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Preface

My last SQL Server performance book was aimed at SQL Server 6.5. When Microsoft
released SQL Server 7.0 it was almost as if it were a new product. Although it was backward
compatible in many areas with SQL Server 6.5, the architecture was very different. For
starters, the on-disk structure was completely changed. The usage of files was much improved
over SQL Server 6.5, and SQL Server 7.0 now had an 8 Kb database page size. The query
optimizer was greatly enhanced with many new query plans possible, in particular in the use



of multiple indexes and table joins. The query processor could also now execute complex
queries in parallel. As well as all these changes and many more, Windows 2000 was
beginning to slowly appear on the horizon.

For these reasons, I decided that upgrading a SQL Server 6.5 performance and tuning book to
SQL Server 7.0 was not going to be a trivial task and would be much more than an editing
exercise. I decided that my goal would be to work with SQL Server 7.0 through its lifetime in
my usual performance-tuning-consultancy capacity and not rewrite the book until I felt
confident with the way the new architecture behaved. Of course, nothing stays still for long
with software, especially Microsoft software, and so the actual book-writing goal was to write
a SQL Server 2000 version.

SQL Server 2000 has added many useful enhancements to SQL Server 7.0, but it is still the
SQL Server 7.0 architecture and, therefore, behaves pretty much in the same way. I say to my
students that if you know SQL Server 7.0, you pretty much know SQL Server 2000.

So here goes-the follow-up to the SQL Server 6.5 performance and tuning book. I hope you
like this updated SQL Server 2000 version.

The chapters are written to follow one another in a logical fashion, building on some of the
topics introduced in previous chapters. The structure of the chapters is as follows:

e Chapter 1 introduces the goals of performance tuning and the elements of the physical
database design process including data volume analysis and transaction analysis. It
also introduces the example BankingDB database.

o Chapter 2 describes the SQL Server storage structures including database files,
databases, database pages, and extents.

e Chapter 3 introduces clustered indexes and nonclustered indexes. How data is inserted
and retrieved and choosing the appropriate index for a given situation are discussed.

e Chapter 4 introduces the query optimizer and steps in the query optimization process.
This chapter also discusses the special approach to query optimization used by stored
procedures.

o Chapter 5 looks at the interaction between SQL Server and Windows 2000 in the areas
of CPU, memory, and disk I/O. How to track down and remove bottlenecks is
explored.

o Chapter 6 introduces SQL Server locking mechanisms and strategies and the methods
and tools available for monitoring locks.

e Chapter 7 looks at performance monitoring and the tools available to assist the
database administrator.

e Chapter 8 provides a performance tuning aide-mémoire.

I really enjoy tuning databases and making them run fast. Even more, I really enjoy taking an
elusive performance problem, tracking it down, and fixing it. I hope you, too, find the same

level of enjoyment that I do and that this book kick-starts your interest in performance tuning
SQL Server.

Chapter 1: Introducing Performance
Tuning and Physical Database Design



1.1 What is performance tuning?

What is the goal of tuning a SQL Server database? The goal is to improve performance until
acceptable levels are reached. Acceptable levels can be defined in a number of ways. For a
large online transaction processing (OLTP) application the performance goal might be to
provide subsecond response time for critical transactions and to provide a response time of
less than two seconds for 95 percent of the other main transactions. For some systems,
typically batch systems, acceptable performance might be measured in throughput. For
example, a settlement system may define acceptable performance in terms of the number of
trades settled per hour. For an overnight batch suite acceptable performance might be that it
must finish before the business day starts.

Whatever the system, designing for performance should start early in the design process and
continue after the application has gone live. Performance tuning is not a one-off process but
an iterative process during which response time is measured, tuning performed, and response
time measured again.

There is no right way to design a database; there are a number of possible approaches and all
these may be perfectly valid. It is sometimes said that performance tuning is an art, not a
science. This may be true, but it is important to undertake performance tuning experiments
with the same kind of rigorous, controlled conditions under which scientific experiments are
performed. Measurements should be taken before and after any modification, and these
should be made one at a time so it can be established which modification, if any, resulted in
an improvement or degradation.

What areas should the database designer concentrate on? The simple answer to this question
is that the database designer should concentrate on those areas that will return the most
benefit. In my experience, for most database designs I have worked with, large gains are
typically made in the area of query and index design. As we shall see later in this book,
inappropriate indexes and badly written queries, as well as some other contributing factors,
can negatively influence the query optimizer such that it chooses an inefficient strategy.

To give you some idea of the gains to be made in this area I once was asked to look at a query
that joined a number of large tables together. The query was abandoned after it had not
completed within 12 hours. The addition of an index in conjunction with a modification to the
query meant the query now completed in less than eight minutes! This magnitude of gain
cannot be achieved just by purchasing more hardware or by twiddling with some arcane SQL
Server configuration option. A database designer or administrator's time is always limited, so
make the best use of it! The other main area where gains can be dramatic is lock contention.
Removing lock bottlenecks in a system with a large number of users can have a huge impact
on response times.

Now, some words of caution when chasing performance problems. If users phone up to tell
you that they are getting poor response times, do not immediately jump to conclusions about
what is causing the problem. Circle at a high altitude first. Having made sure that you are
about to monitor the correct server use the System Monitor to look at the CPU, disk
subsystem, and memory use. Are there any obvious bottlenecks? If there are, then look for the
culprit. Everyone blames the database, but it could just as easily be someone running his or
her favorite game! If there are no obvious bottlenecks, and the CPU, disk, and memory
counters in the System Monitor are lower than usual, then that might tell you something.



Perhaps the network is sluggish or there is lock contention. Also be aware of the fact that
some bottlenecks hide others. A memory bottleneck often manifests itself as a disk bottleneck.

There is no substitute for knowing your own server and knowing the normal range of System
Monitor counters. Establish trends. Measure a set of counters regularly, and then, when
someone comments that the system is slow, you can wave a graph in front of him or her
showing that it isn't!

So, when do we start to worry about performance? As soon as possible, of course! We want to
take the logical design and start to look at how we should transform it into an efficient
physical design.

1.2 The physical database design process

Once the database logical design has been satisfactorily completed, it can be turned into a
database physical design. In the physical design process the database designer will be
considering such issues as the placement of data and the choice of indexes and, as such, the
resulting physical design will be crucial to good database performance. The following two
important points should be made here:

1. A bad logical design means that a good physical design cannot be performed. Good
logical design is crucial to good database performance, and a bad logical design will
result in a physical design that attempts to cover up the weaknesses in it. A bad logical
design is hard to change, and once the system is implemented it will be almost
impossible to do so.

2. The physical design process is a key phase in the overall design process. It is too often
ignored until the last minute in the vain hope that performance will be satisfactory.
Without a good physical design, performance is rarely satisfactory and throwing
hardware at the problem is rarely completely effective. There is no substitute for a
good physical design, and the time and effort spent in the physical design process will
be rewarded with an efficient and well-tuned database, not to mention happy users!

Before embarking on the physical design of the database, it is worth stepping back and
considering a number of points, as follows:

e What kind of system are we trying to design? Is it a fast online transaction processing
(OLTP) system comprised of perhaps hundreds of users with a throughput of hundreds
of transactions per second (TPS) and an average transaction response time that must
not exceed two seconds? Is it a multigigabyte data warehouse, which must support few
online users but must be able to process very complex ad hoc queries in a reasonable
time, or is it a combination of the two?

The type of system will strongly influence the physical database design decisions that
must be made. If the system is to support OLTP and complex decision support, then
maybe more than one database should be considered-one for the operational OLTP
system and one, fed by extracts from the operational OLTP system, to support
complex decision support.

e What are our hardware and budget constraints? The most efficient physical database
design will still have a maximum performance capability on any given hardware



platform. It is no use spending weeks trying to squeeze the last few CPU cycles out of
a CPU bound database when, for a small outlay, another processor can be purchased.
Similarly, there is little point purchasing another CPU for a system that is disk I/O
bound.

o Has the database design been approached from a textbook normalization standpoint?
Normalizing the database design is the correct approach and has many benefits, but
there may be areas where some denormalization might be a good idea. This might
upset a few purists, but if a very short response time is needed for a specific query it
might be the best approach. This is not an excuse for not creating a normalized design.
A normalized design should be the starting point for any effort made at
denormalization.

e How important is data consistency? For example, is it important that if a query rereads
a piece of data within a transaction it is guaranteed that it will not have changed? Data
consistency and performance are enemies of one another, and, therefore, if consistency
requirements can be relaxed, performance may be increased.

How does a database designer move from the logical design phase to a good physical database
design? There is no single correct method; however, certain information should be captured
and used as input to the physical design process. Such information includes data volumes,
data growth, and transaction profiles.

1.2.1 Data volume analysis

It is very important to capture information on current data volumes and expected data
volumes. Without this information it is not even possible to estimate the number and size of
the disk drives that will be required by the database. Recording the information is often a case
of using a simple spreadsheet, as shown in Table 1.1.

Table 1.1: Capturing Simple Data Volume Information

Table #of Row Space % Annual Space Needed in 12
Name Rows | Size Needed Growth Months
Accounts 25,000 100 2,500,000 10 2,750,000
Branches 100, 200 20,000 5 21,000
Customers 10,000 200 2,000,000 20 2,400,000
Transactions | 400,000 50 20,000,000 25 25,000,000

This may appear to be a trivial operation, but it is surprising how few database designers do it.
It is also interesting to find the different views from business users on what the figures should
be! Another column that could be added might represent how volatile the data is in a
particular table. The percentage annual growth of a table might be zero, but this may be
because a large amount of data is continually being removed as well as being added.

Simple addition of these figures gives the data size requirements, but this is only part of the
calculation. The database designer must take into account the space required by indexes, the
transaction log, and the backup devices; no experienced database designers would ask for the
disk space that came out of the sum in Table 1.1. They would, of course, add on a percentage
for safety. Users typically do not phone you to complain that you oversized the database by 20



percent; however, they do phone you to complain that the system just stopped because the
database was full!

So how are the size of indexes calculated? The Creating and Maintaining Databases online
book gives sample calculations to assist in the sizing of tables, as well as clustered and
nonclustered indexes with both fixed, and variable-length columns. It is highly recommended
that these calculations are performed, and it is worth using a spreadsheet such as Microsoft
Excel to perform the calculations in order to save time and effort. Watch the newsgroups for
stored procedures in circulation that do these calculations. Also check out the SQL Server
resource kits. At the time of writing the Microsoft BackOffice 4.5 Resource Kit contains a
tool named data sizer, which will assist in the sizing of databases.

A rule of thumb is to double the size of the user data to estimate the size of the database.
Crude though this appears, by the time indexes and some space for expansion have been
added, double the size is not far off!

What about the size of the transaction log? This is difficult to size, since it depends on the
write activity to the database, frequency of transaction backups, and transaction profiles.
Microsoft suggests that about 10 percent to 25 percent of the database size should be chosen.
This is not a bad start, but once the system testing phase of the development has started the
database designer can start monitoring the space use in the transaction log with dbcc sqlperf
(logspace). The transaction log space is a critical resource and running out of it should be
avoided.

Unfortunately, many factors contribute to transaction log growth. These include the rate per
second of transactions that change database data and the amount of data these transactions
change. Remember that in an operational system, if a transaction log backup fails for some
reason, the transaction log will continue to fill until the next successful transaction log
backup. It may be desirable to have a transaction log large enough so that it can accommodate
the failure of one transaction log backup. Replication failures will impact the effectiveness of
transaction log backups, and, of course, there is always the user who runs a job that updates a
million-row table without warning you.

For all these reasons, do not be tight with transaction log space. With the price of disk space
as it is, a transaction log can be created with a large amount of contingency space.

Finally, do not forget that as a database designer/administrator, you will need lots of disk
space to hold at least one copy of the production database for performance tuning testing. Not
having a copy of the production database can really hinder you.

So, we now have documented information on data volumes and growth. This in itself will
determine a minimum disk configuration; however, it is only a minimum, since transaction
analysis may determine that the minimum disk configuration will not provide enough disk I/O
bandwidth.

If data volume analysis is concerned with the amount of data in the database and the space it
needs, transaction analysis is concerned with the way in which data is manipulated and at

what frequency.

1.2.2 Transaction analysis



Data in the database may be manipulated by code, such as Visual Basic, or a tool such as
Microsoft Access, or a third-party product accessing SQL Server. Whichever way the data is
accessed, it will presumably be as a result of a business transaction of some kind. Transaction
analysis is about capturing information on these business transactions and investigating how
they access data in the database and in which mode. Table 1.2 shows some attributes of a
business transaction it might be useful to record.

Table 1.2: Capturing Transaction Attributes
Attribute Explanation
Name A name assigned to the transaction
Average frequency Average number of times executed per hour
Peak frequency  Peak number of times executed per hour
Priority A relative priority assigned to each transaction
Mode Whether the transaction only reads the database or writes to it also
Tables accessed | Tables accessed by the transaction and in which mode

Table keys Keys used to access the table

Clearly, by their very nature, it is not possible to capture the information shown in Table 1.2
for ad hoc transactions nor is it practical to capture this information for every business
transaction in anything other than a very simple system. However, this information should be
captured for at least the most important business transactions. By most important we mean
those transactions that must provide the fastest response times and/or are frequently executed.
A business transaction that runs every three months and can be run during a weekend is
unlikely to appear on the list of most important transactions!

It is important to prioritize transactions, since it is virtually impossible to be able to optimize
every transaction in the system. Indexes that will speed up queries will almost certainly slow

down inserts.

An example of the attributes captured for a transaction are shown in Table 1.3.

Table 1.3: Example Transaction Attributes

Attribute Value

Name Order Creation
Average 10,000 per hour
frequency

Peak frequency 15,000 per hour

Priority 1 (high)

Mode Write

Tables accessed Orders (w), Order Items (w), Customers (1), Parts (r)

Table keys Orders (order_number), Order Items (order number), Customers
(cust_number), Parts (parts_number)



There are various ways to document the transaction analysis process and some modeling tools
will automate part of this documentation. The secret is to document the important transactions
and their attributes so that the database designer can decide which indexes should be defined
on which tables.

Again, it is often a case of using simple spreadsheets, as shown in Table 1.4.

Table 1.4: Capturing Simple Transaction Analysis Information

Transactions/Tables Orders Order_items Parts Customers
Customer inquiry R

Order inquiry R R

Order entry I I R R

Customer inquiry cust_number
Order inquiry order number order number

Order entry order number order number parts number cust number

The first spreadsheet maps the transactions to the mode in which they access tables; the
modes are I for insert, R for read, U for update, and D for delete. The second spreadsheet
maps the transactions to the key with which they access tables. Again, there is nothing
complex about this but it really pays to do it. Depending on how the system has been
implemented, a business transaction may be modeled as a number of stored procedures, and,
if desired, one may wish to use these instead of transaction names.

It is also important when considering the key business transactions not to forget triggers. The
trigger accesses tables in various modes, just as the application code does.

Data integrity enforcement using declarative referential integrity should also be included.
Foreign key constraints will access other tables in the database and there is nothing magical
about them. If an appropriate index is not present, they will scan the whole table like any
other query.

Once the transaction analysis has been performed, the database designer should have a good
understanding of the tables that are accessed frequently, in which mode, and with which key.
From this information one can begin to derive the following:

o Which tables are accessed the most and therefore experience the most disk I/O?

e Which tables are written to frequently by many transactions and therefore might
experience the most lock contention?

o For a given table, which columns are used to access the required rows; that is, which
common column combinations form the search arguments in the queries?

In other words where are the hot spots in the database?
The database designer, armed with this information, should now be able to make informed

decisions about the estimated disk I/O rates to tables, the type of indexes required on those
tables, and the columns used in the indexes.



Relational databases, and SQL Server is no exception, are reasonably easy to prototype, so
there is no excuse for not testing the physical design you are considering. Load data into your
tables, add your indexes, and stress your database with some representative Transact-SQL.
See how many transactions a second you can perform on a given server or, to look at it
another way, how much disk I/O does a named transaction generate? Which resource-CPU or
disk-do you run out of first?

Start stress testing with simple experiments. Jumping in at the deep end with many users
testing complex functionality is likely just to confuse the issue. Begin with simple
transactions issued by one user and then try more complex transactions.

Do not forget multiuser testing! Lock contention cannot be tested unless some kind of
multiuser testing is performed. In its simplest form this might involve persuading a number of
potential users to use the test system concurrently by following set scripts while performance
statistics are monitored. In its more sophisticated form this might involve the use of a
multiuser testing product, which can simulate many users while running automated scripts.

Transaction analysis and performance testing can be approached in a much more sophisticated
way than has been described above. The important point, however, is that it should be done-
the level of sophistication being determined by the available resource, be it time or money.

Again, note that physical design and performance testing are ongoing activities. Systems are
usually in a constant state of flux, because business requirements are usually in a constant
state of flux. Therefore, performance should be regularly monitored and, if necessary, the
database tuned.

1.2.3 Hardware environment considerations

The previous section described preproduction performance testing. This should have given the
database designer a feel for the hardware requirements of the production system. Obviously,
there is a hardware budget for any project, but it is clearly critical to have sufficient hardware
to support the workload of the system. It is also critical to have the correct balance and correct
type of hardware.

For example, there is no point in spending a small fortune on CPU power if only a small
amount of money is spent on the disk subsystem. Similarly, there is no point in spending a
small fortune on the disk subsystem if only a small amount of money is spent on memory.
Would the application benefit from a multiprocessor configuration or a single powerful
processor?

If the application's main component is a single report that runs through the night but must be
finished before 9:00 A.M., a single powerful processor might be a better choice. On the other
hand, if the application consists of a large number of users in an OLTP system, a more cost-
effective solution would probably be a multiprocessor configuration.

Take a step back and look at the application and its hardware as a whole. Make sure the
system resource is not unbalanced and do not forget the network!

.3 Where to next?



Once we have performed our data volume and transaction analysis we can start to consider
our physical design. We will need to decide what transactions need to be supported by
indexes and what type of index we should use. Chapter 3 discusses indexes in detail, but
before we look at indexes we need a more general view of the storage structures used in SQL
Server, and these are covered in the next chapter.

Chapter 2: SQL Server Storage Structures

2.1 Introduction

A developer of application code is probably quite content to consider a SQL Server as a
collection of databases containing tables, indexes, triggers, stored procedures, and views. As a
database designer and a person who will be responsible for the performance of those
databases, it is useful to be able to look a little deeper at the storage structures in SQL Server.
A lot of the internals of SQL Server are hidden and undocumented, but we can still learn a fair
amount about the way the product works. This chapter investigates the storage structures that
SQL Server uses and the methods available to view them.

2.2 Databases and files

A database contains all the tables, views, indexes, triggers, stored procedures, and user data
that make up an application. A SQL Server will typically host many databases. Usually
individual databases are backed up, restored, and integrity checked, so a database can also be
thought of as a unit of administration. Because a database is the container for our objects, we
will need to spend some time here looking at how databases are structured and managed. We
will then drill down into the database files and investigate database pages and other structures.

A database resides in one or more operating system files, which may reside on FAT, FAT32,
or NTFS partitions depending on the operating system. These operating system files are
known in SQL Server terminology as database files. These database files may be used to hold
user and system tables (data files) or track changes made to these tables (transaction log files).
There can be as many as 32,767 files per database and 32,767 databases hosted by a SQL
Server. A database can be as large as 1,048,516 terabytes (TB). A data file in a database can
be as large as 32 TB and a transaction log file as large as 4 TB. Of course, most sites will
never come remotely close to these numbers, but it is nice to know that there is plenty of
headroom!

The files used by a SQL Server 2000 database belong exclusively to that database. In other
words, a file cannot be shared by databases. Also, a file cannot be used to hold both data and
transaction log information. This means that a database must consist of a minimum of two
files. This is a much cleaner model that used in previous versions (prior to SQL Server 7.0).

There are three file types associated with a SQL Server 2000 database, as follows:
1. The primary data file is the starting point of the database and contains the pointers to

the other files in the database. All databases have a single primary data file. The
recommended file extension for a primary data file is an .mdf extension.



2. Secondary data files hold data that does not fit on the primary data file. Some
databases may not have any secondary data files, while others have multiple secondary
data files. The recommended file extension for secondary data files is an .ndf
extension.

3. Log files hold all of the log information used to recover the database. There is at least
one log file for each database. The recommended file extension for log files is an .1df
extension.

The primary data file will hold the system tables and may hold user tables. For most users,
placing all their database tables in this file and placing the file on a suitable RAID
configuration will be sufficient. For some users, their user tables may be too large to place in
a single file, since this would mean that the file would be too large to place on one of the
storage devices. In this case, multiple data files—a primary and multiple secondary files—
may be used. User tables would then be created and populated. SQL Server would allocate
space from each file to each table so that the tables were effectively spread across the files
and, consequently, the physical storage devices.

Figure 2.1 shows a simple database topology using a single file to hold the system tables and
user tables and a single file for the transaction log. The files reside on separate physical
storage devices, which may be single disks or RAID configurations. RAID configurations are
discussed in Chapter 5.

primary data transaction

file (.mdf) log file {.Idf)
physical storage physical storage

device D device E:

Figure 2.1: A simple database topology

Figure 2.2 shows a more complex database topology using multiple files to hold the system
tables and user tables and multiple files for the transaction log. The files reside on separate
physical storage devices, which may be single disks or RAID configurations.



primary data transaction

file (.mdf) log file (.Idf)
physical storage physical storage
device D; device E;:
secondary transaction
data log file (.Idf)
file (.ndf)
physical storage physical storage
device F: device G:

Figure 2.2: A more complex database topology

For those users with even greater database performance and size requirements, filegroups may
be used. The role of a filegroup is to gather data files together into collections of files into
which database tables, indexes, and text/image data can be explicitly placed. This gives the
database administrator great control over the placement of these database objects. Perhaps two
database tables that are very heavily accessed can be separated into two filegroups consisting
of two sets of data files residing on two sets of physical storage devices. The tables could also
be separated from their nonclustered indexes in a similar fashion. Nonclustered indexes are
described in Chapter 3. From an administration perspective, individual filegroups can be
backed up allowing a large database to be backed up in parts.

Some rules govern the use of filegroups. Transaction logs are never members of filegroups—
only data files are. Also, data files can only be a member of one filegroup.

For most users, though, the use of filegroups and multiple data and transaction log files will
not be necessary to support their performance and administration requirements. They will use
one data file and one transaction log file. Though they will not use user-defined filegroups,
even in this simple case the database will contain a filegroup known as the primary filegroup.
This will contain the system tables and user tables. It will also be the default filegroup. The
default filegroup is the filegroup into which tables, indexes, and text/image data is placed
when no filegroup is specified as part of their definition. Any filegroup can be made the
default filegroup, and there is a school of thought that advocates always creating a single user-



defined filegroup and making this the default filegroup when the database is first created. This
ensures that the system tables alone reside in the primary filegroup and all user data resides in
the user-defined filegroup in a separate, secondary data file.

2.3 Creating databases

Databases can be created by means of the Create Database Wizard, the SQL Server Enterprise
Manager, or the Transact-SQL CREATE DATABASE statement. Since the Create Database
Wizard is merely a wrapper around the SQL Server Enterprise Manager database creation
dialog boxes, it will not be discussed further here. A database may also be created with the
SQL-DMO (Distributed Management Objects). Creating a database with the SQL Server
Enterprise Manager is accomplished as follows:

Expand the server group and expand the server.

Right-click Databases, then click New Database.

Enter the name of the database and collation on the General tab.

Enter the name, file, size, and attribute information for each data file on the Data Files

tab.

5. Enter the name, file, size, and attribute information for each transaction log file on the
Log Files tab.

6. Click OK.

b s

Depending on how large the database will be, this may take a considerable length of time. In
this case using a Transact-SQL script running in the background may be a better bet. The SQL
Server Enterprise Manager Database Properties dialog box with the Data Files tab selected is
shown in Figure 2.3.
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As can be seen in Figure 2.3, various properties can be set for each data and transaction log
file. The Filename of the file is the name by which it is referred to within SQL Server—for



example, by various system stored procedures such as sp_helpfile. The location is the physical
storage location where the file will reside. A filegroup may also be entered for data files other
than the primary at this point, in which case the secondary data file will be placed in that
filegroup. Other attributes of the file relate to size and growth, which will be discussed
shortly.

An example of creating a database using the Transact-SQL CREATE DATABASE statement
is as follows:

CREATE DATABASE BankingDB

ON PRIMARY
( NAME = BankingData,
FILENAME = 'd:\data\BankingData.mdf',

SIZE = 200MB,
MAXSIZE = 800MB,
FILEGROWTH = 40MB )

LOG ON
( NAME = 'BankingLog',
FILENAME = 'e:\data\BankingLog.ldf',

SIZE = 100MB,
MAXSIZE = 500MB,
FILEGROWTH = 50MB )

As with SQL Server Enterprise Manager, a name is specified for the file—this time with the
NAME option—and a physical location is specified with the FILENAME option. The ON
keyword introduces a list containing one or more data file definitions, and the LOG ON
keyword introduces a list containing one or more transaction log file definitions.

The PRIMARY keyword identifies the list of files following it as files that belong to the
primary filegroup. The first file definition in the primary filegroup becomes the primary file,
which is the file containing the database system tables. The PRIMARY keyword can be
omitted, in which case the first file specified in the CREATE DATABASE statement is the
primary file.

Regardless of the mechanism by which a database is created, size and growth information
may be specified. The /nitial size (MB) in the SQL Server Enterprise Manager and the SIZE
keyword in the CREATE DATABASE statement specify the initial size of the file. In
Transact-SQL, the units are, by default, megabytes, although this can be specified explicitly
by using the suffix MB. If desired, the file size can be specified in kilobytes using the KB
suffix, gigabytes using the GB suffix, and terabytes using the TB suffix.

In SQL Server 2000, when a data file or transaction log file fills it can automatically grow. In
the SQL Server Enterprise Manager, a file is allowed to automatically grow by checking the
Automatically grow file check box. This is, in fact, checked by default. In Transact-SQL, the
file, by default, will be allowed to grow unless the FILEGROWTH keyword is set to 0. When
a file grows, the size of the growth increment is controlled by the Filegrowth property in the
SQL Server Enterprise Manager and the FILEGROWTH keyword in Transact-SQL. The
growth increment can be specified as a fixed value, such as 10 megabytes, or as a percentage.
This is the percentage of the size of the file at the time the increment takes place. Therefore,
the size increment will increase over time. In Transact-SQL, the FILEGROWTH value can be
specified using the suffix MB, KB, GB, TB, or %, with MB being the default. If the
FILEGROWTH keyword is not specified in Transact-SQL, the default is 10 percent.



The file may be allowed to grow until it takes up all the available space in the physical storage
device on which it resides, at which point an error will be returned when it tries to grow again.
Alternatively, a limit can be set using the Restrict filegrowth (MB) text box in the SQL Server
Enterprise Manager or the MAXSIZE keyword in Transact-SQL. The MAXSIZE value can
be specified using the suffix MB, which is the default, KB, GB, or TB. The keyword
UNLIMITED can also be specified—this is the default.

Note Every time a file extends, the applications using the database during the file extension
operation may experience performance degradation. Also, extending a file multiple
times may result in fragmented disk space. It is advisable, therefore, to try to create the
file with an initial size estimated to be close to the size that will ultimately be required
by the file.

The following example shows a CREATE DATABASE statement, which will create a
database consisting of multiple data and transaction log files:

CREATE DATABASE BankingDB

ON PRIMARY
( NAME = BankingDatal,
FILENAME = 'd:\data\BankingDatal.mdf',

SIZE = 50MB,
MAXSIZE = 200MB,
FILEGROWTH = 25MB),
( NAME = BankingDataZz,
FILENAME = 'e:\data\BankingData2.ndf',
SIZE = 50MB,
MAXSIZE = 200MB,
FILEGROWTH = 25MB)

LOG ON
( NAME = BankingLogl,
FILENAME = 'f:\data\BankingLogl.ldf',

SIZE = 50MB,
MAXSIZE = 200MB,
FILEGROWTH = 25MB),
( NAME = BankingLog2,
FILENAME = 'g:\data\BankingLog2.ldf',
SIZE = 50MB,
MAXSIZE = 200MB,
FILEGROWTH = 25MB)

The following example re-creates the multiple file BankingDB database created in the
previous example, but this time a user-defined filegroup, Filegroupl, is created. Since the file
named BankingData2 follows the filegroup definition, it is placed in this filegroup. This
means that tables, indexes, and text/image data can be explicitly placed in this filegroup if
required. If no filegroup is specified on the object definition, the object will be created in the
DEFAULT filegroup, which, unless it is changed, is the primary filegroup.

CREATE DATABASE BankingDB

ON PRIMARY
( NAME = BankingDatal,
FILENAME = 'd:\data\BankingDatal.mdf',

SIZE = 50MB,
MAXSIZE = 200MB,
FILEGROWTH = 25MB),
FILEGROUP Filegroupl
( NAME = BankingDataZ2,



FILENAME = 'e:\data\BankingData2.ndf',
SIZE = 50MB,

MAXSIZE = 200MB,

FILEGROWTH = 25MB)

LOG ON
( NAME = BankingLogl,
FILENAME = 'f:\data\BankingLogl.ldf',

SIZE = 50MB,
MAXSIZE = 200MB,
FILEGROWTH = 25MB),
( NAME = BankingLogZ2,
FILENAME = 'g:\data\BankingLog2.1ldf',
SIZE = 50MB,
MAXSIZE = 200MB,
FILEGROWTH = 25MB)

Various attributes of a database can be modified after it has been created. These include
increasing and reducing the size of data and transaction log files, adding and removing
database and transaction log files, creating filegroups, changing the DEFAULT filegroup, and
changing database options.

These operations are achieved by using the ALTER DATABASE statement, DBCC
SHRINKFILE, and DBCC SHRINKDATABASE. These operations can also be changed
through the SQL Server Enterprise Manager. Let us first look at increasing the size of a
database.

2.4 Increasing the size of a database

To increase the size of a database, data and transaction log files may be expanded by using the
SQL Server Enterprise Manager or the Transact-SQL ALTER DATABASE statement.
Increasing the size of a file in the SQL Server Enterprise Manager is merely a case of entering
a new value in the Space allocated (MB) text box, as shown in Figure 2.4.
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In Transact-SQL, the ALTER DATABASE statement is used, as follows:

ALTER DATABASE BankingDB
MODIFY FILE
(NAME = BankingDataZ2,
SIZE 100MB)

Note that file attributes such as MAXSIZE and FILEGROWTH may also be modified with an
ALTER DATABASE statement.

Another way of increasing the size of a database is to add data and transaction log files, as
follows:

ALTER DATABASE BankingDB

ADD FILE
(NAME = BankingData3,
FILENAME = 'h:\data\BankingData3.ndf',

SIZE = 50MB,
MAXSIZE = 200MB,
FILEGROWTH = 25MB)

Note that to add a transaction log file the ADD LOG clause is used.

To add a file to an existing user-defined filegroup, the ADD FILE ... TO FILEGROUP
syntax is used, as follows:

ALTER DATABASE BankingDB

ADD FILE
(NAME. = BankingData3,
FILENAME = 'd:\data\BankingData3.ndf',

SIZE = 50MB,

MAXSIZE = 200MB,
FILEGROWTH = 25MB)

TO FILEGROUP FileGroupl

In the SQL Server Enterprise Manager, adding a new file to an existing filegroup is achieved
by selecting the appropriate filegroup from the drop-down File group list, as shown in Figure
2.5.
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Figure 2.5: Adding a new file to an existing filegroup
Note A file that already exists in the database cannot be subsequently added to another
filegroup.

2.5 Decreasing the size of a database

There are a number of mechanisms that can be used to decrease the size of a database. On one
hand, a database can be flagged to allow automatic database shrinkage to occur at periodic
intervals. This requires no effort on the part of the database administrator, but it also allows
no control. On the other hand, DBCC statements can be used to manually shrink a database or
individual database files. These DBCC statements provide the database administrator with the
greatest control over how the shrinkage takes place. The SQL Server Enterprise Manager also
provides a means to shrink a database or file, and this operation can be scheduled under the
control of the database administrator.

Before we look at shrinking a database, it is worth considering why we might want to do so.
Obviously, shrinking a database in a way that physically releases space back to the operating
system is an attractive proposition if space is limited on the server and disk space must be
shared among applications. However, if space is taken away from a database and used by
another application, it is no longer available for use by that database. If the database is likely
to grow and need the space in the short term, it is pointless releasing the space. Also, the
process of expanding the database files in increments, as previously discussed, is not
necessarily efficient, since the act of extending the file may impact the performance of
applications, and the file extents may end up being fragmented around the disk drive.

However, if a database has grown in an uncharacteristic fashion because a large amount of
data has been added and then removed, it makes sense to release the space that is not likely to
be needed again. With these thoughts in mind, let us look at how a database and its files can
be shrunk.

2.5.1 The autoshrink database option



A database option can be set that makes a database a candidate for automatically being
shrunk. Database options and how to set them will be discussed shortly. At periodic intervals
a database with this option set may be shrunk if there is sufficient free space in the database to
warrant it. Note that the database administrator has no control over exactly what happens and
when.

2.5.2 Shrinking a database in the SQL Server Enterprise Manager
A database can be shrunk using the SQL Server Enterprise Manager, as follows:

Expand the server group and expand the server.

Expand Databases, then right-click the database to be shrunk.
Select All Tasks and Shrink Database.

Select the desired options.

Click OK.

MRS

The SQL Server Enterprise Manager Shrink Database dialog box is shown in Figure 2.6.
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Figure 2.6: Shrinking a database using the SQL Server Enterprise Manager

The dialog box offers the database administrator some options concerning database shrinkage.
By choosing to move the pages to the beginning of the file before shrinking, SQL Server will
reorganize the data in the database files by relocating pages at the end of the file to the
beginning of the file.

This will typically result in empty pages at the end of the file. Whether this option is chosen
or not, SQL Server will truncate the files, releasing the free space at the end of the files back
to the operating system. How much free space is not released but kept at the end of the file
can be controlled by the option to specify the maximum free space after shrinking. The option
to shrink the database on a scheduled basis is also provided.



This dialog box pretty much maps onto the DBCC SHRINKDATABASE statement, which
will be described shortly. There are two restrictions to bear in mind when using a shrink
database operation. First, a database cannot be shrunk in such a way that user data is lost.
Second, the files that comprise the database cannot be shrunk past their initial size—that is,
the size at which they were initially created. For greater control, the Files button may be
mouse-clicked. The Shrink File dialog box is displayed in Figure 2.7.
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Figure 2.7: Shrinking a database file using the SQL Server Enterprise Manager

When a file is shrunk using this dialog box, it can be shrunk below its initial creation size as
long as user data would not be lost. Various options allow a finer level of control. The file can
be reorganized (compressed) and the free space truncated from the end or the free space
truncated from the end without the compression taking place first. The target file size can be
set—this option will compress and truncate. There is also an option to migrate data from the
file to other files in its filegroup so it can be emptied and then removed from the database.
The option to shrink the database file on a scheduled basis is also provided. This dialog box
pretty much maps onto the DBCC SHRINKFILE statement described in the following
section.

2.5.3 Shrinking a database Using DBCC statements

The greatest control over database shrinkage is provided by two DBCC statements—DBCC
SHRINKDATABASE and DBCC SHRINKFILE. The first statement considers all the files in
the database when attempting to shrink it. The second statement only considers the named
file.

The SQL Server Enterprise Manager actually executes a DBCC SHRINKDATABASE
statement when it is used to shrink a database and a DBCC SHRINKFILE statement when it
is used to shrink a database file.

Let us first consider DBCC SHRINKDATABASE. The syntax diagram for this statement is
as follows:



DBCC SHRINKDATABASE

( database name [, target percent]
[, {NOTRUNCATE | TRUNCATEONLY}]

)

The target percent parameter is the desired percentage of free space left in the database file
after the database has been shrunk. If this parameter is omitted, SQL Server will attempt to
shrink the database as much as possible.

The NOTRUNCATE option ensures that any free file space produced by relocating data is
kept within the database files and not given back to the operating system. If the database files
were examined with Windows Explorer before and after the shrink operation, no change in
file size would be observed.

The TRUNCATEONLY option ensures that any free space at the end of the data files is
returned to the operating system but no data is relocated within the files. If the database files
were examined with Windows Explorer before and after the shrink operation, a change in file
size may be observed. The target percent parameter is disregarded when the
TRUNCATEONLY option is used.

If neither of these is specified, data is relocated in the files, and the free space at the end of the
files is released to the operating system.

The operation of shrinking a database is not quite as straightforward as it first appears.
Various restrictions come into play, and you may not always see shrinkage as large as you
may expect. For example, as we have said, a database file cannot be shrunk, using DBCC
SHRINKDATABASE, smaller than the size at which it was first created. Also, a database
cannot be shrunk smaller than the model database (a DBCC SHRINKFILE can shrink a file
smaller than its initial size). Data files and transaction log files are also treated differently. In
the case of data files, each file is considered individually. In the case of transaction log files,
all the files are treated as if they were one contiguous lump of transaction log.

Of course, a database can never be shrunk smaller than the amount of data it currently holds.

Let us now consider DBCC SHRINKFILE. The syntax diagram for this statement is as
follows:

DBCC SHRINKFILE

( {file name | file id }
{ [, target size]

| [, {EMPTYFILE | NOTRUNCATE | TRUNCATEONLY}]
}

)

The target size parameter is the desired size to which the database file should be shrunk. If
this parameter is omitted, SQL Server will attempt to shrink the file as much as possible.

The NOTRUNCATE and TRUNCATEONLY options have the same meaning as DBCC
SHRINKDATABASE. The EMPTYFILE option moves the data contained in the file to other
files that reside in the same filegroup and stops the file being used to hold new data. This
option is most often used to prepare a file for removal from the database. It could not
otherwise be removed if it contained data.



2.5.4 Removing database files

Files can be removed from the database by using the ALTER DATBASE statement. Neither
data files nor transaction log files can be removed from a database if they contain data or
transaction log records. In the case of data files, the DBCC SHRINKFILE statement with the
EMPTYFILE option can be used to move data out of the file that is to be removed to other
files in the same filegroup. This is not possible in the case of transaction log files. The
transaction log will have to be truncated to remove transaction log records before the removal
of a transaction log file is possible.

The following example removes a file from the BankingDB database created earlier:

ALTER DATABASE BankingDB
REMOVE FILE BankingData?2

Remove a file using the SQL Server Enterprise Manager is merely a case of selecting the file
to remove and mouse-clicking the Delete button, as shown in Figure 2.8.

BankingDE Properties g |
Gonerpl  [rala Files |Tra'11:;h;r.L0-;|i Filegioups | Options | Peimissions |
[l abusee s
[File Mame Locabon Space slocated [ME|  Fisgoup | |
BankingDiats o st st B ankingD aba o PRIMARY
BarikingD s [N < \ov s \Barkingl sl PRIMARY
Digletes
File propertee
W Automabcsly giow fe
Fi icelhi ol gt gy [ 22
* [ megabes 5 = ™ Urisirchad fls grows
i | 1
T By peicent | * Feiinc e rowth [ME | 200 = |
d =1 |
|
i
| cace | hep

W PSRk, Al |

Figure 2.8: Removing a file vx.lith-:c.hé_S?)-L- Server Entérprise Manager

A filegroup can also be removed, as follows:

ALTER DATABASE BankingDB
REMOVE FILEGROUP FileGroupl

However, a filegroup cannot be removed if it contains files.

2.6 Modifying filegroup properties

The properties of a filegroup can be changed. Filegroup properties can be READWRITE,
READONLY, and DEFAULT. The READWRITE property is typically the property that is
set for most filegroups. This means that objects such as tables and indexes in the filegroup can



be both retrieved and changed. The READONLY property is the opposite of the
READWRITE property in that those objects in a filegroup with the READONLY property set
cannot be changed; they can only be retrieved. The primary filegroup cannot have this
property set.

The DEFAULT property is by default set on the primary filegroup. A filegroup with this
property set is used to store objects whose definition does not include a target filegroup
specification. The DEFAULT property can be set on a filegroup other than the primary
filegroup, but only one filegroup in a database can have this property set. The following
example sets the READONLY attribute on the filegroup FileGroupl:

ALTER DATABASE BankingDB
MODIFY FILEGROUP FileGroupl READONLY

Note Setting the properties READONLY or READWRITE requires exclusive use of the
database.

2.7 Setting database options

Database options are the attributes of a database and control the way it behaves and its
capabilities. The database options are listed in Table 2.1.

Table 2.1: Database Options

Settable Meaning

Database

Options

ANSI null This option controls the database default nullability. If a table column is
default created without specifying NULL or NOT NULL, the default behavior is to

create the column with NOT NULL. However, the ANSI standard specifies
that the column should be created with NULL. Set this option to follow the
ANSI standard. It is recommended that NULL or NOT NULL always be
explicitly specified to avoid confusion.

ANSI nulls This option controls the result of comparing NULL values. If it is set,
comparisons with a NULL value evaluate to NULL, not TRUE or FALSE.
When not set, comparisons of non-Unicode values with a NULL value
evaluate to TRUE if both values are NULL.

ANSI padding If ON, strings are padded to the same length before comparison or insert. If
OFF, strings are not padded.

ANSI warnings This option controls whether warnings are issued if, for example, NULL
values appear in aggregate functions.

arithabort If ON, a query is terminated when an overflow or divide-by-zero error
occurs during the execution of the query.

auto create This option controls whether statistics are automatically created on columns

statistics used in the search conditions in WHERE clauses.

auto update This option controls whether existing statistics are automatically updated

statistics when the statistics become inaccurate because the data in the tables have
changed.

autoclose This option controls whether a database is shut down and its resources



Settable
Database
Options

autoshrink

concat null
yields null

cursor close on
commit

dbo use only

default to local
cursor

merge publish

numeric
roundabort

offline

published

quoted identifier

read only

recursive
triggers

select
into/bulkcopy

single user
subscribed
torn page
detection

trunc. log on
chkpt.

Table 2.1: Database Options

Meaning

released when the last user finishes using it.

This option controls whether a database is a candidate for automatic
shrinking.

This option controls whether NULL is the result of a concatenation if either
operand is NULL.

This option controls whether cursors are closed when a transaction
commits.

This option controls whether access to a database is limited to members of
the db_owner fixed database role only.

This option controls whether cursors are created locally or globally when
this is not explicitly specified.

This option controls whether the database can be used for merge replication
publications.

If ON, an error is generated when loss of precision occurs in an expression.

This option ensures that the database is closed and shut down cleanly and
marked offline.

This option allows the database to be published for replication.

This option controls whether identifiers can be delimited by double
quotation marks.

This option controls whether a database can be modified.

This option controls whether triggers can fire recursively.

This option allows nonlogged operations to be performed against a
database.

This option limits database access to a single user connection.
This option allows the database to be subscribed for publication.

This option allows incomplete I/O operations to be detected.

This option allows the inactive portion of the transaction log to be truncated
every time the CHECKPOINT process activates.

To set a database option the SQL Server Enterprise Manager or the ALTER DATABASE
statement can be used. The system stored procedure sp dboption is supported for backward

compatibility.

To use the SQL Server Enterprise Manager, do the following:

1. Expand the server group and expand the server.
2. Expand Databases, then right-click the database whose options are to be set.



3. Select Properties.
4. Select the Options tab and the required options.
5. Click OK.

The SQL Server Enterprise Manager Options tab is shown in Figure 2.9.
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Fi-gure 2.9: Sétﬁﬂg database options

Because some options—for example, replication options—are set by other parts of the SQL
Server Enterprise Manager, the options displayed in the Options tab are a subset of the
available database options.

The following example sets a database option using Transact-SQL:

ALTER DATABASE BankingDB
SET AUTO_SHRINK ON

2.8 Displaying information about databases

Information about databases can be obtained through the SQL Server Enterprise Manager or
various Transact-SQL statements. We have already seen the properties page that is displayed
when a database is right-clicked and Properties selected. This shows us quite a lot of
information, including the files that comprise the database. An example of this is shown in
Figure 2.4. If a database is mouse-clicked, a taskpad is displayed in the SQL Server Enterprise
Manager, as shown in Figure 2.10.
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Figure 2.10: Viewing the details of a database

A database administrator can drill down by clicking on, for example, Table Info. The resultant
output is shown in Figure 2.11.
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Figure 2.11: Displaying space allocation information

In Transact-SQL, the sp_helpdb system stored procedure is very useful. This is as follows:

EXEC sp helpdb

name db size owner dbid created status

BankingDB 1500.00 MB sa 6 Oct 23 2000 Status=ONLINE..
Derivatives 25.00 MB sa 8 Oct 18 2000 Status=ONLINE...
master 17.00 MB sa 1 Oct 12 2000 Status=ONLINE...
model 1.00 MB sa 3 Oct 12 2000 Status=ONLINE...
msdb 8.00 MB sa 5 Oct 12 2000 Status=ONLINE...
pubs 3.00 MB sa 4 Oct 12 2000 Status=ONLINE..
tempdb 2.00 MB sa 2 Oct 19 2000 Status=ONLINE..



This outputs one row for each database on the server. The db_size column is the total size of
all the files in the database.

A database name can be specified as a parameter, as follows:

EXEC sp _helpdb BankingDB

name db size owner dbid created status
BankingDB 1500.00 MB sa 6 Oct 23 2000 Status=ONLINE..
Name fileid filename filegroup size maxsize

growth usage

bankingdata 1 d:\data\bankingdata.mdf PRIMARY 1024000 KB
Unlimited 1024 KB data only
bankinglog 2 d:\data\bankinglog.ldf NULL 512000 KB

Unlimited 1024 KB 1log only

This displays information about the files in the database. Other useful system-stored
procedures, which can be used to obtain information about files and filegroups, are
sp_helpfile and sp_helpfilegroup. Another useful system-stored procedure is sp_spaceused,
which returns space use information.

2.9 System tables used in database configuration

The configuration of a database is reflected in various system tables held in the master
database and the user database. The master database contains a system table,
SYSDATABASES, which contains one row for every database resident on the SQL Server.
The structure of this system table is shown in Table 2.2.

Table 2.2: The SYSDATABASES System Table
Column |Datatype Description

name sysname The database name

dbid smallint The unique ID of the database

sid varbinary(85) The Windows NT system ID of the database creator
mode smallint Internal lock mechanism used in database creation
status integer Database status bits (O = set by sp_dboption):

1 = autoclose (O)
4 = select into/bulkcopy (O)
8 = trunc. log on chkpt (O)

16 = torn page detection (O)



Column Datatype

status2  |integer

crdate datetime

reserved |datetime

Table 2.2: The SYSDATABASES System Table

Description

32 = loading

64 = prerecovery

128 = recovering

256 = not recovered

512 = offline (O)

1,024 = read only (O)
2,048 = dbo use only (O)
4,096 = single user (O)
32,768 = emergency mode
4,194,304 = autoshrink

1,073,741,824 = cleanly shut down
16,384 = ANSI null default (O)

2,048 = numeric roundabort (O)

4,096 = arithabort (O)

8,192 = ANSI padding (O)

65,536 = concat null yields null (O)
131,072 = recursive triggers(O)
1,048,576 = default to local cursor (O)
8,388,608 = quoted identifier (O)
33,554,432 = cursor close on commit (O)
67,108,864 = ANSI nulls (O)
268,435,456 = ANSI warnings (O)

536,870,912 = full text enabled
Date when database was created

Reserved by Microsoft



Table 2.2: The SYSDATABASES System Table
Column Datatype Description

category |integer Contains a bitmap used for replication:
1 = Published
2 = Subscribed
4 = Merge Published

8 = Merge Subscribed
cmptlevel tinyint Set by sp_dbcmptlevel—specifies the database compatibility level
filename nvarchar(260) Location of the primary data file for this database

version  |smallint SQL Server internal code version that created the database

As can be seen, the SYSDATABASES system table contains a column, filename, which
points to the primary data file ((MDF) of a database on the server. This is the pointer from the
master database to each user database. Once the primary data file of a database has been
located, the SYSFILES system table, which resides in every database, can be located. This
has one row representing each file—data or log—found in the database.

The SYSFILES system table is shown in Table 2.3.

Table 2.3: The SYSFILES System Table
Column Datatype Description
fileid  |smallint |Unique identifier for the file within the database
groupid |smallint  [Identifier of the filegroup to which the file belongs
size integer File size in (8 KB) database pages

maxsize integer Maximum file size in (8 KB) database pages. 0 = no growth and -1 =
unlimited growth.

growth |integer Growth increment of the file. 0 = no growth. This is in units of 8§ KB
pages or a percentage, depending on the status column. If the status
column contains 0x100,000, then growth is in percentage, not pages.

status  |integer Status bits for the growth value in either megabytes (MB) or kilobytes
(K):

0x1 = Default device

0x2 = Disk file

0x40 = Log device

0x80 = File has been written to since last backup

0x4000 = Device created implicitly by the CREATE DATABASE



Table 2.3: The SYSFILES System Table
Column Datatype Description

statement
0x8000 = Device created during database creation

0x100000 = Growth is in percentage, not pages
perf integer Reserved by Microsoft
name  nchar(128) Logical name of the file

filename nchar(260) Full path of filename

One other system table found in each database is worthy of note at this point: the
SYSFILEGROUPS system table, which contains one row for every filegroup in the database.

The SYSFILEGROUPS system table is shown in Table 2.4.

Table 2.4: The SYSFILEGROUPS System Table
Column |Datatype Description
groupid  |smallint |Unique identifier for the filegroup within the database
allocpolicy smallint Reserved by Microsoft
status int 0x8 = READ ONLY

0x10 = DEFAULT

groupname sysname Filegroup name

All of these tables can be queried with SELECT statements, but it is easier to use the system
stored procedures provided, namely sp _helpdb, sp helpfile, and sp helpfilegroup. We have

already seen an example of sp_helpdb. Examples of sp_helpfile and sp_helpfilegroup are as

follows:

EXEC sp helpfile

Name fileid filename filegroup size maxsize
growth usage

bankingdata 1 d:\data\bankingdata.mdf PRIMARY 1024000 KB
Unlimited 1024 KB data only
bankinglog 2 d:\data\bankinglog.ldf NULL 512000 KB

Unlimited 1024 KB 1log only
EXEC sp helpfilegroup

groupname
groupid filecount

PRIMARY
1 1



2.10 Units of storage

A database is a collection of logical pages, each 8 KB in size. Database pages are always this
size and cannot be adjusted by the database designer. The 8 KB page is the fundamental unit
of storage and it is also a unit of I/O and a unit of locking (there are other units of I/O and
locking).

Tables and indexes consist of database pages. The way that database pages are allocated to
tables and indexes is through extents.

An extent is a structure that contains eight database pages (64 KB). Extents are of two types—
uniform and mixed. A uniform extent devotes its eight pages completely to one object, for
example, a particular table in the database. A mixed extent allows its pages to be used by up
to eight different objects. Although each page can only be used for one object, all eight pages
in a mixed extent can be used by different objects. For example, a mixed extent can provide
space for eight tables. A uniform extent is shown in Figure 2.12, and a mixed extent is shown

in Figure 2.13.

Figure 2.12: A uniform extent

Figure 2.13: A mixed extent

The reason that SQL Server 2000 uses mixed extents is to ensure that a whole eight page (64
KB) extent is not used for a small table. Instead, single pages are allocated to the table one at
a time as the number of rows it contains grows. When eight pages have been allocated and
more pages are needed, uniform extents are used to allocate eight pages at a time.

To observe the allocation of space to a table, try the following:

1. Create a table, T1, with a single column of data type CHAR(8000). A single row only
can fit onto a database page.

2. Insert eight rows, one at a time, checking the space allocated to the table with the
sp_spaceused system stored procedure after each insert (e.g., EXEC sp_spaceused
T1).

3. Insert another row, checking the space reserved.

What you will find is that after each row is inserted, the data column (the amount of space
used by data in the table) is incremented by 8 KB—that is, a single page from a mixed extent.
The reserved column (the amount of total reserved space for the table) is also incremented by
8 KB.

Note The reserved column displays 8 KB more than the data column, since a page is used in
the table's page allocation to hold a special structure called an Index Allocation Map



(IAM), which we will discuss later. This is the 8 KB that is displayed in the Index Size
column. There is no index space actually used, since there is no index on this table.

After eight rows have been inserted, the data column will display 64 KB and the reserved
column will display 72 KB. After row 9 is inserted, however, the data column will display 72
KB but the reserved column will display 136 KB. This is because a whole eight page uniform
extent has now been allocated to the table, causing the reserved value to jump by 64 KB.

Let us have a quick look at the sp_spaceused system stored procedure.

To see the space allocated to a table use the system stored procedure sp _spaceused, as
follows:

sp_spaceused branches

name TOWS reserved data index size unused

branches 100 72 KB 64 KB 8 KB 0 KB

In the above example, sp_spaceused reports that there are 100 rows in the Branches table and
that 72 KB or 9 database pages of space have been reserved for it. Out of the 9 pages, 8 pages
have been used by the table to store rows and another 1 page has been used for index space
which, as mentioned above, is actually used by a IAM page. Note that the system stored
procedure sp_spaceused gets its information from the sysindexes system table, which only
holds estimates. It does this to avoid becoming a bottleneck at run time, but it can become
inaccurate. To synchronize the sysindexes system table with the real space used, execute a
DBCC CHECKTABLE or a DBCC UPDATEUSAGE statement, which will scan the table
and indexes.

2.11 Database pages

Database pages are used for a variety of tasks. Database pages that are used to hold table rows
and index entries are known as data pages and index pages, respectively. If the table contains
columns of the data type TEXT or IMAGE, then these columns are usually implemented as
structures of Text/Image pages (unless the TEXT/IMAGE data is stored in the row). There are
other types of pages also, namely Global Allocation Map (GAM) pages, Page Free Space
(PFS), and Index Allocation Map (IAM) pages. We will discuss these types of pages shortly.

First, though, let us take out the magnifying glass and take a closer look at a typical page
structure. The most common database page we are likely to meet is a data page, so we will

use a data page as an example.

The basic structure of all types of database pages is shown in Figure 2.14.



Figure 2.14: The basic structure of a database page

There is a fixed 96-byte page header, which contains information such as the page number,
pointers to the previous and next page (if used), and the object ID of the object to which the
page belongs. The pointers are needed, because pages are linked together, as shown in Figure
2.15. However, this only happens in certain circumstances, as we shall see in Chapter 3.

Page 23 Page 24 Page 25 Page 26

—— e "
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Figure 2.15: Pages linked in a chain

What does a data page look like inside? The internal structure of a data page is shown in
Figure 2.16. We can see the data rows, but there is also another structure called a row offset
table. The row offset table contains two byte entries consisting of the row number and the
offset byte address of the row in the page. The first row in our page is at byte offset 96,
because of the 96-byte page header. Our row (plus overhead) is 20 bytes in length, so the next
row is at byte offset 116 and so on. The row offset table basically gives us a level of
indirection when addressing a row. This is important because, as we shall see in Chapter 3,



nonclustered indexes may contain pointers to data rows in their leaf-level index pages. Such a
pointer is known as a Row ID and is made up of a File ID, database page number, and a row
number. The File ID and database page number (a Page ID) take SQL Server to an individual
page in a file and the row number and then takes SQL Server to an entry in the row offset
table. In our example, the Row ID of the row nearest the fixed page header would consist of
the page number, 23, and the row number, 0.

Page 23

page header
——  »96 row 0
—=* 116 row 1
A row 2

136/116]96 | row offset table

J21u

Figure 2.16: The internals of a data page

Entry 0 in the row offset table contains byte offset address 96. SQL Server can then use this
offset to retrieve the row. Because the Row ID is implemented this way, we can see that a row
can change position in the table without the Row ID having to change. All that has to change
is the offset address in the row offset table entry. Why would a row change position in a page?
In Figure 2.16, if row 1 were deleted, row 2 may move up to row 0 in order to keep the free
space in the page contiguous if a new row needed to be inserted. The Row ID for row 2 would
not change.

Note SQL Server 2000 will not shuffle rows like this for the sake of it. It will only do so to
accommodate new inserts on the page.

What does a data row look like inside? Data rows contain columns of data, as you would
expect, but they also contain overhead. The amount of overhead depends on whether the row
contains all fixed-length columns or whether there are also variable-length columns. In Figure
2.17 we have the structure of the Accounts table row in our BankingDB database. The
Accounts table has five fixed-length columns. The first three columns are of type integer, the
fourth column is of type money, and the last column is of type char(400).
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Figure 2.17: A row containing only fixed-length columns



The first two bytes are used for status bits. The first status byte holds information that tells
SQL Server, for example, whether the row is a primary data row or a forwarded row
(described in Chapter 3). A status bit in this byte also specifies whether there is variable-
length data in the row. In our example there are no variable-length data.

The next two bytes hold a number representing the length of the fixed data in the row. This
number is the number of bytes of data plus the two status bytes and these two bytes
themselves.

The fixed-length data now follow. Finally, there are two bytes holding a number that
represents the number of columns in the row and a variable number of bytes holding a NULL
bitmap. This contains one bit for every column with a bit set to show whether the column
contains a NULL value. (See Figure 2.17.)

The shaded area represents the overhead. Our Account row, which we expected to be 420
bytes in length, has turned out to be 424 bytes in length—and that does not include the fields
holding the number of columns and the NULL bitmap.

Suppose the last column in our Accounts table was not a char(400) data type but a
varchar(400). The structure of our row containing variable length data is shown in Figure
2.18.

Figure 2.18: A row containing fixed- and Vall-ri-;able—length columns

The structure shown in Figure 2.18 assumes that the account notes column does indeed
contain 400 characters. If it contains less, then less bytes will be used to hold the account
notes. We can immediately see two differences between the structure of a row containing only
fixed-length columns and a row that also contains variable-length columns. First, the fixed-
length columns are grouped together separate from the variable-length columns, which are
also grouped together. Second, there are more overhead bytes.

Looking at the structure, the first status byte will now have a bit set to specify that variable-
length columns are present in the row. After the two status bytes the next two bytes hold a
number representing the length of the fixed data in the row followed by the fixed data, the
two-byte field holding the number of columns, and the NULL bitmap. Now we find extra
fields. A two-byte field holds the number of variable-length columns followed by a field
known as the column offset array, which contains a two-byte cell for each variable-length
column used to hold information that SQL Server uses to find the position of the variable-
length data.

We can see that the order of the columns in a row that contains variable-length columns is not
the same order as the table definition.

Note SQL Server 2000 also allows small amounts of TEXT/IMAGE data to be held inside the
row. Normally, TEXT/IMAGE data is held outside the row.



2.12 Looking into database pages

I often find it useful and educational to be able to burrow into the contents of a database page.
A useful DBCC statement that will allow you to do this is DBCC PAGE. This DBCC
statement is not documented as an option of the DBCC statement in the Microsoft SQL Server
documentation; however, some references to it can be found on TechNet and various other
sources.

The most useful form of the syntax of this statement is:

DBCC PAGE (dbid | dbname, file id, page number)

or:

DBCC PAGE (dbid | dbname, file id, page number, 1)

The first form of the syntax displays the page header; the second form also displays the
contents of the page—that is, data in the form of rows and the row offset table.

How do you know which page number to display? One of the columns in the sysindexes
system table, described in Chapter 3, contains a column first. This contains the Page ID (File
ID plus page number) of the first data page in the table if the sysindexes entry is a table or
clustered index (indid = 0 or 1). Also, if the sysindexes entry is a table, the root column holds
the Page ID of the last data page in the table.

To find the relevant entry in the sysindexes table you need to convert the table name to an
Object ID because the sysindexes table holds the Object ID rather than the table name. The
Object ID function can be used to translate the table name to its Object ID. For example,
suppose we want to look at pages in the Accounts table. To get the start Page ID from the
sysindexes table, use the following example:

SELECT first FROM sysindexes WHERE
id = OBJECT ID ('accounts')

AND

indid IN (0,1)
first
0x1E0000000100

Unfortunately, the Page ID is represented in hexadecimal and a swapped byte order, so some
manipulation will be needed to arrive at the page number.

First of all, take away the Ox symbol and separate the number into one-byte (two-digit)
values:

1E 00 00 00 01 00

Now you must reverse the order of the bytes:

00 01 00 00 00 1E



The first two bytes hold the File ID number, and the last four bytes hold the page number:

00 01 | 00 00 00 1E

Therefore, in our example, the File ID number is 1 and the page number is 30 (the decimal
equivalent of hexadecimal 1E).

To get information out of DBCC PAGE we must initiate tracing to the client:

DBCC TRACEON (3604)

We are now ready to display the contents of a page, but first of all let us just display the page
header so we can see what is in it:

DBCC PAGE ('BankingDB',1,30)

bpage = 0x1B14C000 bhash = 0x00000000 bpageno = (1:30)
bdbid = breferences =1 bstat = 0x9
bspin = 0 bnext = 0x00000000

PAGE HEADER:

m pagelId = (1:30) m headerVersion = 1 m type =1

m typeFlagBits = 0x0 m level = 0 m flagBits = 0x8000
m objId = 199305813 m_indexId = 0 m _prevbPage = (0:0)
m nextPage = (0:0) pminlen = 424 m_slotCnt = 16

m freeCnt = 1232 m freeData = 6928 m reservedCnt = 0

m lsn = (5:84:25) m xactReserved = 0 m xdesId = (0:0)
m_ghostRecCnt = 0 m tornBits = 1

Allocation Status

GAM (1:2) = ALLOCATED SGAM (1:3) = NOT ALLOCATED

PFS (1:1) = 0x63 MIXED EXT ALLOCATED 95 PCT FULL DIFF (1:6) = CHANGED
ML (1:7) = NOT MIN_ LOGGED

We can see the entry m_pageld = (1:30) telling us that this is page 30 in File ID 1. The entry
m_objld = 199305813 tells us what Object ID the page belongs to. OK, we know this but
there are occasions when error messages contain page numbers and in that situation the
Object ID is very useful.

The m_level and m_indexid fields are meaningful if this page is an index page. The level is
the index level where this page resides, and indid tells us the ID of the index to which this
page belongs. The field m_freeData is the offset of the start of the free space on the page, and



the pminlen field tells us the smallest value a row can be. The entry m_slotCnt tells us how
many slots (entries) there are in the row offset table.

