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Preface 
My last SQL Server performance book was aimed at SQL Server 6.5. When Microsoft 
released SQL Server 7.0 it was almost as if it were a new product. Although it was backward 
compatible in many areas with SQL Server 6.5, the architecture was very different. For 
starters, the on-disk structure was completely changed. The usage of files was much improved 
over SQL Server 6.5, and SQL Server 7.0 now had an 8 Kb database page size. The query 
optimizer was greatly enhanced with many new query plans possible, in particular in the use 



of multiple indexes and table joins. The query processor could also now execute complex 
queries in parallel. As well as all these changes and many more, Windows 2000 was 
beginning to slowly appear on the horizon. 

For these reasons, I decided that upgrading a SQL Server 6.5 performance and tuning book to 
SQL Server 7.0 was not going to be a trivial task and would be much more than an editing 
exercise. I decided that my goal would be to work with SQL Server 7.0 through its lifetime in 
my usual performance-tuning-consultancy capacity and not rewrite the book until I felt 
confident with the way the new architecture behaved. Of course, nothing stays still for long 
with software, especially Microsoft software, and so the actual book-writing goal was to write 
a SQL Server 2000 version. 

SQL Server 2000 has added many useful enhancements to SQL Server 7.0, but it is still the 
SQL Server 7.0 architecture and, therefore, behaves pretty much in the same way. I say to my 
students that if you know SQL Server 7.0, you pretty much know SQL Server 2000. 

So here goes-the follow-up to the SQL Server 6.5 performance and tuning book. I hope you 
like this updated SQL Server 2000 version. 

The chapters are written to follow one another in a logical fashion, building on some of the 
topics introduced in previous chapters. The structure of the chapters is as follows: 

• Chapter 1 introduces the goals of performance tuning and the elements of the physical 
database design process including data volume analysis and transaction analysis. It 
also introduces the example BankingDB database. 

• Chapter 2 describes the SQL Server storage structures including database files, 
databases, database pages, and extents. 

• Chapter 3 introduces clustered indexes and nonclustered indexes. How data is inserted 
and retrieved and choosing the appropriate index for a given situation are discussed. 

• Chapter 4 introduces the query optimizer and steps in the query optimization process. 
This chapter also discusses the special approach to query optimization used by stored 
procedures. 

• Chapter 5 looks at the interaction between SQL Server and Windows 2000 in the areas 
of CPU, memory, and disk I/O. How to track down and remove bottlenecks is 
explored. 

• Chapter 6 introduces SQL Server locking mechanisms and strategies and the methods 
and tools available for monitoring locks. 

• Chapter 7 looks at performance monitoring and the tools available to assist the 
database administrator. 

• Chapter 8 provides a performance tuning aide-mémoire. 

I really enjoy tuning databases and making them run fast. Even more, I really enjoy taking an 
elusive performance problem, tracking it down, and fixing it. I hope you, too, find the same 
level of enjoyment that I do and that this book kick-starts your interest in performance tuning 
SQL Server. 

Chapter 1: Introducing Performance 
Tuning and Physical Database Design 



1.1 What is performance tuning? 
What is the goal of tuning a SQL Server database? The goal is to improve performance until 
acceptable levels are reached. Acceptable levels can be defined in a number of ways. For a 
large online transaction processing (OLTP) application the performance goal might be to 
provide subsecond response time for critical transactions and to provide a response time of 
less than two seconds for 95 percent of the other main transactions. For some systems, 
typically batch systems, acceptable performance might be measured in throughput. For 
example, a settlement system may define acceptable performance in terms of the number of 
trades settled per hour. For an overnight batch suite acceptable performance might be that it 
must finish before the business day starts. 

Whatever the system, designing for performance should start early in the design process and 
continue after the application has gone live. Performance tuning is not a one-off process but 
an iterative process during which response time is measured, tuning performed, and response 
time measured again. 

There is no right way to design a database; there are a number of possible approaches and all 
these may be perfectly valid. It is sometimes said that performance tuning is an art, not a 
science. This may be true, but it is important to undertake performance tuning experiments 
with the same kind of rigorous, controlled conditions under which scientific experiments are 
performed. Measurements should be taken before and after any modification, and these 
should be made one at a time so it can be established which modification, if any, resulted in 
an improvement or degradation. 

What areas should the database designer concentrate on? The simple answer to this question 
is that the database designer should concentrate on those areas that will return the most 
benefit. In my experience, for most database designs I have worked with, large gains are 
typically made in the area of query and index design. As we shall see later in this book, 
inappropriate indexes and badly written queries, as well as some other contributing factors, 
can negatively influence the query optimizer such that it chooses an inefficient strategy. 

To give you some idea of the gains to be made in this area I once was asked to look at a query 
that joined a number of large tables together. The query was abandoned after it had not 
completed within 12 hours. The addition of an index in conjunction with a modification to the 
query meant the query now completed in less than eight minutes! This magnitude of gain 
cannot be achieved just by purchasing more hardware or by twiddling with some arcane SQL 
Server configuration option. A database designer or administrator's time is always limited, so 
make the best use of it! The other main area where gains can be dramatic is lock contention. 
Removing lock bottlenecks in a system with a large number of users can have a huge impact 
on response times. 

Now, some words of caution when chasing performance problems. If users phone up to tell 
you that they are getting poor response times, do not immediately jump to conclusions about 
what is causing the problem. Circle at a high altitude first. Having made sure that you are 
about to monitor the correct server use the System Monitor to look at the CPU, disk 
subsystem, and memory use. Are there any obvious bottlenecks? If there are, then look for the 
culprit. Everyone blames the database, but it could just as easily be someone running his or 
her favorite game! If there are no obvious bottlenecks, and the CPU, disk, and memory 
counters in the System Monitor are lower than usual, then that might tell you something. 



Perhaps the network is sluggish or there is lock contention. Also be aware of the fact that 
some bottlenecks hide others. A memory bottleneck often manifests itself as a disk bottleneck. 

There is no substitute for knowing your own server and knowing the normal range of System 
Monitor counters. Establish trends. Measure a set of counters regularly, and then, when 
someone comments that the system is slow, you can wave a graph in front of him or her 
showing that it isn't! 

So, when do we start to worry about performance? As soon as possible, of course! We want to 
take the logical design and start to look at how we should transform it into an efficient 
physical design. 

1.2 The physical database design process 
Once the database logical design has been satisfactorily completed, it can be turned into a 
database physical design. In the physical design process the database designer will be 
considering such issues as the placement of data and the choice of indexes and, as such, the 
resulting physical design will be crucial to good database performance. The following two 
important points should be made here: 

1. A bad logical design means that a good physical design cannot be performed. Good 
logical design is crucial to good database performance, and a bad logical design will 
result in a physical design that attempts to cover up the weaknesses in it. A bad logical 
design is hard to change, and once the system is implemented it will be almost 
impossible to do so. 

2. The physical design process is a key phase in the overall design process. It is too often 
ignored until the last minute in the vain hope that performance will be satisfactory. 
Without a good physical design, performance is rarely satisfactory and throwing 
hardware at the problem is rarely completely effective. There is no substitute for a 
good physical design, and the time and effort spent in the physical design process will 
be rewarded with an efficient and well-tuned database, not to mention happy users! 

Before embarking on the physical design of the database, it is worth stepping back and 
considering a number of points, as follows: 

• What kind of system are we trying to design? Is it a fast online transaction processing 
(OLTP) system comprised of perhaps hundreds of users with a throughput of hundreds 
of transactions per second (TPS) and an average transaction response time that must 
not exceed two seconds? Is it a multigigabyte data warehouse, which must support few 
online users but must be able to process very complex ad hoc queries in a reasonable 
time, or is it a combination of the two? 

The type of system will strongly influence the physical database design decisions that 
must be made. If the system is to support OLTP and complex decision support, then 
maybe more than one database should be considered-one for the operational OLTP 
system and one, fed by extracts from the operational OLTP system, to support 
complex decision support. 

• What are our hardware and budget constraints? The most efficient physical database 
design will still have a maximum performance capability on any given hardware 



platform. It is no use spending weeks trying to squeeze the last few CPU cycles out of 
a CPU bound database when, for a small outlay, another processor can be purchased. 
Similarly, there is little point purchasing another CPU for a system that is disk I/O 
bound. 

• Has the database design been approached from a textbook normalization standpoint? 
Normalizing the database design is the correct approach and has many benefits, but 
there may be areas where some denormalization might be a good idea. This might 
upset a few purists, but if a very short response time is needed for a specific query it 
might be the best approach. This is not an excuse for not creating a normalized design. 
A normalized design should be the starting point for any effort made at 
denormalization. 

• How important is data consistency? For example, is it important that if a query rereads 
a piece of data within a transaction it is guaranteed that it will not have changed? Data 
consistency and performance are enemies of one another, and, therefore, if consistency 
requirements can be relaxed, performance may be increased. 

How does a database designer move from the logical design phase to a good physical database 
design? There is no single correct method; however, certain information should be captured 
and used as input to the physical design process. Such information includes data volumes, 
data growth, and transaction profiles. 

1.2.1 Data volume analysis 

It is very important to capture information on current data volumes and expected data 
volumes. Without this information it is not even possible to estimate the number and size of 
the disk drives that will be required by the database. Recording the information is often a case 
of using a simple spreadsheet, as shown in Table 1.1. 

Table 1.1: Capturing Simple Data Volume Information  
Table 
Name  

# of 
Rows 

Row 
Size  

Space 
Needed  

% Annual 
Growth  

Space Needed in 12 
Months 

Accounts 25,000 100 2,500,000 10 2,750,000
Branches 100 200 20,000 5 21,000
Customers 10,000 200 2,000,000 20 2,400,000
Transactions 400,000 50 20,000,000 25 25,000,000

This may appear to be a trivial operation, but it is surprising how few database designers do it. 
It is also interesting to find the different views from business users on what the figures should 
be! Another column that could be added might represent how volatile the data is in a 
particular table. The percentage annual growth of a table might be zero, but this may be 
because a large amount of data is continually being removed as well as being added. 

Simple addition of these figures gives the data size requirements, but this is only part of the 
calculation. The database designer must take into account the space required by indexes, the 
transaction log, and the backup devices; no experienced database designers would ask for the 
disk space that came out of the sum in Table 1.1. They would, of course, add on a percentage 
for safety. Users typically do not phone you to complain that you oversized the database by 20 



percent; however, they do phone you to complain that the system just stopped because the 
database was full! 

So how are the size of indexes calculated? The Creating and Maintaining Databases online 
book gives sample calculations to assist in the sizing of tables, as well as clustered and 
nonclustered indexes with both fixed, and variable-length columns. It is highly recommended 
that these calculations are performed, and it is worth using a spreadsheet such as Microsoft 
Excel to perform the calculations in order to save time and effort. Watch the newsgroups for 
stored procedures in circulation that do these calculations. Also check out the SQL Server 
resource kits. At the time of writing the Microsoft BackOffice 4.5 Resource Kit contains a 
tool named data sizer, which will assist in the sizing of databases. 

A rule of thumb is to double the size of the user data to estimate the size of the database. 
Crude though this appears, by the time indexes and some space for expansion have been 
added, double the size is not far off! 

What about the size of the transaction log? This is difficult to size, since it depends on the 
write activity to the database, frequency of transaction backups, and transaction profiles. 
Microsoft suggests that about 10 percent to 25 percent of the database size should be chosen. 
This is not a bad start, but once the system testing phase of the development has started the 
database designer can start monitoring the space use in the transaction log with dbcc sqlperf 
(logspace). The transaction log space is a critical resource and running out of it should be 
avoided.  

Unfortunately, many factors contribute to transaction log growth. These include the rate per 
second of transactions that change database data and the amount of data these transactions 
change. Remember that in an operational system, if a transaction log backup fails for some 
reason, the transaction log will continue to fill until the next successful transaction log 
backup. It may be desirable to have a transaction log large enough so that it can accommodate 
the failure of one transaction log backup. Replication failures will impact the effectiveness of 
transaction log backups, and, of course, there is always the user who runs a job that updates a 
million-row table without warning you. 

For all these reasons, do not be tight with transaction log space. With the price of disk space 
as it is, a transaction log can be created with a large amount of contingency space. 

Finally, do not forget that as a database designer/administrator, you will need lots of disk 
space to hold at least one copy of the production database for performance tuning testing. Not 
having a copy of the production database can really hinder you. 

So, we now have documented information on data volumes and growth. This in itself will 
determine a minimum disk configuration; however, it is only a minimum, since transaction 
analysis may determine that the minimum disk configuration will not provide enough disk I/O 
bandwidth. 

If data volume analysis is concerned with the amount of data in the database and the space it 
needs, transaction analysis is concerned with the way in which data is manipulated and at 
what frequency. 

1.2.2 Transaction analysis 



Data in the database may be manipulated by code, such as Visual Basic, or a tool such as 
Microsoft Access, or a third-party product accessing SQL Server. Whichever way the data is 
accessed, it will presumably be as a result of a business transaction of some kind. Transaction 
analysis is about capturing information on these business transactions and investigating how 
they access data in the database and in which mode. Table 1.2 shows some attributes of a 
business transaction it might be useful to record. 

Table 1.2: Capturing Transaction Attributes  
Attribute  Explanation  
Name A name assigned to the transaction 
Average frequency Average number of times executed per hour 
Peak frequency Peak number of times executed per hour 
Priority A relative priority assigned to each transaction 
Mode Whether the transaction only reads the database or writes to it also 
Tables accessed Tables accessed by the transaction and in which mode 
Table keys Keys used to access the table 

Clearly, by their very nature, it is not possible to capture the information shown in Table 1.2 
for ad hoc transactions nor is it practical to capture this information for every business 
transaction in anything other than a very simple system. However, this information should be 
captured for at least the most important business transactions. By most important we mean 
those transactions that must provide the fastest response times and/or are frequently executed. 
A business transaction that runs every three months and can be run during a weekend is 
unlikely to appear on the list of most important transactions! 

It is important to prioritize transactions, since it is virtually impossible to be able to optimize 
every transaction in the system. Indexes that will speed up queries will almost certainly slow 
down inserts. 

An example of the attributes captured for a transaction are shown in Table 1.3. 

Table 1.3: Example Transaction Attributes  
Attribute  Value  
Name Order Creation 
Average 
frequency 

10,000 per hour 

Peak frequency 15,000 per hour 
Priority 1 (high) 
Mode Write 
Tables accessed Orders (w), Order Items (w), Customers (r), Parts (r) 
Table keys Orders (order_number), Order Items (order_number), Customers 

(cust_number), Parts (parts_number) 



There are various ways to document the transaction analysis process and some modeling tools 
will automate part of this documentation. The secret is to document the important transactions 
and their attributes so that the database designer can decide which indexes should be defined 
on which tables. 

Again, it is often a case of using simple spreadsheets, as shown in Table 1.4. 

Table 1.4: Capturing Simple Transaction Analysis Information  
Transactions/Tables Orders  Order_items Parts  Customers  
Customer inquiry       R 
Order inquiry R R     
Order entry I I R R 
Customer inquiry       cust_number 
Order inquiry order_number order_number     
Order entry order_number order_number parts_number cust_number 

The first spreadsheet maps the transactions to the mode in which they access tables; the 
modes are I for insert, R for read, U for update, and D for delete. The second spreadsheet 
maps the transactions to the key with which they access tables. Again, there is nothing 
complex about this but it really pays to do it. Depending on how the system has been 
implemented, a business transaction may be modeled as a number of stored procedures, and, 
if desired, one may wish to use these instead of transaction names. 

It is also important when considering the key business transactions not to forget triggers. The 
trigger accesses tables in various modes, just as the application code does. 

Data integrity enforcement using declarative referential integrity should also be included. 
Foreign key constraints will access other tables in the database and there is nothing magical 
about them. If an appropriate index is not present, they will scan the whole table like any 
other query. 

Once the transaction analysis has been performed, the database designer should have a good 
understanding of the tables that are accessed frequently, in which mode, and with which key. 
From this information one can begin to derive the following:  

• Which tables are accessed the most and therefore experience the most disk I/O? 
• Which tables are written to frequently by many transactions and therefore might 

experience the most lock contention? 
• For a given table, which columns are used to access the required rows; that is, which 

common column combinations form the search arguments in the queries? 

In other words where are the hot spots in the database? 

The database designer, armed with this information, should now be able to make informed 
decisions about the estimated disk I/O rates to tables, the type of indexes required on those 
tables, and the columns used in the indexes. 



Relational databases, and SQL Server is no exception, are reasonably easy to prototype, so 
there is no excuse for not testing the physical design you are considering. Load data into your 
tables, add your indexes, and stress your database with some representative Transact-SQL. 
See how many transactions a second you can perform on a given server or, to look at it 
another way, how much disk I/O does a named transaction generate? Which resource-CPU or 
disk-do you run out of first? 

Start stress testing with simple experiments. Jumping in at the deep end with many users 
testing complex functionality is likely just to confuse the issue. Begin with simple 
transactions issued by one user and then try more complex transactions. 

Do not forget multiuser testing! Lock contention cannot be tested unless some kind of 
multiuser testing is performed. In its simplest form this might involve persuading a number of 
potential users to use the test system concurrently by following set scripts while performance 
statistics are monitored. In its more sophisticated form this might involve the use of a 
multiuser testing product, which can simulate many users while running automated scripts. 

Transaction analysis and performance testing can be approached in a much more sophisticated 
way than has been described above. The important point, however, is that it should be done-
the level of sophistication being determined by the available resource, be it time or money. 

Again, note that physical design and performance testing are ongoing activities. Systems are 
usually in a constant state of flux, because business requirements are usually in a constant 
state of flux. Therefore, performance should be regularly monitored and, if necessary, the 
database tuned. 

1.2.3 Hardware environment considerations 

The previous section described preproduction performance testing. This should have given the 
database designer a feel for the hardware requirements of the production system. Obviously, 
there is a hardware budget for any project, but it is clearly critical to have sufficient hardware 
to support the workload of the system. It is also critical to have the correct balance and correct 
type of hardware. 

For example, there is no point in spending a small fortune on CPU power if only a small 
amount of money is spent on the disk subsystem. Similarly, there is no point in spending a 
small fortune on the disk subsystem if only a small amount of money is spent on memory. 
Would the application benefit from a multiprocessor configuration or a single powerful 
processor? 

If the application's main component is a single report that runs through the night but must be 
finished before 9:00 A.M., a single powerful processor might be a better choice. On the other 
hand, if the application consists of a large number of users in an OLTP system, a more cost-
effective solution would probably be a multiprocessor configuration. 

Take a step back and look at the application and its hardware as a whole. Make sure the 
system resource is not unbalanced and do not forget the network! 

.3 Where to next? 



Once we have performed our data volume and transaction analysis we can start to consider 
our physical design. We will need to decide what transactions need to be supported by 
indexes and what type of index we should use. Chapter 3 discusses indexes in detail, but 
before we look at indexes we need a more general view of the storage structures used in SQL 
Server, and these are covered in the next chapter. 

Chapter 2: SQL Server Storage Structures 
2.1 Introduction 
A developer of application code is probably quite content to consider a SQL Server as a 
collection of databases containing tables, indexes, triggers, stored procedures, and views. As a 
database designer and a person who will be responsible for the performance of those 
databases, it is useful to be able to look a little deeper at the storage structures in SQL Server. 
A lot of the internals of SQL Server are hidden and undocumented, but we can still learn a fair 
amount about the way the product works. This chapter investigates the storage structures that 
SQL Server uses and the methods available to view them. 

2.2 Databases and files 
A database contains all the tables, views, indexes, triggers, stored procedures, and user data 
that make up an application. A SQL Server will typically host many databases. Usually 
individual databases are backed up, restored, and integrity checked, so a database can also be 
thought of as a unit of administration. Because a database is the container for our objects, we 
will need to spend some time here looking at how databases are structured and managed. We 
will then drill down into the database files and investigate database pages and other structures. 

A database resides in one or more operating system files, which may reside on FAT, FAT32, 
or NTFS partitions depending on the operating system. These operating system files are 
known in SQL Server terminology as database files. These database files may be used to hold 
user and system tables (data files) or track changes made to these tables (transaction log files). 
There can be as many as 32,767 files per database and 32,767 databases hosted by a SQL 
Server. A database can be as large as 1,048,516 terabytes (TB). A data file in a database can 
be as large as 32 TB and a transaction log file as large as 4 TB. Of course, most sites will 
never come remotely close to these numbers, but it is nice to know that there is plenty of 
headroom! 

The files used by a SQL Server 2000 database belong exclusively to that database. In other 
words, a file cannot be shared by databases. Also, a file cannot be used to hold both data and 
transaction log information. This means that a database must consist of a minimum of two 
files. This is a much cleaner model that used in previous versions (prior to SQL Server 7.0). 

There are three file types associated with a SQL Server 2000 database, as follows: 

1. The primary data file is the starting point of the database and contains the pointers to 
the other files in the database. All databases have a single primary data file. The 
recommended file extension for a primary data file is an .mdf extension. 



2. Secondary data files hold data that does not fit on the primary data file. Some 
databases may not have any secondary data files, while others have multiple secondary 
data files. The recommended file extension for secondary data files is an .ndf 
extension. 

3. Log files hold all of the log information used to recover the database. There is at least 
one log file for each database. The recommended file extension for log files is an .ldf 
extension. 

The primary data file will hold the system tables and may hold user tables. For most users, 
placing all their database tables in this file and placing the file on a suitable RAID 
configuration will be sufficient. For some users, their user tables may be too large to place in 
a single file, since this would mean that the file would be too large to place on one of the 
storage devices. In this case, multiple data files—a primary and multiple secondary files—
may be used. User tables would then be created and populated. SQL Server would allocate 
space from each file to each table so that the tables were effectively spread across the files 
and, consequently, the physical storage devices. 

Figure 2.1 shows a simple database topology using a single file to hold the system tables and 
user tables and a single file for the transaction log. The files reside on separate physical 
storage devices, which may be single disks or RAID configurations. RAID configurations are 
discussed in Chapter 5. 

 
Figure 2.1: A simple database topology  

Figure 2.2 shows a more complex database topology using multiple files to hold the system 
tables and user tables and multiple files for the transaction log. The files reside on separate 
physical storage devices, which may be single disks or RAID configurations. 



 
Figure 2.2: A more complex database topology  

For those users with even greater database performance and size requirements, filegroups may 
be used. The role of a filegroup is to gather data files together into collections of files into 
which database tables, indexes, and text/image data can be explicitly placed. This gives the 
database administrator great control over the placement of these database objects. Perhaps two 
database tables that are very heavily accessed can be separated into two filegroups consisting 
of two sets of data files residing on two sets of physical storage devices. The tables could also 
be separated from their nonclustered indexes in a similar fashion. Nonclustered indexes are 
described in Chapter 3. From an administration perspective, individual filegroups can be 
backed up allowing a large database to be backed up in parts. 

Some rules govern the use of filegroups. Transaction logs are never members of filegroups—
only data files are. Also, data files can only be a member of one filegroup. 

For most users, though, the use of filegroups and multiple data and transaction log files will 
not be necessary to support their performance and administration requirements. They will use 
one data file and one transaction log file. Though they will not use user-defined filegroups, 
even in this simple case the database will contain a filegroup known as the primary filegroup. 
This will contain the system tables and user tables. It will also be the default filegroup. The 
default filegroup is the filegroup into which tables, indexes, and text/image data is placed 
when no filegroup is specified as part of their definition. Any filegroup can be made the 
default filegroup, and there is a school of thought that advocates always creating a single user-



defined filegroup and making this the default filegroup when the database is first created. This 
ensures that the system tables alone reside in the primary filegroup and all user data resides in 
the user-defined filegroup in a separate, secondary data file. 

2.3 Creating databases 
Databases can be created by means of the Create Database Wizard, the SQL Server Enterprise 
Manager, or the Transact-SQL CREATE DATABASE statement. Since the Create Database 
Wizard is merely a wrapper around the SQL Server Enterprise Manager database creation 
dialog boxes, it will not be discussed further here. A database may also be created with the 
SQL-DMO (Distributed Management Objects). Creating a database with the SQL Server 
Enterprise Manager is accomplished as follows: 

1. Expand the server group and expand the server. 
2. Right-click Databases, then click New Database. 
3. Enter the name of the database and collation on the General tab. 
4. Enter the name, file, size, and attribute information for each data file on the Data Files 

tab. 
5. Enter the name, file, size, and attribute information for each transaction log file on the 

Log Files tab. 
6. Click OK. 

Depending on how large the database will be, this may take a considerable length of time. In 
this case using a Transact-SQL script running in the background may be a better bet. The SQL 
Server Enterprise Manager Database Properties dialog box with the Data Files tab selected is 
shown in Figure 2.3. 

 
Figure 2.3: The Database Properties dialog box  

As can be seen in Figure 2.3, various properties can be set for each data and transaction log 
file. The Filename of the file is the name by which it is referred to within SQL Server—for 



example, by various system stored procedures such as sp_helpfile. The location is the physical 
storage location where the file will reside. A filegroup may also be entered for data files other 
than the primary at this point, in which case the secondary data file will be placed in that 
filegroup. Other attributes of the file relate to size and growth, which will be discussed 
shortly. 

An example of creating a database using the Transact-SQL CREATE DATABASE statement 
is as follows: 

   CREATE DATABASE BankingDB 
   ON PRIMARY 
   (  NAME = BankingData, 
      FILENAME = 'd:\data\BankingData.mdf', 
      SIZE = 200MB, 
      MAXSIZE = 800MB, 
      FILEGROWTH = 40MB ) 
   LOG ON 
   (  NAME = 'BankingLog', 
      FILENAME = 'e:\data\BankingLog.ldf', 
      SIZE = 100MB, 
      MAXSIZE = 500MB, 
      FILEGROWTH = 50MB ) 

As with SQL Server Enterprise Manager, a name is specified for the file—this time with the 
NAME option—and a physical location is specified with the FILENAME option. The ON 
keyword introduces a list containing one or more data file definitions, and the LOG ON 
keyword introduces a list containing one or more transaction log file definitions. 

The PRIMARY keyword identifies the list of files following it as files that belong to the 
primary filegroup. The first file definition in the primary filegroup becomes the primary file, 
which is the file containing the database system tables. The PRIMARY keyword can be 
omitted, in which case the first file specified in the CREATE DATABASE statement is the 
primary file. 

Regardless of the mechanism by which a database is created, size and growth information 
may be specified. The Initial size (MB) in the SQL Server Enterprise Manager and the SIZE 
keyword in the CREATE DATABASE statement specify the initial size of the file. In 
Transact-SQL, the units are, by default, megabytes, although this can be specified explicitly 
by using the suffix MB. If desired, the file size can be specified in kilobytes using the KB 
suffix, gigabytes using the GB suffix, and terabytes using the TB suffix. 

In SQL Server 2000, when a data file or transaction log file fills it can automatically grow. In 
the SQL Server Enterprise Manager, a file is allowed to automatically grow by checking the 
Automatically grow file check box. This is, in fact, checked by default. In Transact-SQL, the 
file, by default, will be allowed to grow unless the FILEGROWTH keyword is set to 0. When 
a file grows, the size of the growth increment is controlled by the Filegrowth property in the 
SQL Server Enterprise Manager and the FILEGROWTH keyword in Transact-SQL. The 
growth increment can be specified as a fixed value, such as 10 megabytes, or as a percentage. 
This is the percentage of the size of the file at the time the increment takes place. Therefore, 
the size increment will increase over time. In Transact-SQL, the FILEGROWTH value can be 
specified using the suffix MB, KB, GB, TB, or %, with MB being the default. If the 
FILEGROWTH keyword is not specified in Transact-SQL, the default is 10 percent. 



The file may be allowed to grow until it takes up all the available space in the physical storage 
device on which it resides, at which point an error will be returned when it tries to grow again. 
Alternatively, a limit can be set using the Restrict filegrowth (MB) text box in the SQL Server 
Enterprise Manager or the MAXSIZE keyword in Transact-SQL. The MAXSIZE value can 
be specified using the suffix MB, which is the default, KB, GB, or TB. The keyword 
UNLIMITED can also be specified—this is the default. 

 Note Every time a file extends, the applications using the database during the file extension 
operation may experience performance degradation. Also, extending a file multiple 
times may result in fragmented disk space. It is advisable, therefore, to try to create the 
file with an initial size estimated to be close to the size that will ultimately be required 
by the file. 

The following example shows a CREATE DATABASE statement, which will create a 
database consisting of multiple data and transaction log files: 

   CREATE DATABASE BankingDB 
   ON PRIMARY 
   ( NAME = BankingData1, 
     FILENAME = 'd:\data\BankingData1.mdf', 
     SIZE = 50MB, 
     MAXSIZE = 200MB, 
     FILEGROWTH = 25MB), 
   ( NAME = BankingData2, 
     FILENAME = 'e:\data\BankingData2.ndf', 
     SIZE = 50MB, 
     MAXSIZE = 200MB, 
     FILEGROWTH = 25MB) 
   LOG ON 
   ( NAME = BankingLog1, 
     FILENAME = 'f:\data\BankingLog1.ldf', 
     SIZE = 50MB, 
     MAXSIZE = 200MB, 
     FILEGROWTH = 25MB), 
   ( NAME = BankingLog2, 
     FILENAME = 'g:\data\BankingLog2.ldf', 
     SIZE = 50MB, 
     MAXSIZE = 200MB, 
     FILEGROWTH = 25MB) 

The following example re-creates the multiple file BankingDB database created in the 
previous example, but this time a user-defined filegroup, Filegroup1, is created. Since the file 
named BankingData2 follows the filegroup definition, it is placed in this filegroup. This 
means that tables, indexes, and text/image data can be explicitly placed in this filegroup if 
required. If no filegroup is specified on the object definition, the object will be created in the 
DEFAULT filegroup, which, unless it is changed, is the primary filegroup. 

   CREATE DATABASE BankingDB 
   ON PRIMARY 
   ( NAME = BankingData1, 
     FILENAME = 'd:\data\BankingData1.mdf', 
     SIZE = 50MB, 
     MAXSIZE = 200MB, 
     FILEGROWTH = 25MB), 
   FILEGROUP Filegroup1 
   ( NAME = BankingData2, 



     FILENAME = 'e:\data\BankingData2.ndf', 
     SIZE = 50MB, 
     MAXSIZE = 200MB, 
     FILEGROWTH = 25MB) 
   LOG ON 
   ( NAME = BankingLog1, 
     FILENAME = 'f:\data\BankingLog1.ldf', 
     SIZE = 50MB, 
     MAXSIZE = 200MB, 
     FILEGROWTH = 25MB), 
   ( NAME = BankingLog2, 
     FILENAME = 'g:\data\BankingLog2.ldf', 
     SIZE = 50MB, 
     MAXSIZE = 200MB, 
     FILEGROWTH = 25MB) 

Various attributes of a database can be modified after it has been created. These include 
increasing and reducing the size of data and transaction log files, adding and removing 
database and transaction log files, creating filegroups, changing the DEFAULT filegroup, and 
changing database options. 

These operations are achieved by using the ALTER DATABASE statement, DBCC 
SHRINKFILE, and DBCC SHRINKDATABASE. These operations can also be changed 
through the SQL Server Enterprise Manager. Let us first look at increasing the size of a 
database. 

2.4 Increasing the size of a database 
To increase the size of a database, data and transaction log files may be expanded by using the 
SQL Server Enterprise Manager or the Transact-SQL ALTER DATABASE statement. 
Increasing the size of a file in the SQL Server Enterprise Manager is merely a case of entering 
a new value in the Space allocated (MB) text box, as shown in Figure 2.4. 

 
Figure 2.4: Increasing the size of a database file  



In Transact-SQL, the ALTER DATABASE statement is used, as follows: 

   ALTER DATABASE BankingDB 
     MODIFY FILE 
     (NAME = BankingData2, 
      SIZE = 100MB) 

Note that file attributes such as MAXSIZE and FILEGROWTH may also be modified with an 
ALTER DATABASE statement. 

Another way of increasing the size of a database is to add data and transaction log files, as 
follows: 

   ALTER DATABASE BankingDB 
     ADD FILE 
     (NAME = BankingData3, 
      FILENAME = 'h:\data\BankingData3.ndf', 
      SIZE = 50MB, 
      MAXSIZE = 200MB, 
      FILEGROWTH = 25MB) 

Note that to add a transaction log file the ADD LOG clause is used. 

To add a file to an existing user-defined filegroup, the ADD FILE … TO FILEGROUP 
syntax is used, as follows: 

   ALTER DATABASE BankingDB 
     ADD FILE 
     (NAME = BankingData3, 
      FILENAME = 'd:\data\BankingData3.ndf', 
      SIZE = 50MB, 
      MAXSIZE = 200MB, 
      FILEGROWTH = 25MB) 
      TO FILEGROUP FileGroup1 

In the SQL Server Enterprise Manager, adding a new file to an existing filegroup is achieved 
by selecting the appropriate filegroup from the drop-down File group list, as shown in Figure 
2.5. 



 
Figure 2.5: Adding a new file to an existing filegroup  
 Note A file that already exists in the database cannot be subsequently added to another 

filegroup. 

2.5 Decreasing the size of a database 
There are a number of mechanisms that can be used to decrease the size of a database. On one 
hand, a database can be flagged to allow automatic database shrinkage to occur at periodic 
intervals. This requires no effort on the part of the database administrator, but it also allows 
no control. On the other hand, DBCC statements can be used to manually shrink a database or 
individual database files. These DBCC statements provide the database administrator with the 
greatest control over how the shrinkage takes place. The SQL Server Enterprise Manager also 
provides a means to shrink a database or file, and this operation can be scheduled under the 
control of the database administrator. 

Before we look at shrinking a database, it is worth considering why we might want to do so. 
Obviously, shrinking a database in a way that physically releases space back to the operating 
system is an attractive proposition if space is limited on the server and disk space must be 
shared among applications. However, if space is taken away from a database and used by 
another application, it is no longer available for use by that database. If the database is likely 
to grow and need the space in the short term, it is pointless releasing the space. Also, the 
process of expanding the database files in increments, as previously discussed, is not 
necessarily efficient, since the act of extending the file may impact the performance of 
applications, and the file extents may end up being fragmented around the disk drive. 

However, if a database has grown in an uncharacteristic fashion because a large amount of 
data has been added and then removed, it makes sense to release the space that is not likely to 
be needed again. With these thoughts in mind, let us look at how a database and its files can 
be shrunk. 

2.5.1 The autoshrink database option 



A database option can be set that makes a database a candidate for automatically being 
shrunk. Database options and how to set them will be discussed shortly. At periodic intervals 
a database with this option set may be shrunk if there is sufficient free space in the database to 
warrant it. Note that the database administrator has no control over exactly what happens and 
when. 

2.5.2 Shrinking a database in the SQL Server Enterprise Manager 

A database can be shrunk using the SQL Server Enterprise Manager, as follows: 

1. Expand the server group and expand the server. 
2. Expand Databases, then right-click the database to be shrunk. 
3. Select All Tasks and Shrink Database. 
4. Select the desired options. 
5. Click OK. 

The SQL Server Enterprise Manager Shrink Database dialog box is shown in Figure 2.6. 

 
Figure 2.6: Shrinking a database using the SQL Server Enterprise Manager  

The dialog box offers the database administrator some options concerning database shrinkage. 
By choosing to move the pages to the beginning of the file before shrinking, SQL Server will 
reorganize the data in the database files by relocating pages at the end of the file to the 
beginning of the file. 

This will typically result in empty pages at the end of the file. Whether this option is chosen 
or not, SQL Server will truncate the files, releasing the free space at the end of the files back 
to the operating system. How much free space is not released but kept at the end of the file 
can be controlled by the option to specify the maximum free space after shrinking. The option 
to shrink the database on a scheduled basis is also provided. 



This dialog box pretty much maps onto the DBCC SHRINKDATABASE statement, which 
will be described shortly. There are two restrictions to bear in mind when using a shrink 
database operation. First, a database cannot be shrunk in such a way that user data is lost. 
Second, the files that comprise the database cannot be shrunk past their initial size—that is, 
the size at which they were initially created. For greater control, the Files button may be 
mouse-clicked. The Shrink File dialog box is displayed in Figure 2.7. 

 
Figure 2.7: Shrinking a database file using the SQL Server Enterprise Manager  

When a file is shrunk using this dialog box, it can be shrunk below its initial creation size as 
long as user data would not be lost. Various options allow a finer level of control. The file can 
be reorganized (compressed) and the free space truncated from the end or the free space 
truncated from the end without the compression taking place first. The target file size can be 
set—this option will compress and truncate. There is also an option to migrate data from the 
file to other files in its filegroup so it can be emptied and then removed from the database. 
The option to shrink the database file on a scheduled basis is also provided. This dialog box 
pretty much maps onto the DBCC SHRINKFILE statement described in the following 
section. 

2.5.3 Shrinking a database Using DBCC statements 

The greatest control over database shrinkage is provided by two DBCC statements—DBCC 
SHRINKDATABASE and DBCC SHRINKFILE. The first statement considers all the files in 
the database when attempting to shrink it. The second statement only considers the named 
file. 

The SQL Server Enterprise Manager actually executes a DBCC SHRINKDATABASE 
statement when it is used to shrink a database and a DBCC SHRINKFILE statement when it 
is used to shrink a database file. 

Let us first consider DBCC SHRINKDATABASE. The syntax diagram for this statement is 
as follows: 



   DBCC SHRINKDATABASE 
   ( database_name [, target_percent] 
   [, {NOTRUNCATE | TRUNCATEONLY}] 
   ) 

The target percent parameter is the desired percentage of free space left in the database file 
after the database has been shrunk. If this parameter is omitted, SQL Server will attempt to 
shrink the database as much as possible. 

The NOTRUNCATE option ensures that any free file space produced by relocating data is 
kept within the database files and not given back to the operating system. If the database files 
were examined with Windows Explorer before and after the shrink operation, no change in 
file size would be observed. 

The TRUNCATEONLY option ensures that any free space at the end of the data files is 
returned to the operating system but no data is relocated within the files. If the database files 
were examined with Windows Explorer before and after the shrink operation, a change in file 
size may be observed. The target_percent parameter is disregarded when the 
TRUNCATEONLY option is used. 

If neither of these is specified, data is relocated in the files, and the free space at the end of the 
files is released to the operating system. 

The operation of shrinking a database is not quite as straightforward as it first appears. 
Various restrictions come into play, and you may not always see shrinkage as large as you 
may expect. For example, as we have said, a database file cannot be shrunk, using DBCC 
SHRINKDATABASE, smaller than the size at which it was first created. Also, a database 
cannot be shrunk smaller than the model database (a DBCC SHRINKFILE can shrink a file 
smaller than its initial size). Data files and transaction log files are also treated differently. In 
the case of data files, each file is considered individually. In the case of transaction log files, 
all the files are treated as if they were one contiguous lump of transaction log. 

Of course, a database can never be shrunk smaller than the amount of data it currently holds. 

Let us now consider DBCC SHRINKFILE. The syntax diagram for this statement is as 
follows: 

   DBCC SHRINKFILE 
   ( {file_name | file_id } 
   { [, target_size] 
   | [, {EMPTYFILE | NOTRUNCATE | TRUNCATEONLY}] 
   } 
   ) 

The target size parameter is the desired size to which the database file should be shrunk. If 
this parameter is omitted, SQL Server will attempt to shrink the file as much as possible. 

The NOTRUNCATE and TRUNCATEONLY options have the same meaning as DBCC 
SHRINKDATABASE. The EMPTYFILE option moves the data contained in the file to other 
files that reside in the same filegroup and stops the file being used to hold new data. This 
option is most often used to prepare a file for removal from the database. It could not 
otherwise be removed if it contained data. 



2.5.4 Removing database files 

Files can be removed from the database by using the ALTER DATBASE statement. Neither 
data files nor transaction log files can be removed from a database if they contain data or 
transaction log records. In the case of data files, the DBCC SHRINKFILE statement with the 
EMPTYFILE option can be used to move data out of the file that is to be removed to other 
files in the same filegroup. This is not possible in the case of transaction log files. The 
transaction log will have to be truncated to remove transaction log records before the removal 
of a transaction log file is possible. 

The following example removes a file from the BankingDB database created earlier: 

   ALTER DATABASE BankingDB 
     REMOVE FILE BankingData2 

Remove a file using the SQL Server Enterprise Manager is merely a case of selecting the file 
to remove and mouse-clicking the Delete button, as shown in Figure 2.8. 

 
Figure 2.8: Removing a file with the SQL Server Enterprise Manager  

A filegroup can also be removed, as follows: 

   ALTER DATABASE BankingDB 
     REMOVE FILEGROUP FileGroup1 

However, a filegroup cannot be removed if it contains files. 

2.6 Modifying filegroup properties 
The properties of a filegroup can be changed. Filegroup properties can be READWRITE, 
READONLY, and DEFAULT. The READWRITE property is typically the property that is 
set for most filegroups. This means that objects such as tables and indexes in the filegroup can 



be both retrieved and changed. The READONLY property is the opposite of the 
READWRITE property in that those objects in a filegroup with the READONLY property set 
cannot be changed; they can only be retrieved. The primary filegroup cannot have this 
property set. 

The DEFAULT property is by default set on the primary filegroup. A filegroup with this 
property set is used to store objects whose definition does not include a target filegroup 
specification. The DEFAULT property can be set on a filegroup other than the primary 
filegroup, but only one filegroup in a database can have this property set. The following 
example sets the READONLY attribute on the filegroup FileGroup1: 

   ALTER DATABASE BankingDB 
     MODIFY FILEGROUP FileGroup1 READONLY 
 Note Setting the properties READONLY or READWRITE requires exclusive use of the 

database. 

2.7 Setting database options 
Database options are the attributes of a database and control the way it behaves and its 
capabilities. The database options are listed in Table 2.1. 

Table 2.1: Database Options  
Settable 
Database 
Options  

Meaning  

ANSI null 
default 

This option controls the database default nullability. If a table column is 
created without specifying NULL or NOT NULL, the default behavior is to 
create the column with NOT NULL. However, the ANSI standard specifies 
that the column should be created with NULL. Set this option to follow the 
ANSI standard. It is recommended that NULL or NOT NULL always be 
explicitly specified to avoid confusion. 

ANSI nulls This option controls the result of comparing NULL values. If it is set, 
comparisons with a NULL value evaluate to NULL, not TRUE or FALSE. 
When not set, comparisons of non-Unicode values with a NULL value 
evaluate to TRUE if both values are NULL. 

ANSI padding If ON, strings are padded to the same length before comparison or insert. If 
OFF, strings are not padded. 

ANSI warnings This option controls whether warnings are issued if, for example, NULL 
values appear in aggregate functions. 

arithabort If ON, a query is terminated when an overflow or divide-by-zero error 
occurs during the execution of the query. 

auto create 
statistics 

This option controls whether statistics are automatically created on columns 
used in the search conditions in WHERE clauses. 

auto update 
statistics 

This option controls whether existing statistics are automatically updated 
when the statistics become inaccurate because the data in the tables have 
changed. 

autoclose This option controls whether a database is shut down and its resources 



Table 2.1: Database Options  
Settable 
Database 
Options  

Meaning  

released when the last user finishes using it. 
autoshrink This option controls whether a database is a candidate for automatic 

shrinking. 
concat null 
yields null 

This option controls whether NULL is the result of a concatenation if either 
operand is NULL. 

cursor close on 
commit 

This option controls whether cursors are closed when a transaction 
commits. 

dbo use only This option controls whether access to a database is limited to members of 
the db_owner fixed database role only. 

default to local 
cursor 

This option controls whether cursors are created locally or globally when 
this is not explicitly specified. 

merge publish This option controls whether the database can be used for merge replication 
publications. 

numeric 
roundabort 

If ON, an error is generated when loss of precision occurs in an expression. 

offline This option ensures that the database is closed and shut down cleanly and 
marked offline. 

published This option allows the database to be published for replication. 
quoted identifier This option controls whether identifiers can be delimited by double 

quotation marks. 
read only This option controls whether a database can be modified. 
recursive 
triggers 

This option controls whether triggers can fire recursively. 

select 
into/bulkcopy 

This option allows nonlogged operations to be performed against a 
database. 

single user This option limits database access to a single user connection. 
subscribed This option allows the database to be subscribed for publication. 
torn page 
detection 

This option allows incomplete I/O operations to be detected. 

trunc. log on 
chkpt. 

This option allows the inactive portion of the transaction log to be truncated 
every time the CHECKPOINT process activates. 

To set a database option the SQL Server Enterprise Manager or the ALTER DATABASE 
statement can be used. The system stored procedure sp_dboption is supported for backward 
compatibility. 

To use the SQL Server Enterprise Manager, do the following: 

1. Expand the server group and expand the server. 
2. Expand Databases, then right-click the database whose options are to be set. 



3. Select Properties. 
4. Select the Options tab and the required options. 
5. Click OK. 

The SQL Server Enterprise Manager Options tab is shown in Figure 2.9. 

 
Figure 2.9: Setting database options  

Because some options—for example, replication options—are set by other parts of the SQL 
Server Enterprise Manager, the options displayed in the Options tab are a subset of the 
available database options. 

The following example sets a database option using Transact-SQL: 

   ALTER DATABASE BankingDB 
     SET AUTO_SHRINK ON 

2.8 Displaying information about databases 
Information about databases can be obtained through the SQL Server Enterprise Manager or 
various Transact-SQL statements. We have already seen the properties page that is displayed 
when a database is right-clicked and Properties selected. This shows us quite a lot of 
information, including the files that comprise the database. An example of this is shown in 
Figure 2.4. If a database is mouse-clicked, a taskpad is displayed in the SQL Server Enterprise 
Manager, as shown in Figure 2.10. 



 
Figure 2.10: Viewing the details of a database  

A database administrator can drill down by clicking on, for example, Table Info. The resultant 
output is shown in Figure 2.11. 

 
Figure 2.11: Displaying space allocation information  

In Transact-SQL, the sp_helpdb system stored procedure is very useful. This is as follows: 

EXEC sp_helpdb 
 
name         db_size     owner   dbid       created          status 
----         -------     -----   ----       -------   -------------- 
BankingDB    1500.00 MB     sa      6   Oct 23 2000   Status=ONLINE… 
Derivatives    25.00 MB     sa      8   Oct 18 2000   Status=ONLINE… 
master         17.00 MB     sa      1   Oct 12 2000   Status=ONLINE… 
model           1.00 MB     sa      3   Oct 12 2000   Status=ONLINE… 
msdb            8.00 MB     sa      5   Oct 12 2000   Status=ONLINE… 
pubs            3.00 MB     sa      4   Oct 12 2000   Status=ONLINE… 
tempdb          2.00 MB     sa      2   Oct 19 2000   Status=ONLINE… 



This outputs one row for each database on the server. The db_size column is the total size of 
all the files in the database. 

A database name can be specified as a parameter, as follows: 

EXEC sp_helpdb BankingDB 
 
name         db_size     owner   dbid       created          status 
----         -------     -----   ----       -------   -------------- 
BankingDB    1500.00 MB     sa      6   Oct 23 2000   Status=ONLINE… 
 
 
Name         fileid  filename                 filegroup    size     maxsize    
growth   usage 
---------------------------------------------------------------------------
--------------------- 
bankingdata  1       d:\data\bankingdata.mdf  PRIMARY   1024000 KB  
Unlimited  1024 KB  data only 
bankinglog   2       d:\data\bankinglog.ldf   NULL       512000 KB  
Unlimited  1024 KB  log only 

This displays information about the files in the database. Other useful system-stored 
procedures, which can be used to obtain information about files and filegroups, are 
sp_helpfile and sp_helpfilegroup. Another useful system-stored procedure is sp_spaceused, 
which returns space use information. 

2.9 System tables used in database configuration 
The configuration of a database is reflected in various system tables held in the master 
database and the user database. The master database contains a system table, 
SYSDATABASES, which contains one row for every database resident on the SQL Server. 
The structure of this system table is shown in Table 2.2. 

Table 2.2: The SYSDATABASES System Table  
Column  Datatype  Description  
name sysname The database name 
dbid smallint The unique ID of the database 
sid varbinary(85) The Windows NT system ID of the database creator 
mode smallint Internal lock mechanism used in database creation 
status integer Database status bits (O = set by sp_dboption): 

1 = autoclose (O) 

4 = select into/bulkcopy (O) 

8 = trunc. log on chkpt (O) 

16 = torn page detection (O) 



Table 2.2: The SYSDATABASES System Table  
Column  Datatype  Description  

32 = loading 

64 = prerecovery 

128 = recovering 

256 = not recovered 

512 = offline (O) 

1,024 = read only (O) 

2,048 = dbo use only (O) 

4,096 = single user (O) 

32,768 = emergency mode 

4,194,304 = autoshrink 

1,073,741,824 = cleanly shut down 
status2 integer 16,384 = ANSI null default (O) 

2,048 = numeric roundabort (O) 

4,096 = arithabort (O) 

8,192 = ANSI padding (O) 

65,536 = concat null yields null (O) 

131,072 = recursive triggers(O) 

1,048,576 = default to local cursor (O) 

8,388,608 = quoted identifier (O) 

33,554,432 = cursor close on commit (O) 

67,108,864 = ANSI nulls (O) 

268,435,456 = ANSI warnings (O) 

536,870,912 = full text enabled 
crdate datetime Date when database was created 
reserved datetime Reserved by Microsoft 



Table 2.2: The SYSDATABASES System Table  
Column  Datatype  Description  
category integer Contains a bitmap used for replication: 

1 = Published 

2 = Subscribed 

4 = Merge Published 

8 = Merge Subscribed 
cmptlevel tinyint Set by sp_dbcmptlevel—specifies the database compatibility level
filename nvarchar(260) Location of the primary data file for this database 
version smallint SQL Server internal code version that created the database 

As can be seen, the SYSDATABASES system table contains a column, filename, which 
points to the primary data file (.MDF) of a database on the server. This is the pointer from the 
master database to each user database. Once the primary data file of a database has been 
located, the SYSFILES system table, which resides in every database, can be located. This 
has one row representing each file—data or log—found in the database. 

The SYSFILES system table is shown in Table 2.3. 

Table 2.3: The SYSFILES System Table  
Column Datatype  Description  
fileid smallint Unique identifier for the file within the database 
groupid smallint Identifier of the filegroup to which the file belongs 
size integer File size in (8 KB) database pages 
maxsize integer Maximum file size in (8 KB) database pages. 0 = no growth and -1 = 

unlimited growth. 
growth integer Growth increment of the file. 0 = no growth. This is in units of 8 KB 

pages or a percentage, depending on the status column. If the status 
column contains 0x100,000, then growth is in percentage, not pages. 

status integer Status bits for the growth value in either megabytes (MB) or kilobytes 
(K): 

0x1 = Default device 

0x2 = Disk file 

0x40 = Log device 

0x80 = File has been written to since last backup 

0x4000 = Device created implicitly by the CREATE DATABASE 



Table 2.3: The SYSFILES System Table  
Column Datatype  Description  

statement 

0x8000 = Device created during database creation 

0x100000 = Growth is in percentage, not pages 
perf integer Reserved by Microsoft 
name nchar(128) Logical name of the file 
filename nchar(260) Full path of filename 

One other system table found in each database is worthy of note at this point: the 
SYSFILEGROUPS system table, which contains one row for every filegroup in the database. 

The SYSFILEGROUPS system table is shown in Table 2.4. 

Table 2.4: The SYSFILEGROUPS System Table  
Column  Datatype Description  
groupid smallint Unique identifier for the filegroup within the database 
allocpolicy smallint Reserved by Microsoft 
status int 0x8 = READ ONLY 

0x10 = DEFAULT 
groupname sysname Filegroup name 

All of these tables can be queried with SELECT statements, but it is easier to use the system 
stored procedures provided, namely sp_helpdb, sp_helpfile, and sp_helpfilegroup. We have 
already seen an example of sp_helpdb. Examples of sp_helpfile and sp_helpfilegroup are as 
follows: 

EXEC sp_helpfile 
 
Name         fileid  filename                 filegroup    size    maxsize    
growth   usage 
---------------------------------------------------------------------------
--------------------- 
bankingdata  1       d:\data\bankingdata.mdf  PRIMARY   1024000 KB  
Unlimited  1024 KB  data only 
bankinglog   2       d:\data\bankinglog.ldf   NULL       512000 KB  
Unlimited  1024 KB  log only 
 
EXEC sp_helpfilegroup 
 
groupname                                                                   
groupid filecount 
--------------------------------------------------------------------------- 
------- --------- 
PRIMARY                                                                     
1       1 



2.10 Units of storage 
A database is a collection of logical pages, each 8 KB in size. Database pages are always this 
size and cannot be adjusted by the database designer. The 8 KB page is the fundamental unit 
of storage and it is also a unit of I/O and a unit of locking (there are other units of I/O and 
locking). 

Tables and indexes consist of database pages. The way that database pages are allocated to 
tables and indexes is through extents. 

An extent is a structure that contains eight database pages (64 KB). Extents are of two types—
uniform and mixed. A uniform extent devotes its eight pages completely to one object, for 
example, a particular table in the database. A mixed extent allows its pages to be used by up 
to eight different objects. Although each page can only be used for one object, all eight pages 
in a mixed extent can be used by different objects. For example, a mixed extent can provide 
space for eight tables. A uniform extent is shown in Figure 2.12, and a mixed extent is shown 
in Figure 2.13. 

 
Figure 2.12: A uniform extent  

 
Figure 2.13: A mixed extent  

The reason that SQL Server 2000 uses mixed extents is to ensure that a whole eight page (64 
KB) extent is not used for a small table. Instead, single pages are allocated to the table one at 
a time as the number of rows it contains grows. When eight pages have been allocated and 
more pages are needed, uniform extents are used to allocate eight pages at a time. 

To observe the allocation of space to a table, try the following: 

1. Create a table, T1, with a single column of data type CHAR(8000). A single row only 
can fit onto a database page. 

2. Insert eight rows, one at a time, checking the space allocated to the table with the 
sp_spaceused system stored procedure after each insert (e.g., EXEC sp_spaceused 
T1). 

3. Insert another row, checking the space reserved. 

What you will find is that after each row is inserted, the data column (the amount of space 
used by data in the table) is incremented by 8 KB—that is, a single page from a mixed extent. 
The reserved column (the amount of total reserved space for the table) is also incremented by 
8 KB. 

 Note The reserved column displays 8 KB more than the data column, since a page is used in 
the table's page allocation to hold a special structure called an Index Allocation Map 



(IAM), which we will discuss later. This is the 8 KB that is displayed in the Index_Size 
column. There is no index space actually used, since there is no index on this table. 

After eight rows have been inserted, the data column will display 64 KB and the reserved 
column will display 72 KB. After row 9 is inserted, however, the data column will display 72 
KB but the reserved column will display 136 KB. This is because a whole eight page uniform 
extent has now been allocated to the table, causing the reserved value to jump by 64 KB. 

Let us have a quick look at the sp_spaceused system stored procedure. 

To see the space allocated to a table use the system stored procedure sp_spaceused, as 
follows:  

   sp_spaceused branches 
 
   name      rows   reserved   data   index_size   unused 
   ----      ----   --------   ----   ----------   ------ 
   branches   100   72 KB      64 KB  8 KB         0 KB 

In the above example, sp_spaceused reports that there are 100 rows in the Branches table and 
that 72 KB or 9 database pages of space have been reserved for it. Out of the 9 pages, 8 pages 
have been used by the table to store rows and another 1 page has been used for index space 
which, as mentioned above, is actually used by a IAM page. Note that the system stored 
procedure sp_spaceused gets its information from the sysindexes system table, which only 
holds estimates. It does this to avoid becoming a bottleneck at run time, but it can become 
inaccurate. To synchronize the sysindexes system table with the real space used, execute a 
DBCC CHECKTABLE or a DBCC UPDATEUSAGE statement, which will scan the table 
and indexes. 

2.11 Database pages 
Database pages are used for a variety of tasks. Database pages that are used to hold table rows 
and index entries are known as data pages and index pages, respectively. If the table contains 
columns of the data type TEXT or IMAGE, then these columns are usually implemented as 
structures of Text/Image pages (unless the TEXT/IMAGE data is stored in the row). There are 
other types of pages also, namely Global Allocation Map (GAM) pages, Page Free Space 
(PFS), and Index Allocation Map (IAM) pages. We will discuss these types of pages shortly. 

First, though, let us take out the magnifying glass and take a closer look at a typical page 
structure. The most common database page we are likely to meet is a data page, so we will 
use a data page as an example. 

The basic structure of all types of database pages is shown in Figure 2.14. 



 
Figure 2.14: The basic structure of a database page  

There is a fixed 96-byte page header, which contains information such as the page number, 
pointers to the previous and next page (if used), and the object ID of the object to which the 
page belongs. The pointers are needed, because pages are linked together, as shown in Figure 
2.15. However, this only happens in certain circumstances, as we shall see in Chapter 3. 

