_Unit CHARACTER NULL,

 Business_Rules CHARACTER NULL,

 Calculation_Formula CHARA CTER NULL,

 Column_Business_Acronym CHARACTER NULL,

 Column_Business_Definition CHARACTER NULL,

 Column_Business_Name CHARACTER NULL,

 Degree_of_Accuracy INTEGER NULL,

 Maximum_Range DECIMAL NULL,

 Minimum_Range DECIMAL NULL,

 Status_Code CHARACTER NULL,

 Length DECIMAL NULL,

 Data_Type CHARACTER NULL,

 Null_Flag CHARACTER NULL

);

 ALTER TABLE Target_Column

 ADD (PRIMARY KEY (Target_Column_Name,

 Target_Column_Effective_Date)) ;

 CREATE TABLE Table_Column_Map (

 Target_Column_Effective_Date DATE NOT NULL,

 Target_Column_Name CHARACTER NOT NULL,

 Target_Table_Effective_Date DATE NOT NULL,

 Target_Table_Type CHARACTER NOT NULL,

 Target_Table_Name CHARACTER NOT NULL

);

 ALTER TABLE Table_Column_Map

 ADD (PRIMARY KEY (Target_Column_Effective_Date,

 Target_Column_Name, Target_Table_Effective_Date,

 Target_Table_Type, Target_Table_Name)) ;

 CREATE TABLE Query_Table_Column_Hits (

 Query_Id INTEGER NOT NULL,

 Target_Column_Effective_Date DATE NOT NULL,

 Target_Column_Name CHARACTER NOT NULL,

 Target_Table_Effective_Date DATE NOT NULL,

 Target_Table_Type CHARACTER NOT NULL,

 Target_Table_Name CHARACTER NOT NULL

);

 ALTER TABLE Query_Table_Column_Hits

 ADD (PRIMARY KEY (Query_Id,

 Target_Column_Effective_Date,

 Target_Column_Name, Target_Table_Effective_Date,

 Target_Table_Type, Target_Table_Name)) ;

 CREATE TABLE Source_Column (

 Source_Column_Name CHARACTER NOT NULL,

 Source_Column_Effective_Date DATE NOT NULL,

 Base_Unit CHARACTER NULL,

 Business_Rules CHARACTER NULL,

 Calculation_Formula CHARACTER NULL,

 Column_Business_Acronym CHARACTER NULL,

 Column_Business_Definition CHARACTER NULL,

 Column_Business_Name CHARACTER NULL,

 Data_Type CHARACTER NULL,

 Degree_of_Accuracy INTEGER NULL,

 Length DECIMAL NULL,

 Maximum_Range DECIMAL NULL,

 Minimum_Range DECIMAL NULL,

 Null_Flag CHARACTER NULL,

 Status_Code CHARACTER NULL,

 Source_Effective_Date DATE NOT NULL,

 Source_Id INTEGER NOT NULL

);

 ALTER TABLE Source_Column

 ADD (PRIMARY KEY (Source_Column_Name,

 Source_Column_Effective_Date,

 Source_Effective_Date,

 Source_Id)) ;

 CREATE TABLE Source_Domain (

 Source_Domain_Value CHARACTER NOT NULL,

 Source_Domain_Effective_Date DATE NOT NULL,

 Source_Domain_Description CHARACTER NULL,

 Status_Code CHARACTER NULL,

 Business_Rules CHARACTER NULL,

 Source_Effective_Date DATE NOT NULL,

 Source_Id INTEGER NOT NULL,

 Source_Column_Effective_Date DATE NOT NULL,

 Source_Column_Name CHARACTER NOT NULL

);

 ALTER TABLE Source_Domain

 ADD (PRIMARY KEY (Source_Effective_Date, Source_Id,

 Source_Column_Effective_Date, Source_Column_Name)

) ;