Let us now look at the contents of the page. I will omit the page header from the example for
clarity:

DBCC PAGE ('BankingDB',1,30,1)

Slot 0, Offset 0x60

Record Type = PRIMARY RECORD

Record Attributes = NULL BITMAP
1b14c060: 01a80010 00000001 00000001 000003€9 ...vviiinnenennn.
1014c070: 057e8dbc 00000000 6576654e 766f2072 ..~..... Never ov

1b14c080: 72647265 206e7761 20202020 20202020 erdrawn
1b14c090: 20202020 20202020 20202020 20202020

1bl4cl£f0: 20202020 20202020 20202020 20202020
1b14c200: 20202020 20202020 000005

Slot 1, Offset 0x20b

Record Type = PRIMARY RECORD

Record Attributes = NULL BITMAP
1b1l4c20b: 01a80010 00018cal 00000001 000003e€9 ....v.vveinenenn..
1bl4c2lb: 03ee6580 00000000 6576654e 766£f2072 .e...... Never ov

1bl4c22b: 72647265 206e7761 20202020 20202020 erdrawn
1bl4c23b: 20202020 20202020 20202020 20202020
1bl4c24b: 20202020 20202020 20202020 20202020

OFFSET TABLE:
Row - Offset
15 (0xf) - 6501 (0x1965)
14 (Oxe) - 6074 (0x17ba)
13 (0xd) - 5647 (0x160f)

3 (0x3) - 1377 (0x561)
2 (0x2) - 950 (0x3b6)
1 (0x1) - 523 (0x20Db)
0 (0x0) - 96 (0x60)

We can see, in the DATA section, each row and the offset of the row. We can see, in the
OFFSET TABLE section, each entry in the row offset table. Each entry contains a slot
number and an offset—for example, the row referenced by slot 0 is at offset 96 (straight after
the page header), and the row referenced by slot 15 is at offset 6,501.

2.13 Pages for space management

There are a number of pages resident in a primary or secondary database file that are used to
manage space in the file. These special pages are as follows:

e Global Allocation Map (GAM) pages



e Secondary Global Allocation Map (SGAM) pages
e Index Allocation Map (IAM) pages
o Page Free Space (PFS) pages

To understand how GAM and SGAM pages fit into the picture we need to remind ourselves
that there are two types of extent in SQL Server 2000. Uniform extents are eight pages in
length and are allocated exclusively to one object when it requires space. For example, if a
uniform extent is allocated to the Accounts table in the BankingDB database, then only rows
from that table can use space on the eight pages.

Mixed extents are eight pages in length also but are allocated one page at a time to many
objects when they require space. For example, a mixed extent may provide space for the
Accounts table in the BankingDB database plus another seven tables. As we discussed earlier,
mixed extents exist to save space, and, as such, the first eight pages of a table (or index) are
allocated from mixed extents.

GAM pages hold information concerning which extents are currently allocated—that is, are
not free. A single GAM page can manage 64,000 extents, which equates to nearly 4 GB of
space. If more than 64,000 extents are present in the file, additional GAM pages are used. A
GAM page uses a single bit to represent each extent out of the 64,000 extent range. If the bit
is set (1), the extent is free; if it is not set (0), it is allocated.

SGAM pages hold information concerning which extents are currently being used as mixed
extents and have one or more unused page—that is, have space that can still be allocated to
objects. A single SGAM page can also manage 64,000 extents. If more than 64,000 extents
are present in the file, additional SGAM pages are used. An SGAM page uses a single bit to
represent each extent out of the 64,000 extent range. If the bit is set (1), the extent is being
used as a mixed extent and has at least one unused page; if it is not set (0), it is not being used
as a mixed extent, or, alternatively, it is a mixed extent but all the pages are in use. These
settings are shown in Table 2.5.

Table 2.5: GAM and SGAM Page Settings

Extent Status GAM Bit Setting SGAM Bit Setting
Free, not being used 1 0
Uniform or full mixed extent |0 0
Mixed extent with free pages |0 1

To find a free extent to allocate as a uniform extent, the GAM is scanned for a bit that is set
(1)—that is, an extent not currently in use. The bit is then set to 0 (allocated). To find a mixed
extent having at least one free page that can be allocated, SQL Server searches the SGAM for
a bit that is set (1). To find a free extent to allocate as a mixed extent, the GAM is scanned for
a bit that is set (1)—that is, an extent that is not currently in use. The bit is then set to 0
(allocated). The equivalent bit in the SGAM is set to 1.

To free an extent, the GAM bit is set to 1 and the SGAM bit is set to 0.

Note When allocating extents to a table, SQL Server 2000 "round-robins" the allocation from
each file if there is more than one file in the filegroup to which the table belongs. This



ensures that space is allocated proportionately from each file in the filegroup.

How does SQL Server 2000 keep track of which pages belong to a table or index? In previous
versions of SQL Server (prior to SQL Server 7.0), data pages in a table were always chained
together in a doubly linked list. This behavior changed in SQL Server 7.0 and so in SQL
Server 2000 this is true only if the table has a clustered index (much more about clustered
indexes in Chapter 3).

In SQL Server 2000 the extents used by a table or index are managed by IAM pages. A table
or index has at least one [AM page, and, if the table or index is spread across more than one
file, it will have an IAM page for each file. An IAM page can manage 512,000 pages, and, if
the table size exceeds this within a file, another IAM is used. The IAM pages for a file or
index are chained together. An IAM page must not only cater to uniform extents allocated to
the table or index, but must also cater to single pages allocated from mixed extents.

To do this the first IAM page in the chain of [AM pages holds eight slots which can contain
pointers to the eight pages that may be allocated from mixed extents. Other IAM pages in the
IAM chain will not hold pointers in these slots. All IAM pages, though, will contain a bitmap
with each bit presenting an extent in the range of extents held by the IAM. If the bit is set (1),
the extent represented by that bit is allocated to the table or index; if it is not set (0), the extent
represented by that bit is not allocated to the table or index.

To find the page ID of the first IAM page for a table or index, use the FirsttAM column in the
sysindexes system table (the sysindexes system table will be discussed in Chapter 3). To do
this use the following example:

SELECT object name (id) AS Tablename , Name, FirstIAM FROM

sysindexes

Tablename Name FirstIAM
Authors aunmind 0x7C0000000100
Publishers UPKCL pubind 0x650000000100
Titles UPKCL_titleidind 0x690000000100

The Page ID is a hexadecimal number, which can be decoded as described previously in this
chapter.

Note The SQL Server documentation refers to a eap. A heap is a table that does not have a
clustered index and, therefore, the pages are not linked by pointers. The IAM pages are
the only structures that link the pages in a table together.

Finally, our last special page is a PFS page. A PFS page holds the information that shows
whether an individual page has been allocated to table, index, or some other structure. It also
documents how free an allocated page is. For each page, the PFS has a bitmap recording
whether the page is empty, 1 percent to 50 percent full, 51 percent to 80 percent full, 81
percent to 95 percent full, or 96 percent to 100 percent full. Each PFS page covers an 8,000-
page range. When a search is made to look for free space, the PFS page is consulted to see
which page in an extent belonging to the table or index may have enough free space.

This results in a fundamental difference between SQL Server 2000 and versions prior to SQL
Server 7.0. In these previous versions, if there were no clustered index on the table, new rows



were always added at the end—that is, inserted into the last page. Now, rows can be inserted
on any page in the table that has free space.

So, where in the database file do we find these special pages? The first page (0) contains a file
header. The second page (1) is the first PFS page. The next PFS page will be found after
another 8,000 pages. The third page (2) is the first GAM, and the fourth page (3) is the first
SGAM. IAM pages are located in arbitrary positions throughout the file. This is shown in

Figure 2.19.

file |

header | PFS | GAM | SGAM

pageD page1 page2 page3
Figure 2.19: The PFS, GAM, and SGAM pages

This chapter has provided an overview of the SQL Server storage structures. In the next
chapter we will look at tables and indexes in much more detail. But first of all, now that we
have discussed databases, it is time to introduce the BankingDB database used in this book.

2.14 The BankingDB database

The BankingDB database is very simple. It consists of just three tables, which are created
with the following Transact-SQL syntax:

CREATE TABLE customers
(

customer no INT NOT NULL,
customer fname CHAR (20) NOT NULL,
customer lname CHAR (20) NOT NULL,
customer notes CHAR (400) NOT NULL

)

CREATE TABLE accounts
(

account no INT NOT NULL,
customer no INT NOT NULL,
branch no INT NOT NULL,
balance MONEY NOT NULL,
account notes CHAR (400) NOT NULL

)

CREATE TABLE branches

(
branch no INT NOT NULL,
branch_name CHAR (60) NOT NULL,
branch address CHAR(400) NOT NULL,
managers_name CHAR (60) NOT NULL



The BankingDB database has customers who have one or many bank accounts. A bank
account is managed by a branch of the bank at some geographical location. It is as simple as
that.

There are 10,000 bank accounts for 5,000 customers. These are managed by 100 branches.
Since we will be creating indexes frequently as we progress through the book, there are no
indexes created in the basic database. For the same reason, the tables are also assumed to have
no primary key constraints or foreign key constraints.

Chapter 3: Indexing

3.1 Introduction

There are many bells and whistles that can be tweaked to improve SQL Server performance.
Some will provide a more positive benefit than others; however, to really improve
performance, often with dramatic results, the database designer is well advised to concentrate
his or her efforts in the area of indexing. The correct choice of index on a table with respect to
the WHERE clause in a Transact-SQL statement, so that the query optimizer chooses the most
efficient strategy, can have sensational results.

I was once asked to look at a query that performed a complex join and had not completed in
over 12 hours. Who knows when the query would have completed had it not been cancelled
by the user—it may still have been running at the end of the year! Examination of the query
showed that a join condition was missing in the WHERE clause, as was an index on one of
the large tables involved in the join. Making the appropriate changes meant that the query ran
in less than eight minutes!

This magnitude of performance improvement is not likely to be achieved every day, but it
makes an important point—namely, that focusing effort in the area of indexing and query
optimization is likely to produce good results for the effort involved and should be high on the
database tuner's hit list.

So, what are these indexes and why are they so important?

3.2 Data retrieval with no indexes

Imagine that this book had no index, and you were asked to find references to the topic page
faults. You would have no choice but to open the book at page 1, scan the page looking for
the topic, turn to page 2, and continue until you had scanned the last page of the book. You
would have to continue your search to the last page in the book, since you would not know
when you had found the last reference to the topic. You would have read and scanned every
page in the book, which would probably have taken you a considerable length of time.

SQL Server has to behave in a similar fashion when asked to retrieve rows from a table that
has no appropriate index. Suppose we were to execute the following Transact-SQL statement
against the Accounts table, assuming there was no suitable index present:

SELECT * FROM accounts WHERE branch no = 1100



How would SQL Server find the appropriate rows? It would have to search the Accounts table
from the start of the table to the end of the table looking for rows that had a branch _no
containing the value 1100. This might be fine for small tables containing just a few rows, but,
if the table contained millions of rows, the above query would take a very long time to
complete.

What is needed is a fast and efficient way of finding the data that conforms to the query
requirements. In the case of a book, there is usually an index section from which the required
topic can be found in an alphabetically ordered list, and the page numbers of the pages
featuring that topic can then be obtained. The required pages can be directly accessed in the
book.

The method used to directly retrieve the required data from a table in SQL Server is not unlike
that used with books. Structures called indexes may be created on a table, which enable SQL
Server to quickly look up the database pages that hold the supplied key value—in our
example the value 1100 for the branch no column.

Unlike a book, which normally has one index, a table may have many indexes. These indexes
are based on one or more columns in the table. In SQL Server there are two types of index—
clustered and nonclustered—which we shall now compare and contrast. The ultimate decision
as to whether an index is used or whether a complete scan of the table is performed is made
by a component of SQL Server known as the query optimizer, which we will discuss in detail

in Chapter 4.

3.3 Clustered indexes

As a database designer you are allowed to create only one clustered index on a table—you
have one chance to play this ace and so you must play it carefully. Why only one clustered
index per table? Unlike its nonclustered cousin, described shortly, a clustered index imposes a
physical ordering of the table data.

Creating a clustered index forces the data rows in the table to be reordered on disk so that they
are in the same key sequence order as the clustered index key. For example, if we were to
create a clustered index on the customer Iname column of the Customers table, the data rows
would be sorted so that their physical order on the disk was in ascending order of the
customers' last names—that is, Adamski would precede Tolstoy.

This order would be maintained as long as the clustered index was present. SQL Server would
ensure that the insertion of a new data row would cause the row to be placed in the correct
physical location in key sequence order.

The structure of a clustered index with its key defined on the customer Iname column of the
Customers table is shown in Figure 3.1. The lowest level of the clustered index is composed
of the data pages themselves, and in a clustered index the data pages are known as the leaf
level of the index. The rest of the clustered index is composed of index pages. The index page
at the top of the index is known as the index root. Levels in the index between the root page
and the leaf-level pages are known as intermediate-level pages. Another name for an index
page is an index node. For simplicity we have shown the structure with the ability to hold two
data rows per page and three index entries per page. In reality many more rows and index
entries are likely to be found.
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Figure 3.1: Structure of the clustered index

At any given level in the index the pages are linked together. This is shown in Figure 3.1,
whereas Figure 3.2 emphasizes the linkage. Figure 3.2 shows how index pages are linked
together, and this is true regardless of whether the index is a clustered index or nonclustered
index.

3\

7 /N N
P

Figure 3.2: Index pages are linked together

The entries in the index pages contain a key value and a pointer to the next index page at the
next lowest level starting with that key value, plus some control information. The pointer in a
clustered index is a page number. In Figure 3.1, for example, the root page has an entry
containing a key value, Adams, and a page number, 58, pointing to the intermediate index
page 58, whose lowest key value is Adams.

Note The pointer also contains the File ID as a prefix. This is needed because page numbers
are only unique within a database file. A File ID plus a page number is referred to as a
Page ID.

The reason why there can be only one clustered index on a table is that the clustered index
governs the physical placement of the data and the data cannot be in two places at once. There
can only be one sequence in which the data can be physically placed.

So how can a clustered index support our requirement to perform fast and efficient data
retrieval? The clustered index will help us to avoid table scans, since the query optimizer will
probably use the clustered index to retrieve data directly. Suppose we issued the following
SELECT statement:

SELECT * FROM customers WHERE customer lname = 'Green'



Let us assume that the query optimizer decides that the clustered index is the most efficient
access path to the data. This is a realistic assumption, since the WHERE clause only specifies
the customer Iname column on which the clustered index is based.

SQL Server will first obtain the page number of the root page from the sysindexes table—in
our example, page 42. In this root page there will be a number of key values, and in our
clustered index these are Adams and James. SQL Server will look for the highest key value
not greater than Green, which will be Adams.

In a clustered index an index entry consists of the index key plus a pointer, which is a page
number. The pointer held in the Adams key entry points to page 58, and so index page
number 58 will be retrieved.

Since page 58 is still an index page, SQL Server will look for the highest key value not
greater than Green. In index page number 58 this is Date. The pointer held in the Date key
entry is to page 337, which is a data page, and so this page will be retrieved. The data page is
now scanned for a row containing Green in the customer Iname column. The row is found
and returned. Note that SQL Server did not know the row existed until the data page was
obtained.

Clearly, the clustered index in our example has supported fast access to the data row. If we
consider the number of I/Os required to traverse the index in this way we can see that one I/O
is required to retrieve the root page, one I/O is required to retrieve the intermediate index
page, and one I/O is required to retrieve the data page—a total of three I/Os. A table scan
would probably result in many more I/Os.

Would the three I/Os required to traverse our index be physical reads to the disk? Probably
not. The root page of an index is accessed by every query that needs to traverse the index and
so is normally always found in cache if the index is accessed frequently. The intermediate
nodes and data pages are less likely to be, but if the data cache is large enough it is possible
that they will stay in the cache.

We have looked at a SELECT statement that retrieved a single row. What about a SELECT
statement that retrieves a range of rows?

SELECT * FROM customers WHERE customer lname BETWEEN
'Date' AND 'Kirk'

In the above example a range of values is specified based on the customer Iname column. It
can be seen from Figure 3.1 that because our clustered index is based on the customer Iname
column and the data is thus in key sequence order, the rows that meet the criteria are all stored
together—that is, clustered. In our example, the six rows that meet the criteria of the SELECT
statement are found in three data pages, and so only three I/Os would be required to retrieve
these data pages.

If the clustered index had not been based on the customer Iname column, the rows would
have not been clustered together (unless fate had intervened or the rows were loaded in that
manner with no other clustered indexes on the table).



In the worst case, the six rows would have been stored across six data pages, resulting in six
I/Os to retrieve them.

Note In the BankingDB database there are about 15 customer rows per data page. As an
example, eight I/Os would return 120 rows. As we will see, when a clustered index is
not present to keep the rows in key sequence order, indexed access of these rows may
require 120 I/Os. A not inconsiderable difference!

In a similar manner, clustered indexes support searches using the LIKE operator. Suppose we
execute the following query:

SELECT * FROM customers WHERE customer lname LIKE 'N%'

All the customers with last names beginning with N will be returned. Again, our clustered
index on customer Iname will ensure that these rows are stored together, resulting in the least
number of I/Os to retrieve them. Of course, duplicate last names would also be stored in the
same cluster of pages.

Finally, what about returning the data in order? Suppose we execute the following query:

SELECT * FROM customers ORDER BY customer lname

The query optimizer will know that the clustered index guarantees that the data is in key
sequence order, and so there is no need to perform a sort of the rows to satisfy the ORDER
BY clause, again saving disk I/O.

3.4 Nonclustered indexes

Similar to their clustered counterparts, nonclustered indexes are balanced trees with a
hierarchy of index pages—starting with the index root page at the top, leaf-level pages at the
bottom- and intermediate-level pages between the root page and the leaf-level pages. Again,
at any given level in the index the pages are linked together, as shown in Figure 3.2.

Note Data pages in a table without a clustered index will not be chained together, even if
nonclustered indexes are present on the table. As was mentioned in Chapter 2, the data
pages of the table will only be related through the IAM page(s) managing that table.

Unlike their clustered counterparts, nonclustered indexes have no influence on the physical
order of the data, and the leaf level of a sorted index is not considered to be the data but is the
lowest level of index pages. The structure of a nonclustered index with its key defined on the
customer_fname column of the Customers table is shown in Figure 3.3.
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Flgure_33 Structure of a nonclustered index with no clustered index on the table

The first observation we can make is that every data row in the table has a pointer to it from
the index leaf level (the dashed lines). This was not the case with the clustered index in Figure
3.1, where the leaf level only contained pointers to the lowest keyed data row in each page.
This means that nonclustered indexes are typically larger than their clustered counterparts,
because their leaf level has to hold many more pointers. There are about 15 customer rows per
data page, so the leaf level of the nonclustered index will need to hold 15 times more pointers
than the lowest-level index page in the clustered index. The typical effect of this is that a
nonclustered index on a key will usually have one more level of index pages than a clustered
index on the same key.

What do the index entries in a nonclustered index look like? Similar to a clustered index, they
contain a key value and a pointer to the relevant index page at the next lowest level. This
pointer is a Page ID (File ID and database page number). The lowest index level, the leaf
level, has index entries also containing a key value and a pointer. While in versions of SQL
Server prior to 7.0 the pointer was always a Row ID, which pointed directly at the data row,
this is no longer always true.

A Row ID is a Page ID plus a row number. In Figure 3.3 the leaf-level index page 96 has an
entry for the key Ben, which points to Page ID 1:340, slot number 2.

So when is a pointer a Row ID and when is it not? If there is no clustered index present on the
table, then the pointer is a Row ID. If there is a clustered index present on the table, then the
pointer becomes something else. We shall see what this something is shortly and why this is
SO.

The most important observation to make about Figure 3.3 is that although the index levels are
in key sequence order, the data is not. This means that any kind of range retrieval performed
using the sorted index will have to use a logical read to follow each relevant leaf-level pointer
to the data rows. This is an important point, which we will revisit later. Note also that once the
leaf level has been accessed, SQL Server knows whether a row exists or not.



So far we have discussed the behavior of clustered indexes and nonclustered indexes with
respect to data retrieval. Let us now look at the behavior of these indexes with respect to data
insertion, update, and deletion.

3.5 The role of indexes in insertion and deletion

The existence of indexes on tables is usually considered with respect to query execution time.
However, SQL Server indexes, in particular clustered indexes, also affect the behavior of
SQL Server when rows are inserted. Consider the Customers table shown in Figure 3.4. The
table has been allocated four pages from a mixed extent. Three pages are full, and the fourth
page is partly filled.

GHREEMN SLIE KIRKE ERI
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Figure 3.4: Customers table with no indexes present

We will assume, for clarity, that a database page only holds three rows and that only the
customer Iname and customer fname columns are shown.

Suppose we wish to add a new row. Where is it stored? Since the table has no indexes present
and there is no free space anywhere else in the pages allocated to the table, the new row is
inserted at the end of the table on the last page, as shown in Figure 3.5. We shall see shortly
that this behavior is true even if there are nonclustered indexes present on the table. Only the
creation of a clustered index can modify this behavior.

Fage 336 Page 337 Page 338 Page 339
HOBBES. LILIAN ADAME BHEM STOME, JOHM HUNT, BOS
GREEM, S5UE KIRK, ERIC KEMT, ROM
BARNS, KEITH JAMES, SAM MOOMN, CARL
MOSS, SUE

Figure 3.5: Insertion at the end of a table

One can imagine that in a multiuser system many users will be attempting to insert customer
rows. In previous versions of SQL Server prior to 7.0 this would have resulted in a hot spot at
the end of the table, since a full implementation of row-level locking was not present.
However, SQL Server 2000 has a full and robust implementation of row-level locking, and so
the hot spot has been virtually eliminated. Locking is discussed in Chapter 6. What happens
when rows are deleted from a table?

Suppose some rows are now deleted, as shown in Figure 3.6. Free space, shown in Figure 3.7,
is left on the pages from which the rows are deleted.



Figure 3.6: Deleting rows from the table

HOBBS, LILIAN | ALAMS, BEN

BARNS. KEITH JAMES, SAM MOOM. CAR

Figure 3.7: Space freed from row deletion

If a new row is now inserted, where will it go? In versions of SQL Server prior to 7.0, SQL
Server would not have reused the space freed by the deletion of the rows. More sophisticated
page management algorithms using more sophisticated page management structures (see
Chapter 2) mean that space freed by deleting old rows can be reused by new rows. This is
shown in Figure 3.8.

Page 336 Page 337 Page 338 Page 339
HOBBS, LiLian | ADAMS, BEN HUNT, BOB
GREEN, SUE KIRK, ERIC / MOSS, SUE
BARNS, KEITH | JAMES, SAM /f.:-'mn CARL

¥ |
DATE, ANDY

Figure 3.8: Free space being reused

Once all the rows are removed from a page it becomes available for use by the table again. If
all the rows are removed from an extent, it may be deallocated and so no longer belongs to the
table.

Note If a row size is used so that only one row can fit on a page, the deletion of a row will
mean that there is no remaining row on the page. The page will immediately become
available for reuse, and free space will not be wasted.

The previous discussion has shown that in a table with no indexes, rows will be inserted at the
end of the existing data—that is, appended to the rows already present if there is no free space
elsewhere in the table. However, if there is free space present in existing database pages in the
table because some rows stored earlier have been deleted, then SQL Server can make use of
this space to accommodate newly inserted data rows. In Figure 3.9, new rows can be inserted
where free space has been left by deleted rows. The PFS management pages hold information
about the free space in each page and so can be consulted when a page with sufficient free
space is required.
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Figure 3.9: Pages with sufﬁc1ent free space can be used for new rows

This behavior stays the same if nonclustered indexes are present on the table, since they do
not govern the physical placement of data. However, a clustered index will modify this
behavior. This is because a clustered index will always ensure that new rows are inserted in
key sequence order. In our Customers table example, this means in ascending order of the
customer's last name. So let's delete some rows and see what happens.

We'll delete the customers who have the last names Green and Hunt. Pages 337 and 338 now
have free space in them, as shown in Figure 3.10. Let's now insert two new customers, French
and Hood. The clustered index forces these rows to be inserted in key sequence order, so
French will need to be inserted after Date but before Hobbs, and Hood will need to be inserted
after Hobbs but before James.
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Frgure 3.10: Clustered 1ndex with some deleted rows

Well, we are lucky. It just so happens that there is free space on the pages where we want to
insert the rows, and this space is therefore reused, as shown in Figure 3.11.

Fiege 336 Page 3 Page X Page 33 age 280 Fage

Figure 3.11: Clustered 1ndex with some newly 1nserted rows

We can see that in our clustered index, space freed by deleting rows can be reused. Of course,
if our clustered index key had been an increasing key value such as that generated in a column



with the identity property, new rows would always be inserted at the end of the table and free
space in a page may not be efficiently reused.

Our example is, of course, a little contrived, since there will be many occasions where there is
not going to be free space in the page where we want to insert the new row, and we will deal
with this scenario now.

Suppose that our clustered index contains the entries shown in Figure 3.12. We want to insert
a row with a key value of Jones, which SQL Server must store between the key values James
and Kent, but there is obviously insufficient space in page 337 to hold the new row. In this
case SQL Server must perform a page split. This involves acquiring a new empty page and
chaining it into the existing chain of pages.

aDAMS, BE! HOBES, LILIAL KENT, ROk MOSS SUE

\REEM, SUE JAMES S AM MOOH AR

Figure 3.12: Full clustered index leaf pages

This type of page splitting is known as a 50:50 split, since SQL Server ensures that
approximately 50 percent of the rows on the existing page are moved onto the new page, as
shown in Figure 3.13. This is only part of the work that SQL Server must do. The
intermediate index pages in the clustered index must be updated so that the new page is
referenced. This will involve adding a new entry into an index page at the next level up. Of
course, if there is insufficient room for the new entry, the index page might split also! In our
example, a new entry must be made for the key James pointing to page 202.

Page 336 Page 337 Page 338 Page 339
ADAMS, BEN HOBBS, LILIAN | KENT, RON MOSS, SLIE
BARNS, KEITH HOOD, MARY KIRK, ERIC STOMNE, JOHN
GREEN, SUE MOON, CARL

Page 202
JAMES, SAM
JOMES, TINA

Figure 3.13: A 50:50 page split

What about any nonclustered indexes that point to the table? Previously we mentioned that
the index entries at the leaf level of a nonclustered index pointed directly at the data rows and
these pointers, known as Row IDs, are of the form Page ID plus a row number on the data
page. A Page ID is of the form File ID and database page number. We have just seen that
when a page split occurs in a clustered index, rows can migrate from the old page to the newly



chained-in page. So does this mean that the Row IDs for these rows are now incorrect? In
versions of SQL Server prior to SQL Server 7.0 this is exactly what this would mean. The
pointers in any nonclustered indexes present on the table pointing to the rows that had
migrated would have to be changed to point to the row locations on the new page. This would
result in a lot of nonclustered index update activity and a consequent increase in lock activity
in these nonclustered indexes.

For this reason, in SQL Server 2000, if a clustered index is present on a table, the
nonclustered index pointers are no longer Row IDs. Instead, the nonclustered index pointers
are the clustering index key. This is shown in Figure 3.14.

nonclustered index entry with
clustered index not present on table

nonclustered |. ID:page no slot

iIndex key
nonclustered clustered
index key index key

nonclustered index entry with
clustered index present on table

Figure 3.14: Nonclustered index pointers with and without a clustered index present

This needs a little more discussion! Instead of the index entries at the leaf level of a
nonclustered index consisting of the nonclustered index key plus a Row ID pointer, each entry
is composed of the nonclustered index key plus the clustered index key. A leaf-level index
entry, therefore, no longer points directly at a data row; rather, it takes a route through the
clustered index using the clustering key and then out to the data row. This is shown in Figure
3.15. The query specifies a column in the nonclustered index on the customer fname column,
and this index is chosen by the query optimizer. The index is traversed until the relevant index
entry is found in the leaf-level index page. The pointer in this index entry is the clustered
index key for this row. Since the clustered index is defined on the customer Iname column,
this pointer is the customer's last name, in this case, Adams. The clustered index is now
traversed using this key value, and the data row is fetched.
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Figure 3.15: Nonclustered index traversal with a clustered index present

So, when is a pointer a Row ID and when is it not? If there is no clustered index present on
the table, then the pointer is a Row ID. If there is a clustered index present on the table, the
nonclustered index pointer (at the leaf level of the index) is the clustered index key. The
primary reason for this approach is to avoid the work that must be performed by the server
adjusting nonclustered index entries when a data page splits because of insertion into a
clustered index, causing data rows to migrate to new pages.

Since the nonclustered index leaf entries do not contain page numbers, if they contain the
clustered index key, then the fact that data rows might move to a new page is irrelevant. The
pointers will not need to be changed—in other words, they are stable. Because data page splits
are a phenomenon only observed when a clustered index is present on a table, it follows that if
there is no clustered index present on a table, data page splits cannot occur. The nonclustered
index leaf entries are stable with respect to the insertion of new data rows, and the pointers
can remain Row IDs, as in versions of SQL Server prior to 7.0.

This is all well and good, but suppose that we issue the following query:

SELECT * FROM customers WHERE customer fname = 'John'

If we assume that there is a nonclustered index on the firstname column and a clustered index
on the lastname column, then, from what we have just discussed, we can state that the pointer
in the nonclustered index will be the clustered index key. Now suppose that for our customer
John our pointer is Smith (John's last name). We traverse the nonclustered index searching for
a key value of John and find the leaf- level index entry. We will assume for simplicity that
there is only one customer with the first name John.

The pointer will contain the clustered index key Smith, and so the clustered index is now
traversed from the top searching for this key. If there is only one customer with the last name
Smith, we will traverse the clustered index and finally retrieve the data page containing our
row. That's fine, but suppose in our Customer table we have more than one customer with the
last name Smith. Perhaps we have a customer named Mary Smith. Now we have an
interesting scenario. If the clustered index is now traversed from the top searching for a key of
Smith, two rows will be found. Clearly this is nonsense, so how does SQL Server find the
correct Smith?

The answer can be found in the way that duplicate clustered index key values are handled. If a
clustered index is not created as a unique index, then duplicate key values will be allowed in



the index. In our example this is not unreasonable—some customers will have the same last
name. Internally, SQL Server will, however, add an extra column to the key, known as a
uniqueifier. The first instance of a key value will not have a uniqueifier but subsequent
instances will. The second instance will have a uniqueifier of 1, the third 2, and so on. In this
way, SQL Server internally makes all the key values unique, and it is, in fact, the clustered
index key and the uniqueifier that are held as the pointer in a nonclustered leaf-level index
pointer. This pointer is then used to traverse the clustered index, and it will return a single,
uniquely identified row. The uniqueifier will be completely transparent to the query and the
application.

OK, let's now return to where we left off. We had just inserted a customer with the last name
Jones, which caused a page spilt to occur. We might wish to insert another data row with a
key value that is close to Jones. Are the split pages going to split again soon? We can see that
if inserts continue, with key values greater than and less than James, there will be a delay
before page splitting occurs again. This delay is caused by the fact that the page splitting left
us with pages that had free space in them. We can store about 15 Customer rows into a data
page, so in reality the page split will leave us with approximately seven rows per page and,
therefore, room for another seven or eight rows more per page, which will delay the page
splitting.

On average we can expect to find pages that range from 50 percent full having just split to
100 percent full just before they split, giving us an average page fullness of about 75 percent.

This is fine, but suppose the clustered index is based on an ever-increasing key value such as
that provided by a column with the identity property or a column containing the date and time
an order is taken. Insertion of new rows will always happen at the end of the clustered index.
In this case there is no point in SQL Server performing a 50:50 split when a new page is
chained in, since space that is reserved physically before the last row inserted will never be
used.

Figure 3.16 shows the insertion of a key value of Moss. There is no space in which to store
this row on page 338, so a new page must be chained in. In this case SQL Server does not
shuffle rows from page 338 onto the new page but instead inserts only the new row on the
new page, as shown in Figure 3.17.
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Figure 3.16: Insertion at the end of the key range
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Figure 3.17: A page split that does not shuffle data
Note that an entry is added into the index page to point to the new key value on the new page.

The action of page splitting when a 50:50 split occurs is clearly going to give SQL Server
some work to do. The new page must be obtained and chained in, rows must be shuffled, and
entries in many cases will be inserted into a clustered index. Also, of course, new entries will
have to be added to the nonclustered indexes to point to the new row.

It would clearly be beneficial to minimize page splitting, but how can we achieve this? One
obvious way would be to not use clustered indexes, but the benefits they can bring to the
performance of some queries can often outweigh the overhead of page splitting.

Is there another way to minimize page splitting? Fortunately, there is. We can reserve space in
a clustered index or a nonclustered index when we create the index using a fillfactor. During
the creation of the index the index pages have free space reserved in them and, most
importantly in a clustered index, free space is reserved in the data pages.

This free space is only reserved during the index creation process. Once the index has been
created, the free space in the index and data pages can be used for newly inserted rows. The
size of the index will be larger if space is reserved in it, and in the case of a clustered index
the number of data pages in the table will also be greater, but this does mean that the point
when SQL Server needs to page split will be delayed.



When SQL Server starts to split pages, fragmentation is said to occur. If many rows are
inserted into a clustered index, such that page splits occur, many data pages will be chained
into the table and the table will become fragmented. This affects both insertion and scan
efficiency, and so we want to avoid it. We can tell if a table is becoming fragmented by using
the DBCC SHOWCONTIG statement, which will be described shortly.

3.6 A note about updates

Obviously, if an indexed column is updated to a new value, the index must also be updated. In
the case of a nonclustered index the index entry must change position since index keys are
held in key sequence order. In the case of a clustered index, the data row may also have to
change position, since the data rows are stored in key sequence order. But what happens to a
data row when there is no clustered index present on the table?

Usually the update is performed in-place, which means that the row does not move to another
page. Usually an update is logged as a single modification operation in the transaction log. In
the case of the table having an update trigger or being replicated, the update is logged as a
delete and insert operation. Even in this case the update will usually be an in-place update.

However, there comes a point where a variable-length column is updated to a size greater than
its original size and there is no free space available on the page to accommodate it. In this

case SQL Server 2000 will delete the row and insert it into a page that has free space. To
avoid the overhead of having to adjust index pointers in nonclustered indexes to the new page,
a forwarding pointer is left in the original location, which points to the new location. The
index pointers will continue to point to the original location. This does mean that a retrieval of
the row will incur an extra data page request for the forwarding pointer. If a subsequent
update moves the row again, the pointer is adjusted to the new location. If a subsequent
update means that the row can return to its original location, it will—and the forwarding
pointer will disappear.

To detect the number of forwarding pointers in a table the DBCC SHOWCONTIG statement,
which will be described shortly, may be used with the TABLERESULTS option.

Note that a table with a large number of forwarding pointers will experience performance
degradation, especially if groups of rows are scanned, due to the extra accesses required. To
tidy up the forwarding pointers the clustered index on the table can be rebuilt. If there is no
clustered index, if possible create a dummy one and then drop it. Alternatively, unload the
data into a file, truncate the table, and reload the data.

3.7 So how do you create indexes?

We have discussed the mechanics of indexes, and later we will discuss indexes with reference
to performance, but it is time that we looked at how you create them. Indexes can be created
via the following mechanisms:

e The Transact-SQL CREATE INDEX statement
e The SQL Enterprise Manager
e The Create Index Wizard



e Right mouse—clicking inside the Estimated Execution Plan tab in the Query Analyzer
and choosing Manage Indexes

e Choosing the Tools menu item in the Query Analyzer and selecting Manage Indexes

e The Index Tuning Wizard (we will discuss this later in the book)

If you don't like any of the above options, you can always use the SQL-DMO (Distributed
Management Objects) and the Index object to create an index!

Note Indexes are also created when a primary or unique key constraint is added to a table.
First, let us look at the Transact-SQL options, and then we will look at the graphical approach
provided by the SQL Enterprise Manager, Query Analyzer, and the Create Index Wizard. We
will also have a quick peak at how this may be done in the SQL-DMO.

3.7.1 The Transact-SQL CREATE INDEX statement

The Transact-SQL syntax is as follows:

CREATE [ UNIQUE ] [ CLUSTERED | NONCLUSTERED ] INDEX
index name

ON { table | view } ( column [ ASC | DESC ] [ ,...n ]
)
[ WITH < index option > [ ,...n] ]

[ ON filegroup ]

< index option > :: =
{ PAD INDEX |
FILLFACTOR = fillfactor |
IGNORE DUP KEY |
DROP EXISTING |
STATISTICS NORECOMPUTE |
SORT IN TEMPDB
}

The different options will now be described.

To create a clustered index in Transact-SQL the CLUSTERED keyword is used:

CREATE CLUSTERED INDEX CI AccountNo
ON accounts (account no)

The above example creates a clustered index on the account_no column of the Accounts table.
The next example creates a unique clustered index, as follows:

CREATE UNIQUE CLUSTERED INDEX CI AccountNo
ON accounts (account no)

The unique keyword ensures that only one row has a particular key value, in this case
account_no. In other words, the uniqueness of the key is enforced. Note that the table may or
may not already contain data. If it does, and if there are duplicate values, the above CREATE
INDEX statement will fail:

CREATE UNIQUE CLUSTERED INDEX CI AccountNo
ON accounts (account no)



Server: Msg 1505, Level 16, State 1, Line 1

CREATE UNIQUE INDEX terminated because a duplicate key
was found. Most significant primary key is '105000'.
The statement has been terminated.

Similarly, once the index has been successfully created, an attempt to insert or update a row
that would result in a duplicate key value will fail:

INSERT INTO accounts (account no, customer no, branch no,
balance, account notes)
VALUES (1916, 103424, 1012, 10765, 'A busy account')

Server: Msg 2601, Level 14, State 3, Line 1

Cannot insert duplicate key row in object 'accounts' with
unique index 'CI_AccountNo'.

The statement has been terminated.

This is fine, since we want the account no column to contain no duplicate values, since this is
the way we uniquely identify an account.

As mentioned previously, only one clustered index can be created on a table. This makes
sense, since data can only be physically sorted in one order. Any attempt to create a second
clustered index will fail:

CREATE CLUSTERED INDEX CI AccountBalance

ON accounts (balance)
Server: Msg 1902, Level 16, State 3, Line 1
Cannot create more than one clustered index on table
'accounts'. Drop the existing clustered index
'CI_AccountNo' before creating another.

To create a nonclustered index the CREATE INDEX statement is used, as it was for creating
the clustered index, only in this case the NONCLUSTERED keyword is specified:

CREATE NONCLUSTERED INDEX NCI_AccountBalance
ON accounts (balance)

If neither CLUSTERED nor NONCLUSTERED is specified, a nonclustered index is created.
The UNIQUE keyword has the same effect as it does for a clustered index. Hence, the
following CREATE INDEX statement defaults to a nonunique, nonclustered index:

CREATE INDEX NCI AccountBalance
ON accounts (balance)

Note The name of the index can be any name considered legal by SQL Server. I prefer to
prefix the name with CI_ or NCI _to signify a clustered or nonclustered index,
respectively. I also find it useful to then use meaningful text that indicates the column
name. This does, however, become unwieldy when you have an index that is comprised
of many columns, so some compromises will have to be made. No naming scheme is
ever perfect!

So far our examples have shown indexes that consist of only one column. It is not uncommon
to create an index that consists of more than one column. Such an index is known as a
composite index. An index can be created consisting of no greater than 16 columns, which, in



practical terms, is a limit few people are likely to hit. Also, the sum of the column sizes in the
index cannot be greater than 900 bytes. It is not a good idea to choose a composite key of 900
bytes in length, because very few index entries will be able to fit into an index page and so
many index pages will be used in the index. This will ultimately result in deep indexes
consisting of many index levels. Traversing the index may then require many disk I/Os. In
SQL Server 2000 it is, in fact, possible to create an index that contains columns defined with
variable-length data types, such as VARCHAR, where the sum of the maximum sizes appears
to exceed 900 bytes. However, if an attempt is made to insert a row so that the actual size of
the index key would exceed the 900-byte limit, an error is returned.

For example, suppose a table consists of the following structure:

CREATE TABLE account details

(
account no INT NOT NULL,
account notes VARCHAR(1000) NOT NULL

)

If we attempt to create a nonclustered index on the account notes column, SQL Server will
successfully create the index but will warn us that the index key is potentially too large:

CREATE NONCLUSTERED INDEX NCIiAccountDetails
ON account details (account notes)

Warning!. The maximum permissible key length is 900
bytes. The index 'NCI AccountDetails' has maximum length
of 1000 bytes. For some combination of large values, the
insert/update operation will fail.

If we then attempt to insert a short string into the table, there is no problem:

INSERT INTO account details VALUES (1000, 'This string is
less than 900"')

However, if we attempt to insert a row with a string value large than 900 bytes, we are not
allowed to do so:

INSERT INTO account details

VALUES (1001, 'This string is more than 900'+
REPLICATE ('*',900))
Server: Msg 1946, Level 16, State 4, Line 1
Operation failed. The index entry of length 928 bytes for
the index 'NCI AccountDetails' exceeds the maximum
permissible length of 900 bytes.

How do we specify an option to reserve space in index pages when an index is created?
Remember that in the case of a clustered index the data pages are considered to be the lowest
level of the index, whereas in the case of a nonclustered index the bottom level of the index is
considered to be the lowest level of the index pages. In either case the lowest level of index is
known as the leaf level.

The FILLFACTOR option is used to reserve space, and this option takes a value from 0 to
100. An index created with a FILLFACTOR of 100 will have its index pages completely
filled. This is useful if no data is to be entered into the table in the future.



An index created with a FILLFACTOR of 0 will have its leaf pages completely filled, but
other levels in the index will have enough space for a minimum of another index entry. An
index created with a FILLFACTOR of between 0 and 100 will have its leaf pages filled to the
FILLFACTOR percentage specified, and, again, other levels in the index will have enough
space for a minimum of another index entry.

The default FILLFACTOR value is 0, and this default value can be changed with the
sp_configure system stored procedure or via the Database Settings tab in the Server Properties
dialog box in the SQL Enterprise Manager. Table 3.1 shows the consequence of different
FILLFACTOR values. A FILLFACTOR value of 0 specifies that the leaf-level page of the
index should be completely filled, leaving no free space; however, the nonleaf pages should
reserve space for one extra index entry. A FILLFACTOR value of 100 percent specifies that
the leaf-level page of the index should be completely filled, leaving no free space. There
should also be no free space reserved in the index pages. A FILLFACTOR value of 1 percent
to 99 percent specifies that the leaf-level page of the index should be filled no more than the
FILLFACTOR value. The nonleaf pages should reserve space for one extra index entry. Note
that for nonunique clustered indexes, space is reserved for two index entries.

Table 3.1: The Effect of Different FILLFACTOR Values
FILLFACTOR Value % Nonleaf Page Leaf Page

0 one index entry completely full
1-99 one index entry < FILLFACTOR % full
100 completely full completely full

Care should be taken when choosing a FILLFACTOR, since its relevance will depend on the
way the application uses the table data. There is little point in reserving space throughout an
index if the row inserted always has a key greater than the current maximum key value. The
following example creates an index with a FILLFACTOR of 50 percent, meaning that each
data page (leaf page) will only be filled to 50 percent. Index pages at the other levels will have
room for one or two more index entries.

CREATE CLUSTERED INDEX CI AccountBalance ON accounts
(balance)
WITH FILLFACTOR =50

SQL Server will round up the number of rows placed on a page, so if the FILLFACTOR
value would allow 3.3 rows, then 4 rows are stored.

Note that over time, as rows are inserted into the table, the effectiveness of the FILLFACTOR
value will vanish, and a planned rebuilding of critical indexes at periodic intervals should be
considered if heavy inserts are made to the table. Because SQL Server merges index pages
with only one index entry to keep the index compact, the number of items on an index page is
never less than two, even if a low value of FILLFACTOR is specified.

Another option, PAD INDEX on the CREATE INDEX statement, is relevant to reserving
space. The PAD INDEX clause means that the FILLFACTOR setting should be applied to
the index pages as well as to the data pages in the index.



The IGNORE _DUP_KEY option is useful when a unique clustered or nonclustered index is
to be created on a table that might have rows with duplicate key values inserted. If the
IGNORE_DUP_KEY option is set, rows containing duplicate key values are discarded, but
the statement will succeed. However, if the IGNORE DUP KEY option is not set, the
statement as a whole will be aborted.

The DROP_EXISTING option can be a very useful performance optimization. Suppose we
have a scenario where we have a table on which we have built a clustered index and perhaps
two nonclustered indexes. As discussed earlier, if there is a clustered index present on a table,
then the pointers at the leaf level of any nonclustered indexes on that table will be the
clustered index key. Suppose we drop the clustered index from the table. The nonclustered
index leaf pages can no longer contain index entries that use the clustered index key as the
pointer value—there is no clustered index and therefore no clustered index key!

When the clustered index is dropped, SQL Server will rebuild all the nonclustered indexes on
that table so that their index leaf pages will now contain index entries that use the Row ID as
the pointer value. Remember, a Row ID is a Page ID (File ID plus page number) plus the
position of the row on the page. The important point here is that SQL Server will rebuild all
the nonclustered indexes on that table. This obviously can be a very time-consuming and
resource-intensive process. But this is only the half of it.

Suppose the reason we wished to drop the clustered index was because we wanted to rebuild
it. Perhaps we wanted to reorganize it so that page fragmentation was eliminated. Well, this
means that after dropping the clustered index we are now going to create it again. Guess
what's going to happen to all the nonclustered indexes on that table? You guessed! SQL
Server will rebuild all the nonclustered indexes on that table so that their index leaf pages will
now contain index entries that use the clustered index key as the pointer value.

This means that our clustered index reorganization has caused our nonclustered indexes to be
rebuilt twice. What's annoying is that their leaf-level pointers have ended up as they started
out anyway—clustered index key pointers. So what can we do to reduce the impact of
rebuilding a clustered index?

Luckily for us the CREATE INDEX statement allows us to specify the DROP_EXISTING
option. This allows us to issue a CREATE INDEX statement with the same name as an
existing index. Using this option when you wish to rebuild a clustered index will give you a
performance boost. The clustered index will be recreated on a new set of database pages, but,
because the clustered index key values remain the same, the nonclustered indexes on the table
do not have to be rebuilt. In fact, the recreation of the clustered index can make use of the fact
that the data is already sorted in key sequence order so this data does not have to be sorted.

The DROP_EXISTING option can also be used if the clustered index key definition changes.
Perhaps a new column is used. In this case the nonclustered index will have to be rebuilt—but
only once.

The DROP_EXISTING option can also be used for a nonclustered index, and there will be a
performance advantage over dropping and creating the nonclustered index. However, the real
benefit is with rebuilding clustered indexes. Using this option will definitely use fewer
resources than performing a DROP INDEX followed by a CREATE INDEX.



A CREATE INDEX using this option can also be used to rebuild the index that is created
when a primary key constraint is defined on a table. This was previously accomplished with
DBCC DBREINDEX. Comparing the resource use of both approaches, they seem identical—
so there is probably no need to change existing scripts on this basis alone.

The STATISTICS NORECOMPUTE option dictates that out-of-date index statistics are not
automatically recomputed. This is an option I have never had to use. I have found that
ensuring that index key distribution statistics are as up-to-date and accurate as possible is the
best approach. Index key distribution statistics are discussed in Chapter 4.

The ON FILEGROUP option allows the database administrator to create the index on a
filegroup different from the table itself. The use of filegroups was discussed in Chapter 2. The
idea is that by using multiple filegroups, disk I/O to the index and table can be spread across
separate disk drives for better performance. However, most database administrators typically
use a form of disk striping to spread disk I/O. Disk striping is discussed in Chapter 5.

Note Filegroups are also used to facilitate the backing up of large databases. However, if one
filegroup contains a table and a separate filegroup contains an index for that table, then
both filegroups must be backed up together.

Another index creation option that needs to be discussed is the column [ASC | DESC], which
is part of the CREATE INDEX statement. Using these options determines whether an
ascending or descending index is created. When an index is created, each column in the index
key can be flagged with ASC or DESC. This specifies whether the index column has its data
sorted in an ascending or descending manner. The default is ASC, which ensures that scripts
written to create indexes in earlier versions of SQL Server behave correctly.

Suppose we create an index on the Accounts table, as in the following example:

CREATE NONCLUSTERED INDEX NCI CustNoAccountNo
ON accounts (customer no ASC, account no DESC)

The data in the customer no key column will be held in ascending order, whereas the data in
the account no key column will be held in descending order. Why bother providing this
capability? After all, the doubly linked lists that chain the index pages in an index level
together allow SQL Server to rapidly move backward and forward along the sequence of
keys. This is true, but if the query requests data to be sorted in the ascending order of one
column and the descending order of another column, then just moving along the chain is not
going to provide the optimum performance. If, however, the key columns are actually held in
a sequence that matches the ORDER BY, then the chain can be followed in one direction and
this will provide the optimum performance, so no additional sorting will be required.

The following query will be fully supported by the NCI_CustNoAccountNo index without an
additional sort step:

SELECT customer no, account no FROM accounts
WHERE customer no BETWEEN 1000 AND 1500
ORDER BY customer no ASC, account no DESC

The following query will not be fully supported by the NCI_CustNoAccountNo index, and it
will need an additional sort step:



SELECT customer no, account no FROM accounts
WHERE customer no BETWEEN 1000 AND 1500
ORDER BY customer no ASC, account no ASC

A new metadata function named INDEXKEY PROPERTY reports whether an index column
is stored in ascending or descending order. The sp_helpindex system stored procedure has
also been enhanced to report the direction of index key columns.

Finally, the SORT IN_ TEMPDB option can be used to place the data from intermediate sort
runs used while creating the index into tempdb. This can result in a performance improvement
if tempdb is placed on another disk drive or RAID array. The default behavior, if this option is
not used, is to utilize space in the database in which the index is being created. This means
that the disk heads are moving back and forth between the data pages and the temporary sort
work area, which may degrade performance.

One aspect of index creation that can be seen from the CREATE INDEX syntax diagram is
that SQL Server 2000 can create indexes on views. This is a significant enhancement to the
product from a performance perspective and therefore is treated separately later in this
chapter.

So, we have looked at the CREATE INDEX statement and the options that can be chosen.
There are other ways in which we can create indexes and these are discussed in the following
sections.

3.7.2 The SQL Enterprise Manager

To create a new index in the SQL Enterprise Manager the following sequence of events can
be performed:

Expand the server in the Console Pane.

Expand the Databases folder.

Expand the database holding the table of interest.

Expand the Tables folder.

Right-click the table on which you wish to create an index.
Select All Tasks followed by Manage Indexes.

SRR e

The Manage Indexes window is displayed, which lists the indexes that are currently resident
on the table, whether or not they are clustered, and which columns constitute the index key.
This is shown in Figure 3.18.
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Figure 3.18: Manage Indexes window in the SQL Server Enterprise Manager

The New... button can be clicked in order to create an index, and this results in the Create
New Index window being displayed, as shown in Figure 3.19.
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Figure 3.19: Create New Index window in the SQL Server Enterprise Manager

The index can be named and the columns and index options chosen. From the Manage
Indexes window, it is also possible to delete and edit an index.



Another means of creating an index through the SQL Server Enterprise Manager is through an
alternate sequence of events, as follows:

1. Expand the server in the Console Pane.

2. Expand the Databases folder.

3. Expand the database holding the table of interest.

4. Expand the Tables folder.

5. Right-click the table on which you wish to create an index.

6. Select Design Table.

7. In the Design Table window click the Table and Index Properties button.
8. In the Properties window select the Indexes/Keys tab and click New.

9. Fill in the details as required to define the new index.

10. Click Close and save the table design.

The Indexes/Keys tab is shown in Figure 3.20.
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Figure 3.20: Index/Keys window in the SQL Server Enterprise Manager

Personally, I find this route to creating an index confusing. I much prefer the All
Tasks...Manage Indexes... approach.

3.7.3 The Query Analyzer

The Manage Indexes window, which can be accessed through the All Tasks... Manage
Indexes... route in the SQL Server Enterprise Manager, can also be accessed via the
Tools...Manage Indexes menu item in the Query Analyzer. Right mouse—clicking any icon



in the graphical query plan also displays a menu, which allows Manage Indexes to be
selected. Also, two Query Analyzer templates can be used to create an index in Transact-SQL.
There is a basic-syntax and a full-syntax template. Use Edit and Insert Template from the
Query Analyzer menu.

3.7.4 The Create Index wizard

This wizard leads you through a logical sequence of steps in order to create an index. After
the initial welcome screen you are invited to choose the database and table on which you wish
to create the index. The next screen allows you to select the columns that are to participate in
the index and whether their sort order is ascending or descending. Index options such as
whether the index is to be clustered or unique and the FILLFACTOR are specified on the
following screen. Finally, the last screen allows you to name the index and order the columns.

3.7.5 The SQL Distributed Management Framework (SQL-DMF)

The SQL Distributed Management Framework (SQL-DMF) is an integrated framework of
objects, services, and components that may be used to manage SQL Server. Within the SQL-
DMF resides SQL Distributed Management Objects (SQL-DMO). The SQL-DMO is a
collection of objects that may be used for SQL Server database management. Index
management can be performed through the SQL-DMO. Here is an example of Visual Basic
code, which uses the SQL-DMO to create an index:

Private Sub cmdCommandl Click()
On Error GoTo ErrorHandler

Dim oSQLServer As SQLDMO.SQLServer
Dim oTblCustomers As SQLDMO.Table
Dim oIdxCustomerNo As SQLDMO.Index

Dim bConnected As Boolean

Set oSQLServer = New SQLDMO.SQLServer
Set oIdxCustomerNo = New SQLDMO.Index
Set oTblCustomers = New SQLDMO.Table

bConnected = False
oSQLServer.LoginTimeout = 30

oSQLServer.Connect "KENENGO1", "sSaA", ""
bConnected = True

Set oTblCustomers =
oSQLServer.Databases ("BankingDB") .Tables ("Customers")

' Create a new Index object, then populate the object
' defining a unique, nonclustered index

oIdxCustomerNo.Name "NCI CustomerNo"
oIdxCustomerNo.Type SQLDMOIndex Unique
oIdxCustomerNo.IndexedColumns = "[customer no]"

' Create the index by adding the populated Index object
' to its containing collection.

oTblCustomers.Indexes.Add oIdxCustomerNo



oSQLServer.DisConnect

Set oSQLServer = Nothing

Set oTblCustomers = Nothing

Set oIdxCustomerNo = Nothing
Exit Sub

ErrorHandler:

MsgBox (Err.Description)
If bConnected = True Then

oSQLServer.DisConnect

Set oSQLServer = Nothing
Set oTblCustomers = Nothing

End If

End Sub

3.8 Dropping and renaming indexes

Both clustered and nonclustered indexes can be dropped with the DROP INDEX Transact-
SQL statement:

DROP INDEX accounts.CI AccountBalance

Note that the table name must also be specified. Indexes can also be dropped by using the
graphical interfaces. As discussed previously, if there is a clustered index present on the table,
then all the nonclustered indexes will use the clustered index key as a pointer in the leaf-level
index pages. Therefore, dropping a clustered index may be a slow, resource-intensive
operation, since all the nonclustered indexes will have to be rebuilt. On the other hand,
dropping a nonclustered index will be a relatively fast operation, since no other indexes on the
table will be affected.

It follows, therefore, that the order in which you drop indexes is important. Drop the
nonclustered indexes first, before you drop the clustered index if there is one present on the
table. Otherwise, you will waste time rebuilding the nonclustered indexes you are just about
to drop.

Indexes can be renamed by using the sp _rename system stored procedure:

EXEC sp_ rename 'accounts.CI AccountBalance',
CI AccountCurrentBalance

Note the use of the single quotes. Indexes may also be renamed by using the graphical
interfaces.

3.9 Displaying information about indexes



Information can be graphically displayed by using the SQL Server Enterprise Manager or the
Query Analyzer. There are also system stored procedures and functions that can be used to
display information about indexes. These methods are discussed in the following sections.

3.9.1 The SQL Server Enterprise Manager

We have previously discussed how indexes can be created using the SQL Server Enterprise
Manager All Tasks followed by Manage Indexes... route. The Manage Indexes window can
be used to display information about an index. Just choose the index and click Edit. The Edit
Existing window appears providing information about the chosen index. This is shown in

Figure 3.21.
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Figure 3.21: Edit Existing window in the SQL Server Enterprise Manager

Similarly, if the table is right-clicked and Design Table chosen as discussed previously, the
Table and Index Properties button can be clicked and the Indexes/Keys tab selected. A
Properties window will then provide information about the selected index. This is shown in

Figure 3.22.
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Figure 3.22: Index/Keys window in the SQL Server Enterprise Manager showing an existing
index

In the Query Analyzer, the Manage Indexes window can be displayed from the Tools menu
item.

The Display Estimated Execution Plan window also provides access to the Manage Indexes
window. When a query is present in the query pane, click the Display Estimated Execution
Plan button or type CTRL+L. This displays the estimated query execution plan in the form of
a number of icons. We will discuss these in the next chapter. For now we are only interested
in obtaining information about our indexes. Just right-click anywhere in the display and
choose Manage Indexes. The now-familiar Manage Indexes window will appear. I find the
ability to display this window from here extremely useful, because when I am tuning an index
strategy I am invariably using the Query Analyzer to display the estimated query execution
plan.

In the Query Analyzer, the Object Browser window can be displayed by clicking the Object
Browser button or pressing the F8 function key. A database hierarchy can be expanded so that
the list of the indexes on the table can be viewed. Right-clicking an index provides the ability
to script the index to various destinations. A section of the Object Browser is shown in Figure
3.23.
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3.9.2 The system stored procedure sp_helpindex

The indexes that are present on a table can be listed by using the sp_helpindex system stored
procedure:

EXEC sp helpindex accounts

index name index description index keys
NCI CustomerNo nonclustered located on PRIMARY customer no
NCI Balance nonclustered located on PRIMARY balance

3.9.3 The system table Sysindexes

The stored procedure sp helpindex looks in the system table sysindexes, which contains much
useful information about indexes. Sysindexes is present in every database. The definition of
the table is shown in Table 3.2.

Table 3.2: Sysindexes Table Definition
Column Datatype  Description

id int ID of table (for indid = 0 or 255)—else, the ID of table on which
the index is created.

status smallint Internal system-status information:



Column

first

indid
root
minlen
keycnt

groupid
dpages

reserved

used

rowcent

rowmodctr

Datatype

int

smallint
int

smallint
smallint

smallint

int

nt

int

bigint

int

Table 3.2: Sysindexes Table Definition
Description

1 = Terminate command if attempt to insert duplicate key

2 = Unique index

4 = Terminate command if attempt to insert duplicate row
16 = Clustered index

64 = Index allows duplicate rows

2048 = Index created to support PRIMARY KEY constraint

4096 = Index created to support UNIQUE constraint
If indid = 0 or indid = 1, pointer to first data page.

If indid > 1 or <250, pointer to first leaf page.

If indid = 255, pointer to first text or image page.

Index ID: 0 = Table, 1 = Clustered index, >1 = Nonclustered
Index, 255 = text or image data

If indid > 0 or < 250, pointer to root page.

If indid = 0 or indid = 255, pointer to last page.
Minimum length of a row

Number of key columns in the index

ID of the filegroup in which the object is created

If indid = 0 or indid = 1, dpages is the count of used data pages.
If indid > 1 or < 250, dpages is the count of index leaf pages.

If indid = 0 or indid = 1, the total of pages allocated for all
indexes and data pages.

If indid > 1 or < 250, the total pages allocated to this index.

If indid = 255, the total pages allocated for text or image data.

If indid = 0 or indid = 1, the total of pages used for all indexes
and data pages.

If indid > 1 or <250, the total pages used by this index.

If indid = 255, the total pages used for text or image data.

If indid > 0 and indid < 250, the number of rows in the table—
else this is set to 0.

Holds the total number of inserted, deleted, or updated rows



Table 3.2: Sysindexes Table Definition

Column Datatype  Description
since the last time statistics were updated for the table.

reserved3 tinyint Reserved

reserved4 tinyint Reserved

xmaxlen smallint Maximum size of a row

maxirow smallint Maximum size of a nonleaf index row

OrigFillFactor tinyint The original FILLFACTOR value used when the index was
created

StatVersion |tinyint Reserved

reserved?2 tinyint Reserved

FirsttAM binary(6) Page ID of first TAM page for object

impid smallint Reserved

lockflags smallint Used to constrain locking in index

pgmodctr int Reserved

keys varbinary  |List of the column IDs of the columns that make up the index

(1088) key

name sysname Name of table (for indid = 0 or 255)—else index name.

statblob image Distribution statistics

maxlen int Reserved

rows int If indid > 0 and indid < 250, the number of rows in the table—

else this is set to 0 (for backward compatibility).

The following example shows a sysindexes entry for the clustered index on the Accounts
table. The column headings have been edited and moved for clarity.

SELECT * FROM sysindexes WHERE name = 'CI cusno'
id status first indid root
117575457 164000 x400A00000100 1 0xAF0C00000100

minlen keycnt groupid dpages reserved used rowcnt rowmodctr
reserved3

424 2 1 2084 2159 2148 25000 0 0

reserved4 xmaxlen maxirow OrigFillFactor StatVersion reserved?2

0 441 34 60 0 0
FirstIAM impid lockflags pgmodctr keys
0xCF0900000100 0 0 0 0x380138000....

name statblob maxlen rows



CI Cusno 0x040000005A.. 8000 25000

The indid is 1, which shows that this is a clustered index. The number of data pages, dpages,
is 2,084. There are 2,159 pages reserved for all the indexes and data, of which 2,148 are used.
There are 25,000 rows.

The first page of the table is x400A00000100, the root page of the index is
0xAF0C00000100424, and the first TAM page is 0xCF0900000100. These can be decoded, as
described in Chapter 2. The original FILLFACTOR was 60 percent.

3.9.4 Using metadata functions to obtain information about indexes

There are a number of extremely useful functions that can be used to obtain information about
the properties of an index. Probably the most useful one is the INDEXPROPERTY function.

This function takes the following form:

INDEXPROPERTY (table ID, index, property)

The table ID holds the object ID of the table (remember that the ID of an object can be
obtained by using the object id function passing the objects's name).

The index contains the name of the index whose properties you are investigating.

The property is the property to return and can be one of the values shown in Table 3.3.

Table 3.3: Property Values for the INDEXPROPERTY Function
Value Description Value Returned

IndexDepth Depth of the index Number of levels
the index has

IndexFillFactor Index specifies its own fill factor. Fill factor used
when the index was
created or last

rebuilt.
IndexID Index ID of the index on the table or indexed Index ID
view
NULL = Invalid
input
IsAutoStatistics Index was generated by the auto create statistics |1 = True, 0 = False

option of sp_dboption.
NULL = Invalid
input

IsClustered Index is clustered. 1 = True, 0 = False

NULL = Invalid
input

IsFulltextKey Index is the full-text key for a table. 1 = True, 0 = False



Table 3.3: Property Values for the INDEXPROPERTY Function

Value Description Value Returned
NULL = Invalid
input

IsHypothetical Index is hypothetical and cannot be used 1 = True, 0 = False

directly as a data access path. Hypothetical
indexes hold column-level statistics. NULL = Invalid
input

IsPadIndex Index specifies space to leave open on each 1 = True, 0 = False

interior node.
NULL = Invalid

input
IsPageLockDisallowed Page locking is disallowed through 1 = disallowed, 0 =
sp_indexoption. allowed

NULL = Invalid

input
IsRowLockDisallowed Row locking is disallowed through 1 = disallowed, 0 =
sp_indexoption. allowed

NULL = Invalid
input

IsStatistics Index was created by the CREATE 1 = True, 0 = False
STATISTICS statement or by the auto create
statistics option sp_dboption. Statistics indexes NULL = Invalid

are used as a placeholder for column-level input
statistics.
IsUnique Index is unique. 1 = True, 0 = False

NULL = Invalid
input

An example of the INDEXPROPERTY function is as follows:

SELECT INDEXPROPERTY (OBJECT_ID ('accounts'),
'NCI Balance', 'IndexDepth')

There are other functions that can also be useful when displaying information about an index.
The INDEXKEY PROPERTY function returns information about an index key—for
example, whether a column in the key is sorted in ascending or descending order. Another
useful function is the OBJECTPROPERTY function. Some properties specified in this
function are concerned with indexing, such as whether a table has a clustered index or not.