 
Figure 2.15: Pages linked in a chain  

What does a data page look like inside? The internal structure of a data page is shown in 
Figure 2.16. We can see the data rows, but there is also another structure called a row offset 
table. The row offset table contains two byte entries consisting of the row number and the 
offset byte address of the row in the page. The first row in our page is at byte offset 96, 
because of the 96-byte page header. Our row (plus overhead) is 20 bytes in length, so the next 
row is at byte offset 116 and so on. The row offset table basically gives us a level of 
indirection when addressing a row. This is important because, as we shall see in Chapter 3, 



nonclustered indexes may contain pointers to data rows in their leaf-level index pages. Such a 
pointer is known as a Row ID and is made up of a File ID, database page number, and a row 
number. The File ID and database page number (a Page ID) take SQL Server to an individual 
page in a file and the row number and then takes SQL Server to an entry in the row offset 
table. In our example, the Row ID of the row nearest the fixed page header would consist of 
the page number, 23, and the row number, 0. 

 
Figure 2.16: The internals of a data page  

Entry 0 in the row offset table contains byte offset address 96. SQL Server can then use this 
offset to retrieve the row. Because the Row ID is implemented this way, we can see that a row 
can change position in the table without the Row ID having to change. All that has to change 
is the offset address in the row offset table entry. Why would a row change position in a page? 
In Figure 2.16, if row 1 were deleted, row 2 may move up to row 0 in order to keep the free 
space in the page contiguous if a new row needed to be inserted. The Row ID for row 2 would 
not change. 

 Note SQL Server 2000 will not shuffle rows like this for the sake of it. It will only do so to 
accommodate new inserts on the page. 

What does a data row look like inside? Data rows contain columns of data, as you would 
expect, but they also contain overhead. The amount of overhead depends on whether the row 
contains all fixed-length columns or whether there are also variable-length columns. In Figure 
2.17 we have the structure of the Accounts table row in our BankingDB database. The 
Accounts table has five fixed-length columns. The first three columns are of type integer, the 
fourth column is of type money, and the last column is of type char(400). 

 
Figure 2.17: A row containing only fixed-length columns  



The first two bytes are used for status bits. The first status byte holds information that tells 
SQL Server, for example, whether the row is a primary data row or a forwarded row 
(described in Chapter 3). A status bit in this byte also specifies whether there is variable-
length data in the row. In our example there are no variable-length data. 

The next two bytes hold a number representing the length of the fixed data in the row. This 
number is the number of bytes of data plus the two status bytes and these two bytes 
themselves. 

The fixed-length data now follow. Finally, there are two bytes holding a number that 
represents the number of columns in the row and a variable number of bytes holding a NULL 
bitmap. This contains one bit for every column with a bit set to show whether the column 
contains a NULL value. (See Figure 2.17.) 

The shaded area represents the overhead. Our Account row, which we expected to be 420 
bytes in length, has turned out to be 424 bytes in length—and that does not include the fields 
holding the number of columns and the NULL bitmap. 

Suppose the last column in our Accounts table was not a char(400) data type but a 
varchar(400). The structure of our row containing variable length data is shown in Figure 
2.18. 

 
Figure 2.18: A row containing fixed- and variable-length columns  

The structure shown in Figure 2.18 assumes that the account_notes column does indeed 
contain 400 characters. If it contains less, then less bytes will be used to hold the account 
notes. We can immediately see two differences between the structure of a row containing only 
fixed-length columns and a row that also contains variable-length columns. First, the fixed-
length columns are grouped together separate from the variable-length columns, which are 
also grouped together. Second, there are more overhead bytes. 

Looking at the structure, the first status byte will now have a bit set to specify that variable-
length columns are present in the row. After the two status bytes the next two bytes hold a 
number representing the length of the fixed data in the row followed by the fixed data, the 
two-byte field holding the number of columns, and the NULL bitmap. Now we find extra 
fields. A two-byte field holds the number of variable-length columns followed by a field 
known as the column offset array, which contains a two-byte cell for each variable-length 
column used to hold information that SQL Server uses to find the position of the variable-
length data. 

We can see that the order of the columns in a row that contains variable-length columns is not 
the same order as the table definition.  

 Note SQL Server 2000 also allows small amounts of TEXT/IMAGE data to be held inside the 
row. Normally, TEXT/IMAGE data is held outside the row. 



2.12 Looking into database pages 
I often find it useful and educational to be able to burrow into the contents of a database page. 
A useful DBCC statement that will allow you to do this is DBCC PAGE. This DBCC 
statement is not documented as an option of the DBCC statement in the Microsoft SQL Server 
documentation; however, some references to it can be found on TechNet and various other 
sources. 

The most useful form of the syntax of this statement is: 

   DBCC PAGE (dbid  |  dbname, file id, page number) 

or: 

   DBCC PAGE (dbid  |  dbname, file id, page number, 1) 

The first form of the syntax displays the page header; the second form also displays the 
contents of the page—that is, data in the form of rows and the row offset table. 

How do you know which page number to display? One of the columns in the sysindexes 
system table, described in Chapter 3, contains a column first. This contains the Page ID (File 
ID plus page number) of the first data page in the table if the sysindexes entry is a table or 
clustered index (indid = 0 or 1). Also, if the sysindexes entry is a table, the root column holds 
the Page ID of the last data page in the table. 

To find the relevant entry in the sysindexes table you need to convert the table name to an 
Object ID because the sysindexes table holds the Object ID rather than the table name. The 
Object_ID function can be used to translate the table name to its Object ID. For example, 
suppose we want to look at pages in the Accounts table. To get the start Page ID from the 
sysindexes table, use the following example: 

   SELECT first FROM sysindexes WHERE 
     id = OBJECT_ID ('accounts') 
     AND 
     indid IN (0,1) 
   first 
   -------------- 
   0x1E0000000100 

Unfortunately, the Page ID is represented in hexadecimal and a swapped byte order, so some 
manipulation will be needed to arrive at the page number. 

First of all, take away the 0x symbol and separate the number into one-byte (two-digit) 
values: 

   1E  00  00  00  01  00 

Now you must reverse the order of the bytes: 

   00  01  00  00  00  1E 



The first two bytes hold the File ID number, and the last four bytes hold the page number: 

   00  01  |   00  00  00  1E 

Therefore, in our example, the File ID number is 1 and the page number is 30 (the decimal 
equivalent of hexadecimal 1E). 

To get information out of DBCC PAGE we must initiate tracing to the client: 

   DBCC TRACEON (3604) 

We are now ready to display the contents of a page, but first of all let us just display the page 
header so we can see what is in it: 

DBCC PAGE ('BankingDB',1,30) 
 
 
PAGE: (1:30) 
------------ 
 
BUFFER: 
------- 
 
BUF @0x18F0BF80 
--------------- 
bpage = 0x1B14C000  bhash = 0x00000000  bpageno = (1:30) 
bdbid =             breferences = 1     bstat = 0x9 
bspin = 0           bnext = 0x00000000 
 
PAGE HEADER: 
------------ 
Page @0x1B14C000 
---------------- 
m_pageId = (1:30)        m_headerVersion = 1   m_type = 1 
m_typeFlagBits = 0x0     m_level = 0           m_flagBits = 0x8000 
m_objId = 199305813      m_indexId = 0         m_prevPage = (0:0) 
m_nextPage = (0:0)       pminlen = 424         m_slotCnt = 16 
m_freeCnt = 1232         m_freeData = 6928     m_reservedCnt = 0 
m_lsn = (5:84:25)        m_xactReserved = 0    m_xdesId = (0:0) 
m_ghostRecCnt = 0        m_tornBits = 1 
 
Allocation Status 
----------------- 
GAM (1:2) = ALLOCATED     SGAM (1:3) = NOT ALLOCATED 
PFS (1:1) = 0x63 MIXED_EXT ALLOCATED  95_PCT_FULL   DIFF (1:6) = CHANGED 
ML (1:7) = NOT MIN_LOGGED 

We can see the entry m_pageId = (1:30) telling us that this is page 30 in File ID 1. The entry 
m_objId = 199305813 tells us what Object ID the page belongs to. OK, we know this but 
there are occasions when error messages contain page numbers and in that situation the 
Object ID is very useful. 

The m_level and m_indexid fields are meaningful if this page is an index page. The level is 
the index level where this page resides, and indid tells us the ID of the index to which this 
page belongs. The field m_freeData is the offset of the start of the free space on the page, and 



the pminlen field tells us the smallest value a row can be. The entry m_slotCnt tells us how 
many slots (entries) there are in the row offset table. 

Let us now look at the contents of the page. I will omit the page header from the example for 
clarity: 

DBCC PAGE ('BankingDB',1,30,1) 
 
DATA: 
----- 
 
Slot 0, Offset 0x60 
------------------- 
Record Type = PRIMARY_RECORD 
Record Attributes =  NULL_BITMAP 
1b14c060:  01a80010  00000001  00000001  000003e9 ................ 
1b14c070:  057e8dbc  00000000  6576654e  766f2072 ..~.....Never ov 
1b14c080:  72647265  206e7761  20202020  20202020 erdrawn 
1b14c090:  20202020  20202020  20202020  20202020 
  : 
1b14c1f0:  20202020  20202020  20202020  20202020 
1b14c200:  20202020  20202020    000005                   ... 
  : 
Slot 1, Offset 0x20b 
-------------------- 
Record Type = PRIMARY_RECORD 
Record Attributes =  NULL_BITMAP 
1b14c20b:  01a80010  000186a1  00000001  000003e9 ................ 
1b14c21b:  03ee6580  00000000  6576654e  766f2072 .e......Never ov 
1b14c22b:  72647265  206e7761  20202020  20202020 erdrawn 
1b14c23b:  20202020  20202020  20202020  20202020 
1b14c24b:  20202020  20202020  20202020  20202020 
  : 
OFFSET TABLE: 
------------- 
Row - Offset 
15 (0xf) - 6501 (0x1965) 
14 (0xe) - 6074 (0x17ba) 
13 (0xd) - 5647 (0x160f) 
  : 
3 (0x3) - 1377 (0x561) 
2 (0x2) - 950 (0x3b6) 
1 (0x1) - 523 (0x20b) 
0 (0x0) - 96 (0x60) 

We can see, in the DATA section, each row and the offset of the row. We can see, in the 
OFFSET TABLE section, each entry in the row offset table. Each entry contains a slot 
number and an offset—for example, the row referenced by slot 0 is at offset 96 (straight after 
the page header), and the row referenced by slot 15 is at offset 6,501. 

2.13 Pages for space management 
There are a number of pages resident in a primary or secondary database file that are used to 
manage space in the file. These special pages are as follows: 

• Global Allocation Map (GAM) pages 



• Secondary Global Allocation Map (SGAM) pages 
• Index Allocation Map (IAM) pages 
• Page Free Space (PFS) pages 

To understand how GAM and SGAM pages fit into the picture we need to remind ourselves 
that there are two types of extent in SQL Server 2000. Uniform extents are eight pages in 
length and are allocated exclusively to one object when it requires space. For example, if a 
uniform extent is allocated to the Accounts table in the BankingDB database, then only rows 
from that table can use space on the eight pages.  

Mixed extents are eight pages in length also but are allocated one page at a time to many 
objects when they require space. For example, a mixed extent may provide space for the 
Accounts table in the BankingDB database plus another seven tables. As we discussed earlier, 
mixed extents exist to save space, and, as such, the first eight pages of a table (or index) are 
allocated from mixed extents. 

GAM pages hold information concerning which extents are currently allocated—that is, are 
not free. A single GAM page can manage 64,000 extents, which equates to nearly 4 GB of 
space. If more than 64,000 extents are present in the file, additional GAM pages are used. A 
GAM page uses a single bit to represent each extent out of the 64,000 extent range. If the bit 
is set (1), the extent is free; if it is not set (0), it is allocated. 

SGAM pages hold information concerning which extents are currently being used as mixed 
extents and have one or more unused page—that is, have space that can still be allocated to 
objects. A single SGAM page can also manage 64,000 extents. If more than 64,000 extents 
are present in the file, additional SGAM pages are used. An SGAM page uses a single bit to 
represent each extent out of the 64,000 extent range. If the bit is set (1), the extent is being 
used as a mixed extent and has at least one unused page; if it is not set (0), it is not being used 
as a mixed extent, or, alternatively, it is a mixed extent but all the pages are in use. These 
settings are shown in Table 2.5. 

Table 2.5: GAM and SGAM Page Settings  
Extent Status  GAM Bit Setting SGAM Bit Setting 
Free, not being used 1 0 
Uniform or full mixed extent 0 0 
Mixed extent with free pages 0 1 

To find a free extent to allocate as a uniform extent, the GAM is scanned for a bit that is set 
(1)—that is, an extent not currently in use. The bit is then set to 0 (allocated). To find a mixed 
extent having at least one free page that can be allocated, SQL Server searches the SGAM for 
a bit that is set (1). To find a free extent to allocate as a mixed extent, the GAM is scanned for 
a bit that is set (1)—that is, an extent that is not currently in use. The bit is then set to 0 
(allocated). The equivalent bit in the SGAM is set to 1. 

To free an extent, the GAM bit is set to 1 and the SGAM bit is set to 0. 

 Note When allocating extents to a table, SQL Server 2000 "round-robins" the allocation from 
each file if there is more than one file in the filegroup to which the table belongs. This 



ensures that space is allocated proportionately from each file in the filegroup. 

How does SQL Server 2000 keep track of which pages belong to a table or index? In previous 
versions of SQL Server (prior to SQL Server 7.0), data pages in a table were always chained 
together in a doubly linked list. This behavior changed in SQL Server 7.0 and so in SQL 
Server 2000 this is true only if the table has a clustered index (much more about clustered 
indexes in Chapter 3). 

In SQL Server 2000 the extents used by a table or index are managed by IAM pages. A table 
or index has at least one IAM page, and, if the table or index is spread across more than one 
file, it will have an IAM page for each file. An IAM page can manage 512,000 pages, and, if 
the table size exceeds this within a file, another IAM is used. The IAM pages for a file or 
index are chained together. An IAM page must not only cater to uniform extents allocated to 
the table or index, but must also cater to single pages allocated from mixed extents. 

To do this the first IAM page in the chain of IAM pages holds eight slots which can contain 
pointers to the eight pages that may be allocated from mixed extents. Other IAM pages in the 
IAM chain will not hold pointers in these slots. All IAM pages, though, will contain a bitmap 
with each bit presenting an extent in the range of extents held by the IAM. If the bit is set (1), 
the extent represented by that bit is allocated to the table or index; if it is not set (0), the extent 
represented by that bit is not allocated to the table or index. 

To find the page ID of the first IAM page for a table or index, use the FirstIAM column in the 
sysindexes system table (the sysindexes system table will be discussed in Chapter 3). To do 
this use the following example: 

   SELECT object_name(id) AS Tablename , Name, FirstIAM FROM 
   sysindexes 
 
   Tablename   Name                FirstIAM 
   ---------   -----               -------------- 
   Authors              aunmind    0x7C0000000100 
   Publishers      UPKCL_pubind    0x650000000100 
   Titles      UPKCL_titleidind    0x690000000100 

The Page ID is a hexadecimal number, which can be decoded as described previously in this 
chapter. 

 Note The SQL Server documentation refers to a heap. A heap is a table that does not have a 
clustered index and, therefore, the pages are not linked by pointers. The IAM pages are 
the only structures that link the pages in a table together. 

Finally, our last special page is a PFS page. A PFS page holds the information that shows 
whether an individual page has been allocated to table, index, or some other structure. It also 
documents how free an allocated page is. For each page, the PFS has a bitmap recording 
whether the page is empty, 1 percent to 50 percent full, 51 percent to 80 percent full, 81 
percent to 95 percent full, or 96 percent to 100 percent full. Each PFS page covers an 8,000-
page range. When a search is made to look for free space, the PFS page is consulted to see 
which page in an extent belonging to the table or index may have enough free space. 

This results in a fundamental difference between SQL Server 2000 and versions prior to SQL 
Server 7.0. In these previous versions, if there were no clustered index on the table, new rows 



were always added at the end—that is, inserted into the last page. Now, rows can be inserted 
on any page in the table that has free space. 

So, where in the database file do we find these special pages? The first page (0) contains a file 
header. The second page (1) is the first PFS page. The next PFS page will be found after 
another 8,000 pages. The third page (2) is the first GAM, and the fourth page (3) is the first 
SGAM. IAM pages are located in arbitrary positions throughout the file. This is shown in 
Figure 2.19. 

 
Figure 2.19: The PFS, GAM, and SGAM pages  

This chapter has provided an overview of the SQL Server storage structures. In the next 
chapter we will look at tables and indexes in much more detail. But first of all, now that we 
have discussed databases, it is time to introduce the BankingDB database used in this book. 

2.14 The BankingDB database 
The BankingDB database is very simple. It consists of just three tables, which are created 
with the following Transact-SQL syntax: 

   CREATE TABLE customers 
   ( 
     customer_no        INT        NOT NULL, 
     customer_fname     CHAR(20)   NOT NULL, 
     customer_lname     CHAR(20)   NOT NULL, 
     customer_notes     CHAR(400)  NOT NULL 
     ) 
 
 
   CREATE TABLE accounts 
   ( 
     account_no         INT        NOT NULL, 
     customer_no        INT        NOT NULL, 
     branch_no          INT        NOT NULL, 
     balance            MONEY      NOT NULL, 
     account_notes      CHAR(400)  NOT NULL 
     ) 
 
 
   CREATE TABLE branches 
   ( 
        branch_no       INT        NOT NULL, 
        branch_name     CHAR(60)   NOT NULL, 
        branch_address  CHAR(400)  NOT NULL, 
        managers_name   CHAR(60)   NOT NULL 
     ) 



The BankingDB database has customers who have one or many bank accounts. A bank 
account is managed by a branch of the bank at some geographical location. It is as simple as 
that. 

There are 10,000 bank accounts for 5,000 customers. These are managed by 100 branches. 
Since we will be creating indexes frequently as we progress through the book, there are no 
indexes created in the basic database. For the same reason, the tables are also assumed to have 
no primary key constraints or foreign key constraints. 

Chapter 3: Indexing 
3.1 Introduction 
There are many bells and whistles that can be tweaked to improve SQL Server performance. 
Some will provide a more positive benefit than others; however, to really improve 
performance, often with dramatic results, the database designer is well advised to concentrate 
his or her efforts in the area of indexing. The correct choice of index on a table with respect to 
the WHERE clause in a Transact-SQL statement, so that the query optimizer chooses the most 
efficient strategy, can have sensational results. 

I was once asked to look at a query that performed a complex join and had not completed in 
over 12 hours. Who knows when the query would have completed had it not been cancelled 
by the user—it may still have been running at the end of the year! Examination of the query 
showed that a join condition was missing in the WHERE clause, as was an index on one of 
the large tables involved in the join. Making the appropriate changes meant that the query ran 
in less than eight minutes! 

This magnitude of performance improvement is not likely to be achieved every day, but it 
makes an important point—namely, that focusing effort in the area of indexing and query 
optimization is likely to produce good results for the effort involved and should be high on the 
database tuner's hit list. 

So, what are these indexes and why are they so important? 

3.2 Data retrieval with no indexes 
Imagine that this book had no index, and you were asked to find references to the topic page 
faults. You would have no choice but to open the book at page 1, scan the page looking for 
the topic, turn to page 2, and continue until you had scanned the last page of the book. You 
would have to continue your search to the last page in the book, since you would not know 
when you had found the last reference to the topic. You would have read and scanned every 
page in the book, which would probably have taken you a considerable length of time. 

SQL Server has to behave in a similar fashion when asked to retrieve rows from a table that 
has no appropriate index. Suppose we were to execute the following Transact-SQL statement 
against the Accounts table, assuming there was no suitable index present: 

   SELECT * FROM accounts WHERE branch_no = 1100 



How would SQL Server find the appropriate rows? It would have to search the Accounts table 
from the start of the table to the end of the table looking for rows that had a branch_no 
containing the value 1100. This might be fine for small tables containing just a few rows, but, 
if the table contained millions of rows, the above query would take a very long time to 
complete. 

What is needed is a fast and efficient way of finding the data that conforms to the query 
requirements. In the case of a book, there is usually an index section from which the required 
topic can be found in an alphabetically ordered list, and the page numbers of the pages 
featuring that topic can then be obtained. The required pages can be directly accessed in the 
book. 

The method used to directly retrieve the required data from a table in SQL Server is not unlike 
that used with books. Structures called indexes may be created on a table, which enable SQL 
Server to quickly look up the database pages that hold the supplied key value—in our 
example the value 1100 for the branch_no column. 

Unlike a book, which normally has one index, a table may have many indexes. These indexes 
are based on one or more columns in the table. In SQL Server there are two types of index—
clustered and nonclustered—which we shall now compare and contrast. The ultimate decision 
as to whether an index is used or whether a complete scan of the table is performed is made 
by a component of SQL Server known as the query optimizer, which we will discuss in detail 
in Chapter 4. 

3.3 Clustered indexes 
As a database designer you are allowed to create only one clustered index on a table—you 
have one chance to play this ace and so you must play it carefully. Why only one clustered 
index per table? Unlike its nonclustered cousin, described shortly, a clustered index imposes a 
physical ordering of the table data. 

Creating a clustered index forces the data rows in the table to be reordered on disk so that they 
are in the same key sequence order as the clustered index key. For example, if we were to 
create a clustered index on the customer_lname column of the Customers table, the data rows 
would be sorted so that their physical order on the disk was in ascending order of the 
customers' last names—that is, Adamski would precede Tolstoy. 

This order would be maintained as long as the clustered index was present. SQL Server would 
ensure that the insertion of a new data row would cause the row to be placed in the correct 
physical location in key sequence order. 

The structure of a clustered index with its key defined on the customer_lname column of the 
Customers table is shown in Figure 3.1. The lowest level of the clustered index is composed 
of the data pages themselves, and in a clustered index the data pages are known as the leaf 
level of the index. The rest of the clustered index is composed of index pages. The index page 
at the top of the index is known as the index root. Levels in the index between the root page 
and the leaf-level pages are known as intermediate-level pages. Another name for an index 
page is an index node. For simplicity we have shown the structure with the ability to hold two 
data rows per page and three index entries per page. In reality many more rows and index 
entries are likely to be found. 



 
Figure 3.1: Structure of the clustered index  

At any given level in the index the pages are linked together. This is shown in Figure 3.1, 
whereas Figure 3.2 emphasizes the linkage. Figure 3.2 shows how index pages are linked 
together, and this is true regardless of whether the index is a clustered index or nonclustered 
index. 

 
Figure 3.2: Index pages are linked together  

The entries in the index pages contain a key value and a pointer to the next index page at the 
next lowest level starting with that key value, plus some control information. The pointer in a 
clustered index is a page number. In Figure 3.1, for example, the root page has an entry 
containing a key value, Adams, and a page number, 58, pointing to the intermediate index 
page 58, whose lowest key value is Adams. 

 Note The pointer also contains the File ID as a prefix. This is needed because page numbers 
are only unique within a database file. A File ID plus a page number is referred to as a 
Page ID. 

The reason why there can be only one clustered index on a table is that the clustered index 
governs the physical placement of the data and the data cannot be in two places at once. There 
can only be one sequence in which the data can be physically placed.  

So how can a clustered index support our requirement to perform fast and efficient data 
retrieval? The clustered index will help us to avoid table scans, since the query optimizer will 
probably use the clustered index to retrieve data directly. Suppose we issued the following 
SELECT statement: 

   SELECT * FROM customers WHERE customer_lname =  'Green' 



Let us assume that the query optimizer decides that the clustered index is the most efficient 
access path to the data. This is a realistic assumption, since the WHERE clause only specifies 
the customer_lname column on which the clustered index is based. 

SQL Server will first obtain the page number of the root page from the sysindexes table—in 
our example, page 42. In this root page there will be a number of key values, and in our 
clustered index these are Adams and James. SQL Server will look for the highest key value 
not greater than Green, which will be Adams. 

In a clustered index an index entry consists of the index key plus a pointer, which is a page 
number. The pointer held in the Adams key entry points to page 58, and so index page 
number 58 will be retrieved. 

Since page 58 is still an index page, SQL Server will look for the highest key value not 
greater than Green. In index page number 58 this is Date. The pointer held in the Date key 
entry is to page 337, which is a data page, and so this page will be retrieved. The data page is 
now scanned for a row containing Green in the customer_lname column. The row is found 
and returned. Note that SQL Server did not know the row existed until the data page was 
obtained. 

Clearly, the clustered index in our example has supported fast access to the data row. If we 
consider the number of I/Os required to traverse the index in this way we can see that one I/O 
is required to retrieve the root page, one I/O is required to retrieve the intermediate index 
page, and one I/O is required to retrieve the data page—a total of three I/Os. A table scan 
would probably result in many more I/Os. 

Would the three I/Os required to traverse our index be physical reads to the disk? Probably 
not. The root page of an index is accessed by every query that needs to traverse the index and 
so is normally always found in cache if the index is accessed frequently. The intermediate 
nodes and data pages are less likely to be, but if the data cache is large enough it is possible 
that they will stay in the cache.  

We have looked at a SELECT statement that retrieved a single row. What about a SELECT 
statement that retrieves a range of rows? 

   SELECT * FROM customers WHERE customer_lname BETWEEN 
   'Date' AND 'Kirk' 

In the above example a range of values is specified based on the customer_lname column. It 
can be seen from Figure 3.1 that because our clustered index is based on the customer_lname 
column and the data is thus in key sequence order, the rows that meet the criteria are all stored 
together—that is, clustered. In our example, the six rows that meet the criteria of the SELECT 
statement are found in three data pages, and so only three I/Os would be required to retrieve 
these data pages. 

If the clustered index had not been based on the customer_lname column, the rows would 
have not been clustered together (unless fate had intervened or the rows were loaded in that 
manner with no other clustered indexes on the table). 



In the worst case, the six rows would have been stored across six data pages, resulting in six 
I/Os to retrieve them. 

 Note In the BankingDB database there are about 15 customer rows per data page. As an 
example, eight I/Os would return 120 rows. As we will see, when a clustered index is 
not present to keep the rows in key sequence order, indexed access of these rows may 
require 120 I/Os. A not inconsiderable difference! 

In a similar manner, clustered indexes support searches using the LIKE operator. Suppose we 
execute the following query: 

   SELECT * FROM customers WHERE customer_lname LIKE 'N%' 

All the customers with last names beginning with N will be returned. Again, our clustered 
index on customer_lname will ensure that these rows are stored together, resulting in the least 
number of I/Os to retrieve them. Of course, duplicate last names would also be stored in the 
same cluster of pages. 

Finally, what about returning the data in order? Suppose we execute the following query: 

   SELECT * FROM customers ORDER BY customer_lname 

The query optimizer will know that the clustered index guarantees that the data is in key 
sequence order, and so there is no need to perform a sort of the rows to satisfy the ORDER 
BY clause, again saving disk I/O. 

3.4 Nonclustered indexes 
Similar to their clustered counterparts, nonclustered indexes are balanced trees with a 
hierarchy of index pages—starting with the index root page at the top, leaf-level pages at the 
bottom- and intermediate-level pages between the root page and the leaf-level pages. Again, 
at any given level in the index the pages are linked together, as shown in Figure 3.2. 

 Note Data pages in a table without a clustered index will not be chained together, even if 
nonclustered indexes are present on the table. As was mentioned in Chapter 2, the data 
pages of the table will only be related through the IAM page(s) managing that table. 

Unlike their clustered counterparts, nonclustered indexes have no influence on the physical 
order of the data, and the leaf level of a sorted index is not considered to be the data but is the 
lowest level of index pages. The structure of a nonclustered index with its key defined on the 
customer_fname column of the Customers table is shown in Figure 3.3. 



 
Figure 3.3: Structure of a nonclustered index with no clustered index on the table  

The first observation we can make is that every data row in the table has a pointer to it from 
the index leaf level (the dashed lines). This was not the case with the clustered index in Figure 
3.1, where the leaf level only contained pointers to the lowest keyed data row in each page. 
This means that nonclustered indexes are typically larger than their clustered counterparts, 
because their leaf level has to hold many more pointers. There are about 15 customer rows per 
data page, so the leaf level of the nonclustered index will need to hold 15 times more pointers 
than the lowest-level index page in the clustered index. The typical effect of this is that a 
nonclustered index on a key will usually have one more level of index pages than a clustered 
index on the same key. 

What do the index entries in a nonclustered index look like? Similar to a clustered index, they 
contain a key value and a pointer to the relevant index page at the next lowest level. This 
pointer is a Page ID (File ID and database page number). The lowest index level, the leaf 
level, has index entries also containing a key value and a pointer. While in versions of SQL 
Server prior to 7.0 the pointer was always a Row ID, which pointed directly at the data row, 
this is no longer always true. 

A Row ID is a Page ID plus a row number. In Figure 3.3 the leaf-level index page 96 has an 
entry for the key Ben, which points to Page ID 1:340, slot number 2. 

So when is a pointer a Row ID and when is it not? If there is no clustered index present on the 
table, then the pointer is a Row ID. If there is a clustered index present on the table, then the 
pointer becomes something else. We shall see what this something is shortly and why this is 
so. 

The most important observation to make about Figure 3.3 is that although the index levels are 
in key sequence order, the data is not. This means that any kind of range retrieval performed 
using the sorted index will have to use a logical read to follow each relevant leaf-level pointer 
to the data rows. This is an important point, which we will revisit later. Note also that once the 
leaf level has been accessed, SQL Server knows whether a row exists or not.  



So far we have discussed the behavior of clustered indexes and nonclustered indexes with 
respect to data retrieval. Let us now look at the behavior of these indexes with respect to data 
insertion, update, and deletion. 

3.5 The role of indexes in insertion and deletion 
The existence of indexes on tables is usually considered with respect to query execution time. 
However, SQL Server indexes, in particular clustered indexes, also affect the behavior of 
SQL Server when rows are inserted. Consider the Customers table shown in Figure 3.4. The 
table has been allocated four pages from a mixed extent. Three pages are full, and the fourth 
page is partly filled. 

 
Figure 3.4: Customers table with no indexes present  

We will assume, for clarity, that a database page only holds three rows and that only the 
customer_lname and customer_fname columns are shown. 

Suppose we wish to add a new row. Where is it stored? Since the table has no indexes present 
and there is no free space anywhere else in the pages allocated to the table, the new row is 
inserted at the end of the table on the last page, as shown in Figure 3.5. We shall see shortly 
that this behavior is true even if there are nonclustered indexes present on the table. Only the 
creation of a clustered index can modify this behavior. 

 
Figure 3.5: Insertion at the end of a table  

One can imagine that in a multiuser system many users will be attempting to insert customer 
rows. In previous versions of SQL Server prior to 7.0 this would have resulted in a hot spot at 
the end of the table, since a full implementation of row-level locking was not present. 
However, SQL Server 2000 has a full and robust implementation of row-level locking, and so 
the hot spot has been virtually eliminated. Locking is discussed in Chapter 6. What happens 
when rows are deleted from a table? 

Suppose some rows are now deleted, as shown in Figure 3.6. Free space, shown in Figure 3.7, 
is left on the pages from which the rows are deleted. 



 
Figure 3.6: Deleting rows from the table  

 
Figure 3.7: Space freed from row deletion  

If a new row is now inserted, where will it go? In versions of SQL Server prior to 7.0, SQL 
Server would not have reused the space freed by the deletion of the rows. More sophisticated 
page management algorithms using more sophisticated page management structures (see 
Chapter 2) mean that space freed by deleting old rows can be reused by new rows. This is 
shown in Figure 3.8. 

 
Figure 3.8: Free space being reused  

Once all the rows are removed from a page it becomes available for use by the table again. If 
all the rows are removed from an extent, it may be deallocated and so no longer belongs to the 
table. 

 Note If a row size is used so that only one row can fit on a page, the deletion of a row will 
mean that there is no remaining row on the page. The page will immediately become 
available for reuse, and free space will not be wasted. 

The previous discussion has shown that in a table with no indexes, rows will be inserted at the 
end of the existing data—that is, appended to the rows already present if there is no free space 
elsewhere in the table. However, if there is free space present in existing database pages in the 
table because some rows stored earlier have been deleted, then SQL Server can make use of 
this space to accommodate newly inserted data rows. In Figure 3.9, new rows can be inserted 
where free space has been left by deleted rows. The PFS management pages hold information 
about the free space in each page and so can be consulted when a page with sufficient free 
space is required. 



 
Figure 3.9: Pages with sufficient free space can be used for new rows  

This behavior stays the same if nonclustered indexes are present on the table, since they do 
not govern the physical placement of data. However, a clustered index will modify this 
behavior. This is because a clustered index will always ensure that new rows are inserted in 
key sequence order. In our Customers table example, this means in ascending order of the 
customer's last name. So let's delete some rows and see what happens. 

We'll delete the customers who have the last names Green and Hunt. Pages 337 and 338 now 
have free space in them, as shown in Figure 3.10. Let's now insert two new customers, French 
and Hood. The clustered index forces these rows to be inserted in key sequence order, so 
French will need to be inserted after Date but before Hobbs, and Hood will need to be inserted 
after Hobbs but before James. 

 
Figure 3.10: Clustered index with some deleted rows  

Well, we are lucky. It just so happens that there is free space on the pages where we want to 
insert the rows, and this space is therefore reused, as shown in Figure 3.11. 

 
Figure 3.11: Clustered index with some newly inserted rows  

We can see that in our clustered index, space freed by deleting rows can be reused. Of course, 
if our clustered index key had been an increasing key value such as that generated in a column 



with the identity property, new rows would always be inserted at the end of the table and free 
space in a page may not be efficiently reused. 

Our example is, of course, a little contrived, since there will be many occasions where there is 
not going to be free space in the page where we want to insert the new row, and we will deal 
with this scenario now. 

Suppose that our clustered index contains the entries shown in Figure 3.12. We want to insert 
a row with a key value of Jones, which SQL Server must store between the key values James 
and Kent, but there is obviously insufficient space in page 337 to hold the new row. In this 
case SQL Server must perform a page split. This involves acquiring a new empty page and 
chaining it into the existing chain of pages. 

 
Figure 3.12: Full clustered index leaf pages  

This type of page splitting is known as a 50:50 split, since SQL Server ensures that 
approximately 50 percent of the rows on the existing page are moved onto the new page, as 
shown in Figure 3.13. This is only part of the work that SQL Server must do. The 
intermediate index pages in the clustered index must be updated so that the new page is 
referenced. This will involve adding a new entry into an index page at the next level up. Of 
course, if there is insufficient room for the new entry, the index page might split also! In our 
example, a new entry must be made for the key James pointing to page 202. 

 
Figure 3.13: A 50:50 page split  

What about any nonclustered indexes that point to the table? Previously we mentioned that 
the index entries at the leaf level of a nonclustered index pointed directly at the data rows and 
these pointers, known as Row IDs, are of the form Page ID plus a row number on the data 
page. A Page ID is of the form File ID and database page number. We have just seen that 
when a page split occurs in a clustered index, rows can migrate from the old page to the newly 



chained-in page. So does this mean that the Row IDs for these rows are now incorrect? In 
versions of SQL Server prior to SQL Server 7.0 this is exactly what this would mean. The 
pointers in any nonclustered indexes present on the table pointing to the rows that had 
migrated would have to be changed to point to the row locations on the new page. This would 
result in a lot of nonclustered index update activity and a consequent increase in lock activity 
in these nonclustered indexes. 

For this reason, in SQL Server 2000, if a clustered index is present on a table, the 
nonclustered index pointers are no longer Row IDs. Instead, the nonclustered index pointers 
are the clustering index key. This is shown in Figure 3.14. 

 
Figure 3.14: Nonclustered index pointers with and without a clustered index present  

This needs a little more discussion! Instead of the index entries at the leaf level of a 
nonclustered index consisting of the nonclustered index key plus a Row ID pointer, each entry 
is composed of the nonclustered index key plus the clustered index key. A leaf-level index 
entry, therefore, no longer points directly at a data row; rather, it takes a route through the 
clustered index using the clustering key and then out to the data row. This is shown in Figure 
3.15. The query specifies a column in the nonclustered index on the customer_fname column, 
and this index is chosen by the query optimizer. The index is traversed until the relevant index 
entry is found in the leaf-level index page. The pointer in this index entry is the clustered 
index key for this row. Since the clustered index is defined on the customer_lname column, 
this pointer is the customer's last name, in this case, Adams. The clustered index is now 
traversed using this key value, and the data row is fetched. 



 
Figure 3.15: Nonclustered index traversal with a clustered index present  

So, when is a pointer a Row ID and when is it not? If there is no clustered index present on 
the table, then the pointer is a Row ID. If there is a clustered index present on the table, the 
nonclustered index pointer (at the leaf level of the index) is the clustered index key. The 
primary reason for this approach is to avoid the work that must be performed by the server 
adjusting nonclustered index entries when a data page splits because of insertion into a 
clustered index, causing data rows to migrate to new pages. 

Since the nonclustered index leaf entries do not contain page numbers, if they contain the 
clustered index key, then the fact that data rows might move to a new page is irrelevant. The 
pointers will not need to be changed—in other words, they are stable. Because data page splits 
are a phenomenon only observed when a clustered index is present on a table, it follows that if 
there is no clustered index present on a table, data page splits cannot occur. The nonclustered 
index leaf entries are stable with respect to the insertion of new data rows, and the pointers 
can remain Row IDs, as in versions of SQL Server prior to 7.0. 

This is all well and good, but suppose that we issue the following query: 

   SELECT * FROM customers WHERE customer_fname = 'John' 

If we assume that there is a nonclustered index on the firstname column and a clustered index 
on the lastname column, then, from what we have just discussed, we can state that the pointer 
in the nonclustered index will be the clustered index key. Now suppose that for our customer 
John our pointer is Smith (John's last name). We traverse the nonclustered index searching for 
a key value of John and find the leaf- level index entry. We will assume for simplicity that 
there is only one customer with the first name John.  

The pointer will contain the clustered index key Smith, and so the clustered index is now 
traversed from the top searching for this key. If there is only one customer with the last name 
Smith, we will traverse the clustered index and finally retrieve the data page containing our 
row. That's fine, but suppose in our Customer table we have more than one customer with the 
last name Smith. Perhaps we have a customer named Mary Smith. Now we have an 
interesting scenario. If the clustered index is now traversed from the top searching for a key of 
Smith, two rows will be found. Clearly this is nonsense, so how does SQL Server find the 
correct Smith? 

The answer can be found in the way that duplicate clustered index key values are handled. If a 
clustered index is not created as a unique index, then duplicate key values will be allowed in 



the index. In our example this is not unreasonable—some customers will have the same last 
name. Internally, SQL Server will, however, add an extra column to the key, known as a 
uniqueifier. The first instance of a key value will not have a uniqueifier but subsequent 
instances will. The second instance will have a uniqueifier of 1, the third 2, and so on. In this 
way, SQL Server internally makes all the key values unique, and it is, in fact, the clustered 
index key and the uniqueifier that are held as the pointer in a nonclustered leaf-level index 
pointer. This pointer is then used to traverse the clustered index, and it will return a single, 
uniquely identified row. The uniqueifier will be completely transparent to the query and the 
application. 

OK, let's now return to where we left off. We had just inserted a customer with the last name 
Jones, which caused a page spilt to occur. We might wish to insert another data row with a 
key value that is close to Jones. Are the split pages going to split again soon? We can see that 
if inserts continue, with key values greater than and less than James, there will be a delay 
before page splitting occurs again. This delay is caused by the fact that the page splitting left 
us with pages that had free space in them. We can store about 15 Customer rows into a data 
page, so in reality the page split will leave us with approximately seven rows per page and, 
therefore, room for another seven or eight rows more per page, which will delay the page 
splitting. 

On average we can expect to find pages that range from 50 percent full having just split to 
100 percent full just before they split, giving us an average page fullness of about 75 percent. 

This is fine, but suppose the clustered index is based on an ever-increasing key value such as 
that provided by a column with the identity property or a column containing the date and time 
an order is taken. Insertion of new rows will always happen at the end of the clustered index. 
In this case there is no point in SQL Server performing a 50:50 split when a new page is 
chained in, since space that is reserved physically before the last row inserted will never be 
used. 

Figure 3.16 shows the insertion of a key value of Moss. There is no space in which to store 
this row on page 338, so a new page must be chained in. In this case SQL Server does not 
shuffle rows from page 338 onto the new page but instead inserts only the new row on the 
new page, as shown in Figure 3.17. 



 
Figure 3.16: Insertion at the end of the key range  

 
Figure 3.17: A page split that does not shuffle data  

Note that an entry is added into the index page to point to the new key value on the new page. 

The action of page splitting when a 50:50 split occurs is clearly going to give SQL Server 
some work to do. The new page must be obtained and chained in, rows must be shuffled, and 
entries in many cases will be inserted into a clustered index. Also, of course, new entries will 
have to be added to the nonclustered indexes to point to the new row. 

It would clearly be beneficial to minimize page splitting, but how can we achieve this? One 
obvious way would be to not use clustered indexes, but the benefits they can bring to the 
performance of some queries can often outweigh the overhead of page splitting. 

Is there another way to minimize page splitting? Fortunately, there is. We can reserve space in 
a clustered index or a nonclustered index when we create the index using a fillfactor. During 
the creation of the index the index pages have free space reserved in them and, most 
importantly in a clustered index, free space is reserved in the data pages. 

This free space is only reserved during the index creation process. Once the index has been 
created, the free space in the index and data pages can be used for newly inserted rows. The 
size of the index will be larger if space is reserved in it, and in the case of a clustered index 
the number of data pages in the table will also be greater, but this does mean that the point 
when SQL Server needs to page split will be delayed. 



When SQL Server starts to split pages, fragmentation is said to occur. If many rows are 
inserted into a clustered index, such that page splits occur, many data pages will be chained 
into the table and the table will become fragmented. This affects both insertion and scan 
efficiency, and so we want to avoid it. We can tell if a table is becoming fragmented by using 
the DBCC SHOWCONTIG statement, which will be described shortly. 

3.6 A note about updates 
Obviously, if an indexed column is updated to a new value, the index must also be updated. In 
the case of a nonclustered index the index entry must change position since index keys are 
held in key sequence order. In the case of a clustered index, the data row may also have to 
change position, since the data rows are stored in key sequence order. But what happens to a 
data row when there is no clustered index present on the table? 

Usually the update is performed in-place, which means that the row does not move to another 
page. Usually an update is logged as a single modification operation in the transaction log. In 
the case of the table having an update trigger or being replicated, the update is logged as a 
delete and insert operation. Even in this case the update will usually be an in-place update. 

However, there comes a point where a variable-length column is updated to a size greater than 
its original size and there is no free space available on the page to accommodate it. In this 
case SQL Server 2000 will delete the row and insert it into a page that has free space. To 
avoid the overhead of having to adjust index pointers in nonclustered indexes to the new page, 
a forwarding pointer is left in the original location, which points to the new location. The 
index pointers will continue to point to the original location. This does mean that a retrieval of 
the row will incur an extra data page request for the forwarding pointer. If a subsequent 
update moves the row again, the pointer is adjusted to the new location. If a subsequent 
update means that the row can return to its original location, it will—and the forwarding 
pointer will disappear. 

To detect the number of forwarding pointers in a table the DBCC SHOWCONTIG statement, 
which will be described shortly, may be used with the TABLERESULTS option. 

Note that a table with a large number of forwarding pointers will experience performance 
degradation, especially if groups of rows are scanned, due to the extra accesses required. To 
tidy up the forwarding pointers the clustered index on the table can be rebuilt. If there is no 
clustered index, if possible create a dummy one and then drop it. Alternatively, unload the 
data into a file, truncate the table, and reload the data. 

3.7 So how do you create indexes? 
We have discussed the mechanics of indexes, and later we will discuss indexes with reference 
to performance, but it is time that we looked at how you create them. Indexes can be created 
via the following mechanisms: 

• The Transact-SQL CREATE INDEX statement 
• The SQL Enterprise Manager 
• The Create Index Wizard 



• Right mouse—clicking inside the Estimated Execution Plan tab in the Query Analyzer 
and choosing Manage Indexes 

• Choosing the Tools menu item in the Query Analyzer and selecting Manage Indexes 
• The Index Tuning Wizard (we will discuss this later in the book) 

If you don't like any of the above options, you can always use the SQL-DMO (Distributed 
Management Objects) and the Index object to create an index! 

 Note Indexes are also created when a primary or unique key constraint is added to a table.

First, let us look at the Transact-SQL options, and then we will look at the graphical approach 
provided by the SQL Enterprise Manager, Query Analyzer, and the Create Index Wizard. We 
will also have a quick peak at how this may be done in the SQL-DMO. 

3.7.1 The Transact-SQL CREATE INDEX statement 

The Transact-SQL syntax is as follows: 

   CREATE [ UNIQUE ] [ CLUSTERED | NONCLUSTERED ] INDEX 
   index_name 
       ON { table | view } ( column [ ASC | DESC ] [ ,...n ] 
   ) 
   [ WITH < index_option > [ ,...n] ] 
   [ ON filegroup ] 
 
   < index_option > :: = 
       { PAD_INDEX | 
           FILLFACTOR = fillfactor | 
           IGNORE_DUP_KEY | 
           DROP_EXISTING | 
       STATISTICS_NORECOMPUTE | 
       SORT_IN_TEMPDB 
   } 

The different options will now be described.  

To create a clustered index in Transact-SQL the CLUSTERED keyword is used: 

   CREATE CLUSTERED INDEX CI_AccountNo 
      ON accounts (account_no) 

The above example creates a clustered index on the account_no column of the Accounts table. 
The next example creates a unique clustered index, as follows: 

   CREATE UNIQUE CLUSTERED INDEX CI_AccountNo 
       ON accounts (account_no) 

The unique keyword ensures that only one row has a particular key value, in this case 
account_no. In other words, the uniqueness of the key is enforced. Note that the table may or 
may not already contain data. If it does, and if there are duplicate values, the above CREATE 
INDEX statement will fail: 

   CREATE UNIQUE CLUSTERED INDEX CI_AccountNo 
       ON accounts (account_no) 



 
   Server: Msg 1505, Level 16, State 1, Line 1 
   CREATE UNIQUE INDEX terminated because a duplicate key 
   was found. Most significant primary key is '105000'. 
   The statement has been terminated. 

Similarly, once the index has been successfully created, an attempt to insert or update a row 
that would result in a duplicate key value will fail: 

   INSERT INTO accounts (account_no, customer_no, branch_no, 
   balance, account_notes) 
       VALUES (1916, 103424, 1012, 10765, 'A busy account') 
 
   Server: Msg 2601, Level 14, State 3, Line 1 
   Cannot insert duplicate key row in object 'accounts' with 
   unique index 'CI_AccountNo'. 
   The statement has been terminated. 

This is fine, since we want the account_no column to contain no duplicate values, since this is 
the way we uniquely identify an account. 

As mentioned previously, only one clustered index can be created on a table. This makes 
sense, since data can only be physically sorted in one order. Any attempt to create a second 
clustered index will fail: 

   CREATE CLUSTERED INDEX CI_AccountBalance 
       ON accounts (balance) 
   Server: Msg 1902, Level 16, State 3, Line 1 
   Cannot create more than one clustered index on table 
   'accounts'. Drop the existing clustered index 
   'CI_AccountNo' before creating another. 

To create a nonclustered index the CREATE INDEX statement is used, as it was for creating 
the clustered index, only in this case the NONCLUSTERED keyword is specified: 

   CREATE NONCLUSTERED INDEX NCI_AccountBalance 
       ON accounts (balance) 

If neither CLUSTERED nor NONCLUSTERED is specified, a nonclustered index is created. 
The UNIQUE keyword has the same effect as it does for a clustered index. Hence, the 
following CREATE INDEX statement defaults to a nonunique, nonclustered index: 

   CREATE INDEX NCI_AccountBalance 
       ON accounts (balance) 
 Note The name of the index can be any name considered legal by SQL Server. I prefer to 

prefix the name with CI_ or NCI_ to signify a clustered or nonclustered index, 
respectively. I also find it useful to then use meaningful text that indicates the column 
name. This does, however, become unwieldy when you have an index that is comprised 
of many columns, so some compromises will have to be made. No naming scheme is 
ever perfect! 

So far our examples have shown indexes that consist of only one column. It is not uncommon 
to create an index that consists of more than one column. Such an index is known as a 
composite index. An index can be created consisting of no greater than 16 columns, which, in 



practical terms, is a limit few people are likely to hit. Also, the sum of the column sizes in the 
index cannot be greater than 900 bytes. It is not a good idea to choose a composite key of 900 
bytes in length, because very few index entries will be able to fit into an index page and so 
many index pages will be used in the index. This will ultimately result in deep indexes 
consisting of many index levels. Traversing the index may then require many disk I/Os. In 
SQL Server 2000 it is, in fact, possible to create an index that contains columns defined with 
variable-length data types, such as VARCHAR, where the sum of the maximum sizes appears 
to exceed 900 bytes. However, if an attempt is made to insert a row so that the actual size of 
the index key would exceed the 900-byte limit, an error is returned.  

For example, suppose a table consists of the following structure: 

   CREATE TABLE account_details 
       ( 
       account_no     INT            NOT NULL, 
       account_notes  VARCHAR(1000)  NOT NULL 
       ) 

If we attempt to create a nonclustered index on the account_notes column, SQL Server will 
successfully create the index but will warn us that the index key is potentially too large: 

   CREATE NONCLUSTERED INDEX NCI_AccountDetails 
       ON account_details (account_notes) 
 
   Warning!. The maximum permissible key length is 900 
   bytes. The index 'NCI_AccountDetails' has maximum length 
   of 1000 bytes. For some combination of large values, the 
   insert/update operation will fail. 

If we then attempt to insert a short string into the table, there is no problem: 

   INSERT INTO account_details VALUES (1000, 'This string is 
   less than 900') 

However, if we attempt to insert a row with a string value large than 900 bytes, we are not 
allowed to do so: 

   INSERT INTO account_details 
       VALUES (1001, 'This string is more than 900'+ 
   REPLICATE('*',900)) 
   Server: Msg 1946, Level 16, State 4, Line 1 
   Operation failed. The index entry of length 928 bytes for 
   the index 'NCI_AccountDetails' exceeds the maximum 
   permissible length of 900 bytes. 

How do we specify an option to reserve space in index pages when an index is created? 
Remember that in the case of a clustered index the data pages are considered to be the lowest 
level of the index, whereas in the case of a nonclustered index the bottom level of the index is 
considered to be the lowest level of the index pages. In either case the lowest level of index is 
known as the leaf level. 

The FILLFACTOR option is used to reserve space, and this option takes a value from 0 to 
100. An index created with a FILLFACTOR of 100 will have its index pages completely 
filled. This is useful if no data is to be entered into the table in the future. 



An index created with a FILLFACTOR of 0 will have its leaf pages completely filled, but 
other levels in the index will have enough space for a minimum of another index entry. An 
index created with a FILLFACTOR of between 0 and 100 will have its leaf pages filled to the 
FILLFACTOR percentage specified, and, again, other levels in the index will have enough 
space for a minimum of another index entry. 

The default FILLFACTOR value is 0, and this default value can be changed with the 
sp_configure system stored procedure or via the Database Settings tab in the Server Properties 
dialog box in the SQL Enterprise Manager. Table 3.1 shows the consequence of different 
FILLFACTOR values. A FILLFACTOR value of 0 specifies that the leaf-level page of the 
index should be completely filled, leaving no free space; however, the nonleaf pages should 
reserve space for one extra index entry. A FILLFACTOR value of 100 percent specifies that 
the leaf-level page of the index should be completely filled, leaving no free space. There 
should also be no free space reserved in the index pages. A FILLFACTOR value of 1 percent 
to 99 percent specifies that the leaf-level page of the index should be filled no more than the 
FILLFACTOR value. The nonleaf pages should reserve space for one extra index entry. Note 
that for nonunique clustered indexes, space is reserved for two index entries. 

Table 3.1: The Effect of Different FILLFACTOR Values  
FILLFACTOR Value % Nonleaf Page  Leaf Page  
0 one index entry completely full 
1–99 one index entry ≤ FILLFACTOR % full
100 completely full completely full 

Care should be taken when choosing a FILLFACTOR, since its relevance will depend on the 
way the application uses the table data. There is little point in reserving space throughout an 
index if the row inserted always has a key greater than the current maximum key value. The 
following example creates an index with a FILLFACTOR of 50 percent, meaning that each 
data page (leaf page) will only be filled to 50 percent. Index pages at the other levels will have 
room for one or two more index entries. 

   CREATE CLUSTERED INDEX CI_AccountBalance ON accounts 
   (balance) 
   WITH FILLFACTOR =50 

SQL Server will round up the number of rows placed on a page, so if the FILLFACTOR 
value would allow 3.3 rows, then 4 rows are stored. 

Note that over time, as rows are inserted into the table, the effectiveness of the FILLFACTOR 
value will vanish, and a planned rebuilding of critical indexes at periodic intervals should be 
considered if heavy inserts are made to the table. Because SQL Server merges index pages 
with only one index entry to keep the index compact, the number of items on an index page is 
never less than two, even if a low value of FILLFACTOR is specified. 

Another option, PAD_INDEX on the CREATE INDEX statement, is relevant to reserving 
space. The PAD_INDEX clause means that the FILLFACTOR setting should be applied to 
the index pages as well as to the data pages in the index. 



The IGNORE_DUP_KEY option is useful when a unique clustered or nonclustered index is 
to be created on a table that might have rows with duplicate key values inserted. If the 
IGNORE_DUP_KEY option is set, rows containing duplicate key values are discarded, but 
the statement will succeed. However, if the IGNORE_DUP_KEY option is not set, the 
statement as a whole will be aborted. 

The DROP_EXISTING option can be a very useful performance optimization. Suppose we 
have a scenario where we have a table on which we have built a clustered index and perhaps 
two nonclustered indexes. As discussed earlier, if there is a clustered index present on a table, 
then the pointers at the leaf level of any nonclustered indexes on that table will be the 
clustered index key. Suppose we drop the clustered index from the table. The nonclustered 
index leaf pages can no longer contain index entries that use the clustered index key as the 
pointer value—there is no clustered index and therefore no clustered index key! 

When the clustered index is dropped, SQL Server will rebuild all the nonclustered indexes on 
that table so that their index leaf pages will now contain index entries that use the Row ID as 
the pointer value. Remember, a Row ID is a Page ID (File ID plus page number) plus the 
position of the row on the page. The important point here is that SQL Server will rebuild all 
the nonclustered indexes on that table. This obviously can be a very time-consuming and 
resource-intensive process. But this is only the half of it. 

Suppose the reason we wished to drop the clustered index was because we wanted to rebuild 
it. Perhaps we wanted to reorganize it so that page fragmentation was eliminated. Well, this 
means that after dropping the clustered index we are now going to create it again. Guess 
what's going to happen to all the nonclustered indexes on that table? You guessed! SQL 
Server will rebuild all the nonclustered indexes on that table so that their index leaf pages will 
now contain index entries that use the clustered index key as the pointer value. 

This means that our clustered index reorganization has caused our nonclustered indexes to be 
rebuilt twice. What's annoying is that their leaf-level pointers have ended up as they started 
out anyway—clustered index key pointers. So what can we do to reduce the impact of 
rebuilding a clustered index? 

Luckily for us the CREATE INDEX statement allows us to specify the DROP_EXISTING 
option. This allows us to issue a CREATE INDEX statement with the same name as an 
existing index. Using this option when you wish to rebuild a clustered index will give you a 
performance boost. The clustered index will be recreated on a new set of database pages, but, 
because the clustered index key values remain the same, the nonclustered indexes on the table 
do not have to be rebuilt. In fact, the recreation of the clustered index can make use of the fact 
that the data is already sorted in key sequence order so this data does not have to be sorted. 

The DROP_EXISTING option can also be used if the clustered index key definition changes. 
Perhaps a new column is used. In this case the nonclustered index will have to be rebuilt—but 
only once. 

The DROP_EXISTING option can also be used for a nonclustered index, and there will be a 
performance advantage over dropping and creating the nonclustered index. However, the real 
benefit is with rebuilding clustered indexes. Using this option will definitely use fewer 
resources than performing a DROP INDEX followed by a CREATE INDEX. 



A CREATE INDEX using this option can also be used to rebuild the index that is created 
when a primary key constraint is defined on a table. This was previously accomplished with 
DBCC DBREINDEX. Comparing the resource use of both approaches, they seem identical—
so there is probably no need to change existing scripts on this basis alone. 

The STATISTICS_NORECOMPUTE option dictates that out-of-date index statistics are not 
automatically recomputed. This is an option I have never had to use. I have found that 
ensuring that index key distribution statistics are as up-to-date and accurate as possible is the 
best approach. Index key distribution statistics are discussed in Chapter 4. 

The ON FILEGROUP option allows the database administrator to create the index on a 
filegroup different from the table itself. The use of filegroups was discussed in Chapter 2. The 
idea is that by using multiple filegroups, disk I/O to the index and table can be spread across 
separate disk drives for better performance. However, most database administrators typically 
use a form of disk striping to spread disk I/O. Disk striping is discussed in Chapter 5. 

