
Database Design Using Entity-Relationship Diagrams

by Sikha Bagui and Richard Earp ISBN:0849315484

Auerbach Publications © 2003 (242 pages)

With this comprehensive guide, database designers and
developers can quickly learn all the ins and outs of E-R
diagramming to become expert database designers.

Table of Contents Back Cover Comments

Table of Contents

Database Design Using Entity-Relationship Diagrams

Preface

Introduction

Chapter 1 - The Software Engineering Process and Relational Databases

Chapter 2 - The Basic ER Diagram—A Data Modeling Schema

Chapter 3 - Beyond the First Entity Diagram

Chapter 4 - Extending Relationships/Structural Constraints

Chapter 5 - The Weak Entity

Chapter 6 - Further Extensions for ER Diagrams with Binary Relationships

Chapter 7 - Ternary and Higher-Order ER Diagrams

Chapter 8 - Generalizations and Specializations

Chapter 9 - Relational Mapping and Reverse-Engineering ER Diagrams

Chapter 10 - A Brief Overview of the Barker/Oracle-Like Model

Glossary

Index

List of Figures

List of Examples

Database Design Using Entity-
Relationship Diagrams
Sikha Bagui
Richard Earp

AUERBACH PUBLICATIONS

A CRC Press Company

Library of Congress Cataloging-in-Publication Data

Bagui, Sikha, 1964-
Database design using entity-relationship diagrams / Sikha Bagui, Richard
Earp.
p. cm. – (Foundation of database design ; 1)
Includes bibliographical references and index.
0849315484

(alk. paper)
1. Database design. 2. Relational databases. I. Earp, Richard, 1940-II. Title.
III. Series.

QA76.9.D26B35 2003
005.74–dc21 2003041804

This book contains information obtained from authentic and highly regarded
sources. Reprinted material is quoted with permission, and sources are
indicated. A wide variety of references are listed. Reasonable efforts have
been made to publish reliable data and information, but the author and the
publisher cannot assume responsibility for the validity of all materials or for
the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form
or by any means, electronic or mechanical, including photocopying,
microfilming, and recording, or by any information storage or retrieval
system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general
distribution, for promotion, for creating new works, or for resale. Specific
permission must be obtained in writing from CRC Press LLC for such
copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca
Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or
registered trademarks, and are used only for identification and explanation,
without intent to infringe.

Visit the Auerbach Web site at http://www.auerbach-publications.com

Copyright © 2003 CRC Press LLC

Auerbach is an imprint of CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 0-8493-1548-4
Library of Congress Card Number 2003041804
1 2 3 4 5 6 7 8 9 0

Dedication

Dedicated to my father, Santosh Saha, and mother, Ranu Saha
and
my husband, Subhash Bagui
and
my sons, Sumon and Sudip
and
Pradeep and Priyashi Saha
S.B.

To my wife, Brenda,
and
my children: Beryl, Rich, Gen, and Mary Jo
R.E.

Preface
Data modeling and database design have undergone significant evolution in
recent years. Today, the relational data model and the relational database
system dominate business applications. The relational model has allowed
the database designer to focus on the logical and physical characteristics of
a database separately. This book concentrates on techniques for database
design, with a very strong bias for relational database systems, using the ER
(Entity Relationships) approach for conceptual modeling (solely a logical
implementation).

Intended Audience
This book is intended to be used by database practitioners and students for
data modeling. It is also intended to be used as a supplemental text in
database courses, systems analysis and design courses, and other courses
that design and implement databases. Many present-day database and
systems analysis and design books limit their coverage of data modeling.
This book not only increases the exposure to data modeling concepts, but
also presents a detailed, step-by-step approach to designing an ER diagram
and developing the relational database from it.

Book Highlights
This book focuses on presenting: (1) an ER design methodology for
developing an ER diagram; (2) a grammar for the ER diagrams that can be
presented back to the user; and (3) mapping rules to map the ER diagram
to a relational database. The steps for the ER design methodology, the
grammar for the ER diagrams, as well as the mapping rules are developed
and presented in a systematic, step-by-step manner throughout the book.
Also, several examples of "sample data" have been included with relational
database mappings — all to give a "realistic" feeling.

This book is divided into ten chapters. The first chapter gives the reader
some background by introducing some relational database concepts such as
functional dependencies and database normalization. The ER design
method-ology and mapping rules are presented, starting in Chapter 2.

Chapter 2 introduces the concepts of the entity, attributes, relationships, and
the "one-entity" ER diagram. Steps 1, 2, and 3 of the ER Design
Methodology are developed. The "one-entity" grammar and mapping rules
for the" one-entity" diagram are presented.

Chapter 3 extends the one-entity diagram to include a second entity. The
concept of testing attributes for entities is discussed and relationships
between the entities are developed. Steps 3a, 3b, 4, 5, and 6 of the ER
design methodology are developed, and grammar for the ER diagrams
developed upto this point is presented.

Chapter 4 discusses structural constraints in relationships. Several examples
are given of 1:1, 1:M, and M:N relationships. Step 6 of the ER design
methodology is revised and step 7 is developed. A grammar for the
structural constraints and the mapping rules is also presented.

Chapter 5 develops the concept of the weak entity. This chapter revisits and
revises steps 3 and 4 of the ER design methodology to include the weak
entity. Again, a grammar and the mapping rules for the weak entity are
presented.

Chapter 6 discusses and extends different aspects of binary relationshipsin
ER diagrams. This chapter revises step 5 to include the concept of more
than one relationship, and revises step 6(b) to include derived and redundant
relationships. The concept of the recursive relationship is introduced in this
chapter. The grammar and mapping rules for recursive relationships are
presented.

Chapter 7 discusses ternary and other "higher-order" relationships. Step 6 of
the ER design methodology is again revised to include ternary and other,
higher-order relationships. Several examples are given, and the grammar
and mapping rules are developed and presented.

Chapter 8 discusses generalizations and specializations. Once again, step 6
of the ER design methodology is modified to include generalizations and
specializations, and the grammar and mapping rules for generalizations and
specializations are presented.

Chapter 9 provides a summary of the mapping rules and reverse-
engineering from a relational database to an ER diagram.

Chapters 2 through 9 present ER diagrams using a Chen-like model.
Chapter 10 discusses the Barker/Oracle-like models, highlighting the main
similarities and differences between the Chen-like model and the
Barker/Oracle-like model.

Every chapter presents several examples. "Checkpoint" sections within the

chapters and end-of-chapter exercises are presented in every chapter to be
worked out by the students — to get a better understanding of the material
within the respective sections and chapters. At the end of most chapters,
there is a running case study with the solution (i.e., the ER diagram and the
relational database with some sample data).

Acknowledgments
Our special thanks are due to Rich O'Hanley, President, Auerbach
Publications, for his continuous support during this project. We would also
like to thankGerry Jaffe, Project Editor; Shayna Murry, Cover Designer; Will
Palmer, Prepress Technician, and James Yanchak, Electronic Production
Manager, for their help with the production of this book.

Finally, we would like to thank Dr. Ed Rodgers, Chairman, Department of
Computer Science, University of West Florida, for his continuing support,
and Dr. Jim Bezdek, for encouraging us to complete this book.

Introduction
This book was written to aid students in database classes and to help
database practitioners in understanding how to arrive at a definite, clear
database design using an entity relationship (ER) diagram. In designing a
database with an ER diagram, we recognize that this is but one way to arrive
at the objective —the database. There are other design methodologies that
also produce databases, but an ER diagram is the most common. The ER
diagram (also calledan ERD) is a subset of what are called "semantic
models." As we proceed through this material, we will occasionally point out
where other models differ from the ER model.

The ER model is one of the best-known tools for logical database design.
Within the database community it is considered to be a very natural and
easy-to-understand way of conceptualizing the structure of a database.
Claims that have been made for it include: (1) it is simple and easily
understood by nonspecialists; (2) it is easily conceptualized, the basic
constructs (entities and relationships) are highly intuitive and thus provide a
very natural way of representing a user's information requirements; and (3) it
is a model that describes a world in terms of entities and attributes that is
most suitable for computer-naïve end users. In contrast, many educators
have reported that students in database courses have difficulty grasping the
concepts of the ER approach and, in particular, applying them to the real-
world problems (Gold-stein and Storey, 1990).

We took the approach of starting with an entity, and then developing from it
in an "inside-out strategy" (as mentioned in Elmasri and Navathe, 2000).
Software engineering involves eliciting from (perhaps) "naïve" users what
they would like to have stored in an information system. The process we
presented follows the software engineering paradigm of
requirements/specifications, withthe ER diagram being the core of the
specification. Designing a software solution depends on correct elicitation. In
most software engineering paradigms, the process starts with a
requirements elicitation, followed by a specification and then a feedback
loop. In plain English, the idea is (1) "tell me what you want" (requirements),
and then (2) "this is what I think you want" (specification). This process of
requirements/specification can (and probably should) be iterative so that
users understand what they will get from thesystem and analysts will
understand what the users want.

A methodology for producing an ER diagram is presented. The process
leads to an ER diagram that is then translated into plain (but meant to be
precise) English that a user can understand. The iterative mechanism then
takes over to arrive at a specification (a revised ER diagram and English)
that both users and analysts understand. The mapping of the ER diagram
into arelational database is presented; mapping to other logical database
models is not covered. We feel that the relational database is most
appropriate to demonstrate mapping because it is the most-used
contemporary database model. Actually, the idea behind the ER diagram is
to produce a high-level database model that has no particular logical model
implied (relational, hierarchical, object oriented, or network).

We have a strong bias toward the relational model. The "goodness" of the
final relational model is test able via the ideas of normal forms. The
goodness of the relational model produced by a mapping from an ER
diagram theoretically should be guaranteed by the mapping process. If a
diagram is "good enough," then the mapping to a "good" relational model
should happen almostautomatically. In practice, the scenario will be to
produce as good an ER diagram as possible, map it to a relational model,
and then shift the discussion to "is this a good relational model or not?" using
the theory of normal formsand other associated criteria of "relational

goodness."

The approach to database design taken will be intuitive and informal.We do
not deal with precise definitions of set relations. We use the
intuitive"one/many" for cardinality and "may/must" for participation
constraints. Theintent is to provide a mechanism to produce an ER diagram
that can be presented to a user in English, and to polish the diagram into a
specificationthat can then be mapped into a database. We then suggest
testing the produced database by the theory of normal forms and other
criteria (i.e., referential integrity constraints). We also suggest a reverse-
mapping paradigm for mapping a relational database back to an ER diagram
for the purpose of documentation.

The ER Models We Chose
We begin this venture into ER diagrams with a "Chen-like" model, and most
of this book (Chapters 2 through 9) is written using the Chen-like model.
Why did we choose this model? Chen (1976) introduced the idea of ER
diagrams (Elmasri and Navathe, 2000), and most database texts use some
variant of the Chen model. Chen and others have improved the ER process
over the years; and while there is no standard ER diagram (ERD) model, the
Chen-like model and variants there of are common, particularly in
comprehensive database texts. Chapter 10 briefly introduces the
"Barker/Oracle-like" model. As with the Chen model, we do not follow the
Barker or Oracle models precisely, and hence we will use the term
Barker/Oracle-like models in this text.

There are also other reasons for choosing the Chen-like model over the
other models. With the Chen-like model, one need not consider how the
database will be implemented. The Barker-like model is more intimately tied
to the relational database paradigm. Oracle Corporation uses an ERD that is
closer to the Barker model. Also, in the Barker-like and Oracle-like ERD,
there is no accommodation for some of the features we present in the Chen-
like model. For example, multi-valued attributes and weak entities are not
part of the Barker or Oracle-like design process.

The process of database design follows the software engineering paradigm;
and during the requirements and specifications phase, sketches of ER
diagrams will be made and remade. It is not at all unusual to arrive at a
design andthen revise it. In developing ER models, one needs to realize that
the Chen model is developed to be independent of implementation. The
Chen-like model is used almost exclusively by universities in database
instruction. The mapping rules of the Chen model to a relational database
are relatively straight forward, but the model itself does not represent any
particular logical model. Although the Barker/Oracle-like model is quite
popular, it is implementation dependent upon knowledge of relational
databases. The Barker/Oracle model maps directly to a relational database;
there are no real mapping rules for that model.

References
Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, 3rd ed.,
Addison-Wesley, Reading, MA, 2000.

Goldstein, R.C. and Storey, V.C., "Some Findings on the Intuitiveness of
Entity Relationship Constructs," in Lochovsky, F.H., Ed., Entity-Relationship
Approach to Database Design and Querying, Elsevier Science, New York,
1990.

Chapter 1: The Software Engineering
Process and Relational Databases
This chapter introduces some concepts that are essential to our presentation
of the design of the database. We begin by introducing the idea of "software
engineering" — a process of specifying systems and writing software. We
then take up the subject of relational databases. Most databases in use
today are relational, and the focus in this book will be to design a relational
database. Before we can actually get into relational databases, we introduce
the idea of functional dependencies (FDs). Once we have accepted the
notion of functional dependencies, we can then easily define what is a good
(and a not-so-good) database.

What Is the Software Engineering Process?
The term "software engineering" refers to a process of specifying, designing,
writing, delivering, maintaining, and finally retiring software. There are many
excellent references on the topic of software engineering (Schach, 1999).
Some authors use the term "software engineering" synonymously with
"systems analysis and design" and other titles, but the underlying point is
that any information system requires some process to develop it correctly.
Software engineering spans a wide range of information system problems.
The problem of primary interest here is that of specifying a database.
"Specifying a database" means that we will document what the database is
supposed to contain.

A basic idea in software engineering is that to build software correctly, a
series of steps (or phases) are required. The steps ensure that a process of
thinking precedes action — thinking through "what is needed" precedes
"what is written." Further, the "thinking before action" necessitates that all
parties involved in software development understand and communicate with
one another. One common version of presenting the thinking before acting
scenario is referred to as a waterfall model (Schach, 1999), as the process is
supposed to flow in a directional way without retracing.

An early step in the software engineering process involves specifying what is
to be done. The waterfall model implies that once the specification of the
software is written, it is not changed, but rather used as a basis for
development. One can liken the software engineering exercise to building a
house. The specification is the "what do you want in your house" phase.
Once agreed upon, the next step is design. As the house is designed and
the blueprint is drawn, it is not acceptable to revisit the specification except
for minor alterations. There has to be a meeting of the minds at the end of
the specification phase to move along with the design (the blueprint) of the
house to be constructed. So it is with software and database development.

Software production is a life-cycle process — it is created, used, and
eventually retired. The "players" in the software development life cycle can
placed into two camps, often referred to as the "user" and the "analyst."
Software is designed by the analyst for the user according to the user's
specification. In our presentation we will think of ourselves as the analyst
trying to enunciate what the users think they want.

There is no general agreement among software engineers as to the exact
number of steps or phases in the waterfall-type software development
"model." Models vary, depending on the interest of the author in one part or
another in the process. A very brief description of the software process goes
like this:

Step 1 (or Phase 1): Requirements. Find out what the user wants or

needs.

Step 2: Specification. Write out the user wants or needs as precisely as
possible.

Step 2a: Feedback the specification to the user (a review) to see if
the analyst (you) have it right.

Step 2b: Re-do the specification as necessary and return to step
2a until analyst and user both understand one another and agree
to move on.

Step 3: Software is designed to meet the specification from step 2.
Step 3a: Software design is independently checked against the
specification and fixed until the analyst has clearly met the
specification. Note the sense of agreement in step 2 and the use of
step 2 as a basis for further action. When step 3 begins, going
back up the waterfall is difficult — it is supposed to be that way.
Perhaps minor specification details might be revisited but the idea
is to move on once each step is finished.

Step 4: Software is written (developed).
Step 4a: Software, as written, is checked against the design until
the analyst has clearly met the design. Note that the specification
in step 2 is long past and only minor modifications of the design
would be tolerated here.

Step 5: Software is turned over to the user to be used in the application.
Step 5a: User tests and accepts or rejects until software is written
correctly (it meets specification and design).

Step 6: Maintenance is performed on software until it is retired.
Maintenance is a very time-consuming and expensive part of the
software process — particularly if the software engineering process has
not been done well. Maintenance involves correcting hidden software
faults as well as enhancing the functionality of the software.

ER Diagrams and the Software Engineering Life
Cycle
This text concentrates on steps 1 through 3 of the software life cycle for
database modeling. A database is a collection of related data. The concept
of related data means that a database stores information about one
enterprise — a business, an organization, a grouping of related people or
processes. For example, a database might be about Acme Plumbing and
involve customers and production. A different database might be one about
the members and activities of the "Over 55 Club" in town. It would be
inappropriate to have data about the "Over 55 Club" and Acme Plumbing in
the same database because the two organizations are not related. Again, a
database is a collection of related data.

Database systems are often modeled using an Entity Relationship (ER)
diagram as the "blueprint" from which the actual data is stored — the output
of the design phase. The ER diagram is an analyst's tool to diagram the data
to be stored in an information system. Step 1, the requirements phase, can
be quite frustrating as the analyst must elicit needs and wants from the user.
The user may or may not be computer-sophisticated and may or may not
know a software system's capabilities. The analyst often has a difficult time
deciphering needs and wants to strike a balance of specifying something
realistic.

In the real world, the "user" and the "analyst" can be committees of
professionals but the idea is that users (or user groups) must convey their
ideas to an analyst (or team of analysts) — users must express what they
want and think they need.

User descriptions are often vague and unstructured. We will present a
methodology that is designed to make the analyst's language precise
enough so that the user is comfortable with the to-be-designed database,
and the analyst has a tool that can be mapped directly into a database.

The early steps in the software engineering life cycle for databases would be
to:

Step 1: Getting the requirements. Here, we listen and ask questions
about what the user wants to store. This step often involves letting users
describe how they intend to use the data that you (the analyst) will load
into a database. There is often a learning curve necessary for the
analyst as the user explains the system they know so well to a person
who is ignorant of their specific business.

Step 2: Specifying the database. This step involves grammatical
descriptions and diagrams of what the analyst thinks the user wants.
Because most users are unfamiliar with the notion of an Entity-
Relationship diagram (ERD), our methodology will supplement the ERD
with grammatical descriptions of what the database is supposed to
contain and how the parts of the database relate to one another. The
technical description of the database is often dry and uninteresting to a
user; however, when analysts put what they think they heard into
statements, the user and the analyst have a "meeting of the minds." For
example, if the analyst makes statements such as, "All employees must
generate invoices," the user may then affirm, deny, or modify the
declaration to fit what is actually the case.

Step 3: Designing the database. Once the database has been
diagrammed and agreed-to, the ERD becomes the blueprint for
constructing the database.

Checkpoint 1.1

1. Briefly describe the steps of the software engineering life-cycle
process.

2. Who are the two main players in the software development life cycle?

Data Models
Data must be stored in some fashion in a file for it to be useful. In database
circles over the past 20 years or so, there have been three basic camps of
"logical" database models — hierarchical, network, and relational — three
ways of logically perceiving the arrangement of data in the file structure. This
section provides some insight into each of these three main models along
with a brief introduction to the relational model.

The Hierarchical Model
The idea in hierarchical models is that all data is arranged in a hierarchical
fashion (a.k.a. a parent–child relationship). If, for example, we had a
database for a company and there was an employee who had dependents,
then one would think of an employee as the "parent" of the dependent.
(Note: Understand that the parent–child relationship is not meant to be a
human relationship. The term "parent–child" is simply a convenient reference
to a common familial relationship. The "child" here could be a dependent
spouse or any other human relationship.) We could have every dependent
with one employee parent and every employee might have multiple
dependent children. In a database, information is organized into files,
records, and fields. Imagine a file cabinet we call the employee file: it
contains all information about employees of the company. Each employee
has an employee record, so the employee file consists of individual
employee records. Each record in the file would be expected to be organized
in a similar way. For example, you would expect that the person's name
would be in the same place in each record. Similarly, you would expect that
the address, phone number, etc. would be found in the same place in
everyone's records. We call the name a "field" in a record. Similarly, the
address, phone number, salary, date of hire, etc. are also fields in the
employee's record. You can imagine that a parent (employee) record might
contain all sorts of fields — different companies have different needs and no
two companies are exactly alike.

In addition to the employee record, we will suppose in this example that the
company also has a dependent file with dependent information in it —
perhaps the dependent's name, date of birth, place of birth, school attending,
insurance information, etc. Now imagine that you have two file cabinets: one
for employees and one for dependents. The connection between the records
in the different file cabinets is called a "relationship." Each dependent must
be related to some employee, and each employee may or may not have a
dependent in the dependent file cabinet.

Relationships in all database models have what are called "structural
constraints." A structural constraint consists of two notions: cardinality and
optionality. Cardinality is a description of how many of one record type relate
to the other, and vice versa. In our company, if an employee can have
multiple dependents and the dependent can have only one employee parent,
we would say the relationship is one-to-many — that is, one employee, many
dependents. If the company is such that employees might have multiple
dependents and a dependent might be claimed by more that one employee,
then the cardinality would be many-to-many — many employees, many
dependents. Optionality refers to whether or not one record may or must
have a corresponding record in the other file. If the employee may or may
not have dependents, then the optionality of the employee to dependent
relationship is "optional" or "partial." If the dependents must be "related to"
employee(s), then the optionality of dependent to employee is "mandatory"
or "full."

Furthermore, relationships are always stated in both directions in a database

description. We could say that:

Employees may have zero or more dependents

and

Dependents must be associated with one and only one
employee.

Note the employee-to-dependent, one-to-many cardinality and the
optional/mandatory nature of the relationship.

All relationships between records in a hierarchical model have a cardinality
of one-to-many or one-to-one, but never many-to-one or many-to-many. So,
for a hierarchical model of employee and dependent, we can only have the
employee-to-dependent relationship as one-to-many or one-to-one; an
employee may have zero or more dependents, or (unusual as it might be) an
employee may have one and only one dependent. In the hierarchical model,
you could not have dependents with multiple parent–employees.

The original way hierarchical databases were implemented involved
choosing some way of physically "connecting" the parent and the child
records. Imagine you have looked up an employee in the employee filing
cabinet and you want to find the dependent records for that employee in the
dependent filing cabinet. One way to implement the employee–dependent
relationship would be to have an employee record point to a dependent
record and have that dependent record point to the next dependent (a linked
list of child –records, if you will). For example, you find employee Jones. In
Jones' record, there is a notation that Jones' first dependent is found in the
dependent filing cabinet, file drawer 2, record 17. The "file drawer 2, record
17" is called a pointer and is the "connection" or "relationship" between the
employee and the dependent. Now to take this example further, suppose the
record of the dependent in file drawer 2, record 17 points to the next
dependent in file drawer 3, record 38; then that person points to the next
dependent in file drawer 1, record 82.

In the linked list approach to connecting parent and child records, there are
advantages and disadvantages to that system. For example, one advantage
would be that each employee has to maintain only one pointer and that the
size of the "linked list" of dependents is theoretically unbounded. Drawbacks
would include the fragility of the system in that if one dependent record is
destroyed, then the chain is broken. Further, if you wanted information about
only one of the child records, you might have to look through many records
before you find the one you are looking for.

There are, of course, several other ways of making the parent–child link.
Each method has advantages and disadvantages, but imagine the difficulty
with the linked list system if you wanted to have multiple parents for each
child record. Also note that some system must be chosen to be implemented
in the underlying database software. Once the linking system is chosen, it is
fixed by the software implementation; the way the link is done has to be used
to link all child records to parents, regardless of how inefficient it might be for
one situation.

There are three major drawbacks to the hierarchical model:
1. Not all situations fall into the one-to-many, parent–child format.

2. The choice of the way in which the files are linked impacts
performance, both positively and negatively.

3. The linking of parent and child records is done physically. If the

dependent file were reorganized, then all pointers would have to be
reset.

The Network Model
The network model was developed as a successor to the hierarchical model.
The network model alleviated the first concern as in the network model —
one was not restricted to having one parent per child — a many-to-many
relationship or a many-to-one relationship was acceptable. For example,
suppose that our database consisted of our employee–dependent situation
as in the hierarchical model, plus we had another relationship that involved a
"school attended" by the dependent. In this case, the employee–dependent
relationship might still be one-to-many, but the "school attended"–dependent
relationship might well be many-to-many. A dependent could have two
"parent/schools." To implement the dependent–school relationship in
hierarchical databases involved creating redundant files, because for each
school, you would have to list all dependents. Then, each dependent who
attended more than one school would be listed twice or three times, once for
each school. In network databases we could simply have two connections or
links from the dependent child to each school, and vice versa.

The second and third drawbacks of hierarchical databases spilled over to
network databases. If one were to write a database system, one would have
to choose some method of physically connecting or linking records. This
choice of record connection then locks us into the same problem as before,
a hardware-implemented connection that impacts performance both
positively and negatively. Further, as the database becomes more
complicated, the paths of connections and the maintenance problems
become exponentially more difficult to manage.

The Relational Model
E. Codd (ca. 1970) introduced the relational model to describe a database
that did not suffer from the drawbacks of the hierarchical and network
models. Codd's premise was that if we ignore the way data files are
connected and arrange our data into simple two-dimensional, unordered
tables, then we can develop a calculus for queries (questions posed to the
database) and focus on the data as data, not as a physical realization of a
logical model. Codd's idea was truly logical in that one was no longer
concerned with how data was physically stored. Rather, data sets were
simply unordered, two-dimensional tables of data. To arrive at a workable
way of deciding which pieces of data went into which table, Codd proposed
"normal forms." To understand normal forms, we must first introduce the
notion of "functional dependencies." After we understand functional
dependences, the normal forms follow.

Checkpoint 1.2

1. What are the three main types of data models?

2. Which data model is mostly used today? Why?

3. What are some of the disadvantages of the hierarchical data model?

4. What are some of the disadvantages of the network data model?

5. How are all relationships (mainly the cardinalities) described in the
hierarchical data model? How can these be a disadvantage of the
hierarchical data model?

6. How are all relationships (mainly the cardinalities) described in the

network data model? Would you treat these as advantages or
disadvantages of the network data model? Discuss.

7. Why was Codd's promise of the relational model better?

Functional Dependencies
A functional dependency is a relationship of one attribute or field in a record
to another. In a database, we often have the case where one field defines
the other. For example, we can say that Social Security Number (SSN)
defines a name. What does this mean? It means that if I have a database
with SSNs and names, and if I know someone's SSN, then I can find their
name. Further, because we used the word "defines," we are saying that for
every SSN we will have one and only one name. We will say that we have
defined name as being functionally dependent on SSN.

The idea of a functional dependency is to define one field as an anchor from
which one can always find a single value for another field. As another
example, suppose that a company assigned each employee a unique
employee number. Each employee has a number and a name. Names might
be the same for two different employees, but their employee numbers would
always be different and unique because the company defined them that way.
It would be inconsistent in the database if there were two occurrences of the
same employee number with different names.

We write a functional dependency (FD) connection with an arrow:
 SSN → Name

or
 EmpNo → Name.

The expression SSN → Name is read "SSN defines Name" or "SSN implies
Name."

Let us look at some sample data for the second FD.

Wait a minute…. You have two people named Fred! Is this a problem with
FDs? Not at all. You expect that Name will not be unique and it is
commonplace for two people to have the same name. However, no two
people have the same EmpNo and for each EmpNo, there is a Name.

Let us look at a more interesting example:

EmpNo Name

101 Kaitlyn
102 Brenda
103 Beryl
104 Fred
105 Fred

EmpNo Job Name

101 President Kaitlyn
104 Programmer Fred
103 Designer Beryl
103 Programmer Beryl

Is there a problem here? No. We have the FD that EmpNo → Name. This
means that every time we find 104, we find the name, Fred. Just because
something is on the left-hand side (LHS) of a FD, it does not imply that you
have a key or that it will be unique in the database — the FD X → Y only
means that for every occurrence of X you will get the same value of Y.

Let us now consider a new functional dependency in our example. Suppose
that Job → Salary. In this database, everyone who holds a job title has the
same salary. Again, adding an attribute to the previous example, we might
see this:

Do we see a contradiction to our known FDs? No. Every time we find an
EmpNo, we find the same Name; every time we find a Job title, we find the
same Salary.

Let us now consider another example. We will go back to the SSN → Name
example and add a couple more attributes.

Here, we will define two FDs: SSN → Name and School → Location.

Further, we will define this FD: SSN → School.

First, have we violated any FDs with our data? Because all SSNs are unique,
there cannot be a FD violation of SSN → Name. Why? Because a FD X → Y
says that given some value for X, you always get the same Y. Because the
X's are unique, you will always get the same value. The same comment is
true for SSN → School.

EmpNo Job Name Salary

101 President Kaitlyn 50
104 Programmer Fred 30
103 Designer Beryl 35
103 Programmer Beryl 30

SSN Name School Location

101 David Alabama Tuscaloosa
102 Chrissy MSU Starkville
103 Kaitlyn LSU Baton Rouge
104 Stephanie MSU Starkville
105 Lindsay Alabama Tuscaloosa
106 Chloe Alabama Tuscaloosa

How about our second FD, School→ Location? There are only three
schools in the example and you may note that for every school, there is only
one location, so no FD violation.

Now, we want to point out something interesting. If we define a functional
dependency X → Y and we define a functional dependency Y → Z, then we

know by inference that X → Z. Here, we defined SSN → School. We also

defined School → Location, so we can infer that SSN → Location
although that FD was not originally mentioned. The inference we have
illustrated is called the transitivity rule of FD inference. Here is the transitivity
rule restated:
 Given X → Y

 Given Y → Z

 Then X → Z

To see that the FD SSN→ Location is true in our data, you can note that
given any value of SSN, you always find a unique location for that person.
Another way to demonstrate that the transitivity rule is true is to try to invent
a row where it is not true and then see if you violate any of the defined FDs.

We defined these FD's:
Given: SSN → Name
 SSN → School
 School → Location

We are claiming by inference using the transitivity rule that SSN→
Location. Suppose that we add another row with the same SSN and try a
different location:

Now, we have satisfied SSN→ Name but violated SSN→ Location. Can we
do this? We have no value for School, but we know that if School =
"Alabama" as defined by SSN → School, then we would have the following
rows:

SSN Name School Location

101 David Alabama Tuscaloosa
102 Chrissy MSU Starkville
103 Kaitlyn LSU Baton Rouge
104 Stephanie MSU Starkville
105 Lindsay Alabama Tuscaloosa
106 Chloe Alabama Tuscaloosa
106 Chloe MSU Starkville

However, this is a problem. We cannot have Alabama and Starkville in the
same row because we also defined School → Location. So in creating
our counterexample, we came upon a contradiction to our defined FDs.
Hence, the row with Alabama and Starkville is bogus. If you had tried to
create a new location like this:

You violate the FD, SSN→ School — again, a bogus row was created. By
being unable to provide a counterexample, you have demonstrated that the
transitivity rule holds. You may prove the transitivity rule more formally (see
Elmasri and Navathe, 2000, p. 479).

There are other inference rules for functional dependencies. We will state
them and give an example, leaving formal proofs to the interested reader
(see Elmasri and Navathe, 2000).

The Reflexive Rule

If X is a composite, composed of A and B, then X→ A and X→ B. Example: X

= Name, City. Then we are saying that X → Name and X → City.

Example:

The rule, which seems quite obvious, says if I give you the combination
<Kaitlyn, New Orleans>, what is this person's Name? What is this
person's City? While this rule seems obvious enough, it is necessary to
derive other functional dependencies.

The Augmentation Rule

If X→ Y, then XZ→ Y. You might call this rule, "more information is not really
needed, but it doesn't hurt." Suppose we use the same data as before with
Names and Cities, and define the FD Name → City. Now, suppose we add
a column, Shoe Size:

SSN Name School Location

106 Chloe Alabama Tuscaloosa
106 Chloe Alabama Starkville

SSN Name School Location

106 Chloe Alabama Tuscaloosa
106 Chloe FSU Tallahassee

Name City

David Mobile
Kaitlyn New Orleans
Chrissy Baton Rouge

Now, I claim that because Name→ City, that Name+Shoe Size → City
(i.e., we augmented Name with Shoe Size). Will there be a contradiction
here, ever? No, because we defined Name → City, Name plus more
information will always identify the unique City for that individual. We can
always add information to the LHS of an FD and still have the FD be true.

The Decomposition Rule

The decomposition rule says that if it is given that X → YZ (that is, X defines

both Y and Z), then X → Y and X → Z. Again, an example:

Suppose I define Name → City, Shoe Size. This means for every
occurrence of Name, I have a unique value of City and a unique value of
Shoe Size. The rule says that given Name → City and Shoe Size

together, then Name → City and Name → Shoe Size. A partial proof using
the reflexive rule would be:
 Name → City, Shoe Size (given)
 City, Shoe Size → City (by the reflexive rule)
 Name → City (using steps 1 and 2 and the transitivity rule)

The Union Rule

The union rule is the reverse of the decomposition rule in that if X → Y and X
→ Z, then X → YZ. The same example of Name, City, and Shoe Size

illustrates the rule. If we found independently or were given that Name →

City and given that Name → Show Size, we can immediately write Name
→ City, Shoe Size. (Again, for further proofs, see Elmasri and Navathe,
2000, p. 480.)

You might be a little troubled with this example in that you may say that
Name is not a reliable way of identifying City; Names might not be unique.
You are correct in that Names may not ordinarily be unique, but note the

Name City Shoe Size

David Mobile 10
Kaitlyn New Orleans 6
Chrissy Baton Rouge 3

Name City Shoe Size

David Mobile 10
Kaitlyn New Orleans 6
Chrissy Baton Rouge 3

language we are using. In this database, we define that Name → City and,
hence, in this database are restricting Name to be unique by definition.

Keys and FDs
The main reason we identify the FDs and inference rules is to be able to find
keys and develop normal forms for relational databases. In any relational
table, we want to find out which, if any attribute(s), will identify the rest of the
attributes. An attribute that will identify all the other attributes in row is called
a "candidate key." A "key" means a "unique identifier" for a row of
information. Hence, if an attribute or some combination of attributes will
always identify all the other attributes in a row, it is a "candidate" to be
"named" a key. To give an example, consider the following:

Now suppose I define the following FDs:
 SSN → Name

 SSN → School

 School → Location

What I want is the fewest number of attributes I can find to identify all the
rest — hopefully only one attribute. I know that SSN looks like a candidate,
but can I rely on SSN to identify all the attributes? Put another way, can I
show that SSN "defines" all attributes in the relation? I know that SSN defines
Name and School because that is given. I know that I have the following
transitive set of FDs:
 SSN → School

 School → Location

Therefore, by the transitive rule, I can say that SSN → Location. I have
derived the three FDs I need. Adding the reflexive rule, I can then use the
union rule:
 SSN → Name (given)

 SSN → School (given)

 SSN → Location (derived by the transitive rule)

 SSN → SSN (reflexive rule (obvious))

 SSN → SSN, Name, School, Location (union rule)

SSN Name School Location

101 David Alabama Tuscaloosa
102 Chrissy MSU Starkville
103 Kaitlyn LSU Baton Rouge
104 Stephanie MSU Starkville
105 Lindsay Alabama Tuscaloosa
106 Chloe Alabama Tuscaloosa

This says that given any SSN, I can find a unique value for each of the other
fields for that SSN. SSN therefore is a candidate key for this relation. In FD
theory, once we find all the FDs that an attribute defines, we have found the
closure of the attribute(s). In our example, the closure of SSN is all the
attributes in the relation. Finding a candidate key is the finding of a closure of
an attribute or a set of attributes that defines all the other attributes.

Are there any other candidate keys? Of course! Remember the
augmentation rule that tells us that because we have established the SSN as
the key, we can augment SSN and form new candidate keys: SSN, Name is
a candidate key. SSN, Location is a candidate key, etc. Because every
row in a relation is unique, we always have at least one candidate key — the
set of all the attributes.

Is School a candidate key? No. You do have the one FD that School →
Location and you could work on this a bit, but you have no way to infer
that School → SSN (and in fact with the data, you have a counterexample
that shows that School does not define SSN).

Keys should be a minimal set of attributes whose closure is all the attributes
in the relation — "minimal" in the sense that you want the fewest attributes
on the LHS of the FD that you choose as a key. In our example, SSN will be
minimal (one attribute), whose closure includes all the other attributes.

Once we have found a set of candidate keys (or perhaps only one as in this
case), we designate one of the candidate keys as the primary key and move
on to normal forms.

These FD rules are useful in developing Normal forms. Normal forms can be
expressed in more than one way, but using FDs is arguably the easiest way
to see this most fundamental relational database concept. E. Codd (1972)
originally defined three normal forms: 1NF, 2NF, and 3NF.

Checkpoint 1.3

1. What are functional dependencies? Give examples.

2. What does the augmentative rule state? Give examples.

3. What does the decomposition rule state? Give examples.

A Brief Look at Normal Forms
In this section we briefly describe the first, second, and third normal forms.

First Normal Form (1NF)
The first normal form (1NF) requires that data in tables be two-dimensional
— that there be no repeating groups in the rows. An example of a table not
in 1NF is where there is an employee "record" such as:
 Employee(name, address, {dependent name})

where {dependent name} infers that the attribute is repeated. Sample
data for this record might be:
 Smith, 123 4th St., {John, Mary, Paul, Sally}
 Jones, 4 Moose Lane., {Edgar, Frank, Bob}
 Adams, 88 Tiger Circle., {Kaitlyn, Alicia, Allison}

The problem with putting data in tables with repeating groups is that the
table cannot be easily indexed or arranged so that the information in the
repeating group can be found without searching each record individually.
Relational people usually call a repeating group "nonatomic" (it has more
than one value and can be broken apart).

Second Normal Form (2NF)
The second normal form (2NF) requires that data in tables depends on the
whole key of the table. Partial dependencies are not allowed. An example:
 Employee (name, job, salary, address)

where it takes a name + job combination (a concatenated key) to identify a
salary, but address depends only on name. Some sample data:

Can you see the problem developing here? The address would be repeated
for each occurrence of a name. This repeating is called redundancy and
leads to anomalies. An anomaly means that there is a restriction on doing
something due to the arrangement of the data. There are insertion
anomalies, deletion anomalies, and update anomalies. The key of this table
is Name + Job — this is clear because neither one is unique and it really
takes both name and job to identify a salary. However, address depends
only on the name, not the job; this is an example of a partial dependency.
Address depends on only part of the key. An example of an insertion
anomaly would be where one would want to insert a person into the table
above, but the person to be inserted is not yet assigned a job. This cannot
be done because a value would have to be known for the job attribute. Null

Name Job Salary Address

Smith Welder 14.75 123 4th St
Smith Programmer 24.50 123 4th St
Smith Waiter 7.50 123 4th St
Jones Programmer 26.50 4 Moose Lane
Jones Bricklayer 34.50 4 Moose Lane
Adams Analyst 28.50 88 Tiger Circle

values cannot be valid values for keys in relational databases (this is known
as the entity-integrity constraint). An update anomaly would be where one of
the employees changed his or her address. Three rows would have to be
changed to accommodate this one change of address. An example of a
delete anomaly would be that Adams quits, so Adams is lost, but then the
information that the analyst is being paid $28.50 is also lost. Therefore, more
related information than was previously anticipated is lost.

