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Preface 
Data modeling and database design have undergone significant evolution in 
recent years. Today, the relational data model and the relational database 
system dominate business applications. The relational model has allowed 
the database designer to focus on the logical and physical characteristics of 
a database separately. This book concentrates on techniques for database 
design, with a very strong bias for relational database systems, using the ER 
(Entity Relationships) approach for conceptual modeling (solely a logical 
implementation). 

Intended Audience 
This book is intended to be used by database practitioners and students for 
data modeling. It is also intended to be used as a supplemental text in 
database courses, systems analysis and design courses, and other courses 
that design and implement databases. Many present-day database and 
systems analysis and design books limit their coverage of data modeling. 
This book not only increases the exposure to data modeling concepts, but 
also presents a detailed, step-by-step approach to designing an ER diagram 
and developing the relational database from it. 



Book Highlights 
This book focuses on presenting: (1) an ER design methodology for 
developing an ER diagram; (2) a grammar for the ER diagrams that can be 
presented back to the user; and (3) mapping rules to map the ER diagram 
to a relational database. The steps for the ER design methodology, the 
grammar for the ER diagrams, as well as the mapping rules are developed 
and presented in a systematic, step-by-step manner throughout the book. 
Also, several examples of "sample data" have been included with relational 
database mappings — all to give a "realistic" feeling. 

This book is divided into ten chapters. The first chapter gives the reader 
some background by introducing some relational database concepts such as 
functional dependencies and database normalization. The ER design 
method-ology and mapping rules are presented, starting in Chapter 2. 

Chapter 2 introduces the concepts of the entity, attributes, relationships, and 
the "one-entity" ER diagram. Steps 1, 2, and 3 of the ER Design 
Methodology are developed. The "one-entity" grammar and mapping rules 
for the" one-entity" diagram are presented. 

Chapter 3 extends the one-entity diagram to include a second entity. The 
concept of testing attributes for entities is discussed and relationships 
between the entities are developed. Steps 3a, 3b, 4, 5, and 6 of the ER 
design methodology are developed, and grammar for the ER diagrams 
developed upto this point is presented. 

Chapter 4 discusses structural constraints in relationships. Several examples 
are given of 1:1, 1:M, and M:N relationships. Step 6 of the ER design 
methodology is revised and step 7 is developed. A grammar for the 
structural constraints and the mapping rules is also presented. 

Chapter 5 develops the concept of the weak entity. This chapter revisits and 
revises steps 3 and 4 of the ER design methodology to include the weak 
entity. Again, a grammar and the mapping rules for the weak entity are 
presented. 

Chapter 6 discusses and extends different aspects of binary relationshipsin 
ER diagrams. This chapter revises step 5 to include the concept of more 
than one relationship, and revises step 6(b) to include derived and redundant 
relationships. The concept of the recursive relationship is introduced in this 
chapter. The grammar and mapping rules for recursive relationships are 
presented. 

Chapter 7 discusses ternary and other "higher-order" relationships. Step 6 of 
the ER design methodology is again revised to include ternary and other, 
higher-order relationships. Several examples are given, and the grammar 
and mapping rules are developed and presented. 

Chapter 8 discusses generalizations and specializations. Once again, step 6 
of the ER design methodology is modified to include generalizations and 
specializations, and the grammar and mapping rules for generalizations and 
specializations are presented. 

Chapter 9 provides a summary of the mapping rules and reverse-
engineering from a relational database to an ER diagram. 

Chapters 2 through 9 present ER diagrams using a Chen-like model. 
Chapter 10 discusses the Barker/Oracle-like models, highlighting the main 
similarities and differences between the Chen-like model and the 
Barker/Oracle-like model. 

Every chapter presents several examples. "Checkpoint" sections within the 



chapters and end-of-chapter exercises are presented in every chapter to be 
worked out by the students — to get a better understanding of the material 
within the respective sections and chapters. At the end of most chapters, 
there is a running case study with the solution (i.e., the ER diagram and the 
relational database with some sample data). 
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Introduction 
This book was written to aid students in database classes and to help 
database practitioners in understanding how to arrive at a definite, clear 
database design using an entity relationship (ER) diagram. In designing a 
database with an ER diagram, we recognize that this is but one way to arrive 
at the objective —the database. There are other design methodologies that 
also produce databases, but an ER diagram is the most common. The ER 
diagram (also calledan ERD) is a subset of what are called "semantic 
models." As we proceed through this material, we will occasionally point out 
where other models differ from the ER model. 

The ER model is one of the best-known tools for logical database design. 
Within the database community it is considered to be a very natural and 
easy-to-understand way of conceptualizing the structure of a database. 
Claims that have been made for it include: (1) it is simple and easily 
understood by nonspecialists; (2) it is easily conceptualized, the basic 
constructs (entities and relationships) are highly intuitive and thus provide a 
very natural way of representing a user's information requirements; and (3) it 
is a model that describes a world in terms of entities and attributes that is 
most suitable for computer-naïve end users. In contrast, many educators 
have reported that students in database courses have difficulty grasping the 
concepts of the ER approach and, in particular, applying them to the real-
world problems (Gold-stein and Storey, 1990). 

We took the approach of starting with an entity, and then developing from it 
in an "inside-out strategy" (as mentioned in Elmasri and Navathe, 2000). 
Software engineering involves eliciting from (perhaps) "naïve" users what 
they would like to have stored in an information system. The process we 
presented follows the software engineering paradigm of 
requirements/specifications, withthe ER diagram being the core of the 
specification. Designing a software solution depends on correct elicitation. In 
most software engineering paradigms, the process starts with a 
requirements elicitation, followed by a specification and then a feedback 
loop. In plain English, the idea is (1) "tell me what you want" (requirements), 
and then (2) "this is what I think you want" (specification). This process of 
requirements/specification can (and probably should) be iterative so that 
users understand what they will get from thesystem and analysts will 
understand what the users want. 

A methodology for producing an ER diagram is presented. The process 
leads to an ER diagram that is then translated into plain (but meant to be 
precise) English that a user can understand. The iterative mechanism then 
takes over to arrive at a specification (a revised ER diagram and English) 
that both users and analysts understand. The mapping of the ER diagram 
into arelational database is presented; mapping to other logical database 
models is not covered. We feel that the relational database is most 
appropriate to demonstrate mapping because it is the most-used 
contemporary database model. Actually, the idea behind the ER diagram is 
to produce a high-level database model that has no particular logical model 
implied (relational, hierarchical, object oriented, or network). 

We have a strong bias toward the relational model. The "goodness" of the 
final relational model is test able via the ideas of normal forms. The 
goodness of the relational model produced by a mapping from an ER 
diagram theoretically should be guaranteed by the mapping process. If a 
diagram is "good enough," then the mapping to a "good" relational model 
should happen almostautomatically. In practice, the scenario will be to 
produce as good an ER diagram as possible, map it to a relational model, 
and then shift the discussion to "is this a good relational model or not?" using 
the theory of normal formsand other associated criteria of "relational 



goodness." 

The approach to database design taken will be intuitive and informal.We do 
not deal with precise definitions of set relations. We use the 
intuitive"one/many" for cardinality and "may/must" for participation 
constraints. Theintent is to provide a mechanism to produce an ER diagram 
that can be presented to a user in English, and to polish the diagram into a 
specificationthat can then be mapped into a database. We then suggest 
testing the produced database by the theory of normal forms and other 
criteria (i.e., referential integrity constraints). We also suggest a reverse-
mapping paradigm for mapping a relational database back to an ER diagram 
for the purpose of documentation. 

The ER Models We Chose 
We begin this venture into ER diagrams with a "Chen-like" model, and most 
of this book (Chapters 2 through 9) is written using the Chen-like model. 
Why did we choose this model? Chen (1976) introduced the idea of ER 
diagrams (Elmasri and Navathe, 2000), and most database texts use some 
variant of the Chen model. Chen and others have improved the ER process 
over the years; and while there is no standard ER diagram (ERD) model, the 
Chen-like model and variants there of are common, particularly in 
comprehensive database texts. Chapter 10 briefly introduces the 
"Barker/Oracle-like" model. As with the Chen model, we do not follow the 
Barker or Oracle models precisely, and hence we will use the term 
Barker/Oracle-like models in this text. 

There are also other reasons for choosing the Chen-like model over the 
other models. With the Chen-like model, one need not consider how the 
database will be implemented. The Barker-like model is more intimately tied 
to the relational database paradigm. Oracle Corporation uses an ERD that is 
closer to the Barker model. Also, in the Barker-like and Oracle-like ERD, 
there is no accommodation for some of the features we present in the Chen-
like model. For example, multi-valued attributes and weak entities are not 
part of the Barker or Oracle-like design process. 

The process of database design follows the software engineering paradigm; 
and during the requirements and specifications phase, sketches of ER 
diagrams will be made and remade. It is not at all unusual to arrive at a 
design andthen revise it. In developing ER models, one needs to realize that 
the Chen model is developed to be independent of implementation. The 
Chen-like model is used almost exclusively by universities in database 
instruction. The mapping rules of the Chen model to a relational database 
are relatively straight forward, but the model itself does not represent any 
particular logical model. Although the Barker/Oracle-like model is quite 
popular, it is implementation dependent upon knowledge of relational 
databases. The Barker/Oracle model maps directly to a relational database; 
there are no real mapping rules for that model. 
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Chapter 1: The Software Engineering 
Process and Relational Databases 
This chapter introduces some concepts that are essential to our presentation 
of the design of the database. We begin by introducing the idea of "software 
engineering" — a process of specifying systems and writing software. We 
then take up the subject of relational databases. Most databases in use 
today are relational, and the focus in this book will be to design a relational 
database. Before we can actually get into relational databases, we introduce 
the idea of functional dependencies (FDs). Once we have accepted the 
notion of functional dependencies, we can then easily define what is a good 
(and a not-so-good) database. 

What Is the Software Engineering Process? 
The term "software engineering" refers to a process of specifying, designing, 
writing, delivering, maintaining, and finally retiring software. There are many 
excellent references on the topic of software engineering (Schach, 1999). 
Some authors use the term "software engineering" synonymously with 
"systems analysis and design" and other titles, but the underlying point is 
that any information system requires some process to develop it correctly. 
Software engineering spans a wide range of information system problems. 
The problem of primary interest here is that of specifying a database. 
"Specifying a database" means that we will document what the database is 
supposed to contain. 

A basic idea in software engineering is that to build software correctly, a 
series of steps (or phases) are required. The steps ensure that a process of 
thinking precedes action — thinking through "what is needed" precedes 
"what is written." Further, the "thinking before action" necessitates that all 
parties involved in software development understand and communicate with 
one another. One common version of presenting the thinking before acting 
scenario is referred to as a waterfall model (Schach, 1999), as the process is 
supposed to flow in a directional way without retracing. 

An early step in the software engineering process involves specifying what is 
to be done. The waterfall model implies that once the specification of the 
software is written, it is not changed, but rather used as a basis for 
development. One can liken the software engineering exercise to building a 
house. The specification is the "what do you want in your house" phase. 
Once agreed upon, the next step is design. As the house is designed and 
the blueprint is drawn, it is not acceptable to revisit the specification except 
for minor alterations. There has to be a meeting of the minds at the end of 
the specification phase to move along with the design (the blueprint) of the 
house to be constructed. So it is with software and database development. 

Software production is a life-cycle process — it is created, used, and 
eventually retired. The "players" in the software development life cycle can 
placed into two camps, often referred to as the "user" and the "analyst." 
Software is designed by the analyst for the user according to the user's 
specification. In our presentation we will think of ourselves as the analyst 
trying to enunciate what the users think they want. 

There is no general agreement among software engineers as to the exact 
number of steps or phases in the waterfall-type software development 
"model." Models vary, depending on the interest of the author in one part or 
another in the process. A very brief description of the software process goes 
like this:  

Step 1 (or Phase 1): Requirements. Find out what the user wants or 



needs. 

Step 2: Specification. Write out the user wants or needs as precisely as 
possible. 

Step 2a: Feedback the specification to the user (a review) to see if 
the analyst (you) have it right. 

Step 2b: Re-do the specification as necessary and return to step 
2a until analyst and user both understand one another and agree 
to move on. 

Step 3: Software is designed to meet the specification from step 2. 
Step 3a: Software design is independently checked against the 
specification and fixed until the analyst has clearly met the 
specification. Note the sense of agreement in step 2 and the use of 
step 2 as a basis for further action. When step 3 begins, going 
back up the waterfall is difficult — it is supposed to be that way. 
Perhaps minor specification details might be revisited but the idea 
is to move on once each step is finished. 

Step 4: Software is written (developed). 
Step 4a: Software, as written, is checked against the design until 
the analyst has clearly met the design. Note that the specification 
in step 2 is long past and only minor modifications of the design 
would be tolerated here. 

Step 5: Software is turned over to the user to be used in the application. 
Step 5a: User tests and accepts or rejects until software is written 
correctly (it meets specification and design). 

Step 6: Maintenance is performed on software until it is retired. 
Maintenance is a very time-consuming and expensive part of the 
software process — particularly if the software engineering process has 
not been done well. Maintenance involves correcting hidden software 
faults as well as enhancing the functionality of the software. 



ER Diagrams and the Software Engineering Life 
Cycle 
This text concentrates on steps 1 through 3 of the software life cycle for 
database modeling. A database is a collection of related data. The concept 
of related data means that a database stores information about one 
enterprise — a business, an organization, a grouping of related people or 
processes. For example, a database might be about Acme Plumbing and 
involve customers and production. A different database might be one about 
the members and activities of the "Over 55 Club" in town. It would be 
inappropriate to have data about the "Over 55 Club" and Acme Plumbing in 
the same database because the two organizations are not related. Again, a 
database is a collection of related data. 

Database systems are often modeled using an Entity Relationship (ER) 
diagram as the "blueprint" from which the actual data is stored — the output 
of the design phase. The ER diagram is an analyst's tool to diagram the data 
to be stored in an information system. Step 1, the requirements phase, can 
be quite frustrating as the analyst must elicit needs and wants from the user. 
The user may or may not be computer-sophisticated and may or may not 
know a software system's capabilities. The analyst often has a difficult time 
deciphering needs and wants to strike a balance of specifying something 
realistic. 

In the real world, the "user" and the "analyst" can be committees of 
professionals but the idea is that users (or user groups) must convey their 
ideas to an analyst (or team of analysts) — users must express what they 
want and think they need. 

User descriptions are often vague and unstructured. We will present a 
methodology that is designed to make the analyst's language precise 
enough so that the user is comfortable with the to-be-designed database, 
and the analyst has a tool that can be mapped directly into a database. 

The early steps in the software engineering life cycle for databases would be 
to: 

Step 1: Getting the requirements. Here, we listen and ask questions 
about what the user wants to store. This step often involves letting users 
describe how they intend to use the data that you (the analyst) will load 
into a database. There is often a learning curve necessary for the 
analyst as the user explains the system they know so well to a person 
who is ignorant of their specific business. 

Step 2: Specifying the database. This step involves grammatical 
descriptions and diagrams of what the analyst thinks the user wants. 
Because most users are unfamiliar with the notion of an Entity-
Relationship diagram (ERD), our methodology will supplement the ERD 
with grammatical descriptions of what the database is supposed to 
contain and how the parts of the database relate to one another. The 
technical description of the database is often dry and uninteresting to a 
user; however, when analysts put what they think they heard into 
statements, the user and the analyst have a "meeting of the minds." For 
example, if the analyst makes statements such as, "All employees must 
generate invoices," the user may then affirm, deny, or modify the 
declaration to fit what is actually the case. 

Step 3: Designing the database. Once the database has been 
diagrammed and agreed-to, the ERD becomes the blueprint for 
constructing the database. 

Checkpoint 1.1 



1. Briefly describe the steps of the software engineering life-cycle 
process. 

2. Who are the two main players in the software development life cycle? 



Data Models 
Data must be stored in some fashion in a file for it to be useful. In database 
circles over the past 20 years or so, there have been three basic camps of 
"logical" database models — hierarchical, network, and relational — three 
ways of logically perceiving the arrangement of data in the file structure. This 
section provides some insight into each of these three main models along 
with a brief introduction to the relational model. 

The Hierarchical Model 
The idea in hierarchical models is that all data is arranged in a hierarchical 
fashion (a.k.a. a parent–child relationship). If, for example, we had a 
database for a company and there was an employee who had dependents, 
then one would think of an employee as the "parent" of the dependent. 
(Note: Understand that the parent–child relationship is not meant to be a 
human relationship. The term "parent–child" is simply a convenient reference 
to a common familial relationship. The "child" here could be a dependent 
spouse or any other human relationship.) We could have every dependent 
with one employee parent and every employee might have multiple 
dependent children. In a database, information is organized into files, 
records, and fields. Imagine a file cabinet we call the employee file: it 
contains all information about employees of the company. Each employee 
has an employee record, so the employee file consists of individual 
employee records. Each record in the file would be expected to be organized 
in a similar way. For example, you would expect that the person's name 
would be in the same place in each record. Similarly, you would expect that 
the address, phone number, etc. would be found in the same place in 
everyone's records. We call the name a "field" in a record. Similarly, the 
address, phone number, salary, date of hire, etc. are also fields in the 
employee's record. You can imagine that a parent (employee) record might 
contain all sorts of fields — different companies have different needs and no 
two companies are exactly alike. 

In addition to the employee record, we will suppose in this example that the 
company also has a dependent file with dependent information in it — 
perhaps the dependent's name, date of birth, place of birth, school attending, 
insurance information, etc. Now imagine that you have two file cabinets: one 
for employees and one for dependents. The connection between the records 
in the different file cabinets is called a "relationship." Each dependent must 
be related to some employee, and each employee may or may not have a 
dependent in the dependent file cabinet. 

Relationships in all database models have what are called "structural 
constraints." A structural constraint consists of two notions: cardinality and 
optionality. Cardinality is a description of how many of one record type relate 
to the other, and vice versa. In our company, if an employee can have 
multiple dependents and the dependent can have only one employee parent, 
we would say the relationship is one-to-many — that is, one employee, many 
dependents. If the company is such that employees might have multiple 
dependents and a dependent might be claimed by more that one employee, 
then the cardinality would be many-to-many — many employees, many 
dependents. Optionality refers to whether or not one record may or must 
have a corresponding record in the other file. If the employee may or may 
not have dependents, then the optionality of the employee to dependent 
relationship is "optional" or "partial." If the dependents must be "related to" 
employee(s), then the optionality of dependent to employee is "mandatory" 
or "full." 

Furthermore, relationships are always stated in both directions in a database 



description. We could say that: 

Employees may have zero or more dependents 

and 

Dependents must be associated with one and only one 
employee. 

Note the employee-to-dependent, one-to-many cardinality and the 
optional/mandatory nature of the relationship. 

All relationships between records in a hierarchical model have a cardinality 
of one-to-many or one-to-one, but never many-to-one or many-to-many. So, 
for a hierarchical model of employee and dependent, we can only have the 
employee-to-dependent relationship as one-to-many or one-to-one; an 
employee may have zero or more dependents, or (unusual as it might be) an 
employee may have one and only one dependent. In the hierarchical model, 
you could not have dependents with multiple parent–employees. 

The original way hierarchical databases were implemented involved 
choosing some way of physically "connecting" the parent and the child 
records. Imagine you have looked up an employee in the employee filing 
cabinet and you want to find the dependent records for that employee in the 
dependent filing cabinet. One way to implement the employee–dependent 
relationship would be to have an employee record point to a dependent 
record and have that dependent record point to the next dependent (a linked 
list of child –records, if you will). For example, you find employee Jones. In 
Jones' record, there is a notation that Jones' first dependent is found in the 
dependent filing cabinet, file drawer 2, record 17. The "file drawer 2, record 
17" is called a pointer and is the "connection" or "relationship" between the 
employee and the dependent. Now to take this example further, suppose the 
record of the dependent in file drawer 2, record 17 points to the next 
dependent in file drawer 3, record 38; then that person points to the next 
dependent in file drawer 1, record 82. 

In the linked list approach to connecting parent and child records, there are 
advantages and disadvantages to that system. For example, one advantage 
would be that each employee has to maintain only one pointer and that the 
size of the "linked list" of dependents is theoretically unbounded. Drawbacks 
would include the fragility of the system in that if one dependent record is 
destroyed, then the chain is broken. Further, if you wanted information about 
only one of the child records, you might have to look through many records 
before you find the one you are looking for. 

There are, of course, several other ways of making the parent–child link. 
Each method has advantages and disadvantages, but imagine the difficulty 
with the linked list system if you wanted to have multiple parents for each 
child record. Also note that some system must be chosen to be implemented 
in the underlying database software. Once the linking system is chosen, it is 
fixed by the software implementation; the way the link is done has to be used 
to link all child records to parents, regardless of how inefficient it might be for 
one situation. 

There are three major drawbacks to the hierarchical model: 
1. Not all situations fall into the one-to-many, parent–child format. 

2. The choice of the way in which the files are linked impacts 
performance, both positively and negatively. 

3. The linking of parent and child records is done physically. If the 



dependent file were reorganized, then all pointers would have to be 
reset. 

The Network Model 
The network model was developed as a successor to the hierarchical model. 
The network model alleviated the first concern as in the network model — 
one was not restricted to having one parent per child — a many-to-many 
relationship or a many-to-one relationship was acceptable. For example, 
suppose that our database consisted of our employee–dependent situation 
as in the hierarchical model, plus we had another relationship that involved a 
"school attended" by the dependent. In this case, the employee–dependent 
relationship might still be one-to-many, but the "school attended"–dependent 
relationship might well be many-to-many. A dependent could have two 
"parent/schools." To implement the dependent–school relationship in 
hierarchical databases involved creating redundant files, because for each 
school, you would have to list all dependents. Then, each dependent who 
attended more than one school would be listed twice or three times, once for 
each school. In network databases we could simply have two connections or 
links from the dependent child to each school, and vice versa. 

The second and third drawbacks of hierarchical databases spilled over to 
network databases. If one were to write a database system, one would have 
to choose some method of physically connecting or linking records. This 
choice of record connection then locks us into the same problem as before, 
a hardware-implemented connection that impacts performance both 
positively and negatively. Further, as the database becomes more 
complicated, the paths of connections and the maintenance problems 
become exponentially more difficult to manage. 

The Relational Model 
E. Codd (ca. 1970) introduced the relational model to describe a database 
that did not suffer from the drawbacks of the hierarchical and network 
models. Codd's premise was that if we ignore the way data files are 
connected and arrange our data into simple two-dimensional, unordered 
tables, then we can develop a calculus for queries (questions posed to the 
database) and focus on the data as data, not as a physical realization of a 
logical model. Codd's idea was truly logical in that one was no longer 
concerned with how data was physically stored. Rather, data sets were 
simply unordered, two-dimensional tables of data. To arrive at a workable 
way of deciding which pieces of data went into which table, Codd proposed 
"normal forms." To understand normal forms, we must first introduce the 
notion of "functional dependencies." After we understand functional 
dependences, the normal forms follow. 

Checkpoint 1.2 

1. What are the three main types of data models? 

2. Which data model is mostly used today? Why? 

3. What are some of the disadvantages of the hierarchical data model? 

4. What are some of the disadvantages of the network data model? 

5. How are all relationships (mainly the cardinalities) described in the 
hierarchical data model? How can these be a disadvantage of the 
hierarchical data model? 

6. How are all relationships (mainly the cardinalities) described in the 



network data model? Would you treat these as advantages or 
disadvantages of the network data model? Discuss. 

7. Why was Codd's promise of the relational model better? 



Functional Dependencies 
A functional dependency is a relationship of one attribute or field in a record 
to another. In a database, we often have the case where one field defines 
the other. For example, we can say that Social Security Number (SSN) 
defines a name. What does this mean? It means that if I have a database 
with SSNs and names, and if I know someone's SSN, then I can find their 
name. Further, because we used the word "defines," we are saying that for 
every SSN we will have one and only one name. We will say that we have 
defined name as being functionally dependent on SSN. 

The idea of a functional dependency is to define one field as an anchor from 
which one can always find a single value for another field. As another 
example, suppose that a company assigned each employee a unique 
employee number. Each employee has a number and a name. Names might 
be the same for two different employees, but their employee numbers would 
always be different and unique because the company defined them that way. 
It would be inconsistent in the database if there were two occurrences of the 
same employee number with different names. 

We write a functional dependency (FD) connection with an arrow:  
                             SSN → Name 

or 
                            EmpNo → Name. 

The expression SSN → Name is read "SSN defines Name" or "SSN implies 
Name." 

Let us look at some sample data for the second FD. 

Wait a minute…. You have two people named Fred! Is this a problem with 
FDs? Not at all. You expect that Name will not be unique and it is 
commonplace for two people to have the same name. However, no two 
people have the same EmpNo and for each EmpNo, there is a Name. 

Let us look at a more interesting example: 

EmpNo Name 

101 Kaitlyn 
102 Brenda 
103 Beryl 
104 Fred 
105 Fred 

EmpNo Job Name 

101 President Kaitlyn 
104 Programmer Fred 
103 Designer Beryl 
103 Programmer Beryl 



Is there a problem here? No. We have the FD that EmpNo → Name. This 
means that every time we find 104, we find the name, Fred. Just because 
something is on the left-hand side (LHS) of a FD, it does not imply that you 
have a key or that it will be unique in the database — the FD X → Y only 
means that for every occurrence of X you will get the same value of Y. 

Let us now consider a new functional dependency in our example. Suppose 
that Job → Salary. In this database, everyone who holds a job title has the 
same salary. Again, adding an attribute to the previous example, we might 
see this: 

Do we see a contradiction to our known FDs? No. Every time we find an 
EmpNo, we find the same Name; every time we find a Job title, we find the 
same Salary. 

Let us now consider another example. We will go back to the SSN → Name 
example and add a couple more attributes. 

Here, we will define two FDs: SSN → Name and School → Location. 

Further, we will define this FD: SSN → School.  

First, have we violated any FDs with our data? Because all SSNs are unique, 
there cannot be a FD violation of SSN → Name. Why? Because a FD X → Y 
says that given some value for X, you always get the same Y. Because the 
X's are unique, you will always get the same value. The same comment is 
true for SSN → School. 

EmpNo Job Name Salary 

101 President Kaitlyn 50 
104 Programmer Fred 30 
103 Designer Beryl 35 
103 Programmer Beryl 30 

SSN Name School Location 

101 David Alabama Tuscaloosa 
102 Chrissy MSU Starkville 
103 Kaitlyn LSU Baton Rouge 
104 Stephanie MSU Starkville 
105 Lindsay Alabama Tuscaloosa 
106 Chloe Alabama Tuscaloosa 



How about our second FD, School→ Location? There are only three 
schools in the example and you may note that for every school, there is only 
one location, so no FD violation. 

Now, we want to point out something interesting. If we define a functional 
dependency X → Y and we define a functional dependency Y → Z, then we 

know by inference that X → Z. Here, we defined SSN → School. We also 

defined School → Location, so we can infer that SSN → Location 
although that FD was not originally mentioned. The inference we have 
illustrated is called the transitivity rule of FD inference. Here is the transitivity 
rule restated: 
                             Given X → Y 
 
                             Given Y → Z 
 
                             Then  X → Z 

To see that the FD SSN→ Location is true in our data, you can note that 
given any value of SSN, you always find a unique location for that person. 
Another way to demonstrate that the transitivity rule is true is to try to invent 
a row where it is not true and then see if you violate any of the defined FDs. 

We defined these FD's: 
Given: SSN → Name 
       SSN → School 
       School → Location 

We are claiming by inference using the transitivity rule that SSN→ 
Location. Suppose that we add another row with the same SSN and try a 
different location: 

Now, we have satisfied SSN→ Name but violated SSN→ Location. Can we 
do this? We have no value for School, but we know that if School = 
"Alabama" as defined by SSN → School, then we would have the following 
rows: 

SSN Name School Location 

101 David Alabama Tuscaloosa 
102 Chrissy MSU Starkville 
103 Kaitlyn LSU Baton Rouge 
104 Stephanie MSU Starkville 
105 Lindsay Alabama Tuscaloosa 
106 Chloe Alabama Tuscaloosa 
106 Chloe MSU Starkville 



However, this is a problem. We cannot have Alabama and Starkville in the 
same row because we also defined School → Location. So in creating 
our counterexample, we came upon a contradiction to our defined FDs. 
Hence, the row with Alabama and Starkville is bogus. If you had tried to 
create a new location like this: 

You violate the FD, SSN→ School — again, a bogus row was created. By 
being unable to provide a counterexample, you have demonstrated that the 
transitivity rule holds. You may prove the transitivity rule more formally (see 
Elmasri and Navathe, 2000, p. 479). 

There are other inference rules for functional dependencies. We will state 
them and give an example, leaving formal proofs to the interested reader 
(see Elmasri and Navathe, 2000). 

The Reflexive Rule 

If X is a composite, composed of A and B, then X→ A and X→ B. Example: X 

= Name, City. Then we are saying that X → Name and X → City. 

Example: 

The rule, which seems quite obvious, says if I give you the combination 
<Kaitlyn, New Orleans>, what is this person's Name? What is this 
person's City? While this rule seems obvious enough, it is necessary to 
derive other functional dependencies. 

The Augmentation Rule 

If X→ Y, then XZ→ Y. You might call this rule, "more information is not really 
needed, but it doesn't hurt." Suppose we use the same data as before with 
Names and Cities, and define the FD Name → City. Now, suppose we add 
a column, Shoe Size: 

SSN Name School Location 

106 Chloe Alabama Tuscaloosa 
106 Chloe Alabama Starkville 

SSN Name School Location 

106 Chloe Alabama Tuscaloosa 
106 Chloe FSU Tallahassee 

Name City 

David Mobile 
Kaitlyn New Orleans 
Chrissy Baton Rouge 



Now, I claim that because Name→ City, that Name+Shoe Size → City 
(i.e., we augmented Name with Shoe Size). Will there be a contradiction 
here, ever? No, because we defined Name → City, Name plus more 
information will always identify the unique City for that individual. We can 
always add information to the LHS of an FD and still have the FD be true. 

The Decomposition Rule 

The decomposition rule says that if it is given that X → YZ (that is, X defines 

both Y and Z), then X → Y and X → Z. Again, an example: 

Suppose I define Name → City, Shoe Size. This means for every 
occurrence of Name, I have a unique value of City and a unique value of 
Shoe Size. The rule says that given Name → City and Shoe Size 

together, then Name → City and Name → Shoe Size. A partial proof using 
the reflexive rule would be: 
   Name → City,  Shoe Size (given) 
   City,  Shoe Size → City (by the reflexive rule) 
   Name → City             (using steps 1 and 2 and the transitivity rule) 

The Union Rule 

The union rule is the reverse of the decomposition rule in that if X → Y and X 
→ Z, then X → YZ. The same example of Name, City, and Shoe Size 

illustrates the rule. If we found independently or were given that Name → 

City and given that Name → Show Size, we can immediately write Name 
→ City, Shoe Size. (Again, for further proofs, see Elmasri and Navathe, 
2000, p. 480.) 

You might be a little troubled with this example in that you may say that 
Name is not a reliable way of identifying City; Names might not be unique. 
You are correct in that Names may not ordinarily be unique, but note the 

Name City Shoe Size 

David Mobile 10 
Kaitlyn New Orleans 6 
Chrissy Baton Rouge 3 

Name City Shoe Size 

David Mobile 10 
Kaitlyn New Orleans 6 
Chrissy Baton Rouge 3 



language we are using. In this database, we define that Name → City and, 
hence, in this database are restricting Name to be unique by definition. 

Keys and FDs 
The main reason we identify the FDs and inference rules is to be able to find 
keys and develop normal forms for relational databases. In any relational 
table, we want to find out which, if any attribute(s), will identify the rest of the 
attributes. An attribute that will identify all the other attributes in row is called 
a "candidate key." A "key" means a "unique identifier" for a row of 
information. Hence, if an attribute or some combination of attributes will 
always identify all the other attributes in a row, it is a "candidate" to be 
"named" a key. To give an example, consider the following: 

Now suppose I define the following FDs: 
                             SSN → Name 
 
                            SSN → School 
 
                         School → Location 

What I want is the fewest number of attributes I can find to identify all the 
rest — hopefully only one attribute. I know that SSN looks like a candidate, 
but can I rely on SSN to identify all the attributes? Put another way, can I 
show that SSN "defines" all attributes in the relation? I know that SSN defines 
Name and School because that is given. I know that I have the following 
transitive set of FDs: 
                            SSN → School 
 
                         School → Location 

Therefore, by the transitive rule, I can say that SSN → Location. I have 
derived the three FDs I need. Adding the reflexive rule, I can then use the 
union rule: 
  SSN  →  Name  (given) 

  SSN  →  School   (given) 

  SSN  →  Location    (derived by the transitive rule) 

  SSN  →  SSN  (reflexive rule (obvious)) 

  SSN  →  SSN,  Name,   School,   Location   (union rule) 

SSN Name School Location 

101 David Alabama Tuscaloosa 
102 Chrissy MSU Starkville 
103 Kaitlyn LSU Baton Rouge 
104 Stephanie MSU Starkville 
105 Lindsay Alabama Tuscaloosa 
106 Chloe Alabama Tuscaloosa 



This says that given any SSN, I can find a unique value for each of the other 
fields for that SSN. SSN therefore is a candidate key for this relation. In FD 
theory, once we find all the FDs that an attribute defines, we have found the 
closure of the attribute(s). In our example, the closure of SSN is all the 
attributes in the relation. Finding a candidate key is the finding of a closure of 
an attribute or a set of attributes that defines all the other attributes. 

Are there any other candidate keys? Of course! Remember the 
augmentation rule that tells us that because we have established the SSN as 
the key, we can augment SSN and form new candidate keys: SSN, Name is 
a candidate key. SSN, Location is a candidate key, etc. Because every 
row in a relation is unique, we always have at least one candidate key — the 
set of all the attributes. 

Is School a candidate key? No. You do have the one FD that School → 
Location and you could work on this a bit, but you have no way to infer 
that School → SSN (and in fact with the data, you have a counterexample 
that shows that School does not define SSN). 

Keys should be a minimal set of attributes whose closure is all the attributes 
in the relation — "minimal" in the sense that you want the fewest attributes 
on the LHS of the FD that you choose as a key. In our example, SSN will be 
minimal (one attribute), whose closure includes all the other attributes. 

Once we have found a set of candidate keys (or perhaps only one as in this 
case), we designate one of the candidate keys as the primary key and move 
on to normal forms. 

These FD rules are useful in developing Normal forms. Normal forms can be 
expressed in more than one way, but using FDs is arguably the easiest way 
to see this most fundamental relational database concept. E. Codd (1972) 
originally defined three normal forms: 1NF, 2NF, and 3NF. 

Checkpoint 1.3 

1. What are functional dependencies? Give examples. 

2. What does the augmentative rule state? Give examples. 

3. What does the decomposition rule state? Give examples. 



A Brief Look at Normal Forms 
In this section we briefly describe the first, second, and third normal forms. 

First Normal Form (1NF) 
The first normal form (1NF) requires that data in tables be two-dimensional 
— that there be no repeating groups in the rows. An example of a table not 
in 1NF is where there is an employee "record" such as: 
            Employee(name, address, {dependent name}) 

where {dependent name} infers that the attribute is repeated. Sample 
data for this record might be: 
   Smith,  123 4th St.,  {John, Mary, Paul, Sally} 
   Jones,  4 Moose Lane.,  {Edgar,  Frank,  Bob} 
   Adams,  88 Tiger Circle.,  {Kaitlyn, Alicia, Allison} 

The problem with putting data in tables with repeating groups is that the 
table cannot be easily indexed or arranged so that the information in the 
repeating group can be found without searching each record individually. 
Relational people usually call a repeating group "nonatomic" (it has more 
than one value and can be broken apart). 

Second Normal Form (2NF) 
The second normal form (2NF) requires that data in tables depends on the 
whole key of the table. Partial dependencies are not allowed. An example: 
            Employee (name, job, salary, address) 

where it takes a name + job combination (a concatenated key) to identify a 
salary, but address depends only on name. Some sample data: 

Can you see the problem developing here? The address would be repeated 
for each occurrence of a name. This repeating is called redundancy and 
leads to anomalies. An anomaly means that there is a restriction on doing 
something due to the arrangement of the data. There are insertion 
anomalies, deletion anomalies, and update anomalies. The key of this table 
is Name + Job — this is clear because neither one is unique and it really 
takes both name and job to identify a salary. However, address depends 
only on the name, not the job; this is an example of a partial dependency. 
Address depends on only part of the key. An example of an insertion 
anomaly would be where one would want to insert a person into the table 
above, but the person to be inserted is not yet assigned a job. This cannot 
be done because a value would have to be known for the job attribute. Null 

Name Job Salary Address 

Smith Welder 14.75 123 4th St 
Smith Programmer 24.50 123 4th St 
Smith Waiter 7.50 123 4th St 
Jones Programmer 26.50 4 Moose Lane 
Jones Bricklayer 34.50 4 Moose Lane 
Adams Analyst 28.50 88 Tiger Circle 



values cannot be valid values for keys in relational databases (this is known 
as the entity-integrity constraint). An update anomaly would be where one of 
the employees changed his or her address. Three rows would have to be 
changed to accommodate this one change of address. An example of a 
delete anomaly would be that Adams quits, so Adams is lost, but then the 
information that the analyst is being paid $28.50 is also lost. Therefore, more 
related information than was previously anticipated is lost. 