 Note Filegroups are also used to facilitate the backing up of large databases. However, if one 
filegroup contains a table and a separate filegroup contains an index for that table, then 
both filegroups must be backed up together. 

Another index creation option that needs to be discussed is the column [ASC | DESC], which 
is part of the CREATE INDEX statement. Using these options determines whether an 
ascending or descending index is created. When an index is created, each column in the index 
key can be flagged with ASC or DESC. This specifies whether the index column has its data 
sorted in an ascending or descending manner. The default is ASC, which ensures that scripts 
written to create indexes in earlier versions of SQL Server behave correctly. 

Suppose we create an index on the Accounts table, as in the following example: 

   CREATE NONCLUSTERED INDEX NCI_CustNoAccountNo 
       ON accounts (customer_no ASC, account_no DESC) 

The data in the customer_no key column will be held in ascending order, whereas the data in 
the account_no key column will be held in descending order. Why bother providing this 
capability? After all, the doubly linked lists that chain the index pages in an index level 
together allow SQL Server to rapidly move backward and forward along the sequence of 
keys. This is true, but if the query requests data to be sorted in the ascending order of one 
column and the descending order of another column, then just moving along the chain is not 
going to provide the optimum performance. If, however, the key columns are actually held in 
a sequence that matches the ORDER BY, then the chain can be followed in one direction and 
this will provide the optimum performance, so no additional sorting will be required. 

The following query will be fully supported by the NCI_CustNoAccountNo index without an 
additional sort step: 

   SELECT customer_no, account_no FROM accounts 
       WHERE customer_no BETWEEN 1000 AND 1500 
       ORDER BY customer_no ASC, account_no DESC 

The following query will not be fully supported by the NCI_CustNoAccountNo index, and it 
will need an additional sort step: 



   SELECT customer_no, account_no FROM accounts 
       WHERE customer_no BETWEEN 1000 AND 1500 
       ORDER BY customer_no ASC, account_no ASC 

A new metadata function named INDEXKEY_PROPERTY reports whether an index column 
is stored in ascending or descending order. The sp_helpindex system stored procedure has 
also been enhanced to report the direction of index key columns. 

Finally, the SORT_IN_TEMPDB option can be used to place the data from intermediate sort 
runs used while creating the index into tempdb. This can result in a performance improvement 
if tempdb is placed on another disk drive or RAID array. The default behavior, if this option is 
not used, is to utilize space in the database in which the index is being created. This means 
that the disk heads are moving back and forth between the data pages and the temporary sort 
work area, which may degrade performance. 

One aspect of index creation that can be seen from the CREATE INDEX syntax diagram is 
that SQL Server 2000 can create indexes on views. This is a significant enhancement to the 
product from a performance perspective and therefore is treated separately later in this 
chapter. 

So, we have looked at the CREATE INDEX statement and the options that can be chosen. 
There are other ways in which we can create indexes and these are discussed in the following 
sections. 

3.7.2 The SQL Enterprise Manager 

To create a new index in the SQL Enterprise Manager the following sequence of events can 
be performed: 

1. Expand the server in the Console Pane. 
2. Expand the Databases folder. 
3. Expand the database holding the table of interest. 
4. Expand the Tables folder. 
5. Right-click the table on which you wish to create an index. 
6. Select All Tasks followed by Manage Indexes. 

The Manage Indexes window is displayed, which lists the indexes that are currently resident 
on the table, whether or not they are clustered, and which columns constitute the index key. 
This is shown in Figure 3.18. 



 
Figure 3.18: Manage Indexes window in the SQL Server Enterprise Manager  

The New… button can be clicked in order to create an index, and this results in the Create 
New Index window being displayed, as shown in Figure 3.19. 

 
Figure 3.19: Create New Index window in the SQL Server Enterprise Manager  

The index can be named and the columns and index options chosen. From the Manage 
Indexes window, it is also possible to delete and edit an index. 



Another means of creating an index through the SQL Server Enterprise Manager is through an 
alternate sequence of events, as follows: 

1. Expand the server in the Console Pane. 
2. Expand the Databases folder. 
3. Expand the database holding the table of interest. 
4. Expand the Tables folder. 
5. Right-click the table on which you wish to create an index. 
6. Select Design Table. 
7. In the Design Table window click the Table and Index Properties button. 
8. In the Properties window select the Indexes/Keys tab and click New. 
9. Fill in the details as required to define the new index. 
10. Click Close and save the table design. 

The Indexes/Keys tab is shown in Figure 3.20. 

 
Figure 3.20: Index/Keys window in the SQL Server Enterprise Manager  

Personally, I find this route to creating an index confusing. I much prefer the All 
Tasks…Manage Indexes… approach. 

3.7.3 The Query Analyzer 

The Manage Indexes window, which can be accessed through the All Tasks… Manage 
Indexes… route in the SQL Server Enterprise Manager, can also be accessed via the 
Tools…Manage Indexes menu item in the Query Analyzer. Right mouse—clicking any icon 



in the graphical query plan also displays a menu, which allows Manage Indexes to be 
selected. Also, two Query Analyzer templates can be used to create an index in Transact-SQL. 
There is a basic-syntax and a full-syntax template. Use Edit and Insert Template from the 
Query Analyzer menu. 

3.7.4 The Create Index wizard 

This wizard leads you through a logical sequence of steps in order to create an index. After 
the initial welcome screen you are invited to choose the database and table on which you wish 
to create the index. The next screen allows you to select the columns that are to participate in 
the index and whether their sort order is ascending or descending. Index options such as 
whether the index is to be clustered or unique and the FILLFACTOR are specified on the 
following screen. Finally, the last screen allows you to name the index and order the columns. 

3.7.5 The SQL Distributed Management Framework (SQL-DMF) 

The SQL Distributed Management Framework (SQL-DMF) is an integrated framework of 
objects, services, and components that may be used to manage SQL Server. Within the SQL-
DMF resides SQL Distributed Management Objects (SQL-DMO). The SQL-DMO is a 
collection of objects that may be used for SQL Server database management. Index 
management can be performed through the SQL-DMO. Here is an example of Visual Basic 
code, which uses the SQL-DMO to create an index: 

   Private Sub cmdCommand1_Click() 
   On Error GoTo ErrorHandler 
 
       Dim oSQLServer As SQLDMO.SQLServer 
       Dim oTblCustomers As SQLDMO.Table 
       Dim oIdxCustomerNo As SQLDMO.Index 
 
       Dim bConnected As Boolean 
       Set oSQLServer = New SQLDMO.SQLServer 
       Set oIdxCustomerNo = New SQLDMO.Index 
       Set oTblCustomers = New SQLDMO.Table 
 
       bConnected = False 
       oSQLServer.LoginTimeout = 30 
 
       oSQLServer.Connect "KENENG01", "SA", "" 
       bConnected = True 
 
       Set oTblCustomers = 
   oSQLServer.Databases("BankingDB").Tables("Customers") 
 
   ' Create a new Index object, then populate the object 
   ' defining a unique, nonclustered index 
 
       oIdxCustomerNo.Name = "NCI_CustomerNo" 
       oIdxCustomerNo.Type = SQLDMOIndex_Unique 
       oIdxCustomerNo.IndexedColumns = "[customer_no]" 
 
   ' Create the index by adding the populated Index object 
   ' to its containing collection. 
 
       oTblCustomers.Indexes.Add oIdxCustomerNo 
 



       oSQLServer.DisConnect 
 
       Set oSQLServer = Nothing 
       Set oTblCustomers = Nothing 
       Set oIdxCustomerNo = Nothing 
 
   Exit Sub 
 
   ErrorHandler: 
 
       MsgBox (Err.Description) 
       If bConnected = True Then 
 
           oSQLServer.DisConnect 
 
           Set oSQLServer = Nothing 
           Set oTblCustomers = Nothing 
 
       End If 
 
   End Sub 

3.8 Dropping and renaming indexes 
Both clustered and nonclustered indexes can be dropped with the DROP INDEX Transact-
SQL statement: 

   DROP INDEX accounts.CI_AccountBalance 

Note that the table name must also be specified. Indexes can also be dropped by using the 
graphical interfaces. As discussed previously, if there is a clustered index present on the table, 
then all the nonclustered indexes will use the clustered index key as a pointer in the leaf-level 
index pages. Therefore, dropping a clustered index may be a slow, resource-intensive 
operation, since all the nonclustered indexes will have to be rebuilt. On the other hand, 
dropping a nonclustered index will be a relatively fast operation, since no other indexes on the 
table will be affected. 

It follows, therefore, that the order in which you drop indexes is important. Drop the 
nonclustered indexes first, before you drop the clustered index if there is one present on the 
table. Otherwise, you will waste time rebuilding the nonclustered indexes you are just about 
to drop. 

Indexes can be renamed by using the sp_rename system stored procedure: 

   EXEC sp_rename 'accounts.CI_AccountBalance', 
   CI_AccountCurrentBalance 

Note the use of the single quotes. Indexes may also be renamed by using the graphical 
interfaces. 

3.9 Displaying information about indexes 



Information can be graphically displayed by using the SQL Server Enterprise Manager or the 
Query Analyzer. There are also system stored procedures and functions that can be used to 
display information about indexes. These methods are discussed in the following sections. 

3.9.1 The SQL Server Enterprise Manager 

We have previously discussed how indexes can be created using the SQL Server Enterprise 
Manager All Tasks followed by Manage Indexes… route. The Manage Indexes window can 
be used to display information about an index. Just choose the index and click Edit. The Edit 
Existing window appears providing information about the chosen index. This is shown in 
Figure 3.21. 

 
Figure 3.21: Edit Existing window in the SQL Server Enterprise Manager  

Similarly, if the table is right-clicked and Design Table chosen as discussed previously, the 
Table and Index Properties button can be clicked and the Indexes/Keys tab selected. A 
Properties window will then provide information about the selected index. This is shown in 
Figure 3.22. 



 
Figure 3.22: Index/Keys window in the SQL Server Enterprise Manager showing an existing 
index  

In the Query Analyzer, the Manage Indexes window can be displayed from the Tools menu 
item. 

The Display Estimated Execution Plan window also provides access to the Manage Indexes 
window. When a query is present in the query pane, click the Display Estimated Execution 
Plan button or type CTRL+L. This displays the estimated query execution plan in the form of 
a number of icons. We will discuss these in the next chapter. For now we are only interested 
in obtaining information about our indexes. Just right-click anywhere in the display and 
choose Manage Indexes. The now-familiar Manage Indexes window will appear. I find the 
ability to display this window from here extremely useful, because when I am tuning an index 
strategy I am invariably using the Query Analyzer to display the estimated query execution 
plan. 

In the Query Analyzer, the Object Browser window can be displayed by clicking the Object 
Browser button or pressing the F8 function key. A database hierarchy can be expanded so that 
the list of the indexes on the table can be viewed. Right-clicking an index provides the ability 
to script the index to various destinations. A section of the Object Browser is shown in Figure 
3.23. 



 
Figure 3.23: A section of the Object Browser showing an index object  

3.9.2 The system stored procedure sp_helpindex 

The indexes that are present on a table can be listed by using the sp_helpindex system stored 
procedure: 

EXEC sp_helpindex accounts 
 
index_name        index_description                 index_keys 
----------        -----------------                 ---------- 
NCI_CustomerNo    nonclustered located on PRIMARY   customer_no 
NCI_Balance       nonclustered located on PRIMARY   balance 

3.9.3 The system table Sysindexes 

The stored procedure sp_helpindex looks in the system table sysindexes, which contains much 
useful information about indexes. Sysindexes is present in every database. The definition of 
the table is shown in Table 3.2. 

Table 3.2: Sysindexes Table Definition  
Column  Datatype  Description  
id int ID of table (for indid = 0 or 255)—else, the ID of table on which 

the index is created. 
status smallint Internal system-status information: 



Table 3.2: Sysindexes Table Definition  
Column  Datatype  Description  

1 = Terminate command if attempt to insert duplicate key 

2 = Unique index 

4 = Terminate command if attempt to insert duplicate row 

16 = Clustered index 

64 = Index allows duplicate rows 

2048 = Index created to support PRIMARY KEY constraint 

4096 = Index created to support UNIQUE constraint 
first int If indid = 0 or indid = 1, pointer to first data page. 

If indid > 1 or ≤ 250, pointer to first leaf page. 

If indid = 255, pointer to first text or image page. 
indid smallint Index ID: 0 = Table, 1 = Clustered index, >1 = Nonclustered 

Index, 255 = text or image data 
root int If indid > 0 or ≤ 250, pointer to root page. 

If indid = 0 or indid = 255, pointer to last page. 
minlen smallint Minimum length of a row 
keycnt smallint Number of key columns in the index 
groupid smallint ID of the filegroup in which the object is created 
dpages int If indid = 0 or indid = 1, dpages is the count of used data pages. 

If indid > 1 or ≤ 250, dpages is the count of index leaf pages. 
reserved int If indid = 0 or indid = 1, the total of pages allocated for all 

indexes and data pages. 

If indid > 1 or ≤ 250, the total pages allocated to this index. 

If indid = 255, the total pages allocated for text or image data. 
used int If indid = 0 or indid = 1, the total of pages used for all indexes 

and data pages. 

If indid > 1 or ≤ 250, the total pages used by this index. 

If indid = 255, the total pages used for text or image data. 
rowcnt bigint If indid ≥ 0 and indid ≤ 250, the number of rows in the table—

else this is set to 0. 
rowmodctr int Holds the total number of inserted, deleted, or updated rows 



Table 3.2: Sysindexes Table Definition  
Column  Datatype  Description  

since the last time statistics were updated for the table. 
reserved3 tinyint Reserved 
reserved4 tinyint Reserved 
xmaxlen smallint Maximum size of a row 
maxirow smallint Maximum size of a nonleaf index row 
OrigFillFactor tinyint The original FILLFACTOR value used when the index was 

created 
StatVersion tinyint Reserved 
reserved2 tinyint Reserved 
FirstIAM binary(6) Page ID of first IAM page for object 
impid smallint Reserved 
lockflags smallint Used to constrain locking in index 
pgmodctr int Reserved 
keys varbinary 

(1088) 
List of the column IDs of the columns that make up the index 
key 

name sysname Name of table (for indid = 0 or 255)—else index name. 
statblob image Distribution statistics 
maxlen int Reserved 
rows int If indid ≥ 0 and indid ≤ 250, the number of rows in the table—

else this is set to 0 (for backward compatibility). 

The following example shows a sysindexes entry for the clustered index on the Accounts 
table. The column headings have been edited and moved for clarity. 

SELECT * FROM sysindexes WHERE name = 'CI_cusno' 
 
id         status  first          indid  root 
--         ------  -----          -----  ---- 
117575457  164000  x400A00000100  1      0xAF0C00000100 
 
minlen  keycnt  groupid  dpages  reserved  used  rowcnt  rowmodctr  
reserved3 
------  ------  -------  ------  --------  ----  ------  ---------  -------
-- 
424     2       1        2084    2159      2148  25000   0          0 
 
reserved4  xmaxlen  maxirow  OrigFillFactor  StatVersion  reserved2 
---------  -------  -------  --------------  -----------  --------- 
0          441      34       60              0            0 
 
FirstIAM    impid    lockflags     pgmodctr  keys 
--------    -----    ---------     --------  ---- 
0xCF0900000100    0    0    0     0x380138000…. 
 
name        statblob        maxlen      rows 
----        --------        ------      ---- 



CI_Cusno    0x040000005A…  8000        25000 

The indid is 1, which shows that this is a clustered index. The number of data pages, dpages, 
is 2,084. There are 2,159 pages reserved for all the indexes and data, of which 2,148 are used. 
There are 25,000 rows. 

The first page of the table is x400A00000100, the root page of the index is 
0xAF0C00000100424, and the first IAM page is 0xCF0900000100. These can be decoded, as 
described in Chapter 2. The original FILLFACTOR was 60 percent. 

3.9.4 Using metadata functions to obtain information about indexes 

There are a number of extremely useful functions that can be used to obtain information about 
the properties of an index. Probably the most useful one is the INDEXPROPERTY function. 

This function takes the following form: 

   INDEXPROPERTY (table_ID, index, property) 

The table_ID holds the object ID of the table (remember that the ID of an object can be 
obtained by using the object_id function passing the objects's name). 

The index contains the name of the index whose properties you are investigating. 

The property is the property to return and can be one of the values shown in Table 3.3. 

Table 3.3: Property Values for the INDEXPROPERTY Function  
Value  Description  Value Returned  
IndexDepth Depth of the index Number of levels 

the index has 
IndexFillFactor Index specifies its own fill factor. Fill factor used 

when the index was 
created or last 
rebuilt. 

IndexID Index ID of the index on the table or indexed 
view 

Index ID 

NULL = Invalid 
input 

IsAutoStatistics Index was generated by the auto create statistics 
option of sp_dboption. 

1 = True, 0 = False 

NULL = Invalid 
input 

IsClustered Index is clustered. 1 = True, 0 = False 

NULL = Invalid 
input 

IsFulltextKey Index is the full-text key for a table. 1 = True, 0 = False 



Table 3.3: Property Values for the INDEXPROPERTY Function  
Value  Description  Value Returned  

NULL = Invalid 
input 

IsHypothetical Index is hypothetical and cannot be used 
directly as a data access path. Hypothetical 
indexes hold column-level statistics. 

1 = True, 0 = False 

NULL = Invalid 
input 

IsPadIndex Index specifies space to leave open on each 
interior node. 

1 = True, 0 = False 

NULL = Invalid 
input 

IsPageLockDisallowed Page locking is disallowed through 
sp_indexoption. 

1 = disallowed, 0 = 
allowed 

NULL = Invalid 
input 

IsRowLockDisallowed Row locking is disallowed through 
sp_indexoption. 

1 = disallowed, 0 = 
allowed 

NULL = Invalid 
input 

IsStatistics Index was created by the CREATE 
STATISTICS statement or by the auto create 
statistics option sp_dboption. Statistics indexes 
are used as a placeholder for column-level 
statistics. 

1 = True, 0 = False 

NULL = Invalid 
input 

IsUnique Index is unique. 1 = True, 0 = False 

NULL = Invalid 
input 

An example of the INDEXPROPERTY function is as follows: 

   SELECT INDEXPROPERTY (OBJECT_ID('accounts'), 
   'NCI_Balance', 'IndexDepth') 

There are other functions that can also be useful when displaying information about an index. 
The INDEXKEY_PROPERTY function returns information about an index key—for 
example, whether a column in the key is sorted in ascending or descending order. Another 
useful function is the OBJECTPROPERTY function. Some properties specified in this 
function are concerned with indexing, such as whether a table has a clustered index or not. 

3.9.5 The DBCC statement DBCC SHOWCONTIG 

This DBCC statement is used to obtain information about an index or table that can be used to 
investigate performance degradation. It is a very useful tool for performance analysis. Some 



of the output is a little arcane and is not very useful, but that is more than made up for by the 
fact that DBCC SHOWCONTIG outputs useful information concerning the level of 
fragmentation that has occurred in a table—in other words, the level of page splitting. The 
following DBCC SHOWCONTIG output was from the Accounts table after it had been 
loaded with 12,500 rows with even values in the account_no column and a clustered index 
created on the account_no column. 

DBCC SHOWCONTIG scanning 'accounts' table... 
Table: 'accounts' (709577566); index ID: 1, database ID: 7 
TABLE level scan performed. 
- Pages Scanned                          : 695 
- Extents Scanned                        : 88 
- Extent Switches                        : 87 
- Avg. Pages per Extent                  : 7.9 
- Scan Density [Best Count:Actual Count] : 98.86% [87:88] 
- Logical Scan Fragmentation             : 12.52% 
- Extent Scan Fragmentation              : 0.00% 
- Avg. Bytes Free per Page               : 380.2 
- Avg. Page Density (full)               : 95.30% 

The first line of output, Pages Scanned, is the number of pages in the page chain; in our 
example, it is the number of pages in the table (dpages in sysindexes). Another way of 
looking at this item is that it has taken 695 pages to hold the 12,500 rows. Since a page will 
hold about 18 rows by the time you have taken away the 96-byte page header and other 
overhead from the 8-KB page size, this is in the right ballpark. 

Extents Scanned is the number of extents read, which means that this is the number of extents 
used to hold the data rows. Since we have 695 pages, the best we can hope for is (number of 
pages/8 pages per extent) extents to hold the data. In our case 695/8 is 86.9, and, therefore, the 
best we can hope for is to hold the data in 87 extents. The data is actually held in 88 extents, 
slightly over our theoretical calculation but because of the initial allocation in mixed extents, 
this is reasonable. 

Extent Switches is the number of times the DBCC statement moved off an extent while it was 
scanning the pages in the extent. We would expect an extent switch to happen after the whole 
extent had been scanned and a new extent needed to be scanned next. Our extent switches 
value is 87, which is expected, since the jump onto the first extent is not counted. 

The Avg. Pages per Extent is merely the number of pages per extent, which is the (number of 
pages/number of extents). In our example this is (695/88), which gives us 7.9.  

Perhaps the most useful line of output is the Scan Density [Best Count:Actual Count]. This is 
our measure of fragmentation. The Best Count is the ideal number of extents used to hold our 
data pages if everything is contiguously linked, whereas the Actual Count is the actual 
number of extents used to hold our data pages. The Scan Density is the ratio of these two 
values expressed as a percentage. In other words ([Best Count/Actual Count] * 100). In our 
example Scan Density is (87/88 * 100), giving us 98.86 percent, which is close enough to 
perfect—we are pretty much utilizing our data pages and extents in the most effective way. 

The Logical Scan Fragmentation and Extent Scan Fragmentation are not particularly useful, 
but they do represent the noncontiguity of pages and extents in the index leaf level The Avg. 
Bytes Free per Page and Avg. Page Density (full) are a measure of the average free bytes on 



the pages in the chain and the percentage of fullness, respectively. These are values that are 
affected by the FILLFACTOR used. 

Next, 12,500 rows with odd values in the account_no column were loaded. This results in 
page splitting, since the even-numbered rows now have odd-numbered rows inserted between 
them. 

Output after loading 12,500 rows with odd values in the account_no column: 

DBCC SHOWCONTIG (accounts) 
 
DBCC SHOWCONTIG scanning 'accounts' table... 
Table: 'accounts' (709577566); index ID: 1, database ID: 7 
TABLE level scan performed. 
- Pages Scanned                          : 1389 
- Extents Scanned                        : 176 
- Extent Switches                        : 1388 
- Avg. Pages per Extent                  : 7.9 
- Scan Density [Best Count:Actual Count] : 12.53% [174:1389] 
- Logical Scan Fragmentation             : 50.04% 
- Extent Scan Fragmentation              : 1.14% 
- Avg. Bytes Free per Page               : 374.6 
- Avg. Page Density (full)               : 95.37% 

After loading our second batch of 12,500 rows, we can see that the situation has deteriorated. 
We have doubled the number of rows in the table and the Pages Scanned value is now 1,389, 
which is double the number of pages scanned previously, 695. The number of extents used to 
hold the data is now 176, which, again, is not far off double the number we have just seen, 
which was 88. The most dramatic increase is in the number of extent switches performed, 
which is now 1,388—about 16 times greater than the previous value. This gives us a Scan 
Density of only 12.53 percent. 

The bottom line is that there is much page fragmentation. Many pages have been inserted into 
the original page chain and SQL Server would have to jump around a lot to scan this table. 
Note also that the page fullness has not changed much. This is often not the case with real-
world applications. After page splitting, pages are often found to be between two-thirds and 
three-quarters full. This is common when page splitting is occurring and is due to the fact that 
50:50 splitting is taking place, as mentioned earlier in this chapter. An index rebuild, 
preferably with an appropriate FILLFACTOR value, would be advisable here. 

The full syntax of the DBCC SHOWCONTIG statement is as follows: 

DBCC SHOWCONTIG 
[ 
( { table_name | table_id | view_name | view_id } 
[ , index_name | index_id ] ) 
] 
[ WITH 
{ ALL_INDEXES 
| FAST [, ALL_INDEXES] 
| TABLERESULTS [, {ALL_INDEXES}] [, {FAST | ALL_LEVELS}] 
} 
] 



IDs may be used instead of names, if preferred. The index name is optional and if omitted 
DBCC SHOWCONTIG reports information for the table—unless there is a clustered index on 
the table, in which case it reports information for that. So, if you want to report on a 
nonclustered index, it should be named. The option ALL_INDEXES outputs information on 
all the indexes on the table. The FAST option specifies whether to perform a fast scan of the 
index and output minimal information. A fast scan does not read the data on each page. The 
TABLERESULTS option displays results as a rowset and also outputs extra information. 
Some of this extra information can be very useful. For example, the number of rows 
referenced by forwarding pointers (as discussed in Chapter 4) is output. By default, 
information pertaining to a table's data pages (also by convention the clustered index leaf-
level pages) or the nonclustered index leaf-level index pages is output. If the ALL_LEVELS 
option is specified, information pertaining to all index levels is output. 

3.10 Creating indexes on views 
Unlike previous versions of SQL Server, in SQL Server 2000 indexes can be created on a 
view, if its definition meets certain criteria. Unlike a nonindexed view, which does not 
physically hold data, an indexed view has its result physically stored in the database. Any 
modifications to the base data are reflected in the indexed view, so they are best created on 
tables that are changed infrequently. 

The first index created on a view that is to be indexed must be a unique clustered index. Other 
indexes may then be created. For a view to be indexed it must satisfy a number of criteria. 

One criterion is that it must be created with the SCHEMABINDING option. This option binds 
the view to the schema of the underlying base tables. This means that any views or tables 
participating in the view cannot be dropped, unless that view is dropped or changed so that it 
no longer has schema binding. Also, ALTER TABLE statements on tables that participate in 
views having schema binding will fail if these statements affect the view definition. Some, but 
not all, of the other criteria are as follows: 

• The view must only use base tables in its definition—no views. 
• Any user-defined functions in the view must use the SCHEMABINDING option. 
• The ANSI_NULLS and QUOTED_IDENTIFIER options must have been set to ON 

for the connection that defined the view. 
• The ANSI_NULLS option must have been set to ON for the connection that defined 

the tables referenced by the view. 
• The base tables referenced in the view must be in the same database and have the 

same database owner. 
• Base tables and user-defined functions referenced in the view must use a two-part 

name. No other combination of names is allowed. 
• All functions referenced by expressions in the view must be deterministic. This means 

that for a given set of inputs, the same result is always returned. 
• The select_list of the SELECT statement in the view must not include the * notation—

the columns must be listed explicitly. 
• Columns must not appear more than once, unless they appear the second time (or third 

time, etc.) in a complex expression. The select_list Col1, Col2 is valid and so is Col1, 
Col2, Col1+Col2 but not Col1, Col2, Col1. 



• Also not allowed are derived tables, rowset functions, the UNION operator, 
subqueries, outer or self joins, the TOP clause, the ORDER BY clause, the DISTINCT 
keyword, and COUNT(*); however, COUNT_BIG(*) is allowed. 

• The AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP aggregate functions. If 
AVG, MAX, MIN, STDEV, STDEVP, VAR, or VARP are specified in queries 
referencing the indexed view, the optimizer can often calculate the result if the view 
select_list contains SUM and COUNT_BIG. For example, AVG() can be calculated 
from SUM() / COUNT_BIG(). 

• A SUM function that references an expression that can be nullable is not allowed. 
• The full-text search predicates CONTAINS or FREETEXT are not allowed. 
• The view select_list cannot contain aggregate expressions unless a GROUP BY is 

present. 
• If GROUP BY is present, the view select_list must contain a COUNT_BIG(*) 

expression, and the view definition cannot include HAVING, CUBE, or ROLLUP. 
• A column that results from an expression that either evaluates to a float value or uses 

float expressions for its evaluation cannot be a key of an index in an indexed view. 

We've not finished yet! Indexes created on the view have some restrictions also, as shown in 
the following list. Most importantly, the first index that is created on the view must be 
clustered and unique. 

• The user executing the CREATE INDEX statement must be the owner of the view. 
• The following options must be set to ON for the connection creating the index: 

CONCAT_NULL_YIELDS_NULL, ANSI_NULLS, ANSI_PADDING, 
ANSI_WARNINGS, and ARITHABORT. The QUOTED_IDENTIFIERS and 
NUMERIC_ROUNDABORT options must be set to OFF. 

• Even if the CREATE INDEX statement does not reference them, the view cannot 
include text, ntext, or image columns. 

• If the SELECT statement in the view definition specifies a GROUP BY clause, then 
the key of the unique clustered index can reference only columns specified in the 
GROUP BY clause. 

An example view definition is as follows: 

CREATE VIEW dbo.BranchTotalFunds 
    WITH SCHEMABINDING 
    AS 
    SELECT branch_no, 
    COUNT_BIG(*) AS AccountInstances, 
    SUM(balance) AS TotalBalance 
    FROM dbo.accounts 
    GROUP BY branch_no 

The following clustered index can now be created: 

   CREATE UNIQUE CLUSTERED INDEX CIV_BranchTotalFunds 
       ON dbo.BranchTotalFunds (branch_no) 

Although the clustered index key will only contain the branch_no column, being a clustered 
index, the complete set of data rows with all the columns will be stored at the clustered index 
leaf level in the database. Nonclustered indexes may also now be created on the indexed view 
if desired. 



The query optimizer automatically makes use of indexed views—they do not have to be 
named explicitly—however, this is only true of the Enterprise Edition. We will discuss this 
behavior in Chapter 4. 

3.11 Creating indexes with computed columns 
In SQL Server 2000 it is possible to utilize computed columns in an index definition. The 
definition of the computed column must be deterministic. This means that for a given set of 
inputs, the same result is always returned. 

A computed column definition is deterministic if the following occur: 

• All functions referenced in the definition are deterministic and precise. 
• All columns referenced in the definition are from the same table as the computed 

column. 
• Multiple rows are not used to provide data for the computed column—for example, 

using SUM(). 

FLOAT data types are not precise. Also, various connection options, such as ANSI_NULL, 
must be set to ON when the table is created, and other options must be set to ON for the 
connection that creates the index. 

As an example, the GETDATE() and @@IDENTITY functions are nondeterministic, 
whereas SQUARE() and DATEDIFF() are deterministic. 

Suppose we create the following table: 

   CREATE TABLE accounts 
       ( 
       account_no      INT          NOT NULL , 
       customer_no     INT          NOT NULL , 
       branch_no       INT          NOT NULL , 
       balance         MONEY        NOT NULL , 
       account_notes   CHAR (400)   NOT NULL , 
       taxed_balance   AS (balance * 0.9) 
       ) 

The computed column is deterministic, since, for a given input, it produces the same output. 
Therefore, we can create an index using this column: 

   CREATE INDEX nci_taxed_balance ON accounts 
   (taxed_balance) 

A SELECT statement that specifies the column in its WHERE clause will use this index if it 
makes sense to do so. 

   CREATE TABLE accounts 
       ( 
       account_no      INT          NOT NULL , 
       customer_no     INT          NOT NULL , 
       branch_no       INT          NOT NULL , 
       balance         MONEY        NOT NULL , 
       account_notes   CHAR (400)   NOT NULL , 



       account_date    AS (GETDATE()) 
       ) 

We could not, however, create an index on the account_date column, since the computed 
column is nondeterministic. 

3.12 Using indexes to retrieve data 
Now that we have seen how indexes are put together and how they behave when data is 
retrieved and added, we can investigate how indexes are used to support good performance.  

The choice of whether to use an index or not and if so which index is a decision that the query 
optimizer makes. We will discuss the query optimizer in detail in Chapter 4, but we need to 
look at the different mechanisms of using an index to understand what the query optimizer is 
considering when it is in the process of making its decision. 

If there are no indexes present on a table, there is only one mechanism by which the data can 
be accessed and that is by means of a table scan. When a table scan is performed, each page in 
the table is read starting at the first page and ending at the last page. To read each page, a page 
request, SQL Server performs a logical read, also known as a logical I/O. If the page is not 
found in the data cache, this results in a physical read from disk. Each time a query is run the 
number of physical reads generated by the query is likely to change, because data will be 
cached from the previous execution of the query. For this reason, when comparing the work 
performed by different query optimizer strategies, it is better to compare the logical read 
values. 

The table scan is a useful baseline, since we know that we can always access our data in the 
number of logical reads the table scan requires. Anything more is likely to be a poor strategy. 
However, be aware that the query optimizer in SQL Server 2000 considers other factors, such 
as CPU, when choosing a plan, and so the point at which the query optimizer chooses a table 
scan in preference to an indexed access is not just the point at which the logical reads used by 
an index plan exceed the pages in the table, as it was with SQL Server 6.5. With this in mind 
let us consider different types of index access. 

We will use simplified diagrams for our two index types, as shown in Figures 3.24 and 3.25. 

 
Figure 3.24: A simplified clustered index  



 
Figure 3.25: A simplified nonclustered index  

Figure 3.24 shows a simplified clustered index, and Figure 3.25 shows a simplified 
nonclustered index. Note that, as is commonly found, the clustered index contains one less 
level than the nonclustered index. 

We will use a number of scenarios. First of all, we will use a scenario where we request a 
single row from the Accounts table using a clustered index on the account_no column and 
then a nonclustered index on the account_no column. 

Our second scenario will perform a range retrieval from the Accounts table with the same 
indexing strategy. 

Our third scenario will perform an access to the Accounts table that can be satisfied 
completely by the nonclustered index key columns. 

Our fourth scenario will revisit the above scenarios; however, there will still be a nonclustered 
index on the account_no column of the Accounts table, but we will also add a clustered index 
on the customer_no column of the Accounts table. 

Our fifth scenario will involve the use of multiple nonclustered indexes on our Accounts 
table. 

3.12.1 Retrieving a single row 

This is sometimes called a direct key lookup. We are attempting to retrieve a single row as 
opposed to a range of rows. Often this is a result of using the equality operator (=) on a 
primary key, for example: 

   SELECT balance WHERE account_no = 4000 

In the case of the clustered index SQL Server will first obtain the page number of the root 
page from the sysindexes table. In this root page there will be a number of key values, and 
SQL Server will look for the highest key value that is not greater than the key we wish to 
retrieve. 

 Note Remember that with both clustered indexes and nonclustered indexes, the index entries 
in the index pages are always held in key sequence at a given index level. Refer to 
Figures 3.1 and 3.3 to clarify this point. 



As we have already seen, in a clustered index an index entry consists of the index key plus a 
pointer, which is a page number (ignoring the fileID), so the index key retrieved in the root 
page will point to an intermediate index page. 

Again, SQL Server will look for the highest key value that is not greater than the key we wish 
to retrieve. In our diagram, the key found will now contain a page pointer to a data page, and 
this page will be retrieved. The data page is now scanned for a row containing the key we 
wish to retrieve. The rows in the data page in a clustered index are in key sequence, so the 
row is either found and returned or SQL Server will return a message stating "(0 row(s) 
affected)." This is shown in Figure 3.26. 

 
Figure 3.26: A direct key lookup in a clustered index  

In the case of a nonclustered index, the traversal of the index is performed in a similar 
manner. However, once the leaf level is reached the key value of the key we wish to retrieve 
is found, and this leaf-level index entry will contain the Row ID of the data row, so SQL 
Server will go directly to it in the appropriate data page. (See Figure 3.27.) 

 
Figure 3.27: A direct key lookup in a nonclustered index  

The nonclustered index has taken one more logical read. Is this important? Taken on its own 
probably not; however, if this is a query we are trying to optimize for an online transaction 
processing (OLTP) system with a large user population, it might just influence our design. On 



the whole though, the difference between using a clustered index or a nonclustered index for 
single row retrieval is slim. 

3.12.2 Retrieving a range of rows 

We shall now attempt to retrieve a range of rows, as opposed to a single row. Often this is a 
result of using operators such as BETWEEN, <, >, and LIKE—for example: 

   SELECT balance WHERE account_no BETWEEN 4001 AND 4500 

In the case of the clustered index SQL Server will first obtain the page number of the root 
page from the sysindexes table. In this root page there will be a number of key values, and 
SQL Server will look for the highest key value that is not greater than the lowest key we wish 
to retrieve. 

The page pointer will be followed to the intermediate index page. 

Again, SQL Server will look for the highest key value that is not greater than the lowest key 
we wish to retrieve. In Figure 3.28, the key found will now contain a page pointer to a data 
page, and this page will be retrieved. The data page is now scanned for a row containing the 
lowest key we wish to retrieve. The row is retrieved and so is the next row and so on until the 
key value of a retrieved row is found to be higher than the range we require. 

 
Figure 3.28: A range retrieval in a clustered index  

This is shown in Figure 3.28 with the query returning three rows. Note that SQL Server is 
directed to the data page that contains the lowest key value in the range. Once there, SQL 
Server needs only to retrieve the rows sequentially until the range is exhausted. SQL Server 
can do this because the clustered index has ensured that the rows are in key sequence order. 

In the case of a nonclustered index the traversal of the index is performed in a similar fashion. 
However, once the leaf level is reached the key value of the key we wish to retrieve is found, 
and this leaf-level index entry will contain the Row ID of the data row, so SQL Server will go 
directly to it in the appropriate data page. Now the leaf level of the nonclustered index is in 
key sequence order but the data is not. What this means is that the key values in the range are 
found next to one another in the index leaf pages, but it is highly unlikely that the data rows 



will be found next to one another in the data pages. In Figure 3.29 the query has returned 
three rows. The leaf level of the nonclustered index contains the three index entries next to 
one another, but the data rows are on different data pages. 

 
Figure 3.29: A range retrieval in a nonclustered index  

This is a very important point and is a fundamental difference between the behavior of a 
clustered index and a nonclustered index with range retrievals. In our example the clustered 
index has required less logical reads to retrieve the data than the nonclustered index because 
in the clustered index the data rows are adjacent. 

We have only retrieved three data rows in our example, but suppose we had retrieved 180 data 
rows. We can hold 18 rows from the Accounts table in one page, so the clustered index could 
theoretically retrieve the 180 data rows with ten logical reads to the data pages. The 
nonclustered index will take 180 logical reads to the data pages, which could equate to 180 
physical reads if the data rows were all on their own separate data pages and none were found 
in the data cache (more on data caching in Chapter 5). 

Suppose one data page happened to hold ten of the rows that satisfied the range. The 
nonclustered index would have ten pointers addressing that page and would still generate ten 
logical reads to it. 

If the query optimizer decided that the number of logical reads needed to traverse the 
nonclustered index, scan the relevant leaf-level pages, and retrieve the data was greater than 
the number of pages in the table, a table scan would be performed—assuming that other 
factors such as CPU had been taken into consideration. 

3.12.3 Covered queries 

The leaf level of a clustered index contains the data rows, whereas the leaf level of a 
nonclustered index contains only the key and a pointer; as long as the key is only a small 
portion of the total row we can see that a database page will hold more key values than 
complete data rows. That is, an index page in the database can hold more index entries than a 
data page in the database can hold data rows. 



We can use this fact to provide fast access for certain queries using a nonclustered index. 
Suppose we have created a composite index—that is, an index that consists of more than one 
column. An example of this might be the following: 

   CREATE INDEX NCI_AccountNoBalance 
       ON accounts (account_no, balance) 

Now, suppose we execute the following query: 

   SELECT balance FROM accounts 
       WHERE account_no BETWEEN 4001 AND 4500 

The query optimizer will realize that this is a covered query and that the index named 
NCI_AccountNoBalance is a covering index. This means that SQL Server does not have to go 
to the data level to satisfy the query. It only needs to go down as far as the leaf level of the 
nonclustered index, as shown in Figure 3.30. 

 
Figure 3.30: A covering index  

This is very efficient. In reality, there are 500 rows satisfying the query, but SQL Server only 
used four logical reads to satisfy the query. Although clustered indexes are often more 
efficient than their nonclustered cousins, when a nonclustered index is used as a covering 
index it is normally more efficient than an equivalent clustered index. As with a table scan, 
scanning the leaf level of an index activates the read ahead capability and a parallel data scan 
is initiated. 

3.12.4 Retrieving a single row with a clustered index on the table 

The important point to note here is that the nonclustered index on the Accounts table now has 
its leaf-level index entries containing the clustered index key as a pointer, not the Row ID. 
This was discussed earlier in the chapter. This means that access to data rows via the 
nonclustered index will take a route from the nonclustered index leaf-level pointer to the data 
rows via the clustered index. Let us look at our query again: 

   SELECT balance WHERE account_no = 4000 

SQL Server will first obtain the page number of the root page of the nonclustered index on 
account_no from the sysindexes table. In this root page there will be a number of key values, 



and SQL Server will look for the highest key value that is not greater than the key we wish to 
retrieve. As before, the index key retrieved in the root page will point to an intermediate index 
page. 

Again, SQL Server will look for the highest key value that is not greater than the key we wish 
to retrieve. Having located that, the next-level index page will be retrieved, which will be the 
leaf-level index page. The leaf-level index entry for account number 4,000 will contain the 
clustered index key, which will be a customer number. 

The root index page of the clustered index will now be retrieved. Using the customer number 
value to traverse the clustered index, the data row will be retrieved in exactly the same way as 
any single row retrieval from a clustered index. This is shown in Figure 3.31. 

 
Figure 3.31: A nonclustered index with a clustered index  

How does this retrieval strategy compare with our single row retrieval described earlier using 
a Row ID? Clearly it is less efficient. Instead of following the index pointer directly to the 
data, we now have to take a trip through the clustered index as well. In reality this is unlikely 
to be too much of an overhead. A clustered index is a compact index with typically few levels, 
so we are adding an overhead of a small number of page requests. For a single row retrieval 
this is not likely to be significant. 

3.12.5 Retrieving a range of rows with a clustered index on the table 

Again, the basic index retrieval strategy is similar to the range retrieval with a nonclustered 
index, described earlier. In this case, however, instead of requesting a data page containing 
the row for each leaf-level index entry found in range, the clustered index will be accessed to 
fetch each of the rows in the range. In other words, instead of requesting 180 data pages to 
fetch our 180 rows, as before, we are now accessing the clustered index 180 times. This is not 
efficient at all. Again, range retrieval via a nonclustered index is not efficient. Once more than 
a few rows are returned by the range retrieval, a table scan is likely to be performed by the 
query optimizer. 

3.12.6 Covered queries with a clustered index on the table 

This is an interesting scenario. Suppose we wish to execute the following query: 



   SELECT customer_no FROM accounts 
       WHERE account_no BETWEEN 4001 AND 4500 

We will assume that we have a nonclustered index on the account_no column of the Accounts 
table and a clustered index on the customer_no column of the Accounts table as well. 

At first glance, this query does not appear to be covered by the nonclustered index. It is a 
single column index on account_no. However, we know that the leaf-level pointer is the 
clustered index key, so the leaf-level index entry contains both the account_no column and the 
customer_no column. Therefore, the query can indeed be satisfied by the nonclustered index 
without the data rows being fetched, and the query is, in fact, covered.  

The fact that the clustered index key is part of the index entry in a nonclustered index can 
result in the query optimizer choosing a very efficient strategy. 

3.12.7 Retrieving a range of rows with multiple nonclustered indexes on the 
table 

Suppose we wished to execute the following query: 

   SELECT * FROM accounts 
   WHERE 
   balance BETWEEN 100 AND 200 
   AND 
   customer_no BETWEEN 1000 AND 1200 

If there are no appropriate indexes on the table, SQL Server would perform a table scan. If 
there is a nonclustered index present on the balance column, then the query optimizer might 
choose to use that index if the number of rows returned was not too large. If there is a 
nonclustered index present on the customer_no column, then the query optimizer might 
choose to use that index if the number of rows returned is not too large. 

If one of the indexes is present and is chosen, then SQL Server would process the range 
retrieval by processing the appropriate range in index key values in the leaf level of the 
nonclustered index and issuing a data page request for each pointer (we'll assume there is no 
clustered index on the table, so we are dealing with Row IDs). When each data row is fetched, 
the remaining criteria would be applied to the data row. We say that it is filtered. 

One problem with this technique is that it can be wasteful. Suppose we have a nonclustered 
index present on the balance column alone and that the query optimizer chooses that index to 
perform the previous query. The index may have 100 leaf-level index key values satisfying 
the balance range, and 100 data page requests (logical reads) will be performed. SQL Server 
will then apply the customer number range filter and could eliminate most of the data rows 
from the result set. We have used the nonclustered index to fetch a set of rows, most of which 
are ultimately discarded. Fetching data pages is a relatively expensive operation. 

Now suppose we create a second nonclustered index on the customer_no column. The query 
optimizer can often make use of both of these indexes in the plan. The result of the query is 
the set intersection of the set of accounts that have a balance between 100 and 200 and the set 
of accounts that have a customer number between 1,000 and 1,200. This is shown in Figure 
3.32. 



 
Figure 3.32: Index intersection  

From an indexing perspective we can think of this as the set intersection of the valid set of 
Row IDs from the nonclustered index on balance and the valid set of Row IDs from the 
nonclustered index on customer_no. As Figure 3.32 shows, the sets of Row IDs may overlap a 
little, overlap greatly, or not overlap at all. In the latter case, this means that no rows satisfy 
both criteria. The query optimizer can perform this set intersection in memory (typically) and 
so find the set of Row IDs that point to data rows satisfying both query conditions before the 
data pages have been accessed. This will often avoid having many data page requests 
performed needlessly. How does SQL Server perform the set intersection operation on the 
Row IDs? It uses a hashing algorithm, which we will discuss in Chapter 4. In Chapter 4 we 
will also discuss a query optimizer plan, which utilizes index intersection. 

So, typically how much benefit can this use of multiple indexes provide? This depends on a 
number of considerations, but the main one concerns the size of the reduction in the data page 
requests. Remember: If there are too many, the query optimizer will probably decide a table 
scan is a more efficient means of querying the data. 

If we look at Figure 3.32, we can see that the intersection of the two sets of Row IDs in the 
second case results in a set that contains most of the Row IDs. In this case the number of data 
page requests will not be reduced greatly by the use of both indexes. 

The intersection of the two sets of Row IDs in the first case results in a set that contains few 
of the Row IDs. In this case the number of data page requests will be reduced by the use of 
both indexes and this is a win.  

In the third case the two sets of Row IDs do not intersect. This results in a set that contains no 
Row IDs. In this case the number of data page requests will be reduced to zero by the use of 
both indexes in the query plan, since clearly no rows satisfy the query. This is a big win. 



We have just looked at a variety of scenarios using clustered and nonclustered indexes. In 
Chapter 4 we will look more closely at the query optimizer itself and how these fundamental 
scenarios are used. 

3.13 Choosing indexes 
The choice of indexes can dramatically affect performance and can mean the difference 
between data being retrieved in seconds, with few disk I/Os or minutes, even hours, with 
many disk I/Os. Choosing the optimum number of indexes to support the critical queries is 
therefore an extremely important task. 

3.13.1 Why not create many indexes? 

If queries can be assisted by indexes, why not create lots of indexes on every table? 
Unfortunately, as in so many areas of database technology, there are swings and roundabouts 
concerning the use of indexes. On one hand, indexes can speed up access to data, but, on the 
other hand, they can slow down table insertions, updates, and deletions. This is because SQL 
Server has more work to do maintaining all the indexes to ensure that they always truly reflect 
the current data in the table. Indexes also take up disk space. 

Clearly, if disk space is plentiful and the database is read only, there are good reasons to 
create many indexes. In reality most databases experience a mixture of read and write activity, 
so the correct choice of indexes is critical to good performance. The choice of appropriate 
indexes should be a product of good upfront design and transaction analysis. 

We have already seen the effect that inserts can have on a clustered index. If the index key is 
not an increasing key value—that is, the newly inserted key is not always higher than existing 
key values—data rows will be inserted throughout the page chain. This will cause page 
splitting to occur. 

Either way, row insertion means that SQL Server must perform work to maintain the clustered 
index. If there are also nonclustered indexes on the table, which is usually the case, each 
nonclustered index must also be maintained when row insertions occur. Every nonclustered 
index must accommodate a new index entry, which may cause page splitting to occur in the 
index pages. 

What about row deletion? In a clustered index a row may be deleted from a data page, and, if 
there is no index entry pointing to it because it is not the lowest key value in the page, little 
maintenance activity need be performed. In the case of nonclustered indexes there will always 
be maintenance activity if a row is deleted. Every nonclustered index must remove the index 
entry. If this leaves a single row in an index page, SQL Server will merge the index page with 
another in order to keep the index compact. Again, this means work for SQL Server. 

The behavior of updates was discussed earlier. It is possible that an update to a row can result 
in the row being deleted and then reinserted, which has the overhead of deletion and insertion. 

The bottom line is that too many indexes on a table can be disastrous for the performance of 
transactions that write to the table. How many indexes should there be on a table? There is no 
correct answer, but for a volatile table I start to worry if someone wants to put more than three 



on it. That's not to say that it will be a problem. I'm just saying I worry, which means I don't 
leave things to chance—I test them! 

3.13.2 Online transaction processing versus decision support 

Online transaction processing (OLTP) systems have characteristics that are different from 
decision support systems (DSSs), and you should have a good appreciation of where your 
application fits into this spectrum. 

OLTP systems tend to involve a high frequency of short, predefined transactions that affect 
small amounts of data. More often than not, OLTP systems change data by insertion, update, 
and deletion. OLTP systems frequently support large user populations and provide guaranteed 
response times in the subsecond range. 

DSS systems tend to be read only. They tend to involve a low frequency of long, complex, ad 
hoc queries that affect large amounts of data. Usually DSS systems do not support large user 
populations, and the response time of queries may be measured in minutes or even hours. 
Unlike OLTP systems, DSS systems are often not mission critical. This is shown in Figure 
3.33. 

 
Figure 3.33: The OLTP DSS spectrum  

Examples of OLTP systems are sales order entry systems and travel booking systems; 
examples of DSS systems might be anything from MIS reporting systems to large data 
warehousing systems. 

Given the differences in the two application types it is clear that the indexing strategies are 
going to be different. In the case of OLTP there are likely to be high transaction rates 
involving transactions that change data. Having too many indexes will adversely affect the 
performance of OLTP systems, so the designer should limit the number of indexes to those 
that are really necessary. In the case of DSS the system is likely to be predominantly read 
only, and therefore the designer can use as many indexes as are needed to support the query 
mix. 

Unlike OLTP transactions, DSS queries are ad-hoc by nature, and the designer will often be 
unable to perform much upfront transaction analysis in order to arrive at a fixed indexing 
strategy; therefore, using a good mix of indexes is frequently necessary. 

3.13.3 Choosing sensible index columns 

When the query optimizer is investigating different access strategies, it will cost each strategy 
to determine the number of logical reads the strategy will use. This will be an estimate, but, 
depending on the choice of columns in an index, the query optimizer might decide very 
quickly that an index is not worth bothering with. 



When we are choosing index columns, we should be looking for a combination of columns 
that support our queries, as well as the number of duplicate values in the index column or 
columns. Suppose we were to index a column that could contain only the code M (male) and 
F (female). Would this be a good column to index? It would not be a good column to index, 
because probably half the rows would contain M and half would contain F. We can say that 
the following query is not very selective: 

   SELECT * FROM clients WHERE gender = 'F' 

If there is a nonclustered index on gender, it is highly unlikely that the query optimizer would 
use it. 

Another example would be the state column in a table holding client information. If we 
executed the following query on a 100,000-row table, how many rows would be returned? 

   SELECT * FROM clients WHERE state = 'CA' 

If our company is based in San Francisco, we might expect that most of our clients were in 
California, and therefore 90 percent of the rows in the table might be returned. However, if 
our company is based in Ulan Bator, we might expect that few of our clients were in 
California, and therefore 5 percent of the rows in the table might be returned. 

We can define selectivity as the percentage of the rows returned. For example: 

   selectivity = (the number of rows returned / the count of 
   rows in the table) * 100 

If 5,000 of the rows in our 100,000-row table were returned, the selectivity of our query 
would be: 

   selectivity = (5000 / 100000) * 100 = 5% 

If 90,000 of the rows in our 100,000-row table were returned, the selectivity of our query 
would be: 

   selectivity = (90000 / 100000) * 100 = 90% 

The more selective a query the fewer rows returned and the more likely that an index will be 
chosen by the query optimizer. In the example where 90 percent of the rows in the table are 
returned, the query optimizer would probably choose a table scan in preference to a 
nonclustered index on the state column. In the example where 5 percent of the rows in the 
table are returned, the query optimizer would probably choose to use a nonclustered index on 
the state column. 

 Note The terminology here can be quite confusing. If a query is highly selective, few rows are 
returned, but the selectivity will be a low percentage value. If a query is not highly 
selective, many rows are returned, but the selectivity will be a high percentage value. 

How does the query optimizer know that 5 percent or 90 percent of the rows in a table will be 
returned by a query? We shall see later that each index usually has key distribution statistics 
to help the query optimizer estimate the number of rows returned. 



Another value associated with selectivity is density. The density is the average fraction of 
duplicate index key values in the index. We can easily work out the density by finding the 
reciprocal of the count of unique values in the index key. Suppose in our example we had 
clients in 40 states; then the index density would be 1/40 = 0.025. 

Once the index density is known, by multiplying the total count of rows in the table by it, we 
can obtain the likely number of rows hit by specifying a given value, in our example: 

   row hits = 100000 * 0.025 = 2500 

This is obviously an approximation, since it does not take into account the fact that we might 
have many or few column values of CA, so index density is only used when key distribution 
statistics cannot be. 

 Note Again, these terms can be confusing. A high selectivity refers to few duplicates, but a 
high density refers to many duplicates. 

SQL Server holds multiple index densities for a composite index, and we can picture the fact 
that adding more columns to an index is likely to increase the number of unique values in the 
index key. 

Suppose, in our example, that the index is not based on the state column alone but is based on 
the state and city columns. Whereas previously 10,000 clients may have been located in 
California, only ten may be located in Oakland. The selectivity of a query specifying both the 
state and city columns will be higher than the selectivity of a query specifying only the state 
column. 

SQL Server will hold the index densities for the state column and the state and city columns 
combined—that is, two density values. The query optimizer can access these values when 
working out its strategy. 

How can we easily find information about the density of an index key? DBCC comes to the 
rescue with the DBCC SHOW_STATISTICS statement:  

DBCC SHOW_STATISTICS (accounts, 'NCI_BranchNoCustNo') 
 
Statistics for INDEX 'NCI_BranchNoCustNo'. 
 
Updated                Rows    Rows Sampled    Steps    Density    Average 
key length 
-------                ----    ------------    -----    -------    --------
---------- 
Feb 29 2000 11:58AM    10000   10000           295       0.0        
11.999647 
 
All density     Columns 
-----------     ------- 
9.9999998E-3    branch_no 
1.9999999E-4    branch_no, customer_no 
 
Statistics for INDEX 'NCI_BranchNoCustNo'. 
Updated                Rows    Rows Sampled    Steps    Density    Average 
key length 



-------                ----    ------------    -----    -------    --------
---------- 
Oct 19 2000  9:31PM    25000   25000           100       0.0        8.0 
 
All density    Average Length    Columns 
-----------    --------------    ------- 
9.9999998E-3   4.0               branch_no 
7.9999998E-5   8.0               branch_no, customer_no 
 
RANGE_HI_KEY  RANGE_ROWS  EQ_ROWS  DISTINCT_RANGE_ROWS  AVG_RANGE_ROWS 
------------  ----------  -------  -------------------  -------------- 
1000          0.0         250.0    0                    0.0 
1001          0.0         250.0    0                    0.0 
1002          0.0         250.0    0                    0.0 
1003          0.0         250.0    0                    0.0 
1004          0.0         250.0    0                    0.0 
1005          0.0         250.0    0                    0.0 
1006          0.0         250.0    0                    0.0 

This DBCC statement displays information about the key distribution statistics. Most of this 
information will be discussed with respect to the query optimizer later in the book. However, 
there is some information, referred to as All Density, which is the index density we have been 
discussing. Our index is a composite index of two columns, branch_no and customer_no. The 
branch_no column has a density value of 9.9999998E-3—that is, approximately 0.01. This is 
representative of the fact that we have 100 unique branch_no values (density = 1/100). 

The density of both columns combined is very low (1.9999999E-4 or 0.0002). Suppose there 
are 10,000 rows in the Accounts table. A query containing the following: 

   WHERE branch_no = 1000 

would return (10,000 * .01 = 100) rows, whereas a query containing: 

   WHERE branch_no =  1000 AND customer_no = 34667 

would return (10,000 * 0.0002 = 2) rows. 

Let us have a look at another example to emphasize a point. Let us assume that we have a 
nonclustered index on the balance column in the Accounts table. Here is a fragment of the 
DBCC SHOW_STATISTICS output: 

DBCC SHOW_STATISTICS (accounts, NCI_Balance) 
 
Statistics for INDEX 'NCI_Balance'. 
 