3.9.5 The DBCC statement DBCC SHOWCONTIG

This DBCC statement is used to obtain information about an index or table that can be used to
investigate performance degradation. It is a very useful tool for performance analysis. Some



of the output is a little arcane and is not very useful, but that is more than made up for by the
fact that DBCC SHOWCONTIG outputs useful information concerning the level of
fragmentation that has occurred in a table—in other words, the level of page splitting. The
following DBCC SHOWCONTIG output was from the Accounts table after it had been
loaded with 12,500 rows with even values in the account no column and a clustered index
created on the account no column.

DBCC SHOWCONTIG scanning 'accounts' table...
Table: 'accounts' (709577566); index ID: 1, database ID: 7
TABLE level scan performed.

- Pages Scanned : 695

- Extents Scanned : 88

- Extent Switches : 87

- Avg. Pages per Extent : 7.9

- Scan Density [Best Count:Actual Count] : 98.86% [87:88]
- Logical Scan Fragmentation : 12.52%

- Extent Scan Fragmentation : 0.00%

- Avg. Bytes Free per Page : 380.2

- Avg. Page Density (full) : 95.30%

The first line of output, Pages Scanned, is the number of pages in the page chain; in our
example, it is the number of pages in the table (dpages in sysindexes). Another way of
looking at this item is that it has taken 695 pages to hold the 12,500 rows. Since a page will
hold about 18 rows by the time you have taken away the 96-byte page header and other
overhead from the 8-KB page size, this is in the right ballpark.

Extents Scanned is the number of extents read, which means that this is the number of extents
used to hold the data rows. Since we have 695 pages, the best we can hope for is (number of
pages/8 pages per extent) extents to hold the data. In our case 695/8 is 86.9, and, therefore, the
best we can hope for is to hold the data in 87 extents. The data is actually held in 88 extents,
slightly over our theoretical calculation but because of the initial allocation in mixed extents,
this is reasonable.

Extent Switches is the number of times the DBCC statement moved off an extent while it was
scanning the pages in the extent. We would expect an extent switch to happen after the whole
extent had been scanned and a new extent needed to be scanned next. Our extent switches
value is 87, which is expected, since the jump onto the first extent is not counted.

The Avg. Pages per Extent is merely the number of pages per extent, which is the (number of
pages/number of extents). In our example this is (695/88), which gives us 7.9.

Perhaps the most useful line of output is the Scan Density [Best Count: Actual Count]. This is
our measure of fragmentation. The Best Count is the ideal number of extents used to hold our
data pages if everything is contiguously linked, whereas the Actual Count is the actual
number of extents used to hold our data pages. The Scan Density is the ratio of these two
values expressed as a percentage. In other words ([Best Count/Actual Count] * 100). In our
example Scan Density is (87/88 * 100), giving us 98.86 percent, which is close enough to
perfect—we are pretty much utilizing our data pages and extents in the most effective way.

The Logical Scan Fragmentation and Extent Scan Fragmentation are not particularly useful,
but they do represent the noncontiguity of pages and extents in the index leaf level The Avg.
Bytes Free per Page and Avg. Page Density (full) are a measure of the average free bytes on



the pages in the chain and the percentage of fullness, respectively. These are values that are
affected by the FILLFACTOR used.

Next, 12,500 rows with odd values in the account no column were loaded. This results in
page splitting, since the even-numbered rows now have odd-numbered rows inserted between
them.

Output after loading 12,500 rows with odd values in the account no column:

DBCC SHOWCONTIG (accounts)

DBCC SHOWCONTIG scanning 'accounts' table...
Table: 'accounts' (709577566); index ID: 1, database ID: 7
TABLE level scan performed.

- Pages Scanned : 1389

- Extents Scanned : 176

- Extent Switches : 1388

- Avg. Pages per Extent : 7.9

- Scan Density [Best Count:Actual Count] : 12.53% [174:1389]
- Logical Scan Fragmentation : 50.04%

- Extent Scan Fragmentation : 1.14%

- Avg. Bytes Free per Page : 374.6

- Avg. Page Density (full) : 95.37%

After loading our second batch of 12,500 rows, we can see that the situation has deteriorated.
We have doubled the number of rows in the table and the Pages Scanned value is now 1,389,
which is double the number of pages scanned previously, 695. The number of extents used to
hold the data is now 176, which, again, is not far off double the number we have just seen,
which was 88. The most dramatic increase is in the number of extent switches performed,
which is now 1,388—about 16 times greater than the previous value. This gives us a Scan
Density of only 12.53 percent.

The bottom line is that there is much page fragmentation. Many pages have been inserted into
the original page chain and SQL Server would have to jump around a lot to scan this table.
Note also that the page fullness has not changed much. This is often not the case with real-
world applications. After page splitting, pages are often found to be between two-thirds and
three-quarters full. This is common when page splitting is occurring and is due to the fact that
50:50 splitting is taking place, as mentioned earlier in this chapter. An index rebuild,
preferably with an appropriate FILLFACTOR value, would be advisable here.

The full syntax of the DBCC SHOWCONTIG statement is as follows:

DBCC SHOWCONTIG

[
( { table name | table id | view name | view id }
, Index name | index id ] )

[

]

[ WITH

{ ALL INDEXES
| FAST [, ALL INDEXES]

| TABLERESULTS [, {ALL INDEXES}] [, {FAST | ALL LEVELS}]
}

]



IDs may be used instead of names, if preferred. The index name is optional and if omitted
DBCC SHOWCONTIG reports information for the table—unless there is a clustered index on
the table, in which case it reports information for that. So, if you want to report on a
nonclustered index, it should be named. The option ALL INDEXES outputs information on
all the indexes on the table. The FAST option specifies whether to perform a fast scan of the
index and output minimal information. A fast scan does not read the data on each page. The
TABLERESULTS option displays results as a rowset and also outputs extra information.
Some of this extra information can be very useful. For example, the number of rows
referenced by forwarding pointers (as discussed in Chapter 4) is output. By default,
information pertaining to a table's data pages (also by convention the clustered index leaf-
level pages) or the nonclustered index leaf-level index pages is output. If the ALL LEVELS
option is specified, information pertaining to all index levels is output.

3.10 Creating indexes on views

Unlike previous versions of SQL Server, in SQL Server 2000 indexes can be created on a
view, if its definition meets certain criteria. Unlike a nonindexed view, which does not
physically hold data, an indexed view has its result physically stored in the database. Any
modifications to the base data are reflected in the indexed view, so they are best created on
tables that are changed infrequently.

The first index created on a view that is to be indexed must be a unique clustered index. Other
indexes may then be created. For a view to be indexed it must satisfy a number of criteria.

One criterion is that it must be created with the SCHEMABINDING option. This option binds
the view to the schema of the underlying base tables. This means that any views or tables
participating in the view cannot be dropped, unless that view is dropped or changed so that it
no longer has schema binding. Also, ALTER TABLE statements on tables that participate in
views having schema binding will fail if these statements affect the view definition. Some, but
not all, of the other criteria are as follows:

e The view must only use base tables in its definition—no views.

e Any user-defined functions in the view must use the SCHEMABINDING option.

e The ANSI NULLS and QUOTED_IDENTIFIER options must have been set to ON
for the connection that defined the view.

e The ANSI NULLS option must have been set to ON for the connection that defined
the tables referenced by the view.

o The base tables referenced in the view must be in the same database and have the
same database owner.

o Base tables and user-defined functions referenced in the view must use a two-part
name. No other combination of names is allowed.

o All functions referenced by expressions in the view must be deterministic. This means
that for a given set of inputs, the same result is always returned.

e The select list of the SELECT statement in the view must not include the * notation—
the columns must be listed explicitly.

e Columns must not appear more than once, unless they appear the second time (or third
time, etc.) in a complex expression. The select_list Coll, Col2 is valid and so is Coll,
Col2, Coll+Col2 but not Coll, Col2, Coll.



Also not allowed are derived tables, rowset functions, the UNION operator,
subqueries, outer or self joins, the TOP clause, the ORDER BY clause, the DISTINCT
keyword, and COUNT(*); however, COUNT_BIG(*) is allowed.

The AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP aggregate functions. If
AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP are specified in queries
referencing the indexed view, the optimizer can often calculate the result if the view
select list contains SUM and COUNT _BIG. For example, AVG() can be calculated
from SUM() / COUNT _BIG().

A SUM function that references an expression that can be nullable is not allowed.
The full-text search predicates CONTAINS or FREETEXT are not allowed.

The view select_list cannot contain aggregate expressions unless a GROUP BY is
present.

If GROUP BY is present, the view select_list must contain a COUNT BIG(*)
expression, and the view definition cannot include HAVING, CUBE, or ROLLUP.
A column that results from an expression that either evaluates to a float value or uses
float expressions for its evaluation cannot be a key of an index in an indexed view.

We've not finished yet! Indexes created on the view have some restrictions also, as shown in
the following list. Most importantly, the first index that is created on the view must be
clustered and unique.

The user executing the CREATE INDEX statement must be the owner of the view.
The following options must be set to ON for the connection creating the index:
CONCAT _NULL YIELDS NULL, ANSI NULLS, ANSI PADDING,

ANSI WARNINGS, and ARITHABORT. The QUOTED_IDENTIFIERS and
NUMERIC ROUNDABORT options must be set to OFF.

Even if the CREATE INDEX statement does not reference them, the view cannot
include text, ntext, or image columns.

If the SELECT statement in the view definition specifies a GROUP BY clause, then
the key of the unique clustered index can reference only columns specified in the
GROUP BY clause.

An example view definition is as follows:

CREATE VIEW dbo.BranchTotalFunds
WITH SCHEMABINDING
AS
SELECT branch no,
COUNT BIG(*) AS AccountInstances,
SUM (balance) AS TotalBalance
FROM dbo.accounts
GROUP BY branch no

The following clustered index can now be created:

CREATE UNIQUE CLUSTERED INDEX CIV BranchTotalFunds

ON dbo.BranchTotalFunds (branch no)

Although the clustered index key will only contain the branch no column, being a clustered
index, the complete set of data rows with all the columns will be stored at the clustered index

leaf level in the database. Nonclustered indexes may also now be created on the indexed view
if desired.



The query optimizer automatically makes use of indexed views—they do not have to be
named explicitly—however, this is only true of the Enterprise Edition. We will discuss this
behavior in Chapter 4.

3.11 Creating indexes with computed columns

In SQL Server 2000 it is possible to utilize computed columns in an index definition. The
definition of the computed column must be deterministic. This means that for a given set of
inputs, the same result is always returned.

A computed column definition is deterministic if the following occur:

e All functions referenced in the definition are deterministic and precise.

e All columns referenced in the definition are from the same table as the computed
column.

e Multiple rows are not used to provide data for the computed column—for example,
using SUM().

FLOAT data types are not precise. Also, various connection options, such as ANSI NULL,
must be set to ON when the table is created, and other options must be set to ON for the
connection that creates the index.

As an example, the GETDATE() and @@IDENTITY functions are nondeterministic,
whereas SQUARE() and DATEDIFF() are deterministic.

Suppose we create the following table:

CREATE TABLE accounts
(

account no INT NOT NULL ,
customer no INT NOT NULL ,
branch no INT NOT NULL ,
balance MONEY NOT NULL ,
account notes CHAR (400) NOT NULL ,

taxed balance AS (balance * 0.9)
)

The computed column is deterministic, since, for a given input, it produces the same output.
Therefore, we can create an index using this column:

CREATE INDEX nci taxed balance ON accounts
(taxed balance)

A SELECT statement that specifies the column in its WHERE clause will use this index if it
makes sense to do so.

CREATE TABLE accounts
(

account no INT NOT NULL ,
customer no INT NOT NULL ,
branch no INT NOT NULL ,
balance MONEY NOT NULL ,

4

account notes CHAR (400) NOT NULL



account date AS (GETDATE ())
)

We could not, however, create an index on the account date column, since the computed
column is nondeterministic.

3.12 Using indexes to retrieve data

Now that we have seen how indexes are put together and how they behave when data is
retrieved and added, we can investigate how indexes are used to support good performance.

The choice of whether to use an index or not and if so which index is a decision that the query
optimizer makes. We will discuss the query optimizer in detail in Chapter 4, but we need to
look at the different mechanisms of using an index to understand what the query optimizer is
considering when it is in the process of making its decision.

If there are no indexes present on a table, there is only one mechanism by which the data can
be accessed and that is by means of a table scan. When a table scan is performed, each page in
the table is read starting at the first page and ending at the last page. To read each page, a page
request, SQL Server performs a logical read, also known as a logical I/O. If the page is not
found in the data cache, this results in a physical read from disk. Each time a query is run the
number of physical reads generated by the query is likely to change, because data will be
cached from the previous execution of the query. For this reason, when comparing the work
performed by different query optimizer strategies, it is better to compare the logical read
values.

The table scan is a useful baseline, since we know that we can always access our data in the
number of logical reads the table scan requires. Anything more is likely to be a poor strategy.
However, be aware that the query optimizer in SQL Server 2000 considers other factors, such
as CPU, when choosing a plan, and so the point at which the query optimizer chooses a table
scan in preference to an indexed access is not just the point at which the logical reads used by
an index plan exceed the pages in the table, as it was with SQL Server 6.5. With this in mind
let us consider different types of index access.

We will use simplified diagrams for our two index types, as shown in Figures 3.24 and 3.25.
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Figure 3.24: A simplified clustered index




= |
Leat Level |
{index Pages) L) |

[ata Level |F . | | [
Mata Pages) 1

Figure 3.25: A simialiﬁed nonclustered index

Figure 3.24 shows a simplified clustered index, and Figure 3.25 shows a simplified
nonclustered index. Note that, as is commonly found, the clustered index contains one less
level than the nonclustered index.

We will use a number of scenarios. First of all, we will use a scenario where we request a
single row from the Accounts table using a clustered index on the account no column and
then a nonclustered index on the account_no column.

Our second scenario will perform a range retrieval from the Accounts table with the same
indexing strategy.

Our third scenario will perform an access to the Accounts table that can be satisfied
completely by the nonclustered index key columns.

Our fourth scenario will revisit the above scenarios; however, there will still be a nonclustered
index on the account_no column of the Accounts table, but we will also add a clustered index
on the customer no column of the Accounts table.

Our fifth scenario will involve the use of multiple nonclustered indexes on our Accounts
table.

3.12.1 Retrieving a single row

This is sometimes called a direct key lookup. We are attempting to retrieve a single row as
opposed to a range of rows. Often this is a result of using the equality operator (=) on a
primary key, for example:

SELECT balance WHERE account no = 4000

In the case of the clustered index SQL Server will first obtain the page number of the root
page from the sysindexes table. In this root page there will be a number of key values, and
SQL Server will look for the highest key value that is not greater than the key we wish to
retrieve.

Note Remember that with both clustered indexes and nonclustered indexes, the index entries
in the index pages are always held in key sequence at a given index level. Refer to
Figures 3.1 and 3.3 to clarify this point.



As we have already seen, in a clustered index an index entry consists of the index key plus a
pointer, which is a page number (ignoring the fileID), so the index key retrieved in the root
page will point to an intermediate index page.

Again, SQL Server will look for the highest key value that is not greater than the key we wish
to retrieve. In our diagram, the key found will now contain a page pointer to a data page, and
this page will be retrieved. The data page is now scanned for a row containing the key we
wish to retrieve. The rows in the data page in a clustered index are in key sequence, so the
row is either found and returned or SQL Server will return a message stating "(0 row(s)
affected)." This is shown in Figure 3.26.
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Figure 3.26: A direct key lookup in a clustered index

In the case of a nonclustered index, the traversal of the index is performed in a similar
manner. However, once the leaf level is reached the key value of the key we wish to retrieve
is found, and this leaf-level index entry will contain the Row ID of the data row, so SQL
Server will go directly to it in the appropriate data page. (See Figure 3.27.)
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Figure 3.27: A direct key lookup in a nonclustered index

The nonclustered index has taken one more logical read. Is this important? Taken on its own
probably not; however, if this is a query we are trying to optimize for an online transaction
processing (OLTP) system with a large user population, it might just influence our design. On



the whole though, the difference between using a clustered index or a nonclustered index for
single row retrieval is slim.

3.12.2 Retrieving a range of rows

We shall now attempt to retrieve a range of rows, as opposed to a single row. Often this is a
result of using operators such as BETWEEN, <, >, and LIKE—for example:

SELECT balance WHERE account no BETWEEN 4001 AND 4500

In the case of the clustered index SQL Server will first obtain the page number of the root
page from the sysindexes table. In this root page there will be a number of key values, and
SQL Server will look for the highest key value that is not greater than the lowest key we wish
to retrieve.

The page pointer will be followed to the intermediate index page.

Again, SQL Server will look for the highest key value that is not greater than the lowest key
we wish to retrieve. In Figure 3.28, the key found will now contain a page pointer to a data
page, and this page will be retrieved. The data page is now scanned for a row containing the
lowest key we wish to retrieve. The row is retrieved and so is the next row and so on until the
key value of a retrieved row is found to be higher than the range we require.
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Figure 3.28: A range retrieval in a clustered index

This is shown in Figure 3.28 with the query returning three rows. Note that SQL Server is
directed to the data page that contains the lowest key value in the range. Once there, SQL
Server needs only to retrieve the rows sequentially until the range is exhausted. SQL Server
can do this because the clustered index has ensured that the rows are in key sequence order.

In the case of a nonclustered index the traversal of the index is performed in a similar fashion.
However, once the leaf level is reached the key value of the key we wish to retrieve is found,
and this leaf-level index entry will contain the Row ID of the data row, so SQL Server will go
directly to it in the appropriate data page. Now the leaf level of the nonclustered index is in
key sequence order but the data is not. What this means is that the key values in the range are
found next to one another in the index leaf pages, but it is highly unlikely that the data rows



will be found next to one another in the data pages. In Figure 3.29 the query has returned
three rows. The leaf level of the nonclustered index contains the three index entries next to
one another, but the data rows are on different data pages.
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Figure 3.29: A range retrieval in a nonclustered index

This is a very important point and is a fundamental difference between the behavior of a
clustered index and a nonclustered index with range retrievals. In our example the clustered
index has required less logical reads to retrieve the data than the nonclustered index because
in the clustered index the data rows are adjacent.

We have only retrieved three data rows in our example, but suppose we had retrieved 180 data
rows. We can hold 18 rows from the Accounts table in one page, so the clustered index could
theoretically retrieve the 180 data rows with ten logical reads to the data pages. The
nonclustered index will take 180 logical reads to the data pages, which could equate to 180
physical reads if the data rows were all on their own separate data pages and none were found
in the data cache (more on data caching in Chapter 5).

Suppose one data page happened to hold ten of the rows that satisfied the range. The
nonclustered index would have ten pointers addressing that page and would still generate ten
logical reads to it.

If the query optimizer decided that the number of logical reads needed to traverse the
nonclustered index, scan the relevant leaf-level pages, and retrieve the data was greater than
the number of pages in the table, a table scan would be performed—assuming that other
factors such as CPU had been taken into consideration.

3.12.3 Covered queries

The leaf level of a clustered index contains the data rows, whereas the leaf level of a
nonclustered index contains only the key and a pointer; as long as the key is only a small
portion of the total row we can see that a database page will hold more key values than
complete data rows. That is, an index page in the database can hold more index entries than a
data page in the database can hold data rows.



We can use this fact to provide fast access for certain queries using a nonclustered index.
Suppose we have created a composite index—that is, an index that consists of more than one
column. An example of this might be the following:

CREATE INDEX NCI AccountNoBalance
ON accounts (account no, balance)

Now, suppose we execute the following query:

SELECT balance FROM accounts
WHERE account no BETWEEN 4001 AND 4500

The query optimizer will realize that this is a covered query and that the index named
NCI_AccountNoBalance is a covering index. This means that SQL Server does not have to go
to the data level to satisfy the query. It only needs to go down as far as the leaf level of the
nonclustered index, as shown in Figure 3.30.
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Figure 3.30: A covering index

This is very efficient. In reality, there are 500 rows satisfying the query, but SQL Server only
used four logical reads to satisfy the query. Although clustered indexes are often more
efficient than their nonclustered cousins, when a nonclustered index is used as a covering
index it is normally more efficient than an equivalent clustered index. As with a table scan,
scanning the leaf level of an index activates the read ahead capability and a parallel data scan
is initiated.

3.12.4 Retrieving a single row with a clustered index on the table

The important point to note here is that the nonclustered index on the Accounts table now has
its leaf-level index entries containing the clustered index key as a pointer, not the Row ID.
This was discussed earlier in the chapter. This means that access to data rows via the
nonclustered index will take a route from the nonclustered index leaf-level pointer to the data
rows via the clustered index. Let us look at our query again:

SELECT balance WHERE account no = 4000

SQL Server will first obtain the page number of the root page of the nonclustered index on
account no from the sysindexes table. In this root page there will be a number of key values,



and SQL Server will look for the highest key value that is not greater than the key we wish to
retrieve. As before, the index key retrieved in the root page will point to an intermediate index

page.

Again, SQL Server will look for the highest key value that is not greater than the key we wish
to retrieve. Having located that, the next-level index page will be retrieved, which will be the
leaf-level index page. The leaf-level index entry for account number 4,000 will contain the
clustered index key, which will be a customer number.

The root index page of the clustered index will now be retrieved. Using the customer number
value to traverse the clustered index, the data row will be retrieved in exactly the same way as
any single row retrieval from a clustered index. This is shown in Figure 3.31.

from sptindeiss
Clustersd
4 a et

Nonchsstored [ |
Index 1

Laf Lirval [ -| |
(i x Pages) | L

Duts Lavel | ﬂ l - ]
{Daka Pagesi | | | |

Figure 3.31: A nonclustered index with a clustered index

How does this retrieval strategy compare with our single row retrieval described earlier using
a Row ID? Clearly it is less efficient. Instead of following the index pointer directly to the
data, we now have to take a trip through the clustered index as well. In reality this is unlikely
to be too much of an overhead. A clustered index is a compact index with typically few levels,
so we are adding an overhead of a small number of page requests. For a single row retrieval
this is not likely to be significant.

3.12.5 Retrieving a range of rows with a clustered index on the table

Again, the basic index retrieval strategy is similar to the range retrieval with a nonclustered
index, described earlier. In this case, however, instead of requesting a data page containing
the row for each leaf-level index entry found in range, the clustered index will be accessed to
fetch each of the rows in the range. In other words, instead of requesting 180 data pages to
fetch our 180 rows, as before, we are now accessing the clustered index 180 times. This is not
efficient at all. Again, range retrieval via a nonclustered index is not efficient. Once more than
a few rows are returned by the range retrieval, a table scan is likely to be performed by the
query optimizer.

3.12.6 Covered queries with a clustered index on the table

This is an interesting scenario. Suppose we wish to execute the following query:



SELECT customer no FROM accounts
WHERE account no BETWEEN 4001 AND 4500

We will assume that we have a nonclustered index on the account no column of the Accounts
table and a clustered index on the customer no column of the Accounts table as well.

At first glance, this query does not appear to be covered by the nonclustered index. It is a
single column index on account no. However, we know that the leaf-level pointer is the
clustered index key, so the leaf-level index entry contains both the account no column and the
customer_no column. Therefore, the query can indeed be satisfied by the nonclustered index
without the data rows being fetched, and the query is, in fact, covered.

The fact that the clustered index key is part of the index entry in a nonclustered index can
result in the query optimizer choosing a very efficient strategy.

3.12.7 Retrieving a range of rows with multiple nonclustered indexes on the
table

Suppose we wished to execute the following query:

SELECT * FROM accounts

WHERE

balance BETWEEN 100 AND 200

AND

customer no BETWEEN 1000 AND 1200

If there are no appropriate indexes on the table, SQL Server would perform a table scan. If
there is a nonclustered index present on the balance column, then the query optimizer might
choose to use that index if the number of rows returned was not too large. If there is a
nonclustered index present on the customer no column, then the query optimizer might
choose to use that index if the number of rows returned is not too large.

If one of the indexes is present and is chosen, then SQL Server would process the range
retrieval by processing the appropriate range in index key values in the leaf level of the
nonclustered index and issuing a data page request for each pointer (we'll assume there is no
clustered index on the table, so we are dealing with Row IDs). When each data row is fetched,
the remaining criteria would be applied to the data row. We say that it is filtered.

One problem with this technique is that it can be wasteful. Suppose we have a nonclustered
index present on the balance column alone and that the query optimizer chooses that index to
perform the previous query. The index may have 100 leaf-level index key values satisfying
the balance range, and 100 data page requests (logical reads) will be performed. SQL Server
will then apply the customer number range filter and could eliminate most of the data rows
from the result set. We have used the nonclustered index to fetch a set of rows, most of which
are ultimately discarded. Fetching data pages is a relatively expensive operation.

Now suppose we create a second nonclustered index on the customer no column. The query
optimizer can often make use of both of these indexes in the plan. The result of the query is
the set intersection of the set of accounts that have a balance between 100 and 200 and the set
of accounts that have a customer number between 1,000 and 1,200. This is shown in Figure
3.32.
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Figure 3.32: Index intersection

From an indexing perspective we can think of this as the set intersection of the valid set of
Row IDs from the nonclustered index on balance and the valid set of Row IDs from the
nonclustered index on customer no. As Figure 3.32 shows, the sets of Row IDs may overlap a
little, overlap greatly, or not overlap at all. In the latter case, this means that no rows satisfy
both criteria. The query optimizer can perform this set intersection in memory (typically) and
so find the set of Row IDs that point to data rows satisfying both query conditions before the
data pages have been accessed. This will often avoid having many data page requests
performed needlessly. How does SQL Server perform the set intersection operation on the
Row IDs? It uses a hashing algorithm, which we will discuss in Chapter 4. In Chapter 4 we
will also discuss a query optimizer plan, which utilizes index intersection.

So, typically how much benefit can this use of multiple indexes provide? This depends on a
number of considerations, but the main one concerns the size of the reduction in the data page
requests. Remember: If there are too many, the query optimizer will probably decide a table
scan is a more efficient means of querying the data.

If we look at Figure 3.32, we can see that the intersection of the two sets of Row IDs in the
second case results in a set that contains most of the Row IDs. In this case the number of data
page requests will not be reduced greatly by the use of both indexes.

The intersection of the two sets of Row IDs in the first case results in a set that contains few
of the Row IDs. In this case the number of data page requests will be reduced by the use of
both indexes and this is a win.

In the third case the two sets of Row IDs do not intersect. This results in a set that contains no
Row IDs. In this case the number of data page requests will be reduced to zero by the use of
both indexes in the query plan, since clearly no rows satisty the query. This is a big win.



We have just looked at a variety of scenarios using clustered and nonclustered indexes. In
Chapter 4 we will look more closely at the query optimizer itself and how these fundamental
scenarios are used.

3.13 Choosing indexes

The choice of indexes can dramatically affect performance and can mean the difference
between data being retrieved in seconds, with few disk I/Os or minutes, even hours, with
many disk I/Os. Choosing the optimum number of indexes to support the critical queries is
therefore an extremely important task.

3.13.1 Why not create many indexes?

If queries can be assisted by indexes, why not create lots of indexes on every table?
Unfortunately, as in so many areas of database technology, there are swings and roundabouts
concerning the use of indexes. On one hand, indexes can speed up access to data, but, on the
other hand, they can slow down table insertions, updates, and deletions. This is because SQL
Server has more work to do maintaining all the indexes to ensure that they always truly reflect
the current data in the table. Indexes also take up disk space.

Clearly, if disk space is plentiful and the database is read only, there are good reasons to
create many indexes. In reality most databases experience a mixture of read and write activity,
so the correct choice of indexes is critical to good performance. The choice of appropriate
indexes should be a product of good upfront design and transaction analysis.

We have already seen the effect that inserts can have on a clustered index. If the index key is
not an increasing key value—that is, the newly inserted key is not always higher than existing
key values—data rows will be inserted throughout the page chain. This will cause page
splitting to occur.

Either way, row insertion means that SQL Server must perform work to maintain the clustered
index. If there are also nonclustered indexes on the table, which is usually the case, each
nonclustered index must also be maintained when row insertions occur. Every nonclustered
index must accommodate a new index entry, which may cause page splitting to occur in the
index pages.

What about row deletion? In a clustered index a row may be deleted from a data page, and, if
there is no index entry pointing to it because it is not the lowest key value in the page, little
maintenance activity need be performed. In the case of nonclustered indexes there will always
be maintenance activity if a row is deleted. Every nonclustered index must remove the index
entry. If this leaves a single row in an index page, SQL Server will merge the index page with
another in order to keep the index compact. Again, this means work for SQL Server.

The behavior of updates was discussed earlier. It is possible that an update to a row can result
in the row being deleted and then reinserted, which has the overhead of deletion and insertion.

The bottom line is that too many indexes on a table can be disastrous for the performance of
transactions that write to the table. How many indexes should there be on a table? There is no
correct answer, but for a volatile table I start to worry if someone wants to put more than three



on it. That's not to say that it will be a problem. I'm just saying I worry, which means I don't
leave things to chance—I test them!

3.13.2 Online transaction processing versus decision support

Online transaction processing (OLTP) systems have characteristics that are different from
decision support systems (DSSs), and you should have a good appreciation of where your
application fits into this spectrum.

OLTP systems tend to involve a high frequency of short, predefined transactions that affect
small amounts of data. More often than not, OLTP systems change data by insertion, update,
and deletion. OLTP systems frequently support large user populations and provide guaranteed
response times in the subsecond range.

DSS systems tend to be read only. They tend to involve a low frequency of long, complex, ad
hoc queries that affect large amounts of data. Usually DSS systems do not support large user
populations, and the response time of queries may be measured in minutes or even hours.
Unlike OLTP systems, DSS systems are often not mission critical. This is shown in Figure
3.33.
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Figure 3.33: The OLTP DSS spectrum

Examples of OLTP systems are sales order entry systems and travel booking systems;
examples of DSS systems might be anything from MIS reporting systems to large data
warehousing systems.

Given the differences in the two application types it is clear that the indexing strategies are
going to be different. In the case of OLTP there are likely to be high transaction rates
involving transactions that change data. Having too many indexes will adversely affect the
performance of OLTP systems, so the designer should limit the number of indexes to those
that are really necessary. In the case of DSS the system is likely to be predominantly read
only, and therefore the designer can use as many indexes as are needed to support the query
mix.

Unlike OLTP transactions, DSS queries are ad-hoc by nature, and the designer will often be
unable to perform much upfront transaction analysis in order to arrive at a fixed indexing
strategy; therefore, using a good mix of indexes is frequently necessary.

3.13.3 Choosing sensible index columns

When the query optimizer is investigating different access strategies, it will cost each strategy
to determine the number of logical reads the strategy will use. This will be an estimate, but,
depending on the choice of columns in an index, the query optimizer might decide very
quickly that an index is not worth bothering with.



When we are choosing index columns, we should be looking for a combination of columns
that support our queries, as well as the number of duplicate values in the index column or
columns. Suppose we were to index a column that could contain only the code M (male) and
F (female). Would this be a good column to index? It would not be a good column to index,
because probably half the rows would contain M and half would contain F. We can say that
the following query is not very selective:

SELECT * FROM clients WHERE gender = 'F'

If there is a nonclustered index on gender, it is highly unlikely that the query optimizer would
use it.

Another example would be the state column in a table holding client information. If we
executed the following query on a 100,000-row table, how many rows would be returned?

SELECT * FROM clients WHERE state = 'CA'

If our company is based in San Francisco, we might expect that most of our clients were in
California, and therefore 90 percent of the rows in the table might be returned. However, if
our company is based in Ulan Bator, we might expect that few of our clients were in
California, and therefore 5 percent of the rows in the table might be returned.

We can define selectivity as the percentage of the rows returned. For example:

selectivity = (the number of rows returned / the count of
rows in the table) * 100

If 5,000 of the rows in our 100,000-row table were returned, the selectivity of our query
would be:

selectivity = (5000 / 100000) * 100 = 5%

I£ 90,000 of the rows in our 100,000-row table were returned, the selectivity of our query
would be:

selectivity = (90000 / 100000) * 100 = 90%

The more selective a query the fewer rows returned and the more likely that an index will be
chosen by the query optimizer. In the example where 90 percent of the rows in the table are
returned, the query optimizer would probably choose a table scan in preference to a
nonclustered index on the state column. In the example where 5 percent of the rows in the
table are returned, the query optimizer would probably choose to use a nonclustered index on
the state column.

Note The terminology here can be quite confusing. If a query is highly selective, few rows are
returned, but the selectivity will be a low percentage value. If a query is not highly
selective, many rows are returned, but the selectivity will be a high percentage value.

How does the query optimizer know that 5 percent or 90 percent of the rows in a table will be
returned by a query? We shall see later that each index usually has key distribution statistics
to help the query optimizer estimate the number of rows returned.



Another value associated with selectivity is density. The density is the average fraction of
duplicate index key values in the index. We can easily work out the density by finding the
reciprocal of the count of unique values in the index key. Suppose in our example we had
clients in 40 states; then the index density would be 1/40 = 0.025.

Once the index density is known, by multiplying the total count of rows in the table by it, we
can obtain the likely number of rows hit by specifying a given value, in our example:

row hits = 100000 * 0.025 = 2500

This is obviously an approximation, since it does not take into account the fact that we might
have many or few column values of CA, so index density is only used when key distribution
statistics cannot be.

Note Again, these terms can be confusing. A high selectivity refers to few duplicates, but a
high density refers to many duplicates.

SQL Server holds multiple index densities for a composite index, and we can picture the fact
that adding more columns to an index is likely to increase the number of unique values in the
index key.

Suppose, in our example, that the index is not based on the state column alone but is based on
the state and city columns. Whereas previously 10,000 clients may have been located in
California, only ten may be located in Oakland. The selectivity of a query specifying both the
state and city columns will be higher than the selectivity of a query specifying only the state
column.

SQL Server will hold the index densities for the state column and the state and city columns
combined—that is, two density values. The query optimizer can access these values when
working out its strategy.

How can we easily find information about the density of an index key? DBCC comes to the
rescue with the DBCC SHOW_STATISTICS statement:

DBCC SHOW STATISTICS (accounts, 'NCI_ BranchNoCustNo')

Statistics for INDEX 'NCI BranchNoCustNo'.

Updated Rows Rows Sampled Steps Density Average
key length

Feb 29 2000 11:58AM 10000 10000 295 0.0

11.999647

All density Columns

9.9999998E-3 branch no
1.9999999E-4 branch no, customer no

Statistics for INDEX 'NCI BranchNoCustNo'.
Updated Rows Rows Sampled Steps Density Average
key length



Oct 19 2000 9:31PM 25000 25000 100 0.0 8.0

All density Average Length Columns
9.9999998E-3

4 branch no
7.9999998E-5 8.

branch no, customer no

RANGE HI KEY RANGE ROWS EQ ROWS DISTINCT RANGE ROWS AVG RANGE ROWS

1000 0.0 250.0 0 0.0
1001 0.0 250.0 0 0.0
1002 0.0 250.0 0 0.0
1003 0.0 250.0 0 0.0
1004 0.0 250.0 0 0.0
1005 0.0 250.0 0 0.0
1006 0.0 250.0 0 0.0

This DBCC statement displays information about the key distribution statistics. Most of this
information will be discussed with respect to the query optimizer later in the book. However,
there is some information, referred to as All Density, which is the index density we have been
discussing. Our index is a composite index of two columns, branch no and customer no. The
branch no column has a density value of 9.9999998E-3—that is, approximately 0.01. This is
representative of the fact that we have 100 unique branch no values (density = 1/100).

The density of both columns combined is very low (1.9999999E-4 or 0.0002). Suppose there
are 10,000 rows in the Accounts table. A query containing the following:

WHERE branch no = 1000

would return (10,000 * .01 = 100) rows, whereas a query containing:

WHERE branch no = 1000 AND customer no = 34667
would return (10,000 * 0.0002 = 2) rows.

Let us have a look at another example to emphasize a point. Let us assume that we have a
nonclustered index on the balance column in the Accounts table. Here is a fragment of the
DBCC SHOW_STATISTICS output:

DBCC SHOW_ STATISTICS (accounts, NCI Balance)

Statistics for INDEX 'NCI Balance'.

Updated Rows Rows Sampled Steps Density Average
key length

Oct 19 2000 9:46PM 25000 25000 106 4.0426468E-5 12.0
All density Average Length Columns

4.0471085E-5 8.0 balance

3.9999999E-5 12.0 balance, customer no



If we look at the All Density information, we can see that statistics are displayed not only for
the balance column but also for the balance, customer no combination. Why is this? This is a
single column index containing only the balance column. This is because the database
administrator has just created a clustered index on the Accounts table on the customer no
column.

Therefore, all nonclustered indexes use this clustered index key as the pointer at the index leaf
level. Since the leaf-level index entry for our NCI_Balance index is then effectively balance,
customer_no, SQL Server can keep meaningful index density information using both
columns. Note that in our previous example the index NCI_BranchNoCustNo would be
holding the customer no column redundantly if there was a clustered index present on the
Accounts table on the customer no column.

This raises an interesting point. If a clustered index is dropped from a table, we know that the
nonclustered indexes will be rebuilt so that their leaf-level pointers become Row IDs. This
means that they no longer contain the clustered index key, which previously made the
nonclustered indexes effectively composite indexes. Therefore, be prepared for some query
optimizer strategy changes if you change a clustered index into a nonclustered index at some
point.

3.13.4 Choosing a clustered index or a nonclustered index

As we have seen, a table can only have one clustered index, so it is important that we use it
carefully—it's our ace and we want to play it at the right time. So when is a clustered index
useful?

Consider using a clustered index when the following occur:

o The physical ordering supports the range retrievals of important queries, or equality
returns many duplicates.

e The clustered index key is used in the ORDER BY clause or GROUP BY clause of
critical queries.

e The clustered index key is used in important joins to relate the tables—that is, it
supports the foreign key.

e The clustered index columns are not changed regularly.

However, remember that there is a downside to using a clustered index. Every nonclustered
index leaf-level pointer will become the clustered index key. If the clustered index is large,
this may significantly impact the size and efficiency of the nonclustered indexes on the table.
Also, creating a clustered index on a large table will require a large amount of free space in
the database to accommodate the mechanics of the clustered index creation algorithm. A 1-
GB table will require free space equal to 1-GB plus at least 0.2 GB during the creation phase.

Consider using a nonclustered index when the following occur:

e Once or more rows will be retrieved—that is, the query is highly selective.

e The nonclustered index key is used in the ORDER BY clause or GROUP BY clause of
critical queries.

e The nonclustered index key is used in important joins to relate the tables.

e A covered query is required.



e Multiple indexes can be used for index intersection.

Also consider that many applications will require the selection of a row by its primary key.
This is a single row selection and therefore would normally benefit from the creation of an
index containing the same columns as the primary key. Since it is less common to request
ranges of primary keys, a nonclustered index is probably the best option.

There are occasions when neither a clustered index nor a nonclustered index should be used.
If the table is small the query optimizer will probably choose a table scan anyway, and if the
index has a low selectivity, the query optimizer might ignore it.

Creating an index in these instances just increases disk space use and maintenance overhead.

The choice of index and index columns is often a compromise, in my experience, regardless
of the database product. This choice is perhaps the most critical one the database designer
must face, since incorrect indexes will result in potentially greater disk I/0O, CPU, locking
contention, and a lower caching efficiency. A piece of good news, though. As we shall see
later in this book, SQL Server possesses an Index Tuning Wizard, which can assist us when
designing our indexing strategy.

Chapter 4: The Query Optimizer

4.1 Introduction

When we execute a query, either by typing in a Transact-SQL statement or by using a tool
such as Microsoft Access, it is highly likely we will require that rows be read from one or
more database tables. Suppose we require that SQL Server performs a join of two tables: table
A containing a dozen rows and table B containing a million rows. How should SQL Server
access the required data in the most efficient manner? Should it access table A looking for
rows that meet the selection criteria and then read matching rows from table B, or should it
access table B first? Should it use indexes, if any are present, or perform a table scan? If
indexes are present and there is a choice of index, which one should SQL Server choose?

The good news is that SQL Server contains a component known as the query optimizer,
which will automatically take a query passed to it and attempt to execute the query in the most
efficient way. The bad news is that it is not magic, and it does not always come up with the
best solution. A database administrator should be aware of the factors that govern query
optimization, what pitfalls there are, and how the query optimizer can be assisted in its job.
Database administrators who know their data well can often influence the optimizer with the
judicious use of indexes to choose the most efficient solution.

What do we mean by efficient in the context of the query optimizer? Basically, the query
optimizer is looking to minimize the number of logical reads required to fetch the required
data. The query optimizer is the SQL Server AutoRoute Express, choosing the best route to
the data. Unfortunately, the query optimizer doesn't show you the golf courses on the way!

The query optimizer's main task, therefore, is to minimize the work required to execute a
query, whether it is a query that retrieves data from a single table or a query that retrieves data
from multiple tables participating in a join.



Note that, although we have referred only to queries, the query optimization process is
necessary for SELECT, INSERT, UPDATE, and DELETE Transact-SQL statements, since
the UPDATE and DELETE Transact-SQL statements will often contain a WHERE clause and
the INSERT statement may contain a SELECT clause.

4.2 When is the query optimized?

When a query is submitted to SQL Server, various phases of processing occur. First of all, the
query is parsed—that is, it is syntax checked and converted into a parsed query tree that the
standardization phase can understand. The standardization phase takes the parsed query tree
and processes it to remove redundant syntax and to flatten subqueries. This phase essentially
prepares the parsed query tree for query optimization. The output of this phase is a
standardized query tree. This phase is sometimes known as normalization.

The query optimizer takes the standardized query tree and investigates a number of possible
access strategies, finally eliminating all but the most efficient query execution plan. In order
to formulate the most efficient query execution plan, the query optimizer must carry out a
number of functions. These are query analysis, index selection, and join order selection.

Once the most efficient query execution plan is produced, the query optimizer must translate
this into executable code that can execute under Windows operating systems. This code can
then access the appropriate indexes and tables to produce the result set.

Figure 4.1 shows a simplified diagram of how query optimization takes place. In reality the
process is much more complex but this gives us a basic idea.



SELECT customer_no, balance FROM accounts
WHERE balance > 100

Phase 1: Parsing

Phase 2 : Standardization

Phase 3 : Query Optimization

Phase 4 : Query Compilation

Phase 5 : Query Execution

customer_no balance
456789 567.87

898776 644.65
Figure 4.1: Phases in query processing
How does the query optimizer work out the most efficient query execution plan? We will look
at the way it does this now. We will see that it takes in the information available to it in the

form of the query itself, indexes and key distribution statistics, size of the table and rows per
page, and then calculates the logical read cost given a possible access path.

4.3 Query optimization

The query optimization phase is the phase we will concern ourselves with in this chapter. This
phase can be broken down into a number of logical steps, as follows:

e Query analysis
¢ Index selection

e Join order selection

Let us discuss each step in sequence.

4.3.1 Query analysis



The first step the query optimizer performs during the query optimization phase is query
analysis. In this step the query optimizer examines the query for search arguments (SARGs),
the use of the OR operator, and join conditions.

Search arguments

A search argument is the part of a query that restricts the result set. Hopefully, if indexes have
been chosen carefully, an index can be used to support the search argument. Examples of
search arguments are as follows:

account no = 7665332
balance > 30

lname = 'Burrows'

The AND operator can be used to connect conditions, so another example of a valid search
argument would be as follows:

balance > 30 AND lname = 'Burrows'

Examples of common operators that are valid in a search argument are =, >, <, <, and >. Other
operators such as BETWEEN and LIKE are also valid, because the query optimizer can
represent them with the common operators listed above. For example, a BETWEEN can
always be represented as > AND <. For example:

balance BETWEEN 1000 AND 10000

becomes:

balance >= 1000 AND balance <= 10000

A LIKE can always be represented as > AND <. For example:

lname LIKE 'Burr$'

becomes:

lname >= 'Burr' AND lname < 'Burs'
Note The expression balance BETWEEN 1000 AND 10000 is not equivalent to balance
BETWEEN 10000 AND 1000. The query optimizer will not detect the mistake and
switch the values.

There are a number of expressions that are not considered to be search arguments. The NOT
operator is an example:

NOT IN ('CA', 'NH', 'TX')
customer no <> 9099755

balance <> 78000

Another example of this is the use of NOT EXISTS.



NOT is not considered to be a search argument, because it does not limit the search. Whereas
account_no = 100,000 specifies a single value in a table that may potentially be efficiently
retrieved using an index, account_no <> 100,000 will cause SQL Server to look at every row
in the table to ensure that the account _no column does not contain this value.

There are other expressions that are not considered to be search arguments. If a column is
used instead of an operator, the expression is not considered to be a search argument. For
example:

loan < loan_agreed

How can SQL Server use such an expression to restrict the result set? It cannot, since the
loan_agreed value is not known until the row is read; until it is known, it cannot be used to
compare against the loan column. This will normally result in a table scan or index scan if the
query is covered.

Another example of an expression that cannot be considered for query optimization is one that
involves mathematics or functions. For example:

balance * 1.175 > 10000

UPPER (lname) = 'SHARMAN'

Against my database, using mathematics as in the first example, the query optimizer chose to
use a nonclustered index on balance as long as the number of rows returned was low. The
query optimizer had done the math and estimated correctly the number of rows returned
whose balance would be greater than 10,000/1.175. However, using a function such as
CEILING() caused a table scan to be performed, as in:

SELECT * FROM accounts WHERE CEILING (balance) = 100

String functions, as in the second example, caused the query optimizer to resort to a table
scan. A number of common string functions cause a table scan to be performed—for example,
LEFT().

The bottom line is that using a function or expression on the left side of the operator will
probably cause the query optimizer to use a table scan. This is one reason why it is very
important to check the query execution plan that the query optimizer has produced—it may
not be what you expect! We'll see how to check the query execution plan shortly.

As long as we have just a column on the left side of an appropriate operator, we have a search
argument. We can often compare the column with an expression, so that the query optimizer
will be able to use the distribution steps in the index key distribution statistics for the index
rather than just the density values. Distribution statistics will be covered shortly. This is true
as long as the expression can be evaluated before the query execution phase—in other words,
before the query actually runs. An example of such a search argument would be as follows:

monthly yield = items processed/12

yearly amount = daily rate * 365

However, consider the following query:



sell by date > DATEADD (DAY, -10, GETDATE())

The query optimizer will choose a table scan. Again, this is common when a function is used.
So check the query execution plan carefully!

Note How can we make sure that the index is used? There are various techniques, which we
will discuss shortly. We could put the query in a stored procedure and pass the result of
the function as a parameter. We may be able to create a computed column on the table
and index it. Depending on what we want to achieve, this may or not make sense.
However, we can only index a computed column if the computation is deterministic.
This was discussed in the previous chapter. The function GETDATE() is not
deterministic. We can also force the query optimizer to use an index. This technique is
discussed later but should be used with care.

If the query optimizer cannot evaluate the expression until the query runs—that is, until after
the query optimization phase has completed, then SQL Server has no chance of making use of
distribution steps. A classic example of this is where variables are used:

DECLARE @bal MONEY
SELECT @bal = 9990.23

SELECT * FROM accounts WHERE balance > @bal

In the BankingDB database, the previous example used a table scan instead of the
nonclustered index on balance. If we do not use a variable, the nonclustered index is used, as
follows:

SELECT * FROM accounts WHERE balance > 9990.23

Note that this is different from stored procedure parameters, which will be discussed later in
this chapter.

OR clauses

The query optimizer also checks the query for ORs. The OR clause links multiple search
arguments together. For example, we might have a query that looks like the following:

SELECT * FROM customers WHERE

age > 40 OR
height < 2 OR
weight < 200 OR
state = 'NH' OR
city = '"Manchester'

Any row matching any of the above conditions will appear in the result set. A customer will
be displayed who lives in the city of Manchester in the United Kingdom or who lives in
Nashua in New Hampshire. In other words, it is likely that many rows in the table will meet
one or more of these criteria.

Compare the previous query with the following query:

SELECT * FROM customers WHERE



age > 40 AND

height < 2 AND
weight < 200 AND
state = 'NH' AND
city = 'Manchester'

The number of rows in the table that meet all the criteria is likely to be far less. The ANDs
restrict the result set, whereas the ORs widen it. For this reason a query containing ORs is
handled in a particular way, which will be discussed later in the chapter. Because of this, the
query optimizer looks for OR clauses in the query analysis step.

There may be OR clauses in the query that are hiding. Take the following query, for example:

SELECT lname, fname FROM employees
WHERE
state IN ('CA', 'IL', 'KS', 'MD', 'NY', 'TN', 'TX")

At first glance there are no ORs in this query. The query optimizer sees this, however, as a
number of OR clauses, as follows:

SELECT lname, fname FROM employees

WHERE

state = 'CA' OR
state = 'IL' OR
state = 'KS' OR
state = 'MD' OR
state = 'NY' OR
state = 'TN' OR
state = 'TX'

Join clauses

After looking for search arguments and OR clauses the query optimizer looks for any join
conditions. When more than one table is processed in a query, a join clause is usually found.
The join clause can be in the WHERE clause or in the ON clause of the SELECT statement if
ANSI-standard join clauses are used.

SQL Server join example:

SELECT fname, lname FROM customers, accounts
WHERE customers.customer no = accounts.customer no AND
balance > 10000

ANSI join example:

SELECT fname, lname FROM customers INNER JOIN accounts
ON customers.customer no = accounts.customer no
WHERE balance > 10000

Note that in SQL Server 2000 the following ANSI-standard join clauses are supported:
e Join

e Cross join
e Inner join



e Left outer join
e Right outer join
o Full outer join

Sometimes a table can be joined with itself. This is known as a self-join, or reflexive join.
Although only one table is being accessed, the table is mentioned in the query more than once
and so a join clause is used. The classic self-join is the Employees table containing a column,
supervisor_id, that holds a value found in the employee id column elsewhere in the table. In
other words, a supervisor is an employee. The Employees table might be defined as follows:

CREATE TABLE employees
(

employee id CHAR (8),

lname CHAR (10),

fname CHAR (10),
(8)

supervisor id CHAR

)

A query to retrieve the last name of the employee and the last name of the supervisor would
be as follows:

SELECT el.lname AS employee, e2.lname AS supervisor
FROM employees el INNER JOIN employees e2
ON el.supervisor id = eZ.employee id

4.3.2 Index selection

Having identified the search arguments in the query, the next step the query optimizer
performs during the query optimization phase is index selection. In this step the query
optimizer takes each search argument and checks to see if it is supported by one or more
indexes on the table. The selectivity of the indexes is taken into consideration, and, based on
this, the query optimizer can calculate the cost of a strategy that uses that index in terms of
logical reads and CPU. This cost is used to compare strategies that use different indexes and a
strategy that uses a table scan.

Does a useful index exist?

To obtain information on the indexes present on a table and their characteristics, SQL Server
can check the sysindexes system table. From the sysindexes table the query optimizer can
quickly establish the indexes present on the table by checking the rows that have a value in
the id column equal to the object ID of the table (as defined in the sysobjects system table)
and an indid column value > 0 and < 255. Other columns in the sysindexes table help the
query optimizer determine on which columns the index is based.

The query optimizer will look for an index based on the same column as the search argument.
If the index is a composite index, the query optimizer determines if the first column in the
index is specified in the search argument.

If a search argument has no matching index, then no index can be used to support the search
argument and so the query optimizer will look for indexes supporting other search arguments.
If it is the only search argument, then a table scan will be performed.



How selective is the search argument?

Suppose the following query is presented to the query optimizer:

SELECT account no FROM accounts WHERE
branch no = 1005 AND
balance > 5000 AND
customer no BETWEEN 10000 AND 110000

If there are indexes present on the branch no, balance and customer no columns, how can the
query optimizer decide which indexes are the most efficient to use—that is, which indexes
will use the least number of logical reads and CPU to return the data? The query optimizer
may choose to use no indexes, since a table scan is estimated to be a more efficient access
mechanism, or it may choose to use one or more indexes.

The query optimizer has a number of mechanisms by which it can determine this information.
The most accurate method is to use statistical information available in the key distribution
statistics associated with the index. We will look at these distribution statistics shortly. If the
key distribution statistics do not exist, the query optimizer applies a weighting to each
operator. For example, the = operator has a weighting of 10 percent, which means that the
query optimizer will assume that 10 percent of the rows in the table will be returned.

The approximate weightings of some common operators are shown in Table 4.1.

Table 4.1: Weightings of Common Operators

Operator Weighting
= 10%
< 33%
> 33%
BETWEEN 12%

As you might imagine, these weightings are very general estimates and can be wildly
inaccurate, so it is always best if the query optimizer is able to use the distribution statistics
associated with an index.

If we have a unique index matching the search argument, then the query optimizer knows
immediately the number of rows returned by the = operator. Because of the unique index, the
query optimizer knows that at most one row can be returned (of course, zero rows could be
returned), so this figure is used rather than the 10 percent weighting.

Key distribution statistics

Key distribution statistics are usually created when an index is created. The one exception to
this is when an index is created on an empty table; otherwise, the index has key distribution
statistics held for it. Note that the indexes on a table that has been truncated will have no key
distribution statistics held for them. From now on we'll just refer to key distribution statistics
as index statistics. We cannot just refer to them as statistics, since this is ambiguous. Why?
Because a little later on we'll meet another type of distribution statistics known as column
statistics.



Where are these index statistics held? They are held as a column in the sysindexes system
table for the relevant row representing the index whose index statistics we wish to keep. This
column is named statblob and is an IMAGE datatype. Since it is an IMAGE datatype, there is
plenty of room to hold lots of statistics, if required, although SQL Server keeps the number of
statistics held to a fairly small but significant value. In my experience, for most indexes, the
number of samples held in this column is in the low hundreds, typically about 300.

If this column is empty (holds NULL), then there are no index statistics associated with the
index.

The statblob column holds index statistics information for the index to allow the query
optimizer to quickly estimate the proportion of rows that will be returned by a search
argument. Suppose we execute the following query on the Accounts table, which holds
information for 25,000 accounts:

SELECT account no FROM accounts WHERE balance > 9999

Will 25,000 rows be returned, or 1,000 rows, or 25 rows, or 0 rows? The query optimizer
needs to know this information so it can decide whether a nonclustered index on the balance
column should be considered interesting or whether a table scan is likely to be more efficient.
Remember that returning a range of rows using a nonclustered index is going to result in a
request for a data page (logical read) for every row returned. If the query optimizer can
accurately estimate how many rows are likely to be returned, it knows with reasonable
accuracy how many data page requests will be needed, and, therefore, it can calculate the cost
of the query and compare this with the cost of a table scan.

In the BankingDB database there are, on average, less than five accounts that have a balance
greater than 9,999, and so an indexed access should be more efficient than a table scan. But
how can the query optimizer know this? It could count the number of rows that satisfied the
search argument before it actually executed the query, but that would defeat the object of the
exercise!

This is where the statblob column comes to the rescue. It holds a series of samples across the
index key range that the query optimizer can check. Based on these samples the query
optimizer can quickly estimate the percentage of the rows in the table that will be returned by
the search argument using that index.

The statblob column actually holds a number of key values. This number is a function of the
key size and the number of rows in the table. Although, in theory, the statblob column could
hold up to 2 GB of key distribution statistics for an index, only a very large table would need
that, and the effort in reading the index statistics would be far greater than the data. Of course,
in practice, only a small amount of data space is needed in the statblob column, since few key
values are actually held. For example, a nonclustered index on the account_no column in the
Accounts table, which is a four byte (integer) key, has index statistics information consisting
of 200 steps. By comparison, a nonclustered index on the account notes column, which is a
CHAR(400), has index statistics information consisting of 74 steps. The more steps, the more
accurate the statistics, so, in this respect at least, it is better to have a smaller key value.

Suppose we have an index key that is an integer, such as the account_no column in our
Accounts table. The initial key value found in the index is the first one to be sampled and



stored in the statblob column, so we will have the statblob column contents shown in Figure
4.2.
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Figure 4.2: Distribution steps and keys in the statblob column

We can see that the number of distribution steps is typically going to be less than the number
of key values stored in the statblob column. Apart from the choice of key size we cannot
influence the number of key values held. However, as we shall see shortly, we can choose
how much of our data is actually sampled in order to generate our index statistics.

What about composite indexes? SQL Server only stores key values for the first column. This
means that it is better to choose the most selective column as the first column of an index—
that is, the column with the least number of duplicate values. Of course, the first column of
the index needs to be specified in the query, and choosing the most selective column will need
to be done with this in mind.

I find that many database designers choose the key order in a composite index starting with
the first column being the least selective, the next column being the next least selective, and
so on, even if the query is going to specify all of the columns in its WHERE clause. Why is
this? Usually it is because it is the most natural approach to take.

Consider a three-column composite index on the columns region, state, city. There is a natural
hierarchy here—cities belong to states, which in turn belong to regions. There are few
regions, more states, and many more cities. It's natural to create the index in the region, state,
city column order just as you would in a report. But we can see that if we do this, we are
going to populate the statblob column with few distinct values. This could result in the query
optimizer choosing a table scan to execute the following statement when the nonclustered
index would have been a better choice.

SELECT gty FROM sales

WHERE
region = 'North' AND
state = 'CO' AND

city = 'Denver'



As we saw in the previous chapter, we can use the utility DBCC SHOW_STATISTICS to
investigate index statistics. The format of this DBCC statement is as follows:

DBCC SHOW STATISTICS (table name, target)

The target is an index name or a statistics collection name. We will talk about statistics that
are not index statistics later.

For example, to show the index statistics on the nonclustered index nciBalance, the following
code segment would be used:

DBCC SHOW_ STATISTICS (accounts, nciBalance)

Statistics for INDEX ' nciBalance'.

Updated Rows Rows Sampled Steps Density Average
key length

Oct 20 2000 5:50PM 25000 25000 106 4.0426468E-5 8.0

All density Average Length Columns

4.0471085E-5 8.0 balance

RANGE HI KEY RANGE ROWS EQ ROWS DISTINCT RANGE ROWS AVG_RANGE ROWS

.9500 0.0 1.0 0 0.0
88.1000 237.0 2.0 235 1.0085106
237.0600 357.0 1.0 353 1.0084746
282.3600 127.0 1.0 127 1.0
316.1400 107.0 2.0 107 1.0
413.7800 225.0 2.0 224 1.0044643
699.9500 735.0 2.0 729 1.0082304
723.5500 64.0 2.0 64 1.0
9696.2000 383.0 1.0 379 1.0078948
9739.9200 126.0 2.0 124 1.008
9998.5700 603.0 1.0 596 1.0100503
9998.8500 0.0 1.0 0 0.0

The index statistics shown above are associated with the nonclustered index based on the
balance MONEY data type column in the Accounts table. The index statistics indicate that
there are 111 steps and that 25,000 rows from the Accounts table were sampled to create these
statistics. There are 25,000 rows in the Accounts table in total, so, in fact, all the rows were
sampled. This is expected behavior when a CREATE INDEX statement generates the index
statistics. Later we will see that other mechanisms to update the key distribution statistics will
not necessarily sample all the rows.

If we look at the All Density value, we can see that it is 4.0471085E-5. As discussed in
Chapter 3, the density is the average fraction of duplicate index key values in the index. Since
the density is the reciprocal of the count of unique values in the index key, the count of unique
values in our nonclustered index must be 1 /4.0471085E-5, which yields 24,709 unique
values, which is correct as checked with a SELECT DISTINCT (balance) query.



Multiplying the total count of rows in the table by the index density, 4.0465478E-5, we can
obtain the likely number of rows hit by specifying a given value, in our example:

row hits = 25000 * 4.0471085E-5 = 1.011777125
This means that a query specifying balance = value would usually return one row.

Note Just to remind us of the terminology, this is an example of high selectivity and low
density.

The output from DBCC SHOW_STATISTICS needs a few more words of explanation. The
Density value, 4.0426468E-5, is close to the All Density value of 4.0471085E-5. The
difference is due to the fact that the Density value considers nonfrequent values. These are
values that appear only once in a step. If a value appears more than once, it is considered to be
a frequent value. The All Density value includes frequent values. The Average Length is the
average length of the index key. If the index were a composite index, there would be an entry
for the first column, first plus second column, and so on. The Average Key Length is the
average length of the total composite index key (including a clustered index key pointer if
there is a clustered index on the table). The average in this context is necessary because
columns in the key can be variable-length datatypes.

The next section of data contains the sample steps themselves. Remember that they only apply
to the first column in the key. The column RANGE HI KEY is the upper bound value of a
histogram step—that is, the highest value in the step. The first step is the lowest value for the
column in the table. The column RANGE ROWS is the number of rows from the sample that
fall within a histogram step, excluding the upper bound. By definition, this must be zero in the
first sample. We can see that the seventh step contains the value 735 and that the values are
quite varied across other steps. The column EQ ROWS is the number of rows from the
sample that are equal in value to the upper bound of the histogram step. In our data this varies
between 1.0 and 2.0. For our seventh step this is 2.0.

The column DISTINCT RANGE ROWS is the number of distinct values within a histogram
step, excluding the upper bound. For our seventh step there are 729 distinct values within the
step, excluding the value 699.9500 (the upper bound). Finally, the column

AVG RANGE ROWS is the average number of duplicate values within a histogram step,
excluding the upper bound. This is defined as:

(RANGE_ROWS / DISTINCT RANGE ROWS for DISTINCT RANGE ROWS
> 0)

For our seventh step this value is 1.0082304.

To check out some of these column values let us focus on the seventh step. Suppose we
execute the SQL statement:

SELECT COUNT (balance) FROM accounts
WHERE balance BETWEEN 413.7800 AND 699.9500

This SELECT specifies the two RANGE HI KEY values for our seventh step and the one
before. We find that 739 rows are returned. However, the BETWEEN operator is inclusive,
but the definition of the RANGE ROWS column excludes the upper bound; the upper bound



of the previous sample will not be included in the RANGE_ROWS column. So we need to
rewrite the query, as follows:

SELECT COUNT (balance) FROM accounts
WHERE balance > 413.7800 AND balance < 699.9500

We now find that 735 rows are returned, which is the correct value.