Third Normal Form (3NF) 
The third normal form (3NF) requires that the data in tables depends on the 
primary key of the table. A classic example of non-3NF is: 
            Employee (name, address, project#, project-location) 

Suppose that project-location means the location from which a project 
is controlled, and is defined by the project#. Some sample data will show 
the problem with this table: 

Note the redundancy in this table. Project 101 is located in Memphis; but 
every time a person is recorded as working on project 101, the fact that they 
work on a project that is controlled from Memphis is recorded again. The 
same anomalies — insert anomaly, update anomaly, and delete anomaly — 
are also present in this table. 

To clear the database of anomalies and redundancies, databases must be 
normalized. The normalization process involves splitting the table into two or 
more tables (a decomposition). After tables are split apart (a process called 
decomposition), they can be reunited with an operation called a "join." There 
are three decompositions that would alleviate the normalization problems in 
our examples, as discussed below. 

Examples of 1NF, 2NF, and 3NF 

Example of Non-1NF to 1NF 
Here, the repeating group is moved to a new table with the key of the table 
from which it came. 

Non-1NF:  
   Smith,  123 4th St.,  {John, Mary, Paul, Sally} 
   Jones,  4 Moose Lane.,  {Edgar, Frank, Bob} 
   Adams,  88 Tiger Circle.,  {Kaitlyn, Alicia, Allison} 

is decomposed into 1NF tables with no repeating groups: 

1NF Tables:  

Name Address Project# Project-location 

Smith 123 4th St 101 Memphis 
Smith 123 4th St 102 Mobile 
Jones 4 Moose Lane 101 Memphis 

EMPLOYEE table 

Name Address 



In the EMPLOYEE table, Name is defined as a key — it uniquely identifies 
the rows. In the DEPENDENT table, the key is a combination 
(concatenation) of DependentName and EmployeeName. Neither the 
DependentName nor the EmployeeName is unique in the DEPENDENT 
table, and therefore both attributes are required to uniquely identify a row in 
the table. The EmployeeName in the DEPENDENT table is called a foreign 
key because it references a primary key, Name in another table, the 
EMPLOYEE table. Note that the original table could be reconstructed by 
combining these two tables by recording all the rows in the EMPLOYEE 
table and combining them with the corresponding rows in the EMPLOYEE 
table where the names were equal (an equi-join operation). Note that in the 
derived tables, there are no anomalies or unnecessary redundancies. 

Example of Non-2NF to 2NF 
Here, partial dependency is removed to a new table. 

Non-2NF:  

Smith 123 4th St 
Jones 4 Moose Lane 
Adams 88 Tiger Circle 

DEPENDENT table 

DependentName EmployeeName 

John Smith 
Mary Smith 
Paul Smith 
Sally Smith 
Edgar Jones 
Frank Jones 
Kaitlyn Adams 
Alicia Adams 
Allison Adams 

Name Job Salary Address 

Smith Welder 14.75 123 4th St 
Smith Programmer 24.50 123 4th St 
Smith Waiter 7.50 123 4th St 
Jones Programmer 26.50 4 Moose Lane 
Jones Bricklayer 34.50 4 Moose Lane 
Adams Analyst 28.50 88 Tiger Circle 



is decomposed into 2NF: 

Name + Job table  

Name and Address (Employee info) table:  

Again, note the removal of unnecessary redundancy and the amelioration 
removal of possible anomalies. 

Example of Non-3NF to 3NF 
Here, transitive dependency is removed to a new table. 

Non-3NF:  

is decomposed into 3NF: 

EMPLOYEE table:  

NAME AND JOB 

Name Job Salary 

Smith Welder 14.75 
Smith Programmer 24.50 
Smith Waiter 7.50 
Jones Programmer 26.50 
Jones Bricklayer 34.50 
Adams Analyst 28.50 

NAME AND ADDRESS 

Name Address 

Smith 123 4th St 
Jones 4 Moose Lane 
Adams 88 Tiger Circle 

Name Address Project# Project-location 

Smith 123 4th St 101 Memphis 
Smith 123 4th St 102 Mobile 
Jones 4 Moose Lane 101 Memphis 

EMPLOYEE 

Name Address Project# 

Smith 123 4th St 101 



PROJECT table:  

Again observe the removal of the transitive dependency and the anomaly 
problem. 

There are more esoteric normal forms, but most databases will be well 
constructed if they are normalized to the 3NF. The intent here is to show the 
general process and merits of normalization. 

Checkpoint 1.4 

1. Define 1NF, 2NF, and 3NF. 

2. Why do databases have to be normalized? 

3. Why should we avoid having attributes with multiple values or 
repeating groups? 

Smith 123 4th St 102 
Jones 4 Moose Lane 101 

PROJECT 

Project# Project-location 

101 Memphis 
102 Mobile 
101 Memphis 



Chapter Summary 
This chapter was meant to serve as a background chapter for the reader. 
The chapter briefly described the software engineering process and how it is 
related to ER diagram design. Then the chapter gave a brief overview of the 
different data models, functional dependencies, and database normalization. 
The following chapters develop the ER design methodology in a step-by-step 
manner. 



Chapter 1 Exercises 

Example 1.1 
If X → Y, can you say Y → X? Why or why not ? 

Example 1.2 
Decompose the following data into 1NF tables: 

Khanna, 123 4th St., Columbus, Ohio {Delhi University, Calcutta 
University, Ohio State} 

Ray, 4 Moose Lane, Pensacola, Florida {Zambia University, University 
of West Florida} 

Ali, 88 Tiger Circle, Gulf Breeze, Florida {University of South Alabama, 
University of West Florida} 

Sahni, 283 Penny Street, North Canton, Ohio {Wooster College, Mount 
Union College} 

Example 1.3 
Does the following data have to be decomposed? 

Name Address City State Car Color Year 

Smith 123 4th 
St. 

Pensacola FL Mazda Blue 2002 

Smith 123 4th 
St. 

Pensacola FL Nissan Red 2001 

Jones 4 Moose 
Lane 

Santa 
Clive 

CA Lexus Red 2000 

Katie 5 Rain 
Circle 

Fort 
Walton 

FL Taurus White 2000 
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Chapter 2: The Basic ER Diagram—A 
Data Modeling Schema 
This chapter begins by describing a data modeling approach and then 
introduces entity relationship (ER) diagrams. The concept of entities, 
attributes, relationships, and keys are introduced. The first three steps in an 
ER design methodology are developed. Step 1 begins by building a one-
entity diagram. Step 2 concentrates on using structured English to describe 
a database. Step 3, the last section in this chapter, discusses mapping the 
ER diagram to a relational database. These concepts — the diagram, 
structured English, and mapping — will evolve together as the book 
progresses. At the end of the chapter we also begin a running case study, 
which will be continued at the ends of the subsequent chapters. 

What Is a Data Modeling Schema? 
A data modeling schema is a method that allows us to model or illustrate a 
database. This device is often in the form of a graphic diagram, but other 
means of communication are also desirable — non computer-people may or 
may not understand diagrams and graphics. The ER diagram (ERD) is a 
graphic tool that facilitates data modeling. The ERD is a subset of "semantic 
models" in a database. Semantic models refer to models that intend to elicit 
meaning from data. ERDs are not the only semantic modeling tools, but they 
are common and popular. 

When we begin to discuss the contents of a database, the data model helps 
to decide which piece of data goes with which other piece of data on a 
conceptual level. An early concept in databases is to recognize that there 
are levels of abstraction that we can use in discussing databases. For 
example, if we were to discuss the filing of "names," we could discuss this: 

Abstractly, that is, "we will file names of people we know." 

or 

Concretely, that is, "we will file first, middle, and last names (20 
characters each) of people we know, so that we can retrieve 
the names in alphabetical order on last name, and we will put 
this data in a spreadsheet format on package x." 

If a person is designing a database, the first step is to abstract and then 
refine the abstraction. The longer one stays away from the concrete details 
of logical models (relational, hierarchical, network) and physical realizations 
(fields [how many characters, the data type, etc.] and files [relative, 
spreadsheet]), the easier it is to change the model and to decide how the 
data will eventually be physically realized (stored). When we use the term 
"field" or "file," we will be referring to physical data as opposed to conceptual 
data. 

Mapping is the process of choosing a logical model and then moving to a 
physical database file system from a conceptual model (the ER diagram). A 
physical file loaded with data is necessary to actually get data from a 
database. Mapping is the bridge between the design concept and physical 
reality. In this book we concentrate on the relational database model due to 
its ubiquitousness in contemporary database models. 

What Is an Entity Relationship (ER) Diagram? 



The ER diagram is a semantic data modeling tool that is used to accomplish 
the goal of abstractly describing or portraying data. Abstractly described data 
is called a conceptual model. Our conceptual model will lead us to a 
"schema." A schema implies a permanent, fixed description of the structure 
of the data. Therefore, when we agree that we have captured the correct 
depiction of reality within our conceptual model, our ER diagram, we can call 
it a schema. 

An ER diagram could also be used to document an existing database by 
reverse-engineering it; but in introducing the subject, we focus on the idea of 
using an ER diagram to model a to-be-created database and deal with 
reverse-engineering later. 



Defining the Database — Some Definitions: Entity, 
Relationship, Attribute 
As the name implies, an ER diagram models data as entities and 
relationships, and entities have attributes. An entity is a thing about which 
we store data, for example, a person, a bank account, a building. In the 
original presentation, Chen (1976) described an entity as a "thing which can 
be distinctly identified." So an entity can be a person, place, object, event, or 
concept about which we wish to store data. 

The name for an entity must be one that represents a type or class of thing, 
not an instance. The name for an entity must be sufficiently generic but, at 
the same time, the name for an entity cannot be too generic. The name 
should also be able to accommodate changes "over time." For example, if 
we were modeling a business and the business made donuts, we might 
consider creating an entity called DONUT. But how long will it be before this 
business evolves into making more generic pastry? If it is anticipated that the 
business will involve pastry of all kinds rather than just donuts, perhaps it 
would be better to create an entity called PASTRY — it may be more 
applicable "over time." 

Some examples of entities include: 

Examples of a person entity would be EMPLOYEE, VET, or STUDENT. 

Examples of a place entity would be STATE or COUNTRY. 

Examples of an object entity would be BUILDING, AUTO, or PRODUCT. 

Example of an event entity would be SALES, RETURNS, or 
REGISTRATION. 

Examples of a concept entity would be ACCOUNT or DEPARTMENT. 

In older data processing circles, we might have referred to an entity as a 
record, but the term "record" is too physical and too confining; "record" gives 
us a mental picture of a physical thing and, in order to work at the conceptual 
level, we want to avoid device-oriented pictures for the moment. In a 
database context, it is unusual to store information about one entity, so we 
think of storing collections of data about entities — such collections are 
called entity sets. Entity sets correspond to the concept of "files," but again, 
a file usually connotes a physical entity and hence we abstract the concept 
of the "file" (entity set) as well as the concept of a "record" (entity). As an 
example, suppose we have a company that has customers. You would 
imagine that the company had a customer entity set with individual customer 
entities in it. 

An entity may be very broad (e.g., a person), or it may be narrowed by the 
application for which data is being prepared (like a student or a customer). 
Broad entities, which cover a whole class of objects, are sometimes called 
generalizations (e.g., person), and narrower entities are sometimes called 
specializations (e.g., student). In later diagrams (in this book) we will revisit 
generalizations and specializations; but for now, we will concern ourselves 
with an application level where there are no subgroups (specializations) or 
supergroups (generalizations) of entities. 

When we speak of capturing data about a particular entity, we refer to this as 
an instance. An entity instance is a single occurrence of an entity. For 
example, if we create an entity called TOOL, and if we choose to record data 
about a screwdriver, then the screwdriver "record" is an instance of TOOL. 
Each instance of an entity must be uniquely identifiable so that each 
instance is separate and distinctly identifiable from all other instances of that 



type of entity. In a customer entity set, you might imagine that the company 
would assign a unique customer number, for example. This unique identifier 
is called a key.  

A relationship is a link or association between entities. Relationships are 
usually denoted by verb phrases. We will begin by expanding the notion of 
an entity (in this chapter and the next), and then we will come back to the 
notion of a relationship (in Chapter 4) once we have established the concept 
of an entity. 

An attribute is a property or characteristic for an entity. For example, an 
entity, AUTOMOBILE, may have attributes type, color, vehicle_id, etc. 



A Beginning Methodology 
Database modeling begins with a description of "what is to be stored." Such 
a description can come from anyone; we will call the describer the "user." 
For example, Ms. Smith of Acme Parts Company comes to you, asking that 
you design a database of parts for her company. Ms. Smith is the user. You 
are the database designer. What Ms. Smith tells you about the parts will be 
the database description. 

As a starting point in dealing with a to-be-created database we will identify a 
central, "primary" entity — a category about which we will store data. For 
example, if we wanted to create a database about students and their 
environment, then one entity would be STUDENT (our characterization of an 
entity will always be in the singular). Having chosen one first primary entity, 
STUDENT, we will then search for information to be recorded about our 
STUDENT. This methodology of selecting one "primary" entity from a data 
description is our first step in drawing an ER diagram, and hence the 
beginning of the requirements phase of software engineering for our 
database. 

Once the "primary" entity has been chosen, we then ask ourselves what 
information we want to record about our entity. In our STUDENT example, 
we add some details about the STUDENT — any details that will qualify, 
identify, classify, or express the state of the entity (in this case, the 
STUDENT entity). These details or contents of entities are called attributes.
[1] Some example attributes of STUDENT would be the student's name, 
student number, major, address, etc. — information about the student. 

[1]C. Date (1995) prefers the word "property" to "attribute" because it is more 
generic and because "attribute" is used in other contexts. We will use 
"attribute" because we believe it to be more commonly used. 



ER Design Methodology 
Step 1: Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity.  

"Requirements definition" is the first phase of software engineering where 
the systems analyst tries to find out what a user wants. In the case of a 
database, an information-oriented system, the user will want to store data. 
Now that we have chosen a primary entity and some attributes, our task will 
be to: 

Draw a diagram of our first-impression entity (our primary entity). 

Translate the diagram into English. 

Present the English (and the diagram) back to the user to see if we have 
it right and then progress from there. 

The third step is called "feedback" in software engineering. The process of 
refining via feedback is a normal process in the requirements/specification 
phases. The feedback loop is essential in arriving at the reality of what one 
wants to depict from both the user and analyst viewpoints. First we will learn 
how to draw the entity and then we will present guidelines for converting our 
diagram into English. 

Checkpoint 2.1 

1. Of the following items, determine which could be an entity and state 
why: automobile, college class, student, name of student, book title, 
number of dependents. 

2. Why are entities not called files or records? 

3. What is mapping? 

4. What are entity sets? 

5. Why do we need Entity-Relationship Diagrams? 

6. What are attributes? List attributes of the entities you found in 
question 1 (above). 

7. What is a relationship? 



A First "Entity-Only" ER Diagram: An Entity with 
Attributes 
To recap our example, we have chosen an example with a "primary" entity 
from a student information database — the student. Again note that "a 
student" is something about which we want to store information (the 
definition of an entity). In this chapter, we do not concern ourselves with any 
other entities. 

Let us think about some attributes of the entity STUDENT; that is, what are 
some attributes a student might have? A student has a name, an address, 
and an educational connection. We will call the educational connection a 
"school." We have picked three attributes for the entity STUDENT, and we 
have also chosen a generic label for each: name, address, school. 

We begin our first venture into ER diagrams with a "Chen-like" model. Chen 
(1976) introduced the idea of the ER diagrams. He and others have 
improved the ER process over the years; and while there is no standard 
ERD model, the Chen-like model and variants thereof are common. After the 
"Chen-like" model, we introduce other models. We briefly discuss the 
"Barker/Oraclelike" model later (in Chapter 10). Chen-like models have the 
advantage that one does not need to know the underlying logical model to 
understand the design. Barker models and some other models require a full 
understanding of the relational model, and the diagrams are affected by 
relational concepts. 

To begin, in the Chen-like model, we will do as Chen originally did and put 
the entities in boxes and the show attributes nearby. One way to depict 
attributes is to put them in circles or ovals appended to the boxes — see 
Figure 2.1 (top and middle). Figure 2.1 (bottom) is an alternative style of 
depicting attributes. The alternative attribute style (Figure 2.1, bottom) is not 
as descriptive, but it is more compact and can be used if Chen-like diagrams 
become cluttered. 



  
Figure 2.1: An ER Diagram with Three Attributes   

There are several ways of depicting attributes. We have illustrated the 
"attribute in a circle" model (Chen-like model) because it is common and 
useful. Refer to Figure 2.2 for some alternate models for attributes. There 
are benefits to alternate forms for depicting attributes. The standard form of 
the Chen-like model with bubbles and boxes is good for conceptualizing; it is 
easily changed and very clear as to which attribute goes where. The concise 
form (Figure 2.1 [bottom] and other variants in Figure 2.2) is easily created 
from the standard form and is sometimes more useful for documentation 
when space is a concern. 



  
Figure 2.2: An ER Diagram with One Entity and Five Attributes, 
Alternate Models (Batini, Ceri, Navathe)   

Figure 2.1 (middle and bottom) shows an ER diagram with one entity, 
STUDENT, and three attributes: name, address, and school. If more 
attributes are added to our conceptual model, such as phone and major, 
they would be appended to the entity (here, STUDENT is the only entity we 
have), as can be seen in Figure 2.3. 

  
Figure 2.3: An ER Diagram with One Entity and Five 
Attributes  



More about Attributes 
Attributes are characteristics of entities that provide descriptive details about 
the entities. There are several different kinds of attributes: simple or atomic, 
composite, multi-valued, and derived. The properties of an attribute are its 
name, description, format, and length, in addition to its atomiticity. Some 
attributes may be considered unique identifiers for an entity. This section 
also introduces the idea of a key attribute, a unique identifier for an entity. 

The Simple or Atomic Attribute 
Simple or atomic attributes cannot be further broken down or subdivided, 
hence the notion "atomic." One can examine the domain of values[2] of an 
attribute to elicit whether an attribute is simple or not. An example of a 
simple or atomic attribute would be Social Security number, where a person 
would be expected to have only one, undivided Social Security number. 

Other tests of whether an attribute is simple or atomic will depend entirely on 
the circumstances that the database designer encounters — the desire of 
the "user" for which the database is being built. For example, we might treat 
a phone number attribute as simple in a particular database design, but in 
another scenario we may want to divide the phone number into two distinct 
parts, that is, the area code and the number. Another example of where the 
use of the attribute in the database will determine if the attribute is simple or 
atomic is — a birthdate attribute. If we are setting up a database for a 
veterinary hospital, it may make sense to break up a birthdate field into 
month, day, and year, because it will make a difference in treatment if a 
young animal is five days old versus if it is five months or five years old. 
Hence, in this case, birthdate would be a composite attribute. For a RACE 
HORSE database, however, it may not be necessary to break up a birthdate 
field into month/day/year, because all horses are dated only by the year in 
which they were born. In this latter case, birthdate, consisting of only the 
year, would be atomic. 

If an attribute is non-atomic, it needs to be depicted as such on the ER 
diagram. The following sections deal with these more complicated, 
nonatomic attribute ideas — the composite attribute and the multi-valued 
attribute. 

The Composite Attribute 
A composite attribute, sometimes called a group attribute, is an attribute 
formed by combining or aggregating related attributes. The names chosen 
for composite attributes should be descriptive and general. The concept of 
"name" is adequate for a general description, but it may be desirable to be 
more specific about the parts of this attribute. Most data processing 
applications divide the name into component parts. Name, then, is called a 
composite attribute or an aggregate because it is usually composed of a 
first name, a last name, and a middle initial — sub-attributes, if you will. The 
way that composite attributes are shown in ER diagrams in the Chen-like 
model is illustrated in Figure 2.4. The sub-attributes, such as first name, 
middle initial, and last name, are called simple, atomic, or elementary 
attributes. The word "aggregate" is used in a different sense in some 
database query languages and to avoid confusion, but we will not call 
composite attributes "aggregates;" we will use the word "composite." 



  
Figure 2.4: An ER Diagram with a Composite Attribute — 
name   

Once again, the test of whether or not an attribute will be composite will 
depend entirely on the circumstances that the database designer encounters 
— the desire of the "user" for which the database is being built. For example, 
in one database it may not be important to know exactly which city or state 
or zip code a person comes from, so an address attribute in that database 
may not be broken up into its component parts; it may just be called address. 
Whereas in another database, it may be important to know which city and 
state a person is from; so in this second database we would have to break 
up the address attribute into street address, city, state, and zip code, making 
the address attribute a composite attribute. 

The Multi-Valued Attribute 
Another type of non-simple attribute that has to be managed is called a 
multi-valued attribute. The multi-valued attribute, as the name implies, may 
take on more than one value for a given occurrence of an entity. For 
example, the attribute school could easily be multi-valued if a person attends 
(or has attended, depending on the context of the database) more than one 
school. As a counter example, most people go by only one name and hence 
the grouping, name, is not multi-valued. The multi-valued attribute called 
school is depicted in Figure 2.5 (Chen-like model) as a double oval, which 
illustrates the situation where a database will store data about students who 
may have attended more than one school. Although we have chosen to 
illustrate school as a multi-valued attribute, we do not mean to imply that this 
will always be the case in all databases. In fact, the attribute, school, may 
well be singly valued in some databases. The idea of school may mean the 
current (or just-previous) school as opposed to all schools attended. If the 
subjects about whom we are storing data can attend only one school at a 
time (and that is what we want to depict), then the attribute, school, may well 
be a single-valued attribute. 



  
Figure 2.5: An ER Diagram with a Multi-Valued 
Attribute   

Once again, the test of singleversus multi-valued will depend entirely on the 
circumstances that the database designer encounters — the desire of the 
"user" for which the database is being built. It is recommended that if the 
sense of the database is that the attribute school means "current school," 
then the attribute should be called "current school" and illustrated as a 
single-valued attribute. In our example, we have a multi-valued attribute in 
Figure 2.5, so the sense of the diagram is that multiple schools can be 
recorded for each student. 

The Derived Attribute 
Derived attributes are attributes that the user may envision but may not be 
recorded per se. These derived attributes can be calculated from other data 
in the database. An example of a derived attribute would be an age that 
could be calculated once a student's birthdate is entered. In the Chen-like 
model, a derived attribute is shown in a dashed oval (as shown in Figure 
2.5A). 



  
Figure 2.5A: An ER Diagram with a Derived Attribute — 
age   

keys 
The sense of a database is to store data for retrieval. An attribute that may 
be used to find a particular entity occurrence is called a key. As we model 
our database with the ER models, we may find that some attributes naturally 
seem to be keys. If an attribute can be thought of as a unique identifier for an 
entity, it is called a candidate key. When a candidate key is chosen to be 
the unique identifier, it becomes the primary key for the entity. 

As an example of keys, suppose we add an attribute called student number 
to our STUDENT entity example. We might well consider a student number 
to be a unique identifier for the entity — a candidate key because of 
uniqueness. Name is often unique, but not necessarily so. Members of the 
same class often share last names. Address may or may not be a unique 
identifier and hence is not a likely candidate key. Siblings that take classes 
together could easily have the same address. The point is that schools often 
choose to assign a unique student number to each student in order to be 
able to find student records — the sense of a key is to provide a unique way 
to find an entity instance (a particular record). 

Some schools also choose to record a Social Security number (SSN) as an 
attribute. An SSN is also unique and hence a candidate key along with 
student number. If both SSN and student number were recorded, then the 
designer would have to choose which candidate would be the primary key. In 
our case, we choose not to record an SSN. The STUDENT entity with the 
unique identifier student number added as a key, is depicted in Figure 2.6. 



  
Figure 2.6: An ER Diagram with a Primary Key or Unique Identifier 
Attribute   

In the Chen-like model, attributes that are unique identifiers (candidate 
keys) are usually underlined (as shown in Figure 2.6). A unique identifier can 
be an attribute or a combination of attributes. It is not necessary to choose 
which candidate key will be the primary key at this point, but one could do 
so. When there is only one candidate key, we will generally speak of it as the 
primary key, simply because it is obvious that the primary key is a candidate 
key. In Figure 2.6 we have also depicted the short form of the ER diagram 
(at the bottom) with composite attributes and multi-valued attributes as well 
as primary keys. The composite attributes are listed with its component 
parts, and the multi-valued attributes are enclosed in parentheses in the 
abbreviated form. 

Finally, while on the subject of keys, we will have situations in the ER 
diagram (in the Chen-like model) where no key is obvious or intended. 
Entities that have at least one identified key can be called strong entities. In 
Chen's (1976) original article, strong entities were called regular entities. 
Some entities will be discovered which depend on other entities for their 
being (and hence their identification). Chen called those entities that rely on 
other entities for their existence, weak entities. 

We will often be able to recognize these weak entities because they may not 
have candidate keys, although the actual meaning of a weak entity is "one 
that depends on another for existence." As Chen did, we will follow the 
Chen-like notation and call such entities weak entities — weak because 
they will have to depend on some other entity to furnish a unique identifier to 



give the entity a reason to be recorded. 

Although a weak entity may have a candidate key, it would not be a strong 
entity. We depict weak entities in the Chen-like ER diagrams with double 
boxes (see Figure 2.7). For now, we will concentrate on those entities that 
have keys, and later we will reconsider situations where no key is obvious. 

  
Figure 2.7: A Strong and a Weak AUTOMOBILE 
Entity   

Checkpoint 2.2 

1. Describe the basic types of data representation schemas used in 
entity–relationship (ER) modeling. 

2. What notation is used to diagrammatically show an entity in the Chen-
like model? 

3. How do we diagrammatically show attributes in the Chen-like model? 

4. How do we show composite attributes in the Chen-like model? 

5. Draw an entity representation for the entity "building" with the 
attributes building name, occupancy, and whether or not it has an 
elevator (yes/no). 

6. Embellish the building entity to include the building superintendent's 
name (first, middle, and last). Does this have to be a composite 
attribute? Why or why not? 

7. Embellish the building entity to include the address of the building, 



which will be the primary key. 

8. Once again, embellish the building entity to include names (and only 
the names) of the janitorial staff. 

9. Add a multi-valued attribute to the building entity. 10. How many 
attributes can an entity have? 

[2]The "domain of values" is the set of values that a given attribute may take 
on. The domain consists of all the possible legal values that are permitted on 
an attribute. A data type is a broader term used to describe attributes, but 
"data type" includes the idea of what operations are allowable. Since 
database people are usually more concerned about storage and retrieval, 
database "data types" usually just focus on the "domain of values." 



English Description of the Entity 
Now that we have an entity with attributes, we want to prepare the first 
feedback to the user — the English description. Users will not likely want to 
study the entity diagram but they well might want to hear what you, the 
analyst, think you heard. For an English description, we will use a 
"structured" English grammar and substitute the appropriate information from 
the entity diagram. 

The Method 
The guideline for the structured English for single entities is as follows. 

Let Entity be the name of the entity and att(j) be the attributes. The order of 
the attributes is not important, so j = 1, 2, … is assigned arbitrarily. Suppose 
that there are n attributes so far. The generalized English equivalent of our 
diagram is: 

The Entity 

This database records data about Entity. For each Entity in the 
database, we record att(1), att(2), att(3), …, att(n). 

The Attributes 
For atomic attributes, a(j): 

For each Entity, there always will be one and only one att(j) for 
each Entity. The value for att(j) will not be subdivided. 

For composite attributes, a(j): 
For each Entity, we will record att(j), which is composed of x, y, 
z…, (x, y, z) are the component parts of att(j). 

For multi-valued attributes, a(j): 
For each Entity, we will record att(j)'s. There may be more than one 
att(j) recorded for each Entity. 

For derived attributes, a(j): 
For each Entity, there may exist att(j)'s, which will be derived from 
the database. 

The Keys 
For the key(s): 

a. More than one candidate key (strong entity): 
For each Entity, we will have the following candidate keys: att(j), 
att(k), …, [where j, k are candidate key attributes] 

b. One candidate key (strong entity): 
For each Entity, we will have the following primary key: att(j)  

c. No candidate keys (weak entity): 
For each Entity1, we do not assume that any attribute will be 
unique enough to identify individual entities without the 
accompanying reference to Entity2, the owner Entity.[3]  

d. No candidate keys (intersecting entity): 



For each Intersecting Entity1, we do not assume that any 
attribute will be unique enough to identify individual entities 
without the accompanying reference to Entity2, the owner Entity. 

[3]The details of the weak entity/strong entity relationship will become clearer 
as we introduce relationships in Chapter 3. 



ER Design Methodology 
Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

Step 3: Show some sample data.  

Sample data also helps describe the database as it is perceived. 

Examples 
We will now revisit each of our figures and add an English description to 
each one. First, reconsider Figure 2.3. There are no multi-valued or 
composite attributes. Entity = STUDENT, att(1) = name, att(2) = school, etc. 
(j assigned arbitrarily). The English "translation" of the entity diagram using 
the above templates would be: 

The Entity 

This database records data about STUDENTS. For each 
STUDENT in the database, we record a name, a school, an 
address, a phone number, and a major. 

The Attributes 

For each name, there always will be one and only one name 
for each STUDENT. The value for name will not be subdivided. 

For each major, there always will be one and only one major 
for each STUDENT. The value for major will not be subdivided. 
(Note that in Figure 2.3 we did not divide name.) 

For each address, there always will be one and only one 
address for each STUDENT. The value for address will not be 
subdivided. 

For each school, there always will be one and only one school 
for each STUDENT. The value for school will not be 
subdivided. 

For each phone number, there always will be one and only one 
phone number for each STUDENT. The value for phone 
number will not be subdivided. 

The Keys 

For each STUDENT, we do not assume that any attribute will 
be unique enough to identify individual entities. (Remember 
that we are describing Figure 2.3.) 

Sample Data 
In addition to the above descriptions, some sample data is often very helpful 
in showing the user what you have proposed: 

STUDENT 

name major address school phone number 



Now consider Figure 2.4. This figure has a composite attribute — name. The 
English "translation" of this entity diagram would be as follows: 

The Entity 

This database records data about STUDENTS. For each 
STUDENT in the database, we record a name, a school, and 
an address. 

The Attributes 

For each name, there always will be one and only one name 
for each STUDENT. The value for name will be subdivided into 
a first name, a last name, and a middle initial. 

For each address, there always will be one and only one 
address for each STUDENT. The value for address will not be 
subdivided. 

For each school, there will be one and only one school for each 
STUDENT. The value of the school will not be subdivided. 

The Keys 
For each STUDENT, we do not assume that any attribute will be unique 
enough to identify individual entities. 

Sample Data 

Next consider Figure 2.5. This figure has a composite as well as a multi-
valued attribute. The English "translation" of this entity diagram would be as 

Smith Cosc 123 4th St St. Helens 222–2222 
Jones Acct 222 2nd St PS 123 333–3333 
Saha Eng 284 3rd St Canton 345–3546 

Kapoor Math 20 Living Cr High 435–4534 

STUDENT 

name.first name.last name.mi school address 

Richard Earp W U. Alabama 222 2nd St 
Boris Backer  Heidleburg 333 

Dreistrasse 
Helga Hogan H U. Hoover 88 Half Moon 

Ave 
Arpan Bagui K Northern 

School 
33 Bloom Ave 

Hema Malini  South Bend 100 
Livingstone 



follows: 

The Entity 

This database records data about STUDENTS. For each 
STUDENT in the database, we record a name, a school, and 
an address. 

The Attributes 

For each name, there always will be one and only one name 
for each STUDENT. The value for name will be subdivided into 
a first name, a last name, and a middle initial. 

For each address, there always will be one and only one 
address for each STUDENT. The value for address will not be 
subdivided. 

For each STUDENT, we will record schools. There may be 
more than one school recorded for each student. 

The Keys 

For each STUDENT, we do not assume that any attribute will 
be unique enough to identify individual entities. 

Sample Data 

Consider Figure 2.6. This figure has a composite, multi-valued, as well as 
key attribute. The English "translation" of this entity diagram would be as 
follows: 

The Entity 

This database records data about STUDENTS. For each 
STUDENT in the database, we record a name, schools, an 
address, and a student number. 

The Attributes 

STUDENT 

name.first name.last name.mi school address 

Richard Earp W U. Alabama, 
Mountain 

222 2nd St 

Boris Backer  Heidleburg, 
Volcano 

333 
Dreistrasse 

Helga Hogan H U. Hoover, St. 
Helens 

88 Half 
Moon Ave 

Arpan Bagui K Northern 
School 

33 Bloom 
Ave 

Hema Malini  South Bend 100 
Livingstone 



For each name, there always will be one and only one name 
for each STUDENT. The value for name will be subdivided into 
a first name, a last name, and a middle initial. 

For each address, there always will be one and only one 
address for each STUDENT. The value for address will not be 
subdivided. 

For each STUDENT, we will record schools. There may be 
more than one school recorded for each student. 

The Keys 

For each STUDENT, we will assume that there is an attribute 
— student number — that will be unique enough to identify 
individual entities. 

Finally, consider Figure 2.7 (top). This figure shows a strong entity. We will 
combine the grammar a little to keep the methodology from being overly 
repetitive. The English "translation" of this entity diagram would be as 
follows: 

The Entity 

This database records data about AUTOMOBILEs. For each 
AUTOMOBILE in the database, we record a make, body style, 
year, color, and vehicle-id. 

The Attributes 

Each AUTOMOBILE will have one and only one make, body 
style, year, color, and vehicle-id. None of these attributes will 
be subdivided. 

The Keys 

For each AUTOMOBILE, we assume that attribute vehicle-id 
will be unique enough to identify individual entities. 

Figure 2.7 (bottom) shows a weak entity. The only difference between the 
strong and weak entity description involves the key phrase, which may not 
exist in the weak entity. 

Figure 2.8 shows a relationship between two entities, an AUTOMOBILE and 
a STUDENT. The concept of relationships is discussed in more detail in 
Chapter 4. 



  
Figure 2.8: An ER Diagram of the STUDENT-AUTOMOBILE 
Database   

Our methodology has evolved as follows: 



ER Design Methodology 
Step 1: Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. Label 
key if appropriate.  

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

Step 3: Show some data.  



Mapping the Entity Diagram to a Relational Database 
Having illustrated the ideas of the entity and the attribute, we now turn to a 
semi-physical realization of the concepts. We say "semi-physical" because 
we are really not concerned with the actual physical file that is stored on a 
disk, but rather we are concerned with placing data into relational tables that 
we will visualize as a physical organization of data. Basically, a relational 
database is a database of two-dimensional tables called "relations." The 
tables are composed of rows and columns. The rows are often called tuples 
and the columns, attributes. In relational databases, all attributes (table 
columns) must be atomic and keys must not be null. In addition, in relational 
databases, the actual physical location of the data on a disk is not usually 
necessary to know. 

The process of converting an ER diagram into a database is called 
mapping. We concern ourselves only with the relational model and hence, 
as the chapters in this book develop, we will consider mapping rules to map 
ER diagrams into relational databases. 

We start with a rule to map strong entities: 

M1 — for strong entities: develop a new table (relation) for 
each strong entity and make the indicated key of the 
strong entity the primary key of the table. If more than one 
candidate key is indicated on the ER diagram, choose one 
for the primary key.  

Next, we must map the attributes into the strong entity. Mapping rules are 
different for atomic attributes, composite attributes, and multi-valued 
attributes. First, we present the mapping rule for mapping atomic attributes: 

M1a — mapping atomic attributes from an entity — for 
entities with atomic attributes: map entities to a table by 
forming columns for the atomic attributes.[4]  

A relational database realization of the ER diagram in Figure 2.3 with some 
data would look like this: 

The entity name, STUDENT, would be the name of the relation (table). The 
attributes in the diagram become the column headings. The actual table with 
data, a realization of a relation, is provided as an example of the type of data 
you might expect from such a relation. The ordering of the columns is 
irrelevant to relational database as long as once the ordering is chosen, we 
stay with it. 

What about the composite and multi-valued attributes? As mentioned above, 

STUDENT 

name phone school address major 

Jones 932–5100 U. Alabama 123 4th St Chemistry 
Smith 932–5101 U. Mississippi 123 5th St Math 
Adams 932–5102 LSU 123 6th St Agriculture 
Sumon 435–0997 UWF 11000 Univ Comp Sc 
Mala 877–0982 Mount Union North Canton History 



it is an axiom of relational databases that all columns be atomic. If we have a 
non-atomic attribute in our diagram, we have to make it atomic for mapping 
to the relational database. For composite attributes, we achieve atomicity by 
recording only the component parts of the attribute. 

Our next mapping rule concerns composite attributes: 

M1b – for entities with composite attributes: map entities 
to a table by forming columns from the elementary 
(atomic) parts of the composite attributes.  

Refer to Figure 2.4. A relational database, which corresponds to the entity 
diagram in Figure 2.4, would look like this: 

Multi-valued attributes were depicted in Figure 2.5. In this entity diagram, our 
STUDENT entity had a composite attribute, name, and a multi-valued 
attribute, school. This means that a student may have more than one school 
recorded for his (or her) row. Data that would be represented by this diagram 
might look like this (to illustrate our point with multi-valued attributes, we are 
only showing the name, the address, and the schools they attended): 

Note that this is not a relational table because school is not atomic. 

A mapping rule for multi-valued attributes would be this: 

M1c — for multi-valued attributes: form a separate table 
for the multi-valued attribute. Record a row for each value 
of the multivalued attribute, together with the key from the 
original table. The key of the new table will be the 
concatenation of the multivalued attribute plus the key of 

STUDENT 

name.first name.last name.mi school address 

Richard Earp W U. Alabama 222 2nd St 
Boris Backer  Heidleburg 333 

Dreistrasse 
Helga Hogan H U. Hoover 88 Half Moon 

Ave 
Arpan Bagui K Northern 

School 
33 Bloom Ave 

Hema Malini  South Bend 100 
Livingstone 

STUDENT 

name address school 

Smith 123 4th St St. Helens, Mountain, Volcano 
Jones 222 2nd St Manatee U, Everglades High 
Sudip 887 Mirabelle PCA, Pensacola High, UWF 

Pradeep 248 Shillingford Cuttington, UT 



the owner entity. Remove the multi-valued attribute from 
the original table.  