Third Normal Form (3NF)
The third normal form (3NF) requires that the data in tables depends on the
primary key of the table. A classic example of non-3NF is:
 Employee (name, address, project#, project-location)

Suppose that project-location means the location from which a project
is controlled, and is defined by the project#. Some sample data will show
the problem with this table:

Note the redundancy in this table. Project 101 is located in Memphis; but
every time a person is recorded as working on project 101, the fact that they
work on a project that is controlled from Memphis is recorded again. The
same anomalies — insert anomaly, update anomaly, and delete anomaly —
are also present in this table.

To clear the database of anomalies and redundancies, databases must be
normalized. The normalization process involves splitting the table into two or
more tables (a decomposition). After tables are split apart (a process called
decomposition), they can be reunited with an operation called a "join." There
are three decompositions that would alleviate the normalization problems in
our examples, as discussed below.

Examples of 1NF, 2NF, and 3NF

Example of Non-1NF to 1NF
Here, the repeating group is moved to a new table with the key of the table
from which it came.

Non-1NF:
 Smith, 123 4th St., {John, Mary, Paul, Sally}
 Jones, 4 Moose Lane., {Edgar, Frank, Bob}
 Adams, 88 Tiger Circle., {Kaitlyn, Alicia, Allison}

is decomposed into 1NF tables with no repeating groups:

1NF Tables:

Name Address Project# Project-location

Smith 123 4th St 101 Memphis
Smith 123 4th St 102 Mobile
Jones 4 Moose Lane 101 Memphis

EMPLOYEE table

Name Address

In the EMPLOYEE table, Name is defined as a key — it uniquely identifies
the rows. In the DEPENDENT table, the key is a combination
(concatenation) of DependentName and EmployeeName. Neither the
DependentName nor the EmployeeName is unique in the DEPENDENT
table, and therefore both attributes are required to uniquely identify a row in
the table. The EmployeeName in the DEPENDENT table is called a foreign
key because it references a primary key, Name in another table, the
EMPLOYEE table. Note that the original table could be reconstructed by
combining these two tables by recording all the rows in the EMPLOYEE
table and combining them with the corresponding rows in the EMPLOYEE
table where the names were equal (an equi-join operation). Note that in the
derived tables, there are no anomalies or unnecessary redundancies.

Example of Non-2NF to 2NF
Here, partial dependency is removed to a new table.

Non-2NF:

Smith 123 4th St
Jones 4 Moose Lane
Adams 88 Tiger Circle

DEPENDENT table

DependentName EmployeeName

John Smith
Mary Smith
Paul Smith
Sally Smith
Edgar Jones
Frank Jones
Kaitlyn Adams
Alicia Adams
Allison Adams

Name Job Salary Address

Smith Welder 14.75 123 4th St
Smith Programmer 24.50 123 4th St
Smith Waiter 7.50 123 4th St
Jones Programmer 26.50 4 Moose Lane
Jones Bricklayer 34.50 4 Moose Lane
Adams Analyst 28.50 88 Tiger Circle

is decomposed into 2NF:

Name + Job table

Name and Address (Employee info) table:

Again, note the removal of unnecessary redundancy and the amelioration
removal of possible anomalies.

Example of Non-3NF to 3NF
Here, transitive dependency is removed to a new table.

Non-3NF:

is decomposed into 3NF:

EMPLOYEE table:

NAME AND JOB

Name Job Salary

Smith Welder 14.75
Smith Programmer 24.50
Smith Waiter 7.50
Jones Programmer 26.50
Jones Bricklayer 34.50
Adams Analyst 28.50

NAME AND ADDRESS

Name Address

Smith 123 4th St
Jones 4 Moose Lane
Adams 88 Tiger Circle

Name Address Project# Project-location

Smith 123 4th St 101 Memphis
Smith 123 4th St 102 Mobile
Jones 4 Moose Lane 101 Memphis

EMPLOYEE

Name Address Project#

Smith 123 4th St 101

PROJECT table:

Again observe the removal of the transitive dependency and the anomaly
problem.

There are more esoteric normal forms, but most databases will be well
constructed if they are normalized to the 3NF. The intent here is to show the
general process and merits of normalization.

Checkpoint 1.4

1. Define 1NF, 2NF, and 3NF.

2. Why do databases have to be normalized?

3. Why should we avoid having attributes with multiple values or
repeating groups?

Smith 123 4th St 102
Jones 4 Moose Lane 101

PROJECT

Project# Project-location

101 Memphis
102 Mobile
101 Memphis

Chapter Summary
This chapter was meant to serve as a background chapter for the reader.
The chapter briefly described the software engineering process and how it is
related to ER diagram design. Then the chapter gave a brief overview of the
different data models, functional dependencies, and database normalization.
The following chapters develop the ER design methodology in a step-by-step
manner.

Chapter 1 Exercises

Example 1.1
If X → Y, can you say Y → X? Why or why not ?

Example 1.2
Decompose the following data into 1NF tables:

Khanna, 123 4th St., Columbus, Ohio {Delhi University, Calcutta
University, Ohio State}

Ray, 4 Moose Lane, Pensacola, Florida {Zambia University, University
of West Florida}

Ali, 88 Tiger Circle, Gulf Breeze, Florida {University of South Alabama,
University of West Florida}

Sahni, 283 Penny Street, North Canton, Ohio {Wooster College, Mount
Union College}

Example 1.3
Does the following data have to be decomposed?

Name Address City State Car Color Year

Smith 123 4th
St.

Pensacola FL Mazda Blue 2002

Smith 123 4th
St.

Pensacola FL Nissan Red 2001

Jones 4 Moose
Lane

Santa
Clive

CA Lexus Red 2000

Katie 5 Rain
Circle

Fort
Walton

FL Taurus White 2000

References

Armstrong, W. "Dependency Structures of Data Base Relationships,"
Proceedings of the IFIP Congress, 1974.

Chen, P.P. "The Entity Relationship Model — Toward a Unified View of
Data," ACM TODS 1, No. 1, March 1976.

Codd, E. "A Relational Model for Large Shared Data Banks," CACM, 13,
6, June 1970.

Codd, E. Further Normalization of the Data Base Relational Model, in
Rustin (1972).

Codd, E. "Recent Investigations in Relational Database System,"
Proceedings of the IFIP Congress, 1974.

Date, C. An Introduction to Database Systems, 6th ed., Addison-Wesley,
Reading, MA, 1995.

Elmasri, R. and Navathe, S.B. Fundamentals of Database Systems, 3rd
ed., Addison-Wesley, Reading, MA, 2000.

Maier, D. The Theory of Relational Databases, Computer Science Press,
Rockville, MD, 1983.

Norman, R.J. Object-Oriented Systems Analysis and Design, Prentice
Hall, Upper Saddle River, NJ, 1996.

Schach, S.R. Classical and Object Oriented Software Engineering, 4th
ed., McGraw-Hill, New York, 1999.

Chapter 2: The Basic ER Diagram—A
Data Modeling Schema
This chapter begins by describing a data modeling approach and then
introduces entity relationship (ER) diagrams. The concept of entities,
attributes, relationships, and keys are introduced. The first three steps in an
ER design methodology are developed. Step 1 begins by building a one-
entity diagram. Step 2 concentrates on using structured English to describe
a database. Step 3, the last section in this chapter, discusses mapping the
ER diagram to a relational database. These concepts — the diagram,
structured English, and mapping — will evolve together as the book
progresses. At the end of the chapter we also begin a running case study,
which will be continued at the ends of the subsequent chapters.

What Is a Data Modeling Schema?
A data modeling schema is a method that allows us to model or illustrate a
database. This device is often in the form of a graphic diagram, but other
means of communication are also desirable — non computer-people may or
may not understand diagrams and graphics. The ER diagram (ERD) is a
graphic tool that facilitates data modeling. The ERD is a subset of "semantic
models" in a database. Semantic models refer to models that intend to elicit
meaning from data. ERDs are not the only semantic modeling tools, but they
are common and popular.

When we begin to discuss the contents of a database, the data model helps
to decide which piece of data goes with which other piece of data on a
conceptual level. An early concept in databases is to recognize that there
are levels of abstraction that we can use in discussing databases. For
example, if we were to discuss the filing of "names," we could discuss this:

Abstractly, that is, "we will file names of people we know."

or

Concretely, that is, "we will file first, middle, and last names (20
characters each) of people we know, so that we can retrieve
the names in alphabetical order on last name, and we will put
this data in a spreadsheet format on package x."

If a person is designing a database, the first step is to abstract and then
refine the abstraction. The longer one stays away from the concrete details
of logical models (relational, hierarchical, network) and physical realizations
(fields [how many characters, the data type, etc.] and files [relative,
spreadsheet]), the easier it is to change the model and to decide how the
data will eventually be physically realized (stored). When we use the term
"field" or "file," we will be referring to physical data as opposed to conceptual
data.

Mapping is the process of choosing a logical model and then moving to a
physical database file system from a conceptual model (the ER diagram). A
physical file loaded with data is necessary to actually get data from a
database. Mapping is the bridge between the design concept and physical
reality. In this book we concentrate on the relational database model due to
its ubiquitousness in contemporary database models.

What Is an Entity Relationship (ER) Diagram?

The ER diagram is a semantic data modeling tool that is used to accomplish
the goal of abstractly describing or portraying data. Abstractly described data
is called a conceptual model. Our conceptual model will lead us to a
"schema." A schema implies a permanent, fixed description of the structure
of the data. Therefore, when we agree that we have captured the correct
depiction of reality within our conceptual model, our ER diagram, we can call
it a schema.

An ER diagram could also be used to document an existing database by
reverse-engineering it; but in introducing the subject, we focus on the idea of
using an ER diagram to model a to-be-created database and deal with
reverse-engineering later.

Defining the Database — Some Definitions: Entity,
Relationship, Attribute
As the name implies, an ER diagram models data as entities and
relationships, and entities have attributes. An entity is a thing about which
we store data, for example, a person, a bank account, a building. In the
original presentation, Chen (1976) described an entity as a "thing which can
be distinctly identified." So an entity can be a person, place, object, event, or
concept about which we wish to store data.

The name for an entity must be one that represents a type or class of thing,
not an instance. The name for an entity must be sufficiently generic but, at
the same time, the name for an entity cannot be too generic. The name
should also be able to accommodate changes "over time." For example, if
we were modeling a business and the business made donuts, we might
consider creating an entity called DONUT. But how long will it be before this
business evolves into making more generic pastry? If it is anticipated that the
business will involve pastry of all kinds rather than just donuts, perhaps it
would be better to create an entity called PASTRY — it may be more
applicable "over time."

Some examples of entities include:

Examples of a person entity would be EMPLOYEE, VET, or STUDENT.

Examples of a place entity would be STATE or COUNTRY.

Examples of an object entity would be BUILDING, AUTO, or PRODUCT.

Example of an event entity would be SALES, RETURNS, or
REGISTRATION.

Examples of a concept entity would be ACCOUNT or DEPARTMENT.

In older data processing circles, we might have referred to an entity as a
record, but the term "record" is too physical and too confining; "record" gives
us a mental picture of a physical thing and, in order to work at the conceptual
level, we want to avoid device-oriented pictures for the moment. In a
database context, it is unusual to store information about one entity, so we
think of storing collections of data about entities — such collections are
called entity sets. Entity sets correspond to the concept of "files," but again,
a file usually connotes a physical entity and hence we abstract the concept
of the "file" (entity set) as well as the concept of a "record" (entity). As an
example, suppose we have a company that has customers. You would
imagine that the company had a customer entity set with individual customer
entities in it.

An entity may be very broad (e.g., a person), or it may be narrowed by the
application for which data is being prepared (like a student or a customer).
Broad entities, which cover a whole class of objects, are sometimes called
generalizations (e.g., person), and narrower entities are sometimes called
specializations (e.g., student). In later diagrams (in this book) we will revisit
generalizations and specializations; but for now, we will concern ourselves
with an application level where there are no subgroups (specializations) or
supergroups (generalizations) of entities.

When we speak of capturing data about a particular entity, we refer to this as
an instance. An entity instance is a single occurrence of an entity. For
example, if we create an entity called TOOL, and if we choose to record data
about a screwdriver, then the screwdriver "record" is an instance of TOOL.
Each instance of an entity must be uniquely identifiable so that each
instance is separate and distinctly identifiable from all other instances of that

type of entity. In a customer entity set, you might imagine that the company
would assign a unique customer number, for example. This unique identifier
is called a key.

A relationship is a link or association between entities. Relationships are
usually denoted by verb phrases. We will begin by expanding the notion of
an entity (in this chapter and the next), and then we will come back to the
notion of a relationship (in Chapter 4) once we have established the concept
of an entity.

An attribute is a property or characteristic for an entity. For example, an
entity, AUTOMOBILE, may have attributes type, color, vehicle_id, etc.

A Beginning Methodology
Database modeling begins with a description of "what is to be stored." Such
a description can come from anyone; we will call the describer the "user."
For example, Ms. Smith of Acme Parts Company comes to you, asking that
you design a database of parts for her company. Ms. Smith is the user. You
are the database designer. What Ms. Smith tells you about the parts will be
the database description.

As a starting point in dealing with a to-be-created database we will identify a
central, "primary" entity — a category about which we will store data. For
example, if we wanted to create a database about students and their
environment, then one entity would be STUDENT (our characterization of an
entity will always be in the singular). Having chosen one first primary entity,
STUDENT, we will then search for information to be recorded about our
STUDENT. This methodology of selecting one "primary" entity from a data
description is our first step in drawing an ER diagram, and hence the
beginning of the requirements phase of software engineering for our
database.

Once the "primary" entity has been chosen, we then ask ourselves what
information we want to record about our entity. In our STUDENT example,
we add some details about the STUDENT — any details that will qualify,
identify, classify, or express the state of the entity (in this case, the
STUDENT entity). These details or contents of entities are called attributes.
[1] Some example attributes of STUDENT would be the student's name,
student number, major, address, etc. — information about the student.

[1]C. Date (1995) prefers the word "property" to "attribute" because it is more
generic and because "attribute" is used in other contexts. We will use
"attribute" because we believe it to be more commonly used.

ER Design Methodology
Step 1: Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.

"Requirements definition" is the first phase of software engineering where
the systems analyst tries to find out what a user wants. In the case of a
database, an information-oriented system, the user will want to store data.
Now that we have chosen a primary entity and some attributes, our task will
be to:

Draw a diagram of our first-impression entity (our primary entity).

Translate the diagram into English.

Present the English (and the diagram) back to the user to see if we have
it right and then progress from there.

The third step is called "feedback" in software engineering. The process of
refining via feedback is a normal process in the requirements/specification
phases. The feedback loop is essential in arriving at the reality of what one
wants to depict from both the user and analyst viewpoints. First we will learn
how to draw the entity and then we will present guidelines for converting our
diagram into English.

Checkpoint 2.1

1. Of the following items, determine which could be an entity and state
why: automobile, college class, student, name of student, book title,
number of dependents.

2. Why are entities not called files or records?

3. What is mapping?

4. What are entity sets?

5. Why do we need Entity-Relationship Diagrams?

6. What are attributes? List attributes of the entities you found in
question 1 (above).

7. What is a relationship?

A First "Entity-Only" ER Diagram: An Entity with
Attributes
To recap our example, we have chosen an example with a "primary" entity
from a student information database — the student. Again note that "a
student" is something about which we want to store information (the
definition of an entity). In this chapter, we do not concern ourselves with any
other entities.

Let us think about some attributes of the entity STUDENT; that is, what are
some attributes a student might have? A student has a name, an address,
and an educational connection. We will call the educational connection a
"school." We have picked three attributes for the entity STUDENT, and we
have also chosen a generic label for each: name, address, school.

We begin our first venture into ER diagrams with a "Chen-like" model. Chen
(1976) introduced the idea of the ER diagrams. He and others have
improved the ER process over the years; and while there is no standard
ERD model, the Chen-like model and variants thereof are common. After the
"Chen-like" model, we introduce other models. We briefly discuss the
"Barker/Oraclelike" model later (in Chapter 10). Chen-like models have the
advantage that one does not need to know the underlying logical model to
understand the design. Barker models and some other models require a full
understanding of the relational model, and the diagrams are affected by
relational concepts.

To begin, in the Chen-like model, we will do as Chen originally did and put
the entities in boxes and the show attributes nearby. One way to depict
attributes is to put them in circles or ovals appended to the boxes — see
Figure 2.1 (top and middle). Figure 2.1 (bottom) is an alternative style of
depicting attributes. The alternative attribute style (Figure 2.1, bottom) is not
as descriptive, but it is more compact and can be used if Chen-like diagrams
become cluttered.

Figure 2.1: An ER Diagram with Three Attributes

There are several ways of depicting attributes. We have illustrated the
"attribute in a circle" model (Chen-like model) because it is common and
useful. Refer to Figure 2.2 for some alternate models for attributes. There
are benefits to alternate forms for depicting attributes. The standard form of
the Chen-like model with bubbles and boxes is good for conceptualizing; it is
easily changed and very clear as to which attribute goes where. The concise
form (Figure 2.1 [bottom] and other variants in Figure 2.2) is easily created
from the standard form and is sometimes more useful for documentation
when space is a concern.

Figure 2.2: An ER Diagram with One Entity and Five Attributes,
Alternate Models (Batini, Ceri, Navathe)

Figure 2.1 (middle and bottom) shows an ER diagram with one entity,
STUDENT, and three attributes: name, address, and school. If more
attributes are added to our conceptual model, such as phone and major,
they would be appended to the entity (here, STUDENT is the only entity we
have), as can be seen in Figure 2.3.

Figure 2.3: An ER Diagram with One Entity and Five
Attributes

More about Attributes
Attributes are characteristics of entities that provide descriptive details about
the entities. There are several different kinds of attributes: simple or atomic,
composite, multi-valued, and derived. The properties of an attribute are its
name, description, format, and length, in addition to its atomiticity. Some
attributes may be considered unique identifiers for an entity. This section
also introduces the idea of a key attribute, a unique identifier for an entity.

The Simple or Atomic Attribute
Simple or atomic attributes cannot be further broken down or subdivided,
hence the notion "atomic." One can examine the domain of values[2] of an
attribute to elicit whether an attribute is simple or not. An example of a
simple or atomic attribute would be Social Security number, where a person
would be expected to have only one, undivided Social Security number.

Other tests of whether an attribute is simple or atomic will depend entirely on
the circumstances that the database designer encounters — the desire of
the "user" for which the database is being built. For example, we might treat
a phone number attribute as simple in a particular database design, but in
another scenario we may want to divide the phone number into two distinct
parts, that is, the area code and the number. Another example of where the
use of the attribute in the database will determine if the attribute is simple or
atomic is — a birthdate attribute. If we are setting up a database for a
veterinary hospital, it may make sense to break up a birthdate field into
month, day, and year, because it will make a difference in treatment if a
young animal is five days old versus if it is five months or five years old.
Hence, in this case, birthdate would be a composite attribute. For a RACE
HORSE database, however, it may not be necessary to break up a birthdate
field into month/day/year, because all horses are dated only by the year in
which they were born. In this latter case, birthdate, consisting of only the
year, would be atomic.

If an attribute is non-atomic, it needs to be depicted as such on the ER
diagram. The following sections deal with these more complicated,
nonatomic attribute ideas — the composite attribute and the multi-valued
attribute.

The Composite Attribute
A composite attribute, sometimes called a group attribute, is an attribute
formed by combining or aggregating related attributes. The names chosen
for composite attributes should be descriptive and general. The concept of
"name" is adequate for a general description, but it may be desirable to be
more specific about the parts of this attribute. Most data processing
applications divide the name into component parts. Name, then, is called a
composite attribute or an aggregate because it is usually composed of a
first name, a last name, and a middle initial — sub-attributes, if you will. The
way that composite attributes are shown in ER diagrams in the Chen-like
model is illustrated in Figure 2.4. The sub-attributes, such as first name,
middle initial, and last name, are called simple, atomic, or elementary
attributes. The word "aggregate" is used in a different sense in some
database query languages and to avoid confusion, but we will not call
composite attributes "aggregates;" we will use the word "composite."

Figure 2.4: An ER Diagram with a Composite Attribute —
name

Once again, the test of whether or not an attribute will be composite will
depend entirely on the circumstances that the database designer encounters
— the desire of the "user" for which the database is being built. For example,
in one database it may not be important to know exactly which city or state
or zip code a person comes from, so an address attribute in that database
may not be broken up into its component parts; it may just be called address.
Whereas in another database, it may be important to know which city and
state a person is from; so in this second database we would have to break
up the address attribute into street address, city, state, and zip code, making
the address attribute a composite attribute.

The Multi-Valued Attribute
Another type of non-simple attribute that has to be managed is called a
multi-valued attribute. The multi-valued attribute, as the name implies, may
take on more than one value for a given occurrence of an entity. For
example, the attribute school could easily be multi-valued if a person attends
(or has attended, depending on the context of the database) more than one
school. As a counter example, most people go by only one name and hence
the grouping, name, is not multi-valued. The multi-valued attribute called
school is depicted in Figure 2.5 (Chen-like model) as a double oval, which
illustrates the situation where a database will store data about students who
may have attended more than one school. Although we have chosen to
illustrate school as a multi-valued attribute, we do not mean to imply that this
will always be the case in all databases. In fact, the attribute, school, may
well be singly valued in some databases. The idea of school may mean the
current (or just-previous) school as opposed to all schools attended. If the
subjects about whom we are storing data can attend only one school at a
time (and that is what we want to depict), then the attribute, school, may well
be a single-valued attribute.

Figure 2.5: An ER Diagram with a Multi-Valued
Attribute

Once again, the test of singleversus multi-valued will depend entirely on the
circumstances that the database designer encounters — the desire of the
"user" for which the database is being built. It is recommended that if the
sense of the database is that the attribute school means "current school,"
then the attribute should be called "current school" and illustrated as a
single-valued attribute. In our example, we have a multi-valued attribute in
Figure 2.5, so the sense of the diagram is that multiple schools can be
recorded for each student.

The Derived Attribute
Derived attributes are attributes that the user may envision but may not be
recorded per se. These derived attributes can be calculated from other data
in the database. An example of a derived attribute would be an age that
could be calculated once a student's birthdate is entered. In the Chen-like
model, a derived attribute is shown in a dashed oval (as shown in Figure
2.5A).

Figure 2.5A: An ER Diagram with a Derived Attribute —
age

keys
The sense of a database is to store data for retrieval. An attribute that may
be used to find a particular entity occurrence is called a key. As we model
our database with the ER models, we may find that some attributes naturally
seem to be keys. If an attribute can be thought of as a unique identifier for an
entity, it is called a candidate key. When a candidate key is chosen to be
the unique identifier, it becomes the primary key for the entity.

As an example of keys, suppose we add an attribute called student number
to our STUDENT entity example. We might well consider a student number
to be a unique identifier for the entity — a candidate key because of
uniqueness. Name is often unique, but not necessarily so. Members of the
same class often share last names. Address may or may not be a unique
identifier and hence is not a likely candidate key. Siblings that take classes
together could easily have the same address. The point is that schools often
choose to assign a unique student number to each student in order to be
able to find student records — the sense of a key is to provide a unique way
to find an entity instance (a particular record).

Some schools also choose to record a Social Security number (SSN) as an
attribute. An SSN is also unique and hence a candidate key along with
student number. If both SSN and student number were recorded, then the
designer would have to choose which candidate would be the primary key. In
our case, we choose not to record an SSN. The STUDENT entity with the
unique identifier student number added as a key, is depicted in Figure 2.6.

Figure 2.6: An ER Diagram with a Primary Key or Unique Identifier
Attribute

In the Chen-like model, attributes that are unique identifiers (candidate
keys) are usually underlined (as shown in Figure 2.6). A unique identifier can
be an attribute or a combination of attributes. It is not necessary to choose
which candidate key will be the primary key at this point, but one could do
so. When there is only one candidate key, we will generally speak of it as the
primary key, simply because it is obvious that the primary key is a candidate
key. In Figure 2.6 we have also depicted the short form of the ER diagram
(at the bottom) with composite attributes and multi-valued attributes as well
as primary keys. The composite attributes are listed with its component
parts, and the multi-valued attributes are enclosed in parentheses in the
abbreviated form.

Finally, while on the subject of keys, we will have situations in the ER
diagram (in the Chen-like model) where no key is obvious or intended.
Entities that have at least one identified key can be called strong entities. In
Chen's (1976) original article, strong entities were called regular entities.
Some entities will be discovered which depend on other entities for their
being (and hence their identification). Chen called those entities that rely on
other entities for their existence, weak entities.

We will often be able to recognize these weak entities because they may not
have candidate keys, although the actual meaning of a weak entity is "one
that depends on another for existence." As Chen did, we will follow the
Chen-like notation and call such entities weak entities — weak because
they will have to depend on some other entity to furnish a unique identifier to

give the entity a reason to be recorded.

Although a weak entity may have a candidate key, it would not be a strong
entity. We depict weak entities in the Chen-like ER diagrams with double
boxes (see Figure 2.7). For now, we will concentrate on those entities that
have keys, and later we will reconsider situations where no key is obvious.

Figure 2.7: A Strong and a Weak AUTOMOBILE
Entity

Checkpoint 2.2

1. Describe the basic types of data representation schemas used in
entity–relationship (ER) modeling.

2. What notation is used to diagrammatically show an entity in the Chen-
like model?

3. How do we diagrammatically show attributes in the Chen-like model?

4. How do we show composite attributes in the Chen-like model?

5. Draw an entity representation for the entity "building" with the
attributes building name, occupancy, and whether or not it has an
elevator (yes/no).

6. Embellish the building entity to include the building superintendent's
name (first, middle, and last). Does this have to be a composite
attribute? Why or why not?

7. Embellish the building entity to include the address of the building,

which will be the primary key.

8. Once again, embellish the building entity to include names (and only
the names) of the janitorial staff.

9. Add a multi-valued attribute to the building entity. 10. How many
attributes can an entity have?

[2]The "domain of values" is the set of values that a given attribute may take
on. The domain consists of all the possible legal values that are permitted on
an attribute. A data type is a broader term used to describe attributes, but
"data type" includes the idea of what operations are allowable. Since
database people are usually more concerned about storage and retrieval,
database "data types" usually just focus on the "domain of values."

English Description of the Entity
Now that we have an entity with attributes, we want to prepare the first
feedback to the user — the English description. Users will not likely want to
study the entity diagram but they well might want to hear what you, the
analyst, think you heard. For an English description, we will use a
"structured" English grammar and substitute the appropriate information from
the entity diagram.

The Method
The guideline for the structured English for single entities is as follows.

Let Entity be the name of the entity and att(j) be the attributes. The order of
the attributes is not important, so j = 1, 2, … is assigned arbitrarily. Suppose
that there are n attributes so far. The generalized English equivalent of our
diagram is:

The Entity

This database records data about Entity. For each Entity in the
database, we record att(1), att(2), att(3), …, att(n).

The Attributes
For atomic attributes, a(j):

For each Entity, there always will be one and only one att(j) for
each Entity. The value for att(j) will not be subdivided.

For composite attributes, a(j):
For each Entity, we will record att(j), which is composed of x, y,
z…, (x, y, z) are the component parts of att(j).

For multi-valued attributes, a(j):
For each Entity, we will record att(j)'s. There may be more than one
att(j) recorded for each Entity.

For derived attributes, a(j):
For each Entity, there may exist att(j)'s, which will be derived from
the database.

The Keys
For the key(s):

a. More than one candidate key (strong entity):
For each Entity, we will have the following candidate keys: att(j),
att(k), …, [where j, k are candidate key attributes]

b. One candidate key (strong entity):
For each Entity, we will have the following primary key: att(j)

c. No candidate keys (weak entity):
For each Entity1, we do not assume that any attribute will be
unique enough to identify individual entities without the
accompanying reference to Entity2, the owner Entity.[3]

d. No candidate keys (intersecting entity):

For each Intersecting Entity1, we do not assume that any
attribute will be unique enough to identify individual entities
without the accompanying reference to Entity2, the owner Entity.

[3]The details of the weak entity/strong entity relationship will become clearer
as we introduce relationships in Chapter 3.

ER Design Methodology
Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

Step 3: Show some sample data.

Sample data also helps describe the database as it is perceived.

Examples
We will now revisit each of our figures and add an English description to
each one. First, reconsider Figure 2.3. There are no multi-valued or
composite attributes. Entity = STUDENT, att(1) = name, att(2) = school, etc.
(j assigned arbitrarily). The English "translation" of the entity diagram using
the above templates would be:

The Entity

This database records data about STUDENTS. For each
STUDENT in the database, we record a name, a school, an
address, a phone number, and a major.

The Attributes

For each name, there always will be one and only one name
for each STUDENT. The value for name will not be subdivided.

For each major, there always will be one and only one major
for each STUDENT. The value for major will not be subdivided.
(Note that in Figure 2.3 we did not divide name.)

For each address, there always will be one and only one
address for each STUDENT. The value for address will not be
subdivided.

For each school, there always will be one and only one school
for each STUDENT. The value for school will not be
subdivided.

For each phone number, there always will be one and only one
phone number for each STUDENT. The value for phone
number will not be subdivided.

The Keys

For each STUDENT, we do not assume that any attribute will
be unique enough to identify individual entities. (Remember
that we are describing Figure 2.3.)

Sample Data
In addition to the above descriptions, some sample data is often very helpful
in showing the user what you have proposed:

STUDENT

name major address school phone number

Now consider Figure 2.4. This figure has a composite attribute — name. The
English "translation" of this entity diagram would be as follows:

The Entity

This database records data about STUDENTS. For each
STUDENT in the database, we record a name, a school, and
an address.

The Attributes

For each name, there always will be one and only one name
for each STUDENT. The value for name will be subdivided into
a first name, a last name, and a middle initial.

For each address, there always will be one and only one
address for each STUDENT. The value for address will not be
subdivided.

For each school, there will be one and only one school for each
STUDENT. The value of the school will not be subdivided.

The Keys
For each STUDENT, we do not assume that any attribute will be unique
enough to identify individual entities.

Sample Data

Next consider Figure 2.5. This figure has a composite as well as a multi-
valued attribute. The English "translation" of this entity diagram would be as

Smith Cosc 123 4th St St. Helens 222–2222
Jones Acct 222 2nd St PS 123 333–3333
Saha Eng 284 3rd St Canton 345–3546

Kapoor Math 20 Living Cr High 435–4534

STUDENT

name.first name.last name.mi school address

Richard Earp W U. Alabama 222 2nd St
Boris Backer Heidleburg 333

Dreistrasse
Helga Hogan H U. Hoover 88 Half Moon

Ave
Arpan Bagui K Northern

School
33 Bloom Ave

Hema Malini South Bend 100
Livingstone

follows:

The Entity

This database records data about STUDENTS. For each
STUDENT in the database, we record a name, a school, and
an address.

The Attributes

For each name, there always will be one and only one name
for each STUDENT. The value for name will be subdivided into
a first name, a last name, and a middle initial.

For each address, there always will be one and only one
address for each STUDENT. The value for address will not be
subdivided.

For each STUDENT, we will record schools. There may be
more than one school recorded for each student.

The Keys

For each STUDENT, we do not assume that any attribute will
be unique enough to identify individual entities.

Sample Data

Consider Figure 2.6. This figure has a composite, multi-valued, as well as
key attribute. The English "translation" of this entity diagram would be as
follows:

The Entity

This database records data about STUDENTS. For each
STUDENT in the database, we record a name, schools, an
address, and a student number.

The Attributes

STUDENT

name.first name.last name.mi school address

Richard Earp W U. Alabama,
Mountain

222 2nd St

Boris Backer Heidleburg,
Volcano

333
Dreistrasse

Helga Hogan H U. Hoover, St.
Helens

88 Half
Moon Ave

Arpan Bagui K Northern
School

33 Bloom
Ave

Hema Malini South Bend 100
Livingstone

For each name, there always will be one and only one name
for each STUDENT. The value for name will be subdivided into
a first name, a last name, and a middle initial.

For each address, there always will be one and only one
address for each STUDENT. The value for address will not be
subdivided.

For each STUDENT, we will record schools. There may be
more than one school recorded for each student.

The Keys

For each STUDENT, we will assume that there is an attribute
— student number — that will be unique enough to identify
individual entities.

Finally, consider Figure 2.7 (top). This figure shows a strong entity. We will
combine the grammar a little to keep the methodology from being overly
repetitive. The English "translation" of this entity diagram would be as
follows:

The Entity

This database records data about AUTOMOBILEs. For each
AUTOMOBILE in the database, we record a make, body style,
year, color, and vehicle-id.

The Attributes

Each AUTOMOBILE will have one and only one make, body
style, year, color, and vehicle-id. None of these attributes will
be subdivided.

The Keys

For each AUTOMOBILE, we assume that attribute vehicle-id
will be unique enough to identify individual entities.

Figure 2.7 (bottom) shows a weak entity. The only difference between the
strong and weak entity description involves the key phrase, which may not
exist in the weak entity.

Figure 2.8 shows a relationship between two entities, an AUTOMOBILE and
a STUDENT. The concept of relationships is discussed in more detail in
Chapter 4.

Figure 2.8: An ER Diagram of the STUDENT-AUTOMOBILE
Database

Our methodology has evolved as follows:

ER Design Methodology
Step 1: Select one primary entity from the database requirements
description and show attributes to be recorded for that entity. Label
key if appropriate.

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

Step 3: Show some data.

Mapping the Entity Diagram to a Relational Database
Having illustrated the ideas of the entity and the attribute, we now turn to a
semi-physical realization of the concepts. We say "semi-physical" because
we are really not concerned with the actual physical file that is stored on a
disk, but rather we are concerned with placing data into relational tables that
we will visualize as a physical organization of data. Basically, a relational
database is a database of two-dimensional tables called "relations." The
tables are composed of rows and columns. The rows are often called tuples
and the columns, attributes. In relational databases, all attributes (table
columns) must be atomic and keys must not be null. In addition, in relational
databases, the actual physical location of the data on a disk is not usually
necessary to know.

The process of converting an ER diagram into a database is called
mapping. We concern ourselves only with the relational model and hence,
as the chapters in this book develop, we will consider mapping rules to map
ER diagrams into relational databases.

We start with a rule to map strong entities:

M1 — for strong entities: develop a new table (relation) for
each strong entity and make the indicated key of the
strong entity the primary key of the table. If more than one
candidate key is indicated on the ER diagram, choose one
for the primary key.

Next, we must map the attributes into the strong entity. Mapping rules are
different for atomic attributes, composite attributes, and multi-valued
attributes. First, we present the mapping rule for mapping atomic attributes:

M1a — mapping atomic attributes from an entity — for
entities with atomic attributes: map entities to a table by
forming columns for the atomic attributes.[4]

A relational database realization of the ER diagram in Figure 2.3 with some
data would look like this:

The entity name, STUDENT, would be the name of the relation (table). The
attributes in the diagram become the column headings. The actual table with
data, a realization of a relation, is provided as an example of the type of data
you might expect from such a relation. The ordering of the columns is
irrelevant to relational database as long as once the ordering is chosen, we
stay with it.

What about the composite and multi-valued attributes? As mentioned above,

STUDENT

name phone school address major

Jones 932–5100 U. Alabama 123 4th St Chemistry
Smith 932–5101 U. Mississippi 123 5th St Math
Adams 932–5102 LSU 123 6th St Agriculture
Sumon 435–0997 UWF 11000 Univ Comp Sc
Mala 877–0982 Mount Union North Canton History

it is an axiom of relational databases that all columns be atomic. If we have a
non-atomic attribute in our diagram, we have to make it atomic for mapping
to the relational database. For composite attributes, we achieve atomicity by
recording only the component parts of the attribute.

Our next mapping rule concerns composite attributes:

M1b – for entities with composite attributes: map entities
to a table by forming columns from the elementary
(atomic) parts of the composite attributes.

Refer to Figure 2.4. A relational database, which corresponds to the entity
diagram in Figure 2.4, would look like this:

Multi-valued attributes were depicted in Figure 2.5. In this entity diagram, our
STUDENT entity had a composite attribute, name, and a multi-valued
attribute, school. This means that a student may have more than one school
recorded for his (or her) row. Data that would be represented by this diagram
might look like this (to illustrate our point with multi-valued attributes, we are
only showing the name, the address, and the schools they attended):

Note that this is not a relational table because school is not atomic.

A mapping rule for multi-valued attributes would be this:

M1c — for multi-valued attributes: form a separate table
for the multi-valued attribute. Record a row for each value
of the multivalued attribute, together with the key from the
original table. The key of the new table will be the
concatenation of the multivalued attribute plus the key of

STUDENT

name.first name.last name.mi school address

Richard Earp W U. Alabama 222 2nd St
Boris Backer Heidleburg 333

Dreistrasse
Helga Hogan H U. Hoover 88 Half Moon

Ave
Arpan Bagui K Northern

School
33 Bloom Ave

Hema Malini South Bend 100
Livingstone

STUDENT

name address school

Smith 123 4th St St. Helens, Mountain, Volcano
Jones 222 2nd St Manatee U, Everglades High
Sudip 887 Mirabelle PCA, Pensacola High, UWF

Pradeep 248 Shillingford Cuttington, UT

the owner entity. Remove the multi-valued attribute from
the original table.

Now suppose that the above example had name as a key. It would be
mapped into two relations: a relation with the multi-valued attribute, and a
resulting relation with the multi-valued attribute excised.

Relation with the Multi-Valued Attribute

Resulting Relation with the Multi-Valued Attribute Excised.

With no key, the mapping rule remains the same except that, instead of
"together with the key, …" we would say "together with the atomic
attributes…" In relational databases, every row of a table contains atomic
attributes. Also, every row is unique. Therefore, a candidate key in any table
is always all of the attributes. Usually, a subset of "all of the attributes" can
be found to be a key; but because no two rows are ever the same, we would
say that one candidate key is the collection of all attributes.

If the name or address attributes were not considered unique, then the
resulting relation would be:

Name–School

name school

Smith St. Helens
Smith Mountain
Smith Volcano
Jones Manatee U
Jones Everglades High
Sudip PCA
Sudip Pensacola High
Sudip UWF

Pradeep Cuttington
Pradeep UT

STUDENT

name address

Smith 123 4th St
Jones 222 2nd St
Sudip 887 Mirabelle

Pradeep 248 Shillingford

STUDENT

name address school

Note that rule M1c is an application of the non-1NF to 1NF transformation
discussed in Chapter 1.

Checkpoint 2.3

1. How do you map multi-valued attributes?

2. How do you map composite attributes?

3. What is a unique identifier? Is it a candidate key? Is it "the" primary
key? Discuss.

[4]These mapping rules are adapted from Elmasri and Navathe (2000).

Smith 123 4th Street St. Helens

Smith 123 4th Street Mountain

Smith 123 4th Street Volcano

Jones 222 2nd St Manatee U

Jones 222 2nd St Everglades High

Sudip 887 Mirabelle PCA
Sudip 887 Mirabelle Pensacola High
Sudip 887 Mirabelle UWF

Pradeep 248 Shillingford Cuttington
Pradeep 248 Shillingford UT

Chapter Summary
The main focus in this chapter was on developing the concept of the entity
and developing a one-entity diagram (using the Chen-like model). The
concept of attributes was also discussed, and the final section focused on
how a one-entity diagram could be mapped to a relational database. The
grammar for a one-entity diagram and its attributes was also developed. This
grammar will be further developed in subsequent chapters. Chapter 3
discusses developing a second entity, and the relationship between this
second entity and the "primary entity."