Suppose we execute the following query:

SELECT COUNT (balance) FROM accounts WHERE balance=
699.9500

We find that the value 2 is returned, which agrees with the value in the EQ ROWS column
for this step. Finally, let us execute this statement:

SELECT COUNT (DISTINCT (balance)) FROM accounts
WHERE balance > 413.7800 AND balance < 699.9500

This returns 729, which agrees with the value in the DISTINCT _RANGE ROWS column for
this step. We can then calculate RANGE _ROWS / DISTINCT RANGE ROWS, which is
735/729, giving 1.0082304. This agrees with the value in the AVG_RANGE ROWS column
for this step.

Column statistics

As well as maintaining statistics on indexed columns—to be precise, the first column of an
index key—SQL Server will optionally maintain statistics on nonindexed columns. This
includes columns in a composite index key other than the first. As long as the database option
auto create statistics is set to on, if a column on which index statistics are not being
maintained is referenced in a WHERE clause, statistics will be gathered if it would help the
query optimizer.

This behavior can be suppressed by setting the database option auto create statistics to off. If
this option is set to off, the fact that the query optimizer would like statistics information for
the column is usually made obvious by a warning in the estimated query execution plan
output in the Query Analyzer. A Missing Column Statistics event will also be evident in the
SQL Server Profiler if it is being traced. If auto create statistics is set to on, an Auto Stats
event will occur.

There are many occasions when SQL Server will automatically create column statistics.
Basically, it will do so if they are missing and the query optimizer would really like to have
them. Here is an example of such an occasion. Suppose we have created a nonclustered index
with a composite key consisting of the customer no and balance columns. We now execute
the following query:

SELECT account no FROM accounts WHERE customer no = 100
AND balance = 100



The query optimizer knows the statistical distribution of key values in the customer no
column but not in the balance column. It will create statistics for this column because they are
helpful in finding the most efficient query plan.

To find the column statistics that have been created automatically by the query optimizer,
look for statistics with names similar to WA Sys balance 0519C6AF. To display statistics
use the system stored procedure sp_helpstats or Tools —Manage Statistics in the Query
Analyzer.

Of course, you can manually create column statistics. Use Tools —Manage Statistics in the
Query Analyzer or the CREATE STATISTICS Transact-SQL statement. Alternatively, the
system stored procedure sp _createstats can be used to create single-column statistics for all
eligible columns for all user tables in the current database.

Updating index and column statistics

When do index and column statistics get updated? Statistics are not automatically updated
when transactions that change the index commit. This would cause the statblob column to
become a bottleneck. The statblob column is accurate when it is first constructed as part of the
index creation (assuming there is data in the table at that time). After that, on a volatile index,
the key distribution statistics will diverge from reality. It is the responsibility of the database
administrator to ensure that the key distribution statistics are updated to reflect reality, and
there are various ways to achieve this. The most common method is to use the Transact-SQL
statement UPDATE STATISTICS. The format of this statement is as follows:

UPDATE STATISTICS table
[

index
| (statistics namel[,...n])
]
[ WITH
[
[FULLSCAN]
| SAMPLE number {PERCENT | ROWS}]
| RESAMPLE

]
[[,] [ALL | COLUMNS | INDEX]

[[,] NORECOMPUTE]
]

If both the table name and index name are specified, the statistics for that index are updated. If
only the table name is specified, the statistics for all indexes present on the table are updated.
The same is true for column statistics, which are referred to by statistics name. The
FULLSCAN and SAMPLE number {PERCENT | ROWS} clause allows the database
administrator to choose how much data is actually sampled from the table. The FULLSCAN
option is used to specify that all the rows in a table should be retrieved to generate the key
distribution statistics.

The SAMPLE number {PERCENT | ROWS} option is used to specify the percentage of the
table or the number of rows to sample when generating statistics. This is typically used when
a large table is being processed. SQL Server will make sure that a minimum number of rows
are sampled to guarantee useful statistics. If the PERCENT, ROWS, or number option results



in too small a number of rows being sampled, SQL Server automatically corrects the sampling
based on the number of existing rows in the table.

Note that updating index statistics for a nonclustered index can be performed by scanning the
leaf-level index pages of the nonclustered index, which may well be a lot faster than scanning
the table rows. When updating column statistics, it is likely that the table will need to be
scanned.

If neither of these options is specified, SQL Server automatically computes the required
sample size for the scan.

The RESAMPLE option specifies that an inherited sampling ratio will be applied to the
indexes and columns. In other words, the sampling ratio from the old statistics will be used.
When a table has undergone major changes (e.g., numerous deletes), SQL Server 2000 may
override the inherited sampling factor and implement a full scan instead.

The ALL | COLUMNS | INDEX option specifies whether the UPDATE STATISTICS
statement updates column statistics, index statistics, or both. If no option is specified, the
UPDATE STATISTICS statement updates all statistics.

The NORECOMPUTE option specifies that statistics that become out of date will not be
automatically recomputed. When statistics become out of date is a function of the number of
changes (INSERT, UPDATE, and DELETE operations) that hit indexed columns. If this
option is used, SQL Server will not automatically rebuild statistics. To switch automatic
statistics recomputation back on, the UPDATE STATISTICS statement can be executed
omitting the NORECOMPUTE option, or the system stored procedure sp_autostats can be
used.

One might imagine that omitting the table name would cause the key distribution statistics on
all of the indexes on all of the tables in the database to be updated. Not so, this will result in a
syntax error. Microsoft provides a convenient way to accomplish this with the system stored
procedure sp_updatestats. This will run UPDATE STATISTICS against all user tables in the
current database. For example:

USE BankingDB

EXEC sp updatestats
will update both index- and column-level statistics.

Another way of achieving this might be to use a Transact-SQL cursor, as follows:

DECLARE tables cursor CURSOR FOR
SELECT table name FROM information schema.tables
WHERE table_type = 'BASE TABLE'
OPEN tables cursor
DECLARE @tablename NVARCHAR (128)

FETCH NEXT FROM tables cursor INTO Qtablename

WHILE (Q@fetch status <> -1)



BEGIN

EXEC ('UPDATE STATISTICS ' + (@tablename)
FETCH NEXT FROM tables cursor INTO Q@tablename

END
PRINT 'The statistics have been updated.'
CLOSE tables cursor

DEALLOCATE tables cursor

The above cursor creates a result set of all the user tables and then proceeds to update the key
statistics of all the indexes on each one. Obviously, using sp_updatestats is more
straightforward, but the cursor can be modified easily to only update the statistics of certain
tables—for example, only those beginning with cust. This may be useful on a database
consisting of large tables.

Another method of updating statistics is to use the Database Maintenance Plan wizard. This is
a wizard that allows a database administrator to easily and quickly set up a routine to back up
and integrity check a database, as well as to reorganize indexes and update statistics. The
section of the wizard that is concerned with data optimization is shown in Figure 4.3.
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Figure 4.3: The Database Maintenance Plan wizard

A possible reason for not using this wizard is that it will run UPDATE STATISTICS on all
the tables in the database, and this may become a problem with a database consisting of large
tables.

Updating distribution statistics can also be achieved using the Distributed Management
Objects (DMO) interface. The Table object has methods named UpdateStatistics and
UpdateStatisticsWith, which can be used to update the distribution statistics of all the indexes
and columns on a table. The Index object and Column object also support these methods.



How can we easily tell when distribution statistics were last updated? This information is
displayed by DBCC SHOW_STATISTICS. However, there is also a function called
STATS DATE that can be used. The format of this function is as follows:

STATS DATE (table id, index id)

To check the date the distribution statistics were last updated on all the indexes and column
statistics on a given table, the following Transact-SQL can be used:

SELECT
ind.name AS 'Index/Column Statistics',
STATS DATE (ind.id, ind.indid) AS 'Date Last Updated'
FROM sysobjects tab INNER JOIN sysindexes ind
ON tab.id = ind.id
WHERE tab.name = 'accounts'

This might give the following output:

Index/Column Statistics Date Last Updated

nciBalance 2000-10-10 20:38:27.927
stat branch no 2000-10-10 20:38:28.627

Note that if there is no distribution statistics created for an index, because the index was
created on an empty table, the Date Last Updated column will contain null. This should be a
red warning light to a database administrator, who should run UPDATE STATISTICS
without delay!

Another method that can be used to check when distribution statistics were last updated is to
use the system stored procedure sp autostats, described shortly.

Whichever method is chosen, the distribution statistics for an index or column on a table
should be updated regularly or the query optimizer will start to use inaccurate information. An
extreme example of this would be an index that was created on a table containing a single row
that then had a million rows added. Most cases are not so extreme, but it is easy to forget to
update statistics if no automated mechanism such as a scheduled task is set up. When the
query optimizer chooses a strategy that you would not expect, the date the statistics were last
updated is often the first information to check.

However, there is a safety net for the database administrator who forgets to update statistics.
SQL Server 2000 contains functionality to automatically update statistics. This functionality
is enabled globally for all the distribution statistics in a database by the database option auto
update statistics.

Individual distribution statistics can have the automatic updating of statistics turned on or off
by the use of the UPDATE STATISTICS statement with the NORECOMPUTE option. If
UPDATE STATISTICS is executed with the NORECOMPUTE option, the automatic
updating of statistics is turned off for the index or column distribution statistics referenced in
the statement. If UPDATE STATISTICS is executed without the NORECOMPUTE option,
the automatic updating of statistics is turned on for the index or column distribution statistics
referenced in the statement.



The automatic updating of statistics may also be turned on or off by the sp autostats system
stored procedure. If this is executed with just the table name parameter, information is
displayed regarding all the index- and column-level distribution statistics relevant to that
table, as follows:

EXEC sp autostats accounts

IndexName AUTOSTATS Last Updated
[nciBalance] ON 2000-10-1020:38:27.927
[stat _branch no] ON 2000-10-1020:38:28.627

An index or column statistics name can be specified to limit the output:

EXEC sp_ autostats @tblname=accounts, @indname= nciBalance

IndexName AUTOSTATS Last Updated

[nciBalance] ON 2000-10-1020:38:27.927
Note that this system stored procedure also displays when the statistics were last updated.
When can we not use statistics?

Statistics cannot be used by the query optimizer if they are not there! As we have said, this
occurs if the index was created on an empty table. In this case the STATBLOB column in the
sysindexes table will contain NULL. If a table is truncated, the STATBLOB column will also
be set to NULL. It follows, therefore, that if an index is created on an empty table, which is
then populated with data, an UPDATE STATISTICS operation should be executed, or the
query optimizer may create an inefficient query execution plan based on false assumptions.
An UPDATE STATISTICS operation should also be run after a table has been truncated and
repopulated. Of course, SQL Server 2000 may jump in and automatically update the
distribution statistics if the appropriate database options are set, but why leave it to chance!

Not having distribution statistics present means that the query optimizer has little idea how
many rows are likely to satisfy the query and, therefore, whether an index should be used.
This is of particular importance when dealing with nonclustered indexes, since the query
optimizer may decide not to use it and use a table scan instead. As an example, our Accounts
table was created with a nonclustered index on the balance column. The table contained
25,000 rows. It was then truncated and repopulated with the 25,000 rows. The following
query was then executed:

SELECT * FROM accounts WHERE balance = 100

The estimated query execution plan showed that the query optimizer had decided to use a
table scan, and it had estimated that 1,988 rows would be returned. In fact, zero rows were
returned, since no accounts had a balance of exactly zero. A bad decision, since the
nonclustered index would have been the most efficient access method.

Even if statistics are present, they may not be used. When we discussed search arguments
earlier in this chapter, we introduced cases where the query optimizer cannot evaluate the



expression in the WHERE clause until the query runs—that is, until after the query
optimization phase has completed. An example of this is using a variable, as follows:

DECLARE (@bal MONEY
SELECT @bal = 4954.99

SELECT * FROM accounts WHERE balance = (@bal

In this case distribution steps cannot be used when the query optimizer creates a query
execution plan for the Transact-SQL batch, and the query optimizer will use the index density
information present in the statblob column. Index density was discussed in Chapter 3 and is
the average fraction of duplicate index key values in the index. It is the reciprocal of the count
of unique values in the index key.

Suppose we have a Supplier table with a country code column and we deal with suppliers
from 20 countries. The index density would then be 1/20= 0.05.

By multiplying the total count of rows in the table by the index density, we can obtain the
likely number of rows hit by specifying a given value. Suppose our table contains 5,000
suppliers:

row hits = 5000 * 0.05 = 250

However, this does not take into account the fact that we might have many or few column
values of UK therefore, index density is a poor substitute for statistics.

An even worse substitute are the weightings we saw earlier in this chapter (shown in Table
4.1). These are used if there are no statistics.

Translating rows to logical reads
When the query optimizer has found a particular index interesting and has used the selectivity
of the search argument to assess the number of rows returned, it translates this value into

logical reads.

The way it does this translation depends on the index type—clustered or nonclustered—and
whether there is actually an index present.

No index present

If we have no suitable index on the table, a table scan must be performed, as shown in Figure
4.4.
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Figure 4.4: Logical reads required for a table scan

The number of logical reads a table scan will use is easy to calculate. All we have to do is find
the number of database pages used by the table. We can find this information from the



sysindexes system table by looking at the dpages column. In the BankingDB database the
Accounts table uses 1,389 pages.

This is an extremely important number. We immediately know that we can retrieve all the
rows from the Accounts table in 1,389 logical reads. This establishes a baseline value against
which the query optimizer measures the cost of index access in terms of logical read.

A clustered index present

What if we can use a clustered index? SQL Server will have to traverse the index until the
appropriate data page is reached. Because the data is in key sequence, this data page and any
other relevant pages will then be retrieved. The cost of using a clustered index is the cost of
the index traversal plus the data pages scanned, as shown Figure 4.5.
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Figure 4.5: Logical reads required for a clustered index

We can estimate the number of data pages scanned by knowing the approximate number of
rows per page. I tend to use the DBCC SHOWCONTIG statement with the
TABLERESULTS option to find the average record size and then divide this into 8,000 to get
the approximate number of rows per page. In the BankingDB database the Accounts table
holds about 18 rows per page. Knowing this, you can estimate the number of data pages
scanned if you know roughly how many rows will be returned by the query. But what about
the index pages?

To find the number of logical reads used to traverse the clustered index we need to know the
number of levels in the index. This is known as the depth of the index. Again, I tend to use the
DBCC SHOWCONTIG statement with the TABLERESULTS option and the ALL. LEVELS
option to find the number of levels in an index. The number of levels in an index will be the
number of logical reads used to traverse the index. Most indexes will consist of a small
number of levels, so the number of logical reads used to traverse an index can often be
ignored.

A nonclustered index present

If there is a nonclustered index present, SQL Server will have to traverse the index until the
appropriate leaf pages are reached. The pointers from the leaf pages will then have to be
followed to each row pointed at by a an index entry in the leaf page. Each data row may
reside on its own data page, or a data page may host a number of the rows we wish to retrieve.
This is irrelevant. Each row retrieved will result in a data page request—that is, a logical read.



The cost of using a nonclustered index is then the cost of the index traversal plus the leaf
pages scanned plus the cost of retrieving each row, as shown in Figure 4.6.
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Figure 4.6: Logical reads required for a nonclustered index

This could result in many logical reads. If the query returns a range of rows, say 2,000, the
query optimizer will assume that this will cost the number of logical reads to traverse the
nonclustered index plus the number of logical reads to scan the relevant leaf pages plus 2,000
logical reads to retrieve the data rows. We can immediately see that in the case of our
Accounts table, this is greater than our baseline value for a table scan. In other words, all
other things being equal, the table scan would be the most efficient retrieval method.

Note In fact, the query optimizer does not consider only logical reads. It also considers CPU.
For this reason, a comparison alone between logical reads and the number of pages in
the table is an oversimplification.

Clearly, if the query is only going to return one row—for example, when we use the =
operator with a unique index, the cost is the index traversal plus the cost of retrieving the
single data page, as shown in Figure 4.7. Compared with performing the same operation using
a clustered index, the nonclustered index will usually take only one extra logical read.
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Figure 4.7: Logical reads required for a nonclustered index and a single row retrieval

We have previously mentioned the covered query, where all the information necessary is
satisfied from the index leaf level without visiting the data. SQL Server will have to traverse
the index until the leaf level is reached and then the relevant leaf-level pages are scanned, as
shown in Figure 4.8.
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Figure 4.8: Logical reads required for a covering nonclustered index
A nonclustered index present and a clustered index present

We have already mentioned in Chapter 3 that the presence of a clustered index on a table
results in the leaf-level index page pointers in any nonclustered indexes on the table to
become the clustered index key instead of the Row ID.

So now, as well as SQL Server 2000 traversing the nonclustered index, it must also traverse
the clustered index. Of course, a query that returns a range of rows will return a range of
pointers from the nonclustered index, all of which will have to access the clustered index. The
number of logical reads performed to access the nonclustered index will therefore be
increased by the logical reads needed to access the clustered index.

However, there is a positive side to this. As we have stated, the presence of a clustered index
on a table results in the leaf-level index page pointers in any nonclustered indexes on the table
to become the clustered index key instead of the Row ID. In other words, the leaf-level index
entries in the clustered index will now hold the nonclustered index key plus the clustered
index key, and so there is more chance of the nonclustered index covering the query.

Multiple nonclustered indexes present

We have discussed the fact that range retrieval in a nonclustered index may result in a large
number of data page requests such that a table scan is chosen in preference. But what if the
WHERE clause of the query contains more than one filter. For example:

SELECT * FROM accounts
WHERE
balance BETWEEN 100 AND 200
AND
customer no BETWEEN 1000 AND 2000

If we have a nonclustered index on the balance column and the range is reasonably selective,
we should expect the query optimizer to choose a query execution plan that selects the data
rows based on the index and then discards the ones where the customer no column holds a
value that is not in range. If the range is not selective, we will expect a table scan. But what if
there is also a nonclustered index present on the customer no column? As we discussed in
Chapter 3, the query optimizer may be able to perform an index intersection. If the query
optimizer believes that using both indexes will reduce the number of data page requests, then
it will do just that.

4.3.3 Join order selection



If the query contains more than one table or the query performs a self-join, the query
optimizer will derive the most efficient strategy for joining the tables. The order in which
tables are joined can have a large impact on performance. For example, suppose we wanted to
run the following query, which joins the Accounts table with the Customers table.

SELECT * FROM accounts INNER JOIN customers
ON

accounts.customer no = customers.customer no
WHERE

balance > 9990

Both tables have a nonclustered index on customer no. Suppose the Customers table was
accessed first. There is no restriction on the customer no column and so all 12,500 customer
rows would be retrieved, and for each of these rows the Accounts table would be accessed. It
would, therefore, be accessed 12,500 times, and since each customer has two accounts, 25,000
account rows would be retrieved. Each one would then be tested for the restriction > 9,990.

Suppose, instead, the Accounts table was accessed first. The restriction would be applied,
removing the majority of rows in the Accounts table and leaving only 21 rows with the
balance column containing a value > 9,990. This means that the Customers table will only be
accessed 21 times, considerably reducing the logical reads needed to execute the query. In
fact in our BankingDB database this join order needed 96 logical reads against the 51,695
logical reads needed by the first join order!

The query optimizer can use information in the statblob column to help it choose an efficient
strategy. We have already seen that the statblob column contains index density information,
and it is this information the query optimizer uses to estimate how many rows from one table
will join with rows from another table—that is, the join selectivity. The statblob column not
only holds index density for a single column in a composite index but also the index densities
of some of the column combinations. If the composite index contained three columns—
COLI1, COL2, and COLS3, then the index densities held would be for the following
combinations:

COL1 index density value (a)
COL1l, COL2 index density value (b)

COL1l, COL2, COL3 index density wvalue (c)

Suppose the statblob column is not populated. In this case the query optimizer uses a formula
to work out the join selectivity. It is simply the reciprocal of the number of rows in the smaller
table. If we had a query that joined the Accounts table (25,000 rows) with the Customers table
(12,500 rows), the join selectivity would be (1/12500) = 0.00008. For each row in the
Customers table we would expect a match to (0.00008 * 250000) = 2 rows in the Accounts
table.

4.3.4 How joins are processed

Prior to SQL Server 7.0, there was only one basic join mechanism available to the query
optimizer to join two tables together. This was the nested loops join. In SQL Server 2000
there are three, as follows:



1. Nested loops joins
2. Merge joins
3. Hash joins

The nested loops join is still the best general-purpose join available, but the merge and hash
joins can be utilized by the query optimizer to produce a more efficient join plan in certain
circumstances.

Nested loops joins

In the nested loops join, tables are processed as a series of nested loops, which are known as
nested iterations. In a two-table join every row selected from the outer table (the table in the
outer loop) causes the inner table (the table in the inner loop) to be accessed. This is known as
a scan (not to be confused with table scan). The number of times the inner table is accessed is
known as its scan count. The outer table will have a scan count of 1; the inner table will have
a scan count equal to the number of rows selected in the outer table. Figure 4.9 illustrates a
three-table join.
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Figufe_ 49: A join of three tables implementéd as a nested loop

The outer table will use indexes to restrict the rows if it can, whereas the inner table will use
indexes on the join columns and potentially any other indexes that might be efficient in
limiting the rows returned. However, the index on the join column is the most important
index, since, without it, the inner table will be table scanned for each relevant row in the outer
table.

For example, consider an inner join between the Customers table and the Accounts table.
There are 12,500 rows in the Customers table and 25,000 rows in the Accounts table. Suppose
the Accounts table has a nonclustered index on the customer no column. The query optimizer
will choose the Customers table as the outer table (there is no index that is useful, and,
besides, this is the smaller table). The Customers table will be passed through once. Its scan
count will be one—that is, it is processed once, or, if you prefer, it is visited once.

There are 12,500 qualifying rows in the Customers table and so the Accounts table will be
visited 12,500 times. It will have a scan count of 12,500. Luckily, there is a useful index on
the customer no column of the Accounts table so the table will not be table scanned 12,500
times! Later on we will look at how we can return statistical information about the scan count
and the logical read (pages requested) count. But for now just let me say that this join indeed
results in the following statistics:

Table Logical Read Scan Count



Table Logical Read Scan Count
Customers 736 1
Accounts 50,859 12,500

Note that the logical read count of the Customers table is 736, because there are 736 data
pages in this table. The logical read count for the Accounts table is approximately four per
scan count, indicating that for each access of the Accounts table, via the index, four logical
reads were used (three for index pages and one for the data page).

The nested loops join does not depend on an equality operation relating the two tables
together. The operator, for example, can be < or >.

If the outer table supplies only a few rows to the query—that is, it is a small table or is filtered
by a WHERE clause and the inner table has an index on the join column—a nested loops join
can be very efficient, usually more so than a merge or hash join. However, when large tables
are being joined, a merge or hash join may be more efficient.

How many ways are there of joining two tables: A and B? There are in fact two ways: AB and
BA. What about three tables? There are six ways: ABC, ACB, BAC, BCA, CAB, and CBA.
What about four tables? The answer is four, or 1 * 2 * 3 * 4 =24,

The number of ways, then, to join X tables is X!, or factorial X. If a query were to join 16
tables, we are talking about 20,922,789,888,000 possible ways of performing this join. A join
of ten tables would have 3,628,800 possible combinations, and SQL Server 2000 can join a
maximum of 256 tables in a SELECT statement!

Luckily, the query optimizer uses techniques internally to minimize the number of possible
combinations, but the fact still remains that the more tables in a join the longer the query
optimizer will take to work out the most efficient access strategy. Also, any inefficiency will
be magnified enormously, since we are basically placing loops within loops within loops
within a nested loops join.

The bottom line is: If you are going to execute a query that joins many tables, test it! Check
what the final query execution plan is. Check the number of logical reads. Check the elapsed
time. If you are not happy, then break the join down into parts, perhaps joining a subset of the
tables into a temporary table and then joining that with the remaining tables.

One useful rule of thumb is to make sure that if the number of tables in the query is N, then
the number of join conditions is at least N - 1. For example, suppose we join three tables—
TABI1, TAB2, and TAB3—and the join is over a column we will call C1. Suppose the query
is as follows:

SELECT * FROM TABl, TAB2, TAB3 WHERE
TABl1.Cl = TAB2.Cl

Applying our rule of thumb we can see that there are three tables in the join, so there should
be at least two join conditions. There is only one join condition in the query, which is below
the minimum number. This will result in SQL Server performing a lot of extra work joining
all the rows in TAB3 with all the rows in the result set from the join of TAB1 and TAB2 or
some combination of this. Depending on the form of the SELECT statement, the answer



returned may be correct—for example, if a DISTINCT was used. The time taken to process
the query, though, would be much greater than necessary.

Applying our rule of thumb we can see that the query should be written as follows:

SELECT * FROM TABl, TAB2, TAB3 WHERE
TABl1.Cl = TAB2.Cl AND
TAB2.Cl = TAB3.Cl

However, if it makes sense to add a third join condition, then do not be afraid to do so, since it
will give the query optimizer more options to work with:

SELECT * FROM TABl, TAB2, TAB3 WHERE
TABl1.Cl = TAB2.Cl AND
TAB2.C1 TAB3.Cl AND
TABl1.Cl = TAB3.Cl

Of course, if you use the ANSI join syntax (recommended) with the ON clause you cannot
miss the join condition.

Merge joins

Merge joins can be efficient when two large tables of similar size need to be joined and both
inputs are already sorted by virtue of their indexes, or a sort operation is not expensive for
sorting one or more of the inputs. The result from a merge join is sorted on the join column,
and if this ordering is needed by the query, the merge join can supply it. The equality operator
must be used in the query to join the tables; otherwise, a merge join cannot be used.

There are two types of merge join: a one-to-many (regular) and a many-to-many. In the case
of a one-to-many, one input will contain unique join column values, whereas the other will
contain zero, one, or many matching values. In the case of a many-to-many merge join, both
inputs may contain duplicate join column values.

A many-to-many merge join requires that a temporary worktable is used, and this is apparent
when looking at the logical read information that can be returned from a query (discussed
later). In my experience, the added work required to process this worktable often means that
the query optimizer uses one of the other join techniques—for example, a hash join in
preference to the many-to-many merge join. If the join column from one input does contain
unique values, the query optimizer will not know this unless a unique index is present on that
column.

If the two join columns from the two input tables both have a clustered index created on them,
the query optimizer knows that the rows are physically sorted on the join column. In this case
the query optimizer does not need to perform a sort on any of the inputs. Joining these two
tables will probably be performed with a merge join, especially, if the merge join is a one-to-
many. The presence of an ORDER BY clause on the query will increase the likelihood that a
merge join is used.

If the two join columns from the two input tables both have a nonclustered index created on
them, then the query optimizer knows that the rows are not physically sorted on the join
column. In this case the query optimizer will need to perform a sort on the inputs. Joining



these two tables with a merge join is less likely, unless an ORDER BY clause on the query is
used. In this case the query optimizer will decide if a merge join is more efficient than nested
loops or hash.

So how does a merge join work? Basically, the two tables being joined are visited once each.
The scan count for each table is one. This is shown in Figure 4.10.
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Figure 4.10: Basic merge join algorithm
The algorithm for a one-to-many merge join is as follows:

e Read arow from Table 1.

e Read arow from Table 2.

e If'the join column values are equal, return all the matching rows.

o Ifthe value from Table 1 is < the value from Table 2, read the next row from Table 1.
o Ifthe value from Table 2 is < the value from Table 1, read the next row from Table 2.

The query optimizer carries on, stepping along each table until the processing is complete.
Hash joins

In my experience, hash joins are used by the query optimizer frequently in SQL Server
2000—somewhat more, in fact, than merge joins. Of course, this may not be the case with
your application. With a hash join, there are two inputs: the build input and the probe input.
The build input is typically the smaller table, although this may not be the table that uses
fewer data pages on disk. Rather, it is the table with the least rows after selection criteria in
the WHERE clause have been considered by the query optimizer. An interesting consideration
with hash joins is that there need be no useful indexes on the tables to be joined. This means
that the hash join mechanism can be used to join any two nonindexed inputs. This is very
useful, because this is exactly the form that intermediate results in the query execution plan
take. We will see examples of this later. The equality operator must be used in the query to
join the tables; otherwise, a hash join cannot be used.

Assuming that the query optimizer has chosen the smaller table to be the build input, it now
reads each row in turn from the table. For each row read, the value in the join column is
processed by a hashing algorithm. Hashing algorithms apply some function to the input value
to arrive at an output value. The important consideration is that when the same value is input
to the hashing algorithm later, the value output is the same as was previously output.



In a hash join, the value returned by the hashing algorithm is used to identify a cell in memory
known as a hash bucket. The row from the build input is then written into this hash bucket (at
least the columns of interest to the query are). The number of hash buckets is a function of the
size of the build input. It is best if the query optimizer can hold all of the hash buckets (the
build input) in memory. It is not always possible to do this, and therefore several variations of
the basic hash algorithm exist to facilitate the storing of hash buckets to disk. Two of these
mechanisms are known as a Grace Hash Join and a Recursive Hash Join.

Once the build input has completed, the probe input phase starts. Each row in the probe input
(the bigger table) is read, and the value of the join column is input to the same hash algorithm.
The resulting value again identifies a hash bucket. The query optimizer then checks the hash
bucket to see if there are any rows in it from the build input with the same join column value.
If there are, the row is retrieved from the hash bucket and, with the row from the probe phase,
returned to the query. If there is no match, the row may be discarded depending on the type of
join being performed.

With a hash join, both tables are visited just once—that is, each has a scan count of one.
Memory is needed for the hash buckets, so hash joins tend to be memory and CPU intensive.
They typically perform better than merge joins if one table is large and one is small, and they
are better than nested loops joins if both tables are large. However, because the build input is
performed before any rows are returned, hash joins are not efficient when the first row of the
join must be retrieved quickly.

Figure 4.11 shows a build input being processed. A row has been read with a value of 3 in the
join column. This is hashed to a value of 11, and the row (relevant columns) is written into the
hash bucket. Later, the probe input is processed. A row is read with a value of 3 in the join
column. This is hashed to a value of 11, and the query optimizer checks to see if there is a
matching row in the hash bucket from the build input. There is, so the rows are concatenated
and returned to the query.
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Figure 4.11: Basic hash join algorithm

The hash join mechanism, as previously mentioned, can be used to join nonindexed inputs.
One example of this is when the query optimizer has created a plan that involves two sets of
index pointers, and pointers need to be found that exist in both sets—that is, the set



intersection. Hashing is also useful when the query contains an aggregate operator—for
example, SUM or MAX with a GROUP BY. Using SUM as an example, suppose we want to
find the sum of the bank balances for the accounts managed by each branch on a per branch
basis, as follows:

SELECT branch no, SUM(balance)
FROM accounts
GROUP BY branch no

The query optimizer may choose to create a query execution plan using a hashing mechanism.
The build input creates a set of hash buckets and then reads each row in turn. The branch
number of the first account (the GROUP BY column) will be hashed, and the branch number
and account balance values will be written into the appropriate hash bucket. This process will
continue for each row. However, if a branch number is found to be present already in a hash
bucket, the balance will be added to the value present. Finally, when all the rows have been
retrieved, the hash buckets are scanned and the branch number values returned with their
sums.

Note This mechanism will produce a nonordered output, so, as always, use an ORDER BY
clause if you wish the output to be ordered.

4.3.5 Tools for investigating query strategy

We have now discussed the steps that the query optimizer performs during query
optimization, namely:

e Query analysis
o Index selection
e Join order selection

To facilitate performance, tuning, and optimization it is essential that we are able to see the
decisions that the query optimizer has made so that we can compare the decisions with what
we expect. We also need to be able to measure the work done in executing the query so we
can compare the effectiveness of different indexes.

Note You should always calculate a rough estimate of the logical reads a query should use. If
the logical reads used differ by a large amount, it could be that your estimate is very
inaccurate or, more likely, the query execution plan is not what you expected!

There are a number of tools at our disposal for checking what the query optimizer is doing.
There are various options we can set in the Query Analyzer, the graphical query execution
plan, and the SQL Server Profiler. The SQL Server Profiler is discussed in Chapter 7. We will
focus our discussion here on the graphical query execution plan, but, first, let us investigate
the SET statements and options available to us.

SET SHOWPLAN_TEXT { ON | OFF }
When SET SHOWPLAN TEXT is set on, information is displayed pertaining to the query

execution plan used. The query is not executed. This statement must be the only statement in
the query batch.



Suppose we execute the following query when SET SHOWPLAN TEXT ON has been
executed:

SELECT * FROM accounts WHERE balance = 0
The following output will result:

StmtText

select * from accounts where balance = 0

(1 row(s) affected)

StmtText

| --Table Scan (OBJECT: ([BankingDB]. [dbo]. [accounts]),
WHERE: ([accounts] . [balance]=Convert ([@1])))

Note that the output has been wrapped to fit on the page. The text of the query is repeated and
then information pertaining to the query execution plan is displayed. This contains
information such as the logical and physical operators used (described shortly) and other
information pertinent to the plan. Since this statement is designed to be used primarily with
Microsoft MS-DOS applications, such as the osql command-line utility, we will not spend
any more time on it.

SET SHOWPLAN_ALL { ON | OFF }

When SET SHOWPLAN_ALL is set on, detailed information is displayed pertaining to the
query execution plan used. The query is not executed. This statement must be the only
statement in the query batch.

Suppose we execute the following query when SET SHOWPLAN ALL ON has been
executed:

SELECT * FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE balance = 100

The output will be returned in the form of a rowset that can be accessed by programs. There is
too much information returned to display it across the page, so we will break it down into its
constituent parts. Rather than use the previous SQL statement, we will use a slightly more
complex one involving an inner join of the Customers and Accounts tables. We are not too
concerned with the reason a particular plan was chosen here—the goal of this example is
merely to show the output from this SET statement. Ultimately, I find the graphical query
execution plan much easier to use and I will focus on that shortly.

StmtText

SELECT * FROM customers C INNER JOIN accounts A ON C.customer no =
A.customer no WHERE balance = 100
| -——Bookmark Lookup (BOOKMARK: ([Bmk1000]),
OBJECT: ([BankingDB] . [dbo] . [customers] AS [C1))
| --Nested Loops (Inner Join, OUTER REFERENCES: ([A].[customer no]) WITH
PREFETCH)



| --Table Scan (OBJECT: ([BankingDB]. [dbo]. [accounts] AS [A]),
WHERE: ([A] . [balance]=100.00))

| -—Index Seek (OBJECT: ([BankingDB] . [dbo]. [customers]. [nciCustomerNo]
AS [C]), SEEK: ([C].[customer no]=

[A].[customer no]) ORDERED FORWARD)

I have wrapped the output so this StmtText column can be read completely. This is how it
looks with no wrap, so it can easily be matched with the other columns I will discuss. I have
had to truncate the text to fit it on the page.

SELECT * FROM customers C INNER JOIN accounts A ON C.customer no =
A.customer no WHERE balance = 100
| -——Bookmark Lookup (BOOKMARK: ([Bmk1000]),
OBJECT: ([BankingDB] . [dbo] . [customers] AS [C1))
| -—-Nested Loops (Inner Join, OUTER REFERENCES: ([A].[customer no]) WITH

PREFETCH)

| --Table Scan (OBJECT: ([BankingDB]. [dbo]. [accounts] AS [A]),
WHERE: ([A] . [balance]=100.00))

| -—Index Seek (OBJECT: ([BankingDRB]. [dbo]. [customers].[nciCustomerNo]
AS [C]), SEEK: ([C].[customer no]l=

This StmtText column repeats the SQL statement in the first row of the column. Subsequent
rows in the display, known as PLAN ROWS, contain a description of the operation taking
place. This column contains the physical operator and may or may not also contain the logical
operator. So what are physical and logical operators? The physical operator describes the
physical mechanism by which the operation was performed. In our example we can see
physical operators such as Nested Loops, Table Scan, and Index Seek. Logical operators
describe the relational operation being performed—in our example, an Inner Join. Often, there
is no separate logical operator, since the logical operation results in a number of steps—each
representing physical operations. In our example, there is no logical operator mentioned in the
line that represents the Table Scan physical operation.

Other information is also often present in the StmtText column. In our example, we can see
that the row containing the Index Seek physical operator also names the index in question—
nciCustomerNo—and the column used in the predicate—customer no—as well as the table
name. The row containing the Nested Loops physical operator also specifies WITH
PREFETCH, which means that asynchronous read ahead is being utilized (see Chapter 5).
The information in the StmtText column is also repeated in other columns, as we shall now
see.

Note that the output is in the form of a hierarchical tree with the SQL statement itself at the
top of the tree. I find that decoding the hierarchy can sometimes be confusing, but, again, as
we shall see, the graphical query execution plan will help us here. It is often best, however, to
start looking at the deepest level in the hierarchy. This represents the basic operations against
tables and indexes, which together form the basic building blocks of the query execution plan.
Other steps will utilize these basic steps until the result of the query is returned. To assist in
understanding the hierarchy, the next set of columns lend a helping hand.

StmtId NodeId Parent PhysicalOp LogicalOp

1 0 NULL NULL

3 1 Bookmark Lookup Bookmark Lookup
17 5 3 Nested Loops Inner Join

7 5 Table Scan Table Scan



17 8 5 Index Seek Index Seek

The Stmtld is a number that identifies the statement in the batch of SQL statements if there is
more than one SQL statement in the batch. This groups all the steps together for the one
statement. The Nodeld is a number that identifies the step in the query execution plan, and the
Parent is the node ID of the parent step. Using these numbers, the position of a step in the
hierarchical tree can be ascertained. The PhysicalOp and LogicalOp columns contain the
physical and logical operators as described above.

Argument

BOOKMARK: ( [Bmk1000]), OBJECT: ([BankingDB]. [dbo].[customers] AS [C])

OUTER REFERENCES:([A].[customer_no]) WITH PREFETCH

OBJECT: ([BankingDB] . [dbo] . [accounts] AS [A]), WHERE: ([A].[balance]=100.00)
OBJECT: ([BankingDB] . [dbo] . [customers] . [nciCustomerNo] AS [C]),

OBJECT: ([BankingDB] . [dbo] . [customers]. [nciCustomerNo] AS [C]),

SEEK: ([C] . [customer no]=[A].[customer no])

ORDERED FORWARD

This column displays extra information concerning the operation, as described previously.

The next set of columns includes the values used by the operator; they are typically columns
from a SELECT list or WHERE clause. Internal values may also be represented here. In our
example, the * has been expanded to the actual list of columns.

DefinedValues

[C].[customer no], [C].[customer fname], [C].[customer lname],
[C].[customer notes]

NULL

[A].[account no], [A].[customer no], [A].[branch no], [A].[balance],
[A].[account notes]

[Bmk1000]

Next we see columns that are concerned with the estimated cost of the query.

EstimateRows EstimateIO EstimateCPU AvgRowSize TotalSubtreeCost
1988.1769 NULL NULL NULL 1.4232613
1988.1769 6.2500001E-3 2.1869945E-3 886 1.4230624
1988.1769 0.0 8.3105788E-3 445 1.4146254
1988.1769 0.60027075 0.01378925 435 1.22812

1.0 6.3284999E-3 7.9603E-5 19 0.1661949

The EstimateRows column contains the number of rows the query optimizer expects the
operator to return. In our example, we are looking at 1,988 rows estimated for all the
operators except the Index Seek. The 1,988 estimate comes from the fact that the query
optimizer estimates that this number of Account table rows will have a balance of 100. The
value of 1 from the index seek indicates that the query optimizer knows that for each row
from the Accounts table a maximum of one row can be returned from the Customers table (it
has a unique index on the customer no column).



How many rows are actually returned? How many customer accounts have a balance of
exactly 100? The answer in our database is, in fact, zero! The query optimizer estimate is very
inaccurate. Why? We shall see shortly!

The EstimatelO column contains the estimated 1/O cost for the operator. In our example, the
cost estimates are small numbers, so what do the values represent? The numbers are weighted
by some undocumented weighting factor. Microsoft does not publish the weighting factor,
since they want the ability to adjust it to their heart's desire. This means that it is practically
impossible to translate the EstimatelO value into logical reads. However, it is possible to
compare these numbers with one another, and we know the lower the number the lower the
cost.

The EstimateCPU column contains the estimated CPU cost for the operator. In our example,
the cost estimates are again small numbers, and, again, the numbers are weighted by some
undocumented weighting factor. This means that it is not possible to translate the
EstimateCPU value into CPU milliseconds. Again, it is possible to compare these numbers
with one another, and, again, the lower the number the lower the cost. Using these two
estimates we can easily see the most expensive operation in terms of /O and CPU in a query.

The AvgRowSize is the estimated average row size (in bytes) passing through the operator. In
our example, rows from the Accounts table are estimated to be 435 bytes in length. The
output of the Index Seek operator is an index entry (key plus pointer) of 19 bytes. Once the
Customers table row has been retrieved from the data page (the Index Lookup) and joined
with the Accounts table row, the combined size is estimated at 886 bytes.

The TotalSubtreeCost column contains the estimated total cost of the operator and the cost of
all its children. This is derived from the EstimatelO and EstimateCPU columns, and, again,
some mystery weighting factor is used. This number, though, represents a cost value that
combines the I/O and CPU cost and is very useful when looking for the operation in a query
that is using the lion's share of the query resource. The OutputList column represents a list of
the columns that will be displayed by the query.

OutputlList

NULL

[C].[customer no], [C].[customer fname], [C].[customer lname],
[C].[customer notes], [A].[account no],

[A].[customer nol], [A].[branch no], [A].[balance], [A].[account notes]
[Bmk1000], [A].[account no], [A].[customer no], [A].[branch no],
[A]. [balance], [A].[account notes]

[A].[account no], [A].[customer no], [A].[branch no], [A].[balance],
[A].[account notes]

[Bmk1000]

Warnings Type Parallel

EstimateExecutions

NULL SELECT 0 NULL
NULL PLAN_ROW 0 1.0
NULL PLAN_ROW 0 1.0
NO STATS: ([accounts] [customer no], PLAN ROW 0 1.0

[accounts] . [balance])
NULL PLAN ROW 0 1988.1769



The Warnings column contains any warning messages issued by the query optimizer for the
operation. In our example, the only operation to be associated with a warning is the Table
Scan operation, where the Accounts table is being scanned looking for rows with a balance of
100. We shall look at this warning in the graphical query execution plan shortly, but for now
let us just say that the query optimizer is telling us why the estimate of the number of rows
returned is so inaccurate—can you guess what the warning means?

The Type column merely flags a row as being the parent row for the query—a SELECT,
INSERT, UPDATE, or DELETE, for example, or a row representing an element of the query
execution plan—PLAN ROW.

The Parallel column contains a value of 0 or 1 specifying whether the operator can execute in
parallel (1) or not (0).

The EstimateExecutions column is the estimated number of times the operator will execute
during the query. In our example, the Table Scan operator will execute once. However, for
each row in the Accounts table being scanned, the Customer table will be accessed (it is the
inner table in a nested loops join). For this reason, the EstimateExecutions column for the
Index Seek operator contains the value 1988.1769.

So, as we have seen, the SET SHOWPLAN ALL statement produces a large amount of
information concerning the query execution plan. As I've hinted at a number of times now, |
feel this information is best displayed through the graphical query execution plan. Before we
take a look at this there are more SET statements that are useful—so let's have a look at them.

SET STATISTICS PROFILE { ON | OFF }

The SET SHOWPLAN TEXT and SET SHOWPLAN_ ALL statements we have just looked
at both display information concerning the query execution plan adopted by the query
optimizer. Neither statement actually allows the query to execute. This has a number of
ramifications. Consider the following stored procedure:

CREATE PROCEDURE usp testplan
AS

CREATE TABLE #tl (cl int)
SELECT cl from #tl

RETURN

Suppose we now issue a SET SHOWPLAN ALL ON and execute the stored procedure, as
follows:

EXEC usp_ testplan

Server: Msg 208, Level 16, State 1, Procedure
usp_testplan, Line 4
Invalid object name '#tl1l'.

Because the SET statement suppresses the execution of the stored procedure, the temporary
table #t1 is not created, and it is not therefore possible to display plan information for the
SELECT statement.



Another problem caused by the SET statement suppressing query execution is that we cannot
produce information about the logical reads actually used by the query, nor can we see how
many rows pass through an operator as opposed to an estimated number.

Enter SET STATISTICS PROFILE. This statement does not suppress the execution of the
query. As well as returning the same information as SET SHOWPLAN_ ALL, it also displays
two extra columns—Rows and Executes—which contain the actual number of rows returned
and the actual number of times the operator executed during the query. In other words, the
equivalent of the EstimateRows column and the EstimateExecutions column, respectively.

SET STATISTICS 10 { ON | OFF }

Another SET statement that is useful when investigating different query optimizer strategies
is SET STATISTICS I0. This displays the count of table accesses (scans), logical and
physical reads, and read ahead reads for each Transact-SQL statement, as follows:

SET STATISTICS IO ON

SELECT C.customer lname, A.account no, A.balance
FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE
balance BETWEEN 100 AND 120

customer lname account no balance

Burrows 107540 118.0400

(56 row(s) affected)

Table 'customers'. Scan count 56, logical reads 181,
physical reads 0, read-ahead reads O.
Table 'accounts'. Scan count 1, logical reads 1569,

physical reads 0, read-ahead reads O.

In the above example, the Accounts table experienced a scan count of 1 and the Customers
table experienced a scan count of 56. The phrase scan count has nothing to do with the use of
table scans; it merely states how many times the table was accessed in the query. In our
example, the Accounts table is processed as the outer table of the (nested loops) join and is
therefore accessed only once. For each qualifying row in the Accounts table, the Customers
table is accessed. In this example there are 56 qualifying rows in the Accounts table, so the
scan count of the Customers table is 56.

There are 1,569 pages in the Accounts table. As this is table scanned, SQL Server 2000 must

retrieve every page—hence, the logical read value of 1,569. The Customers table experiences
181 logical reads, approximately three per scan. This is because the index is two levels deep,

so two index pages and one data page will be fetched on each scan.

Since the data and index pages are already cached in memory, the physical reads counter is
zero. A physical read represents a database page request that is not found in cache, so SQL
Server 2000 has to fetch it from disk. Read-ahead reads will be discussed in Chapter 5.



Note The scan count may sometimes be larger than you expect. For example, you may expect
the scan count for a table to be one. However, the query optimizer has created a parallel
execution plan and two parallel threads access the table—hence, it has a scan count of
two.

SET STATISTICS TIME { ON | OFF }

The SET STATISTICS TIME ON statement displays the time (in milliseconds) that SQL
Server took to parse the statement, compile the query optimizer strategy, and execute the
statement, as follows:

SELECT C.customer lname, A.account no, A.balance
FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE
balance BETWEEN 100 AND 120

SQL Server parse and compile time:
CPU time = 10 ms, elapsed time = 10 ms.

customer lname account no balance

Burrows 107540 118.0400
(56 row(s) affected)

SQL Server Execution Times:
CPU time = 29 ms, elapsed time = 29 ms.

I personally do not use this statement. Whereas logical reads is a constant and will be the
same for a given access strategy at any time irrespective of other work on the server, this is
not true for the statistics time. For that reason I do not find it very useful. If I really want to
compare the elapsed times of queries, I often use my own statements, as follows:

DECLARE
@time msg CHAR(255),
@start time DATETIME

SELECT @start time = GETDATE ()
-- Execute the query we wish to test

SELECT C.customer lname, A.account no, A.balance
FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE
balance BETWEEN 100 AND 120

-—- Calculate the query duration

SELECT @time msg = 'Query time (minutes:seconds) ' +
CONVERT (CHAR (2) ,
DATEDIFF (ss,@start time, GETDATE ())/60) +
e+
CONVERT (CHAR (2),
DATEDIFF(SS,@start_time,GETDATE())%60)



print @time msg

customer lname account no balance

Burrows 107540 118.0400

(56 row(s) affected)

Query time (minutes:seconds) 0 :16

Of course, the Query Analyzer makes life easy for us now, since we can merely look in the
bottom right area of the query window where the elapsed time of a query is displayed. Still,
the above code is useful in scripts.

Note The SQL Server 2000 Profiler will also display the CPU, duration, and I/O usage of a
query. It can also display the query execution plan. This will be described in Chapter 7.

The graphical query execution plan

We have been discussing SET statements so far in this chapter that allow us to check the
query execution plan that the query optimizer has created. As mentioned on a number of
occasions, I find this easier to do with the graphical query execution plan, and this will now
be our focus. As with SET SHOWPLAN TEXT and SET SHOWPLAN_ ALL, displaying the
estimated execution plan does not cause the query to execute. However, as with SET
STATISTICS PROFILE, it is possible to execute the query and view the query execution plan
afterwards.

To display the estimated execution plan the keyboard shortcut CTRL+L can be used, or
choose Display Estimated Execution Plan from the Query menu. Alternatively, just click the
Display Estimated Execution Plan button on the toolbar. Let us take a trip around the
graphical display, and then we will look at the graphical query execution plans we might
encounter when analyzing our queries. We'll use the inner join we previously used for the
SET SHOWPLAN_ ALL statement, as follows:

SELECT * FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE balance = 100

The estimated execution plan for this statement is shown in Figure 4.12.

Figure 4.12: A graphical estimated execution plan



The query execution plan is read from right to left. We can see the operators that were rows in
the SET SHOWPLAN ALL output. The hierarchical tree is displayed on its side with the top
of the tree on the left—the SELECT statement. On the far right of the display the children at
the lowest branches of the tree are displayed. The children at the same level are displayed
vertically above one another. The flow of rows, index pointers, and so on is illustrated by the
arrows joining the operators. Note that these arrows vary in width. This variation is
proportional to the number of rows passed to the next operator up the tree.

At the top of the display is a heading specifying that this is query 1. We only have one query
in our query batch, but if there were more than one query these would be labeled accordingly.
The query text is also displayed. More interestingly, the query optimizer has also estimated
the cost of the query relative to the cost of the batch. This is useful when you want to see
which query in the batch is the one that is the most expensive. In our example, having only
one query, the cost is 100 percent of the batch.

Different operations within a query are also costed relative to one another. In our example the
cost of the Table Scan is 86 percent of the cost of the query. Clearly, this operator is worthy of
some investigation if the query is performing badly.

The operators are named and represented by an icon. In the case of the nested loops join, the
icon represents a nested loop, and the name of the physical and logical operator are displayed
in the format physical/logical. In the case of the table scan, the physical operator Table Scan
is displayed. There is no logical operator as such; therefore it takes the same name as the
physical operator and just physical is displayed. In the case of the indexed access of the
Customers table, the icon representing an Index Seek is displayed and the index name in the
format table.index is displayed underneath. How do we know what these icons represent? In
the background of the display, if an icon or arrow is right-clicked, a menu appears. If Help is
chosen, a list of operators appears. Click on an operator and an explanation is displayed. You
will also notice that the displayed menu contains options for zooming, fonts, and managing
indexes and statistics.

What about the detailed information that was produced by SET SHOWPLAN ALL? Can the
graphical execution plan produce this information also? It can and all we have to do is move
the mouse pointer over the operator we are interested in—no click is needed. This is shown in

Figure 4.13.

.

Figure 4.13: Placing the pointer over an operator

As can be seen, lots of information pertaining to the operator is displayed. Pretty much all the
cost information and any other text that was displayed in the SET SHOWPLAN ALL are



displayed in this window. Note what happens when we move the mouse pointer over the
Table Scan operator. This is shown in Figure 4.14.

Figure 4.14: Placing the pointer over the Table Scan operator

A warning message is displayed (in red—but you can't see that!) telling us that statistics are
missing from the table. If we recall, the SET SHOWPLAN_ ALL output also had a warning in
the Warnings column of its output for this operator. We'll look at what the warning means
shortly, but for now let us just register that the graphical query execution plan displays
warnings and, in this case, suggests a course of action. Again, we can't see this, but on the
graphical display shown in Figure 4.12, the Table Scan and Cost: 86 percent text are also
displayed in red to draw our attention to the fact that this operator has warnings associated
with it.

If the mouse pointer is placed over an arrow, a window pops up—as shown in Figure 4.15.
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Figure 4.15: Placing the pointer over an arrow

This window displays information about the estimated number of rows being passed to the
next operator and the estimated row size.

Now that we know the format of the Display Estimated Execution Plan window, we can
investigate some query optimizer strategies. These strategies will be examples of the query
optimizer and index behavior we have discussed in this and the previous chapter. We will
start with simple examples and then move to more complex examples.

To refresh our memories, the BankingDB database definition is as follows:

CREATE TABLE customers
(

customer no INT NOT NULL,
customer fname CHAR (20) NOT NULL,
customer lname CHAR (20) NOT NULL,

customer notes CHAR (400) NOT NULL
)



CREATE TABLE accounts
(

account no INT NOT NULL,
customer no INT NOT NULL,
branch no INT NOT NULL,
balance MONEY NOT NULL,
account notes CHAR (400) NOT NULL

)

CREATE TABLE branches
(

branch no INT NOT NULL,
branch name CHAR (60) NOT NULL,
branch address CHAR(400) NOT NULL,
managers_name CHAR (60) NOT NULL

)
The Customers table contains 12,500 rows. Each customer has two accounts, so the Accounts
table contains 25,000 rows. The Branches table contains 100 rows. We will define indexes on
the tables as we go along. There are no indexes to start with. Also, the automatic updating and

creation of index statistics has been disabled.

To summarize, the tables after creation with no indexes are shown in Table 4.2.

Table 4.2: Attributes of the Tables in the BankingDB Database

Table Name Rows Data Pages
Accounts 25,000 1,570
Customers 12,500 834
Branches 100 8

Note that the number of pages used by a table will vary depending on what we have just done
to the table. For example, creating a clustered index on the Accounts table will increase the
Average Page Density and reduce the Average Bytes Free per Page (as reported by DBCC
SHOWCONTIG). This results in 1,390 pages being allocated to the Accounts table.

Let us now check the estimated query execution plan for various queries. Before we execute
the first query, we will make sure that the database option Auto create statistics is set to off.

Query 1: Find the accounts whose balances are $100

SELECT * FROM accounts WHERE balance = $100

Figure 4.16 displays the graphical query execution plan for query 1.

Figure 4.16: Graphical query execution plan for query 1



We can see immediately that the Table Scan operator is used. This is not unreasonable, since
we have no indexes present. The query optimizer has no choice but to perform a table scan.
Every page in the Accounts table will be retrieved to search for the accounts with a balance of
$100. If we check the Set statistics IO output, set within the Current Connection Properties
button in the Query Analyzer, we can verify this as follows:

Table 'accounts'. Scan count 1, logical reads 1570,
physical reads 0, read-ahead reads O.

Indeed, the logical reads number is the same value as the data pages in the table.

There are, in fact, zero rows returned by this query, but if we place the mouse pointer over the
(fairly wide) arrow, the pop-up window shows that the estimated number of rows passed to
the SELECT statement operator at the top of the tree is somewhat more than this, as Figure
4.17 shows.

Estimated row count: 1,5
Estimated row sire:

Figure 4.17: Graphical query execution plan for query 1 showing estimated rows

The estimated rows value is 1,988, but the actual number of rows returned is zero. The query
optimizer's estimate is very inaccurate Why is this?

The clue lies with the Table Scan operator. The Table Scan and Cost: 100 percent are actually
displayed in red indicating that a warning is associated with this operation. If we pass the
mouse pointer over the operator, we can see a warning message—as shown in Figure 4.18.
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Figure 4.18: Graphical query execution plan for query 1 showing a warning

The query optimizer is telling us that there are no statistics that it can use. Since there are no
indexes, this is no surprise. The query optimizer is also telling us, though, that there are no
column statistics either. Because of this lack of statistics, the query optimizer has used its
internal magic numbers to estimate that the equality operation (balance = $100) will return



about 8 percent of the table. I have seen this figure closer to 10 percent, but the fact is, it was
completely wrong.

The query optimizer warning also tells us how to solve the problem. It suggests that we might
choose Create Missing Statistics from the context (right-click) menu. This will create column-
level statistics for the balance column and is equivalent to executing the Transact-SQL
statement CREATE STATISTICS.

If we take this option, the Create Missing Statistics dialog box is displayed—as shown in
Figure 4.19.
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Figure 4.19: Create missing statistics dialog box

We'll sample all of the data, but we'll leave the name of the statistics group to be the default of
statistic_balance.

Now, if we look at the estimated execution plan again, we'll see that the arrow is narrower, as
shown in Figure 4.20.

Query 1: Query coat (relative cto the batch] @ 100.00%

xlect ' from accountcs vhere balance=5100.00
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Figure 4.20: Estimated execution plan after missing statistics have been created

Passing the mouse pointer over the arrow shows the estimated number of rows to be one,
which is somewhat more accurate. This example showed us a scenario where the query
optimizer flagged the fact that it would really like some statistics. In reality this is not likely to



be the case. The query optimizer would normally have created the statistics itself without
asking us to create them for it. The only reason it didn't this time was because we suppressed
this capability by setting the database option Auto create statistics to off. Note that, as
discussed previously, these automatically created column statistics will have a name that is
prefixed with WA.

OK, so did this improve the efficiency of the plan? Will the rows be retrieved any faster? No,
of course not. Since there are no indexes, a table scan still has to be performed and column-
level statistics in this scenario are not useful. However, in many scenarios this is not the
case—column-level statistics are very useful and later we will see the query optimizer create
column-level statistics dynamically.

Let us give the query optimizer more options to play with. We'll create a nonclustered index
on the balance column. There are no reasons why two bank accounts should not have the
same balance value, so this index cannot be a unique index.

If we execute our query now, the estimated execution plan will be as shown in Figure 4.21.
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Figure 4.21: Graphiéai query execution p-lan for query 1 with a nonclustered index present on
the balance column

We can immediately see that the Table Scan operator has disappeared. If we read from right
to left, the first operator we come to is an Index Seek. Passing the mouse pointer over this
operator gives us the window that contains cost information. There is a one-line explanation
of the operator: Scanning a particular range of rows from a nonclustered index.

If we look at the Argument: at the bottom of the window, we see that it names the index and it
also contains a SEEK:() predicate. The predicate is [accounts].[balance]=100; in other words,
the filter in the WHERE clause of the query. What this means is that the index is traversed
using the filter value.

In Chapter 3, the algorithm used by SQL Server was to look for the highest key value not
greater than the lowest key we wish to retrieve. Using this algorithm SQL Server traverses the
nonclustered index to the leaf-level index pages. Any index entries satisfying the search
predicate will now be retrieved. In other words, a set of pointers will be retrieved. This is the
role of the Index Seek operator—to collect the pointers for qualifying rows ready to read the
data pages containing those rows. This was shown in Figure 3.29. The index seek actually
traverses the three levels of index pages ready to access the data pages.

If we continue to read from right to left, the next operator we come to is a Bookmark Lookup.
Passing the mouse pointer over this operator the window appears that contains cost
information. There is a one-line explanation of the operator: Use a Bookmark (RID or
Clustering Key) to look up the corresponding row in the Table or Clustered Index.



If we look at the Argument: we see at the bottom of the window that it names the table whose
data pages we are reading. So, this Bookmark Lookup operator is using a bookmark (which is
a fancy name for a pointer) to look up the data rows from the table. Of course, as we have
discussed previously, if there was a clustered index present on the table, the pointer in the
nonclustered index leaf entries would be the clustered index key. There is no clustered index
present on our table, so the pointer addresses the row on the data page directly with a Row ID.

Again, referring back to Figure 3.29, each index entry that matches the search predicate will
point to a data row, and a logical read will be required to fetch the data page in which the row
resides.

If we position the mouse pointer on the Bookmark Lookup icon, we see that the Estimated
row count is one. This is shown in Figure 4.22.

Figure 4.22: Graphical query execution plan for query 1 showing estimated rows when a
nonclustered index is used

The query optimizer has estimated that one pointer is going to be passed to the Bookmark
Lookup operator. In other words, the query optimizer estimates that one row will be returned.
Of course, one pointer will return exactly one row, and so the arrow connecting the Bookmark
Lookup operator to the SELECT statement will also have an Estimated row count of one. This
is a pretty accurate estimate, since we know zero rows will actually be returned.

It is interesting to note the relative costs of the two operators. They're pretty much the same.
Fetching one data page in the Bookmark Lookup and fetching some index entries in the Index
Seek are fairly trivial operations with approximately equal costs.

We can quickly change things so that fetching data pages in the Bookmark Lookup is not

trivial, and we'll do this with query 2. Before we do, let us just look at the Set statistics IO
output for query 1 with our nonclustered index:

Table 'accounts'. Scan count 1, logical reads 2, physical
reads 0, read-ahead reads 0.

This is somewhat less than the table scan. We have used just two logical reads.
Query 2: Find the accounts whose balances are between $100 and $200

The following range retrieval actually returns 253 rows from the Accounts table.



SELECT * FROM accounts
WHERE balance BETWEEN $100 AND $200

The estimated execution plan is shown in Figure 4.23.

Figure 4.23: Graphical query execution plan for query 2 showing estimated rows when a
nonclustered index is used for a range retrieval

The plan is similar to the plan for query 1. The operators are the same but the arrows are
wider. This is because the query optimizer has estimated that a larger number of rows will be
returned by this query. The estimate is 263 rows, which is fairly accurate. Note, however, the
distribution of costs across the operators. The Index Seek costs 1 percent of the query,
whereas the Bookmark Lookup now costs 99 percent. This illustrates an important point—
once a query starts to retrieve more than a few rows, the nonclustered index starts to become
expensive, since a data page will need to be retrieved for each qualifying row. This is because
each retrieval is a logical read. If we look at the Set statistics 1O output for query 2 with our
nonclustered index, we see the following code:

Table 'accounts'. Scan count 1, logical reads 256,
physical reads 0, read-ahead reads O.

We can see that the logical read value has increased. As the number of rows satisfying a range
retrieval becomes large, so does this logical read value. Eventually, the query optimizer will
decide that a table scan is more efficient than using the index. Let us test this theory. We will
increase the range slightly, as follows:

SELECT * FROM accounts
WHERE balance BETWEEN $100 AND $220

The estimated execution plan is shown in Figure 4.24.

Figure 4.24: Graphical query execution plan for query 2 showing the estimated execution plan
when a nonclustered index is used for a larger range retrieval

The following code is the new Set statistics 10 output for query 2:

Table 'accounts'. Scan count 1, logical reads 1570,
physical reads 0, read-ahead reads O.

For a small increase in the range, the query optimizer has decided that a table scan is now a
more efficient option.



Query 3: Find the accounts whose balances are between $100 and $200 and whose customer numbers are
between 7000 and 8000

SELECT * FROM accounts
WHERE balance BETWEEN $100 AND $200
AND
customer no BETWEEN 7000 AND 8000

In this query, not only is there a filter on the balance column, but there is also a filter on the
customer_no column. The query plan is shown in Figure 4.25.
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Figuré 4.25: Graphical query execution plan for query 3 showing the addition of a filter
operator

The query optimizer has again chosen the nonclustered index on the balance column to find
the rows that satisfy the range of balances. As in the previous query, the Bookmark Lookup
operation will retrieve the data pages to fetch the Account table rows. However, now a Filter
operator is applied to find the rows that also satisfy the range of customer numbers. The query
optimizer text for the Bookmark Lookup is in red, indicating a warning. This is shown in
Figure 4.26. The reason for the warning is that the query optimizer would like to know how
many Account table rows have a customer number in the range, but it has no column statistics
for this column. It therefore has to estimate how many rows the Filter operation will return.
The only reason it didn't automatically create the missing column statistics is because we
suppressed this capability by setting the database option Auto create statistics to off.