Now suppose that the above example had name as a key. It would be 
mapped into two relations: a relation with the multi-valued attribute, and a 
resulting relation with the multi-valued attribute excised. 

Relation with the Multi-Valued Attribute 

Resulting Relation with the Multi-Valued Attribute Excised. 

With no key, the mapping rule remains the same except that, instead of 
"together with the key, …" we would say "together with the atomic 
attributes…" In relational databases, every row of a table contains atomic 
attributes. Also, every row is unique. Therefore, a candidate key in any table 
is always all of the attributes. Usually, a subset of "all of the attributes" can 
be found to be a key; but because no two rows are ever the same, we would 
say that one candidate key is the collection of all attributes. 

If the name or address attributes were not considered unique, then the 
resulting relation would be: 

Name–School 

name school 

Smith St. Helens 
Smith Mountain 
Smith Volcano 
Jones Manatee U 
Jones Everglades High 
Sudip PCA 
Sudip Pensacola High 
Sudip UWF 

Pradeep Cuttington 
Pradeep UT 

STUDENT 

name address 

Smith 123 4th St 
Jones 222 2nd St 
Sudip 887 Mirabelle 

Pradeep 248 Shillingford 

STUDENT 

name address school 



Note that rule M1c is an application of the non-1NF to 1NF transformation 
discussed in Chapter 1. 

Checkpoint 2.3 

1. How do you map multi-valued attributes? 

2. How do you map composite attributes? 

3. What is a unique identifier? Is it a candidate key? Is it "the" primary 
key? Discuss. 

[4]These mapping rules are adapted from Elmasri and Navathe (2000).
 

Smith 123 4th Street St. Helens 

Smith 123 4th Street Mountain 

Smith 123 4th Street Volcano 

Jones 222 2nd St Manatee U 

Jones 222 2nd St Everglades High 

Sudip 887 Mirabelle PCA 
Sudip 887 Mirabelle Pensacola High 
Sudip 887 Mirabelle UWF 

Pradeep 248 Shillingford Cuttington 
Pradeep 248 Shillingford UT 



Chapter Summary 
The main focus in this chapter was on developing the concept of the entity 
and developing a one-entity diagram (using the Chen-like model). The 
concept of attributes was also discussed, and the final section focused on 
how a one-entity diagram could be mapped to a relational database. The 
grammar for a one-entity diagram and its attributes was also developed. This 
grammar will be further developed in subsequent chapters. Chapter 3 
discusses developing a second entity, and the relationship between this 
second entity and the "primary entity." 



Chapter 2 Exercises 
[Note: You should filter out and clarify the assumptions you made when you 
report your work.] 

Exercise 2.1 
You want to create a database about businesses. Each business will have a 
name, an address, the business phone number, the owner's phone number, 
and the first names of the employees who work at the business. Draw the 
ER diagram using the Chen-like model, and then write the English 
description for your diagrams. Compare the English to your diagrams, and 
state any assumptions you made when drawing the diagrams. Map your 
diagrams to a relational database. 

Which attributes would you consider composite attributes in this database? 
Which attributes would you consider multi-valued attributes in this database? 
Could there be any derived attributes? What would be good keys? 

Exercise 2.2 
You want to create a database about the books on your shelf. Each book 
has authors (assume last name only is needed), title, publisher, courses 
used in (course number only). Draw the ER diagram using the Chen-like 
model, and then write out the English description for your diagrams. 
Compare the English to your diagrams and state any assumptions you made 
when drawing the diagrams. 

Which attributes would you consider composite attributes in this database? 
Which attributes would you consider multi-valued attributes in this database? 
Could there be any derived attributes? What would be good keys? Map your 
diagram to a relational database. 
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Case Study: West Florida Mall 
A new mall, West Florida Mall, just had its grand opening three months ago 
in Pensacola, Florida. This new mall is attracting a lot of customers and 
stores. West Florida Mall, which is part of a series of malls owned by a 
parent company, now needs a database to keep track of the management of 
the mall in terms of keeping track of all its stores as well as the owners and 
workers of the stores. Before we build a database for this system of malls, 
the first step will be to design an ER diagram for the mall owner. We 
gathered the following initial user specifications about the malls, with which 
we can start creating our the ER diagram: 

We need to record information about the mall and each store in the mall. 
We will need to record the mall's name and address. A mall, at any point 
in time, must contain one or more stores. 

For each store, we will need to keep the following information: store 
number (which will be unique), the name of the store, the location of the 
store (room number), departments, the owner of the store, and manager 
of the store. Each store may have more than one department, and each 
department is managed by a manager. Each store will have only one 
store manager. Each store is owned by only one owner. Each store is 
located in one and only one mall. 

A store manager can manage only one store. We have to record 
information on the store manager: the name, social security number, 
which store he or she is working for, and salary. 

The store owner is a person. We have to record information about the 
store owner, such as name, social security number, address, and office 
phone number. A store owner has to own at least one store, and may 
own more than one store. 

Developing the Case Study 
As per step 1 in designing the ER diagram, we must select our primary 
entity, and then the attributes for our primary entity (step 1 is shown below): 

Step 1: Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity.  

We will choose MALL as our primary entity. For the MALL we 
will record a name, an address, and store_names. 

Our next step will be to translate the diagram into English. 

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

The Entity 

This database records data about a MALL. For each MALL in 
the database, we record a name, an address, and 
store_names. 

The Attributes for MALL 

For each name, there always will be one and only one name 
for the mall. The value for name will not be subdivided. 



For each address, there always will be one and only one 
address for the mall. The value for address will not be 
subdivided. 

For each MALL, we will record store_names. There may be 
more than one store_name recorded for each MALL. The value 
of each store_name will not be subdivided. 

The Keys 

For each MALL, we will assume that the mall name (name) will 
be unique. 

The MALL entity is shown in Figure 2.9. So far for this case study, we 
selected one primary entity (MALL), showed its known attributes, and used 
structured English to describe the entity and its attributes. Next, we will map 
this entity diagram to a relational database. 

  
Figure 2.9: The MALL Entity   

Mapping the Entity to a Relational Database 
MALL is a strong entity, so using mapping rule M1 which states: 

M1 — for strong entities: develop a new table for each 
strong entity and make the indicated key of the strong 
entity the primary key of the table. If more than one 
candidate key is indicated on the ER diagram, choose one 
for the primary key.  

We will develop a new relation for the entity MALL (as shown in Figure 2.9), 
and name will be our primary key. Data that would be represented by Figure 
2.9 might look like the following: 

MALL 

name address store_names 

West Florida 
Mall 

N Davis Hwy, 
Pensacola, FL 

Penney's, Sears, Dollar Store, 
Rex 

Cordova Mall 9th Avenue, 
Pensacola, FL 

Dillards, Parisian, Circuit City, 
Radio Shack 

Navy Mall Navy Blvd, 
Pensacola, FL 

Belks, Wards, Pearle Vision, 
McRaes, Sears 

BelAir Mall 10th Avenue, 
Mobile, AL 

Dillards, Sears, Penney's, Best 
Buy, Pizza Hut 



We can see that MALL has a multi-valued attribute, store_names. This does 
not make the above table a relational table because store_names is not 
atomic — it is multi-valued. For multi-valued attributes, the mapping rule is: 

M1c. For multi-valued attributes, form a separate table for 
the multi-valued attribute. Record a row for each value of 
the multivalued attribute together with the key from the 
original table. Remove the multi-valued attribute from the 
original table.  

Using this mapping rule, the above data would be mapped to two relations: a 
relation with the multi-valued attribute and a relation with the multi-valued 
attribute excised. 

Relation with the Multi-Valued Attribute:  

Relation with the Multi-Valued Attribute Excised  

MALL–Store 

name store_name 

West Florida Mall Penney's 
West Florida Mall Sears 
West Florida Mall Dollar Store 
West Florida Mall Rex 

Cordova Mall Dillards 
Cordova Mall Parisian 
Cordova Mall Circuit City 
Cordova Mall Radio Shack 

Navy Mall Belks 
Navy Mall Wards 
Navy Mall Pearle Vision 

MALL–Store 

name store_name 

Navy Mall McRaes 
Navy Mall Sears 
BelAir Mall Dillards 
BelAir Mall Sears 
BelAir Mall Penney's 
BelAir Mall Best Buy 
Bel Air Mall Pizza Hut 

MALL 



Our relational database maps to: 

[Note: The primary keys are underlined.] 

MALL–Store 

MALL 

This case study will be continued at the end of Chapter 3. 

name address 

West Florida Mall N Davis Hwy, Pensacola, FL 
Cordova Mall 9th Avenue, Pensacola, FL 

Navy Mall Navy Blvd, Pensacola, FL 
BelAir Mall 10th Avenue, Mobile, AL 

name  store_name 

name  address 



Chapter 3: Beyond the First Entity 
Diagram 

Overview 
Now that we have devised a method for drawing, interpreting, and refining 
one primary entity, we need to move to more complex databases. To 
progress from here, we continue with our primary entity and look for other 
information that would be associated with (related to) that entity. 

The first technique employed in this chapter is methodical; we test our 
primary entity to see whether or not our "attributes" should be entities 
themselves. We will then look for other pieces of information in our 
description, add them to (1) an existing entity and examine the existing ER 
diagram, or (2) create a new entity directly. After creating the new entities, 
we look to see what kind of relationships exist between the two entities. This 
chapter develops steps 3, 4, and 5 of the ER design methodology presented 
in this book. Step 3 examines the attributes of the primary entity, step 4 
discusses what to do if another entity is needed, and step 5 discusses 
developing the relationship between the two entities. 

Although the concept of relationships is introduced in this chapter, we do not 
include any new mapping rules in this chapter because mapping rules can 
be better understood after the development of structural constraints on 
relationships, which is discussed in Chapter 4. At the end of this chapter, we 
continue with the case study that began in Chapter 2. 



Examining an Entity — Changing an Attribute to an 
Entity 
Consider Figure 3.1. In this figure, we have a student with the following 
attributes: name (a composite attribute), student number (an atomic attribute 
and key), schools (a multi-valued attribute). Suppose that during our first 
session with the user, we show the diagram, the English, and the sample 
data, and the user says, "Wait, I want to record all schools that a student 
attended and I want to record not only the name of the school, but also the 
location (city and state) and school type (community college, university, high 
school, etc.)." 

  
Figure 3.1: A STUDENT Entity with a Multi-Valued 
Attribute   

What the user just told us was that the attribute, schools, should really be an 
entity. Remember that the definition of entity was something about which we 
wanted to record information. Our original thought was that we were 
recording schools attended, but now we are told that we want to record 
information about the schools. The first indicator that an attribute should be 
considered an entity is that we need to store information about the attribute. 
What we do then is migrate from Figure 3.1 to Figure 3.2. In Figure 3.2, 
SCHOOL is now an entity all by itself, so now we have two separate entities: 
SCHOOL and STUDENT. The next step is to define a relationship between 
the two entities. We assume school-name to be unique and choose the 
name of the school as the key for the entity, SCHOOL. 



  
Figure 3.2: Two ER Diagrams: One of STUDENT and One of 
SCHOOL   



Defining a Relationship for Our New Entity 
Databases are designed to store related data. For example, it would 
ordinarily make no sense to record data about students and foreign 
currencies or about airline flights and employees at a tennis ball factory in 
the same database. These concepts are not related. In a database we 
should be creating a collection of related data. Following our method, we 
clearly have a situation in which an attribute was part of an entity (school 
was considered "part of" student), but now school has become an entity all 
by itself. What we have to do now is relate the SCHOOL entity to the 
STUDENT entity. 

In Figure 3.2, we have two entities but they appear as though they are 
independent. To make the SCHOOL entity and the STUDENT entity function 
as a database, we have to add something — the relationship that the entity 
SCHOOL has to the entity STUDENT. 

A relationship in an ER diagram is a connection between two or more 
entities, or between one entity and itself. The latter kind of relationship, 
between one entity and itself, is known as a recursive relationship, which we 
will discuss later (in Chapter 6). A relationship name is usually a verb or verb 
phrase that denotes the connection between entities. Once we understand 
how the relationship is denoted, we will have a "tool" to draw a database 
description in the form of an ER diagram. 

In the Chen-like model, a relationship is depicted by a diamond on the line 
that joins the two entities together, as shown in Figure 3.3. 

  
Figure 3.3: The STUDENT Entity with a Relationship to the SCHOOL 
Entity   

In Figure 3.3, the relationship is depicted as attend. The sense of the 



relationship is that of a verb connecting two nouns (entities). All relationships 
are two-way. As we will see, it is necessary to state all relationships from 
both directions. For example, in the Chen-like model, we would informally 
say, "STUDENTS attend SCHOOLS" or "SCHOOLS are attended by 
STUDENTS." 

The degree of a relationship refers to the number of entities that participate 
in the relationship. In Figure 3.3, two entities are participating in the 
relationship attend, so this is called a binary relationship. 

We now have a tool to "draw" a database description in the form of an ER 
(entity relationship) diagram. The sense of our diagrams is that we record 
information about x and about y (x and y are entities) and then tell what the 
relationship of x to y is. 

Our growing and amended methodology is now this: 



ER Design Methodology 
Step 1: Select one, primary entity from the database requirements 
description and show attributes to be recorded for that entity. Label 
keys if appropropriate and show some sample data.  

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

Step 3: Examine attributes in the primary entity (possibly with user 
assistance) to find out if information about one of the entities is to be 
recorded.  

Step 3a: If information about an attribute is needed, then make the 
attribute an entity, and then  

Step 3b: Define the relationship back to the original entity.  

Step 4: Show some sample data.  



A Preliminary Grammar for the ER Diagrams 
Chapter 2 outlined a grammar to describe an entity. Now that we have 
added a relationship to our diagram, we need to embellish our English 
description of the proposed database. We also want to show the user some 
sample data to solidify the understanding of the path we are taking. We want 
to add the following to our list of grammatical expressions. 

For each relationship, we add the following comment (in loose English [for 
now]): 

A(n) Entity1 Relationship Entity2 (active voice) and a(n) Entity2 
Relationship Entity1 (passive voice). 

Here, we would say (in addition to the entity/attribute descriptions from 
Chapter 2): 

The Relation 

STUDENTS attend SCHOOLS and SCHOOLS are attended by 
STUDENTS. 

Sometimes a singular description will fit the problem better and, if so, you 
may use it: 

A STUDENT attends SCHOOLS and a SCHOOL is attended 
by STUDENTS. 

The user may be the ultimate judge of the appropriateness of the expression 
we use, but we will be adding to this grammar soon. As an exercise, you will 
be asked to provide complete descriptions of the ER diagrams in Figure 3.3, 
with all entities, attributes, keys, and relationships. 



Defining a Second Entity 
Having examined the original primary entity for suspicious attributes, we can 
now begin to add more data. Let us look at different database information 
from the user. Let us suppose this time that we have the following additional 
description. We want to record information about students — their name and 
student numbers. In addition to information about students, we want to 
record information about their automobiles. We want to record the vehicle 
identification number, the make of the car, body style, color, and the year of 
the model. 

Let us further suppose that we made the decision to choose student as the 
primary entity and we want to add the automobile information. 

The automobile is clearly an entity in that it is something about which we 
want to record information. If we add the automobile into the database, we 
could have included it as in step 1 of our methodology by adding an attribute 
called automobile, only later to perform step 3 of the methodology and 
migrate it and school to the status of entities. The depiction of automobile as 
an attribute of the student entity is shown in Figure 3.4 (in the Chen-like 
model). [We ignore the SCHOOL entity for the moment]. 

  
Figure 3.4: A STUDENT Entity with an Attribute Called 
AUTOMOBILE   

If we added the attribute, automobile, to the entity, STUDENT, and then 
recognized that automobile should have been an entity, we would create the 
AUTOMOBILE entity and then add the relationship to the model. (Note that 
Figure 3.4 would actually be sufficient if the user did not want to store 
information about the automobiles themselves.) 

Of course, we could have recognized that the automobile attribute was going 
to be an entity all along, and simply recorded it as such in our diagram in the 
first place. By recognizing AUTOMOBILE as an entity, we would draw the 
two entities, STUDENT and AUTOMOBILE, and then look for a relationship 
between the two. Either way, we would end up with Figure 3.5, with two 
entities, STUDENT and AUTOMOBILE, and some relationship between the 
two. 



  
Figure 3.5: An ER Diagram of the STUDENT–AUTOMOBILE 
Database   

In the Chen-like notation, we now choose some verb to describe the 
relationship between the two entities (STUDENT and AUTOMOBILE) — in 
this case, we choose drive (shown in the diamond). Note that later the user 
may choose to identify the relationship as something else; but with no other 
information, we assume the user means that students drive automobiles. 
Other candidates for a relationship between the STUDENT and 
AUTOMOBILE entities might be "register," "own," etc. This relationship 
between two entities is known as a binary relationship. 

Relationships in ER diagrams are usually given names that depict how the 
entities are related. Sometimes, a relationship is difficult to describe (or 
unknown), and in this case a two-letter code for the relationship is used. This 
two-letter relationship is shown in Figure 3.6 where we have given the 
relationship the name "SA" to indicate that we understand that a relationship 
exists, but we are not clear on exactly what to call it (SA = STUDENT–
AUTOMOBILE). Of course, if we were confident of "drive" as the 
relationship, we would use "drive." 



  
Figure 3.6: An ER Diagram of the STUDENT–AUTOMOBILE Database 
with an "Unknown," "Yet-To-Be-Determined" 
Relationship   

The English description of the entities and relationships implies that entities 
are nouns and relationships are verbs. Using the drive relationship (as 
shown in Figure 3.6), Students (N) drive (V) automobiles (N). If the 
"unknown" relationship is really unknown, we might say that Students (N) are 
related to (V) automobiles (N). Chapter 4 develops this English description 
as well as the relationship part of the diagram more fully. 

Checkpoint 3.1 

1. Can the nature of an entity change over time? Explain. 

2. What is a relationship? 

3. What are the differences between an entity and a relationship? 

4. When would it be preferable to consider an attribute an entity? Why or 
why not? 

5. Does it make sense to have an entity with one attribute? 



Does a Relationship Exist? 
Some situations may unfold where a relationship might be unclear. For 
example, consider this user description of a desired database: 

Create a database for CUSTOMERS and SUPPLIERS. 
CUSTOMERS will have a name, address, phone number, and 
customer number. SUPPLIERS will have a supplier number, 
name, and address. 

In this database, we clearly have two entities — CUSTOMER and 
SUPPLIER. We want to store information about customers (their name, 
address, etc.) and suppliers (supplier number, name, etc.). But what is the 
connection between the two? 

What we have here is an incomplete, vague user description from which to 
design our database. The connection for the company that wants the 
database is that it has both customers and suppliers; however, what the 
company may not realize is that the relationship from CUSTOMER to 
SUPPLIER is via a COMPANY or a VENDOR, and not a direct relationship. 
So, what we have so far in this description is two different parts of a 
company database, one for customers and one for suppliers. If we later have 
some other entity such as "inventory" or "vendor" that is related to customers 
and to suppliers, there may be linking entities and relationships. For now 
with just two unrelated ideas — customer and supplier — there is no 
apparent relationship, so the thing to do would be to leave any relationship 
off of the overall diagram until more information is elicited from the user. It 
may even be that two unrelated databases need to be developed. 



Attribute or Relationship? 
Sometimes it may be unclear as to whether something is an attribute or a 
relationship. Both attributes and relationships express something about an 
entity. An entity's attributes express qualities in terms of properties or 
characteristics. Relationships express associations with other entities. 

Suppose we are constructing a library database. Suppose further that we 
create another primary entity BOOK that has an attribute, borrower. In some 
cases, an attribute construct is likely to be inappropriate for expressing an 
optional association that really ought to be a relationship between two 
entities. As a side issue, borrower would require the use of a null value for 
those BOOK entities that were not loaned out. In reality, only a very small 
fraction of a library's books are on loan at any given time. Thus, the 
"borrower" attribute would be null for most of the BOOK entities. This 
recurrence of many nulls might indicate that the attribute borrower_name 
could be an entity. If a BORROWER entity were created, and the association 
between the entities BOOK and BORROWER was explicitly stated as a 
relationship, the database designer would likely be closer to putting 
attributes and entities in their correct places. It is important to understand the 
distinction between the types of information that can be expressed as 
attributes and those that should be treated as relationships and entities. 

Checkpoint 3.2 

1. Are relationships between two entities permanent, or can the nature 
of this relationship change over time? 

2. Are attributes of an entity permanent? 

3. Does there always exist a relationship between two entities? 

4. What is a binary relationship? 

Our ER elicitation and design methodology is now this: 



ER Design Methodology 
Step 1: Select one, primary entity from the database requirements 
description and show attributes to be recorded for that entity. Label 
keys if appropriate and show some sample data.  

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

Step 3: Examine attributes in the primary entity (possibly with user 
assistance) to find out if information about one of the attributes is to be 
recorded.  

Step 3a: If information about an attribute is needed, make the attribute 
an entity, and then  

Step 3b: Define the relationship back to the original entity.  

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat step 2 to see if this entity should be further split into 
more entities.  

Step 5: Connect entities with relationships if relationships exist.  

Step 6: Show some sample data.  



Chapter Summary 
Entities, attributes, and relationships were defined in Chapter 2. However, in 
real life, while trying to design databases, it is often difficult to determine 
whether something should be an attribute, entity, or a relationship. This 
chapter discussed ways (techniques) to determine whether something 
should be an entity, attribute, or a relationship. 

This chapter also introduced the concept of binary relationships. Real-life 
databases will have more than one entity, so this chapter developed the ER 
diagram from a one-entity diagram to a two-entity diagram, and showed how 
to determine and depict binary relationships between the two entities using 
the Chen-like model. Because the concept of relationships was only 
introduced, and structural constraints of relationships have not yet been 
discussed, we have not included mapping rules in this chapter. 



Chapter 3 Exercises 

Exercise 3.1 
Draw an ER diagram (using the Chen-like model) for an entity called HOTEL 
and include no fewer than five attributes for the entity. Of the five attributes, 
include at least one composite attribute and one multi-valued attribute. 

Exercise 3.2 
Let us suppose that we reconsider our STUDENT example and the only 
attributes of STUDENT are student number and name. Let us suppose that 
we have another entity called HIGH SCHOOL, which is going to be the high 
school from which the student graduated. For the HIGH SCHOOL entity, we 
will record the high school name and the location (meaning, city and state). 
Draw the ER diagram using the concise form (as Figure 2.1, bottom). What 
would you name the relationship here? Write out the grammar for the 
relationship between the two entities. 

Exercise 3.3 
Suppose that a college had one dormitory with many rooms. The 
DORMITORY entity, which is actually a "dormitory room" entity because 
there is only one dorm, has the attributes room number and single/double 
(meaning that there are private rooms and double rooms). Let us suppose 
that the STUDENT entity in this case contains the attributes student number, 
student name, and home telephone number. Draw the ER diagram in the 
Chen-like model linking up the two entities. Name your relationships. Write 
out the grammar for the relationship between the two entities. 

Exercise 3.4 
We have two entities, a PLANE and a PILOT, and describe the relationship 
between the two entities as "A PILOT flies a PLANE." What should the 
relationship read from the other entity's side? 

Exercise 3.5 
Complete the methodology by adding sample data to Figures 3.3, 3.5, as 
well as to Exercises 1, 2, 3, and 4. 
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Case Study: West Florida Mall (continued) 
In Chapter 2 we chose our primary entity, MALL, and used structured 
English to describe it, its attributes and keys, and then we mapped MALL to 
a relational database (with some sample data). In this chapter we continue to 
develop this case study by looking at steps 3, 4, and 5, of the ER design 
methodology, and then mapping the entities that are developed into a 
relational database with some sample data. 

Step 3 says: 

Step 3: Examine attributes in the primary entity (with user assistance) 
to find out if information about one of the entities is to be recorded.  

Upon reexamining the attributes of the primary entity, MALL, it appears that 
we need to store information about the attribute, store. So we look at Step 
3a, which says: 

Step 3a: If information about an attribute is needed, then make the 
attribute an entity, and then Step 3b.  

So, turning the attribute, store, into an entity we have (repeating step 2): 

The Entity 

This database records data about a STORE. For each STORE 
in the database, we record a store name (sname), a store 
number (snum), a store location (sloc), and departments 
(dept). 

The Attributes for STORE 

For each STORE, there will always be one and only one 
sname (store name). The value for sname will not be 
subdivided. 

For each STORE, there will always be one and only one snum 
(store number). The value for snum will be unique, and not be 
subdivided. 

For each STORE, we will record a sloc (store location). There 
will be one sloc recorded for each STORE. The value for sloc 
will not be subdivided. 

For each STORE, we will record depts (departments). There 
will be more than one depts recorded for each STORE. The 
value for depts will not be subdivided. 

The Keys 

For each STORE, we will assume that the snum will be unique. 

Note: Once STORE is made into an entity, the attribute, store, is removed 
from the entity MALL, as shown in Figure 3.7. 



  
Figure 3.7: An ER Diagram of the Mall Database Thus 
Far   

Having defined STORE, we now need to follow Step 3b, which says: 

Step 3b: Define the relationship back to the original entity.  

There is a relationship, located_in, between STORE and MALL. This is 
shown in Figure 3.7. 

Next, Step 4 says: 

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat Step 2 to see if this entity should be further split into 
more entities.  

We will select another entity, STORE_MANAGER. Now, repeating step 2 for 
STORE_MANAGER: 

The Entity 

This database records data about a STORE_MANAGER. 

For each STORE_MANAGER in the database, we record a 
store manager name (sm_name), store manager social 
security number (sm_ssn), and store manager salary 
(sm_salary). 

The Attributes for STORE_MANAGER 



For each STORE_MANAGER, there will always be one and 
only one sm_name (store manager name). The value for 
sm_name will not be subdivided. 

For each STORE_MANAGER, there will always be one and 
only one sm_ssn (store manager ssn). The value for sm_ssn 
will be unique, and not be subdivided. 

For each STORE_MANAGER, we will record a sm_salary 
(store manager salary). There will be one and only one 
sm_salary recorded for each STORE_MANAGER. The value 
for sm_salary will not be subdivided. 

The Keys 

For each STORE_MANAGER, we will assume that the sm_ssn 
will be unique. 

Having defined STORE_MANAGER, we now follow Step 5, which says: 

Step 5: Connect entities with relationships if relationships exist.  

There is a relationship, manages, between STORE and 
STORE_MANAGER. This is shown in Figure 3.8. 

  
Figure 3.8: An ER Diagram of West Florida Mall Database 
Developing   

Then we select our next primary entity, STORE_OWNER. Now, repeating 
step 2 for STORE_OWNER: 

The Entity 

This database records data about a STORE_OWNER. For 
each STORE_OWNER in the database, we record a store 
owner name (so_name), store owner social security number 
(so_ssn), store owner's office phone (so_off_phone), and store 
owner address (so_address). 

The Attributes for STORE_OWNER 

For each STORE_OWNER, there will always be one and only 
one so_name (store owner name). The value for so_name will 



not be subdivided. 

For each STORE_OWNER, there will always be one and only 
one so_ssn (store owner ssn). The value for so_ssn will be 
unique, and will not be subdivided. 

For each STORE_OWNER, there will always be one and only 
one so_off_phone (store owner office phone). The value for 
so_off_phone will be unique, and will not be subdivided. 

For each STORE_OWNER, we will record a so_address (store 
owner address). There will be one and only one so_address 
recorded for each STORE_OWNER. The value for so_address 
will not be subdivided. 

The Keys 

For each STORE_OWNER, we will assume that the so_ssn 
will be unique. Having defined STORE_OWNER, we now 
follow Step 5, which says: 

Step 5: Connect entities with relationships if relationships exist.  

There is a relationship, owns, between STORE and OWNER. This is shown 
in Figure 3.9. 

  
Figure 3.9: An ER Diagram of West Florida Mall with Four 
Entities   

Mapping the Entity to a Relational Database 
Having described the entities, attributes, and keys, the next step would be to 
map the entities to a relational database. We will also show some data for 
the entities developed, in this part of the case study (the mappings of the 
relationships will be shown at the end of Chapter 4). 

Relations for the MALL Entity 



The first two relations, MALL–Store and MALL are the same as they were in 
Chapter 2: 

Relations for the STORE Entity 
The entity, STORE, has a multi-valued attribute, depts, so we will again have 
to use mapping rule M1 and M1c (as stated in Chapter 2) to map this entity. 
First, we will show the relation with the multi-valued attribute excised, and 
then we will show the relation with the multi-valued attribute. (Note: We are 
developing this database for the West Florida Mall, so we will map only its 
stores.) 

Relation with the Multi-Valued Attribute Excised 

Relation with the Multi-Valued Attribute 

MALL–Store 

name store_name 

West Florida Mall Penney's 
West Florida Mall Sears 
West Florida Mall Dollar Store 
West Florida Mall Rex 

Cordova Mall Dillards 
.  

.  

.  

MALL 

name address 

West Florida Mall N Davis Hwy, Pensacola, FL 
Cordova Mall 9th Avenue, Pensacola, FL 

Navy Mall Navy Blvd, Pensacola, FL 
BelAir Mall 10th Avenue, Mobile, AL 

STORE 

sloc sname snum 

Rm 101 Penney's 1 
Rm 102 Sears 2 
Rm 109 Dollar Store 3 
Rm 110 Rex 4 



Relation for the STORE MANAGER Entity (using mapping 
rule M1 and M1a) 

Relation for the OWNER Entity (using mapping rule M1 and 
M1a) 

STORE–dept 

snum depts 

1 Tall men's clothing 
1 Women's clothing 
1 Children's clothing 
1 Men's clothing 
.  

2 Men's clothing 
2 Women's clothing 
2 Children's clothing 
2 Hardware 
.  

.  

.  

STORE MANAGER 

sm_ssn sm_name sm_salary 

234–987–0988 Saha 45,900 
456–098–0987 Becker 43,989 
928–982–9882 Ford 44,000 
283–972–0927 Raja 38,988 

OWNER 

so_ssn so_name so_off_phone so_address 

879–987–
0987 

Earp (850)474–2093 1195 Gulf Breeze Pkwy, 
Pensacola, FL 

826–098–
0877 

Sardar (850)474–9873 109 Navy Blvd, 
Pensacola, FL 

928–088–
7654 

Bagui (850)474–9382 
89 

Highland Heights, 
Tampa, FL 

982–876–
8766 

Bush (850)474–9283 987 Middle Tree, 
Mobile, AL 



So far our relational database has developed into (without the data): 

[Note: 

The primary keys are underlined.] 

MALL-Store 

MALL 

STORE 

STORE-dept 

OWNER 

STORE MANAGER 

This case study will be continued at the end of Chapter 4. 

name  store_name 

name  address 

sloc sname snum  

snum  depts 

so_ssn  so_name so_off_phone so_address 

sm_ssn  sm_name sm_salary 



Chapter 4: Extending 
Relationships/Structural Constraints 

Overview 
In Chapters 2 and 3, we introduced some components of ER diagrams, 
including entities, attributes, and relationships. It is really insufficient for 
requirements elicitation to define relationships without also defining what are 
called structural constraints. Structural constraints are information about how 
two (or more) entities are related to one another. There are two types of 
structural constraints: cardinality and participation. 

In this chapter, in addition to the structural constraints of relationships, we 
want to introduce a grammar to describe what we have drawn. The grammar 
will help with the requirements elicitation process, as we will specify a 
template for the English that can be imposed on a diagram, which will in turn 
make us say exactly what the diagram means. This chapter develops steps 
6 and 7 of the ER design methodology. Step 6 states the nature of a 
relationship in English, and step 7 discusses presenting the database 
(designed so far) to the user. 

Mapping rules for relationships are also developed and discussed with 
examples and sample data. At the end of the chapter, we also continue the 
running case study that we began in Chapter 2 and continued in Chapter 3. 



The Cardinality Ratio of a Relationship 
Cardinality is a rough measure of the number of entities (one or more) that 
will be related to another entity (or entities). For example, there are four 
ways in which the entities AUTOMOBILE and STUDENT can be "numerically 
involved" in a relationship: one-to-one (1:1), many-to-one (M:1), one-to-many 
(1:M), and many-to-many (M:N). 

One-to-One (1:1) 
In this type of relationship, one entity is associated with one other entity, and 
vice versa. Take, for example, if in our drive relationship (shown in Figure 
4.1), we stated that one automobile is driven by one student and one student 
drives one automobile, then the student/automobile relationship would be 
one-to-one, symbolically: 
STUDENT:AUTOMOBILE :: 1:1 

  
Figure 4.1: An ER Diagram of the STUDENT-AUTOMOBILE Database 
with the Relationship Name, drive, and Showing the Cardinality 
Ratios   

Diagramatically we can represent a 1:1 relationship as shown in Figure 4A 
(Batani, Ceri, and Navathe, 1992). 



  
Figure 4A: A One-to-One Relationship 
STUDENT:AUTOMOBILE::1:1   

Many-to-One (M:1) 
If the SA (STUDENT:AUTOMOBILE) relationship (shown in Figure 3.6) were 
many-to-one, we would say that many students are associated with one 
automobile and one automobile is associated with many students; that is: 
STUDENT:AUTOMOBILE::M:1 

We have intentionally used the verb phrase "is associated with" in place of 
drive because the statement "many students drive one automobile" can be 
taken in a variety of ways. Also, using a specific verb for a relationship is not 
always best when the diagram is first drawn, unless the analyst is absolutely 
sure that the verb correctly describes the user's intention. We could have 
also used the verb phrase "is related to" instead of "is associated with" if we 
wanted to be uncommitted about the exact verb to use. 

We will tighten the language used to describe relationships presently, but 
what does an STUDENT:AUTOMOBILE::M:1 relationship imply? It would 
represent a situation where perhaps a family owned one car and that car 
was driven by multiple people in the family. 

Diagramatically, we can represent a M:1 relationship as shown in Figure 4B 
(Batani, Ceri, and Navathe, 1992). 



  
Figure 4B: Many-to-One Relationship 
STUDENT:AUTOMOBILE::M:1   

One-to-Many (1:M) 
The sense of a one-to-many SA (STUDENT:AUTOMOBILE) relationship 
(shown in Figure 3.6) would be that a student is associated with many 
automobiles and an automobile is associated with one student. Clearly, if we 
define a relationship as 1:M (or M:1), then we need to be very clear about 
which entity is 1 and which is M. Here: 
STUDENT:AUTOMOBILE::1:M 

Diagramatically, we can represent a 1:M relationship as shown in Figure 4C 
(Batani, Ceri, and Navathe, 1992). 

  
Figure 4C: One-to-Many Relationship 
STUDENT:AUTOMOBILE::1:M   

Many-to-Many (M:N) 
In many-to-many relationships, many occurrences of one entity are 
associated with many of the other. Many-to-many is depicted as M:N, as in 
M of one thing related to N of another thing. Older database texts called this 



an M:M relationship, but newer books use M:N to indicate that the number of 
things related is not presumed to be equal (the values of M and N are likely 
to be different). 

If our SA relationship were many-to-many, a student would be associated 
with many automobiles and an automobile with many students: 
STUDENT:AUTOMOBILE::M:N 

In this case (if we assumed SA = drive, as shown in Figure 3.6), multiple 
students can drive multiple cars (hopefully not all at the same time) and 
multiple cars can be driven by multiple students. Picture, for example, a 
family that has multiple cars and any one family member can drive any of the 
cars and any car can be driven by any family member. 

Diagramatically, we can represent an M:N relationship as shown in Figure 
4D (Batani, Ceri, and Navathe, 1992). 

  
Figure 4D: Many-to-Many Relationship 
STUDENT:AUTOMOBILE::M:N   

In expressing cardinality, this x:x ratio, where x = 1 or M(N), is called a 
cardinality ratio. 

Which way do we depict the actual situation for our students and 
automobiles? This is a very interesting question. The answer is that we are 
to model reality as defined by our user. We listen to the user, make some 
assumptions, and draw the model. We then pass our model back to the user 
using a structured English that the user then approves or corrects. 

A trap in ER design is to try to model every situation for every possibility. 
This cannot be done. The point of creating a database is normally a local 
situation that will be governed by the systems analysis (software 
engineering) process. In classical systems analysis, the analyst hears a 
user, creates a specification, and then presents the result back to the user. 
Here, the analyst (the database analyst/designer) models the reality that the 
user experiences — not what every database in the world should look like. If 
the user disagrees, then the analyst can easily modify the conceptual model, 
but there has to be a meeting of the minds on what the model is to depict. 

In our STUDENT:AUTOMOBILE example, the choice we will make will be 
that one student is associated with (drives) one automobile. While clearly 
one can think of exceptions to this case, we are going to adopt a model, and 
the sense of the model is that we have to choose how we will identify the 
relationship between the entities as well as the information that we intend to 



put in the entities themselves. Bear in mind that we are dealing with a 
conceptual model that could change, depending on the reality of the 
situation; however, we have to choose some sort of model to begin with, and 
the one we are choosing is a one-to-one relationship between students and 
automobiles. 

In the Chen-like model, we will depict the one-to-oneness of this relationship 
by adding the cardinality numbers to the lines on the ER diagram that 
connect the relationships and the entities (see Figure 4.1). 