Chapter 2 Exercises
[Note: You should filter out and clarify the assumptions you made when you
report your work.]

Exercise 2.1
You want to create a database about businesses. Each business will have a
name, an address, the business phone number, the owner's phone number,
and the first names of the employees who work at the business. Draw the
ER diagram using the Chen-like model, and then write the English
description for your diagrams. Compare the English to your diagrams, and
state any assumptions you made when drawing the diagrams. Map your
diagrams to a relational database.

Which attributes would you consider composite attributes in this database?
Which attributes would you consider multi-valued attributes in this database?
Could there be any derived attributes? What would be good keys?

Exercise 2.2
You want to create a database about the books on your shelf. Each book
has authors (assume last name only is needed), title, publisher, courses
used in (course number only). Draw the ER diagram using the Chen-like
model, and then write out the English description for your diagrams.
Compare the English to your diagrams and state any assumptions you made
when drawing the diagrams.

Which attributes would you consider composite attributes in this database?
Which attributes would you consider multi-valued attributes in this database?
Could there be any derived attributes? What would be good keys? Map your
diagram to a relational database.

References

Batini, C., Ceri, S., and Navathe, S.B. Conceptual Database Design,
Benjamin Cummings, Redwood City, CA, 1992.

Chen, P.P. "The Entity Relationship Model — Toward a Unified View of
Data," ACM Transactions on Database Systems, 1(1), 9–37, March
1976.

Chen, P.P. "The Entity-Relationship Model: A Basis for the Enterprise
View of Data," Proceedings IFIPS NCC 46, No. 46, 76–84, 1977.

Codd, E. Relational Model for Data Management – Version 2, Addison-
Wesley, Reading, MA, 1990.

Date, C.J. An Introduction to Database Systems, 5th ed., Addison-
Wesley, Reading, MA, 1995.

Earp, R. and Bagui, S. "Building an Entity Relationship Diagram: A
Software Engineering Approach," Database Management, Auerbach
Publications, Boca Raton, FL, 22-10-41, 1–16, December 2000.

Elmasri, R. and Navathe, S.B. Fundamentals of Database Systems, 3rd
ed., Addison-Wesley, Reading, MA, 2000.

McFadden, F.R. and Hoffer, J.A. Modern Database Management, 4th
ed., Benjamin Cummings, Menlo Park, CA, 1994.

Navathe, S. and Cheng, A. "A Methodology for Database Schema
Mapping from Extended Entity Relationship Models into the Hierarchical
Model," The Entity-Relationship Approach to Software Engineering, G.C.
Davis et al., Eds., Elsevier, North-Holland, Amsterdam, 1983.

Scheuermann, P., Scheffner, G., and Weber, H. "Abstraction
Capabilities and Invariant Properties Modeling within the Entity-
Relationship Approach," Entity-Relationship Approach to System
Analysis and Design, P. Chen, Ed., Elsevier, North-Holland, Amsterdam,
121–140, 1980.

Teorey, T.J., Yang, D., and Fry, J.P. "A Logical Design Methodology for
Relational Databases Using the Extended Entity-Relationship Model,"
ACM Computing Surveys, 18(2), 197–222, June 1986.

Valacich, J.S., George, J.F., and Hoffer, J.A., Essentials of Systems
Analysis and Design, Prentice Hall, Upper Saddle River, NJ, 2001.

Case Study: West Florida Mall
A new mall, West Florida Mall, just had its grand opening three months ago
in Pensacola, Florida. This new mall is attracting a lot of customers and
stores. West Florida Mall, which is part of a series of malls owned by a
parent company, now needs a database to keep track of the management of
the mall in terms of keeping track of all its stores as well as the owners and
workers of the stores. Before we build a database for this system of malls,
the first step will be to design an ER diagram for the mall owner. We
gathered the following initial user specifications about the malls, with which
we can start creating our the ER diagram:

We need to record information about the mall and each store in the mall.
We will need to record the mall's name and address. A mall, at any point
in time, must contain one or more stores.

For each store, we will need to keep the following information: store
number (which will be unique), the name of the store, the location of the
store (room number), departments, the owner of the store, and manager
of the store. Each store may have more than one department, and each
department is managed by a manager. Each store will have only one
store manager. Each store is owned by only one owner. Each store is
located in one and only one mall.

A store manager can manage only one store. We have to record
information on the store manager: the name, social security number,
which store he or she is working for, and salary.

The store owner is a person. We have to record information about the
store owner, such as name, social security number, address, and office
phone number. A store owner has to own at least one store, and may
own more than one store.

Developing the Case Study
As per step 1 in designing the ER diagram, we must select our primary
entity, and then the attributes for our primary entity (step 1 is shown below):

Step 1: Select one primary entity from the database requirements
description and show attributes to be recorded for that entity.

We will choose MALL as our primary entity. For the MALL we
will record a name, an address, and store_names.

Our next step will be to translate the diagram into English.

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

The Entity

This database records data about a MALL. For each MALL in
the database, we record a name, an address, and
store_names.

The Attributes for MALL

For each name, there always will be one and only one name
for the mall. The value for name will not be subdivided.

For each address, there always will be one and only one
address for the mall. The value for address will not be
subdivided.

For each MALL, we will record store_names. There may be
more than one store_name recorded for each MALL. The value
of each store_name will not be subdivided.

The Keys

For each MALL, we will assume that the mall name (name) will
be unique.

The MALL entity is shown in Figure 2.9. So far for this case study, we
selected one primary entity (MALL), showed its known attributes, and used
structured English to describe the entity and its attributes. Next, we will map
this entity diagram to a relational database.

Figure 2.9: The MALL Entity

Mapping the Entity to a Relational Database
MALL is a strong entity, so using mapping rule M1 which states:

M1 — for strong entities: develop a new table for each
strong entity and make the indicated key of the strong
entity the primary key of the table. If more than one
candidate key is indicated on the ER diagram, choose one
for the primary key.

We will develop a new relation for the entity MALL (as shown in Figure 2.9),
and name will be our primary key. Data that would be represented by Figure
2.9 might look like the following:

MALL

name address store_names

West Florida
Mall

N Davis Hwy,
Pensacola, FL

Penney's, Sears, Dollar Store,
Rex

Cordova Mall 9th Avenue,
Pensacola, FL

Dillards, Parisian, Circuit City,
Radio Shack

Navy Mall Navy Blvd,
Pensacola, FL

Belks, Wards, Pearle Vision,
McRaes, Sears

BelAir Mall 10th Avenue,
Mobile, AL

Dillards, Sears, Penney's, Best
Buy, Pizza Hut

We can see that MALL has a multi-valued attribute, store_names. This does
not make the above table a relational table because store_names is not
atomic — it is multi-valued. For multi-valued attributes, the mapping rule is:

M1c. For multi-valued attributes, form a separate table for
the multi-valued attribute. Record a row for each value of
the multivalued attribute together with the key from the
original table. Remove the multi-valued attribute from the
original table.

Using this mapping rule, the above data would be mapped to two relations: a
relation with the multi-valued attribute and a relation with the multi-valued
attribute excised.

Relation with the Multi-Valued Attribute:

Relation with the Multi-Valued Attribute Excised

MALL–Store

name store_name

West Florida Mall Penney's
West Florida Mall Sears
West Florida Mall Dollar Store
West Florida Mall Rex

Cordova Mall Dillards
Cordova Mall Parisian
Cordova Mall Circuit City
Cordova Mall Radio Shack

Navy Mall Belks
Navy Mall Wards
Navy Mall Pearle Vision

MALL–Store

name store_name

Navy Mall McRaes
Navy Mall Sears
BelAir Mall Dillards
BelAir Mall Sears
BelAir Mall Penney's
BelAir Mall Best Buy
Bel Air Mall Pizza Hut

MALL

Our relational database maps to:

[Note: The primary keys are underlined.]

MALL–Store

MALL

This case study will be continued at the end of Chapter 3.

name address

West Florida Mall N Davis Hwy, Pensacola, FL
Cordova Mall 9th Avenue, Pensacola, FL

Navy Mall Navy Blvd, Pensacola, FL
BelAir Mall 10th Avenue, Mobile, AL

name store_name

name address

Chapter 3: Beyond the First Entity
Diagram

Overview
Now that we have devised a method for drawing, interpreting, and refining
one primary entity, we need to move to more complex databases. To
progress from here, we continue with our primary entity and look for other
information that would be associated with (related to) that entity.

The first technique employed in this chapter is methodical; we test our
primary entity to see whether or not our "attributes" should be entities
themselves. We will then look for other pieces of information in our
description, add them to (1) an existing entity and examine the existing ER
diagram, or (2) create a new entity directly. After creating the new entities,
we look to see what kind of relationships exist between the two entities. This
chapter develops steps 3, 4, and 5 of the ER design methodology presented
in this book. Step 3 examines the attributes of the primary entity, step 4
discusses what to do if another entity is needed, and step 5 discusses
developing the relationship between the two entities.

Although the concept of relationships is introduced in this chapter, we do not
include any new mapping rules in this chapter because mapping rules can
be better understood after the development of structural constraints on
relationships, which is discussed in Chapter 4. At the end of this chapter, we
continue with the case study that began in Chapter 2.

Examining an Entity — Changing an Attribute to an
Entity
Consider Figure 3.1. In this figure, we have a student with the following
attributes: name (a composite attribute), student number (an atomic attribute
and key), schools (a multi-valued attribute). Suppose that during our first
session with the user, we show the diagram, the English, and the sample
data, and the user says, "Wait, I want to record all schools that a student
attended and I want to record not only the name of the school, but also the
location (city and state) and school type (community college, university, high
school, etc.)."

Figure 3.1: A STUDENT Entity with a Multi-Valued
Attribute

What the user just told us was that the attribute, schools, should really be an
entity. Remember that the definition of entity was something about which we
wanted to record information. Our original thought was that we were
recording schools attended, but now we are told that we want to record
information about the schools. The first indicator that an attribute should be
considered an entity is that we need to store information about the attribute.
What we do then is migrate from Figure 3.1 to Figure 3.2. In Figure 3.2,
SCHOOL is now an entity all by itself, so now we have two separate entities:
SCHOOL and STUDENT. The next step is to define a relationship between
the two entities. We assume school-name to be unique and choose the
name of the school as the key for the entity, SCHOOL.

Figure 3.2: Two ER Diagrams: One of STUDENT and One of
SCHOOL

Defining a Relationship for Our New Entity
Databases are designed to store related data. For example, it would
ordinarily make no sense to record data about students and foreign
currencies or about airline flights and employees at a tennis ball factory in
the same database. These concepts are not related. In a database we
should be creating a collection of related data. Following our method, we
clearly have a situation in which an attribute was part of an entity (school
was considered "part of" student), but now school has become an entity all
by itself. What we have to do now is relate the SCHOOL entity to the
STUDENT entity.

In Figure 3.2, we have two entities but they appear as though they are
independent. To make the SCHOOL entity and the STUDENT entity function
as a database, we have to add something — the relationship that the entity
SCHOOL has to the entity STUDENT.

A relationship in an ER diagram is a connection between two or more
entities, or between one entity and itself. The latter kind of relationship,
between one entity and itself, is known as a recursive relationship, which we
will discuss later (in Chapter 6). A relationship name is usually a verb or verb
phrase that denotes the connection between entities. Once we understand
how the relationship is denoted, we will have a "tool" to draw a database
description in the form of an ER diagram.

In the Chen-like model, a relationship is depicted by a diamond on the line
that joins the two entities together, as shown in Figure 3.3.

Figure 3.3: The STUDENT Entity with a Relationship to the SCHOOL
Entity

In Figure 3.3, the relationship is depicted as attend. The sense of the

relationship is that of a verb connecting two nouns (entities). All relationships
are two-way. As we will see, it is necessary to state all relationships from
both directions. For example, in the Chen-like model, we would informally
say, "STUDENTS attend SCHOOLS" or "SCHOOLS are attended by
STUDENTS."

The degree of a relationship refers to the number of entities that participate
in the relationship. In Figure 3.3, two entities are participating in the
relationship attend, so this is called a binary relationship.

We now have a tool to "draw" a database description in the form of an ER
(entity relationship) diagram. The sense of our diagrams is that we record
information about x and about y (x and y are entities) and then tell what the
relationship of x to y is.

Our growing and amended methodology is now this:

ER Design Methodology
Step 1: Select one, primary entity from the database requirements
description and show attributes to be recorded for that entity. Label
keys if appropropriate and show some sample data.

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

Step 3: Examine attributes in the primary entity (possibly with user
assistance) to find out if information about one of the entities is to be
recorded.

Step 3a: If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b: Define the relationship back to the original entity.

Step 4: Show some sample data.

A Preliminary Grammar for the ER Diagrams
Chapter 2 outlined a grammar to describe an entity. Now that we have
added a relationship to our diagram, we need to embellish our English
description of the proposed database. We also want to show the user some
sample data to solidify the understanding of the path we are taking. We want
to add the following to our list of grammatical expressions.

For each relationship, we add the following comment (in loose English [for
now]):

A(n) Entity1 Relationship Entity2 (active voice) and a(n) Entity2
Relationship Entity1 (passive voice).

Here, we would say (in addition to the entity/attribute descriptions from
Chapter 2):

The Relation

STUDENTS attend SCHOOLS and SCHOOLS are attended by
STUDENTS.

Sometimes a singular description will fit the problem better and, if so, you
may use it:

A STUDENT attends SCHOOLS and a SCHOOL is attended
by STUDENTS.

The user may be the ultimate judge of the appropriateness of the expression
we use, but we will be adding to this grammar soon. As an exercise, you will
be asked to provide complete descriptions of the ER diagrams in Figure 3.3,
with all entities, attributes, keys, and relationships.

Defining a Second Entity
Having examined the original primary entity for suspicious attributes, we can
now begin to add more data. Let us look at different database information
from the user. Let us suppose this time that we have the following additional
description. We want to record information about students — their name and
student numbers. In addition to information about students, we want to
record information about their automobiles. We want to record the vehicle
identification number, the make of the car, body style, color, and the year of
the model.

Let us further suppose that we made the decision to choose student as the
primary entity and we want to add the automobile information.

The automobile is clearly an entity in that it is something about which we
want to record information. If we add the automobile into the database, we
could have included it as in step 1 of our methodology by adding an attribute
called automobile, only later to perform step 3 of the methodology and
migrate it and school to the status of entities. The depiction of automobile as
an attribute of the student entity is shown in Figure 3.4 (in the Chen-like
model). [We ignore the SCHOOL entity for the moment].

Figure 3.4: A STUDENT Entity with an Attribute Called
AUTOMOBILE

If we added the attribute, automobile, to the entity, STUDENT, and then
recognized that automobile should have been an entity, we would create the
AUTOMOBILE entity and then add the relationship to the model. (Note that
Figure 3.4 would actually be sufficient if the user did not want to store
information about the automobiles themselves.)

Of course, we could have recognized that the automobile attribute was going
to be an entity all along, and simply recorded it as such in our diagram in the
first place. By recognizing AUTOMOBILE as an entity, we would draw the
two entities, STUDENT and AUTOMOBILE, and then look for a relationship
between the two. Either way, we would end up with Figure 3.5, with two
entities, STUDENT and AUTOMOBILE, and some relationship between the
two.

Figure 3.5: An ER Diagram of the STUDENT–AUTOMOBILE
Database

In the Chen-like notation, we now choose some verb to describe the
relationship between the two entities (STUDENT and AUTOMOBILE) — in
this case, we choose drive (shown in the diamond). Note that later the user
may choose to identify the relationship as something else; but with no other
information, we assume the user means that students drive automobiles.
Other candidates for a relationship between the STUDENT and
AUTOMOBILE entities might be "register," "own," etc. This relationship
between two entities is known as a binary relationship.

Relationships in ER diagrams are usually given names that depict how the
entities are related. Sometimes, a relationship is difficult to describe (or
unknown), and in this case a two-letter code for the relationship is used. This
two-letter relationship is shown in Figure 3.6 where we have given the
relationship the name "SA" to indicate that we understand that a relationship
exists, but we are not clear on exactly what to call it (SA = STUDENT–
AUTOMOBILE). Of course, if we were confident of "drive" as the
relationship, we would use "drive."

Figure 3.6: An ER Diagram of the STUDENT–AUTOMOBILE Database
with an "Unknown," "Yet-To-Be-Determined"
Relationship

The English description of the entities and relationships implies that entities
are nouns and relationships are verbs. Using the drive relationship (as
shown in Figure 3.6), Students (N) drive (V) automobiles (N). If the
"unknown" relationship is really unknown, we might say that Students (N) are
related to (V) automobiles (N). Chapter 4 develops this English description
as well as the relationship part of the diagram more fully.

Checkpoint 3.1

1. Can the nature of an entity change over time? Explain.

2. What is a relationship?

3. What are the differences between an entity and a relationship?

4. When would it be preferable to consider an attribute an entity? Why or
why not?

5. Does it make sense to have an entity with one attribute?

Does a Relationship Exist?
Some situations may unfold where a relationship might be unclear. For
example, consider this user description of a desired database:

Create a database for CUSTOMERS and SUPPLIERS.
CUSTOMERS will have a name, address, phone number, and
customer number. SUPPLIERS will have a supplier number,
name, and address.

In this database, we clearly have two entities — CUSTOMER and
SUPPLIER. We want to store information about customers (their name,
address, etc.) and suppliers (supplier number, name, etc.). But what is the
connection between the two?

What we have here is an incomplete, vague user description from which to
design our database. The connection for the company that wants the
database is that it has both customers and suppliers; however, what the
company may not realize is that the relationship from CUSTOMER to
SUPPLIER is via a COMPANY or a VENDOR, and not a direct relationship.
So, what we have so far in this description is two different parts of a
company database, one for customers and one for suppliers. If we later have
some other entity such as "inventory" or "vendor" that is related to customers
and to suppliers, there may be linking entities and relationships. For now
with just two unrelated ideas — customer and supplier — there is no
apparent relationship, so the thing to do would be to leave any relationship
off of the overall diagram until more information is elicited from the user. It
may even be that two unrelated databases need to be developed.

Attribute or Relationship?
Sometimes it may be unclear as to whether something is an attribute or a
relationship. Both attributes and relationships express something about an
entity. An entity's attributes express qualities in terms of properties or
characteristics. Relationships express associations with other entities.

Suppose we are constructing a library database. Suppose further that we
create another primary entity BOOK that has an attribute, borrower. In some
cases, an attribute construct is likely to be inappropriate for expressing an
optional association that really ought to be a relationship between two
entities. As a side issue, borrower would require the use of a null value for
those BOOK entities that were not loaned out. In reality, only a very small
fraction of a library's books are on loan at any given time. Thus, the
"borrower" attribute would be null for most of the BOOK entities. This
recurrence of many nulls might indicate that the attribute borrower_name
could be an entity. If a BORROWER entity were created, and the association
between the entities BOOK and BORROWER was explicitly stated as a
relationship, the database designer would likely be closer to putting
attributes and entities in their correct places. It is important to understand the
distinction between the types of information that can be expressed as
attributes and those that should be treated as relationships and entities.

Checkpoint 3.2

1. Are relationships between two entities permanent, or can the nature
of this relationship change over time?

2. Are attributes of an entity permanent?

3. Does there always exist a relationship between two entities?

4. What is a binary relationship?

Our ER elicitation and design methodology is now this:

ER Design Methodology
Step 1: Select one, primary entity from the database requirements
description and show attributes to be recorded for that entity. Label
keys if appropriate and show some sample data.

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

Step 3: Examine attributes in the primary entity (possibly with user
assistance) to find out if information about one of the attributes is to be
recorded.

Step 3a: If information about an attribute is needed, make the attribute
an entity, and then

Step 3b: Define the relationship back to the original entity.

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat step 2 to see if this entity should be further split into
more entities.

Step 5: Connect entities with relationships if relationships exist.

Step 6: Show some sample data.

Chapter Summary
Entities, attributes, and relationships were defined in Chapter 2. However, in
real life, while trying to design databases, it is often difficult to determine
whether something should be an attribute, entity, or a relationship. This
chapter discussed ways (techniques) to determine whether something
should be an entity, attribute, or a relationship.

This chapter also introduced the concept of binary relationships. Real-life
databases will have more than one entity, so this chapter developed the ER
diagram from a one-entity diagram to a two-entity diagram, and showed how
to determine and depict binary relationships between the two entities using
the Chen-like model. Because the concept of relationships was only
introduced, and structural constraints of relationships have not yet been
discussed, we have not included mapping rules in this chapter.

Chapter 3 Exercises

Exercise 3.1
Draw an ER diagram (using the Chen-like model) for an entity called HOTEL
and include no fewer than five attributes for the entity. Of the five attributes,
include at least one composite attribute and one multi-valued attribute.

Exercise 3.2
Let us suppose that we reconsider our STUDENT example and the only
attributes of STUDENT are student number and name. Let us suppose that
we have another entity called HIGH SCHOOL, which is going to be the high
school from which the student graduated. For the HIGH SCHOOL entity, we
will record the high school name and the location (meaning, city and state).
Draw the ER diagram using the concise form (as Figure 2.1, bottom). What
would you name the relationship here? Write out the grammar for the
relationship between the two entities.

Exercise 3.3
Suppose that a college had one dormitory with many rooms. The
DORMITORY entity, which is actually a "dormitory room" entity because
there is only one dorm, has the attributes room number and single/double
(meaning that there are private rooms and double rooms). Let us suppose
that the STUDENT entity in this case contains the attributes student number,
student name, and home telephone number. Draw the ER diagram in the
Chen-like model linking up the two entities. Name your relationships. Write
out the grammar for the relationship between the two entities.

Exercise 3.4
We have two entities, a PLANE and a PILOT, and describe the relationship
between the two entities as "A PILOT flies a PLANE." What should the
relationship read from the other entity's side?

Exercise 3.5
Complete the methodology by adding sample data to Figures 3.3, 3.5, as
well as to Exercises 1, 2, 3, and 4.

References

Atzeni, P., Ceri, S., Paraboschi, S., and Torlone, R., Database Systems,
McGraw-Hill, New York, 1999.

Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, 3rd
ed., Addison-Wesley, Reading, MA, 2000.

Lochovsky, F.H., Ed., Entity-Relationship Approach to Database Design
and Querying, Elsevier Science, New York, 1990.

Case Study: West Florida Mall (continued)
In Chapter 2 we chose our primary entity, MALL, and used structured
English to describe it, its attributes and keys, and then we mapped MALL to
a relational database (with some sample data). In this chapter we continue to
develop this case study by looking at steps 3, 4, and 5, of the ER design
methodology, and then mapping the entities that are developed into a
relational database with some sample data.

Step 3 says:

Step 3: Examine attributes in the primary entity (with user assistance)
to find out if information about one of the entities is to be recorded.

Upon reexamining the attributes of the primary entity, MALL, it appears that
we need to store information about the attribute, store. So we look at Step
3a, which says:

Step 3a: If information about an attribute is needed, then make the
attribute an entity, and then Step 3b.

So, turning the attribute, store, into an entity we have (repeating step 2):

The Entity

This database records data about a STORE. For each STORE
in the database, we record a store name (sname), a store
number (snum), a store location (sloc), and departments
(dept).

The Attributes for STORE

For each STORE, there will always be one and only one
sname (store name). The value for sname will not be
subdivided.

For each STORE, there will always be one and only one snum
(store number). The value for snum will be unique, and not be
subdivided.

For each STORE, we will record a sloc (store location). There
will be one sloc recorded for each STORE. The value for sloc
will not be subdivided.

For each STORE, we will record depts (departments). There
will be more than one depts recorded for each STORE. The
value for depts will not be subdivided.

The Keys

For each STORE, we will assume that the snum will be unique.

Note: Once STORE is made into an entity, the attribute, store, is removed
from the entity MALL, as shown in Figure 3.7.

Figure 3.7: An ER Diagram of the Mall Database Thus
Far

Having defined STORE, we now need to follow Step 3b, which says:

Step 3b: Define the relationship back to the original entity.

There is a relationship, located_in, between STORE and MALL. This is
shown in Figure 3.7.

Next, Step 4 says:

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat Step 2 to see if this entity should be further split into
more entities.

We will select another entity, STORE_MANAGER. Now, repeating step 2 for
STORE_MANAGER:

The Entity

This database records data about a STORE_MANAGER.

For each STORE_MANAGER in the database, we record a
store manager name (sm_name), store manager social
security number (sm_ssn), and store manager salary
(sm_salary).

The Attributes for STORE_MANAGER

For each STORE_MANAGER, there will always be one and
only one sm_name (store manager name). The value for
sm_name will not be subdivided.

For each STORE_MANAGER, there will always be one and
only one sm_ssn (store manager ssn). The value for sm_ssn
will be unique, and not be subdivided.

For each STORE_MANAGER, we will record a sm_salary
(store manager salary). There will be one and only one
sm_salary recorded for each STORE_MANAGER. The value
for sm_salary will not be subdivided.

The Keys

For each STORE_MANAGER, we will assume that the sm_ssn
will be unique.

Having defined STORE_MANAGER, we now follow Step 5, which says:

Step 5: Connect entities with relationships if relationships exist.

There is a relationship, manages, between STORE and
STORE_MANAGER. This is shown in Figure 3.8.

Figure 3.8: An ER Diagram of West Florida Mall Database
Developing

Then we select our next primary entity, STORE_OWNER. Now, repeating
step 2 for STORE_OWNER:

The Entity

This database records data about a STORE_OWNER. For
each STORE_OWNER in the database, we record a store
owner name (so_name), store owner social security number
(so_ssn), store owner's office phone (so_off_phone), and store
owner address (so_address).

The Attributes for STORE_OWNER

For each STORE_OWNER, there will always be one and only
one so_name (store owner name). The value for so_name will

not be subdivided.

For each STORE_OWNER, there will always be one and only
one so_ssn (store owner ssn). The value for so_ssn will be
unique, and will not be subdivided.

For each STORE_OWNER, there will always be one and only
one so_off_phone (store owner office phone). The value for
so_off_phone will be unique, and will not be subdivided.

For each STORE_OWNER, we will record a so_address (store
owner address). There will be one and only one so_address
recorded for each STORE_OWNER. The value for so_address
will not be subdivided.

The Keys

For each STORE_OWNER, we will assume that the so_ssn
will be unique. Having defined STORE_OWNER, we now
follow Step 5, which says:

Step 5: Connect entities with relationships if relationships exist.

There is a relationship, owns, between STORE and OWNER. This is shown
in Figure 3.9.

Figure 3.9: An ER Diagram of West Florida Mall with Four
Entities

Mapping the Entity to a Relational Database
Having described the entities, attributes, and keys, the next step would be to
map the entities to a relational database. We will also show some data for
the entities developed, in this part of the case study (the mappings of the
relationships will be shown at the end of Chapter 4).

Relations for the MALL Entity

The first two relations, MALL–Store and MALL are the same as they were in
Chapter 2:

Relations for the STORE Entity
The entity, STORE, has a multi-valued attribute, depts, so we will again have
to use mapping rule M1 and M1c (as stated in Chapter 2) to map this entity.
First, we will show the relation with the multi-valued attribute excised, and
then we will show the relation with the multi-valued attribute. (Note: We are
developing this database for the West Florida Mall, so we will map only its
stores.)

Relation with the Multi-Valued Attribute Excised

Relation with the Multi-Valued Attribute

MALL–Store

name store_name

West Florida Mall Penney's
West Florida Mall Sears
West Florida Mall Dollar Store
West Florida Mall Rex

Cordova Mall Dillards
.

.

.

MALL

name address

West Florida Mall N Davis Hwy, Pensacola, FL
Cordova Mall 9th Avenue, Pensacola, FL

Navy Mall Navy Blvd, Pensacola, FL
BelAir Mall 10th Avenue, Mobile, AL

STORE

sloc sname snum

Rm 101 Penney's 1
Rm 102 Sears 2
Rm 109 Dollar Store 3
Rm 110 Rex 4

Relation for the STORE MANAGER Entity (using mapping
rule M1 and M1a)

Relation for the OWNER Entity (using mapping rule M1 and
M1a)

STORE–dept

snum depts

1 Tall men's clothing
1 Women's clothing
1 Children's clothing
1 Men's clothing
.

2 Men's clothing
2 Women's clothing
2 Children's clothing
2 Hardware
.

.

.

STORE MANAGER

sm_ssn sm_name sm_salary

234–987–0988 Saha 45,900
456–098–0987 Becker 43,989
928–982–9882 Ford 44,000
283–972–0927 Raja 38,988

OWNER

so_ssn so_name so_off_phone so_address

879–987–
0987

Earp (850)474–2093 1195 Gulf Breeze Pkwy,
Pensacola, FL

826–098–
0877

Sardar (850)474–9873 109 Navy Blvd,
Pensacola, FL

928–088–
7654

Bagui (850)474–9382
89

Highland Heights,
Tampa, FL

982–876–
8766

Bush (850)474–9283 987 Middle Tree,
Mobile, AL

So far our relational database has developed into (without the data):

[Note:

The primary keys are underlined.]

MALL-Store

MALL

STORE

STORE-dept

OWNER

STORE MANAGER

This case study will be continued at the end of Chapter 4.

name store_name

name address

sloc sname snum

snum depts

so_ssn so_name so_off_phone so_address

sm_ssn sm_name sm_salary

Chapter 4: Extending
Relationships/Structural Constraints

Overview
In Chapters 2 and 3, we introduced some components of ER diagrams,
including entities, attributes, and relationships. It is really insufficient for
requirements elicitation to define relationships without also defining what are
called structural constraints. Structural constraints are information about how
two (or more) entities are related to one another. There are two types of
structural constraints: cardinality and participation.

In this chapter, in addition to the structural constraints of relationships, we
want to introduce a grammar to describe what we have drawn. The grammar
will help with the requirements elicitation process, as we will specify a
template for the English that can be imposed on a diagram, which will in turn
make us say exactly what the diagram means. This chapter develops steps
6 and 7 of the ER design methodology. Step 6 states the nature of a
relationship in English, and step 7 discusses presenting the database
(designed so far) to the user.

Mapping rules for relationships are also developed and discussed with
examples and sample data. At the end of the chapter, we also continue the
running case study that we began in Chapter 2 and continued in Chapter 3.

The Cardinality Ratio of a Relationship
Cardinality is a rough measure of the number of entities (one or more) that
will be related to another entity (or entities). For example, there are four
ways in which the entities AUTOMOBILE and STUDENT can be "numerically
involved" in a relationship: one-to-one (1:1), many-to-one (M:1), one-to-many
(1:M), and many-to-many (M:N).

One-to-One (1:1)
In this type of relationship, one entity is associated with one other entity, and
vice versa. Take, for example, if in our drive relationship (shown in Figure
4.1), we stated that one automobile is driven by one student and one student
drives one automobile, then the student/automobile relationship would be
one-to-one, symbolically:
STUDENT:AUTOMOBILE :: 1:1

Figure 4.1: An ER Diagram of the STUDENT-AUTOMOBILE Database
with the Relationship Name, drive, and Showing the Cardinality
Ratios

Diagramatically we can represent a 1:1 relationship as shown in Figure 4A
(Batani, Ceri, and Navathe, 1992).

Figure 4A: A One-to-One Relationship
STUDENT:AUTOMOBILE::1:1

Many-to-One (M:1)
If the SA (STUDENT:AUTOMOBILE) relationship (shown in Figure 3.6) were
many-to-one, we would say that many students are associated with one
automobile and one automobile is associated with many students; that is:
STUDENT:AUTOMOBILE::M:1

We have intentionally used the verb phrase "is associated with" in place of
drive because the statement "many students drive one automobile" can be
taken in a variety of ways. Also, using a specific verb for a relationship is not
always best when the diagram is first drawn, unless the analyst is absolutely
sure that the verb correctly describes the user's intention. We could have
also used the verb phrase "is related to" instead of "is associated with" if we
wanted to be uncommitted about the exact verb to use.

We will tighten the language used to describe relationships presently, but
what does an STUDENT:AUTOMOBILE::M:1 relationship imply? It would
represent a situation where perhaps a family owned one car and that car
was driven by multiple people in the family.

Diagramatically, we can represent a M:1 relationship as shown in Figure 4B
(Batani, Ceri, and Navathe, 1992).

Figure 4B: Many-to-One Relationship
STUDENT:AUTOMOBILE::M:1

One-to-Many (1:M)
The sense of a one-to-many SA (STUDENT:AUTOMOBILE) relationship
(shown in Figure 3.6) would be that a student is associated with many
automobiles and an automobile is associated with one student. Clearly, if we
define a relationship as 1:M (or M:1), then we need to be very clear about
which entity is 1 and which is M. Here:
STUDENT:AUTOMOBILE::1:M

Diagramatically, we can represent a 1:M relationship as shown in Figure 4C
(Batani, Ceri, and Navathe, 1992).

Figure 4C: One-to-Many Relationship
STUDENT:AUTOMOBILE::1:M

Many-to-Many (M:N)
In many-to-many relationships, many occurrences of one entity are
associated with many of the other. Many-to-many is depicted as M:N, as in
M of one thing related to N of another thing. Older database texts called this

an M:M relationship, but newer books use M:N to indicate that the number of
things related is not presumed to be equal (the values of M and N are likely
to be different).

If our SA relationship were many-to-many, a student would be associated
with many automobiles and an automobile with many students:
STUDENT:AUTOMOBILE::M:N

In this case (if we assumed SA = drive, as shown in Figure 3.6), multiple
students can drive multiple cars (hopefully not all at the same time) and
multiple cars can be driven by multiple students. Picture, for example, a
family that has multiple cars and any one family member can drive any of the
cars and any car can be driven by any family member.

Diagramatically, we can represent an M:N relationship as shown in Figure
4D (Batani, Ceri, and Navathe, 1992).

Figure 4D: Many-to-Many Relationship
STUDENT:AUTOMOBILE::M:N

In expressing cardinality, this x:x ratio, where x = 1 or M(N), is called a
cardinality ratio.

Which way do we depict the actual situation for our students and
automobiles? This is a very interesting question. The answer is that we are
to model reality as defined by our user. We listen to the user, make some
assumptions, and draw the model. We then pass our model back to the user
using a structured English that the user then approves or corrects.

A trap in ER design is to try to model every situation for every possibility.
This cannot be done. The point of creating a database is normally a local
situation that will be governed by the systems analysis (software
engineering) process. In classical systems analysis, the analyst hears a
user, creates a specification, and then presents the result back to the user.
Here, the analyst (the database analyst/designer) models the reality that the
user experiences — not what every database in the world should look like. If
the user disagrees, then the analyst can easily modify the conceptual model,
but there has to be a meeting of the minds on what the model is to depict.

In our STUDENT:AUTOMOBILE example, the choice we will make will be
that one student is associated with (drives) one automobile. While clearly
one can think of exceptions to this case, we are going to adopt a model, and
the sense of the model is that we have to choose how we will identify the
relationship between the entities as well as the information that we intend to

put in the entities themselves. Bear in mind that we are dealing with a
conceptual model that could change, depending on the reality of the
situation; however, we have to choose some sort of model to begin with, and
the one we are choosing is a one-to-one relationship between students and
automobiles.

In the Chen-like model, we will depict the one-to-oneness of this relationship
by adding the cardinality numbers to the lines on the ER diagram that
connect the relationships and the entities (see Figure 4.1).

In Figure 4.1 we put a "1" on the line between the entity box for the
STUDENT and the diamond box for the relationship, and we put another "1"
on the line between the diamond relationship and the entity box for the
AUTOMOBILE. These 1's loosely mean that a student is related to one
automobile and an automobile is related to one student. We must be quite
careful in saying exactly what this relationship means. It does not mean that
one student owns one automobile or a student pays insurance for an
automobile. In our model, we mean that a student will drive, at most, one
automobile on a college campus. Further, we are saying that an automobile
will be driven by one and only one student. Because we are clarifying
(refining) the database, we try to settle on the name of the relationship to
include the concept that we are modeling — driving — by naming the
relationship drive. Again, see Figure 4.1 for the renamed model with 1:1
cardinality.

Participation: Full/Partial
It is likely that on any campus, not all students will drive an automobile. For
our model, we could assume that normally all of the automobiles on the
campus are associated with a student. (We are for the moment excluding
faculty and staff driving, and modeling the student/automobile relationship.)

To show that every automobile is driven by a student, but not every student
drives an automobile, we will enhance our Chen-like model of ER diagrams
by putting a double line between the relationship diamond and the
AUTOMOBILE entity to indicate that every automobile is driven by one
student. Put another way, every automobile in the database participates in
the relationship. From the student side, we leave the line between the
STUDENT entity and the relationship as a single line to indicate that not
every student drives an automobile. Some students will not participate in the
drive relationship because they do not drive a car on campus. The
single/double lines are called participation constraints (a.k.a., optionality
constraints) and are depicted in Figure 4.2.

Figure 4.2: An ER Diagram of the STUDENT-AUTOMOBILE Database
with the Relationship Name, drive

The double line indicates full participation. Some designers prefer to call this
participation mandatory. The point is that if part of a relationship is
mandatory or full, you cannot have a null value (a missing value) for that
attribute in relationships. In our case, if an automobile is in the database, it
must be related to some student.

The single line, partial participation, is also called optional. The sense of

partial, optional participation is that there could be students who do not have
a relationship to an automobile.

Checkpoint 4.1
1. What are structural constraints?

2. What kind of information does the cardinality ratio give us?

3. In how many different ways can two entities be involved in a
cardinality relationship? Give examples.

4. What kind of information does the participation constraint give us?

5. Is it always necessary to have cardinality ratios as well as
participation constraints in the same ER diagram? Why? Explain.

English Descriptions
We would now like to tighten the grammar that describes how a relationship
affects entities using our structural constraints, and to adopt a standard way
of stating the relationship. The standard language should appear on the
model, or at least with it. Further, using a standard language approach to
describe the ER diagrams allows us to not only close the loop with the user
in the systems analysis process, but also facilitates feedback and "nails
down" the exact meaning of the relationship.

In the Chen-like model, the double lines define full participation, as in
"automobiles fully participate in the drive relationship." Better yet, the double
lines invite us to state the relationship as:

Automobiles must be driven by one (and only one) student.

The must part comes from the full (mandatory) participation and the one part
from the cardinality.

The grammar for describing partial or optional relationship for the STUDENT
entity to the AUTOMOBILE entity would be:

Students may drive one and only one automobile.

The may comes from the single line leaving the STUDENT entity box and
the "one and only one" part comes from the cardinality. The point is that
when expressing the sense of the ER diagrams, one uses the language that
conveys what the relationship really means (i.e., students may drive one
automobile and automobiles must be driven by one and only one student). A
graphic on how to read an ER diagram is presented in Figure 4.3.

Figure 4.3: An ER Diagram of the STUDENT-AUTOMOBILE Database.
Translating the Diagram into English

Tighter English
We strongly recommend that an English sentence accompany each diagram
to reinforce the meaning of the figure. Refer to Figure 4.3. English is often an
ambiguous language. The statement that:

Automobiles must be driven by one and only one student.

actually means that:

Automobiles, which are in the database, must be driven by one
and only one student.