Updated                Rows   Rows Sampled  Steps  Density       Average 
key length 
-------                ----   ------------  -----  ------------  ----------
-------- 
Oct 19 2000  9:46PM    25000  25000         106    4.0426468E-5  12.0 
 
All density     Average Length    Columns 
-----------     --------------    ------- 
4.0471085E-5    8.0               balance 
3.9999999E-5   12.0               balance, customer_no 



If we look at the All Density information, we can see that statistics are displayed not only for 
the balance column but also for the balance, customer_no combination. Why is this? This is a 
single column index containing only the balance column. This is because the database 
administrator has just created a clustered index on the Accounts table on the customer_no 
column. 

Therefore, all nonclustered indexes use this clustered index key as the pointer at the index leaf 
level. Since the leaf-level index entry for our NCI_Balance index is then effectively balance, 
customer_no, SQL Server can keep meaningful index density information using both 
columns. Note that in our previous example the index NCI_BranchNoCustNo would be 
holding the customer_no column redundantly if there was a clustered index present on the 
Accounts table on the customer_no column. 

This raises an interesting point. If a clustered index is dropped from a table, we know that the 
nonclustered indexes will be rebuilt so that their leaf-level pointers become Row IDs. This 
means that they no longer contain the clustered index key, which previously made the 
nonclustered indexes effectively composite indexes. Therefore, be prepared for some query 
optimizer strategy changes if you change a clustered index into a nonclustered index at some 
point.  

3.13.4 Choosing a clustered index or a nonclustered index 

As we have seen, a table can only have one clustered index, so it is important that we use it 
carefully—it's our ace and we want to play it at the right time. So when is a clustered index 
useful? 

Consider using a clustered index when the following occur: 

• The physical ordering supports the range retrievals of important queries, or equality 
returns many duplicates. 

• The clustered index key is used in the ORDER BY clause or GROUP BY clause of 
critical queries. 

• The clustered index key is used in important joins to relate the tables—that is, it 
supports the foreign key. 

• The clustered index columns are not changed regularly. 

However, remember that there is a downside to using a clustered index. Every nonclustered 
index leaf-level pointer will become the clustered index key. If the clustered index is large, 
this may significantly impact the size and efficiency of the nonclustered indexes on the table. 
Also, creating a clustered index on a large table will require a large amount of free space in 
the database to accommodate the mechanics of the clustered index creation algorithm. A 1-
GB table will require free space equal to 1-GB plus at least 0.2 GB during the creation phase. 

Consider using a nonclustered index when the following occur: 

• Once or more rows will be retrieved—that is, the query is highly selective. 
• The nonclustered index key is used in the ORDER BY clause or GROUP BY clause of 

critical queries. 
• The nonclustered index key is used in important joins to relate the tables. 
• A covered query is required. 



• Multiple indexes can be used for index intersection. 

Also consider that many applications will require the selection of a row by its primary key. 
This is a single row selection and therefore would normally benefit from the creation of an 
index containing the same columns as the primary key. Since it is less common to request 
ranges of primary keys, a nonclustered index is probably the best option. 

There are occasions when neither a clustered index nor a nonclustered index should be used. 
If the table is small the query optimizer will probably choose a table scan anyway, and if the 
index has a low selectivity, the query optimizer might ignore it. 

Creating an index in these instances just increases disk space use and maintenance overhead. 

The choice of index and index columns is often a compromise, in my experience, regardless 
of the database product. This choice is perhaps the most critical one the database designer 
must face, since incorrect indexes will result in potentially greater disk I/O, CPU, locking 
contention, and a lower caching efficiency. A piece of good news, though. As we shall see 
later in this book, SQL Server possesses an Index Tuning Wizard, which can assist us when 
designing our indexing strategy. 

Chapter 4: The Query Optimizer 
4.1 Introduction 
When we execute a query, either by typing in a Transact-SQL statement or by using a tool 
such as Microsoft Access, it is highly likely we will require that rows be read from one or 
more database tables. Suppose we require that SQL Server performs a join of two tables: table 
A containing a dozen rows and table B containing a million rows. How should SQL Server 
access the required data in the most efficient manner? Should it access table A looking for 
rows that meet the selection criteria and then read matching rows from table B, or should it 
access table B first? Should it use indexes, if any are present, or perform a table scan? If 
indexes are present and there is a choice of index, which one should SQL Server choose? 

The good news is that SQL Server contains a component known as the query optimizer, 
which will automatically take a query passed to it and attempt to execute the query in the most 
efficient way. The bad news is that it is not magic, and it does not always come up with the 
best solution. A database administrator should be aware of the factors that govern query 
optimization, what pitfalls there are, and how the query optimizer can be assisted in its job. 
Database administrators who know their data well can often influence the optimizer with the 
judicious use of indexes to choose the most efficient solution. 

What do we mean by efficient in the context of the query optimizer? Basically, the query 
optimizer is looking to minimize the number of logical reads required to fetch the required 
data. The query optimizer is the SQL Server AutoRoute Express, choosing the best route to 
the data. Unfortunately, the query optimizer doesn't show you the golf courses on the way! 

The query optimizer's main task, therefore, is to minimize the work required to execute a 
query, whether it is a query that retrieves data from a single table or a query that retrieves data 
from multiple tables participating in a join. 



Note that, although we have referred only to queries, the query optimization process is 
necessary for SELECT, INSERT, UPDATE, and DELETE Transact-SQL statements, since 
the UPDATE and DELETE Transact-SQL statements will often contain a WHERE clause and 
the INSERT statement may contain a SELECT clause. 

4.2 When is the query optimized? 
When a query is submitted to SQL Server, various phases of processing occur. First of all, the 
query is parsed—that is, it is syntax checked and converted into a parsed query tree that the 
standardization phase can understand. The standardization phase takes the parsed query tree 
and processes it to remove redundant syntax and to flatten subqueries. This phase essentially 
prepares the parsed query tree for query optimization. The output of this phase is a 
standardized query tree. This phase is sometimes known as normalization. 

The query optimizer takes the standardized query tree and investigates a number of possible 
access strategies, finally eliminating all but the most efficient query execution plan. In order 
to formulate the most efficient query execution plan, the query optimizer must carry out a 
number of functions. These are query analysis, index selection, and join order selection. 

Once the most efficient query execution plan is produced, the query optimizer must translate 
this into executable code that can execute under Windows operating systems. This code can 
then access the appropriate indexes and tables to produce the result set. 

Figure 4.1 shows a simplified diagram of how query optimization takes place. In reality the 
process is much more complex but this gives us a basic idea. 



 
Figure 4.1: Phases in query processing  

How does the query optimizer work out the most efficient query execution plan? We will look 
at the way it does this now. We will see that it takes in the information available to it in the 
form of the query itself, indexes and key distribution statistics, size of the table and rows per 
page, and then calculates the logical read cost given a possible access path. 

4.3 Query optimization 
The query optimization phase is the phase we will concern ourselves with in this chapter. This 
phase can be broken down into a number of logical steps, as follows: 

• Query analysis 
• Index selection 
• Join order selection 

Let us discuss each step in sequence. 

4.3.1 Query analysis 



The first step the query optimizer performs during the query optimization phase is query 
analysis. In this step the query optimizer examines the query for search arguments (SARGs), 
the use of the OR operator, and join conditions.  

Search arguments 

A search argument is the part of a query that restricts the result set. Hopefully, if indexes have 
been chosen carefully, an index can be used to support the search argument. Examples of 
search arguments are as follows: 

   account_no = 7665332 
 
   balance > 30 
 
   lname = 'Burrows' 

The AND operator can be used to connect conditions, so another example of a valid search 
argument would be as follows: 

   balance > 30 AND lname = 'Burrows' 

Examples of common operators that are valid in a search argument are =, >, <, ≤, and ≥. Other 
operators such as BETWEEN and LIKE are also valid, because the query optimizer can 
represent them with the common operators listed above. For example, a BETWEEN can 
always be represented as ≥ AND ≤. For example: 

   balance BETWEEN 1000 AND 10000 

becomes: 

   balance >= 1000 AND balance <= 10000 

A LIKE can always be represented as ≥ AND <. For example: 

   lname LIKE 'Burr%' 

becomes: 

   lname >= 'Burr' AND lname < 'Burs' 
 Note The expression balance BETWEEN 1000 AND 10000 is not equivalent to balance 

BETWEEN 10000 AND 1000. The query optimizer will not detect the mistake and 
switch the values. 

There are a number of expressions that are not considered to be search arguments. The NOT 
operator is an example: 

   NOT IN ('CA', 'NH', 'TX') 
 
   customer_no <> 9099755 
 
   balance <> 78000 

Another example of this is the use of NOT EXISTS. 



NOT is not considered to be a search argument, because it does not limit the search. Whereas 
account_no = 100,000 specifies a single value in a table that may potentially be efficiently 
retrieved using an index, account_no <> 100,000 will cause SQL Server to look at every row 
in the table to ensure that the account_no column does not contain this value. 

There are other expressions that are not considered to be search arguments. If a column is 
used instead of an operator, the expression is not considered to be a search argument. For 
example: 

   loan < loan_agreed 

How can SQL Server use such an expression to restrict the result set? It cannot, since the 
loan_agreed value is not known until the row is read; until it is known, it cannot be used to 
compare against the loan column. This will normally result in a table scan or index scan if the 
query is covered. 

Another example of an expression that cannot be considered for query optimization is one that 
involves mathematics or functions. For example: 

   balance * 1.175 > 10000 
 
   UPPER(lname) = 'SHARMAN' 

Against my database, using mathematics as in the first example, the query optimizer chose to 
use a nonclustered index on balance as long as the number of rows returned was low. The 
query optimizer had done the math and estimated correctly the number of rows returned 
whose balance would be greater than 10,000/1.175. However, using a function such as 
CEILING() caused a table scan to be performed, as in: 

   SELECT * FROM accounts WHERE CEILING(balance) = 100 

String functions, as in the second example, caused the query optimizer to resort to a table 
scan. A number of common string functions cause a table scan to be performed—for example, 
LEFT(). 

The bottom line is that using a function or expression on the left side of the operator will 
probably cause the query optimizer to use a table scan. This is one reason why it is very 
important to check the query execution plan that the query optimizer has produced—it may 
not be what you expect! We'll see how to check the query execution plan shortly. 

As long as we have just a column on the left side of an appropriate operator, we have a search 
argument. We can often compare the column with an expression, so that the query optimizer 
will be able to use the distribution steps in the index key distribution statistics for the index 
rather than just the density values. Distribution statistics will be covered shortly. This is true 
as long as the expression can be evaluated before the query execution phase—in other words, 
before the query actually runs. An example of such a search argument would be as follows: 

   monthly_yield = items_processed/12 
 
   yearly_amount = daily_rate * 365 

However, consider the following query: 



   sell_by_date > DATEADD (DAY, -10, GETDATE()) 

The query optimizer will choose a table scan. Again, this is common when a function is used. 
So check the query execution plan carefully! 

 Note How can we make sure that the index is used? There are various techniques, which we 
will discuss shortly. We could put the query in a stored procedure and pass the result of 
the function as a parameter. We may be able to create a computed column on the table 
and index it. Depending on what we want to achieve, this may or not make sense. 
However, we can only index a computed column if the computation is deterministic. 
This was discussed in the previous chapter. The function GETDATE() is not 
deterministic. We can also force the query optimizer to use an index. This technique is 
discussed later but should be used with care. 

If the query optimizer cannot evaluate the expression until the query runs—that is, until after 
the query optimization phase has completed, then SQL Server has no chance of making use of 
distribution steps. A classic example of this is where variables are used: 

   DECLARE @bal MONEY 
 
   SELECT @bal = 9990.23 
 
   SELECT * FROM accounts WHERE balance > @bal 

In the BankingDB database, the previous example used a table scan instead of the 
nonclustered index on balance. If we do not use a variable, the nonclustered index is used, as 
follows: 

   SELECT * FROM accounts WHERE balance > 9990.23 

Note that this is different from stored procedure parameters, which will be discussed later in 
this chapter. 

OR clauses 

The query optimizer also checks the query for ORs. The OR clause links multiple search 
arguments together. For example, we might have a query that looks like the following: 

   SELECT * FROM customers WHERE 
      age > 40        OR 
      height < 2      OR 
      weight < 200    OR 
      state =  'NH'   OR 
      city = 'Manchester' 

Any row matching any of the above conditions will appear in the result set. A customer will 
be displayed who lives in the city of Manchester in the United Kingdom or who lives in 
Nashua in New Hampshire. In other words, it is likely that many rows in the table will meet 
one or more of these criteria. 

Compare the previous query with the following query: 

   SELECT * FROM customers WHERE 



      age > 40        AND 
      height < 2      AND 
      weight < 200    AND 
      state =  'NH'   AND 
      city = 'Manchester' 

The number of rows in the table that meet all the criteria is likely to be far less. The ANDs 
restrict the result set, whereas the ORs widen it. For this reason a query containing ORs is 
handled in a particular way, which will be discussed later in the chapter. Because of this, the 
query optimizer looks for OR clauses in the query analysis step. 

There may be OR clauses in the query that are hiding. Take the following query, for example: 

   SELECT lname, fname FROM employees 
      WHERE 
      state IN ('CA', 'IL', 'KS', 'MD', 'NY', 'TN', 'TX') 

At first glance there are no ORs in this query. The query optimizer sees this, however, as a 
number of OR clauses, as follows:  

   SELECT lname, fname FROM employees 
      WHERE 
         state = 'CA'    OR 
         state = 'IL'    OR 
         state = 'KS'    OR 
         state = 'MD'    OR 
         state = 'NY'    OR 
         state = 'TN'    OR 
         state = 'TX' 

Join clauses 

After looking for search arguments and OR clauses the query optimizer looks for any join 
conditions. When more than one table is processed in a query, a join clause is usually found. 
The join clause can be in the WHERE clause or in the ON clause of the SELECT statement if 
ANSI-standard join clauses are used. 

SQL Server join example: 

   SELECT fname, lname FROM customers, accounts 
      WHERE customers.customer_no = accounts.customer_no AND 
      balance > 10000 

ANSI join example: 

   SELECT fname, lname FROM customers INNER JOIN accounts 
      ON customers.customer_no = accounts.customer_no 
      WHERE balance > 10000 

Note that in SQL Server 2000 the following ANSI-standard join clauses are supported: 

• Join 
• Cross join 
• Inner join 



• Left outer join 
• Right outer join 
• Full outer join 

Sometimes a table can be joined with itself. This is known as a self-join, or reflexive join. 
Although only one table is being accessed, the table is mentioned in the query more than once 
and so a join clause is used. The classic self-join is the Employees table containing a column, 
supervisor_id, that holds a value found in the employee_id column elsewhere in the table. In 
other words, a supervisor is an employee. The Employees table might be defined as follows: 

   CREATE TABLE employees 
      ( 
      employee_id   CHAR(8), 
      lname         CHAR(10), 
      fname         CHAR(10), 
      supervisor_id CHAR(8) 
      ) 

A query to retrieve the last name of the employee and the last name of the supervisor would 
be as follows: 

   SELECT e1.lname AS employee, e2.lname AS supervisor 
      FROM employees e1 INNER JOIN employees e2 
      ON e1.supervisor_id = e2.employee_id 

4.3.2 Index selection 

Having identified the search arguments in the query, the next step the query optimizer 
performs during the query optimization phase is index selection. In this step the query 
optimizer takes each search argument and checks to see if it is supported by one or more 
indexes on the table. The selectivity of the indexes is taken into consideration, and, based on 
this, the query optimizer can calculate the cost of a strategy that uses that index in terms of 
logical reads and CPU. This cost is used to compare strategies that use different indexes and a 
strategy that uses a table scan. 

Does a useful index exist? 

To obtain information on the indexes present on a table and their characteristics, SQL Server 
can check the sysindexes system table. From the sysindexes table the query optimizer can 
quickly establish the indexes present on the table by checking the rows that have a value in 
the id column equal to the object ID of the table (as defined in the sysobjects system table) 
and an indid column value > 0 and < 255. Other columns in the sysindexes table help the 
query optimizer determine on which columns the index is based. 

The query optimizer will look for an index based on the same column as the search argument. 
If the index is a composite index, the query optimizer determines if the first column in the 
index is specified in the search argument. 

If a search argument has no matching index, then no index can be used to support the search 
argument and so the query optimizer will look for indexes supporting other search arguments. 
If it is the only search argument, then a table scan will be performed. 



How selective is the search argument? 

Suppose the following query is presented to the query optimizer: 

   SELECT account_no FROM accounts WHERE 
      branch_no = 1005 AND 
      balance > 5000 AND 
      customer_no BETWEEN 10000 AND 110000 

If there are indexes present on the branch_no, balance and customer_no columns, how can the 
query optimizer decide which indexes are the most efficient to use—that is, which indexes 
will use the least number of logical reads and CPU to return the data? The query optimizer 
may choose to use no indexes, since a table scan is estimated to be a more efficient access 
mechanism, or it may choose to use one or more indexes. 

The query optimizer has a number of mechanisms by which it can determine this information. 
The most accurate method is to use statistical information available in the key distribution 
statistics associated with the index. We will look at these distribution statistics shortly. If the 
key distribution statistics do not exist, the query optimizer applies a weighting to each 
operator. For example, the = operator has a weighting of 10 percent, which means that the 
query optimizer will assume that 10 percent of the rows in the table will be returned. 

The approximate weightings of some common operators are shown in Table 4.1. 

Table 4.1: Weightings of Common Operators
Operator  Weighting  
= 10% 
< 33% 
> 33% 
BETWEEN 12% 

As you might imagine, these weightings are very general estimates and can be wildly 
inaccurate, so it is always best if the query optimizer is able to use the distribution statistics 
associated with an index. 

If we have a unique index matching the search argument, then the query optimizer knows 
immediately the number of rows returned by the = operator. Because of the unique index, the 
query optimizer knows that at most one row can be returned (of course, zero rows could be 
returned), so this figure is used rather than the 10 percent weighting. 

Key distribution statistics 

Key distribution statistics are usually created when an index is created. The one exception to 
this is when an index is created on an empty table; otherwise, the index has key distribution 
statistics held for it. Note that the indexes on a table that has been truncated will have no key 
distribution statistics held for them. From now on we'll just refer to key distribution statistics 
as index statistics. We cannot just refer to them as statistics, since this is ambiguous. Why? 
Because a little later on we'll meet another type of distribution statistics known as column 
statistics. 



Where are these index statistics held? They are held as a column in the sysindexes system 
table for the relevant row representing the index whose index statistics we wish to keep. This 
column is named statblob and is an IMAGE datatype. Since it is an IMAGE datatype, there is 
plenty of room to hold lots of statistics, if required, although SQL Server keeps the number of 
statistics held to a fairly small but significant value. In my experience, for most indexes, the 
number of samples held in this column is in the low hundreds, typically about 300. 

If this column is empty (holds NULL), then there are no index statistics associated with the 
index. 

The statblob column holds index statistics information for the index to allow the query 
optimizer to quickly estimate the proportion of rows that will be returned by a search 
argument. Suppose we execute the following query on the Accounts table, which holds 
information for 25,000 accounts: 

   SELECT account_no FROM accounts WHERE balance > 9999 

Will 25,000 rows be returned, or 1,000 rows, or 25 rows, or 0 rows? The query optimizer 
needs to know this information so it can decide whether a nonclustered index on the balance 
column should be considered interesting or whether a table scan is likely to be more efficient. 
Remember that returning a range of rows using a nonclustered index is going to result in a 
request for a data page (logical read) for every row returned. If the query optimizer can 
accurately estimate how many rows are likely to be returned, it knows with reasonable 
accuracy how many data page requests will be needed, and, therefore, it can calculate the cost 
of the query and compare this with the cost of a table scan. 

In the BankingDB database there are, on average, less than five accounts that have a balance 
greater than 9,999, and so an indexed access should be more efficient than a table scan. But 
how can the query optimizer know this? It could count the number of rows that satisfied the 
search argument before it actually executed the query, but that would defeat the object of the 
exercise! 

This is where the statblob column comes to the rescue. It holds a series of samples across the 
index key range that the query optimizer can check. Based on these samples the query 
optimizer can quickly estimate the percentage of the rows in the table that will be returned by 
the search argument using that index. 

The statblob column actually holds a number of key values. This number is a function of the 
key size and the number of rows in the table. Although, in theory, the statblob column could 
hold up to 2 GB of key distribution statistics for an index, only a very large table would need 
that, and the effort in reading the index statistics would be far greater than the data. Of course, 
in practice, only a small amount of data space is needed in the statblob column, since few key 
values are actually held. For example, a nonclustered index on the account_no column in the 
Accounts table, which is a four byte (integer) key, has index statistics information consisting 
of 200 steps. By comparison, a nonclustered index on the account_notes column, which is a 
CHAR(400), has index statistics information consisting of 74 steps. The more steps, the more 
accurate the statistics, so, in this respect at least, it is better to have a smaller key value. 

Suppose we have an index key that is an integer, such as the account_no column in our 
Accounts table. The initial key value found in the index is the first one to be sampled and 



stored in the statblob column, so we will have the statblob column contents shown in Figure 
4.2. 

 
Figure 4.2: Distribution steps and keys in the statblob column  

We can see that the number of distribution steps is typically going to be less than the number 
of key values stored in the statblob column. Apart from the choice of key size we cannot 
influence the number of key values held. However, as we shall see shortly, we can choose 
how much of our data is actually sampled in order to generate our index statistics. 

What about composite indexes? SQL Server only stores key values for the first column. This 
means that it is better to choose the most selective column as the first column of an index—
that is, the column with the least number of duplicate values. Of course, the first column of 
the index needs to be specified in the query, and choosing the most selective column will need 
to be done with this in mind. 

I find that many database designers choose the key order in a composite index starting with 
the first column being the least selective, the next column being the next least selective, and 
so on, even if the query is going to specify all of the columns in its WHERE clause. Why is 
this? Usually it is because it is the most natural approach to take. 

Consider a three-column composite index on the columns region, state, city. There is a natural 
hierarchy here—cities belong to states, which in turn belong to regions. There are few 
regions, more states, and many more cities. It's natural to create the index in the region, state, 
city column order just as you would in a report. But we can see that if we do this, we are 
going to populate the statblob column with few distinct values. This could result in the query 
optimizer choosing a table scan to execute the following statement when the nonclustered 
index would have been a better choice. 

   SELECT qty FROM sales 
      WHERE 
      region = 'North' AND 
      state = 'CO' AND 
      city = 'Denver' 



As we saw in the previous chapter, we can use the utility DBCC SHOW_STATISTICS to 
investigate index statistics. The format of this DBCC statement is as follows: 

   DBCC SHOW_STATISTICS (table_name, target) 

The target is an index name or a statistics collection name. We will talk about statistics that 
are not index statistics later.  

For example, to show the index statistics on the nonclustered index nciBalance, the following 
code segment would be used: 

DBCC SHOW_STATISTICS (accounts, nciBalance) 
 
Statistics for INDEX ' nciBalance'. 
Updated               Rows   Rows Sampled   Steps   Density       Average 
key length 
-------               ----   ------------   -----   -------       ---------
--------- 
Oct 20 2000  5:50PM   25000  25000          106     4.0426468E-5  8.0 
 
All density   Average Length      Columns 
-----------   --------------      ------- 
4.0471085E-5   8.0         balance 
 
 
RANGE_HI_KEY   RANGE_ROWS   EQ_ROWS   DISTINCT_RANGE_ROWS   AVG_RANGE_ROWS 
-------------------------------------------------------------------------- 
.9500            0.0        1.0       0                     0.0 
88.1000        237.0        2.0       235                   1.0085106 
237.0600       357.0        1.0       353                   1.0084746 
282.3600       127.0        1.0       127                   1.0 
316.1400       107.0        2.0       107                   1.0 
413.7800       225.0        2.0       224                   1.0044643 
699.9500       735.0        2.0       729                   1.0082304 
723.5500        64.0        2.0        64                   1.0 
: 
: 
9696.2000       383.0        1.0      379                   1.0078948 
9739.9200       126.0        2.0      124                   1.008 
9998.5700       603.0        1.0      596                   1.0100503 
9998.8500         0.0        1.0      0                     0.0 

The index statistics shown above are associated with the nonclustered index based on the 
balance MONEY data type column in the Accounts table. The index statistics indicate that 
there are 111 steps and that 25,000 rows from the Accounts table were sampled to create these 
statistics. There are 25,000 rows in the Accounts table in total, so, in fact, all the rows were 
sampled. This is expected behavior when a CREATE INDEX statement generates the index 
statistics. Later we will see that other mechanisms to update the key distribution statistics will 
not necessarily sample all the rows. 

If we look at the All Density value, we can see that it is 4.0471085E-5. As discussed in 
Chapter 3, the density is the average fraction of duplicate index key values in the index. Since 
the density is the reciprocal of the count of unique values in the index key, the count of unique 
values in our nonclustered index must be 1 / 4.0471085E-5, which yields 24,709 unique 
values, which is correct as checked with a SELECT DISTINCT (balance) query.  



Multiplying the total count of rows in the table by the index density, 4.0465478E-5, we can 
obtain the likely number of rows hit by specifying a given value, in our example: 

   row hits = 25000 * 4.0471085E-5 = 1.011777125 

This means that a query specifying balance = value would usually return one row. 

 Note Just to remind us of the terminology, this is an example of high selectivity and low 
density. 

The output from DBCC SHOW_STATISTICS needs a few more words of explanation. The 
Density value, 4.0426468E-5, is close to the All Density value of 4.0471085E-5. The 
difference is due to the fact that the Density value considers nonfrequent values. These are 
values that appear only once in a step. If a value appears more than once, it is considered to be 
a frequent value. The All Density value includes frequent values. The Average Length is the 
average length of the index key. If the index were a composite index, there would be an entry 
for the first column, first plus second column, and so on. The Average Key Length is the 
average length of the total composite index key (including a clustered index key pointer if 
there is a clustered index on the table). The average in this context is necessary because 
columns in the key can be variable-length datatypes. 

The next section of data contains the sample steps themselves. Remember that they only apply 
to the first column in the key. The column RANGE_HI_KEY is the upper bound value of a 
histogram step—that is, the highest value in the step. The first step is the lowest value for the 
column in the table. The column RANGE_ROWS is the number of rows from the sample that 
fall within a histogram step, excluding the upper bound. By definition, this must be zero in the 
first sample. We can see that the seventh step contains the value 735 and that the values are 
quite varied across other steps. The column EQ_ROWS is the number of rows from the 
sample that are equal in value to the upper bound of the histogram step. In our data this varies 
between 1.0 and 2.0. For our seventh step this is 2.0. 

The column DISTINCT_RANGE_ROWS is the number of distinct values within a histogram 
step, excluding the upper bound. For our seventh step there are 729 distinct values within the 
step, excluding the value 699.9500 (the upper bound). Finally, the column 
AVG_RANGE_ROWS is the average number of duplicate values within a histogram step, 
excluding the upper bound. This is defined as: 

   (RANGE_ROWS / DISTINCT_RANGE_ROWS for DISTINCT_RANGE_ROWS 
   > 0) 

For our seventh step this value is 1.0082304. 

To check out some of these column values let us focus on the seventh step. Suppose we 
execute the SQL statement: 

   SELECT COUNT (balance) FROM accounts 
      WHERE balance BETWEEN 413.7800 AND 699.9500 

This SELECT specifies the two RANGE_HI_KEY values for our seventh step and the one 
before. We find that 739 rows are returned. However, the BETWEEN operator is inclusive, 
but the definition of the RANGE_ROWS column excludes the upper bound; the upper bound 



of the previous sample will not be included in the RANGE_ROWS column. So we need to 
rewrite the query, as follows: 

   SELECT COUNT (balance) FROM accounts 
      WHERE balance > 413.7800 AND balance < 699.9500 

We now find that 735 rows are returned, which is the correct value. 

Suppose we execute the following query: 

   SELECT COUNT (balance) FROM accounts WHERE balance= 
   699.9500 

We find that the value 2 is returned, which agrees with the value in the EQ_ROWS column 
for this step. Finally, let us execute this statement: 

   SELECT COUNT (DISTINCT (balance)) FROM accounts 
      WHERE balance > 413.7800 AND balance < 699.9500 

This returns 729, which agrees with the value in the DISTINCT_RANGE_ROWS column for 
this step. We can then calculate RANGE_ROWS / DISTINCT_RANGE_ROWS, which is 
735/729, giving 1.0082304. This agrees with the value in the AVG_RANGE_ROWS column 
for this step. 

Column statistics 

As well as maintaining statistics on indexed columns—to be precise, the first column of an 
index key—SQL Server will optionally maintain statistics on nonindexed columns. This 
includes columns in a composite index key other than the first. As long as the database option 
auto create statistics is set to on, if a column on which index statistics are not being 
maintained is referenced in a WHERE clause, statistics will be gathered if it would help the 
query optimizer. 

This behavior can be suppressed by setting the database option auto create statistics to off. If 
this option is set to off, the fact that the query optimizer would like statistics information for 
the column is usually made obvious by a warning in the estimated query execution plan 
output in the Query Analyzer. A Missing Column Statistics event will also be evident in the 
SQL Server Profiler if it is being traced. If auto create statistics is set to on, an Auto Stats 
event will occur. 

There are many occasions when SQL Server will automatically create column statistics. 
Basically, it will do so if they are missing and the query optimizer would really like to have 
them. Here is an example of such an occasion. Suppose we have created a nonclustered index 
with a composite key consisting of the customer_no and balance columns. We now execute 
the following query: 

   SELECT account_no  FROM accounts WHERE customer_no = 100 
   AND balance = 100 



The query optimizer knows the statistical distribution of key values in the customer_no 
column but not in the balance column. It will create statistics for this column because they are 
helpful in finding the most efficient query plan. 

To find the column statistics that have been created automatically by the query optimizer, 
look for statistics with names similar to _WA_Sys_balance_0519C6AF. To display statistics 
use the system stored procedure sp_helpstats or Tools →Manage Statistics in the Query 
Analyzer. 

Of course, you can manually create column statistics. Use Tools →Manage Statistics in the 
Query Analyzer or the CREATE STATISTICS Transact-SQL statement. Alternatively, the 
system stored procedure sp_createstats can be used to create single-column statistics for all 
eligible columns for all user tables in the current database. 

Updating index and column statistics 

When do index and column statistics get updated? Statistics are not automatically updated 
when transactions that change the index commit. This would cause the statblob column to 
become a bottleneck. The statblob column is accurate when it is first constructed as part of the 
index creation (assuming there is data in the table at that time). After that, on a volatile index, 
the key distribution statistics will diverge from reality. It is the responsibility of the database 
administrator to ensure that the key distribution statistics are updated to reflect reality, and 
there are various ways to achieve this. The most common method is to use the Transact-SQL 
statement UPDATE STATISTICS. The format of this statement is as follows: 

   UPDATE STATISTICS table 
      [ 
         index 
         | (statistics_name[,...n]) 
      ] 
      [   WITH 
         [ 
            [FULLSCAN] 
            | SAMPLE number {PERCENT | ROWS}] 
            | RESAMPLE 
 
         ] 
         [[,] [ALL | COLUMNS | INDEX] 
         [[,] NORECOMPUTE] 
      ] 

If both the table name and index name are specified, the statistics for that index are updated. If 
only the table name is specified, the statistics for all indexes present on the table are updated. 
The same is true for column statistics, which are referred to by statistics_name. The 
FULLSCAN and SAMPLE number {PERCENT | ROWS} clause allows the database 
administrator to choose how much data is actually sampled from the table. The FULLSCAN 
option is used to specify that all the rows in a table should be retrieved to generate the key 
distribution statistics. 

The SAMPLE number {PERCENT | ROWS} option is used to specify the percentage of the 
table or the number of rows to sample when generating statistics. This is typically used when 
a large table is being processed. SQL Server will make sure that a minimum number of rows 
are sampled to guarantee useful statistics. If the PERCENT, ROWS, or number option results 



in too small a number of rows being sampled, SQL Server automatically corrects the sampling 
based on the number of existing rows in the table. 

Note that updating index statistics for a nonclustered index can be performed by scanning the 
leaf-level index pages of the nonclustered index, which may well be a lot faster than scanning 
the table rows. When updating column statistics, it is likely that the table will need to be 
scanned. 

If neither of these options is specified, SQL Server automatically computes the required 
sample size for the scan.  

The RESAMPLE option specifies that an inherited sampling ratio will be applied to the 
indexes and columns. In other words, the sampling ratio from the old statistics will be used. 
When a table has undergone major changes (e.g., numerous deletes), SQL Server 2000 may 
override the inherited sampling factor and implement a full scan instead. 

The ALL | COLUMNS | INDEX option specifies whether the UPDATE STATISTICS 
statement updates column statistics, index statistics, or both. If no option is specified, the 
UPDATE STATISTICS statement updates all statistics. 

The NORECOMPUTE option specifies that statistics that become out of date will not be 
automatically recomputed. When statistics become out of date is a function of the number of 
changes (INSERT, UPDATE, and DELETE operations) that hit indexed columns. If this 
option is used, SQL Server will not automatically rebuild statistics. To switch automatic 
statistics recomputation back on, the UPDATE STATISTICS statement can be executed 
omitting the NORECOMPUTE option, or the system stored procedure sp_autostats can be 
used. 

One might imagine that omitting the table name would cause the key distribution statistics on 
all of the indexes on all of the tables in the database to be updated. Not so, this will result in a 
syntax error. Microsoft provides a convenient way to accomplish this with the system stored 
procedure sp_updatestats. This will run UPDATE STATISTICS against all user tables in the 
current database. For example: 

   USE BankingDB 
 
   EXEC sp_updatestats 

will update both index- and column-level statistics. 

Another way of achieving this might be to use a Transact-SQL cursor, as follows: 

   DECLARE tables_cursor CURSOR FOR 
      SELECT table_name FROM information_schema.tables 
         WHERE table_type = 'BASE TABLE' 
 
   OPEN tables_cursor 
 
   DECLARE @tablename NVARCHAR(128) 
 
   FETCH NEXT FROM tables_cursor INTO @tablename 
 
   WHILE (@@fetch_status <> -1) 



 
      BEGIN 
 
         EXEC ('UPDATE STATISTICS ' +  @tablename) 
         FETCH NEXT FROM tables_cursor INTO @tablename 
 
      END 
 
   PRINT 'The statistics have been updated.' 
 
   CLOSE tables_cursor 
 
   DEALLOCATE tables_cursor 

The above cursor creates a result set of all the user tables and then proceeds to update the key 
statistics of all the indexes on each one. Obviously, using sp_updatestats is more 
straightforward, but the cursor can be modified easily to only update the statistics of certain 
tables—for example, only those beginning with cust. This may be useful on a database 
consisting of large tables. 

Another method of updating statistics is to use the Database Maintenance Plan wizard. This is 
a wizard that allows a database administrator to easily and quickly set up a routine to back up 
and integrity check a database, as well as to reorganize indexes and update statistics. The 
section of the wizard that is concerned with data optimization is shown in Figure 4.3. 

 
Figure 4.3: The Database Maintenance Plan wizard  

A possible reason for not using this wizard is that it will run UPDATE STATISTICS on all 
the tables in the database, and this may become a problem with a database consisting of large 
tables. 

Updating distribution statistics can also be achieved using the Distributed Management 
Objects (DMO) interface. The Table object has methods named UpdateStatistics and 
UpdateStatisticsWith, which can be used to update the distribution statistics of all the indexes 
and columns on a table. The Index object and Column object also support these methods. 



How can we easily tell when distribution statistics were last updated? This information is 
displayed by DBCC SHOW_STATISTICS. However, there is also a function called 
STATS_DATE that can be used. The format of this function is as follows: 

   STATS_DATE   (table_id, index_id) 

To check the date the distribution statistics were last updated on all the indexes and column 
statistics on a given table, the following Transact-SQL can be used: 

   SELECT 
      ind.name AS 'Index/Column Statistics', 
      STATS_DATE(ind.id, ind.indid) AS 'Date Last Updated' 
      FROM sysobjects tab INNER JOIN sysindexes ind 
      ON tab.id = ind.id 
      WHERE tab.name = 'accounts' 

This might give the following output: 

   Index/Column Statistics   Date Last Updated 
   ------------------------------------------------- 
   nciBalance                2000-10-10 20:38:27.927 
   stat_branch_no            2000-10-10 20:38:28.627 

Note that if there is no distribution statistics created for an index, because the index was 
created on an empty table, the Date Last Updated column will contain null. This should be a 
red warning light to a database administrator, who should run UPDATE STATISTICS 
without delay! 

Another method that can be used to check when distribution statistics were last updated is to 
use the system stored procedure sp_autostats, described shortly. 

Whichever method is chosen, the distribution statistics for an index or column on a table 
should be updated regularly or the query optimizer will start to use inaccurate information. An 
extreme example of this would be an index that was created on a table containing a single row 
that then had a million rows added. Most cases are not so extreme, but it is easy to forget to 
update statistics if no automated mechanism such as a scheduled task is set up. When the 
query optimizer chooses a strategy that you would not expect, the date the statistics were last 
updated is often the first information to check. 

However, there is a safety net for the database administrator who forgets to update statistics. 
SQL Server 2000 contains functionality to automatically update statistics. This functionality 
is enabled globally for all the distribution statistics in a database by the database option auto 
update statistics. 

Individual distribution statistics can have the automatic updating of statistics turned on or off 
by the use of the UPDATE STATISTICS statement with the NORECOMPUTE option. If 
UPDATE STATISTICS is executed with the NORECOMPUTE option, the automatic 
updating of statistics is turned off for the index or column distribution statistics referenced in 
the statement. If UPDATE STATISTICS is executed without the NORECOMPUTE option, 
the automatic updating of statistics is turned on for the index or column distribution statistics 
referenced in the statement. 



The automatic updating of statistics may also be turned on or off by the sp_autostats system 
stored procedure. If this is executed with just the table name parameter, information is 
displayed regarding all the index- and column-level distribution statistics relevant to that 
table, as follows: 

   EXEC sp_autostats accounts 
 
   IndexName          AUTOSTATS   Last Updated 
   ------------------------------------------- 
 
   [nciBalance]       ON          2000-10-1020:38:27.927 
   [stat_branch_no]   ON          2000-10-1020:38:28.627 

An index or column statistics name can be specified to limit the output: 

   EXEC sp_autostats @tblname=accounts, @indname= nciBalance 
 
   IndexName          AUTOSTATS   Last Updated 
   --------------------------------------- 
   [nciBalance]       ON          2000-10-1020:38:27.927 

Note that this system stored procedure also displays when the statistics were last updated. 

When can we not use statistics? 

Statistics cannot be used by the query optimizer if they are not there! As we have said, this 
occurs if the index was created on an empty table. In this case the STATBLOB column in the 
sysindexes table will contain NULL. If a table is truncated, the STATBLOB column will also 
be set to NULL. It follows, therefore, that if an index is created on an empty table, which is 
then populated with data, an UPDATE STATISTICS operation should be executed, or the 
query optimizer may create an inefficient query execution plan based on false assumptions. 
An UPDATE STATISTICS operation should also be run after a table has been truncated and 
repopulated. Of course, SQL Server 2000 may jump in and automatically update the 
distribution statistics if the appropriate database options are set, but why leave it to chance! 

Not having distribution statistics present means that the query optimizer has little idea how 
many rows are likely to satisfy the query and, therefore, whether an index should be used. 
This is of particular importance when dealing with nonclustered indexes, since the query 
optimizer may decide not to use it and use a table scan instead. As an example, our Accounts 
table was created with a nonclustered index on the balance column. The table contained 
25,000 rows. It was then truncated and repopulated with the 25,000 rows. The following 
query was then executed: 

   SELECT * FROM accounts WHERE balance = 100 

The estimated query execution plan showed that the query optimizer had decided to use a 
table scan, and it had estimated that 1,988 rows would be returned. In fact, zero rows were 
returned, since no accounts had a balance of exactly zero. A bad decision, since the 
nonclustered index would have been the most efficient access method. 

Even if statistics are present, they may not be used. When we discussed search arguments 
earlier in this chapter, we introduced cases where the query optimizer cannot evaluate the 



expression in the WHERE clause until the query runs—that is, until after the query 
optimization phase has completed. An example of this is using a variable, as follows: 

   DECLARE @bal MONEY 
 
   SELECT @bal = 4954.99 
 
   SELECT * FROM accounts WHERE balance = @bal 

In this case distribution steps cannot be used when the query optimizer creates a query 
execution plan for the Transact-SQL batch, and the query optimizer will use the index density 
information present in the statblob column. Index density was discussed in Chapter 3 and is 
the average fraction of duplicate index key values in the index. It is the reciprocal of the count 
of unique values in the index key. 

Suppose we have a Supplier table with a country_code column and we deal with suppliers 
from 20 countries. The index density would then be 1/20= 0.05. 

By multiplying the total count of rows in the table by the index density, we can obtain the 
likely number of rows hit by specifying a given value. Suppose our table contains 5,000 
suppliers: 

   row hits = 5000 * 0.05 = 250 

However, this does not take into account the fact that we might have many or few column 
values of UK; therefore, index density is a poor substitute for statistics. 

An even worse substitute are the weightings we saw earlier in this chapter (shown in Table 
4.1). These are used if there are no statistics. 

Translating rows to logical reads 

When the query optimizer has found a particular index interesting and has used the selectivity 
of the search argument to assess the number of rows returned, it translates this value into 
logical reads. 

The way it does this translation depends on the index type—clustered or nonclustered—and 
whether there is actually an index present. 

No index present 

If we have no suitable index on the table, a table scan must be performed, as shown in Figure 
4.4. 

 
Figure 4.4: Logical reads required for a table scan  

The number of logical reads a table scan will use is easy to calculate. All we have to do is find 
the number of database pages used by the table. We can find this information from the 



sysindexes system table by looking at the dpages column. In the BankingDB database the 
Accounts table uses 1,389 pages. 

This is an extremely important number. We immediately know that we can retrieve all the 
rows from the Accounts table in 1,389 logical reads. This establishes a baseline value against 
which the query optimizer measures the cost of index access in terms of logical read. 

A clustered index present 

What if we can use a clustered index? SQL Server will have to traverse the index until the 
appropriate data page is reached. Because the data is in key sequence, this data page and any 
other relevant pages will then be retrieved. The cost of using a clustered index is the cost of 
the index traversal plus the data pages scanned, as shown Figure 4.5. 

 
Figure 4.5: Logical reads required for a clustered index  

We can estimate the number of data pages scanned by knowing the approximate number of 
rows per page. I tend to use the DBCC SHOWCONTIG statement with the 
TABLERESULTS option to find the average record size and then divide this into 8,000 to get 
the approximate number of rows per page. In the BankingDB database the Accounts table 
holds about 18 rows per page. Knowing this, you can estimate the number of data pages 
scanned if you know roughly how many rows will be returned by the query. But what about 
the index pages? 

To find the number of logical reads used to traverse the clustered index we need to know the 
number of levels in the index. This is known as the depth of the index. Again, I tend to use the 
DBCC SHOWCONTIG statement with the TABLERESULTS option and the ALL_LEVELS 
option to find the number of levels in an index. The number of levels in an index will be the 
number of logical reads used to traverse the index. Most indexes will consist of a small 
number of levels, so the number of logical reads used to traverse an index can often be 
ignored. 

A nonclustered index present 

If there is a nonclustered index present, SQL Server will have to traverse the index until the 
appropriate leaf pages are reached. The pointers from the leaf pages will then have to be 
followed to each row pointed at by a an index entry in the leaf page. Each data row may 
reside on its own data page, or a data page may host a number of the rows we wish to retrieve. 
This is irrelevant. Each row retrieved will result in a data page request—that is, a logical read. 



The cost of using a nonclustered index is then the cost of the index traversal plus the leaf 
pages scanned plus the cost of retrieving each row, as shown in Figure 4.6. 

 
Figure 4.6: Logical reads required for a nonclustered index  

This could result in many logical reads. If the query returns a range of rows, say 2,000, the 
query optimizer will assume that this will cost the number of logical reads to traverse the 
nonclustered index plus the number of logical reads to scan the relevant leaf pages plus 2,000 
logical reads to retrieve the data rows. We can immediately see that in the case of our 
Accounts table, this is greater than our baseline value for a table scan. In other words, all 
other things being equal, the table scan would be the most efficient retrieval method. 

 Note In fact, the query optimizer does not consider only logical reads. It also considers CPU. 
For this reason, a comparison alone between logical reads and the number of pages in 
the table is an oversimplification. 

Clearly, if the query is only going to return one row—for example, when we use the = 
operator with a unique index, the cost is the index traversal plus the cost of retrieving the 
single data page, as shown in Figure 4.7. Compared with performing the same operation using 
a clustered index, the nonclustered index will usually take only one extra logical read. 

 
Figure 4.7: Logical reads required for a nonclustered index and a single row retrieval  

We have previously mentioned the covered query, where all the information necessary is 
satisfied from the index leaf level without visiting the data. SQL Server will have to traverse 
the index until the leaf level is reached and then the relevant leaf-level pages are scanned, as 
shown in Figure 4.8. 



 
Figure 4.8: Logical reads required for a covering nonclustered index  

A nonclustered index present and a clustered index present 

We have already mentioned in Chapter 3 that the presence of a clustered index on a table 
results in the leaf-level index page pointers in any nonclustered indexes on the table to 
become the clustered index key instead of the Row ID. 

So now, as well as SQL Server 2000 traversing the nonclustered index, it must also traverse 
the clustered index. Of course, a query that returns a range of rows will return a range of 
pointers from the nonclustered index, all of which will have to access the clustered index. The 
number of logical reads performed to access the nonclustered index will therefore be 
increased by the logical reads needed to access the clustered index. 

However, there is a positive side to this. As we have stated, the presence of a clustered index 
on a table results in the leaf-level index page pointers in any nonclustered indexes on the table 
to become the clustered index key instead of the Row ID. In other words, the leaf-level index 
entries in the clustered index will now hold the nonclustered index key plus the clustered 
index key, and so there is more chance of the nonclustered index covering the query. 

Multiple nonclustered indexes present 

We have discussed the fact that range retrieval in a nonclustered index may result in a large 
number of data page requests such that a table scan is chosen in preference. But what if the 
WHERE clause of the query contains more than one filter. For example: 

   SELECT * FROM accounts 
      WHERE 
      balance BETWEEN 100 AND 200 
      AND 
      customer_no BETWEEN 1000 AND 2000 

If we have a nonclustered index on the balance column and the range is reasonably selective, 
we should expect the query optimizer to choose a query execution plan that selects the data 
rows based on the index and then discards the ones where the customer_no column holds a 
value that is not in range. If the range is not selective, we will expect a table scan. But what if 
there is also a nonclustered index present on the customer_no column? As we discussed in 
Chapter 3, the query optimizer may be able to perform an index intersection. If the query 
optimizer believes that using both indexes will reduce the number of data page requests, then 
it will do just that. 

4.3.3 Join order selection 



If the query contains more than one table or the query performs a self-join, the query 
optimizer will derive the most efficient strategy for joining the tables. The order in which 
tables are joined can have a large impact on performance. For example, suppose we wanted to 
run the following query, which joins the Accounts table with the Customers table. 

   SELECT * FROM accounts INNER JOIN customers 
   ON 
   accounts.customer_no = customers.customer_no 
   WHERE 
   balance > 9990 

Both tables have a nonclustered index on customer_no. Suppose the Customers table was 
accessed first. There is no restriction on the customer_no column and so all 12,500 customer 
rows would be retrieved, and for each of these rows the Accounts table would be accessed. It 
would, therefore, be accessed 12,500 times, and since each customer has two accounts, 25,000 
account rows would be retrieved. Each one would then be tested for the restriction > 9,990. 

Suppose, instead, the Accounts table was accessed first. The restriction would be applied, 
removing the majority of rows in the Accounts table and leaving only 21 rows with the 
balance column containing a value > 9,990. This means that the Customers table will only be 
accessed 21 times, considerably reducing the logical reads needed to execute the query. In 
fact in our BankingDB database this join order needed 96 logical reads against the 51,695 
logical reads needed by the first join order! 

The query optimizer can use information in the statblob column to help it choose an efficient 
strategy. We have already seen that the statblob column contains index density information, 
and it is this information the query optimizer uses to estimate how many rows from one table 
will join with rows from another table—that is, the join selectivity. The statblob column not 
only holds index density for a single column in a composite index but also the index densities 
of some of the column combinations. If the composite index contained three columns—
COL1, COL2, and COL3, then the index densities held would be for the following 
combinations: 

   COL1              index density value (a) 
 
   COL1, COL2        index density value (b) 
 
   COL1, COL2, COL3  index density value (c) 

Suppose the statblob column is not populated. In this case the query optimizer uses a formula 
to work out the join selectivity. It is simply the reciprocal of the number of rows in the smaller 
table. If we had a query that joined the Accounts table (25,000 rows) with the Customers table 
(12,500 rows), the join selectivity would be (1/12500) = 0.00008. For each row in the 
Customers table we would expect a match to (0.00008 * 250000) = 2 rows in the Accounts 
table. 

4.3.4 How joins are processed 

Prior to SQL Server 7.0, there was only one basic join mechanism available to the query 
optimizer to join two tables together. This was the nested loops join. In SQL Server 2000 
there are three, as follows: 



1. Nested loops joins 
2. Merge joins 
3. Hash joins 

The nested loops join is still the best general-purpose join available, but the merge and hash 
joins can be utilized by the query optimizer to produce a more efficient join plan in certain 
circumstances. 

Nested loops joins 

In the nested loops join, tables are processed as a series of nested loops, which are known as 
nested iterations. In a two-table join every row selected from the outer table (the table in the 
outer loop) causes the inner table (the table in the inner loop) to be accessed. This is known as 
a scan (not to be confused with table scan). The number of times the inner table is accessed is 
known as its scan count. The outer table will have a scan count of 1; the inner table will have 
a scan count equal to the number of rows selected in the outer table. Figure 4.9 illustrates a 
three-table join. 

 
Figure 4.9: A join of three tables implemented as a nested loop  

The outer table will use indexes to restrict the rows if it can, whereas the inner table will use 
indexes on the join columns and potentially any other indexes that might be efficient in 
limiting the rows returned. However, the index on the join column is the most important 
index, since, without it, the inner table will be table scanned for each relevant row in the outer 
table. 

For example, consider an inner join between the Customers table and the Accounts table. 
There are 12,500 rows in the Customers table and 25,000 rows in the Accounts table. Suppose 
the Accounts table has a nonclustered index on the customer_no column. The query optimizer 
will choose the Customers table as the outer table (there is no index that is useful, and, 
besides, this is the smaller table). The Customers table will be passed through once. Its scan 
count will be one—that is, it is processed once, or, if you prefer, it is visited once. 

There are 12,500 qualifying rows in the Customers table and so the Accounts table will be 
visited 12,500 times. It will have a scan count of 12,500. Luckily, there is a useful index on 
the customer_no column of the Accounts table so the table will not be table scanned 12,500 
times! Later on we will look at how we can return statistical information about the scan count 
and the logical read (pages requested) count. But for now just let me say that this join indeed 
results in the following statistics: 

•    

Table  Logical Read Scan Count 



Table  Logical Read Scan Count 
Customers 736 1 
Accounts 50,859 12,500 

Note that the logical read count of the Customers table is 736, because there are 736 data 
pages in this table. The logical read count for the Accounts table is approximately four per 
scan count, indicating that for each access of the Accounts table, via the index, four logical 
reads were used (three for index pages and one for the data page). 

The nested loops join does not depend on an equality operation relating the two tables 
together. The operator, for example, can be < or >. 

If the outer table supplies only a few rows to the query—that is, it is a small table or is filtered 
by a WHERE clause and the inner table has an index on the join column—a nested loops join 
can be very efficient, usually more so than a merge or hash join. However, when large tables 
are being joined, a merge or hash join may be more efficient. 

How many ways are there of joining two tables: A and B? There are in fact two ways: AB and 
BA. What about three tables? There are six ways: ABC, ACB, BAC, BCA, CAB, and CBA. 
What about four tables? The answer is four, or 1 * 2 * 3 * 4 = 24. 

The number of ways, then, to join X tables is X!, or factorial X. If a query were to join 16 
tables, we are talking about 20,922,789,888,000 possible ways of performing this join. A join 
of ten tables would have 3,628,800 possible combinations, and SQL Server 2000 can join a 
maximum of 256 tables in a SELECT statement! 

Luckily, the query optimizer uses techniques internally to minimize the number of possible 
combinations, but the fact still remains that the more tables in a join the longer the query 
optimizer will take to work out the most efficient access strategy. Also, any inefficiency will 
be magnified enormously, since we are basically placing loops within loops within loops 
within a nested loops join. 

The bottom line is: If you are going to execute a query that joins many tables, test it! Check 
what the final query execution plan is. Check the number of logical reads. Check the elapsed 
time. If you are not happy, then break the join down into parts, perhaps joining a subset of the 
tables into a temporary table and then joining that with the remaining tables. 

One useful rule of thumb is to make sure that if the number of tables in the query is N, then 
the number of join conditions is at least N - 1. For example, suppose we join three tables—
TAB1, TAB2, and TAB3—and the join is over a column we will call C1. Suppose the query 
is as follows: 

   SELECT * FROM TAB1, TAB2, TAB3 WHERE 
      TAB1.C1 = TAB2.C1 

Applying our rule of thumb we can see that there are three tables in the join, so there should 
be at least two join conditions. There is only one join condition in the query, which is below 
the minimum number. This will result in SQL Server performing a lot of extra work joining 
all the rows in TAB3 with all the rows in the result set from the join of TAB1 and TAB2 or 
some combination of this. Depending on the form of the SELECT statement, the answer 



returned may be correct—for example, if a DISTINCT was used. The time taken to process 
the query, though, would be much greater than necessary.  

Applying our rule of thumb we can see that the query should be written as follows: 

   SELECT * FROM TAB1, TAB2, TAB3 WHERE 
      TAB1.C1 = TAB2.C1 AND 
      TAB2.C1 = TAB3.C1 

However, if it makes sense to add a third join condition, then do not be afraid to do so, since it 
will give the query optimizer more options to work with: 

   SELECT * FROM TAB1, TAB2, TAB3 WHERE 
      TAB1.C1 = TAB2.C1 AND 
      TAB2.C1 = TAB3.C1 AND 
      TAB1.C1 = TAB3.C1 

Of course, if you use the ANSI join syntax (recommended) with the ON clause you cannot 
miss the join condition. 

Merge joins 

Merge joins can be efficient when two large tables of similar size need to be joined and both 
inputs are already sorted by virtue of their indexes, or a sort operation is not expensive for 
sorting one or more of the inputs. The result from a merge join is sorted on the join column, 
and if this ordering is needed by the query, the merge join can supply it. The equality operator 
must be used in the query to join the tables; otherwise, a merge join cannot be used. 

There are two types of merge join: a one-to-many (regular) and a many-to-many. In the case 
of a one-to-many, one input will contain unique join column values, whereas the other will 
contain zero, one, or many matching values. In the case of a many-to-many merge join, both 
inputs may contain duplicate join column values. 

A many-to-many merge join requires that a temporary worktable is used, and this is apparent 
when looking at the logical read information that can be returned from a query (discussed 
later). In my experience, the added work required to process this worktable often means that 
the query optimizer uses one of the other join techniques—for example, a hash join in 
preference to the many-to-many merge join. If the join column from one input does contain 
unique values, the query optimizer will not know this unless a unique index is present on that 
column. 

If the two join columns from the two input tables both have a clustered index created on them, 
the query optimizer knows that the rows are physically sorted on the join column. In this case 
the query optimizer does not need to perform a sort on any of the inputs. Joining these two 
tables will probably be performed with a merge join, especially, if the merge join is a one-to-
many. The presence of an ORDER BY clause on the query will increase the likelihood that a 
merge join is used. 

If the two join columns from the two input tables both have a nonclustered index created on 
them, then the query optimizer knows that the rows are not physically sorted on the join 
column. In this case the query optimizer will need to perform a sort on the inputs. Joining 



these two tables with a merge join is less likely, unless an ORDER BY clause on the query is 
used. In this case the query optimizer will decide if a merge join is more efficient than nested 
loops or hash. 

So how does a merge join work? Basically, the two tables being joined are visited once each. 
The scan count for each table is one. This is shown in Figure 4.10. 

 
Figure 4.10: Basic merge join algorithm  

The algorithm for a one-to-many merge join is as follows: 

• Read a row from Table 1. 
• Read a row from Table 2. 
• If the join column values are equal, return all the matching rows. 
• If the value from Table 1 is < the value from Table 2, read the next row from Table 1. 
• If the value from Table 2 is < the value from Table 1, read the next row from Table 2. 

The query optimizer carries on, stepping along each table until the processing is complete. 