In Figure 4.1 we put a "1" on the line between the entity box for the 
STUDENT and the diamond box for the relationship, and we put another "1" 
on the line between the diamond relationship and the entity box for the 
AUTOMOBILE. These 1's loosely mean that a student is related to one 
automobile and an automobile is related to one student. We must be quite 
careful in saying exactly what this relationship means. It does not mean that 
one student owns one automobile or a student pays insurance for an 
automobile. In our model, we mean that a student will drive, at most, one 
automobile on a college campus. Further, we are saying that an automobile 
will be driven by one and only one student. Because we are clarifying 
(refining) the database, we try to settle on the name of the relationship to 
include the concept that we are modeling — driving — by naming the 
relationship drive. Again, see Figure 4.1 for the renamed model with 1:1 
cardinality. 



Participation: Full/Partial 
It is likely that on any campus, not all students will drive an automobile. For 
our model, we could assume that normally all of the automobiles on the 
campus are associated with a student. (We are for the moment excluding 
faculty and staff driving, and modeling the student/automobile relationship.) 

To show that every automobile is driven by a student, but not every student 
drives an automobile, we will enhance our Chen-like model of ER diagrams 
by putting a double line between the relationship diamond and the 
AUTOMOBILE entity to indicate that every automobile is driven by one 
student. Put another way, every automobile in the database participates in 
the relationship. From the student side, we leave the line between the 
STUDENT entity and the relationship as a single line to indicate that not 
every student drives an automobile. Some students will not participate in the 
drive relationship because they do not drive a car on campus. The 
single/double lines are called participation constraints (a.k.a., optionality 
constraints) and are depicted in Figure 4.2. 

  
Figure 4.2: An ER Diagram of the STUDENT-AUTOMOBILE Database 
with the Relationship Name, drive   

The double line indicates full participation. Some designers prefer to call this 
participation mandatory. The point is that if part of a relationship is 
mandatory or full, you cannot have a null value (a missing value) for that 
attribute in relationships. In our case, if an automobile is in the database, it 
must be related to some student. 

The single line, partial participation, is also called optional. The sense of 



partial, optional participation is that there could be students who do not have 
a relationship to an automobile. 

Checkpoint 4.1 
1. What are structural constraints? 

2. What kind of information does the cardinality ratio give us? 

3. In how many different ways can two entities be involved in a 
cardinality relationship? Give examples. 

4. What kind of information does the participation constraint give us? 

5. Is it always necessary to have cardinality ratios as well as 
participation constraints in the same ER diagram? Why? Explain. 



English Descriptions 
We would now like to tighten the grammar that describes how a relationship 
affects entities using our structural constraints, and to adopt a standard way 
of stating the relationship. The standard language should appear on the 
model, or at least with it. Further, using a standard language approach to 
describe the ER diagrams allows us to not only close the loop with the user 
in the systems analysis process, but also facilitates feedback and "nails 
down" the exact meaning of the relationship. 

In the Chen-like model, the double lines define full participation, as in 
"automobiles fully participate in the drive relationship." Better yet, the double 
lines invite us to state the relationship as: 

Automobiles must be driven by one (and only one) student. 

The must part comes from the full (mandatory) participation and the one part 
from the cardinality. 

The grammar for describing partial or optional relationship for the STUDENT 
entity to the AUTOMOBILE entity would be: 

Students may drive one and only one automobile. 

The may comes from the single line leaving the STUDENT entity box and 
the "one and only one" part comes from the cardinality. The point is that 
when expressing the sense of the ER diagrams, one uses the language that 
conveys what the relationship really means (i.e., students may drive one 
automobile and automobiles must be driven by one and only one student). A 
graphic on how to read an ER diagram is presented in Figure 4.3. 

  
Figure 4.3: An ER Diagram of the STUDENT-AUTOMOBILE Database. 
Translating the Diagram into English  



Tighter English 
We strongly recommend that an English sentence accompany each diagram 
to reinforce the meaning of the figure. Refer to Figure 4.3. English is often an 
ambiguous language. The statement that: 

Automobiles must be driven by one and only one student. 

actually means that: 

Automobiles, which are in the database, must be driven by one 
and only one student. 

It does not mean that: 

One particular student drives some automobiles. 

Another way to put this is: 

Automobiles must be driven by one and only one student 
driver. Students may drive one and only one automobile. 

To relieve ambiguity in the statement of the relationship, we will take the 
English statement from the relationship we have illustrated, and define four 
pattern possibilities for expressing our relationship. All binary relationships 
must be stated in two ways from both sides. As you will see, we will try to 
stick to the exact pattern match in the following examples, but common 
sense and reasonable grammar should prevail in cases where the pattern 
does not quite fit. There is nothing wrong with restating the precise language 
to make it more clear, but you have to say the same thing! 

Pattern 1 — x:y::k:1 
From the k side, full participation (k = 1 or M): 

x's, which are recorded in the database, must be related to one and only one 
y. No x is related to more than one y. 

Example:  

Student:Advisor::M:1 

Students must be advised by one advisor. 

or 

Students, which are recorded in the database, must be 
advised by one and only one advisor. No student is advised by 
more than one advisor. 

The phrase "which are recorded in the database" has proven to be helpful 
because some database designers tend to generalize beyond the problem at 
hand. For example, one could reasonably argue that there might be a case 
where thus-and-so are true/not true, but the point is, will that case ever be 
encountered in this particular database? The negative statement is often 
helpful to solidify the meaning of the relationship. 



Pattern 2 — x:y::k:1 
From the k side, partial participation (k = 1 or M): 

x, but not necessarily all x (which are recorded in the database), may be 
related to one and only one y. Some x's are not related to a y. x's may not be 
related to more than one y. 

Example:  

Student:Fraternity::M:1 

Some students join a fraternity. 

which becomes: 

Students, but not necessarily all students (which are recorded 
in the database), may join a fraternity. Some students may not 
join a fraternity. Students may not join more than one fraternity. 

Pattern 3 — x:y::k:M 
From the k side, full participation (k = 1 or M): 

x's, which are recorded in the database, must be related to many (one or 
more) y's. Sometimes it is helpful to include a phrase such as: No x is related 
to a non y (or) Non x are not related to a y. The negative will depend on the 
sense of the statement. 

Example:  

Automobile:Student::M:N 

Automobiles are driven by (registered to) many students 

which means: 

Automobiles, which are recorded in our database, must be 
driven by many (one or more) students. 

There are several ideas implied here. First, we are only talking about 
vehicles which are registered at this school. Second, in this database, only 
student cars are registered. Third, if an automobile from this database is 
driven, it has to be registered and driven by a student. Fourth, the "one or 
more" comes from the cardinality constraint. Fifth, there is a strong 
temptation to say something about the y, the M side back to the x, but this 
should be avoided as this is covered elsewhere in another pattern, and 
because we discourage inferring other relationships from the one covered. 
For example, one might try to say here that all students drive cars or all 
students are related to a vehicle — neither statement is true. 

Pattern 4 — x:y::k:M 
From the k side, partial participation (k = 1 or M): 

x, but not necessarily all x, (which are recorded in the database) may be 
related to many (zero or more) y's. Some x may not be related to a y. 



Example:  

Course:Book::k:M 

Some courses may require (use) many books. 

which, restated, becomes: 

Courses, but not necessarily all courses, (which are recorded 
in the database) may use many (zero or more) textbooks. 
Some courses may not require textbooks. 

Note that due to partial participation (the single lines), the phrase "zero or 
more," is used for cardinality. If a relationship is modeled with the patterns 
we have used and then the English sounds incorrect, it may be that the 
wrong model has been chosen. Generally, the grammatical expression will 
be most useful in (1) restating the designed database to a naive user, and 
(2) checking the meaning on the designed database among the designers. 
The complete version of the English may eventually prove tiresome to a 
database designer, but one should never lose track of the fact that a 
statement like "x are related to one y" can be interpreted in several ways 
unless it is "nailed down" with constraints stated in an unambiguous way. 
Furthermore, a negation statement may be useful to elicit a requirements 
definition, although at times the negation is so cumbersome it may be left off 
entirely. What we are saying is to add the negative or other noncontradictory 
grammar if it makes sense and helps with requirements elicitation. The 
danger in adding sentences is that we may end up with contradictory or 
confusing remarks. 

Summary of the above Patterns and Relationships 
Pattern 1:  

Relationship is x:y::1(full):1  
Diagramatically shown by Figure 4E  



  
Figure 4E: Chen Model of 1(full):1 Relationship — Pattern 
1   

Pattern 1:  

Relationship is x:y::M(full):1  
Diagramatically shown by Figure 4F  



  
Figure 4F: Chen Model of M(full):1 Relationship — Pattern 
1   

This is a very common form of a relationship which implies that an instance 
of ENTITY1 can only exist for one (and only one) of ENTITY2. 

Pattern 2:  

Relationship is x:y::1(partial):1  
Diagramatically shown by Figure 4G  



  
Figure 4G: Chen Model of 1(partial):1 Relationship — Pattern 
2   

Pattern 2:  

Relationship is x:y::M(partial):1  
Diagramatically shown by Figure 4H  



  
Figure 4H: Chen Model of M(partial):1 Relationship — Pattern 
2   

In this case, some instances in ENTITY1 and ENTITY2 can exist without the 
relationship to the other entity. 

Pattern 3:  

Relationship is x:y::1(full):M  
Diagramatically shown by Figure 4I  



  
Figure 4I: Chen Model of 1(full):M Relationship — Pattern 
3   

Pattern 3:  

Relationship is x:y::M(full):N  
Diagramatically shown by Figure 4J  



  
Figure 4J: Chen Model of M(full):N Relationship — Pattern 
3   

Pattern 4:  

Relationship is x:y::1(partial):M  
Diagramatically shown by Figure 4K  



  
Figure 4K: Chen Model of 1(partial):M Relationship — Pattern 
4   

Pattern 4:  

Relationship is x:y::M(partial):N  
Diagramatically shown by Figure 4L  



  
Figure 4L: Chen Model of M(partial):N Relationship — Pattern 
4   

Checkpoint 4.2 
1. Sketch an ER diagram that shows the participation ratios (full/partial) 

and cardinalities for the following: 
a. Students must be advised by one advisor. 

b. Students, but not necessarily all students, may join a fraternity. 
Some students may not join a fraternity. Students may not join 
more than one fraternity. 

Our refined methodology may now be restated with the relationship 
information added: 

ER Design Methodology  

Step 1: Select one, primary entity from the database requirements 
description and show attributes to be recorded for that entity. Label 
keys, if appropriate, and show some sample data.  

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

Step 3: Examine attributes in the primary entity (possibly with user 
assistance) to find out if information about one of the attributes is to be 
recorded.  

Step 3a: If information about an attribute is needed, then make the 
attribute an entity, and then  



Step 3b: Define the relationship back to the original entity.  

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat step 2 to see if this entity should be further split into 
more entities.  

Step 5: Connect entities with relationships if relationships exist.  

Step 6: State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there is a 
relationship from A(1) to B(M) and from B(M) back to A(1).  

Step 7: Present the "as designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  

Step 8: Show some sample data.  



Some Examples of Other Relationships 
In this section, we consider three other examples of relationships — the two 
1:M relationships and an M:N relationship — in more detail in order to 
practice and further clarify the process we have presented. 

An Example of the One-to-Many Relationship (1:M) 
Relationships that are 1:M or M:1 are really relative views of the same 
problem. When specifying 1:M or M:1, we need to be especially careful to 
specify which entity is 1 (one) and which is M. The designation is really 
which view is more natural for the database designer. As an example of a 
1:M relationship, consider dorm rooms and students. One dorm room may 
have many students living in it, and many students can live in one dorm 
room. So, the relationship between dorm room and students would be 
considered a one-to-many (1:M::DORM:STUDENT) situation and would be 
depicted as in Figure 4.4 (without attributes). We let the term DORM mean 
dorm room. 

  
Figure 4.4: An ER Diagram (without Attributes) of a 1:M 
Relationship   

In Figure 4.4 (the Chen-like model), the name that we chose for the DORM-
STUDENT relationship was occupy. 

Note that not all dorms have students living in them, and hence the 
participation of dorms in the relationship is partial. Informally, 

Dorms may be occupied by many students. 

Furthermore, all students may not live in dorms: therefore, the relationship of 
STUDENT to DORM is also partial: 

Students may occupy a dorm room. 



Now let us restate the relationships in the short and long English forms. For 
the first statement: "Dorms may be occupied by many students" — this fits 
Pattern 4 — x:y::1(partial):M. 

Pattern 4 — 1:M, from 1 side partial participation  

"Some x are related to many y." 

Therefore, the more precise statement is: 

x, but not necessarily all x, (which are recorded in the 
database) may be related to many (zero or more) y's. Some x 
are not related to a y …. 

or 

Dorms, but not necessarily all dorms, (which are recorded in 
the database) may be occupied by many (zero or more) 
students. 

For the inverse relationship: Students may occupy a dorm room — this fits 
Pattern 2 — M(partial):1. 

Pattern 2 — M(partial):1, from M side, optional participation  

"Some x are related to one y." 

Therefore, the long "translation" of the statement is: 

x, but not necessarily all x, (which are recorded in the 
database) may be related to one and only one y. Some x may 
not be related to y. [No x is related to more than one y.] […] 
indicates optional clarification. 

This x and y notation resolves into, x = students, y = dorms, and hence: 

Students, but not necessarily all students, (which are recorded 
in the database) may occupy one and only one dorm. Many 
students may not occupy one dorm room. No student occupies 
more than one dorm. 

An Example of the Many-to-One Relationship (M:1) 
Let us assume for a database that a school or college that we are modeling 
has student parking lots. And let us further assume that every student is 
assigned to park his or her car in some specific parking area. We then have 
an entity called PARKING AREA, which will have parking locations that will 
be described by some descriptive notation such as East Area #7, North Area 
#28, etc. In this case, if we viewed many automobiles as assigned to the one 
parking area and parking area as containing many automobiles, we could 
depict this relationship as a many-to-one, M:1::AUTOMOBILE:PARKING 
AREA. This diagram is shown in Figure 4.5 (again, without attributes). 



  
Figure 4.5: An ER Diagram (without Attributes) of a M:1 
Relationship   

We have depicted the relationship participation between automobile and 
parking area as full in both instances — meaning that all automobiles have 
one parking area and all parking areas are assigned to student's 
automobiles. 

The grammatical expressions of this relationship are: 

Pattern 1 — M:1, from the M side, full participation  

x, which are recorded in the database, must be related to one and only one 
y. No x are related to more than one y. 

x = automobile, y = parking area, relationship = park 

Automobiles, which are recorded in the database, must be 
parked in one and only one parking area. No automobiles may 
be parked in more than one parking area. 

And the inverse: 

Pattern 3 — 1:M, from the 1 side, full participation  

x, which are recorded in the database, must be related to many (one or 
more) y's. [No x is related to a non y (or) Non x are not related to a y. (The 
negative will depend on the sense of the statement.)] 

Parking areas, which are recorded in the database, must park 
many (one or more) automobiles. No parking areas contain 
non-student automobiles. 

This means that no parking areas that we are recording data about in this 



database parks non-student automobiles. 

An Example of the Many-to-Many Relationship (M:N) 
The classic example that we will study here is students taking courses. At 
the outset we know that students take (enroll in) many courses and that any 
course is populated by many students. The basic diagram for the student-
course relationship is that as shown in Figure 4.6. 

  
Figure 4.6: An ER Diagram (without Attributes) of a M:N 
Relationship   

We have chosen the word enroll to depict the relationship. The participation 
of students in enroll is depicted as full (mandatory); course enrollment is 
depicted as partial. This choice was arbitrary, as both could be full or partial, 
depending on user needs and desires. Look carefully at the exact 
grammatical expressions and note the impact of choosing full in one case 
and partial in the other. 

The grammatical expressions of this relationship are: 

Pattern 3 — M:N, from the M side, full participation  

x, which are recorded in the database, must be related to many (one or 
more) y. [No x is related to a non y (or) Non x are not related to a y (or) No x 
is not related to a y. (The negative will depend on the sense of the 
statement.)] 

x = students, y = courses, relationship = enroll 

Students, which are recorded in the database, must be 
enrolled in many (one or more) courses. 

And for the inverse: 

Pattern 4 — M:N, from the M side, partial participation  



x, but not necessarily all x, (which are recorded in the database) may be 
related to many (one or more) y. Some x may not be related to y. 

x = course, y = student, relationship = enroll 

Courses, but not necessarily all courses, (which are recorded 
in the database) may enroll many (one or more) students. 
Some courses may not enroll students. 

This "course partiality" likely reflects courses that are in the database, but 
are not currently enrolling students. It could mean potential courses, or 
courses that are no longer offered. Of course, if the course is in the database 
only if students are enrolled, then the participation constraint becomes full 
and the sense of the entity relationship changes. 

Also, this database tells us that while we can have courses without students, 
we only store information about active students. Obviously we could make 
the student connection partial and hence store all students — even inactive 
ones. We chose to make the relationships the way we did to make the point 
that the participation constraint is to depict reality — the reality of what the 
user might want to store data about. 

Note that all the examples in this chapter deal with only two entities; that is, 
they are binary relationships. The example in the following section provides 
yet another example of a binary relationship. 

Checkpoint 4.3 
1. Give an example of a 1(full):1 relationship? Does such a relationship 

always have to be mandatory? Explain with examples. 

2. Give an example of a 1(partial):1 relationship? Does such a 
relationship always have to be optional? Explain with examples. 

3. Give an example of an M(full):N relationship? Would such a 
relationship always be optional or mandatory? Explain with examples. 

4. Give an example of an M(partial):N relationship? Would such a 
relationship always be optional or mandatory? Explain with examples. 



One Final Example 
As a final example to conclude the chapter, we present one more problem 
and the methodology.[1] Consider a model for a simplified airport that records 
PASSENGERS and FLIGHTS. Suppose that the attributes of PASSENGER 
are name, articles of luggage, and frequent flyer number. Suppose the 
attributes for FLIGHT are flight number, destination, time of departure, and 
estimated time of arrival. Draw the ER diagram. 

Note: We are leaving out many things (attributes) that we could consider 
about our airport; but for the sake of an example, assume that this is all the 
information that we choose to record. 

Here is the solution: 

ER Design Methodology  

Step 1: Select one, primary entity from the database requirements 
description and show attributes to be recorded for that entity. Label 
keys if appropriate and show some sample data.  

Suppose we choose PASSENGER as our primary entity. PASSENGER has 
the following attributes: frequent flier #, name [first, middle, last], articles of 
luggage. We draw this much of the diagram, choosing frequent flier # as a 
key and noting the composite attribute, name. This diagram is shown in 
Figure 4.7. 

  
Figure 4.7: The PASSENGER Entity Diagram   

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

The Entity 

This database records data about PASSENGERS. For each 
passenger, we record the following: frequent flier #, name [first, 
middle, last], articles of luggage. 

The Attributes 
For atomic attributes, att(j): 

For each PASSENGER, there always will be one and only one 
frequent flier #. The value for frequent flier # will not be 
subdivided. 

For each PASSENGER, there always will be one and only one 



recording of articles of luggage. The value for articles of 
luggage will not be subdivided. 

For composite attributes, att(j): 

For each PASSENGER, we will record their name, which is 
composed of first, middle, and last. First, middle, and last are 
the component parts of name. 

The Keys 

For each PASSENGER, we will have the following primary key: 
frequent flier #. 

Note that we have chosen frequent flier # as a primary key for 
PASSENGER. If this were not true, some other means of unique 
identification would be necessary. Here this is all the information we are 
given. 

Step 3: Examine attributes in the primary entity (possibly with user 
assistance) to find out if information about one of the attributes is to be 
recorded. No further information is suggested.  

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat step 2 to see if this entity should be further split into 
more entities.  

The other entity in this problem is FLIGHT with the following attributes: flight 
#, destination, depart time, arrive time. 

Again, we use the structured English: 

The Entity 
This database records data about Flights. For each FLIGHT, we record: 
flight #, destination, depart time, and arrive time. 

The Attributes 
For atomic attributes, att(j): 

For each FLIGHT, there always will be one and only one 
flight#. The value for flight# will not be subdivided. 

For each FLIGHT, there always will be one and only one 
recording of destination. The value for destination will not be 
subdivided. 

For each FLIGHT, there always will be one and only one 
recording of depart time. The value for depart time will not be 
subdivided. 

For each FLIGHT, there always will be one and only one 
recording of arrive time. The value for arrive time will not be 
subdivided. 

The Keys 
For the key(s): (b) One candidate key (strong entity): 



For each FLIGHT, we will have the following primary key: 
flight#. We are assuming flight # is unique. 

Step 5: Connect entities with relationships if relationships exist.  

What Relationship Is There between Flights and Passengers?  

All passengers will fly on a flight. All flights will have multiple passengers. 
The diagram for this problem is illustrated in Figure 4.8 and Figure 4.9. Note 
that we have again made a choice: we will depict one flight per passenger in 
this database. The specifications do not tell us whether this should be 1 or 
M, so we chose 1. We also chose full participation on both sides. It would 
seem illogical to record data about passengers who did not fly on a flight and 
flights where there were no passengers. But again, if the database called for 
storing information about potential passengers who might not book a specific 
flight or flights that did not involve passengers, then we would have to 
change the conceptual design. Figure 4.8 is good for displaying just the 
entities and the attributes. Figure 4.9 uses the concise form of describing 
attributes and also includes some steps from above and some sample data. 
For conceptualizing, Figure 4.8 may be used, and later converted into Figure 
4.9 style for documentation. Either figure requires an accompaniment of 
structured English (step 6). 

  
Figure 4.8: Sample Problem   



  
Figure 4.9: Sample Problem: Alternate Presentation of Attributes with 
Explanation and Sample Data   

Step 6: State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there is a 
relationship from A(1) to B(M) and from B(M) back to A(1).  

Pattern 1 — M:1, from the M side, full participation  

x, which are recorded in the database, must be related to one and only one 
y. No x are related to more than one y. 

x = passenger, y = flight, relationship = fly 

Passengers, which are recorded in the database, must fly on 
one and only one flight. No passenger flies on more than one 
flight. 

Pattern 3 — 1:M, from the 1 side, full participation  

x, which are recorded in the database, must be related to many (one or 
more) y's. 

x = flight, y = passenger, relationship = fly 

Flights, which are recorded in the database, must fly many 
(one or more) passengers. 

Attribute descriptions follow previous patterns. 

Step 7: Present the "as designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  

Step 8: Show some sample data.  

See Figure 4.9. 

[1]Modeled after Elmasri and Navathe (2000).
 



Mapping Relationships to a Relational Database 
In this section we will continue with the mapping rules that we began at the 
end of Chapter 2. In Chapter 2 we learned how to map entities, entities with 
composite attributes, and entities with multi-valued attributes. In this chapter, 
having covered structural constraints of relationships, we will learn how to 
map relationships. 

1. Identify the entities: Passenger, Flight 

2. Add attributes to entities, identifying primary keys:  

Passenger (name[last, first, mi]. frequent flier #, # articles of luggage) 

Flight (flight #, destination, depart time, arrive time) 

3. What relationship is there between Passengers and Flights? 

Passengers fly on flights. 

Our first mapping rule for mapping relationships maps binary M:N 
relationships. 

M3a — For binary M:N relationships: For each M:N 
relationship, create a new table (relation) with the primary 
keys of each of the two entities (owner entities) that are 
being related in the M:N relationship. The key of this new 
table will be the concatenated keys of the owner entities. 
Include any attributes that the M:N relationship may have 
in this new table.  

For example, refer to Figure 4.6. If the STUDENT and COURSE tables have 
the following data: 

STUDENT 

name.first name.last name.mi student_number address 

Richard Earp W 589 222 2nd 
St. 

Boris Backer  909 333 
Dreistrasse 

Helga Hogan H 384 88 Half 
Moon Ave. 

Arpan Bagui K 876 33 Bloom 
Ave 

Hema Malini  505 100 
Livingstone 

COURSE 

cname c_number credit_hrs 

Database COP4710 4 
Visual Basic CGS3464 3 



Before performing the M3a mapping rule, one must first insure that the 
primary keys of the entities involved have been established. If 
student_number and c_number are the primary keys of STUDENT and 
COURSE, respectively, then to map the M:N relationship, we create a 
relation called ENROLL, as follows: 

Both c_number and student_number together are the primary key of the 
relation, ENROLL. 

Our next set of mapping rules for mapping relationships maps binary 1:1 
relationships: 

M3b — For binary 1:1 relationships: Include the primary 
key of Entity A into EntityB as the foreign key.  

The question is: which is EntityA and which is EntityB? This question is 
answered in the next three mapping rules: M3b_1, M3b_2, and M3b_3. 

M3b_1 — For binary 1:1 relationships, if one of the sides 
has full participation in the relationship, and the other has 
partial participation, then store the primary key of the side 
with the partial participation constraint on the side with 
the full participation constraint. Include any attributes of 
the relationship on the side that gets the primary key (the 
primary key now becomes the Foreign key in the new 
relation).  

For example, refer to Figure 4.2. It says: 

An automobile, recorded in the database, must be driven by 
one and only one student. 

and 

Elements of Stats STA3023 3 
Indian History HIST2022 4 

ENROLL 

c_number student_number 

COP4710 589 
CGS3464 589 
CGS3464 909 
STA3023 589 
HIST2022 384 
STA3023 505 
STA3023 876 
HIST2022 876 
HIST2022 505 



A student may drive one and only one automobile. 

Here, the full participation is on the AUTOMOBILE side since "An automobile 
‘must’ be driven by a student." 

So we take the primary key from the partial participation side, STUDENT, 
and include it in the AUTOMOBILE table. The primary key of STUDENT is 
student_number, so this will be stored in the AUTOMOBILE relation as the 
foreign key. A relational database realization of the ER diagram in Figure 4.2 
with some data would look like this: 

Since STUDENT has a multi-valued attribute school, we need the table 
below to map the multi-valued attribute.  

AUTOMOBILE 

vehicle_id make body_style color year student_number 

A39583 Ford Compact Blue 1999 589 
B83974 Chevy Compact Red 1989 909 
E98722 Mazda Van Green 2002 876 
F77665 Ford Compact White 1998 384 

STUDENT 

name.first name.last name.mi student_number address 

Richard Earp W 589 222 2nd St 
Boris Backer  909 333 

Dreistrasse 
Helga Hogan H 384 88 Half 

Moon Ave 
Arpan Bagui K 876 33 Bloom 

Ave 
Hema Malini  505 100 

Livingstone 

Name-School 

student_number school 

589 St. Helens 
589 Mountain 
589 Volcano 
909 Manatee U 
909 Everglades High 
384 PCA 



In this case, if the relationship had any attributes, it would be included in the 
relation, AUTOMOBILE. 

M3b_2 — For binary 1:1 relationships, if both sides have 
partial participation constraints, there are three alternative 
ways to implement a relational database:  

M3b_2a — First alternative — you may select either one of 
the relations to store the key of the other (and live with 
some null values).  

M3b_2b — Second alternative — depending on the 
semantics of the situation, you can create a new relation 
to house the relationship that would contain the key of the 
two related entities (as is done in M3a).  

Again refer to Figure 4.1, here we assume that the participation constraints 
are partial from both sides, and assume that there is no school attribute. 
Then Figure 4.1 would read: 

An automobile may be driven by one and only one student. 

and 

A student may drive one and only one automobile. 

The relational realization could be [take the vehicle_id (primary key of 
AUTOMOBILE) and store it in STUDENT, as shown below]: 

384 Pensacola High 
876 UWF 
505 Cuttington 
505 UT 

AUTOMOBILE 

vehicle_id make body_style color year 

A39583 Ford Compact Blue 1999 
B83974 Chevy Compact Red 1989 
E98722 Mazda Van Green 2002 
F77665 Ford Compact White 1998 
G99999 Chevy Van Grey 1989 

STUDENT 

name.first name.last name.mi student_number address vehicle_id 

Richard Earp W 589 222 2nd St A39583 
Boris Backer  909 333 B83974 



In the STUDENT relation, vehicle_id is the foreign key. 

M3b_2c — The third way of implementing this 1:1 binary 
relationship with partial participation on both sides would 
be to create a new table (relation) with just the keys from 
the two tables STUDENT and AUTOMOBILE, in addition to 
the two tables, STUDENT and AUTOMOBILE. In this case 
we would map the relations as we did in the binary M:N 
case; and if there were any null values, these would be left 
out of the linking table, as shown below:  

In this case, the two relations STUDENT and AUTOMOBILE would remain 
as: 

Dreistrasse 
Helga Hogan H 384 88 Half 

Moon Ave 
F77665 

Arpan Bagui K 876 33 Bloom 
Ave 

E98722 

Hema Malini  505 100 Livingstone 

STUDENT-AUTOMOBILE 

vehicle_id student_number 

A39583 589 
B83974 909 
E98722 876 
F77665 384 

STUDENT 

name.first name.last name.mi student_number address 

Richard Earp W 589 222 2nd St 
Boris Backer  909 333 

Dreistrasse 
Helga Hogan H 384 88 Half 

Moon Ave 
Arpan Bagui K 876 33 Bloom 

Ave 
Hema Malini  505 100 

Livingstone 

AUTOMOBILE 

vehicle_id make body_style color year 



M3b_3 — For binary 1:1 relationships, if both sides have 
full participation constraints, you may use the semantics 
of the relationship to select which of the relations should 
contain the key of the other. It would be inappropriate to 
include foreign keys in both tables as you would be 
introducing redundancy in the database. Include any 
attributes on the relationship, on the relation that is 
getting the foreign key.  

Now assuming full participation on both sides of Figure 4.1, the two tables 
STUDENT and AUTOMOBILE could be: 

In this above case, the student_number was included in AUTOMOBILE, 
making student_number a foreign key in AUTOMOBILE. We could have also 
taken the primary key from AUTOMOBILE, vehicle_id, and included that in 
STUDENT table. 

In this case, if the relationship had any attributes, these would have been 
stored in AUTOMOBILE, along with student_number. 

A39583 Ford Compact Blue 1999 
B83974 Chevy Compact Red 1989 
E98722 Mazda Van Green 2002 
F77665 Ford Compact White 1998 
G99999 Chevy Van Grey 1989 

STUDENT 

name.first name.last name.mi student_number address 

Richard Earp W 589 222 2nd St 
Boris Backer  909 333 

Dreistrasse 
Helga Hogan H 384 88 Half 

Moon Ave 
Arpan Bagui K 876 33 Bloom 

Ave 
Hema Malini  505 100 

Livingstone 

AUTOMOBILE 

vehicle_id make body_style color year student_number 

A39583 Ford Compact Blue 1999 589 
B83974 Chevy Compact Red 1989 909 
E98722 Mazda Van Green 2002 876 
F77665 Ford Compact White 1998 384 
G99999 Chevy Van Grey 1989 505 



The next set of mapping relationships maps binary 1:N relationships: 

M3c — For binary 1:N relationships, we have to check 
what kind of participation constraints the N side of the 
relationship has:  

M3c_1 — For binary 1:N relationships, if the N-side has full 
participation, include the key of the entity from the 1 side, 
in the relation on the N side as a foreign key.  

For example, in Figure 4.4 if we assume full participation on the student side, 
we will have: 

Dorm rooms may have zero or more students. 

and 

Students must live in one and only one dorm room. 

The relational realization would be:  

Here, the full participation is on the N side, that is, on the STUDENT entity 
side. So, we take the key from DORM, dname, and include it in the 
STUDENT relation. In this case, if the relationship had an attribute, it would 
be included in STUDENT, the N side. 

M3c_2 — For binary 1:N relationships, if the N-side has 
partial participation, the 1:N relationship is handled just 
like a binary M:N relationship with a separate table for the 
relationship. The key of the new relation consists of a 
concatenation of the keys of the related entities. Include 

STUDENT 

name.first name.last name.mi student_number dorm 

Richard Earp W 589 A 
Boris Backer  909 C 
Helga Hogan H 384 A 
Arpan Bagui K 876 A 
Hema Malini  505 B 

DORM 

dname supervisor 

A Saunders 
B Backer 
C Hogan 
D Eisenhower 



any attributes that were on the relationship, on this new 
table.  

Checkpoint 4.4 
1. State the mapping rules that would be used to map Figure 4.5? Map 

Figure 4.5 to a relational database and show some sample data. 

2. State the mapping rules that would be used to map Figure 4.8? Map 
Figure 4.8 to a relational database and show some sample data. 



Chapter Summary 
This chapter discussed cardinality and participation ratios in ER diagrams. 
Several examples and diagrams of binary relationships with structural 
constraints (developed in the Chen-like model) were discussed. Tighter 
English grammar was presented for each of the diagrams, and steps 7 and 8 
of the ER design methodology were defined. The final section of the chapter 
discussed mapping relationships. 



Chapter 4 Exercises 

Exercise 4.1 
Refer to Figure 2.3. Suppose that the only attributes of STUDENT are 
student number and name. And, let us suppose that we have another entity 
called "high school," which is going to be the high school from which the 
student graduated. For the high school entity, we will record the high school 
name and the location (meaning city and state). Draw the ER diagrams 
using the Chen-like model. Follow the methodology and include all English 
descriptions of your diagrams. Map the ER diagrams to a relational 
database. 

Exercise 4.2 
Suppose that a college has one dormitory with many rooms. The dormitory 
entity, which is actually a "dormitory room" entity because there is only one 
dorm, has the attributes room number and single/double (meaning that there 
are private rooms and double rooms). Let us suppose that the STUDENT 
entity in this case contains the attributes student number, student name, and 
home telephone number. Draw the ER diagrams using the Chen-like model. 
Follow the methodology and include all English descriptions of your 
diagrams. Map the ER diagrams to a relational database. 

Exercise 4.3 
Consider a student database with students and campus organizations. 
Students will have the attributes of student number and student name. 
Organizations will have the following attributes: organization name and 
organization type. Draw the ER diagrams using the Chen-like model. Follow 
the methodology and include all English descriptions of your diagrams. Map 
the ER diagram to a relational database and include some sample data. 

Exercise 4.4 
Consider a student and advisor database. Students have a student number 
and student name. Advisors have names, office numbers, and advise in 
some major. The major that the advisor advises in is designated by a major 
code (e.g., Chemistry, CHEM; Biology, BIOL; Computer Science, COMPSC: 
etc.) Draw the ER diagrams using the Chen-like model. Follow the 
methodology and include all English descriptions of your diagrams. Map the 
ER diagram to a relational database and include some sample data. 

Exercise 4.5 
You want to record the following data in a database: restaurant name and 
location, employee names and IDs, capacity of restaurant (smoking and non-
smoking), hours of operation (assume same hours every day), employee 
salaries and titles. An employee can work for only one restaurant. Draw the 
ER diagrams using the Chen-like model. Follow the methodology and 
include all English descriptions of your diagrams. Map the ER diagram to a 
relational database and include some sample data. 

Exercise 4.6 
Record the following data in a database: business name, owner, location(s), 



telephone #(s), delivery truck number, truck capacity, usual route description 
(e.g., North, West, Central, Lake). Draw the ER diagrams using the Chen-
like model. Follow the methodology and include all English descriptions of 
your diagrams. 

Exercise 4.7 
Refer to Figure 4.10. What are the English language statements you can 
make about the figure? 

  
Figure 4.10   

Exercise 4.8 
Refer to Figure 4.9. Complete the diagram by adding a precise English 
description of each attribute. Map Figure 4.9 to a relational database. 

Exercise 4.9 
What is the cardinality of the following? 

a. Each student can have only one car 

b. Each student has many cars 



c. Each car can be driven by many students 

d. Each car must be driven by many students. 

Which of these above cardinality rules are optional? Which rules are 
mandatory? Diagramatically show these relationships. 
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Case Study: West Florida Mall (continued) 
In the past few chapters we selected our primary entities (as per the 
specifications from the user so far) and defined the relationships between 
the primary entities. In this chapter we proceed with the ER diagram for this 
case study by looking at steps 6 and 7 of the ER design methodology, and 
map the ER diagram to a relational database (with some sample data) as we 
proceed. 

Step 6 develops the structural constraints of binary relationship by stating: 

Step 6: State the exact nature of the relationships in structured English 
from all sides. For Example, if a relationship is A:B::1:M, then there is a 
relationship from A(1) to B(M) and from B(M) back to A(1).  

Refer to Figure 4.11. 

  
Figure 4.11: An ER Diagram of West Florida Mall with Four Entities and 
Structural Constraints   

First, for the relationship located_in:  

From MALL to STORE, this fits Pattern 3, 1(full):N:  

One mall must have many (at least one) stores. 

or 

Malls, which are recorded in the database, must have many 
(one or more) stores located in them. 

From STORE to MALL, this fits Pattern 1, M(full):1:  

Many stores (one or more) must be in one mall. 



or 

Stores, which are recorded in the database, must be in one 
mall. 

To map this relationship (with some sample data):  

The MALL entity will be mapped as was shown in the case study in Chapters 
2 and 3 (as shown on the following page):  

Next, we have to map the relationship between the MALL entity and the 
STORE entity. This is a binary 1:N relationship; hence, we will use mapping 
rule M3c_1, which states: 

M3c_1 — For binary 1:N relationships, if the N-side has full 
participation, include the key of the entity from the 1 side, 
in the relation on the N side as a foreign key.  