Figure 4.26: Graphical query execution plan for query 3 showing the bookmark warning

This indexing strategy may be very wasteful. Consider the case where the customer number
filter discards most of the rows that satisfied the balance range. In this case the Bookmark
Lookup will retrieve many data pages, only to find that they did not contain rows that had a
qualifying customer number. So what can we do? One possibility is to change the index on
the balance column to a composite index containing the balance and customer no columns. If
we do this, the query plan becomes the one shown in Figure 4.27. We can see that the Filter
operator has now disappeared. The query optimizer can select the qualifying rows before the
data pages are requested. It is interesting to note that the query plan contains a Missing
Statistics warning on the Index Seek operator.
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Figure 4.27: Graphical qﬁery execution plan for query 3 with a composite index

Why is this? As we have previously discussed, index statistics are only held for the first
column of a composite index. The query optimizer would like us to let it have statistics for the
second column, the customer no column. The query optimizer could have calculated the
statistics for itself, but, again, it didn't automatically create the missing column statistics
because we suppressed this capability by setting the database option Auto create statistics to
off.

So, the composite index is a useful index for our query. In fact, the addition of the
customer no column to the index results in 22 logical reads being performed instead of 256
when just the balance column was present. However, there is one problem with this composite
index. Consider the following query:

SELECT * FROM accounts
WHERE customer no BETWEEN 7000 AND 8000

Because we are not supplying a value for the balance column, the query optimizer cannot use
the index. In fact, a table scan is performed.

So what other options do we have? Let us create a new nonclustered index on the
customer_no column and return our original index consisting of just the balance column. We
now have two indexes. This will support the above query if the range is not too large. But
what about our original query?

SELECT * FROM accounts
WHERE balance BETWEEN $100 AND $200
AND
customer no BETWEEN 7000 AND 8000

Let us look at the query plan, which is shown in Figure 4.28.
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Figure 4.28: Graphical query execution plan for query 3 with two nonclustered indexes

We can see that something interesting has happened. First of all, we can see that on the right
side of the query plan there are two operators at the same level in the tree, with both having
the Hash Match physical operator (Inner Join logical operator) as a parent. These two
operators are both Index Seek operators. The query optimizer has been able to utilize both



indexes to perform an index intersection, as described in Chapter 3. What has happened is that
the query optimizer has obtained two sets of pointers from each index for key values
satisfying each key range. It knows that for a row to satisfy the WHERE clause, a pointer
must be present in both sets.

To determine this, a Hash Match operation is performed on the two sets of pointers using the
hash algorithm described earlier in the chapter. Once the qualifying pointers have been
obtained, a Bookmark Lookup operation is performed to retrieve the relevant data pages to
fetch the rows. The important point to note here is that no data rows are fetched and then
discarded. The Hash Match operation ensures that all nonqualifying rows are eliminated
before data pages are fetched. This query plan used 28 logical reads and the indexing strategy
supports queries specifying only the balance column, only the customer no column, or both.
Since there are two indexes, row inserts and deletes will be more costly than in the case of the
single composite index. Note that the query optimizer could perform index intersections using
more than two indexes, but I have seldom seen this happen.

Query 4: Find the accounts whose customer numbers are between 7000 and 8000, displaying the customer
number and branch Number

SELECT customer no, branch no FROM accounts
WHERE customer no BETWEEN 7000 AND 8000

In this example, we have moved away from the * in the SELECT list and explicitly specified
two columns. Generally, I would not advise the use of * in code. Using * could cause
problems if one day someone adds an extra column (that someone might be the wizard that
sets up merge replication as it adds a rowguid column). It also does not provide good
documentation. We are interested in indexing strategies, and there may be a detrimental effect
here. A query that might otherwise be covered will certainly not be if the developer is lazy
and uses the * when a small number of columns are actually needed.

If we execute the above query, a table scan is performed even though there is a nonclustered
index on the customer no column. This is because 2,002 customers are returned by the query
and so the query optimizer has decided to perform a table scan using 1,570 logical reads. Now
let us change the index on the customer no column to a composite index containing the
branch no column as the second key column. The resulting query plan is shown in Figure
4.29.

Figure 4.29: Graphical query execution plan for query 4 with a composite nonclustered index

The index is now covering the query so no data pages need to be retrieved, since the leaf-level
index pages will satisfy the query. The logical reads used has dropped to seven—a not
inconsiderable drop! Suppose we execute the following query:

SELECT customer no, branch no FROM accounts
WHERE branch no BETWEEN 1000 AND 1010



The index can still cover the query, but all the leaf-level index pages will have to be scanned.
This still only requires 60 logical reads. Let us drop all the indexes on the Accounts table and
create a clustered index on the branch no column and a nonclustered index on the
customer_no column. Let us repeat the following query:

SELECT customer no, branch no FROM accounts
WHERE customer no BETWEEN 7000 AND 8000

The query plan is shown in Figure 4.30. This looks a little surprising at first. The query
optimizer has chosen the nonclustered index that contains the customer no column.
Previously it performed a table scan. Furthermore, only eight logical reads were used. What
has happened?

Figufe 4.30: Graphicai ciuery execution plan for query 4 with a nonclustered index and a
clustered index

Let us think back to our discussion on clustered indexes, nonclustered indexes, and pointers.
If a clustered index is present on the table, then the nonclustered index leaf-level pointers will
be the clustered index key. In other words, our nonclustered index on the customer no
column will contain the branch_no column as a pointer. Therefore, the nonclustered index is
actually covering our query.

Query 5: Find the accounts that are managed by branch 1000

Since we have a clustered index on the branch _no column, let us investigate it.

SELECT * FROM accounts
WHERE branch no = 1000

The query plan is shown in 4.31. The operator is a Clustered Index Seek, which means that
the query processor will traverse the index using the key value until the appropriate data page
is found. If necessary, the next pointers on the data pages will then be followed to retrieve all
the qualifying rows. This query returned 250 rows for a cost of only 16 logical reads.
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Figﬁré 4.31: Graphiéal query execution plan for query 5 with a clustered index

Suppose the following query is executed:

SELECT * FROM accounts
WHERE customer no = 1000



The query plan is shown in Figure 4.32.
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Figuré 4.32: Graphical query execution plan for a clustered index seek

Since there is no index on the customer no column, we might expect to see a table scan
operation. However, we do not. Instead, we see a Clustered Index Scan operator. When there
is a clustered index present on a table, the table scan operation becomes a clustered index scan
operation. Traditionally the leaf level of a clustered index is considered to be the data pages of
the table, so a clustered index scan is effectively a table scan.

Query 6: Find the accounts whose balance falls between $100 and $150 or between $5,000 and $5,050

In this query we are using the OR operator. Whereas the AND operator tends to introduce
extra filter expressions that limit the rows in the query result, the OR operator tends to do the
opposite.

SELECT * FROM accounts

WHERE

balance BETWEEN $100 AND $150
OR

balance BETWEEN $5000 AND $5050

This query returns 262 rows. There are no indexes except the nonclustered index on the
balance column. The estimated query execution plan is shown in Figure 4.33.
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Figure 4.33: Graphical query execution plan for ORed filters on the same column

This is exactly the same estimated query execution plan as for query 2. The nonclustered
index has been used because it is more efficient than a table scan. Choosing two ranges on the
same column is the same as having a larger, single range as far as the query optimizer is
concerned. If we increase the number of ORed expressions, we will increase the number of
rows returned until a table scan is performed. A table scan is performed if the following
query, which returns 381 rows, is executed.

SELECT * FROM accounts

WHERE
balance BETWEEN $100 AND $150
OR

balance BETWEEN $5000 AND $5050
OR

balance BETWEEN $6000 AND $6050



Query 7: Find the accounts whose balance falls between $100 and $150 or that belong to customer
numbers in the range 500 to 550

In this query, we are using the OR operator again; however, this time two different columns
are being used. This means that an account may satisfy either condition or it may indeed
satisfy both conditions. The query is as follows:

SELECT * FROM accounts
WHERE
balance BETWEEN 100 AND 150 OR
customer no BETWEEN 500 AND 550

There is a nonclustered index present on the balance column and a nonclustered index present
on the customer no column.

The query returns 233 rows, and its estimated query execution plan is shown in Figure 4.34.
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Figure 4.34: Graphical query execution plan for ORed filters on different columns

There are similarities between this query execution plan and the query execution plan shown
in Figure 4.28, where two similar filter expressions were ANDed.

On the right hand of the query plan there are two operators at the same level in the tree, both
having the Concatenation operator as a parent. These two operators are both Index Seek
operators. The query optimizer has been able to utilize both indexes. What has happened is
that the query optimizer has obtained two sets of pointers from each index for key values
satisfying each key range. It knows that pointers from either set will point to account rows
that will satisfy the query, and the Concatenation operator will append the multiple inputs to
form a single output. In fact, if the mouse cursor is placed over the arrows entering the
Concatenation operator, the Estimated row count values are 125 and 99. If the mouse cursor is
placed over the arrow leaving the Concatenation operator, the Estimated row count value is
225.

The estimated query execution plan must take care of one other eventuality—the two inputs
may both return the same row if it satisfies both filter conditions. The Sort/Distinct Sort
operator takes care of this by removing any duplicate rows.

Again, if changes to the ORed expressions increase the number of rows returned, a table scan
will be performed. A table scan will also occur if any of the ORed expressions are not
supported by an index.

Query 8: Find the accounts for customer number 1000



Here we will start to use joins. To keep things simple we will use the * in the SELECT list.
Note that this will ensure that columns will be required from both tables. We will perform the
following join:

SELECT * FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE C.customer no = 1000

The query plan is shown in Figure 4.35.

Figure 4.35: Graphical query execution plan for a nested loops inner join

The indexes present on the Customers and Accounts tables are both nonclustered indexes on
the customer no column. In the case of the Customers table the nonclustered index is unique.
We can see that, reading from right to left, there are two inputs to the plan with the parent
being the Nested Loops physical operator. If the mouse pointer is placed over this operator,
the resulting display explains how it processes the join. This is shown in Figure 4.36.
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Figure 4.36: Graphical query execution plan showing the nested loops description

It states: For each row in the top (outer input), scan the bottom (inner) input and output
matching rows. So this is our classic nested loops join described earlier in the chapter. The
query optimizer has determined that the (unique) index on the customer no column in the
Customers table is highly selective, since it can, at most, return one row. The Customers table
has therefore been chosen to be the outer input. So, for each qualifying row in the outer
input—that is, for each Customer row—the customer number will be used to access the inner
input—that is, the Accounts table. The nonclustered index on the customer no column in the
Accounts table will be used to fetch the matching rows from the Accounts table. Note the Set
statistics 1O display, which is as follows:

Table 'accounts'. Scan count 1, logical reads 4, physical
reads 0, read-ahead reads 0.
Table 'customers'. Scan count 1, logical reads 3,



physical reads 0, read-ahead reads O.

Often the inner table will have a scan count greater than one, but, because the outer input can
only produce a maximum of one row, the scan count is, in fact, one. This means that the query
optimizer estimates that the inner table will be only be accessed once. Suppose we changed
the query, as follows:

SELECT * FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE C.customer no BETWEEN 1000 AND 1003

In this case, four customers are returned from the Customers table, and the scan count of the
Accounts table is, therefore, four, as shown in the following code:

Table 'accounts'. Scan count 4, logical reads 16,
physical reads 0, read-ahead reads O.
Table 'customers'. Scan count 1, logical reads 6,

physical reads 0, read-ahead reads O.

Why did the query optimizer choose a nested loops join? Ultimately because it decided that it
was the most efficient plan in terms of cost. There was a highly selective index on both tables.

However, suppose we increase the range of customer numbers, as follows:

SELECT * FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE C.customer no BETWEEN 1000 AND 1999

Now, if we check the query plan, we can see that the query optimizer has decided that the
nested loops join method is not the most efficient. There are 1,000 customers that satisfy the
query and a nested loop would result in the inner table being accessed 1,000 times. The query
optimizer has decided that a hash join is a better bet. The query plan is shown in Figure 4.37.

Figure 4.37: Graphical query execution plan showing a hash join

Again, we observe two inputs, but we can see that these are table scans. The parent operator
for the table scans is the Hash Match physical operator. If the mouse pointer is placed over
this operator, the resulting display explains how it processes the join. This is shown in Figure
4.38.
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Figure 4.38: Graphical query execution plan showing the hash join

It states: Use each row from the top input to build a hash table, and each row from the bottom
input to probe into the hash table, outputting all matching rows. This is the hash join we
described earlier in this chapter. The Set statistics 1O output is shown in the following code.
Notice that each table has a scan count of just one.

Table 'accounts'. Scan count 1, logical reads 1570,
physical reads 0, read-ahead reads 0.
Table 'customers'. Scan count 1, logical reads 840,

physical reads 0, read-ahead reads O.

Now both tables are accessed via a table scan. Does this mean that the indexes are redundant?
At first sight you might think the answer would be yes—but you would be wrong! The reason
is this: The query optimizer needs to know how many customers satisfy the query. It uses this
information to work out the table to use for the build input and the table to use for the probe
input and then, ultimately, the cost. Without these indexes it would need column statistics. We
have none, and we have not allowed the query optimizer to create them automatically.
Therefore, with no indexes, there are no statistics and the query optimizer might choose an
inefficient plan.

When is the query optimizer likely to choose a merge join? Let us change the query so there is
a requirement for the output to be sorted on the customer no column, as follows:

SELECT * FROM customers C INNER JOIN accounts A
ON C.customer no = A.customer no
WHERE C.customer no BETWEEN 1000 AND 1999
ORDER BY c.customer no

Let us also ensure that a clustered index on customer no is created on each table. We have
now created two inputs that are effectively sorted on customer no. If we execute the query,
the resulting query plan would be as shown in Figure 4.39. The query optimizer has still
decided that a hash join is the most efficient method.
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Figure 4.39: Graphical query execution plan showing the hash join

If we force a merge join strategy (we will see how later) we can compare the costs, as shown
in the following chart.

Join Type  Estimated Cost Logical IO CPU (ms)
Hash 1.54 2,408 120
Merge (M:M) 1.61 7,409 631

The hash join is a clear winner, so the query optimizer created the most efficient plan. But
why was the merge join more expensive? After all, the sorts are effectively already done. The
clue is in the Set statistics 1O output, which is as follows:

Table 'Worktable'. Scan count 1999, logical reads 5000,
physical reads 0, read-ahead reads O.

Table 'accounts'. Scan count 1, logical reads 225,
physical reads 0, read-ahead reads O.
Table 'customers'. Scan count 1, logical reads 62,

physical reads 0, read-ahead reads O.

A worktable has been used that increased the cost. Why? Because the clustered index we
created on the Customers table was not unique. The query optimizer used a many-to-many
merge join and hence a worktable was used. Note that when the mouse pointer is passed over
the Merge Join operator, the pop-up window will contain argument text, which will specify
that the merge join was many-to-many. What happens if we recreate the clustered index as a
unique clustered index? The query plan is shown in Figure 4.40.
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Figure 4.40: Graphical query execution f)lén éhowing merge join

A merge join has been used. The costs Merge (1:M) are shown in the following chart,
compared with the previous costs.



Join Type  Estimated Cost Logical IO CPU (ms)

Hash 1.54 2,408 120
Merge (M:M) 1.61 7,409 631
Merge (1:M) 1.20 287 60

We can see that by being careful with our index creation we have enjoyed a not
inconsiderable cost reduction. Hopefully, most of you will use primary key constraints and so,
in the case above, the index would have been created as a unique index automatically.

Query 9: Find the accounts and customers for branch number 1000

This is just an example of a three-table join as opposed to the two-table joins we have seen so
far.

SELECT * FROM customers C
INNER JOIN accounts A ON C.customer no = A.customer no
INNER JOIN branches B ON A.branch no = B.branch no
WHERE B.branch no = 1001

The estimated query execution plan is shown in Figure 4.41. There is nothing special about
this query plan except that it demonstrates that the more tables in the query, the more inputs to
the plan.

Figure 4.41: Graphical query execution plan showing a three-table join

Query 10: Find the sum of the account balances managed by each branch

This is an example of aggregation. The query optimizer has to create a plan so that, for each
branch number, a total is calculated for the values in the balance column in the Accounts

table.

SELECT branch no, SUM(balance) FROM accounts
GROUP BY branch no

We will remove all the indexes from the Accounts table. The query plan is shown in Figure
4.42.



Figufe 4.42: Graphical .qllllery execution plan showing a group by using hash aggregation

The Accounts table is table scanned. Even if there were an index on the branch no column, it
would not be used, since all the branches are included in the query. The Table Scan operator
consequently passes 25,000 rows to the next operator. This interesting operator is the Hash
Match Aggregate operator. This operator performs aggregation, as described earlier in this
chapter.

The build input creates a set of hash buckets and then reads each row in turn. The branch
number of the first account (the GROUP BY column) will be hashed, and the branch number
and account balance values will be written into the appropriate hash bucket. This process will
continue for each row. However, if a branch number is found to be already present in a hash
bucket, the balance will be added to the value present. Finally, when all the rows have been
retrieved, the hash buckets are scanned and the branch number values returned with their
sums

The Set statistics IO output for this operation is as follows:

Table 'accounts'. Scan count 1, logical reads 1570,
physical reads 0, read-ahead reads O.

In other words, the only logical reads performed are those needed to execute the table scan.
Suppose we now create a clustered index on the branch no column of the Accounts table.

If we execute the query again, we see that the query plan changes. This is shown in Figure
4.43.
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Figure 4.43; Graphical Query execution plan showing a group by using a clustered index

The query optimizer has decided to make use of the fact that the clustered index on the
branch no column will ensure that the Accounts table rows are stored in branch number
order. It can scan the clustered index and pass the sorted rows to the Stream Aggregate
operator. This operator computes the sum of the balances using the sorted input stream.

The logical read count is similar to that used for the table scan and hash aggregate. The costs
are also similar. The estimated cost for the table scan/hash aggregate is 1.36, whereas the
estimated cost for the clustered index scan/stream aggregate is 1.16. The clustered index
scan/stream aggregate is therefore estimated to be a cheaper alternative to hashing.



Suppose we drop the clustered index and replace it with a nonclustered index with a
composite key of the branch no and balance columns. This will cover the query. The
estimated query execution plan is shown in Figure 4.44.

Figure 4.44: Graphical query execution plan showing a group by using a nonclustered index

This is very efficient. The Set statistics IO output is as follows:

Table 'accounts'. Scan count 1, logical reads 73,
physical reads 0, read-ahead reads O.

This is a significant reduction in logical reads from the other two query plans. The estimated
cost is only 0.188. Using a covering index for aggregate operations is clearly a strategy worth
pursuing.

Query 11: Find the count of the accounts with various restrictions

It is worth a quick look at the COUNT operator, since it may or may not be able to use
nonclustered indexes present on a table in various circumstances. Consider the following

query:

SELECT COUNT (customer no) FROM accounts

The COUNT function used in conjunction with a column counts the number of non-NULL
values in the column—in other words, the number of rows that do not have a NULL value in
that column. If there are no indexes present on the table, the query optimizer must perform a
table scan to execute the count. However, suppose that there is a nonclustered index on the
customer no column. The query optimizer chooses the estimated query execution plan shown

in Figure 4.45.
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Figure 4.45: Graphical query execution plan showing a COUNT(customer no) using a
nonclustered index on the customer no column

The output from Set statistics 10 is as follows:

Table 'accounts'. Scan count 1, logical reads 48,
physical reads 0, read-ahead reads O.

This is much more efficient than the 1,570 logical reads used by a table scan of the Accounts
table. What has happened is that the query optimizer has chosen to scan the leaf-level index
pages, counting the index entries that are not NULL. This makes sense, since we already



know that the leaf-level index pages contain exactly one entry per data row. Since an index
page will typically hold many more index entries (just key plus pointer) than a data page will
hold data rows, the index leaf level will consist of far fewer pages. A scan of the index is
likely to be much faster than a scan of the table.

The estimated query execution plan shows the Index Scan operator followed by the Aggregate
and Compute Scalar operators, which will count the index entries.

Now, suppose that the index on the customer no column is dropped and replaced by a
nonclustered index on the balance column. The estimated query execution plan that the query
optimizer now uses is shown in Figure 4.46.

+ ; ..'_'I &

Figure 4.46: Graphical query execution plan showing a COUNT(customer no) using a
nonclustered index on the balance column

Again, the estimated query execution plan shows a scan of a nonclustered index—in this case,
the index on the balance column. How can this index be used when the query is counting the
accounts with a non-NULL value in the customer_no column? After all, the customer no
column does not even appear in the nonclustered index. The answer lies in the fact that the
column in the Accounts table does not actually allow NULL values. Therefore, it is not
necessary to test for NULL values, and any nonclustered index can be scanned to obtain the
count. If the customer no column had allowed NULL values, the query optimizer would have
had to perform a table scan to check this column, since the nonclustered index on the balance
column would not have contained the necessary information. Suppose the following query is
executed:

SELECT COUNT (DISTINCT customer no) FROM accounts

The COUNT and DISTINCT used in conjunction with a column counts the number of non-
NULL values in the column with duplicates eliminated. The estimated query execution plan is
shown in Figure 4.47.
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Figure 4.47: Graphical query execution plan showing a COUNT(DISTINCT customer no)
using a table scan

We can see that a Table Scan operator is performed, and this is followed with a Hash Match /
Aggregate operator to eliminate the duplicates. The important point to note here is that the
DISTINCT keyword requires that duplicate customer numbers are removed and that the
nonclustered index on the balance column does not contain the necessary information. Again,
a table scan must be performed.

Now consider the following query:



SELECT COUNT (*) FROM accounts

This form of the COUNT function is not interested in any column, so the question of NULL
or duplicate values is irrelevant. Consequently, the query optimizer will produce an estimated
query execution plan, which utilizes the nonclustered index with the smallest leaf level.
Suppose we execute this query with both the nonclustered indexes on the balance column and
the customer no column present on the Accounts table. The estimated query execution plan is
shown in Figure 4.48. The nonclustered index on the customer no column is used, since the
key is a four-byte INTEGER rather than an eight-byte MONEY data type and therefore the
index leaf level is smaller.
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Figure 4.48: Graphical query execution plan showing a COUNT(*) using a nonclustered
index

To summarize, when using the COUNT function, remember that choosing between the
different formats may dramatically impact performance, since this may restrict the query
optimizer's use of available indexes. Also remember that a covering nonclustered index may
help out other aggregate functions such as AVG, MIN, MAX, and SUM.

Query 12: Display account details in sorted order

If the result of a query is to be ordered by a column or group of columns, the query optimizer
can use various techniques to sort it.

Suppose we execute the following query:

SELECT customer no, balance FROM accounts
ORDER BY customer no

There are no indexes presently on the Accounts table, and so the estimated query execution
plan must involve table scan. This is shown in Figure 4.49.
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Figure 4.49: Graphical query execution plan showing an ORDER BY using a table scan

The stream of rows resulting from the table scan is passed to a Sort operator. This sorts the
output according to the ORDER BY clause of the query. SQL Server will attempt to perform
the sort in memory, but, if the query has insufficient memory, disk space will be used. This
situation can be detected by the Sort Warnings event in the SQL Profiler. Suppose we create a
clustered index on the customer no column and repeat the query. The estimated query
execution plan is shown in Figure 4.50.
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Figure 4.50: Graphical query execution plan showing an ORDER BY using a clustered index

The Sort operator has disappeared, and the Table Scan operator has been replaced by the
Clustered Index Scan operator. The query optimizer, knowing that the clustered index will
return the data in key sequence order (customer no column order), can scan the clustered
index and therefore avoid any sort.

Suppose the clustered index on the customer no column is replaced by a nonclustered index.
The estimated query execution plan is shown in Figure 4.51.

SELECT cuscomer no, balance FROM account® CORDEE

Figure 4.51: Graphical query execution plan showing an ORDER BY using a table scan rather
than a nonclustered index

Note that this is the same estimated query execution plan as that shown in Figure 4.49. In
other words, the addition of the nonclustered index makes no difference—a table scan is still
performed. This should come as no surprise, because of what we already know. The query
optimizer has decided that a table scan and sort are less costly than the many data page
requests that would result by scanning the nonclustered index leaf level and fetching the data
pages. However, if the range of rows is reduced, the nonclustered index will be used. Suppose
the following query is executed:

SELECT customer no, balance FROM accounts
WHERE customer no BETWEEN 1000 AND 1100
ORDER BY customer no

The estimated query execution plan is shown in Figure 4.52.

index



There is no Sort operator, because the query optimizer knows that the leaf level of the
nonclustered index is in account_no column order, so scanning it will return the data rows in
the correct sequence.

Suppose we execute the following query:

SELECT customer no, balance FROM accounts
WHERE customer no BETWEEN 1000 AND 1100
ORDER BY customer no, balance

The estimated query execution plan is shown in Figure 4.53.
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Figﬁré 4.53: Graphiéal query execution plan showing an ORDER BY using a nonclustered
index plus a sort

Since we only have a nonclustered index present on the customer no column in the Accounts
table, the query optimizer will need to place a Sort operator in the query plan to ensure that
the data is sorted by the balance column also. A composite index will fix this. Let us create a
nonclustered index on a composite key of the customer no and balance columns. If we
execute the query again, the Sort operator disappears, as shown in Figure 4.54.
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Figure 4.54: Graphical query execution plan showing an ORDER BY using a composite
nonclustered index

Suppose we now ask for the result to be sorted in descending order of balance, as follows:

SELECT customer no, balance FROM accounts
WHERE customer no BETWEEN 1000 AND 1100
ORDER BY customer no, balance DESC

We can see from the estimated query execution plan shown in Figure 4.55 that the Sort
operator has returned.



Figure 4.55: Graphical query execution plan showing an ORDER BY using a composite
nonclustered index and a descending order

Figure 4.55 illustrates an important fact. SQL Server can index scan equally well in both
directions on a single-column index. This is because, as we know, the index pages at a given
level are linked by next and prior pointers pointing to the next and previous index pages at
that level.

However, if an ORDER BY clause specifies different directions for the key columns, a Sort
operator is needed. If such a sort is a frequent requirement, the index can be defined with a
mix of ascending and descending keys. In our example, we can create the index as follows:

CREATE INDEX nciCustomerNoBalance
ON accounts (customer no, balance DESC)

The index keys will now be stored in ascending order of customer number but descending
order of balance. The resulting estimated query execution plan is shown in Figure 4.56.
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Figure 4.56: Graphical query execution plan showing an ORDER BY using a composite
nonclustered index and a descending index key

We can see that the Sort operator has again disappeared.

Finally, let us return to our earlier query:

SELECT customer no, balance FROM accounts
ORDER BY customer no

Again, we will ensure that only a nonclustered index on the customer no column of the
Accounts table is present. We know that the estimated query execution plan for this query
involves a Table Scan operator, as was shown in Figure 4.50. The query optimizer decided
that this plan was cheaper than using the nonclustered index. In fact, the query uses 1,570
logical reads.

In the case of a table scan and sort no rows will be returned until the result set has been sorted.
If the nonclustered index was chosen by the query optimizer, the first row could be returned



immediately. This behavior can be forced with the FASTFIRSTROW query optimizer hint, as
follows:

SELECT customer no, balance FROM accounts
WITH (FASTFIRSTROW)
ORDER BY customer no

The query plan is shown in Figure 4.57.
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Figure 4.57: Graphical query execution plan showing an ORDER BY using a nonclustered
index and a FASTFIRSTROW query optimizer hint

The query returns the first row instantly, but overall the query now uses 25,048 logical reads.

The penalty, therefore, for this rapid return of the first row is usually a slower query response
time overall caused by more logical reads.

Query 13: Display the total balances managed by each branch but making use of indexed views

We discussed indexed views in Chapter 3. Let us look at how the query optimizer can make
use of an indexed view. First of all, let us remind ourselves of how normal views are used.
Basically, their definition is expanded and merged with the query definition of the query that
is using the view. Traditional (nonindexed) views contain no data. For example, take the
following traditional view definition:

CREATE VIEW dbo.BranchTotalFunds

AS

SELECT branch no, COUNT BIG(*) AS AccountInstances,
SUM (balance) AS TotalBalance

FROM dbo.accounts

GROUP BY branch no

We will use this view in a query, as follows:

SELECT * FROM BranchTotalFunds
WHERE TotalBalance > $1350000.00

The query plan is shown in Figure 4.58.
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Figure 4.58: Graphiéal query execution plan for a query using a traditional view



Note that the estimated query execution plan specifies a table scan against the base table—the
view has been expanded into its constituent parts. Now let us create an indexed view, as
follows:

CREATE VIEW dbo.BranchTotalFunds

WITH SCHEMABINDING

AS

SELECT branch no, COUNT BIG(*) AS AccountInstances,
SUM (balance) AS TotalBalance

FROM dbo.accounts

GROUP BY branch no

CREATE UNIQUE CLUSTERED INDEX ciBranchNo ON
dbo.BranchTotalFunds (branch no)

We had to create a unique clustered index on the view to make it an indexed view. We will
also create a nonclustered index on the indexed view, as follows:

CREATE INDEX nciTotalBal ON dbo.BranchTotalFunds
(TotalBalance)

First of all, let us execute the following query:

SELECT * FROM BranchTotalFunds

The query plan is shown in Figure 4.59.
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Figure 4.59: Graphical query execution plan for a simple query using an indexed view

We immediately notice that the estimated query execution plan shows the BranchTotalFunds
view being used. There is no aggregation needed, because the view holds the result of its
defining query physically in the database. The access to the data is via a clustered index scan
on the ciBranchNo index.

Suppose we execute the following query again:

SELECT * FROM BranchTotalFunds
WHERE TotalBalance > $1350000.00

The query plan is shown in Figure 4.60.
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Figure 4.60: Graphical query execution plan for a query using an indexed view

We can see that the BranchTotalFunds view is being used and so is the nonclustered index on
it. We have basically indexed the aggregate result. Using an indexed view can really speed up
queries that need to perform this type of access. Now consider the following query:

SELECT branch no, SUM(balance) AS TotalBalance
FROM accounts
GROUP BY branch no

The indexed view is not mentioned anywhere in this query. The query plan is shown in Figure
4.61. Notice that the query optimizer has recognized that even though it is not explicitly
mentioned, the indexed view can be used instead of directly accessing the base table. Later in
this chapter we will see mechanisms that allow us to override this behavior.
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Figure 4.61: Graphical query execution plan for a query on a table with an indexed view
Query 14: Querying accounts through a partitioned union view

In this example we have decided that our Accounts table is growing too large and so we will
split it into three physical tables. Perhaps these will be stored on three separate physical RAID
arrays. To avoid application logic having to concern itself with which table to access when it
needs to access customer accounts, we will also make use of a union view. Here is the
Transact-SQL that defines the new tables:

CREATE TABLE accountsl
(
account no INT NOT NULL
PRIMARY KEY (account no)
CHECK (account no BETWEEN 0 and 10000),

customer no INT NOT NULL,
branch no INT NOT NULL,
balance MONEY NOT NULL,

account notes CHAR (400) NOT NULL
)

CREATE TABLE accounts?2

(
account no INT NOT NULL



PRIMARY KEY (account no)
CHECK (account no BETWEEN 10001 and 20000),

customer no INT NOT NULL,
branch no INT NOT NULL,
balance MONEY NOT NULL,

account notes CHAR (400) NOT NULL
)

CREATE TABLE accounts3
(
account no INT NOT NULL
PRIMARY KEY (account no)
CHECK (account no > 20001),

customer no INT NOT NULL,
branch no INT NOT NULL,
balance MONEY NOT NULL,

account notes CHAR (400) NOT NULL
)

Here is the Transact-SQL that defines the view:

CREATE VIEW AllAccounts AS
SELECT account no, branch no, balance FROM accountsl
UNION ALL
SELECT account no, branch no, balance FROM accounts2
UNION ALL
SELECT account no, branch no, balance FROM accounts3

Notice the CHECK constraint in each table definition. They specify valid ranges of rows and,
taken together, they completely describe all the possible valid account numbers in our bank
without overlap. Since the ranges do not overlap, an account number may only be found in
one table. Also note that negative account numbers are not allowed. We have also created a
primary key constraint on each table using the account _no column as the primary key column.
The primary key index is clustered.

Let us now investigate the estimated query execution plan of a query that has no WHERE
clause. This is shown in Figure 4.62.
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Figure 4.62: Graphical query execution plan for a query with no WHERE clause against a

union view
SELECT * FROM AllAccounts



We can see that each table participates in the query and feeds the results of its clustered index
scan into the Concatenation operator, which appends the input tables into a single output
table. The slight variation in width of the arrows feeding into the Concatenation operator is
due to the fact that each table contributes a different number of rows because of the CHECK
constraint.

Let us now execute the following query:

SELECT * FROM AllAccounts

WHERE

account no = 15000
OR

account no = 25000

The estimated query execution plan is shown in Figure 4.63.
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Figure 4.63: Graphical query execution plgn for a query with a WHERE clause against a
union view

We can see that the estimated query execution plan only refers to two tables. Because of the
CHECK constraint, the query optimizer knows that the table Accounts1 cannot hold rows that
participate in the query.

For the query optimizer to know this information it must trust the CHECK constraint. This
means that when the CHECK constraint is created, the existing data must be checked for
validity. If the option is selected to not choose the existing data, then the query optimizer will
not trust the constraint and all tables will be checked. To find out if a constraint was created
so that existing data were checked, use the OBJECTPROPERTY function with the
CnstIsNotTrusted property name. For example, as follows:

SELECT
OBJECT_PROPERTY (OBJECT_ID('CK_accountsl'),
'CnstIsNotTrusted')

If this returns zero, then the constraint did check the existing data on creation. The constraint
name can be found from EXEC sp_helpconstraint tablename.

Note I would normally name the constraint myself to ensure consistent naming.
As far as partitioning goes, this is just the tip of the iceberg. In SQL Server 2000 the partitions

can be distributed across servers and a union view created on each server. Each union view
will consist of its local partition and the remote partitions on the other servers. These will



have been set up as linked servers. As long as the criteria are met to set up this sort of
configuration, the distributed union views can also be updated.

This distributed union view capability gives SQL Server 2000 the ability to partition tables
across many federated servers. Microsoft refers to this capability as scale-out. With scale-out
as the workload increases, more servers are added. This allows massive scalability increases.
In comparison, scale-up, which refers to adding CPUs and other hardware resources to an
existing server, does not provide for such a large scalability increase—the hardware
limitations of a single server are quickly hit. We will not discuss how to partition tables across
multiple servers here. This is well documented, and only organizations with very heavy
workloads will need to implement such a configuration.

4.3.6 Influencing the query optimizer

As we have already seen, the query optimizer is a sophisticated piece of software that can
consider multiple factors and create the most efficient query plan. However, there will be
situations when you may wish to force the query optimizer to create a plan that it would not
otherwise have chosen. Perhaps what it considers the most efficient plan is not really the case
in some specific situations that you understand well. As we shall now see, it is possible to
override the query optimizer, but this should be considered only as a last resort. Perhaps
rewriting the query or changing the index design strategy might be a better long-term option.

The query optimizer can be overridden by using a query optimizer hint. These hints can be
grouped into four categories:

1. Join hints

2. Table hints

3. View hints

4. Query hints
Join hints

Join hints are used to force the query optimizer to create a query plan that adopts a particular
join technique when joining two tables. We already know that there are three join techniques
available; these are nested loops, merge, and hash. We can specify a join hint, which will
force two tables to be joined using one of these techniques. A fourth join hint, REMOTE, can
also be specified to dictate on which server a join is to be performed in a distributed join

query.
The join hint syntax is simple to use; the join type is specified as part of the join, as follows:

SELECT * FROM accounts INNER HASH JOIN customers
ON

accounts.customer no = customers.customer no
WHERE

balance > 9990

In the above example, a hash join technique is forced.

The REMOTE join hint dictates that the join operation is performed on the server hosting the
right table. This is useful when the left table is a local table with few rows and the right table



is a remote table that has many rows, since this may avoid a lot of data being shipped to the
local server.

Table hints

Table hints are very useful, since they dictate the access method to use when retrieving data
from a table. This can be a table scan, a single index, or multiple indexes. An example of the
syntax used is as follows:

SELECT * FROM accounts WITH (INDEX (nciBalance))
WHERE
balance BETWEEN 100 AND 200
AND
customer no BETWEEN 1000 AND 2000

The above example forces the query optimizer to adopt a plan that uses the nonclustered index
nciBalance to access the Accounts table. The following example forces the query optimizer to
adopt a plan that uses the non-clustered indexes nciBalance and nciCustomerNo to access the
Accounts table—in other words, to perform an index intersection.

SELECT * FROM accounts WITH (INDEX (nciBalance,
nciCustomerNo) )

WHERE

balance BETWEEN 100 AND 200

AND

customer no BETWEEN 1000 AND 2000

Suppose a table scan must be forced. The following syntax forces the query optimizer to
adopt a plan that uses a table scan if there is no clustered index present on the table or that
uses a clustered index scan if there is.

SELECT * FROM accounts WITH (INDEX (0))
WHERE
balance BETWEEN 100 AND 200
AND
customer no BETWEEN 1000 AND 2000

If there is a clustered index present on the table, a clustered index scan or seek can be forced,
as shown in the following example:

SELECT * FROM accounts WITH (INDEX (1))
WHERE
balance BETWEEN 100 AND 200
AND
customer no BETWEEN 1000 AND 2000

Another table hint that we have briefly discussed is FASTFIRSTROW. As mentioned in our
previous discussion concerning ORDER BY, in the case of a table scan and sort no rows will
be returned until the result set has been sorted. If the nonclustered index is chosen by the
query optimizer, the first row can be returned immediately. This behavior can be forced with
the FASTFIRSTROW query optimizer hint, as follows:

SELECT customer no, balance FROM accounts
WITH (FASTFIRSTROW)



ORDER BY customer no
View hints

View hints are similar to table hints but are used with indexed views. The only view hint is
NOEXPAND, which forces the query optimizer to process the view like a table with a
clustered index. The index on the view, which should be used, may be specified. An example
of the syntax used is as follows:

SELECT * FROM BranchTotalFunds
WITH (NOEXPAND, INDEX (nciTotalBal))
WHERE TotalBalance > $1350000.00

A query hint, described in the following section, can be used to expand the indexed view.
Query hints

A query hint is used throughout the whole query. Query hints can be used to specify many
plan behaviors. For example, the following query hint forces the query optimizer to use
hashing when calculating an aggregate.

SELECT branch no, SUM(balance)
FROM accounts

GROUP BY branch no

OPTION (HASH GROUP)

If an ordering (sorting) rather than a hashing technique should be used, then this can be forced
as follows:

SELECT branch no, SUM(balance)
FROM accounts

GROUP BY branch no

OPTION (ORDER GROUP)

A query hint can be used to force the query optimizer to adopt different techniques when
performing UNION operations. The following example will force the use of a Concatenation
operator to perform the union, and thus a Sort/Distinct operator will subsequently eliminate
the duplicate rows if any.

SELECT * FROM AccountsEurope WHERE balance > 9990
UNION ALL

SELECT * FROM AccountsUSA WHERE balance > 9990
OPTION (CONCAT UNION)

The following example will force the use of a Hash/Union operator to perform the union, and
thus a Sort/Distinct operator will not be needed to eliminate the duplicate rows.

SELECT * FROM AccountsEurope WHERE balance > 9990
UNION ALL

SELECT * FROM AccountsUSA WHERE balance > 9990
OPTION (HASH UNION)

Finally, the following example will force the use of a Merge/Union operator to perform the
union, and thus a Sort/Distinct operator will not be needed to eliminate the duplicate rows.



Normally, the Merge/Union operator would exploit the sorted order of the inputs in a manner
similar to a merge join, as follows:

SELECT * FROM AccountsEurope WHERE balance > 9990
UNION ALL

SELECT * FROM AccountsUSA WHERE balance > 9990
OPTION (MERGE UNION)

We have already seen that a JOIN clause can include a join hint. The join hint is relevant to
the two tables being joined by that particular join operator. The type of join may also be
specified as a query hint, in which case the join type will be applied to all the joins in the
query, as follows:

SELECT * FROM accounts
INNER JOIN customers
ON accounts.customer no = customers.customer no
INNER JOIN branches
ON accounts.branch no = branches.branch no
WHERE balance > 9990
OPTION (HASH JOIN)

Note that a join hint will override the query hint.

To force a query plan to deliver the first rows quickly, perhaps at the expense of the whole
query, the FAST query hint can be used, as in the following example:

SELECT customers.customer no, customer lname, balance
FROM customers INNER JOIN accounts
ON customers.customer no = accounts.account no
WHERE customers.customer no > 12400
ORDER BY customers.customer no
OPTION (FAST 10)

This query hint will force the query optimizer to create a plan that will be optimized to return
the first ten rows.

Perhaps a more practical hint is one that can force the query optimizer to change the join order
to that specified by the query syntax, as follows:

SELECT customers.customer no, customer lname, balance
FROM customers INNER JOIN accounts
ON customers.customer no = accounts.account no
WHERE accounts.balance BETWEEN 100 AND 200
OPTION (FORCE ORDER)

In the above example, the outer table will become the Customers table even though it is the
Accounts table that is filtered.

The next query hint is used to specify the number of CPUs used to parallelize the query on a
multiprocessor computer. If there is only one processor, this hint is ignored. The following
hint limits the number of CPUs that can be used for parallelism to two.

SELECT branch no, SUM(balance)
FROM accounts
GROUP BY branch no



OPTION (MAXDOP 2)
I[f MAXDORP is set to 1, parallel query plan is suppressed.

The KEEP PLAN and KEEPFIXED PLAN options are similar in that they control when
query plans are recompiled. This is discussed later in the chapter. The KEEPFIXED PLAN
option ensures that the query optimizer does not recompile a query due to changes in statistics
or to the indexed column. A query will only be recompiled if the table schema changes or
sp_recompile is executed specifying the table. The KEEPPLAN option is used to reduce the
recompilation thresholds, which determine how many inserts, deletes, and index column
updates cause a query to be recompiled. The recompilation thresholds used for querying
temporary tables in a stored procedure are less than those for a permanent table, and therefore
this option is useful when it is necessary to reduce stored procedure recompilations for stored
procedures that use temporary tables. This is discussed later in the chapter.

The EXPAND VIEWS option is used with indexed views. This option effectively ensures that
the indexes on an indexed view are not used. The view is expanded into its definition, which
1s the traditional behavior with nonindexed views, as follows:

SELECT * FROM BranchTotalFunds
WHERE TotalBalance > $1350000.00
OPTION (EXPAND VIEWS)

The ROBUST PLAN option ensures that the query plan will not fail due to size limitations
when the maximum row sizes are used in the query. For example, plan A may be more
efficient than plan B. However, due to the fact that plan A uses intermediate tables to store
intermediate results, if any of the variable-length rows used in the query are at their maximum
size, the use of the intermediate tables will fail due to size limitations. The ROBUST PLAN
option will ignore plan A and choose plan B, which, although less efficient, will not have the
same potential problems due to the way the plan executes—perhaps it does not use
intermediate storage of results.

4.3.7 Stored procedures and the query optimizer

Stored procedures are found everywhere in SQL Server. There are many system stored
procedures, and a typical SQL Server development department will also create and use many
stored procedures. There are a number of benefits to using stored procedures, such as the
following:

e Function encapsulation
e Security
e Performance

By function encapsulation I mean that complex logic can be placed into a stored procedure
and hidden from the client software, which then only has to call the stored procedure, passing
appropriate parameters. The stored procedure logic can be changed, perhaps to encompass a
database modification, without having to change client application software or at least
minimizing any change. We can say that stored procedures insulate the client application
software from the database structure.



Many sites take a stance that updates to database data can only be made through stored
procedures and cannot be made directly to the tables by the client issuing Transact-SQL
statements. This model of processing is shown in Figure 4.64.
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Figure 4.64: Insulating clients from the database structure via stored procedures

This brings us to the second benefit of stored procedures: security. Taking the model shown in
Figure 4.64, we can see that in order to implement it, we need a security mechanism that
allows us to prohibit client software from directly accessing tables and other objects but
allows indirect access in a way that we can define and control. Stored procedures provide this
benefit by means of ownership chains.

As long as the owner of the stored procedure is the owner of all the objects referenced by the
stored procedure, then execute access on that stored procedure can be granted to database
users. They can perform all of the actions defined in the stored procedure even though they
have no direct access to the underlying objects. For example, a database user may be granted
execute access to a stored procedure that deletes from one table and inserts into another. As
long as the ownership of the stored procedure and tables is the same, the database user needs
no permissions on the tables.

The most important benefit of stored procedures from the perspective of this book is
performance, and it is this aspect of stored procedures on which we will now concentrate.
Generally speaking, stored procedures save us the time and effort spent syntax checking
Transact-SQL and optimizing it. They reduce network load because they minimize the
amount of traffic sent to and from the server.

The stages in stored procedure processing are shown in Figure 4.65. This figure can be
compared with Figure 4.1, which shows the stages in query processing. The principal
difference is that when a Transact-SQL query is submitted, all the above phases are
performed. If the query is submitted 100 times, these phases are performed for each
submission unless the query plan for the statement can be reused. We will discuss plan reuse
for statements later.
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Figure 4.65: Stages in stored procedure processing

With a stored procedure, the query plan is generally always reused—with a few exceptions.
When the stored procedure is initially created, the syntax is checked, and, if correct, the stored
procedure code is stored in the syscomments system table, which is resident in every
database. Also, the stored procedure name is stored in the sysobjects system table, which is
also resident in every database.

When a stored procedure is first executed after SQL Server starts (in other words it is not
cached in any way), the stored procedure is retrieved from syscomments. We can see that we
immediately have a performance gain, since we do not have to perform the syntax checking,
which, for a large stored procedure, may be nontrivial. Existence checking must be performed
at this point, since SQL Server allows us to create the stored procedure even if tables and
views, which are referenced in it, do not exist at creation time. This is known as delayed name
resolution.

Assuming all the objects referenced exist, the query optimizer creates a query plan for the
Transact-SQL in the stored procedure and compiles it into executable code. Once the query
plan has been created and compiled, it is cached in an area of memory known as the
procedure cache. It is then available for the next user.

If another user wishes to execute the stored procedure, SQL Server can now skip the above
phases, since the query plan is ready and waiting in the cache. This can increase the
performance benefit of the stored procedure quite substantially. How useful the performance
advantage of skipping these phases is depends on how long it takes to perform these phases
relative to the execution time of the stored procedure and how often the stored procedure is
executed. For a complex stored procedure, which is frequently executed, the performance
advantage is significant.

Note Microsoft recommends that the owner name be specified when a stored procedure is
executed. This enables SQL Server to access the execution plan for the specific
procedure more efficiently. Therefore, it is better to issue:

EXEC dbo.usp GetAuthors



than

EXEC usp_ GetAuthors

The query plan of a stored procedure can be utilized by many users at the same time. The
stored procedure is effectively split into a read only section, which many users can share, and
multiple sections, which are private to a user. They are reusable but cannot be shared
simultaneously between users. These sections can be used, for example, to hold a user's
read/write variables. This is known as an execution context. This approach means that the
bulk of the stored procedure plan, the executable code, is held in cache as a single copy.
Actually, even this is not quite true. Two copies of the plan may be held on a multiprocessor
computer: a nonparallel plan and a parallel plan.

A stored procedure challenge

There is one disadvantage to the stored procedure mechanism compared with executing
Transact-SQL queries outside of a stored procedure.

Suppose we execute the following query outside of a stored procedure, assuming that there is
a nonclustered index on the balance column.

SELECT account no, balance FROM accounts
WHERE balance BETWEEN 8000 AND 8100

What strategy will the query optimizer choose? The nonclustered index on the balance
column is, in fact, chosen. This is a reasonable plan given what we already know. If we
execute the query, the following Show Stats 1O output is displayed after 239 rows have been
returned.

Table 'accounts'. Scan count 1, logical reads 241,
physical reads 0, read-ahead reads 0.

The query optimizer has chosen to use a nonclustered index to access the data and has taken
241 logical reads to do so. Now suppose we execute the following query:

SELECT account no, balance FROM accounts
WHERE balance BETWEEN 8000 AND 9000

What strategy will the query optimizer now choose? As we might expect, the query optimizer
has decided to use a table scan. Again, this is a reasonable plan given what we already know.
As the number of rows returned increases, it becomes more efficient to execute a table scan
rather than use the nonclustered index. If we execute the query, the following Show Stats 10
output is displayed after 2,426 rows have been returned.

Table 'accounts'. Scan count 1, logical reads 1570,
physical reads 0, read-ahead reads O.

So, the query optimizer has now chosen to use a table scan, taking 1,570 logical reads to do
S0.

Now let us place the query in a stored procedure, as follows:



CREATE PROCEDURE dbo.usp accounts per range (@minbal
MONEY, @maxbal MONEY)
AS
SET STATISTICS IO ON
SELECT account no, balance FROM accounts

WHERE balance BETWEEN @minbal AND @maxbal
RETURN

Let us execute it with the following EXEC statement:

EXEC dbo.usp accounts per range @minbal=8000, @maxbal =
8100

account no balance

7880 8000.43
12053 8000.43

Table: accounts scan count 1, logical reads: 241,
physical reads: 0, read ahead reads: 0O

This is exactly the same number of logical reads as before. The query optimizer has chosen a
query plan that uses the nonclustered index as it did for the standalone query.

Now let us execute the stored procedure with the following EXEC statement:

EXEC dbo.usp accounts per range @minbal=8000, @Gmaxbal =
9000

account no balance

7880 8000.43
12053 8000.43
Table: accounts scan count 1, logical reads: 2433,

physical reads: 0, read ahead reads: 0

The number of logical reads has increased from 1,570 executing the query as a standalone
statement to 2,433 executing the query in a stored procedure. Why is this?

The problem is caused by the fact that the query plan was created and loaded into cache by
the first execution. The query optimizer created the query plan based on the parameters passed
to it, so in this case it created a query plan for the SELECT statement, as follows:

SELECT account no, balance FROM accounts
WHERE balance BETWEEN 8000 AND 8100

The next time the stored procedure was executed no query optimization was done and the
query plan utilizing the nonclustered index was used. This is not the most efficient query plan
for the range, as can be seen from the logical reads.

In its worst manifestation we can imagine that the first stored procedure execution happens to
use a query plan that is not efficient for all subsequent stored procedure executions. So how
can we deal with this situation?



One mechanism available to us is to make sure that the stored procedure always creates and
uses a new query plan. We can force a stored procedure to create and use a new query plan,
but there are also times when a stored procedure is automatically recompiled.

We will look shortly at how we can force a stored procedure to create and use a new query
plan, but first let us look at some of the situations that result in SQL Server automatically
recompiling a plan. To check if a stored procedure plan is recompiled the SP:Recompile SQL
Server Profiler event can be monitored. The SQL Server Profiler is discussed further in

Chapter 7.

Changes to the table structure

If the structure of a table referenced by the stored procedure is changed, typically by the use
of an ALTER TABLE statement, the schema ver and base schema ver columns in the
sysobjects system table are incremented. This informs SQL Server that it needs to recompile
the stored procedure plan the next time the stored procedure executes. Examples of structure
changes are the addition and deletion of columns and constraints.

Changes to indexes

If indexes are created and dropped, the schema_ver and base schema_ver columns are
incremented. This will cause a stored procedure recompilation even if the indexes are not
relevant to the queries in the stored procedure.

Executing update statistics

If UPDATE STATISTICS is run against a table referenced by the stored procedure, stored
procedure recompilation will take place the next time the stored procedure is executed.
Running UPDATE STATISTICS increments the base schema_ ver and stats schema_ ver
columns.

Aging the stored procedure out of cache

We will discuss how stored procedures are aged out of cache later. If this happens, then the
next time the stored procedure executes it must be compiled and cached again.

Table data modifications

SQL Server will detect that a certain fraction of the data in a table has changed since the
original plan was compiled. Once this threshold has been crossed a recompilation will occur.
To keep track of the changes to the table data, the rowmodctr column in the sysindexes
system table is incremented whenever one of the following conditions occurs to the table in
question.

e A row is inserted.
o A row is deleted.
e An indexed column is updated.

When a predefined threshold has been crossed, the statistics for the table will be automatically
updated when it is accessed next, assuming the database option Auto update statistics is set to
on. This automatic updating of statistics will reset the rowmodctr column.



This threshold tends to depend on the size of the table. For SQL Server 7.0 Microsoft
documented the algorithm as follows:

o If the number of rows in the table is less than six and the table is in the tempdb
database, an automatic update of statistics is performed with every six modifications to
the table.

o If the number of rows in the table is greater than six, but less than or equal to 500, an
automatic update of statistics is performed with every 500 modifications.

o If the number of rows in the table is greater than 500, an automatic update of statistics
is performed when (500 + 20 percent of the table) changes have occurred.

So the stored procedure is recompiled when the threshold is crossed. As was mentioned
earlier, the SP:Recompile SQL Server Profiler event can be monitored to check for
recompilations; however, trace flag 205 can also be used to output information about when a
statistics-dependent stored procedure is being recompiled. I tend to set this in the Startup
Parameters section of the General Tab in Server Properties in the SQL Server Enterprise
Manager together with trace flag 3605 to ensure logging of trace messages to the error log. A
typical pair of messages logged follows:

Recompile issued : ProcName: usp GetAccts LineNo:2
StmtNo: 3

Schema Change: Tbl Dbid: 7 Objid: 1993058136 RowModCnt:
25000.000000 RowModCntMax: 0 RowModLimit: 22000

The first message specifies the stored procedure. The second message holds the table name in
the form of its object ID. The item RowModCnt is the total number of modifications to the
table, and RowModLimit is the threshold, which, when exceeded, results in the statistics
being updated for the table and the stored procedure being recompiled. It is possible to ensure
that the query optimizer does not recompile a query due to changes in statistics or to the
indexed column by using the KEEPFIXED PLAN query option. In this case a query will only
be recompiled if the table schema changes or sp_recompile is executed specifying the table.

Mixing data definition language and data manipulation language statements

If Data Definition Language (DDL) statements and Data Manipulation Language (DML)
statements are mixed together in a stored procedure, the stored procedure will be recompiled
when the DML statements are executed. The following example displays a stored procedure.

CREATE PROC dbo.usp DDL DML
AS

CREATE TABLE #tablel (cl INT)
SELECT COUNT (*) FROM #tablel
CREATE INDEX il ON #tablel(cl)
SELECT COUNT (*) FROM #tablel

CREATE TABLE #table2 (cl INT)
SELECT COUNT (*) FROM #table2
CREATE INDEX i2 ON #table2(cl)
SELECT COUNT (*) FROM f#table2
RETURN



This will result in four stored procedure recompilations. When the stored procedure
compilation takes place the first time around, the temporary tables #tablel and #table2 have
not yet been created. The stored procedure must execute for this to happen. The SELECT
statements that access #tablel and #table2 are not yet able to have a plan created. When the
stored procedure executes, #tablel is created and then accessed by the first SELECT
statement. Since a plan does not exist for this query, the stored procedure is recompiled in
order to create a plan for this query.

The index is then created for #tablel. A SELECT statement is then executed against #tablel,
but, as we have previously mentioned, this is treated as a schema change and therefore the
stored procedure is recompiled again. The same recompilations occur because of #table2, and
thus four recompilations are performed. It would have been better to place all the DDL
statements at the beginning of the stored procedure and then execute the DML statements.
Doing this results in one stored procedure recompilation.

Temporary tables

Another reason that stored procedures may be recompiled concerns the use of temporary
tables. SQL Server will recompile a stored procedure if a few changes have been made to a
temporary table created in the stored procedure. At the time of writing, only six changes to the
temporary table have to be made inside the stored procedure before it is recompiled. This
means that changes to a temporary table will result in recompilation far more frequently than
in the case of a permanent table, as previously discussed. If you wish to apply the same
recompilation thresholds to temporary tables as were applied to permanent tables, use the
KEEP PLAN query option on any query that uses the temporary table.

Forcing recompilation

How can we manually cause a stored procedure to be recompiled? There are a number of
mechanisms.

e The sp_recompile stored procedure
e CREATE PROCEDURE WITH RECOMPILE
e EXECUTE WITH RECOMPILE

The sp_recompile system stored procedure ensures that each stored procedure and trigger that
uses the specified table are recompiled the next time the stored procedure and triggers are run.

EXEC sp recompile accounts

Object 'accounts' was successfully marked for
recompilation.

It is also possible to specify a stored procedure name instead of a table name, in which case
only that stored procedure will be recompiled the next time it is run.

The sp_recompile system stored procedure actually increments the schema_ver and

base schema ver column in the sysobjects system table. Note that triggers are also affected.
Triggers are just a special kind of stored procedure that are automatically executed when
inserts, updates, and deletes happen to a table. As such, they have their query plans stored in
cache like any other stored procedure.



When we create a procedure, we can use the WITH RECOMPILE option. This means that
every execution of a stored procedure causes a new query plan to be created. Using this option
means that we do not have the problem of a query plan resident in cache that is inefficient for
various parameter combinations. However, because we generate a new query plan for each
execution of the stored procedure, the performance benefit of stored procedures is negated.

A less-severe option is to execute a stored procedure with the WITH RECOMPILE option.
This causes a new query plan to be created for just that execution.

These options will help us avoid the problem described previously with an inefficient query
plan loaded into procedure cache, but they do mean that new query plans get created. Another
option is to break up the stored procedure into smaller pieces.

CREATE PROC dbo.usp few accounts per range (@minbal
MONEY, (@maxbal MONEY)
AS
SET STATISTICS IO ON
SELECT account no, balance FROM accounts
WHERE balance BETWEEN @minbal AND @maxbal
RETURN

GO

CREATE PROC dbo.usp many accounts per range (@minbal
MONEY, (@maxbal MONEY)
AS
SET STATISTICS IO ON
SELECT account no, balance FROM accounts
WHERE balance BETWEEN @minbal AND @maxbal
RETURN

GO

CREATE PROC dbo.usp_accounts per range (@minbal MONEY,
@maxbal MONEY)
AS
IF (@maxbal - @minbal) <= 100

EXEC dbo.usp few accounts per range @minbal, @maxbal
ELSE

EXEC dbo.usp many accounts per range @minbal, @maxbal
RETURN

GO

The stored procedure usp_accounts per range is executed passing the minimum and
maximum balance. It tests to see if the difference between the minimum and maximum
balance is less than or equal to 100, and, if it is, it executes the stored procedure

usp_few accounts per range. If the difference is greater than 100, it executes the stored
procedure usp _many accounts per range. In this way the two stored procedures that access
the data are compiled with their own execution plan. In this example the stored procedure
usp _few accounts per range gets a query plan that uses a nonclustered index, whereas the
query plan for usp_many accounts_per range uses a table scan.

This method can work well, but it did require the developer writing the stored procedures to
know that a balance range greater than 100 was best dealt with by a table scan, and, of course,
this distribution can change over time.



Another approach is to recompile not the whole stored procedure but only the troublesome
statement. This can be brought about by using the EXECUTE statement with a character
string.

CREATE PROC dbo.usp example proc (€bal MONEY)
AS

DECLARE (@balstr VARCHAR(10)

SELECT @balstr = CONVERT (VARCHAR(10), @bal)

EXECUTE ('SELECT account no, balance FROM accounts WHERE
balance > ' + @balstr)

RETURN

The Transact-SQL statement inside the EXECUTE statement goes through the same phases
that any standalone Transact-SQL statement goes through—that is, parsing through to query
compilation. This does not happen until the EXECUTE statement is performed. Other
Transact-SQL statements in the stored procedure are compiled just once. To see the plan used
for the Transact-SQL statement in the EXECUTE you need to look at the query plan after the
stored procedure has been executed. In other words, choose Show Execution Plan from the
Query menu in the Query Analyzer.

Another possibility is to use query optimizer hints. We have already seen optimizer hints and
how they can be used to force the query optimizer to use a particular index. Optimizer hints
can also be used with queries in stored procedures to ensure that a particular query plan is
always used.

Aging stored procedures from cache

Versions of SQL Server prior to SQL Server 7.0 used two areas of cache—one for stored
procedure plans and one for database pages, in particular data and index pages. SQL Server
7.0 and SQL Server 2000 use a single unified cache for database pages, stored procedure
plans, and the query plans of SQL statements that are not stored procedures. The cache can
grow and shrink dynamically as the memory allocated to SQL Server grows and shrinks.

Different stored procedures will require different amounts of effort to compile. Some will be
simple and cheap to compile and some will be complex and expensive to compile. To ensure
that a stored procedure plan that is expensive to compile is not as easily aged out of cache as a
simple stored procedure, the cost of the stored procedure compilation is stored with the plan.

If memory is tight, a component of SQL Server known as the lazywriter frees up cache pages.
It does this by looking at the buffers in cache and checking the cost value associated with
them. The lazywriter will decrement the cost of a buffer page by one. If the lazywriter finds
that the cost of a page is zero, it will be freed. Conversely, if a stored procedure plan is used,
the cost is set to the initial creation cost. This means that a frequently used stored procedure
will not have its cost decremented over time to zero by the lazywriter. Also, a stored
procedure that was expensive to compile and therefore has an associated large cost will take a
long time to have its cost decremented to zero. Therefore, a stored procedure that is expensive
to compile but not used frequently may stay in cache, as would a stored procedure that is
cheap to compile but is used frequently.

How do you monitor the cache? This will be discussed in Chapter 5.



4.3.8 Non-stored procedure plans

If you wish to ensure that a query plan is created and stored in cache, then placing the query
inside a stored procedure will guarantee this. However, SQL Server does not only place stored
procedure plans in cache. It will store the plans of SQL statements that are not part of a stored
procedure in cache and attempt to reuse them.

SQL Server distinguishes between RPC events and SQL language events. RPC events are
parameterized in some way. If the developer has used sp_executesql to submit the query or
has used the prepare/execute model from the database API, it is an RPC event.
Parameterization is typically used by a developer who wishes to submit a SQL statement for
multiple execution, and in this case it makes sense to try to keep the query plan of the SQL
statement.

A SQL language event is typically a SQL statement that is sent direct to the server. It has not
been prepared and has not been submitted using sp _executesql. In this case the developer
probably does not intend that the SQL statement be resubmitted multiple times.

Note The SQL Server Profiler distinguishes between these events—for example,
RPC:Starting, Prepare SQL, and SQL: StmtStarting.

When an RPC statement is received by SQL Server, the query plan is created and placed into
cache. So that the query plan can be retrieved for a subsequent statement, some mechanism
must be used to allow the plan to be identified. In the case of a stored procedure this was not
necessary, since the stored procedure has a unique name. In the case of a SQL statement,
which has no such name, the statement text is hashed to produce a hash key, which identifies
it in cache. The hash key seems to be particularly sensitive to the statement text. The
following two statements will have different keys even though the only difference is the case
of the WHERE keyword (the server is case insensitive).