It does not mean that:

One particular student drives some automobiles.

Another way to put this is:

Automobiles must be driven by one and only one student
driver. Students may drive one and only one automobile.

To relieve ambiguity in the statement of the relationship, we will take the
English statement from the relationship we have illustrated, and define four
pattern possibilities for expressing our relationship. All binary relationships
must be stated in two ways from both sides. As you will see, we will try to
stick to the exact pattern match in the following examples, but common
sense and reasonable grammar should prevail in cases where the pattern
does not quite fit. There is nothing wrong with restating the precise language
to make it more clear, but you have to say the same thing!

Pattern 1 — x:y::k:1
From the k side, full participation (k = 1 or M):

x's, which are recorded in the database, must be related to one and only one
y. No x is related to more than one y.

Example:

Student:Advisor::M:1

Students must be advised by one advisor.

or

Students, which are recorded in the database, must be
advised by one and only one advisor. No student is advised by
more than one advisor.

The phrase "which are recorded in the database" has proven to be helpful
because some database designers tend to generalize beyond the problem at
hand. For example, one could reasonably argue that there might be a case
where thus-and-so are true/not true, but the point is, will that case ever be
encountered in this particular database? The negative statement is often
helpful to solidify the meaning of the relationship.

Pattern 2 — x:y::k:1
From the k side, partial participation (k = 1 or M):

x, but not necessarily all x (which are recorded in the database), may be
related to one and only one y. Some x's are not related to a y. x's may not be
related to more than one y.

Example:

Student:Fraternity::M:1

Some students join a fraternity.

which becomes:

Students, but not necessarily all students (which are recorded
in the database), may join a fraternity. Some students may not
join a fraternity. Students may not join more than one fraternity.

Pattern 3 — x:y::k:M
From the k side, full participation (k = 1 or M):

x's, which are recorded in the database, must be related to many (one or
more) y's. Sometimes it is helpful to include a phrase such as: No x is related
to a non y (or) Non x are not related to a y. The negative will depend on the
sense of the statement.

Example:

Automobile:Student::M:N

Automobiles are driven by (registered to) many students

which means:

Automobiles, which are recorded in our database, must be
driven by many (one or more) students.

There are several ideas implied here. First, we are only talking about
vehicles which are registered at this school. Second, in this database, only
student cars are registered. Third, if an automobile from this database is
driven, it has to be registered and driven by a student. Fourth, the "one or
more" comes from the cardinality constraint. Fifth, there is a strong
temptation to say something about the y, the M side back to the x, but this
should be avoided as this is covered elsewhere in another pattern, and
because we discourage inferring other relationships from the one covered.
For example, one might try to say here that all students drive cars or all
students are related to a vehicle — neither statement is true.

Pattern 4 — x:y::k:M
From the k side, partial participation (k = 1 or M):

x, but not necessarily all x, (which are recorded in the database) may be
related to many (zero or more) y's. Some x may not be related to a y.

Example:

Course:Book::k:M

Some courses may require (use) many books.

which, restated, becomes:

Courses, but not necessarily all courses, (which are recorded
in the database) may use many (zero or more) textbooks.
Some courses may not require textbooks.

Note that due to partial participation (the single lines), the phrase "zero or
more," is used for cardinality. If a relationship is modeled with the patterns
we have used and then the English sounds incorrect, it may be that the
wrong model has been chosen. Generally, the grammatical expression will
be most useful in (1) restating the designed database to a naive user, and
(2) checking the meaning on the designed database among the designers.
The complete version of the English may eventually prove tiresome to a
database designer, but one should never lose track of the fact that a
statement like "x are related to one y" can be interpreted in several ways
unless it is "nailed down" with constraints stated in an unambiguous way.
Furthermore, a negation statement may be useful to elicit a requirements
definition, although at times the negation is so cumbersome it may be left off
entirely. What we are saying is to add the negative or other noncontradictory
grammar if it makes sense and helps with requirements elicitation. The
danger in adding sentences is that we may end up with contradictory or
confusing remarks.

Summary of the above Patterns and Relationships
Pattern 1:

Relationship is x:y::1(full):1
Diagramatically shown by Figure 4E

Figure 4E: Chen Model of 1(full):1 Relationship — Pattern
1

Pattern 1:

Relationship is x:y::M(full):1
Diagramatically shown by Figure 4F

Figure 4F: Chen Model of M(full):1 Relationship — Pattern
1

This is a very common form of a relationship which implies that an instance
of ENTITY1 can only exist for one (and only one) of ENTITY2.

Pattern 2:

Relationship is x:y::1(partial):1
Diagramatically shown by Figure 4G

Figure 4G: Chen Model of 1(partial):1 Relationship — Pattern
2

Pattern 2:

Relationship is x:y::M(partial):1
Diagramatically shown by Figure 4H

Figure 4H: Chen Model of M(partial):1 Relationship — Pattern
2

In this case, some instances in ENTITY1 and ENTITY2 can exist without the
relationship to the other entity.

Pattern 3:

Relationship is x:y::1(full):M
Diagramatically shown by Figure 4I

Figure 4I: Chen Model of 1(full):M Relationship — Pattern
3

Pattern 3:

Relationship is x:y::M(full):N
Diagramatically shown by Figure 4J

Figure 4J: Chen Model of M(full):N Relationship — Pattern
3

Pattern 4:

Relationship is x:y::1(partial):M
Diagramatically shown by Figure 4K

Figure 4K: Chen Model of 1(partial):M Relationship — Pattern
4

Pattern 4:

Relationship is x:y::M(partial):N
Diagramatically shown by Figure 4L

Figure 4L: Chen Model of M(partial):N Relationship — Pattern
4

Checkpoint 4.2
1. Sketch an ER diagram that shows the participation ratios (full/partial)

and cardinalities for the following:
a. Students must be advised by one advisor.

b. Students, but not necessarily all students, may join a fraternity.
Some students may not join a fraternity. Students may not join
more than one fraternity.

Our refined methodology may now be restated with the relationship
information added:

ER Design Methodology

Step 1: Select one, primary entity from the database requirements
description and show attributes to be recorded for that entity. Label
keys, if appropriate, and show some sample data.

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

Step 3: Examine attributes in the primary entity (possibly with user
assistance) to find out if information about one of the attributes is to be
recorded.

Step 3a: If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b: Define the relationship back to the original entity.

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat step 2 to see if this entity should be further split into
more entities.

Step 5: Connect entities with relationships if relationships exist.

Step 6: State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there is a
relationship from A(1) to B(M) and from B(M) back to A(1).

Step 7: Present the "as designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

Step 8: Show some sample data.

Some Examples of Other Relationships
In this section, we consider three other examples of relationships — the two
1:M relationships and an M:N relationship — in more detail in order to
practice and further clarify the process we have presented.

An Example of the One-to-Many Relationship (1:M)
Relationships that are 1:M or M:1 are really relative views of the same
problem. When specifying 1:M or M:1, we need to be especially careful to
specify which entity is 1 (one) and which is M. The designation is really
which view is more natural for the database designer. As an example of a
1:M relationship, consider dorm rooms and students. One dorm room may
have many students living in it, and many students can live in one dorm
room. So, the relationship between dorm room and students would be
considered a one-to-many (1:M::DORM:STUDENT) situation and would be
depicted as in Figure 4.4 (without attributes). We let the term DORM mean
dorm room.

Figure 4.4: An ER Diagram (without Attributes) of a 1:M
Relationship

In Figure 4.4 (the Chen-like model), the name that we chose for the DORM-
STUDENT relationship was occupy.

Note that not all dorms have students living in them, and hence the
participation of dorms in the relationship is partial. Informally,

Dorms may be occupied by many students.

Furthermore, all students may not live in dorms: therefore, the relationship of
STUDENT to DORM is also partial:

Students may occupy a dorm room.

Now let us restate the relationships in the short and long English forms. For
the first statement: "Dorms may be occupied by many students" — this fits
Pattern 4 — x:y::1(partial):M.

Pattern 4 — 1:M, from 1 side partial participation

"Some x are related to many y."

Therefore, the more precise statement is:

x, but not necessarily all x, (which are recorded in the
database) may be related to many (zero or more) y's. Some x
are not related to a y ….

or

Dorms, but not necessarily all dorms, (which are recorded in
the database) may be occupied by many (zero or more)
students.

For the inverse relationship: Students may occupy a dorm room — this fits
Pattern 2 — M(partial):1.

Pattern 2 — M(partial):1, from M side, optional participation

"Some x are related to one y."

Therefore, the long "translation" of the statement is:

x, but not necessarily all x, (which are recorded in the
database) may be related to one and only one y. Some x may
not be related to y. [No x is related to more than one y.] […]
indicates optional clarification.

This x and y notation resolves into, x = students, y = dorms, and hence:

Students, but not necessarily all students, (which are recorded
in the database) may occupy one and only one dorm. Many
students may not occupy one dorm room. No student occupies
more than one dorm.

An Example of the Many-to-One Relationship (M:1)
Let us assume for a database that a school or college that we are modeling
has student parking lots. And let us further assume that every student is
assigned to park his or her car in some specific parking area. We then have
an entity called PARKING AREA, which will have parking locations that will
be described by some descriptive notation such as East Area #7, North Area
#28, etc. In this case, if we viewed many automobiles as assigned to the one
parking area and parking area as containing many automobiles, we could
depict this relationship as a many-to-one, M:1::AUTOMOBILE:PARKING
AREA. This diagram is shown in Figure 4.5 (again, without attributes).

Figure 4.5: An ER Diagram (without Attributes) of a M:1
Relationship

We have depicted the relationship participation between automobile and
parking area as full in both instances — meaning that all automobiles have
one parking area and all parking areas are assigned to student's
automobiles.

The grammatical expressions of this relationship are:

Pattern 1 — M:1, from the M side, full participation

x, which are recorded in the database, must be related to one and only one
y. No x are related to more than one y.

x = automobile, y = parking area, relationship = park

Automobiles, which are recorded in the database, must be
parked in one and only one parking area. No automobiles may
be parked in more than one parking area.

And the inverse:

Pattern 3 — 1:M, from the 1 side, full participation

x, which are recorded in the database, must be related to many (one or
more) y's. [No x is related to a non y (or) Non x are not related to a y. (The
negative will depend on the sense of the statement.)]

Parking areas, which are recorded in the database, must park
many (one or more) automobiles. No parking areas contain
non-student automobiles.

This means that no parking areas that we are recording data about in this

database parks non-student automobiles.

An Example of the Many-to-Many Relationship (M:N)
The classic example that we will study here is students taking courses. At
the outset we know that students take (enroll in) many courses and that any
course is populated by many students. The basic diagram for the student-
course relationship is that as shown in Figure 4.6.

Figure 4.6: An ER Diagram (without Attributes) of a M:N
Relationship

We have chosen the word enroll to depict the relationship. The participation
of students in enroll is depicted as full (mandatory); course enrollment is
depicted as partial. This choice was arbitrary, as both could be full or partial,
depending on user needs and desires. Look carefully at the exact
grammatical expressions and note the impact of choosing full in one case
and partial in the other.

The grammatical expressions of this relationship are:

Pattern 3 — M:N, from the M side, full participation

x, which are recorded in the database, must be related to many (one or
more) y. [No x is related to a non y (or) Non x are not related to a y (or) No x
is not related to a y. (The negative will depend on the sense of the
statement.)]

x = students, y = courses, relationship = enroll

Students, which are recorded in the database, must be
enrolled in many (one or more) courses.

And for the inverse:

Pattern 4 — M:N, from the M side, partial participation

x, but not necessarily all x, (which are recorded in the database) may be
related to many (one or more) y. Some x may not be related to y.

x = course, y = student, relationship = enroll

Courses, but not necessarily all courses, (which are recorded
in the database) may enroll many (one or more) students.
Some courses may not enroll students.

This "course partiality" likely reflects courses that are in the database, but
are not currently enrolling students. It could mean potential courses, or
courses that are no longer offered. Of course, if the course is in the database
only if students are enrolled, then the participation constraint becomes full
and the sense of the entity relationship changes.

Also, this database tells us that while we can have courses without students,
we only store information about active students. Obviously we could make
the student connection partial and hence store all students — even inactive
ones. We chose to make the relationships the way we did to make the point
that the participation constraint is to depict reality — the reality of what the
user might want to store data about.

Note that all the examples in this chapter deal with only two entities; that is,
they are binary relationships. The example in the following section provides
yet another example of a binary relationship.

Checkpoint 4.3
1. Give an example of a 1(full):1 relationship? Does such a relationship

always have to be mandatory? Explain with examples.

2. Give an example of a 1(partial):1 relationship? Does such a
relationship always have to be optional? Explain with examples.

3. Give an example of an M(full):N relationship? Would such a
relationship always be optional or mandatory? Explain with examples.

4. Give an example of an M(partial):N relationship? Would such a
relationship always be optional or mandatory? Explain with examples.

One Final Example
As a final example to conclude the chapter, we present one more problem
and the methodology.[1] Consider a model for a simplified airport that records
PASSENGERS and FLIGHTS. Suppose that the attributes of PASSENGER
are name, articles of luggage, and frequent flyer number. Suppose the
attributes for FLIGHT are flight number, destination, time of departure, and
estimated time of arrival. Draw the ER diagram.

Note: We are leaving out many things (attributes) that we could consider
about our airport; but for the sake of an example, assume that this is all the
information that we choose to record.

Here is the solution:

ER Design Methodology

Step 1: Select one, primary entity from the database requirements
description and show attributes to be recorded for that entity. Label
keys if appropriate and show some sample data.

Suppose we choose PASSENGER as our primary entity. PASSENGER has
the following attributes: frequent flier #, name [first, middle, last], articles of
luggage. We draw this much of the diagram, choosing frequent flier # as a
key and noting the composite attribute, name. This diagram is shown in
Figure 4.7.

Figure 4.7: The PASSENGER Entity Diagram

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

The Entity

This database records data about PASSENGERS. For each
passenger, we record the following: frequent flier #, name [first,
middle, last], articles of luggage.

The Attributes
For atomic attributes, att(j):

For each PASSENGER, there always will be one and only one
frequent flier #. The value for frequent flier # will not be
subdivided.

For each PASSENGER, there always will be one and only one

recording of articles of luggage. The value for articles of
luggage will not be subdivided.

For composite attributes, att(j):

For each PASSENGER, we will record their name, which is
composed of first, middle, and last. First, middle, and last are
the component parts of name.

The Keys

For each PASSENGER, we will have the following primary key:
frequent flier #.

Note that we have chosen frequent flier # as a primary key for
PASSENGER. If this were not true, some other means of unique
identification would be necessary. Here this is all the information we are
given.

Step 3: Examine attributes in the primary entity (possibly with user
assistance) to find out if information about one of the attributes is to be
recorded. No further information is suggested.

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat step 2 to see if this entity should be further split into
more entities.

The other entity in this problem is FLIGHT with the following attributes: flight
#, destination, depart time, arrive time.

Again, we use the structured English:

The Entity
This database records data about Flights. For each FLIGHT, we record:
flight #, destination, depart time, and arrive time.

The Attributes
For atomic attributes, att(j):

For each FLIGHT, there always will be one and only one
flight#. The value for flight# will not be subdivided.

For each FLIGHT, there always will be one and only one
recording of destination. The value for destination will not be
subdivided.

For each FLIGHT, there always will be one and only one
recording of depart time. The value for depart time will not be
subdivided.

For each FLIGHT, there always will be one and only one
recording of arrive time. The value for arrive time will not be
subdivided.

The Keys
For the key(s): (b) One candidate key (strong entity):

For each FLIGHT, we will have the following primary key:
flight#. We are assuming flight # is unique.

Step 5: Connect entities with relationships if relationships exist.

What Relationship Is There between Flights and Passengers?

All passengers will fly on a flight. All flights will have multiple passengers.
The diagram for this problem is illustrated in Figure 4.8 and Figure 4.9. Note
that we have again made a choice: we will depict one flight per passenger in
this database. The specifications do not tell us whether this should be 1 or
M, so we chose 1. We also chose full participation on both sides. It would
seem illogical to record data about passengers who did not fly on a flight and
flights where there were no passengers. But again, if the database called for
storing information about potential passengers who might not book a specific
flight or flights that did not involve passengers, then we would have to
change the conceptual design. Figure 4.8 is good for displaying just the
entities and the attributes. Figure 4.9 uses the concise form of describing
attributes and also includes some steps from above and some sample data.
For conceptualizing, Figure 4.8 may be used, and later converted into Figure
4.9 style for documentation. Either figure requires an accompaniment of
structured English (step 6).

Figure 4.8: Sample Problem

Figure 4.9: Sample Problem: Alternate Presentation of Attributes with
Explanation and Sample Data

Step 6: State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there is a
relationship from A(1) to B(M) and from B(M) back to A(1).

Pattern 1 — M:1, from the M side, full participation

x, which are recorded in the database, must be related to one and only one
y. No x are related to more than one y.

x = passenger, y = flight, relationship = fly

Passengers, which are recorded in the database, must fly on
one and only one flight. No passenger flies on more than one
flight.

Pattern 3 — 1:M, from the 1 side, full participation

x, which are recorded in the database, must be related to many (one or
more) y's.

x = flight, y = passenger, relationship = fly

Flights, which are recorded in the database, must fly many
(one or more) passengers.

Attribute descriptions follow previous patterns.

Step 7: Present the "as designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

Step 8: Show some sample data.

See Figure 4.9.

[1]Modeled after Elmasri and Navathe (2000).

Mapping Relationships to a Relational Database
In this section we will continue with the mapping rules that we began at the
end of Chapter 2. In Chapter 2 we learned how to map entities, entities with
composite attributes, and entities with multi-valued attributes. In this chapter,
having covered structural constraints of relationships, we will learn how to
map relationships.

1. Identify the entities: Passenger, Flight

2. Add attributes to entities, identifying primary keys:

Passenger (name[last, first, mi]. frequent flier #, # articles of luggage)

Flight (flight #, destination, depart time, arrive time)

3. What relationship is there between Passengers and Flights?

Passengers fly on flights.

Our first mapping rule for mapping relationships maps binary M:N
relationships.

M3a — For binary M:N relationships: For each M:N
relationship, create a new table (relation) with the primary
keys of each of the two entities (owner entities) that are
being related in the M:N relationship. The key of this new
table will be the concatenated keys of the owner entities.
Include any attributes that the M:N relationship may have
in this new table.

For example, refer to Figure 4.6. If the STUDENT and COURSE tables have
the following data:

STUDENT

name.first name.last name.mi student_number address

Richard Earp W 589 222 2nd
St.

Boris Backer 909 333
Dreistrasse

Helga Hogan H 384 88 Half
Moon Ave.

Arpan Bagui K 876 33 Bloom
Ave

Hema Malini 505 100
Livingstone

COURSE

cname c_number credit_hrs

Database COP4710 4
Visual Basic CGS3464 3

Before performing the M3a mapping rule, one must first insure that the
primary keys of the entities involved have been established. If
student_number and c_number are the primary keys of STUDENT and
COURSE, respectively, then to map the M:N relationship, we create a
relation called ENROLL, as follows:

Both c_number and student_number together are the primary key of the
relation, ENROLL.

Our next set of mapping rules for mapping relationships maps binary 1:1
relationships:

M3b — For binary 1:1 relationships: Include the primary
key of Entity A into EntityB as the foreign key.

The question is: which is EntityA and which is EntityB? This question is
answered in the next three mapping rules: M3b_1, M3b_2, and M3b_3.

M3b_1 — For binary 1:1 relationships, if one of the sides
has full participation in the relationship, and the other has
partial participation, then store the primary key of the side
with the partial participation constraint on the side with
the full participation constraint. Include any attributes of
the relationship on the side that gets the primary key (the
primary key now becomes the Foreign key in the new
relation).

For example, refer to Figure 4.2. It says:

An automobile, recorded in the database, must be driven by
one and only one student.

and

Elements of Stats STA3023 3
Indian History HIST2022 4

ENROLL

c_number student_number

COP4710 589
CGS3464 589
CGS3464 909
STA3023 589
HIST2022 384
STA3023 505
STA3023 876
HIST2022 876
HIST2022 505

A student may drive one and only one automobile.

Here, the full participation is on the AUTOMOBILE side since "An automobile
‘must’ be driven by a student."

So we take the primary key from the partial participation side, STUDENT,
and include it in the AUTOMOBILE table. The primary key of STUDENT is
student_number, so this will be stored in the AUTOMOBILE relation as the
foreign key. A relational database realization of the ER diagram in Figure 4.2
with some data would look like this:

Since STUDENT has a multi-valued attribute school, we need the table
below to map the multi-valued attribute.

AUTOMOBILE

vehicle_id make body_style color year student_number

A39583 Ford Compact Blue 1999 589
B83974 Chevy Compact Red 1989 909
E98722 Mazda Van Green 2002 876
F77665 Ford Compact White 1998 384

STUDENT

name.first name.last name.mi student_number address

Richard Earp W 589 222 2nd St
Boris Backer 909 333

Dreistrasse
Helga Hogan H 384 88 Half

Moon Ave
Arpan Bagui K 876 33 Bloom

Ave
Hema Malini 505 100

Livingstone

Name-School

student_number school

589 St. Helens
589 Mountain
589 Volcano
909 Manatee U
909 Everglades High
384 PCA

In this case, if the relationship had any attributes, it would be included in the
relation, AUTOMOBILE.

M3b_2 — For binary 1:1 relationships, if both sides have
partial participation constraints, there are three alternative
ways to implement a relational database:

M3b_2a — First alternative — you may select either one of
the relations to store the key of the other (and live with
some null values).

M3b_2b — Second alternative — depending on the
semantics of the situation, you can create a new relation
to house the relationship that would contain the key of the
two related entities (as is done in M3a).

Again refer to Figure 4.1, here we assume that the participation constraints
are partial from both sides, and assume that there is no school attribute.
Then Figure 4.1 would read:

An automobile may be driven by one and only one student.

and

A student may drive one and only one automobile.

The relational realization could be [take the vehicle_id (primary key of
AUTOMOBILE) and store it in STUDENT, as shown below]:

384 Pensacola High
876 UWF
505 Cuttington
505 UT

AUTOMOBILE

vehicle_id make body_style color year

A39583 Ford Compact Blue 1999
B83974 Chevy Compact Red 1989
E98722 Mazda Van Green 2002
F77665 Ford Compact White 1998
G99999 Chevy Van Grey 1989

STUDENT

name.first name.last name.mi student_number address vehicle_id

Richard Earp W 589 222 2nd St A39583
Boris Backer 909 333 B83974

In the STUDENT relation, vehicle_id is the foreign key.

M3b_2c — The third way of implementing this 1:1 binary
relationship with partial participation on both sides would
be to create a new table (relation) with just the keys from
the two tables STUDENT and AUTOMOBILE, in addition to
the two tables, STUDENT and AUTOMOBILE. In this case
we would map the relations as we did in the binary M:N
case; and if there were any null values, these would be left
out of the linking table, as shown below:

In this case, the two relations STUDENT and AUTOMOBILE would remain
as:

Dreistrasse
Helga Hogan H 384 88 Half

Moon Ave
F77665

Arpan Bagui K 876 33 Bloom
Ave

E98722

Hema Malini 505 100 Livingstone

STUDENT-AUTOMOBILE

vehicle_id student_number

A39583 589
B83974 909
E98722 876
F77665 384

STUDENT

name.first name.last name.mi student_number address

Richard Earp W 589 222 2nd St
Boris Backer 909 333

Dreistrasse
Helga Hogan H 384 88 Half

Moon Ave
Arpan Bagui K 876 33 Bloom

Ave
Hema Malini 505 100

Livingstone

AUTOMOBILE

vehicle_id make body_style color year

M3b_3 — For binary 1:1 relationships, if both sides have
full participation constraints, you may use the semantics
of the relationship to select which of the relations should
contain the key of the other. It would be inappropriate to
include foreign keys in both tables as you would be
introducing redundancy in the database. Include any
attributes on the relationship, on the relation that is
getting the foreign key.

Now assuming full participation on both sides of Figure 4.1, the two tables
STUDENT and AUTOMOBILE could be:

In this above case, the student_number was included in AUTOMOBILE,
making student_number a foreign key in AUTOMOBILE. We could have also
taken the primary key from AUTOMOBILE, vehicle_id, and included that in
STUDENT table.

In this case, if the relationship had any attributes, these would have been
stored in AUTOMOBILE, along with student_number.

A39583 Ford Compact Blue 1999
B83974 Chevy Compact Red 1989
E98722 Mazda Van Green 2002
F77665 Ford Compact White 1998
G99999 Chevy Van Grey 1989

STUDENT

name.first name.last name.mi student_number address

Richard Earp W 589 222 2nd St
Boris Backer 909 333

Dreistrasse
Helga Hogan H 384 88 Half

Moon Ave
Arpan Bagui K 876 33 Bloom

Ave
Hema Malini 505 100

Livingstone

AUTOMOBILE

vehicle_id make body_style color year student_number

A39583 Ford Compact Blue 1999 589
B83974 Chevy Compact Red 1989 909
E98722 Mazda Van Green 2002 876
F77665 Ford Compact White 1998 384
G99999 Chevy Van Grey 1989 505

The next set of mapping relationships maps binary 1:N relationships:

M3c — For binary 1:N relationships, we have to check
what kind of participation constraints the N side of the
relationship has:

M3c_1 — For binary 1:N relationships, if the N-side has full
participation, include the key of the entity from the 1 side,
in the relation on the N side as a foreign key.

For example, in Figure 4.4 if we assume full participation on the student side,
we will have:

Dorm rooms may have zero or more students.

and

Students must live in one and only one dorm room.

The relational realization would be:

Here, the full participation is on the N side, that is, on the STUDENT entity
side. So, we take the key from DORM, dname, and include it in the
STUDENT relation. In this case, if the relationship had an attribute, it would
be included in STUDENT, the N side.

M3c_2 — For binary 1:N relationships, if the N-side has
partial participation, the 1:N relationship is handled just
like a binary M:N relationship with a separate table for the
relationship. The key of the new relation consists of a
concatenation of the keys of the related entities. Include

STUDENT

name.first name.last name.mi student_number dorm

Richard Earp W 589 A
Boris Backer 909 C
Helga Hogan H 384 A
Arpan Bagui K 876 A
Hema Malini 505 B

DORM

dname supervisor

A Saunders
B Backer
C Hogan
D Eisenhower

any attributes that were on the relationship, on this new
table.

Checkpoint 4.4
1. State the mapping rules that would be used to map Figure 4.5? Map

Figure 4.5 to a relational database and show some sample data.

2. State the mapping rules that would be used to map Figure 4.8? Map
Figure 4.8 to a relational database and show some sample data.

Chapter Summary
This chapter discussed cardinality and participation ratios in ER diagrams.
Several examples and diagrams of binary relationships with structural
constraints (developed in the Chen-like model) were discussed. Tighter
English grammar was presented for each of the diagrams, and steps 7 and 8
of the ER design methodology were defined. The final section of the chapter
discussed mapping relationships.

Chapter 4 Exercises

Exercise 4.1
Refer to Figure 2.3. Suppose that the only attributes of STUDENT are
student number and name. And, let us suppose that we have another entity
called "high school," which is going to be the high school from which the
student graduated. For the high school entity, we will record the high school
name and the location (meaning city and state). Draw the ER diagrams
using the Chen-like model. Follow the methodology and include all English
descriptions of your diagrams. Map the ER diagrams to a relational
database.

Exercise 4.2
Suppose that a college has one dormitory with many rooms. The dormitory
entity, which is actually a "dormitory room" entity because there is only one
dorm, has the attributes room number and single/double (meaning that there
are private rooms and double rooms). Let us suppose that the STUDENT
entity in this case contains the attributes student number, student name, and
home telephone number. Draw the ER diagrams using the Chen-like model.
Follow the methodology and include all English descriptions of your
diagrams. Map the ER diagrams to a relational database.

Exercise 4.3
Consider a student database with students and campus organizations.
Students will have the attributes of student number and student name.
Organizations will have the following attributes: organization name and
organization type. Draw the ER diagrams using the Chen-like model. Follow
the methodology and include all English descriptions of your diagrams. Map
the ER diagram to a relational database and include some sample data.

Exercise 4.4
Consider a student and advisor database. Students have a student number
and student name. Advisors have names, office numbers, and advise in
some major. The major that the advisor advises in is designated by a major
code (e.g., Chemistry, CHEM; Biology, BIOL; Computer Science, COMPSC:
etc.) Draw the ER diagrams using the Chen-like model. Follow the
methodology and include all English descriptions of your diagrams. Map the
ER diagram to a relational database and include some sample data.

Exercise 4.5
You want to record the following data in a database: restaurant name and
location, employee names and IDs, capacity of restaurant (smoking and non-
smoking), hours of operation (assume same hours every day), employee
salaries and titles. An employee can work for only one restaurant. Draw the
ER diagrams using the Chen-like model. Follow the methodology and
include all English descriptions of your diagrams. Map the ER diagram to a
relational database and include some sample data.

Exercise 4.6
Record the following data in a database: business name, owner, location(s),

telephone #(s), delivery truck number, truck capacity, usual route description
(e.g., North, West, Central, Lake). Draw the ER diagrams using the Chen-
like model. Follow the methodology and include all English descriptions of
your diagrams.

Exercise 4.7
Refer to Figure 4.10. What are the English language statements you can
make about the figure?

Figure 4.10

Exercise 4.8
Refer to Figure 4.9. Complete the diagram by adding a precise English
description of each attribute. Map Figure 4.9 to a relational database.

Exercise 4.9
What is the cardinality of the following?

a. Each student can have only one car

b. Each student has many cars

c. Each car can be driven by many students

d. Each car must be driven by many students.

Which of these above cardinality rules are optional? Which rules are
mandatory? Diagramatically show these relationships.

References

Batani, C., Ceri, S., and Navathe, S.B., Conceptual Database Design.
Benjamin/Cummings Publishing, Redwood City, CA, 1992.

Earp, R. and Bagui, S., "Extending Relationships in the Entity
Relationship Diagram," Data Base Management, Auerbach Publications,
Boca Raton, FL, 22-10-42, 1-14, May 2001.

Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, 3rd
ed., Addison-Wesley, Reading, MA, 2000.

Kroenke, D.M., Database Processing, Prentice Hall, Upper Saddle River,
NJ, 2000.

McFadden, F.R. and Hoffer, J.A., Modern Database Management, 4th
ed., Benjamin/Cummings Publishing, Redwood City, CA. 1994.

Ramakrishnan, R. and Gehrke, J., Database Management Systems, 3rd
ed., McGraw-Hill, New York, 2003.

Sanders, L., Data Modeling, Boyd & Fraser Publishing, Danvers, MA,
1995.

Case Study: West Florida Mall (continued)
In the past few chapters we selected our primary entities (as per the
specifications from the user so far) and defined the relationships between
the primary entities. In this chapter we proceed with the ER diagram for this
case study by looking at steps 6 and 7 of the ER design methodology, and
map the ER diagram to a relational database (with some sample data) as we
proceed.

Step 6 develops the structural constraints of binary relationship by stating:

Step 6: State the exact nature of the relationships in structured English
from all sides. For Example, if a relationship is A:B::1:M, then there is a
relationship from A(1) to B(M) and from B(M) back to A(1).

Refer to Figure 4.11.

Figure 4.11: An ER Diagram of West Florida Mall with Four Entities and
Structural Constraints

First, for the relationship located_in:

From MALL to STORE, this fits Pattern 3, 1(full):N:

One mall must have many (at least one) stores.

or

Malls, which are recorded in the database, must have many
(one or more) stores located in them.

From STORE to MALL, this fits Pattern 1, M(full):1:

Many stores (one or more) must be in one mall.

or

Stores, which are recorded in the database, must be in one
mall.

To map this relationship (with some sample data):

The MALL entity will be mapped as was shown in the case study in Chapters
2 and 3 (as shown on the following page):

Next, we have to map the relationship between the MALL entity and the
STORE entity. This is a binary 1:N relationship; hence, we will use mapping
rule M3c_1, which states:

M3c_1 — For binary 1:N relationships, if the N-side has full
participation, include the key of the entity from the 1 side,
in the relation on the N side as a foreign key.

So, the key from the 1 side, the MALL side, name (meaning, mall_name),
will be included in the N side, STORE side, as the foreign key, as follows:

MALL-Store

name store_name

West Florida Mall Penney's
West Florida Mall Sears
West Florida Mall Dollar Store
West Florida Mall Rex

Cordova Mall Dillards

MALL

name address

West Florida Mall N Davis Hwy, Pensacola, FL
Cordova Mall 9th Avenue, Pensacola, FL

Navy Mall Navy Blvd, Pensacola, FL
BelAir Mall 10th Avenue, Mobile, AL

STORE

sloc sname snum mall_name

Rm 101 Penney's 1 West Florida Mall
Rm 102 Sears 2 West Florida Mall
Rm 109 Dollar Store 3 West Florida Mall

Due to the multi-valued attribute, depts, in STORE, we will keep the relation
with the multi-valued attribute (as developed in Chapter 3):

Then, for the relationship owns:

From OWNER to STORE, this fits Pattern 3, 1(full):M:

Owners, which are recorded in the database, must own one or
more stores.

or

One owner must own at least one store, and may own many
stores.

From STORE to OWNER, this fits Pattern 1, M(full):1:

Stores, which are recorded in the database, must have one
and only one owner.

or

Many stores can have one owner.

To map this relationship (with some sample data):

For the relationship owns, from OWNER to STORE, a 1:N relationship:

Again, using mapping rule M3c_1, we will take the key from the 1 side,
so_ssn, and include this as the foreign key in the N side, STORE, so STORE
now becomes:

Rm 110 Rex 4 West Florida Mall

STORE-dept

snum depts

1 Tall men's clothing
1 Women's clothing
1 Children's clothing
1 Men's clothing
.

.

.

STORE

sloc sname snum mall_name so_ssn

Rm 101 Penney's 1 West Florida Mall 879-987-0987

And the relation for the OWNER entity remains as developed in the earlier
chapter:

Next, for the relationship, manages:

From STORE to STORE MANAGER, this fits Pattern 1, 1(full):1:

Stores, which are recorded in the database, must have one
store manager.

or

Stores must have one store manager, and can only have one
and only store manager.

From STORE MANAGER to STORE, this also fits Pattern 1, 1(full):1:

Store managers, which are recorded in the database, must
manage one and only one store.

or

Store managers must manage at least one store, and can
manage only one store.

To map this relationship (with some sample data):

The relationship between STORE and STORE MANAGER is a binary 1:1
relationship, hence using mapping rule M3b_3, the relation STORE would
develop into (we are taking the key from STORE MANAGER, sm_ssn, and
including it in STORE as the foreign key):

Rm 102 Sears 2 West Florida Mall 928-088-7654
Rm 109 Dollar Store 3 West Florida Mall 826-098-0877
Rm 110 Rex 4 West Florida Mall 982-876-8766

OWNER

so_ssn so_name so_off_phone so_address

879-987-
0987

Earp (850)474-2093 1195 Gulf Breeze Pkwy,
Pensacola, FL

826-098-
0877

Sardar (850)474-9873 109 Navy Blvd,
Pensacola, FL

928-088-
7654

Bagui (850)474-9382 89 Highland Heights,
Tampa, FL

982-876-
8766

Bush (850)474-9283 987 Middle Tree, Mobile,
AL

STORE

sloc sname snum mall_name so_ssn sm_ssn

And the relation for the STORE MANAGER entity remains as was developed
in the earlier chapter:

Our next step will be step 7, which is:

Step 7: Present the "as-designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

In summary our relational database has so far been mapped to (without the
data): (Note: The primary keys are underlined.)

MALL-Store

MALL

STORE

STORE-dept

OWNER

STORE MANAGER

Rm
101

Penney's 1 West Florida
Mall

879-987-
0987

283-972-
0927

Rm
102

Sears 2 West Florida
Mall

928-088-
7654

456-098-
0987

Rm
109

Dollar
Store

3 West Florida
Mall

826-098-
0877

234-987-
0988

Rm
110

Rex 4 West Florida
Mall

982-876-
8766

928-982-
9882

STORE MANAGER

sm_ssn sm_name sm_salary

234-987-0988 Saha 45,900
456-098-0987 Becker 43,989
928-982-9882 Ford 44,000
283-972-0927 Raja 38,988

name store_name

name address

sloc sname snum mall_name so_ssn sm_ssn

snum depts

so_ssn so_name so_off_phone so_address

We continue with the development of this case study at the end of Chapter
5.

sm_ssn sm_name sm_salary

Chapter 5: The Weak Entity
Chapters 2 and 3 introduced the concepts of the entity, the attribute, and the
relationship. Chapter 4 dealt with structural constraints, that is, how two
entities are related to one another. This chapter discusses the concept of the
"weak" entity, which is used in the Chen-like model. Weak entities may not
have a key attribute of their own, as they are dependent on a strong or
regular entity for their existence (that has a key attribute of its own). The
weak entity has some restrictions on its use, and produces some interesting
diagrams. This chapter revisits and redefines steps 3 and 4 of the ER design
methodology to include the concept of the weak entity. A grammar for the
weak entities and mapping rules for the weak entities are also developed.

Strong and Weak Entities
As discussed in Chapter 2, there are situations where finding a key to a
relationship is difficult. So far, we have concentrated on examples with
strong (regular) entities — mostly ones with easily identifiable keys. Strong
entities almost always have a unique identifier that is a subset of all the
attributes; a unique identifier may be an attribute or a group of attributes. For
example, a student number, an automobile vehicle identification number, a
driving license number, etc. may be unique identifiers of strong entities.

A weak entity is one that clearly will be an entity but will depend on another
entity for its existence. As previously mentioned, a weak entity will not
necessarily have a unique identifier. A classic example of this kind of entity is
a DEPENDENT as related to an EMPLOYEE entity. If one were constructing
a database about employees and their dependents, an instance of a
dependent would depend entirely on some instance of an employee, or else
the dependent would not be kept in the database. The EMPLOYEE entity is
called the owner entity or identifying entity for the weak entity DEPENDENT.

How can a weak entity come about in our diagrams? In the creation of a
database, we might have a dependent name shown as a multi-valued
attribute, as shown in Figure 5.1. An example of data for a diagram like
Figure 5.1 would be:

EMPLOYEE

name (First, MI, Last) emp ID dependents

John J. Jones 0001 John, Jr; Fred; Sally
Sam S. Smith 0004 Brenda; Richard

Adam A. Adams 0007 John; Quincy; Maude
Santosh P. Saha 0009 Ranu; Pradeep; Mala

Figure 5.1: The EMPLOYEE Entity Showing DEPENDENT Name as a
Multi-Valued Attribute

Suppose that in our conversations with the user, we discover that more
information is supposed to be gathered about the dependents themselves.
Following our methodology, this acknowledgment is a recognition that the
dependents should be entities; that is, they fit the criteria for "entity," which is
that we would be recording information about "something" (the dependent).
Hence, we would be describing an entity called DEPENDENT. If we make
DEPENDENT an entity, we would embellish the diagram in Figure 5.1 to that
of Figure 5.2.