So, the key from the 1 side, the MALL side, name (meaning, mall_name), 
will be included in the N side, STORE side, as the foreign key, as follows: 

MALL-Store 

name store_name 

West Florida Mall Penney's 
West Florida Mall Sears 
West Florida Mall Dollar Store 
West Florida Mall Rex 

Cordova Mall Dillards 

MALL 

name address 

West Florida Mall N Davis Hwy, Pensacola, FL 
Cordova Mall 9th Avenue, Pensacola, FL 

Navy Mall Navy Blvd, Pensacola, FL 
BelAir Mall 10th Avenue, Mobile, AL 

STORE 

sloc sname snum mall_name 

Rm 101 Penney's 1 West Florida Mall 
Rm 102 Sears 2 West Florida Mall 
Rm 109 Dollar Store 3 West Florida Mall 



Due to the multi-valued attribute, depts, in STORE, we will keep the relation 
with the multi-valued attribute (as developed in Chapter 3): 

Then, for the relationship owns:  

From OWNER to STORE, this fits Pattern 3, 1(full):M:  

Owners, which are recorded in the database, must own one or 
more stores. 

or 

One owner must own at least one store, and may own many 
stores. 

From STORE to OWNER, this fits Pattern 1, M(full):1:  

Stores, which are recorded in the database, must have one 
and only one owner. 

or 

Many stores can have one owner. 

To map this relationship (with some sample data):  

For the relationship owns, from OWNER to STORE, a 1:N relationship: 

Again, using mapping rule M3c_1, we will take the key from the 1 side, 
so_ssn, and include this as the foreign key in the N side, STORE, so STORE 
now becomes: 

Rm 110 Rex 4 West Florida Mall 

STORE-dept 

snum depts 

1 Tall men's clothing 
1 Women's clothing 
1 Children's clothing 
1 Men's clothing 
.  

.  

.  

STORE 

sloc sname snum mall_name so_ssn 

Rm 101 Penney's 1 West Florida Mall 879-987-0987 



And the relation for the OWNER entity remains as developed in the earlier 
chapter: 

Next, for the relationship, manages:  

From STORE to STORE MANAGER, this fits Pattern 1, 1(full):1:  

Stores, which are recorded in the database, must have one 
store manager. 

or 

Stores must have one store manager, and can only have one 
and only store manager. 

From STORE MANAGER to STORE, this also fits Pattern 1, 1(full):1:  

Store managers, which are recorded in the database, must 
manage one and only one store. 

or 

Store managers must manage at least one store, and can 
manage only one store. 

To map this relationship (with some sample data):  

The relationship between STORE and STORE MANAGER is a binary 1:1 
relationship, hence using mapping rule M3b_3, the relation STORE would 
develop into (we are taking the key from STORE MANAGER, sm_ssn, and 
including it in STORE as the foreign key): 

Rm 102 Sears 2 West Florida Mall 928-088-7654 
Rm 109 Dollar Store 3 West Florida Mall 826-098-0877 
Rm 110 Rex 4 West Florida Mall 982-876-8766 

OWNER 

so_ssn so_name so_off_phone so_address 

879-987-
0987 

Earp (850)474-2093 1195 Gulf Breeze Pkwy, 
Pensacola, FL 

826-098-
0877 

Sardar (850)474-9873 109 Navy Blvd, 
Pensacola, FL 

928-088-
7654 

Bagui (850)474-9382 89 Highland Heights, 
Tampa, FL 

982-876-
8766 

Bush (850)474-9283 987 Middle Tree, Mobile, 
AL 

STORE 

sloc sname snum mall_name so_ssn sm_ssn 



And the relation for the STORE MANAGER entity remains as was developed 
in the earlier chapter: 

Our next step will be step 7, which is: 

Step 7: Present the "as-designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  

In summary our relational database has so far been mapped to (without the 
data): (Note: The primary keys are underlined.) 

MALL-Store 

MALL 

STORE 

STORE-dept 

OWNER 

STORE MANAGER 

Rm 
101 

Penney's 1 West Florida 
Mall 

879-987-
0987 

283-972-
0927 

Rm 
102 

Sears 2 West Florida 
Mall 

928-088-
7654 

456-098-
0987 

Rm 
109 

Dollar 
Store 

3 West Florida 
Mall 

826-098-
0877 

234-987-
0988 

Rm 
110 

Rex 4 West Florida 
Mall 

982-876-
8766 

928-982-
9882 

STORE MANAGER 

sm_ssn sm_name sm_salary 

234-987-0988 Saha 45,900 
456-098-0987 Becker 43,989 
928-982-9882 Ford 44,000 
283-972-0927 Raja 38,988 

name  store_name 

name  address 

sloc sname snum  mall_name so_ssn sm_ssn 

snum  depts 

so_ssn  so_name so_off_phone so_address 



We continue with the development of this case study at the end of Chapter 
5. 

sm_ssn  sm_name sm_salary 



Chapter 5: The Weak Entity 
Chapters 2 and 3 introduced the concepts of the entity, the attribute, and the 
relationship. Chapter 4 dealt with structural constraints, that is, how two 
entities are related to one another. This chapter discusses the concept of the 
"weak" entity, which is used in the Chen-like model. Weak entities may not 
have a key attribute of their own, as they are dependent on a strong or 
regular entity for their existence (that has a key attribute of its own). The 
weak entity has some restrictions on its use, and produces some interesting 
diagrams. This chapter revisits and redefines steps 3 and 4 of the ER design 
methodology to include the concept of the weak entity. A grammar for the 
weak entities and mapping rules for the weak entities are also developed. 

Strong and Weak Entities 
As discussed in Chapter 2, there are situations where finding a key to a 
relationship is difficult. So far, we have concentrated on examples with 
strong (regular) entities — mostly ones with easily identifiable keys. Strong 
entities almost always have a unique identifier that is a subset of all the 
attributes; a unique identifier may be an attribute or a group of attributes. For 
example, a student number, an automobile vehicle identification number, a 
driving license number, etc. may be unique identifiers of strong entities. 

A weak entity is one that clearly will be an entity but will depend on another 
entity for its existence. As previously mentioned, a weak entity will not 
necessarily have a unique identifier. A classic example of this kind of entity is 
a DEPENDENT as related to an EMPLOYEE entity. If one were constructing 
a database about employees and their dependents, an instance of a 
dependent would depend entirely on some instance of an employee, or else 
the dependent would not be kept in the database. The EMPLOYEE entity is 
called the owner entity or identifying entity for the weak entity DEPENDENT. 

How can a weak entity come about in our diagrams? In the creation of a 
database, we might have a dependent name shown as a multi-valued 
attribute, as shown in Figure 5.1. An example of data for a diagram like 
Figure 5.1 would be: 

EMPLOYEE 

name (First, MI, Last) emp ID dependents 

John J. Jones 0001 John, Jr; Fred; Sally 
Sam S. Smith 0004 Brenda; Richard 

Adam A. Adams 0007 John; Quincy; Maude 
Santosh P. Saha 0009 Ranu; Pradeep; Mala 



  
Figure 5.1: The EMPLOYEE Entity Showing DEPENDENT Name as a 
Multi-Valued Attribute   

Suppose that in our conversations with the user, we discover that more 
information is supposed to be gathered about the dependents themselves. 
Following our methodology, this acknowledgment is a recognition that the 
dependents should be entities; that is, they fit the criteria for "entity," which is 
that we would be recording information about "something" (the dependent). 
Hence, we would be describing an entity called DEPENDENT. If we make 
DEPENDENT an entity, we would embellish the diagram in Figure 5.1 to that 
of Figure 5.2. 

  
Figure 5.2: The EMPLOYEE–DEPENDENT ER Diagram — First 
Pass   



Figure 5.2 poses a problem: the DEPENDENT entity is dependent on the 
EMPLOYEE for its being. Also, it has no clear unique identifier. This 
dependence on EMPLOYEE makes DEPENDENT a weak entity. As is often 
the case with weak entities, neither name, birth date, nor insurance benefits 
are candidate keys by themselves. None of these attributes would have 
unique values. There is no single attribute candidate key. 

In the Chen-like model, for weak entities, we enclose the entity in a double 
box, and the corresponding relationship to the owner in a double diamond 
(see Figure 5.3). The weak entity in Figure 5.3, the DEPENDENT, is said to 
be identified by the entity EMPLOYEE; the EMPLOYEE is called the 
"identifying entity" or "owner entity" for the weak entity, DEPENDENT. 

  
Figure 5.3: The EMPLOYEE–DEPENDENT ER 
Diagram   

Attributes are handled the same way for weak entities as for strong entities 
(except that there may be no primary keys for weak entities). We have 
included some attributes in Figure 5.3 so that the figures depict the following 
(in loose grammar): 

A dependent must be related to one employee and an 
employee may have many dependents. 

The DEPENDENT entity has the following attributes: name (a composite 
attribute), birth date, and insurance benefits. 

In dealing with weak entities, it is appropriate to consider how each instance 
of the entity would be identified. Because the owner of the weak entity, 
DEPENDENT, is the strong entity EMPLOYEE, the identification process 
would involve the EMPLOYEE key plus some information from the weak 
entity, DEPENDENT. Name is a likely candidate as an identifier for 



DEPENDENT, and will be called a partial key. 

In Figure 5.3, we have dash-underlined the atomic parts of the composite 
attribute, name. Name is a partial key as it identifies dependents, but not 
uniquely. Because name is composite, the atomic parts of it are 
distinguished as the partial key. This assumes that all dependents have 
unique names. 

In Figure 5.3, we did not "name" the relationship, and left it as ED for 
EMPLOYEE-DEPENDENT. Suitable names for the dependent might be 
"have," as in: 

Employees may have many dependents. 

or "dependent upon" as in 

Employees may have many dependents dependent upon 
them. 

We could also have used "related to," as in: 

Employees are related to many dependents. 

Each of these verb phrases seems to have a redundancy (dependent upon) 
or perhaps misleading (related to) air about them. Probably the best thing to 
do there is to leave the relationship unnamed (ED). 



Weak Entities and Structural Constraints 
Weak entities always have full or mandatory participation from the weak side 
toward the owner. If the weak entity does not have total participation, then 
we would have a data item in the database that is not uniquely identified, 
and which is not tied to a strong entity. In our EMPLOYEE–DEPENDENT 
example, this would be like keeping track of a dependent that is not related 
in any way to an employee. The cardinality of the relationship between the 
weak and strong entity will usually be 1:M, but not necessarily so. 



Weak Entities and the Identifying Owner 
There are situations in which a weak entity can be connected to an owner 
entity while other relationships exist apart from the "owner" relationship. For 
example, consider Figure 5.4. In this figure, we have shown two 
relationships — owns and drives — connecting the two entities, EMPLOYEE 
and AUTOMOBILE. Here, the AUTOMOBILE entity is considered a weak 
entity; that is, if there is no employee, then there will be no automobile (the 
automobile has to have an employee to exist in the database). Further, the 
automobile is identified by the owner; note the double diamond on the owns 
relationship, and the full participation of the AUTOMOBILE entity in the owns 
relationship. 

  
Figure 5.4: A Weak Entity with Two Relationships   

In Figure 5.4, we also have a drives relationship. The automobile is driven by 
employees other than the owner. All automobiles are driven by some 
employee and, hence, the participation is full. However, the driveremployee 
may not necessarily be the actual owner. To identify AUTOMOBILE we are 
saying that we need the owns relationship, but other nonowner drivers may 
exist. 

According to Figure 5.4, one employee may own many automobiles. To 
answer the question — which automobiles does an employee own, in 
addition to the employee's_id, we will need to know the make, model, and 
color of the automobiles. The make, model, and color of the AUTOMOBILE 
entity are partial keys (dotted underline in Figure 5.4). 

Checkpoint 5.1 

1. How would you identify a strong entity? 

2. How would you identify a weak entity? 



3. What kind of a relationship line (single or double) would be leading up 
to the weak entity in a Chen-like diagram? 

4. What kind of relationship does a weak entity have in a Chen-like 
model? 

5. What is a partial key? 



Another Example of a Weak Entity and the 
Identifying Owner 
As another example of a weak entity and the identifying owner in an ER 
diagram, consider Figure 5.5. In this figure we have two strong entities: 
PERSON and VET. There is one weak entity, PET. Figure 5.5 illustrates that 
PERSON owns PET, but the VET treats the PET. In this diagram, PERSON 
is the identifying or controlling entity for PET and, hence, the relationship 
owns has a double diamond. The relationship owns is a weak relationship. 
PET is a weak entity with respect to PERSON. 

  
Figure 5.5: The PERSON–PET–VET ER Diagram   

Conversely, the relationship treats does not have a double diamond because 
VET is not the owner of PET. Here, treats is not a weak relationship, and 
PET is not a weak entity with respect to VET. 



Weak Entities Connected to Other Weak Entities 
A final point regarding weak entities. Just because an entity is weak does not 
preclude it from being an owner of another weak entity. For example, 
consider Figure 5.6. In this figure, the EMPLOYEE–DEPENDENT 
relationship has been enhanced to include hobbies of the dependents. 
(Never mind why one would want to keep this information, but let us suppose 
that they do anyway). 

  
Figure 5.6: The EMPLOYEE–DEPENDENT–HOBBY ER 
Diagram   

DEPENDENT is a weak entity. The entity HOBBY is also weak. Hobbies 
might be identified by their type (e.g., stamp collecting, baseball, tying knots, 
observing trains, etc.). The type attribute of HOBBY is a partial key for 
HOBBY. 

The entity DEPENDENT is the owner of the entity HOBBY, and the entity 
EMPLOYEE is the owner of the weak entity DEPENDENT. 

The reason that this situation is brought up here is to show that it can exist. 
Later, when we map this situation, we will treat this special situation 
carefully. 

Checkpoint 5.2 

1. Can a weak entity be dependent on another weak entity? 

2. Can a weak entity have a relationship that is not "weak" with the 
identifying entity? 

3. Can a weak entity be related to more than one entity (strong or 
weak)? 





Revisiting the Methodology 
The inclusion of a weak entity in an ER diagram causes us to again look at 
our methodology and make some adjustments. We might discover the weak 
entity in one of two places: one would be as we illustrated with the evolution 
of the multi-valued attribute, the "dependent"; this would occur in step 3a and 
3b: 

Step 3: Examine attributes in the primary entity (possibly with user 
assistance) to find out if information about one of the attributes is to be 
recorded.  

Step 3a: If information about an attribute is needed, then make the 
attribute an entity, and then  

Step 3b: Define the relationship back to the original entity.  

So we add: 

Step 3c: If the new entity depends entirely on another entity for its 
existence, then draw the entity as weak (double boxed) and show the 
connection to the identifying entity as a double diamond. The 
participation of the weak entity in the relationship is full. Dash-
underline the partial key identifier(s) in the weak entity.  

The second place that a weak entity might appear would be as part of step 4 
when new entities are being considered: 

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat step 2 to see if any attributes should be further split 
into more entities.  

So we add: 

Step 4a: If the additional entity or entities do not have candidate keys, 
then draw them as weak entities (as explained in step 3c) and show the 
connection to an identifying entity. The participation of the weak entity 
in the relationship is full or mandatory. Dashunderline the partial key 
identifier(s) in the weak entity.  

Again, note that a weak entity cannot exist without an identifying entity. So if 
the weak entity is "discovered" independent of an identifying entity, the 
relationship-connection should be made immediately. 



Weak Entity Grammar 
We previously discussed some grammar associated with weak entities, but 
now we want to revise and enhance the idea when we have no primary key 
for the weak entity. It is possible for a weak entity to have a primary key and 
therefore it might appear in item (b), so we add part (c). 

The Keys 
For the key(s): 

a. More than one candidate key (strong entity): … [discussed 
previously] 

b. One candidate key (strong or weak entity): For each weak entity, 
but it is assumed that no weak entity will be recorded without a 
corresponding owner (strong) entity. [discussed previously]  

c. No candidate keys (weak entity): For each (weak) Entity, we do 
not assume that any attribute will be unique enough to identify 
individual entities. 

In this case, the DEPENDENT entity would be depicted as: 

For each DEPENDENT entity, we do not assume that any attribute will 
be unique enough to identify individual entities. 

We will now enhance this description to include the identifying 
entity: 

Because the weak entity does not have a candidate key, each 
weak entity will be identified by key(s) belonging to the strong 
entity. 

In this case, the DEPENDENT entity is identified by the 
EMPLOYEE entity and this second statement becomes: 

Because the DEPENDENT entity does not have a candidate key, each 
DEPENDENT entity will be identified by key(s) belonging to the 
EMPLOYEE entity, plus name (the partial key) in the DEPENDENT 
entity. 



Mapping Weak Entities to a Relational Database 
In this section we develop the mapping rules for mapping weak entities to a 
relational database. 

M4 — For weak entities — Develop a new table (relation) 
for each weak entity. As is the case with the strong entity, 
include any atomic attributes from the weak entity in the 
table. If there is a composite attribute, include only the 
atomic parts of the composite attribute, and be sure to 
qualify the atomic parts in order to not lose information. 
To relate the weak entity to its owner, include the primary 
key of the owner entity in the weak relation as a foreign 
key. The primary key of the weak relation will be the partial 
key in the weak entity concatenated to the key of the 
owner entity.  

If weak entities own other weak entities, then the weak entity that is 
connected to the strong entity must be mapped first. The key of the weak 
owner entity has to be defined before the "weaker" entity (the one furthest 
from the strong entity) can be mapped. 

For example, refer to Figure 5.3. The EMPLOYEE relation and 
DEPENDENT relation would be mapped as shown below: 

(employee_id is the primary key of EMPLOYEE). 

The primary key, employee_id, from the owner relation, EMPLOYEE, is 
included in the weak entity, DEPENDENT. employee_id now becomes part 
of the primary key of DEPENDENT. Because dname.first, dname.last, and 
dname.mi are the partial key of the DEPENDENT relation, the primary key of 
the DEPENDENT relation now finally becomes dname.first, dname.last, 

EMPLOYEE 

ename.first ename.last ename.mi employee_id 

Richard Earp W 589 
Boris Backer  909 
Helga Hogan H 384 
Arpan Bagui K 876 
Hema Malini  505 

DEPENDENT 

dname.first dname.last dname.mi birth_date insurance employee_id 

Beryl Earp W 1/1/74 SE 589 
Kaitlyn Backer  2/25/78 SE 909 
David Earp H 3/4/75 BlueCross 589 
Fred Earp K 3/7/98 BlueCross 589 
Chloe Hogan  5/6/88 SE 384 



dname.mi, and employee_id all together. 

Now refer to Figure 5.6. Here, the DEPENDENT relation is dependent on the 
EMPLOYEE relation, and the HOBBY relation is dependent on the 
DEPENDENT relation. The EMPLOYEE relation and DEPENDENT relation 
would be mapped as shown above, and then the HOBBY relation would be 
mapped as shown below: 

The partial key of HOBBY was type. The primary key of the HOBBY relation 
now becomes dname.first, dname.last, dname.mi, employee_id, and type, all 
together. 

Checkpoint 5.3 

1. What are the rules for mapping weak entities? Map Figure 5.5 and 
show some sample data. 

2. When mapping weak entities, what becomes their new primary key? 

3. How would you map multi-valued attributes in a weak entity? Discuss. 

HOBBY 

dname.first dname.last dname.mi employee_id type years_involved 

Beryl Earp W 589 swimming 3 
Kaitlyn Backer  909 reading 5 
David Earp H 589 hiking 1 
Fred Earp K 589 fishing 2 
Chloe Hogan  384 singing 4 



Chapter Summary 
This chapter discussed and developed the concept of the "weak entity." The 
grammar for the weak entity was enhanced, along with the ER design 
methodology. The mapping rules for mapping the weak entity were also 
developed. This concept of the weak entity is available in the Chen-like 
model but is treated differently in many other ER diagram models. 



Chapter 5 Exercises 

Exercise 5.1 
Construct an ER diagram (in the Chen-like model) for a database that is to 
contain the following: employee name (ename), employee number (enum), 
employee address (eaddr), skill(s) (eskill). An employee may have more than 
one skill. Then enhance the diagram to include: level of skill, date skill 
certified (if certified), and date began using the skill. Are there any weak 
entities in this database? Map this ER diagram to a relational database. 

Exercise 5.2 
Construct an ER diagram (in the Chen-like model) for sports and players. 
Attributes of SPORTS are: sport name — type of sport — timed or untimed. 
Attributes of PLAYERS are: name, person ID, date of birth. Players may play 
multiple sports. Which entity or entities would you consider weak? Write out 
the grammar for the ER diagram. Map this ER diagram to a relational 
database. 

Exercise 5.3 
How are weak entities generally identified? 

Exercise 5.4 
What mapping rules would be used to map Figure 5.4? Map Figure 5.4 to a 
relational database and show some sample data. 
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Case Study: West Florida Mall (continued) 
In the previous chapters we selected our primary entities, defined the 
attributes and relationships for this case study, and mapped it to a relational 
database (with some sample data). In Chapter 4 we also determined the 
structural constraints of the relationships and adjusted some of the mappings 
accordingly. Then we reviewed step 7, which says: 

Step 7: Present the "as-designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  

Suppose we got some additional input from the user: A store must have one 
or more departments. A department will not exist without a store. For each 
department we will store the department name, department number, and 
department manager. Each department has at least one employee working 
for it. 

We have to record information about the employees in the store. For each 
employee in a store, we will have to keep an employee's name, social 
security number, and the department in which that the employee works. 
Employees must work in one and only one department. 

In Chapter 3 we determined that departments was a multi-valued attribute of 
STORE (that is, one store had many departments). But, upon reviewing 
these additional (above) specifications, we can now see that DEPARTMENT 
needs to be an entity on its own because we have to record information 
about a DEPARTMENT. Also, we can see that we have to record information 
about another new entity, EMPLOYEE. So, these above specifications add 
two new entities: DEPARTMENT and EMPLOYEE. 

First we will select an entity, DEPARTMENT. Now, repeating Step 2 for 
DEPARTMENT: 

The Entity 

This database records data about a DEPARTMENT. For each 
DEPARTMENT in the database, we record a department name 
(dname) and department number (dnum). 

The Attributes for DEPARTMENT 

For each DEPARTMENT, there will always be one and only 
one dname. The value for dname will not be subdivided. 

For each DEPARTMENT, there will always be one and only 
one dnum. The value for dnum will not be subdivided. 

The Keys 

For each DEPARTMENT, we do not assume that any attribute 
will be unique enough to identify individual entities without the 
accompanying reference to STORE, the owner entity. Note that 
the language leads you to thinking of DEPARTMENT as a 
weak entity. 

Next, we will select our next entity, EMPLOYEE. Now, repeating step 2 for 
EMPLOYEE: 



The Entity 

This database records data about an EMPLOYEE. For each 
EMPLOYEE in the database, we record an employee name 
(ename) and employee social security number (essn). 

The Attributes for EMPLOYEE 

For each EMPLOYEE, there will always be one and only one 
ename recorded for each EMPLOYEE. The value for ename 
will not be subdivided. 

For each EMPLOYEE, there will always be one and only one 
essn recorded for each EMPLOYEE. The value for essn will 
not be subdivided. 

The Keys 

For each EMPLOYEE, we will assume that the essn will be 
unique. (So, EMPLOYEE will be a strong entity.) 

These entities have been added to the diagram in Figure 5.7. 

  
Figure 5.7: An ER Diagram of West Florida Mall Developed Thus 
Far   

Using step 6 to determine the structural constraints of the relationships, we 
get: 

First, for the relationship, dept_of: 

From STORE to DEPARTMENT, this fits Pattern 3, 1(full):N: 

Stores, which are recorded in the database, must have many 
(one or more) departments. 



From DEPARTMENT to STORE, this fits Pattern 1, M(full):1: 

Many departments (one or more) must be in one store. 

To map this relationship (with some sample data): 

The relationship between STORE and DEPARTMENT is a 
binary 1:N relationship, so using mapping rule M3c_1, we will 
take the key from the 1 side, snum, and include this as the 
foreign key in the N side, DEPARTMENT, so the relation 
DEPARTMENT becomes: 

The STORE relation will be the same as it was in Chapter 4, 
but we will not need the relation, STORE_depts. (In Chapter 4, 
departments was still a multi valued attribute of STORE, so we 
had the relations STORE and STORE_depts.) From the 
specifications at the beginning of the case study in this chapter, 
it is apparent that DEPARTMENT is an entity on its own, so the 
STORE_depts relation is included in (replaced by) the 
DEPARTMENT relation. 

Then, for the relationship, works_for: 

From EMPLOYEE to DEPARTMENT, this fits Pattern 1, 1
(full):1 : 

Employees, who are recorded in the database, must work for one and only 
one department. 

From DEPARTMENT to EMPLOYEE, this fits Pattern 3, 1
(full):N : 

Departments, which are recorded in the database, must have one or more 
employees working for it. 

To map this relationship (with some sample data): 

From EMPLOYEE to DEPARTMENT, the relationship is 1:1, 
and because both sides have full participation, using mapping 
rule M3b_3, we can select which side can store the key of the 
other. But, because the relationship between DEPARTMENT 

DEPARTMENT 

dname dnum snum 

Tall Men's Clothing 501 1 
Men's Clothing 502 1 

Women's Clothing 503 1 
Children's Clothing 504 1 

Men's Clothing 601 2 
.   

.   

.   



and EMPLOYEE is a binary 1(full):N relationship, using 
mapping rule M3c_1, we will take the key from the 1 side 
(DEPARTMENT side), dnum, and snum, and include this 
concatenated key as the foreign key in the N side, 
(EMPLOYEE side), so the relation EMPLOYEE becomes: 

In summary, our relational database has so far been mapped 
to (without the data): 

MALL-Store 

MALL 

STORE 

OWNER 

STORE MANAGER 

DEPARTMENT 

EMPLOYEE 

We continue with the development of this case study at the end of Chapter 
6. 

EMPLOYEE 

ename essn dnum snum 

Kaitlyn 987–754–9865 501 1 
Fred 276–263–91827 502 1 
Katie 982–928–2726 503 1 

Seema 837–937–9373 501 1 
Raju 988–876–3434 601 2 

.    

.    

.    

name  store_name 

name  address 

sloc sname snum  mall_name so_owner sm_ssn 

so_ssn  so_name so_off_phone so_address 

sm_ssn  sm_name salary 

dname dnum snum  

ename essn  dnum snum 



Chapter 6: Further Extensions for ER 
Diagrams with Binary Relationships 
Having developed the basic ER model in Chapters 1 through 4, this chapter 
deals with some extensions to the basic model. In this chapter we introduce 
a new concept — attributes of relationships — and give several examples of 
attributes of relationships. We then revisit step 6 of the ER design 
methodology to include attributes of relationships. Next, the chapter looks at 
how more entities and relationships are added to the ER model, and how 
attributes and relationships evolve into entities, all the while refining our ER 
design methodology. Relationships can develop into entities, creating an 
intersection entity. The grammar and structured English for the intersection 
entity are also presented. Then, this chapter introduces the concept of 
recursive relationships. 

Also, in previous chapters, we only looked at cases where two entities had a 
(one) relationship between them. In this chapter we discuss how two entities 
can have more than one relationship between them. Step 5 of the ER design 
methodology is also redefined to include more than one relationship between 
two entities. This chapter discusses derived and redundant relationships, 
and the ER design methodology is once again refined and step 6(b) is 
included to deal with derived and redundant relationships. Finally, toward the 
conclusion of this chapter we included an optional section that looks at an 
alternative ER notation for specifying structural constraints on relationships. 

Attributes of Relationships 
In Chapter 3 we considered the M:N relationship STUDENT–COURSE. This 
relationship is M:N because students take many courses and courses are 
taken by many students. Now consider adding the attribute grade to the ER 
diagram. If we tried to put grade with the STUDENT entity, we would have a 
multivalued attribute that had to be somehow related to the COURSE entity 
to make sense. Similarly, if we tried to put the grade attribute with the 
COURSE entity, the COURSE entity would have to be related to the 
STUDENT entity. The correct place for the grade attribute in the diagram 
would be on the relationship, enroll, because grade requires both a 
STUDENT and a COURSE to make sense. See Figure 6.1 for the placement 
of the attribute grade in an M:N, full:full participation model. 



  
Figure 6.1: An ER Diagram of an M:N Relation with an Attribute of a 
Relationship   

A few other attributes have been added to Figure 6.1 to show the relative 
position of the attributes. Again, because grade is necessarily identified by 
both STUDENT and COURSE, it cannot reside with either entity by itself. An 
attribute like grade is called a "relationship attribute" or "intersection 
attribute." 

An intersection attribute may arise first as a multi-valued attribute on some 
entity during the design process, only later to be questioned: "Why is this 
attribute here when it requires another entity to identify it?" When it is 
recognized that the attribute has to be identified by more than one entity, the 
attribute is moved to the relationship between the two (or more) entities that 
identify it. 

Relationship attributes may occur with an ER diagram containing any 
cardinality, but one will most often find relationship attributes in the binary 
M:N situation. We now need to revisit our methodology to add a guideline for 
the attributes of a relationship: 

Step 6: State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there is a 
relationship from A to B, 1 to Many, and from B back to A, Many to 1.  

And we add: 

Step 6a: Examine the list of attributes and determine whether any of 
them need to be identified by two (or more) entities. If so, place the 
attribute on an appropriate relationship that joins the two entities.  

Note that step 6a can also help in deciding which entities need to be related. 
If it had not been recognized up to this point that a relationship was needed, 
then the discovery of a relationship attribute would be a clear signal that 
such a relationship would be in order. 

The grammar to describe the attribute of a relationship would be as follows: 



The Attributes 

For the relationship between Entity1 and Entity2, we will record a(n) att(j). 
The att(j) depends on both entities Entity1 and Entity2 for identification. 

Example 
For the relationship between the STUDENT entity and the COURSE entity, 
we will record a grade attribute. The grade attribute depends on both the 
STUDENT and COURSE entities for identification. 

For atomic attributes, att(j): …  [same as in previous chapters] 

For composite attributes, att(j): …  [same as in previous chapters] 

For multivalued attributes, att(j): …  [same as in previous chapters] 

For attributes of relationships att(j): …  [same as in previous chapters] 



Relationships Developing into Entities: The M:N 
Relationship Revisited 
We previously defined the M:N relationship, and noted in the beginning of 
the chapter that an attribute often appears that should be associated with the 
relationship and not with one entity. The example was the attribute, grade, 
which would clearly not fit with either the STUDENT entity or the COURSE 
entity. In a sense, it appears that the relationship has itself taken on an entity 
quality. This observation is true because we have information (an attribute) 
that clearly belongs to the relationship. 

There are two options in depicting this relationship-attribute situation. One 
option is to leave the attribute where it is, as we have shown it, on the 
relationship. If the number of attributes is small (one or two), then the sense 
of the diagram is still intact and the grammar representing the diagram will 
be understandable to the user. 

The other option for relationship attributes would be to make the relationship 
an entity and tie both of the "identifying entities" to it. This option is shown in 
Figure 6.2. In this figure, the middle entity, STUDENT+COURSE, is depicted 
as weak because it depends entirely on the entities STUDENT and 
COURSE. Note that the participations are always full between the new, 
weak "intersection entity" and the relationships. Why? Because the weak 
entity must have a corresponding strong entity or it would not be there. The 
participation on the strong-relationship side (like between STUDENT and 
Rel1, or between COURSE and Rel2) can be partial or full, depending on 
whether it was partial or full originally. What would a partial COURSE–Rel2 
connection mean? It would indicate that classes existed in the database that 
were not offered, and hence had no students in them. 

  
Figure 6.2: An ER Diagram of an M:N Relationship that Has Been 



Replaced with Two 1:M Relationships   

Now that we have a STUDENT+COURSE entity (an intersecting entity), our 
grammatical description of this intersecting entity would be: 

The Entity 
This database records data about STUDENT–COURSE combinations — 
STUDENT+COURSE. For each STUDENT+COURSE in the database, we 
record a grade. 

The Attributes 
For each STUDENT+COURSE, there always will be one and only one grade 
for each STUDENT+COURSE combination. The value for grade will not be 
subdivided. 

The Keys 
(d) No candidate keys (intersecting entity): 

The STUDENT+COURSE entity does not have a candidate 
key of its own, but rather, each STUDENT+COURSE entity will 
be identified by keys belonging to the STUDENT and COURSE 
entities. 

The latter statement is very close (and for a user, hopefully indistinguishable) 
from the key statements found in the "attribute on a relationship" grammar 
above: 

For the relationship between STUDENT and COURSE, we will 
record a grade. The grade depends on both entities, 
STUDENT and COURSE, for identification. 



More Entities and Relationships 
In the handling of a database, we have to model the information presented. 
We will likely have situations that call for more than two entities and more 
than one binary relationship. Again, a binary relationship is a relationship 
between two entities. (Chapter 7 looks at ternary and higher relationship 
combinations.) This section deals with situations where the information about 
the database indicates that we have to expand our diagrams with more 
entities, but all the connections will be binary. 

More than Two Entities 
Let us again reconsider the STUDENT–COURSE ER diagram, Figure 6.1. If 
this database were oriented toward a college, the courses would have 
instructors and the instructors would be related to the courses. We would 
consider adding INSTRUCTOR to our database per our methodology steps 
4 and 5, which say: 

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat step 2 to see if this entity should be further split into 
more entities.  

Step 5: Connect entities with relationships (one or more) if 
relationships exist.  

If we added instructors to the ER diagram, Figure 6.1, we might see 
something like Figure 6.3 (attributes other than the primary keys are 
intentionally left off to unclutter the diagram). The relationship between 
INSTRUCTOR and COURSE is teach — instructors teach many courses, a 
course is taught by an instructor (loosely speaking). The participation would 
be determined by the situation, but we will choose one for our example. 
Stated more precisely, we would say: 



  
Figure 6.3: An ER Diagram (with Only Primary Keys) Showing a 
STUDENT/COURSE/INSTRUCTOR Database   

Pattern 4 — x:y::1:M, from the 1 Side, Partial 
Participation 
Short: An instructor may teach many courses 
which actually means: 
Long: An instructor, but not necessarily all instructors, (which are recorded in 
the database) may teach many (one or more) courses. Some instructors 
may not teach courses. 

Pattern 1 — x:y::M:1, from the M Side, Full 
Participation 
Short: Courses must be taught by instructors 
which actually means: 
Long: Courses, which are recorded in the database, must be taught by one 
and only one instructor. No course is taught by more than one instructor. 

In this diagram (Figure 6.3), the INSTRUCTOR entity is related to the 
COURSE entity. There could be a relationship between the INSTRUCTOR 
entity and the STUDENT entity, but the relationships in Figure 6.3 are 
assumed to be the only ones that exist. One could argue that the other 
possible relationships are advisor, mentor, counselor, coach, …, but 
remember that we are modeling only what exists and not what might be. We 
assume that the diagram represents the information given and only the 
information given. 



Adding More Attributes that Evolve into Entities 
As we have seen, ER diagrams evolve during the design/redesign process. 
One way ER diagrams evolve is to add attributes to various entities. Some 
attributes are going to be simple, functionally dependent additions. 
Functional dependency means that something is identifiable by that which it 
is dependent upon. For example, a social security number functionally 
identifies a name, and name is functionally dependent on social security 
number. This functional dependency means that anywhere a certain value 
for social security number exists in the database, you can be sure that the 
same name will appear with it. Consider adding the attribute instructor name. 
The addition enhances the diagram and instructor name is functionally 
dependent on the attribute, instructor ID. 

Now consider adding "building" to each of the entities. Students live in 
buildings (dorms), courses are taught in buildings (classrooms and labs), 
instructors have offices in buildings. "Building" can be added as an attribute 
of each of the three entities and not be considered an entity unto itself. Why? 
Because at this stage, we have not expressed the desire to record 
information about buildings. If buildings (dorm rooms, class rooms, office 
rooms) were considered as attribute items for appropriate entities, then we 
would have the ER diagram as in Figure 6.4. 

  
Figure 6.4: An ER Diagram (with Only Primary Keys) Showing a 
STUDENT/COURSE/INSTRUCTOR Database with "Building" as an 
Attribute   

Now that we have added "building" to our database (Figure 6.4), suppose we 
evolve yet again to where we now decide that we do want to record more 
information about buildings; or put another way, we want to make BUILDING 
an entity. We would then have to connect other entities to BUILDING with 



appropriate relationships. Such a design is depicted in Figure 6.5. Whether 
we begin with the idea of BUILDING as an entity or evolve to it by starting 
with STUDENTS, COURSES, and INSTRUCTORS, we need to be 
constantly asking the question, "Is this item in the ER diagram one that we 
want to record information about, or not? Should this be an entity?" In Figure 
6.5, we have depicted BUILDING as an entity and hence we will want to add 
attributes to it. For an embellished ER diagram with more attributes and 
cardinalities, see Figure 6.6. 

  
Figure 6.5: An ER Diagram (with Only Primary Keys) Showing a 
STUDENT/ COURSE/INSTRUCTOR/BUILDING 
Database   

  
Figure 6.6: An ER Diagram Showing a 
STUDENT/COURSE/INSTRUCTOR/BUILDING 
Database   



Checkpoint 6.1 
1. In Figure 6.6, why is BUILDING an entity and not an attribute of 

another entity? 

2. In Figure 6.6, why is the room number attribute attached to the lives in 
relationship rather than the STUDENT entity?  

3. What will make you decide whether an attribute should be connected 
to ENTITYA or ENTITYB or, on the relationship connecting ENTITYA 
and ENTITYB? 

4. Why are all the lines leaving BUILDING (on Figure 6.6) single lines 
(partial participation)? 

5. According Figure 6.6, does a student have to enroll in a course? 

6. According to Figure 6.6, how many courses can an instructor teach? 



More Evolution of the Database 
Let us reconsider the ER diagram in Figure 6.6. As the diagram is analyzed, 
the user might ask, "Why is a room number attribute not included for the 
relationship, class?" Why is there no office number for the relationship, 
office? There may be several reasons for the omission: (1) the data was not 
mentioned in the analysis stage; (2) the data is not necessary (i.e., there 
may be only one classroom per building or office numbers may not be 
recorded for advisors); or (3) it was an oversight and the data should be 
added. Suppose now we decide that room number is important for all of the 
relationships or entities. Suppose that we want to identify the room number 
associated with instructors and buildings, courses and buildings, and 
students and buildings. We might "evolve" the diagram to that of Figure 6.7. 