SELECT account no FROM accounts where balance=100

SELECT account no FROM accounts WHERE balance=100

Even the number of spaces in the statement is significant when hashing the statement text.
Different plans will also be stored for identical statements that have different connection
settings. Suppose two connections both execute the following SQL statement.

SELECT account no FROM accounts WHERE balance=100

Suppose one connection has its ANSI NULL setting set to TRUE and one connection has it
set to FALSE. There will be two plans cached.

For nonparameterized (ad hoc) SQL language statements, the query optimizer may actually
attempt to change a hard-coded value into a parameter marker in order to facilitate reuse of
the query plan. This is known as autoparameterization. However, the query optimizer is very
conservative and few statements will undergo this process. The reason for this is the same as
our previous discussion of stored procedure plans. A plan that is efficient for one parameter
value may be extremely inefficient for another value. At least with stored procedures, the
developer is in control and can use one of the techniques suggested earlier to avoid this



problem. This is not the case with non-stored procedure statements, so the responsibility falls
with SQL Server to avoid using inefficient plans.

To achieve this, it only autoparameterizes when it knows it is safe to do so. A typical case
would be the following statement.

SELECT balance FROM accounts WHERE account no = 1000

There is a unique nonclustered index on the account no column. An obvious efficient plan is
to use this nonclustered index. Since this index is unique, a maximum of one row only can be
returned.

Now consider the following statement.

SELECT account no FROM accounts WHERE balance between 100
and 120

It would be very risky to replace the values 100 and 120 by parameter markers. Two different
values from a subsequent query such as 50 and 5,000 would probably benefit from an entirely
different plan.

It's worth it at this point to mention the system stored procedure sp executesql. This allows
the developer to build a Transact-SQL statement that can be executed dynamically. Unlike the
EXECUTE statement though, sp executesql allows the setting of parameter values separately
from the Transact-SQL string. This means that sp_executesql can be used instead of stored
procedures to execute a Transact-SQL statement a number of times when only the parameters
change. Because the Transact-SQL statement itself does not change—rather, the parameter
values change—it is highly probable that query optimizer will reuse the query plan it creates
and saves for the first execution. Again, it is up to the developer, being familiar with the data,
to decide whether reusing plans is a good strategy for a particular statement.

Here is an example of using sp_executesql.

DECLARE @MoneyVariable MONEY
DECLARE @SQLString NVARCHAR (500)
DECLARE @ParameterDefinition NVARCHAR (500)

-- Create the SQL String - only need to do this once

SET @SQLString =

N'SELECT account no FROM accounts WHERE balance =
@bal
SET @ParameterDefinition = N'@bal MONEY'

-- Execute the string with the first parameter value

SET @MoneyVariable = 100
EXECUTE sp executesql @SQLString, @ParameterDefinition,
@bal = @MoneyVariable

-- Execute the string with the next parameter value
SET @MoneyVariable = 200

EXECUTE sp executesqgl @SQLString, @ParameterDefinition,
@bal = @MoneyVariable



Note that the query plans of the nonstored procedure SQL statements are placed in the cache
and aged in a manner similar to stored procedures, described previously. Ad hoc statements
that are not autoparameterized, however, will be placed in the cache with a cost of zero, so
their plans will be removed from cache as soon as memory becomes short.

4.3.9 The Syscacheobjects system table

To check for plans in cache the system table syscacheobjects can be queried. Here is a
fragment of the output of syscacheobjects.

SELECT cacheobjtype, objtype, sgl FROM syscacheobjects

cacheobjtype objtype sgl
Compiled Plan Adhoc SELECT account no FROM accounts where
balance=100
Compiled Plan Adoc SELECT account no FROM accounts WHERE
balance=100
Compiled Plan Adhoc SELECT account no FROM accounts WHERE balance
between
100 and 120
Executable Plan Prepared (@1 smallint)SELECT [balancel=[balance] FROM
[accounts]
WHERE [account no]=@1
Compiled Plan Prepared (@1 smallint)SELECT [balance]l=[balance] FROM
[accounts]
WHERE [account nol=@1
Executable Plan Prepared (@bal MONEY)SELECT account no FROM accounts
WHERE balance = @bal
Compiled Plan Prepared (@bal MONEY)SELECT account no FROM accounts
WHERE balance = @bal
Executable Plan Proc usp accounts per range
Compiled Plan Proc usp_accounts per range

The column sql holds the statement text. The column cacheobjtype represents the type of
object in the cache. We can see that the two statements previously mentioned that have their
WHERE keyword in different case are represented by separate plans. The statement that was
too dangerous to autoparameterize with the balance between 100 and 120 values is held as a
separate plan. All three statements are held as ad hoc objects in the objtype column. This
column holds the type of object.

One of our statements was autoparameterized.

SELECT balance FROM accounts WHERE account no = 1000

This is held as a prepared object, as is the statement that was submitted through
sp_executesql. Finally, we can see that a stored procedure is also held in cache. Because
different users will usually have different parameter values when executing stored procedures
and prepared statements, they must also be given an execution context as well as a completely
shared plan.



In this chapter we have looked extensively at the query optimizer. Knowledge of the material
in this chapter combined with that in Chapter 3 will be invaluable to you when designing an
indexing strategy or tracking down a performance problem with a query.

Chapter 5: SQL Server 2000 and Windows
2000

This chapter discusses SQL Server 2000 performance with respect to the CPU, memory, and
disk resources found on a Windows 2000 server.

5.1 SQL Server 2000 and CPU

5.1.1 Introduction

The first resource on a Windows 2000 server that is usually monitored is the CPU. CPUs have
been gaining in power dramatically over the last few years, and Windows 2000 supports
multiprocessor systems with up to 32 processors (with Microsoft Windows 2000 Datacenter).

Although a multiprocessor system may not reduce CPU bottlenecks when a single threaded
process is consuming the CPU, multithreaded processes such as SQL Server 2000 will benefit
greatly.

CPU is a system resource. The more CPU power available the better the system is likely to
perform. Windows 2000 schedules CPU time to the threads of a process, and, if more threads
require CPU time than there is CPU time available, a queue of waiting threads will develop.
Sometimes a processor bottleneck is actually masking another bottleneck, such as memory, so
it is important to look at CPU use in conjunction with other resource use on the system. This
first part of the chapter provides an overview of CPU usage and looks at how SQL Server
2000 makes use of the CPU. It then looks at how CPU bottlenecks can be observed.

5.1.2 An overview of Windows 2000 and CPU utilization

To understand the way that Windows 2000 uses the CPU we first of all need to consider the
difference between a process and a thread. A process can be considered to be an object
containing executable code and data; an address space, which is a set of virtual addresses; and
any other resources allocated to the code as it runs. It also must contain a minimum of one
thread of execution.

A thread is the item inside a process that is scheduled to run, not the process itself as in some
older operating systems. A Windows 2000 process can contain any number of threads, and a
process that contains more than one thread is known as a multithreaded process. Windows
2000 is able to simultaneously schedule a number of threads across multiple CPUs. These can
be threads belonging to many processes or threads belonging to just one process.

Each running instance SQL Server 2000 is a multithreaded process, and so it is able to
schedule a number of threads simultaneously across multiple processors to perform a
multitude of functions. SQL Server 2000 may have threads concurrently executing across



multiple processors with one servicing a user connection, one performing a backup, and one
writing pages from cache to disk. Also, SQL Server 2000 is able to perform queries in parallel
as well as various database operations in parallel, such as index creation. Although SQL
Server 2000 can be parallelizing operations across multiple processors, it can be restricted to
only using a subset of the available processors on the server.

The order in which threads are scheduled is governed by a priority associated with those
threads. Windows 2000 always schedules the highest-priority thread waiting for processor
time to run first in order to make sure that the highest-priority work gets done first. Each
process is allocated to one of four base priority classes.

1. Idle

2. Normal
3. High

4. Real time

The base priority of a process can change within its base priority class. The base priority of a
process thread varies within the base priority of its parent process. As a general rule, the base
priority of a thread varies only within a range of two greater than or two less than the base
priority of its process. The dynamic priority of a thread governs when it will be scheduled.
The dynamic priority of a thread is constantly being adjusted by Windows 2000. For example,
the dynamic priority of a thread is typically increased when an I/O operation it has been
waiting for completes and the thread now needs processor time. The dynamic priority of a
thread can equal or grow beyond its base priority, but it can never drop below it.

By default, SQL Server 2000 runs at normal priority.

SQL Server 2000 also has the concept of fibers. Normally, SQL Server 2000 executes work
using Windows 2000 threads. Work is allocated to threads. The Windows 2000 operating
system code that manages threads runs in kernel mode. Switching threads requires switches
between the user mode of the application code and the kernel mode of the thread manager.
This context switching can be expensive on systems with multiple CPUs that are very busy.
For that reason, SQL Server 2000 can be configured to use fibers by means of the lightweight
pooling server configuration option. Setting this option can be accomplished using
sp_configure or setting the option on the Processor tab of the SQL Server Properties
(Configure) window in the SQL Server Enterprise Manager.

Lightweight pooling allows SQL Server 2000 to manage scheduling within the normal
Windows 2000 thread structures. Fibers are managed by code running in user mode, and
switching fibers does not require the user-mode to kernel-mode context switch needed to
switch threads. Each Windows 2000 thread can support multiple fibers, and SQL Server
performs the scheduling of these fibers. For most SQL Server systems, using lightweight
pooling is unlikely to produce any noticeable benefit.

5.1.3 How SQL Server 2000 uses CPU

There are various ways that SQL Server 2000 can be configured with respect to how it makes
use of the CPU. These can be grouped into the following categories.

e Priority



e Use of symmetric multiprocessing systems
e Thread use
e Query parallelism

Let us consider each of these in turn.
Priority

On the Windows 2000 Server running SQL Server 2000 it is likely that little interactive use
will take place. The server will communicate with client workstations. Usually, when there is
interactive use made of a workstation, it is preferable to increase the priority of the foreground
application—that is, the application running in the window that is currently displayed at the
top of the other windows.

By default, Windows 2000 Server has longer, fixed quanta with no priority boost for
foreground applications, allowing background services to run more efficiently. Windows
2000 Professional, however, defines short, variable quanta for applications and gives a
foreground application a priority boost (a quantum is the maximum amount of time a thread
can run before the system checks for another thread of the same priority to run).

Whether a priority boost for foreground applications occurs or not can be overridden. This can
be done using the System icon in the Control Panel, choosing the Advanced tab, and mouse-
clicking the Performance Options button. This is shown in Figure 5.1.
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Figure 5.1: The performance options window

SQL Server 2000 is never a foreground application, and so, on the server, the performance
should be optimized for Background services. On the client workstation, however, boosting
the foreground priority by optimizing for Applications makes sense. Again, the choice of the
Windows 2000 platform will likely accomplish this by default. Of course, using the Query
Analyzer, for example, on the server directly will not benefit from any priority boost, so you
might find that you do not get great performance. This does not mean that SQL Server 2000 is
running slowly; it means that the Query Analyzer is not priority boosted and so will be
contending equally with it for the CPU.



Another method of changing the priority of SQL Server 2000 is to change the advanced server
configuration option priority boost. This governs whether or not SQL Server 2000 should run
at a higher priority than other processes on the same server. Setting this option can be
accomplished using sp _configure or setting the option on the Processor tab of the SQL Server
Properties (Configure) window in the SQL Server Enterprise Manager.

Setting priority boost to 1 causes SQL Server 2000 to execute at a higher priority and to be
scheduled more often. In fact, its priority will be changed from Windows 2000 base priority 7
to base priority 13. This will probably have a negative impact on other applications running
on the server (including other instances of SQL Server), and therefore this parameter should
be used with care unless the server has been designated as being dedicated to SQL Server
2000 (in which case why bother setting it anyway!). To use our previous example, executing
the Query Analyzer locally on a server that has priority boost set to 1 would result in degraded
Query Analyzer performance.

Use of symmetric multiprocessing systems

With respect to multiprocessor systems, the edition of SQL Server 2000 and the operating
system platform on which it is running governs the maximum number of processors that can
be supported. For example, using SQL Server 2000 Enterprise Edition on Microsoft Windows
2000 Datacenter, up to 32 processors can be supported. On the other hand, using SQL Server
2000 Standard Edition on Microsoft Windows 2000 Server, up to four processors can be
supported. Multiprocessor support is not available on SQL Server 2000 Windows CE Edition,
nor is it available if SQL Server 2000 is running on Windows 2000 Professional, Windows
NT 4.0 Workstation, or Windows 98.

For query parallelism, described shortly, the maximum number of processors that can be used
to execute a query can be specified as a server configuration option, max degree of
parallelism. Setting this option can be accomplished using sp configure or setting the option
on the Processor tab of the SQL Server Properties (Configure) window in the SQL Server
Enterprise Manager. This also limits the degree of parallelism for utility execution such as
DBCC CHECKDB.

Which processors on a multiprocessor system can SQL Server 2000 use? Generally, Windows
2000 does not guarantee that any thread in a process will run on a given processor. However,
it uses a soft affinity algorithm, which tries to run a thread on the last processor that serviced
it. A thread may still migrate from processor to processor if the favored processor is busy,
which causes reloading of the processor's cache. Under heavy system loads, this is likely to
degrade performance. Specifying the processors that should and should not run SQL Server
2000 threads can boost performance by reducing the reloading of processor cache. This is
only likely to make a difference with four or more processors under load. By specifying the
processors manually a hard affinity algorithm is used.

The association between a processor and a thread is called processor affinity. SQL Server
2000 enables a processor affinity mask to be specified as a server configuration option. By
setting bits in the mask, the system administrator can decide on which processors SQL Server
2000 will run. The number of the bit set represents the processor. For example, setting the
mask to the value 126 (hexadecimal 0x7E) sets the bits 01111110, or 1, 2, 3, 4, 5, and 6. This
means that SQL Server 2000 threads should run on processors 1, 2, 3,4, 5, and 6. On an



eight-processor system this means that SQL Server 2000 threads should not run on processors
0 and 7.

In the SQL Server Enterprise Manager, the CPU affinity can be set in the Processor control
section on the Processor tab of the SQL Server Properties (Configure) window.

Note It is also possible to use the Set Affinity option in the Task Manager to allocate a
process to specific CPUs.

For most database administrators, using a hard affinity option is unlikely to be an option that
gains much in the way of performance.

Thread use

When a SQL Server client executes a request, the network handler places the command in a
queue and the next usable thread from the worker pool of threads acquires the request and
handles it. If no free worker thread is available when a request arrives, SQL Server 2000
creates a new thread dynamically, until it reaches the server configuration option maximum
worker threads.

The default value for maximum worker threads is 255, which will often be greater than the
number of users connected to the server. However, when there are a large number of
connections (typically hundreds), using a thread for every user connection may deplete
operating system resource. To avoid this SQL Server 2000 can use a technique called thread
pooling. With thread pooling a pool of worker threads will handle a larger number of user
connections.

If the maximum worker threads value has not been exceeded, a new thread is created for each
user connection. Once the maximum worker threads value has been exceeded, user
connections will share the pool of worker threads. A new client request will be handled by the
first thread in the pool that becomes free.

Query parallelism

In SQL Server 2000, a single query can execute in parallel over multiple CPUs. For
workloads that have a small number of complex queries running on SMP computers, this
should bring a performance boost. For OLTP workloads, which consist of many small
transactions, parallelism is unlikely to enhance performance.

Parallel query processing is aimed at improving the performance of single, complex queries.
The query optimizer decides if a query plan can be executed in parallel based on various
criteria. If it can, the query plan will contain extra operators, known as exchange operators,
which will enable the query plan to be executed in parallel. At run time, SQL Server will
decide, again based on various criteria, how many processors the query will use—that is, how
many threads will be used. This is known as the Degree of Parallelism (DOP).

Parallel query processing is pretty much out of the box. There are, however, two server
configuration options that affect parallel query processing.

1. Max degree of parallelism



2. Cost threshold for parallelism

The max degree of parallelism option controls the number of CPUs SQL Server can use for
parallel queries—that is, the maximum number of threads a query can use. The cost threshold
for parallelism controls the threshold over which the query optimizer will generate a parallel
query plan. If a query is short, such as an OLTP query, the overhead of setting up a parallel
query is not worth the gain.

The query optimizer will not generate a parallel query plan if the computer is only a single
processor. Before the query starts to execute, SQL Server uses its knowledge of CPU use and
the available memory to decide the degree of parallelism for the query. It may be that SQL
Server decides not to run the query in parallel at all.

If the estimated cost of executing the query is less than the cost threshold for parallelism, the
query optimizer will not generate a parallel plan. This is also true if the query optimizer
determines that only a few rows will be returned. To summarize, the query optimizer will only
generate a parallel query plan if it considers that it is worth doing so, and at run time the query
will only be executed in parallel if SQL Server decides that there are sufficient free resources
to do so.

There are SQL statements that will not be executed with a parallel query plan. INSERT,
UPDATE, and DELETE statements will use a serial plan, but their WHERE clause may use a
parallel plan. Static and keyset cursors can use a parallel plan but not dynamic cursors.

To control parallel query execution, as previously mentioned, the maximum number of
processors that can be used to execute a query can be specified as a server configuration
option, max degree of parallelism. Setting this option can be accomplished using sp _configure
or setting the option on the Processor tab of the SQL Server Properties (Configure) window in
the SQL Server Enterprise Manager. The default is to use all the processors.

To specify the cost threshold for parallelism the cost threshold for parallelism server
configuration can be specified using sp configure or setting the Minimum query plan
threshold. . . value on the Processor tab of the SQL Server Properties (Configure) window in
the SQL Server Enterprise Manager. The default is five seconds.

There is also a query optimizer hint, which can be used to influence parallel query execution.
The MAXDOP query hint allows the max degree of parallelism to be set on a statement-by-
statement basis. However, this is not supported for CREATE INDEX statements.

The CREATE INDEX in SQL Server 2000 can be executed in parallel. Assuming that the
max degree of parallelism option is sufficiently high, and the workload on the server is not
great, the CREATE INDEX statement can be executed across all the CPUs. To give each
CPU an equal portion of work to do, a fast, random initial scan is performed to check on the
data value distribution of the table column that will be used for the index column. This initial
thread then dispatches the number of threads determined by the max degree of parallelism
option. Each thread builds its own index structure based on the range of data it is working
with. The initial thread then combines these smaller index structures into a single index
structure.

Let us now look at how we can detect processor bottlenecks.



5.1.4 Investigating CPU bottlenecks

The tools used to observe CPU bottlenecks are typically the System Monitor and the Task
Manager. There are also a number of tools in the Windows 2000 Resource Kit. We will focus
on using the System Monitor in this section, although the Processes and Performance tabs in
the Task Manager are also quite useful. These are shown later in Figures 5.14 and 5.15 when
we investigate memory. Note that Chapter 7 discusses the general use of the System Monitor.
The System, Processor, and Process objects are a useful place to start and it's worth a look at
some of their counters, as shown in Table 5.1.

Table 5.1: Selected Counters for the System, Processor, and Process Objects
CPU-Related | Explanation

Counters
System: The number of threads that need CPU time but have to wait. This counts
Processor only ready threads, not those being handled. This counter belongs to the

Queue Length  system object, because there is only one queue even when there are multiple
processors on the server.

Processor: %  |This is the percentage that a processor is busy. There is an instance of this
Processor Time |counter for every processor on the server. The Total instance can be used to
display the value of total processor utilization system-wide.

Processor: % This is the percentage that a processor is busy in user mode. User mode
User Time means application code and subsystem code.

Processor: %  |This is the percentage that a processor is busy in privileged mode.
Privileged Time Privileged mode means operating system services.

Process: % This is the percentage of CPU time that a process is busy.
Processor Time

In Figure 5.2 the System Monitor is being used to monitor the following counters:
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Figure 5.2: A busy processor

e Processor: % Processor Time
e System: Processor Queue Length



The counter Processor: % Processor Time is highlighted (in white). We can see that the
processor appears to be 100 percent utilized. This in itself is not necessarily going to cause a
bottleneck; however, we can see that the Processor Queue Length is quite high. It averages
around six (note the scale factor of ten so it can be seen on the display) and peaks at around
ten. To check the average and maximum, this counter was selected instead of the counter
Processor: % Processor Time counter. This means that on average, six threads are waiting for
the CPU; this is a clear indication that we have a processor bottleneck.

The lows and highs in the Processor Queue Length counter display are caused by the
randomness that ready tasks are being generated. This is not uncommon. Queues usually
appear when the processor is very busy, but they can appear when CPU utilization not high.
This can happen if requests for the processor's time arrive randomly and if threads demand
irregular amounts of time from the processor.

So what is causing the bottleneck? Is it one process or many processes? We can monitor the
processor use of each process to get a feel for the answer. In Figure 5.3 the System Monitor is
being used to monitor the Process: % Processor Time counter.
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Figure 5.3: Monitoring processor time for individual processes

We have selected the Histogram display to make it easier to look at the processes using the
processor. It is pretty clear that one process is monopolizing the processor. This is the
highlighted process and we can see that it is SQL Server. The only problem is that we do not
know which SQL Server! We may have many instances of SQL Server running, and in each
case the instance will be named sqlservr in the System Monitor. There are various approaches
to finding out which instance is which. One approach I find useful is to create a System
Monitor report showing the Process: % Processor Time counter and the Process: ID Process
counter. This is shown in Figure 5.4.
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Figure 5.4: Checking process ID for the SQL Server instance

Note that we can confirm that the instance sqlservr with process ID 1000 is using up the CPU.
Another way (often easier) is to check the Processes tab in the Task Manager. This is shown

in Figure 5.5.
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Figure 5.5: The Task Manager processes tab

If we click on the CPU column heading, the display will be sorted with the process using most
of the CPU displayed first. We can easily read off the process ID from the PID column.

Whichever method we use to find the process ID, once we have obtained it we now need to
translate it into a SQL Server instance. An easy way to do this is to connect to the SQL Server
instance you suspect in the Query Analyzer and execute the following statement.

SELECT SERVERPROPERTY ('ProcessID')



This will return the process ID. If it is not correct, connect to the next instance and check that.
Most servers will not be running more than a few instances.

Once we have established the SQL Server instance that is monopolizing the processor, we
need to further investigate why this is so, and, if it is not a database or application design
problem, perhaps consider moving the instance of SQL Server 2000 onto its own server. If no
process stands out in this display, this might be an indication that the processor is just too
slow.

Can we drill down further into SQL Server 2000? We can look at the individual threads. In
Figure 5.6 the System Monitor is being used to monitor the Thread: % Processor Time
counter for all the SQLSERVR process's threads. We can clearly see that one thread with
thread instance number 26 is using most of the CPU.
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Figure 5.6: A single SQL Server thread monopolizing the CPU

Compare this with Figure 5.7. Here we see that many SQL Server threads are running the
CPU. So looking at the Thread: % Processor Time counter can be useful to help distinguish
between the case of one busy connection versus many busy connections, but I find that at this
point I really want to start using the SQL Profiler.
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Figure 5.7: Many SQL Server threads using the CPU



Chapter 7 discusses the SQL Profiler in detail. We wish to check for connections that are
using a large proportion of the CPU and which SQL statements on those connections are
using the most CPU.

For our requirement we can create a trace with the SQLServerProfiler-Standard template. The
default events are sufficient, since they include the events that we need. We can choose to
filter out low CPU use events, but we must be careful not to filter out information that might
prove useful in our investigation. In Figure 5.8, a graphic SQL Profiler display is shown.

Figure 5.8: The SQL Profiler showing a single thread monopolizing the CPU

The data columns have been grouped by the data column CPU, and we can immediately see
that although many queries are using between 10 and 20 milliseconds of CPU, one query is
using nearly 62 seconds of CPU. We can see that the duration of this query is about 62
seconds also. In fact, virtually this entire query is CPU. The SQL Profiler identifies the query
syntax, application name, and so on so we can easily identify the problem query in our
application. We can then, of course, investigate the query plan using the Query Analyzer and
hopefully improve it.

We could have saved the trace into a table and then searched the table for events taking, for
example, greater than one second of CPU. In practice, I find myself taking this approach most
of the time.

In Figure 5.9, many queries are using between 50 and 60 seconds of CPU. No one query
stands out. If the queries have a duration, reads, writes, and a CPU use that is expected, then it
may be that the queries are efficient. If the processor is constantly busy and there is a
significant queue, it may be the case that the CPU is just not powerful enough.

Figure 5.9: The SQL Profiler showing many threads using the CPU



5.1.5 Solving problems with CPU

Having determined that there is indeed a CPU bottleneck and that there is a queue of threads
waiting for processor time, the next step is to find out what is using up the CPU. Other
bottlenecks should be investigated, such as memory, to ensure that they are not manifesting
themselves as a CPU bottleneck. If there is no particular candidate process to home in on,
then the CPU is probably too slow and either a faster CPU can be purchased or an additional
CPU. If it is obvious which application is monopolizing the CPU and it is not SQL Server
2000, then it might be an idea to move that application to another server. Moving SQL Server
off a Domain Controller may help if that is where it is installed.

If SQL Server 2000 is monopolizing the CPU, then it should be possible to track down a
query that is inefficient and using too much CPU. If there is no particular candidate query to
home in on, then the CPU is probably too slow and an additional CPU might be the most cost-
effective solution.

Another consumer of CPU is the network interface card. Replacing 8-or 16-bit cards with 32-
bit cards will save some CPU. Network interface cards that use bus-mastering direct memory
access (DMA) are less of a burden on the CPU.

If SQL Server does not seem to be the main consumer of the CPU, it is always worth
checking the counters System: Context Switches/sec and Processor: Interrupts/sec. The
System: Context Switches/sec counter measures the average rate per second at which context
switches among threads on the computer occur. On a multiprocessor system experiencing
processor bottlenecks, high context switches may be reduced by using fibers, which can be
enabled by setting the lightweight pooling server configuration option.

The Processor: Interrupts/sec counter measures the average rate per second at which the
processor handles interrupts from applications or hardware devices. High activity rates can
indicate hardware problems. According to the Windows 2000 Resource Kit, expect to see
interrupts in the range upward from 1,000 per second for computers running Windows 2000
Server and upward from 100 per second for computers running Windows 2000 Professional.

One very important factor to consider is the processor cache. Use the largest processor cache
that is practical. Typically, choose from 512 KB to 2 MB for the L2 cache. Benchmarks have
shown that upgrading to a faster processor but with a smaller cache usually results in poorer
performance.

Multiprocessors need some further consideration. Adding extra processors to the server may
well increase performance if SQL Server is bottlenecking on CPU. It is recommended that the
addition of CPUs be accompanied by the addition of other resources such as memory and
disk. It is recommended to scale memory with processors. For example, if a single-processor
system requires 128 MB of memory and a second processor is added to increase the
throughput, double the memory to 256 MB.

Because of the extra processors, the acceptable queue length will be longer. If the CPUs are
mostly utilized, a queue value equal to about three per processor is not unreasonable. A four-
processor server, for example, might have a queue length of 12.



If SQL Server is running in lightweight pooling mode—that is, using fibers, the queue length
should not exceed one, because there is a single thread on each processor in which fibers are
scheduled.

5.2 SQL Server 2000 and memory

5.2.1 Introduction

Another important resource on a Windows 2000 server is memory. Over the last few years the
amount of memory found on servers and workstations has rapidly increased. Windows 2000
Datacenter Server, for example, supports up to 64 GB of physical memory.

Having large amounts of physical memory is not enough in itself. The software running on
the server must be able to benefit from it, and it is therefore vital that the server operating
system manages memory in an efficient and intelligent fashion. Windows 2000 employs a
virtual memory manager to do just that, and it can provide excellent memory management on
a wide range of memory configurations with multiple users.

SQL Server 2000 uses the virtual memory management features of Windows 2000 to enable it
and other processes to share the physical memory on the server and to hold memory pages on
disk in a page file.

Physical memory is a system resource. The more physical memory the better the system is
likely to perform. If there is not enough physical memory on the server, then performance will
be degraded as processes fight for memory. This section provides an overview of the
Windows 2000 virtual memory model and looks at how SQL Server 2000 uses memory. It
then looks at how memory bottlenecks can be observed.

5.2.2 An overview of Windows 2000 virtual memory management

Similar to a number of modern server operating systems, Windows 2000 uses a flat, linear 32-
bit memory model. Each process is able to address 4 GB of virtual memory. The upper 2 GB
of virtual memory are reserved for system code and data, which are accessible to the process
only when it is running in privileged mode. The lower 2 GB are available to the process when
it is running in user mode. However, SQL Server 2000 Enterprise Edition provides support
for using Windows 2000 Address Windowing Extensions (AWEs).

This enables SQL Server 2000 running on Windows 2000 Advanced Server to address 8 GB
of memory and SQL Server 2000 running on Windows 2000 Datacenter Server to address 64
GB of memory.

Information held in physical memory can usually be categorized as either code or data. The
pages given to a Windows 2000 process by the virtual memory manager are known as the
working set of the process, and this working set holds pages containing any code and data
recently used by the process. The working set of a process can grow or shrink as the virtual
memory manager transfers pages of code and data between hard disk and physical memory.
This is known as paging. All virtual memory operating systems page, and the secret is to
make sure that the amount of physical memory and the memory requirements of processes are



such that paging does not become a burden on the system. In this situation, paging can cause
disk bottlenecks and start to consume the processor.

If a page of code or data is required by a process, and it is not present in the working set of the
process, a page fault results. The page is then brought into its working set. Whether the
working set of the process then grows is determined by the availability of free memory on the
server. If there is an abundance of free memory, the working set of the process will grow as
the new page is added. If there is a lack of free memory, pages in the working set that have
not been used for a while will be removed. This is known as working set trimming. If pages
are continually being taken out of the working set of a process to make room for new pages, it
is likely that the removed pages will be needed again soon. The process will again page fault
and the cycle will be repeated.

We can see that if memory is running low, code and data pages will be continually removed
from, and added to, the working set of the process, resulting in many page faults. This can
lead to a disk bottleneck and wasted CPU, since the system spends more time paging than
doing useful work on behalf of the user.

There are two types of page fault. A hard page fault happens when the code or data page
needs to be retrieved from disk. A soft page fault happens when it is discovered elsewhere in
physical memory. Soft faults use CPU, but hard faults cause disk reads and writes to occur.

When a page is removed from the working set, it may need to be written to disk if it has been
changed. If it has not been changed, this need not happen. The area on disk that pages are read
from and written to is known as the page file. The file name of the page file is pagefile.sys,
and its default size is equal to 1.5 times the amount of physical memory. If memory is
committed to a process (known as committed memory), space will be reserved for it in the
page file.

5.2.3 How SQL Server 2000 uses memory

An instance of SQL Server 2000 is a single Windows 2000 process as is an instance of the
SQL agent process that manages components such as the replication and alert subsystems.
The amount of memory you can give to SQL Server 2000 really depends upon the amount of
memory available on your Windows 2000 server, and this is a function of the amount of
physical memory on the server and the memory requirements of other processes running on
the server. Ideally, if it is possible, dedicate a single Windows 2000 Server to run a single
instance of SQL Server 2000, and then SQL Server 2000 will not compete for memory
resources with anything else. Of course, it can compete with Windows 2000 itself for
memory, but this will degrade performance and so the dynamic memory configuration in SQL
Server 2000 leaves free memory for the operating system. If you decide to configure the
memory requirements of SQL Server 2000 manually, you are advised to leave ample memory
for the operating system.

Remember that multiple instances of SQL Server can run on one Windows 2000 server-a
default instance with up to 16 named instances. Each of these instances will compete for
memory.

So what is memory used for in an instance of SQL Server 2000? The short answer is lots of
things. There is a pool of 8 KB buffers that are used for database pages-for example, data and



index pages and also query plans. Memory is required for user connections and locks. Most
importantly, memory is required for the queries themselves.

Different queries can have very diverse memory requirements. A simple query such as a
single row lookup will require little memory to execute. Such queries are typically found in
online transaction processing systems (OLTPs). Other queries, such as the ad hoc queries
found in data warehouse type systems, may need to perform large sorts. Some queries will
need to perform hash joins on large amounts of data. The queries that need to sort and hash
will benefit from lots of memory. If the sort can fit into memory, or the hash buckets can fit
into memory, query performance will be improved.

When the query optimizer creates a plan for a query, it calculates the minimum memory a
query will need and the maximum amount of memory it would benefit from. When a query
needs to be executed, it is passed to a special scheduler. This scheduler checks to see if the
query indeed does perform a sort or hash operation. If it does not, it is scheduled to run
immediately. Queries that have a sort or hash operation will then be scheduled based on their
memory requirements. Queries with small sorts or joins will be scheduled almost
immediately. Queries with large sorts or joins will be scheduled in such a way that only a few
can run concurrently.

Configuring memory for SQL Server 2000

SQL Server 2000 will dynamically configure its memory requirements. It will expand to use
up the free memory on the Windows 2000 server as long as it needs memory and that amount
of memory is available on the server. It will not use all the free memory, since some will be
needed by the operating system-typically about 4 MB to 10 MB. As other processes start up
and need memory, the available free memory will drop and SQL Server will then release
memory.

Two server configuration options, min server memory (MB) and max server memory (MB),
can be used to specify upper and lower bounds for the memory a SQL Server 2000 instance
will use. When the instance is started, it takes as much memory as it needs to initialize. This
may well be below the min server memory (MB) value. However, once it has crossed this
value, it should not drop below it. This ensures that even if the instance is not busy, some
memory will be kept ready for starting queries. This ensures that their performance is not
degraded by the instance trying to suddenly acquire memory it has given up. The max server
memory (MB) value places an upper limit on the memory the instance will use.

These two server options can be set so that their values are equal. In this situation, once the
instance has grown its memory to that value, it should not increase or decrease it.

These server configuration options can be set with the system stored procedure sp configure
or with the SQL Server Enterprise Manager. In the SQL Server Enterprise Manager the SQL
Server 2000 instance name is right mouse-clicked and Properties chosen. The Memory tab is
then selected. This is shown in Figure 5.10.
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Figure 5.10: The SQL Server properties memory tab

The slider controls that set the min server memory (MB) and max server memory (MB) server
configuration option values can be seen. These can be adjusted and are meaningful when the
Dynamically configure SQL Server memory option is selected. If preferred, the Use a fixed
memory size (MB) option can be selected, which effectively sets min server memory (MB)
and max server memory (MB) values equal and stops dynamic configuration.

Note Address Windowing Extensions (AWEs) can be enabled in SQL Server 2000 Enterprise
Edition to allow SQL Server to address large amounts of physical memory (8 GB on
Windows 2000 Advanced Server and 64 GB on Windows 2000 Datacenter Server). In
this case, dynamic memory management does not occur.

Once the server has been allocated memory, it uses it for a variety of objects-for example,
user connections, locks, and the buffer pool (cache).

There are various methods to investigate the apportionment of memory. The System Monitor
(described in Chapter 7) has a number of objects and counters to help us. Figure 5.11 shows
the System Monitor in report format displaying some useful object counters.
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Figure 5.11: System Monitor counters useful for checking memory use of objects

In Figure 5.11 we can see three objects-Buffer Manager, Cache Manager, and Memory
Manager. They belong to the instance of SQL Server 2000 named SQL2000 A. Some useful
counters belonging to these objects are displayed.

The Buffer Manager: Total Pages counter represents the total number of 8-KB pages (buffers)
in the buffer pool. This holds, for example, database pages and stored procedure query plans.
There are currently 8,939 buffers in the pool.

The Cache Manager: Cache Pages counter, for the Total instance, represents the total
number of 8-KB pages (buffers) in the buffer pool used by cached objects, such as stored
procedure plans, trigger plans, prepared SQL plans, and ad hoc SQL plans. If required, the
number of pages used by each of these cached object types can be monitored individually.
There are currently 4,867 pages used for cached objects.

The Memory Manager: Connection Memory (KB) counter represents the amount of memory
in kilobytes used by connections. There are currently 384 KB used by connections. Generally,
a new connection will take about 24 KB depending on the network packet size. The formula
for connection memory is: ((3 * the network packet size) + 12 KB), with the default network
packet size being 4 KB.

The Memory Manager: Lock Memory (KB) counter represents the amount of memory in
kilobytes used by locks. There are currently 240 KB used by locks. Generally, a lock will take
about 96 KB.

The Memory Manager: Optimizer Memory (KB) counter represents the amount of memory in
kilobytes used for query optimization. There is no query optimization being performed at the
time of the monitoring.

The Memory Manager: Total Server Memory (KB) counter represents the amount of dynamic
memory that the instance is currently using. We can see that if we add up the Buffer Manager:
Total Pages counter (remember, each page is 8 KB) and the Memory Manager counters, the
value is not far from 72,592 KB. The figure arrived at is less, because we have not monitored
all consumers of dynamic memory.



Another useful tool is DBCC MEMUSAGE. This has not been documented since SQL Server
6.5, and its output has changed dramatically since then. However, if we use it with that
thought in mind, we get the following output.

dbcc memusage (names)

Buffer Cache Top 20

Database Name Object Name Index Name Buffers Dirty
BIG accounts 5556 0
Master syscharsets 33 0
Master syscomments 24 0
Master sysmessages 14 0

0

BIG accounts UNKNOWN 11

This gives us an insight into the number of data and index pages used by the largest objects in
cache.

To look at the sizes of cached objects, such as stored procedure plans, the syscacheobjects
system table can be queried, as discussed in Chapter 4. Here is a fragment of output showing
the pages used by different objects in cache.

SELECT cacheobjtype, objtype, pagesused, sql
FROM master..syscacheobjects
ORDER BY pagesused DESC

Cacheobjtype objtype pagesused sql

Executable Plan Proc 2164 usp test

Compiled Plan Proc 206 usp_test

Compiled Plan Proc 52 sp_helpdb
Executable Plan Proc 42 sp_helpdb
Compiled Plan Proc 31 sp_helpconstraint

5.2.4 Investigating memory bottlenecks

If memory starts to get tight on the server, performance will start to suffer. This is most likely
to happen on a server that is running applications other than just SQL Server 2000, since they
will contend for memory.

Before we investigate memory bottlenecks, we need to look at the tools we can use to do so.
The first piece of information we will want to know is likely to be how much physical
memory the server has. We can easily check this by choosing About Windows from the Help
menu in Windows Explorer, as shown in Figure 5.12.
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Figure 5.12: Memofy available as shown by Windows Explorer

Another handy tool is the Task Manager, which is present in Windows 2000. There are a
number of tabs that can be chosen, and these are Applications, Processes, and Performance.
The Applications tab is shown in Figure 5.13. This tab shows the status of programs that are
running on the system. SQL Server 2000 is not shown, since it is running as a service. The
Processes tab displays information about processes that are running on the system, as shown
in Figure 5.14. Information such as the memory usage and the page faults is shown for each
process. Columns can be added or removed from this tab. The Performance tab, shown in
Figure 5.15, displays a graph of CPU and memory use history as well as a textual display.
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Figure 5. 13: The Windows 2000 Task Manager appliéations tab
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Figure 5.15: The Windows 2000 Task Manager performance tab

The most useful tool is the System Monitor, which we have already met. There are a number
of useful System Monitor objects concerning memory, such as Memory and Process. There
are also a number of tools in the Windows 2000 Resource Kit.



Let us now focus on using the System Monitor to investigate memory bottlenecks. The
memory object is a useful place to start, and it is worthwhile to look at some of the memory
object's counters, as shown in Table 5.2.

Memory
Object
Counter

Page
Faults/sec

Pages
Input/sec

Pages
Output/sec

Pages/sec

Page
Reads/sec

Page
Writes/sec

Available
Bytes

Available
KBytes

Available
MBytes

Table 5.2: Selected Counters for the Memory Object
Explanation

This counter includes both hard page faults and soft page faults. Hard page
faults result in disk I/O. Soft page faults mean pages are found elsewhere in
memory.

This is a measure of the number of pages brought in from disk every second.
The difference between this value and Page Faults/sec represents soft page
faults.

This is a measure of the number of pages written to disk every second to
make room in the working set of the process for newly faulted pages. If the
process modifies pages, they must be written out. They cannot be discarded.

This is total of Pages Input/sec plus Pages Output/sec.

This indicates the reads from disk per second to satisfy page faults. This is an
important counter. As a rule of thumb, if this counter exceeds five pages per
second there is a memory shortage. A single read operation can actually bring
in more than one page.

This indicates the writes to disk per second to satisfy page faults. This is
another important counter, since it measures real disk I/O work being done by
the system because of page faulting. A single write operation can actually
write out more than one page.

This shows how much memory remains that can be given to processes. The
three counters only differ in the units used.

In Figure 5.16 the System Monitor is being used to monitor the following counters:

e Memory: Page Reads/sec
e Memory: Page Writes/sec
e Memory: Pages Input/sec
e Memory: Page Faults/sec
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Figure 5.16: Memory pages being read in from disk

The line that peaks the highest is Page Faults. This is to be expected, since it represents both
hard and soft faults.

The averages for these counters are shown in the following chart (the averages cannot be
deduced from the screenshot alone).

Counter Average
Page Reads/sec 0.2
Pages Input/sec 0.8
Page Faults/sec 405

The Page Faults/sec counter represents the sum of hard and soft page faults. The Pages
Input/sec counter represents hard faults, so about 0.2 percent of the faults are hard faults. The
0.8 pages that are input per second are brought in by 0.2 page reads per second, so
approximately four pages are being brought in by every disk read. Although the majority of
page faults are soft, 0.2 I/Os per second are hitting the disk to retrieve pages, which is trivial.

It is useful to also examine the disk activity to see how hard paging is hitting the disks. Some
useful counters are as follows:

e % Disk Time
e Avg. Disk Queue Length
e Disk Reads/sec

The % Disk Time is the percentage of elapsed time that the selected disk drives are busy
servicing requests. Avg. Disk Queue Length is the average number of read and write requests
queued on the selected disks. Disk Reads/sec is the rate of read operations on the disk. These
are shown in Figure 5.17. The averages for these counters are shown in the following chart.
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Figure 5.17: Memory counters with disk counters

Counter Average
Page Reads/sec 0.4
Pages Input/Sec 1.6

Page Faults/sec 282

% Disk Read Time 23.8
Avg. Disk Queue Length 0.2

Disk Reads/sec 9

We can immediately compare Page Reads/sec with Disk Reads/sec. This shows us that only a
small part of our disk activity is caused by paging. The disk is busy about 24 percent of the
time. The Avg. Disk Queue Length is small: about 0.2.

A similar investigation can be performed for page writes. It is also worth looking at which
individual processes are faulting heavily. This can be done by monitoring the Page Faults/sec
counter on the process object for all the process instances. If this is viewed in histogram

format, processes that are page faulting heavily stand out immediately, as shown in Figure
5.18.
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Figure 5.18: Monitoring page faults for individual processes

Another area worth monitoring is the page file, to see if it is filling. Ensure that there is
enough free space to let it expand if it needs to.

5.2.5 Solving problems with memory

The two main approaches to solving memory problems are: making best use of available
memory and adding more physical memory to the server.

To make more use of available memory, remove anything that is not needed but is consuming
memory resource. For example, Windows services, drivers, and network protocols that are not
used. As was mentioned earlier: If possible, dedicate the server to a single instance of SQL
Server 2000.

Increasing the size of the paging file and adding another paging file may help. The addition of
extra memory should also be accompanied by an increase in paging file size and, if possible,
an increase in secondary cache size. In my experience, the addition of more memory is often
the simplest and quickest fix to memory problems and is often the most cost effective.

5.3 SQL Server 2000 and disk I/O

5.3.1 Introduction

A bottleneck that is often experienced with database management systems concerns the disk
subsystem. By definition a database is a shared repository of information, and, consequently,
many users are likely to be reading and writing to the database. Depending on whether the
database supports an online transaction processing (OLTP) system or a decision support
system (DSS), users may update small amounts of data or may perform read only queries on
large amounts of data.

The disks themselves are different from most other components in the server in that they
typically have moving parts. The disk surface rotates and the disk heads move in and out
across the disk surface. Relative to memory access this takes a long time, and therefore SQL
Server 2000 uses many techniques to help it minimize disk access. In fact, as we have seen,



the query optimizer attempts to choose an access strategy that limits the number of disk I/Os
performed.

Care should be taken when investigating disk I/O bottlenecks, since there can be many causes.
One cause is a memory bottleneck, which results in high levels of paging to disk, as was
described in the previous section.

5.3.2 An overview of Windows 2000 and disk I/0

To perform its disk I/O SQL Server 2000 issues reads and writes to Windows 2000 and lets
Windows 2000 deal with the business of reading and writing to the underlying disk
subsystem. Various techniques are employed to keep the physical disk I/Os efficient. For
example, Windows 2000 (and Windows NT) utilize a technique known as scatter-gather 1/O.
This technique enables Windows 2000 to transfer data into or out of areas of memory, which
are not contiguous, in a highly efficient fashion. Unlike Windows 98, Windows 2000 (and
Windows NT) can also make use of asynchronous I/O, which gives SQL Server the ability to
issue I/Os to disk and, instead of waiting for the I/O to complete, carry on with other work.
The I/0O completion can then be checked later.

To provide high levels of disk I/0O throughput, Windows 2000 provides various levels of
RAID (Redundant Arrays of Inexpensive Disks), and SQL Server 2000 can make use of this
capability. Various vendors also provide hardware-based RAID solutions. These increase the
cost of the system but tend to provide better performance and are becoming increasingly
popular. For that reason, we will assume we are using hardware-based RAID arrays.

Commonly supported RAID levels are as follows:

e RAID 0-disk striping
e RAID 1-disk mirroring
e RAID 5-disk striping with parity

In a RAID O stripe set, data is spread across all the drives in the set. If you were to create a
database file on a RAID 0 stripe set, the disk controller would actually break the file into
pieces (known as chunks) as you created it. Each piece would be placed on the next disk in
the set circling round when it moved off the last one. We can imagine a three-disk stripe set
now providing three sets of disk heads to access the file. This is the bonus of RAID 0:
performance. RAID 0 provides very good performance for both reading and writing. The
downside of RAID 0 is that the loss of a single disk will affect the whole stripe set. The RAID
0 array will appear to be a single disk to Windows NT/2000 and SQL Server.

RAID 5 is very similar to RAID 0. However, as well as writing data onto a disk drive in the
stripe set, parity information is written to another stripe set member. Not only do we stripe
data, but we stripe parity information. This gives us a level of redundancy. We can lose one
disk and the data information on that disk can be recreated from the parity on other disks
when a request for data on the failed disk is made. The downside of RAID 5 is that although
read performance is good, write performance is worse than RAID 0, since two disks must be
written to. Hardware-based implementations of RAID 5 can help to absorb this write
performance degradation. Again, the RAID 5 array will appear to be a single disk to Windows
NT/2000 and SQL Server.



In RAID 1 data is duplicated on a mirror disk drive (some RAID implementations allow more
than one mirror). Writes are performed to both members of the set. This configuration gains
us redundancy. We can lose one of the members and still continue working with the other
one. There is no performance advantage in using RAID 1 for writing; in fact, it can be slightly
slower, but it may well give some performance boost to reading. A downside of RAID 1 is
that twice as much disk space is necessary and, therefore, twice the cost.

It is also possible to use two disk controllers-one for each mirror set member. This means that
a disk controller failure can be tolerated. This is known as duplexing. As with the other RAID
configurations, the RAID 1 array will appear to be a single disk to Windows NT/2000 and
SQL Server.

Table 5.3 summarizes the different RAID levels.

Table 5.3: RAID Levels 0, 1, and 5

Number

RAID Type |Characteristics of Disks Reliability Performance
RAID 0: disk Data is spread over all the N Less than a High for read and
striping disks in the stripe set with single disk write

no redundancy.
RAID 1: disk Data duplicated on each 2N Higher than Good for read but less
mirroring member RAID O or 5 or (than a single disk for

single disk write

RAID 5: disk |Similar to RAID 0, but N+1 Higher than Similar to RAID 0 for
striping with |parity information is RAID 0 or read but less than a
parity stored with data for single disk single disk for write

redundancy

What happened to RAID levels 2, 3, and 4? Generally, these are considered to be evolutionary
steps toward RAID 5 and thus are not often used with database systems.

Choosing the appropriate RAID implementation is a compromise between performance, fault
tolerance, and cost. Figures 5.19 and 5.20 show two common configurations.

DATA FILE LOG FILE
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Figure 5.19: A RAID configuration utili.zing RAID 0 and 1 for the data and RAID 1 for the
log
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Figure 5.20: A RAID configuration utilizing RAID 5 for the data and RAID 1 for the log



Both of the configurations store the log on a separate RAID array from the data using a
separate disk controller. This means that the data file can be lost while the transaction log
remains unaffected.

The configuration in Figure 5.19 places the data file on a RAID 0 array for optimum read and
write performance. The RAID 0 array is mirrored to provide fault tolerance. This is often
known as RAID 1+0, or RAID 10. This provides the best performance and fault tolerance but
at the greatest cost. The transaction log is placed on a RAID 1 array. The transaction log is
usually written to sequentially so, as long as nothing competes for disk bandwidth on this
array, this configuration provides good write performance (and read). The transaction log is
mirrored, since losing it may result in the loss of work.

The configuration in Figure 5.20 places the data file on a RAID 5 array. This will provide
optimum read performance, but write performance will be degraded. This will be a lower-cost
solution than the previous configuration. The transaction log is placed on a RAID 1 array as
before.

Suppose the size of our data was greater than the size of the RAID arrays available to us. In
this case we could use multiple data files, placing each file on each RAID array. Space for our
tables would be allocated from each file on each RAID array. SQL Server would be able to
issue read requests simultaneously to each RAID array when the table was scanned.

5.3.3 How SQL Server 2000 uses disk 1/0

We have already mentioned the fact that SQL Server maintains a pool of 8-KB bufters. This
buffer pool is sometimes referred to as a unified cache, since it holds both cached objects,
such as stored procedure plans, and database pages, such as data and index pages. The buffers
used for cached objects are often referred to as the procedure cache, and the buffers used for
database pages are referred to as the data cache.

The goal of the data cache is to minimize physical accesses to the disk subsystem. There is a
single data cache for each instance of SQL Server 2000 that all the instance's databases share.
In this section we will look at the data cache and the various techniques used to make reading
from it and writing to it more efficient.

An overview of the data cache

As we discussed earlier, a portion of SQL Server 2000 memory is used for the data cache. As
long as there is enough memory available on the server to allow SQL Server 2000 to
dynamically grow its memory allocation, the data cache can grow.

The idea behind the data cache is quite simple. If a user connection requests a row, SQL
Server 2000 will translate this into a page request and it will then look for the page in the data
cache to see if this page has previously been retrieved from disk. This request for a page
represents a logical read.

If the page cannot be found, it must be retrieved from the database on disk, and this disk
access represents a physical read. The page is read into a free buffer and the data requested by
the connection obtained. The page is now in cache, and, assuming that it does not leave the
cache for any reason, it will be available for any connection requesting it. The next connection



requesting that page will issue a logical read, which will be satisfied from the data cache. This
is a memory access, as opposed to a disk access, and is consequently much faster than the
original request that brought in the page from disk.

We can envision a situation where a whole database gets brought into the cache, and this is
quite feasible-the only limiting factor being the size of the data cache. In reality, 20 percent of
most databases get accessed 80 percent of the time, so we find that the most accessed pages in
the database find themselves in the data cache. Note that increasing the size of the data cache
does not bring us a linear performance increase. Once we can hold the most accessed pages in
a database or group of databases in the data cache, the allocation of more memory to the data
cache brings us little gain.

An empty data cache is created when SQL Server 2000 is started. At this point most database
page requests end up as physical reads. After awhile a steady state is reached, with the data
cache holding the most frequently used pages, as shown in Figure 5.21. The percentage of
time a requested database page is found in the data cache is known as the cache hit ratio. The
cache hit ratio is defined as follows:

cache hit ratio (%) = ((logical read - physical read)/
logical read) * 100

AVERAGE DATA RETRIEVAL TIME

CACHE
FILLED

Figure 5.21: A steady state reached in the data cache

What happens if we fill the data cache and then we need to read in a new page? We will
discuss the mechanisms employed shortly, but SQL Server 2000 will have to make room in
the data cache for the new page. If the new page has been changed by a user connection, then
it is known as a dirty page and it cannot be discarded, because it reflects the latest state or
version of that page. It must be written back to the database on disk. However, if the page has
not been changed, it can be discarded. SQL Server 2000 keeps track of which pages have not
been used for the longest length of time. This is important, because this is taken into account
when SQL Server 2000 jettisons pages from the cache.

How does SQL Server 2000 find out if a page is resident in the data cache? It could look at
every used buffer in the data cache, but this would be very expensive for large data caches



consisting of tens of thousands of buffers. Instead, it uses an internal hashing scheme to
quickly locate buffers.

What happens if we change pages in the data cache? How do they get to disk? There are a
number of mechanisms involved. First of all, we need to consider the fact that usually the data
cache is finite in size and eventually all the buffers in it could be used. In other words, there
are no free buffers. If there are no free buffers, then SQL Server has no room to place new
pages that are read in from disk. To avoid and preempt this situation, SQL Server periodically
frees up buffers in the data cache. When a buffer is freed, it is first checked to see if it is dirty.
A dirty page is one where changes have not yet been written to disk and therefore the buffer
cannot just be discarded. The dirty page must be written to the data file. If the page is not
dirty, then its contents can be discarded and the buffer is placed into a chain of free buffers.

It would not make sense to free a buffer containing a page that was frequently accessed
instead of a buffer containing a page that had not been accessed for a long time. To avoid this
situation, each buffer contains a reference count, which is incremented each time the page in
the buffer is accessed. The more the page is accessed, the greater the reference count. When
the data cache is searched in order to find buffers that can be freed, the reference count is
decremented. When a buffer is found with a reference count of zero, it is freed. This
mechanism ensures that frequently accessed pages stay in the cache. Of course, if we have a
large data cache and lots of memory on the server so that the data cache can expand, there is
no reason to free up buffers constantly.

Note that SQL Server 2000 uses a write-ahead log algorithm. This means that the transaction
log is always written to before the data file, and this ensures that a change can always be
rolled back in a recovery situation.

So what writes the dirty pages to disk? There is no one process that does this. Often it is the
worker threads that perform the function of scanning the buffer pool looking for pages to
discard. They do this while waiting for their own disk accesses to complete. If they need to
write a page, this is performed as an asynchronous I/O.

A system process known as the lazywriter also performs the same function. The lazywrriter
thread is activated at periodic intervals. It then scans the data cache in order to find buffers
that can be freed. It basically performs the same activities at the worker threads. Because the
worker threads have been freeing up buffers, the lazywriter system process is not kept busy.
However, on the Windows 98 platform, where asynchronous I/O is not supported, the worker
threads cannot perform this function and therefore the lazywriter system process can become
very busy.

Another system process that contributes is the checkpoint process. The checkpoint thread's
goal in life is not to free up buffers but rather to ensure that the contents of dirty pages
eventually get written to the data files on disk. It does this to keep recovery time short;
otherwise, an automatic SQL Server recovery, performed perhaps because of a power failure,
would potentially take a long time rolling forward changes from the transaction log to the data
files. The checkpoint thread writes the pages asynchronously to disk with what are sometimes
referred to as batch writes. This is a very efficient mechanism, especially if it is used in
conjunction with hardware-based RAID arrays.



To monitor the lazywriter and checkpoint processes, SQL Server 2000 provides us with a
number of useful counters associated with the Buffer Manager object, as shown in Table 5.4.

Table 5.4: Some Useful Counters for Observing Page Transfers to and from Disk
Lazywrites/sec Number of buffers written per second by the lazywriter

Checkpoint pages/sec Number of pages flushed to disk per second by a checkpoint

Page Reads/sec Number of physical database page reads per second
Page Writes/sec Number of physical database page writes per second
Database Pages Number of database pages in the buffer pool

Free Pages Number of free pages

Another Buffer Manager counter that is very useful is Buffer Cache Hit Ratio. This is the
cache hit ratio described previously.

Figure 5.22 shows checkpoint activity occurring on the server. The highlighted counter is the
Checkpoint pages/sec counter. Notice that during the checkpoint, another counter is also
active. This is the Page Writes/sec counter. In this example both counters had a maximum
value of 1,807.

Figure 5.22: Checkpoint activity observed in the System Monitor
Keeping tables and indexes in cache

As described previously, tables and indexes that are accessed frequently stay in the data
cache, while other, least used pages are flushed out first. In this way the pages that are often
required are the pages that connections get fast access to. However, it is possible that fast
access is required to tables and indexes that are not accessed frequently enough to keep them
in the data cache.

To keep a table and its indexes in data cache the sp_tableoption system stored procedure can
be used, as follows:

EXEC sp tableoption 'branches', 'pintable', true



Note that the table name can use wildcard characters. This statement does not load pages from
the table into the data cache, but once they are read into data cache by normal activity, they
stay there and are not removed. This can result in little data cache being left for other tables
and indexes, so table pinning should be used with care.

To turn the option off, just use the false keyword, as follows:

EXEC sp tableoption 'branches', 'pintable', false
Read-ahead scans

Read-ahead processing is a mechanism used by SQL Server 2000 to reduce the number of
stalls a thread experiences waiting for a physical read to complete. It is a concept similar to
instruction prefetch in a CPU. If SQL Server 2000 realizes that a table scan or an index scan is
taking place-in other words, sequential scanning of pages-it can start to prefetch pages into the
data cache before the thread requests those pages. This means that when the thread requests a
page, it is found in the data cache and the thread does not stall waiting for a physical read
from disk to complete.

If a read-ahead mechanism was not employed, a thread issuing many disk I/Os while
executing a table scan or index scan would spend a large amount time waiting for the disk
read to complete, as shown in Figure 5.23.

Figure 5.23: Performing a table scan with no read ahead

We know that disk I/O takes a long time relative to memory access, and this is represented by
"t" in Figure 5.23.

If we employ a read-ahead mechanism, which can read the pages into cache using other
threads before the user's thread requests them, we have eliminated the stall caused by the
physical read and only the data cache access is required, as shown in Figure 5.24.
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Figure 5.24: Performiﬁg a table-s.can with read ahead

The read-ahead mechanism also reads in units of extents, so it reads in eight pages in one disk
I/O, which clearly is more efficient than reading eight pages with eight single-page reads.

So what can we benefit from the read-ahead capability? Basically, anything that performs a
sequential scan of data pages, including the following.



e Table scans

¢ Nonclustered index leaf scans

« DBCC statements, such as DBCC CHECKDB

e Transact-SQL statements, such as UPDATE STATISTICS

How does SQL Server 2000 know, for example, that a table scan is taking place? It knows
because that was the decision the query optimizer made. How does SQL Server 2000 know
which pages to read next? Because the extents in a table or index are managed by IAM pages
(described in Chapter 2), SQL Server can easily retrieve the relevant IAM page or pages and
find the extents that need to be read. A sorted list is then built of the extents to be read and
this drives the read ahead. Contiguous extents can then be read very efficiently

To observe read-ahead processing in action, the Set statistics IO option can be set in the
Query Analyzer. For example, suppose we execute the following query against the Accounts
table-this time increased to 400,000 rows.

SELECT COUNT (*) FROM accounts

The output from Set statistics 10 is as follows:

Table 'accounts'. Scan count 1, logical reads 24306,
physical reads 136, read-ahead reads 24087.

This shows that 24,306 logical reads were required to perform the table scan but only 136
physical reads. The number of read-ahead reads performed was 24,087. This means that
24,087 pages were read into the data cache by the read-ahead mechanism. The low value of
physical reads performed by this query is due to read ahead.

Note what happens if we immediately reissue the query:

Table 'accounts'. Scan count 1, logical reads 24306,
physical reads 0, read-ahead reads 0.

In this case the pages are already in data cache. The read-ahead mechanism is never initiated.

The System Monitor can also be used to monitor read ahead. The Buffer Manager object has
an associated counter: Readahead pages/sec.

Shrinking database files

One consideration to be made when scanning the pages of a table is the utilization of the
pages. If we have many pages that are only partly filled because of row deletions, perhaps
made by an archive program, we are scanning more pages than should be necessary to retrieve
our data. We need some way of detecting the problem and then fixing it by compacting the
file.

The DBCC SHOWCONTIG statement, which we discussed in Chapter 3, can show us how
densely rows are stored on pages. For example:

DBCC SHOWCONTIG ('accounts')



- Pages Scanned.............. : 1570

- Avg. Page Density (full)... : 42.34%

To compact the file we can use DBCC SHRINKFILE. We also discussed this statement in
Chapter 2, and we noted that in the default case data rows from the pages at the end of the
table would migrate to the free space in pages at the beginning of the table. Let us issue a
DBCC SHRINKFILE:

DBCC SHRINKFILE (BankingDB Data, 10)

Now let us execute DBCC SHOWCONTIG again:

DBCC SHOWCONTIG ('accounts')

- Pages Scanned.............. : 782

- Avg. Page Density (full)... : 84.70%

We can immediately see that the page density has increased by about a factor of two. This
means we are storing twice as many rows per page and that we need half the pages to hold our
data compared with what we needed previously. This is clear from the Pages Scanned value,
which has changed from 1,570 to 782. So, although it may take a while to shrink a large file,
you may find that subsequent scans take somewhat less time.

5.3.4 Investigating disk 1/0 bottlenecks

The tool used to observe disk I/O bottlenecks is typically the System Monitor. The Task
Manager displays little useful information as far as disk I/O is concerned. There are also a
number of tools in the Windows 2000 Resource Kit that are useful. We will focus on using
the System Monitor, since it is the most comprehensive tool, and we will also introduce a
useful system table-valued function, fn_virtualfilestats.

If you are using Windows 2000, the statistics collection for the Logicaldisk object is not
active by default. However, the statistics collection for the Physicaldisk object is active by
default.

Note If you are using Windows NT, the statistics collection for both the disk objects is not
active by default.

To activate statistics collection in Windows 2000 for the Logicaldisk object, run the diskperf
command and reboot Windows 2000. To turn on statistics collection for the Logicaldisk
object, type in:

diskperf -yv

To deactivate statistics collection, type in:



diskperf -nv
The Physicaldisk object uses the syntax -yd and -nd.

Once the diskperf command has been run, it will not have to be run again until you want to
change the statistics collection.

For Windows NT the syntax is just -y and -n.
Let us look at some of the more useful counters associated with disk activity.

The Logical Disk, Physical Disk, and a number of SQL Server 2000 objects are a useful place
to start, and it is worth a look at some of their counters. Again, note that it often is a memory
bottleneck that manifests itself as a disk bottleneck, and therefore the counters associated with
the Memory object, as described earlier, should also be monitored. Some of the most useful
Logical Disk Physical Disk counters are shown in Table 5.5. Useful SQL Server counters are
shown in Table 5.6.

Table 5.5: Logical and Physical Disk Counters
Logical/Physical Disk Explanation

Object Counter

% Disk Time How busy is the disk? This is the percentage of elapsed time that the
selected disk is busy handling read and write requests.

% Disk Read Time This is the percentage of elapsed time that the selected disk is busy

handling read requests.

% Disk Write Time This is the percentage of elapsed time that the selected disk is busy
handling write requests.