Figure 5.2: The EMPLOYEE–DEPENDENT ER Diagram — First
Pass

Figure 5.2 poses a problem: the DEPENDENT entity is dependent on the
EMPLOYEE for its being. Also, it has no clear unique identifier. This
dependence on EMPLOYEE makes DEPENDENT a weak entity. As is often
the case with weak entities, neither name, birth date, nor insurance benefits
are candidate keys by themselves. None of these attributes would have
unique values. There is no single attribute candidate key.

In the Chen-like model, for weak entities, we enclose the entity in a double
box, and the corresponding relationship to the owner in a double diamond
(see Figure 5.3). The weak entity in Figure 5.3, the DEPENDENT, is said to
be identified by the entity EMPLOYEE; the EMPLOYEE is called the
"identifying entity" or "owner entity" for the weak entity, DEPENDENT.

Figure 5.3: The EMPLOYEE–DEPENDENT ER
Diagram

Attributes are handled the same way for weak entities as for strong entities
(except that there may be no primary keys for weak entities). We have
included some attributes in Figure 5.3 so that the figures depict the following
(in loose grammar):

A dependent must be related to one employee and an
employee may have many dependents.

The DEPENDENT entity has the following attributes: name (a composite
attribute), birth date, and insurance benefits.

In dealing with weak entities, it is appropriate to consider how each instance
of the entity would be identified. Because the owner of the weak entity,
DEPENDENT, is the strong entity EMPLOYEE, the identification process
would involve the EMPLOYEE key plus some information from the weak
entity, DEPENDENT. Name is a likely candidate as an identifier for

DEPENDENT, and will be called a partial key.

In Figure 5.3, we have dash-underlined the atomic parts of the composite
attribute, name. Name is a partial key as it identifies dependents, but not
uniquely. Because name is composite, the atomic parts of it are
distinguished as the partial key. This assumes that all dependents have
unique names.

In Figure 5.3, we did not "name" the relationship, and left it as ED for
EMPLOYEE-DEPENDENT. Suitable names for the dependent might be
"have," as in:

Employees may have many dependents.

or "dependent upon" as in

Employees may have many dependents dependent upon
them.

We could also have used "related to," as in:

Employees are related to many dependents.

Each of these verb phrases seems to have a redundancy (dependent upon)
or perhaps misleading (related to) air about them. Probably the best thing to
do there is to leave the relationship unnamed (ED).

Weak Entities and Structural Constraints
Weak entities always have full or mandatory participation from the weak side
toward the owner. If the weak entity does not have total participation, then
we would have a data item in the database that is not uniquely identified,
and which is not tied to a strong entity. In our EMPLOYEE–DEPENDENT
example, this would be like keeping track of a dependent that is not related
in any way to an employee. The cardinality of the relationship between the
weak and strong entity will usually be 1:M, but not necessarily so.

Weak Entities and the Identifying Owner
There are situations in which a weak entity can be connected to an owner
entity while other relationships exist apart from the "owner" relationship. For
example, consider Figure 5.4. In this figure, we have shown two
relationships — owns and drives — connecting the two entities, EMPLOYEE
and AUTOMOBILE. Here, the AUTOMOBILE entity is considered a weak
entity; that is, if there is no employee, then there will be no automobile (the
automobile has to have an employee to exist in the database). Further, the
automobile is identified by the owner; note the double diamond on the owns
relationship, and the full participation of the AUTOMOBILE entity in the owns
relationship.

Figure 5.4: A Weak Entity with Two Relationships

In Figure 5.4, we also have a drives relationship. The automobile is driven by
employees other than the owner. All automobiles are driven by some
employee and, hence, the participation is full. However, the driveremployee
may not necessarily be the actual owner. To identify AUTOMOBILE we are
saying that we need the owns relationship, but other nonowner drivers may
exist.

According to Figure 5.4, one employee may own many automobiles. To
answer the question — which automobiles does an employee own, in
addition to the employee's_id, we will need to know the make, model, and
color of the automobiles. The make, model, and color of the AUTOMOBILE
entity are partial keys (dotted underline in Figure 5.4).

Checkpoint 5.1

1. How would you identify a strong entity?

2. How would you identify a weak entity?

3. What kind of a relationship line (single or double) would be leading up
to the weak entity in a Chen-like diagram?

4. What kind of relationship does a weak entity have in a Chen-like
model?

5. What is a partial key?

Another Example of a Weak Entity and the
Identifying Owner
As another example of a weak entity and the identifying owner in an ER
diagram, consider Figure 5.5. In this figure we have two strong entities:
PERSON and VET. There is one weak entity, PET. Figure 5.5 illustrates that
PERSON owns PET, but the VET treats the PET. In this diagram, PERSON
is the identifying or controlling entity for PET and, hence, the relationship
owns has a double diamond. The relationship owns is a weak relationship.
PET is a weak entity with respect to PERSON.

Figure 5.5: The PERSON–PET–VET ER Diagram

Conversely, the relationship treats does not have a double diamond because
VET is not the owner of PET. Here, treats is not a weak relationship, and
PET is not a weak entity with respect to VET.

Weak Entities Connected to Other Weak Entities
A final point regarding weak entities. Just because an entity is weak does not
preclude it from being an owner of another weak entity. For example,
consider Figure 5.6. In this figure, the EMPLOYEE–DEPENDENT
relationship has been enhanced to include hobbies of the dependents.
(Never mind why one would want to keep this information, but let us suppose
that they do anyway).

Figure 5.6: The EMPLOYEE–DEPENDENT–HOBBY ER
Diagram

DEPENDENT is a weak entity. The entity HOBBY is also weak. Hobbies
might be identified by their type (e.g., stamp collecting, baseball, tying knots,
observing trains, etc.). The type attribute of HOBBY is a partial key for
HOBBY.

The entity DEPENDENT is the owner of the entity HOBBY, and the entity
EMPLOYEE is the owner of the weak entity DEPENDENT.

The reason that this situation is brought up here is to show that it can exist.
Later, when we map this situation, we will treat this special situation
carefully.

Checkpoint 5.2

1. Can a weak entity be dependent on another weak entity?

2. Can a weak entity have a relationship that is not "weak" with the
identifying entity?

3. Can a weak entity be related to more than one entity (strong or
weak)?

Revisiting the Methodology
The inclusion of a weak entity in an ER diagram causes us to again look at
our methodology and make some adjustments. We might discover the weak
entity in one of two places: one would be as we illustrated with the evolution
of the multi-valued attribute, the "dependent"; this would occur in step 3a and
3b:

Step 3: Examine attributes in the primary entity (possibly with user
assistance) to find out if information about one of the attributes is to be
recorded.

Step 3a: If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b: Define the relationship back to the original entity.

So we add:

Step 3c: If the new entity depends entirely on another entity for its
existence, then draw the entity as weak (double boxed) and show the
connection to the identifying entity as a double diamond. The
participation of the weak entity in the relationship is full. Dash-
underline the partial key identifier(s) in the weak entity.

The second place that a weak entity might appear would be as part of step 4
when new entities are being considered:

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat step 2 to see if any attributes should be further split
into more entities.

So we add:

Step 4a: If the additional entity or entities do not have candidate keys,
then draw them as weak entities (as explained in step 3c) and show the
connection to an identifying entity. The participation of the weak entity
in the relationship is full or mandatory. Dashunderline the partial key
identifier(s) in the weak entity.

Again, note that a weak entity cannot exist without an identifying entity. So if
the weak entity is "discovered" independent of an identifying entity, the
relationship-connection should be made immediately.

Weak Entity Grammar
We previously discussed some grammar associated with weak entities, but
now we want to revise and enhance the idea when we have no primary key
for the weak entity. It is possible for a weak entity to have a primary key and
therefore it might appear in item (b), so we add part (c).

The Keys
For the key(s):

a. More than one candidate key (strong entity): … [discussed
previously]

b. One candidate key (strong or weak entity): For each weak entity,
but it is assumed that no weak entity will be recorded without a
corresponding owner (strong) entity. [discussed previously]

c. No candidate keys (weak entity): For each (weak) Entity, we do
not assume that any attribute will be unique enough to identify
individual entities.

In this case, the DEPENDENT entity would be depicted as:

For each DEPENDENT entity, we do not assume that any attribute will
be unique enough to identify individual entities.

We will now enhance this description to include the identifying
entity:

Because the weak entity does not have a candidate key, each
weak entity will be identified by key(s) belonging to the strong
entity.

In this case, the DEPENDENT entity is identified by the
EMPLOYEE entity and this second statement becomes:

Because the DEPENDENT entity does not have a candidate key, each
DEPENDENT entity will be identified by key(s) belonging to the
EMPLOYEE entity, plus name (the partial key) in the DEPENDENT
entity.

Mapping Weak Entities to a Relational Database
In this section we develop the mapping rules for mapping weak entities to a
relational database.

M4 — For weak entities — Develop a new table (relation)
for each weak entity. As is the case with the strong entity,
include any atomic attributes from the weak entity in the
table. If there is a composite attribute, include only the
atomic parts of the composite attribute, and be sure to
qualify the atomic parts in order to not lose information.
To relate the weak entity to its owner, include the primary
key of the owner entity in the weak relation as a foreign
key. The primary key of the weak relation will be the partial
key in the weak entity concatenated to the key of the
owner entity.

If weak entities own other weak entities, then the weak entity that is
connected to the strong entity must be mapped first. The key of the weak
owner entity has to be defined before the "weaker" entity (the one furthest
from the strong entity) can be mapped.

For example, refer to Figure 5.3. The EMPLOYEE relation and
DEPENDENT relation would be mapped as shown below:

(employee_id is the primary key of EMPLOYEE).

The primary key, employee_id, from the owner relation, EMPLOYEE, is
included in the weak entity, DEPENDENT. employee_id now becomes part
of the primary key of DEPENDENT. Because dname.first, dname.last, and
dname.mi are the partial key of the DEPENDENT relation, the primary key of
the DEPENDENT relation now finally becomes dname.first, dname.last,

EMPLOYEE

ename.first ename.last ename.mi employee_id

Richard Earp W 589
Boris Backer 909
Helga Hogan H 384
Arpan Bagui K 876
Hema Malini 505

DEPENDENT

dname.first dname.last dname.mi birth_date insurance employee_id

Beryl Earp W 1/1/74 SE 589
Kaitlyn Backer 2/25/78 SE 909
David Earp H 3/4/75 BlueCross 589
Fred Earp K 3/7/98 BlueCross 589
Chloe Hogan 5/6/88 SE 384

dname.mi, and employee_id all together.

Now refer to Figure 5.6. Here, the DEPENDENT relation is dependent on the
EMPLOYEE relation, and the HOBBY relation is dependent on the
DEPENDENT relation. The EMPLOYEE relation and DEPENDENT relation
would be mapped as shown above, and then the HOBBY relation would be
mapped as shown below:

The partial key of HOBBY was type. The primary key of the HOBBY relation
now becomes dname.first, dname.last, dname.mi, employee_id, and type, all
together.

Checkpoint 5.3

1. What are the rules for mapping weak entities? Map Figure 5.5 and
show some sample data.

2. When mapping weak entities, what becomes their new primary key?

3. How would you map multi-valued attributes in a weak entity? Discuss.

HOBBY

dname.first dname.last dname.mi employee_id type years_involved

Beryl Earp W 589 swimming 3
Kaitlyn Backer 909 reading 5
David Earp H 589 hiking 1
Fred Earp K 589 fishing 2
Chloe Hogan 384 singing 4

Chapter Summary
This chapter discussed and developed the concept of the "weak entity." The
grammar for the weak entity was enhanced, along with the ER design
methodology. The mapping rules for mapping the weak entity were also
developed. This concept of the weak entity is available in the Chen-like
model but is treated differently in many other ER diagram models.

Chapter 5 Exercises

Exercise 5.1
Construct an ER diagram (in the Chen-like model) for a database that is to
contain the following: employee name (ename), employee number (enum),
employee address (eaddr), skill(s) (eskill). An employee may have more than
one skill. Then enhance the diagram to include: level of skill, date skill
certified (if certified), and date began using the skill. Are there any weak
entities in this database? Map this ER diagram to a relational database.

Exercise 5.2
Construct an ER diagram (in the Chen-like model) for sports and players.
Attributes of SPORTS are: sport name — type of sport — timed or untimed.
Attributes of PLAYERS are: name, person ID, date of birth. Players may play
multiple sports. Which entity or entities would you consider weak? Write out
the grammar for the ER diagram. Map this ER diagram to a relational
database.

Exercise 5.3
How are weak entities generally identified?

Exercise 5.4
What mapping rules would be used to map Figure 5.4? Map Figure 5.4 to a
relational database and show some sample data.

References

Chen, P.P. "The Entity Relationship Model — Toward a Unified View of
Data," ACM TODS 1, No. 1, March 1976.

Connolly, T., Begg, C., and Strachan, A. Database Systems, A Practical
Approach to Design, Implementation, and Management, Addison-
Wesley, Harlow, England, 1998.

Elmasri, R. and Navathe, S.B. Fundamentals of Database Systems, 3rd
ed., Addison-Wesley, Reading, MA, 2000.

Ramakrishnan, R. and Gehrke, J. Database Management Systems, 3rd
ed., McGraw-Hill, New York, 2003.

Case Study: West Florida Mall (continued)
In the previous chapters we selected our primary entities, defined the
attributes and relationships for this case study, and mapped it to a relational
database (with some sample data). In Chapter 4 we also determined the
structural constraints of the relationships and adjusted some of the mappings
accordingly. Then we reviewed step 7, which says:

Step 7: Present the "as-designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

Suppose we got some additional input from the user: A store must have one
or more departments. A department will not exist without a store. For each
department we will store the department name, department number, and
department manager. Each department has at least one employee working
for it.

We have to record information about the employees in the store. For each
employee in a store, we will have to keep an employee's name, social
security number, and the department in which that the employee works.
Employees must work in one and only one department.

In Chapter 3 we determined that departments was a multi-valued attribute of
STORE (that is, one store had many departments). But, upon reviewing
these additional (above) specifications, we can now see that DEPARTMENT
needs to be an entity on its own because we have to record information
about a DEPARTMENT. Also, we can see that we have to record information
about another new entity, EMPLOYEE. So, these above specifications add
two new entities: DEPARTMENT and EMPLOYEE.

First we will select an entity, DEPARTMENT. Now, repeating Step 2 for
DEPARTMENT:

The Entity

This database records data about a DEPARTMENT. For each
DEPARTMENT in the database, we record a department name
(dname) and department number (dnum).

The Attributes for DEPARTMENT

For each DEPARTMENT, there will always be one and only
one dname. The value for dname will not be subdivided.

For each DEPARTMENT, there will always be one and only
one dnum. The value for dnum will not be subdivided.

The Keys

For each DEPARTMENT, we do not assume that any attribute
will be unique enough to identify individual entities without the
accompanying reference to STORE, the owner entity. Note that
the language leads you to thinking of DEPARTMENT as a
weak entity.

Next, we will select our next entity, EMPLOYEE. Now, repeating step 2 for
EMPLOYEE:

The Entity

This database records data about an EMPLOYEE. For each
EMPLOYEE in the database, we record an employee name
(ename) and employee social security number (essn).

The Attributes for EMPLOYEE

For each EMPLOYEE, there will always be one and only one
ename recorded for each EMPLOYEE. The value for ename
will not be subdivided.

For each EMPLOYEE, there will always be one and only one
essn recorded for each EMPLOYEE. The value for essn will
not be subdivided.

The Keys

For each EMPLOYEE, we will assume that the essn will be
unique. (So, EMPLOYEE will be a strong entity.)

These entities have been added to the diagram in Figure 5.7.

Figure 5.7: An ER Diagram of West Florida Mall Developed Thus
Far

Using step 6 to determine the structural constraints of the relationships, we
get:

First, for the relationship, dept_of:

From STORE to DEPARTMENT, this fits Pattern 3, 1(full):N:

Stores, which are recorded in the database, must have many
(one or more) departments.

From DEPARTMENT to STORE, this fits Pattern 1, M(full):1:

Many departments (one or more) must be in one store.

To map this relationship (with some sample data):

The relationship between STORE and DEPARTMENT is a
binary 1:N relationship, so using mapping rule M3c_1, we will
take the key from the 1 side, snum, and include this as the
foreign key in the N side, DEPARTMENT, so the relation
DEPARTMENT becomes:

The STORE relation will be the same as it was in Chapter 4,
but we will not need the relation, STORE_depts. (In Chapter 4,
departments was still a multi valued attribute of STORE, so we
had the relations STORE and STORE_depts.) From the
specifications at the beginning of the case study in this chapter,
it is apparent that DEPARTMENT is an entity on its own, so the
STORE_depts relation is included in (replaced by) the
DEPARTMENT relation.

Then, for the relationship, works_for:

From EMPLOYEE to DEPARTMENT, this fits Pattern 1, 1
(full):1 :

Employees, who are recorded in the database, must work for one and only
one department.

From DEPARTMENT to EMPLOYEE, this fits Pattern 3, 1
(full):N :

Departments, which are recorded in the database, must have one or more
employees working for it.

To map this relationship (with some sample data):

From EMPLOYEE to DEPARTMENT, the relationship is 1:1,
and because both sides have full participation, using mapping
rule M3b_3, we can select which side can store the key of the
other. But, because the relationship between DEPARTMENT

DEPARTMENT

dname dnum snum

Tall Men's Clothing 501 1
Men's Clothing 502 1

Women's Clothing 503 1
Children's Clothing 504 1

Men's Clothing 601 2
.

.

.

and EMPLOYEE is a binary 1(full):N relationship, using
mapping rule M3c_1, we will take the key from the 1 side
(DEPARTMENT side), dnum, and snum, and include this
concatenated key as the foreign key in the N side,
(EMPLOYEE side), so the relation EMPLOYEE becomes:

In summary, our relational database has so far been mapped
to (without the data):

MALL-Store

MALL

STORE

OWNER

STORE MANAGER

DEPARTMENT

EMPLOYEE

We continue with the development of this case study at the end of Chapter
6.

EMPLOYEE

ename essn dnum snum

Kaitlyn 987–754–9865 501 1
Fred 276–263–91827 502 1
Katie 982–928–2726 503 1

Seema 837–937–9373 501 1
Raju 988–876–3434 601 2

.

.

.

name store_name

name address

sloc sname snum mall_name so_owner sm_ssn

so_ssn so_name so_off_phone so_address

sm_ssn sm_name salary

dname dnum snum

ename essn dnum snum

Chapter 6: Further Extensions for ER
Diagrams with Binary Relationships
Having developed the basic ER model in Chapters 1 through 4, this chapter
deals with some extensions to the basic model. In this chapter we introduce
a new concept — attributes of relationships — and give several examples of
attributes of relationships. We then revisit step 6 of the ER design
methodology to include attributes of relationships. Next, the chapter looks at
how more entities and relationships are added to the ER model, and how
attributes and relationships evolve into entities, all the while refining our ER
design methodology. Relationships can develop into entities, creating an
intersection entity. The grammar and structured English for the intersection
entity are also presented. Then, this chapter introduces the concept of
recursive relationships.

Also, in previous chapters, we only looked at cases where two entities had a
(one) relationship between them. In this chapter we discuss how two entities
can have more than one relationship between them. Step 5 of the ER design
methodology is also redefined to include more than one relationship between
two entities. This chapter discusses derived and redundant relationships,
and the ER design methodology is once again refined and step 6(b) is
included to deal with derived and redundant relationships. Finally, toward the
conclusion of this chapter we included an optional section that looks at an
alternative ER notation for specifying structural constraints on relationships.

Attributes of Relationships
In Chapter 3 we considered the M:N relationship STUDENT–COURSE. This
relationship is M:N because students take many courses and courses are
taken by many students. Now consider adding the attribute grade to the ER
diagram. If we tried to put grade with the STUDENT entity, we would have a
multivalued attribute that had to be somehow related to the COURSE entity
to make sense. Similarly, if we tried to put the grade attribute with the
COURSE entity, the COURSE entity would have to be related to the
STUDENT entity. The correct place for the grade attribute in the diagram
would be on the relationship, enroll, because grade requires both a
STUDENT and a COURSE to make sense. See Figure 6.1 for the placement
of the attribute grade in an M:N, full:full participation model.

Figure 6.1: An ER Diagram of an M:N Relation with an Attribute of a
Relationship

A few other attributes have been added to Figure 6.1 to show the relative
position of the attributes. Again, because grade is necessarily identified by
both STUDENT and COURSE, it cannot reside with either entity by itself. An
attribute like grade is called a "relationship attribute" or "intersection
attribute."

An intersection attribute may arise first as a multi-valued attribute on some
entity during the design process, only later to be questioned: "Why is this
attribute here when it requires another entity to identify it?" When it is
recognized that the attribute has to be identified by more than one entity, the
attribute is moved to the relationship between the two (or more) entities that
identify it.

Relationship attributes may occur with an ER diagram containing any
cardinality, but one will most often find relationship attributes in the binary
M:N situation. We now need to revisit our methodology to add a guideline for
the attributes of a relationship:

Step 6: State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there is a
relationship from A to B, 1 to Many, and from B back to A, Many to 1.

And we add:

Step 6a: Examine the list of attributes and determine whether any of
them need to be identified by two (or more) entities. If so, place the
attribute on an appropriate relationship that joins the two entities.

Note that step 6a can also help in deciding which entities need to be related.
If it had not been recognized up to this point that a relationship was needed,
then the discovery of a relationship attribute would be a clear signal that
such a relationship would be in order.

The grammar to describe the attribute of a relationship would be as follows:

The Attributes

For the relationship between Entity1 and Entity2, we will record a(n) att(j).
The att(j) depends on both entities Entity1 and Entity2 for identification.

Example
For the relationship between the STUDENT entity and the COURSE entity,
we will record a grade attribute. The grade attribute depends on both the
STUDENT and COURSE entities for identification.

For atomic attributes, att(j): … [same as in previous chapters]

For composite attributes, att(j): … [same as in previous chapters]

For multivalued attributes, att(j): … [same as in previous chapters]

For attributes of relationships att(j): … [same as in previous chapters]

Relationships Developing into Entities: The M:N
Relationship Revisited
We previously defined the M:N relationship, and noted in the beginning of
the chapter that an attribute often appears that should be associated with the
relationship and not with one entity. The example was the attribute, grade,
which would clearly not fit with either the STUDENT entity or the COURSE
entity. In a sense, it appears that the relationship has itself taken on an entity
quality. This observation is true because we have information (an attribute)
that clearly belongs to the relationship.

There are two options in depicting this relationship-attribute situation. One
option is to leave the attribute where it is, as we have shown it, on the
relationship. If the number of attributes is small (one or two), then the sense
of the diagram is still intact and the grammar representing the diagram will
be understandable to the user.

The other option for relationship attributes would be to make the relationship
an entity and tie both of the "identifying entities" to it. This option is shown in
Figure 6.2. In this figure, the middle entity, STUDENT+COURSE, is depicted
as weak because it depends entirely on the entities STUDENT and
COURSE. Note that the participations are always full between the new,
weak "intersection entity" and the relationships. Why? Because the weak
entity must have a corresponding strong entity or it would not be there. The
participation on the strong-relationship side (like between STUDENT and
Rel1, or between COURSE and Rel2) can be partial or full, depending on
whether it was partial or full originally. What would a partial COURSE–Rel2
connection mean? It would indicate that classes existed in the database that
were not offered, and hence had no students in them.

Figure 6.2: An ER Diagram of an M:N Relationship that Has Been

Replaced with Two 1:M Relationships

Now that we have a STUDENT+COURSE entity (an intersecting entity), our
grammatical description of this intersecting entity would be:

The Entity
This database records data about STUDENT–COURSE combinations —
STUDENT+COURSE. For each STUDENT+COURSE in the database, we
record a grade.

The Attributes
For each STUDENT+COURSE, there always will be one and only one grade
for each STUDENT+COURSE combination. The value for grade will not be
subdivided.

The Keys
(d) No candidate keys (intersecting entity):

The STUDENT+COURSE entity does not have a candidate
key of its own, but rather, each STUDENT+COURSE entity will
be identified by keys belonging to the STUDENT and COURSE
entities.

The latter statement is very close (and for a user, hopefully indistinguishable)
from the key statements found in the "attribute on a relationship" grammar
above:

For the relationship between STUDENT and COURSE, we will
record a grade. The grade depends on both entities,
STUDENT and COURSE, for identification.

More Entities and Relationships
In the handling of a database, we have to model the information presented.
We will likely have situations that call for more than two entities and more
than one binary relationship. Again, a binary relationship is a relationship
between two entities. (Chapter 7 looks at ternary and higher relationship
combinations.) This section deals with situations where the information about
the database indicates that we have to expand our diagrams with more
entities, but all the connections will be binary.

More than Two Entities
Let us again reconsider the STUDENT–COURSE ER diagram, Figure 6.1. If
this database were oriented toward a college, the courses would have
instructors and the instructors would be related to the courses. We would
consider adding INSTRUCTOR to our database per our methodology steps
4 and 5, which say:

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat step 2 to see if this entity should be further split into
more entities.

Step 5: Connect entities with relationships (one or more) if
relationships exist.

If we added instructors to the ER diagram, Figure 6.1, we might see
something like Figure 6.3 (attributes other than the primary keys are
intentionally left off to unclutter the diagram). The relationship between
INSTRUCTOR and COURSE is teach — instructors teach many courses, a
course is taught by an instructor (loosely speaking). The participation would
be determined by the situation, but we will choose one for our example.
Stated more precisely, we would say:

Figure 6.3: An ER Diagram (with Only Primary Keys) Showing a
STUDENT/COURSE/INSTRUCTOR Database

Pattern 4 — x:y::1:M, from the 1 Side, Partial
Participation
Short: An instructor may teach many courses
which actually means:
Long: An instructor, but not necessarily all instructors, (which are recorded in
the database) may teach many (one or more) courses. Some instructors
may not teach courses.

Pattern 1 — x:y::M:1, from the M Side, Full
Participation
Short: Courses must be taught by instructors
which actually means:
Long: Courses, which are recorded in the database, must be taught by one
and only one instructor. No course is taught by more than one instructor.

In this diagram (Figure 6.3), the INSTRUCTOR entity is related to the
COURSE entity. There could be a relationship between the INSTRUCTOR
entity and the STUDENT entity, but the relationships in Figure 6.3 are
assumed to be the only ones that exist. One could argue that the other
possible relationships are advisor, mentor, counselor, coach, …, but
remember that we are modeling only what exists and not what might be. We
assume that the diagram represents the information given and only the
information given.

Adding More Attributes that Evolve into Entities
As we have seen, ER diagrams evolve during the design/redesign process.
One way ER diagrams evolve is to add attributes to various entities. Some
attributes are going to be simple, functionally dependent additions.
Functional dependency means that something is identifiable by that which it
is dependent upon. For example, a social security number functionally
identifies a name, and name is functionally dependent on social security
number. This functional dependency means that anywhere a certain value
for social security number exists in the database, you can be sure that the
same name will appear with it. Consider adding the attribute instructor name.
The addition enhances the diagram and instructor name is functionally
dependent on the attribute, instructor ID.

Now consider adding "building" to each of the entities. Students live in
buildings (dorms), courses are taught in buildings (classrooms and labs),
instructors have offices in buildings. "Building" can be added as an attribute
of each of the three entities and not be considered an entity unto itself. Why?
Because at this stage, we have not expressed the desire to record
information about buildings. If buildings (dorm rooms, class rooms, office
rooms) were considered as attribute items for appropriate entities, then we
would have the ER diagram as in Figure 6.4.

Figure 6.4: An ER Diagram (with Only Primary Keys) Showing a
STUDENT/COURSE/INSTRUCTOR Database with "Building" as an
Attribute

Now that we have added "building" to our database (Figure 6.4), suppose we
evolve yet again to where we now decide that we do want to record more
information about buildings; or put another way, we want to make BUILDING
an entity. We would then have to connect other entities to BUILDING with

appropriate relationships. Such a design is depicted in Figure 6.5. Whether
we begin with the idea of BUILDING as an entity or evolve to it by starting
with STUDENTS, COURSES, and INSTRUCTORS, we need to be
constantly asking the question, "Is this item in the ER diagram one that we
want to record information about, or not? Should this be an entity?" In Figure
6.5, we have depicted BUILDING as an entity and hence we will want to add
attributes to it. For an embellished ER diagram with more attributes and
cardinalities, see Figure 6.6.

Figure 6.5: An ER Diagram (with Only Primary Keys) Showing a
STUDENT/ COURSE/INSTRUCTOR/BUILDING
Database

Figure 6.6: An ER Diagram Showing a
STUDENT/COURSE/INSTRUCTOR/BUILDING
Database

Checkpoint 6.1
1. In Figure 6.6, why is BUILDING an entity and not an attribute of

another entity?

2. In Figure 6.6, why is the room number attribute attached to the lives in
relationship rather than the STUDENT entity?

3. What will make you decide whether an attribute should be connected
to ENTITYA or ENTITYB or, on the relationship connecting ENTITYA
and ENTITYB?

4. Why are all the lines leaving BUILDING (on Figure 6.6) single lines
(partial participation)?

5. According Figure 6.6, does a student have to enroll in a course?

6. According to Figure 6.6, how many courses can an instructor teach?

More Evolution of the Database
Let us reconsider the ER diagram in Figure 6.6. As the diagram is analyzed,
the user might ask, "Why is a room number attribute not included for the
relationship, class?" Why is there no office number for the relationship,
office? There may be several reasons for the omission: (1) the data was not
mentioned in the analysis stage; (2) the data is not necessary (i.e., there
may be only one classroom per building or office numbers may not be
recorded for advisors); or (3) it was an oversight and the data should be
added. Suppose now we decide that room number is important for all of the
relationships or entities. Suppose that we want to identify the room number
associated with instructors and buildings, courses and buildings, and
students and buildings. We might "evolve" the diagram to that of Figure 6.7.

Figure 6.7: An ER Diagram Showing a
STUDENT/COURSE/INSTRUCTOR/ BUILDING Database with the
"room number" for the Three Relations

In this case, we have information attached to BUILDING: building
occupancy, the maintenance supervisor, and the square footage of the
building. We have room number as an attribute identifiable by two entities in
each case.

Attributes that Evolve into Entities
This section illustrates, one more time, the idea that we have to model "what
is" and not necessarily "what might be." Also, we again see how an attribute
might become an entity. Consider, for example, the following data that will go
into an ER diagram/database: a course name, course number, credits,
instructor name, and book. Example:
'Database','COP 4710',3,'Earp','Elmasri/Navathe'

The beginning ER diagram might look like Figure 6.8, "An ER Diagram of the
COURSE entity in a database." Why "might look like…"? The answer lies in
eliciting correct requirements from our user.

Figure 6.8: An ER Diagram with COURSE Entity in a
Database

If all of the information that was ever to be recorded about this data was
mentioned above, then this single entity ER diagram would describe the
database. However, one could realistically argue that things that we have
described as attributes could themselves be entities. Both the instructor and
the book would be candidates for being diagrammed as entities if the
envisioned database called for it.

Consider a scenario in which one might choose to expand or redesign the
database to include information about instructors. If this were the case, we
might want to go beyond recording the instructor name and also include
such attributes as the instructor's department, date_hired, and the school
where the instructor received the terminal degree. With the additional
information about INSTRUCTORS, the ER diagram would have two entities
and would look like Figure 6.9.

Figure 6.9: An ER Diagram of the COURSE–INSTRUCTOR
Database

In Figure 6.9, we have depicted the INSTRUCTOR entity as weak because
of the presumed non-uniqueness of instructor names and the dependence
on COURSE. If the instructor were identified uniquely with an attribute like
instructor social security number, and if instructors could exist independent
of course, then the entity could become strong and would look like Figure
6.10. The idea of this section, then, is to bring out the point that an entity is
not an entity just because one might want to record information "someday."
There would have to be some planned intent to include the data that would
be identified by the entity. Further, the definition of weak or strong entity
would depend on the identifying information that was to be provided.

Figure 6.10: An ER Diagram of the COURSE–INSTRUCTOR
Database

Finally, if no information about instructors were ever planned, then the first
ER diagram (Figure 6.10) would well describe the database. We will leave as
an exercise the extension of Figure 6.10 to include BOOK as an entity.

Recursive Relationships
A recursive relationship is where the same entity participates more than
once in different roles. Recursive relationships are also sometimes called
unary relationships.

Consider, for example, the idea of personnel relations in a company.
Personnel are likely to have an employee number, a name, etc. In addition to
existing as an entity for all employees of an organization, there are
relationships between individuals of the entity set, PERSONNEL. The most
obvious relationship is that of employee–supervisor or personnel–supervisor.
How would we depict the personnel–supervisor relationship when we have
only one entity? The answer is shown in Figure 6.11.

Figure 6.11: A Classic Recursive Relationship PERSONNEL–
SUPERVISOR

Figure 6.11 shows the entity, PERSONNEL, with some simple attributes.
Then, the relationship of supervise is added and connected to PERSONNEL
on both ends. The cardinality of the relationship is 1:N, which means that
one employee (personnel) can supervise many other employees but can
only be supervised by one employee. We use partial participation from the
supervisor side because not all personnel are supervisors — an employee
may supervise many employees. The participation of the supervised
employee is also partial. Although most employees are supervised by some,
one supervisor, some employee will be at the top of the hierarchy with no
supervisor. In recursive relationships, we are representing a hierarchy. All
hierarchies have a top spot with no "supervision." All hierarchies are always
partial–partial.

So, when there arises a relationship between individuals within the same
entity set, it would be improper to have two entities because most of the
information in the entities is basically the same. If we created two entities,
then we would have redundancy in the database. Using the above example,

if we used two different entities rather than a recursive relationship, then an
employee would be recorded in two different entities.

Recursive Relationships and Structural Constraints
Recursive relationships can only have partial participation in relationships,
but the cardinality can be one-to-one, one-to-many, or many-to-many. Full
participation in a recursive relationship would mean that every instance of an
entity participates in a relationship with itself, which would not make sense.

Next we look at some examples of cardinalities as interpreted in recursive
relationships.

One-to-One Recursive Relationship (Partial Participation on
Both Sides)
Figure 6A show us an example of an entity, PERSONNEL, that is related to
itself through a married to relationship. This means that a person in this
database can be married to one other person in this same database.

Figure 6A: One-to-One Recursive Relationship (Partial Participation on
Both Sides)

Some instances of this relationship are shown in Figure 6B. From Figure 6B
we can see that Seema is married to Dev Anand, Sumon is married to
Rekha, etc.

Figure 6B: Instances of One-to-One Recursive Relationship (Partial
Participation on Both Sides)

One-to-Many Recursive Relationship (Partial Participation
on Both Sides)
This is the most common recursive relationship. An example of this
relationship may be where one employee may supervise many other
employees (as shown in Figure 6C). As mentioned before, this is a
hierarchical relationship and is always partial–partial.

Figure 6.C: One-to-Many Recursive Relationship (Partial Participation
on Both Sides)

Instances of this relationship are shown in Figure 6D. From Figure 6D we
can see that Tom Smith supervises Sudip Bagui and Tim Vaney, Rishi
Kapoor supervises Mala Sinha and Korak Gupta, Korak Gupta supervises
Roop Mukerjee, etc.

Figure 6.D: Instances of One-to-Many Recursive Relationship (Partial
Participation on Both Sides)

Many-to-Many Recursive Relationship (Partial on Both
Sides)
In this example we could say that courses may be prerequisities for zero or
more other courses. This relationship is depicted in Figure 6E. The sense of
prerequisite here is not hierarchical, but more like a situation where there are
many courses that are interrelated.

Figure 6.E: Many-to-Many Recursive Relationship (Partial Participation
on Both Sides)

Multiple Relationships
Thus far we mostly discussed that two entities can have a (one) relationship.
This section discusses how two entities can have more than one relationship
(but the relationships here are still binary relationships).

Consider a diagram that has two entities: STUDENT and FACULTY.
Suppose we have no other entities in the database. Suppose further that the
STUDENT entity has the following attributes: name, student #, birthdate, and
the name of the high school (high_school) from which the student graduated.
The FACULTY entity could have the following attributes: name, social
security number (SS#), department affiliation, office_number. Now consider
two relationships: instructor and advisor. There are only two entities here
and yet there are two relationships. Each relationship should be given its
own "diamond." The ER diagram for this is shown in Figure 6.12

Figure 6.12: An ER Diagram with Two Entities and Two
Relationships

In this diagram, all relationships are arbitrarily shown as partial; that is, there
will be some faculty who do not advise students, and some students who are
not instructed by faculty. In constructing ER diagrams, one has to include
however many relationships exist. It would be incorrect to try to make a
relationship do "double duty" and stand for two different relationship ideas.

In this example, an embellishment might include intersection data for the
instruct relationship (a grade in a course, for example). Intersection data for
the advise relationship could be date_assigned, time of last_meeting, etc. as
shown in Figure 6.12A.

Figure 6.12A: An ER Diagram with Two Entities and Two Relationships
and Some Intersection Attributes

The placing of relationships in the ER diagram is covered in our ER design
methodology in step 5, which we will redefine here:

The original step 5 was:

Step 5: Connect entities with relationships if
relationships exist.
We can add to this guideline that if multiple relationships are present, they
are added to the diagram; however, this is likely redundant, so we will simply
append the phrase "(one or more)":

Step 5: Connect entities with relationships (one or more) if
relationships exist.

The Derived or Redundant Relationship
Many authors describe a redundant (Martin, 1983) or derived
(Hawryszkiewycz, 1984) relationship that could arise in a relationship "loop"
like that of Figure 6.13. The loop notion comes from the pictorial idea that the
lines form a closed graph (which is actually more like a rectangle, but we are
going to call it a loop). The idea of redundancy is that because students take
courses and each course is taught by an instructor, you do not need a taught
by relationship because you can get that information without the extra
relationship. If such a relationship exists, then it should be excised, but there
are caveats.

Figure 6.13: An ER Diagram Showing a
STUDENT/COURSE/INSTRUCTOR Database with a "Redundant"
Relationship

First, one has to be sure that the redundant relationship is truly redundant. If
the added relation were advised by instead of taught by, then the
relationship should stay because it has a completely different sense than
taught by.

Second, if the relationship loop is present, it may mean that only one of the
two redundant relationships should be kept and the semantics should point
to which one. In Figure 6.13, the INSTRUCTOR is more likely related to a
COURSE than to a STUDENT. So, the better choice of which relationship to
keep would be the original one: teach. It is very conceivable that a designer
might have included the taught by relationship first, only later to include the
teach relationship. Then, by examining the diagram for loops, one can
deduce that the taught by was redundant.

Third, one or both of the relationships may have an intersection attribute that
would suggest which relationship (or both) should be kept. In Figure 6.14, we
included the attribute, time, which was put with the teach relationship as an

instructor teaches a course at some time.

Figure 6.14: An ER Diagram Showing a
STUDENT/COURSE/INSTRUCTOR Database with a "Redundant"
Relationship

The idea of derived or redundant relationships causes us to suggest one
more step in our methodology:

Step 6b. Examine the diagram for loops that might indicate redundant
relationships. If a relationship is truly redundant, excise the redundant
relationship.