  
Figure 6.7: An ER Diagram Showing a 
STUDENT/COURSE/INSTRUCTOR/ BUILDING Database with the 
"room number" for the Three Relations   

In this case, we have information attached to BUILDING: building 
occupancy, the maintenance supervisor, and the square footage of the 
building. We have room number as an attribute identifiable by two entities in 
each case. 



Attributes that Evolve into Entities 
This section illustrates, one more time, the idea that we have to model "what 
is" and not necessarily "what might be." Also, we again see how an attribute 
might become an entity. Consider, for example, the following data that will go 
into an ER diagram/database: a course name, course number, credits, 
instructor name, and book. Example: 
'Database','COP 4710',3,'Earp','Elmasri/Navathe' 

The beginning ER diagram might look like Figure 6.8, "An ER Diagram of the 
COURSE entity in a database." Why "might look like…"? The answer lies in 
eliciting correct requirements from our user. 

  
Figure 6.8: An ER Diagram with COURSE Entity in a 
Database   

If all of the information that was ever to be recorded about this data was 
mentioned above, then this single entity ER diagram would describe the 
database. However, one could realistically argue that things that we have 
described as attributes could themselves be entities. Both the instructor and 
the book would be candidates for being diagrammed as entities if the 
envisioned database called for it. 

Consider a scenario in which one might choose to expand or redesign the 
database to include information about instructors. If this were the case, we 
might want to go beyond recording the instructor name and also include 
such attributes as the instructor's department, date_hired, and the school 
where the instructor received the terminal degree. With the additional 
information about INSTRUCTORS, the ER diagram would have two entities 
and would look like Figure 6.9. 



  
Figure 6.9: An ER Diagram of the COURSE–INSTRUCTOR 
Database   

In Figure 6.9, we have depicted the INSTRUCTOR entity as weak because 
of the presumed non-uniqueness of instructor names and the dependence 
on COURSE. If the instructor were identified uniquely with an attribute like 
instructor social security number, and if instructors could exist independent 
of course, then the entity could become strong and would look like Figure 
6.10. The idea of this section, then, is to bring out the point that an entity is 
not an entity just because one might want to record information "someday." 
There would have to be some planned intent to include the data that would 
be identified by the entity. Further, the definition of weak or strong entity 
would depend on the identifying information that was to be provided. 



  
Figure 6.10: An ER Diagram of the COURSE–INSTRUCTOR 
Database   

Finally, if no information about instructors were ever planned, then the first 
ER diagram (Figure 6.10) would well describe the database. We will leave as 
an exercise the extension of Figure 6.10 to include BOOK as an entity. 



Recursive Relationships 
A recursive relationship is where the same entity participates more than 
once in different roles. Recursive relationships are also sometimes called 
unary relationships. 

Consider, for example, the idea of personnel relations in a company. 
Personnel are likely to have an employee number, a name, etc. In addition to 
existing as an entity for all employees of an organization, there are 
relationships between individuals of the entity set, PERSONNEL. The most 
obvious relationship is that of employee–supervisor or personnel–supervisor. 
How would we depict the personnel–supervisor relationship when we have 
only one entity? The answer is shown in Figure 6.11. 

  
Figure 6.11: A Classic Recursive Relationship PERSONNEL–
SUPERVISOR   

Figure 6.11 shows the entity, PERSONNEL, with some simple attributes. 
Then, the relationship of supervise is added and connected to PERSONNEL 
on both ends. The cardinality of the relationship is 1:N, which means that 
one employee (personnel) can supervise many other employees but can 
only be supervised by one employee. We use partial participation from the 
supervisor side because not all personnel are supervisors — an employee 
may supervise many employees. The participation of the supervised 
employee is also partial. Although most employees are supervised by some, 
one supervisor, some employee will be at the top of the hierarchy with no 
supervisor. In recursive relationships, we are representing a hierarchy. All 
hierarchies have a top spot with no "supervision." All hierarchies are always 
partial–partial. 

So, when there arises a relationship between individuals within the same 
entity set, it would be improper to have two entities because most of the 
information in the entities is basically the same. If we created two entities, 
then we would have redundancy in the database. Using the above example, 



if we used two different entities rather than a recursive relationship, then an 
employee would be recorded in two different entities. 

Recursive Relationships and Structural Constraints 
Recursive relationships can only have partial participation in relationships, 
but the cardinality can be one-to-one, one-to-many, or many-to-many. Full 
participation in a recursive relationship would mean that every instance of an 
entity participates in a relationship with itself, which would not make sense. 

Next we look at some examples of cardinalities as interpreted in recursive 
relationships. 

One-to-One Recursive Relationship (Partial Participation on 
Both Sides) 
Figure 6A show us an example of an entity, PERSONNEL, that is related to 
itself through a married to relationship. This means that a person in this 
database can be married to one other person in this same database. 

  
Figure 6A: One-to-One Recursive Relationship (Partial Participation on 
Both Sides)   

Some instances of this relationship are shown in Figure 6B. From Figure 6B 
we can see that Seema is married to Dev Anand, Sumon is married to 
Rekha, etc. 



  
Figure 6B: Instances of One-to-One Recursive Relationship (Partial 
Participation on Both Sides)   

One-to-Many Recursive Relationship (Partial Participation 
on Both Sides) 
This is the most common recursive relationship. An example of this 
relationship may be where one employee may supervise many other 
employees (as shown in Figure 6C). As mentioned before, this is a 
hierarchical relationship and is always partial–partial. 



  
Figure 6.C: One-to-Many Recursive Relationship (Partial Participation 
on Both Sides)   

Instances of this relationship are shown in Figure 6D. From Figure 6D we 
can see that Tom Smith supervises Sudip Bagui and Tim Vaney, Rishi 
Kapoor supervises Mala Sinha and Korak Gupta, Korak Gupta supervises 
Roop Mukerjee, etc. 



  
Figure 6.D: Instances of One-to-Many Recursive Relationship (Partial 
Participation on Both Sides)   

Many-to-Many Recursive Relationship (Partial on Both 
Sides) 
In this example we could say that courses may be prerequisities for zero or 
more other courses. This relationship is depicted in Figure 6E. The sense of 
prerequisite here is not hierarchical, but more like a situation where there are 
many courses that are interrelated. 



  
Figure 6.E: Many-to-Many Recursive Relationship (Partial Participation 
on Both Sides)  



Multiple Relationships 
Thus far we mostly discussed that two entities can have a (one) relationship. 
This section discusses how two entities can have more than one relationship 
(but the relationships here are still binary relationships). 

Consider a diagram that has two entities: STUDENT and FACULTY. 
Suppose we have no other entities in the database. Suppose further that the 
STUDENT entity has the following attributes: name, student #, birthdate, and 
the name of the high school (high_school) from which the student graduated. 
The FACULTY entity could have the following attributes: name, social 
security number (SS#), department affiliation, office_number. Now consider 
two relationships: instructor and advisor. There are only two entities here 
and yet there are two relationships. Each relationship should be given its 
own "diamond." The ER diagram for this is shown in Figure 6.12  

  
Figure 6.12: An ER Diagram with Two Entities and Two 
Relationships   

In this diagram, all relationships are arbitrarily shown as partial; that is, there 
will be some faculty who do not advise students, and some students who are 
not instructed by faculty. In constructing ER diagrams, one has to include 
however many relationships exist. It would be incorrect to try to make a 
relationship do "double duty" and stand for two different relationship ideas. 

In this example, an embellishment might include intersection data for the 
instruct relationship (a grade in a course, for example). Intersection data for 
the advise relationship could be date_assigned, time of last_meeting, etc. as 
shown in Figure 6.12A. 



  
Figure 6.12A: An ER Diagram with Two Entities and Two Relationships 
and Some Intersection Attributes   

The placing of relationships in the ER diagram is covered in our ER design 
methodology in step 5, which we will redefine here: 

The original step 5 was: 

Step 5: Connect entities with relationships if 
relationships exist. 
We can add to this guideline that if multiple relationships are present, they 
are added to the diagram; however, this is likely redundant, so we will simply 
append the phrase "(one or more)": 

Step 5: Connect entities with relationships (one or more) if 
relationships exist.  



The Derived or Redundant Relationship 
Many authors describe a redundant (Martin, 1983) or derived 
(Hawryszkiewycz, 1984) relationship that could arise in a relationship "loop" 
like that of Figure 6.13. The loop notion comes from the pictorial idea that the 
lines form a closed graph (which is actually more like a rectangle, but we are 
going to call it a loop). The idea of redundancy is that because students take 
courses and each course is taught by an instructor, you do not need a taught 
by relationship because you can get that information without the extra 
relationship. If such a relationship exists, then it should be excised, but there 
are caveats. 

  
Figure 6.13: An ER Diagram Showing a 
STUDENT/COURSE/INSTRUCTOR Database with a "Redundant" 
Relationship   

First, one has to be sure that the redundant relationship is truly redundant. If 
the added relation were advised by instead of taught by, then the 
relationship should stay because it has a completely different sense than 
taught by. 

Second, if the relationship loop is present, it may mean that only one of the 
two redundant relationships should be kept and the semantics should point 
to which one. In Figure 6.13, the INSTRUCTOR is more likely related to a 
COURSE than to a STUDENT. So, the better choice of which relationship to 
keep would be the original one: teach. It is very conceivable that a designer 
might have included the taught by relationship first, only later to include the 
teach relationship. Then, by examining the diagram for loops, one can 
deduce that the taught by was redundant. 

Third, one or both of the relationships may have an intersection attribute that 
would suggest which relationship (or both) should be kept. In Figure 6.14, we 
included the attribute, time, which was put with the teach relationship as an 



instructor teaches a course at some time. 

  
Figure 6.14: An ER Diagram Showing a 
STUDENT/COURSE/INSTRUCTOR Database with a "Redundant" 
Relationship   

The idea of derived or redundant relationships causes us to suggest one 
more step in our methodology: 

Step 6b. Examine the diagram for loops that might indicate redundant 
relationships. If a relationship is truly redundant, excise the redundant 
relationship.  

Checkpoint 6.2 
1. What is a recursive relationship? 

2. What would you look for if you are trying to see if a relationship is 
recursive? 

3. What kinds of structural constraints can recursive relationships have? 

4. Can recursive relationships have full participation? Why or why not? 

5. How is the recursive relationship denoted diagrammatically in the 
Chenlike ER model? 

6. Can the same two entities have more than one relationship? 

7. How would you determine if a relationship is redundant? 



Optional Section 
We call the next section, entitled "An Alternative ER Notation for Specifying 
Structural Constraints on Relationships," an optional section because it is not 
really necessary to know or use this section to fully understand the ER 
design methodology or to arrive at a good database product. However, some 
may find this section more descriptive. 



An Alternative ER Notation for Specifying Structural 
Constraints on Relationships 
Thus far we have discussed cardinality ratios in terms of their upper bounds 
(the maximum cardinality), shown by the "M" or "N" in the ER diagrams 
(shown in this and previous chapters). You will recall (from Chapter 4) that 
cardinality is a rough measure of the number of entity instances in one entity 
set that can be related to instances in another entity set. 

This section describes an alternative ER notation for specifying structural 
constraints on relationships. This notation will associate a pair of numbers 
(min, max) with each participation of an instance of an entity in an instance 
of a relationship. This min and max can provide more information about the 
entities and the relationships. 

The min is the minimum number of instances in one entity set that can be 
related to an instance of a relationship. The min can be between zero and 
the maximum. If the min is zero, it implies that every instance of an entity 
does not have to participate in an instance of the relationship. This, in effect, 
means partial participation. If the min is greater than zero, this implies full 
participation. We now present an ER diagram with (min, max) ratios. 

First, let us start with the recursive relationship shown in Figure 6.15. The 
(min, max) of (0,1) means that each personnel may or may not be married 
(shown by the zero for the min), and can only be married to at most one 
personnel (shown by the max). Next, look at Figure 6.16. From this figure we 
can say that a student may not be advised by any faculty, and may be 
advised by up to two faculty members (shown by the minimum of zero, and 
maximum of two [i.e., (0,2)]). A faculty member can advise between zero (0) 
and 30 students. A faculty member can instruct between zero (0) and 40 
students. And, a student must be instructed by one faculty member, and can 
be instructed by up to two (2) faculty members. 

  
Figure 6.15: Recursive Relationship with (min, max) 



Ratios   

  
Figure 6.16: An ER Diagram Showing an Alternative ER Notation for 
Specifying Structural Constraints   

Checkpoint 6.3 (Optional) 
1. What lower bound of cardinality does full participation imply? 

2. What does a min/max ratio of (1,1) between two entities imply? 

3. What kind of participation ratio (full participation or partial 
participation) does a min/max ratio of (0,1) imply? 



Review of the Methodology 
To review, our methodology for designing ER diagrams has now evolved to 
the following: 

ER Design Methodology 
Step 1: Select one, primary entity from the database 
requirementsdescription and show attributes to be recorded for that 
entity. Label keys if appropriate and show some sample data.  

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

Step 3: Examine attributes in the existing entities (possibly with user 
assistance) to find out if information about one of the entities is to be 
recorded. (Note: We change "primary" to "existing" because we redo 
step 3 as we add new entities.)  

Step 3a: If information about an attribute is needed, then make the 
attribute an entity, and then  

Step 3b: Define the relationship back to the original entity.  

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat steps 2 and 3 to see if this entity should be further 
split into more entities.  

Step 5: Connect entities with relationships (one or more) if 
relationships exist.  

Step 6: State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there is a 
relationship from A(1) to B(M) and from B(M) back to A(1).  

Step 6a: Examine the list of attributes and determine whether any of 
them need to be identified by two (or more) entities. If so, place the 
attribute on an appropriate relationship that joins the two entities.  

Step 6b: Examine the diagram for loops, which might indicate 
redundant relationships. If a relationship is truly redundant, excise the 
redundant relationship.  

Step 7: Show some sample data.  

Step 8: Present the "as designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  

The grammar to describe our entities, attributes and keys has evolved to 
this: 

The Entity: This database records data about ENTITY. For each ENTITY in 
the database, we record att(1), att(2), att(3), … att(n). 

The Attributes:  
For atomic attributes, att(j): 

For each ENTITY, there always will be one and only one att(j) for 
each ENTITY. The value for att(j) will not be subdivided. 

For composite attributes, att(j): 



For each ENTITY, we will record att(j), which is composed of x, y, 
z, … (x, y, z) are the component parts of att(j). 

For multi-valued attributes, att(j): 
For each ENTITY, we will record att(j)s. There may be more than 
one att(j) recorded for each ENTITY. 

For attributes of relationships att(j): 
For the relationship between ENTITY1 and ENTITY2 we will record 
a(n) att(j). The att(j) depends on both entities, ENTITY1 and 
ENTITY2, for identification. 

The Keys:  
More than one candidate key (strong entity): 

For each ENTITY, we will have the following candidate keys: att(j), 
att(k), … (where j, k are candidate key attributes) 

One candidate key (strong entity): 
For each ENTITY, we will have the following primary key: att(j) 

No candidate keys (perhaps a weak entity): 
For each ENTITY, we do not assume that any attribute will be 
unique enough to identify individual entities. 

No candidate keys (perhaps an intersecting entity): 
For each ENTITY, we do not assume that any attribute will be 
unique enough to identify individual entities. 



Mapping Rules for Recursive Relationships 
Recursive relationships are binary 1:1, 1:N, or M:N relationships. We 
discussed the mapping rules for these types of relationships in Chapter 4. In 
that chapter, the mapping rule was discussed for two entities. If there is only 
one entity, the rules basically stay the same; but rather than including the 
primary key of one entity (ENTITY_A) in another entity (ENTITY_B), the 
primary key of ENTITY_A is reincluded in ENTITY_A. 

M5 — For recursive entities — two types of mapping rules 
can be developed:  

M5a — For 1:N recursive relationships — reinclude the 
primary key of the table with the recursive relationship in 
the same table, giving it some other name.  

For example, Figure 6.11 will get mapped to something like: 

M5b — For M:N recursive relationships, create a separate 
table for the relationship (as in mapping rule M3a).  

As an example, if we assumed that Figure 6.11 was an M:N relationship, 
then Figure 6.11 would map to the above table (PERSONNEL) and: 

Checkpoint 6.4 
1. Map the recursive relationship shown in Figure 6C to a relational 

database and show some sample data. 

2. If Figure 6C was an M:N relationship, how would you map this 
recursive relationship to a relational database? Show the mapping 
with some sample data. 

PERSONNEL 

name.first name.last name.mi employee_id super_id 

Richard Earp W 8945 9090 
Boris Yelsen  9090 null 
Helga Hogan H 3841 9090 
Sudip Bagui K 8767 9090 
Tina Tanner  5050 8945 

PERSONNEL_SUPERVISOR 

employee_id super_id 

8945 9090 
9090 null 
3841 9090 
8767 9090 
5050 8945 





Chapter Summary 
This chapter viewed the different aspects of binary relationships in ER 
diagrams and refined several of the steps in the ER design methodology. 
The refining of the ER design methodology means a continuous assessment 
and reassessment of the ER diagram that is drawn after discussion with the 
users. The idea that relationships could have attributes, how attributes 
evolve into entities, recursive relationships, and derived and redundant 
relationships were discussed with examples and diagrams. The ER design 
methodology steps were refined to include all of the above into the new and 
evolving methodology. 

Toward the end of the chapter, an alternative ER notation for specifying 
structural constraints on relationships was presented. Upon completing this 
chapter, the reader or database creator should be able to efficiently design a 
database with binary relationships. Chapter 7 deals with ternary and other 
higher-order relationships. 



Chapter 6 Exercises 
In each of the exercises that follow, the admonition to "construct an ER 
diagram" implies not only the diagram, but also the structured grammatical 
description of the diagram. 

Exercise 6.1 
Define and state in precise terms the cardinality and participation in Figure 
6.5, the STUDENT/COURSE/INSTRUCTOR/BUILDING database. Discuss 
the structural constraints of Figure 6.5. Under what circumstances would the 
structural constraints depicted be correct or incorrect? 

Exercise 6.2 
Consider the following data and construct an ER diagram — use structured 
grammar to rationalize your constraints. The data: horse name, race, owner, 
odds at post, post position, date of race, order of finish, year to date 
earnings, owner name and address. 

Exercise 6.3 
In this chapter we described a database that had two entities: COURSE and 
INSTRUCTOR (refer to Figure 6.10). Book was left as an attribute of 
COURSE. Extend the database to include BOOK as an entity. Attributes of 
BOOK might include: book title, author, price, edition, publisher. 

Exercise 6.4 
Refer to Figure 6.7. Change Figure 6.7 to include the following information: 
One building can have a maximum of 99 students living in it. A student has 
to enroll in at least one class, and can enroll in a maximum of five classes. A 
class has to enroll at least five students, and can enroll a maximum of 35 
students. A instructor may or may not teach a class, and can teach up to 
three classes. A course has to have one instructor teaching it, and only one 
instructor can teach a particular course. An instructor may or may not have 
an office, and can have up to two offices. A building may or may not have an 
office, and can have up to 15 offices. A course has to be offered in one 
classroom, and can only be offered in one classroom. 
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Case Study: West Florida Mall (continued) 
Thus far in our case study, we have developed the major entities and 
relationships and mapped these to a relational database (with some sample 
data). Then, upon reviewing step 7, which says: 

Step 7: Present the "as-designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  

Suppose we got some additional input from the user: 

An employee can also be a department manager, and a 
department manager can manage at most one department. We 
have to store information on the department manager — the 
name, social security number, which store he/she is working 
for, which department he/she is working for. A department 
manager supervises at least one employee, and may manage 
several employees. 

Upon reviewing these additional specifications, we can see that we have a 
recursive relationship developing here, because an employee can be a 
department manager supervising other employees. 

So, using mapping rule M5a, we will reinclude the primary key of the 
EMPLOYEE entity in itself, giving us the following EMPLOYEE relation: 

This recursive relationship is also shown in Figure 6.17. 

EMPLOYEE 

ename essn dnum snum dm_ssn 

Kaitlyn 987–754–9865 501 1 276–263–9182 
Fred 276–263–9182 502 1 null 
Katie 982–928–2726 503 1 987–754–9865 

Seema 837–937–9373 501 1 276–263–9182 
.     

.     

.     



  
Figure 6.17: An ER Diagram of West Florida Mall Developed Thus 
Far   

So, in summary, our relational database has now developed to (without the 
data): 

MALL-Store 

MALL 

STORE 

OWNER 

STORE MANAGER 

DEPARTMENT 

EMPLOYEE 

name  store_name 

name  address 

sloc sname snum  mall_name so_owner sm_ssn 

so_ssn  so_name so_off_phone so_address 

sm_ssn  sm_name salary 

dname dnum  snum  



We will continue with the development of this case study at the end of 
Chapter 8. 

ename essn  dnum snum dm_ssn 



Chapter 7: Ternary and Higher-Order 
ER Diagrams 

Overview 
All relationships that we have dealt with thus far in previous chapters have 
been binary relationships. Although binary relationships seem natural to 
most of us, in reality it is sometimes necessary to connect three or more 
entities. If a relationship connects three entities, it is called ternary or "3-ary." 
If a relationship connects three or more entities (n entities), it is called an "n-
ary" relationship, where n equals the number of entities that participate in the 
relationship. n-ary relationships are also referred to as "higher-order" 
relationships. 

In this chapter we consider relationships that connect three or more entities. 
First we look at ternary (3-ary) relationships. Ternary relationships arise for 
three main reasons: (1) if we have intersection attributes that require three 
different entities to identify the attribute, (2) if we have a relationship of a 
relationship, and (3) by reverse-engineering. Because we discuss 
reverseengineering in Chapter 9, we will not discuss the development of 
ternary relationships from reverse-engineering in this chapter. 

In this chapter we first discuss how intersection attributes create ternary 
relationships, and then look at the structural constraints of ternary 
relationships. Next, we discuss how ternary and other n-ary relationships do 
not preclude binary relationships, and how some ternary diagrams can be 
resolved into binary relationships. The development of ternary relationships 
from relationships of relationships is also discussed. Step 6 of the ER design 
methodology is also redefined in this chapter to include ternary and other 
higher-order relationships. 



Binary or Ternary Relationship? 
Ternary relationships are required when binary relationships are not 
sufficient to accurately describe the semantics of an association among 
three entities. In this section we explain the difference between a binary and 
a ternary relationship with the help of an example, and also show how an 
intersection attribute necessitates a ternary relationship. 

In the binary case, we found that relationships existed between entities and 
that these relationships would have structural constraints (cardinality and 
participation). Further, we found that attributes of relationships were also 
possible. In particular, we found that the M:N relationship often spawned an 
attribute, which we called an intersection attribute (recall the STUDENT/ 
CLASS M:N relationship and the intersection attribute, grade, as shown in 
Figure 6.1). In the binary relationship case, we made the point that an 
attribute like grade would infer that an M:N binary relationship must exist. 
Whether one determined the M:N relationship first or found the "orphaned" 
attribute first would not matter; the end result would be an M:N relationship 
with an intersection attribute. 

Cases exist in databases when a relationship between more than two 
entities is needed. The usual case would be to find one of these "orphaned" 
attributes that necessitated the n-ary relationship. Consider the following 
example. 

You have a database for a company that contains the entities, PRODUCT, 
SUPPLIER, and CUSTOMER. The usual relationships might be PRODUCT/ 
SUPPLIER where the company buys products from a supplier — a normal 
binary relationship. The intersection attribute for PRODUCT/SUPPLIER is 
wholesale_price (as shown in Figure 7.1A). Now consider the CUSTOMER 
entity, and that the customer buys products. If all customers pay the same 
price for a product, regardless of supplier, then you have a simple binary 
relationship between CUSTOMER and PRODUCT. For the CUSTOMER/ 
PRODUCT relationship, the intersection attribute is retail_price (as shown in 
Figure 7.1B). 

  
Figure 7.1A: A Binary Relationship of PRODUCT and SUPPLIER and 



an Intersection Attribute, wholesale_price   

  
Figure 7.1B: A Binary Relationship of PRODUCT and CUSTOMER and 
an Intersection Attribute, retail_price   

Some sample data for Figure 7.1A would be: 

Some sample data for Figure 7.1B would be: 

Now consider a different scenario. Suppose the customer buys products but 
the price depends not only on the product, but also on the supplier. Suppose 
you needed a customerID, a productID, and a supplierID to identify a price. 
Now you have an attribute that depends on three things and hence you have 
a relationship between three entities (a ternary relationship) that will have the 

PRODUCT–SUPPLIER 

productId supplierId wholesale_price 

Beans AcmeBean Co 1.49 
Beans Baker Bean Co. 1.57 
Carrots Joe's Carrots 0.89 

PRODUCT–CUSTOMER 

customerID productId retail_price 

Jones Beans 2.67 
Smith Beans 2.67 
Jones Carrots 1.57 



intersection attribute, price. This situation is depicted in Figure 7.2. 

Figure 7.2 represents the entities PRODUCT, SUPPLIER, and CUSTOMER, 
and a relationship, buy, among all three entities, shown by a single 
relationship diamond attached to all three entities. 

Some sample data for Figure 7.2 would be: 

  
Figure 7.2: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship   

This ternary case is more realistic because customers generally pay different 
prices for the same product by different manufacturers or suppliers. For 
different suppliers, one might also assume different prices for a product at 
different points in time. Also, for customers, one might assume that some 
items are bought on sale, some not. Another intersection attribute (see 
Figure 7.2) could be date, which could be the date of the sale of a product to 
a customer by a supplier. 

In the case of higher-order relationships, they are most often found by 
finding an attribute that necessitates the existence of the n-ary relationship. 
Next we look at the structural constraints of ternary relationships. 

PRODUCT–SUPPLIER–CUSTOMER 

customerID productID supplierID price 

Jones Beans Acme 2.65 
Jones Beans Baker 2.77 
Jones Carrots Joe's 1.57 



Structural Constraints for Ternary Relationships 
Ternary relationships can have the following types of structural constraints: 
one-to-one-to-one (1:1:1), one-to-one-to-many (1:1:M), one-to-many-to-
many (1:M:M), and many-to-many-many (M:M:M), with full or partial 
participation on each one of the sides. Below is an example of the (M:M:M) 
with partial participation on all sides: 

Many-to-Many-to-Many (M:M:M) Structural 
Constraint 
Figure 7A shows an example of a M:M:N relationship using three entities: 
PRODUCT, SUPPLIER, and CUSTOMER. This figure shows that many 
customers can buy many products from many suppliers, at different prices. 

  
Figure 7A: An ER Diagram Showing a Ternary Many-to-Many-to-Many 
Relationship (Partial Participation on All Sides)   

Instances of this relationship can be illustrated as shown in Figure 7B. 



  
Figure 7B: Instances of a Ternary Many-to-Many-to-Many for 
CUSTOMER:PRODUCT:SUPPLIER Relationship   

Checkpoint 7.1 
1. What is a ternary relationship? 

2. What is an n-ary relationship? 

3. What are "higher order" relationships? 

4. Using the three entities used above (PRODUCT, SUPPLIER, and 
CUSTOMER), draw an ER diagram that depicts the following: A 
customer must buy one and only one product from a supplier at a 
particular price on a particular date. 

5. Using the three entities used above (PRODUCT, SUPPLIER, and 
CUSTOMER), draw an ER diagram that depicts the following: A 
supplier must supply many products to many customers at different 
prices on different dates. 

6. Think of some more intersection attributes for the PRODUCT, 
SUPPLIER, and CUSTOMER ternary example given above. 

7. What situations might create each of the following structural 
constraints? 

a. PRODUCT: SUPPLIER: CUSTOMER::1:1:1, partial 
participation on all sides. 

b. PRODUCT: SUPPLIER: CUSTOMER::1:M:M, partial 
participation on all sides. 

c. PRODUCT: SUPPLIER: CUSTOMER::1:1:1 full participation 
on all sides. 





Example of n-ary Relationship 
An n-ary relationship describes the association among n entities. For our 
ternary example, we said that the price was dependent on a PRODUCT, 
SUPPLIER, and CUSTOMER. If we now say that the price is dependent on 
a PRODUCT, SUPPLIER, CUSTOMER, as well as STATE, then we are 
saying that the attribute price is dependent on four entities, and hence an n-
ary (in this case, a 4-ary) relationship. In an n-ary (or, in this case, 4-ary) 
relationship, a single relationship diamond connects the n (4) entities, as 
shown in Figure 7.3. Here, too, the intersection attribute is price. More 
attributes on the entities would be expected. 

  
Figure 7.3: An ER Diagram Showing an n-ary 
Relationship   



n-ary Relationships Do Not Preclude Binary 
Relationships 
Just because there is a ternary relationship does not mean that binary 
relationships among the entities may not exist. Using a similar example of 
CUSTOMERS, VENDORS, and PRODUCTS, suppose retail vendors and 
suppliers of products have a special relationship that does not involve 
customers — such as wholesaling with an entirely different price structure. 
This binary relationship can be shown separately from, and in addition to, a 
ternary relationship. See Figure 7.4 for a basic version of this two-way 
(binary) relationship and three-way (ternary) relationship ER diagram in the 
same database. 

  
Figure 7.4: An ER Diagram (with Only Primary Keys) Showing a Three-
Way and a Two-Way Relationship   

The semantics of Figure 7.4 tell us that we have a binary relationship, buy 
wholesale, between PRODUCT and VENDOR, with all PRODUCTs and 
VENDORs participating. Both the VENDOR and the CUSTOMER buy the 
PRODUCT, but in the VENDOR/PRODUCT relationship, the action is 
wholesale buying and hence the relationship is labeled buy wholesale. We 
changed the ternary relationship to read buy retail to distinguish the two 
relationships. 



Methodology and Grammar for the n-ary 
Relationship 
We need to revisit step 6 in the ER design methodology to cover the 
possibility of the n-ary relationship. The old version was: 

Step 6: State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there is a 
relationship from A to B, 1 to Many, and from B back to A, Many to 1.  

We add the following sentence to step 6: 

For ternary and higher-order (n-ary) relationships, state the 
relationship in structured English, being careful to mention all entities 
for the n-ary relationship. State the structural constraints as they exist.  

The grammar for the n-ary relationship must involve all of the entities linked 
to it and, therefore, a suitable informal sentence would go something like 
this: 

ENTITY1 Relationship (from/to/by) 
ENTITY2 (and) (from/to/by) ENTITY3. It is understood that 
attribute will necessitate naming all n entities to identify it. 

Here, if we choose some combination for Entity1, …, Entityn, this process 
resolves into: 

Entity1 : CUSTOMER 
Relationship: buy  
Relationship attribute: retail price 
Entity2: PRODUCT 
Entity3: SUPPLIER 

CUSTOMERS buy PRODUCTS from SUPPLIERS. It is understood that 
retail price will necessitate referencing all three entities to identify it. 

With a binary relationship, we have to state two relationships. One would 
think that with ternary relationships, we would be bound to state three. 
Because the relationship attribute has already been stated, let us look at the 
other possibilities: 

Entity1: CUSTOMER 
Entity2: SUPPLIER 
Entity3: PRODUCT 
CUSTOMERS buy from SUPPLIERS, PRODUCTS. 

For the same value of Entity1, the sense of the statement is really repeated 
and adds no information to the process. Suppose that: 

Entity1: PRODUCT 
Entity2: CUSTOMER 
Entity3: SUPPLIER 
PRODUCTS are bought by CUSTOMERS from SUPPLIERS. 

In the informal version of the statement from the diagram, little information is 
gained by repetition. It is suggested that other combinations be tried. But, in 
the informal statement, it seems likely that one statement, inferred from the 
semantics of the situation, would suffice to informally declare the nature of 
the relationship. 



The More Exact Grammar 
A more exact grammar for the n-ary relationship would be an extension of 
that developed for the binary relationship. Unlike the informal case above, in 
a more formal grammatical presentation, it would be necessary to make 
three statements (ternary), one starting with each entity. In the binary 
relationship, M:N, full participation case, we used the following description of 
the relationship: 

Pattern 3 — M:N, from the M side, full participation  

Short: x must be related to many y 

which actually means: 

Long: x, which are recorded in the database, must be related to 
many (one or more) y. No x is related to a non y (or) Non x are 
not related to a y. (The negative will depend on the sense of 
the statement). 

We could generalize the structural constraint patterns to this: 

Pattern 4 — k:M, from the k side, full participation (k = 1 or M)  

Short: same as above. 

Long: same as above. 

For the n-ary relationship, we extend the notation of the generalized 
statement using the boolean operator, "and," like this: 

Pattern 5 (n-ary) — x:y:z::a:b:c, from the a side, full/partial participation  

Short: x must/may be related to many y and many z. 

The "must" comes from full participation; "may" comes from a partial one. 
The "a" cardinality will not matter. The "b" and "c" force us to say "one" or 
"many" in the statement. So, for example, for x as full: 

Long: x, which are recorded in the database, must be related to: 

b = m [many (one or more)] y 

b = 1 one and only one y 

and (or other appropriate linking word [from, by, to, …]) 

c = m [many (one or more)] z 

c = 1 one and only one z. 

No x is related to more than one z. 

No x is related to more than one y. 

Example  



For CUSTOMERS:PRODUCTS:VENDORS::M1:M2:M3, full participation all 
around: 

Short: CUSTOMERS must buy many PRODUCTS from many 
VENDORS. 

Long: CUSTOMERS that are recorded in the database must 
buy many (one or more) PRODUCTS from many (one or more) 
VENDORS. 

Other grammatical expressions are derived similarly: 

Products, that are recorded in the database, must be bought by 
many (one or more) customers from many (one or more) 
vendors. 

Vendors, that are recorded in the database, must sell many 
(one or more) products to many (one or more) customers. 

A negative could be: No customer (in this database) buys products from 
nonvendors. 

As with the binary cases, the negative statements would be optional, if they 
make sense. 

Grammar in a Partial Participation, Ternary 
Relationship with a 1-Relationship 
Now consider Figure 7.5. In this figure, we are trying to represent a database 
about a graduation ceremony that has some students and some faculty 
attending. Roughly, we are trying to say that some STUDENTS attend a 
given GRADUATION with some FACULTY; some FACULTY attend a 
GRADUATION with some STUDENTS; and all GRADUATIONs are attended 
by some STUDENTS and some FACULTY. The intersection attribute is 
derived attendance. 

  
Figure 7.5: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship with Partial Participations, and a 1-
Relationship   



Here, we have some partial participations and a 1-relationship. Using the 
grammar presented above, we have the following outcome: 

STUDENT:GRADUATION:FACULTY::M:1:M  

Short: Students may attend one graduation with many faculty. 

Long: Students, that are recorded in the database, may attend 
(b = 1) one and only one graduation. 

with 

(c = m) many (one or more)] faculty. 

No student attends more than one graduation [with many 
faculty]. 

We put the [with many faculty] in square brackets because it is not really 
needed to make sense of the diagram. 

Similarly: 

Faculty that are recorded in the database may attend one 
graduation with many students. Some faculty do not attend 
graduation [with many students]. 

Graduations must be attended by some students and some 
faculty. No graduation takes place without some students and 
some faculty. 



Ternary Relationships from Relationship–
Relationship Situations 
Another scenario in which ternary relationships become necessary is where 
we have a scenario developing that results in a relationship of a relationship. 
Chen-like ER diagrams do not allow relationships of relationships; so, to 
represent this situation correctly, we need to develop a ternary relationship. 

For example, let us start with two entities: BOOK_PUBLISHER and 
MANUSCRIPT. We can initially relate the two entities as shown in Figure 
7.6A. A BOOK_PUBLISHER reviews a MANUSCRIPT. 

  
Figure 7.6A: A Binary Relationship of BOOK_PUBLISHER and 
MANUSCRIPT   

At a later stage, if some MANUSCRIPTs result-in a BOOK after being 
reviewed, this calls for a relationship of a relationship, as shown in Figure 
7.6B. This relationship of a relationship becomes necessary here because 
the BOOK_PUBLISHER, review, and MANUSCRIPT taken together will 
result-in a BOOK, as shown in Figure 7.6C. 



  
Figure 7.6B: A Relationship of a Relationship   

In Figure 7.6C, this BOOK_PUBLISHER, the reviews relationship, and 
MANUSCRIPT taken together is like creating a higher-level aggregate class 
composed of BOOK_PUBLISHER, review, and MANUSCRIPT. This 
aggregate class (of the two entities and a relationship) then needs to be 
related to BOOK, as shown in Figure 7.6C. 

  
Figure 7.6C: A Relationship of a Relationship   

To represent this situation correctly in the ER model schema presented in 
this book, and because we cannot show a relationship of a relationship to 
represent this situation, we need to create a weak entity (i.e., REVIEW) and 
relate it to BOOK_PUBLISHER, MANUSCRIPT, and BOOK as shown in 
Figure 7.6D. The intersection attribute, BMR, has to have a 
BOOK_PUBLISHER, MANUSCRIPT, and REVIEW. This review may 



results-in a BOOK (as shown in Figure 7.6D). 

  
Figure 7.6D: A Relationship of a Relationship Resolved into a Ternary 
Relationship   

n-ary Relationships that May Be Resolved into 
Binary Relationships 
Just because three entities are related does not necessarily imply a ternary 
relationship. In this section, we show how some ternary relationships can be 
resolved into binary relationships, and then we give another example of how 
a ternary relationship cannot be resolved into binary relationships (a real 
ternary relationship). 