% Idle Time This is the percentage of elapsed time that the selected disk is not
processing requests.

Disk Reads/sec The rate of read operations on the disk

Disk Writes/sec The rate of write operations on the disk

Avg. Disk Queue This is the average number of read and write requests for the disk in

Length the sample interval. If disk queue length is greater than two and the
%Disk Time is high, this may indicate a disk bottleneck.

Current Disk Queue This is an instantaneous value at the point of sample. It includes the

Length requests being serviced.

Avg. Disk Bytes/Read | This is the average number of bytes transferred to disk during read
operations.

Avg. Disk Bytes/Write This is the average number of bytes transferred to disk during write
operations.

Table 5.6: Useful SQL Server Counters

SQLServer Object Explanation

Counter

Access Methods: Number of records per second fetched through forwarded record

Forwarded Records/sec  [pointers



SQLServer Object
Counter

Access Methods: Full
Scans/sec

Access Methods: Page
Splits/sec

Buffer Manager: Buffer
cache hit ratio

Buffer Manager:
Checkpoint pages/sec

Buffer Manager:
Database pages

Buffer Manager: Free list

stall/sec

Buffer Manager: Free
pages

Buffer Manager: Lazy
Writes/sec

Buffer Manager: Page
life expectancy

Buffer Manager: Page
lookups/sec

Buffer Manager: Page
Reads/sec

Buffer Manager: Page
Writes/sec

Buffer Manager:
Procedure cache pages

Buffer Manager:
Readahead Pages/sec

Buffer Manager:
Reserved Pages

Buffer Manager: Stolen
Pages

Buffer Manager: Target
Pages

Buffer Manager: Total
Pages

Databases: Data File(s)
Size (KB)

Databases: Log File(s)

Table 5.6: Useful SQL Server Counters
Explanation

Number of unrestricted table or index scans per second
Number of page splits per second that occur as the result of

overflowing index pages (data pages in a clustered index)

The percentage of time that a page was found in the data cache.
Usually 95% plus on a server in steady state with a large cache.
Number of pages written to disk per second by a checkpoint
Number of database pages in the buffer pool

Number of requests per second that had to wait for a free page

Total number of pages on all free lists

The number of pages written out to disk per second by the
lazywriter. This cleans buffers and returns them to the free buffer
pool.

Number of seconds a page will stay in the buffer pool without any
references to it

Number of requests per second to find a page in the buffer pool
The number of physical page reads per second. This is what we try
to minimize with indexes and data cache.

The number of physical page writes per second

Number of pages used to store compiled queries

Number of pages read in by the read-ahead mechanism

Pages reserved in the buffer pool

Number of pages used for miscellaneous server purposes

Ideal number of pages in the buffer pool

Number of pages in the buffer pool-includes database, free, and
stolen pages

Total size of all data files in a database

Total size of all log files in a database



Table 5.6: Useful SQL Server Counters

SQLServer Object Explanation
Counter

Size (KB)

Be aware that the % Disk Time, % Disk Read Time, % Disk Write Time, and % Idle Time
counters can exaggerate. You may see values over 100 percent. It is a good idea to monitor %
Idle Time with the other three counters to get an indication of whether this is happening.

In the System Monitor chart shown in Figure 5.25 we have added the PhysicalDisk: Avg.
Disk Bytes/Read counter and the Buffer Manager: Page lookups/sec counter. We have
executed a query that retrieves a row from the Accounts table using a nonclustered index. We
can see a blip in the Buffer Manager: Page lookups/sec counter. However, note the value of
the PhysicalDisk: Avg. Disk Bytes/Read counter. It is 8,192 bytes. This shows us that a single
page read was performed.

i1

Figure 5.25: Investigating disk activity-looking at read size

In the System Monitor chart shown in Figure 5.26 we have added the PhysicalDisk counters,
Avg. Disk Queue Length and %Disk write time, and the Buffer Manager counters, Page
writes/sec and Checkpoint pages/sec.



Figure 5.26: Investigating disk activity-looking at a large update

We have initiated an update of a large table, resulting in many rows being changed. The Avg.
Disk Queue Length counter is labeled (1). This peaks at 14 and averages 2.7. The counter that
closely tracks it is %Disk write time, which is 100 percent at peak. Clearly, a lot of write
activity is being performed. The data file and log file are on one disk, so what is responsible
for the activity? The clue is our highlighted counter, Checkpoint pages/sec. This averages 140
pages/sec with a peak of 904 pages/sec. This results in a Page writes/sec, labeled (2),
averaging 140 and peaking at 904. This is the checkpoint that is flushing to disk.

Finally, let us have a look at fn_virtualfilestats-a system table-valued function. This gives us
very useful information about I/O statistics for individual data and log files. It is very easy to
use.

SELECT * FROM :: fn virtualfilestats(l1l, 1)

The first parameter is the database ID, and the second parameter is the file ID. Personally, I
find the best way to obtain these values is with sp_helpdb and sp_helpfile. If you prefer, use
the system functions DB_ID() and FILE ID() to find these values. Example output is as
follows:

DbId FileId TimeStamp NumberReads NumberWrites BytesRead BytesWritten
IoStallMsS

11 1 9293172 1579 572 398663680 73203712
11810

5.3.5 Solving problems with disk I/O0

Having determined that there is indeed a disk I/O bottleneck and that there is a sustained
queue of requests, the next step is to eliminate causes other than SQL Server 2000, such as a
memory bottleneck causing high levels of paging to disk.

If the disk bottleneck proves to be SQL Server 2000, it could be a specific set of queries-in
which case it is possible that these queries could be made more efficient by rewriting or by a
change in index design. This often cures the problem. However, if the workload on the SQL



Server 2000 as a whole is generating more disk I/O than the I/O subsystem can handle, it may
be time to invest in a RAID approach.

There are a number of RAID topologies that can be used; the fastest implementation of RAID,
however, is usually hardware based. We have already discussed RAID configurations in this
chapter.

If RAID configurations are not available, using multiple data files and filegroups on multiple
disk spindles may be another option.

Also, remember that Windows 2000 can defragment disk drives. It is possible that a database
file is fragmented because of the way it was created. This may have happened if many
automatic extensions took place and the disk was shared with other applications that create
files.

Ensure that the hardware components can theoretically handle the load. Apart from the disk
drives, the disk controllers and I/O bus have a finite bandwidth.

Chapter 6: Transactions and Locking

6.1 Introduction

I once visited a customer to sanity check the physical design for a new database. In the course
of checking the design I happened to notice that there were some people in an adjoining room
entering data into forms on their PCs. Every so often one of these people would raise their
hands in the air for a few seconds. After a while my curiosity got the better of me, and I asked
the person who had invited me to do the sanity check what was happening.

It transpired that the people in the next room were entering trades into a financial system, but
the lock conflict caused by the action of entering two trades simultaneously was so bad that
they found it easier to raise their hands just before they pressed Enter on the keyboard to
signal to their colleagues not to do the same. Ironically, what they were doing was
implementing a locking protocol, which single-threaded the insertion of a trade. This is an
example of a multiuser system where two users are one user too many!

Unfortunately, there are many multiuser systems out there that suffer from locking problems.
Whether you design a system with locking in mind tends, like most things in life, to depend
on your previous experiences. While I was working for Digital Equipment Corporation I was
involved in the design of many multiuser online transaction processing systems (OLTPs). I
came to learn very quickly that if I did not constantly ask the question, "Is this transaction
likely to be the cause of a locking bottleneck?" I would run into trouble. If your background is
single-user systems or read only databases, this question might not be the first one on your
mind.

This chapter introduces the concepts of transactions and locking, perhaps two of the most
important features provided by a modern database management system and, perhaps, two of
the features whose correct implementation by a database designer is most critical to database
performance. The default SQL Server locking protocol provided by SQL Server 2000 is
sophisticated; however, for those developers who need it, the default locking protocol



provided by SQL Server can easily be changed to behave in a number of different ways.
These capabilities will be covered in this chapter.

6.2 Why a locking protocol?

Single-user access to a database does not require a locking protocol nor does single or
multiuser access to a read only database. Database management systems in reality must
support more than one user concurrently accessing information, and it is this multiuser access
that requires the database management system to provide a protocol to ensure that the changes
being made to the database data by one user are not corrupted by another. Locking is not a
luxury in a multiuser environment-it is a necessity.

Locking protocols are not all or nothing. Some protocols are more stringent than others with
different database management systems adopting their own unique approaches. Locking is the
natural enemy of performance, and so a more stringent locking protocol is more likely to
adversely affect performance than a less stringent one. However, a more stringent locking
protocol is also likely to provide a more consistent view of the data.

To provide an idea as to why a locking protocol is necessary let us consider some multiuser
scenarios.

6.2.1 Scenario 1

In this scenario Mike modifies a stock level by subtracting 1,000 from it, leaving 100 items.
Katy reads the stock level and sees that there are only 100 items in stock. Immediately after
Katy has read this value and acted upon it, Mike's transaction fails and is rolled back,
returning the stock level to its original value of 1,100.

This scenario highlights a classic problem. Katy has been allowed to read changes made by
Mike before Mike has committed the changes-in other words, before Mike has irrevocably
changed the data by ending the transaction with a commit. Until the transaction ends, Mike
can choose to roll back the transaction, change the value again, or commit the transaction. In
our example, Mike's transaction actually fails before it completes, causing the database
management system to roll back the change. Katy is said to have read uncommitted, or dirty
data. This is shown in Figure 6.1.
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Figure 6.1: Reading uncommitted changes



6.2.2 Scenario 2

In this scenario Mike's transaction sums a list of debts in a table and checks the result against
a total debt value held elsewhere in the database. While Mike's transaction is summing the
values in the list, Katy's transaction inserts a new row into the debt table after Mike's
transaction has passed by and updates the total debt value. When Mike finishes summing the
list and compares the calculated sum with the total debt value, it reports a discrepancy, where,
in fact, there is no discrepancy at all. This is called the phantom insert phenomenon. This is
shown in Figure 6.2.
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Figure 6.2: The phantom insert phenomenon

These are only two examples of a number of possibilities that can occur if locking protocols
are not used or the locking protocol used is not stringent enough. We will revisit some of
these scenarios later. We have said that SQL Server uses a locking protocol, so let us now
investigate how this works.

6.3 The SQL server locking protocol

The locking protocol adopted by SQL Server consists of placing different types of locks on
different database objects. In SQL Server 2000 these objects include a table, a database page,
a row and an index entry. As we have seen, a database page is 8 KB in size, and any object
resident within this 8 KB is locked implicitly when the database page is locked. Therefore, if
a database page is locked, every row held on that page is effectively locked. Similarly, if a
table is locked, every row in that table is locked.

We will now look in detail at the types of locks used, what objects can be locked, and the
duration of these locks.

6.3.1 Shared and exclusive locks

To generalize, SQL Server applies a write lock when it writes information or a read lock when
it reads information. Writing information usually refers to inserting, updating, or deleting
rows, whereas reading information usually refers to retrieving rows with, for example, a
SELECT statement. There are some simple rules that we can make at this point.

e Ifauser has placed a read lock on an object such as a row, another user can also place
a read lock on that object. In other words, both users can read the same object
simultaneously. In fact, any number of users can place a read lock on an object at the
same time.

o Ifauser has placed a write lock on an object, another user cannot also place a write
lock on that object. Also, another user cannot place a read lock on that object. In other



words, once a user has placed a write lock on an object, other users cannot place read
or write locks on the same object simultaneously.

Because many users can place read locks on the same table, page, or row concurrently these
read locks are usually referred to as shared locks. Write locks, on the other hand, are normally
referred to as exclusive locks. Table 6.1 shows the compatibility between shared and
exclusive locks. As can be seen, only shared locks are compatible.

Table 6.1: Compatibility between Shared and Exclusive Locks
Mode of Currently Granted Lock Mode of Requested Lock

exclusive shared
exclusive x x
shared x v

Once a lock has been placed on an object, it has a lifetime. Suppose a Transact-SQL statement
that causes a row lock to be taken out is executed inside a user-defined transaction. In the
default case, shared locks live for the time it takes the SQL statement to read the row, whereas
exclusive locks live for the length of the user-defined transaction. This is shown in Figure 6.3.
This behavior can be overridden with the use of the REPEATABLE READ keyword or
transaction isolation levels, as we will see later in this chapter.
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Figure 6.3: The default lifetime of SQL server locks

Note Beware of the SET IMPLICIT TRANSACTIONS ON statement. It will automatically
start a transaction when Transact-SQL statements such as SELECT, INSERT,
UPDATE, and DELETE are used. The transaction will not be committed and its locks
will not be released until an explicit COMMIT TRANSACTION statement is executed.
To see if it is set, use DBCC USEROPTIONS (described later).

SQL Server also uses locks other than shared or exclusive. For example, it uses update locks
as an optimization to avoid deadlocks. We will look at update locks when we investigate
deadlocks later in the chapter.

6.3.2 Row-, page-, and table-level locking

Is row-level locking better than page-level locking? It depends. Applications require different
levels of locking granularity. One application may benefit from page-level locking while
another application may benefit from row-level locking. Why is this? To investigate it is



useful to consider the different granularity of lock that could be taken out by some theoretical
database management system.

Figure 6.4 shows the database concurrency for different lock granularity. By lock granularity
we mean the object that is locked from, on one side of the spectrum, an individual column in a
row to the other side of the spectrum, a whole database. As can be observed from Figure 6.4,
locking individual columns provides the highest level of concurrency. By this we mean that
multiple users could be updating different columns in the same row simultaneously. They
would not be involved in lock conflict.
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Figure 6.4: Concurrency versus locking granularity

If the lock granularity is implemented at the database level, the lowest level of concurrency is
achieved. Multiple users could not simultaneously change anything at all in the database. If
they tried, they would be involved in lock conflict.

So, if locking individual columns provides the highest level of concurrency, why do SQL
Server and databases in general not lock at the column level? To explain this we need to add
some more information to our graph.

In Figure 6.5, we have added system resource use to our graph. It can be seen that an increase
in system resource use parallels an increase in lock granularity. The finer the granularity, the
more system resource used.

[

Figure 6.5: System resource versus locking granularity



This is why SQL Server and databases in general do not lock at the column level. The system
resource use in terms of the number of locks required and their management would be too
great. Locks are approximately 100 bytes each in SQL Server 2000. Using 100 bytes of
memory to lock a ten-byte column seems a little over the top. To lock at the column level
would probably use tens of thousands of locks in a medium-sized database, which could
equate to many megabytes of memory. The CPU resource needed to manage these locks
would be massive.

Consequently, SQL Server 2000 locks rows, pages, and tables, which, depending on the
application, is a reasonable approach. The database itself can, of course, be set to single-user
mode, which effectively provides locking at the database level.

When are row-level locks used?

Locking at the row level can be considered to be the default situation. Usually, unless you
have changed the default behavior, SQL Server will take shared and exclusive locks out on
rows. When we refer to rows, we are referring to data rows in the data pages of a table.
However, within an index, index pages contain index entries. These can also be locked with a
lock equivalent to a row lock, known as a key lock.

Conventionally, the data pages in a table on which there is a clustered index present are
considered to be the leaf level of the clustered index-that is, part of the clustered index. For
this reason, the row locks on the data rows in a table with a clustered index are managed as
key locks. Figure 6.6 shows individual rows being locked within the pages of a table.

row locking in a table
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Figure 6.6: Row-level locking

Figure 6.7 shows page locks being used to lock the individual pages within a table. In this
case one lock will effectively lock all the rows in the page.
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Figure 6.7: Page-level locking
When are table-level locks used?

One of the reasons that SQL Server tends to lock at the row level is that it has the capability to
escalate locks but not to deescalate locks. Therefore, if SQL Server decides that a SQL
statement is likely to lock the majority of rows in a table, it may lock at the table level. The
same logic is used if SQL Server determines that most of the rows in a page are likely to be
locked-it may take out a page lock instead of multiple row locks.



The advantage to holding a single table lock is due to system resource. Managing a single
table lock is less resource intensive than managing multiple row locks, and saving locks will
save memory. However, locking at the table level may reduce concurrency-for example, an
exclusive lock held at the table level will block all other users from accessing rows within that
table, whether they wish to acquire shared or exclusive locks. Figure 6.8 shows table-level
locking.
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Figure 6.8: Table-level lockiﬁg

SQL Server controls when escalation occurs. The database administrator has no control over
this, since there is no relevant server configuration option.

Note If a table scan is being used to read data, row locks will be taken out and released in a
sequential fashion. If we choose to use certain lock hints-for example,
REPEATABLEREAD, discussed later-we are requesting not to release the row lock
when we have finished with the row. In this circumstance, when performing a table
scan, SQL Server may well take out a table lock if the number of row locks exceeds an
internal threshold.

So, we have introduced shared and exclusive locks, as well as page-, table-, and row-level
locking. We need to introduce more types of locks before we can give examples of the SQL
Server locking protocol in action; but first let us look at lock timeouts and then a phenomenon
known as a deadlock or deadly embrace.

6.3.3 Lock timeouts

If a user's lock is blocked by another lock, the user must wait until the blocking lock is
released before he or she can acquire the lock. If the blocking lock is not released for a long
time, the user will have to wait for a long time. An application design flaw may mean that the
blocking lock is not released at all, and then the database administrator must intervene.

It is possible in SQL Server to set a lock timeout value for a connection so that it will only
wait to be granted its lock for a predefined period of time, after which it will receive an error
message informing it that the timeout period has been exceeded. This approach assumes that
if a lock is kept waiting for a period of time there must be a problem, and it is better that the
connection gives up and releases its locks rather than wait indefinitely, perhaps blocking other
users. The connection can always try again or log the problem and gracefully inform the user
that it cannot proceed.

What constitutes a realistic timeout value? Too long and the user will become impatient, too
short and the connection will give up when it would have acquired the lock had it waited a
little longer. Personally, I think around ten seconds is not unreasonable.

A lock timeout value is set per connection as follows:

SET LOCK TIMEOUT 10000



The timeout value is specified in milliseconds. A value of -1 means wait indefinitely (the
default), whereas a value of 0 means do not wait at all. I do not recommend using this value.
You could timeout as soon as you attempt to execute a statement, whereas if you had waited a
fraction of a second you would have acquired the lock.

If a timeout occurs, an error, 1222, is returned and the connection is rolled back.

To test the value of lock timeout set for a connection the function @@LOCK_TIMEOUT can
be used.

6.3.4 Deadlocks

A deadlock situation can occur in SQL Server when a user holds a lock on a resource needed
by a fellow user who holds a lock on a resource needed by the first user. This is a deadly
embrace, and the users would wait forever if SQL Server did not intervene. (See Figure 6.9.)

Y

Figure 6.9: A deadlock between two users

SQL Server chooses one of the deadlocked users as a victim and issues a rollback for its
transaction. It will receive an error message similar to the following:

Server: Msg 1205, Level 13, State 1, Line 1

Your transaction (Process ID 52) was deadlocked on {lock}
resources with another process and has been chosen as the
deadlock victim. Rerun your transaction.

In the application code, this error should be trapped and dealt with cleanly. The application
might retry a number of times before giving up and informing the user that there is a problem.

A connection can set its deadlock priority such that, in the event of it being involved in a
deadlock, it will be chosen as the victim, as follows:

SET DEADLOCK PRIORITY LOW

To return to the default deadlock handling mechanism, use the following code:

SET DEADLOCK PRIORITY NORMAL

Generally, the transaction involved in the deadlock that has accumulated the least amount of
CPU time is usually chosen as the victim.

6.3.5 Update locks



As well as placing shared and exclusive locks on database rows, SQL Server also makes use
of a type of lock known as an update lock. These locks are associated with SQL statements
that perform update and delete operations, which need to initially read rows before changing
or deleting them. These rows have update locks placed on them that are compatible with
shared read locks but are not compatible with other update locks or exclusive locks. If the
rows must subsequently be updated or deleted, SQL Server attempts to promote the update
locks to exclusive locks. If any other shared locks are associated with the rows, SQL Server
will not be able to promote the update locks until these are released. In reality the update lock
is not promoted, but a second lock is taken out, which is, in fact, an exclusive lock.

Why bother with update locks? Update locks are really an optimization to minimize the
possibility of deadlocks. Consider two users, Mike and Katy, who are about to update the
same row. Without update locks, each user will take out a shared lock on the row. Shared
locks are compatible, so both users will acquire the lock successfully. Mike's UPDATE
statement, finding that the row that meets the criteria in its WHERE clause, attempts to take
out an exclusive lock on it. Mike's UPDATE statement will now have to wait, since it is
blocked by Katy's shared lock.

Katy's UPDATE statement, finding that the row meets the criteria in its WHERE clause,
attempts to take out an exclusive lock on the row. Katy's UPDATE statement cannot take out
the exclusive lock, since it is blocked by Mike's shared lock. Her update statement would also
be forced to wait, except that this is clearly a deadlock. SQL Server will choose a victim and
its transaction will be rolled back. This is shown in Figure 6.10.
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Figure 6.10: A deadlock caused by two users updating the same page

Now let us take the same example, but this time we will make use of update locks. This is
exactly what SQL Server does.

When Mike issues his UPDATE statement, he now takes out an update lock on the row
instead of a shared lock. Katy's UPDATE statement also attempts to take out an update lock
on the row, but update locks are not compatible so she will be forced to wait. Mike's
UPDATE statement, finding that the row meets the criteria in its WHERE clause, attempts to
take out an exclusive lock on the row. Since Katy does not have any locks on the row, Mike's
UPDATE statement successfully acquires the exclusive lock and completes. Mike now
commits his transaction and releases his locks. Katy's UPDATE statement, which has been
waiting, can now proceed. This is shown in Figure 6.11.
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Figure 6.11: A deadlock avoided by using update lolcks

Clearly, this is a cleaner mechanism. No transactions are deadlock victims, which means no
transactions are cancelled and rolled back. Transactions that are rolled back have their work
effectively thrown away. Using update locks, Katy's UPDATE statement merely suffers a
short delay.

6.3.6 Intent locks

As well as placing shared and exclusive locks on database tables, SQL Server also makes use
of a type of lock known as an intent lock. Intent locks are placed on the table and pages in the
table when a user locks rows in the table, and they stay in place for the life of the row locks.
These locks are used primarily to ensure that a user cannot take out locks on a table or pages
in the table that would conflict with another user's row locks. For example, if a user was
holding an exclusive row lock and another user wished to take out an exclusive table lock on
the table containing the row, the intent lock held on the table by the first user would ensure
that its row lock would not be overlooked by the lock manager.

6.3.7 Modifying the default locking behavior

There are two ways in which SQL Server's default locking behavior can be modified.
Individual SQL statements can be qualified with a keyword known as a lock hint to modify
the locking behavior for that particular statement, or a default locking behavior for the
connection can be set with the SET TRANSACTION ISOLATION LEVEL statement.

Transaction isolation levels

SQL Server allows the transaction isolation level to be set for a connection. This sets a default
locking behavior.

Levels of transaction isolation are specified by the ANSI standard, with each one defining the
type of phenomenon not permitted while concurrent transactions are running. The higher the
isolation level, the more stringent the locking protocol-with the higher levels being a superset
of the lower levels. The transaction isolation levels are as follows:

¢ Read uncommitted
e Read committed
e Repeatable read



e Serializable

The locking behavior that corresponds with read uncommitted provides the least integrity but
potentially the best performance. The read committed isolation level provides more integrity
than read uncommitted, and the repeatable read isolation level provides even more integrity.
The greatest integrity is provided by the serializable isolation level. We have already met dirty
reads and the phantom phenomena. Table 6.2 shows whether the dirty read and the phantom
phenomena are allowed by the various isolation levels.

Table 6.2: Isolation Levels and Allowed Locking Phenomena
Isolation Level Dirty Reads Nonrepeatable Reads Allowed Phantoms Allowed

Serializable No No No

Repeatable Read No No Yes
Read Committed No Yes Yes
Read Uncommitted | Yes Yes Yes

It can be seen that only the serializable isolation level prevents all these phenomena from
occurring.

By default, SQL Server runs at transaction isolation level read committed.

The transaction isolation level is set for the connection with the following syntax:

SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED
SET TRANSACTION ISOLATION LEVEL READ COMMITTED
SET TRANSACTION ISOLATION LEVEL REPEATABLE READ

SET TRANSACTION ISOLATION LEVEL SERIALIZABLE

The DBCC utility with the USEROPTIONS parameter can be used to check the current
1solation level of the connection, as follows:

DBCC USEROPTIONS

Set Option Value
textsize 64,512
language us_english
dateformat mdy
datefirst 7

quoted identifier SET
arithabort SET
ansi_null_dflt on SET

ansi_defaults SET



Set Option Value

ansi_warnings SET
ansi_padding SET
ansi_nulls SET

concat_null yields null SET
isolation level repeatable read

We will study how transaction isolation levels modify locking behavior between users later in
this chapter.

Lock hints
The keywords available as lock hints for modifying locking behavior are as follows:

HOLDLOCK
NOLOCK
PAGLOCK
READCOMMITTED
READPAST
READUNCOMMITTED
REPEATABLEREAD
ROWLOCK
SERIALIZABLE
TABLOCK
TABLOCKX
UPDLOCK

XLOCK

Some of these hints are supported for backward compatibility such as:

« HOLDLOCK
« NOLOCK

The recommended hints to use instead are as follows:

o SERIALIZABLE
e READUNCOMMITTED

Some hints enable the developer to specify the lock granularity, such as:

e PAGLOCK

e ROWLOCK

e TABLOCK

e TABLOCKX

Other hints enable the developer to specify the transaction isolation level behavior at the
statement level, such as:

« READUNCOMMITTED



o READCOMMITTED
o REPEATABLEREAD
o SERIALIZABLE

Lock hints are used, for example, on a SELECT statement, as follows:

SELECT * FROM branches WITH (SERIALIZABLE)

SELECT balance FROM accounts WITH (READUNCOMMITTED)
WHERE account no = 1000

The effect of these lock hints is described in the following text.

HOLDLOCK

The HOLDLOCK hint forces a shared lock on a table to remain until the transaction
completes. Key range locking will also be used to prevent phantom inserts. Nonrepeatable
reads are also prevented This is equivalent to the SERIALIZABLE hint. Data consistency will
be provided to the level experienced by transactions running at transaction isolation level
SERIALIZABLE.

Using the HOLDLOCK keyword may, and usually will, degrade performance, since lock
contention may increase.

NOLOCK

The NOLOCK hint allows a dirty read to take place-that is, a transaction can read the
uncommitted changes made by another transaction. The exclusive locks of other transactions
are not honoured, and the statement using this hint will not take out shared locks. This is
equivalent to the READUNCOMMITTED hint. Data consistency will be provided to the level
experienced by transactions running at transaction isolation level READ UNCOMMITTED.

Using the NOLOCK keyword may increase performance, since lock contention may decrease,
but this will be at the risk of lower consistency.

PAGLOCK

The PAGLOCK hint forces shared page locks to be taken where otherwise SQL Server may
have used a table or row lock. For example, consider the following statement:

SELECT balance FROM accounts WITH (REPEATABLEREAD,
PAGLOCK)

If there is no appropriate index, the query optimizer will choose a table scan as the strategy
used to execute the query. Depending on the number of rows that may be locked, the lock
manager will take out row locks or perhaps a table lock because the REPEATABLE READ
lock hint will force the shared row locks to be held until the end of the transaction, and
therefore a single table lock is far more efficient. The PAGLOCK hint will ensure that the
lock manager will use page locking instead of table locking or row locking. This hint does not
only apply to shared locks. Exclusive page locks will also be forced if, say, an UPDATE
statement rather than a SELECT statement was using the hint.



READCOMMITTED

The READCOMMITTED hint ensures that the statement behaves in the same way as if the
connection were set to transaction isolation level READ COMMITTED. This is the default
behavior for SQL Server. Shared locks will be used when data is read, which prevents dirty
reads, but the shared locks are released at the end of the read and are not kept until the end of
the transaction. This means that nonrepeatable reads or phantom inserts are not prevented.

READPAST

This lock hint enables a statement to skip rows that are locked by other statements. The
READPAST lock hint applies only to transactions operating at READ COMMITTED
isolation level and will read only past row-level locks. This is only valid on a SELECT
statement. This is useful when, for example, multiple transactions are reading items from a
queue implemented as a table and a transaction wants to skip a locked queue item and read
another item to process.

READUNCOMMITTED

This lock hint is equivalent to the NOLOCK lock hint.

REPEATABLEREAD

The REPEATABLEREAD hint ensures that the statement behaves in the same way as if the
connection were set to transaction isolation level REPEATABLE READ. This is not the
default behavior for SQL Server. Shared locks will be used when data is read, and these will
not be released until the end of the transaction. This means that nonrepeatable reads are
prevented. However, phantom inserts are not prevented. This lock hint may reduce
concurrency, since shared locks are held for longer periods of time than if the default read
committed behavior is used.

ROWLOCK

This hint forces the use of rowlocks and is similar in use to PAGLOCK.

SERIALIZABLE

The SERIALIZABLE hint forces shared locks to stay until the transaction completes. This is
equivalent to specifying the HOLDLOCK hint. Key range locking will be used to prevent
phantom inserts if indexes are present. Nonrepeatable reads are also prevented. Data

consistency will be provided to the level experienced by transactions running at transaction
isolation level SERIALIZABLE.

Using the SERIALIZABLE keyword may, and usually will, degrade performance, since lock
contention may increase.

TABLOCK

The TABLOCK hint forces a shared table lock to be taken where otherwise SQL Server may
have used row locks. It will not be held until the end of the transaction unless hints such as
REPEATABLEREAD are also used.



TABLOCKX

The TABLOCKZX hint forces an exclusive table lock to be taken. It will be held until the end
of the transaction

UPDLOCK

The UPDLOCK hint forces SQL Server to take update locks where otherwise SQL Server
would have used shared locks. The update locks are held until the end of the transaction.
Update locks are compatible with shared locks but not exclusive locks or other update locks.

XLOCK

This hints forces exclusive locks to be taken out. It is typically used with TABLOCK and
PAGLOCK.

6.3.8 Locking in system tables

Transact-SQL statements such as CREATE TABLE manipulate system tables. For example,
when a table is created, rows are inserted into the sysobjects, sysindexes, and syscolumns
system tables. Data definition language (DDL) statements can appear in explicit transactions,
and, therefore, any locks taken out as a result of actions to the system tables can be held for a
period of time-blocking other users if the developer is not careful. Here are some examples of
DDL statements that can appear in an explicit transaction.

ALTER TABLE DROP PROCEDURE
CREATE DEFAULT  DROP RULE
CREATE INDEX DROP TABLE
CREATE PROCEDURE DROP TRIGGER
CREATE RULE DROP VIEW
CREATE TABLE GRANT

CREATE TRIGGER REVOKE

CREATE VIEW SELECT INTO
DROP DEFAULT TRUNCATE TABLE
DROP INDEX

As an example of this behavior, suppose a table is created in an explicit transaction. SQL
Server takes out exclusive locks in the sysobjects, sysindexes, and syscolumns system tables.
These locks are key locks, since each of these system tables has a clustered index present. If
the transaction does not complete, a query issued in another connection against these system
tables will be blocked. For example, a CREATE TABLE statement issued within an explicit
transaction will block an sp_help issued on another connection. It is important, therefore, that
these transactions are committed quickly.

Note that Sch-M locks are taken when a table data definition language (DDL) operation is
being executed. This is incompatible with all other lock types.



6.3.9 Monitoring locks

Finally, we need to introduce the means by which we can observe SQL Server lock
management in action, and then we can look at some examples of the SQL Server locking
protocol. There are a number of ways to find information about the locking that is happening
within SQL Server. These include the following:

e Use the sp lock system stored procedure.

e Use the SQL Enterprise Manager.

e Use the Performance Monitor.

o Interrogate the system table syslockinfo directly.
e Use the SQL Profiler.

Additionally, the sp_who system stored procedure is useful in finding blocked and blocking
processes, and the DBCC utility can be used to set trace flags to record lock and deadlock
information.

Using the sp_lock system stored procedure

The sp_lock system stored procedure displays information about the locks held by processes
using the server. It can be entered as a standalone statement, in which case it will display all
locks managed by the server, or it can take up to two SQL Server process identifiers (SPIDs)
as a parameter. Some example output from the sp _lock system stored procedure is as follows:

EXEC sp_lock

spid dbid ObjId IndId Type Resource Mode Status
51 7 0 0 DB S GRANT
51 7 965578478 2 PAG 1:113 IS GRANT
51 7 965578478 2 KEY (4501518d90d1) S GRANT
51 7 965578478 0 RID 1:348:14 S GRANT
51 7 965578478 0 PAG 1:348 IS GRANT
51 7 965578478 0 TAB IS GRANT
52 7 965578478 0 TAB IX GRANT
52 7 965578478 0 PAG 1:348 IX GRANT
52 7 965578478 0 RID 1:348:14 X CNVT

52 7 965578478 0 RID 1:348:14 U GRANT
52 7 965578478 2 KEY (4501518d90d1) U GRANT
52 7 965578478 2 PAG 1:113 IU GRANT
52 7 0 0 DB S GRANT

Hint: To translate the Objld to a table name, use the built-in system function
OBJECT NAME. For example:

SELECT OBJECT NAME (965578478)

accounts

The above output from sp_lock shows a number of locks held on various objects. Let us
discuss the meaning of the columns in the output before we investigate the rows.

The first column contains the SPID value. A client connection to SQL Server is allocated an
SPID value, and each row in the output represents a lock requested by the SPID that has not
been released at the time sp_lock was executed. A typical server will be managing many locks



at a given instance in time, so it is often more practical to limit the output to a particular SPID
or pair of SPIDs by supplying these values as parameters.

The next five columns, dbid, Objld, Indld, Type, and Resource, help to define the resource
that is locked. We know already that SQL Server locks objects such as rows and tables, and
these columns let us know what type of resource is locked as well as which instance of this
resource type. The dbid column contains the database ID, the Objld column contains the
object ID, and the IndId contains the index ID. This column can contain the values 0, to
represent the table itself; 1, the clustered index, if one is present; > 1 for a nonclustered index;
and 255 for TEXT/IMAGE data. The Type column tells us the type of resource locked, such
as a row or page, and, finally, the Resource column provides information to completely
identify the resource instance. Whether these columns contain data depends on the type of
resource being locked. For example, in the case of a database, the Resource column is empty.

The Mode column tells us whether we have a shared lock or exclusive lock or one of a myriad
of other modes of lock on our resource. Finally, the Status column shows us whether the lock
has been granted (GRANT), is waiting to be granted (WAIT), or is waiting to be converted to
another mode (CNVT). When investigating lock problems, I often hunt first for locks that
have not been granted. They normally relate to the blocked user and represent a small number
of locks on the system. Let us now look at the connections in our example.

All the connections-that is, SPIDs-have been granted a shared lock on the database with ID
value 7.

51 7 0 0 DB S GRANT
52 7 0 0 DB S GRANT

An easy way to translate the dbid to a database name is to execute the system stored
procedure sp_helpdb, which returns this information in its display. Alternatively, use the
function DB NAME(). The reason the connections have been granted a shared lock is that
any connection that has selected a database with a USE statement explicitly or implicitly via
the drop-down list in the query analyzer is granted such a lock. This is used to manage such
operations as a connection attempting to set the database to single-user mode.

Let us investigate the locks held by SPID 51. Apart from the database lock, it has requested
and been granted shared (S) locks on two resources: a KEY and a RID.

51 7 965578478 2 KEY (4501518d90d1) S GRANT
51 7 965578478 0 RID 1:348:14 S GRANT

A RID is a row lock on a data row on a data page. A KEY lock is a row lock on an index
entry (key plus pointer) on an index page.

Note Conventionally, the data pages in a table with a clustered index are considered to be part
of the clustered index. For that reason a row lock on a data row on a data page in such a
table is considered to be a KEY lock, not a RID lock.

If we take the row lock first, we can see that the resource information shows us that we have a
dbid value of 7, which represents the database BankingDB, and an Objld value of 965578478,
which, when translated with the OBJECT NAME function, represents the table, Accounts, in
this database. The IndId column contains a value of 0, which represents the table rather than



an index on the table. The Resource column value is 1:348:14, which specifies that the
resource in the table is identified as file ID 1, page 348, slot 14. This uniquely identifies a row
on the page. The file ID must be present, since page numbers are only unique with a database
file.

Hint: To convert a file ID to a filename, use the FILE NAME() function.

If we look at the KEY lock, we can see the same values in the dbid and Objld columns, but
there is a value of 2 in the IndId column.

The following Transact-SQL will translate this index ID to an index name.

SELECT name FROM SYSINDEXES

WHERE
id = OBJECT ID('Accounts') AND
indid = 2

Of course, since we already know the object ID value, we could have just used this instead of
translating the object name.

So we now know the index in which our KEY lock is held. The Resource column value is
(4501518d90d1). This is of little use to us, since it is a hexadecimal number, which is the

result of some hash function used internally, presumably used on the key value and other

inputs.

The other locks held by SPID 51 are intent locks.

51 7 965578478 2 PAG 1:113 IS GRANT
51 7 965578478 0 PAG 1:348 IS GRANT
51 7 965578478 0 TAB IS GRANT

We discussed intent locks earlier in the chapter. We stated that intent locks are placed on the
table and pages in the table when a user locks rows in the table, and they stay in place for the
life of the row locks. We can see that a shared intent (IS) lock has been taken out on page
1:348 and page 1:113. This is expected behavior, since we have a row lock held in data page
1:348. Page 1:113 will be the index page containing the locked index entry. Both of these
pages are subordinate to the table, and so we see an intent lock on the table. These intent locks
will prevent, for example, another connection from taking out an exclusive (X) lock on the
table while our connection has shared (S) locks on rows in the table.

Those were the locks held by SPID 51. Let us now investigate the locks held by SPID 52.
They are repeated here for clarity.

52 7 965578478 0 TAB IX GRANT
52 7 965578478 0 PAG 1:348 IX GRANT
52 7 965578478 0 RID 1:348:14 X CNVT
52 7 965578478 0 RID 1:348:14 U GRANT
52 7 965578478 2 KEY (4501518d90d1) U GRANT
52 7 965578478 2 PAG 1:113 IU GRANT
52 7 0 0 DB S GRANT

We can see that SPID 52 has been granted two update (U) locks. These are compatible with
shared (S) locks, as we described earlier in the chapter, and are used in UPDATE and



DELETE statements during the search phase, when target rows are being identified. In fact,
SPID 52 has issued an UPDATE statement, which is attempting to change a row on which
SPID 51 has shared (S) locks. Both update (U) locks have been granted, and the columns in
the display contain values that are the same as the shared (S) locks on the KEY and RID for
SPID 51. However, we can see that SPID 52 also has a lock that has not been granted.

52 7 965578478 0 RID 1:348:14 X CNVT

The lock manager has attempted to convert an update (U) lock to an exclusive (X) lock in
order to change the row. It cannot do this, since SPID 51 has a shared (S) lock on this row and
we know that these locks are incompatible. For this reason the lock is now waiting to be
converted, at which point it will have a status of GRANT. If the blocked lock were a new lock
that the connection had tried to acquire, rather than the conversion of an existing lock, we
would have seen a status of WAIT.

The intent locks behave in a fashion similar to those for SPID 51.

52 7 965578478 0 TAB IX GRANT
52 7 965578478 0 PAG 1:348 IX GRANT
52 7 965578478 2 PAG 1:113 IU GRANT

Exclusive intent (IX) locks have been granted on the data page and table, since these are
compatible with the shared intent (IS) locks of SPID 51. An update intent (IU) lock has also
been granted on the index page, since an update lock (U) has been granted on the index entry.
The lock manager is not going to take out an exclusive (X) lock on the index entry, since the
index column was not being updated.

Using the SQL Server Enterprise Manager
The SQL Server Enterprise Manager allows the database administrator to monitor current

locking activity in a graphical manner. The server should be expanded and the Management
folder followed by Current Activity. The console tree is shown in Figure 6.12.



L] Console Root

=g
L5

asoft SOL Servers
SQL Server Group
"y AQUILA (windows NT)
AQUILA\SQL2000_A (Windows NT)
CAPELLAYSOQLZ000_A (Windows NT)
PEGASUS (Windows NT)
PEGASUS\SQLZ000_a (Windows NT)
@ {_] Databases
# {_] Data Transformation Services
= {_] Management
@ &7 SQL Server Agent
|§8 Backup
= [_m Current Activity - 30/10/2000 14:03:46
3, Process Info
o % Locks | Process ID
= Locks | Object
18§ Database Maintenance Plans
®-§4 sQL server Logs
@ {_] Replication
# (] Security
& {_J support Services
[#- (] Meta Data Services

+-EE-E

r
L

|

Figure 6.12: The Current Activity folder

If we expand Process Info and hide the console tree, we find the display shown in Figure 6.13.
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Figure 6.13: The Process Info folder

SQL Server Enterprise Manager allows us to move columns and sort by a particular column. I
have moved the columns in the display and sorted by the Database column to make the
display more useful. We now see the display shown in Figure 6.14.
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Figure 6.14: The Process Info folder after customizing

The display is mainly formed from the information obtained by executing the system stored
procedures sp_lock and sp_ who (described later).

Notice that we can easily see the blocking and blocked SPID and the resource involved.

This blocking can often be seen more clearly if the Locks/Process ID folder is expanded, as
shown in Figure 6.15.

Figure 6.15: The Locks/Process ID folder

We can clearly see the blocked connection and the blocker. By selecting the blocked
connection in the console tree, we can find information about the locks involved.

The Locks/Object folder displays lock information for a particular object. This is shown in
Figure 6.16.
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Figure 6.16: The Locks/Object Folder

The Accounts table object in the console tree has been selected, and the locks pertaining to
this object are displayed.

Note that for any of the three Current Activity folders an item in the detail pane can be
double-clicked to display more information about the connection. This is shown in Figure
6.17.
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Figure 6.17: The Process Details window

As can be seen, the last Transact-SQL statement executed is displayed. This window also
allows the database administrator to terminate a connection (Kill Process) or send a message
to the user.

Using the System Monitor

The System Monitor is a Windows 2000 utility that enables system managers and database
administrators to monitor the many objects within a Windows 2000 system. There are many
counters that can be monitored for many objects, but here we are interested in those counters
specific to the SQL Server:Locks object. These counters are shown in Table 6.3.

Table 6.3: Counters Monitored for the SQL Server Lock Object

SQL Server: Locks
Object Counters Explanation

Average Wait Time (ms) Average amount of wait time (in milliseconds) for each lock
request that resulted in a wait

Lock Requests/sec Number of new locks and lock conversions per second requested



Table 6.3: Counters Monitored for the SQL Server Lock Object

SQL Server: Locks
Object Counters Explanation

from the lock manager

Lock Timeouts/sec Number of lock requests per second that timed out, including
internal requests for NOWAIT locks

Lock Wait Time (ms) Total wait time (in milliseconds) for locks in the last second

Lock Waits/sec Number of lock requests per second that could not be satisfied
immediately and required the caller to wait before being granted
the lock

Number of Number of lock requests per second that resulted in a deadlock

Deadlocks/sec

The counters shown in Table 6.3 are for a particular instance of locked object. The instances
that can be monitored are as follows:

e RID

o Key

o Page

e Extent

° Table

o Database
o Total

This allows us to monitor counters for a particular type of lock or for all locks (Total).

Note The System Monitor differentiates between SQL Server 2000 instances. An instance
named PEGASUS\SQL2000 A running on server PEGASUS will have a locks object
named MSSQLS$SQL2000_ A:Locks. The System Monitor is described in Chapter 7.

Interrogating the SYSLOCKINFO Table

The syslockinfo system table can be interrogated in the same way that any other system table
can be interrogated. It is only found in the master database, where it holds information
concerning the locks held in SQL Server. Unlike most other system tables, it is materialized
when a query is executed that accesses it; otherwise, it does not exist physically. A query
issued against the syslockinfo table produces the following output:

SELECT rsc_text, rsc dbid, rsc indid, rsc objid, rsc type, req mode,
req_status,
req spid

FROM syslockinfo

rsc_text rsc dbid rsc indid rsc_objid rsc_type req mode req status
req spid
7 0 0 2 3 1 52
7 0 0 2 3 1 51
1:113 7 2 965578478 6 7 1 52
1:113 7 2 965578478 6 6 1 51
(4501518d90d1) 7 2 965578478 7 4 1 52



(4501518d90d1) 7 2 965578478 7 3 1 51
1:348:14 7 0 965578478 9 4 1 52

Not all the columns from syslockinfo have been displayed, since some are a binary
representation of the ones shown and some are for Microsoft internal use. The displayed
columns have the definitions shown in Table 6.4.

Table 6.4: Column Definitions for the syslockinfo System Table
Column Definition

rsc_text Textual description of a lock resource

rsc_dbid The database ID of the resource

rsc_indid  |The index ID of the resource if an index

rsc_objid | The object ID of the resource if an object

rsc_type The type of resource-e.g., page

req mode The mode of the lock-e.g., shared(S)

req status  The status of the lock-e.g., granted

req_spid The SPID owning the lock

Examples of common values for rsc_type are shown in Table 6.5.

Table 6.5: Values for the rsc_type Column in syslockinfo
Value Type

NULL Resource
Database

File

Index

Table

Page

Key

Extent

RID
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Apart from the locks we have already discussed, there are several other types of locks. File
locks tend to be acquired when a file is being added to a database, or a file is being shrunk, or
similar file-related activities. Extent locks are used by SQL Server to internally manage the
allocation and deal-location of extents. Extents, as discussed in Chapter 2, are of type mixed
and uniform and are 64 KB (eight pages) in size. These locks can often be seen while you are
inserting rows into a table. Index locks can be seen when an index is being created on a table.

The column req_mode represents the mode of the lock requested. We have discussed most of
the common ones. There are, however, a number of more obscure modes, and we will list



these here for completeness. Numbers greater than 12 are used for key range locks, discussed
later. The req_mode values are listed in Table 6.6.

Table 6.6: Values for the req_mode Column in syslockinfo
Value Lock Mode Code Lock Mode Name

0 NULL Used as a placeholder only
1 Sch-S Schema stability

2 Sch-M Schema modification

3 S Shared

4 U Update

5 X Exclusive

6 IS Intent Shared

7 g Intent Update

8 IX Intent Exclusive

9 SIU Shared Intent Update

10 SIX Shared Intent Exclusive
11 UIX Update Intent Exclusive
12 BU Bulk

The schema stability locks are used to control access to schema objects such as tables to avoid
problems where multiple connections are referencing an object that a connection wishes to
modify or drop. The SIX, SIU, and UIX locks are special kinds of intent locks. The bulk lock
is used when bulk loads are being performed into a table-for example, when the data
transformation services BULK INSERT task is used to load data into a table and the option
Table Lock has been set on the task. There are also some other lock modes used for
serializable transactions, which we will discuss later.

Finally, the req_status column contains just three values, as shown in Table 6.7.

Table 6.7: Values for the req_status Column in syslockinfo

Value Status

1 Granted

2 Converting
3 Waiting

Using the system procedure sp_who

The system procedure sp_ who can be used to obtain information on the processes active
within SQL Server. It can be entered as a standalone statement, in which case it will display
information about all users and processes. It can take a SQL Server process identifier (spid) or
alternatively a SQL Server login name as a parameter. Also, the parameter value ACTIVE can
be used, which eliminates user connections that are waiting for input from the user-that is,



with AWAITING COMMAND in the cmd column. Some example output from the sp who
system stored procedure is as follows:

SPID ecid status loginame hostname blk dbname cmd

1 0 background sa 0 NULL LAZY WRITER
2 0 sleeping sa 0 NULL LOG WRITER
3 0 background sa 0 master SIGNAL
HANDLER

4 0 background sa 0 NULL LOCK
MONITOR

5 0 background sa 0 master TASK
MANAGER

6 0 sleeping sa 0 NULL CHECKPOINT
SLEEP

7 0 background sa 0 master TASK
MANAGER

8 0 background sa 0 master TASK
MANAGER

9 0 background sa 0 master TASK
MANAGER

10 0 background sa 0 master TASK
MANAGER

51 0 runnable sa PEGASUS 0 master SELECT

52 0 sleeping dave PEGASUS 0 BankingDB AWAITING
COMMAND

53 0 sleeping sue PEGASUS 52 BankingDB UPDATE

54 0 sleeping tony PEGASUS 0 BankingDB AWAITING
COMMAND

Note that the process with SPID 53 has a value of 52 in the blk column, whereas other
processes have 0. This is because the process with SPID 53 is being blocked by another user-
in fact, the user with SPID 52.

Note Microsoft also ships a stored procedure, called sp_ who2. This outputs more information
and in a slightly more readable form than sp_who.

The SQL Server Profiler

The SQL Server Profiler will be discussed in detail in Chapter 7. However, we need to
mention it here, since it has capabilities that help us investigate lock problems. The SQL
Server Profiler allows us to trace events graphically into a table and/or into a file. If the events
are captured into a file or table, they can be analyzed later.

The Locks Event Category contains a number of Locks Event Classes, and these are shown in
Table 6.8.

Table 6.8: Lock Event Classes in the SQL Server Profiler

Event Class Description

Lock:Acquired A lock has been taken out on a row, page, etc.
Lock:Cancel A held lock has been cancelled-e.g., by a deadlock.
Lock:Deadlock A deadlock has occurred.

Lock:Deadlock Chain The events preceding a deadlock.



Table 6.8: Lock Event Classes in the SQL Server Profiler

Event Class Description

Lock:Escalation Lock escalation has occurred-e.g., a row escalated to a table.
Lock:Released A lock has been taken off on a row, page, etc.
Lock:Timeout A lock has timed out.

When an event is traced, the SQL Server Profiler captures various pieces of information about
the event. These pieces of information are specified as Data Columns in the trace definition.
Many data columns always contain the same information, regardless of the event class being
traced. For example, the CPU column is the amount of CPU in milliseconds used by the
event. However, some data columns contain values that are specific to a particular event class.
For the Lock Event Class there are some very useful data columns.

Generally, the Binary Data column contains the resource ID for a lock event class and the
Object ID contains the ID of the object participating in the lock. Duration tends to represent
wait time and the Mode represents the lock mode.

With a little practice some elements of the resource ID can be recognized and decoded as the
lock type. If the SQL Server Profiler is being used interactively, this is done for you. Selecting
the lock event with the mouse pointer will display the lock type.

Using Trace Flags with DBCC

The SQL Server documentation states that trace flag behavior may or may not be supported in
future releases. It is worth mentioning this here, though, since trace flags can be used to
provide some lock trace information. The database consistency checker, more usually referred
to as DBCC, can be used to set trace flags, or they can be set if SQL Server is started at the
command line or via the Startup Parameters in the General tab of Server Properties in the
SQL Server Enterprise Manager. Trace information can be sent to destinations such as the
errorlog (using trace flag 3605) or the client (using trace flag 3604). Locking information can
be generated by setting the trace flags to 1200 or, for deadlock information, 1204 and 1205.
An example trace output is as follows:

Trace Flag 1204

DBCC TRACEON (3604,1200)
SELECT SUM(balance) FROM accounts

Process 51 acquiring S lock on KEY: 7:1:2 (9c0206b5c98d) (class bit0 refl)
result: OK
Process 51 acquiring S lock on KEY: 7:1:1 (ee006c4e98d2) (class bit0 refl)
result: OK
Process 51 acquiring Schema lock on TAB: 7:965578478 [] (class bit0O refl)
result: OK
Process 51 acquiring S lock on KEY: 7:3:2 (9302d58cf78b) (class bit0 refl)
result: OK

Process 51 acquiring S lock on PAG: 7:1:41 (class bit0O refl) result: OK
Process 51 releasing lock on PAG: 7:1:41
Process 51 acquiring S lock on PAG: 7:1:42 (class bit0 refl) result: OK



Process 51 releasing lock on PAG: 7:1:42

Process 51 acquiring S lock on PAG: 7:1:50 (class bit0 refl) result: OK

Process 51 releasing lock on PAG: 7:1:50

Process 51 acquiring S lock on PAG: 7:1:91 (class bit0O refl) result: OK

Process 51 releasing lock on PAG: 7:1:91

Process 51 acquiring S lock on PAG: 7:1:160 (class bit0O refl) result: OK
1:160

Process 51 releasing lock on PAG: 7:

Process 51 releasing lock on TAB: 7:965578478 []

The output can be somewhat cryptic, but with a little effort a database administrator can
follow what is happening. In this example, SPID 51 is performing a table scan and, after some
initial reading of the system tables, is sequentially reading pages. When it wants to read a
page, it requests and acquires a page lock; when it has read a page, it releases the page lock.
Note that page locks refer to page numbers, whereas table locks (we will have taken out an
intent table lock) refer to the object ID of the table. As we have seen, the OBJECT NAME()
function can be used to find the table name, as follows:

SELECT OBJECT NAME (965578478)

accounts

Whether tables or pages are being referenced, the number preceding the object ID or page
number is the database ID. The DB NAME() function can be used to find the database name,
as follows:

SELECT DB _NAME (7)

BankingDB

To find which object a page belongs, use the DBCC PAGE statement, as follows:

DBCC TRACEON (3604)
DBCC PAGE (7,1,50,0)

bpage = 0x1BA2E00O bhash = 0x00000000 bpageno = (1:50)
bdbid = 7 breferences =1 bstat = 0x9
bspin = 0 bnext = 0x00000000

m pageld = (1:50) m_headerVersion = 1 m type =1
m_typeFlagBits = 0x0 m level = 0 m_flagBits = 0x8000
m_objId = 965578478 m_indexId = 0 m _prevPage = (0:0)

m nextPage = (0:0) pminlen = 424 m slotCnt = 16



m freeCnt = 1232 m_freeData = 6928 m_ reservedCnt = 0
m lsn = (1274:16:151) m xactReserved = 0 m xdesId = (0:0)
m ghostRecCnt = 0 m tornBits = 805306369

Allocation Status

GAM (1:2) = ALLOCATED SGAM (1:3) = NOT ALLOCATED
PFS (1:1) = 0x63 MIXED EXT ALLOCATED 95 PCT FULL DIFF (1:6) = CHANGED
ML (1:7) = NOT MIN_ LOGGED

The field containing the object ID is in bold type. Note also that to the right of that field is the
index ID of the index to which the page belongs, if it is an index page.

The DBCC PAGE statement is specifying, in order, the database ID of 7, the file ID of 1, the
page number 50, and 0 to indicate that we only need to see the header, not the data.

Trace Flag 1204

This trace flag returns the type of locks participating in a deadlock and the current commands
involved. I usually set this trace flag with trace flag 3605 (log to errorlog) via the Startup
Parameters in the General tab of Server Properties in the SQL Server Enterprise Manager.
Here is some example output when a deadlock occurred.

10:39:49.10 spid4 Deadlock encountered .... Printing deadlock
information
10:39:49.10 spid4
10:39:49.10 spid4 Wait-for graph
10:39:49.10 spid4
10:39:49.10 spid4 Node:1
10:39:49.10 spid4 RID: 7:1:537:14 CleanCnt:1 Mode: X
Flags: 0x2
10:39:49.10 spid4 Grant List::
10:39:49.10 spid4 Owner:0x1b69£f380 Mode: X Flg:0x0 Ref:0
Life:02000000 SPID:55
ECID:O0
10:39:49.10 spid4 SPID: 55 ECID: 0 Statement Type: UPDATE Line #: 1
10:39:49.11 spid4 Input Buf: UPDATE CUSTOMERS SET customer lname =
'Phillips’

WHERE customer no = 1000
10:39:49.11 spid4 Requested By:
10:39:49.11 spid4 ResType:LockOwner Stype:'OR' Mode: U SPID:53
ECID:O0

EC: (0x1b9%el3e0)
Value:0x1b6a3300 Cost: (0/2A0)
10:39:49.11 spid4

10:39:49.11 spid4 Node: 2

10:39:49.11 spid4 RID: 7:1:338:9 CleanCnt:1 Mode: X
Flags: 0x2

10:39:49.11 spid4 Grant List::

10:39:49.11 spid4 Owner:0x1b69f2e0 Mode: X Flg:0x0 Ref:0

Life:02000000
SPID:53 ECID:O0

10:39:49.11 spid4 SPID: 53 ECID: 0 Statement Type: UPDATE Line #: 1
10:39:49.11 spid4 Input Buf: UPDATE ACCOUNTS SET balance = 99
WHERE account no = 2000
10:39:49.11 spid4 Requested By:
10:39:49.11 spid4 ResType:LockOwner Stype:'OR' Mode: U SPID:55

ECID:0



Ec: (0x1clcd3e0)
Value:0x1b6a33c0 Cost: (0/98)
10:39:49.11 spid4 Victim Resource Owner:
10:39:49.11 spid4 ResType:LockOwner Stype:'OR' Mode: U SPID:55 ECID:O
Ec: (Oxlclcd3e0) Value:0x1b6a33c0 Cost: (0/98)

I have removed the data from the date/time to fit more information onto the page. We can see
that a deadlock was encountered, and by examining the output we can see the following:

e SPID 53 and SPID 55 are involved in a deadlock.
e Resources involved are RID: 7:1:537:14 and RID: 7:1:338:9.
o The last statements sent by the participating connections were:

U 'UPDATE CUSTOMERS SET customer lname = 'Phillips'

o WHERE customer no = 1000 '

. 'UPDATE ACCOUNTS SET balance = 99 WHERE account no =
° 2000

e SPID 55 was chosen as the deadlock victim.
e The locks involved were update (U) locks.

Trace Flag 1205

This trace flag returns more detailed information about the deadlock. You will need to set
trace flag 1204 to get information out of trace flag 1205, but, to be honest, the extra
information is probably only likely to be useful (and understandable) by Microsoft Support.

6.4 SQL Server locking in action

Now that we understand how SQL Server uses its locking protocol, we can look at some
examples. Our examples will all follow the same format, that of the T graph. Some people
believe it is called a T graph because it looks like a T; others believe it is because the vertical
axis represents time! Whatever the reason, it is a useful method for representing the
interaction of locks in a multiuser scenario. In order to keep the output as clear as possible, the
actual results of the SELECT statements are not shown.

Our examples will use the Accounts table in the BankingDB database. In these examples, all
indexes have been removed from this table unless otherwise specified. Also, until we change
it, the default locking protocol will be used-that is, transaction isolation level read committed.

Mike

Katy

SELECT * FROM accounts SELECT * FROM accounts
WHERE account no = 1000 WHERE account no = 2000

* % % OK * % % * x % OK * *x %

In the above example, Mike retrieves all the rows in the Accounts table. Katy attempts to
concurrently retrieve all the rows in the Accounts table and is successful. This is because
Mike places and releases shared locks on the rows in the Accounts table as he scans through
it. Katy also attempts to place shared locks on the rows in the Accounts table, and, since
shared locks are compatible, her attempt is successful.



In the following example, Mike updates all the rows in the Accounts table. He performs this
operation within a transaction, which he does not end. Katy attempts to retrieve rows from the
Accounts table.

Mike Katy
BEGIN TRANSACTION

UPDATE accounts SET balance = 0
WHERE account no = 1000

SELECT * FROM accounts
WHERE account no = 2000

* kK OK * Kk

* kK Walt * x K

In this example, Mike is updating a row in the Accounts table, and so SQL Server takes out an
exclusive (X) row lock. Katy's SELECT statement needs to search the table looking for rows
that match her criteria (account no = 2000). SQL Server decides that it is efficient to search
using page locks. This is not unreasonable, since it knows it will be retrieving every row on
every page. This is because, with no indexes present, a table scan is performed, and every
page must be retrieved from the Accounts table.

As Katy scans through the table acquiring and releasing shared (S) page locks, she reaches the
page on which Mike as taken an exclusive (X) lock on his row. As SQL Server will have also
placed an Exclusive Intent (IX) lock on the page in which his row resides, Katy's shared (S)
page lock will be blocked. A shared (S) lock is not compatible with an exclusive intent (IX)
lock.

This example serves to illustrate a very important point: Transactions should be kept as short
as possible. If they are not, then they could block another transaction for an unacceptable
length of time.

If we were to issue an sp_lock at this point, we would see the following fragment of output
relating to Mike and Katy's connections.

SPID dbid ObjId IndId Type Resource Mode Status
53 7 965578478 0 TAB IS GRANT
53 7 965578478 0 PAG 1:348 S WAIT

54 7 965578478 0 RID 1:348:14 X GRANT
54 7 965578478 0 PAG 1:3438 IX GRANT
54 7 965578478 0 TAB IX GRANT

Her shared lock is blocked on the page. An sp_who issued at this point would show the
following columns (with some deleted).

SPID status loginame hostname blk dbname

54 sleeping mike PEGASUS 0 BankingDB
53 sleeping katy PEGASUS 54 BankingDB



In the following example, Mike again updates all the rows in the Accounts table. Again, he
performs this operation within a transaction, which he does not end. This time Katy attempts
to delete the rows in the Accounts table.

Mike Katy
BEGIN TRANSACTION

UPDATE accounts SET balance = 0 BEGIN TRANSACTION
WHERE account no = 1000

DELETE FROM accounts
WHERE account no = 2000

* kK OK * Kk

* kK Walt * x K

In this example, Katy attempts to place an update (U) lock on the rows in the Accounts table
while searching for a row that meets her criteria for deletion. Since there are no indexes on the
table, every row must be checked. Eventually Katy attempts to place an update (U) lock on
the row Mike has just updated, which holds an exclusive (X) lock. An exclusive (X) lock is
incompatible with all other locks, so Katy is blocked. If we were to issue an sp_lock at this
point, we would see the following fragment of output relating to Mike and Katy's connections.

Spid dbid ObjId IndId Type Resource Mode Status
53 7 965578478 0 RID 1:348:14 U WAIT

53 7 965578478 0 PAG 1:348 IU GRANT
53 7 965578478 0 TAB IX GRANT
54 7 965578478 0 TAB IX GRANT
54 7 965578478 0 RID 1:348:14 X GRANT
54 7 965578478 0 PAG 1:348 IX GRANT

We can see Katy's blocked update (U) lock on row 1:348:14. This example is similar to the
previous example with the exception that Katy is searching with update (U) locks on rows
rather than shared (S) locks on pages.

In the following example Mike will again update rows in the Accounts table and Katy will
retrieve them. This is the same as the second example except that now Katy will issue her
SELECT statement first. We will use BEGIN TRANSACTION for both users.

Mike Katy
BEGIN TRANSACTION

SELECT * FROM accounts
WHERE account no = 2000

BEGIN TRANSACTION

UPDATE accounts SET balance = 0
WHERE account no = 1000

* Kk K OK * kK

* Kk K OK * kK



In this example, Katy attempts to place shared locks in the Accounts table. She is successful,
since Mike has not issued his update yet. Mike then issues his update, which is also
successful. Mike's exclusive lock is not blocked by Katy's shared locks, because SQL Server
will have released the shared locks when the SELECT statement completed. Katy's locks were
gone before Mike issued his update. The fact that Katy issues her SELECT statement within a
transaction is irrelevant.