Hash joins 

In my experience, hash joins are used by the query optimizer frequently in SQL Server 
2000—somewhat more, in fact, than merge joins. Of course, this may not be the case with 
your application. With a hash join, there are two inputs: the build input and the probe input. 
The build input is typically the smaller table, although this may not be the table that uses 
fewer data pages on disk. Rather, it is the table with the least rows after selection criteria in 
the WHERE clause have been considered by the query optimizer. An interesting consideration 
with hash joins is that there need be no useful indexes on the tables to be joined. This means 
that the hash join mechanism can be used to join any two nonindexed inputs. This is very 
useful, because this is exactly the form that intermediate results in the query execution plan 
take. We will see examples of this later. The equality operator must be used in the query to 
join the tables; otherwise, a hash join cannot be used. 

Assuming that the query optimizer has chosen the smaller table to be the build input, it now 
reads each row in turn from the table. For each row read, the value in the join column is 
processed by a hashing algorithm. Hashing algorithms apply some function to the input value 
to arrive at an output value. The important consideration is that when the same value is input 
to the hashing algorithm later, the value output is the same as was previously output. 



In a hash join, the value returned by the hashing algorithm is used to identify a cell in memory 
known as a hash bucket. The row from the build input is then written into this hash bucket (at 
least the columns of interest to the query are). The number of hash buckets is a function of the 
size of the build input. It is best if the query optimizer can hold all of the hash buckets (the 
build input) in memory. It is not always possible to do this, and therefore several variations of 
the basic hash algorithm exist to facilitate the storing of hash buckets to disk. Two of these 
mechanisms are known as a Grace Hash Join and a Recursive Hash Join. 

Once the build input has completed, the probe input phase starts. Each row in the probe input 
(the bigger table) is read, and the value of the join column is input to the same hash algorithm. 
The resulting value again identifies a hash bucket. The query optimizer then checks the hash 
bucket to see if there are any rows in it from the build input with the same join column value. 
If there are, the row is retrieved from the hash bucket and, with the row from the probe phase, 
returned to the query. If there is no match, the row may be discarded depending on the type of 
join being performed. 

With a hash join, both tables are visited just once—that is, each has a scan count of one. 
Memory is needed for the hash buckets, so hash joins tend to be memory and CPU intensive. 
They typically perform better than merge joins if one table is large and one is small, and they 
are better than nested loops joins if both tables are large. However, because the build input is 
performed before any rows are returned, hash joins are not efficient when the first row of the 
join must be retrieved quickly. 

Figure 4.11 shows a build input being processed. A row has been read with a value of 3 in the 
join column. This is hashed to a value of 11, and the row (relevant columns) is written into the 
hash bucket. Later, the probe input is processed. A row is read with a value of 3 in the join 
column. This is hashed to a value of 11, and the query optimizer checks to see if there is a 
matching row in the hash bucket from the build input. There is, so the rows are concatenated 
and returned to the query. 

 
Figure 4.11: Basic hash join algorithm  

The hash join mechanism, as previously mentioned, can be used to join nonindexed inputs. 
One example of this is when the query optimizer has created a plan that involves two sets of 
index pointers, and pointers need to be found that exist in both sets—that is, the set 



intersection. Hashing is also useful when the query contains an aggregate operator—for 
example, SUM or MAX with a GROUP BY. Using SUM as an example, suppose we want to 
find the sum of the bank balances for the accounts managed by each branch on a per branch 
basis, as follows: 

   SELECT branch_no, SUM(balance) 
      FROM accounts 
      GROUP BY branch_no 

The query optimizer may choose to create a query execution plan using a hashing mechanism. 
The build input creates a set of hash buckets and then reads each row in turn. The branch 
number of the first account (the GROUP BY column) will be hashed, and the branch number 
and account balance values will be written into the appropriate hash bucket. This process will 
continue for each row. However, if a branch number is found to be present already in a hash 
bucket, the balance will be added to the value present. Finally, when all the rows have been 
retrieved, the hash buckets are scanned and the branch number values returned with their 
sums. 

 Note This mechanism will produce a nonordered output, so, as always, use an ORDER BY 
clause if you wish the output to be ordered. 

4.3.5 Tools for investigating query strategy 

We have now discussed the steps that the query optimizer performs during query 
optimization, namely: 

• Query analysis 
• Index selection 
• Join order selection 

To facilitate performance, tuning, and optimization it is essential that we are able to see the 
decisions that the query optimizer has made so that we can compare the decisions with what 
we expect. We also need to be able to measure the work done in executing the query so we 
can compare the effectiveness of different indexes. 

 Note You should always calculate a rough estimate of the logical reads a query should use. If 
the logical reads used differ by a large amount, it could be that your estimate is very 
inaccurate or, more likely, the query execution plan is not what you expected! 

There are a number of tools at our disposal for checking what the query optimizer is doing. 
There are various options we can set in the Query Analyzer, the graphical query execution 
plan, and the SQL Server Profiler. The SQL Server Profiler is discussed in Chapter 7. We will 
focus our discussion here on the graphical query execution plan, but, first, let us investigate 
the SET statements and options available to us. 

SET SHOWPLAN_TEXT { ON | OFF } 

When SET SHOWPLAN_TEXT is set on, information is displayed pertaining to the query 
execution plan used. The query is not executed. This statement must be the only statement in 
the query batch. 



Suppose we execute the following query when SET SHOWPLAN_TEXT ON has been 
executed: 

   SELECT * FROM accounts WHERE balance = 0 

The following output will result: 

   StmtText 
   ---------------------------------------- 
   select * from accounts where balance = 0 
 
   (1 row(s) affected) 
 
   StmtText 
   -------------------------------------------------------- 
      |--Table Scan(OBJECT:([BankingDB].[dbo].[accounts]), 
   WHERE:([accounts].[balance]=Convert([@1]))) 

Note that the output has been wrapped to fit on the page. The text of the query is repeated and 
then information pertaining to the query execution plan is displayed. This contains 
information such as the logical and physical operators used (described shortly) and other 
information pertinent to the plan. Since this statement is designed to be used primarily with 
Microsoft MS-DOS applications, such as the osql command-line utility, we will not spend 
any more time on it. 

SET SHOWPLAN_ALL { ON | OFF } 

When SET SHOWPLAN_ALL is set on, detailed information is displayed pertaining to the 
query execution plan used. The query is not executed. This statement must be the only 
statement in the query batch. 

Suppose we execute the following query when SET SHOWPLAN_ALL ON has been 
executed:  

   SELECT * FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE balance = 100 

The output will be returned in the form of a rowset that can be accessed by programs. There is 
too much information returned to display it across the page, so we will break it down into its 
constituent parts. Rather than use the previous SQL statement, we will use a slightly more 
complex one involving an inner join of the Customers and Accounts tables. We are not too 
concerned with the reason a particular plan was chosen here—the goal of this example is 
merely to show the output from this SET statement. Ultimately, I find the graphical query 
execution plan much easier to use and I will focus on that shortly. 

StmtText 
 
SELECT * FROM customers C INNER JOIN accounts A ON C.customer_no = 
A.customer_no WHERE balance = 100 
 |--Bookmark Lookup(BOOKMARK:([Bmk1000]), 
OBJECT:([BankingDB].[dbo].[customers] AS  [C])) 
    |--Nested Loops(Inner Join, OUTER REFERENCES:([A].[customer_no]) WITH 
PREFETCH) 



       |--Table Scan(OBJECT:([BankingDB].[dbo].[accounts] AS [A]), 
WHERE:([A].[balance]=100.00)) 
       |--Index Seek(OBJECT:([BankingDB].[dbo].[customers].[nciCustomerNo] 
AS [C]), SEEK:([C].[customer_no]= 
       [A].[customer_no]) ORDERED FORWARD) 

I have wrapped the output so this StmtText column can be read completely. This is how it 
looks with no wrap, so it can easily be matched with the other columns I will discuss. I have 
had to truncate the text to fit it on the page. 

SELECT * FROM customers C INNER JOIN accounts A ON C.customer_no = 
A.customer_no WHERE balance = 100 
 |--Bookmark Lookup(BOOKMARK:([Bmk1000]), 
OBJECT:([BankingDB].[dbo].[customers] AS  [C])) 
    |--Nested Loops(Inner Join, OUTER REFERENCES:([A].[customer_no]) WITH 
PREFETCH) 
       |--Table Scan(OBJECT:([BankingDB].[dbo].[accounts] AS [A]), 
WHERE:([A].[balance]=100.00)) 
       |--Index Seek(OBJECT:([BankingDB].[dbo].[customers].[nciCustomerNo] 
AS [C]), SEEK:([C].[customer_no]= 

This StmtText column repeats the SQL statement in the first row of the column. Subsequent 
rows in the display, known as PLAN_ROWS, contain a description of the operation taking 
place. This column contains the physical operator and may or may not also contain the logical 
operator. So what are physical and logical operators? The physical operator describes the 
physical mechanism by which the operation was performed. In our example we can see 
physical operators such as Nested Loops, Table Scan, and Index Seek. Logical operators 
describe the relational operation being performed—in our example, an Inner Join. Often, there 
is no separate logical operator, since the logical operation results in a number of steps—each 
representing physical operations. In our example, there is no logical operator mentioned in the 
line that represents the Table Scan physical operation. 

Other information is also often present in the StmtText column. In our example, we can see 
that the row containing the Index Seek physical operator also names the index in question—
nciCustomerNo—and the column used in the predicate—customer_no—as well as the table 
name. The row containing the Nested Loops physical operator also specifies WITH 
PREFETCH, which means that asynchronous read ahead is being utilized (see Chapter 5). 
The information in the StmtText column is also repeated in other columns, as we shall now 
see. 

Note that the output is in the form of a hierarchical tree with the SQL statement itself at the 
top of the tree. I find that decoding the hierarchy can sometimes be confusing, but, again, as 
we shall see, the graphical query execution plan will help us here. It is often best, however, to 
start looking at the deepest level in the hierarchy. This represents the basic operations against 
tables and indexes, which together form the basic building blocks of the query execution plan. 
Other steps will utilize these basic steps until the result of the query is returned. To assist in 
understanding the hierarchy, the next set of columns lend a helping hand. 

   StmtId   NodeId   Parent   PhysicalOp        LogicalOp 
   ------   ------   ------   ----------        --------- 
   17       1        0        NULL              NULL 
   17       3        1        Bookmark Lookup   Bookmark Lookup 
   17       5        3        Nested Loops      Inner Join 
   17       7        5        Table Scan        Table Scan 



   17       8        5        Index Seek        Index Seek 

The StmtId is a number that identifies the statement in the batch of SQL statements if there is 
more than one SQL statement in the batch. This groups all the steps together for the one 
statement. The NodeId is a number that identifies the step in the query execution plan, and the 
Parent is the node ID of the parent step. Using these numbers, the position of a step in the 
hierarchical tree can be ascertained. The PhysicalOp and LogicalOp columns contain the 
physical and logical operators as described above. 

Argument 
-------- 
1 
BOOKMARK:([Bmk1000]), OBJECT:([BankingDB].[dbo].[customers] AS [C]) 
OUTER REFERENCES:([A].[customer_no]) WITH PREFETCH 
OBJECT:([BankingDB].[dbo].[accounts] AS [A]), WHERE:([A].[balance]=100.00) 
OBJECT:([BankingDB].[dbo].[customers].[nciCustomerNo] AS [C]), 
OBJECT:([BankingDB].[dbo].[customers].[nciCustomerNo] AS [C]), 
SEEK:([C].[customer_no]=[A].[customer_no]) 
ORDERED FORWARD 

This column displays extra information concerning the operation, as described previously. 

The next set of columns includes the values used by the operator; they are typically columns 
from a SELECT list or WHERE clause. Internal values may also be represented here. In our 
example, the * has been expanded to the actual list of columns. 

DefinedValues 
------------- 
NULL 
[C].[customer_no], [C].[customer_fname], [C].[customer_lname], 
[C].[customer_notes] 
NULL 
[A].[account_no], [A].[customer_no], [A].[branch_no], [A].[balance], 
[A].[account_notes] 
[Bmk1000] 

Next we see columns that are concerned with the estimated cost of the query. 

EstimateRows   EstimateIO     EstimateCPU    AvgRowSize   TotalSubtreeCost 
------------   ----------     -----------    ----------   ---------------- 
1988.1769      NULL           NULL           NULL         1.4232613 
1988.1769      6.2500001E-3   2.1869945E-3   886          1.4230624 
1988.1769      0.0            8.3105788E-3   445          1.4146254 
1988.1769      0.60027075     0.01378925     435          1.22812 
1.0            6.3284999E-3   7.9603E-5       19          0.1661949 

The EstimateRows column contains the number of rows the query optimizer expects the 
operator to return. In our example, we are looking at 1,988 rows estimated for all the 
operators except the Index Seek. The 1,988 estimate comes from the fact that the query 
optimizer estimates that this number of Account table rows will have a balance of 100. The 
value of 1 from the index seek indicates that the query optimizer knows that for each row 
from the Accounts table a maximum of one row can be returned from the Customers table (it 
has a unique index on the customer_no column). 



How many rows are actually returned? How many customer accounts have a balance of 
exactly 100? The answer in our database is, in fact, zero! The query optimizer estimate is very 
inaccurate. Why? We shall see shortly! 

The EstimateIO column contains the estimated I/O cost for the operator. In our example, the 
cost estimates are small numbers, so what do the values represent? The numbers are weighted 
by some undocumented weighting factor. Microsoft does not publish the weighting factor, 
since they want the ability to adjust it to their heart's desire. This means that it is practically 
impossible to translate the EstimateIO value into logical reads. However, it is possible to 
compare these numbers with one another, and we know the lower the number the lower the 
cost. 

The EstimateCPU column contains the estimated CPU cost for the operator. In our example, 
the cost estimates are again small numbers, and, again, the numbers are weighted by some 
undocumented weighting factor. This means that it is not possible to translate the 
EstimateCPU value into CPU milliseconds. Again, it is possible to compare these numbers 
with one another, and, again, the lower the number the lower the cost. Using these two 
estimates we can easily see the most expensive operation in terms of I/O and CPU in a query. 

The AvgRowSize is the estimated average row size (in bytes) passing through the operator. In 
our example, rows from the Accounts table are estimated to be 435 bytes in length. The 
output of the Index Seek operator is an index entry (key plus pointer) of 19 bytes. Once the 
Customers table row has been retrieved from the data page (the Index Lookup) and joined 
with the Accounts table row, the combined size is estimated at 886 bytes. 

The TotalSubtreeCost column contains the estimated total cost of the operator and the cost of 
all its children. This is derived from the EstimateIO and EstimateCPU columns, and, again, 
some mystery weighting factor is used. This number, though, represents a cost value that 
combines the I/O and CPU cost and is very useful when looking for the operation in a query 
that is using the lion's share of the query resource. The OutputList column represents a list of 
the columns that will be displayed by the query. 

OutputList 
---------- 
NULL 
[C].[customer_no], [C].[customer_fname], [C].[customer_lname], 
[C].[customer_notes], [A].[account_no], 
[A].[customer_no], [A].[branch_no], [A].[balance], [A].[account_notes] 
[Bmk1000], [A].[account_no], [A].[customer_no], [A].[branch_no], 
[A].[balance], [A].[account_notes] 
[A].[account_no], [A].[customer_no], [A].[branch_no], [A].[balance], 
[A].[account_notes] 
[Bmk1000] 
 
Warnings                                Type        Parallel    
EstimateExecutions 
--------                                ----        --------    -----------
------- 
NULL                                    SELECT      0           NULL 
NULL                                    PLAN_ROW    0           1.0 
NULL                                    PLAN_ROW    0           1.0 
NO STATS:([accounts] [customer_no],     PLAN_ROW    0           1.0 
          [accounts].[balance]) 
NULL                                    PLAN_ROW    0           1988.1769 



The Warnings column contains any warning messages issued by the query optimizer for the 
operation. In our example, the only operation to be associated with a warning is the Table 
Scan operation, where the Accounts table is being scanned looking for rows with a balance of 
100. We shall look at this warning in the graphical query execution plan shortly, but for now 
let us just say that the query optimizer is telling us why the estimate of the number of rows 
returned is so inaccurate—can you guess what the warning means? 

The Type column merely flags a row as being the parent row for the query—a SELECT, 
INSERT, UPDATE, or DELETE, for example, or a row representing an element of the query 
execution plan—PLAN_ROW.  

The Parallel column contains a value of 0 or 1 specifying whether the operator can execute in 
parallel (1) or not (0). 

The EstimateExecutions column is the estimated number of times the operator will execute 
during the query. In our example, the Table Scan operator will execute once. However, for 
each row in the Accounts table being scanned, the Customer table will be accessed (it is the 
inner table in a nested loops join). For this reason, the EstimateExecutions column for the 
Index Seek operator contains the value 1988.1769. 

So, as we have seen, the SET SHOWPLAN_ALL statement produces a large amount of 
information concerning the query execution plan. As I've hinted at a number of times now, I 
feel this information is best displayed through the graphical query execution plan. Before we 
take a look at this there are more SET statements that are useful—so let's have a look at them. 

SET STATISTICS PROFILE { ON | OFF } 

The SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL statements we have just looked 
at both display information concerning the query execution plan adopted by the query 
optimizer. Neither statement actually allows the query to execute. This has a number of 
ramifications. Consider the following stored procedure: 

   CREATE PROCEDURE usp_testplan 
   AS 
   CREATE TABLE #t1 (c1 int) 
   SELECT c1 from #t1 
   RETURN 

Suppose we now issue a SET SHOWPLAN_ALL ON and execute the stored procedure, as 
follows: 

   EXEC usp_testplan 
 
   Server: Msg 208, Level 16, State 1, Procedure 
   usp_testplan, Line 4 
   Invalid object name '#t1'. 

Because the SET statement suppresses the execution of the stored procedure, the temporary 
table #t1 is not created, and it is not therefore possible to display plan information for the 
SELECT statement. 



Another problem caused by the SET statement suppressing query execution is that we cannot 
produce information about the logical reads actually used by the query, nor can we see how 
many rows pass through an operator as opposed to an estimated number.  

Enter SET STATISTICS PROFILE. This statement does not suppress the execution of the 
query. As well as returning the same information as SET SHOWPLAN_ALL, it also displays 
two extra columns—Rows and Executes—which contain the actual number of rows returned 
and the actual number of times the operator executed during the query. In other words, the 
equivalent of the EstimateRows column and the EstimateExecutions column, respectively. 

SET STATISTICS IO { ON | OFF } 

Another SET statement that is useful when investigating different query optimizer strategies 
is SET STATISTICS IO. This displays the count of table accesses (scans), logical and 
physical reads, and read ahead reads for each Transact-SQL statement, as follows: 

   SET STATISTICS IO ON 
 
   SELECT C.customer_lname, A.account_no, A.balance 
      FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE 
      balance BETWEEN 100 AND 120 
 
 
   customer_lname   account_no   balance 
   --------------   ----------   ------- 
   Burrows          107540       118.0400 
      : 
      : 
   (56 row(s) affected) 
 
   Table 'customers'. Scan count 56, logical reads 181, 
   physical reads 0, read-ahead reads 0. 
   Table 'accounts'. Scan count 1, logical reads 1569, 
   physical reads 0, read-ahead reads 0. 

In the above example, the Accounts table experienced a scan count of 1 and the Customers 
table experienced a scan count of 56. The phrase scan count has nothing to do with the use of 
table scans; it merely states how many times the table was accessed in the query. In our 
example, the Accounts table is processed as the outer table of the (nested loops) join and is 
therefore accessed only once. For each qualifying row in the Accounts table, the Customers 
table is accessed. In this example there are 56 qualifying rows in the Accounts table, so the 
scan count of the Customers table is 56. 

There are 1,569 pages in the Accounts table. As this is table scanned, SQL Server 2000 must 
retrieve every page—hence, the logical read value of 1,569. The Customers table experiences 
181 logical reads, approximately three per scan. This is because the index is two levels deep, 
so two index pages and one data page will be fetched on each scan. 

Since the data and index pages are already cached in memory, the physical reads counter is 
zero. A physical read represents a database page request that is not found in cache, so SQL 
Server 2000 has to fetch it from disk. Read-ahead reads will be discussed in Chapter 5. 



 Note The scan count may sometimes be larger than you expect. For example, you may expect 
the scan count for a table to be one. However, the query optimizer has created a parallel 
execution plan and two parallel threads access the table—hence, it has a scan count of 
two. 

SET STATISTICS TIME { ON | OFF } 

The SET STATISTICS TIME ON statement displays the time (in milliseconds) that SQL 
Server took to parse the statement, compile the query optimizer strategy, and execute the 
statement, as follows: 

   SELECT C.customer_lname, A.account_no, A.balance 
      FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE 
      balance BETWEEN 100 AND 120 
 
   SQL Server parse and compile time: 
      CPU time = 10 ms, elapsed time = 10 ms. 
 
   customer_lname   account_no   balance 
   --------------   ----------   ------- 
   Burrows          107540       118.0400 
      : 
      : 
   (56 row(s) affected) 
 
 
   SQL Server Execution Times: 
      CPU time = 29 ms,  elapsed time = 29 ms. 

I personally do not use this statement. Whereas logical reads is a constant and will be the 
same for a given access strategy at any time irrespective of other work on the server, this is 
not true for the statistics time. For that reason I do not find it very useful. If I really want to 
compare the elapsed times of queries, I often use my own statements, as follows: 

   DECLARE 
     @time_msg CHAR(255), 
     @start_time DATETIME 
 
   SELECT @start_time = GETDATE() 
 
   -- Execute the query we wish to test 
 
   SELECT C.customer_lname, A.account_no, A.balance 
      FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE 
      balance BETWEEN 100 AND 120 
 
   -- Calculate the query duration 
 
   SELECT @time_msg = 'Query time (minutes:seconds) ' + 
              CONVERT(CHAR(2), 
   DATEDIFF(ss,@start_time,GETDATE())/60) + 
              ':'  + 
               CONVERT(CHAR(2), 
   DATEDIFF(ss,@start_time,GETDATE())%60) 



 
   print @time_msg 
 
 
   customer_lname   account_no   balance 
   --------------   ----------   ------- 
   Burrows          107540       118.0400 
      : 
      : 
   (56 row(s) affected) 
 
   Query time (minutes:seconds) 0 :16 

Of course, the Query Analyzer makes life easy for us now, since we can merely look in the 
bottom right area of the query window where the elapsed time of a query is displayed. Still, 
the above code is useful in scripts. 

 Note The SQL Server 2000 Profiler will also display the CPU, duration, and I/O usage of a 
query. It can also display the query execution plan. This will be described in Chapter 7. 

The graphical query execution plan 

We have been discussing SET statements so far in this chapter that allow us to check the 
query execution plan that the query optimizer has created. As mentioned on a number of 
occasions, I find this easier to do with the graphical query execution plan, and this will now 
be our focus. As with SET SHOWPLAN_TEXT and SET SHOWPLAN_ALL, displaying the 
estimated execution plan does not cause the query to execute. However, as with SET 
STATISTICS PROFILE, it is possible to execute the query and view the query execution plan 
afterwards. 

To display the estimated execution plan the keyboard shortcut CTRL+L can be used, or 
choose Display Estimated Execution Plan from the Query menu. Alternatively, just click the 
Display Estimated Execution Plan button on the toolbar. Let us take a trip around the 
graphical display, and then we will look at the graphical query execution plans we might 
encounter when analyzing our queries. We'll use the inner join we previously used for the 
SET SHOWPLAN_ALL statement, as follows: 

   SELECT * FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE balance = 100 

The estimated execution plan for this statement is shown in Figure 4.12. 

 
Figure 4.12: A graphical estimated execution plan  



The query execution plan is read from right to left. We can see the operators that were rows in 
the SET SHOWPLAN_ALL output. The hierarchical tree is displayed on its side with the top 
of the tree on the left—the SELECT statement. On the far right of the display the children at 
the lowest branches of the tree are displayed. The children at the same level are displayed 
vertically above one another. The flow of rows, index pointers, and so on is illustrated by the 
arrows joining the operators. Note that these arrows vary in width. This variation is 
proportional to the number of rows passed to the next operator up the tree. 

At the top of the display is a heading specifying that this is query 1. We only have one query 
in our query batch, but if there were more than one query these would be labeled accordingly. 
The query text is also displayed. More interestingly, the query optimizer has also estimated 
the cost of the query relative to the cost of the batch. This is useful when you want to see 
which query in the batch is the one that is the most expensive. In our example, having only 
one query, the cost is 100 percent of the batch. 

Different operations within a query are also costed relative to one another. In our example the 
cost of the Table Scan is 86 percent of the cost of the query. Clearly, this operator is worthy of 
some investigation if the query is performing badly. 

The operators are named and represented by an icon. In the case of the nested loops join, the 
icon represents a nested loop, and the name of the physical and logical operator are displayed 
in the format physical/logical. In the case of the table scan, the physical operator Table Scan 
is displayed. There is no logical operator as such; therefore it takes the same name as the 
physical operator and just physical is displayed. In the case of the indexed access of the 
Customers table, the icon representing an Index Seek is displayed and the index name in the 
format table.index is displayed underneath. How do we know what these icons represent? In 
the background of the display, if an icon or arrow is right-clicked, a menu appears. If Help is 
chosen, a list of operators appears. Click on an operator and an explanation is displayed. You 
will also notice that the displayed menu contains options for zooming, fonts, and managing 
indexes and statistics. 

What about the detailed information that was produced by SET SHOWPLAN_ALL? Can the 
graphical execution plan produce this information also? It can and all we have to do is move 
the mouse pointer over the operator we are interested in—no click is needed. This is shown in 
Figure 4.13. 

 
Figure 4.13: Placing the pointer over an operator  

As can be seen, lots of information pertaining to the operator is displayed. Pretty much all the 
cost information and any other text that was displayed in the SET SHOWPLAN_ALL are 



displayed in this window. Note what happens when we move the mouse pointer over the 
Table Scan operator. This is shown in Figure 4.14. 

 
Figure 4.14: Placing the pointer over the Table Scan operator  

A warning message is displayed (in red—but you can't see that!) telling us that statistics are 
missing from the table. If we recall, the SET SHOWPLAN_ALL output also had a warning in 
the Warnings column of its output for this operator. We'll look at what the warning means 
shortly, but for now let us just register that the graphical query execution plan displays 
warnings and, in this case, suggests a course of action. Again, we can't see this, but on the 
graphical display shown in Figure 4.12, the Table Scan and Cost: 86 percent text are also 
displayed in red to draw our attention to the fact that this operator has warnings associated 
with it. 

If the mouse pointer is placed over an arrow, a window pops up—as shown in Figure 4.15. 

 
Figure 4.15: Placing the pointer over an arrow  

This window displays information about the estimated number of rows being passed to the 
next operator and the estimated row size. 

Now that we know the format of the Display Estimated Execution Plan window, we can 
investigate some query optimizer strategies. These strategies will be examples of the query 
optimizer and index behavior we have discussed in this and the previous chapter. We will 
start with simple examples and then move to more complex examples. 

To refresh our memories, the BankingDB database definition is as follows: 

   CREATE TABLE customers 
      ( 
      customer_no      INT        NOT NULL, 
      customer_fname   CHAR(20)   NOT NULL, 
      customer_lname   CHAR(20)   NOT NULL, 
      customer_notes   CHAR(400)  NOT NULL 
      ) 
 



   CREATE TABLE accounts 
      ( 
      account_no       INT        NOT NULL, 
      customer_no      INT        NOT NULL, 
      branch_no        INT        NOT NULL, 
      balance          MONEY      NOT NULL, 
      account_notes    CHAR(400)  NOT NULL 
      ) 
 
   CREATE TABLE branches 
      ( 
      branch_no       INT         NOT NULL, 
      branch_name     CHAR(60)    NOT NULL, 
      branch_address  CHAR(400)   NOT NULL, 
      managers_name   CHAR(60)    NOT NULL 
      ) 

The Customers table contains 12,500 rows. Each customer has two accounts, so the Accounts 
table contains 25,000 rows. The Branches table contains 100 rows. We will define indexes on 
the tables as we go along. There are no indexes to start with. Also, the automatic updating and 
creation of index statistics has been disabled. 

To summarize, the tables after creation with no indexes are shown in Table 4.2. 

Table 4.2: Attributes of the Tables in the BankingDB Database
Table Name  Rows  Data Pages  
Accounts 25,000 1,570 
Customers 12,500 834 
Branches 100 8 

Note that the number of pages used by a table will vary depending on what we have just done 
to the table. For example, creating a clustered index on the Accounts table will increase the 
Average Page Density and reduce the Average Bytes Free per Page (as reported by DBCC 
SHOWCONTIG). This results in 1,390 pages being allocated to the Accounts table. 

Let us now check the estimated query execution plan for various queries. Before we execute 
the first query, we will make sure that the database option Auto create statistics is set to off. 

Query 1: Find the accounts whose balances are $100 

   SELECT * FROM accounts WHERE balance = $100 

Figure 4.16 displays the graphical query execution plan for query 1. 

 
Figure 4.16: Graphical query execution plan for query 1  



We can see immediately that the Table Scan operator is used. This is not unreasonable, since 
we have no indexes present. The query optimizer has no choice but to perform a table scan. 
Every page in the Accounts table will be retrieved to search for the accounts with a balance of 
$100. If we check the Set statistics IO output, set within the Current Connection Properties 
button in the Query Analyzer, we can verify this as follows: 

   Table 'accounts'. Scan count 1, logical reads 1570, 
   physical reads 0, read-ahead reads 0. 

Indeed, the logical reads number is the same value as the data pages in the table. 

There are, in fact, zero rows returned by this query, but if we place the mouse pointer over the 
(fairly wide) arrow, the pop-up window shows that the estimated number of rows passed to 
the SELECT statement operator at the top of the tree is somewhat more than this, as Figure 
4.17 shows. 

 
Figure 4.17: Graphical query execution plan for query 1 showing estimated rows  

The estimated rows value is 1,988, but the actual number of rows returned is zero. The query 
optimizer's estimate is very inaccurate Why is this? 

The clue lies with the Table Scan operator. The Table Scan and Cost: 100 percent are actually 
displayed in red indicating that a warning is associated with this operation. If we pass the 
mouse pointer over the operator, we can see a warning message—as shown in Figure 4.18. 

 
Figure 4.18: Graphical query execution plan for query 1 showing a warning  

The query optimizer is telling us that there are no statistics that it can use. Since there are no 
indexes, this is no surprise. The query optimizer is also telling us, though, that there are no 
column statistics either. Because of this lack of statistics, the query optimizer has used its 
internal magic numbers to estimate that the equality operation (balance = $100) will return 



about 8 percent of the table. I have seen this figure closer to 10 percent, but the fact is, it was 
completely wrong. 

The query optimizer warning also tells us how to solve the problem. It suggests that we might 
choose Create Missing Statistics from the context (right-click) menu. This will create column-
level statistics for the balance column and is equivalent to executing the Transact-SQL 
statement CREATE STATISTICS. 

If we take this option, the Create Missing Statistics dialog box is displayed—as shown in 
Figure 4.19. 

 
Figure 4.19: Create missing statistics dialog box  

We'll sample all of the data, but we'll leave the name of the statistics group to be the default of 
statistic_balance. 

Now, if we look at the estimated execution plan again, we'll see that the arrow is narrower, as 
shown in Figure 4.20. 

 
Figure 4.20: Estimated execution plan after missing statistics have been created  

Passing the mouse pointer over the arrow shows the estimated number of rows to be one, 
which is somewhat more accurate. This example showed us a scenario where the query 
optimizer flagged the fact that it would really like some statistics. In reality this is not likely to 



be the case. The query optimizer would normally have created the statistics itself without 
asking us to create them for it. The only reason it didn't this time was because we suppressed 
this capability by setting the database option Auto create statistics to off. Note that, as 
discussed previously, these automatically created column statistics will have a name that is 
prefixed with_WA. 

OK, so did this improve the efficiency of the plan? Will the rows be retrieved any faster? No, 
of course not. Since there are no indexes, a table scan still has to be performed and column-
level statistics in this scenario are not useful. However, in many scenarios this is not the 
case—column-level statistics are very useful and later we will see the query optimizer create 
column-level statistics dynamically. 

Let us give the query optimizer more options to play with. We'll create a nonclustered index 
on the balance column. There are no reasons why two bank accounts should not have the 
same balance value, so this index cannot be a unique index. 

If we execute our query now, the estimated execution plan will be as shown in Figure 4.21. 

 
Figure 4.21: Graphical query execution plan for query 1 with a nonclustered index present on 
the balance column  

We can immediately see that the Table Scan operator has disappeared. If we read from right 
to left, the first operator we come to is an Index Seek. Passing the mouse pointer over this 
operator gives us the window that contains cost information. There is a one-line explanation 
of the operator: Scanning a particular range of rows from a nonclustered index. 

If we look at the Argument: at the bottom of the window, we see that it names the index and it 
also contains a SEEK:() predicate. The predicate is [accounts].[balance]=100; in other words, 
the filter in the WHERE clause of the query. What this means is that the index is traversed 
using the filter value. 

In Chapter 3, the algorithm used by SQL Server was to look for the highest key value not 
greater than the lowest key we wish to retrieve. Using this algorithm SQL Server traverses the 
nonclustered index to the leaf-level index pages. Any index entries satisfying the search 
predicate will now be retrieved. In other words, a set of pointers will be retrieved. This is the 
role of the Index Seek operator—to collect the pointers for qualifying rows ready to read the 
data pages containing those rows. This was shown in Figure 3.29. The index seek actually 
traverses the three levels of index pages ready to access the data pages. 

If we continue to read from right to left, the next operator we come to is a Bookmark Lookup. 
Passing the mouse pointer over this operator the window appears that contains cost 
information. There is a one-line explanation of the operator: Use a Bookmark (RID or 
Clustering Key) to look up the corresponding row in the Table or Clustered Index. 



If we look at the Argument: we see at the bottom of the window that it names the table whose 
data pages we are reading. So, this Bookmark Lookup operator is using a bookmark (which is 
a fancy name for a pointer) to look up the data rows from the table. Of course, as we have 
discussed previously, if there was a clustered index present on the table, the pointer in the 
nonclustered index leaf entries would be the clustered index key. There is no clustered index 
present on our table, so the pointer addresses the row on the data page directly with a Row ID. 

Again, referring back to Figure 3.29, each index entry that matches the search predicate will 
point to a data row, and a logical read will be required to fetch the data page in which the row 
resides. 

If we position the mouse pointer on the Bookmark Lookup icon, we see that the Estimated 
row count is one. This is shown in Figure 4.22. 

 
Figure 4.22: Graphical query execution plan for query 1 showing estimated rows when a 
nonclustered index is used  

The query optimizer has estimated that one pointer is going to be passed to the Bookmark 
Lookup operator. In other words, the query optimizer estimates that one row will be returned. 
Of course, one pointer will return exactly one row, and so the arrow connecting the Bookmark 
Lookup operator to the SELECT statement will also have an Estimated row count of one. This 
is a pretty accurate estimate, since we know zero rows will actually be returned. 

It is interesting to note the relative costs of the two operators. They're pretty much the same. 
Fetching one data page in the Bookmark Lookup and fetching some index entries in the Index 
Seek are fairly trivial operations with approximately equal costs. 

We can quickly change things so that fetching data pages in the Bookmark Lookup is not 
trivial, and we'll do this with query 2. Before we do, let us just look at the Set statistics IO 
output for query 1 with our nonclustered index: 

   Table 'accounts'. Scan count 1, logical reads 2, physical 
   reads 0, read-ahead reads 0. 

This is somewhat less than the table scan. We have used just two logical reads. 

Query 2: Find the accounts whose balances are between $100 and $200 

The following range retrieval actually returns 253 rows from the Accounts table. 



   SELECT * FROM accounts 
      WHERE balance BETWEEN $100 AND $200 

The estimated execution plan is shown in Figure 4.23. 

 
Figure 4.23: Graphical query execution plan for query 2 showing estimated rows when a 
nonclustered index is used for a range retrieval  

The plan is similar to the plan for query 1. The operators are the same but the arrows are 
wider. This is because the query optimizer has estimated that a larger number of rows will be 
returned by this query. The estimate is 263 rows, which is fairly accurate. Note, however, the 
distribution of costs across the operators. The Index Seek costs 1 percent of the query, 
whereas the Bookmark Lookup now costs 99 percent. This illustrates an important point—
once a query starts to retrieve more than a few rows, the nonclustered index starts to become 
expensive, since a data page will need to be retrieved for each qualifying row. This is because 
each retrieval is a logical read. If we look at the Set statistics IO output for query 2 with our 
nonclustered index, we see the following code: 

   Table 'accounts'. Scan count 1, logical reads 256, 
   physical reads 0, read-ahead reads 0. 

We can see that the logical read value has increased. As the number of rows satisfying a range 
retrieval becomes large, so does this logical read value. Eventually, the query optimizer will 
decide that a table scan is more efficient than using the index. Let us test this theory. We will 
increase the range slightly, as follows: 

   SELECT * FROM accounts 
      WHERE balance BETWEEN $100 AND $220 

The estimated execution plan is shown in Figure 4.24. 

 
Figure 4.24: Graphical query execution plan for query 2 showing the estimated execution plan 
when a nonclustered index is used for a larger range retrieval  

The following code is the new Set statistics IO output for query 2: 

   Table 'accounts'. Scan count 1, logical reads 1570, 
   physical reads 0, read-ahead reads 0. 

For a small increase in the range, the query optimizer has decided that a table scan is now a 
more efficient option. 



Query 3: Find the accounts whose balances are between $100 and $200 and whose customer numbers are 
between 7000 and 8000 

   SELECT * FROM accounts 
      WHERE balance BETWEEN $100 AND $200 
      AND 
      customer_no BETWEEN 7000 AND 8000 

In this query, not only is there a filter on the balance column, but there is also a filter on the 
customer_no column. The query plan is shown in Figure 4.25. 

 
Figure 4.25: Graphical query execution plan for query 3 showing the addition of a filter 
operator  

The query optimizer has again chosen the nonclustered index on the balance column to find 
the rows that satisfy the range of balances. As in the previous query, the Bookmark Lookup 
operation will retrieve the data pages to fetch the Account table rows. However, now a Filter 
operator is applied to find the rows that also satisfy the range of customer numbers. The query 
optimizer text for the Bookmark Lookup is in red, indicating a warning. This is shown in 
Figure 4.26. The reason for the warning is that the query optimizer would like to know how 
many Account table rows have a customer number in the range, but it has no column statistics 
for this column. It therefore has to estimate how many rows the Filter operation will return. 
The only reason it didn't automatically create the missing column statistics is because we 
suppressed this capability by setting the database option Auto create statistics to off. 

 
Figure 4.26: Graphical query execution plan for query 3 showing the bookmark warning  

This indexing strategy may be very wasteful. Consider the case where the customer number 
filter discards most of the rows that satisfied the balance range. In this case the Bookmark 
Lookup will retrieve many data pages, only to find that they did not contain rows that had a 
qualifying customer number. So what can we do? One possibility is to change the index on 
the balance column to a composite index containing the balance and customer_no columns. If 
we do this, the query plan becomes the one shown in Figure 4.27. We can see that the Filter 
operator has now disappeared. The query optimizer can select the qualifying rows before the 
data pages are requested. It is interesting to note that the query plan contains a Missing 
Statistics warning on the Index Seek operator. 



 
Figure 4.27: Graphical query execution plan for query 3 with a composite index  

Why is this? As we have previously discussed, index statistics are only held for the first 
column of a composite index. The query optimizer would like us to let it have statistics for the 
second column, the customer_no column. The query optimizer could have calculated the 
statistics for itself, but, again, it didn't automatically create the missing column statistics 
because we suppressed this capability by setting the database option Auto create statistics to 
off. 

So, the composite index is a useful index for our query. In fact, the addition of the 
customer_no column to the index results in 22 logical reads being performed instead of 256 
when just the balance column was present. However, there is one problem with this composite 
index. Consider the following query: 

   SELECT * FROM accounts 
      WHERE customer_no BETWEEN 7000 AND 8000 

Because we are not supplying a value for the balance column, the query optimizer cannot use 
the index. In fact, a table scan is performed. 

So what other options do we have? Let us create a new nonclustered index on the 
customer_no column and return our original index consisting of just the balance column. We 
now have two indexes. This will support the above query if the range is not too large. But 
what about our original query? 

   SELECT * FROM accounts 
      WHERE balance BETWEEN $100 AND $200 
      AND 
      customer_no BETWEEN 7000 AND 8000 

Let us look at the query plan, which is shown in Figure 4.28. 

 
Figure 4.28: Graphical query execution plan for query 3 with two nonclustered indexes  

We can see that something interesting has happened. First of all, we can see that on the right 
side of the query plan there are two operators at the same level in the tree, with both having 
the Hash Match physical operator (Inner Join logical operator) as a parent. These two 
operators are both Index Seek operators. The query optimizer has been able to utilize both 



indexes to perform an index intersection, as described in Chapter 3. What has happened is that 
the query optimizer has obtained two sets of pointers from each index for key values 
satisfying each key range. It knows that for a row to satisfy the WHERE clause, a pointer 
must be present in both sets. 

To determine this, a Hash Match operation is performed on the two sets of pointers using the 
hash algorithm described earlier in the chapter. Once the qualifying pointers have been 
obtained, a Bookmark Lookup operation is performed to retrieve the relevant data pages to 
fetch the rows. The important point to note here is that no data rows are fetched and then 
discarded. The Hash Match operation ensures that all nonqualifying rows are eliminated 
before data pages are fetched. This query plan used 28 logical reads and the indexing strategy 
supports queries specifying only the balance column, only the customer_no column, or both. 
Since there are two indexes, row inserts and deletes will be more costly than in the case of the 
single composite index. Note that the query optimizer could perform index intersections using 
more than two indexes, but I have seldom seen this happen. 

Query 4: Find the accounts whose customer numbers are between 7000 and 8000, displaying the customer 
number and branch Number 

   SELECT customer_no, branch_no FROM accounts 
      WHERE customer_no BETWEEN 7000 AND 8000 

In this example, we have moved away from the * in the SELECT list and explicitly specified 
two columns. Generally, I would not advise the use of * in code. Using * could cause 
problems if one day someone adds an extra column (that someone might be the wizard that 
sets up merge replication as it adds a rowguid column). It also does not provide good 
documentation. We are interested in indexing strategies, and there may be a detrimental effect 
here. A query that might otherwise be covered will certainly not be if the developer is lazy 
and uses the * when a small number of columns are actually needed. 

If we execute the above query, a table scan is performed even though there is a nonclustered 
index on the customer_no column. This is because 2,002 customers are returned by the query 
and so the query optimizer has decided to perform a table scan using 1,570 logical reads. Now 
let us change the index on the customer_no column to a composite index containing the 
branch_no column as the second key column. The resulting query plan is shown in Figure 
4.29. 

 
Figure 4.29: Graphical query execution plan for query 4 with a composite nonclustered index  

The index is now covering the query so no data pages need to be retrieved, since the leaf-level 
index pages will satisfy the query. The logical reads used has dropped to seven—a not 
inconsiderable drop! Suppose we execute the following query: 

   SELECT customer_no, branch_no FROM accounts 
      WHERE branch_no BETWEEN 1000 AND 1010 



The index can still cover the query, but all the leaf-level index pages will have to be scanned. 
This still only requires 60 logical reads. Let us drop all the indexes on the Accounts table and 
create a clustered index on the branch_no column and a nonclustered index on the 
customer_no column. Let us repeat the following query: 

   SELECT customer_no, branch_no FROM accounts 
      WHERE customer_no BETWEEN 7000 AND 8000 

The query plan is shown in Figure 4.30. This looks a little surprising at first. The query 
optimizer has chosen the nonclustered index that contains the customer_no column. 
Previously it performed a table scan. Furthermore, only eight logical reads were used. What 
has happened? 

 
Figure 4.30: Graphical query execution plan for query 4 with a nonclustered index and a 
clustered index  

Let us think back to our discussion on clustered indexes, nonclustered indexes, and pointers. 
If a clustered index is present on the table, then the nonclustered index leaf-level pointers will 
be the clustered index key. In other words, our nonclustered index on the customer_no 
column will contain the branch_no column as a pointer. Therefore, the nonclustered index is 
actually covering our query. 

Query 5: Find the accounts that are managed by branch 1000 

Since we have a clustered index on the branch_no column, let us investigate it. 

   SELECT * FROM accounts 
      WHERE branch_no = 1000 

The query plan is shown in 4.31. The operator is a Clustered Index Seek, which means that 
the query processor will traverse the index using the key value until the appropriate data page 
is found. If necessary, the next pointers on the data pages will then be followed to retrieve all 
the qualifying rows. This query returned 250 rows for a cost of only 16 logical reads. 

 
Figure 4.31: Graphical query execution plan for query 5 with a clustered index  

Suppose the following query is executed: 

   SELECT * FROM accounts 
      WHERE customer_no = 1000 



The query plan is shown in Figure 4.32. 

 
Figure 4.32: Graphical query execution plan for a clustered index seek  

Since there is no index on the customer_no column, we might expect to see a table scan 
operation. However, we do not. Instead, we see a Clustered Index Scan operator. When there 
is a clustered index present on a table, the table scan operation becomes a clustered index scan 
operation. Traditionally the leaf level of a clustered index is considered to be the data pages of 
the table, so a clustered index scan is effectively a table scan. 

Query 6: Find the accounts whose balance falls between $100 and $150 or between $5,000 and $5,050 

In this query we are using the OR operator. Whereas the AND operator tends to introduce 
extra filter expressions that limit the rows in the query result, the OR operator tends to do the 
opposite. 

   SELECT * FROM accounts 
   WHERE 
   balance BETWEEN $100 AND $150 
   OR 
   balance BETWEEN $5000 AND $5050 

This query returns 262 rows. There are no indexes except the nonclustered index on the 
balance column. The estimated query execution plan is shown in Figure 4.33. 

 
Figure 4.33: Graphical query execution plan for ORed filters on the same column  

This is exactly the same estimated query execution plan as for query 2. The nonclustered 
index has been used because it is more efficient than a table scan. Choosing two ranges on the 
same column is the same as having a larger, single range as far as the query optimizer is 
concerned. If we increase the number of ORed expressions, we will increase the number of 
rows returned until a table scan is performed. A table scan is performed if the following 
query, which returns 381 rows, is executed. 

   SELECT * FROM accounts 
   WHERE 
   balance BETWEEN $100 AND $150 
   OR 
   balance BETWEEN $5000 AND $5050 
   OR 
   balance BETWEEN $6000 AND $6050 



Query 7: Find the accounts whose balance falls between $100 and $150 or that belong to customer 
numbers in the range 500 to 550 

In this query, we are using the OR operator again; however, this time two different columns 
are being used. This means that an account may satisfy either condition or it may indeed 
satisfy both conditions. The query is as follows: 

   SELECT * FROM accounts 
      WHERE 
      balance BETWEEN 100 AND 150 OR 
      customer_no BETWEEN 500 AND 550 

There is a nonclustered index present on the balance column and a nonclustered index present 
on the customer_no column. 

The query returns 233 rows, and its estimated query execution plan is shown in Figure 4.34. 

 
Figure 4.34: Graphical query execution plan for ORed filters on different columns  

There are similarities between this query execution plan and the query execution plan shown 
in Figure 4.28, where two similar filter expressions were ANDed. 

On the right hand of the query plan there are two operators at the same level in the tree, both 
having the Concatenation operator as a parent. These two operators are both Index Seek 
operators. The query optimizer has been able to utilize both indexes. What has happened is 
that the query optimizer has obtained two sets of pointers from each index for key values 
satisfying each key range. It knows that pointers from either set will point to account rows 
that will satisfy the query, and the Concatenation operator will append the multiple inputs to 
form a single output. In fact, if the mouse cursor is placed over the arrows entering the 
Concatenation operator, the Estimated row count values are 125 and 99. If the mouse cursor is 
placed over the arrow leaving the Concatenation operator, the Estimated row count value is 
225. 

The estimated query execution plan must take care of one other eventuality—the two inputs 
may both return the same row if it satisfies both filter conditions. The Sort/Distinct Sort 
operator takes care of this by removing any duplicate rows. 

Again, if changes to the ORed expressions increase the number of rows returned, a table scan 
will be performed. A table scan will also occur if any of the ORed expressions are not 
supported by an index. 

Query 8: Find the accounts for customer number 1000 



Here we will start to use joins. To keep things simple we will use the * in the SELECT list. 
Note that this will ensure that columns will be required from both tables. We will perform the 
following join: 

   SELECT * FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE C.customer_no = 1000 

The query plan is shown in Figure 4.35. 

 
Figure 4.35: Graphical query execution plan for a nested loops inner join  

The indexes present on the Customers and Accounts tables are both nonclustered indexes on 
the customer_no column. In the case of the Customers table the nonclustered index is unique. 
We can see that, reading from right to left, there are two inputs to the plan with the parent 
being the Nested Loops physical operator. If the mouse pointer is placed over this operator, 
the resulting display explains how it processes the join. This is shown in Figure 4.36. 

 
Figure 4.36: Graphical query execution plan showing the nested loops description  

It states: For each row in the top (outer input), scan the bottom (inner) input and output 
matching rows. So this is our classic nested loops join described earlier in the chapter. The 
query optimizer has determined that the (unique) index on the customer_no column in the 
Customers table is highly selective, since it can, at most, return one row. The Customers table 
has therefore been chosen to be the outer input. So, for each qualifying row in the outer 
input—that is, for each Customer row—the customer number will be used to access the inner 
input—that is, the Accounts table. The nonclustered index on the customer_no column in the 
Accounts table will be used to fetch the matching rows from the Accounts table. Note the Set 
statistics IO display, which is as follows: 

   Table 'accounts'. Scan count 1, logical reads 4, physical 
   reads 0, read-ahead reads 0. 
   Table 'customers'. Scan count 1, logical reads 3, 



   physical reads 0, read-ahead reads 0. 

Often the inner table will have a scan count greater than one, but, because the outer input can 
only produce a maximum of one row, the scan count is, in fact, one. This means that the query 
optimizer estimates that the inner table will be only be accessed once. Suppose we changed 
the query, as follows: 

   SELECT * FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE C.customer_no BETWEEN 1000 AND 1003 

In this case, four customers are returned from the Customers table, and the scan count of the 
Accounts table is, therefore, four, as shown in the following code: 

   Table 'accounts'. Scan count 4, logical reads 16, 
   physical reads 0, read-ahead reads 0. 
   Table 'customers'. Scan count 1, logical reads 6, 
   physical reads 0, read-ahead reads 0. 

Why did the query optimizer choose a nested loops join? Ultimately because it decided that it 
was the most efficient plan in terms of cost. There was a highly selective index on both tables. 

However, suppose we increase the range of customer numbers, as follows: 

   SELECT * FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE C.customer_no BETWEEN 1000 AND 1999 

Now, if we check the query plan, we can see that the query optimizer has decided that the 
nested loops join method is not the most efficient. There are 1,000 customers that satisfy the 
query and a nested loop would result in the inner table being accessed 1,000 times. The query 
optimizer has decided that a hash join is a better bet. The query plan is shown in Figure 4.37. 

 
Figure 4.37: Graphical query execution plan showing a hash join  

Again, we observe two inputs, but we can see that these are table scans. The parent operator 
for the table scans is the Hash Match physical operator. If the mouse pointer is placed over 
this operator, the resulting display explains how it processes the join. This is shown in Figure 
4.38. 



 
Figure 4.38: Graphical query execution plan showing the hash join  

It states: Use each row from the top input to build a hash table, and each row from the bottom 
input to probe into the hash table, outputting all matching rows. This is the hash join we 
described earlier in this chapter. The Set statistics IO output is shown in the following code. 
Notice that each table has a scan count of just one. 

   Table 'accounts'. Scan count 1, logical reads 1570, 
   physical reads 0, read-ahead reads 0. 
   Table 'customers'. Scan count 1, logical reads 840, 
   physical reads 0, read-ahead reads 0. 

Now both tables are accessed via a table scan. Does this mean that the indexes are redundant? 
At first sight you might think the answer would be yes—but you would be wrong! The reason 
is this: The query optimizer needs to know how many customers satisfy the query. It uses this 
information to work out the table to use for the build input and the table to use for the probe 
input and then, ultimately, the cost. Without these indexes it would need column statistics. We 
have none, and we have not allowed the query optimizer to create them automatically. 
Therefore, with no indexes, there are no statistics and the query optimizer might choose an 
inefficient plan. 

When is the query optimizer likely to choose a merge join? Let us change the query so there is 
a requirement for the output to be sorted on the customer_no column, as follows: 

   SELECT * FROM customers C INNER JOIN accounts A 
      ON C.customer_no = A.customer_no 
      WHERE C.customer_no BETWEEN 1000 AND 1999 
      ORDER BY c.customer_no 

Let us also ensure that a clustered index on customer_no is created on each table. We have 
now created two inputs that are effectively sorted on customer_no. If we execute the query, 
the resulting query plan would be as shown in Figure 4.39. The query optimizer has still 
decided that a hash join is the most efficient method. 



 
Figure 4.39: Graphical query execution plan showing the hash join  

If we force a merge join strategy (we will see how later) we can compare the costs, as shown 
in the following chart. 

•    

Join Type  Estimated Cost Logical IO CPU (ms) 
Hash 1.54 2,408 120 
Merge (M:M) 1.61 7,409 631 

The hash join is a clear winner, so the query optimizer created the most efficient plan. But 
why was the merge join more expensive? After all, the sorts are effectively already done. The 
clue is in the Set statistics IO output, which is as follows:  

   Table 'Worktable'. Scan count 1999, logical reads 5000, 
   physical reads 0, read-ahead reads 0. 
   Table 'accounts'. Scan count 1, logical reads 225, 
   physical reads 0, read-ahead reads 0. 
   Table 'customers'. Scan count 1, logical reads 62, 
   physical reads 0, read-ahead reads 0. 

A worktable has been used that increased the cost. Why? Because the clustered index we 
created on the Customers table was not unique. The query optimizer used a many-to-many 
merge join and hence a worktable was used. Note that when the mouse pointer is passed over 
the Merge Join operator, the pop-up window will contain argument text, which will specify 
that the merge join was many-to-many. What happens if we recreate the clustered index as a 
unique clustered index? The query plan is shown in Figure 4.40. 

 
Figure 4.40: Graphical query execution plan showing merge join  

A merge join has been used. The costs Merge (1:M) are shown in the following chart, 
compared with the previous costs. 



•    

Join Type  Estimated Cost Logical IO CPU (ms) 
Hash 1.54 2,408 120 
Merge (M:M) 1.61 7,409 631 
Merge (1:M) 1.20 287 60 

We can see that by being careful with our index creation we have enjoyed a not 
inconsiderable cost reduction. Hopefully, most of you will use primary key constraints and so, 
in the case above, the index would have been created as a unique index automatically. 

Query 9: Find the accounts and customers for branch number 1000 

This is just an example of a three-table join as opposed to the two-table joins we have seen so 
far. 

   SELECT * FROM customers C 
      INNER JOIN accounts A ON C.customer_no = A.customer_no 
      INNER JOIN branches B ON A.branch_no = B.branch_no 
      WHERE B.branch_no = 1001 

The estimated query execution plan is shown in Figure 4.41. There is nothing special about 
this query plan except that it demonstrates that the more tables in the query, the more inputs to 
the plan. 

 
Figure 4.41: Graphical query execution plan showing a three-table join  

Query 10: Find the sum of the account balances managed by each branch 

This is an example of aggregation. The query optimizer has to create a plan so that, for each 
branch number, a total is calculated for the values in the balance column in the Accounts 
table. 

   SELECT branch_no, SUM(balance) FROM accounts 
      GROUP BY branch_no 

We will remove all the indexes from the Accounts table. The query plan is shown in Figure 
4.42. 



 
Figure 4.42: Graphical query execution plan showing a group by using hash aggregation  

The Accounts table is table scanned. Even if there were an index on the branch_no column, it 
would not be used, since all the branches are included in the query. The Table Scan operator 
consequently passes 25,000 rows to the next operator. This interesting operator is the Hash 
Match Aggregate operator. This operator performs aggregation, as described earlier in this 
chapter. 

The build input creates a set of hash buckets and then reads each row in turn. The branch 
number of the first account (the GROUP BY column) will be hashed, and the branch number 
and account balance values will be written into the appropriate hash bucket. This process will 
continue for each row. However, if a branch number is found to be already present in a hash 
bucket, the balance will be added to the value present. Finally, when all the rows have been 
retrieved, the hash buckets are scanned and the branch number values returned with their 
sums 

The Set statistics IO output for this operation is as follows: 

   Table 'accounts'. Scan count 1, logical reads 1570, 
   physical reads 0, read-ahead reads 0. 

In other words, the only logical reads performed are those needed to execute the table scan. 
Suppose we now create a clustered index on the branch_no column of the Accounts table. 

If we execute the query again, we see that the query plan changes. This is shown in Figure 
4.43. 

 
Figure 4.43: Graphical query execution plan showing a group by using a clustered index  

The query optimizer has decided to make use of the fact that the clustered index on the 
branch_no column will ensure that the Accounts table rows are stored in branch number 
order. It can scan the clustered index and pass the sorted rows to the Stream Aggregate 
operator. This operator computes the sum of the balances using the sorted input stream. 