Just as the binary M:N relationship can be decomposed into two 1:M 
relationships, so can many n-ary relationships be decomposed. First, note 
the decomposition of the M:N into two 1:M's in Figure 7.7. The idea is to 
make the relationship an entity, and hence form two simpler binary 
relationships. 



  
Figure 7.7: An ER Diagram of an M:N Relationship That Has Been 
Replaced with Two 1:M Relationships   

Next, look again at Figure 7.5. If we decompose Figure 7.5 into three binary 
relationships, we obtain Figure 7.8. In Figure 7.8, note that the new entity 
ATTENDANCE is weak and depends on the three entities — FACULTY, 
STUDENT, and GRADUATION — for its existence. The sense of 
ATTENDANCE would be a roll of attendees for a GRADUATION ceremony 
event. 



  
Figure 7.8: An ER Diagram (with Only Primary Keys) Showing a Three-
Way Relationship "Decomposed" into Three Binary 
Relationships   

There are situations, however, in which a relationship inherently associates 
more than two entities. Take Figure 7.2 as an example. Here, if we had 
another attribute like an order that a customer places to a supplier for a 
product, this attribute would require all three entities (i.e., CUSTOMER, 
PRODUCT, and SUPPLIER) at the same time. An order would specify that a 
supplier would supply some quantity of a product to a customer. This 
relationship cannot adequately be captured by binary relationships. With 
binary relationships we can only say that a customer placed an order for a 
product, or a supplier received an order for a product. The fact that a 
customer places an order for a product does not imply that the customer C is 
getting the product P from a supplier S unless all three entities are related. 

Checkpoint 7.2 
1. Can all ternary relationships be expressed in the form of binary 

relationships? Explain. 

2. Come up with some attributes and entities of a relationship that you 
think could be a ternary relationship. Can this relationship be 
expressed in the form of a binary relationship? 



Mapping Ternary Diagrams to a Relational Database 
In this section we develop mapping rules to map n-ary relationships to a 
relational database because this will also cover ternary relationships. 

M6 — For n-ary relationships — For each n-ary 
relationship, create a new relation. In the relation, include 
all attributes of the relationship. Then include all keys of 
connected entities as foreign keys and make the 
concatenation of the foreign keys the primary key of the 
new relation. Qualify all foreign keys.  

For example, referring to Figure 7.2, you have a ternary relationship called 
buy relating PRODUCT, SUPPLIER, and CUSTOMER. There is an 
intersection attribute, price. The mapped relation (with some sample data) 
would be: 

BUY 

price productID supplierID customerID 

$87.10 TAG1 F1 PENS 
$83.98 TAG2 G25 MOB 
$95.25 TAG3 G20 DEL 
$99.10 TAG4 F4 GULF 

PRODUCT 

productID …  

TAG1  

TAG2  

TAG3  

…   

SUPPLIER 

supplierID …  

F1  

G25  

G20  

…   

CUSTOMER 

customerID …  



Checkpoint 7.3 
1. Could Figure 7.3 be described in the form of binary relationships? 

Discuss. 

2. What mapping rules would you follow to map Figure 7.3? 

3. Map Figure 7.3 to a relational database and show some sample data. 

Our ER design methodology has now finally evolved to the following: 

PENS  

MOB  

DEL  

…   



ER Design Methodology 
Step 1: Select one primary entity from the database requirements 
description and show attributes to be recorded for that entity. Label 
keys if appropriate and show some sample data.  

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

Step 3: Examine attributes in the existing entities (possibly with user 
assistance) to find out if information about one of the entities is to be 
recorded.  

(We change "primary" to "existing" because we redo step 3 as we add new 
entities.) 

Step 3a: If information about an attribute is needed, make the attribute 
an entity, and then  

Step 3b: Define the relationship back to the original entity.  

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat steps 2 and 3 to see if this entity should be further 
split into more entities.  

Step 5: Connect entities with relationships (one or more) if 
relationships exist.  

Step 6: State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there is a 
relationship from A(1) to B(M) and from B(M) back to A(1).  

For ternary and higher order (n-ary) relationships, state the relationship 
in structured English, being careful to mention all entities for the n-ary 
relationship. State the structural constraints as they exist.  

Step 6a: Examine the list of attributes and determine whether any of 
them need to be identified by two (or more) entities. If so, place the 
attribute on an appropriate relationship that joins the two entities.  

Step 6b: Examine the diagram for loops that might indicate redundant 
relationships. If a relationship is truly redundant, excise the redundant 
relationship.  

Step 7: Show some sample data.  

Step 8: Present the "as-designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  



Chapter Summary 
Binary relationships are, by far, the most commonly occurring kind of 
relationships, and some ER diagram notations do not have expressions for 
ternary or other, higher-order relationships; that is, everything is expressed 
in terms of a binary relationship. In this chapter we showed how the need for 
ternary relationships arises from unique situations; for example when there is 
an intersection attribute that needs all three entities together, or when 
relationships of relationships develop. Ternary relationships can also be 
developed through reverse-engineering, and this is discussed in Chapter 9 
where reverse-engineering is discussed. Also in this chapter, we discussed 
in detail the structural constraints of ternary relationships and their grammar, 
and showed how some ternary or n-ary relationships can be resolved into 
binary relationships, but how some cannot be resolved into binary 
relationships. The final section of this chapter discussed mapping rules of n-
ary relationships. 



Chapter 7 Exercises 

Exercise 7.1 
In Chapter 5 we described a database that had two entities: COURSE and 
INSTRUCTOR. "Book" was left as an attribute of COURSE. Extend the 
database to include book as an entity. Attributes of book might include: book 
title, author, price, edition, and publisher. Explore the relationships that might 
exist here; use "in" or "by," "write," "teach," etc. Draw an ER diagram with at 
least two relationships, one of them ternary. What would be some attributes 
of the relationships? 

Exercise 7.2 
Construct an ER diagram for a broker, a security, and a buyer. Include in the 
diagram the price of the security, the commission paid, the broker name and 
address, the buyer name and address, and the security exchange, symbol, 
and price. Include in the diagram the number of shares of the security held 
by a buyer (you may choose to include this by broker, or not). 

Exercise 7.3 
Using three entities — INSTRUCTOR, CLASS, and ROOM — draw an ER 
diagram that depicts the following: Each CLASS in a ROOM has one 
INSTRUCTOR, but each INSTRUCTOR in a room may have many 
CLASSes, and each INSTRUCTOR of a CLASS may be in many ROOMs. 
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Chapter 8: Generalizations and 
Specializations 
In the first several chapters of this book, we presented the ER diagram as a 
conceptual database tool. The approach taken in developing an ER diagram 
was to assume that we were to model reality for a user. Although we worked 
on the basics of the ER diagram, there are situations where the basic model 
fails to completely describe the reality of the data to be stored. With the 
increase in the types of database applications, the basic concepts of ER 
modeling (as originally developed by Chen) were not sufficient to represent 
the requirements of more complex applications, such as generalizations and 
specializations (class hierarchies). An ER model that supports these 
additional semantic concepts is called the Enhanced Entity Relationship 
(EER) model (Elmasri and Navathe, 2000). This chapter discusses 
generalizations and specializations in the EER model and develops a 
methodology and grammar for this extension. 

What Is a Generalization or Specialization? 
The EER model includes all the concepts of the original ER model and 
additional concepts of generalization/specialization. Generalizations and 
specializations are associated with the concepts of superclasses and 
subclasses and attribute inheritance. 

The concept of classes includes the use of simple attributes we have seen. 
In programming, the concept of a class also includes actions that a class 
may perform. As with data typing, databases tend to focus more on 
attributes than procedural action. The idea of classes also refers to the ability 
to describe subclasses and superclasses with inheritance features. For 
example, a STUDENT entity contains information about students. However, 
suppose we wanted to store information about all people at an institution — 
not only students, but also staff and faculty. We might think of a superclass 
called PERSON that contained a subclass for STUDENT, another subclass 
for STAFF, and yet another subclass for FACULTY. Clearly, information 
about each of these subclasses of PERSON contains information pertinent 
to that subclass. Yet, the superclass PERSON entity would contain 
information common to all of these subclasses. PERSON may contain a 
name, address, and phone number; and when the subclass STAFF was 
defined, it would inherit those attributes of the superclass and define more 
attributes pertinent to STAFF. The superclass in a database is called a 
generalization, and the subclasses (student, staff, and faculty) are called 
specializations. 



A Problem with Variants 
To visualize a problem with ER diagrams at this stage, suppose we are 
gathering facts about the database and we have reached a point where one 
of the attributes for an entity has values that vary according to "the situation." 
For example, suppose we are modeling student athletes who may play more 
than one sport. We would, of course, record information about the student — 
a name, a unique identifier such as a student number, perhaps some other 
information. But then we would like to record some information about the 
sports that the students may play. As an example, let us suppose that we 
have a student athlete "table" with this type of data: 

Some information in the ATHLETE entity contains attributes that have 
different values for different sports. These different values are called 
"variants." This variant problem in data processing has been solved in 
various ways over the years. A solution to the problem of variants in records 
and varying attributes in entities in the ER diagram is to excise the variant 
and reference it back to the primary key of the "parent" information piece. 

In ER diagrams, we recognize that we are actually storing information about 
two different, but related, things: (1) a generalization called, "students," who 
have a name, id, etc.; and (2) specializations — sports (tennis, football, golf, 
etc.), each with their own different attributes. And because we are storing 
information about two things, why not create an entity called SPORTS and 
then relate the STUDENT to the SPORTS entity? One SPORTS entity would 
not work because the SPORTS entity would be general and we would want 
to store information about different, specific sports. Furthermore, what we 
want is to store information about sports as they pertain to each individual 
student. 

Why then would we not create a series of weak entities — one for each 
sport, that depends on STUDENT? The answer is that we could do this, but 
there is a better way to look at this problem that, as it turns out, will result in 
the same database as using a weak entity relationship, but provides an 
alternative way to present the information with more expressive diagrams, to 
include the concept of inheritance. 

ATHLETE 

student student # other sport info 

Baker 123456789 …  tennis 220, state rank 14 

Adams 123456788 …  football tackle, neck brace 

Jones 123455676 …  golf handicap 3 



Example of a Generalization or Specialization 
Specializations and generalizations are categorizations of entities where the 
specializations entity might result from generalizations containing variants. 
These variants are most easily handled by removing the variant from the 
generalization and treating it as a subclass entity and leaving the original, 
"fixed part" of the entity as a superclass or "parent" type. If we referred to the 
superclass as a parent class, then we would call the variant parts, the 
subclasses, the "child classes." 

Pursuing the parent-child superclass/subclass idea a bit further, we can 
imagine the child class inheriting the characteristics of the parent class. 
Inheritance in this context means that the child class will have defined in it 
whatever attributes are defined in the parent class. In our sports example, 
we would consider the STUDENT as a parent class and SPORTS as a child 
class so that when we define information about a sport, it is done in the 
context of the parent—STUDENT. 

If we were designing the database for STUDENT—ATHLETES, as above, 
and we recognized that we would want to record a name, a personal 
identifier (a SS#), address, etc., we could be starting with the generalization 
(or parent or superclass). Then we decide to record a player in a sport and 
some information about the sport itself. The player-sport is said to be a 
specialization of the student class. This design approach may be 
characterized as "top down." 

If we had been designing the database and we started with sports, we might 
have had a TENNIS entity, a FOOTBALL entity, etc. for each athlete, only to 
recognize that these entities may be generalizaed into a PERSON entity (a 
superclass) with individual sports as subclass-entities — this design 
approach might be characterized as "bottom-up." A generalization 
relationship specifies that several types of entities with certain common 
attributes can be generalized into a higher-level entity class, a generic or 
superclass entity. 

Either way (bottom up or top down), we end up with one entity being a 
superclass (a parent) and the other being a subclass (a child) of the parent. 
Whether one needs to specialize or generalize depends on where one 
recognizes the problem. 

To illustrate how we might handle this generalization-specialization, parent-
child class situation, suppose we have defined our entity, ATHLETE, like 
this: 

Entity: ATHLETE 

Attributes: name, SS#, address, gender, weight, height. 

The ER diagram for this entity is simple and straightforward. Then, in the 
course of database design we decide to add information about sports that 
athletes play. We might attempt to draw a diagram like Figure 8.1 with the 
variant "Sports Flag." 



  
Figure 8.1: The Student-Athlete with an Attempt to Add a Variant 
Attribute   

What is wrong with Figure 8.1? The problem is that we have attributes that 
have attributes that have attributes. "Sports Flag" is not a composite name; it 
does not have component parts. Instead of creating attributes with attributes, 
we will create entities for each specific sport, and then relate these entities 
back to the ATHLETE. 

Now refer to Figure 8.2. Here we have created weak entities for each sport. 
Actually, if the sports were real entities, we would have to make them weak 
because they depend on ATHLETE for their existence — they have no 
primary key. But we are not going to show the sports entities as weak, but 
rather we will use another notation which implies inheritance. 



  
Figure 8.2: The Student–Athlete Shown as a Strong–Weak Relationship 
Variant Attribute   

The process of specialization is intended as a process whereby the subclass 
inherits all the properties of the superclass. The player–sports entities would 
not make sense if standing alone and hence a tie back to the defining 
superclass is necessary. In EER terminology, the ATHLETE entity is called a 
superclass and the SPORTS entities are called subclasses. The attributes 
like handicap can be termed "specific attributes" as they are specific to the 
particular subclass. In other words, each member of a subclass is also a 
member of the superclass. The subclass member is the same as the entity in 
the superclass but has a distinct role. 

The sports entities, "specializations," are depicted in the EER scheme as 
illustrated in Figure 8.3. In Figure 8.3, we have made the three sports entities 
unto themselves — information pieces that we want to store informatin 
about. 



  
Figure 8.3: The Student–Athlete Shown as a Strong–Weak Relationship 
Variant Attribute   

First, in the ATHLETE entity, we include an attribute called sport. Sport is 
called a "defining predicate" as it defines our specializations. Referring to 
Figure 8.3A, the defining predicate can be written on the line that joins the 
ATHLETE entity to the circle with an "o" in it. The circle with an "o" in it 
describes an "overlapping constraint." If there is an "o" in the circle, then this 
means that the subclass entities that are joined to it may overlap; that is, a 
superclass entity may be a member of more than one subclass of a 
specialization. So, the overlap ("o") in Figure 8.3A means that an athlete can 
participate in more than one sport, which means, an athlete can play tennis 
and golf; or golf and football; or golf, tennis, and football. 



  
Figure 8.3A: The Student—Athlete Shown in a Superclass/Subclass 
Relationship   

If there were a "d" in the circle (in place of the "o") in Figure 8.3A, then the 
entities would not overlap; they would be disjoint. A "d" would indicate that 
athletes could participate in only one sport; that is, the athletes could play 
only golf, or only tennis, or only football (but not any of the two together). As 
another example, if we had not used sports as a defining predicate, but 
rather used "state born in," the entities for "states born in" would have to be 
disjoint because a person could only be represented in one of the 
specialization (subclass, child) entities. An example of a disjoint constraint is 
shown in Figure 8.4. 



  
Figure 8.4: An Office Database with Specialization Entities, Full 
Participation and Disjoint   

According to Figure 8.4, all the furniture in the database is either a chair, a 
desk, or a table. All? Note the full participation designation from the 
FURNITURE entities to the circle and contrast this to the partial participation 
in the STUDENT-ATHLETE example. The disjoint constraint specifies that if 
the subclasses of a specialization are disjoint, then an entity can be a 
member of only one of the subclasses of the specialization. 

In addition to the inclusion of the defining predicate, values of the defining 
predicate can be placed near the entity. This is not absolutely necessary and 
it may be redundant as in this case with the name of the specialization entity 
itself. 

Figure 8.3A shows a subclass symbol ($) between the predicate-defined 
entities and the disjointness/overlapping constraint circle—"Tennis," "Golf," 
and "Football" belong to the defining predicate, "Sport." The entities, 
TENNIS, GOLF, and FOOTBALL are subclasses of ATHLETE. The subclass 
symbol on each line that connects a subclass to the circle indicates the 
direction of the superclass/subclass or parent-child, inheritance relationship. 
In Figure 8.3, the subclasses, TENNIS, or GOLF, or FOOTBALL (the 
specializations), would inherit from the parent, ATHLETE. 

Checkpoint 8.1 
1. What is a specialization? Come up with another example of a 

specialization. 

2. What is a generalization? Come up with another example of a 
specialization. 

3. What is a disjoint constraint? What symbol shows the disjoint 
constraint in EER diagrams? 



4. What is an overlap constraint? What symbol shows the overlap 
constraint in EER diagrams? 

5. What does the subclass symbol signify? 

6. Why would you create a generalization/specialization relationship 
rather than creating a "weak entity"? 

7. How does "inheritance" play into the superclass/subclass 
relationship? Discuss. 



Methodology and Grammar for 
Generalization/Specialization Relationships 
We need to revisit step 6 in the ER Design Methodology to cover the 
possibility of generalization/specialization relationships. The previous version 
of step 6 was: 

Step 6: State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there is a 
relationship from A to B, 1 to Many, and from B back to A, Many to 1.  

For ternary and higher-order (n—ary) relationships, state the relationship in 
structured English, being careful to mention all entities for the n—ary 
relation. State the structural constraints as they exist. 

We add the following sentence to step 6: 

For specialization/generalization relationships, state the relationship in 
structured English, being careful to mention all entities (subclasses or 
specializations). State the structural constraints as they exist.  

The grammar that we propose for specializations/generalizations 
relationships is similar to that we used in weak relationships. We add to the 
grammar to include the participation, overlapping/disjointness constraints: 

The grammatical description for weak entities was: 

For each weak entity, we do not assume that any attribute will 
be unique enough to identify individual entities. Because the 
weak entity does not have a candidate key, each weak entity 
will be indentified by key(s) belonging to the strong entity.  

In the case of our athlete, a first attempt to describe the subclass identified 
by a superclass becomes: 

For each ATHLETE in a SPORT, we do not assume that any 
sport attribute will be unique enough to identify individual 
SPORT entities. Because the SPORT does not have a 
candidate key, each SPORT will be identified by inheriting key
(s) belonging to ATHLETE. 

So, a more complete EER diagram grammatical pattern would say: 

For each specialization, we do not assume that any attribute 
will be unique enough to identify individual entities. Because 
the specialization does not have a candidate key, each 
specialization will be identified by key(s) inherited from the 
generalization. Further, specializations overlap [or are disjoint]. 
[Explain the overlap/disjoint feature]. The individual 
specialization is identified by a defining predicate, attribute 
name, which will be contained in generalization.  

For Figure 8.3A, the pattern becomes: 

For each sport, we do not assume that any attribute will be 
unique enough to identify individual entities. Because the sport 
does not have a candidate key, each sport will be identified by 
key(s) inherited from ATHLETE. Further, the sports overlap. 
Athletes may play more than one sport. The individual sport is 



identified by a defining predicate attribute (sport) that will be 
contained in ATHLETE. The sports we will record are golf, 
tennis, and football. 



Mapping Rules for Generalizations and 
Specializations 
In this section we present mapping rules to map generalizations and 
specializations to a relational database: 

M7 — For each generalization/specialization entity situation, create one 
table for the generalization entity (if you have not done so already per 
the earlier steps) and create one table for each specialization entity. 
Add the attributes for each entity in their each respective tables. Add 
the key of the generalization entity into the specialization entity. The 
primary key of the specialization will be the same primary key as the 
generalization.  

For example, refer to Figure 8.3A. The generalization/specialization 
relationship between the ATHLETE and TENNIS, GOLF, and FOOTBALL 
would be mapped as follows: 

ATHLETE 

weight name gender height SS# sport 

140 Kumar M 5.95 239-92-0983 golf 
200 Kelvin M 6.02 398-08-0928 football 
135 Sarah F 5.6 322-00-1234 tennis 
165 Arjun M 6.01 873-97-9877 golf 
145 Deesha F 5.5 876-09-9873 tennis 

TENNIS 

ss# state ranking national ranking 

322-00-1234 23 140 
876-09-9873 47 260 

GOLF 

ss# handicap 

239-92-0983 3 
873-97-9877 1 

FOOTBALL 

ss# position 

398-08-0928 tackle 
239-92-0983 quarter back 



The key of the generalization entity (ss#) is added to the specialization 
entities TENNIS, GOLF, FOOTBALL. ss# also becomes the primary key of 
the specialization entities. 

So, our ER design methodology (with one component of the EER model — 
the generalization/specialization component) has finally evolved to the 
following: 

ER Design Methodology  

Step 1: Select one, primary entity from the database requirements-
description and show attributes to be recorded for that entity. Label 
keys if appropriate and show some sample data.  

Step 2: Use structured English for entities, attributes, and keys to 
describe the database that has been elicited.  

Step 3: Examine attributes in the existing entities (possibly with user 
assistance) to find out if information about one of the entities is to be 
recorded.  

(We change "primary" to "existing" because we redo step 3 as we add new 
entities.) 

Step 3a: If information about an attribute is needed, make the attribute 
an entity, and then  

Step 3b: Define the relationship back to the original entity.  

Step 4: If another entity is appropriate, draw the second entity with its 
attributes. Repeat steps 2 and 3 to see if this entity should be further 
split into more entities.  

Step 5: Connect entities with relationships (one or more) if 
relationships exist.  

Step 6: State the exact nature of the relationships in structured English 
from all sides. For example, if a relationship is A:B::1:M, then there is a 
relationship from A(1) to B(M) and from B(M) back to A(1).  

For ternary and higher-order (n-ary) relationships, state the 
relationship in structured English, being careful to mention all entities 
for the n-ary relationship. State the structural constraints as they exist.  

For specialization/generalization relationships, state the relationship in 
structured English, being careful to mention all entities (subclasses or 
specializations). State the structural constraints as they exist.  

Step 6a: Examine the list of attributes and determine whether any of 
them need to be identified by two (or more) entities. If so, place the 
attribute on an appropriate relationship that joins the two entities.  

Step 6b: Examine the diagram for loops that might indicate redundant 
relationships. If a relationship is truly redundant, excise the redundant 
relationship.  

Step 7: Show some sample data.  

Step 8: Present the "as designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  

398-08-0928 full back 



Checkpoint 8.2 
1. How are the mapping rules for generalizations/specializations 

different from the mapping rules for weak entities? 

2. Map Figure 8.4 to a relational database and show some sample data. 



Chapter Summary 
In this chapter we described the concepts of specialization/generalization. 
The concepts of overlap and disjoint were also presented. This chapter 
approached EER diagrams as discussed by Elmasri and Navathe (2000) 
and Connolly et al. (1998). Some authors, for example Sanders (1995), use 
a close variation of this model, and call the specialization/generalization 
relationship an "IsA" relationship. Although we do not discuss "unions" and 
"categories," "hierarchies and lattices," these are further, uncommon 
extensions of a generalization/specialization relationship as presented by 
Elmasri and Navathe (2000). 

This chapter also concluded the development of the EER design 
methodology. In the next chapter we will discuss mapping ER and EER 
diagrams to the relational model as well as reverse-engineering. 



Chapter 8 Exercises 

Exercise 8.1 
Draw an ER diagram for a library for an entity called "library holdings." 
Include as attributes the call number, name of book, author(s), and location 
in library. Add a defining predicate of "holding type," and draw in the disjoint, 
partial specializations of journals and reference books, with journals having 
the attribute "renewal date" and reference books having the attribute 
"checkout constraints." Map this to a relational database and show some 
sample data. 

Exercise 8.2 
Draw an ER diagram for computers at a school. Each computer is identified 
by an id number, make, model, date acquired, and location. Each computer 
is categorized as a student computer or a staff computer. For a student 
computer, an attribute is "hours available." For a staff computer, an attribute 
is "responsible party" ("owner" if you will). Map this to a relational database 
and show some sample data. 
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Case Study: West Florida Mall (continued) 
Thus far in our case study, we have developed the major entities and 
relationships, and mapped these to a relational database (with some sample 
data). Then, upon reviewing step 7, which says: 

Step 7: Present the "as-designed" database to the user, complete with 
the English for entities, attributes, keys, and relationships. Refine the 
diagram as necessary.  

Suppose we obtained some additional input from the user: 

A PERSON may be an owner, employee, or manager. For 
each PERSON, we will record the name, social security 
number, address, and phone number. 

Upon reviewing these additional specifications, we came up with one new 
entity, PERSON. 

Now, repeating step 2 for PERSON: 

The Entity 

This database records data about a PERSON. For each 
PERSON in the database, we record a person's name 
(pname), person's social security number (pssn), person's 
phone (pphone), and person's address (padd). 

The Attributes for PERSON 

For each PERSON there will always be one and only one 
pname (person's name) recorded for each PERSON. The 
value for pname will not be subdivided. 

For each PERSON, there will always be one and only one pssn 
(person's social security number) recorded for each PERSON. 
The value for pssn will not be subdivided. 

For each PERSON there will always be one and only one 
pphone (person's phone) recorded for each PERSON. The 
value for pphone will not be subdivided. 

For each PERSON there will always be one and only one padd 
(person's address) recorded for each PERSON. The value for 
padd will not be subdivided. 

The Keys 

For each PERSON, we will assume that the pssn will be 
unique. 

These entities have been added to the diagram in Figure 8.5. 



  
Figure 8.5: An ER Diagram of West Florida Mall Developed Thus 
Far   

Using step 6 to determine the structural constraints of relationships, we get: 

As shown in Figure 8.5, there is a disjoint relationship between PERSON 
and STORE MANAGER, OWNER, and EMPLOYEE. This means that a 
person may be an owner, store manager, or an employee (a disjoint 
generalization/specialization relationship). 

To Map This Relationship (with some sample data):  

EMPLOYEE 

essn dnum snum dm_ssn 

987-754-9865 501 1 276-263-9182 
276-263-9182 502 1 null 
982-928-2726 503 1 987-754-9865 

STORE MANAGER 

sm_ssn salary 

234-987-0988 45,900 
456-098-0987 43,989 



Because PERSON has the fields of social security number (pssn), name 
(pname), address (padd), and phone number (pphone), and because a 
person may be an owner, store manager, or an employee — a disjoint, 
generalization/specialization relationship, notice that we removed some of 
the attributes from the original entities. For example, in the EMPLOYEE 
entity, we no longer need to keep the ename field because this can be 
obtained from PERSON, as long as we have the ss# of the employee. 

So, in summary, our relational database would finally develop to (without the 
data): 

MALL-Store 

MALL 

928-982-9882 44,000 

OWNER 

so_ssn so_off_phone 

879-987-0987 (850)474-2093 
826-098-0877 (850)474-9873 
928-088-7654 (850)474-9382 

PERSON 

pssn pname padd pphone 

879-987-
0987 

Earp 1195 Gulf Breeze Pkwy, 
Pensacola, FL 

(850)837-
0982 

826-098-
0877 

Sardar 109 Navy Blvd, Pensacola, 
FL 

(850)987-
0373 

928-088-
7654 

Bagui 89 Highland Heights, Tampa, 
FL 

(813)938-
0383 

987-754-
9865 

Miller 55 Neverland, Pace, FL (850)897-
5633 

276-263-
9182 

Foyer 109 Pace Blvd, Mobile, AL (251)464-
3117 

982-928-
2726 

Khanna 503 Wildwood Land, 
Columbus, OH 

(330)664-
7654 

234-987-
0988 

Bush 100 Indian Road, North 
Canton, OH 

(330)865-
9843 

456-098-
0987 

Rodgers 398 Southern Street, Detroit, 
MI 

(776)875-
9754 

928-982-
9882 

Bundy 387 Bancroft Street, Toledo, 
OH 

(419)536-
4374 

name  store_name 



STORE 

OWNER 

DEPARTMENT 

EMPLOYEE 

PERSON 

This ends our case study. 

name  address 

sloc sname snum  mall_name so_ssn sm_ssn 

so_ssn  so_off_phone 

dname dnum  snum 

essn  dnum snum dm_ssn 

pssn  pname padd sport pphone 



Chapter 9: Relational Mapping and 
Reverse-Engineering ER Diagrams 
Throughout this book we developed the rules for mapping an ER diagram to 
a relational database. In this chapter we present a summary of the mapping 
rules, and then discuss reverse-engineering. 

We often find that databases exist without an accompanying ER diagram. 
The ER diagram is documentation; and just as computer programs require 
documentation, so do databases. Therefore, we have included a section on 
reverse-engineering ER diagrams; that is, working from a relational database 
back to an ER diagram. For reverse-engineering, we present a series of 
steps to develop a diagram from the data. 

Steps Used to Map an ER Diagram to a Relational 
Database 
Presented here is a summary of the steps needed to map an ER diagram to 
a relational database. In following these rules, the resulting relational tables 
should be close to 3NF. However, these rules do not preclude the exercise 
of checking the resulting database to be absolutely sure it is normalized. 
This is reassuring in a way, in that even if the mapping rules are misapplied, 
there is still one last chance to ensure a 3NF relational database. 

Step 1: Map the strong entities in the ER diagram.  

M1 — For strong entities — create a new table (relation) 
for each strong entity and make the indicated key of the 
strong entity the primary key of the table. If more than one 
candidate key is indicated on the ER diagram, choose one 
as the primary key for the table.  

Next we have to map the attributes in the strong entity. Mapping rules are 
different for atomic attributes, composite attributes, and multi-valued 
attributes. First, the mapping rule for mapping atomic attributes: 

M1a — Mapping atomic attributes from an entity — For 
entities with atomic attributes: Map entities to a table 
(relation) by forming columns from the atomic attributes 
for that entity.[1]  

What about the composite and multi-valued attributes? In 
relational database, all columns have to be atomic. If we have 
a non-atomic attribute on our diagram, we have to make it 
atomic for mapping to the relational database. For composite 
attributes, we achieve atomicity by recording only the 
component parts of the attribute. Our next mapping rule 
concerns composite attributes: 

M1b — For entities with composite attributes, form 
columns from the elementary (atomic) parts of the 
composite attributes.  

The mapping rule for multi-valued attributes is: 

M1c — For multi-valued attributes, form a separate table 
for the multi-valued attribute. Include the primary key from 
the original table. The key of the new table will be the 



concatenation of the multi-valued attribute plus the 
primary key of the owner entity. Remove the multi-valued 
attribute from the original table.  

Step 2: Map the weak entities in the ER diagram.  

M4 — For Weak Entities — Develop a new table for each 
weak entity. As is the case with the strong entity, include 
the attributes in the table using rules M1a, M1b, and M1c. 
To relate the weak entity to its owner, include the primary 
key of the owner entity in the weak table as a foreign key. 
The primary key of the weak table will be the partial key in 
the weak entity concatenated to the key of the owner 
entity.  

If weak entities own other weak entities, then the weak entity that is 
connected to the strong entity must be mapped first. The key of the weak 
owner entity has to be defined before the "weaker" entity (the one furthest 
from the strong entity) can be mapped. 

Step 3: Map the binary M:N relationships.  

M3a — For binary M:N relationships — For each M:N 
relationship, create a new relation with the primary keys of 
each of the two entities (owner entities) that are being 
related in the M:N relationship. The key of this new relation 
will be the concatenated keys of each of the two owner 
entities. Include any attributes that the M:N relationship 
may have in this new relation.  

Step 4: Map the binary 1:1 relationships — the Primary key/Foreign key 
method.  

There are two ways to map any relationship. A new table can be created as 
in rule M3a; or, with non-M:N relationships, the relationship can be mapped 
by a primary key/foreign key (PK/FK). To use the PK/FK technique: 

M3b — For binary A:B::1:1 relationships — include the 
primary key of EntityA into EntityB as the foreign key.  

The question is: which is EntityA and which is EntityB? This question is 
answered in the next three mapping rules, M3b_1, M3b_2, and M3b_3, 
which take participation into account: 

M3b_1 — For binary 1:1 relationships, if one of the sides 
has full participation in the relationship, and the other has 
partial participation, then store the primary key of the side 
with the partial participation constraint on the side with 
the full participation constraint. Include any attributes on 
the relationship in the table that gets the foreign key. Note 
that this rule will result in no null values for the foreign 
key.  

M3b_2 — For binary 1:1 relationships, if both sides have 
partial participation constraints, there are three alternative 
ways to implement a relational database:  

M3b_2a — First alternative: you can select either one of 
the tables to store the key of the other (and live with some 



null values).  

M3b_2b — Second alternative: depending on the 
semantics of the situation, you can create a new table to 
house the relationship that would contain the key of the 
two related entities (as is done in M3a).  

M3b_2c — Third alternative: create a new table with just 
the keys from the two tables in addition to the two tables. 
In this case we would map the relations as we did in the 
binary M:N case; and if there were any null values, these 
would be left out of the linking table.  

M3b_3 — For binary 1:1 relationships, if both sides have 
full participation constraints, you can use the semantics of 
the relationship to select which table should contain the 
key of the other. It would be inappropriate to include 
foreign keys in both tables as you would be introducing 
redundancy in the database. Include any attributes on the 
relationship, on the table that is getting the foreign key. 
This situation may be better handled using the new table 
rule M3a.  

Step 5: Map the binary 1:N relationships.  

M3c — Although most binary 1:N relationships are 
mapped with the PK/FK method, the separate table per 
rule M3a can be used. To use the PK/FK method for binary 
1:N relationships, we have to check what kind of 
participation constraints the N side of the relation has:  

M3c_1 — For binary 1:N relationships, if the N-side has full 
participation, include the key of the entity from the 1 side 
in the table on the N side as a foreign key in the N side 
table. If the N side is weak with no primary key, a key from 
the 1 side will be required in the N side table concatenated 
to the weak partial key. The key of this table will be the 
weak partial key plus the foreign key. Include any 
attributes that were on the relationship, in the table that is 
getting the foreign key (the N side).  

M3c_2 — For binary 1:N relationships, if the N side has 
partial participation, the 1:N relationship is best handled 
just like a binary M:N relationship with a separate table for 
the relationship to avoid nulls. The key of the new table 
consists of a concatenation of the keys of the related 
entities. Include any attributes that were on the 
relationship, on this new "intersection table."  

Partial participation is a problem because it leads to null values. If we put the 
key from the 1 side into the N-side relation, and if the participation is partial 
(not every tuple on the N side has a relationship to the 1 side), then there will 
be nulls in the database when it is populated. Therefore, it is better to create 
a separate table for the 1:N relationship and hence avoid nulls. 

Finally, on the subject of 1:N relationships, we should look back at Figure 6.2 
where an M:N relationship was converted into two 1:N relationships. Note 
that the result of converting the M:N into two 1:N relationships will result in 
the same set of tables from the 1:N mappings. 

Step 6: Map recursive relationships.  



M5 — For recursive entities, two types of mapping rules 
have been developed:  

M5a — For 1:N recursive relationships, reinclude the 
primary key of the table with the recursive relationship in 
the same table, giving the key some other name.  

M5b — For M:N recursive relationships, create a separate 
table for the relationship (as in mapping rule M3a).  

Step 7: Map n-ary (higher than binary) relationships.  

M6 — For n -ary relationships — For each n -ary 
relationship, create a new table. In the table, include all 
attributes of the relationship. Then include all keys of 
connected entities as foreign keys and make the 
concatenation of the foreign keys the primary key of the 
new table.  

Step 8: Map generalizations/specializations.  

This is most often a situation where you have an entity set with variants — 
attributes that apply to some occurrences and not others. The concept of 
inheritance applies in that it is assumed that each derived subclass inherits 
the properties of the "superclass" or "parent." 

M7 — For each generalization/specialization entity 
situation, create one table for the generalization entity (if 
you have not done so already per steps 1 through 7) and 
create one table for each specialization entity. Put the 
attributes for each entity in the corresponding table. Add 
the primary key of the generalization entity into the 
specialization entity. The primary key of the specialization 
will be the same primary key as the generalization.  

Checkpoint 9.1 
1. What is the first mapping rule? 

2. How would you map weak entities of weak entities? 

3. While mapping a binary 1:N relationship where the N side has full 
participation, why do we include the key of the 1 side of the relation in 
the N side of the relation? What would be wrong if we included the 
key of the N side of the relation in the 1 side of the relation? 

4. Why would it be reasonable to map a 1:N binary relationship that has 
partial participation on the N side like a M:N relationship? 

If the above rules were followed, the resulting relational database should be 
at or close to 3NF. The next phase of mapping is "checking your work" by 
reviewing the tables to ensure that you are at least in 3NF (refer to Chapter 
1). In brief, checking for 3NF consists of the following steps: 

1. 1NF — Check that there are no non-atomic attributes in any table. 
Nonatomic attributes were dealt with in steps M1b for composite 
attributes and M1c for multi-valued attributes. 

2. 2NF — Check that all attributes in all tables depend on the primary 
key. Ask yourself, "Will I always get the same value for attribute Y 



when I have value X where X is the primary key?" 

3. 3NF — Check for situations where an attribute is in a table but that 
attribute is better defined by some attribute that is not the primary key. 
Recall that if the primary key in a table is X and X → YZW, then if Z → 

W is better than X → W, you likely have a transaction dependency 
and you need to normalize. 

[1]These mapping rules are adapted from Elmasri and Navathe (2000).
 



Reverse-Engineering 
Having developed a methodology to develop ER diagrams and map them to 
a relational database, we now turn our attention to the reverse problem: the 
issue of taking a relational database and coming up with an ER diagram. 
Often in real-world situations, we find ourselves with a database and we 
have no diagram to show how it was developed. There are several reasons 
why a reverse-engineered diagram (RED) paradigm is useful. 