 CREATE TABLE Source_To_Target_Column_Map (

 Mapping_Semantic_Resolution CHARACTER NULL,

 Source_Effective_Date DATE NOT NULL,

 Source_Id INTEGER NOT NULL,

 Source_Column_Effective_Date DATE NOT NULL,

 Source_Column_Name CHARACTER NOT NULL,

 Target_Column_Effective_Date DATE NOT NULL,

 Target_Column_Name CHARACTER NOT NULL,

 Target_Table_Effective_Date DATE NOT NULL,

 Target_Table_Type CHARACTER NOT NULL,

 Target_Table_Name CHARACTER NOT NULL

);

 ALTER TABLE Source_To_Target_Column_Map

 ADD (PRIMARY KEY (Source_Effective_Date, Source_Id,

 Source_Column_Effective_Date, Source_Column_Name,

 Target_Column_Effective_Date, Target_Column_Name,

 Target_Table_Effective_Date, Target_Table_Type,

 Target_Table_Name)) ;

 CREATE TABLE Target_Domain (

 Target_Domain_Value CHARACTER NOT NULL,

 Target_Domain_Effective_Date DATE NOT NULL,

 Target_Domain_Description CHARACTER NULL,

 Status_Code CHARACTER NULL,

 Business_Rules CHARACTER NULL,

 Target_Column_Effective_Date DATE NOT NULL,

 Target_Column_Name CHARACTER NOT NULL

);

 ALTER TABLE Target_Domain

 ADD (PRIMARY KEY (Target_Column_Effective_Date,

 Target_Column_Name)) ;

 CREATE TABLE Source_To_Target_Domain_Map (

 Mapping_Semantic_Resolution CHARACTER NULL,

 Source_Column_Effective_Date DATE NOT NULL,

 Source_Column_Name CHARACTER NOT NULL,

 Source_Effective_Date DATE NOT NULL,

 Source_Id INTEGER NOT NULL,

 Source_Domain_Effective_Date DATE NOT NULL,

 Source_Domain_Value CHARACTER NOT NULL,

 Target_Column_Effective_Date DATE NOT NULL,

 Target_Column_Name CHARACTER NOT NULL,

 Target_Domain_Effective_Date DATE NOT NULL,

 Target_Domain_Value CHARACTER NOT NULL

);

 ALTER TABLE Source_To_Target_Domain_Map

 ADD (PRIMARY KEY (Source_Column_Effective_Date,

 Source_Column_Name, Source_Effective_Date,

 Source_Id,

 Target_Column_Effective_Date, Target_Column_Name)

) ;

 CREATE TABLE Subject_Area (

 Subject_Area_Id SERIAL NOT NULL,

 Subject_Area_Effective_Date DATE NOT NULL,

 Status_Code CHARACTER NULL,

 Subject_Area_Description CHARACTER NULL

);

 ALTER TABLE Subject_Area

 ADD (PRIMARY KEY (Subject_Area_Id,

 Subject_Area_Effective_Date)) ;

 CREATE TABLE Subject_Area_Table_Map (

 Target_Table_Effective_Date DATE NOT NULL,

 Target_Table_Type CHARACTER NOT NULL,

 Target_Table_Name CHARACTER NOT NULL,

 Subject_Area_Effective_Date DATE NOT NULL,

 Subject_Area_Id INTEGER NOT NULL

);

 ALTER TABLE Subject_Area_Table_Map

 ADD (PRIMARY KEY (Target_Table_Effective_Date,

 Target_Table_Type, Target_Table_Name,

 Subject_Area_Effective_Date, Subject_Area_Id)) ;

 ALTER TABLE ETL_Process_Source_Map

 ADD (FOREIGN KEY (Process_Id, Process_Effective_Date)

 REFERENCES ETL_Process) ;

 ALTER TABLE ETL_Process_Source_Map

 ADD (FOREIGN KEY (Source_Id, Source_Effective_Date)

 REFERENCES Source) ;