Because SQL Server runs at the default transaction isolation level of READ COMMITTED,
shared locks are not held until the end of the transaction but are released as soon as the row or
page is read. This increases concurrency (and therefore performance), but this does mean that
the read is not guaranteed to be repeatable, as we shall see shortly.

Let us now create some indexes on the Accounts table.

CREATE UNIQUE NONCLUSTERED INDEX NCI AccountNo
ON accounts (account no)

Mike will now update rows in the Accounts table while Katy attempts to delete them. We will
use a WHERE clause in order to choose different rows.

Mike Katy
BEGIN TRANSACTION

UPDATE accounts SET balance = 0
WHERE account no = 1000 BEGIN TRANSACTION

DELETE FROM accounts
WHERE account no = 2000

* K K OK * kK

* Kk OK * kK

Both users succeeded. This is because indexed access can now be used, and, consequently,
row-level locks can be taken out just on the resources required. If we were to issue an sp_lock
at this point, we would see the following fragment of output.

Spid dbid ObjId IndId Type Resource Mode Status
53 7 965578478 0 RID 1:537:14 X GRANT
53 7 965578478 2 KEY (ea003d68£923) X GRANT
53 7 965578478 0 PAG 1:537 IX GRANT
53 7 965578478 2 PAG 1:2612 IX GRANT
53 7 965578478 0 TAB IX GRANT
54 7 965578478 0 TAB IX GRANT
54 7 965578478 0 RID 1:348:14 X GRANT
54 7 965578478 0 PAG 1:348 IX GRANT

We can see that all locks have been granted. Katy (SPID 53) holds exclusive locks on a row
and an index entry. This is because her delete will not only remove the row but will also
remove the index entry. Mike holds an exclusive lock on the row only, since he will not
change the index entry in any way-he is updating the balance column, not the account no
column.



Suppose Mike and Katy insert rows into the Accounts table. Let us assume that there are no
indexes on the Accounts table.

Mike Katy
BEGIN TRANSACTION

INSERT INTO accounts VALUES
(112501, 2000, 1000, 156.77,
'some notes')

BEGIN TRANSACTION

INSERT INTO accounts VALUES
(112502, 2012, 987, 123.78,
'some notes')

* kK OK * kK

* K K OK * Kk K

There is no problem. Because SQL Server supports row-level locking, there is generally no
blocking on insert. The same is true if indexes are present on the table, since the individual
index entries will be locked with KEY locks.

6.5 Uncommitted data, repeatable reads, phantoms, and
more

With our knowledge of locking protocols we can now investigate how SQL Server deals with
the reading of uncommitted data, nonrepeatable reads, and phantoms.

6.5.1 Reading uncommitted data

Figure 6.1 illustrated the problems with reading uncommitted data. As should already be
clear, SQL Server forbids this by virtue of the fact that any row that has been changed cannot
be read by another user, since an exclusive lock will prevent the row from being retrieved
until the write transaction ends.

SQL Server, however, allows the default behavior to be overridden. A query is allowed to
read uncommitted data with the use of the READUNCOMMITTED keyword, introduced
earlier in this chapter. For example, the following SELECT statement would read the row
from the Accounts table regardless of whether another transaction had a row locked with an
exclusive lock.

SELECT balance FROM accounts WITH (READUNCOMMITTED)
WHERE account no = 15000

The lock hint is recommended rather than NOLOCK, which is retained for backward
compatibility.

Suppose Mike updates a row in the Accounts table. He performs this operation within a
transaction, which he does not end. Katy attempts to retrieve rows from the titles table.



Mike Katy
BEGIN TRANSACTION

UPDATE accounts SET balance = 500
WHERE account no = 5000

SELECT
balance FROM accounts
WITH
(READUNCOMMITTED)
WHERE account no = 5000
* k) OK * k)
* x % OK

* kK

In this example, Katy does not attempt to place a shared lock and she can read the row that
Mike has updated. She will read a balance of 500. Mike may well ultimately choose to roll
back his change, leaving Katy with incorrect balance information.

This behavior is the same as if the connection had set the transaction isolation level to READ
UNCOMMITTED. However, the behavior would apply to all the transactions executed on
that connection until another SET TRANSACTION changed the isolation level, or the
statement overrode the isolation level for itself with a lock hint.

6.5.2 Nonrepeatable reads

In the case of a nonrepeatable read, a transaction is allowed to read a data item on more than
one occasion and retrieve different values each time. This is shown in Figure 6.18. By default,
SQL Server allows nonrepeatable reads. It is sometimes desirable, however, to guarantee
repeatable reads-that is, each read of the same data item while in the same transaction returns
the same value. The means of guaranteeing repeatable reads in SQL Server is by the use of
the REPEATABLEREAD keyword.

bxggin end
k transaction | transaction
Tt T e
| row | 1 row | Ll

bagin el
transaction ransaction
update
arow |

Figure 6.18: Nonrepeatable reads

If the REPEATABLEREAD keyword is used, when the page is read the first time a shared
lock is taken out as usual. This then remains until the end of the transaction. This blocks any
other transaction from changing the data item.



Mike Katy
BEGIN TRANSACTION

SELECT balance FROM accounts
WITH (REPEATABLEREAD)

WHERE account no = 5000
* Kk OK * kK
BEGIN TRANSACTION
UPDATE accounts SET balance =
50.00
WHERE account no = 5000

* Kk Walt * kK

SELECT balance FROM accounts
WITH (REPEATABLEREAD)

WHERE account no = 5000

* Kk OK * Kk

Now Mike is forced to wait. Katy's shared locks block Mike's exclusive lock, and when Katy
repeats her read she will receive the same value-hence, the use of the REPEATABLEREAD
keyword has provided repeatable reads. Again, this is at the expense of concurrency.

Setting the isolation level to REPEATABLE READ (or SERIALIZABLE) will also provide
repeatable reads.

Mike Katy
SET TRANSACTION
ISOLATION LEVEL REPEATABLE
READ
BEGIN TRANSACTION
SELECT balance FROM accounts
WHERE account no = 5000
* k% OK * k%
BEGIN TRANSACTION
UPDATE accounts SET balance =
50.00
WHERE account no = 5000
* k) Walt * k)

SELECT balance FROM accounts

WHERE account no = 5000

* Kk OK * Kk



Again, Mike is forced to wait. Katy's shared locks block Mike's exclusive lock, and when
Katy repeats her read she will receive the same value. The use of the REPEATABLEREAD
lock hint is not required, since the set transaction isolation level repeatable read statement has
provided repeatable reads.

6.5.3 Phantoms

The phantom problem was illustrated in Figure 6.2. By default, SQL Server does not forbid
phantoms, but the use of the SERIALIZABLE hint will prevent them, as the following
examples show.

Mike Katy
BEGIN TRANSACTION

SELECT SUM(balance) FROM accounts
124961532.6600

* Kk K OK * kK

INSERT INTO accounts VALUES
(112502, 2012, 987, 123.78,
'some notes')

* kK OK * Kk

SELECT SUM(balance) FROM accounts
124961656.4400

* kK OK * kK

In the previous example, phantoms are allowed to occur. The two sums of the same list of
values give different results. In the following example, Katy's transaction is blocked, and the
phantom phenomenon is not allowed to occur.

Mike Katy
BEGIN TRANSACTION

SELECT SUM (balance)
FROM accounts WITH
(SERIALIZABLE)
124961532.6600

* kK OK * kK

INSERT INTO accounts VALUES
(112502, 2012, 987, 123.78,
'some notes')

* Kk k Walt * Kk k
Mike Katy

SELECT SUM (balance)
FROM accounts WITH
(SERIALIZABLE)
124961532.6600



* k% OK * kK

The use of the SERIALIZABLE keyword is not required if the set transaction isolation level
serializable is used.

Mike Katy

SET TRANSACTION
ISOLATION LEVEL SERIALIZABLE

BEGIN TRANSACTION

SELECT SUM(balance) FROM accounts
124961532.6600

* kK OK * kK

INSERT INTO accounts VALUES
(112502, 2012, 987, 123.78,
'some notes')

* Kk K Walt * kK

SELECT SUM(balance) FROM accounts
124961532.6600

* kK OK * kK

Note that the SERIALIZABLE lock hint is recommended rather than HOLDLOCK, which is
retained for backward compatibility.

To enforce serializability the lock manager must use some special techniques. In a sense, if
we consider our previous example, the lock manager must lock something that does not exist!
It cannot lock the row that Katy inserts, because it does not exist at the time of the first
SELECT operation. Now SQL Server could lock the whole table if it wanted to, and, if there
were no relevant indexes on the table, this is possibly what it might do. This would certainly
stop phantoms.

However, if there are indexes on the table, then the SQL Server lock manager uses a
technique known as key-range locking. A key-range lock works by covering the index rows
and the ranges between those index rows. Any row insertion, update, or deletion within the
range by another connection that requires a modification to the index causes the second
connection to wait.

For example, suppose we execute the following query against the Branches table.

SELECT branch no, branch name FROM branches
WHERE branch name BETWEEN 'Ealing' AND 'Exton'

We find the following branch names.

branch no branch name



1031 Edmonton
1051 Elton
1061 Epsom
1071 Eton
1041 Exton

We may want to ensure that we cannot insert a new branch between executions of this query.
To do this we run the statement with the SERIALIZABLE lock hint.

BEGIN TRANSACTION

SELECT branch no, branch name FROM branches WITH
(SERIALIZABLE)
WHERE branch name BETWEEN 'Ealing' AND 'Exton'

If we investigate the locks acquired during this transaction, we find the following (simplified)
output from sp_lock.

SPID dbid ObjId IndId Type Resource Mode Status
57 7 0 0 DB S GRANT

57 7 981578535 2 KEY (680236cel07b) RangeS-S GRANT
57 7 981578535 0 PAG 1:102 IS GRANT
57 7 981578535 0 PAG 1:103 IS GRANT
57 7 981578535 0 PAG 1:100 IS GRANT
57 7 981578535 2 KEY (b8020849fadb) RangeS-S GRANT
57 7 981578535 2 KEY (b802£9924eb9) RangeS-S GRANT
57 7 981578535 2 KEY (b702b7e93c9%b) RangeS-S GRANT
57 7 981578535 2 KEY (b0022a45d0732) RangeS-S GRANT
57 7 981578535 2 KEY (b802194c7ac6) RangeS-S GRANT
57 7 981578535 2 KEY (bb025ab1833d) RangeS-S GRANT
57 7 981578535 2 KEY (6c028abdf769) RangeS-S GRANT

There are eight key locks acquired, but if we look at the mode we can see RangeS-S. This
tells us that these are key-range locks. Basically, a key-range lock covers a range of values

starting with the key before the key that is locked.

In our example, the first branch name in our range is Ealing. The branch name preceding the
start of our range is Ducklington. The key-range lock on the index entry Ealing would cover
Ducklington to Ealing and this would then prevent a branch being inserted with the name
Eaglesfield or Duddington, because those key values lie in between Ducklington and Ealing.
In theory this is too restrictive, since these are not in our range. This said, key-range locking is
pretty good and a lot better than locking the whole page or table; after all, we can successfully
insert the local branch in Duchally!

Similarly, the branch name following the end of our range is Fairford. We would not be able
to insert branches named Eyam or Failsworth, but we would be able to insert Fairlight.

Note In fact, we would be able to insert branches named Ducklington or Fairford but, of
course, only if the index on branch_name was not unique.



The number of RangeS-S locks held is N + 1, where N is the number of rows that satisfy the
query. In our case, seven rows satisfy the query, so eight RangeS-S locks are held.

The name of the key-range mode is in two parts. The RangeS part represents the lock mode
protecting the range between two consecutive index entries, and the part after the "-"
represents the lock mode protecting the index entry itself. So, RangeS-S means the range is
locked in shared mode and the index entry itself is locked in shared mode. Another key range
mode is RangeS-U. The difference between RangeS-S and RangeS-U is similar to the
difference between shared (S) and update (U) locks, which has been discussed previously.
RangeX-X is used when a key in a range is updated. Finally, Rangel-N is used as a probe to
test ranges before inserting a key into an index.

6.5.4 More modified locking behavior

While showing examples of how the lock hints and transaction isolation levels can modify the
default locking behavior, it is also worth looking at examples of some of the other lock hints
introduced earlier in this chapter. Let us look at TABLOCKX, for example. The TABLOCKX
keyword forces an exclusive table lock to be taken on a table, which means that no other user,
regardless of his or her Transact-SQL statement, can access rows in the table.

Mike Katy
BEGIN TRANSACTION

SELECT SUM(balance) FROM
accounts WITH (TABLOCKX)

*xx QK KF*x* BEGIN TRANSACTION
SELECT SUM(balance) FROM accounts

* Kk k Wai t * Kk k
Even though the two transactions are only reading the table, Katy is forced to wait.

Another interesting lock hint is READPAST. Consider the case when we have no index on
the Accounts table.

Mike Katy
BEGIN TRANSACTION

UPDATE accounts SET balance = 0
WHERE account no = 1000

SELECT * FROM accounts
WHERE account no = 2000

* Kk OK * kK

* Kk Kk Walt * Kk



This was our second example. Katy is forced to wait because her sequential table scan hits
Mike's locked row and cannot get past it With the READPAST lock hint Katy will skip the
locked row and continue searching.

Mike Katy
BEGIN TRANSACTION

UPDATE accounts SET balance = 0
WHERE account no = 1000

SELECT * FROM accounts WITH

(READPAST)
WHERE account no = 2000

* kK OK * kK

* K K OK * Kk K

6.6 Application resource locks

SQL Server 2000 exposes an interface to its lock manager with the system stored procedure
sp_getapplock and sp releaseapplock. Suppose we execute sp_getapplock, as follows:

DECLARE @resultcode int

EXEC @resultcode = sp getapplock @Resource = 'Store 5',
@LockMode = 'Exclusive',
@LockOwner = 'Session'

We are taking out an exclusive lock on a resource named Store 5. Although this resource may
have no relationship to objects in the SQL Server database, we are able to use the SQL Server
2000 lock manager to manage our application lock protocol. Any other connection attempting
to take out a lock on a resource named Store 5 will be forced to wait.

An application resource lock may be acquired with an owner of Transaction (the default) or
Session. If the owner is Transaction the application resource lock behaves like any other lock
acquired in an explicit transaction-it will disappear when the transaction completes with a
commit or rollback. However, if the owner is Session, the application resource lock will be
held until it is explicitly released with the system stored procedure sp releaseapplock. For
example:

DECLARE (@resultcode int
EXEC @resultcode = sp releaseapplock @Resource = 'Store 5',
@LockOwner = 'Session'

This is very useful, since it means that an application resource lock may be acquired for a
period of time that is independent of the individual SQL Server transactions that are being
performed on the underlying data. In our example, we can take out an application resource
lock on a resource known as Store 5. This stops any other user from working on Store 5.
However, our inserts, updates, and deletes against the database data that represent Store 5 can
be performed in very short transactions, so normal SQL Server resource locks do not become
bottlenecks.



6.7 A summary of lock compatibility

We have seen a number of scenarios involving locks and it is worth now summarizing the
compatibility between different locks. Locks can be shared (S), exclusive (X), or update (U).
They can also be intent shared (IS), intent exclusive (IX), or intent update (IU). These interact
as shown in Table 6.9.

Table 6.9: Lock Compatibility
Mode of Requested Lock Mode of Currently Granted Lock

IS S U IX SIX X

intent shared (IS) v v v v v x
shared (S) v v v x x x
update (U) v v ox  |x x x
intent exclusive (IX) v olx x v x x
shared with intent exclusive (SIX) v* |* | x |x x x
x  x |x x x

exclusive (X) x

We mentioned schema stability locks earlier in this chapter. They too have a compatibility.
The schema stability lock (Sch-S) is compatible with all lock modes except the schema
modification lock (Sch-M). The schema modification lock (Sch-M) is incompatible with all
lock modes. The bulk update (BU) lock is compatible only with schema stability and other
bulk update locks. This is how parallel BCP loads are possible.

This chapter has discussed locking. In a multiuser system that has not been designed with
concurrency in mind, lock conflict is often the cause of performance degradation, and the
effects of this are second only to the effects of bad query/index design.

Chapter 7: Monitoring Performance

7.1 Introduction

As we have mentioned on a number of occasions, physical database design is not a static, one-
off process. Once the database has gone into production, the user requirements are likely to
change. Even if they do not, the database data is likely to be volatile, and tables are likely to
grow. Figure 7.1 shows a typical monitoring and tuning cycle.
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Figure 7.1: The monitoring and tuning cycle

In the previous chapters, we have seen a number of tools that can be used to monitor
performance. There are also other tools that have hardly been mentioned. This chapter will
look at the array of tools the database administrator can use to monitor SQL Server
performance. These tools include the following:

e System stored procedures

e Windows 2000 System Monitor, Performance Logs, and Alerts
e SQL Profiler

e Index Tuning wizard

e Query Analyzer

7.2 System stored procedures

There are a number of system stored procedures that can assist in performance monitoring,
including:

e sp lock
e sp who
e sp_monitor

The system stored procedures sp _lock and sp_ who provide information on locks, blocked
connections, and much more. Both these system stored procedures were described in Chapter
6, so we will concentrate on sp_monitor here.

SQL Server keeps resource use information available through system statistical functions and
sp_monitor then formats and displays this information. In fact, it displays the current values
of resource use and the difference between these current values and the values last time
Sp_monitor was run.

EXEC sp monitor



last run current run seconds

2000-08-17 18:33:25.263 2000-08-17 18:36:43.500 198

62(61)-30% 1(0)-0% 651 (130)-65%

packets received packets sent packet errors

110 (66) 109 (66) 0(0)
total read total write total errors connections
432 (217) 69 (6) 0(0) 18(2)

The cpu_busy, io_busy, and idle values are measured in seconds. The value 62(61)-30% is
decoded as 62 seconds of CPU use since SQL Server was started, and (61) is decoded as 61
seconds of CPU use since sp_monitor was last executed. The CPU has been busy 30 percent
of the time since sp_monitor was last executed. Similarly, for total write the value 69(6) can
be decoded as 69 writes since SQL Server was started and (6) is decoded as six writes since
sp_monitor was last executed.

These functions are available to be executed by Transact-SQL statements if the database
administrator prefers his or her own format. The sp_monitor Transact-SQL definition can
easily be examined using the SQL Enterprise Manager.

Many database administrators use their own home-grown stored procedures to interrogate the
system tables. Taking this approach means that the output is customized to individual
preference and is fine-tuned for the application.

7.3 System monitor, performance logs, and alerts

The System Monitor and Performance Logs and Alerts are provided with Windows 2000 to
facilitate performance monitoring through a graphical interface. They can be accessed by
selecting Administrative Tools from Start Menu/Programs and then Performance.

There are many objects that can be monitored for Windows 2000, such as the processor object
and the memory object, and for each object various counters can be monitored. The processor
object has counters such as %Processor Time.

There are special objects for SQL Server, including the following:

e SQLServer: Access Methods
e SQLServer: Backup Device

e SQLServer: Buffer Manager
e SQLServer: Buffer Partition

e SQLServer: Cache Manager

e SQLServer: Databases

e SQLServer: General Statistics
e SQLServer: Latches

e SQLServer: Locks



e SQLServer: Memory Manager

e SQLServer: Replication Agents

e SQLServer: Replication Dist.

e SQLServer: Replication Logreader
e SQLServer: Replication Merge

e SQLServer: Replication Snapshot
e SQLServer: SQL Statistics

e SQLServer: Use Settable Object

If multiple instances of SQL Server are being used, the object name is formed from the
instance name. For example, the SQL Server instance named SQL2000 A will use object
names such as MSSQLS$SQL2000_A: Locks.

Ensuring that System Monitor is selected in the console pane, click the Add (+) button. This
will display drop-down lists of objects and counters and the computers that can be monitored.
Monitoring performance will affect performance, so running the System Monitor on a
computer other than the server being monitored will reduce its impact on that server.

The SQLServer: Access Methods object has associated counters such as Page Splits/sec, the
SQLServer: Buffer Manager object has associated counters such as Buffer cache hit ratio, the
SQLServer: Databases object has associated counters such as Percentage Log Used, and the
SQLServer: Locks object has associated counters such as Lock Requests/sec. A typical
display, showing Buffer cache hit ratio and three other counters, is shown in Figure 7.2.
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Figure 7.2: The System Monitor chart display

Many counters can be displayed simultaneously, and the display can be changed to a
histogram or a report. A report display using SQLServer: Databases counters is shown in

Figure 7.3.
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Figure 7.3: The System Monitor report display

Alerts can also be defined via Performance Logs and Alerts. This must be selected and
expanded in the console pane. The Alerts folder is right mouse-clicked and New Alert
Settings chosen. A counter is selected and a threshold value chosen over (or under) which the
alert is signaled. When an alert is signaled, various actions can be taken, such as an entry
being logged in the application event log, a program executed, or a network message sent.

Figure 7.4 shows the performance console with two alerts running, and Figure 7.5 shows a
network message sent when one of the alerts has been exceeded.
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Figure 7.4: The alert display
Hessenger Service x|
Miessage from CAPELLA to CAPFILLA on 8]1 712000 10:42:08 PM

2000-C8-17 Z2:41:53 WWCAPELLAProcessor_Total) % Processor Time tripped its shset thoeshold
2.8 i orver the vk vl of B0L

Figure 7.5: A network message resulting from an alert

A useful feature is the capability to log counters to a file and then monitor the logged values
later. This facility is very useful, since it means that samples can be taken, say every few
minutes, over a period of days. Performance monitoring over a long period of time makes it



easier to spot trends and sustained bottlenecks. A log is set up via Performance Logs and
Alerts. This must be selected and expanded in the console pane. The Counter Logs folder is
right mouse-clicked and New Log Settings chosen.

The System Monitor and Performance Logs and Alerts are key tools for monitoring SQL
Server performance, and any SQL Server database administrator should familiarize himself or
herself with these tools.

7.4 The SQL Profiler

The SQL Profiler is probably one of the most useful tools for performance investigation. It
allows the database administrator to trace the events that are happening on a SQL Server. One
or more traces are defined that are designed to capture a set of events. The trace definition
will also specify what information is to be captured concerning the events and what filtering
criteria are to be used. It may be that you only wish to capture events for a particular database
or that exceed a minimum duration.

The information captured by the trace can be displayed graphically and can also be written to
a file and/or a database table. This allows the traced data to be analyzed later.

7.4.1 What events can be traced?

There are many events that can be traced. These are known as event classes, and event classes
that are related are grouped into event categories. For example, the Lock:Acquired and
Lock:Timeout event classes are grouped together in the Locks event category. Some event
classes are very useful and are often traced, while some event classes are more obscure. You
will often find that the traces you wish to create will involve the same event classes. For this
reason, as we shall see, templates can be created containing your common event classes that
can then form the basis of your traces.

Table 7.1 lists the SQL Profiler event categories.

Table 7.1: SQL Profiler Event Categories

Event Category Definition

Cursors
Database

Errors and
Warnings

Locks
Objects

Performance
Scans

Security Audit

Server

Event classes concerned with cursors
Event classes concerned with data and log file growth and shrinkage

Event classes concerned with errors, warnings, and writes to error logs

Event classes concerned with locks

Event classes concerned with an object being opened, closed, created and
deleted, as well as the execution of autostats

Event classes concerned with query plans and parallelism
Event classes concerned with table and index scans

Event classes concerned with security operations; logins/logouts; and server
starts, stops, and pauses

Event classes concerned with server memory changes



Table 7.1: SQL Profiler Event Categories
Event Category Definition

Sessions Event classes concerned with connects and disconnects

Stored Event classes concerned with stored procedures

procedures

Transactions Event classes concerned with transactions starting and stopping-includes
MS DTC transactions and writes to the transaction log

TSQL Event classes concerned with SQL statements and batches

User Event classes concerned with user-defined events created with the stored

Configurable procedure sp_trace generateevent

7.4.2 What information is collected?

Before looking at specific event classes, let us look at the information that can be collected
about them and how they are filtered. The elements of information that can be collected are
known as Data Columns and there are over 40 of them. Some data columns are not relevant
for an event class. For example, the Reads data column is not relevant for the Lock: Aquired
event class. Generally speaking, though, many data columns are relevant for most event
classes.

Some data columns contain information whose definition remains the same regardless of the
event class being traced. A data column such as CPU, which holds the amount of CPU time
(in milliseconds) used by the event, always holds this value for any event that CPU is relevant
for. On the other hand, data columns such as Binary Data, Integer Data, and TextData hold
values that are dependent on the event class captured in the trace. For example, the Errorlog
event class, which occurs when error events have been logged in the SQL Server error log,
causes the Text data column to hold the text of the error message. On the other hand, the
Missing Column Statistics event class, which occurs when column statistics that could be
used by the query optimizer are not available, causes the Text data column to hold the list of
the columns with missing statistics.

When defining a trace, the data columns can be grouped. Grouping overrides the default
behavior in the graphical interface of the SQL Profiler by displaying events in the order that
they occur. For example, grouping the events by Application Name groups together all the
events for an application.

7.4.3 Filtering information

In order to reduce the volume of information traced, it can be filtered. Filtering can also
reduce the impact of the trace on the server. You will need to take care, however, that what
you choose to filter out of the trace is not a participant in the situation you are trying to
observe. It may be that filtering out events whose duration is less than one second will help
you see the wood for the trees, but if a SQL:StmtCompleted event takes just less than a
second but is being executed thousands of times, it may be the culprit behind a performance
problem.



Most, but not all, data columns can have filters defined for them. We can create a filter that
includes applications with a filter that specifies LIKE MyProc% or NOT LIKE MS EM%.
The % symbol represents a wildcard character, which can substitute for zero or more
characters (just the same as LIKE in Transact-SQL). We might specify that we only wish to
trace events with Duration greater than or equal to 1,000 or DatabaselD = 7.

7.4.4 Creating a SQL profiler trace

Now that we have introduced the basic concepts behind a SQL Profiler trace, we can create
one. Let us start by creating a trace to capture events whose duration is greater than or equal
to one-hundredth of a second. This will filter out very short-lived events. Let us assume we
are interested in looking for rogue Transact-SQL statements.

Having launched the SQL Profiler from the Start menu, we will be faced with a fairly blank
window, as shown in Figure 7.6.

G G few Gl [ok Bl e

Figure 7.6: The SQL Profiler initial window

We can then select File — New — Trace, click on the New Trace button, or type CTRL+N.
Having responded to the connection prompt with appropriate security credentials, the SQL
Profiler displays the Trace Properties window, as shown in Figure 7.7.
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Figure 7.7: The SQL Profiler Trace Properties window

First of all, the trace is named and the SQL Server or SQL Server instance that is to be traced
selected. A trace template is then selected. A trace template contains a predefined set of event
classes and data columns. These are used as a convenience when creating new traces. Their
event classes and data columns can be added to or removed, and the resulting template can be
saved under a new name if desired. Apart from Blank, there are 16 template names to choose
from. We will choose the SQLServerProfilerStandard template, since this fits our needs quite
well.

Next, we must specify where we are going to save trace information, if at all. The information
will always be displayed in the SQL Profiler graphical interface, but we also have the choice
of saving the information in a file or database table, or both. Microsoft suggests that saving
data to a file is faster than saving data to a database table. Analyzing data in a table, though, is
much easier. To have the best of both worlds save the trace information to a file and then
afterwards open the trace file and save it as a trace table.

If Save to file is checked, the SQL Profiler will prompt for a location and filename. This SQL
Profiler trace file will have an extension of .trc. A maximum file size (MB) may be optionally
specified. A trace whose maximum file size has been specified, finishes saving trace
information to the file after the maximum file size has been reached. Another option, Enable
file roll-over, may be checked if the Set maximum file size (MB) is checked. With this option
set, when the original file reaches the maximum size, a second file is opened and trace data is
written to it. When the second file reaches the maximum size, a third file is opened and so on.
The SQL Profiler adopts a simple strategy for the filenames. It merely appends an integer to
the original filename. The filename MyTrace.trc becomes MyTrace 1.trc, then

MyTrace 2.trc, and so on.

The Server processes SQL Server trace data option may be checked if the server running the
trace is to process the trace data rather than the client. Selecting this option may adversely



affect the performance of the server being traced, since it ensures that no events are skipped-
even when the server is overloaded.

As well as, or instead of, capturing trace information to a file, it can also be captured in a
table. The table can be present on any SQL Server, and, by default, it takes the name of the
trace. The maximum number of rows to capture can be set, after which no more trace
information is stored in the table.

Finally, a stop time can be set. Once this time is reached, the trace will stop and close itself.
Figure 7.8 shows an example of the General tab of the SQL Profiler Trace Properties window.
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Figure 7.8: The SQL Profiler Trace Properties General tab

Next, the event classes that are to be traced must be specified. The event classes are chosen in
the Events tab of the SQL Profiler Trace Properties window. An example of this is shown in

Figure 7.9.
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Figure 7.9: The SQL Profiler Trace Properties Events tab

The tab is split into two lists-Available event classes and Selected event classes. The event
classes can be moved between the two lists with the Add » and « Remove buttons. Depending
on the template chosen in the General tab, an assortment of event classes will already be
present in the Selected event classes list. We will add another event class. We will select
Execution Plan from the Performance event category so we can see the query execution plan
for a traced query.

Now we will choose the information we need to capture about our event classes. The Data
Columns tab of the SQL Profiler Trace Properties window is now selected. Again, as shown
in Figure 7.10, we find two lists-Unselected Data and Selected Data. There are a number of
selected data columns based on our template. Apart from changing the data column order with
the Up and Down buttons, we have not changed the list of selected data columns.
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Figure 7.10: The SQL Profiler trace properties Data Columns tab

Finally, we must specify our filter. Filters are specified using the Filters tab of the SQL
Profiler Trace Properties window. An example of this is shown in Figure 7.11.
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Figure 7.11: The SQL Profiler Trace Properties Filters tab

oo |

We have decided only to include events of duration greater or equal to one-hundredth of a
second. Now all we have to do is click the run button and our trace will start.



Our trace window is shown in Figure 7.12.
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Figure 7.12: SQL Profiler trace output

We can see the data columns arranged across the top of the window, and the traced events are
displayed one after the other in time sequence. We can see a SQL:BatchCompleted event,
and, when we highlight it, the TextData column is displayed in the lower pane, showing us the
SQL statement that was executed. We can also see other columns, such as the duration of the
statement and the amount of CPU it took (both in milliseconds). The number of logical reads
can also be seen.

We also added the Execution Plan event class to this trace, and, if we select that event, we can
see the execution plan simply described in the lower pane. This is shown in Figure 7.13.
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Figure 7.13: SQL Profiler trace output with the execution plan event

In reality, as a database administrator, you will probably be so busy that sitting and watching
a SQL Profiler trace graphically will not be the best use of your time. It is often more
convenient and productive to analyze the trace output that you have captured into a table. For

example, the trace we have just run was captured in the database table MyTrace in database
PerfStatsDB.

Suppose we execute the following query:

SELECT TextData, Duration, CPU FROM MyTrace where Duration >
1000

Sample output would be as follows:



TextData Duration CPU

SELECT * FROM accounts WHERE balance = 100 1693 40
SELECT * FROM customers WHERE customer no = 1000 1540 40

By using familiar Transact-SQL statements, the trace data can be analyzed to look for
problem statements. As well as responding to problems, traces can be run on a regular basis
and the trace data analyzed to monitor trends. The Transact-SQL functions AVG, MIN, and
MAX are useful, and the data can be grouped by the first few characters of the TextData
column so that the statements are distinguished.

Statement AverageDuration MaxDuration AverageCPU MaxCPU

exec USP CustBal 33.333333 40 33.333333 40

This line of output was generated by the following Transact-SQL statement.

SELECT
CAST (TextData AS CHAR(16)) AS Statement,
AVG (Duration) AS AverageDuration,
MAX (Duration) AS MaxDuration,
AVG (CPU) AS AverageCPU,
MAX (CPU) AS MaxCPU
FROM MyTrace4d
WHERE Duration > 10
GROUP BY CAST (TextData AS CHAR(16))

The GROUP BY uses as CAST of CHAR(16) to group only by the stored procedure name
and not include any parameters. Of course, the other aggregate functions, such as COUNT,
can be used. It is also useful to filter out the stored procedures and statements you are
interested in with a LIKE operator in the WHERE clause.

7.4.5 Creating traces with stored procedures

As well as using the SQL Profiler graphical interface to create, modify, start, and stop traces,
various system stored procedures can also be used. These are all documented, but the easiest
way to create a script that utilizes them is to create a trace using the SQL Profiler graphical
interface and then from the File menu in the graphical interface choose Script Trace. The trace
can be scripted using the SQL Server 2000 system stored procedures or using the SQL Server
7.0 extended stored procedures for backward compatibility. The script produced can then be
edited and executed using the query analyzer.

There are only a few system stored procedures that need to be used when creating and
managing a trace. The ones we will use are as follows:

e sp_trace create

e sp trace setevent
e sp trace setfilter
e sp_trace setstatus

The system stored procedure sp_trace create is typically run first to create the trace.
Information such as the stop time, trace file name, maximum file size, and whether file



rollover is performed can be specified. This system stored procedure returns an integer trace
ID, which is subsequently used to identify the trace.

The system stored procedure sp trace setevent is used to add or remove an event or event
column to a trace. The event ID and column ID pair is specified and is either turned on or off.
The trace that is to be modified is identified through the trace ID.

The system stored procedure sp _trace setfilter is used to specify filters. The trace that is to be
modified is identified through the trace ID. A column is specified together with a value
specifying whether it will be ANDed or ORed with other filter conditions. A value to
represent a comparison operator, such as Greater Than, is specified for the column together
with the value to be compared. Finally, the system stored procedure sp trace setstatus is used
to stop and start the event. Again, the trace that is to be started or stopped is identified through
the trace ID.

Here is a trace script generated by the SQL Profiler.

-— Create a Queue

DECLARE @rc int

DECLARE @TraceID INT

DECLARE @maxfilesize BIGINT

SET @maxfilesize = 5344176266805258

EXEC @rc = sp_trace create @TraceID OUTPUT, 2, N'C:\
MyTrace.trc', @maxfilesize, NULL

IF (Q@rc !'= 0) GOTO error

-- Client side File and Table cannot be scripted

-- Set the events

DECLARE (@on BIT

SET Qon =1

EXEC sp trace setevent @TraceID, 10, 1, @on
EXEC sp trace setevent @TraceID, 10, 6, @on
EXEC sp trace setevent @TraceID, 10, 9, (Gon
EXEC sp trace setevent @TraceID, 10, 10, @on
EXEC sp trace setevent @TraceID, 10, 11, @on
EXEC sp trace setevent @TraceID, 10, 12, @on
EXEC sp_ trace setevent @TraceID, 10, 13, @on
EXEC sp trace setevent @TraceID, 10, 14, @on
EXEC sp trace setevent @TraceID, 10, 16, @on
EXEC sp trace setevent @TraceID, 10, 17, @on
EXEC sp trace setevent @TraceID, 10, 18, @on
EXEC sp trace setevent @TraceID, 12, 1, @on
EXEC sp trace setevent @TraceID, 12, 6, (@on
EXEC sp_ trace setevent @TraceID, 12, 9, Qon
EXEC sp trace setevent @TraceID, 12, 10, @on
EXEC sp trace setevent @TraceID, 12, 11, @on
EXEC sp_ trace setevent @TraceID, 12, 12, @on
EXEC sp trace setevent @TraceID, 12, 13, @on
EXEC sp trace setevent @TraceID, 12, 14, (@on
EXEC sp trace setevent @TraceID, 12, 16, @on
EXEC sp trace setevent @TraceID, 12, 17, @on
EXEC sp trace setevent @TraceID, 12, 18, @on
EXEC sp trace setevent @TraceID, 14, 1, (Gon
EXEC sp_ trace setevent @TraceID, 14, 6, QGon
EXEC sp_ trace setevent @TraceID, 14, 9, Qon
EXEC sp trace setevent @TraceID, 14, 10, @on
EXEC sp trace setevent @TraceID, 14, 11, @on



EXEC sp trace setevent @TraceID, 14, 12, @on
EXEC sp trace setevent @TraceID, 14, 13, @on
EXEC sp_ trace setevent @TraceID, 14, 14, @on
EXEC sp trace setevent @TraceID, 14, 16, @on
EXEC sp trace setevent @TraceID, 14, 17, @on
EXEC sp trace setevent @TraceID, 14, 18, @on
EXEC sp trace setevent @TraceID, 15, 1, (Qon
EXEC sp trace setevent @TraceID, 15, 6, (@on
EXEC sp_trace setevent @TraceID, 15, 9, G@on
EXEC sp trace setevent @TraceID, 15, 10, @on
EXEC sp trace setevent @TraceID, 15, 11, @on
EXEC sp trace setevent @TraceID, 15, 12, @on
EXEC sp trace setevent @TraceID, 15, 13, @on
EXEC sp trace setevent @TraceID, 15, 14, @on
EXEC sp trace setevent @TraceID, 15, 16, @on
EXEC sp trace setevent @TraceID, 15, 17, @on
EXEC sp trace setevent @TraceID, 15, 18, @on
EXEC sp trace setevent @TraceID, 17, 1, Gon
EXEC sp trace setevent @TraceID, 17, 6, (@on
EXEC sp trace setevent @TraceID, 17, 9, (@on
EXEC sp trace setevent @TraceID, 17, 10, @on
EXEC sp trace setevent @TraceID, 17, 11, @on
EXEC sp trace setevent @TraceID, 17, 12, @on
EXEC sp trace setevent @TraceID, 17, 13, @on
EXEC sp trace setevent @TraceID, 17, 14, @on
EXEC sp trace setevent @TraceID, 17, 16, @on
EXEC sp trace setevent @TraceID, 17, 17, @on
EXEC sp trace setevent @TraceID, 17, 18, @on

-- Set the Filters
DECLARE @intfilter INT
DECLARE @bigintfilter BIGINT

EXEC sp trace setfilter @TraceID, 10, 0, 7, N'SQL Server
Profiler%'

SET @intfilter = 100

EXEC sp trace setfilter @TraceID, 13, 0, 4, Qintfilter

EXEC sp trace setfilter @TraceID, 35, 1, 6, N'BankingDB'
-- Set the trace status to start
EXEC sp_ trace setstatus @TracelID, 1

error:
GO

This trace creates a trace file, C:\MyTrace.trc, with file rollover (option value 2). There is no
stop time (NULL) and the maximum file size possible is set.

Event IDs 10, 12, 14, 15, and 17 are set. These are RPC:Completed, SQL:BatchCompleted,
Login, Logout, and ExistingConnection, respectively. The sp trace setevent stored procedure
sets each required event ID and column ID pair. Therefore, we see examples such as the
following:

EXEC sp trace setevent @TraceID, 12, 13, @on

This sets event ID 12 (SQL:BatchCompleted) with column ID 13 (Duration) on.



Filters are set to specify that the database must be BankingDB, the duration is greater than
100 milliseconds, and the application is not the SQL Profiler itself.

Finally, the trace is set to status value 1, which means start. A status value of 0 means stop. To
subsequently view the trace file with the profiler, it is necessary to first stop the trace with
status value 0 and then close it with status value 2.

To view information about current traces a useful function is ::fn_trace getinfo. This takes a
trace ID as an argument. Specifying NULL returns information for all existing traces. For
example:

SELECT * FROM ::fn trace getinfo (NULL)

traceid property value

1 1 2

1 2
C:\DocumentsandSettings\Administrator\MyDocuments\MyTracell.trc
1 3 5344176266805258

1 4 NULL

1 5 1

The property value 1 is the trace option value to sp_trace create. In our example, 2 means file
rollover is enabled. The property value 2 is the trace file name, and 3 is the maximum file
size. The property value 4 is the stop time, and 5 is the current trace status, as set in

sp_trace setstatus. In our example, no stop time is specified. The trace status 1 means the
trace is started.

The SQL Profiler is a very powerful tool, and I would urge database administrators to
familiarize themselves with it. It has many other capabilities, which we will not cover here,
but it can, for example, replay a trace file, which is useful for regression and stress testing. It
is also able to single step through a trace file, similar to a debugger. Also, a workload saved
by the SQL Profiler can be used in the Index Tuning wizard, described next.

7.5 Index Tuning wizard

The Index Tuning wizard can make suggestions about the most effective indexes that could be
created on a table (or view) based on a workload previously captured by the SQL Profiler.
The Index Tuning wizard assumes that the workload is representative, and so the onus is on
the database administrator to ensure that this is the case. I personally use the Index Tuning
wizard to get a second opinion on my index design rather than as a tool that produces a
definitive index design.

The Index Tuning wizard can be launched from the SQL Server Enterprise Manager, the SQL
Profiler, or the Query Analyzer. It then presents the database administrator with a dialog,
which enables him or her to specify information to it and to check an analysis of its design. It
also enables the database administrator to implement the design immediately, later, or not at
all.

Following the initial information window and the login window, the Index Tuning wizard
displays a Select Server and Database window. This is shown in Figure 7.14.
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F1gure714 The Index Tuning wizard Select Server and Database window

As its name suggests, this allows the server and database that are to participate in the tuning to
be selected. The Index Tuning wizard may be very resource intensive, so executing it on a
server different from the production server is recommended.

The Select Server and Database window also allows other options to be specified. The option
Keep all existing indexes is checked by default. The Index Tuning wizard will not suggest
that any indexes should be removed if this option is selected. It will only suggest new indexes.

The Tuning Mode options Fast, Medium, and Thorough specify whether the Index Tuning
wizard performs a more thorough analysis. This can often result in a more accurate index
design but is at the expense of the time taken for the Index Tuning wizard to perform its
analysis.

Finally, this window allows the database administrator to specify that the suggested design
may incorporate indexed views.

The next window to be displayed is the Specify Workload window. This is shown in Figure
7.15.
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l_srgﬁr_e 7.15: The Index Tuning wizard Specify Workload window

The database administrator can specify the location of a file or table that holds workload
information previously traced by the SQL Profiler. The Query Analyzer option will be
highlighted if the Index Tuning wizard was launched from the Query Analyzer.

The Advanced Options button can be mouse clicked. This then allows the database
administrator to specify restrictions in terms of the space available for new indexes, the
maximum columns per index, and the maximum number of queries to tune. Current space
utilization is also reported.

The next window, shown in Figure 7.16, is the Select Tables to Tune window.
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Figure 7.16: The Index Tuning wizard Select Tables to Tune window

This enables the specification of the tables to tune. The fewer tables selected in this window,

the less analysis the Index Tuning wizard will have to perform. The database administrator

can also input a value for the projected number of rows for a table to allow for future growth.



Once you proceed past this window, the Index Tuning wizard starts to analyze the workload.

After a period of time, it will display an Index Recommendations window similar to the one
shown in Figure 7.17.
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Figure 7.17: The Index Tuning wizard Index Recommendations window

In our example, the Index Tuning wizard has recommended that three indexes, if created,

should improve performance based on the workload. In fact, it predicts an 83 percent
improvement.

The indexes recommended are as follows:

e A clustered index on the Accounts table on columns balance (accountsl)

e A nonclustered index on the Accounts table on columns balance, account no
(accounts4)

e A nonclustered index on the Accounts table on column customer no (accounts5)

e A clustered index on the Customers table on column customer no (customers2)

To investigate this further we can mouse click the Analysis... button. This displays a set of

reports. The first report is an Index Usage report based on the recommended configuration-
that is, with the new indexes. This is shown in Figure 7.18.
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Figure 7.18: The Index Tuning wizard Index Usage report

This report shows the percentage of queries in the workload that would make use of the new
index and the estimated size of the new index.

The next report shows index use based on the current configuration. We have no indexes at
present on our base tables, so this is not a meaningful report for us. Next is the Table Analysis
report. This is shown in Figure 7.19.
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Figure 7.19: The Index Tuning wizard Table Analysis report

This report shows the top 100 tables most heavily used by the workload. In our example we
only have two tables used by our workload. The report sums up the costs of all queries each
table participates in, and then reports those costs as a fraction of the cost of the entire
workload for the current and recommended index configuration.

The next report is the View - Table Relations report. This shows which tables are involved in

building a particular indexed view. We have no new indexed views in the recommendation, so
this is not a meaningful report.



The next report, perhaps the most useful, is the Query - Index Relations report for the
recommended configuration. This shows us the queries in the workload and the indexes that

the query is predicted to use. This is shown in Figure 7.20.
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Figure 7.20: The Index Tuning wizard Table Analysis report

In our example, the queries in the workload are as listed in Table 7.2.

Table 7.2: Workload Queries

Query
SELECT customer Iname, customer fname,account no, balance FROM

customers C INNER JOIN accounts A ON C.customer no =
A.customer no WHERE C.customer no = 1100

SELECT account no FROM accounts WHERE balance = 100

SELECT account no FROM accounts WHERE balance BETWEEN 100
AND 200

SELECT customer Iname, customer fname FROM customers WHERE
customer_no = 1100

Indexes

[accounts5],
[customers2]

[accounts4]

[accounts4]

[customers2]

The first query, an inner join of the Accounts table and the Customers table on the

customer no column uses the indexes accounts5 and customers2. These are the indexes on the

customer no column in the Accounts table and the Customers table, respectively. This is
reasonable, since this column is used in the join and the WHERE clause of the query.

The second query, a simple selection from the Accounts table, uses the index accounts4. This
is a covering index, since it contains both the balance and account_no columns. We discussed
covering indexes in Chapter 3, and we know that these can be very efficient.

The third query is similar to the second query but uses a BETWEEN operator. This also uses

the index accounts4. Since this is a covering index, this makes sense.



The fourth query, a simple selection from the Customers table, uses the index customers?2.
This makes sense, since this index supports the WHERE clause of the query, which uses the
customer no column.

The next report is the Query Cost report. This shows us the most expensive 100 queries in the
workload and the performance improvement predicted for the recommended configuration.
This is shown in Figure 7.21.
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Figur-e 7.21: The Index Tuning wizard Query Cost report

The next report is the Workload Analysis report. This report groups the queries into ten cost
groups based on the most expensive query for the current and recommended configuration. In
other words, the most expensive query defines the most expensive cost group. The other
queries are then placed in the appropriate cost group. The distinction is also made between the
type of query-SELECT, INSERT, UPADTE, and DELETE. This is shown in Figure 7.22.
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The final report is the Tuning Summary report. This gives an overview of the analysis
performed by the Index Tuning wizard and is shown in Figure 7.23.
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Any of the above reports can be saved in a textual format.

Once we have studied the reports, we can mouse-click Close and we will return to the Index
Recommendations window. If we now mouse-click Next, the Schedule Index Update Job
window is displayed. This gives the database administrator the opportunity to apply the
recommended changes. This window is shown in Figure 7.24.
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Figure 7.24: The Index Tuning wizard Schedule Index Update Job window

If we wish to apply the changes, they can be applied immediately or scheduled for a time and
date in the future. Whether we apply the changes or not, a script file containing the changes
may optionally be generated. In fact, after applying the recommendations, the queries used the
indexes as predicted. Interestingly, the Index Tuning wizard created a clustered index on the
Accounts table on the balance column. It predicted that it would not use this and it didn't!



It's worth a few words here regarding how the Index Tuning wizard approaches the problem
of index analysis. It basically takes each query in the workload (unless the database
administrator sets a limit on the number of queries to analyze) and designs single-column
indexes. It then moves into a phase where it designs multicolumn indexes. All the time it is
eliminating indexes that do not improve performance. As you can imagine, there are
theoretically many indexes that could be defined for even a simple workload. Most
importantly, the Index Tuning wizard works with the query optimizer. In fact, it creates
pseudoindexes by defining an entry in the sysindexes system table but not actually creating
the physical index structure. The query optimizer then may or may not use the index when the
Index Tuning wizard asks it to optimize the workload. If you look at the indexes present on a
table while using the Index Tuning wizard, you will see these indexes. They generally have
names such as hind 965578478 2 1 4, where hind means hypothetical index.

To summarize, the Index Tuning wizard works with statistical information, just like the query
optimizer, so it's not perfect-yet! It does a pretty good job though, and for many users of SQL
Server with limited experience it will be a great asset. For database administrators with many
years tuning experience it will be a useful assistant.

7.6 Query analyzer

We have already looked at the query analyzer extensively in previous chapters but in the
context of viewing estimated query execution plans. There are other capabilities in the query
analyzer that are worth a mention. These are Show Server Trace and Show Client Statistics.

These options can be selected from the Query menu or the Execute mode button.
The Show Server Trace option shows the impact on a query on the server. It displays the

event classes with some data columns we are familiar with from the SQL Profiler. An
example of the Trace tab is shown in Figure 7.25.

-

Figure 7.25: The Query Analyzer Trace tab

At the time of writing, with a full release of SQL Server 2000, I still find that this server trace
is giving me problems. Sometimes the query is not traced at all, and sometimes the statistics
completely disagree with the SQL Profiler.

The Show Client Statistics option shows client-side information about the execution of the
query. An example of the Statistics tab is shown in Figure 7.26.
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Figure 7.26: The Query Analyzer Statistics tab
The client statistics are grouped into three areas, as follows:

1. Application Profile Statistics-containing information such as the number of SELECT
statements

2. Network Statistics-containing information such as the number of server roundtrips

3. Time Statistics-containing information such as the cumulative client processing time

We have looked at a number of monitoring tools in this chapter. I find the SQL Profiler
particularly useful when hunting for poorly performing queries. The Query Analyzer is then
really useful for analyzing the problem query to check on the query plan. As an initial step,
the System Monitor is very useful for getting an overall feel for the system.

Chapter 8: A Performance Tuning Checklist

Here are a few thoughts that might be useful as an aide-memoir when you are considering
performance issues.

8.1 System resource use

Establish trends. Use the System Monitor to monitor resources into a log file over a period of
time. Get to know the normal ranges of the key counters.

When using the System Monitor interactively, run the graphical user interface on a machine
other than the server being monitored to minimize the System Monitor impact.

Do not jump to conclusions. The performance problem may be caused by something you do
not expect. It's easy to become convinced that something is causing a problem and to
subconsciously twist the evidence to fit your theory.



Remember that system resource bottlenecks may be a symptom of something else. A classic is
a disk I/O bottleneck caused by paging due to a memory shortage.

Ensure that you have sufficient page file space.

Remove services and protocols you are not using from the server. Do not run a screen saver
on the server.

Try to run SQL Server on a dedicated server with no other applications running. It is much
easier to optimize SQL Server in this situation. Try to avoid installing SQL Server on a
Domain Controller (PDC).

Place tempdb on a fast device. Use the System Monitor or Alert subsystem to track it if it
expands dynamically. By default it will be reset to its initial size on SQL Server restart. It may
be beneficial to manually expand it to the size to which it frequently grows.

Use RAID for your database and transaction log. One approach would be to use a RAID 0
stripe set for the database and mirror it. Use a dedicated disk for the transaction log and mirror
it. Hardware-based RAID is faster than software-based RAID.

Use a good quality network card. A 32-bit network card has better throughput that a 16-bit
card.

8.2 Choosing efficient indexes

It is likely that for all but the smallest of tables the database designer will need to define
indexes. These will probably consist of a clustered index with a number of nonclustered
indexes. Queries benefit from lots of indexes, but too many indexes will degrade the
performance of Transact-SQL statements that change data, such as INSERT, UPDATE, and
DELETE, since all the indexes will need to be maintained, which requires CPU and disk I/O.
Even worse, many indexes being updated are likely to increase lock contention.

Consider using a clustered index in the following situations.

e The physical ordering supports the range retrievals of important queries-that is,
queries that use BETWEEN and LIKE.

o Few duplicate values mean that an equality test (=) returns few rows.

e Many duplicate values mean that an equality test (=) returns many rows.

e The clustered index key is used in the ORDER BY clause of critical queries.

o The clustered index supports the GROUP BY clause of critical queries.

e For a given row in the outer table of a join, there are few rows that match in the inner
table. A clustered index on the join column in the inner table will be beneficial.

e For a given row in the outer table of a join, there are many rows that match in the
inner table. A clustered index on the join column in the inner table will be beneficial.

Avoid using a clustered index on a volatile column-that is, a column that is updated
frequently. This would result in the data row moving around the table repeatedly.

Consider using a nonclustered index in the following situations.



o Few duplicate values mean that an equality test (=) returns few rows.

o The nonclustered index key is used in the ORDER BY clause of critical queries.

e The nonclustered index supports the GROUP BY clause of critical queries.

o For a given row in the outer table of a join, there are few rows that match in the inner
table. A clustered index on the join column in the inner table will be beneficial.

e A critical query can be efficiently covered.

Avoid using a nonclustered index when a query returns many rows, such as a range retrieval,
or when there are many duplicate values returned by an equality test. Also, if, for a given row
in the outer table of a join, there are many rows that match in the inner table, a nonclustered
index on the join column in the inner table will not be beneficial.

Avoid using a nonclustered index on a volatile column. The result may not be as unfavorable
as using a clustered index, since the data row will not move; however, the index will still have
to be maintained.

Also, consider that many applications will require the selection of a row by the primary key.
This is a single-row selection and therefore would normally benefit from the creation of an
index containing the same columns as the primary key. Since it is not common to request
ranges of primary keys, a nonclustered index is probably the best option. If a primary key
constraint is created, the index will be automatically created; it is recommended that this be a
nonclustered index.

Do not create an index on a column that is not very selective. An example of this would be a
column that contained a status flag containing two or three values. It is unlikely that such an
index would be used by the query optimizer.

Be careful when creating indexes with large keys. Fewer keys can be held in an index page,
resulting in many index pages and deeper indexes. Take care with a large key in a clustered
index. This will be used as the pointer in all the nonclustered indexes on the table.

Regularly check the levels of internal and external page fragmentation with DBCC
SHOWCONTIG. Tidy up by rebuilding indexes. Make sure that there is enough free space in
the database to rebuild clustered indexes. Another approach is to use the Database
Maintenance Wizard.

Consider using DBCC INDEXDEFRAG on tables where there is little opportunity for
maintenance-for example, a 24 x 7 system.

8.3 Helping the Query Optimizer

Ensure that the UPDATE STATISTICS statement (or sp_updatestats) is run regularly.

Set the database options to allow automatic statistics updating and creation.

Always test query performance on representative data. Data distributions that do not reflect

live data in the production database and tables that are smaller than those in the production
database could result in query plans different from those used when the application goes live.



Make sure that join conditions are not omitted. Always check in the case of joins involving
many tables that N tables must have a minimum of N - 1 join conditions. Better still, use the
ANSI SQL-92 join syntax.

Try to establish a standard so that program documentation includes an attached showplan
output. This has a number of advantages. First, it forces the SQL developer to actually run the
query and obtain a showplan output, which otherwise may not have happened. Second, it
allows the person responsible for database performance to quickly scan the showplan output
for obvious problems. Third, if the query performance suddenly degrades in the future, it is
easy to check if the query optimizer has adopted a new query plan. Attaching statistics IO
output is also recommended.

Use query optimizer hints only if it is absolutely necessary. Revisit them to check if the plan
they force is still the most efficient.

Ensure that stored procedures are not being passed a range of parameters such that a highly
inefficient query plan is being used for some values.

The use of order by, distinct, and union in a query results in SQL Server having to do more
work. If they can be avoided, do so. It might be that you know there are no duplicates, or a
sort may be performed elsewhere, perhaps on the client.

8.4 Avoiding lock contention

No matter how well the database is tuned to minimize disk 1/O, all the database designer's
efforts will be wasted if lock contention is prevalent in the database. SQL Server's locking
mechanisms were described in Chapter 6, and we will now look at some general guidelines to
follow when designing a database. Remember: In most multiuser systems that make changes
to data some lock contention is unavoidable. The secret is to minimize both the locking hot
spots and the length of time for which locks are held.

8.4.1 Rule 1: Keep transactions as short as possible

If a transaction has placed an exclusive lock on a row, page, or table, it will keep that lock
until it ends with a commit or rollback. This is also true with shared locks if the
REPEATABLE, SERIALIZABLE, or HOLDLOCK hints are used or the repeatable read or
serializable isolation level is used. The longer the lock is held, the more chance there will be
that the lock blocks another user. This has a cascade effect, with the blocked user blocking
other users. Minimize the time the locks are held. Do not perform work inside a transaction
that can be performed outside of it.

8.4.2 Rule 2: Do not hold locks across user interactions

This follows from Rule 1. Unless special considerations apply, you have a real need to, and
you know what you are doing, this rule should be adhered to at all costs in a multiuser
environment. What does this mean? It means that transactions should be completed before
control is passed back to the user, and the transaction should not be active while the user is
staring at the screen.



The reasons are obvious. The computer may process a transaction's workload in less than a
second, and if that transaction then completes, another transaction will only have waited a
fraction of a second before it acquired its locks. If, however, a transaction places locks on
rows, pages, or tables, and the transaction is left active while the application returns to the
user, it will keep its locks while the user stares at the screen, scratches his or her head, chats
with a colleague, or, worse still, goes to lunch!

This could be, and usually is, disastrous for system throughput, and it is more commonplace
that one might imagine! I know of instances where businesses have stopped trading for
critical periods of time because a user went to lunch while a screen prompt sat on his or her
workstation. This is not the user's fault. Blame resides with the application designer.

If it becomes necessary to retrieve data in the database for later modification, it is usually far
better to choose an option where locks are not held on database objects and an optimistic
locking approach is taken-that is, the retrieved rows are not locked and, when updates are
eventually performed, a check is made in the application to see if another user has changed
the data since the data was read. SQL Server provides the rowversion data type to assist the
developer.

8.4.3 Rule 3: Try not to interleave updates and reads

If a transaction changes data when it starts, it will hold exclusive locks until it finishes. Try
not to change data and then spend time reading data. If possible read the data, save all of the
updates until the end of the transaction, and then issue them in one short burst. This
minimizes the length of time that exclusive locks are held.

8.4.4 Rule 4: Help the query optimizer to choose indexed access

The query optimizer chooses whether a table scan or index is used to retrieve data. Judicious

use of indexes and care when writing Transact-SQL statements will help the query optimizer
to choose an indexed access. From a locking contention viewpoint this is preferable to a table
scan, since a table scan may lock at the table or page level if shared locks are to be held.

8.4.5 Rule 5: Only lock as strictly as is necessary to meet your integrity
requirements

Only hold shared locks if you require that the row you have read must not be changed by
anyone else before your transaction ends.

8.4.6 Rule 6: Update tables in the same order throughout the application

If one program updates table A and then updates table B, and another program updates table B
and then updates table A, there is potential for deadlock. It is better to settle on some simple
application development standard, such as always updating tables in alphabetical order
wherever possible.

In this case, the first program will cause the second program to wait cleanly and avoid the
potential deadlock scenario.



8.4.7 Rule 7: Perform multiuser testing before the application goes live

This is often forgotten or left to the last minute. Whether you use sophisticated multiuser
testing products or you persuade your users to stay late in the evening-do it!

We could add more rules but we have found that if the above seven are adhered to, lock
contention should be minimized.

8.5 Database integrity

Integrity is the natural enemy of performance. The greater the data consistency requirements
the more the impact on performance.

Do not implement your data integrity checks at the last minute before you go live. It does not
matter whether you have used triggers or constraints, your performance is likely to suddenly
drop.

Remember that if you do not index your foreign key column(s), you are likely to experience
bad performance if you delete a row from the referenced table, since a table scan will
probably be performed on the child table.

A table that has many foreign key constraints defined on it will have degraded insert
performance, since many lookups will be performed against the referenced tables.

8.6 Database administration activities

Avoid running DBCC statements, UPDATE STATISTICS, and backups during periods of
high user activity.

Consider creating a reporting database to off-load reporting and ad hoc querying. This could
be kept up-to-date by replication or log shipping if required.

When loading a table using Data Transformation Services, the BULK INSERT statement, or
BCP, be aware of the logging impact of the different SQL Server recovery models.

Put the file to be loaded on the same server as the database and data file to avoid network
traffic.

Creating indexes will usually impact performance on the server, so it is better to perform
index rebuilds during a quiet period.

Creating a nonclustered index has less impact than creating a clustered index. Clustered index
creation uses an exclusive table lock, whereas nonclustered index creation uses a shared table
lock.

Use the DROP_EXISTING clause of the CREATE INDEX statement when rebuilding a
clustered index to minimize the impact on the nonclustered indexes on the table.



Consider using the SORT_IN_TEMPDB option on the CREATE INDEX statement to spread
the I/O load across multiple disk drives.

When creating a database, try to set a realistic initial size to avoid multiple file extensions.

It might be better to switch variable-length datatypes to fixed-length datatypes in some cases
to avoid the potential use of forwarding pointers.

Consider shrinking database files at periodic intervals.

8.7 Archiving data

This is a requirement that usually gets left until the last minute. The fact remains, however,
that the larger a database gets, the more performance is likely to degrade. Many database
administration tasks will also take longer: database backups, the update of statistics, DBCC
checks, and index builds.

The reasons that performance degrades include the following.

o Larger tables mean longer table scans.
o Larger tables mean deeper indexes-hence, more I/O to reach the table row.
o Longer table scans and index traversals mean locks may be held longer.

Ensure that there is an archiving strategy in place before the database gets too large.

8.8 Read only report databases

If we consider a typical OLTP production system comprised of many users, we would
probably expect to find that the system included many short transactions that updated the
tables in the database in real time. In reality, we would also find that there was a requirement
to run long and perhaps complex reports against portions of the database. The fast-response
time requirements of the lightweight online transactions and the data-hungry requirements of
the heavyweight report transactions often do not mix well. The report transactions can
severely impact the response times of the online transactions in the production system and in
the worst case may cause lock conflict.

One option is to separate these two different workloads into their own databases on their own
server. This can never, in reality, be done completely, since there is usually no clear break
between the requirements of the two systems. However, there is a case for off-loading as
much reporting work as possible to another database. This also means that there will be a
natural frozen cut-off point. If the report database is only updated overnight, then it will hold
the close of day position all the following day, which can be a useful asset.

A separate report database can also have extra indexes added to it that would have been
unacceptable in the production database for performance reasons.

Updating information in the report database could be a simple matter of restoring it from last
night's backup of the OLTP database, or the replication capabilities present in SQL Server



could be used. Whatever the method, consider the approach of separating the different
workloads, since this can greatly help performance and increase flexibility.

If the report database is created from last night's backup, there are also two more added
bonuses. First, the fact that you are restoring your backup means that you can feel confident
that your backup/restore scripts work. Second, since the database is identical to the OLTP
database, those lengthy DBCC integrity checks can be run on the report database instead of
the OLTP database.

8.9 Denormalization

Before considering denormalization, a fully normalized database design should be your
starting point. A fully normalized database design helps to avoid data redundancy and
possible update anomalies, but it usually results in a design that requires tables to be joined
frequently.

Possible approaches to denormalization include the duplication of columns from one or more
tables into another to avoid the join in a critical query. For columns that are volatile, this can
make updates more complex.

Another denormalization technique is to store derived data in the database. Transactions that
change data can, usually by means of triggers, modify the derived data column. This can save
query time, since the work has already been done calculating the derived column. The
downside is that the modifying transactions have additional work to do.
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