First, the RED provides us with a grammatical and diagrammatic description 
of the database. People often use databases but do not understand them. 
By reverse-engineering from the data and tables to the diagram, we can 
more easily express the meaning of the database in words. By having the 
ER diagram of the relational database and the grammatical expression of the 
diagram, we can embellish the database and maintain meaning. We can 
also aid in the development of queries on the database. 

While the expression "reverse-engineering" might imply that we reverse the 
steps to create a diagram, we have found it easier to repeat the steps from 
the top (more or less) to discover what diagram would have been used to 
create the relational database. There is one caveat here, in that the steps 
presented assume that the database is in 3NF. If it is not in 3NF, 
reverseengineering may aid in discovering why redundancy exists in the 
database and hence suggest some changes. We suggest the following: 

Rule R1: Develop strong entities 
For tables with a one-attribute key, draw a strong entity R for that table and 
include all the attributes of that table on the entity R on the ER diagram. 

For example, if you have a table, R(a,b,c,d,e), a is the key. Create a strong 
entity called R and show a, b, c, d, and e as attributes with a as the key. See 
Figure 9.1. 

R 

  
Figure 9.1: Reverse-Engineering Strong Entities   

Rule R2: Look for 1:1 and 1:N (1:x) relationships 

As second, third, … strong entities are discovered, note foreign keys in the 
tables found previously; excise the foreign keys from the previous table and 
create a relationship between the entities. This situation would have 
indicated a 1:x relation. 

For example, in addition to the above, if you have another table, S, S(d,f,g). 
d is the key of S and is in R, so d is a foreign key in R. Remove d from R 
(see Figure 9.2), giving: 

R(a,b,c,e) 

S(d,f,g) 

a b c d e 



  
Figure 9.2: Reverse-Engineering 1:N Relationships   

In all cases of relationships, we may have to determine the cardinality and 
the participation constraints from the semantics of the database. Sometimes, 
the way that the tables are formed provides a clue. Also, sample data may 
help in elucidation. For example, if the tables are as the above case, then it 
is likely that the relationship was N:1, with the N side being R because R 
contained d, a foreign key. The data can be examined to determine if any 
nulls are present, which would indicate a partial participation (note carefully 
that we are saying "indicate" because only the true [albeit unknown] 
semantics would "prove" the full participation). 

Rule R2a: Check for attributes of the 1:x relationships 
If a foreign key is excised from a relation R because it is the key of S, you 
have to check to see whether any of the remaining attributes in R should 
stay with the relation R, or should be placed on a relationship RS, or should 
be placed with S. Because step 2 is reverse-mapping a 1:x relation, it may 
be that an attribute from the 1:x relation itself was placed with the foreign key 
when the original ER diagram was mapped, or it may be that an attribute 
was on the relationship itself. 

You have to judge where a remaining attribute is more likely to belong. If it is 
likely that the attribute was defined by the key of an entity, put the attribute 
with the entity containing the key. If the attribute requires both keys for its 
identity, the attribute should be placed on the relation RS for sure. 



For example, in the above, if we removed d from R because d was the key 
of S. Suppose that e was better defined by d (the key of S) than a (the key of 
R). If this is true, then e should be placed with S and removed from R. This 
would result in: 

R(a,b,c) 

S(d,f,g,e) 

Example R2a2: In the above, we removed d from R because d was the key 
of S. Suppose that after we create S, we determine that e only makes sense 
if we define it in terms of both a and d, the keys of R and S. This would imply 
that e was an intersection attribute on the relationship between R and S, and 
hence would be depicted as such (see Figure 9.3). 

R (a,b,c) 

S (d,f,g,e) 

RS (a,d,e) 

  
Figure 9.3: An ER Diagram Showing the Relationship between R and 
S   

This concludes the reverse-mapping of obviously strong relations. We will 
now look for weak relations and multi-valued attributes. 



Rule R3: Look for weak entities or multi-valued attributes. 
Examine the relations for any concatenated keys to see whether they 
contain any of the keys of the strong entities. If they do, this could indicate a 
weak entity (rule R3a), a multi-valued attribute (rule R3b), or a table resulting 
from M:N relationship. Which of these it is will depend on non-key attributes. 

Rule R3a: Weak entities 
If there is a table where there are attributes other than the key (which 
consists of a foreign key from a strong entity and another attribute the partial 
key), then you probably have a weak entity. For example, if you have a table: 
      SKILL (emp#, skill type, date_certified) 

Here, emp# is a foreign key, skill_type is not, and hence would likely be a 
partial key of a weak entity. Why a weak entity? Because there is another 
attribute, date certified, that means we are storing information about SKILL. 

Place the weak entity on the ER diagram along with a relationship to its 
owner entity. The relationship is likely to be 1:N::strong(owner):weak
(dependent)::partial:full. Examine the attributes in the weak entity to 
determine whether they would have come from the weak entity or the 
relationship between the weak entity and its owner. Here, SKILL is the weak 
entity, skill_type is the partial key, and date certified is an attribute of the 
entity SKILL (see Figure 9.4). 



  
Figure 9.4: Reverse-Engineering Weak Entities   

Rule R3b: Multi-valued attributes 
If there are no attributes other than the key in a relation and the part of the 
key is a foreign key from a strong entity, it is likely a multi-valued attribute 
that would have been connected to the strong entity referenced by the 
foreign key. Place the multi-valued attribute on the entity to which it belongs 
as a multi-valued attribute. 

For example, if we have the relation: 
      INSTRUCTOR (SS#, degree) 

Here, we have a concatenated key and no other attributes. Because SS# is 
likely the key of another entity (e.g., PERSON), then degree must be a 
multivalued attribute. Why not a weak entity? Because, if there were a weak 
entity, there would probably be more attributes — for example, we would be 
recording information about the degrees but we are not in this case doing so. 
Figure 9.5 diagramatically shows the reverse of engineering of the 
multivalued attribute example discussed above. 

  



Figure 9.5: Reverse-Engineering Multi-Valued 
Attributes   

Rule R4: M:N and n-ary relationships 
Examine the relations for multiple occurrences of primary keys from the 
entities derived thus far. Remember that a weak entity has a concatenated 
key, so an M:N relationship from Strong:Weak will have more than two 
attributes participating in the key. 

Rule R4a: The binary case 
If there are two foreign keys by themselves in a table (and nothing else), this 
is likely a table that occurred because of a relationship. If the two foreign 
keys occur with other attributes, it is even more likely that an M:N 
relationship existed along with attributes of the relationship. Place an M:N 
relationship between the two entities with foreign keys and include other 
attributes as relationship attributes. 

For example, if you discover a relation called PURCHASE which looks like 
this (see Figure 9.6): 
      PURCHASE (Vendor#, part#, price) 

  
Figure 9.6: Reverse-Engineering M:N Relationships   

Suppose vendor# is the key of an entity called VENDOR and part# is the key 
of an entity called PART. These two foreign keys are a clear message that 



this is a table formed from an M:N (or possibly a 1:N or even a 1:1) 
relationship. The M:N is most likely and the relationship can be deduced 
from the data. If, for example, there are multiple occurrences of parts for 
vendors and vice versa, this is an M:N. If, for every part, there is a list of 
vendors but every vendor supplies only one part, then this would be 
VENDOR:PART::N:1. 

Rule R4b: n-ary case 
If there are more than two foreign keys in a relation participating as the key 
of the relation, this is likely a relation that occurred because of an n-ary 
relationship. There may well be other attributes in the relation with the three 
or more foreign keys. Place an n-ary relationship (n = number of foreign 
keys) between the n entities with foreign keys and include other attributes as 
relationship attributes. 

For example, consider the following relation: 
      PURCHASE (Vendor#, part#, cust#, price) 

Three foreign keys imply a ternary relationship. The attribute price is likely an 
intersection attribute on the relationship. In this case, we would be saying 
that all three keys would be necessary to identify a price, as shown in Figure 
9.7. 

  
Figure 9.7: Reverse-Engineering n-ary Cases   

Checkpoint 9.2 



1. What hints would you look for to determine if a relationship is ternary? 

2. What hints would you look for when you are trying to determine 
whether relations have weak entities and multi-valued attributes 
included in them? 



Chapter Summary 
In this chapter we presented a summary of the mapping rules (rules used to 
map ER diagrams to relational databases) that we developed throughout the 
book, and then discussed and developed a set of rules for reverse-
engineering to ER diagrams from a relational database. 



Chapter 9 Exercises 

Exercise 9.1 
Come up with an ER diagram for the following relational database: 

R (a, b, c, d, w) 

S (d, e, f) 

T (c, g, h) 

U (c, d, j) 

V (d, k) 

W (a, m, o, p) 

X (a, d, c, r) 

Y (a, o, s, t) 
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Chapter 10: A Brief Overview of the 
Barker/Oracle-Like Model 
There are many variations (models) of ER diagrams. One such model was 
introduced by Richard Barker (1990). The Barker model was adopted and 
modified slightly by the Oracle Corporation. In this chapter we introduce the 
conventions used in the Barker/Oracle-like model as it applies to our ER 
design methodology. We are going to depict major concepts of both Barker 
and Oracle's ER diagrams. Our combined Barker/Oracle-like model is not 
meant as a primer on either party's "pure model," but the transition to Barker 
or Oracle's ER diagrams will be minor. 

Why are we interested in the Barker/Oracle-like model and why present it 
here? First, the Barker/Oracle-like model is common; it is used often in 
Oracle literature. The pedantic problem with the Barker/Oracle-like model is 
that one needs to fully understand relational database theory to understand 
why the Barker/Oracle-like model is done the way it is. We present the 
Barker/Oraclelike model here because the way it unfolds is a bit different 
from the Chen-like model. The Chen-like model focuses on modeling data, 
whereas the Barker/Oracle-like model adapts the data to the relational 
database concurrently with the design. Therefore, the ER design 
methodology for the Barker/Oracle-like model will develop differently from 
the Chen-like model. Further, the Barker/Oracle-like model does not have 
some of the conventions used in the Chen-like model. For example, the 
Barker/Oracle-like model does not directly use the concept of composite 
attributes, multi-valued attributes, or weak entities, but rather handles these 
concepts immediately in light of the relational model. Because the 
Barker/Oracle model is so close to the relational model to begin with, the 
mapping rules are trivial — the mapping takes place in the diagram itself. 

A First "Entity-Only" ER Diagram — An Entity with 
Attributes 
We start with developing a first, "entity-only" ER diagram in the 
Barker/Oraclelike model. To recap our example used earlier in the book, we 
have chosen a "primary" entity from a student-information database — the 
STUDENT. A "student" is something that we want to store information about 
(the definition of an entity). For the moment we will not concern ourselves 
with any other entities. 

What are the some initial attributes we used in the STUDENT? A student 
has a name, address, school, phone number, and major. We have picked 
five attributes for the entity STUDENT, and have also chosen a generic label 
for each: name, address, school, phone, and major. 

We begin our venture into the Barker/Oracle-like model with Figure 10.1. A 
Barker/Oracle-like model uses soft boxes for entities (with the entity name in 
capital letters), and there is a line separating the entity name from the 
attributes (and the attribute names are in lowercase letters). A 
Barker/Oracle-like model does not place the attributes in ovals (as the Chen-
like model does), but rather lists the attributes below the entity name, as 
shown in Figure 10.1. 



  
Figure 10.1: Barker/Oracle-Like Notation: An ER Diagram with One 
Entity and Five Attributes   

Figure 10.1 shows an ER diagram with one entity, STUDENT, and the 
following attributes: name, address, school, phone, and major. In the Oracle-
like version of the Barker/Oracle-like ER diagram, the data type is also listed 
— see Figure 10.1A. 

  
Figure 10.1A: Barker/Oracle-Like Notation: An ER Diagram with One 
Entity and Five Attributes (Data Types Added)  



Attributes in the Barker/Oracle-Like Model 
All attributes in a Barker/Oracle-like model are considered simple or atomic, 
as in relational databases. The Barker/Oracle-like model does not have the 
concept of composite attributes. So, our Barker/Oracle-like adaptation will 
show parts of the composite attributes using a dot (.) notation, as shown in 
Figure 10.2. 

  
Figure 10.2: Barker/Oracle-Like Notation: An ER Diagram with a 
Composite Attribute — name   

Optional versus Mandatory Attributes 
When designing a database, it is necessary to know whether or not an entity 
can contain an unknown value for an attribute. For example, in the 
STUDENT entity (shown in Figure 10.1), suppose that the address was 
optional. That is, if data was recorded for a student on a paper data entry 
form, we could demand that the person fill out his name and student number 
but allow him to have the address blank (i.e., unknown). We would say that 
the name and the student number are "mandatory," and address is 
"optional." A missing value is called a "null." Hence, the mandatory attribute 
is said to be "not null." Not null means that on no occasion would an instance 
of the entity exist without knowing the value of this mandatory attribute. In 
the Barker/Oraclelike ER model, we will show the optional attribute without 
the "not null" depiction and the mandatory attribute by adding the phrase "not 
null" to the description (as shown in Figure 10.3). A mandatory attribute 
could be a key but it is not necessarily a key. Mandatory and optional 
attributes are usually not indicated explicitly in the Chen-like model. 

In our Barker model, the primary key has a "#" in front of the name of the 
attribute (as shown in Figure 10.3). A primary key has to be a mandatory 
attribute in a relational database, but again, all mandatory attributes here are 
not necessarily unique identifiers. 



  
Figure 10.3: Barker/Oracle-Like Notation: An ER Diagram with a 
Primary Key or Unique Identifier Attribute and Optional and Mandatory 
Attributes   

Checkpoint 10.1 
1. What do mandatory attributes (in the Barker/Oracle-like model) 

translate into in the Chen-like model? Discuss with examples. 

2. What do optional attributes (in the Barker/Oracle-like model) translate 
into in the Chen-like model? Discuss with examples. 

3. How are the primary keys being shown diagrammatically in the 
Barker/Oracle-like model? 



Relationships in the Barker/Oracle-Like Model 
In the Barker/Oracle-like model, a relationship is represented by a line that 
joins two entities together. There is no diamond denoting the relationship (as 
we saw in the Chen-like model). The relationship phrase for each end of a 
relationship is placed near the appropriate end (entity) in lower case, as 
shown in Figure 10.4. In this model, from the STUDENT entity to the 
SCHOOL entity, we would say (informally) that: 

Students attended schools 

And, from the other direction, from the SCHOOL entity to the STUDENT 
entity, we would say that: 

Schools are attended by students. 

  
Figure 10.4: Barker/Oracle-Like Notation: The STUDENT Entity with a 
Relationship to the SCHOOL Entity  



Structural Constraints in the Barker/Oracle-Like 
Model 
In the Barker/Oracle-like notation, the cardinality of 1 is shown by a single 
line leading up to the entity. In Figure 10.5, a single line joins the two entities, 
so this is a 1:1 relationship between STUDENT and AUTOMOBILE. This 
means that one student can be related to one and only one automobile, and 
one automobile can be related to one and only one student. 

  
Figure 10.5: 1:1 Relationship in the Barker/Oracle-Like 
Notation   

The dashed line leading up to an entity signifies optional (partial) 
participation of an entity in a relationship. In Figure 10.5, both the STUDENT 
entity and the AUTOMOBILE entity are participating optionally in the 
relationship. 

An enhanced grammar from the STUDENT entity to the AUTOMOBILE 
entity would be: 

A student may drive one and only one automobile 

And for the AUTOMOBILE entity to the STUDENT entity would be: 

An automobile must be driven by one and only one student. 

A continuous (solid) line coming from an entity (as shown in Figure 10.6) 
signifies mandatory (full) participation of that entity in a relationship. So, 
according to Figure 10.6, students must occupy dorms, but a dorm may 
have students. 

A cardinality of M (many) is shown by "crowsfoot" structure leading to the 
respective entity. Figure 10.6 is an example of a 1:M relationship between 
DORM and STUDENT. The exact grammar of Figure 10.6 would be: 



A dorm may be occupied by zero or more students 

or 

A student must occupy one and only one dorm. 

  
Figure 10.6: 1:M Relationship in the Barker/Oracle-Like 
Notation   

Checkpoint 10.2 
1. How is the "optional" relationship shown diagrammatically in the 

Barker/Oracle-like model? 

2. How is the "many" relationship shown diagrammatically in the 
Barker/Oracle-like model? 

3. Show the following using the Barker/Oracle-like notation: 
a. A movie theater must show many movies and movies must be 

shown in a movie theater. 

b. A movie theater may show many movies and movies may be 
shown in a movie theater. 



Dealing with the Concept of the Weak Entity in the 
Barker/Oracle-Like Model 
The Barker/Oracle models do not have a concept of the "weak entity," and 
the weak entity notation is not used in Oracle literature either. We will extend 
the concept of the unique identifier in a relationship to include the weak 
entity. In the Barker/Oracle-like model, the unique identifier in a relationship 
can be diagrammatically shown by a bar cutting across the contributing 
relationship, as shown in Figure 10.7. In Figure 10.7, to uniquely identify a 
dependent, one needs the employee's social security number. This means 
that the DEPENDENT entity cannot independently stand on its own, and 
hence is a weak entity. However, here the weak entity would be mapped as 
per the mapping rules discussed in Chapter 5. 

  
Figure 10.7: Unique Identifier Shown by Placing Bar across Contributing 
Relationship Line(s)   



Dealing with the Concept of Multi-Valued Attributes 
in the Barker/Oracle-Like Model 
Again, although the Barker/Oracle models do not have the concept of the 
"multi-valued" attribute, multi-valued attributes can be shown as in Figure 
10.8. 

Figure 10.8 shows that a student may have attended many schools. In the 
Barker/Oracle-like model, the foreign key is shown in the appropriate entity, 
whereas in the Chen-like model, foreign keys are not "discovered" until the 
database is mapped. We will signal a foreign key with an asterisk (*) in front 
of the attribute (see Figure 10.8). An instance of this database shown in 
Figure 10.8 is: 

STUDENT 

sname address 

Sumona Gupta 111 Mirabelle Circle, Pensacola, FL 
Tom Bundy 198 Palace Drive, Mobile, AL 
Tony Jones 329 Becker Place, Mongotomery, AL 

Sita Pal 987 Twin Lane, North Canton, OH 
Neetu Singh 109 Bombay Blvd, Calicut, CA 

SCHOOL 

sname school 

Sumona Gupta Ferry Pass Elementary 
Sumona Gupta PCA 
Sumona Gupta Pensacola High 

Tom Bundy Mobile Middle School 
Tom Bundy St. Johns 
Tony Jones Montgomery Elementary 
Tony Jones Montgomery Middle 
Tony Jones Montgomery High 

Sita Pal Tagore Primary School 
Sita Pal Nehru Secondary School 



  
Figure 10.8: Unique Identifier Shown by Placing Bar across Contributing 
Relationship Line(s) [Note: "*" shows a foreign key.]   

As you can see, the multi-valued attribute is mapped to tables as it is 
depicted in the Barker/Oracle-like notation. In the Chen-like model, the 
multivalued attribute is kept in the diagram and then mapped using the 
mapping rules (see mapping rule M1c). 

Checkpoint 10.3 
1. Does the Barker-like model or the Oracle-like model have the concept 

of the "weak entity"? Discuss. 

2. Show the following using the Barker/Oracle-like notation: For a 
student, we are trying to store the student's name, address, phone, 
books (i.e., books that the student borrows from the library). Map this 
to a relational database and show some sample data. 



Treatment of Foreign Keys 
In the original Barker model, foreign keys are not marked. In the Oracle 
model, however, foreign keys are included in the respective relations. For 
example, in Figure 10.9, which says: 

A student may drive many automobiles 

and 

An automobile must be driven a student. 

The primary key from the STUDENT relation (the 1 side), student number, is 
included in the AUTOMOBILE relation (the N side). In our Barker/Oracle-like 
model, we will precede the foreign key with an "*" (as shown in Figure 10.9). 

  
Figure 10.9: Barker/Oracle-Like Notation Showing Foreign 
Key   



Recursive Relationships in the Barker/Oracle-Like 
Model 
Recursive relationships in the Barker/Oracle-like model are drawn as shown 
in Figure 10.10. Once again, the dotted line in the relationship shows an 
optional relationship, the solid line would show a mandatory relationship, and 
a "crowsfoot" would show a "many" relationship. The relationships are 
named as shown. Figure 10.10 shows that an employee may supervise 
other employees and an employee may be supervised by one and only one 
supervisor. Note the foreign key, super_ssn, in the EMPLOYEE relation 
itself. 

  
Figure 10.10: Barker/Oracle-Like Notation: Recursive 
Relationships   



Mapping M:N Relationships 
Finally, we discuss one last important aspect that is treated differently in the 
Barker/Oracle-like model — an M:N relationship. In the Barker/Oracle-like 
model, all M:N relationships are resolved into two 1:M relationships with an 
intersection entity in the middle. In the Chen-like model, the M:N relationship 
can also be presented as two 1:M relationships. 

Take Figure 10.11, for example (this is in the Chen-like format). In the 
Barker/Oracle-like model, this would be shown as in Figure 10.12. 

  
Figure 10.11: An ER Diagram of an M:N Relationship in the Chen-Like 
Model   



  
Figure 10.12: Barker/Oracle-Like Notation: M:N Relationship Broken 
into Two 1:M Relationships   

Checkpoint 10.4 
1. How are recursive relationships shown in the Barker/Oracle-like 

model? 

2. Why is it difficult to show M:N relationships in the Barker/Oracle-like 
model? 

3. How are the foreign keys treated in the Barker/Oracle-like model? 



Chapter Summary 
This chapter briefly discussed some of the main features of the 
Barker/Oraclelike model. The "one-entity" diagram, with attributes, was 
presented. The idea of optional versus mandatory attributes was discussed. 
Relationships and structural constraints were briefly discussed in the context 
of the Barker/Oracle-like model, and although the Barker/Oracle-like notation 
does not use the concept of the weak entity and multi-valued attributes, we 
showed how these concepts can be shown diagrammatically in the 
Barker/Oracle-like notation. An example of the depiction of the recursive 
relationship in the Barker/Oracle model was illustrated. Finally, the chapter 
showed how to map an M:N relationship into two 1:M relationships. Mapping 
rules were also discussed in the context of Barker/Oracle-like notation. 



Chapter 10 Exercises 

Exercise 10.1 
Redraw Figure 6.12A using the Barker/Oracle notation. Map this to a 
relational database and show some sample data. 

Exercise 10.2 
Redraw Figure 6.7 using the Barker/Oracle notation. Map this to a relational 
database and show some sample data. 
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Glossary 

A 
Attribute:  

Property used to describe an entity or relationship. 



B 
Binary relationship:  

Relationship between two entities. 



C 
Candidate key:  

An attribute or set of attributes that uniquely identifies individual 
occurrences of an entity type. 

Cardinality ratio:  
Describes the number of one entity that is related to another 
entity. 

Composite attribute:  
An attribute composed of multiple components, each with an 
independent existence. 



D 
Database:  

A shared collection of logically associated or related data. 

Degree of a relationship:  
The number of participating entities in a relationship. 

Derived attribute:  
An attribute that gets a value that is calculated or derived from 
the database. 



E 
Entity:  

"Something" in the real world that is of importance to a user and 
that needs to be represented in a database so that information 
about the entity can be recorded. An entity may have physical 
existence (such as a student or building) or it may have 
conceptual existence (such as a course). 

Entity set:  
A collection of all entities of a particular entity type. 

Entity type:  
A set of entities of the same type. 



F 
First Normal Form (INF):  

Where the domain of all attributes in a table must include only 
atomic (simple, indivisible) values, and the value of any attribute 
in a tuple (or row) must be a single-valued from the domain of 
that attribute. 

Foreign Key:  
An attribute that is a primary key of another relation (table). A 
foreign key is how relationships are implemented in relational 
databases. 

Full participation:  
Where all of one entity set participates in a relationship. 

Functional dependency:  
A relationship between two attributes in a relation. Attribute Y is 
functionally dependent on attribute X if attribute X identifies 
attribute Y. For every unique value of X, the same value of Y will 
always be found. 



G 
Generalization:  

The process of minimizing the differences between entities by 
identifying their common features and removing the common 
features into a superclass entity. 



I 
Identifying owner:  

The strong entity upon which a weak entity is dependent. 

Identifying relationship:  
A weak relationship. 



K 
Key:  

An attribute or data item that uniquely identifies a record 
instance or tuple in a relation. 



M 
Mandatory relationship:  

Same as full participation; where all of one entity set participates 
in a relationship. 

Many-to-many:  
Where many tuples (rows) of one relation can be related to 
many tuples (rows) in another relation. 

Many-to-one:  
Where many tuples (rows) of one relation can be related to one 
tuple (row) in another relation. 

Mapping:  
The process of choosing a logical model and then moving to a 
physical database file system from a conceptual model (the ER 
diagram). 

Multi-valued attribute:  
An attribute that may have multiple values for a single entity. 

One-to-many:  
A relationship where one tuple (or row) of one relation can be 
related to more than one tuple (row) in another relation. 

One-to-one:  
A relationship where one tuple (or row) of one relation can be 
related to only one tuple (row) in another relation. 

Optional participation:  
A constraint that specifies whether the existence of an entity 
depends on its being related to another entity via a relationship 
type. 



P 
Partial key:  

The unique key in a dependent entity. 

Partial participation:  
Where part of one entity set participates in a relationship. 

Participation constraints (also known as optionality):  
Determines whether all or some of an entity occurrence is 
related to another entity. 

Primary key:  
A unique identifier for a row in a table in relational database; A 
selected candidate key of an entity. 



R 
Recursive relationship:  

Relationships among entities in the same class. 

Regular entity:  
See Entity. 

Relation:  
A table containing single-value entries and no duplicate rows. 
The meaning of the columns is the same in every row, and the 
order of the rows and columns is immaterial. Often, a relation is 
defined as a populated table. 

Relationship:  
An association between entities. 



S 
Second Normal Form:  

A relation that is in first normal form and in which each non-key 
attribute is fully, functionally dependent on the primary key. 

Simple attribute:  
Attribute composed of a single value. 

Specialization:  
The process of maximizing the differences between members of 
a superclass entity by identifying their distinguishing 
characteristics. 

Strong entity:  
An entity that is not dependent on another entity for its 
existence. 

Structural constraints:  
Indicate how many of one type of record is related to another 
and whether the record must have such a relationship. The 
cardinality ratio and participation constraints, taken together, 
form the structural constraints. 

Subclass:  
An entity type that has a distinct role and is also a member of a 
superclass. 

Superclass:  
An entity type that includes distinct subclasses required to be 
represented in a data model. 



T 
Table:  

Same as relation; a tabular view of data that may be used to 
hold one or more columns of data; an implementation of an 
entity. 

Third Normal Form:  
A relation that is in second normal form and in which no non-key 
attribute is functionally dependent on another non-key attribute 
(i.e., there are no transitive dependencies in the relation). 



U 
Unique identifier:  

Any combination of attributes and/or relationships that serves to 
uniquely identify an occurrence of an entity. 



W 
Waterfall model:  

A series of steps that software undergoes, from concept 
exploration through final retirement. 

Weak entity:  
An entity that is dependent on some other entity for its 
existence. 
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Atomic attributes, 28, 31, 54, 95, 125, 206  
Attribute(s), 8, 9, 13, 25, 26, 27, 40, 41, 42, 53, 73, 136  

atomic, 28, 31, 54, 95, 125, 206  
closure of, 14  
composite, 28-30, 31, 54, 95, 98, 125, 206, 220, 233  
definition of, 26  
derived, 28-30, 33, 233  
intersection, 134, 166, 167, 169, 178, 182  
key, 30, 115  
multi-valued, 28-30, 32, 44, 45, 54, 116, 134, 220, 226  

mapping rule for, 206  
reverse-engineering, 215  

names, 195, 220  
non-atomic, 31  
optional versus mandatory, 221  
orphaned, 166  
relationship, 134  
simple, 28, 31, 146, 188, 235  
single-valued, 33  
specific, 191  
suspicious, 58  
variant, 190, 191  

Augmentation rule, 12  
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B  
Barker/Oracle-like model, 28, 219-231  

attributes, 221-222  
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first entity-only ER diagram, 220-221  
mapping of M:N relationships, 228-229  
multi-valued attributes, 226  
problem with, 220  
recursive relationships, 227-228  
relationships, 222-223  
structural constraints, 223-224  
treatment of foreign keys, 227  
weak entity, 225  

Binary relationship, 55, 63, 81, 94, 100, 130, 165, 207, 208, 233  
Binary relationships, ER diagrams with, 133-164  

adding more attributes than evolve into 
entities, 140  
alternative ER notation for specifying structural constraints on 
relationships, 154-155  
attributes evolving into entities, 142-145  
attributes of relationships, 134-136  
case study, 162-164  
database evolution, 141-142  
derived or redundant relationship, 150-153  
exercises, 160-161  
mapping rules for recursive relationships, 158-159  
methodology review, 156-158  
more than two entities, 138-140  
multiple relationships, 149-150  
recursive relationships, 145-149  

many-to-many recursive relationship, 149  
one-to-many recursive relationship, 148-149  
one-to-one recursive relationship, 147-148  

relationships developing into entities, 136-138  
attributes, 137  
entity, 137  
keys, 138  



Index 

C  
Candidate key, 13, 14, 33, 37, 45, 96, 117, 138, 195, 206, 233  
Cardinality 

expression of, 77  
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Barker/Oracle-like model versus, 220  
depiction of relationship in, 55, 78  
derived attribute in, 33  
foreign keys in, 226  
multi-valued attributes in, 226  
standard form of, 28  
unique identifiers in, 34  
use of weak entity in, 115  

Composite attribute, 28-30, 31, 54, 95, 98, 125, 206, 220, 233  
Conceptual model, 25, 77  
Constraint(s) 

entity-integrity, 16  
overlapping, 191  
participation, 78, 208, 235  
structural, 5, 54, 80, 166, 223, 235  

definition of, 73  
ER notation for specifying, 154  
recursive relationships and, 147  
ternary relationships, 169  
weak entities and, 119  
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D  
Data 

arrangement of in hierarchical fashion, 5  
modeling schema, 24  
models, 4  
two-dimensional tables of, 8  

Database, 8, 54, 82, 136, 138, 166, 175, 233  
applications, 187  
creation, 77  
definitions, 25  
design of, 4  
evolution of, 141  
mapped, 226  
models, 5, 26  
office, 193  
query languages, 31  
redundancy in, 208  
relational, 1, 2, 13, 44, 69, 98, 162, 195, 198, 205, 210, 220  

mapping of entity diagram to, 42  
mapping of ternary diagrams to, 182  
mapping of weak entities to, 125  

requirements, 56, 196  
semantic models in, 24  
software, 7  
specifying, 2  
superclass in, 188  
systems, modeling of, 3  
texts, older, 76  

Decomposition rule, 12  
Degree of relationship, 55, 233  
Derived attribute, 28-30, 33, 233  
Derived relationship, 150  
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E  
EER model, see Enhanced Entity Relationship model  
Enhanced Entity Relationship (EER) model, 187, 188  
Entity(ies), 233  

attributes evolving into, 140, 142  
change of attribute to, 54  
definition, 25, 54  
development of relationships into, 136  
disjoint, 193  
English description of, 36, 59  
examination, 54  
examples of, 25  
identifying, 116  
-integrity constraint, 16  
intersection, 134, 228  
-only ER diagram, 28  
owner, 116  
regular, 35, 235  
sets, 25, 234  
strong, 35, 96, 119, 136, 206, 234, 235  

definition of, 145  
mapping of attributes into, 43  
weak entity connected to, 125  

type, 234  
weak, 35, 115, 178, 206, 213, 220, 225, 234, 236  

definition of, 145  
grammar, 124  
identifying owner and, 119, 121  
relationship, 189  
reverse-engineering, 214  
structural constraints and, 119  
weak entities connected to, 121  

Entity diagram, beyond first, 53-71  
attribute versus relationship, 61-62  
defining new entity relationship, 54-56  
defining second entity, 58-60  
entity examination, 54  
ER design methodology, 56-57, 62  

attribute information, 57, 62  
connection of entities with relationships, 62  
data, 57  
examination of attributes, 62  
sample data, 62  
second entity, 62  
selection of primary entity, 56, 62  
use of structured English, 56, 62  

exercises, 63-64  
existence of relationship, 60-61  
grammar for ER diagrams, 57  

Entity relationship (ER), 3, 23  
database systems modeled using, 3  
design 

methodology, 27, 37, 41  
trap in, 77  

model, 33, 178, 187  



Entity relationship diagram (ERD), 4, 23-51  
attributes, 28-35  

composite attribute, 31-32  
derived attribute, 33  
keys, 33-35  
multi-valued attribute, 32-33  
simple or atomic attribute, 30-31  

beginning methodology, 26-27  
case study, 48-51  

selection of primary entity, 48  
use of structured English, 49-51  

database definition, 25-26  
data modeling schema, 24  
definition of, 24-25  
English description of entity, 36-37  

attributes, 37 entity, 36  
keys, 37  

ER design methodology, 27, 37-42  
data, 42  
examples, 38-41  
sample data, 37  
selection of primary entity, 41  
use of structured English, 37, 42  

exercises, 46-47  
first entity-only, 28  
grammar for, 57  
mapping of entity diagram to relational database, 42-46  
models of, 219  

ER, see Entity relationship  
ERD, see Entity relationship diagram  
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FD, see Functional dependency  
First normal form, 15, 234  
Foreign key(s), 17, 182, 207, 211, 234  

Chen-like model, 226  
Oracle model, 227  

Full participation, 78, 80, 131, 136, 234  
Functional dependency (FD), 2, 140, 234  

contradiction to known, 9  
definition of, 8  
inference, transitivity rule of, 10  
left-hand side of, 9  
rules, 14  
sample data for, 9  
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Generalization, 26, 209, 234  
Generalizations and specializations, 187-203  

case study, 200-203  
definition, 188  
example, 189-194  
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problem with variants, 188-189  
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H  
Hierarchical model, 5, 6, 7  
Higher-order relationships, 165  
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I-J  
Identifying entity, 116  
Identifying owner, 119, 121, 234  
Identifying relationship, 234  
Intersection 

attributes, 134, 166, 167, 169, 178, 182  
entity, 228  
table, 208  
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K-L  
Key(s), 13, 26, 66, 234  

attribute, 30, 115  
candidate, 14, 33, 37, 45, 117, 158, 195  
definition, 33  
foreign, 17, 182, 207, 211, 234  

Chen-like model, 226  
Oracle model, 227  

generalization entity, 195, 196  
identifiable, 116  
labeling of, 56, 62, 88, 94, 156, 183  
one-attribute, 210partial, 16, 119, 120, 124, 235  
primary, 16, 18, 33, 96, 139, 168, 188, 207, 222, 235  
strong entity, 206  
table, 16, 17  
weak owner entity, 207  
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M  
Mandatory relationship, 6, 234  
Many-to-many relationship, 5, 7, 234  
Many-to-one relationship, 7, 234  
Mapping, 206, 234  

description of, 24  
rule(s) 

generalizations, 195  
multi-valued attributes, 206  
recursive relationships, 158  
specializations, 195  

strong entities, 43  
ternary diagrams, 182  
weak entities, 125  

Model(s) 
Barker/Oracle-like, 28  
Chen-like, 46, 58, 63, 80, 85, 117, 153  

Barker/Oracle-like model versus, 220  
depiction of relationship in, 55, 78  
derived attribute in, 33  
foreign keys in, 226  
multi-valued attributes in, 226  
standard form of, 28  
unique identifiers in, 34  
use of weak entity in, 115  

conceptual, 25, 77  
data, 4, 24  
database, 5, 26  
Enhanced Entity Relationship, 187, 188  
entity relationship, 33, 178, 187  
full:full participation, 134  
hierarchical, 5, 6, 7  
network, 7  
pure, 219  
reality, 77  
relational, 7, 198, 220  
semantic, 24  
waterfall, 2, 236  

Multiple relationships, 149  
Multi-valued attribute, 28-30, 32, 44, 45, 54, 116, 134, 220, 234  

Chen-like model, 226  
mapping rule for, 206  
reverse-engineering, 215  
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N  
Network model, 7  
Normal form(s), 8  

first, 15, 234  
second, 15  
third, 16  
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O  
One-to-many relationship, 5, 6, 235  
One-to-one relationship, 6, 235  
Optional participation, 235  
Orphaned attributes, 166  
Overlapping constraint, 191  
Owner entity, 116  
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P-Q  
Partial key, 16, 119, 120, 124, 235  
Partial participation, 78, 169, 235  
Participation, 166  

constraints, 78, 208, 235  
full, 78, 80, 131, 136, 193, 234  
mandatory, 78, 119  
partial, 78, 169, 234  

Primary key, 16, 18, 33, 96, 139, 168, 188, 207, 222, 235  
Pure model, 219  
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R  
Reality model, 77  
Recursive relationship(s), 55, 235  

description of, 145  
many-to-many, 149  
mapping rules, 158  
(min, max) ratios, 155  
one-to-many, 148  
one-to-one, 147  

RED, see Reverse-engineered diagram  
Redundant relationship, 150, 154  
Reflexive rule, 11  
Regular entity, 35, 235  
Relation, 42, 235  
Relational database 

mapping of entity diagram to, 42  
mapping of ternary diagrams to, 182  
mapping of weak entities to, 125  

Relational model, 7, 198, 220  
Relationship(s), 5, 235, see also Entity relationship  

attributes, 61, 134, 135  
Barker/Oracle-like model, 222  
binary, 55, 59, 63, 81, 94, 100, 130, 133, 165, 166, 207, 208, 233  
cardinality ratio of, 74  
commonly occurring, 184  
connection of entities with, 150  
definition, 26, 54  
degree of, 55, 233  
derived, 150  
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