The logical read count is similar to that used for the table scan and hash aggregate. The costs 
are also similar. The estimated cost for the table scan/hash aggregate is 1.36, whereas the 
estimated cost for the clustered index scan/stream aggregate is 1.16. The clustered index 
scan/stream aggregate is therefore estimated to be a cheaper alternative to hashing. 



Suppose we drop the clustered index and replace it with a nonclustered index with a 
composite key of the branch_no and balance columns. This will cover the query. The 
estimated query execution plan is shown in Figure 4.44. 

 
Figure 4.44: Graphical query execution plan showing a group by using a nonclustered index  

This is very efficient. The Set statistics IO output is as follows: 

   Table 'accounts'. Scan count 1, logical reads 73, 
   physical reads 0, read-ahead reads 0. 

This is a significant reduction in logical reads from the other two query plans. The estimated 
cost is only 0.188. Using a covering index for aggregate operations is clearly a strategy worth 
pursuing. 

Query 11: Find the count of the accounts with various restrictions 

It is worth a quick look at the COUNT operator, since it may or may not be able to use 
nonclustered indexes present on a table in various circumstances. Consider the following 
query: 

   SELECT COUNT(customer_no) FROM accounts 

The COUNT function used in conjunction with a column counts the number of non-NULL 
values in the column—in other words, the number of rows that do not have a NULL value in 
that column. If there are no indexes present on the table, the query optimizer must perform a 
table scan to execute the count. However, suppose that there is a nonclustered index on the 
customer_no column. The query optimizer chooses the estimated query execution plan shown 
in Figure 4.45. 

 
Figure 4.45: Graphical query execution plan showing a COUNT(customer_no) using a 
nonclustered index on the customer_no column  

The output from Set statistics IO is as follows: 

   Table 'accounts'. Scan count 1, logical reads 48, 
   physical reads 0, read-ahead reads 0. 

This is much more efficient than the 1,570 logical reads used by a table scan of the Accounts 
table. What has happened is that the query optimizer has chosen to scan the leaf-level index 
pages, counting the index entries that are not NULL. This makes sense, since we already 



know that the leaf-level index pages contain exactly one entry per data row. Since an index 
page will typically hold many more index entries (just key plus pointer) than a data page will 
hold data rows, the index leaf level will consist of far fewer pages. A scan of the index is 
likely to be much faster than a scan of the table. 

The estimated query execution plan shows the Index Scan operator followed by the Aggregate 
and Compute Scalar operators, which will count the index entries. 

Now, suppose that the index on the customer_no column is dropped and replaced by a 
nonclustered index on the balance column. The estimated query execution plan that the query 
optimizer now uses is shown in Figure 4.46. 

 
Figure 4.46: Graphical query execution plan showing a COUNT(customer_no) using a 
nonclustered index on the balance column  

Again, the estimated query execution plan shows a scan of a nonclustered index—in this case, 
the index on the balance column. How can this index be used when the query is counting the 
accounts with a non-NULL value in the customer_no column? After all, the customer_no 
column does not even appear in the nonclustered index. The answer lies in the fact that the 
column in the Accounts table does not actually allow NULL values. Therefore, it is not 
necessary to test for NULL values, and any nonclustered index can be scanned to obtain the 
count. If the customer_no column had allowed NULL values, the query optimizer would have 
had to perform a table scan to check this column, since the nonclustered index on the balance 
column would not have contained the necessary information. Suppose the following query is 
executed: 

   SELECT COUNT(DISTINCT customer_no) FROM accounts 

The COUNT and DISTINCT used in conjunction with a column counts the number of non-
NULL values in the column with duplicates eliminated. The estimated query execution plan is 
shown in Figure 4.47. 

 
Figure 4.47: Graphical query execution plan showing a COUNT(DISTINCT customer_no) 
using a table scan  

We can see that a Table Scan operator is performed, and this is followed with a Hash Match / 
Aggregate operator to eliminate the duplicates. The important point to note here is that the 
DISTINCT keyword requires that duplicate customer numbers are removed and that the 
nonclustered index on the balance column does not contain the necessary information. Again, 
a table scan must be performed. 

Now consider the following query: 



   SELECT COUNT(*) FROM accounts 

This form of the COUNT function is not interested in any column, so the question of NULL 
or duplicate values is irrelevant. Consequently, the query optimizer will produce an estimated 
query execution plan, which utilizes the nonclustered index with the smallest leaf level. 
Suppose we execute this query with both the nonclustered indexes on the balance column and 
the customer_no column present on the Accounts table. The estimated query execution plan is 
shown in Figure 4.48. The nonclustered index on the customer_no column is used, since the 
key is a four-byte INTEGER rather than an eight-byte MONEY data type and therefore the 
index leaf level is smaller. 

 
Figure 4.48: Graphical query execution plan showing a COUNT(*) using a nonclustered 
index  

To summarize, when using the COUNT function, remember that choosing between the 
different formats may dramatically impact performance, since this may restrict the query 
optimizer's use of available indexes. Also remember that a covering nonclustered index may 
help out other aggregate functions such as AVG, MIN, MAX, and SUM. 

Query 12: Display account details in sorted order 

If the result of a query is to be ordered by a column or group of columns, the query optimizer 
can use various techniques to sort it. 

Suppose we execute the following query: 

   SELECT customer_no, balance FROM accounts 
      ORDER BY customer_no 

There are no indexes presently on the Accounts table, and so the estimated query execution 
plan must involve table scan. This is shown in Figure 4.49. 

 
Figure 4.49: Graphical query execution plan showing an ORDER BY using a table scan  

The stream of rows resulting from the table scan is passed to a Sort operator. This sorts the 
output according to the ORDER BY clause of the query. SQL Server will attempt to perform 
the sort in memory, but, if the query has insufficient memory, disk space will be used. This 
situation can be detected by the Sort Warnings event in the SQL Profiler. Suppose we create a 
clustered index on the customer_no column and repeat the query. The estimated query 
execution plan is shown in Figure 4.50. 



 
Figure 4.50: Graphical query execution plan showing an ORDER BY using a clustered index  

The Sort operator has disappeared, and the Table Scan operator has been replaced by the 
Clustered Index Scan operator. The query optimizer, knowing that the clustered index will 
return the data in key sequence order (customer_no column order), can scan the clustered 
index and therefore avoid any sort. 

Suppose the clustered index on the customer_no column is replaced by a nonclustered index. 
The estimated query execution plan is shown in Figure 4.51. 

 
Figure 4.51: Graphical query execution plan showing an ORDER BY using a table scan rather 
than a nonclustered index  

Note that this is the same estimated query execution plan as that shown in Figure 4.49. In 
other words, the addition of the nonclustered index makes no difference—a table scan is still 
performed. This should come as no surprise, because of what we already know. The query 
optimizer has decided that a table scan and sort are less costly than the many data page 
requests that would result by scanning the nonclustered index leaf level and fetching the data 
pages. However, if the range of rows is reduced, the nonclustered index will be used. Suppose 
the following query is executed: 

   SELECT customer_no, balance FROM accounts 
      WHERE customer_no BETWEEN 1000 AND 1100 
      ORDER BY customer_no 

The estimated query execution plan is shown in Figure 4.52. 

 
Figure 4.52: Graphical query execution plan showing an ORDER BY using a nonclustered 
index  



There is no Sort operator, because the query optimizer knows that the leaf level of the 
nonclustered index is in account_no column order, so scanning it will return the data rows in 
the correct sequence. 

Suppose we execute the following query: 

   SELECT customer_no, balance FROM accounts 
      WHERE customer_no BETWEEN 1000 AND 1100 
      ORDER BY customer_no, balance 

The estimated query execution plan is shown in Figure 4.53. 

 
Figure 4.53: Graphical query execution plan showing an ORDER BY using a nonclustered 
index plus a sort  

Since we only have a nonclustered index present on the customer_no column in the Accounts 
table, the query optimizer will need to place a Sort operator in the query plan to ensure that 
the data is sorted by the balance column also. A composite index will fix this. Let us create a 
nonclustered index on a composite key of the customer_no and balance columns. If we 
execute the query again, the Sort operator disappears, as shown in Figure 4.54. 

 
Figure 4.54: Graphical query execution plan showing an ORDER BY using a composite 
nonclustered index  

Suppose we now ask for the result to be sorted in descending order of balance, as follows: 

   SELECT customer_no, balance FROM accounts 
      WHERE customer_no BETWEEN 1000 AND 1100 
      ORDER BY customer_no, balance DESC 

We can see from the estimated query execution plan shown in Figure 4.55 that the Sort 
operator has returned. 



 
Figure 4.55: Graphical query execution plan showing an ORDER BY using a composite 
nonclustered index and a descending order  

Figure 4.55 illustrates an important fact. SQL Server can index scan equally well in both 
directions on a single-column index. This is because, as we know, the index pages at a given 
level are linked by next and prior pointers pointing to the next and previous index pages at 
that level. 

However, if an ORDER BY clause specifies different directions for the key columns, a Sort 
operator is needed. If such a sort is a frequent requirement, the index can be defined with a 
mix of ascending and descending keys. In our example, we can create the index as follows: 

   CREATE INDEX nciCustomerNoBalance 
      ON accounts (customer_no, balance DESC) 

The index keys will now be stored in ascending order of customer number but descending 
order of balance. The resulting estimated query execution plan is shown in Figure 4.56. 

 
Figure 4.56: Graphical query execution plan showing an ORDER BY using a composite 
nonclustered index and a descending index key  

We can see that the Sort operator has again disappeared. 

Finally, let us return to our earlier query: 

   SELECT customer_no, balance FROM accounts 
      ORDER BY customer_no 

Again, we will ensure that only a nonclustered index on the customer_no column of the 
Accounts table is present. We know that the estimated query execution plan for this query 
involves a Table Scan operator, as was shown in Figure 4.50. The query optimizer decided 
that this plan was cheaper than using the nonclustered index. In fact, the query uses 1,570 
logical reads. 

In the case of a table scan and sort no rows will be returned until the result set has been sorted. 
If the nonclustered index was chosen by the query optimizer, the first row could be returned 



immediately. This behavior can be forced with the FASTFIRSTROW query optimizer hint, as 
follows: 

   SELECT customer_no, balance FROM accounts 
      WITH (FASTFIRSTROW) 
      ORDER BY customer_no 

The query plan is shown in Figure 4.57. 

 
Figure 4.57: Graphical query execution plan showing an ORDER BY using a nonclustered 
index and a FASTFIRSTROW query optimizer hint  

The query returns the first row instantly, but overall the query now uses 25,048 logical reads. 

The penalty, therefore, for this rapid return of the first row is usually a slower query response 
time overall caused by more logical reads. 

Query 13: Display the total balances managed by each branch but making use of indexed views 

We discussed indexed views in Chapter 3. Let us look at how the query optimizer can make 
use of an indexed view. First of all, let us remind ourselves of how normal views are used. 
Basically, their definition is expanded and merged with the query definition of the query that 
is using the view. Traditional (nonindexed) views contain no data. For example, take the 
following traditional view definition: 

   CREATE VIEW dbo.BranchTotalFunds 
   AS 
   SELECT branch_no, COUNT_BIG(*) AS AccountInstances, 
   SUM(balance) AS TotalBalance 
   FROM dbo.accounts 
   GROUP BY branch_no 

We will use this view in a query, as follows: 

   SELECT * FROM BranchTotalFunds 
      WHERE TotalBalance > $1350000.00 

The query plan is shown in Figure 4.58. 

 
Figure 4.58: Graphical query execution plan for a query using a traditional view  



Note that the estimated query execution plan specifies a table scan against the base table—the 
view has been expanded into its constituent parts. Now let us create an indexed view, as 
follows: 

   CREATE VIEW dbo.BranchTotalFunds 
   WITH SCHEMABINDING 
   AS 
   SELECT branch_no, COUNT_BIG(*) AS AccountInstances, 
   SUM(balance) AS TotalBalance 
   FROM dbo.accounts 
   GROUP BY branch_no 
 
   CREATE UNIQUE CLUSTERED INDEX ciBranchNo ON 
   dbo.BranchTotalFunds (branch_no) 

We had to create a unique clustered index on the view to make it an indexed view. We will 
also create a nonclustered index on the indexed view, as follows: 

   CREATE INDEX nciTotalBal ON dbo.BranchTotalFunds 
   (TotalBalance) 

First of all, let us execute the following query: 

   SELECT * FROM BranchTotalFunds 

The query plan is shown in Figure 4.59. 

 
Figure 4.59: Graphical query execution plan for a simple query using an indexed view  

We immediately notice that the estimated query execution plan shows the BranchTotalFunds 
view being used. There is no aggregation needed, because the view holds the result of its 
defining query physically in the database. The access to the data is via a clustered index scan 
on the ciBranchNo index. 

Suppose we execute the following query again: 

   SELECT * FROM BranchTotalFunds 
      WHERE TotalBalance > $1350000.00 

The query plan is shown in Figure 4.60. 



 
Figure 4.60: Graphical query execution plan for a query using an indexed view  

We can see that the BranchTotalFunds view is being used and so is the nonclustered index on 
it. We have basically indexed the aggregate result. Using an indexed view can really speed up 
queries that need to perform this type of access. Now consider the following query: 

   SELECT branch_no, SUM(balance) AS TotalBalance 
   FROM accounts 
   GROUP BY branch_no 

The indexed view is not mentioned anywhere in this query. The query plan is shown in Figure 
4.61. Notice that the query optimizer has recognized that even though it is not explicitly 
mentioned, the indexed view can be used instead of directly accessing the base table. Later in 
this chapter we will see mechanisms that allow us to override this behavior. 

 
Figure 4.61: Graphical query execution plan for a query on a table with an indexed view  

Query 14: Querying accounts through a partitioned union view 

In this example we have decided that our Accounts table is growing too large and so we will 
split it into three physical tables. Perhaps these will be stored on three separate physical RAID 
arrays. To avoid application logic having to concern itself with which table to access when it 
needs to access customer accounts, we will also make use of a union view. Here is the 
Transact-SQL that defines the new tables: 

   CREATE TABLE accounts1 
      ( 
      account_no    INT        NOT NULL 
         PRIMARY KEY (account_no) 
         CHECK (account_no BETWEEN 0 and 10000), 
      customer_no   INT        NOT NULL, 
      branch_no     INT        NOT NULL, 
      balance       MONEY NOT  NULL, 
      account_notes CHAR (400) NOT NULL 
      ) 
 
   CREATE TABLE accounts2 
      ( 
      account_no    INT        NOT NULL 



         PRIMARY KEY (account_no) 
         CHECK (account_no BETWEEN 10001 and 20000), 
      customer_no   INT        NOT NULL, 
      branch_no     INT        NOT NULL, 
      balance       MONEY      NOT NULL, 
      account_notes CHAR (400) NOT NULL 
      ) 
 
   CREATE TABLE accounts3 
      ( 
      account_no    INT        NOT NULL 
         PRIMARY KEY (account_no) 
         CHECK (account_no > 20001), 
      customer_no   INT        NOT NULL, 
      branch_no     INT        NOT NULL, 
      balance       MONEY      NOT NULL, 
      account_notes CHAR (400) NOT NULL 
      ) 

Here is the Transact-SQL that defines the view: 

   CREATE VIEW AllAccounts AS 
      SELECT account_no, branch_no, balance FROM accounts1 
      UNION ALL 
      SELECT account_no, branch_no, balance FROM accounts2 
      UNION ALL 
      SELECT account_no, branch_no, balance FROM accounts3 

Notice the CHECK constraint in each table definition. They specify valid ranges of rows and, 
taken together, they completely describe all the possible valid account numbers in our bank 
without overlap. Since the ranges do not overlap, an account number may only be found in 
one table. Also note that negative account numbers are not allowed. We have also created a 
primary key constraint on each table using the account_no column as the primary key column. 
The primary key index is clustered. 

Let us now investigate the estimated query execution plan of a query that has no WHERE 
clause. This is shown in Figure 4.62. 

 
Figure 4.62: Graphical query execution plan for a query with no WHERE clause against a 
union view  
   SELECT * FROM AllAccounts 



We can see that each table participates in the query and feeds the results of its clustered index 
scan into the Concatenation operator, which appends the input tables into a single output 
table. The slight variation in width of the arrows feeding into the Concatenation operator is 
due to the fact that each table contributes a different number of rows because of the CHECK 
constraint. 

Let us now execute the following query: 

   SELECT * FROM AllAccounts 
      WHERE 
      account_no = 15000 
      OR 
      account_no = 25000 

The estimated query execution plan is shown in Figure 4.63. 

 
Figure 4.63: Graphical query execution plan for a query with a WHERE clause against a 
union view  

We can see that the estimated query execution plan only refers to two tables. Because of the 
CHECK constraint, the query optimizer knows that the table Accounts1 cannot hold rows that 
participate in the query. 

For the query optimizer to know this information it must trust the CHECK constraint. This 
means that when the CHECK constraint is created, the existing data must be checked for 
validity. If the option is selected to not choose the existing data, then the query optimizer will 
not trust the constraint and all tables will be checked. To find out if a constraint was created 
so that existing data were checked, use the OBJECTPROPERTY function with the 
CnstIsNotTrusted property name. For example, as follows: 

   SELECT 
      OBJECT_PROPERTY (OBJECT_ID('CK_accounts1'), 
                      'CnstIsNotTrusted') 

If this returns zero, then the constraint did check the existing data on creation. The constraint 
name can be found from EXEC sp_helpconstraint tablename. 

 Note I would normally name the constraint myself to ensure consistent naming. 

As far as partitioning goes, this is just the tip of the iceberg. In SQL Server 2000 the partitions 
can be distributed across servers and a union view created on each server. Each union view 
will consist of its local partition and the remote partitions on the other servers. These will 



have been set up as linked servers. As long as the criteria are met to set up this sort of 
configuration, the distributed union views can also be updated. 

This distributed union view capability gives SQL Server 2000 the ability to partition tables 
across many federated servers. Microsoft refers to this capability as scale-out. With scale-out 
as the workload increases, more servers are added. This allows massive scalability increases. 
In comparison, scale-up, which refers to adding CPUs and other hardware resources to an 
existing server, does not provide for such a large scalability increase—the hardware 
limitations of a single server are quickly hit. We will not discuss how to partition tables across 
multiple servers here. This is well documented, and only organizations with very heavy 
workloads will need to implement such a configuration.  

4.3.6 Influencing the query optimizer 

As we have already seen, the query optimizer is a sophisticated piece of software that can 
consider multiple factors and create the most efficient query plan. However, there will be 
situations when you may wish to force the query optimizer to create a plan that it would not 
otherwise have chosen. Perhaps what it considers the most efficient plan is not really the case 
in some specific situations that you understand well. As we shall now see, it is possible to 
override the query optimizer, but this should be considered only as a last resort. Perhaps 
rewriting the query or changing the index design strategy might be a better long-term option. 

The query optimizer can be overridden by using a query optimizer hint. These hints can be 
grouped into four categories: 

1. Join hints 
2. Table hints 
3. View hints 
4. Query hints 

Join hints 

Join hints are used to force the query optimizer to create a query plan that adopts a particular 
join technique when joining two tables. We already know that there are three join techniques 
available; these are nested loops, merge, and hash. We can specify a join hint, which will 
force two tables to be joined using one of these techniques. A fourth join hint, REMOTE, can 
also be specified to dictate on which server a join is to be performed in a distributed join 
query. 

The join hint syntax is simple to use; the join type is specified as part of the join, as follows: 

   SELECT * FROM accounts INNER HASH JOIN customers 
   ON 
   accounts.customer_no = customers.customer_no 
   WHERE 
   balance > 9990 

In the above example, a hash join technique is forced. 

The REMOTE join hint dictates that the join operation is performed on the server hosting the 
right table. This is useful when the left table is a local table with few rows and the right table 



is a remote table that has many rows, since this may avoid a lot of data being shipped to the 
local server. 

Table hints 

Table hints are very useful, since they dictate the access method to use when retrieving data 
from a table. This can be a table scan, a single index, or multiple indexes. An example of the 
syntax used is as follows: 

   SELECT * FROM accounts WITH (INDEX (nciBalance)) 
      WHERE 
      balance BETWEEN 100 AND 200 
      AND 
      customer_no BETWEEN 1000 AND 2000 

The above example forces the query optimizer to adopt a plan that uses the nonclustered index 
nciBalance to access the Accounts table. The following example forces the query optimizer to 
adopt a plan that uses the non-clustered indexes nciBalance and nciCustomerNo to access the 
Accounts table—in other words, to perform an index intersection. 

   SELECT * FROM accounts WITH (INDEX (nciBalance, 
   nciCustomerNo)) 
      WHERE 
      balance BETWEEN 100 AND 200 
      AND 
      customer_no BETWEEN 1000 AND 2000 

Suppose a table scan must be forced. The following syntax forces the query optimizer to 
adopt a plan that uses a table scan if there is no clustered index present on the table or that 
uses a clustered index scan if there is. 

   SELECT * FROM accounts WITH (INDEX (0)) 
      WHERE 
      balance BETWEEN 100 AND 200 
      AND 
      customer_no BETWEEN 1000 AND 2000 

If there is a clustered index present on the table, a clustered index scan or seek can be forced, 
as shown in the following example: 

   SELECT * FROM accounts WITH (INDEX (1)) 
      WHERE 
      balance BETWEEN 100 AND 200 
      AND 
      customer_no BETWEEN 1000 AND 2000 

Another table hint that we have briefly discussed is FASTFIRSTROW. As mentioned in our 
previous discussion concerning ORDER BY, in the case of a table scan and sort no rows will 
be returned until the result set has been sorted. If the nonclustered index is chosen by the 
query optimizer, the first row can be returned immediately. This behavior can be forced with 
the FASTFIRSTROW query optimizer hint, as follows: 

   SELECT customer_no, balance FROM accounts 
      WITH (FASTFIRSTROW) 



      ORDER BY customer_no 

View hints 

View hints are similar to table hints but are used with indexed views. The only view hint is 
NOEXPAND, which forces the query optimizer to process the view like a table with a 
clustered index. The index on the view, which should be used, may be specified. An example 
of the syntax used is as follows: 

   SELECT * FROM BranchTotalFunds 
      WITH (NOEXPAND,INDEX (nciTotalBal)) 
      WHERE TotalBalance > $1350000.00 

A query hint, described in the following section, can be used to expand the indexed view. 

Query hints 

A query hint is used throughout the whole query. Query hints can be used to specify many 
plan behaviors. For example, the following query hint forces the query optimizer to use 
hashing when calculating an aggregate. 

   SELECT branch_no, SUM(balance) 
   FROM accounts 
   GROUP BY branch_no 
   OPTION (HASH GROUP) 

If an ordering (sorting) rather than a hashing technique should be used, then this can be forced 
as follows: 

   SELECT branch_no, SUM(balance) 
   FROM accounts 
   GROUP BY branch_no 
   OPTION (ORDER GROUP) 

A query hint can be used to force the query optimizer to adopt different techniques when 
performing UNION operations. The following example will force the use of a Concatenation 
operator to perform the union, and thus a Sort/Distinct operator will subsequently eliminate 
the duplicate rows if any. 

   SELECT * FROM AccountsEurope WHERE balance > 9990 
   UNION ALL 
   SELECT * FROM AccountsUSA WHERE balance > 9990 
   OPTION (CONCAT UNION) 

The following example will force the use of a Hash/Union operator to perform the union, and 
thus a Sort/Distinct operator will not be needed to eliminate the duplicate rows. 

   SELECT * FROM AccountsEurope WHERE balance > 9990 
   UNION ALL 
   SELECT * FROM AccountsUSA WHERE balance > 9990 
   OPTION (HASH UNION) 

Finally, the following example will force the use of a Merge/Union operator to perform the 
union, and thus a Sort/Distinct operator will not be needed to eliminate the duplicate rows. 



Normally, the Merge/Union operator would exploit the sorted order of the inputs in a manner 
similar to a merge join, as follows: 

   SELECT * FROM AccountsEurope WHERE balance > 9990 
   UNION ALL 
   SELECT * FROM AccountsUSA WHERE balance > 9990 
   OPTION (MERGE UNION) 

We have already seen that a JOIN clause can include a join hint. The join hint is relevant to 
the two tables being joined by that particular join operator. The type of join may also be 
specified as a query hint, in which case the join type will be applied to all the joins in the 
query, as follows: 

   SELECT * FROM accounts 
      INNER JOIN customers 
      ON accounts.customer_no = customers.customer_no 
      INNER JOIN branches 
      ON accounts.branch_no = branches.branch_no 
      WHERE balance > 9990 
      OPTION (HASH JOIN) 

Note that a join hint will override the query hint. 

To force a query plan to deliver the first rows quickly, perhaps at the expense of the whole 
query, the FAST query hint can be used, as in the following example: 

   SELECT customers.customer_no, customer_lname, balance 
      FROM customers INNER JOIN accounts 
      ON customers.customer_no = accounts.account_no 
      WHERE customers.customer_no > 12400 
      ORDER BY customers.customer_no 
      OPTION (FAST 10) 

This query hint will force the query optimizer to create a plan that will be optimized to return 
the first ten rows. 

Perhaps a more practical hint is one that can force the query optimizer to change the join order 
to that specified by the query syntax, as follows: 

   SELECT customers.customer_no, customer_lname, balance 
      FROM customers INNER JOIN accounts 
      ON customers.customer_no = accounts.account_no 
      WHERE accounts.balance BETWEEN 100 AND 200 
      OPTION (FORCE ORDER) 

In the above example, the outer table will become the Customers table even though it is the 
Accounts table that is filtered. 

The next query hint is used to specify the number of CPUs used to parallelize the query on a 
multiprocessor computer. If there is only one processor, this hint is ignored. The following 
hint limits the number of CPUs that can be used for parallelism to two. 

   SELECT branch_no, SUM(balance) 
   FROM accounts 
   GROUP BY branch_no 



   OPTION (MAXDOP 2) 

If MAXDOP is set to 1, parallel query plan is suppressed. 

The KEEP PLAN and KEEPFIXED PLAN options are similar in that they control when 
query plans are recompiled. This is discussed later in the chapter. The KEEPFIXED PLAN 
option ensures that the query optimizer does not recompile a query due to changes in statistics 
or to the indexed column. A query will only be recompiled if the table schema changes or 
sp_recompile is executed specifying the table. The KEEPPLAN option is used to reduce the 
recompilation thresholds, which determine how many inserts, deletes, and index column 
updates cause a query to be recompiled. The recompilation thresholds used for querying 
temporary tables in a stored procedure are less than those for a permanent table, and therefore 
this option is useful when it is necessary to reduce stored procedure recompilations for stored 
procedures that use temporary tables. This is discussed later in the chapter. 

The EXPAND VIEWS option is used with indexed views. This option effectively ensures that 
the indexes on an indexed view are not used. The view is expanded into its definition, which 
is the traditional behavior with nonindexed views, as follows:  

   SELECT * FROM BranchTotalFunds 
      WHERE TotalBalance > $1350000.00 
      OPTION (EXPAND VIEWS) 

The ROBUST PLAN option ensures that the query plan will not fail due to size limitations 
when the maximum row sizes are used in the query. For example, plan A may be more 
efficient than plan B. However, due to the fact that plan A uses intermediate tables to store 
intermediate results, if any of the variable-length rows used in the query are at their maximum 
size, the use of the intermediate tables will fail due to size limitations. The ROBUST PLAN 
option will ignore plan A and choose plan B, which, although less efficient, will not have the 
same potential problems due to the way the plan executes—perhaps it does not use 
intermediate storage of results. 

4.3.7 Stored procedures and the query optimizer 

Stored procedures are found everywhere in SQL Server. There are many system stored 
procedures, and a typical SQL Server development department will also create and use many 
stored procedures. There are a number of benefits to using stored procedures, such as the 
following: 

• Function encapsulation 
• Security 
• Performance 

By function encapsulation I mean that complex logic can be placed into a stored procedure 
and hidden from the client software, which then only has to call the stored procedure, passing 
appropriate parameters. The stored procedure logic can be changed, perhaps to encompass a 
database modification, without having to change client application software or at least 
minimizing any change. We can say that stored procedures insulate the client application 
software from the database structure. 



Many sites take a stance that updates to database data can only be made through stored 
procedures and cannot be made directly to the tables by the client issuing Transact-SQL 
statements. This model of processing is shown in Figure 4.64. 

 
Figure 4.64: Insulating clients from the database structure via stored procedures  

This brings us to the second benefit of stored procedures: security. Taking the model shown in 
Figure 4.64, we can see that in order to implement it, we need a security mechanism that 
allows us to prohibit client software from directly accessing tables and other objects but 
allows indirect access in a way that we can define and control. Stored procedures provide this 
benefit by means of ownership chains. 

As long as the owner of the stored procedure is the owner of all the objects referenced by the 
stored procedure, then execute access on that stored procedure can be granted to database 
users. They can perform all of the actions defined in the stored procedure even though they 
have no direct access to the underlying objects. For example, a database user may be granted 
execute access to a stored procedure that deletes from one table and inserts into another. As 
long as the ownership of the stored procedure and tables is the same, the database user needs 
no permissions on the tables. 

The most important benefit of stored procedures from the perspective of this book is 
performance, and it is this aspect of stored procedures on which we will now concentrate. 
Generally speaking, stored procedures save us the time and effort spent syntax checking 
Transact-SQL and optimizing it. They reduce network load because they minimize the 
amount of traffic sent to and from the server. 

The stages in stored procedure processing are shown in Figure 4.65. This figure can be 
compared with Figure 4.1, which shows the stages in query processing. The principal 
difference is that when a Transact-SQL query is submitted, all the above phases are 
performed. If the query is submitted 100 times, these phases are performed for each 
submission unless the query plan for the statement can be reused. We will discuss plan reuse 
for statements later. 



 
Figure 4.65: Stages in stored procedure processing  

With a stored procedure, the query plan is generally always reused—with a few exceptions. 
When the stored procedure is initially created, the syntax is checked, and, if correct, the stored 
procedure code is stored in the syscomments system table, which is resident in every 
database. Also, the stored procedure name is stored in the sysobjects system table, which is 
also resident in every database. 

When a stored procedure is first executed after SQL Server starts (in other words it is not 
cached in any way), the stored procedure is retrieved from syscomments. We can see that we 
immediately have a performance gain, since we do not have to perform the syntax checking, 
which, for a large stored procedure, may be nontrivial. Existence checking must be performed 
at this point, since SQL Server allows us to create the stored procedure even if tables and 
views, which are referenced in it, do not exist at creation time. This is known as delayed name 
resolution. 

Assuming all the objects referenced exist, the query optimizer creates a query plan for the 
Transact-SQL in the stored procedure and compiles it into executable code. Once the query 
plan has been created and compiled, it is cached in an area of memory known as the 
procedure cache. It is then available for the next user. 

If another user wishes to execute the stored procedure, SQL Server can now skip the above 
phases, since the query plan is ready and waiting in the cache. This can increase the 
performance benefit of the stored procedure quite substantially. How useful the performance 
advantage of skipping these phases is depends on how long it takes to perform these phases 
relative to the execution time of the stored procedure and how often the stored procedure is 
executed. For a complex stored procedure, which is frequently executed, the performance 
advantage is significant. 

 Note Microsoft recommends that the owner name be specified when a stored procedure is 
executed. This enables SQL Server to access the execution plan for the specific 
procedure more efficiently. Therefore, it is better to issue: 

   EXEC dbo.usp_GetAuthors 



than 

   EXEC usp_GetAuthors 

The query plan of a stored procedure can be utilized by many users at the same time. The 
stored procedure is effectively split into a read only section, which many users can share, and 
multiple sections, which are private to a user. They are reusable but cannot be shared 
simultaneously between users. These sections can be used, for example, to hold a user's 
read/write variables. This is known as an execution context. This approach means that the 
bulk of the stored procedure plan, the executable code, is held in cache as a single copy. 
Actually, even this is not quite true. Two copies of the plan may be held on a multiprocessor 
computer: a nonparallel plan and a parallel plan. 

A stored procedure challenge 

There is one disadvantage to the stored procedure mechanism compared with executing 
Transact-SQL queries outside of a stored procedure. 

Suppose we execute the following query outside of a stored procedure, assuming that there is 
a nonclustered index on the balance column. 

   SELECT account_no, balance FROM accounts 
      WHERE balance BETWEEN 8000 AND 8100 

What strategy will the query optimizer choose? The nonclustered index on the balance 
column is, in fact, chosen. This is a reasonable plan given what we already know. If we 
execute the query, the following Show Stats IO output is displayed after 239 rows have been 
returned.  

   Table 'accounts'. Scan count 1, logical reads 241, 
   physical reads 0, read-ahead reads 0. 

The query optimizer has chosen to use a nonclustered index to access the data and has taken 
241 logical reads to do so. Now suppose we execute the following query: 

   SELECT account_no, balance FROM accounts 
      WHERE balance BETWEEN 8000 AND 9000 

What strategy will the query optimizer now choose? As we might expect, the query optimizer 
has decided to use a table scan. Again, this is a reasonable plan given what we already know. 
As the number of rows returned increases, it becomes more efficient to execute a table scan 
rather than use the nonclustered index. If we execute the query, the following Show Stats IO 
output is displayed after 2,426 rows have been returned. 

   Table 'accounts'. Scan count 1, logical reads 1570, 
   physical reads 0, read-ahead reads 0. 

So, the query optimizer has now chosen to use a table scan, taking 1,570 logical reads to do 
so. 

Now let us place the query in a stored procedure, as follows: 



   CREATE PROCEDURE dbo.usp_accounts_per_range (@minbal 
   MONEY, @maxbal MONEY) 
   AS 
   SET STATISTICS IO ON 
   SELECT account_no, balance FROM accounts 
         WHERE balance BETWEEN @minbal AND @maxbal 
   RETURN 

Let us execute it with the following EXEC statement: 

   EXEC dbo.usp_accounts_per_range @minbal=8000, @maxbal = 
   8100 
 
   account_no   balance 
   ----------   ------- 
   7880         8000.43 
   12053        8000.43 
     : 
     : 
   Table: accounts  scan count 1,  logical reads: 241, 
   physical reads: 0,  read ahead reads: 0 

This is exactly the same number of logical reads as before. The query optimizer has chosen a 
query plan that uses the nonclustered index as it did for the standalone query.  

Now let us execute the stored procedure with the following EXEC statement: 

   EXEC dbo.usp_accounts_per_range @minbal=8000, @maxbal = 
   9000 
 
   account_no   balance 
   ----------   ------- 
   7880         8000.43 
   12053        8000.43 
     : 
     : 
   Table: accounts  scan count 1,  logical reads: 2433, 
   physical reads: 0,  read ahead reads: 0 

The number of logical reads has increased from 1,570 executing the query as a standalone 
statement to 2,433 executing the query in a stored procedure. Why is this? 

The problem is caused by the fact that the query plan was created and loaded into cache by 
the first execution. The query optimizer created the query plan based on the parameters passed 
to it, so in this case it created a query plan for the SELECT statement, as follows: 

   SELECT account_no, balance FROM accounts 
      WHERE balance BETWEEN 8000 AND 8100 

The next time the stored procedure was executed no query optimization was done and the 
query plan utilizing the nonclustered index was used. This is not the most efficient query plan 
for the range, as can be seen from the logical reads. 

In its worst manifestation we can imagine that the first stored procedure execution happens to 
use a query plan that is not efficient for all subsequent stored procedure executions. So how 
can we deal with this situation? 



One mechanism available to us is to make sure that the stored procedure always creates and 
uses a new query plan. We can force a stored procedure to create and use a new query plan, 
but there are also times when a stored procedure is automatically recompiled. 

We will look shortly at how we can force a stored procedure to create and use a new query 
plan, but first let us look at some of the situations that result in SQL Server automatically 
recompiling a plan. To check if a stored procedure plan is recompiled the SP:Recompile SQL 
Server Profiler event can be monitored. The SQL Server Profiler is discussed further in 
Chapter 7.  

Changes to the table structure 

If the structure of a table referenced by the stored procedure is changed, typically by the use 
of an ALTER TABLE statement, the schema_ver and base_schema_ver columns in the 
sysobjects system table are incremented. This informs SQL Server that it needs to recompile 
the stored procedure plan the next time the stored procedure executes. Examples of structure 
changes are the addition and deletion of columns and constraints. 

Changes to indexes 

If indexes are created and dropped, the schema_ver and base_schema_ver columns are 
incremented. This will cause a stored procedure recompilation even if the indexes are not 
relevant to the queries in the stored procedure. 

Executing update statistics 

If UPDATE STATISTICS is run against a table referenced by the stored procedure, stored 
procedure recompilation will take place the next time the stored procedure is executed. 
Running UPDATE STATISTICS increments the base_schema_ver and stats_schema_ver 
columns. 

Aging the stored procedure out of cache 

We will discuss how stored procedures are aged out of cache later. If this happens, then the 
next time the stored procedure executes it must be compiled and cached again. 

Table data modifications 

SQL Server will detect that a certain fraction of the data in a table has changed since the 
original plan was compiled. Once this threshold has been crossed a recompilation will occur. 
To keep track of the changes to the table data, the rowmodctr column in the sysindexes 
system table is incremented whenever one of the following conditions occurs to the table in 
question. 

• A row is inserted. 
• A row is deleted. 
• An indexed column is updated. 

When a predefined threshold has been crossed, the statistics for the table will be automatically 
updated when it is accessed next, assuming the database option Auto update statistics is set to 
on. This automatic updating of statistics will reset the rowmodctr column.  



This threshold tends to depend on the size of the table. For SQL Server 7.0 Microsoft 
documented the algorithm as follows: 

• If the number of rows in the table is less than six and the table is in the tempdb 
database, an automatic update of statistics is performed with every six modifications to 
the table. 

• If the number of rows in the table is greater than six, but less than or equal to 500, an 
automatic update of statistics is performed with every 500 modifications. 

• If the number of rows in the table is greater than 500, an automatic update of statistics 
is performed when (500 + 20 percent of the table) changes have occurred. 

So the stored procedure is recompiled when the threshold is crossed. As was mentioned 
earlier, the SP:Recompile SQL Server Profiler event can be monitored to check for 
recompilations; however, trace flag 205 can also be used to output information about when a 
statistics-dependent stored procedure is being recompiled. I tend to set this in the Startup 
Parameters section of the General Tab in Server Properties in the SQL Server Enterprise 
Manager together with trace flag 3605 to ensure logging of trace messages to the error log. A 
typical pair of messages logged follows: 

   Recompile issued : ProcName: usp_GetAccts   LineNo:2 
   StmtNo: 3 
 
   Schema Change: Tbl Dbid: 7 Objid: 1993058136 RowModCnt: 
   25000.000000 RowModCntMax: 0 RowModLimit: 22000 

The first message specifies the stored procedure. The second message holds the table name in 
the form of its object ID. The item RowModCnt is the total number of modifications to the 
table, and RowModLimit is the threshold, which, when exceeded, results in the statistics 
being updated for the table and the stored procedure being recompiled. It is possible to ensure 
that the query optimizer does not recompile a query due to changes in statistics or to the 
indexed column by using the KEEPFIXED PLAN query option. In this case a query will only 
be recompiled if the table schema changes or sp_recompile is executed specifying the table. 

Mixing data definition language and data manipulation language statements 

If Data Definition Language (DDL) statements and Data Manipulation Language (DML) 
statements are mixed together in a stored procedure, the stored procedure will be recompiled 
when the DML statements are executed. The following example displays a stored procedure. 

   CREATE PROC dbo.usp_DDL_DML 
   AS 
   CREATE TABLE #table1 (c1 INT) 
   SELECT COUNT(*) FROM #table1 
   CREATE INDEX i1 ON #table1(c1) 
   SELECT COUNT(*) FROM #table1 
 
   CREATE TABLE #table2 (c1 INT) 
   SELECT COUNT(*) FROM #table2 
   CREATE INDEX i2 ON #table2(c1) 
   SELECT COUNT(*) FROM #table2 
   RETURN 



This will result in four stored procedure recompilations. When the stored procedure 
compilation takes place the first time around, the temporary tables #table1 and #table2 have 
not yet been created. The stored procedure must execute for this to happen. The SELECT 
statements that access #table1 and #table2 are not yet able to have a plan created. When the 
stored procedure executes, #table1 is created and then accessed by the first SELECT 
statement. Since a plan does not exist for this query, the stored procedure is recompiled in 
order to create a plan for this query. 

The index is then created for #table1. A SELECT statement is then executed against #table1, 
but, as we have previously mentioned, this is treated as a schema change and therefore the 
stored procedure is recompiled again. The same recompilations occur because of #table2, and 
thus four recompilations are performed. It would have been better to place all the DDL 
statements at the beginning of the stored procedure and then execute the DML statements. 
Doing this results in one stored procedure recompilation. 

Temporary tables 

Another reason that stored procedures may be recompiled concerns the use of temporary 
tables. SQL Server will recompile a stored procedure if a few changes have been made to a 
temporary table created in the stored procedure. At the time of writing, only six changes to the 
temporary table have to be made inside the stored procedure before it is recompiled. This 
means that changes to a temporary table will result in recompilation far more frequently than 
in the case of a permanent table, as previously discussed. If you wish to apply the same 
recompilation thresholds to temporary tables as were applied to permanent tables, use the 
KEEP PLAN query option on any query that uses the temporary table.  

Forcing recompilation 

How can we manually cause a stored procedure to be recompiled? There are a number of 
mechanisms. 

• The sp_recompile stored procedure 
• CREATE PROCEDURE WITH RECOMPILE 
• EXECUTE WITH RECOMPILE 

The sp_recompile system stored procedure ensures that each stored procedure and trigger that 
uses the specified table are recompiled the next time the stored procedure and triggers are run. 

   EXEC sp_recompile accounts 
 
   Object 'accounts' was successfully marked for 
   recompilation. 

It is also possible to specify a stored procedure name instead of a table name, in which case 
only that stored procedure will be recompiled the next time it is run. 

The sp_recompile system stored procedure actually increments the schema_ver and 
base_schema_ver column in the sysobjects system table. Note that triggers are also affected. 
Triggers are just a special kind of stored procedure that are automatically executed when 
inserts, updates, and deletes happen to a table. As such, they have their query plans stored in 
cache like any other stored procedure. 



When we create a procedure, we can use the WITH RECOMPILE option. This means that 
every execution of a stored procedure causes a new query plan to be created. Using this option 
means that we do not have the problem of a query plan resident in cache that is inefficient for 
various parameter combinations. However, because we generate a new query plan for each 
execution of the stored procedure, the performance benefit of stored procedures is negated. 

A less-severe option is to execute a stored procedure with the WITH RECOMPILE option. 
This causes a new query plan to be created for just that execution. 

These options will help us avoid the problem described previously with an inefficient query 
plan loaded into procedure cache, but they do mean that new query plans get created. Another 
option is to break up the stored procedure into smaller pieces.  

   CREATE PROC dbo.usp_few_accounts_per_range (@minbal 
   MONEY, @maxbal MONEY) 
   AS 
   SET STATISTICS IO ON 
   SELECT account_no, balance FROM accounts 
      WHERE balance BETWEEN @minbal AND @maxbal 
   RETURN 
 
   GO 
 
   CREATE PROC dbo.usp_many_accounts_per_range (@minbal 
   MONEY, @maxbal MONEY) 
   AS 
   SET STATISTICS IO ON 
   SELECT account_no, balance FROM accounts 
      WHERE balance BETWEEN @minbal AND @maxbal 
   RETURN 
 
   GO 
 
   CREATE PROC dbo.usp_accounts_per_range (@minbal MONEY, 
   @maxbal MONEY) 
   AS 
   IF (@maxbal - @minbal) <= 100 
      EXEC dbo.usp_few_accounts_per_range @minbal, @maxbal 
   ELSE 
      EXEC dbo.usp_many_accounts_per_range @minbal, @maxbal 
   RETURN 
 
   GO 

The stored procedure usp_accounts_per_range is executed passing the minimum and 
maximum balance. It tests to see if the difference between the minimum and maximum 
balance is less than or equal to 100, and, if it is, it executes the stored procedure 
usp_few_accounts_per_range. If the difference is greater than 100, it executes the stored 
procedure usp_many_accounts_per_range. In this way the two stored procedures that access 
the data are compiled with their own execution plan. In this example the stored procedure 
usp_few_accounts_per_range gets a query plan that uses a nonclustered index, whereas the 
query plan for usp_many_accounts_per_range uses a table scan. 

This method can work well, but it did require the developer writing the stored procedures to 
know that a balance range greater than 100 was best dealt with by a table scan, and, of course, 
this distribution can change over time.  



Another approach is to recompile not the whole stored procedure but only the troublesome 
statement. This can be brought about by using the EXECUTE statement with a character 
string. 

   CREATE PROC dbo.usp_example_proc (@bal MONEY) 
   AS 
   DECLARE @balstr VARCHAR(10) 
   SELECT @balstr = CONVERT(VARCHAR(10), @bal) 
     : 
   EXECUTE ('SELECT account_no, balance FROM accounts WHERE 
   balance > ' + @balstr) 
     : 
   RETURN 

The Transact-SQL statement inside the EXECUTE statement goes through the same phases 
that any standalone Transact-SQL statement goes through—that is, parsing through to query 
compilation. This does not happen until the EXECUTE statement is performed. Other 
Transact-SQL statements in the stored procedure are compiled just once. To see the plan used 
for the Transact-SQL statement in the EXECUTE you need to look at the query plan after the 
stored procedure has been executed. In other words, choose Show Execution Plan from the 
Query menu in the Query Analyzer. 

Another possibility is to use query optimizer hints. We have already seen optimizer hints and 
how they can be used to force the query optimizer to use a particular index. Optimizer hints 
can also be used with queries in stored procedures to ensure that a particular query plan is 
always used. 

Aging stored procedures from cache 

Versions of SQL Server prior to SQL Server 7.0 used two areas of cache—one for stored 
procedure plans and one for database pages, in particular data and index pages. SQL Server 
7.0 and SQL Server 2000 use a single unified cache for database pages, stored procedure 
plans, and the query plans of SQL statements that are not stored procedures. The cache can 
grow and shrink dynamically as the memory allocated to SQL Server grows and shrinks. 

Different stored procedures will require different amounts of effort to compile. Some will be 
simple and cheap to compile and some will be complex and expensive to compile. To ensure 
that a stored procedure plan that is expensive to compile is not as easily aged out of cache as a 
simple stored procedure, the cost of the stored procedure compilation is stored with the plan.  

If memory is tight, a component of SQL Server known as the lazywriter frees up cache pages. 
It does this by looking at the buffers in cache and checking the cost value associated with 
them. The lazywriter will decrement the cost of a buffer page by one. If the lazywriter finds 
that the cost of a page is zero, it will be freed. Conversely, if a stored procedure plan is used, 
the cost is set to the initial creation cost. This means that a frequently used stored procedure 
will not have its cost decremented over time to zero by the lazywriter. Also, a stored 
procedure that was expensive to compile and therefore has an associated large cost will take a 
long time to have its cost decremented to zero. Therefore, a stored procedure that is expensive 
to compile but not used frequently may stay in cache, as would a stored procedure that is 
cheap to compile but is used frequently. 

How do you monitor the cache? This will be discussed in Chapter 5. 



4.3.8 Non-stored procedure plans 

If you wish to ensure that a query plan is created and stored in cache, then placing the query 
inside a stored procedure will guarantee this. However, SQL Server does not only place stored 
procedure plans in cache. It will store the plans of SQL statements that are not part of a stored 
procedure in cache and attempt to reuse them. 

SQL Server distinguishes between RPC events and SQL language events. RPC events are 
parameterized in some way. If the developer has used sp_executesql to submit the query or 
has used the prepare/execute model from the database API, it is an RPC event. 
Parameterization is typically used by a developer who wishes to submit a SQL statement for 
multiple execution, and in this case it makes sense to try to keep the query plan of the SQL 
statement. 

A SQL language event is typically a SQL statement that is sent direct to the server. It has not 
been prepared and has not been submitted using sp_executesql. In this case the developer 
probably does not intend that the SQL statement be resubmitted multiple times. 

 Note The SQL Server Profiler distinguishes between these events—for example, 
RPC:Starting, Prepare SQL, and SQL: StmtStarting. 

When an RPC statement is received by SQL Server, the query plan is created and placed into 
cache. So that the query plan can be retrieved for a subsequent statement, some mechanism 
must be used to allow the plan to be identified. In the case of a stored procedure this was not 
necessary, since the stored procedure has a unique name. In the case of a SQL statement, 
which has no such name, the statement text is hashed to produce a hash key, which identifies 
it in cache. The hash key seems to be particularly sensitive to the statement text. The 
following two statements will have different keys even though the only difference is the case 
of the WHERE keyword (the server is case insensitive). 

   SELECT account_no FROM accounts where balance=100 
 
   SELECT account_no FROM accounts WHERE balance=100 

Even the number of spaces in the statement is significant when hashing the statement text. 
Different plans will also be stored for identical statements that have different connection 
settings. Suppose two connections both execute the following SQL statement. 

   SELECT account_no FROM accounts WHERE balance=100 

Suppose one connection has its ANSI_NULL setting set to TRUE and one connection has it 
set to FALSE. There will be two plans cached. 

For nonparameterized (ad hoc) SQL language statements, the query optimizer may actually 
attempt to change a hard-coded value into a parameter marker in order to facilitate reuse of 
the query plan. This is known as autoparameterization. However, the query optimizer is very 
conservative and few statements will undergo this process. The reason for this is the same as 
our previous discussion of stored procedure plans. A plan that is efficient for one parameter 
value may be extremely inefficient for another value. At least with stored procedures, the 
developer is in control and can use one of the techniques suggested earlier to avoid this 



problem. This is not the case with non-stored procedure statements, so the responsibility falls 
with SQL Server to avoid using inefficient plans. 

To achieve this, it only autoparameterizes when it knows it is safe to do so. A typical case 
would be the following statement. 

   SELECT balance FROM accounts WHERE account_no = 1000 

There is a unique nonclustered index on the account_no column. An obvious efficient plan is 
to use this nonclustered index. Since this index is unique, a maximum of one row only can be 
returned. 

Now consider the following statement. 

   SELECT account_no FROM accounts WHERE balance between 100 
   and 120 

It would be very risky to replace the values 100 and 120 by parameter markers. Two different 
values from a subsequent query such as 50 and 5,000 would probably benefit from an entirely 
different plan. 

It's worth it at this point to mention the system stored procedure sp_executesql. This allows 
the developer to build a Transact-SQL statement that can be executed dynamically. Unlike the 
EXECUTE statement though, sp_executesql allows the setting of parameter values separately 
from the Transact-SQL string. This means that sp_executesql can be used instead of stored 
procedures to execute a Transact-SQL statement a number of times when only the parameters 
change. Because the Transact-SQL statement itself does not change—rather, the parameter 
values change—it is highly probable that query optimizer will reuse the query plan it creates 
and saves for the first execution. Again, it is up to the developer, being familiar with the data, 
to decide whether reusing plans is a good strategy for a particular statement. 

Here is an example of using sp_executesql. 

   DECLARE @MoneyVariable MONEY 
   DECLARE @SQLString NVARCHAR(500) 
   DECLARE @ParameterDefinition NVARCHAR(500) 
 
   -- Create the SQL String - only need to do this once 
 
   SET @SQLString = 
        N'SELECT account_no FROM accounts WHERE balance = 
   @bal' 
   SET @ParameterDefinition = N'@bal MONEY' 
 
   -- Execute the string with the first parameter value 
 
   SET @MoneyVariable = 100 
   EXECUTE sp_executesql @SQLString, @ParameterDefinition, 
                         @bal = @MoneyVariable 
 
   -- Execute the string with the next parameter value 
 
   SET @MoneyVariable = 200 
   EXECUTE sp_executesql @SQLString, @ParameterDefinition, 
                         @bal = @MoneyVariable 



Note that the query plans of the nonstored procedure SQL statements are placed in the cache 
and aged in a manner similar to stored procedures, described previously. Ad hoc statements 
that are not autoparameterized, however, will be placed in the cache with a cost of zero, so 
their plans will be removed from cache as soon as memory becomes short.  

4.3.9 The Syscacheobjects system table 

To check for plans in cache the system table syscacheobjects can be queried. Here is a 
fragment of the output of syscacheobjects. 

SELECT cacheobjtype, objtype, sql FROM syscacheobjects 
 
cacheobjtype      objtype     sql 
------------      -------     ---------------------------------------------
--------- 
Compiled Plan     Adhoc       SELECT account_no FROM accounts where 
balance=100 
Compiled Plan     Adoc        SELECT account_no FROM accounts WHERE 
balance=100 
Compiled Plan     Adhoc       SELECT account_no FROM accounts WHERE balance 
between 
                              100 and 120 
Executable Plan   Prepared    (@1 smallint)SELECT [balance]=[balance] FROM 
[accounts] 
                              WHERE [account_no]=@1 
Compiled Plan     Prepared    (@1 smallint)SELECT [balance]=[balance] FROM 
[accounts] 
                              WHERE [account_no]=@1 
Executable Plan   Prepared    (@bal MONEY)SELECT account_no FROM accounts 
                              WHERE balance = @bal 
Compiled Plan     Prepared    (@bal MONEY)SELECT account_no FROM accounts 
                              WHERE balance = @bal 
Executable Plan   Proc        usp_accounts_per_range 
Compiled Plan     Proc        usp_accounts_per_range 

The column sql holds the statement text. The column cacheobjtype represents the type of 
object in the cache. We can see that the two statements previously mentioned that have their 
WHERE keyword in different case are represented by separate plans. The statement that was 
too dangerous to autoparameterize with the balance between 100 and 120 values is held as a 
separate plan. All three statements are held as ad hoc objects in the objtype column. This 
column holds the type of object. 

One of our statements was autoparameterized. 

   SELECT balance FROM accounts WHERE account_no = 1000 

This is held as a prepared object, as is the statement that was submitted through 
sp_executesql. Finally, we can see that a stored procedure is also held in cache. Because 
different users will usually have different parameter values when executing stored procedures 
and prepared statements, they must also be given an execution context as well as a completely 
shared plan. 



In this chapter we have looked extensively at the query optimizer. Knowledge of the material 
in this chapter combined with that in Chapter 3 will be invaluable to you when designing an 
indexing strategy or tracking down a performance problem with a query. 

Chapter 5: SQL Server 2000 and Windows 
2000 
This chapter discusses SQL Server 2000 performance with respect to the CPU, memory, and 
disk resources found on a Windows 2000 server. 

5.1 SQL Server 2000 and CPU 

5.1.1 Introduction 

The first resource on a Windows 2000 server that is usually monitored is the CPU. CPUs have 
been gaining in power dramatically over the last few years, and Windows 2000 supports 
multiprocessor systems with up to 32 processors (with Microsoft Windows 2000 Datacenter). 

Although a multiprocessor system may not reduce CPU bottlenecks when a single threaded 
process is consuming the CPU, multithreaded processes such as SQL Server 2000 will benefit 
greatly. 

CPU is a system resource. The more CPU power available the better the system is likely to 
perform. Windows 2000 schedules CPU time to the threads of a process, and, if more threads 
require CPU time than there is CPU time available, a queue of waiting threads will develop. 
Sometimes a processor bottleneck is actually masking another bottleneck, such as memory, so 
it is important to look at CPU use in conjunction with other resource use on the system. This 
first part of the chapter provides an overview of CPU usage and looks at how SQL Server 
2000 makes use of the CPU. It then looks at how CPU bottlenecks can be observed. 

5.1.2 An overview of Windows 2000 and CPU utilization 

To understand the way that Windows 2000 uses the CPU we first of all need to consider the 
difference between a process and a thread. A process can be considered to be an object 
containing executable code and data; an address space, which is a set of virtual addresses; and 
any other resources allocated to the code as it runs. It also must contain a minimum of one 
thread of execution. 

A thread is the item inside a process that is scheduled to run, not the process itself as in some 
older operating systems. A Windows 2000 process can contain any number of threads, and a 
process that contains more than one thread is known as a multithreaded process. Windows 
2000 is able to simultaneously schedule a number of threads across multiple CPUs. These can 
be threads belonging to many processes or threads belonging to just one process. 

Each running instance SQL Server 2000 is a multithreaded process, and so it is able to 
schedule a number of threads simultaneously across multiple processors to perform a 
multitude of functions. SQL Server 2000 may have threads concurrently executing across 



multiple processors with one servicing a user connection, one performing a backup, and one 
writing pages from cache to disk. Also, SQL Server 2000 is able to perform queries in parallel 
as well as various database operations in parallel, such as index creation. Although SQL 
Server 2000 can be parallelizing operations across multiple processors, it can be restricted to 
only using a subset of the available processors on the server. 

The order in which threads are scheduled is governed by a priority associated with those 
threads. Windows 2000 always schedules the highest-priority thread waiting for processor 
time to run first in order to make sure that the highest-priority work gets done first. Each 
process is allocated to one of four base priority classes. 