Checkpoint 6.2
1. What is a recursive relationship?

2. What would you look for if you are trying to see if a relationship is
recursive?

3. What kinds of structural constraints can recursive relationships have?

4. Can recursive relationships have full participation? Why or why not?

5. How is the recursive relationship denoted diagrammatically in the
Chenlike ER model?

6. Can the same two entities have more than one relationship?

7. How would you determine if a relationship is redundant?

Optional Section
We call the next section, entitled "An Alternative ER Notation for Specifying
Structural Constraints on Relationships," an optional section because it is not
really necessary to know or use this section to fully understand the ER
design methodology or to arrive at a good database product. However, some
may find this section more descriptive.

An Alternative ER Notation for Specifying Structural
Constraints on Relationships
Thus far we have discussed cardinality ratios in terms of their upper bounds
(the maximum cardinality), shown by the "M" or "N" in the ER diagrams
(shown in this and previous chapters). You will recall (from Chapter 4) that
cardinality is a rough measure of the number of entity instances in one entity
set that can be related to instances in another entity set.

This section describes an alternative ER notation for specifying structural
constraints on relationships. This notation will associate a pair of numbers
(min, max) with each participation of an instance of an entity in an instance
of a relationship. This min and max can provide more information about the
entities and the relationships.

The min is the minimum number of instances in one entity set that can be
related to an instance of a relationship. The min can be between zero and
the maximum. If the min is zero, it implies that every instance of an entity
does not have to participate in an instance of the relationship. This, in effect,
means partial participation. If the min is greater than zero, this implies full
participation. We now present an ER diagram with (min, max) ratios.

First, let us start with the recursive relationship shown in Figure 6.15. The
(min, max) of (0,1) means that each personnel may or may not be married
(shown by the zero for the min), and can only be married to at most one
personnel (shown by the max). Next, look at Figure 6.16. From this figure we
can say that a student may not be advised by any faculty, and may be
advised by up to two faculty members (shown by the minimum of zero, and
maximum of two [i.e., (0,2)]). A faculty member can advise between zero (0)
and 30 students. A faculty member can instruct between zero (0) and 40
students. And, a student must be instructed by one faculty member, and can
be instructed by up to two (2) faculty members.

Figure 6.15: Recursive Relationship with (min, max)

Ratios

Figure 6.16: An ER Diagram Showing an Alternative ER Notation for
Specifying Structural Constraints

Checkpoint 6.3 (Optional)
1. What lower bound of cardinality does full participation imply?

2. What does a min/max ratio of (1,1) between two entities imply?

3. What kind of participation ratio (full participation or partial
participation) does a min/max ratio of (0,1) imply?

Review of the Methodology
To review, our methodology for designing ER diagrams has now evolved to
the following:

ER Design Methodology
Step 1: Select one, primary entity from the database
requirementsdescription and show attributes to be recorded for that
entity. Label keys if appropriate and show some sample data.

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

Step 3: Examine attributes in the existing entities (possibly with user
assistance) to find out if information about one of the entities is to be
recorded. (Note: We change "primary" to "existing" because we redo
step 3 as we add new entities.)

Step 3a: If information about an attribute is needed, then make the
attribute an entity, and then

Step 3b: Define the relationship back to the original entity.

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat steps 2 and 3 to see if this entity should be further
split into more entities.

Step 5: Connect entities with relationships (one or more) if
relationships exist.

Step 6: State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there is a
relationship from A(1) to B(M) and from B(M) back to A(1).

Step 6a: Examine the list of attributes and determine whether any of
them need to be identified by two (or more) entities. If so, place the
attribute on an appropriate relationship that joins the two entities.

Step 6b: Examine the diagram for loops, which might indicate
redundant relationships. If a relationship is truly redundant, excise the
redundant relationship.

Step 7: Show some sample data.

Step 8: Present the "as designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

The grammar to describe our entities, attributes and keys has evolved to
this:

The Entity: This database records data about ENTITY. For each ENTITY in
the database, we record att(1), att(2), att(3), … att(n).

The Attributes:
For atomic attributes, att(j):

For each ENTITY, there always will be one and only one att(j) for
each ENTITY. The value for att(j) will not be subdivided.

For composite attributes, att(j):

For each ENTITY, we will record att(j), which is composed of x, y,
z, … (x, y, z) are the component parts of att(j).

For multi-valued attributes, att(j):
For each ENTITY, we will record att(j)s. There may be more than
one att(j) recorded for each ENTITY.

For attributes of relationships att(j):
For the relationship between ENTITY1 and ENTITY2 we will record
a(n) att(j). The att(j) depends on both entities, ENTITY1 and
ENTITY2, for identification.

The Keys:
More than one candidate key (strong entity):

For each ENTITY, we will have the following candidate keys: att(j),
att(k), … (where j, k are candidate key attributes)

One candidate key (strong entity):
For each ENTITY, we will have the following primary key: att(j)

No candidate keys (perhaps a weak entity):
For each ENTITY, we do not assume that any attribute will be
unique enough to identify individual entities.

No candidate keys (perhaps an intersecting entity):
For each ENTITY, we do not assume that any attribute will be
unique enough to identify individual entities.

Mapping Rules for Recursive Relationships
Recursive relationships are binary 1:1, 1:N, or M:N relationships. We
discussed the mapping rules for these types of relationships in Chapter 4. In
that chapter, the mapping rule was discussed for two entities. If there is only
one entity, the rules basically stay the same; but rather than including the
primary key of one entity (ENTITY_A) in another entity (ENTITY_B), the
primary key of ENTITY_A is reincluded in ENTITY_A.

M5 — For recursive entities — two types of mapping rules
can be developed:

M5a — For 1:N recursive relationships — reinclude the
primary key of the table with the recursive relationship in
the same table, giving it some other name.

For example, Figure 6.11 will get mapped to something like:

M5b — For M:N recursive relationships, create a separate
table for the relationship (as in mapping rule M3a).

As an example, if we assumed that Figure 6.11 was an M:N relationship,
then Figure 6.11 would map to the above table (PERSONNEL) and:

Checkpoint 6.4
1. Map the recursive relationship shown in Figure 6C to a relational

database and show some sample data.

2. If Figure 6C was an M:N relationship, how would you map this
recursive relationship to a relational database? Show the mapping
with some sample data.

PERSONNEL

name.first name.last name.mi employee_id super_id

Richard Earp W 8945 9090
Boris Yelsen 9090 null
Helga Hogan H 3841 9090
Sudip Bagui K 8767 9090
Tina Tanner 5050 8945

PERSONNEL_SUPERVISOR

employee_id super_id

8945 9090
9090 null
3841 9090
8767 9090
5050 8945

Chapter Summary
This chapter viewed the different aspects of binary relationships in ER
diagrams and refined several of the steps in the ER design methodology.
The refining of the ER design methodology means a continuous assessment
and reassessment of the ER diagram that is drawn after discussion with the
users. The idea that relationships could have attributes, how attributes
evolve into entities, recursive relationships, and derived and redundant
relationships were discussed with examples and diagrams. The ER design
methodology steps were refined to include all of the above into the new and
evolving methodology.

Toward the end of the chapter, an alternative ER notation for specifying
structural constraints on relationships was presented. Upon completing this
chapter, the reader or database creator should be able to efficiently design a
database with binary relationships. Chapter 7 deals with ternary and other
higher-order relationships.

Chapter 6 Exercises
In each of the exercises that follow, the admonition to "construct an ER
diagram" implies not only the diagram, but also the structured grammatical
description of the diagram.

Exercise 6.1
Define and state in precise terms the cardinality and participation in Figure
6.5, the STUDENT/COURSE/INSTRUCTOR/BUILDING database. Discuss
the structural constraints of Figure 6.5. Under what circumstances would the
structural constraints depicted be correct or incorrect?

Exercise 6.2
Consider the following data and construct an ER diagram — use structured
grammar to rationalize your constraints. The data: horse name, race, owner,
odds at post, post position, date of race, order of finish, year to date
earnings, owner name and address.

Exercise 6.3
In this chapter we described a database that had two entities: COURSE and
INSTRUCTOR (refer to Figure 6.10). Book was left as an attribute of
COURSE. Extend the database to include BOOK as an entity. Attributes of
BOOK might include: book title, author, price, edition, publisher.

Exercise 6.4
Refer to Figure 6.7. Change Figure 6.7 to include the following information:
One building can have a maximum of 99 students living in it. A student has
to enroll in at least one class, and can enroll in a maximum of five classes. A
class has to enroll at least five students, and can enroll a maximum of 35
students. A instructor may or may not teach a class, and can teach up to
three classes. A course has to have one instructor teaching it, and only one
instructor can teach a particular course. An instructor may or may not have
an office, and can have up to two offices. A building may or may not have an
office, and can have up to 15 offices. A course has to be offered in one
classroom, and can only be offered in one classroom.

References

Bracchi, G., Paolini, P., and Pelagatti, G., "Binary Logical Associations in
Data Modelling," Modelling in Data Base Management Systems, G.M.
Nijssen, Ed., North-Holland, Amsterdam, 1976.

Earp, R. and Bagui, S., "Binary Relationships in Entity Relationships in
Entity Relationship (ER) Diagrams," Data Base Management, Auerbach
Publications, Boca Raton, FL, 22-10-43, 1–17, April 2000.

Hawryszkiewycz, I., Database Analysis and Design, SRA, Chicago,
1984.

Mark, L., "Defining Views in the Binary Relationship Model," Information
System, 12, 3 (1987), p. 281–294.

Martin, J., Managing the Data-Base Environment, Prentice Hall,
Englewood Cliffs, NJ, 1983.

Sanders, L., Data Modeling, Boyd & Fraser Publishing, Danvers, MA,
1995.

Teorey, T.J., Database Modeling and Design, Morgan Kaufman, San
Francisco, 1999.

Case Study: West Florida Mall (continued)
Thus far in our case study, we have developed the major entities and
relationships and mapped these to a relational database (with some sample
data). Then, upon reviewing step 7, which says:

Step 7: Present the "as-designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

Suppose we got some additional input from the user:

An employee can also be a department manager, and a
department manager can manage at most one department. We
have to store information on the department manager — the
name, social security number, which store he/she is working
for, which department he/she is working for. A department
manager supervises at least one employee, and may manage
several employees.

Upon reviewing these additional specifications, we can see that we have a
recursive relationship developing here, because an employee can be a
department manager supervising other employees.

So, using mapping rule M5a, we will reinclude the primary key of the
EMPLOYEE entity in itself, giving us the following EMPLOYEE relation:

This recursive relationship is also shown in Figure 6.17.

EMPLOYEE

ename essn dnum snum dm_ssn

Kaitlyn 987–754–9865 501 1 276–263–9182
Fred 276–263–9182 502 1 null
Katie 982–928–2726 503 1 987–754–9865

Seema 837–937–9373 501 1 276–263–9182
.

.

.

Figure 6.17: An ER Diagram of West Florida Mall Developed Thus
Far

So, in summary, our relational database has now developed to (without the
data):

MALL-Store

MALL

STORE

OWNER

STORE MANAGER

DEPARTMENT

EMPLOYEE

name store_name

name address

sloc sname snum mall_name so_owner sm_ssn

so_ssn so_name so_off_phone so_address

sm_ssn sm_name salary

dname dnum snum

We will continue with the development of this case study at the end of
Chapter 8.

ename essn dnum snum dm_ssn

Chapter 7: Ternary and Higher-Order
ER Diagrams

Overview
All relationships that we have dealt with thus far in previous chapters have
been binary relationships. Although binary relationships seem natural to
most of us, in reality it is sometimes necessary to connect three or more
entities. If a relationship connects three entities, it is called ternary or "3-ary."
If a relationship connects three or more entities (n entities), it is called an "n-
ary" relationship, where n equals the number of entities that participate in the
relationship. n-ary relationships are also referred to as "higher-order"
relationships.

In this chapter we consider relationships that connect three or more entities.
First we look at ternary (3-ary) relationships. Ternary relationships arise for
three main reasons: (1) if we have intersection attributes that require three
different entities to identify the attribute, (2) if we have a relationship of a
relationship, and (3) by reverse-engineering. Because we discuss
reverseengineering in Chapter 9, we will not discuss the development of
ternary relationships from reverse-engineering in this chapter.

In this chapter we first discuss how intersection attributes create ternary
relationships, and then look at the structural constraints of ternary
relationships. Next, we discuss how ternary and other n-ary relationships do
not preclude binary relationships, and how some ternary diagrams can be
resolved into binary relationships. The development of ternary relationships
from relationships of relationships is also discussed. Step 6 of the ER design
methodology is also redefined in this chapter to include ternary and other
higher-order relationships.

Binary or Ternary Relationship?
Ternary relationships are required when binary relationships are not
sufficient to accurately describe the semantics of an association among
three entities. In this section we explain the difference between a binary and
a ternary relationship with the help of an example, and also show how an
intersection attribute necessitates a ternary relationship.

In the binary case, we found that relationships existed between entities and
that these relationships would have structural constraints (cardinality and
participation). Further, we found that attributes of relationships were also
possible. In particular, we found that the M:N relationship often spawned an
attribute, which we called an intersection attribute (recall the STUDENT/
CLASS M:N relationship and the intersection attribute, grade, as shown in
Figure 6.1). In the binary relationship case, we made the point that an
attribute like grade would infer that an M:N binary relationship must exist.
Whether one determined the M:N relationship first or found the "orphaned"
attribute first would not matter; the end result would be an M:N relationship
with an intersection attribute.

Cases exist in databases when a relationship between more than two
entities is needed. The usual case would be to find one of these "orphaned"
attributes that necessitated the n-ary relationship. Consider the following
example.

You have a database for a company that contains the entities, PRODUCT,
SUPPLIER, and CUSTOMER. The usual relationships might be PRODUCT/
SUPPLIER where the company buys products from a supplier — a normal
binary relationship. The intersection attribute for PRODUCT/SUPPLIER is
wholesale_price (as shown in Figure 7.1A). Now consider the CUSTOMER
entity, and that the customer buys products. If all customers pay the same
price for a product, regardless of supplier, then you have a simple binary
relationship between CUSTOMER and PRODUCT. For the CUSTOMER/
PRODUCT relationship, the intersection attribute is retail_price (as shown in
Figure 7.1B).

Figure 7.1A: A Binary Relationship of PRODUCT and SUPPLIER and

an Intersection Attribute, wholesale_price

Figure 7.1B: A Binary Relationship of PRODUCT and CUSTOMER and
an Intersection Attribute, retail_price

Some sample data for Figure 7.1A would be:

Some sample data for Figure 7.1B would be:

Now consider a different scenario. Suppose the customer buys products but
the price depends not only on the product, but also on the supplier. Suppose
you needed a customerID, a productID, and a supplierID to identify a price.
Now you have an attribute that depends on three things and hence you have
a relationship between three entities (a ternary relationship) that will have the

PRODUCT–SUPPLIER

productId supplierId wholesale_price

Beans AcmeBean Co 1.49
Beans Baker Bean Co. 1.57
Carrots Joe's Carrots 0.89

PRODUCT–CUSTOMER

customerID productId retail_price

Jones Beans 2.67
Smith Beans 2.67
Jones Carrots 1.57

intersection attribute, price. This situation is depicted in Figure 7.2.

Figure 7.2 represents the entities PRODUCT, SUPPLIER, and CUSTOMER,
and a relationship, buy, among all three entities, shown by a single
relationship diamond attached to all three entities.

Some sample data for Figure 7.2 would be:

Figure 7.2: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship

This ternary case is more realistic because customers generally pay different
prices for the same product by different manufacturers or suppliers. For
different suppliers, one might also assume different prices for a product at
different points in time. Also, for customers, one might assume that some
items are bought on sale, some not. Another intersection attribute (see
Figure 7.2) could be date, which could be the date of the sale of a product to
a customer by a supplier.

In the case of higher-order relationships, they are most often found by
finding an attribute that necessitates the existence of the n-ary relationship.
Next we look at the structural constraints of ternary relationships.

PRODUCT–SUPPLIER–CUSTOMER

customerID productID supplierID price

Jones Beans Acme 2.65
Jones Beans Baker 2.77
Jones Carrots Joe's 1.57

Structural Constraints for Ternary Relationships
Ternary relationships can have the following types of structural constraints:
one-to-one-to-one (1:1:1), one-to-one-to-many (1:1:M), one-to-many-to-
many (1:M:M), and many-to-many-many (M:M:M), with full or partial
participation on each one of the sides. Below is an example of the (M:M:M)
with partial participation on all sides:

Many-to-Many-to-Many (M:M:M) Structural
Constraint
Figure 7A shows an example of a M:M:N relationship using three entities:
PRODUCT, SUPPLIER, and CUSTOMER. This figure shows that many
customers can buy many products from many suppliers, at different prices.

Figure 7A: An ER Diagram Showing a Ternary Many-to-Many-to-Many
Relationship (Partial Participation on All Sides)

Instances of this relationship can be illustrated as shown in Figure 7B.

Figure 7B: Instances of a Ternary Many-to-Many-to-Many for
CUSTOMER:PRODUCT:SUPPLIER Relationship

Checkpoint 7.1
1. What is a ternary relationship?

2. What is an n-ary relationship?

3. What are "higher order" relationships?

4. Using the three entities used above (PRODUCT, SUPPLIER, and
CUSTOMER), draw an ER diagram that depicts the following: A
customer must buy one and only one product from a supplier at a
particular price on a particular date.

5. Using the three entities used above (PRODUCT, SUPPLIER, and
CUSTOMER), draw an ER diagram that depicts the following: A
supplier must supply many products to many customers at different
prices on different dates.

6. Think of some more intersection attributes for the PRODUCT,
SUPPLIER, and CUSTOMER ternary example given above.

7. What situations might create each of the following structural
constraints?

a. PRODUCT: SUPPLIER: CUSTOMER::1:1:1, partial
participation on all sides.

b. PRODUCT: SUPPLIER: CUSTOMER::1:M:M, partial
participation on all sides.

c. PRODUCT: SUPPLIER: CUSTOMER::1:1:1 full participation
on all sides.

Example of n-ary Relationship
An n-ary relationship describes the association among n entities. For our
ternary example, we said that the price was dependent on a PRODUCT,
SUPPLIER, and CUSTOMER. If we now say that the price is dependent on
a PRODUCT, SUPPLIER, CUSTOMER, as well as STATE, then we are
saying that the attribute price is dependent on four entities, and hence an n-
ary (in this case, a 4-ary) relationship. In an n-ary (or, in this case, 4-ary)
relationship, a single relationship diamond connects the n (4) entities, as
shown in Figure 7.3. Here, too, the intersection attribute is price. More
attributes on the entities would be expected.

Figure 7.3: An ER Diagram Showing an n-ary
Relationship

n-ary Relationships Do Not Preclude Binary
Relationships
Just because there is a ternary relationship does not mean that binary
relationships among the entities may not exist. Using a similar example of
CUSTOMERS, VENDORS, and PRODUCTS, suppose retail vendors and
suppliers of products have a special relationship that does not involve
customers — such as wholesaling with an entirely different price structure.
This binary relationship can be shown separately from, and in addition to, a
ternary relationship. See Figure 7.4 for a basic version of this two-way
(binary) relationship and three-way (ternary) relationship ER diagram in the
same database.

Figure 7.4: An ER Diagram (with Only Primary Keys) Showing a Three-
Way and a Two-Way Relationship

The semantics of Figure 7.4 tell us that we have a binary relationship, buy
wholesale, between PRODUCT and VENDOR, with all PRODUCTs and
VENDORs participating. Both the VENDOR and the CUSTOMER buy the
PRODUCT, but in the VENDOR/PRODUCT relationship, the action is
wholesale buying and hence the relationship is labeled buy wholesale. We
changed the ternary relationship to read buy retail to distinguish the two
relationships.

Methodology and Grammar for the n-ary
Relationship
We need to revisit step 6 in the ER design methodology to cover the
possibility of the n-ary relationship. The old version was:

Step 6: State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there is a
relationship from A to B, 1 to Many, and from B back to A, Many to 1.

We add the following sentence to step 6:

For ternary and higher-order (n-ary) relationships, state the
relationship in structured English, being careful to mention all entities
for the n-ary relationship. State the structural constraints as they exist.

The grammar for the n-ary relationship must involve all of the entities linked
to it and, therefore, a suitable informal sentence would go something like
this:

ENTITY1 Relationship (from/to/by)
ENTITY2 (and) (from/to/by) ENTITY3. It is understood that
attribute will necessitate naming all n entities to identify it.

Here, if we choose some combination for Entity1, …, Entityn, this process
resolves into:

Entity1 : CUSTOMER
Relationship: buy
Relationship attribute: retail price
Entity2: PRODUCT
Entity3: SUPPLIER

CUSTOMERS buy PRODUCTS from SUPPLIERS. It is understood that
retail price will necessitate referencing all three entities to identify it.

With a binary relationship, we have to state two relationships. One would
think that with ternary relationships, we would be bound to state three.
Because the relationship attribute has already been stated, let us look at the
other possibilities:

Entity1: CUSTOMER
Entity2: SUPPLIER
Entity3: PRODUCT
CUSTOMERS buy from SUPPLIERS, PRODUCTS.

For the same value of Entity1, the sense of the statement is really repeated
and adds no information to the process. Suppose that:

Entity1: PRODUCT
Entity2: CUSTOMER
Entity3: SUPPLIER
PRODUCTS are bought by CUSTOMERS from SUPPLIERS.

In the informal version of the statement from the diagram, little information is
gained by repetition. It is suggested that other combinations be tried. But, in
the informal statement, it seems likely that one statement, inferred from the
semantics of the situation, would suffice to informally declare the nature of
the relationship.

The More Exact Grammar
A more exact grammar for the n-ary relationship would be an extension of
that developed for the binary relationship. Unlike the informal case above, in
a more formal grammatical presentation, it would be necessary to make
three statements (ternary), one starting with each entity. In the binary
relationship, M:N, full participation case, we used the following description of
the relationship:

Pattern 3 — M:N, from the M side, full participation

Short: x must be related to many y

which actually means:

Long: x, which are recorded in the database, must be related to
many (one or more) y. No x is related to a non y (or) Non x are
not related to a y. (The negative will depend on the sense of
the statement).

We could generalize the structural constraint patterns to this:

Pattern 4 — k:M, from the k side, full participation (k = 1 or M)

Short: same as above.

Long: same as above.

For the n-ary relationship, we extend the notation of the generalized
statement using the boolean operator, "and," like this:

Pattern 5 (n-ary) — x:y:z::a:b:c, from the a side, full/partial participation

Short: x must/may be related to many y and many z.

The "must" comes from full participation; "may" comes from a partial one.
The "a" cardinality will not matter. The "b" and "c" force us to say "one" or
"many" in the statement. So, for example, for x as full:

Long: x, which are recorded in the database, must be related to:

b = m [many (one or more)] y

b = 1 one and only one y

and (or other appropriate linking word [from, by, to, …])

c = m [many (one or more)] z

c = 1 one and only one z.

No x is related to more than one z.

No x is related to more than one y.

Example

For CUSTOMERS:PRODUCTS:VENDORS::M1:M2:M3, full participation all
around:

Short: CUSTOMERS must buy many PRODUCTS from many
VENDORS.

Long: CUSTOMERS that are recorded in the database must
buy many (one or more) PRODUCTS from many (one or more)
VENDORS.

Other grammatical expressions are derived similarly:

Products, that are recorded in the database, must be bought by
many (one or more) customers from many (one or more)
vendors.

Vendors, that are recorded in the database, must sell many
(one or more) products to many (one or more) customers.

A negative could be: No customer (in this database) buys products from
nonvendors.

As with the binary cases, the negative statements would be optional, if they
make sense.

Grammar in a Partial Participation, Ternary
Relationship with a 1-Relationship
Now consider Figure 7.5. In this figure, we are trying to represent a database
about a graduation ceremony that has some students and some faculty
attending. Roughly, we are trying to say that some STUDENTS attend a
given GRADUATION with some FACULTY; some FACULTY attend a
GRADUATION with some STUDENTS; and all GRADUATIONs are attended
by some STUDENTS and some FACULTY. The intersection attribute is
derived attendance.

Figure 7.5: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship with Partial Participations, and a 1-
Relationship

Here, we have some partial participations and a 1-relationship. Using the
grammar presented above, we have the following outcome:

STUDENT:GRADUATION:FACULTY::M:1:M

Short: Students may attend one graduation with many faculty.

Long: Students, that are recorded in the database, may attend
(b = 1) one and only one graduation.

with

(c = m) many (one or more)] faculty.

No student attends more than one graduation [with many
faculty].

We put the [with many faculty] in square brackets because it is not really
needed to make sense of the diagram.

Similarly:

Faculty that are recorded in the database may attend one
graduation with many students. Some faculty do not attend
graduation [with many students].

Graduations must be attended by some students and some
faculty. No graduation takes place without some students and
some faculty.

Ternary Relationships from Relationship–
Relationship Situations
Another scenario in which ternary relationships become necessary is where
we have a scenario developing that results in a relationship of a relationship.
Chen-like ER diagrams do not allow relationships of relationships; so, to
represent this situation correctly, we need to develop a ternary relationship.

For example, let us start with two entities: BOOK_PUBLISHER and
MANUSCRIPT. We can initially relate the two entities as shown in Figure
7.6A. A BOOK_PUBLISHER reviews a MANUSCRIPT.

Figure 7.6A: A Binary Relationship of BOOK_PUBLISHER and
MANUSCRIPT

At a later stage, if some MANUSCRIPTs result-in a BOOK after being
reviewed, this calls for a relationship of a relationship, as shown in Figure
7.6B. This relationship of a relationship becomes necessary here because
the BOOK_PUBLISHER, review, and MANUSCRIPT taken together will
result-in a BOOK, as shown in Figure 7.6C.

Figure 7.6B: A Relationship of a Relationship

In Figure 7.6C, this BOOK_PUBLISHER, the reviews relationship, and
MANUSCRIPT taken together is like creating a higher-level aggregate class
composed of BOOK_PUBLISHER, review, and MANUSCRIPT. This
aggregate class (of the two entities and a relationship) then needs to be
related to BOOK, as shown in Figure 7.6C.

Figure 7.6C: A Relationship of a Relationship

To represent this situation correctly in the ER model schema presented in
this book, and because we cannot show a relationship of a relationship to
represent this situation, we need to create a weak entity (i.e., REVIEW) and
relate it to BOOK_PUBLISHER, MANUSCRIPT, and BOOK as shown in
Figure 7.6D. The intersection attribute, BMR, has to have a
BOOK_PUBLISHER, MANUSCRIPT, and REVIEW. This review may

results-in a BOOK (as shown in Figure 7.6D).

Figure 7.6D: A Relationship of a Relationship Resolved into a Ternary
Relationship

n-ary Relationships that May Be Resolved into
Binary Relationships
Just because three entities are related does not necessarily imply a ternary
relationship. In this section, we show how some ternary relationships can be
resolved into binary relationships, and then we give another example of how
a ternary relationship cannot be resolved into binary relationships (a real
ternary relationship).

Just as the binary M:N relationship can be decomposed into two 1:M
relationships, so can many n-ary relationships be decomposed. First, note
the decomposition of the M:N into two 1:M's in Figure 7.7. The idea is to
make the relationship an entity, and hence form two simpler binary
relationships.

Figure 7.7: An ER Diagram of an M:N Relationship That Has Been
Replaced with Two 1:M Relationships

Next, look again at Figure 7.5. If we decompose Figure 7.5 into three binary
relationships, we obtain Figure 7.8. In Figure 7.8, note that the new entity
ATTENDANCE is weak and depends on the three entities — FACULTY,
STUDENT, and GRADUATION — for its existence. The sense of
ATTENDANCE would be a roll of attendees for a GRADUATION ceremony
event.

Figure 7.8: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship "Decomposed" into Three Binary
Relationships

There are situations, however, in which a relationship inherently associates
more than two entities. Take Figure 7.2 as an example. Here, if we had
another attribute like an order that a customer places to a supplier for a
product, this attribute would require all three entities (i.e., CUSTOMER,
PRODUCT, and SUPPLIER) at the same time. An order would specify that a
supplier would supply some quantity of a product to a customer. This
relationship cannot adequately be captured by binary relationships. With
binary relationships we can only say that a customer placed an order for a
product, or a supplier received an order for a product. The fact that a
customer places an order for a product does not imply that the customer C is
getting the product P from a supplier S unless all three entities are related.

Checkpoint 7.2
1. Can all ternary relationships be expressed in the form of binary

relationships? Explain.

2. Come up with some attributes and entities of a relationship that you
think could be a ternary relationship. Can this relationship be
expressed in the form of a binary relationship?

Mapping Ternary Diagrams to a Relational Database
In this section we develop mapping rules to map n-ary relationships to a
relational database because this will also cover ternary relationships.

M6 — For n-ary relationships — For each n-ary
relationship, create a new relation. In the relation, include
all attributes of the relationship. Then include all keys of
connected entities as foreign keys and make the
concatenation of the foreign keys the primary key of the
new relation. Qualify all foreign keys.

For example, referring to Figure 7.2, you have a ternary relationship called
buy relating PRODUCT, SUPPLIER, and CUSTOMER. There is an
intersection attribute, price. The mapped relation (with some sample data)
would be:

BUY

price productID supplierID customerID

$87.10 TAG1 F1 PENS
$83.98 TAG2 G25 MOB
$95.25 TAG3 G20 DEL
$99.10 TAG4 F4 GULF

PRODUCT

productID …

TAG1

TAG2

TAG3

…

SUPPLIER

supplierID …

F1

G25

G20

…

CUSTOMER

customerID …

Checkpoint 7.3
1. Could Figure 7.3 be described in the form of binary relationships?

Discuss.

2. What mapping rules would you follow to map Figure 7.3?

3. Map Figure 7.3 to a relational database and show some sample data.

Our ER design methodology has now finally evolved to the following:

PENS

MOB

DEL

…

ER Design Methodology
Step 1: Select one primary entity from the database requirements
description and show attributes to be recorded for that entity. Label
keys if appropriate and show some sample data.

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

Step 3: Examine attributes in the existing entities (possibly with user
assistance) to find out if information about one of the entities is to be
recorded.

(We change "primary" to "existing" because we redo step 3 as we add new
entities.)

Step 3a: If information about an attribute is needed, make the attribute
an entity, and then

Step 3b: Define the relationship back to the original entity.

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat steps 2 and 3 to see if this entity should be further
split into more entities.

Step 5: Connect entities with relationships (one or more) if
relationships exist.

Step 6: State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there is a
relationship from A(1) to B(M) and from B(M) back to A(1).

For ternary and higher order (n-ary) relationships, state the relationship
in structured English, being careful to mention all entities for the n-ary
relationship. State the structural constraints as they exist.

Step 6a: Examine the list of attributes and determine whether any of
them need to be identified by two (or more) entities. If so, place the
attribute on an appropriate relationship that joins the two entities.

Step 6b: Examine the diagram for loops that might indicate redundant
relationships. If a relationship is truly redundant, excise the redundant
relationship.

Step 7: Show some sample data.

Step 8: Present the "as-designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

Chapter Summary
Binary relationships are, by far, the most commonly occurring kind of
relationships, and some ER diagram notations do not have expressions for
ternary or other, higher-order relationships; that is, everything is expressed
in terms of a binary relationship. In this chapter we showed how the need for
ternary relationships arises from unique situations; for example when there is
an intersection attribute that needs all three entities together, or when
relationships of relationships develop. Ternary relationships can also be
developed through reverse-engineering, and this is discussed in Chapter 9
where reverse-engineering is discussed. Also in this chapter, we discussed
in detail the structural constraints of ternary relationships and their grammar,
and showed how some ternary or n-ary relationships can be resolved into
binary relationships, but how some cannot be resolved into binary
relationships. The final section of this chapter discussed mapping rules of n-
ary relationships.

Chapter 7 Exercises

Exercise 7.1
In Chapter 5 we described a database that had two entities: COURSE and
INSTRUCTOR. "Book" was left as an attribute of COURSE. Extend the
database to include book as an entity. Attributes of book might include: book
title, author, price, edition, and publisher. Explore the relationships that might
exist here; use "in" or "by," "write," "teach," etc. Draw an ER diagram with at
least two relationships, one of them ternary. What would be some attributes
of the relationships?

Exercise 7.2
Construct an ER diagram for a broker, a security, and a buyer. Include in the
diagram the price of the security, the commission paid, the broker name and
address, the buyer name and address, and the security exchange, symbol,
and price. Include in the diagram the number of shares of the security held
by a buyer (you may choose to include this by broker, or not).

Exercise 7.3
Using three entities — INSTRUCTOR, CLASS, and ROOM — draw an ER
diagram that depicts the following: Each CLASS in a ROOM has one
INSTRUCTOR, but each INSTRUCTOR in a room may have many
CLASSes, and each INSTRUCTOR of a CLASS may be in many ROOMs.

References

Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, 3rd
ed., Addison Wesley, Reading, MA, 2000.

Teorey, T.J., Database Modeling and Design, Morgan Kaufman, San
Francisco, 1999.

Teorey, T.J., Yang, D., and Fry, J.P., "A Logical Design Methodology for
Relational Databases Using the Extended Entity-Relationship Model,"
ACM Computing Surveys, 18(2), 197–222, June 1986.

Chapter 8: Generalizations and
Specializations
In the first several chapters of this book, we presented the ER diagram as a
conceptual database tool. The approach taken in developing an ER diagram
was to assume that we were to model reality for a user. Although we worked
on the basics of the ER diagram, there are situations where the basic model
fails to completely describe the reality of the data to be stored. With the
increase in the types of database applications, the basic concepts of ER
modeling (as originally developed by Chen) were not sufficient to represent
the requirements of more complex applications, such as generalizations and
specializations (class hierarchies). An ER model that supports these
additional semantic concepts is called the Enhanced Entity Relationship
(EER) model (Elmasri and Navathe, 2000). This chapter discusses
generalizations and specializations in the EER model and develops a
methodology and grammar for this extension.

What Is a Generalization or Specialization?
The EER model includes all the concepts of the original ER model and
additional concepts of generalization/specialization. Generalizations and
specializations are associated with the concepts of superclasses and
subclasses and attribute inheritance.

The concept of classes includes the use of simple attributes we have seen.
In programming, the concept of a class also includes actions that a class
may perform. As with data typing, databases tend to focus more on
attributes than procedural action. The idea of classes also refers to the ability
to describe subclasses and superclasses with inheritance features. For
example, a STUDENT entity contains information about students. However,
suppose we wanted to store information about all people at an institution —
not only students, but also staff and faculty. We might think of a superclass
called PERSON that contained a subclass for STUDENT, another subclass
for STAFF, and yet another subclass for FACULTY. Clearly, information
about each of these subclasses of PERSON contains information pertinent
to that subclass. Yet, the superclass PERSON entity would contain
information common to all of these subclasses. PERSON may contain a
name, address, and phone number; and when the subclass STAFF was
defined, it would inherit those attributes of the superclass and define more
attributes pertinent to STAFF. The superclass in a database is called a
generalization, and the subclasses (student, staff, and faculty) are called
specializations.

A Problem with Variants
To visualize a problem with ER diagrams at this stage, suppose we are
gathering facts about the database and we have reached a point where one
of the attributes for an entity has values that vary according to "the situation."
For example, suppose we are modeling student athletes who may play more
than one sport. We would, of course, record information about the student —
a name, a unique identifier such as a student number, perhaps some other
information. But then we would like to record some information about the
sports that the students may play. As an example, let us suppose that we
have a student athlete "table" with this type of data:

Some information in the ATHLETE entity contains attributes that have
different values for different sports. These different values are called
"variants." This variant problem in data processing has been solved in
various ways over the years. A solution to the problem of variants in records
and varying attributes in entities in the ER diagram is to excise the variant
and reference it back to the primary key of the "parent" information piece.

In ER diagrams, we recognize that we are actually storing information about
two different, but related, things: (1) a generalization called, "students," who
have a name, id, etc.; and (2) specializations — sports (tennis, football, golf,
etc.), each with their own different attributes. And because we are storing
information about two things, why not create an entity called SPORTS and
then relate the STUDENT to the SPORTS entity? One SPORTS entity would
not work because the SPORTS entity would be general and we would want
to store information about different, specific sports. Furthermore, what we
want is to store information about sports as they pertain to each individual
student.

Why then would we not create a series of weak entities — one for each
sport, that depends on STUDENT? The answer is that we could do this, but
there is a better way to look at this problem that, as it turns out, will result in
the same database as using a weak entity relationship, but provides an
alternative way to present the information with more expressive diagrams, to
include the concept of inheritance.

ATHLETE

student student # other sport info

Baker 123456789 … tennis 220, state rank 14

Adams 123456788 … football tackle, neck brace

Jones 123455676 … golf handicap 3

Example of a Generalization or Specialization
Specializations and generalizations are categorizations of entities where the
specializations entity might result from generalizations containing variants.
These variants are most easily handled by removing the variant from the
generalization and treating it as a subclass entity and leaving the original,
"fixed part" of the entity as a superclass or "parent" type. If we referred to the
superclass as a parent class, then we would call the variant parts, the
subclasses, the "child classes."

Pursuing the parent-child superclass/subclass idea a bit further, we can
imagine the child class inheriting the characteristics of the parent class.
Inheritance in this context means that the child class will have defined in it
whatever attributes are defined in the parent class. In our sports example,
we would consider the STUDENT as a parent class and SPORTS as a child
class so that when we define information about a sport, it is done in the
context of the parent—STUDENT.

If we were designing the database for STUDENT—ATHLETES, as above,
and we recognized that we would want to record a name, a personal
identifier (a SS#), address, etc., we could be starting with the generalization
(or parent or superclass). Then we decide to record a player in a sport and
some information about the sport itself. The player-sport is said to be a
specialization of the student class. This design approach may be
characterized as "top down."

If we had been designing the database and we started with sports, we might
have had a TENNIS entity, a FOOTBALL entity, etc. for each athlete, only to
recognize that these entities may be generalizaed into a PERSON entity (a
superclass) with individual sports as subclass-entities — this design
approach might be characterized as "bottom-up." A generalization
relationship specifies that several types of entities with certain common
attributes can be generalized into a higher-level entity class, a generic or
superclass entity.

Either way (bottom up or top down), we end up with one entity being a
superclass (a parent) and the other being a subclass (a child) of the parent.
Whether one needs to specialize or generalize depends on where one
recognizes the problem.

To illustrate how we might handle this generalization-specialization, parent-
child class situation, suppose we have defined our entity, ATHLETE, like
this:

Entity: ATHLETE

Attributes: name, SS#, address, gender, weight, height.

The ER diagram for this entity is simple and straightforward. Then, in the
course of database design we decide to add information about sports that
athletes play. We might attempt to draw a diagram like Figure 8.1 with the
variant "Sports Flag."

Figure 8.1: The Student-Athlete with an Attempt to Add a Variant
Attribute

What is wrong with Figure 8.1? The problem is that we have attributes that
have attributes that have attributes. "Sports Flag" is not a composite name; it
does not have component parts. Instead of creating attributes with attributes,
we will create entities for each specific sport, and then relate these entities
back to the ATHLETE.