 ALTER TABLE ETL_Process_Statistics

 ADD (FOREIGN KEY (Target_Table_Name,

 Target_Table_Type,

 Target_Table_Effective_Date)

 REFERENCES Target_Table) ;

 ALTER TABLE ETL_Process_Statistics

 ADD (FOREIGN KEY (Process_Id, Process_Effective_Date)

 REFERENCES ETL_Process) ;

 ALTER TABLE Table_Column_Map

 ADD (FOREIGN KEY (Target_Column_Name,

 Target_Column_Effective_Date)

 REFERENCES Target_Column) ;

TE
AM
FL
Y

Team-Fly®

 ALTER TABLE Table_Column_Map

 ADD (FOREIGN KEY (Target_Table_Name,

 Target_Table_Type,

 Target_Table_Effective_Date)

 REFERENCES Target_Table) ;

 ALTER TABLE Query_Table_Column_Hits

 ADD (FOREIGN KEY (Query_Id)

 REFERENCES Query_Statistics) ;

 ALTER TABLE Query_Table_Column_Hits

 ADD (FOREIGN KEY (Target_Column_Effective_Date,

 Target_Column_Name, Target_Table_Effective_Date,

 Target_Table_Type, Target_Table_Name)

 REFERENCES Table_Column_Map) ;

 ALTER TABLE Source_Domain

 ADD (PRIMARY KEY (Source_Effective_Date, Source_Id,

 Source_Column_Effective_Date, Source_Column_Name)

) ;

 CREATE TABLE Source_To_Target_Column_Map (

 Mapping_Semantic_Resolution CHARACTER NULL,

 Source_Effective_Date DATE NOT NULL,

 Source_Id INTEGER NOT NULL,

 Source_Column_Effective_Date DATE NOT NULL,

 Source_Column_Name CHARACTER NOT NULL,

 Target_Column_Effective_Date DATE NOT NULL,

 Target_Column_Name CHARACTER NOT NULL,

 Target_Table_Effective_Date DATE NOT NULL,

 Target_Table_Type CHARACTER NOT NULL,

 Target_Table_Name CHARACTER NOT NULL

);

 ALTER TABLE Source_To_Target_Column_Map

 ADD (PRIMARY KEY (Source_Effective_Date, Source_Id,

 Source_Column_Effective_Date, Source_Column_Name,

 Target_Column_Effective_Date, Target_Column_Name,

 Target_Table_Effective_Date, Target_Table_Type,

 Target_Table_Name)) ;

 CREATE TABLE Target_Domain (

 Target_Domain_Value CHARACTER NOT NULL,

 Target_Domain_Effective_Date DATE NOT NULL,

 Target_Domain_Description CHARACTER NULL,

 Status_Code CHARACTER NULL,

 Business_Rules CHARACTER NULL,

 Target_Column_Effective_Date DATE NOT NULL,

 Target_Column_Name CHARACTER NOT NULL

);

 ALTER TABLE Target_Domain

 ADD (PRIMARY KEY (Target_Column_Effective_Date,

 Target_Column_Name)) ;

 CREATE TABLE Source_To_Target_Domain_Map (

 Mapping_Semantic_Resolution CHARACTER NULL,

 Source_Column_Effective_Date DATE NOT NULL,

 Source_Column_Name CHARACTER NOT NULL,

 Source_Effective_Date DATE NOT NULL,

 Source_Id INTEGER NOT NULL,

 Source_Domain_Effective_Date DATE NOT NULL,

 Source_Domain_Value CHARACTER NOT NULL,

 Target_Column_Effective_Date DATE NOT NULL,

 Target_Column_Name CHARACTER NOT NULL,

 Target_Domain_Effective_Date DATE NOT NULL,

 Target_Domain_Value CHARACTER NOT NULL

);