1. Idle 
2. Normal 
3. High 
4. Real time 

The base priority of a process can change within its base priority class. The base priority of a 
process thread varies within the base priority of its parent process. As a general rule, the base 
priority of a thread varies only within a range of two greater than or two less than the base 
priority of its process. The dynamic priority of a thread governs when it will be scheduled. 
The dynamic priority of a thread is constantly being adjusted by Windows 2000. For example, 
the dynamic priority of a thread is typically increased when an I/O operation it has been 
waiting for completes and the thread now needs processor time. The dynamic priority of a 
thread can equal or grow beyond its base priority, but it can never drop below it. 

By default, SQL Server 2000 runs at normal priority. 

SQL Server 2000 also has the concept of fibers. Normally, SQL Server 2000 executes work 
using Windows 2000 threads. Work is allocated to threads. The Windows 2000 operating 
system code that manages threads runs in kernel mode. Switching threads requires switches 
between the user mode of the application code and the kernel mode of the thread manager. 
This context switching can be expensive on systems with multiple CPUs that are very busy. 
For that reason, SQL Server 2000 can be configured to use fibers by means of the lightweight 
pooling server configuration option. Setting this option can be accomplished using 
sp_configure or setting the option on the Processor tab of the SQL Server Properties 
(Configure) window in the SQL Server Enterprise Manager. 

Lightweight pooling allows SQL Server 2000 to manage scheduling within the normal 
Windows 2000 thread structures. Fibers are managed by code running in user mode, and 
switching fibers does not require the user-mode to kernel-mode context switch needed to 
switch threads. Each Windows 2000 thread can support multiple fibers, and SQL Server 
performs the scheduling of these fibers. For most SQL Server systems, using lightweight 
pooling is unlikely to produce any noticeable benefit. 

5.1.3 How SQL Server 2000 uses CPU 

There are various ways that SQL Server 2000 can be configured with respect to how it makes 
use of the CPU. These can be grouped into the following categories. 

• Priority 



• Use of symmetric multiprocessing systems 
• Thread use 
• Query parallelism 

Let us consider each of these in turn. 

Priority 

On the Windows 2000 Server running SQL Server 2000 it is likely that little interactive use 
will take place. The server will communicate with client workstations. Usually, when there is 
interactive use made of a workstation, it is preferable to increase the priority of the foreground 
application—that is, the application running in the window that is currently displayed at the 
top of the other windows. 

By default, Windows 2000 Server has longer, fixed quanta with no priority boost for 
foreground applications, allowing background services to run more efficiently. Windows 
2000 Professional, however, defines short, variable quanta for applications and gives a 
foreground application a priority boost (a quantum is the maximum amount of time a thread 
can run before the system checks for another thread of the same priority to run). 

Whether a priority boost for foreground applications occurs or not can be overridden. This can 
be done using the System icon in the Control Panel, choosing the Advanced tab, and mouse-
clicking the Performance Options button. This is shown in Figure 5.1. 

 
Figure 5.1: The performance options window  

SQL Server 2000 is never a foreground application, and so, on the server, the performance 
should be optimized for Background services. On the client workstation, however, boosting 
the foreground priority by optimizing for Applications makes sense. Again, the choice of the 
Windows 2000 platform will likely accomplish this by default. Of course, using the Query 
Analyzer, for example, on the server directly will not benefit from any priority boost, so you 
might find that you do not get great performance. This does not mean that SQL Server 2000 is 
running slowly; it means that the Query Analyzer is not priority boosted and so will be 
contending equally with it for the CPU. 



Another method of changing the priority of SQL Server 2000 is to change the advanced server 
configuration option priority boost. This governs whether or not SQL Server 2000 should run 
at a higher priority than other processes on the same server. Setting this option can be 
accomplished using sp_configure or setting the option on the Processor tab of the SQL Server 
Properties (Configure) window in the SQL Server Enterprise Manager. 

Setting priority boost to 1 causes SQL Server 2000 to execute at a higher priority and to be 
scheduled more often. In fact, its priority will be changed from Windows 2000 base priority 7 
to base priority 13. This will probably have a negative impact on other applications running 
on the server (including other instances of SQL Server), and therefore this parameter should 
be used with care unless the server has been designated as being dedicated to SQL Server 
2000 (in which case why bother setting it anyway!). To use our previous example, executing 
the Query Analyzer locally on a server that has priority boost set to 1 would result in degraded 
Query Analyzer performance. 

Use of symmetric multiprocessing systems 

With respect to multiprocessor systems, the edition of SQL Server 2000 and the operating 
system platform on which it is running governs the maximum number of processors that can 
be supported. For example, using SQL Server 2000 Enterprise Edition on Microsoft Windows 
2000 Datacenter, up to 32 processors can be supported. On the other hand, using SQL Server 
2000 Standard Edition on Microsoft Windows 2000 Server, up to four processors can be 
supported. Multiprocessor support is not available on SQL Server 2000 Windows CE Edition, 
nor is it available if SQL Server 2000 is running on Windows 2000 Professional, Windows 
NT 4.0 Workstation, or Windows 98. 

For query parallelism, described shortly, the maximum number of processors that can be used 
to execute a query can be specified as a server configuration option, max degree of 
parallelism. Setting this option can be accomplished using sp_configure or setting the option 
on the Processor tab of the SQL Server Properties (Configure) window in the SQL Server 
Enterprise Manager. This also limits the degree of parallelism for utility execution such as 
DBCC CHECKDB. 

Which processors on a multiprocessor system can SQL Server 2000 use? Generally, Windows 
2000 does not guarantee that any thread in a process will run on a given processor. However, 
it uses a soft affinity algorithm, which tries to run a thread on the last processor that serviced 
it. A thread may still migrate from processor to processor if the favored processor is busy, 
which causes reloading of the processor's cache. Under heavy system loads, this is likely to 
degrade performance. Specifying the processors that should and should not run SQL Server 
2000 threads can boost performance by reducing the reloading of processor cache. This is 
only likely to make a difference with four or more processors under load. By specifying the 
processors manually a hard affinity algorithm is used. 

The association between a processor and a thread is called processor affinity. SQL Server 
2000 enables a processor affinity mask to be specified as a server configuration option. By 
setting bits in the mask, the system administrator can decide on which processors SQL Server 
2000 will run. The number of the bit set represents the processor. For example, setting the 
mask to the value 126 (hexadecimal 0x7E) sets the bits 01111110, or 1, 2, 3, 4, 5, and 6. This 
means that SQL Server 2000 threads should run on processors 1, 2, 3, 4, 5, and 6. On an 



eight-processor system this means that SQL Server 2000 threads should not run on processors 
0 and 7. 

In the SQL Server Enterprise Manager, the CPU affinity can be set in the Processor control 
section on the Processor tab of the SQL Server Properties (Configure) window. 

 Note It is also possible to use the Set Affinity option in the Task Manager to allocate a 
process to specific CPUs. 

For most database administrators, using a hard affinity option is unlikely to be an option that 
gains much in the way of performance. 

Thread use 

When a SQL Server client executes a request, the network handler places the command in a 
queue and the next usable thread from the worker pool of threads acquires the request and 
handles it. If no free worker thread is available when a request arrives, SQL Server 2000 
creates a new thread dynamically, until it reaches the server configuration option maximum 
worker threads. 

The default value for maximum worker threads is 255, which will often be greater than the 
number of users connected to the server. However, when there are a large number of 
connections (typically hundreds), using a thread for every user connection may deplete 
operating system resource. To avoid this SQL Server 2000 can use a technique called thread 
pooling. With thread pooling a pool of worker threads will handle a larger number of user 
connections. 

If the maximum worker threads value has not been exceeded, a new thread is created for each 
user connection. Once the maximum worker threads value has been exceeded, user 
connections will share the pool of worker threads. A new client request will be handled by the 
first thread in the pool that becomes free. 

Query parallelism 

In SQL Server 2000, a single query can execute in parallel over multiple CPUs. For 
workloads that have a small number of complex queries running on SMP computers, this 
should bring a performance boost. For OLTP workloads, which consist of many small 
transactions, parallelism is unlikely to enhance performance. 

Parallel query processing is aimed at improving the performance of single, complex queries. 
The query optimizer decides if a query plan can be executed in parallel based on various 
criteria. If it can, the query plan will contain extra operators, known as exchange operators, 
which will enable the query plan to be executed in parallel. At run time, SQL Server will 
decide, again based on various criteria, how many processors the query will use—that is, how 
many threads will be used. This is known as the Degree of Parallelism (DOP). 

Parallel query processing is pretty much out of the box. There are, however, two server 
configuration options that affect parallel query processing. 

1. Max degree of parallelism 



2. Cost threshold for parallelism 

The max degree of parallelism option controls the number of CPUs SQL Server can use for 
parallel queries—that is, the maximum number of threads a query can use. The cost threshold 
for parallelism controls the threshold over which the query optimizer will generate a parallel 
query plan. If a query is short, such as an OLTP query, the overhead of setting up a parallel 
query is not worth the gain. 

The query optimizer will not generate a parallel query plan if the computer is only a single 
processor. Before the query starts to execute, SQL Server uses its knowledge of CPU use and 
the available memory to decide the degree of parallelism for the query. It may be that SQL 
Server decides not to run the query in parallel at all. 

If the estimated cost of executing the query is less than the cost threshold for parallelism, the 
query optimizer will not generate a parallel plan. This is also true if the query optimizer 
determines that only a few rows will be returned. To summarize, the query optimizer will only 
generate a parallel query plan if it considers that it is worth doing so, and at run time the query 
will only be executed in parallel if SQL Server decides that there are sufficient free resources 
to do so. 

There are SQL statements that will not be executed with a parallel query plan. INSERT, 
UPDATE, and DELETE statements will use a serial plan, but their WHERE clause may use a 
parallel plan. Static and keyset cursors can use a parallel plan but not dynamic cursors. 

To control parallel query execution, as previously mentioned, the maximum number of 
processors that can be used to execute a query can be specified as a server configuration 
option, max degree of parallelism. Setting this option can be accomplished using sp_configure 
or setting the option on the Processor tab of the SQL Server Properties (Configure) window in 
the SQL Server Enterprise Manager. The default is to use all the processors. 

To specify the cost threshold for parallelism the cost threshold for parallelism server 
configuration can be specified using sp_configure or setting the Minimum query plan 
threshold. . . value on the Processor tab of the SQL Server Properties (Configure) window in 
the SQL Server Enterprise Manager. The default is five seconds. 

There is also a query optimizer hint, which can be used to influence parallel query execution. 
The MAXDOP query hint allows the max degree of parallelism to be set on a statement-by-
statement basis. However, this is not supported for CREATE INDEX statements. 

The CREATE INDEX in SQL Server 2000 can be executed in parallel. Assuming that the 
max degree of parallelism option is sufficiently high, and the workload on the server is not 
great, the CREATE INDEX statement can be executed across all the CPUs. To give each 
CPU an equal portion of work to do, a fast, random initial scan is performed to check on the 
data value distribution of the table column that will be used for the index column. This initial 
thread then dispatches the number of threads determined by the max degree of parallelism 
option. Each thread builds its own index structure based on the range of data it is working 
with. The initial thread then combines these smaller index structures into a single index 
structure. 

Let us now look at how we can detect processor bottlenecks. 



5.1.4 Investigating CPU bottlenecks 

The tools used to observe CPU bottlenecks are typically the System Monitor and the Task 
Manager. There are also a number of tools in the Windows 2000 Resource Kit. We will focus 
on using the System Monitor in this section, although the Processes and Performance tabs in 
the Task Manager are also quite useful. These are shown later in Figures 5.14 and 5.15 when 
we investigate memory. Note that Chapter 7 discusses the general use of the System Monitor. 
The System, Processor, and Process objects are a useful place to start and it's worth a look at 
some of their counters, as shown in Table 5.1. 

Table 5.1: Selected Counters for the System, Processor, and Process Objects  
CPU-Related 
Counters  

Explanation  

System: 
Processor 
Queue Length 

The number of threads that need CPU time but have to wait. This counts 
only ready threads, not those being handled. This counter belongs to the 
system object, because there is only one queue even when there are multiple 
processors on the server. 

Processor: % 
Processor Time 

This is the percentage that a processor is busy. There is an instance of this 
counter for every processor on the server. The_Total instance can be used to 
display the value of total processor utilization system-wide. 

Processor: % 
User Time 

This is the percentage that a processor is busy in user mode. User mode 
means application code and subsystem code. 

Processor: % 
Privileged Time 

This is the percentage that a processor is busy in privileged mode. 
Privileged mode means operating system services. 

Process: % 
Processor Time 

This is the percentage of CPU time that a process is busy. 

In Figure 5.2 the System Monitor is being used to monitor the following counters: 

 
Figure 5.2: A busy processor  

• Processor: % Processor Time 
• System: Processor Queue Length 



The counter Processor: % Processor Time is highlighted (in white). We can see that the 
processor appears to be 100 percent utilized. This in itself is not necessarily going to cause a 
bottleneck; however, we can see that the Processor Queue Length is quite high. It averages 
around six (note the scale factor of ten so it can be seen on the display) and peaks at around 
ten. To check the average and maximum, this counter was selected instead of the counter 
Processor: % Processor Time counter. This means that on average, six threads are waiting for 
the CPU; this is a clear indication that we have a processor bottleneck. 

The lows and highs in the Processor Queue Length counter display are caused by the 
randomness that ready tasks are being generated. This is not uncommon. Queues usually 
appear when the processor is very busy, but they can appear when CPU utilization not high. 
This can happen if requests for the processor's time arrive randomly and if threads demand 
irregular amounts of time from the processor. 

So what is causing the bottleneck? Is it one process or many processes? We can monitor the 
processor use of each process to get a feel for the answer. In Figure 5.3 the System Monitor is 
being used to monitor the Process: % Processor Time counter. 

 
Figure 5.3: Monitoring processor time for individual processes  

We have selected the Histogram display to make it easier to look at the processes using the 
processor. It is pretty clear that one process is monopolizing the processor. This is the 
highlighted process and we can see that it is SQL Server. The only problem is that we do not 
know which SQL Server! We may have many instances of SQL Server running, and in each 
case the instance will be named sqlservr in the System Monitor. There are various approaches 
to finding out which instance is which. One approach I find useful is to create a System 
Monitor report showing the Process: % Processor Time counter and the Process: ID Process 
counter. This is shown in Figure 5.4. 



 
Figure 5.4: Checking process ID for the SQL Server instance  

Note that we can confirm that the instance sqlservr with process ID 1000 is using up the CPU. 
Another way (often easier) is to check the Processes tab in the Task Manager. This is shown 
in Figure 5.5. 

 
Figure 5.5: The Task Manager processes tab  

If we click on the CPU column heading, the display will be sorted with the process using most 
of the CPU displayed first. We can easily read off the process ID from the PID column. 

Whichever method we use to find the process ID, once we have obtained it we now need to 
translate it into a SQL Server instance. An easy way to do this is to connect to the SQL Server 
instance you suspect in the Query Analyzer and execute the following statement. 

   SELECT SERVERPROPERTY('ProcessID') 



This will return the process ID. If it is not correct, connect to the next instance and check that. 
Most servers will not be running more than a few instances. 

Once we have established the SQL Server instance that is monopolizing the processor, we 
need to further investigate why this is so, and, if it is not a database or application design 
problem, perhaps consider moving the instance of SQL Server 2000 onto its own server. If no 
process stands out in this display, this might be an indication that the processor is just too 
slow. 

Can we drill down further into SQL Server 2000? We can look at the individual threads. In 
Figure 5.6 the System Monitor is being used to monitor the Thread: % Processor Time 
counter for all the SQLSERVR process's threads. We can clearly see that one thread with 
thread instance number 26 is using most of the CPU. 

 
Figure 5.6: A single SQL Server thread monopolizing the CPU  

Compare this with Figure 5.7. Here we see that many SQL Server threads are running the 
CPU. So looking at the Thread: % Processor Time counter can be useful to help distinguish 
between the case of one busy connection versus many busy connections, but I find that at this 
point I really want to start using the SQL Profiler. 

 
Figure 5.7: Many SQL Server threads using the CPU  



Chapter 7 discusses the SQL Profiler in detail. We wish to check for connections that are 
using a large proportion of the CPU and which SQL statements on those connections are 
using the most CPU. 

For our requirement we can create a trace with the SQLServerProfiler-Standard template. The 
default events are sufficient, since they include the events that we need. We can choose to 
filter out low CPU use events, but we must be careful not to filter out information that might 
prove useful in our investigation. In Figure 5.8, a graphic SQL Profiler display is shown. 

 
Figure 5.8: The SQL Profiler showing a single thread monopolizing the CPU  

The data columns have been grouped by the data column CPU, and we can immediately see 
that although many queries are using between 10 and 20 milliseconds of CPU, one query is 
using nearly 62 seconds of CPU. We can see that the duration of this query is about 62 
seconds also. In fact, virtually this entire query is CPU. The SQL Profiler identifies the query 
syntax, application name, and so on so we can easily identify the problem query in our 
application. We can then, of course, investigate the query plan using the Query Analyzer and 
hopefully improve it. 

We could have saved the trace into a table and then searched the table for events taking, for 
example, greater than one second of CPU. In practice, I find myself taking this approach most 
of the time. 

In Figure 5.9, many queries are using between 50 and 60 seconds of CPU. No one query 
stands out. If the queries have a duration, reads, writes, and a CPU use that is expected, then it 
may be that the queries are efficient. If the processor is constantly busy and there is a 
significant queue, it may be the case that the CPU is just not powerful enough. 

 
Figure 5.9: The SQL Profiler showing many threads using the CPU  



5.1.5 Solving problems with CPU 

Having determined that there is indeed a CPU bottleneck and that there is a queue of threads 
waiting for processor time, the next step is to find out what is using up the CPU. Other 
bottlenecks should be investigated, such as memory, to ensure that they are not manifesting 
themselves as a CPU bottleneck. If there is no particular candidate process to home in on, 
then the CPU is probably too slow and either a faster CPU can be purchased or an additional 
CPU. If it is obvious which application is monopolizing the CPU and it is not SQL Server 
2000, then it might be an idea to move that application to another server. Moving SQL Server 
off a Domain Controller may help if that is where it is installed. 

If SQL Server 2000 is monopolizing the CPU, then it should be possible to track down a 
query that is inefficient and using too much CPU. If there is no particular candidate query to 
home in on, then the CPU is probably too slow and an additional CPU might be the most cost-
effective solution. 

Another consumer of CPU is the network interface card. Replacing 8-or 16-bit cards with 32-
bit cards will save some CPU. Network interface cards that use bus-mastering direct memory 
access (DMA) are less of a burden on the CPU. 

If SQL Server does not seem to be the main consumer of the CPU, it is always worth 
checking the counters System: Context Switches/sec and Processor: Interrupts/sec. The 
System: Context Switches/sec counter measures the average rate per second at which context 
switches among threads on the computer occur. On a multiprocessor system experiencing 
processor bottlenecks, high context switches may be reduced by using fibers, which can be 
enabled by setting the lightweight pooling server configuration option. 

The Processor: Interrupts/sec counter measures the average rate per second at which the 
processor handles interrupts from applications or hardware devices. High activity rates can 
indicate hardware problems. According to the Windows 2000 Resource Kit, expect to see 
interrupts in the range upward from 1,000 per second for computers running Windows 2000 
Server and upward from 100 per second for computers running Windows 2000 Professional. 

One very important factor to consider is the processor cache. Use the largest processor cache 
that is practical. Typically, choose from 512 KB to 2 MB for the L2 cache. Benchmarks have 
shown that upgrading to a faster processor but with a smaller cache usually results in poorer 
performance. 

Multiprocessors need some further consideration. Adding extra processors to the server may 
well increase performance if SQL Server is bottlenecking on CPU. It is recommended that the 
addition of CPUs be accompanied by the addition of other resources such as memory and 
disk. It is recommended to scale memory with processors. For example, if a single-processor 
system requires 128 MB of memory and a second processor is added to increase the 
throughput, double the memory to 256 MB.  

Because of the extra processors, the acceptable queue length will be longer. If the CPUs are 
mostly utilized, a queue value equal to about three per processor is not unreasonable. A four-
processor server, for example, might have a queue length of 12. 



If SQL Server is running in lightweight pooling mode—that is, using fibers, the queue length 
should not exceed one, because there is a single thread on each processor in which fibers are 
scheduled. 

5.2 SQL Server 2000 and memory 

5.2.1 Introduction 

Another important resource on a Windows 2000 server is memory. Over the last few years the 
amount of memory found on servers and workstations has rapidly increased. Windows 2000 
Datacenter Server, for example, supports up to 64 GB of physical memory. 

Having large amounts of physical memory is not enough in itself. The software running on 
the server must be able to benefit from it, and it is therefore vital that the server operating 
system manages memory in an efficient and intelligent fashion. Windows 2000 employs a 
virtual memory manager to do just that, and it can provide excellent memory management on 
a wide range of memory configurations with multiple users. 

SQL Server 2000 uses the virtual memory management features of Windows 2000 to enable it 
and other processes to share the physical memory on the server and to hold memory pages on 
disk in a page file. 

Physical memory is a system resource. The more physical memory the better the system is 
likely to perform. If there is not enough physical memory on the server, then performance will 
be degraded as processes fight for memory. This section provides an overview of the 
Windows 2000 virtual memory model and looks at how SQL Server 2000 uses memory. It 
then looks at how memory bottlenecks can be observed. 

5.2.2 An overview of Windows 2000 virtual memory management 

Similar to a number of modern server operating systems, Windows 2000 uses a flat, linear 32-
bit memory model. Each process is able to address 4 GB of virtual memory. The upper 2 GB 
of virtual memory are reserved for system code and data, which are accessible to the process 
only when it is running in privileged mode. The lower 2 GB are available to the process when 
it is running in user mode. However, SQL Server 2000 Enterprise Edition provides support 
for using Windows 2000 Address Windowing Extensions (AWEs). 

This enables SQL Server 2000 running on Windows 2000 Advanced Server to address 8 GB 
of memory and SQL Server 2000 running on Windows 2000 Datacenter Server to address 64 
GB of memory. 

Information held in physical memory can usually be categorized as either code or data. The 
pages given to a Windows 2000 process by the virtual memory manager are known as the 
working set of the process, and this working set holds pages containing any code and data 
recently used by the process. The working set of a process can grow or shrink as the virtual 
memory manager transfers pages of code and data between hard disk and physical memory. 
This is known as paging. All virtual memory operating systems page, and the secret is to 
make sure that the amount of physical memory and the memory requirements of processes are 



such that paging does not become a burden on the system. In this situation, paging can cause 
disk bottlenecks and start to consume the processor. 

If a page of code or data is required by a process, and it is not present in the working set of the 
process, a page fault results. The page is then brought into its working set. Whether the 
working set of the process then grows is determined by the availability of free memory on the 
server. If there is an abundance of free memory, the working set of the process will grow as 
the new page is added. If there is a lack of free memory, pages in the working set that have 
not been used for a while will be removed. This is known as working set trimming. If pages 
are continually being taken out of the working set of a process to make room for new pages, it 
is likely that the removed pages will be needed again soon. The process will again page fault 
and the cycle will be repeated. 

We can see that if memory is running low, code and data pages will be continually removed 
from, and added to, the working set of the process, resulting in many page faults. This can 
lead to a disk bottleneck and wasted CPU, since the system spends more time paging than 
doing useful work on behalf of the user. 

There are two types of page fault. A hard page fault happens when the code or data page 
needs to be retrieved from disk. A soft page fault happens when it is discovered elsewhere in 
physical memory. Soft faults use CPU, but hard faults cause disk reads and writes to occur.  

When a page is removed from the working set, it may need to be written to disk if it has been 
changed. If it has not been changed, this need not happen. The area on disk that pages are read 
from and written to is known as the page file. The file name of the page file is pagefile.sys, 
and its default size is equal to 1.5 times the amount of physical memory. If memory is 
committed to a process (known as committed memory), space will be reserved for it in the 
page file. 

5.2.3 How SQL Server 2000 uses memory 

An instance of SQL Server 2000 is a single Windows 2000 process as is an instance of the 
SQL agent process that manages components such as the replication and alert subsystems. 
The amount of memory you can give to SQL Server 2000 really depends upon the amount of 
memory available on your Windows 2000 server, and this is a function of the amount of 
physical memory on the server and the memory requirements of other processes running on 
the server. Ideally, if it is possible, dedicate a single Windows 2000 Server to run a single 
instance of SQL Server 2000, and then SQL Server 2000 will not compete for memory 
resources with anything else. Of course, it can compete with Windows 2000 itself for 
memory, but this will degrade performance and so the dynamic memory configuration in SQL 
Server 2000 leaves free memory for the operating system. If you decide to configure the 
memory requirements of SQL Server 2000 manually, you are advised to leave ample memory 
for the operating system. 

Remember that multiple instances of SQL Server can run on one Windows 2000 server-a 
default instance with up to 16 named instances. Each of these instances will compete for 
memory. 

So what is memory used for in an instance of SQL Server 2000? The short answer is lots of 
things. There is a pool of 8 KB buffers that are used for database pages-for example, data and 



index pages and also query plans. Memory is required for user connections and locks. Most 
importantly, memory is required for the queries themselves. 

Different queries can have very diverse memory requirements. A simple query such as a 
single row lookup will require little memory to execute. Such queries are typically found in 
online transaction processing systems (OLTPs). Other queries, such as the ad hoc queries 
found in data warehouse type systems, may need to perform large sorts. Some queries will 
need to perform hash joins on large amounts of data. The queries that need to sort and hash 
will benefit from lots of memory. If the sort can fit into memory, or the hash buckets can fit 
into memory, query performance will be improved. 

When the query optimizer creates a plan for a query, it calculates the minimum memory a 
query will need and the maximum amount of memory it would benefit from. When a query 
needs to be executed, it is passed to a special scheduler. This scheduler checks to see if the 
query indeed does perform a sort or hash operation. If it does not, it is scheduled to run 
immediately. Queries that have a sort or hash operation will then be scheduled based on their 
memory requirements. Queries with small sorts or joins will be scheduled almost 
immediately. Queries with large sorts or joins will be scheduled in such a way that only a few 
can run concurrently. 

Configuring memory for SQL Server 2000 

SQL Server 2000 will dynamically configure its memory requirements. It will expand to use 
up the free memory on the Windows 2000 server as long as it needs memory and that amount 
of memory is available on the server. It will not use all the free memory, since some will be 
needed by the operating system-typically about 4 MB to 10 MB. As other processes start up 
and need memory, the available free memory will drop and SQL Server will then release 
memory. 

Two server configuration options, min server memory (MB) and max server memory (MB), 
can be used to specify upper and lower bounds for the memory a SQL Server 2000 instance 
will use. When the instance is started, it takes as much memory as it needs to initialize. This 
may well be below the min server memory (MB) value. However, once it has crossed this 
value, it should not drop below it. This ensures that even if the instance is not busy, some 
memory will be kept ready for starting queries. This ensures that their performance is not 
degraded by the instance trying to suddenly acquire memory it has given up. The max server 
memory (MB) value places an upper limit on the memory the instance will use. 

These two server options can be set so that their values are equal. In this situation, once the 
instance has grown its memory to that value, it should not increase or decrease it. 

These server configuration options can be set with the system stored procedure sp_configure 
or with the SQL Server Enterprise Manager. In the SQL Server Enterprise Manager the SQL 
Server 2000 instance name is right mouse-clicked and Properties chosen. The Memory tab is 
then selected. This is shown in Figure 5.10. 



 
Figure 5.10: The SQL Server properties memory tab  

The slider controls that set the min server memory (MB) and max server memory (MB) server 
configuration option values can be seen. These can be adjusted and are meaningful when the 
Dynamically configure SQL Server memory option is selected. If preferred, the Use a fixed 
memory size (MB) option can be selected, which effectively sets min server memory (MB) 
and max server memory (MB) values equal and stops dynamic configuration. 

 Note Address Windowing Extensions (AWEs) can be enabled in SQL Server 2000 Enterprise 
Edition to allow SQL Server to address large amounts of physical memory (8 GB on 
Windows 2000 Advanced Server and 64 GB on Windows 2000 Datacenter Server). In 
this case, dynamic memory management does not occur. 

Once the server has been allocated memory, it uses it for a variety of objects-for example, 
user connections, locks, and the buffer pool (cache). 

There are various methods to investigate the apportionment of memory. The System Monitor 
(described in Chapter 7) has a number of objects and counters to help us. Figure 5.11 shows 
the System Monitor in report format displaying some useful object counters. 



 
Figure 5.11: System Monitor counters useful for checking memory use of objects  

In Figure 5.11 we can see three objects-Buffer Manager, Cache Manager, and Memory 
Manager. They belong to the instance of SQL Server 2000 named SQL2000_A. Some useful 
counters belonging to these objects are displayed. 

The Buffer Manager: Total Pages counter represents the total number of 8-KB pages (buffers) 
in the buffer pool. This holds, for example, database pages and stored procedure query plans. 
There are currently 8,939 buffers in the pool. 

The Cache Manager: Cache Pages counter, for the _Total instance, represents the total 
number of 8-KB pages (buffers) in the buffer pool used by cached objects, such as stored 
procedure plans, trigger plans, prepared SQL plans, and ad hoc SQL plans. If required, the 
number of pages used by each of these cached object types can be monitored individually. 
There are currently 4,867 pages used for cached objects. 

The Memory Manager: Connection Memory (KB) counter represents the amount of memory 
in kilobytes used by connections. There are currently 384 KB used by connections. Generally, 
a new connection will take about 24 KB depending on the network packet size. The formula 
for connection memory is: ((3 * the network packet size) + 12 KB), with the default network 
packet size being 4 KB. 

The Memory Manager: Lock Memory (KB) counter represents the amount of memory in 
kilobytes used by locks. There are currently 240 KB used by locks. Generally, a lock will take 
about 96 KB. 

The Memory Manager: Optimizer Memory (KB) counter represents the amount of memory in 
kilobytes used for query optimization. There is no query optimization being performed at the 
time of the monitoring. 

The Memory Manager: Total Server Memory (KB) counter represents the amount of dynamic 
memory that the instance is currently using. We can see that if we add up the Buffer Manager: 
Total Pages counter (remember, each page is 8 KB) and the Memory Manager counters, the 
value is not far from 72,592 KB. The figure arrived at is less, because we have not monitored 
all consumers of dynamic memory. 



Another useful tool is DBCC MEMUSAGE. This has not been documented since SQL Server 
6.5, and its output has changed dramatically since then. However, if we use it with that 
thought in mind, we get the following output. 

   dbcc memusage (names) 
 
   Buffer Cache Top 20 
 
   Database Name   Object Name   Index Name   Buffers   Dirty 
   -------------   -----------   ----------   -------   ----- 
   BIG             accounts                    5556      0 
   Master          syscharsets                 33        0 
   Master          syscomments                 24        0 
   Master          sysmessages                 14        0 
   BIG             accounts      UNKNOWN       11        0 
     : 
     : 

This gives us an insight into the number of data and index pages used by the largest objects in 
cache. 

To look at the sizes of cached objects, such as stored procedure plans, the syscacheobjects 
system table can be queried, as discussed in Chapter 4. Here is a fragment of output showing 
the pages used by different objects in cache.  

   SELECT cacheobjtype, objtype, pagesused, sql 
      FROM master..syscacheobjects 
      ORDER BY pagesused DESC 
 
 
   Cacheobjtype      objtype   pagesused   sql 
   ------------      -------   ---------   ----------------- 
   Executable Plan   Proc      2164        usp_test 
   Compiled Plan     Proc      206         usp_test 
   Compiled Plan     Proc      52          sp_helpdb 
   Executable Plan   Proc      42          sp_helpdb 
   Compiled Plan     Proc      31          sp_helpconstraint 

5.2.4 Investigating memory bottlenecks 

If memory starts to get tight on the server, performance will start to suffer. This is most likely 
to happen on a server that is running applications other than just SQL Server 2000, since they 
will contend for memory. 

Before we investigate memory bottlenecks, we need to look at the tools we can use to do so. 
The first piece of information we will want to know is likely to be how much physical 
memory the server has. We can easily check this by choosing About Windows from the Help 
menu in Windows Explorer, as shown in Figure 5.12. 



 
Figure 5.12: Memory available as shown by Windows Explorer  

Another handy tool is the Task Manager, which is present in Windows 2000. There are a 
number of tabs that can be chosen, and these are Applications, Processes, and Performance. 
The Applications tab is shown in Figure 5.13. This tab shows the status of programs that are 
running on the system. SQL Server 2000 is not shown, since it is running as a service. The 
Processes tab displays information about processes that are running on the system, as shown 
in Figure 5.14. Information such as the memory usage and the page faults is shown for each 
process. Columns can be added or removed from this tab. The Performance tab, shown in 
Figure 5.15, displays a graph of CPU and memory use history as well as a textual display. 

 
Figure 5.13: The Windows 2000 Task Manager applications tab  



 
Figure 5.14: The Windows 2000 Task Manager Processes tab  

 
Figure 5.15: The Windows 2000 Task Manager performance tab  

The most useful tool is the System Monitor, which we have already met. There are a number 
of useful System Monitor objects concerning memory, such as Memory and Process. There 
are also a number of tools in the Windows 2000 Resource Kit. 



Let us now focus on using the System Monitor to investigate memory bottlenecks. The 
memory object is a useful place to start, and it is worthwhile to look at some of the memory 
object's counters, as shown in Table 5.2. 

Table 5.2: Selected Counters for the Memory Object  
Memory 
Object 
Counter  

Explanation  

Page 
Faults/sec 

This counter includes both hard page faults and soft page faults. Hard page 
faults result in disk I/O. Soft page faults mean pages are found elsewhere in 
memory. 

Pages 
Input/sec 

This is a measure of the number of pages brought in from disk every second. 
The difference between this value and Page Faults/sec represents soft page 
faults. 

Pages 
Output/sec 

This is a measure of the number of pages written to disk every second to 
make room in the working set of the process for newly faulted pages. If the 
process modifies pages, they must be written out. They cannot be discarded. 

Pages/sec This is total of Pages Input/sec plus Pages Output/sec. 
Page 
Reads/sec 

This indicates the reads from disk per second to satisfy page faults. This is an 
important counter. As a rule of thumb, if this counter exceeds five pages per 
second there is a memory shortage. A single read operation can actually bring 
in more than one page. 

Page 
Writes/sec 

This indicates the writes to disk per second to satisfy page faults. This is 
another important counter, since it measures real disk I/O work being done by 
the system because of page faulting. A single write operation can actually 
write out more than one page. 

Available 
Bytes 

Available 
KBytes 

Available 
MBytes 

This shows how much memory remains that can be given to processes. The 
three counters only differ in the units used. 

In Figure 5.16 the System Monitor is being used to monitor the following counters: 

• Memory: Page Reads/sec 
• Memory: Page Writes/sec 
• Memory: Pages Input/sec 
• Memory: Page Faults/sec 



 
Figure 5.16: Memory pages being read in from disk  

The line that peaks the highest is Page Faults. This is to be expected, since it represents both 
hard and soft faults. 

The averages for these counters are shown in the following chart (the averages cannot be 
deduced from the screenshot alone). 

•    

Counter  Average 
Page Reads/sec 0.2 
Pages Input/sec 0.8 
Page Faults/sec 405 

The Page Faults/sec counter represents the sum of hard and soft page faults. The Pages 
Input/sec counter represents hard faults, so about 0.2 percent of the faults are hard faults. The 
0.8 pages that are input per second are brought in by 0.2 page reads per second, so 
approximately four pages are being brought in by every disk read. Although the majority of 
page faults are soft, 0.2 I/Os per second are hitting the disk to retrieve pages, which is trivial. 

It is useful to also examine the disk activity to see how hard paging is hitting the disks. Some 
useful counters are as follows:  

• % Disk Time 
• Avg. Disk Queue Length 
• Disk Reads/sec 

The % Disk Time is the percentage of elapsed time that the selected disk drives are busy 
servicing requests. Avg. Disk Queue Length is the average number of read and write requests 
queued on the selected disks. Disk Reads/sec is the rate of read operations on the disk. These 
are shown in Figure 5.17. The averages for these counters are shown in the following chart. 



 
Figure 5.17: Memory counters with disk counters  

•    

Counter  Average 
Page Reads/sec 0.4 
Pages Input/Sec 1.6 
Page Faults/sec 282 
% Disk Read Time 23.8 
Avg. Disk Queue Length 0.2 
Disk Reads/sec 9 

We can immediately compare Page Reads/sec with Disk Reads/sec. This shows us that only a 
small part of our disk activity is caused by paging. The disk is busy about 24 percent of the 
time. The Avg. Disk Queue Length is small: about 0.2. 

A similar investigation can be performed for page writes. It is also worth looking at which 
individual processes are faulting heavily. This can be done by monitoring the Page Faults/sec 
counter on the process object for all the process instances. If this is viewed in histogram 
format, processes that are page faulting heavily stand out immediately, as shown in Figure 
5.18. 



 
Figure 5.18: Monitoring page faults for individual processes  

Another area worth monitoring is the page file, to see if it is filling. Ensure that there is 
enough free space to let it expand if it needs to. 

5.2.5 Solving problems with memory 

The two main approaches to solving memory problems are: making best use of available 
memory and adding more physical memory to the server. 

To make more use of available memory, remove anything that is not needed but is consuming 
memory resource. For example, Windows services, drivers, and network protocols that are not 
used. As was mentioned earlier: If possible, dedicate the server to a single instance of SQL 
Server 2000. 

Increasing the size of the paging file and adding another paging file may help. The addition of 
extra memory should also be accompanied by an increase in paging file size and, if possible, 
an increase in secondary cache size. In my experience, the addition of more memory is often 
the simplest and quickest fix to memory problems and is often the most cost effective. 

5.3 SQL Server 2000 and disk I/O 

5.3.1 Introduction 

A bottleneck that is often experienced with database management systems concerns the disk 
subsystem. By definition a database is a shared repository of information, and, consequently, 
many users are likely to be reading and writing to the database. Depending on whether the 
database supports an online transaction processing (OLTP) system or a decision support 
system (DSS), users may update small amounts of data or may perform read only queries on 
large amounts of data. 

The disks themselves are different from most other components in the server in that they 
typically have moving parts. The disk surface rotates and the disk heads move in and out 
across the disk surface. Relative to memory access this takes a long time, and therefore SQL 
Server 2000 uses many techniques to help it minimize disk access. In fact, as we have seen, 



the query optimizer attempts to choose an access strategy that limits the number of disk I/Os 
performed. 

Care should be taken when investigating disk I/O bottlenecks, since there can be many causes. 
One cause is a memory bottleneck, which results in high levels of paging to disk, as was 
described in the previous section. 

5.3.2 An overview of Windows 2000 and disk I/O 

To perform its disk I/O SQL Server 2000 issues reads and writes to Windows 2000 and lets 
Windows 2000 deal with the business of reading and writing to the underlying disk 
subsystem. Various techniques are employed to keep the physical disk I/Os efficient. For 
example, Windows 2000 (and Windows NT) utilize a technique known as scatter-gather I/O. 
This technique enables Windows 2000 to transfer data into or out of areas of memory, which 
are not contiguous, in a highly efficient fashion. Unlike Windows 98, Windows 2000 (and 
Windows NT) can also make use of asynchronous I/O, which gives SQL Server the ability to 
issue I/Os to disk and, instead of waiting for the I/O to complete, carry on with other work. 
The I/O completion can then be checked later. 

To provide high levels of disk I/O throughput, Windows 2000 provides various levels of 
RAID (Redundant Arrays of Inexpensive Disks), and SQL Server 2000 can make use of this 
capability. Various vendors also provide hardware-based RAID solutions. These increase the 
cost of the system but tend to provide better performance and are becoming increasingly 
popular. For that reason, we will assume we are using hardware-based RAID arrays. 

Commonly supported RAID levels are as follows: 

• RAID 0-disk striping 
• RAID 1-disk mirroring 
• RAID 5-disk striping with parity 

In a RAID 0 stripe set, data is spread across all the drives in the set. If you were to create a 
database file on a RAID 0 stripe set, the disk controller would actually break the file into 
pieces (known as chunks) as you created it. Each piece would be placed on the next disk in 
the set circling round when it moved off the last one. We can imagine a three-disk stripe set 
now providing three sets of disk heads to access the file. This is the bonus of RAID 0: 
performance. RAID 0 provides very good performance for both reading and writing. The 
downside of RAID 0 is that the loss of a single disk will affect the whole stripe set. The RAID 
0 array will appear to be a single disk to Windows NT/2000 and SQL Server. 

RAID 5 is very similar to RAID 0. However, as well as writing data onto a disk drive in the 
stripe set, parity information is written to another stripe set member. Not only do we stripe 
data, but we stripe parity information. This gives us a level of redundancy. We can lose one 
disk and the data information on that disk can be recreated from the parity on other disks 
when a request for data on the failed disk is made. The downside of RAID 5 is that although 
read performance is good, write performance is worse than RAID 0, since two disks must be 
written to. Hardware-based implementations of RAID 5 can help to absorb this write 
performance degradation. Again, the RAID 5 array will appear to be a single disk to Windows 
NT/2000 and SQL Server. 



In RAID 1 data is duplicated on a mirror disk drive (some RAID implementations allow more 
than one mirror). Writes are performed to both members of the set. This configuration gains 
us redundancy. We can lose one of the members and still continue working with the other 
one. There is no performance advantage in using RAID 1 for writing; in fact, it can be slightly 
slower, but it may well give some performance boost to reading. A downside of RAID 1 is 
that twice as much disk space is necessary and, therefore, twice the cost. 

It is also possible to use two disk controllers-one for each mirror set member. This means that 
a disk controller failure can be tolerated. This is known as duplexing. As with the other RAID 
configurations, the RAID 1 array will appear to be a single disk to Windows NT/2000 and 
SQL Server. 

Table 5.3 summarizes the different RAID levels. 

Table 5.3: RAID Levels 0, 1, and 5  

RAID Type  Characteristics  
Number 
of Disks  Reliability  Performance  

RAID 0: disk 
striping 

Data is spread over all the 
disks in the stripe set with 
no redundancy. 

N Less than a 
single disk 

High for read and 
write 

RAID 1: disk 
mirroring 

Data duplicated on each 
member 

2N Higher than 
RAID 0 or 5 or 
single disk 

Good for read but less 
than a single disk for 
write 

RAID 5: disk 
striping with 
parity 

Similar to RAID 0, but 
parity information is 
stored with data for 
redundancy 

N + 1 Higher than 
RAID 0 or 
single disk 

Similar to RAID 0 for 
read but less than a 
single disk for write 

What happened to RAID levels 2, 3, and 4? Generally, these are considered to be evolutionary 
steps toward RAID 5 and thus are not often used with database systems. 

Choosing the appropriate RAID implementation is a compromise between performance, fault 
tolerance, and cost. Figures 5.19 and 5.20 show two common configurations. 

 
Figure 5.19: A RAID configuration utilizing RAID 0 and 1 for the data and RAID 1 for the 
log  

 
Figure 5.20: A RAID configuration utilizing RAID 5 for the data and RAID 1 for the log  



Both of the configurations store the log on a separate RAID array from the data using a 
separate disk controller. This means that the data file can be lost while the transaction log 
remains unaffected. 

The configuration in Figure 5.19 places the data file on a RAID 0 array for optimum read and 
write performance. The RAID 0 array is mirrored to provide fault tolerance. This is often 
known as RAID 1+0, or RAID 10. This provides the best performance and fault tolerance but 
at the greatest cost. The transaction log is placed on a RAID 1 array. The transaction log is 
usually written to sequentially so, as long as nothing competes for disk bandwidth on this 
array, this configuration provides good write performance (and read). The transaction log is 
mirrored, since losing it may result in the loss of work. 

The configuration in Figure 5.20 places the data file on a RAID 5 array. This will provide 
optimum read performance, but write performance will be degraded. This will be a lower-cost 
solution than the previous configuration. The transaction log is placed on a RAID 1 array as 
before. 

Suppose the size of our data was greater than the size of the RAID arrays available to us. In 
this case we could use multiple data files, placing each file on each RAID array. Space for our 
tables would be allocated from each file on each RAID array. SQL Server would be able to 
issue read requests simultaneously to each RAID array when the table was scanned. 

5.3.3 How SQL Server 2000 uses disk I/O 

We have already mentioned the fact that SQL Server maintains a pool of 8-KB buffers. This 
buffer pool is sometimes referred to as a unified cache, since it holds both cached objects, 
such as stored procedure plans, and database pages, such as data and index pages. The buffers 
used for cached objects are often referred to as the procedure cache, and the buffers used for 
database pages are referred to as the data cache. 

The goal of the data cache is to minimize physical accesses to the disk subsystem. There is a 
single data cache for each instance of SQL Server 2000 that all the instance's databases share. 
In this section we will look at the data cache and the various techniques used to make reading 
from it and writing to it more efficient. 

An overview of the data cache 

As we discussed earlier, a portion of SQL Server 2000 memory is used for the data cache. As 
long as there is enough memory available on the server to allow SQL Server 2000 to 
dynamically grow its memory allocation, the data cache can grow. 

The idea behind the data cache is quite simple. If a user connection requests a row, SQL 
Server 2000 will translate this into a page request and it will then look for the page in the data 
cache to see if this page has previously been retrieved from disk. This request for a page 
represents a logical read. 

If the page cannot be found, it must be retrieved from the database on disk, and this disk 
access represents a physical read. The page is read into a free buffer and the data requested by 
the connection obtained. The page is now in cache, and, assuming that it does not leave the 
cache for any reason, it will be available for any connection requesting it. The next connection 



requesting that page will issue a logical read, which will be satisfied from the data cache. This 
is a memory access, as opposed to a disk access, and is consequently much faster than the 
original request that brought in the page from disk. 

We can envision a situation where a whole database gets brought into the cache, and this is 
quite feasible-the only limiting factor being the size of the data cache. In reality, 20 percent of 
most databases get accessed 80 percent of the time, so we find that the most accessed pages in 
the database find themselves in the data cache. Note that increasing the size of the data cache 
does not bring us a linear performance increase. Once we can hold the most accessed pages in 
a database or group of databases in the data cache, the allocation of more memory to the data 
cache brings us little gain. 

An empty data cache is created when SQL Server 2000 is started. At this point most database 
page requests end up as physical reads. After awhile a steady state is reached, with the data 
cache holding the most frequently used pages, as shown in Figure 5.21. The percentage of 
time a requested database page is found in the data cache is known as the cache hit ratio. The 
cache hit ratio is defined as follows: 

   cache hit ratio (%) = ((logical read - physical read)/ 
   logical read) * 100 

 
Figure 5.21: A steady state reached in the data cache  

What happens if we fill the data cache and then we need to read in a new page? We will 
discuss the mechanisms employed shortly, but SQL Server 2000 will have to make room in 
the data cache for the new page. If the new page has been changed by a user connection, then 
it is known as a dirty page and it cannot be discarded, because it reflects the latest state or 
version of that page. It must be written back to the database on disk. However, if the page has 
not been changed, it can be discarded. SQL Server 2000 keeps track of which pages have not 
been used for the longest length of time. This is important, because this is taken into account 
when SQL Server 2000 jettisons pages from the cache. 

How does SQL Server 2000 find out if a page is resident in the data cache? It could look at 
every used buffer in the data cache, but this would be very expensive for large data caches 



consisting of tens of thousands of buffers. Instead, it uses an internal hashing scheme to 
quickly locate buffers. 

What happens if we change pages in the data cache? How do they get to disk? There are a 
number of mechanisms involved. First of all, we need to consider the fact that usually the data 
cache is finite in size and eventually all the buffers in it could be used. In other words, there 
are no free buffers. If there are no free buffers, then SQL Server has no room to place new 
pages that are read in from disk. To avoid and preempt this situation, SQL Server periodically 
frees up buffers in the data cache. When a buffer is freed, it is first checked to see if it is dirty. 
A dirty page is one where changes have not yet been written to disk and therefore the buffer 
cannot just be discarded. The dirty page must be written to the data file. If the page is not 
dirty, then its contents can be discarded and the buffer is placed into a chain of free buffers. 

It would not make sense to free a buffer containing a page that was frequently accessed 
instead of a buffer containing a page that had not been accessed for a long time. To avoid this 
situation, each buffer contains a reference count, which is incremented each time the page in 
the buffer is accessed. The more the page is accessed, the greater the reference count. When 
the data cache is searched in order to find buffers that can be freed, the reference count is 
decremented. When a buffer is found with a reference count of zero, it is freed. This 
mechanism ensures that frequently accessed pages stay in the cache. Of course, if we have a 
large data cache and lots of memory on the server so that the data cache can expand, there is 
no reason to free up buffers constantly. 

Note that SQL Server 2000 uses a write-ahead log algorithm. This means that the transaction 
log is always written to before the data file, and this ensures that a change can always be 
rolled back in a recovery situation. 

So what writes the dirty pages to disk? There is no one process that does this. Often it is the 
worker threads that perform the function of scanning the buffer pool looking for pages to 
discard. They do this while waiting for their own disk accesses to complete. If they need to 
write a page, this is performed as an asynchronous I/O. 

A system process known as the lazywriter also performs the same function. The lazywrriter 
thread is activated at periodic intervals. It then scans the data cache in order to find buffers 
that can be freed. It basically performs the same activities at the worker threads. Because the 
worker threads have been freeing up buffers, the lazywriter system process is not kept busy. 
However, on the Windows 98 platform, where asynchronous I/O is not supported, the worker 
threads cannot perform this function and therefore the lazywriter system process can become 
very busy. 

Another system process that contributes is the checkpoint process. The checkpoint thread's 
goal in life is not to free up buffers but rather to ensure that the contents of dirty pages 
eventually get written to the data files on disk. It does this to keep recovery time short; 
otherwise, an automatic SQL Server recovery, performed perhaps because of a power failure, 
would potentially take a long time rolling forward changes from the transaction log to the data 
files. The checkpoint thread writes the pages asynchronously to disk with what are sometimes 
referred to as batch writes. This is a very efficient mechanism, especially if it is used in 
conjunction with hardware-based RAID arrays. 



To monitor the lazywriter and checkpoint processes, SQL Server 2000 provides us with a 
number of useful counters associated with the Buffer Manager object, as shown in Table 5.4. 

Table 5.4: Some Useful Counters for Observing Page Transfers to and from Disk  
Lazywrites/sec Number of buffers written per second by the lazywriter 
Checkpoint pages/sec Number of pages flushed to disk per second by a checkpoint 
Page Reads/sec Number of physical database page reads per second 
Page Writes/sec Number of physical database page writes per second 
Database Pages Number of database pages in the buffer pool 
Free Pages Number of free pages 

Another Buffer Manager counter that is very useful is Buffer Cache Hit Ratio. This is the 
cache hit ratio described previously. 

Figure 5.22 shows checkpoint activity occurring on the server. The highlighted counter is the 
Checkpoint pages/sec counter. Notice that during the checkpoint, another counter is also 
active. This is the Page Writes/sec counter. In this example both counters had a maximum 
value of 1,807. 

 
Figure 5.22: Checkpoint activity observed in the System Monitor  

Keeping tables and indexes in cache 

As described previously, tables and indexes that are accessed frequently stay in the data 
cache, while other, least used pages are flushed out first. In this way the pages that are often 
required are the pages that connections get fast access to. However, it is possible that fast 
access is required to tables and indexes that are not accessed frequently enough to keep them 
in the data cache. 

To keep a table and its indexes in data cache the sp_tableoption system stored procedure can 
be used, as follows: 

   EXEC sp_tableoption 'branches', 'pintable', true 



Note that the table name can use wildcard characters. This statement does not load pages from 
the table into the data cache, but once they are read into data cache by normal activity, they 
stay there and are not removed. This can result in little data cache being left for other tables 
and indexes, so table pinning should be used with care. 

To turn the option off, just use the false keyword, as follows: 

   EXEC sp_tableoption 'branches', 'pintable', false 

Read-ahead scans 

Read-ahead processing is a mechanism used by SQL Server 2000 to reduce the number of 
stalls a thread experiences waiting for a physical read to complete. It is a concept similar to 
instruction prefetch in a CPU. If SQL Server 2000 realizes that a table scan or an index scan is 
taking place-in other words, sequential scanning of pages-it can start to prefetch pages into the 
data cache before the thread requests those pages. This means that when the thread requests a 
page, it is found in the data cache and the thread does not stall waiting for a physical read 
from disk to complete. 

If a read-ahead mechanism was not employed, a thread issuing many disk I/Os while 
executing a table scan or index scan would spend a large amount time waiting for the disk 
read to complete, as shown in Figure 5.23. 

 
Figure 5.23: Performing a table scan with no read ahead  

We know that disk I/O takes a long time relative to memory access, and this is represented by 
"t" in Figure 5.23. 

If we employ a read-ahead mechanism, which can read the pages into cache using other 
threads before the user's thread requests them, we have eliminated the stall caused by the 
physical read and only the data cache access is required, as shown in Figure 5.24. 

 
Figure 5.24: Performing a table scan with read ahead  

The read-ahead mechanism also reads in units of extents, so it reads in eight pages in one disk 
I/O, which clearly is more efficient than reading eight pages with eight single-page reads. 

So what can we benefit from the read-ahead capability? Basically, anything that performs a 
sequential scan of data pages, including the following. 



• Table scans 
• Nonclustered index leaf scans 
• DBCC statements, such as DBCC CHECKDB 
• Transact-SQL statements, such as UPDATE STATISTICS 

How does SQL Server 2000 know, for example, that a table scan is taking place? It knows 
because that was the decision the query optimizer made. How does SQL Server 2000 know 
which pages to read next? Because the extents in a table or index are managed by IAM pages 
(described in Chapter 2), SQL Server can easily retrieve the relevant IAM page or pages and 
find the extents that need to be read. A sorted list is then built of the extents to be read and 
this drives the read ahead. Contiguous extents can then be read very efficiently 

To observe read-ahead processing in action, the Set statistics IO option can be set in the 
Query Analyzer. For example, suppose we execute the following query against the Accounts 
table-this time increased to 400,000 rows. 

   SELECT COUNT(*) FROM accounts 

The output from Set statistics IO is as follows: 

   Table 'accounts'. Scan count 1, logical reads 24306, 
   physical reads 136, read-ahead reads 24087. 

This shows that 24,306 logical reads were required to perform the table scan but only 136 
physical reads. The number of read-ahead reads performed was 24,087. This means that 
24,087 pages were read into the data cache by the read-ahead mechanism. The low value of 
physical reads performed by this query is due to read ahead. 

Note what happens if we immediately reissue the query: 

   Table 'accounts'. Scan count 1, logical reads 24306, 
   physical reads 0, read-ahead reads 0. 

In this case the pages are already in data cache. The read-ahead mechanism is never initiated. 

The System Monitor can also be used to monitor read ahead. The Buffer Manager object has 
an associated counter: Readahead pages/sec. 

Shrinking database files 

One consideration to be made when scanning the pages of a table is the utilization of the 
pages. If we have many pages that are only partly filled because of row deletions, perhaps 
made by an archive program, we are scanning more pages than should be necessary to retrieve 
our data. We need some way of detecting the problem and then fixing it by compacting the 
file. 

The DBCC SHOWCONTIG statement, which we discussed in Chapter 3, can show us how 
densely rows are stored on pages. For example:  

   DBCC SHOWCONTIG ('accounts') 
 



      : 
   - Pages Scanned.............. : 1570 
      : 
   - Avg. Page Density (full)... : 42.34% 
      : 
      : 

To compact the file we can use DBCC SHRINKFILE. We also discussed this statement in 
Chapter 2, and we noted that in the default case data rows from the pages at the end of the 
table would migrate to the free space in pages at the beginning of the table. Let us issue a 
DBCC SHRINKFILE: 

   DBCC SHRINKFILE (BankingDB_Data,10) 

Now let us execute DBCC SHOWCONTIG again: 

   DBCC SHOWCONTIG ('accounts') 
 
      : 
   - Pages Scanned.............. : 782 
      : 
   - Avg. Page Density (full)... : 84.70% 
      : 
      : 

We can immediately see that the page density has increased by about a factor of two. This 
means we are storing twice as many rows per page and that we need half the pages to hold our 
data compared with what we needed previously. This is clear from the Pages Scanned value, 
which has changed from 1,570 to 782. So, although it may take a while to shrink a large file, 
you may find that subsequent scans take somewhat less time. 

5.3.4 Investigating disk I/O bottlenecks 

The tool used to observe disk I/O bottlenecks is typically the System Monitor. The Task 
Manager displays little useful information as far as disk I/O is concerned. There are also a 
number of tools in the Windows 2000 Resource Kit that are useful. We will focus on using 
the System Monitor, since it is the most comprehensive tool, and we will also introduce a 
useful system table-valued function, fn_virtualfilestats. 

If you are using Windows 2000, the statistics collection for the Logicaldisk object is not 
active by default. However, the statistics collection for the Physicaldisk object is active by 
default.  