Now refer to Figure 8.2. Here we have created weak entities for each sport.
Actually, if the sports were real entities, we would have to make them weak
because they depend on ATHLETE for their existence — they have no
primary key. But we are not going to show the sports entities as weak, but
rather we will use another notation which implies inheritance.

Figure 8.2: The Student–Athlete Shown as a Strong–Weak Relationship
Variant Attribute

The process of specialization is intended as a process whereby the subclass
inherits all the properties of the superclass. The player–sports entities would
not make sense if standing alone and hence a tie back to the defining
superclass is necessary. In EER terminology, the ATHLETE entity is called a
superclass and the SPORTS entities are called subclasses. The attributes
like handicap can be termed "specific attributes" as they are specific to the
particular subclass. In other words, each member of a subclass is also a
member of the superclass. The subclass member is the same as the entity in
the superclass but has a distinct role.

The sports entities, "specializations," are depicted in the EER scheme as
illustrated in Figure 8.3. In Figure 8.3, we have made the three sports entities
unto themselves — information pieces that we want to store informatin
about.

Figure 8.3: The Student–Athlete Shown as a Strong–Weak Relationship
Variant Attribute

First, in the ATHLETE entity, we include an attribute called sport. Sport is
called a "defining predicate" as it defines our specializations. Referring to
Figure 8.3A, the defining predicate can be written on the line that joins the
ATHLETE entity to the circle with an "o" in it. The circle with an "o" in it
describes an "overlapping constraint." If there is an "o" in the circle, then this
means that the subclass entities that are joined to it may overlap; that is, a
superclass entity may be a member of more than one subclass of a
specialization. So, the overlap ("o") in Figure 8.3A means that an athlete can
participate in more than one sport, which means, an athlete can play tennis
and golf; or golf and football; or golf, tennis, and football.

Figure 8.3A: The Student—Athlete Shown in a Superclass/Subclass
Relationship

If there were a "d" in the circle (in place of the "o") in Figure 8.3A, then the
entities would not overlap; they would be disjoint. A "d" would indicate that
athletes could participate in only one sport; that is, the athletes could play
only golf, or only tennis, or only football (but not any of the two together). As
another example, if we had not used sports as a defining predicate, but
rather used "state born in," the entities for "states born in" would have to be
disjoint because a person could only be represented in one of the
specialization (subclass, child) entities. An example of a disjoint constraint is
shown in Figure 8.4.

Figure 8.4: An Office Database with Specialization Entities, Full
Participation and Disjoint

According to Figure 8.4, all the furniture in the database is either a chair, a
desk, or a table. All? Note the full participation designation from the
FURNITURE entities to the circle and contrast this to the partial participation
in the STUDENT-ATHLETE example. The disjoint constraint specifies that if
the subclasses of a specialization are disjoint, then an entity can be a
member of only one of the subclasses of the specialization.

In addition to the inclusion of the defining predicate, values of the defining
predicate can be placed near the entity. This is not absolutely necessary and
it may be redundant as in this case with the name of the specialization entity
itself.

Figure 8.3A shows a subclass symbol ($) between the predicate-defined
entities and the disjointness/overlapping constraint circle—"Tennis," "Golf,"
and "Football" belong to the defining predicate, "Sport." The entities,
TENNIS, GOLF, and FOOTBALL are subclasses of ATHLETE. The subclass
symbol on each line that connects a subclass to the circle indicates the
direction of the superclass/subclass or parent-child, inheritance relationship.
In Figure 8.3, the subclasses, TENNIS, or GOLF, or FOOTBALL (the
specializations), would inherit from the parent, ATHLETE.

Checkpoint 8.1
1. What is a specialization? Come up with another example of a

specialization.

2. What is a generalization? Come up with another example of a
specialization.

3. What is a disjoint constraint? What symbol shows the disjoint
constraint in EER diagrams?

4. What is an overlap constraint? What symbol shows the overlap
constraint in EER diagrams?

5. What does the subclass symbol signify?

6. Why would you create a generalization/specialization relationship
rather than creating a "weak entity"?

7. How does "inheritance" play into the superclass/subclass
relationship? Discuss.

Methodology and Grammar for
Generalization/Specialization Relationships
We need to revisit step 6 in the ER Design Methodology to cover the
possibility of generalization/specialization relationships. The previous version
of step 6 was:

Step 6: State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there is a
relationship from A to B, 1 to Many, and from B back to A, Many to 1.

For ternary and higher-order (n—ary) relationships, state the relationship in
structured English, being careful to mention all entities for the n—ary
relation. State the structural constraints as they exist.

We add the following sentence to step 6:

For specialization/generalization relationships, state the relationship in
structured English, being careful to mention all entities (subclasses or
specializations). State the structural constraints as they exist.

The grammar that we propose for specializations/generalizations
relationships is similar to that we used in weak relationships. We add to the
grammar to include the participation, overlapping/disjointness constraints:

The grammatical description for weak entities was:

For each weak entity, we do not assume that any attribute will
be unique enough to identify individual entities. Because the
weak entity does not have a candidate key, each weak entity
will be indentified by key(s) belonging to the strong entity.

In the case of our athlete, a first attempt to describe the subclass identified
by a superclass becomes:

For each ATHLETE in a SPORT, we do not assume that any
sport attribute will be unique enough to identify individual
SPORT entities. Because the SPORT does not have a
candidate key, each SPORT will be identified by inheriting key
(s) belonging to ATHLETE.

So, a more complete EER diagram grammatical pattern would say:

For each specialization, we do not assume that any attribute
will be unique enough to identify individual entities. Because
the specialization does not have a candidate key, each
specialization will be identified by key(s) inherited from the
generalization. Further, specializations overlap [or are disjoint].
[Explain the overlap/disjoint feature]. The individual
specialization is identified by a defining predicate, attribute
name, which will be contained in generalization.

For Figure 8.3A, the pattern becomes:

For each sport, we do not assume that any attribute will be
unique enough to identify individual entities. Because the sport
does not have a candidate key, each sport will be identified by
key(s) inherited from ATHLETE. Further, the sports overlap.
Athletes may play more than one sport. The individual sport is

identified by a defining predicate attribute (sport) that will be
contained in ATHLETE. The sports we will record are golf,
tennis, and football.

Mapping Rules for Generalizations and
Specializations
In this section we present mapping rules to map generalizations and
specializations to a relational database:

M7 — For each generalization/specialization entity situation, create one
table for the generalization entity (if you have not done so already per
the earlier steps) and create one table for each specialization entity.
Add the attributes for each entity in their each respective tables. Add
the key of the generalization entity into the specialization entity. The
primary key of the specialization will be the same primary key as the
generalization.

For example, refer to Figure 8.3A. The generalization/specialization
relationship between the ATHLETE and TENNIS, GOLF, and FOOTBALL
would be mapped as follows:

ATHLETE

weight name gender height SS# sport

140 Kumar M 5.95 239-92-0983 golf
200 Kelvin M 6.02 398-08-0928 football
135 Sarah F 5.6 322-00-1234 tennis
165 Arjun M 6.01 873-97-9877 golf
145 Deesha F 5.5 876-09-9873 tennis

TENNIS

ss# state ranking national ranking

322-00-1234 23 140
876-09-9873 47 260

GOLF

ss# handicap

239-92-0983 3
873-97-9877 1

FOOTBALL

ss# position

398-08-0928 tackle
239-92-0983 quarter back

The key of the generalization entity (ss#) is added to the specialization
entities TENNIS, GOLF, FOOTBALL. ss# also becomes the primary key of
the specialization entities.

So, our ER design methodology (with one component of the EER model —
the generalization/specialization component) has finally evolved to the
following:

ER Design Methodology

Step 1: Select one, primary entity from the database requirements-
description and show attributes to be recorded for that entity. Label
keys if appropriate and show some sample data.

Step 2: Use structured English for entities, attributes, and keys to
describe the database that has been elicited.

Step 3: Examine attributes in the existing entities (possibly with user
assistance) to find out if information about one of the entities is to be
recorded.

(We change "primary" to "existing" because we redo step 3 as we add new
entities.)

Step 3a: If information about an attribute is needed, make the attribute
an entity, and then

Step 3b: Define the relationship back to the original entity.

Step 4: If another entity is appropriate, draw the second entity with its
attributes. Repeat steps 2 and 3 to see if this entity should be further
split into more entities.

Step 5: Connect entities with relationships (one or more) if
relationships exist.

Step 6: State the exact nature of the relationships in structured English
from all sides. For example, if a relationship is A:B::1:M, then there is a
relationship from A(1) to B(M) and from B(M) back to A(1).

For ternary and higher-order (n-ary) relationships, state the
relationship in structured English, being careful to mention all entities
for the n-ary relationship. State the structural constraints as they exist.

For specialization/generalization relationships, state the relationship in
structured English, being careful to mention all entities (subclasses or
specializations). State the structural constraints as they exist.

Step 6a: Examine the list of attributes and determine whether any of
them need to be identified by two (or more) entities. If so, place the
attribute on an appropriate relationship that joins the two entities.

Step 6b: Examine the diagram for loops that might indicate redundant
relationships. If a relationship is truly redundant, excise the redundant
relationship.

Step 7: Show some sample data.

Step 8: Present the "as designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

398-08-0928 full back

Checkpoint 8.2
1. How are the mapping rules for generalizations/specializations

different from the mapping rules for weak entities?

2. Map Figure 8.4 to a relational database and show some sample data.

Chapter Summary
In this chapter we described the concepts of specialization/generalization.
The concepts of overlap and disjoint were also presented. This chapter
approached EER diagrams as discussed by Elmasri and Navathe (2000)
and Connolly et al. (1998). Some authors, for example Sanders (1995), use
a close variation of this model, and call the specialization/generalization
relationship an "IsA" relationship. Although we do not discuss "unions" and
"categories," "hierarchies and lattices," these are further, uncommon
extensions of a generalization/specialization relationship as presented by
Elmasri and Navathe (2000).

This chapter also concluded the development of the EER design
methodology. In the next chapter we will discuss mapping ER and EER
diagrams to the relational model as well as reverse-engineering.

Chapter 8 Exercises

Exercise 8.1
Draw an ER diagram for a library for an entity called "library holdings."
Include as attributes the call number, name of book, author(s), and location
in library. Add a defining predicate of "holding type," and draw in the disjoint,
partial specializations of journals and reference books, with journals having
the attribute "renewal date" and reference books having the attribute
"checkout constraints." Map this to a relational database and show some
sample data.

Exercise 8.2
Draw an ER diagram for computers at a school. Each computer is identified
by an id number, make, model, date acquired, and location. Each computer
is categorized as a student computer or a staff computer. For a student
computer, an attribute is "hours available." For a staff computer, an attribute
is "responsible party" ("owner" if you will). Map this to a relational database
and show some sample data.

References

Connolly, T., Begg, C., and Strachan, A., Database Systems, A Practical
Approach to Design, Implementation, and Management, Addison-
Wesley, Harlow, England, 1998.

Elmasri, R and Navathe, S.B., Fundamentals of Database Systems, 3rd
ed., Addison-Wesley, Reading, MA, 2000.

Sanders, L., Data Modeling, Boyd & Fraser Publishing, Danvers, MA,
1995.

Teorey, T.J., Database Modeling and Design, Morgan Kaufman, San
Francisco, CA, 1999.

Case Study: West Florida Mall (continued)
Thus far in our case study, we have developed the major entities and
relationships, and mapped these to a relational database (with some sample
data). Then, upon reviewing step 7, which says:

Step 7: Present the "as-designed" database to the user, complete with
the English for entities, attributes, keys, and relationships. Refine the
diagram as necessary.

Suppose we obtained some additional input from the user:

A PERSON may be an owner, employee, or manager. For
each PERSON, we will record the name, social security
number, address, and phone number.

Upon reviewing these additional specifications, we came up with one new
entity, PERSON.

Now, repeating step 2 for PERSON:

The Entity

This database records data about a PERSON. For each
PERSON in the database, we record a person's name
(pname), person's social security number (pssn), person's
phone (pphone), and person's address (padd).

The Attributes for PERSON

For each PERSON there will always be one and only one
pname (person's name) recorded for each PERSON. The
value for pname will not be subdivided.

For each PERSON, there will always be one and only one pssn
(person's social security number) recorded for each PERSON.
The value for pssn will not be subdivided.

For each PERSON there will always be one and only one
pphone (person's phone) recorded for each PERSON. The
value for pphone will not be subdivided.

For each PERSON there will always be one and only one padd
(person's address) recorded for each PERSON. The value for
padd will not be subdivided.

The Keys

For each PERSON, we will assume that the pssn will be
unique.

These entities have been added to the diagram in Figure 8.5.

Figure 8.5: An ER Diagram of West Florida Mall Developed Thus
Far

Using step 6 to determine the structural constraints of relationships, we get:

As shown in Figure 8.5, there is a disjoint relationship between PERSON
and STORE MANAGER, OWNER, and EMPLOYEE. This means that a
person may be an owner, store manager, or an employee (a disjoint
generalization/specialization relationship).

To Map This Relationship (with some sample data):

EMPLOYEE

essn dnum snum dm_ssn

987-754-9865 501 1 276-263-9182
276-263-9182 502 1 null
982-928-2726 503 1 987-754-9865

STORE MANAGER

sm_ssn salary

234-987-0988 45,900
456-098-0987 43,989

Because PERSON has the fields of social security number (pssn), name
(pname), address (padd), and phone number (pphone), and because a
person may be an owner, store manager, or an employee — a disjoint,
generalization/specialization relationship, notice that we removed some of
the attributes from the original entities. For example, in the EMPLOYEE
entity, we no longer need to keep the ename field because this can be
obtained from PERSON, as long as we have the ss# of the employee.

So, in summary, our relational database would finally develop to (without the
data):

MALL-Store

MALL

928-982-9882 44,000

OWNER

so_ssn so_off_phone

879-987-0987 (850)474-2093
826-098-0877 (850)474-9873
928-088-7654 (850)474-9382

PERSON

pssn pname padd pphone

879-987-
0987

Earp 1195 Gulf Breeze Pkwy,
Pensacola, FL

(850)837-
0982

826-098-
0877

Sardar 109 Navy Blvd, Pensacola,
FL

(850)987-
0373

928-088-
7654

Bagui 89 Highland Heights, Tampa,
FL

(813)938-
0383

987-754-
9865

Miller 55 Neverland, Pace, FL (850)897-
5633

276-263-
9182

Foyer 109 Pace Blvd, Mobile, AL (251)464-
3117

982-928-
2726

Khanna 503 Wildwood Land,
Columbus, OH

(330)664-
7654

234-987-
0988

Bush 100 Indian Road, North
Canton, OH

(330)865-
9843

456-098-
0987

Rodgers 398 Southern Street, Detroit,
MI

(776)875-
9754

928-982-
9882

Bundy 387 Bancroft Street, Toledo,
OH

(419)536-
4374

name store_name

STORE

OWNER

DEPARTMENT

EMPLOYEE

PERSON

This ends our case study.

name address

sloc sname snum mall_name so_ssn sm_ssn

so_ssn so_off_phone

dname dnum snum

essn dnum snum dm_ssn

pssn pname padd sport pphone

Chapter 9: Relational Mapping and
Reverse-Engineering ER Diagrams
Throughout this book we developed the rules for mapping an ER diagram to
a relational database. In this chapter we present a summary of the mapping
rules, and then discuss reverse-engineering.

We often find that databases exist without an accompanying ER diagram.
The ER diagram is documentation; and just as computer programs require
documentation, so do databases. Therefore, we have included a section on
reverse-engineering ER diagrams; that is, working from a relational database
back to an ER diagram. For reverse-engineering, we present a series of
steps to develop a diagram from the data.

Steps Used to Map an ER Diagram to a Relational
Database
Presented here is a summary of the steps needed to map an ER diagram to
a relational database. In following these rules, the resulting relational tables
should be close to 3NF. However, these rules do not preclude the exercise
of checking the resulting database to be absolutely sure it is normalized.
This is reassuring in a way, in that even if the mapping rules are misapplied,
there is still one last chance to ensure a 3NF relational database.

Step 1: Map the strong entities in the ER diagram.

M1 — For strong entities — create a new table (relation)
for each strong entity and make the indicated key of the
strong entity the primary key of the table. If more than one
candidate key is indicated on the ER diagram, choose one
as the primary key for the table.

Next we have to map the attributes in the strong entity. Mapping rules are
different for atomic attributes, composite attributes, and multi-valued
attributes. First, the mapping rule for mapping atomic attributes:

M1a — Mapping atomic attributes from an entity — For
entities with atomic attributes: Map entities to a table
(relation) by forming columns from the atomic attributes
for that entity.[1]

What about the composite and multi-valued attributes? In
relational database, all columns have to be atomic. If we have
a non-atomic attribute on our diagram, we have to make it
atomic for mapping to the relational database. For composite
attributes, we achieve atomicity by recording only the
component parts of the attribute. Our next mapping rule
concerns composite attributes:

M1b — For entities with composite attributes, form
columns from the elementary (atomic) parts of the
composite attributes.

The mapping rule for multi-valued attributes is:

M1c — For multi-valued attributes, form a separate table
for the multi-valued attribute. Include the primary key from
the original table. The key of the new table will be the

concatenation of the multi-valued attribute plus the
primary key of the owner entity. Remove the multi-valued
attribute from the original table.

Step 2: Map the weak entities in the ER diagram.

M4 — For Weak Entities — Develop a new table for each
weak entity. As is the case with the strong entity, include
the attributes in the table using rules M1a, M1b, and M1c.
To relate the weak entity to its owner, include the primary
key of the owner entity in the weak table as a foreign key.
The primary key of the weak table will be the partial key in
the weak entity concatenated to the key of the owner
entity.

If weak entities own other weak entities, then the weak entity that is
connected to the strong entity must be mapped first. The key of the weak
owner entity has to be defined before the "weaker" entity (the one furthest
from the strong entity) can be mapped.

Step 3: Map the binary M:N relationships.

M3a — For binary M:N relationships — For each M:N
relationship, create a new relation with the primary keys of
each of the two entities (owner entities) that are being
related in the M:N relationship. The key of this new relation
will be the concatenated keys of each of the two owner
entities. Include any attributes that the M:N relationship
may have in this new relation.

Step 4: Map the binary 1:1 relationships — the Primary key/Foreign key
method.

There are two ways to map any relationship. A new table can be created as
in rule M3a; or, with non-M:N relationships, the relationship can be mapped
by a primary key/foreign key (PK/FK). To use the PK/FK technique:

M3b — For binary A:B::1:1 relationships — include the
primary key of EntityA into EntityB as the foreign key.

The question is: which is EntityA and which is EntityB? This question is
answered in the next three mapping rules, M3b_1, M3b_2, and M3b_3,
which take participation into account:

M3b_1 — For binary 1:1 relationships, if one of the sides
has full participation in the relationship, and the other has
partial participation, then store the primary key of the side
with the partial participation constraint on the side with
the full participation constraint. Include any attributes on
the relationship in the table that gets the foreign key. Note
that this rule will result in no null values for the foreign
key.

M3b_2 — For binary 1:1 relationships, if both sides have
partial participation constraints, there are three alternative
ways to implement a relational database:

M3b_2a — First alternative: you can select either one of
the tables to store the key of the other (and live with some

null values).

M3b_2b — Second alternative: depending on the
semantics of the situation, you can create a new table to
house the relationship that would contain the key of the
two related entities (as is done in M3a).

M3b_2c — Third alternative: create a new table with just
the keys from the two tables in addition to the two tables.
In this case we would map the relations as we did in the
binary M:N case; and if there were any null values, these
would be left out of the linking table.

M3b_3 — For binary 1:1 relationships, if both sides have
full participation constraints, you can use the semantics of
the relationship to select which table should contain the
key of the other. It would be inappropriate to include
foreign keys in both tables as you would be introducing
redundancy in the database. Include any attributes on the
relationship, on the table that is getting the foreign key.
This situation may be better handled using the new table
rule M3a.

Step 5: Map the binary 1:N relationships.

M3c — Although most binary 1:N relationships are
mapped with the PK/FK method, the separate table per
rule M3a can be used. To use the PK/FK method for binary
1:N relationships, we have to check what kind of
participation constraints the N side of the relation has:

M3c_1 — For binary 1:N relationships, if the N-side has full
participation, include the key of the entity from the 1 side
in the table on the N side as a foreign key in the N side
table. If the N side is weak with no primary key, a key from
the 1 side will be required in the N side table concatenated
to the weak partial key. The key of this table will be the
weak partial key plus the foreign key. Include any
attributes that were on the relationship, in the table that is
getting the foreign key (the N side).

M3c_2 — For binary 1:N relationships, if the N side has
partial participation, the 1:N relationship is best handled
just like a binary M:N relationship with a separate table for
the relationship to avoid nulls. The key of the new table
consists of a concatenation of the keys of the related
entities. Include any attributes that were on the
relationship, on this new "intersection table."

Partial participation is a problem because it leads to null values. If we put the
key from the 1 side into the N-side relation, and if the participation is partial
(not every tuple on the N side has a relationship to the 1 side), then there will
be nulls in the database when it is populated. Therefore, it is better to create
a separate table for the 1:N relationship and hence avoid nulls.

Finally, on the subject of 1:N relationships, we should look back at Figure 6.2
where an M:N relationship was converted into two 1:N relationships. Note
that the result of converting the M:N into two 1:N relationships will result in
the same set of tables from the 1:N mappings.

Step 6: Map recursive relationships.

M5 — For recursive entities, two types of mapping rules
have been developed:

M5a — For 1:N recursive relationships, reinclude the
primary key of the table with the recursive relationship in
the same table, giving the key some other name.

M5b — For M:N recursive relationships, create a separate
table for the relationship (as in mapping rule M3a).

Step 7: Map n-ary (higher than binary) relationships.

M6 — For n -ary relationships — For each n -ary
relationship, create a new table. In the table, include all
attributes of the relationship. Then include all keys of
connected entities as foreign keys and make the
concatenation of the foreign keys the primary key of the
new table.

Step 8: Map generalizations/specializations.

This is most often a situation where you have an entity set with variants —
attributes that apply to some occurrences and not others. The concept of
inheritance applies in that it is assumed that each derived subclass inherits
the properties of the "superclass" or "parent."

M7 — For each generalization/specialization entity
situation, create one table for the generalization entity (if
you have not done so already per steps 1 through 7) and
create one table for each specialization entity. Put the
attributes for each entity in the corresponding table. Add
the primary key of the generalization entity into the
specialization entity. The primary key of the specialization
will be the same primary key as the generalization.

Checkpoint 9.1
1. What is the first mapping rule?

2. How would you map weak entities of weak entities?

3. While mapping a binary 1:N relationship where the N side has full
participation, why do we include the key of the 1 side of the relation in
the N side of the relation? What would be wrong if we included the
key of the N side of the relation in the 1 side of the relation?

4. Why would it be reasonable to map a 1:N binary relationship that has
partial participation on the N side like a M:N relationship?

If the above rules were followed, the resulting relational database should be
at or close to 3NF. The next phase of mapping is "checking your work" by
reviewing the tables to ensure that you are at least in 3NF (refer to Chapter
1). In brief, checking for 3NF consists of the following steps:

1. 1NF — Check that there are no non-atomic attributes in any table.
Nonatomic attributes were dealt with in steps M1b for composite
attributes and M1c for multi-valued attributes.

2. 2NF — Check that all attributes in all tables depend on the primary
key. Ask yourself, "Will I always get the same value for attribute Y

when I have value X where X is the primary key?"

3. 3NF — Check for situations where an attribute is in a table but that
attribute is better defined by some attribute that is not the primary key.
Recall that if the primary key in a table is X and X → YZW, then if Z →

W is better than X → W, you likely have a transaction dependency
and you need to normalize.

[1]These mapping rules are adapted from Elmasri and Navathe (2000).

Reverse-Engineering
Having developed a methodology to develop ER diagrams and map them to
a relational database, we now turn our attention to the reverse problem: the
issue of taking a relational database and coming up with an ER diagram.
Often in real-world situations, we find ourselves with a database and we
have no diagram to show how it was developed. There are several reasons
why a reverse-engineered diagram (RED) paradigm is useful.

First, the RED provides us with a grammatical and diagrammatic description
of the database. People often use databases but do not understand them.
By reverse-engineering from the data and tables to the diagram, we can
more easily express the meaning of the database in words. By having the
ER diagram of the relational database and the grammatical expression of the
diagram, we can embellish the database and maintain meaning. We can
also aid in the development of queries on the database.

While the expression "reverse-engineering" might imply that we reverse the
steps to create a diagram, we have found it easier to repeat the steps from
the top (more or less) to discover what diagram would have been used to
create the relational database. There is one caveat here, in that the steps
presented assume that the database is in 3NF. If it is not in 3NF,
reverseengineering may aid in discovering why redundancy exists in the
database and hence suggest some changes. We suggest the following:

Rule R1: Develop strong entities
For tables with a one-attribute key, draw a strong entity R for that table and
include all the attributes of that table on the entity R on the ER diagram.

For example, if you have a table, R(a,b,c,d,e), a is the key. Create a strong
entity called R and show a, b, c, d, and e as attributes with a as the key. See
Figure 9.1.

R

Figure 9.1: Reverse-Engineering Strong Entities

Rule R2: Look for 1:1 and 1:N (1:x) relationships

As second, third, … strong entities are discovered, note foreign keys in the
tables found previously; excise the foreign keys from the previous table and
create a relationship between the entities. This situation would have
indicated a 1:x relation.

For example, in addition to the above, if you have another table, S, S(d,f,g).
d is the key of S and is in R, so d is a foreign key in R. Remove d from R
(see Figure 9.2), giving:

R(a,b,c,e)

S(d,f,g)

a b c d e

Figure 9.2: Reverse-Engineering 1:N Relationships

In all cases of relationships, we may have to determine the cardinality and
the participation constraints from the semantics of the database. Sometimes,
the way that the tables are formed provides a clue. Also, sample data may
help in elucidation. For example, if the tables are as the above case, then it
is likely that the relationship was N:1, with the N side being R because R
contained d, a foreign key. The data can be examined to determine if any
nulls are present, which would indicate a partial participation (note carefully
that we are saying "indicate" because only the true [albeit unknown]
semantics would "prove" the full participation).

Rule R2a: Check for attributes of the 1:x relationships
If a foreign key is excised from a relation R because it is the key of S, you
have to check to see whether any of the remaining attributes in R should
stay with the relation R, or should be placed on a relationship RS, or should
be placed with S. Because step 2 is reverse-mapping a 1:x relation, it may
be that an attribute from the 1:x relation itself was placed with the foreign key
when the original ER diagram was mapped, or it may be that an attribute
was on the relationship itself.

You have to judge where a remaining attribute is more likely to belong. If it is
likely that the attribute was defined by the key of an entity, put the attribute
with the entity containing the key. If the attribute requires both keys for its
identity, the attribute should be placed on the relation RS for sure.

For example, in the above, if we removed d from R because d was the key
of S. Suppose that e was better defined by d (the key of S) than a (the key of
R). If this is true, then e should be placed with S and removed from R. This
would result in:

R(a,b,c)

S(d,f,g,e)

Example R2a2: In the above, we removed d from R because d was the key
of S. Suppose that after we create S, we determine that e only makes sense
if we define it in terms of both a and d, the keys of R and S. This would imply
that e was an intersection attribute on the relationship between R and S, and
hence would be depicted as such (see Figure 9.3).

R (a,b,c)

S (d,f,g,e)

RS (a,d,e)

Figure 9.3: An ER Diagram Showing the Relationship between R and
S

This concludes the reverse-mapping of obviously strong relations. We will
now look for weak relations and multi-valued attributes.

Rule R3: Look for weak entities or multi-valued attributes.
Examine the relations for any concatenated keys to see whether they
contain any of the keys of the strong entities. If they do, this could indicate a
weak entity (rule R3a), a multi-valued attribute (rule R3b), or a table resulting
from M:N relationship. Which of these it is will depend on non-key attributes.

Rule R3a: Weak entities
If there is a table where there are attributes other than the key (which
consists of a foreign key from a strong entity and another attribute the partial
key), then you probably have a weak entity. For example, if you have a table:
 SKILL (emp#, skill type, date_certified)

Here, emp# is a foreign key, skill_type is not, and hence would likely be a
partial key of a weak entity. Why a weak entity? Because there is another
attribute, date certified, that means we are storing information about SKILL.

Place the weak entity on the ER diagram along with a relationship to its
owner entity. The relationship is likely to be 1:N::strong(owner):weak
(dependent)::partial:full. Examine the attributes in the weak entity to
determine whether they would have come from the weak entity or the
relationship between the weak entity and its owner. Here, SKILL is the weak
entity, skill_type is the partial key, and date certified is an attribute of the
entity SKILL (see Figure 9.4).

Figure 9.4: Reverse-Engineering Weak Entities

Rule R3b: Multi-valued attributes
If there are no attributes other than the key in a relation and the part of the
key is a foreign key from a strong entity, it is likely a multi-valued attribute
that would have been connected to the strong entity referenced by the
foreign key. Place the multi-valued attribute on the entity to which it belongs
as a multi-valued attribute.

For example, if we have the relation:
 INSTRUCTOR (SS#, degree)

Here, we have a concatenated key and no other attributes. Because SS# is
likely the key of another entity (e.g., PERSON), then degree must be a
multivalued attribute. Why not a weak entity? Because, if there were a weak
entity, there would probably be more attributes — for example, we would be
recording information about the degrees but we are not in this case doing so.
Figure 9.5 diagramatically shows the reverse of engineering of the
multivalued attribute example discussed above.

Figure 9.5: Reverse-Engineering Multi-Valued
Attributes

Rule R4: M:N and n-ary relationships
Examine the relations for multiple occurrences of primary keys from the
entities derived thus far. Remember that a weak entity has a concatenated
key, so an M:N relationship from Strong:Weak will have more than two
attributes participating in the key.

Rule R4a: The binary case
If there are two foreign keys by themselves in a table (and nothing else), this
is likely a table that occurred because of a relationship. If the two foreign
keys occur with other attributes, it is even more likely that an M:N
relationship existed along with attributes of the relationship. Place an M:N
relationship between the two entities with foreign keys and include other
attributes as relationship attributes.

For example, if you discover a relation called PURCHASE which looks like
this (see Figure 9.6):
 PURCHASE (Vendor#, part#, price)

Figure 9.6: Reverse-Engineering M:N Relationships

Suppose vendor# is the key of an entity called VENDOR and part# is the key
of an entity called PART. These two foreign keys are a clear message that

this is a table formed from an M:N (or possibly a 1:N or even a 1:1)
relationship. The M:N is most likely and the relationship can be deduced
from the data. If, for example, there are multiple occurrences of parts for
vendors and vice versa, this is an M:N. If, for every part, there is a list of
vendors but every vendor supplies only one part, then this would be
VENDOR:PART::N:1.

Rule R4b: n-ary case
If there are more than two foreign keys in a relation participating as the key
of the relation, this is likely a relation that occurred because of an n-ary
relationship. There may well be other attributes in the relation with the three
or more foreign keys. Place an n-ary relationship (n = number of foreign
keys) between the n entities with foreign keys and include other attributes as
relationship attributes.

For example, consider the following relation:
 PURCHASE (Vendor#, part#, cust#, price)

Three foreign keys imply a ternary relationship. The attribute price is likely an
intersection attribute on the relationship. In this case, we would be saying
that all three keys would be necessary to identify a price, as shown in Figure
9.7.

Figure 9.7: Reverse-Engineering n-ary Cases

Checkpoint 9.2

1. What hints would you look for to determine if a relationship is ternary?

2. What hints would you look for when you are trying to determine
whether relations have weak entities and multi-valued attributes
included in them?

Chapter Summary
In this chapter we presented a summary of the mapping rules (rules used to
map ER diagrams to relational databases) that we developed throughout the
book, and then discussed and developed a set of rules for reverse-
engineering to ER diagrams from a relational database.

Chapter 9 Exercises

Exercise 9.1
Come up with an ER diagram for the following relational database:

R (a, b, c, d, w)

S (d, e, f)

T (c, g, h)

U (c, d, j)

V (d, k)

W (a, m, o, p)

X (a, d, c, r)

Y (a, o, s, t)

References

Elmasri, R. and Navathe, S.B., Fundamentals of Database Systems, 3rd
ed., Benjamin Cummings, Redwood City, CA, 2000.

Chapter 10: A Brief Overview of the
Barker/Oracle-Like Model
There are many variations (models) of ER diagrams. One such model was
introduced by Richard Barker (1990). The Barker model was adopted and
modified slightly by the Oracle Corporation. In this chapter we introduce the
conventions used in the Barker/Oracle-like model as it applies to our ER
design methodology. We are going to depict major concepts of both Barker
and Oracle's ER diagrams. Our combined Barker/Oracle-like model is not
meant as a primer on either party's "pure model," but the transition to Barker
or Oracle's ER diagrams will be minor.

Why are we interested in the Barker/Oracle-like model and why present it
here? First, the Barker/Oracle-like model is common; it is used often in
Oracle literature. The pedantic problem with the Barker/Oracle-like model is
that one needs to fully understand relational database theory to understand
why the Barker/Oracle-like model is done the way it is. We present the
Barker/Oraclelike model here because the way it unfolds is a bit different
from the Chen-like model. The Chen-like model focuses on modeling data,
whereas the Barker/Oracle-like model adapts the data to the relational
database concurrently with the design. Therefore, the ER design
methodology for the Barker/Oracle-like model will develop differently from
the Chen-like model. Further, the Barker/Oracle-like model does not have
some of the conventions used in the Chen-like model. For example, the
Barker/Oracle-like model does not directly use the concept of composite
attributes, multi-valued attributes, or weak entities, but rather handles these
concepts immediately in light of the relational model. Because the
Barker/Oracle model is so close to the relational model to begin with, the
mapping rules are trivial — the mapping takes place in the diagram itself.

A First "Entity-Only" ER Diagram — An Entity with
Attributes
We start with developing a first, "entity-only" ER diagram in the
Barker/Oraclelike model. To recap our example used earlier in the book, we
have chosen a "primary" entity from a student-information database — the
STUDENT. A "student" is something that we want to store information about
(the definition of an entity). For the moment we will not concern ourselves
with any other entities.

What are the some initial attributes we used in the STUDENT? A student
has a name, address, school, phone number, and major. We have picked
five attributes for the entity STUDENT, and have also chosen a generic label
for each: name, address, school, phone, and major.

We begin our venture into the Barker/Oracle-like model with Figure 10.1. A
Barker/Oracle-like model uses soft boxes for entities (with the entity name in
capital letters), and there is a line separating the entity name from the
attributes (and the attribute names are in lowercase letters). A
Barker/Oracle-like model does not place the attributes in ovals (as the Chen-
like model does), but rather lists the attributes below the entity name, as
shown in Figure 10.1.

Figure 10.1: Barker/Oracle-Like Notation: An ER Diagram with One
Entity and Five Attributes

Figure 10.1 shows an ER diagram with one entity, STUDENT, and the
following attributes: name, address, school, phone, and major. In the Oracle-
like version of the Barker/Oracle-like ER diagram, the data type is also listed
— see Figure 10.1A.

Figure 10.1A: Barker/Oracle-Like Notation: An ER Diagram with One
Entity and Five Attributes (Data Types Added)

Attributes in the Barker/Oracle-Like Model
All attributes in a Barker/Oracle-like model are considered simple or atomic,
as in relational databases. The Barker/Oracle-like model does not have the
concept of composite attributes. So, our Barker/Oracle-like adaptation will
show parts of the composite attributes using a dot (.) notation, as shown in
Figure 10.2.

Figure 10.2: Barker/Oracle-Like Notation: An ER Diagram with a
Composite Attribute — name

Optional versus Mandatory Attributes
When designing a database, it is necessary to know whether or not an entity
can contain an unknown value for an attribute. For example, in the
STUDENT entity (shown in Figure 10.1), suppose that the address was
optional. That is, if data was recorded for a student on a paper data entry
form, we could demand that the person fill out his name and student number
but allow him to have the address blank (i.e., unknown). We would say that
the name and the student number are "mandatory," and address is
"optional." A missing value is called a "null." Hence, the mandatory attribute
is said to be "not null." Not null means that on no occasion would an instance
of the entity exist without knowing the value of this mandatory attribute. In
the Barker/Oraclelike ER model, we will show the optional attribute without
the "not null" depiction and the mandatory attribute by adding the phrase "not
null" to the description (as shown in Figure 10.3). A mandatory attribute
could be a key but it is not necessarily a key. Mandatory and optional
attributes are usually not indicated explicitly in the Chen-like model.

In our Barker model, the primary key has a "#" in front of the name of the
attribute (as shown in Figure 10.3). A primary key has to be a mandatory
attribute in a relational database, but again, all mandatory attributes here are
not necessarily unique identifiers.

Figure 10.3: Barker/Oracle-Like Notation: An ER Diagram with a
Primary Key or Unique Identifier Attribute and Optional and Mandatory
Attributes

Checkpoint 10.1
1. What do mandatory attributes (in the Barker/Oracle-like model)

translate into in the Chen-like model? Discuss with examples.

2. What do optional attributes (in the Barker/Oracle-like model) translate
into in the Chen-like model? Discuss with examples.

3. How are the primary keys being shown diagrammatically in the
Barker/Oracle-like model?

Relationships in the Barker/Oracle-Like Model
In the Barker/Oracle-like model, a relationship is represented by a line that
joins two entities together. There is no diamond denoting the relationship (as
we saw in the Chen-like model). The relationship phrase for each end of a
relationship is placed near the appropriate end (entity) in lower case, as
shown in Figure 10.4. In this model, from the STUDENT entity to the
SCHOOL entity, we would say (informally) that:

Students attended schools

And, from the other direction, from the SCHOOL entity to the STUDENT
entity, we would say that:

Schools are attended by students.

Figure 10.4: Barker/Oracle-Like Notation: The STUDENT Entity with a
Relationship to the SCHOOL Entity

Structural Constraints in the Barker/Oracle-Like
Model
In the Barker/Oracle-like notation, the cardinality of 1 is shown by a single
line leading up to the entity. In Figure 10.5, a single line joins the two entities,
so this is a 1:1 relationship between STUDENT and AUTOMOBILE. This
means that one student can be related to one and only one automobile, and
one automobile can be related to one and only one student.

Figure 10.5: 1:1 Relationship in the Barker/Oracle-Like
Notation

The dashed line leading up to an entity signifies optional (partial)
participation of an entity in a relationship. In Figure 10.5, both the STUDENT
entity and the AUTOMOBILE entity are participating optionally in the
relationship.

An enhanced grammar from the STUDENT entity to the AUTOMOBILE
entity would be:

A student may drive one and only one automobile

And for the AUTOMOBILE entity to the STUDENT entity would be:

An automobile must be driven by one and only one student.

A continuous (solid) line coming from an entity (as shown in Figure 10.6)
signifies mandatory (full) participation of that entity in a relationship. So,
according to Figure 10.6, students must occupy dorms, but a dorm may
have students.

A cardinality of M (many) is shown by "crowsfoot" structure leading to the
respective entity. Figure 10.6 is an example of a 1:M relationship between
DORM and STUDENT. The exact grammar of Figure 10.6 would be:

A dorm may be occupied by zero or more students

or

A student must occupy one and only one dorm.