 ALTER TABLE Source_To_Target_Domain_Map

 ADD (PRIMARY KEY (Source_Column_Effective_Date,

 Source_Column_Name, Source_Effective_Date,

 Source_Id,

 Target_Column_Effective_Date, Target_Column_Name)

) ;

 CREATE TABLE Subject_Area (

 Subject_Area_Id SERIAL NOT NULL,

 Subject_Area_Effective_Date DATE NOT NULL,

 Status_Code CHARACTER NULL,

 Subject_Area_Description CHARACTER NULL

);

 ALTER TABLE Subject_Area

 ADD (PRIMARY KEY (Subject_Area_Id,

 Subject_Area_Effective_Date)) ;

 CREATE TABLE Subject_Area_Table_Map (

 Target_Table_Effective_Date DATE NOT NULL,

 Target_Table_Type CHARACTER NOT NULL,

 Target_Table_Name CHARACTER NOT NULL,

 Subject_Area_Effective_Date DATE NOT NULL,

 Subject_Area_Id INTEGER NOT NULL

);

 ALTER TABLE Subject_Area_Table_Map

 ADD (PRIMARY KEY (Target_Table_Effective_Date,

 Target_Table_Type, Target_Table_Name,

 Subject_Area_Effective_Date, Subject_Area_Id)) ;

 ALTER TABLE ETL_Process_Source_Map

 ADD (FOREIGN KEY (Process_Id, Process_Effective_Date)

 REFERENCES ETL_Process) ;

 ALTER TABLE ETL_Process_Source_Map

 ADD (FOREIGN KEY (Source_Id, Source_Effective_Date)

 REFERENCES Source) ;

 ALTER TABLE ETL_Process_Statistics

 ADD (FOREIGN KEY (Target_Table_Name,

 Target_Table_Type,

 Target_Table_Effective_Date)

 REFERENCES Target_Table) ;

 ALTER TABLE ETL_Process_Statistics

 ADD (FOREIGN KEY (Process_Id, Process_Effective_Date)

 REFERENCES ETL_Process) ;

 ALTER TABLE Table_Column_Map

 ADD (FOREIGN KEY (Target_Column_Name,

 Target_Column_Effective_Date)

 REFERENCES Target_Column) ;

 ALTER TABLE Table_Column_Map

 ADD (FOREIGN KEY (Target_Table_Name,

 Target_Table_Type,

 Target_Table_Effective_Date)

 REFERENCES Target_Table) ;

 ALTER TABLE Query_Table_Column_Hits

 ADD (FOREIGN KEY (Query_Id)

 REFERENCES Query_Statistics) ;

 ALTER TABLE Query_Table_Column_Hits

 ADD (FOREIGN KEY (Target_Column_Effective_Date,

 Target_Column_Name, Target_Table_Effective_Date,

 Target_Table_Type, Target_Table_Name)

 REFERENCES Table_Column_Map) ;

	sample.pdf
	sterling.com
	Welcome to Sterling Software

	Wiley - Building and Managing the Metadata Repository 0471355232.pdf
	Table of Contents
	Copyright
	Acknowledgments
	Foreword
	Introduction
	About the Web Site
	Part I: Laying the Foundation
	Chapter 1: Introducing Meta Data and Its Return onInvestment
	Chapter 2: Meta Data Fundamentals
	Chapter 3:

	Part II: Implementing a Meta Data Repository
	Chapter 4: Understanding and EvaluatingMeta Data Tools
	Chapter 5: Organizing and Staffing the MetaData Repository Project
	Chapter 6: Building the Meta Data Project Plan
	Chapter 7: Constructing a Meta DataArchitecture
	Chapter 8: Implementing Data Quality throughMeta Data
	Chapter 9: Building the Meta Model
	Chapter 10: Meta Data Delivery
	Chapter 11: The Future of Meta Data

	Glossary
	Appendix A: Tool Evaluation Checklist
	Appendix B: Meta Data Project Plan
	Appendix C: DDL Sample Model Code