Figure 10.6: 1:M Relationship in the Barker/Oracle-Like
Notation

Checkpoint 10.2
1. How is the "optional" relationship shown diagrammatically in the

Barker/Oracle-like model?

2. How is the "many" relationship shown diagrammatically in the
Barker/Oracle-like model?

3. Show the following using the Barker/Oracle-like notation:
a. A movie theater must show many movies and movies must be

shown in a movie theater.

b. A movie theater may show many movies and movies may be
shown in a movie theater.

Dealing with the Concept of the Weak Entity in the
Barker/Oracle-Like Model
The Barker/Oracle models do not have a concept of the "weak entity," and
the weak entity notation is not used in Oracle literature either. We will extend
the concept of the unique identifier in a relationship to include the weak
entity. In the Barker/Oracle-like model, the unique identifier in a relationship
can be diagrammatically shown by a bar cutting across the contributing
relationship, as shown in Figure 10.7. In Figure 10.7, to uniquely identify a
dependent, one needs the employee's social security number. This means
that the DEPENDENT entity cannot independently stand on its own, and
hence is a weak entity. However, here the weak entity would be mapped as
per the mapping rules discussed in Chapter 5.

Figure 10.7: Unique Identifier Shown by Placing Bar across Contributing
Relationship Line(s)

Dealing with the Concept of Multi-Valued Attributes
in the Barker/Oracle-Like Model
Again, although the Barker/Oracle models do not have the concept of the
"multi-valued" attribute, multi-valued attributes can be shown as in Figure
10.8.

Figure 10.8 shows that a student may have attended many schools. In the
Barker/Oracle-like model, the foreign key is shown in the appropriate entity,
whereas in the Chen-like model, foreign keys are not "discovered" until the
database is mapped. We will signal a foreign key with an asterisk (*) in front
of the attribute (see Figure 10.8). An instance of this database shown in
Figure 10.8 is:

STUDENT

sname address

Sumona Gupta 111 Mirabelle Circle, Pensacola, FL
Tom Bundy 198 Palace Drive, Mobile, AL
Tony Jones 329 Becker Place, Mongotomery, AL

Sita Pal 987 Twin Lane, North Canton, OH
Neetu Singh 109 Bombay Blvd, Calicut, CA

SCHOOL

sname school

Sumona Gupta Ferry Pass Elementary
Sumona Gupta PCA
Sumona Gupta Pensacola High

Tom Bundy Mobile Middle School
Tom Bundy St. Johns
Tony Jones Montgomery Elementary
Tony Jones Montgomery Middle
Tony Jones Montgomery High

Sita Pal Tagore Primary School
Sita Pal Nehru Secondary School

Figure 10.8: Unique Identifier Shown by Placing Bar across Contributing
Relationship Line(s) [Note: "*" shows a foreign key.]

As you can see, the multi-valued attribute is mapped to tables as it is
depicted in the Barker/Oracle-like notation. In the Chen-like model, the
multivalued attribute is kept in the diagram and then mapped using the
mapping rules (see mapping rule M1c).

Checkpoint 10.3
1. Does the Barker-like model or the Oracle-like model have the concept

of the "weak entity"? Discuss.

2. Show the following using the Barker/Oracle-like notation: For a
student, we are trying to store the student's name, address, phone,
books (i.e., books that the student borrows from the library). Map this
to a relational database and show some sample data.

Treatment of Foreign Keys
In the original Barker model, foreign keys are not marked. In the Oracle
model, however, foreign keys are included in the respective relations. For
example, in Figure 10.9, which says:

A student may drive many automobiles

and

An automobile must be driven a student.

The primary key from the STUDENT relation (the 1 side), student number, is
included in the AUTOMOBILE relation (the N side). In our Barker/Oracle-like
model, we will precede the foreign key with an "*" (as shown in Figure 10.9).

Figure 10.9: Barker/Oracle-Like Notation Showing Foreign
Key

Recursive Relationships in the Barker/Oracle-Like
Model
Recursive relationships in the Barker/Oracle-like model are drawn as shown
in Figure 10.10. Once again, the dotted line in the relationship shows an
optional relationship, the solid line would show a mandatory relationship, and
a "crowsfoot" would show a "many" relationship. The relationships are
named as shown. Figure 10.10 shows that an employee may supervise
other employees and an employee may be supervised by one and only one
supervisor. Note the foreign key, super_ssn, in the EMPLOYEE relation
itself.

Figure 10.10: Barker/Oracle-Like Notation: Recursive
Relationships

Mapping M:N Relationships
Finally, we discuss one last important aspect that is treated differently in the
Barker/Oracle-like model — an M:N relationship. In the Barker/Oracle-like
model, all M:N relationships are resolved into two 1:M relationships with an
intersection entity in the middle. In the Chen-like model, the M:N relationship
can also be presented as two 1:M relationships.

Take Figure 10.11, for example (this is in the Chen-like format). In the
Barker/Oracle-like model, this would be shown as in Figure 10.12.

Figure 10.11: An ER Diagram of an M:N Relationship in the Chen-Like
Model

Figure 10.12: Barker/Oracle-Like Notation: M:N Relationship Broken
into Two 1:M Relationships

Checkpoint 10.4
1. How are recursive relationships shown in the Barker/Oracle-like

model?

2. Why is it difficult to show M:N relationships in the Barker/Oracle-like
model?

3. How are the foreign keys treated in the Barker/Oracle-like model?

Chapter Summary
This chapter briefly discussed some of the main features of the
Barker/Oraclelike model. The "one-entity" diagram, with attributes, was
presented. The idea of optional versus mandatory attributes was discussed.
Relationships and structural constraints were briefly discussed in the context
of the Barker/Oracle-like model, and although the Barker/Oracle-like notation
does not use the concept of the weak entity and multi-valued attributes, we
showed how these concepts can be shown diagrammatically in the
Barker/Oracle-like notation. An example of the depiction of the recursive
relationship in the Barker/Oracle model was illustrated. Finally, the chapter
showed how to map an M:N relationship into two 1:M relationships. Mapping
rules were also discussed in the context of Barker/Oracle-like notation.

Chapter 10 Exercises

Exercise 10.1
Redraw Figure 6.12A using the Barker/Oracle notation. Map this to a
relational database and show some sample data.

Exercise 10.2
Redraw Figure 6.7 using the Barker/Oracle notation. Map this to a relational
database and show some sample data.

References

Barker, R., Case*Method, Entity Relationship Modelling, Addison-
Wesley, Reading, MA, 1990.

Hay, D.C., Data Model Patterns, Dorset House, New York, 1996.

Rodgers, Ulka, ORACLE: A Database Developer's Guide, Prentice Hall,
Englewood Cliffs, NJ, 1991.

Glossary

A
Attribute:

Property used to describe an entity or relationship.

B
Binary relationship:

Relationship between two entities.

C
Candidate key:

An attribute or set of attributes that uniquely identifies individual
occurrences of an entity type.

Cardinality ratio:
Describes the number of one entity that is related to another
entity.

Composite attribute:
An attribute composed of multiple components, each with an
independent existence.

D
Database:

A shared collection of logically associated or related data.

Degree of a relationship:
The number of participating entities in a relationship.

Derived attribute:
An attribute that gets a value that is calculated or derived from
the database.

E
Entity:

"Something" in the real world that is of importance to a user and
that needs to be represented in a database so that information
about the entity can be recorded. An entity may have physical
existence (such as a student or building) or it may have
conceptual existence (such as a course).

Entity set:
A collection of all entities of a particular entity type.

Entity type:
A set of entities of the same type.

F
First Normal Form (INF):

Where the domain of all attributes in a table must include only
atomic (simple, indivisible) values, and the value of any attribute
in a tuple (or row) must be a single-valued from the domain of
that attribute.

Foreign Key:
An attribute that is a primary key of another relation (table). A
foreign key is how relationships are implemented in relational
databases.

Full participation:
Where all of one entity set participates in a relationship.

Functional dependency:
A relationship between two attributes in a relation. Attribute Y is
functionally dependent on attribute X if attribute X identifies
attribute Y. For every unique value of X, the same value of Y will
always be found.

G
Generalization:

The process of minimizing the differences between entities by
identifying their common features and removing the common
features into a superclass entity.

I
Identifying owner:

The strong entity upon which a weak entity is dependent.

Identifying relationship:
A weak relationship.

K
Key:

An attribute or data item that uniquely identifies a record
instance or tuple in a relation.

M
Mandatory relationship:

Same as full participation; where all of one entity set participates
in a relationship.

Many-to-many:
Where many tuples (rows) of one relation can be related to
many tuples (rows) in another relation.

Many-to-one:
Where many tuples (rows) of one relation can be related to one
tuple (row) in another relation.

Mapping:
The process of choosing a logical model and then moving to a
physical database file system from a conceptual model (the ER
diagram).

Multi-valued attribute:
An attribute that may have multiple values for a single entity.

One-to-many:
A relationship where one tuple (or row) of one relation can be
related to more than one tuple (row) in another relation.

One-to-one:
A relationship where one tuple (or row) of one relation can be
related to only one tuple (row) in another relation.

Optional participation:
A constraint that specifies whether the existence of an entity
depends on its being related to another entity via a relationship
type.

P
Partial key:

The unique key in a dependent entity.

Partial participation:
Where part of one entity set participates in a relationship.

Participation constraints (also known as optionality):
Determines whether all or some of an entity occurrence is
related to another entity.

Primary key:
A unique identifier for a row in a table in relational database; A
selected candidate key of an entity.

R
Recursive relationship:

Relationships among entities in the same class.

Regular entity:
See Entity.

Relation:
A table containing single-value entries and no duplicate rows.
The meaning of the columns is the same in every row, and the
order of the rows and columns is immaterial. Often, a relation is
defined as a populated table.

Relationship:
An association between entities.

S
Second Normal Form:

A relation that is in first normal form and in which each non-key
attribute is fully, functionally dependent on the primary key.

Simple attribute:
Attribute composed of a single value.

Specialization:
The process of maximizing the differences between members of
a superclass entity by identifying their distinguishing
characteristics.

Strong entity:
An entity that is not dependent on another entity for its
existence.

Structural constraints:
Indicate how many of one type of record is related to another
and whether the record must have such a relationship. The
cardinality ratio and participation constraints, taken together,
form the structural constraints.

Subclass:
An entity type that has a distinct role and is also a member of a
superclass.

Superclass:
An entity type that includes distinct subclasses required to be
represented in a data model.

T
Table:

Same as relation; a tabular view of data that may be used to
hold one or more columns of data; an implementation of an
entity.

Third Normal Form:
A relation that is in second normal form and in which no non-key
attribute is functionally dependent on another non-key attribute
(i.e., there are no transitive dependencies in the relation).

U
Unique identifier:

Any combination of attributes and/or relationships that serves to
uniquely identify an occurrence of an entity.

W
Waterfall model:

A series of steps that software undergoes, from concept
exploration through final retirement.

Weak entity:
An entity that is dependent on some other entity for its
existence.

Index

A
Atomic attributes, 28, 31, 54, 95, 125, 206
Attribute(s), 8, 9, 13, 25, 26, 27, 40, 41, 42, 53, 73, 136

atomic, 28, 31, 54, 95, 125, 206
closure of, 14
composite, 28-30, 31, 54, 95, 98, 125, 206, 220, 233
definition of, 26
derived, 28-30, 33, 233
intersection, 134, 166, 167, 169, 178, 182
key, 30, 115
multi-valued, 28-30, 32, 44, 45, 54, 116, 134, 220, 226

mapping rule for, 206
reverse-engineering, 215

names, 195, 220
non-atomic, 31
optional versus mandatory, 221
orphaned, 166
relationship, 134
simple, 28, 31, 146, 188, 235
single-valued, 33
specific, 191
suspicious, 58
variant, 190, 191

Augmentation rule, 12

Index

B
Barker/Oracle-like model, 28, 219-231

attributes, 221-222
exercises, 230
first entity-only ER diagram, 220-221
mapping of M:N relationships, 228-229
multi-valued attributes, 226
problem with, 220
recursive relationships, 227-228
relationships, 222-223
structural constraints, 223-224
treatment of foreign keys, 227
weak entity, 225

Binary relationship, 55, 63, 81, 94, 100, 130, 165, 207, 208, 233
Binary relationships, ER diagrams with, 133-164

adding more attributes than evolve into
entities, 140
alternative ER notation for specifying structural constraints on
relationships, 154-155
attributes evolving into entities, 142-145
attributes of relationships, 134-136
case study, 162-164
database evolution, 141-142
derived or redundant relationship, 150-153
exercises, 160-161
mapping rules for recursive relationships, 158-159
methodology review, 156-158
more than two entities, 138-140
multiple relationships, 149-150
recursive relationships, 145-149

many-to-many recursive relationship, 149
one-to-many recursive relationship, 148-149
one-to-one recursive relationship, 147-148

relationships developing into entities, 136-138
attributes, 137
entity, 137
keys, 138

Index

C
Candidate key, 13, 14, 33, 37, 45, 96, 117, 138, 195, 206, 233
Cardinality

expression of, 77
one-to-many, 6
ratio, 74, 75, 77, 154, 223, 233

Chen-like model, 46, 58, 63, 80, 85, 117, 153
Barker/Oracle-like model versus, 220
depiction of relationship in, 55, 78
derived attribute in, 33
foreign keys in, 226
multi-valued attributes in, 226
standard form of, 28
unique identifiers in, 34
use of weak entity in, 115

Composite attribute, 28-30, 31, 54, 95, 98, 125, 206, 220, 233
Conceptual model, 25, 77
Constraint(s)

entity-integrity, 16
overlapping, 191
participation, 78, 208, 235
structural, 5, 54, 80, 166, 223, 235

definition of, 73
ER notation for specifying, 154
recursive relationships and, 147
ternary relationships, 169
weak entities and, 119

Index

D
Data

arrangement of in hierarchical fashion, 5
modeling schema, 24
models, 4
two-dimensional tables of, 8

Database, 8, 54, 82, 136, 138, 166, 175, 233
applications, 187
creation, 77
definitions, 25
design of, 4
evolution of, 141
mapped, 226
models, 5, 26
office, 193
query languages, 31
redundancy in, 208
relational, 1, 2, 13, 44, 69, 98, 162, 195, 198, 205, 210, 220

mapping of entity diagram to, 42
mapping of ternary diagrams to, 182
mapping of weak entities to, 125

requirements, 56, 196
semantic models in, 24
software, 7
specifying, 2
superclass in, 188
systems, modeling of, 3
texts, older, 76

Decomposition rule, 12
Degree of relationship, 55, 233
Derived attribute, 28-30, 33, 233
Derived relationship, 150

Index

E
EER model, see Enhanced Entity Relationship model
Enhanced Entity Relationship (EER) model, 187, 188
Entity(ies), 233

attributes evolving into, 140, 142
change of attribute to, 54
definition, 25, 54
development of relationships into, 136
disjoint, 193
English description of, 36, 59
examination, 54
examples of, 25
identifying, 116
-integrity constraint, 16
intersection, 134, 228
-only ER diagram, 28
owner, 116
regular, 35, 235
sets, 25, 234
strong, 35, 96, 119, 136, 206, 234, 235

definition of, 145
mapping of attributes into, 43
weak entity connected to, 125

type, 234
weak, 35, 115, 178, 206, 213, 220, 225, 234, 236

definition of, 145
grammar, 124
identifying owner and, 119, 121
relationship, 189
reverse-engineering, 214
structural constraints and, 119
weak entities connected to, 121

Entity diagram, beyond first, 53-71
attribute versus relationship, 61-62
defining new entity relationship, 54-56
defining second entity, 58-60
entity examination, 54
ER design methodology, 56-57, 62

attribute information, 57, 62
connection of entities with relationships, 62
data, 57
examination of attributes, 62
sample data, 62
second entity, 62
selection of primary entity, 56, 62
use of structured English, 56, 62

exercises, 63-64
existence of relationship, 60-61
grammar for ER diagrams, 57

Entity relationship (ER), 3, 23
database systems modeled using, 3
design

methodology, 27, 37, 41
trap in, 77

model, 33, 178, 187

Entity relationship diagram (ERD), 4, 23-51
attributes, 28-35

composite attribute, 31-32
derived attribute, 33
keys, 33-35
multi-valued attribute, 32-33
simple or atomic attribute, 30-31

beginning methodology, 26-27
case study, 48-51

selection of primary entity, 48
use of structured English, 49-51

database definition, 25-26
data modeling schema, 24
definition of, 24-25
English description of entity, 36-37

attributes, 37 entity, 36
keys, 37

ER design methodology, 27, 37-42
data, 42
examples, 38-41
sample data, 37
selection of primary entity, 41
use of structured English, 37, 42

exercises, 46-47
first entity-only, 28
grammar for, 57
mapping of entity diagram to relational database, 42-46
models of, 219

ER, see Entity relationship
ERD, see Entity relationship diagram

Index

F
FD, see Functional dependency
First normal form, 15, 234
Foreign key(s), 17, 182, 207, 211, 234

Chen-like model, 226
Oracle model, 227

Full participation, 78, 80, 131, 136, 234
Functional dependency (FD), 2, 140, 234

contradiction to known, 9
definition of, 8
inference, transitivity rule of, 10
left-hand side of, 9
rules, 14
sample data for, 9

Index

G
Generalization, 26, 209, 234
Generalizations and specializations, 187-203

case study, 200-203
definition, 188
example, 189-194
exercises, 198-199
mapping rules, 195-198
methodology and grammar, 194-195
problem with variants, 188-189

Glossary, 233-236

Index

H
Hierarchical model, 5, 6, 7
Higher-order relationships, 165

Index

I-J
Identifying entity, 116
Identifying owner, 119, 121, 234
Identifying relationship, 234
Intersection

attributes, 134, 166, 167, 169, 178, 182
entity, 228
table, 208

Index

K-L
Key(s), 13, 26, 66, 234

attribute, 30, 115
candidate, 14, 33, 37, 45, 117, 158, 195
definition, 33
foreign, 17, 182, 207, 211, 234

Chen-like model, 226
Oracle model, 227

generalization entity, 195, 196
identifiable, 116
labeling of, 56, 62, 88, 94, 156, 183
one-attribute, 210partial, 16, 119, 120, 124, 235
primary, 16, 18, 33, 96, 139, 168, 188, 207, 222, 235
strong entity, 206
table, 16, 17
weak owner entity, 207

Index

M
Mandatory relationship, 6, 234
Many-to-many relationship, 5, 7, 234
Many-to-one relationship, 7, 234
Mapping, 206, 234

description of, 24
rule(s)

generalizations, 195
multi-valued attributes, 206
recursive relationships, 158
specializations, 195

strong entities, 43
ternary diagrams, 182
weak entities, 125

Model(s)
Barker/Oracle-like, 28
Chen-like, 46, 58, 63, 80, 85, 117, 153

Barker/Oracle-like model versus, 220
depiction of relationship in, 55, 78
derived attribute in, 33
foreign keys in, 226
multi-valued attributes in, 226
standard form of, 28
unique identifiers in, 34
use of weak entity in, 115

conceptual, 25, 77
data, 4, 24
database, 5, 26
Enhanced Entity Relationship, 187, 188
entity relationship, 33, 178, 187
full:full participation, 134
hierarchical, 5, 6, 7
network, 7
pure, 219
reality, 77
relational, 7, 198, 220
semantic, 24
waterfall, 2, 236

Multiple relationships, 149
Multi-valued attribute, 28-30, 32, 44, 45, 54, 116, 134, 220, 234

Chen-like model, 226
mapping rule for, 206
reverse-engineering, 215

Index

N
Network model, 7
Normal form(s), 8

first, 15, 234
second, 15
third, 16

Index

O
One-to-many relationship, 5, 6, 235
One-to-one relationship, 6, 235
Optional participation, 235
Orphaned attributes, 166
Overlapping constraint, 191
Owner entity, 116

Index

P-Q
Partial key, 16, 119, 120, 124, 235
Partial participation, 78, 169, 235
Participation, 166

constraints, 78, 208, 235
full, 78, 80, 131, 136, 193, 234
mandatory, 78, 119
partial, 78, 169, 234

Primary key, 16, 18, 33, 96, 139, 168, 188, 207, 222, 235
Pure model, 219

Index

R
Reality model, 77
Recursive relationship(s), 55, 235

description of, 145
many-to-many, 149
mapping rules, 158
(min, max) ratios, 155
one-to-many, 148
one-to-one, 147

RED, see Reverse-engineered diagram
Redundant relationship, 150, 154
Reflexive rule, 11
Regular entity, 35, 235
Relation, 42, 235
Relational database

mapping of entity diagram to, 42
mapping of ternary diagrams to, 182
mapping of weak entities to, 125

Relational model, 7, 198, 220
Relationship(s), 5, 235, see also Entity relationship

attributes, 61, 134, 135
Barker/Oracle-like model, 222
binary, 55, 59, 63, 81, 94, 100, 130, 133, 165, 166, 207, 208, 233
cardinality ratio of, 74
commonly occurring, 184
connection of entities with, 150
definition, 26, 54
degree of, 55, 233
derived, 150
development of into entities, 136
employee-dependent, 7
English description of, 59
examples of, 89
existence of, 60
familial, 5
functional dependency of, 8
generalization, 189, 194
higher-order, 165
identifying, 234
mandatory, 6, 234
many-to-many, 5, 7, 76, 77, 92, 150, 234
many-to-one, 7, 74, 91, 234
mapping, 74, 98
multiple, 149
names, 59
one-to-many, 5, 6, 76, 89, 235
one-to-one, 6, 74, 78, 235
optional/mandatory nature of, 6
owner, 119
parent-child, 5
recursive, 55, 145, 147, 155, 235

description of, 145
many-to-many, 149
mapping rules, 158

(min, max) ratios, 155
one-to-many, 148
one-to-one, 147

redundant, 150, 154
-relationship situations, ternary relationships from, 176
specialization, 194
statement, 80, 81
ternary, 165, 166

example, 171
structural constraints for, 169

unary, 145
unique identifier in, 225
unnamed, 119
weak entity, 189

Relationships/structural constraints, extending, 73-114
cardinality ratio of relationship, 74-78

many-to-many, 76-78
many-to-one, 74-76
one-to-many, 76
one-to-one, 74

case study, 109-114
English descriptions, 80
ER design methodology, 88-89

connection of entities with relationships, 89
as designed database, 89
examination of attributed in primary entity, 88
sample data, 89
selection of primary entity, 88
use of structured English, 88, 89

examples of other relationships, 89-94
final example, 94-98
many-to-many, 92-94
many-to-one, 91-92
mapping relationships to relational database, 98-105
one-to-many, 89-91

exercises, 106-108
full/partial participation, 78
tighter English, 80-88

Reverse-engineered diagram (RED), 210
Reverse-engineering ER diagrams, relational mapping and, 205-218

exercise, 217
reverse-engineering, 210-216

attributes of 1:x relationships, 212
binary case, 215
development of strong entities, 210
M:N and n-ary relationships, 215
multi-valued attributes, 213, 214-215
n-ary case, 215-216
1:1 relationships, 211-212
weak entities, 213-214

steps used to map ER diagram to relational database, 205-210

Index

S
Schema, 25
Second normal form, 15, 235
Semantic models, 24
Simple attribute, 28, 31, 146, 188, 235
Software engineering process and relational databases, 1-21

data models, 4-8
hierarchical model, 5-7
network model, 7
relational model, 7-8

description of software engineering process, 2-3
ER diagrams and software engineering life cycle, 3-4
exercises, 20
functional dependencies, 8-14

augmentation rule, 12
decomposition rule, 12
keys and FDs, 13-14
reflexive rule, 11-12
union, rule, 12-13
normal forms, 15-18
examples of 1NF, 2NF, and 3NF, 17-19
first normal form, 15
second normal form, 15-16
third normal form, 16

Specialization, 26, 191, 194, 209, 235, see also Generalizations and
specializations
Specific attributes, 191
Strong entity(ies), 35, 96, 119, 136, 206, 234, 235

definition of, 145
mapping of attributes into, 43
weak entity connected to, 125

Structural constraints, 5, 54, 80, 166, 223, 235
definition of, 73
ER notation for specifying, 154
recursive relationships and, 147
ternary relationships, 169
weak entities and, 119

Subclass, 188, 189, 190, 191, 193, 195, 209, 235
Superclass, 188, 195, 209, 234, 235

Index

T
Table(s), 7, 13, 100, 193, 236

attributes in, 210
candidate key in, 45
composition of, 42
derived, 18
intersection, 208
key of, 16, 17
mapping of entities to, 206
primary key of, 158, 206
problem with putting data in, 15
relational, 42, 50, 205
two-dimensional, 7, 8, 42
weak, 206

Ternary and higher-order ER diagrams, 165-185
binary versus ternary relationships, 166-169
example of n-ary relationship, 171
exercises, 185
mapping ternary diagrams to relational database, 182-184
methodology and grammar for n-ary relationship, 172-176
n-ary relationships, 171-172
n-ary relationships resolved into binary relationships, 179-181
structural constraints for ternary relationships, 169-170
ternary relationships from relationship-relationship situations, 176-179

Ternary relationship, 165, 166
example, 171
structural constraints for, 169

Thinking before action, 2
Third normal form, 16, 236
Transitivity rule of FD inference, 10
Tuple, 42, 208, 234, 235

Index

U-V
Unary relationships, 145
Union rule, 12
Unique identifier, 13, 17, 33, 34, 225, 236

Index

W-Z
Waterfall model, 2, 236
Weak entity(ies), 35, 115-132, 178, 206, 220, 225, 234, 236

definition of, 145
example of weak entity and identifying owner, 121
exercises, 127
grammar, 124-125
identifying owner and, 119, 121
mapping of weak entities to relational database, 125-126
methodology revisited, 123-124

attribute information, 124
drawing of entity, 124
examination of attributes in primary entity, 123

relationship, 189
reverse-engineering, 214
weak entities connected to, 121

List of Figures

Chapter 2: The Basic ER Diagram—A Data Modeling
Schema

Figure 2.1: An ER Diagram with Three Attributes

Figure 2.2: An ER Diagram with One Entity and Five Attributes, Alternate
Models (Batini, Ceri, Navathe)

Figure 2.3: An ER Diagram with One Entity and Five Attributes

Figure 2.4: An ER Diagram with a Composite Attribute — name

Figure 2.5: An ER Diagram with a Multi-Valued Attribute

Figure 2.5A: An ER Diagram with a Derived Attribute — age

Figure 2.6: An ER Diagram with a Primary Key or Unique Identifier
Attribute

Figure 2.7: A Strong and a Weak AUTOMOBILE Entity

Figure 2.8: An ER Diagram of the STUDENT-AUTOMOBILE Database

Figure 2.9: The MALL Entity

Chapter 3: Beyond the First Entity Diagram
Figure 3.1: A STUDENT Entity with a Multi-Valued Attribute

Figure 3.2: Two ER Diagrams: One of STUDENT and One of SCHOOL

Figure 3.3: The STUDENT Entity with a Relationship to the SCHOOL
Entity

Figure 3.4: A STUDENT Entity with an Attribute Called AUTOMOBILE

Figure 3.5: An ER Diagram of the STUDENT–AUTOMOBILE Database

Figure 3.6: An ER Diagram of the STUDENT–AUTOMOBILE Database
with an "Unknown," "Yet-To-Be-Determined" Relationship

Figure 3.7: An ER Diagram of the Mall Database Thus Far

Figure 3.8: An ER Diagram of West Florida Mall Database Developing

Figure 3.9: An ER Diagram of West Florida Mall with Four Entities

Chapter 4: Extending Relationships/Structural
Constraints

Figure 4.1: An ER Diagram of the STUDENT-AUTOMOBILE Database
with the Relationship Name, drive, and Showing the Cardinality Ratios

Figure 4A: A One-to-One Relationship STUDENT:AUTOMOBILE::1:1

Figure 4B: Many-to-One Relationship STUDENT:AUTOMOBILE::M:1

Figure 4C: One-to-Many Relationship STUDENT:AUTOMOBILE::1:M

Figure 4D: Many-to-Many Relationship STUDENT:AUTOMOBILE::M:N

Figure 4.2: An ER Diagram of the STUDENT-AUTOMOBILE Database
with the Relationship Name, drive

Figure 4.3: An ER Diagram of the STUDENT-AUTOMOBILE Database.
Translating the Diagram into English

Figure 4E: Chen Model of 1(full):1 Relationship — Pattern 1

Figure 4F: Chen Model of M(full):1 Relationship — Pattern 1

Figure 4G: Chen Model of 1(partial):1 Relationship — Pattern 2

Figure 4H: Chen Model of M(partial):1 Relationship — Pattern 2

Figure 4I: Chen Model of 1(full):M Relationship — Pattern 3

Figure 4J: Chen Model of M(full):N Relationship — Pattern 3

Figure 4K: Chen Model of 1(partial):M Relationship — Pattern 4

Figure 4L: Chen Model of M(partial):N Relationship — Pattern 4

Figure 4.4: An ER Diagram (without Attributes) of a 1:M Relationship

Figure 4.5: An ER Diagram (without Attributes) of a M:1 Relationship

Figure 4.6: An ER Diagram (without Attributes) of a M:N Relationship

Figure 4.7: The PASSENGER Entity Diagram

Figure 4.8: Sample Problem

Figure 4.9: Sample Problem: Alternate Presentation of Attributes with
Explanation and Sample Data

Figure 4.10

Figure 4.11: An ER Diagram of West Florida Mall with Four Entities and
Structural Constraints

Chapter 5: The Weak Entity
Figure 5.1: The EMPLOYEE Entity Showing DEPENDENT Name as a
Multi-Valued Attribute

Figure 5.2: The EMPLOYEE–DEPENDENT ER Diagram — First Pass

Figure 5.3: The EMPLOYEE–DEPENDENT ER Diagram

Figure 5.4: A Weak Entity with Two Relationships

Figure 5.5: The PERSON–PET–VET ER Diagram

Figure 5.6: The EMPLOYEE–DEPENDENT–HOBBY ER Diagram

Figure 5.7: An ER Diagram of West Florida Mall Developed Thus Far

Chapter 6: Further Extensions for ER Diagrams with
Binary Relationships

Figure 6.1: An ER Diagram of an M:N Relation with an Attribute of a

Relationship

Figure 6.2: An ER Diagram of an M:N Relationship that Has Been
Replaced with Two 1:M Relationships

Figure 6.3: An ER Diagram (with Only Primary Keys) Showing a
STUDENT/COURSE/INSTRUCTOR Database

Figure 6.4: An ER Diagram (with Only Primary Keys) Showing a
STUDENT/COURSE/INSTRUCTOR Database with "Building" as an
Attribute

Figure 6.5: An ER Diagram (with Only Primary Keys) Showing a
STUDENT/ COURSE/INSTRUCTOR/BUILDING Database

Figure 6.6: An ER Diagram Showing a
STUDENT/COURSE/INSTRUCTOR/BUILDING Database

Figure 6.7: An ER Diagram Showing a
STUDENT/COURSE/INSTRUCTOR/ BUILDING Database with the
"room number" for the Three Relations

Figure 6.8: An ER Diagram with COURSE Entity in a Database

Figure 6.9: An ER Diagram of the COURSE–INSTRUCTOR Database

Figure 6.10: An ER Diagram of the COURSE–INSTRUCTOR Database

Figure 6.11: A Classic Recursive Relationship PERSONNEL–
SUPERVISOR

Figure 6A: One-to-One Recursive Relationship (Partial Participation on
Both Sides)

Figure 6B: Instances of One-to-One Recursive Relationship (Partial
Participation on Both Sides)

Figure 6.C: One-to-Many Recursive Relationship (Partial Participation on
Both Sides)

Figure 6.D: Instances of One-to-Many Recursive Relationship (Partial
Participation on Both Sides)

Figure 6.E: Many-to-Many Recursive Relationship (Partial Participation
on Both Sides)

Figure 6.12: An ER Diagram with Two Entities and Two Relationships

Figure 6.12A: An ER Diagram with Two Entities and Two Relationships
and Some Intersection Attributes

Figure 6.13: An ER Diagram Showing a
STUDENT/COURSE/INSTRUCTOR Database with a "Redundant"
Relationship

Figure 6.14: An ER Diagram Showing a
STUDENT/COURSE/INSTRUCTOR Database with a "Redundant"
Relationship

Figure 6.15: Recursive Relationship with (min, max) Ratios

Figure 6.16: An ER Diagram Showing an Alternative ER Notation for
Specifying Structural Constraints

Figure 6.17: An ER Diagram of West Florida Mall Developed Thus Far

Chapter 7: Ternary and Higher-Order ER Diagrams
Figure 7.1A: A Binary Relationship of PRODUCT and SUPPLIER and an
Intersection Attribute, wholesale_price

Figure 7.1B: A Binary Relationship of PRODUCT and CUSTOMER and
an Intersection Attribute, retail_price

Figure 7.2: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship

Figure 7A: An ER Diagram Showing a Ternary Many-to-Many-to-Many
Relationship (Partial Participation on All Sides)

Figure 7B: Instances of a Ternary Many-to-Many-to-Many for
CUSTOMER:PRODUCT:SUPPLIER Relationship

Figure 7.3: An ER Diagram Showing an n-ary Relationship

Figure 7.4: An ER Diagram (with Only Primary Keys) Showing a Three-
Way and a Two-Way Relationship

Figure 7.5: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship with Partial Participations, and a 1-Relationship

Figure 7.6A: A Binary Relationship of BOOK_PUBLISHER and
MANUSCRIPT

Figure 7.6B: A Relationship of a Relationship

Figure 7.6C: A Relationship of a Relationship

Figure 7.6D: A Relationship of a Relationship Resolved into a Ternary
Relationship

Figure 7.7: An ER Diagram of an M:N Relationship That Has Been
Replaced with Two 1:M Relationships

Figure 7.8: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship "Decomposed" into Three Binary Relationships

Chapter 8: Generalizations and Specializations
Figure 8.1: The Student-Athlete with an Attempt to Add a Variant
Attribute

Figure 8.2: The Student–Athlete Shown as a Strong–Weak Relationship
Variant Attribute

Figure 8.3: The Student–Athlete Shown as a Strong–Weak Relationship
Variant Attribute

Figure 8.3A: The Student—Athlete Shown in a Superclass/Subclass
Relationship

Figure 8.4: An Office Database with Specialization Entities, Full
Participation and Disjoint

Figure 8.5: An ER Diagram of West Florida Mall Developed Thus Far

Chapter 9: Relational Mapping and Reverse-

Engineering ER Diagrams
Figure 9.1: Reverse-Engineering Strong Entities

Figure 9.2: Reverse-Engineering 1:N Relationships

Figure 9.3: An ER Diagram Showing the Relationship between R and S

Figure 9.4: Reverse-Engineering Weak Entities

Figure 9.5: Reverse-Engineering Multi-Valued Attributes

Figure 9.6: Reverse-Engineering M:N Relationships

Figure 9.7: Reverse-Engineering n-ary Cases

Chapter 10: A Brief Overview of the Barker/Oracle-
Like Model

Figure 10.1: Barker/Oracle-Like Notation: An ER Diagram with One
Entity and Five Attributes

Figure 10.1A: Barker/Oracle-Like Notation: An ER Diagram with One
Entity and Five Attributes (Data Types Added)

Figure 10.2: Barker/Oracle-Like Notation: An ER Diagram with a
Composite Attribute — name

Figure 10.3: Barker/Oracle-Like Notation: An ER Diagram with a Primary
Key or Unique Identifier Attribute and Optional and Mandatory Attributes

Figure 10.4: Barker/Oracle-Like Notation: The STUDENT Entity with a
Relationship to the SCHOOL Entity

Figure 10.5: 1:1 Relationship in the Barker/Oracle-Like Notation

Figure 10.6: 1:M Relationship in the Barker/Oracle-Like Notation

Figure 10.7: Unique Identifier Shown by Placing Bar across Contributing
Relationship Line(s)

Figure 10.8: Unique Identifier Shown by Placing Bar across Contributing
Relationship Line(s) [Note: "*" shows a foreign key.]

Figure 10.9: Barker/Oracle-Like Notation Showing Foreign Key

Figure 10.10: Barker/Oracle-Like Notation: Recursive Relationships

Figure 10.11: An ER Diagram of an M:N Relationship in the Chen-Like
Model

Figure 10.12: Barker/Oracle-Like Notation: M:N Relationship Broken into
Two 1:M Relationships

List of Examples

Chapter 1: The Software Engineering Process and
Relational Databases

Checkpoint 1.1

Checkpoint 1.2

Checkpoint 1.3

Checkpoint 1.4

Chapter 2: The Basic ER Diagram—A Data Modeling
Schema

Checkpoint 2.1

Checkpoint 2.2

Checkpoint 2.3

Chapter 3: Beyond the First Entity Diagram
Checkpoint 3.1

Checkpoint 3.2

Chapter 4: Extending Relationships/Structural
Constraints

Checkpoint 4.1

Checkpoint 4.2

Checkpoint 4.3

Checkpoint 4.4

Chapter 5: The Weak Entity
Checkpoint 5.1

Checkpoint 5.2

Checkpoint 5.3

Chapter 6: Further Extensions for ER Diagrams with
Binary Relationships

Checkpoint 6.1

Checkpoint 6.2

Checkpoint 6.3 (Optional)

Checkpoint 6.4

Chapter 7: Ternary and Higher-Order ER Diagrams
Checkpoint 7.1

Checkpoint 7.2

Checkpoint 7.3

Chapter 8: Generalizations and Specializations
Checkpoint 8.1

Checkpoint 8.2

Chapter 9: Relational Mapping and Reverse-
Engineering ER Diagrams

Checkpoint 9.1

Checkpoint 9.2

Chapter 10: A Brief Overview of the Barker/Oracle-
Like Model

Checkpoint 10.1

Checkpoint 10.2

Checkpoint 10.3

Checkpoint 10.4

Back Cover

Demonstrates testing of a newly-constructed database via the theory of
normal forms and referential integrity constraints
Provides a data modeling schema that defines entities, relationships,
attributes
Discusses structural constraints in relationships
Includes corresponding grammar and mapping rules
Explores generalizations and specializations
Illustrates a reverse mapping design for mapping a relational database
backward to an ER diagram--performed when database is in use but no
diagram exists

Entity-relationship (E-R) diagrams are time-tested models for database
development well-known for their usefulness in mapping out clear database
designs. Also commonly known is how difficult it is to master them. With this
comprehensive guide, database designers and developers can quickly learn all the
ins and outs of E-R diagramming to become expert database designers. Because E-
R diagrams are so fundamental to database design, this book is also an
indispensable text for teaching computer science students the basics of database
development.

Database Design Using Entity-Relationship Diagrams clarifies E-R diagramming by
defining it in terms of requirements (end user requests) and specifications
(designer feedback to those requests). The book explains how open communication
between designers and end users is critical to developing usable, easy-to-
understand E-R diagrams that model both requirements and specifications.

The authors explain, in an intuitive, informal manner, how to develop an E-R
diagram, how to map it to a database, and how the resulting database can be
tested. This definitive guide is a basic component for any database course, and is
also an invaluable reference that database professionals can use throughout their
careers.