 Note If you are using Windows NT, the statistics collection for both the disk objects is not 
active by default. 

To activate statistics collection in Windows 2000 for the Logicaldisk object, run the diskperf 
command and reboot Windows 2000. To turn on statistics collection for the Logicaldisk 
object, type in: 

   diskperf -yv 

To deactivate statistics collection, type in: 



   diskperf -nv 

The Physicaldisk object uses the syntax -yd and -nd. 

Once the diskperf command has been run, it will not have to be run again until you want to 
change the statistics collection. 

For Windows NT the syntax is just -y and -n. 

Let us look at some of the more useful counters associated with disk activity. 

The Logical Disk, Physical Disk, and a number of SQL Server 2000 objects are a useful place 
to start, and it is worth a look at some of their counters. Again, note that it often is a memory 
bottleneck that manifests itself as a disk bottleneck, and therefore the counters associated with 
the Memory object, as described earlier, should also be monitored. Some of the most useful 
Logical Disk Physical Disk counters are shown in Table 5.5. Useful SQL Server counters are 
shown in Table 5.6. 

Table 5.5: Logical and Physical Disk Counters  
Logical/Physical Disk 
Object Counter  

Explanation  

% Disk Time How busy is the disk? This is the percentage of elapsed time that the 
selected disk is busy handling read and write requests. 

% Disk Read Time This is the percentage of elapsed time that the selected disk is busy 
handling read requests. 

% Disk Write Time This is the percentage of elapsed time that the selected disk is busy 
handling write requests. 

% Idle Time This is the percentage of elapsed time that the selected disk is not 
processing requests. 

Disk Reads/sec The rate of read operations on the disk 
Disk Writes/sec The rate of write operations on the disk 
Avg. Disk Queue 
Length 

This is the average number of read and write requests for the disk in 
the sample interval. If disk queue length is greater than two and the 
%Disk Time is high, this may indicate a disk bottleneck. 

Current Disk Queue 
Length 

This is an instantaneous value at the point of sample. It includes the 
requests being serviced. 

Avg. Disk Bytes/Read This is the average number of bytes transferred to disk during read 
operations. 

Avg. Disk Bytes/Write This is the average number of bytes transferred to disk during write 
operations. 

Table 5.6: Useful SQL Server Counters  
SQLServer Object 
Counter  

Explanation  

Access Methods: 
Forwarded Records/sec 

Number of records per second fetched through forwarded record 
pointers 



Table 5.6: Useful SQL Server Counters  
SQLServer Object 
Counter  

Explanation  

Access Methods: Full 
Scans/sec 

Number of unrestricted table or index scans per second 

Access Methods: Page 
Splits/sec 

Number of page splits per second that occur as the result of 
overflowing index pages (data pages in a clustered index) 

Buffer Manager: Buffer 
cache hit ratio 

The percentage of time that a page was found in the data cache. 
Usually 95% plus on a server in steady state with a large cache. 

Buffer Manager: 
Checkpoint pages/sec 

Number of pages written to disk per second by a checkpoint 

Buffer Manager: 
Database pages 

Number of database pages in the buffer pool 

Buffer Manager: Free list 
stall/sec 

Number of requests per second that had to wait for a free page 

Buffer Manager: Free 
pages 

Total number of pages on all free lists 

Buffer Manager: Lazy 
Writes/sec 

The number of pages written out to disk per second by the 
lazywriter. This cleans buffers and returns them to the free buffer 
pool. 

Buffer Manager: Page 
life expectancy 

Number of seconds a page will stay in the buffer pool without any 
references to it 

Buffer Manager: Page 
lookups/sec 

Number of requests per second to find a page in the buffer pool 

Buffer Manager: Page 
Reads/sec 

The number of physical page reads per second. This is what we try 
to minimize with indexes and data cache. 

Buffer Manager: Page 
Writes/sec 

The number of physical page writes per second 

Buffer Manager: 
Procedure cache pages 

Number of pages used to store compiled queries 

Buffer Manager: 
Readahead Pages/sec 

Number of pages read in by the read-ahead mechanism 

Buffer Manager: 
Reserved Pages 

Pages reserved in the buffer pool 

Buffer Manager: Stolen 
Pages 

Number of pages used for miscellaneous server purposes 

Buffer Manager: Target 
Pages 

Ideal number of pages in the buffer pool 

Buffer Manager: Total 
Pages 

Number of pages in the buffer pool-includes database, free, and 
stolen pages 

Databases: Data File(s) 
Size (KB) 

Total size of all data files in a database 

Databases: Log File(s) Total size of all log files in a database 



Table 5.6: Useful SQL Server Counters  
SQLServer Object 
Counter  

Explanation  

Size (KB) 

Be aware that the % Disk Time, % Disk Read Time, % Disk Write Time, and % Idle Time 
counters can exaggerate. You may see values over 100 percent. It is a good idea to monitor % 
Idle Time with the other three counters to get an indication of whether this is happening. 

In the System Monitor chart shown in Figure 5.25 we have added the PhysicalDisk: Avg. 
Disk Bytes/Read counter and the Buffer Manager: Page lookups/sec counter. We have 
executed a query that retrieves a row from the Accounts table using a nonclustered index. We 
can see a blip in the Buffer Manager: Page lookups/sec counter. However, note the value of 
the PhysicalDisk: Avg. Disk Bytes/Read counter. It is 8,192 bytes. This shows us that a single 
page read was performed. 

 
Figure 5.25: Investigating disk activity-looking at read size  

In the System Monitor chart shown in Figure 5.26 we have added the PhysicalDisk counters, 
Avg. Disk Queue Length and %Disk write time, and the Buffer Manager counters, Page 
writes/sec and Checkpoint pages/sec. 



 
Figure 5.26: Investigating disk activity-looking at a large update  

We have initiated an update of a large table, resulting in many rows being changed. The Avg. 
Disk Queue Length counter is labeled (1). This peaks at 14 and averages 2.7. The counter that 
closely tracks it is %Disk write time, which is 100 percent at peak. Clearly, a lot of write 
activity is being performed. The data file and log file are on one disk, so what is responsible 
for the activity? The clue is our highlighted counter, Checkpoint pages/sec. This averages 140 
pages/sec with a peak of 904 pages/sec. This results in a Page writes/sec, labeled (2), 
averaging 140 and peaking at 904. This is the checkpoint that is flushing to disk. 

Finally, let us have a look at fn_virtualfilestats-a system table-valued function. This gives us 
very useful information about I/O statistics for individual data and log files. It is very easy to 
use. 

   SELECT * FROM :: fn_virtualfilestats(11, 1) 

The first parameter is the database ID, and the second parameter is the file ID. Personally, I 
find the best way to obtain these values is with sp_helpdb and sp_helpfile. If you prefer, use 
the system functions DB_ID() and FILE_ID() to find these values. Example output is as 
follows: 

DbId  FileId  TimeStamp  NumberReads  NumberWrites  BytesRead  BytesWritten  
IoStallMS 
----  ------  ---------  -----------  ------------  ---------  ------------  
--------- 
11    1       9293172    1579         572           398663680  73203712      
11810 

5.3.5 Solving problems with disk I/O 

Having determined that there is indeed a disk I/O bottleneck and that there is a sustained 
queue of requests, the next step is to eliminate causes other than SQL Server 2000, such as a 
memory bottleneck causing high levels of paging to disk. 

If the disk bottleneck proves to be SQL Server 2000, it could be a specific set of queries-in 
which case it is possible that these queries could be made more efficient by rewriting or by a 
change in index design. This often cures the problem. However, if the workload on the SQL 



Server 2000 as a whole is generating more disk I/O than the I/O subsystem can handle, it may 
be time to invest in a RAID approach. 

There are a number of RAID topologies that can be used; the fastest implementation of RAID, 
however, is usually hardware based. We have already discussed RAID configurations in this 
chapter. 

If RAID configurations are not available, using multiple data files and filegroups on multiple 
disk spindles may be another option. 

Also, remember that Windows 2000 can defragment disk drives. It is possible that a database 
file is fragmented because of the way it was created. This may have happened if many 
automatic extensions took place and the disk was shared with other applications that create 
files. 

Ensure that the hardware components can theoretically handle the load. Apart from the disk 
drives, the disk controllers and I/O bus have a finite bandwidth. 

Chapter 6: Transactions and Locking 
6.1 Introduction 
I once visited a customer to sanity check the physical design for a new database. In the course 
of checking the design I happened to notice that there were some people in an adjoining room 
entering data into forms on their PCs. Every so often one of these people would raise their 
hands in the air for a few seconds. After a while my curiosity got the better of me, and I asked 
the person who had invited me to do the sanity check what was happening. 

It transpired that the people in the next room were entering trades into a financial system, but 
the lock conflict caused by the action of entering two trades simultaneously was so bad that 
they found it easier to raise their hands just before they pressed Enter on the keyboard to 
signal to their colleagues not to do the same. Ironically, what they were doing was 
implementing a locking protocol, which single-threaded the insertion of a trade. This is an 
example of a multiuser system where two users are one user too many! 

Unfortunately, there are many multiuser systems out there that suffer from locking problems. 
Whether you design a system with locking in mind tends, like most things in life, to depend 
on your previous experiences. While I was working for Digital Equipment Corporation I was 
involved in the design of many multiuser online transaction processing systems (OLTPs). I 
came to learn very quickly that if I did not constantly ask the question, "Is this transaction 
likely to be the cause of a locking bottleneck?" I would run into trouble. If your background is 
single-user systems or read only databases, this question might not be the first one on your 
mind. 

This chapter introduces the concepts of transactions and locking, perhaps two of the most 
important features provided by a modern database management system and, perhaps, two of 
the features whose correct implementation by a database designer is most critical to database 
performance. The default SQL Server locking protocol provided by SQL Server 2000 is 
sophisticated; however, for those developers who need it, the default locking protocol 



provided by SQL Server can easily be changed to behave in a number of different ways. 
These capabilities will be covered in this chapter. 

6.2 Why a locking protocol? 
Single-user access to a database does not require a locking protocol nor does single or 
multiuser access to a read only database. Database management systems in reality must 
support more than one user concurrently accessing information, and it is this multiuser access 
that requires the database management system to provide a protocol to ensure that the changes 
being made to the database data by one user are not corrupted by another. Locking is not a 
luxury in a multiuser environment-it is a necessity. 

Locking protocols are not all or nothing. Some protocols are more stringent than others with 
different database management systems adopting their own unique approaches. Locking is the 
natural enemy of performance, and so a more stringent locking protocol is more likely to 
adversely affect performance than a less stringent one. However, a more stringent locking 
protocol is also likely to provide a more consistent view of the data. 

To provide an idea as to why a locking protocol is necessary let us consider some multiuser 
scenarios. 

6.2.1 Scenario 1 

In this scenario Mike modifies a stock level by subtracting 1,000 from it, leaving 100 items. 
Katy reads the stock level and sees that there are only 100 items in stock. Immediately after 
Katy has read this value and acted upon it, Mike's transaction fails and is rolled back, 
returning the stock level to its original value of 1,100. 

This scenario highlights a classic problem. Katy has been allowed to read changes made by 
Mike before Mike has committed the changes-in other words, before Mike has irrevocably 
changed the data by ending the transaction with a commit. Until the transaction ends, Mike 
can choose to roll back the transaction, change the value again, or commit the transaction. In 
our example, Mike's transaction actually fails before it completes, causing the database 
management system to roll back the change. Katy is said to have read uncommitted, or dirty 
data. This is shown in Figure 6.1. 

 
Figure 6.1: Reading uncommitted changes  



6.2.2 Scenario 2 

In this scenario Mike's transaction sums a list of debts in a table and checks the result against 
a total debt value held elsewhere in the database. While Mike's transaction is summing the 
values in the list, Katy's transaction inserts a new row into the debt table after Mike's 
transaction has passed by and updates the total debt value. When Mike finishes summing the 
list and compares the calculated sum with the total debt value, it reports a discrepancy, where, 
in fact, there is no discrepancy at all. This is called the phantom insert phenomenon. This is 
shown in Figure 6.2. 

 
Figure 6.2: The phantom insert phenomenon  

These are only two examples of a number of possibilities that can occur if locking protocols 
are not used or the locking protocol used is not stringent enough. We will revisit some of 
these scenarios later. We have said that SQL Server uses a locking protocol, so let us now 
investigate how this works. 

6.3 The SQL server locking protocol 
The locking protocol adopted by SQL Server consists of placing different types of locks on 
different database objects. In SQL Server 2000 these objects include a table, a database page, 
a row and an index entry. As we have seen, a database page is 8 KB in size, and any object 
resident within this 8 KB is locked implicitly when the database page is locked. Therefore, if 
a database page is locked, every row held on that page is effectively locked. Similarly, if a 
table is locked, every row in that table is locked. 

We will now look in detail at the types of locks used, what objects can be locked, and the 
duration of these locks. 

6.3.1 Shared and exclusive locks 

To generalize, SQL Server applies a write lock when it writes information or a read lock when 
it reads information. Writing information usually refers to inserting, updating, or deleting 
rows, whereas reading information usually refers to retrieving rows with, for example, a 
SELECT statement. There are some simple rules that we can make at this point. 

• If a user has placed a read lock on an object such as a row, another user can also place 
a read lock on that object. In other words, both users can read the same object 
simultaneously. In fact, any number of users can place a read lock on an object at the 
same time. 

• If a user has placed a write lock on an object, another user cannot also place a write 
lock on that object. Also, another user cannot place a read lock on that object. In other 



words, once a user has placed a write lock on an object, other users cannot place read 
or write locks on the same object simultaneously. 

Because many users can place read locks on the same table, page, or row concurrently these 
read locks are usually referred to as shared locks. Write locks, on the other hand, are normally 
referred to as exclusive locks. Table 6.1 shows the compatibility between shared and 
exclusive locks. As can be seen, only shared locks are compatible. 

Table 6.1: Compatibility between Shared and Exclusive Locks  
Mode of Currently Granted Lock  Mode of Requested Lock 
  exclusive  shared  
exclusive     
shared     

Once a lock has been placed on an object, it has a lifetime. Suppose a Transact-SQL statement 
that causes a row lock to be taken out is executed inside a user-defined transaction. In the 
default case, shared locks live for the time it takes the SQL statement to read the row, whereas 
exclusive locks live for the length of the user-defined transaction. This is shown in Figure 6.3. 
This behavior can be overridden with the use of the REPEATABLE READ keyword or 
transaction isolation levels, as we will see later in this chapter. 

 
Figure 6.3: The default lifetime of SQL server locks  
 Note Beware of the SET IMPLICIT_TRANSACTIONS ON statement. It will automatically 

start a transaction when Transact-SQL statements such as SELECT, INSERT, 
UPDATE, and DELETE are used. The transaction will not be committed and its locks 
will not be released until an explicit COMMIT TRANSACTION statement is executed. 
To see if it is set, use DBCC USEROPTIONS (described later). 

SQL Server also uses locks other than shared or exclusive. For example, it uses update locks 
as an optimization to avoid deadlocks. We will look at update locks when we investigate 
deadlocks later in the chapter. 

6.3.2 Row-, page-, and table-level locking 

Is row-level locking better than page-level locking? It depends. Applications require different 
levels of locking granularity. One application may benefit from page-level locking while 
another application may benefit from row-level locking. Why is this? To investigate it is 



useful to consider the different granularity of lock that could be taken out by some theoretical 
database management system. 

Figure 6.4 shows the database concurrency for different lock granularity. By lock granularity 
we mean the object that is locked from, on one side of the spectrum, an individual column in a 
row to the other side of the spectrum, a whole database. As can be observed from Figure 6.4, 
locking individual columns provides the highest level of concurrency. By this we mean that 
multiple users could be updating different columns in the same row simultaneously. They 
would not be involved in lock conflict. 

 
Figure 6.4: Concurrency versus locking granularity  

If the lock granularity is implemented at the database level, the lowest level of concurrency is 
achieved. Multiple users could not simultaneously change anything at all in the database. If 
they tried, they would be involved in lock conflict. 

So, if locking individual columns provides the highest level of concurrency, why do SQL 
Server and databases in general not lock at the column level? To explain this we need to add 
some more information to our graph. 

In Figure 6.5, we have added system resource use to our graph. It can be seen that an increase 
in system resource use parallels an increase in lock granularity. The finer the granularity, the 
more system resource used. 

 
Figure 6.5: System resource versus locking granularity  



This is why SQL Server and databases in general do not lock at the column level. The system 
resource use in terms of the number of locks required and their management would be too 
great. Locks are approximately 100 bytes each in SQL Server 2000. Using 100 bytes of 
memory to lock a ten-byte column seems a little over the top. To lock at the column level 
would probably use tens of thousands of locks in a medium-sized database, which could 
equate to many megabytes of memory. The CPU resource needed to manage these locks 
would be massive. 

Consequently, SQL Server 2000 locks rows, pages, and tables, which, depending on the 
application, is a reasonable approach. The database itself can, of course, be set to single-user 
mode, which effectively provides locking at the database level.  

When are row-level locks used? 

Locking at the row level can be considered to be the default situation. Usually, unless you 
have changed the default behavior, SQL Server will take shared and exclusive locks out on 
rows. When we refer to rows, we are referring to data rows in the data pages of a table. 
However, within an index, index pages contain index entries. These can also be locked with a 
lock equivalent to a row lock, known as a key lock. 

Conventionally, the data pages in a table on which there is a clustered index present are 
considered to be the leaf level of the clustered index-that is, part of the clustered index. For 
this reason, the row locks on the data rows in a table with a clustered index are managed as 
key locks. Figure 6.6 shows individual rows being locked within the pages of a table. 

 
Figure 6.6: Row-level locking  

Figure 6.7 shows page locks being used to lock the individual pages within a table. In this 
case one lock will effectively lock all the rows in the page. 

 
Figure 6.7: Page-level locking  

When are table-level locks used? 

One of the reasons that SQL Server tends to lock at the row level is that it has the capability to 
escalate locks but not to deescalate locks. Therefore, if SQL Server decides that a SQL 
statement is likely to lock the majority of rows in a table, it may lock at the table level. The 
same logic is used if SQL Server determines that most of the rows in a page are likely to be 
locked-it may take out a page lock instead of multiple row locks. 



The advantage to holding a single table lock is due to system resource. Managing a single 
table lock is less resource intensive than managing multiple row locks, and saving locks will 
save memory. However, locking at the table level may reduce concurrency-for example, an 
exclusive lock held at the table level will block all other users from accessing rows within that 
table, whether they wish to acquire shared or exclusive locks. Figure 6.8 shows table-level 
locking. 

 
Figure 6.8: Table-level locking  

SQL Server controls when escalation occurs. The database administrator has no control over 
this, since there is no relevant server configuration option. 

 Note If a table scan is being used to read data, row locks will be taken out and released in a 
sequential fashion. If we choose to use certain lock hints-for example, 
REPEATABLEREAD, discussed later-we are requesting not to release the row lock 
when we have finished with the row. In this circumstance, when performing a table 
scan, SQL Server may well take out a table lock if the number of row locks exceeds an 
internal threshold. 

So, we have introduced shared and exclusive locks, as well as page-, table-, and row-level 
locking. We need to introduce more types of locks before we can give examples of the SQL 
Server locking protocol in action; but first let us look at lock timeouts and then a phenomenon 
known as a deadlock or deadly embrace. 

6.3.3 Lock timeouts 

If a user's lock is blocked by another lock, the user must wait until the blocking lock is 
released before he or she can acquire the lock. If the blocking lock is not released for a long 
time, the user will have to wait for a long time. An application design flaw may mean that the 
blocking lock is not released at all, and then the database administrator must intervene. 

It is possible in SQL Server to set a lock timeout value for a connection so that it will only 
wait to be granted its lock for a predefined period of time, after which it will receive an error 
message informing it that the timeout period has been exceeded. This approach assumes that 
if a lock is kept waiting for a period of time there must be a problem, and it is better that the 
connection gives up and releases its locks rather than wait indefinitely, perhaps blocking other 
users. The connection can always try again or log the problem and gracefully inform the user 
that it cannot proceed. 

What constitutes a realistic timeout value? Too long and the user will become impatient, too 
short and the connection will give up when it would have acquired the lock had it waited a 
little longer. Personally, I think around ten seconds is not unreasonable. 

A lock timeout value is set per connection as follows: 

   SET LOCK_TIMEOUT 10000 



The timeout value is specified in milliseconds. A value of -1 means wait indefinitely (the 
default), whereas a value of 0 means do not wait at all. I do not recommend using this value. 
You could timeout as soon as you attempt to execute a statement, whereas if you had waited a 
fraction of a second you would have acquired the lock. 

If a timeout occurs, an error, 1222, is returned and the connection is rolled back. 

To test the value of lock timeout set for a connection the function @@LOCK_TIMEOUT can 
be used. 

6.3.4 Deadlocks 

A deadlock situation can occur in SQL Server when a user holds a lock on a resource needed 
by a fellow user who holds a lock on a resource needed by the first user. This is a deadly 
embrace, and the users would wait forever if SQL Server did not intervene. (See Figure 6.9.) 

 
Figure 6.9: A deadlock between two users  

SQL Server chooses one of the deadlocked users as a victim and issues a rollback for its 
transaction. It will receive an error message similar to the following: 

   Server: Msg 1205, Level 13, State 1, Line 1 
 
   Your transaction (Process ID 52) was deadlocked on {lock} 
   resources with another process and has been chosen as the 
   deadlock victim. Rerun your transaction. 

In the application code, this error should be trapped and dealt with cleanly. The application 
might retry a number of times before giving up and informing the user that there is a problem. 

A connection can set its deadlock priority such that, in the event of it being involved in a 
deadlock, it will be chosen as the victim, as follows: 

   SET DEADLOCK_PRIORITY LOW 

To return to the default deadlock handling mechanism, use the following code: 

   SET DEADLOCK_PRIORITY NORMAL 

Generally, the transaction involved in the deadlock that has accumulated the least amount of 
CPU time is usually chosen as the victim. 

6.3.5 Update locks 



As well as placing shared and exclusive locks on database rows, SQL Server also makes use 
of a type of lock known as an update lock. These locks are associated with SQL statements 
that perform update and delete operations, which need to initially read rows before changing 
or deleting them. These rows have update locks placed on them that are compatible with 
shared read locks but are not compatible with other update locks or exclusive locks. If the 
rows must subsequently be updated or deleted, SQL Server attempts to promote the update 
locks to exclusive locks. If any other shared locks are associated with the rows, SQL Server 
will not be able to promote the update locks until these are released. In reality the update lock 
is not promoted, but a second lock is taken out, which is, in fact, an exclusive lock. 

Why bother with update locks? Update locks are really an optimization to minimize the 
possibility of deadlocks. Consider two users, Mike and Katy, who are about to update the 
same row. Without update locks, each user will take out a shared lock on the row. Shared 
locks are compatible, so both users will acquire the lock successfully. Mike's UPDATE 
statement, finding that the row that meets the criteria in its WHERE clause, attempts to take 
out an exclusive lock on it. Mike's UPDATE statement will now have to wait, since it is 
blocked by Katy's shared lock. 

Katy's UPDATE statement, finding that the row meets the criteria in its WHERE clause, 
attempts to take out an exclusive lock on the row. Katy's UPDATE statement cannot take out 
the exclusive lock, since it is blocked by Mike's shared lock. Her update statement would also 
be forced to wait, except that this is clearly a deadlock. SQL Server will choose a victim and 
its transaction will be rolled back. This is shown in Figure 6.10. 

 
Figure 6.10: A deadlock caused by two users updating the same page  

Now let us take the same example, but this time we will make use of update locks. This is 
exactly what SQL Server does. 

When Mike issues his UPDATE statement, he now takes out an update lock on the row 
instead of a shared lock. Katy's UPDATE statement also attempts to take out an update lock 
on the row, but update locks are not compatible so she will be forced to wait. Mike's 
UPDATE statement, finding that the row meets the criteria in its WHERE clause, attempts to 
take out an exclusive lock on the row. Since Katy does not have any locks on the row, Mike's 
UPDATE statement successfully acquires the exclusive lock and completes. Mike now 
commits his transaction and releases his locks. Katy's UPDATE statement, which has been 
waiting, can now proceed. This is shown in Figure 6.11. 



 
Figure 6.11: A deadlock avoided by using update locks  

Clearly, this is a cleaner mechanism. No transactions are deadlock victims, which means no 
transactions are cancelled and rolled back. Transactions that are rolled back have their work 
effectively thrown away. Using update locks, Katy's UPDATE statement merely suffers a 
short delay. 

6.3.6 Intent locks 

As well as placing shared and exclusive locks on database tables, SQL Server also makes use 
of a type of lock known as an intent lock. Intent locks are placed on the table and pages in the 
table when a user locks rows in the table, and they stay in place for the life of the row locks. 
These locks are used primarily to ensure that a user cannot take out locks on a table or pages 
in the table that would conflict with another user's row locks. For example, if a user was 
holding an exclusive row lock and another user wished to take out an exclusive table lock on 
the table containing the row, the intent lock held on the table by the first user would ensure 
that its row lock would not be overlooked by the lock manager.  

6.3.7 Modifying the default locking behavior 

There are two ways in which SQL Server's default locking behavior can be modified. 
Individual SQL statements can be qualified with a keyword known as a lock hint to modify 
the locking behavior for that particular statement, or a default locking behavior for the 
connection can be set with the SET TRANSACTION ISOLATION LEVEL statement. 

Transaction isolation levels 

SQL Server allows the transaction isolation level to be set for a connection. This sets a default 
locking behavior. 

Levels of transaction isolation are specified by the ANSI standard, with each one defining the 
type of phenomenon not permitted while concurrent transactions are running. The higher the 
isolation level, the more stringent the locking protocol-with the higher levels being a superset 
of the lower levels. The transaction isolation levels are as follows: 

• Read uncommitted 
• Read committed 
• Repeatable read 



• Serializable 

The locking behavior that corresponds with read uncommitted provides the least integrity but 
potentially the best performance. The read committed isolation level provides more integrity 
than read uncommitted, and the repeatable read isolation level provides even more integrity. 
The greatest integrity is provided by the serializable isolation level. We have already met dirty 
reads and the phantom phenomena. Table 6.2 shows whether the dirty read and the phantom 
phenomena are allowed by the various isolation levels. 

Table 6.2: Isolation Levels and Allowed Locking Phenomena  
Isolation Level  Dirty Reads Nonrepeatable Reads Allowed Phantoms Allowed 
Serializable No No No 
Repeatable Read No No Yes 
Read Committed No Yes Yes 
Read Uncommitted Yes Yes Yes 

It can be seen that only the serializable isolation level prevents all these phenomena from 
occurring. 

By default, SQL Server runs at transaction isolation level read committed. 

The transaction isolation level is set for the connection with the following syntax: 

   SET TRANSACTION ISOLATION LEVEL READ UNCOMMITTED 
 
   SET TRANSACTION ISOLATION LEVEL READ COMMITTED 
 
   SET TRANSACTION ISOLATION LEVEL REPEATABLE READ 
 
   SET TRANSACTION ISOLATION LEVEL SERIALIZABLE 

The DBCC utility with the USEROPTIONS parameter can be used to check the current 
isolation level of the connection, as follows: 

   DBCC USEROPTIONS 

•    

Set Option  Value  
textsize  64,512  
language  us_english  
dateformat  mdy  
datefirst  7  
quoted_identifier  SET  
arithabort  SET  
ansi_null_dflt_on  SET  
ansi_defaults  SET  



Set Option  Value  
ansi_warnings  SET  
ansi_padding  SET  
ansi_nulls  SET  
concat_null_yields_null SET  
isolation level  repeatable read

We will study how transaction isolation levels modify locking behavior between users later in 
this chapter.  

Lock hints 

The keywords available as lock hints for modifying locking behavior are as follows: 

• HOLDLOCK 
• NOLOCK 
• PAGLOCK 
• READCOMMITTED 
• READPAST 
• READUNCOMMITTED 
• REPEATABLEREAD 
• ROWLOCK 
• SERIALIZABLE 
• TABLOCK 
• TABLOCKX 
• UPDLOCK 
• XLOCK 

Some of these hints are supported for backward compatibility such as: 

• HOLDLOCK 
• NOLOCK 

The recommended hints to use instead are as follows: 

• SERIALIZABLE 
• READUNCOMMITTED 

Some hints enable the developer to specify the lock granularity, such as: 

• PAGLOCK 
• ROWLOCK 
• TABLOCK 
• TABLOCKX 

Other hints enable the developer to specify the transaction isolation level behavior at the 
statement level, such as: 

• READUNCOMMITTED 



• READCOMMITTED 
• REPEATABLEREAD 
• SERIALIZABLE 

Lock hints are used, for example, on a SELECT statement, as follows: 

   SELECT * FROM branches WITH (SERIALIZABLE) 
 
   SELECT balance FROM accounts WITH (READUNCOMMITTED) 
      WHERE account_no = 1000 

The effect of these lock hints is described in the following text. 

HOLDLOCK 

The HOLDLOCK hint forces a shared lock on a table to remain until the transaction 
completes. Key range locking will also be used to prevent phantom inserts. Nonrepeatable 
reads are also prevented This is equivalent to the SERIALIZABLE hint. Data consistency will 
be provided to the level experienced by transactions running at transaction isolation level 
SERIALIZABLE. 

Using the HOLDLOCK keyword may, and usually will, degrade performance, since lock 
contention may increase. 

NOLOCK 

The NOLOCK hint allows a dirty read to take place-that is, a transaction can read the 
uncommitted changes made by another transaction. The exclusive locks of other transactions 
are not honoured, and the statement using this hint will not take out shared locks. This is 
equivalent to the READUNCOMMITTED hint. Data consistency will be provided to the level 
experienced by transactions running at transaction isolation level READ UNCOMMITTED. 

Using the NOLOCK keyword may increase performance, since lock contention may decrease, 
but this will be at the risk of lower consistency. 

PAGLOCK 

The PAGLOCK hint forces shared page locks to be taken where otherwise SQL Server may 
have used a table or row lock. For example, consider the following statement: 

   SELECT balance FROM accounts WITH (REPEATABLEREAD, 
   PAGLOCK) 

If there is no appropriate index, the query optimizer will choose a table scan as the strategy 
used to execute the query. Depending on the number of rows that may be locked, the lock 
manager will take out row locks or perhaps a table lock because the REPEATABLE READ 
lock hint will force the shared row locks to be held until the end of the transaction, and 
therefore a single table lock is far more efficient. The PAGLOCK hint will ensure that the 
lock manager will use page locking instead of table locking or row locking. This hint does not 
only apply to shared locks. Exclusive page locks will also be forced if, say, an UPDATE 
statement rather than a SELECT statement was using the hint. 



READCOMMITTED 

The READCOMMITTED hint ensures that the statement behaves in the same way as if the 
connection were set to transaction isolation level READ COMMITTED. This is the default 
behavior for SQL Server. Shared locks will be used when data is read, which prevents dirty 
reads, but the shared locks are released at the end of the read and are not kept until the end of 
the transaction. This means that nonrepeatable reads or phantom inserts are not prevented. 

READPAST 

This lock hint enables a statement to skip rows that are locked by other statements. The 
READPAST lock hint applies only to transactions operating at READ COMMITTED 
isolation level and will read only past row-level locks. This is only valid on a SELECT 
statement. This is useful when, for example, multiple transactions are reading items from a 
queue implemented as a table and a transaction wants to skip a locked queue item and read 
another item to process. 

READUNCOMMITTED 

This lock hint is equivalent to the NOLOCK lock hint. 

REPEATABLEREAD 

The REPEATABLEREAD hint ensures that the statement behaves in the same way as if the 
connection were set to transaction isolation level REPEATABLE READ. This is not the 
default behavior for SQL Server. Shared locks will be used when data is read, and these will 
not be released until the end of the transaction. This means that nonrepeatable reads are 
prevented. However, phantom inserts are not prevented. This lock hint may reduce 
concurrency, since shared locks are held for longer periods of time than if the default read 
committed behavior is used.  

ROWLOCK 

This hint forces the use of rowlocks and is similar in use to PAGLOCK. 

SERIALIZABLE 

The SERIALIZABLE hint forces shared locks to stay until the transaction completes. This is 
equivalent to specifying the HOLDLOCK hint. Key range locking will be used to prevent 
phantom inserts if indexes are present. Nonrepeatable reads are also prevented. Data 
consistency will be provided to the level experienced by transactions running at transaction 
isolation level SERIALIZABLE. 

Using the SERIALIZABLE keyword may, and usually will, degrade performance, since lock 
contention may increase. 

TABLOCK 

The TABLOCK hint forces a shared table lock to be taken where otherwise SQL Server may 
have used row locks. It will not be held until the end of the transaction unless hints such as 
REPEATABLEREAD are also used. 



TABLOCKX 

The TABLOCKX hint forces an exclusive table lock to be taken. It will be held until the end 
of the transaction 

UPDLOCK 

The UPDLOCK hint forces SQL Server to take update locks where otherwise SQL Server 
would have used shared locks. The update locks are held until the end of the transaction. 
Update locks are compatible with shared locks but not exclusive locks or other update locks. 

XLOCK 

This hints forces exclusive locks to be taken out. It is typically used with TABLOCK and 
PAGLOCK. 

6.3.8 Locking in system tables 

Transact-SQL statements such as CREATE TABLE manipulate system tables. For example, 
when a table is created, rows are inserted into the sysobjects, sysindexes, and syscolumns 
system tables. Data definition language (DDL) statements can appear in explicit transactions, 
and, therefore, any locks taken out as a result of actions to the system tables can be held for a 
period of time-blocking other users if the developer is not careful. Here are some examples of 
DDL statements that can appear in an explicit transaction. 

•    

ALTER TABLE DROP PROCEDURE
CREATE DEFAULT DROP RULE 
CREATE INDEX DROP TABLE 
CREATE PROCEDURE DROP TRIGGER 
CREATE RULE DROP VIEW 
CREATE TABLE GRANT 
CREATE TRIGGER REVOKE 
CREATE VIEW SELECT INTO 
DROP DEFAULT TRUNCATE TABLE
DROP INDEX   

As an example of this behavior, suppose a table is created in an explicit transaction. SQL 
Server takes out exclusive locks in the sysobjects, sysindexes, and syscolumns system tables. 
These locks are key locks, since each of these system tables has a clustered index present. If 
the transaction does not complete, a query issued in another connection against these system 
tables will be blocked. For example, a CREATE TABLE statement issued within an explicit 
transaction will block an sp_help issued on another connection. It is important, therefore, that 
these transactions are committed quickly. 

Note that Sch-M locks are taken when a table data definition language (DDL) operation is 
being executed. This is incompatible with all other lock types. 



6.3.9 Monitoring locks 

Finally, we need to introduce the means by which we can observe SQL Server lock 
management in action, and then we can look at some examples of the SQL Server locking 
protocol. There are a number of ways to find information about the locking that is happening 
within SQL Server. These include the following: 

• Use the sp_lock system stored procedure. 
• Use the SQL Enterprise Manager. 
• Use the Performance Monitor. 
• Interrogate the system table syslockinfo directly. 
• Use the SQL Profiler. 

Additionally, the sp_who system stored procedure is useful in finding blocked and blocking 
processes, and the DBCC utility can be used to set trace flags to record lock and deadlock 
information. 

Using the sp_lock system stored procedure 

The sp_lock system stored procedure displays information about the locks held by processes 
using the server. It can be entered as a standalone statement, in which case it will display all 
locks managed by the server, or it can take up to two SQL Server process identifiers (SPIDs) 
as a parameter. Some example output from the sp_lock system stored procedure is as follows: 

EXEC sp_lock 
 
spid   dbid   ObjId      IndId   Type   Resource      Mode   Status 
----   ----   -----      -----   ----   --------      ----   ------ 
51     7      0           0      DB                    S     GRANT 
51     7      965578478   2      PAG    1:113         IS     GRANT 
51     7      965578478   2      KEY    (4501518d90d1) S     GRANT 
51     7      965578478   0      RID    1:348:14       S     GRANT 
51     7      965578478   0      PAG    1:348         IS     GRANT 
51     7      965578478   0      TAB                  IS     GRANT 
52     7      965578478   0      TAB                  IX     GRANT 
52     7      965578478   0      PAG    1:348         IX     GRANT 
52     7      965578478   0      RID    1:348:14       X     CNVT 
52     7      965578478   0      RID    1:348:14       U     GRANT 
52     7      965578478   2      KEY    (4501518d90d1) U     GRANT 
52     7      965578478   2      PAG    1:113         IU     GRANT 
52     7      0           0      DB                    S     GRANT 
 Hint:  To translate the ObjId to a table name, use the built-in system function 

OBJECT_NAME. For example: 

SELECT OBJECT_NAME (965578478) 
-------- 
accounts 

The above output from sp_lock shows a number of locks held on various objects. Let us 
discuss the meaning of the columns in the output before we investigate the rows. 

The first column contains the SPID value. A client connection to SQL Server is allocated an 
SPID value, and each row in the output represents a lock requested by the SPID that has not 
been released at the time sp_lock was executed. A typical server will be managing many locks 



at a given instance in time, so it is often more practical to limit the output to a particular SPID 
or pair of SPIDs by supplying these values as parameters. 

The next five columns, dbid, ObjId, IndId, Type, and Resource, help to define the resource 
that is locked. We know already that SQL Server locks objects such as rows and tables, and 
these columns let us know what type of resource is locked as well as which instance of this 
resource type. The dbid column contains the database ID, the ObjId column contains the 
object ID, and the IndId contains the index ID. This column can contain the values 0, to 
represent the table itself; 1, the clustered index, if one is present; > 1 for a nonclustered index; 
and 255 for TEXT/IMAGE data. The Type column tells us the type of resource locked, such 
as a row or page, and, finally, the Resource column provides information to completely 
identify the resource instance. Whether these columns contain data depends on the type of 
resource being locked. For example, in the case of a database, the Resource column is empty. 

The Mode column tells us whether we have a shared lock or exclusive lock or one of a myriad 
of other modes of lock on our resource. Finally, the Status column shows us whether the lock 
has been granted (GRANT), is waiting to be granted (WAIT), or is waiting to be converted to 
another mode (CNVT). When investigating lock problems, I often hunt first for locks that 
have not been granted. They normally relate to the blocked user and represent a small number 
of locks on the system. Let us now look at the connections in our example. 

All the connections-that is, SPIDs-have been granted a shared lock on the database with ID 
value 7. 

   51   7   0     0   DB         S   GRANT 
   52   7   0     0   DB         S   GRANT 

An easy way to translate the dbid to a database name is to execute the system stored 
procedure sp_helpdb, which returns this information in its display. Alternatively, use the 
function DB_NAME(). The reason the connections have been granted a shared lock is that 
any connection that has selected a database with a USE statement explicitly or implicitly via 
the drop-down list in the query analyzer is granted such a lock. This is used to manage such 
operations as a connection attempting to set the database to single-user mode.  

Let us investigate the locks held by SPID 51. Apart from the database lock, it has requested 
and been granted shared (S) locks on two resources: a KEY and a RID. 

   51    7   965578478   2   KEY   (4501518d90d1) S   GRANT 
   51    7   965578478   0   RID   1:348:14       S   GRANT 

A RID is a row lock on a data row on a data page. A KEY lock is a row lock on an index 
entry (key plus pointer) on an index page. 

 Note Conventionally, the data pages in a table with a clustered index are considered to be part 
of the clustered index. For that reason a row lock on a data row on a data page in such a 
table is considered to be a KEY lock, not a RID lock. 

If we take the row lock first, we can see that the resource information shows us that we have a 
dbid value of 7, which represents the database BankingDB, and an ObjId value of 965578478, 
which, when translated with the OBJECT_NAME function, represents the table, Accounts, in 
this database. The IndId column contains a value of 0, which represents the table rather than 



an index on the table. The Resource column value is 1:348:14, which specifies that the 
resource in the table is identified as file ID 1, page 348, slot 14. This uniquely identifies a row 
on the page. The file ID must be present, since page numbers are only unique with a database 
file. 

 Hint:  To convert a file ID to a filename, use the FILE_NAME() function.

If we look at the KEY lock, we can see the same values in the dbid and ObjId columns, but 
there is a value of 2 in the IndId column. 

The following Transact-SQL will translate this index ID to an index name. 

   SELECT name FROM SYSINDEXES 
      WHERE 
      id = OBJECT_ID('Accounts') AND 
      indid = 2 

Of course, since we already know the object ID value, we could have just used this instead of 
translating the object name.  

So we now know the index in which our KEY lock is held. The Resource column value is 
(4501518d90d1). This is of little use to us, since it is a hexadecimal number, which is the 
result of some hash function used internally, presumably used on the key value and other 
inputs. 

The other locks held by SPID 51 are intent locks. 

   51   7   965578478   2   PAG   1:113       IS   GRANT 
   51   7   965578478   0   PAG   1:348       IS   GRANT 
   51   7   965578478   0   TAB               IS   GRANT 

We discussed intent locks earlier in the chapter. We stated that intent locks are placed on the 
table and pages in the table when a user locks rows in the table, and they stay in place for the 
life of the row locks. We can see that a shared intent (IS) lock has been taken out on page 
1:348 and page 1:113. This is expected behavior, since we have a row lock held in data page 
1:348. Page 1:113 will be the index page containing the locked index entry. Both of these 
pages are subordinate to the table, and so we see an intent lock on the table. These intent locks 
will prevent, for example, another connection from taking out an exclusive (X) lock on the 
table while our connection has shared (S) locks on rows in the table. 

Those were the locks held by SPID 51. Let us now investigate the locks held by SPID 52. 
They are repeated here for clarity. 

   52   7   965578478   0   TAB                 IX   GRANT 
   52   7   965578478   0   PAG   1:348         IX   GRANT 
   52   7   965578478   0   RID   1:348:14       X   CNVT 
   52   7   965578478   0   RID   1:348:14       U   GRANT 
   52   7   965578478   2   KEY   (4501518d90d1) U   GRANT 
   52   7   965578478   2   PAG   1:113         IU   GRANT 
   52   7   0           0   DB                   S   GRANT 

We can see that SPID 52 has been granted two update (U) locks. These are compatible with 
shared (S) locks, as we described earlier in the chapter, and are used in UPDATE and 



DELETE statements during the search phase, when target rows are being identified. In fact, 
SPID 52 has issued an UPDATE statement, which is attempting to change a row on which 
SPID 51 has shared (S) locks. Both update (U) locks have been granted, and the columns in 
the display contain values that are the same as the shared (S) locks on the KEY and RID for 
SPID 51. However, we can see that SPID 52 also has a lock that has not been granted. 

   52   7   965578478   0   RID   1:348:14     X   CNVT 

The lock manager has attempted to convert an update (U) lock to an exclusive (X) lock in 
order to change the row. It cannot do this, since SPID 51 has a shared (S) lock on this row and 
we know that these locks are incompatible. For this reason the lock is now waiting to be 
converted, at which point it will have a status of GRANT. If the blocked lock were a new lock 
that the connection had tried to acquire, rather than the conversion of an existing lock, we 
would have seen a status of WAIT. 

The intent locks behave in a fashion similar to those for SPID 51. 

   52   7   965578478   0   TAB               IX   GRANT 
   52   7   965578478   0   PAG   1:348       IX   GRANT 
   52   7   965578478   2   PAG   1:113       IU   GRANT 

Exclusive intent (IX) locks have been granted on the data page and table, since these are 
compatible with the shared intent (IS) locks of SPID 51. An update intent (IU) lock has also 
been granted on the index page, since an update lock (U) has been granted on the index entry. 
The lock manager is not going to take out an exclusive (X) lock on the index entry, since the 
index column was not being updated. 

Using the SQL Server Enterprise Manager 

The SQL Server Enterprise Manager allows the database administrator to monitor current 
locking activity in a graphical manner. The server should be expanded and the Management 
folder followed by Current Activity. The console tree is shown in Figure 6.12. 



 
Figure 6.12: The Current Activity folder  

If we expand Process Info and hide the console tree, we find the display shown in Figure 6.13. 

 
Figure 6.13: The Process Info folder  

SQL Server Enterprise Manager allows us to move columns and sort by a particular column. I 
have moved the columns in the display and sorted by the Database column to make the 
display more useful. We now see the display shown in Figure 6.14. 



 
Figure 6.14: The Process Info folder after customizing  

The display is mainly formed from the information obtained by executing the system stored 
procedures sp_lock and sp_who (described later). 

Notice that we can easily see the blocking and blocked SPID and the resource involved. 

This blocking can often be seen more clearly if the Locks/Process ID folder is expanded, as 
shown in Figure 6.15. 

 
Figure 6.15: The Locks/Process ID folder  

We can clearly see the blocked connection and the blocker. By selecting the blocked 
connection in the console tree, we can find information about the locks involved. 

The Locks/Object folder displays lock information for a particular object. This is shown in 
Figure 6.16. 



 
Figure 6.16: The Locks/Object Folder  

The Accounts table object in the console tree has been selected, and the locks pertaining to 
this object are displayed. 

Note that for any of the three Current Activity folders an item in the detail pane can be 
double-clicked to display more information about the connection. This is shown in Figure 
6.17. 

 
Figure 6.17: The Process Details window  

As can be seen, the last Transact-SQL statement executed is displayed. This window also 
allows the database administrator to terminate a connection (Kill Process) or send a message 
to the user. 

Using the System Monitor 

The System Monitor is a Windows 2000 utility that enables system managers and database 
administrators to monitor the many objects within a Windows 2000 system. There are many 
counters that can be monitored for many objects, but here we are interested in those counters 
specific to the SQL Server:Locks object. These counters are shown in Table 6.3. 

Table 6.3: Counters Monitored for the SQL Server Lock Object  
SQL Server: Locks 
Object Counters  Explanation  
Average Wait Time (ms) Average amount of wait time (in milliseconds) for each lock 

request that resulted in a wait 
Lock Requests/sec Number of new locks and lock conversions per second requested 



Table 6.3: Counters Monitored for the SQL Server Lock Object  
SQL Server: Locks 
Object Counters  Explanation  

from the lock manager 
Lock Timeouts/sec Number of lock requests per second that timed out, including 

internal requests for NOWAIT locks 
Lock Wait Time (ms) Total wait time (in milliseconds) for locks in the last second 
Lock Waits/sec Number of lock requests per second that could not be satisfied 

immediately and required the caller to wait before being granted 
the lock 

Number of 
Deadlocks/sec 

Number of lock requests per second that resulted in a deadlock 

The counters shown in Table 6.3 are for a particular instance of locked object. The instances 
that can be monitored are as follows: 

• RID 
• Key 
• Page 
• Extent 
• Table 
• Database 
• Total 

This allows us to monitor counters for a particular type of lock or for all locks (Total). 

 Note The System Monitor differentiates between SQL Server 2000 instances. An instance 
named PEGASUS\SQL2000_A running on server PEGASUS will have a locks object 
named MSSQL$SQL2000_A:Locks. The System Monitor is described in Chapter 7. 

Interrogating the SYSLOCKINFO Table 

The syslockinfo system table can be interrogated in the same way that any other system table 
can be interrogated. It is only found in the master database, where it holds information 
concerning the locks held in SQL Server. Unlike most other system tables, it is materialized 
when a query is executed that accesses it; otherwise, it does not exist physically. A query 
issued against the syslockinfo table produces the following output: 

SELECT rsc_text, rsc_dbid, rsc_indid, rsc_objid, rsc_type, req_mode, 
req_status, 
req_spid 
   FROM syslockinfo 
 
rsc_text rsc_dbid rsc_indid    rsc_objid   rsc_type req_mode req_status 
req_spid 
               7    0          0           2        3        1          52 
               7    0          0           2        3        1          51 
1:113          7    2          965578478   6        7        1          52 
1:113          7    2          965578478   6        6        1          51 
(4501518d90d1) 7    2          965578478   7        4        1          52 



(4501518d90d1) 7    2          965578478   7        3        1          51 
1:348:14       7    0          965578478   9        4        1          52 
   : 
   : 

Not all the columns from syslockinfo have been displayed, since some are a binary 
representation of the ones shown and some are for Microsoft internal use. The displayed 
columns have the definitions shown in Table 6.4. 

Table 6.4: Column Definitions for the syslockinfo System Table
Column  Definition  
rsc_text  Textual description of a lock resource 
rsc_dbid  The database ID of the resource 
rsc_indid  The index ID of the resource if an index 
rsc_objid  The object ID of the resource if an object 
rsc_type  The type of resource-e.g., page 
req_mode  The mode of the lock-e.g., shared(S) 
req_status  The status of the lock-e.g., granted 
req_spid  The SPID owning the lock 

Examples of common values for rsc_type are shown in Table 6.5. 

Table 6.5: Values for the rsc_type Column in syslockinfo
Value  Type  
1 NULL Resource 
2 Database 
3 File 
4 Index 
5 Table 
6 Page 
7 Key 
8 Extent 
9 RID 

Apart from the locks we have already discussed, there are several other types of locks. File 
locks tend to be acquired when a file is being added to a database, or a file is being shrunk, or 
similar file-related activities. Extent locks are used by SQL Server to internally manage the 
allocation and deal-location of extents. Extents, as discussed in Chapter 2, are of type mixed 
and uniform and are 64 KB (eight pages) in size. These locks can often be seen while you are 
inserting rows into a table. Index locks can be seen when an index is being created on a table. 

The column req_mode represents the mode of the lock requested. We have discussed most of 
the common ones. There are, however, a number of more obscure modes, and we will list 



these here for completeness. Numbers greater than 12 are used for key range locks, discussed 
later. The req_mode values are listed in Table 6.6. 

Table 6.6: Values for the req_mode Column in syslockinfo
Value  Lock Mode Code  Lock Mode Name  
0 NULL Used as a placeholder only 
1 Sch-S Schema stability 
2 Sch-M Schema modification 
3 S Shared 
4 U Update 
5 X Exclusive 
6 IS Intent Shared 
7 IU Intent Update 
8 IX Intent Exclusive 
9 SIU Shared Intent Update 
10 SIX Shared Intent Exclusive 
11 UIX Update Intent Exclusive 
12 BU Bulk 

The schema stability locks are used to control access to schema objects such as tables to avoid 
problems where multiple connections are referencing an object that a connection wishes to 
modify or drop. The SIX, SIU, and UIX locks are special kinds of intent locks. The bulk lock 
is used when bulk loads are being performed into a table-for example, when the data 
transformation services BULK INSERT task is used to load data into a table and the option 
Table Lock has been set on the task. There are also some other lock modes used for 
serializable transactions, which we will discuss later. 

Finally, the req_status column contains just three values, as shown in Table 6.7. 

Table 6.7: Values for the req_status Column in syslockinfo
Value  Status  
1 Granted 
2 Converting 
3 Waiting 

Using the system procedure sp_who 

The system procedure sp_who can be used to obtain information on the processes active 
within SQL Server. It can be entered as a standalone statement, in which case it will display 
information about all users and processes. It can take a SQL Server process identifier (spid) or 
alternatively a SQL Server login name as a parameter. Also, the parameter value ACTIVE can 
be used, which eliminates user connections that are waiting for input from the user-that is, 



with AWAITING COMMAND in the cmd column. Some example output from the sp_who 
system stored procedure is as follows: 

SPID  ecid  status      loginame   hostname   blk   dbname      cmd 
----  ----  ------      -------    --------   ---   ------      --- 
1     0     background  sa                    0     NULL        LAZY WRITER 
2     0     sleeping    sa                    0     NULL        LOG WRITER 
3     0     background  sa                    0     master      SIGNAL 
HANDLER 
4     0     background  sa                    0     NULL        LOCK 
MONITOR 
5     0     background  sa                    0     master      TASK 
MANAGER 
6     0     sleeping    sa                    0     NULL        CHECKPOINT 
SLEEP 
7     0     background  sa                    0     master      TASK 
MANAGER 
8     0     background  sa                    0     master      TASK 
MANAGER 
9     0     background  sa                    0     master      TASK 
MANAGER 
10    0     background  sa                    0     master      TASK 
MANAGER 
51    0     runnable    sa         PEGASUS    0     master      SELECT 
52    0     sleeping    dave       PEGASUS    0     BankingDB   AWAITING 
COMMAND 
53    0     sleeping    sue        PEGASUS    52    BankingDB   UPDATE 
54    0     sleeping    tony       PEGASUS    0     BankingDB   AWAITING 
COMMAND 

Note that the process with SPID 53 has a value of 52 in the blk column, whereas other 
processes have 0. This is because the process with SPID 53 is being blocked by another user-
in fact, the user with SPID 52. 

 Note Microsoft also ships a stored procedure, called sp_who2. This outputs more information 
and in a slightly more readable form than sp_who. 

The SQL Server Profiler 

The SQL Server Profiler will be discussed in detail in Chapter 7. However, we need to 
mention it here, since it has capabilities that help us investigate lock problems. The SQL 
Server Profiler allows us to trace events graphically into a table and/or into a file. If the events 
are captured into a file or table, they can be analyzed later. 

The Locks Event Category contains a number of Locks Event Classes, and these are shown in 
Table 6.8. 

Table 6.8: Lock Event Classes in the SQL Server Profiler  
Event Class  Description  
Lock:Acquired A lock has been taken out on a row, page, etc. 
Lock:Cancel A held lock has been cancelled-e.g., by a deadlock. 
Lock:Deadlock A deadlock has occurred. 
Lock:Deadlock Chain The events preceding a deadlock. 



Table 6.8: Lock Event Classes in the SQL Server Profiler  
Event Class  Description  
Lock:Escalation Lock escalation has occurred-e.g., a row escalated to a table. 
Lock:Released A lock has been taken off on a row, page, etc. 
Lock:Timeout A lock has timed out. 

When an event is traced, the SQL Server Profiler captures various pieces of information about 
the event. These pieces of information are specified as Data Columns in the trace definition. 
Many data columns always contain the same information, regardless of the event class being 
traced. For example, the CPU column is the amount of CPU in milliseconds used by the 
event. However, some data columns contain values that are specific to a particular event class. 
For the Lock Event Class there are some very useful data columns. 

Generally, the Binary Data column contains the resource ID for a lock event class and the 
Object ID contains the ID of the object participating in the lock. Duration tends to represent 
wait time and the Mode represents the lock mode. 

With a little practice some elements of the resource ID can be recognized and decoded as the 
lock type. If the SQL Server Profiler is being used interactively, this is done for you. Selecting 
the lock event with the mouse pointer will display the lock type. 

Using Trace Flags with DBCC 

The SQL Server documentation states that trace flag behavior may or may not be supported in 
future releases. It is worth mentioning this here, though, since trace flags can be used to 
provide some lock trace information. The database consistency checker, more usually referred 
to as DBCC, can be used to set trace flags, or they can be set if SQL Server is started at the 
command line or via the Startup Parameters in the General tab of Server Properties in the 
SQL Server Enterprise Manager. Trace information can be sent to destinations such as the 
errorlog (using trace flag 3605) or the client (using trace flag 3604). Locking information can 
be generated by setting the trace flags to 1200 or, for deadlock information, 1204 and 1205. 
An example trace output is as follows: 

Trace Flag 1204 

DBCC TRACEON (3604,1200) 
 
SELECT SUM(balance) FROM accounts 
 
Process 51 acquiring S lock on KEY: 7:1:2 (9c0206b5c98d) (class bit0 ref1) 
result: OK 
Process 51 acquiring S lock on KEY: 7:1:1 (ee006c4e98d2) (class bit0 ref1) 
result: OK 
Process 51 acquiring Schema lock on TAB: 7:965578478 [] (class bit0 ref1) 
result: OK 
Process 51 acquiring S lock on KEY: 7:3:2 (9302d58cf78b) (class bit0 ref1) 
result: OK 
 
: 
Process 51 acquiring S lock on PAG: 7:1:41 (class bit0 ref1) result: OK 
Process 51 releasing lock on PAG: 7:1:41 
Process 51 acquiring S lock on PAG: 7:1:42 (class bit0 ref1) result: OK 



Process 51 releasing lock on PAG: 7:1:42 
Process 51 acquiring S lock on PAG: 7:1:50 (class bit0 ref1) result: OK 
Process 51 releasing lock on PAG: 7:1:50 
Process 51 acquiring S lock on PAG: 7:1:91 (class bit0 ref1) result: OK 
Process 51 releasing lock on PAG: 7:1:91 
Process 51 acquiring S lock on PAG: 7:1:160 (class bit0 ref1) result: OK 
Process 51 releasing lock on PAG: 7:1:160 
: 
Process 51 releasing lock on TAB: 7:965578478 [] 

The output can be somewhat cryptic, but with a little effort a database administrator can 
follow what is happening. In this example, SPID 51 is performing a table scan and, after some 
initial reading of the system tables, is sequentially reading pages. When it wants to read a 
page, it requests and acquires a page lock; when it has read a page, it releases the page lock. 
Note that page locks refer to page numbers, whereas table locks (we will have taken out an 
intent table lock) refer to the object ID of the table. As we have seen, the OBJECT_NAME() 
function can be used to find the table name, as follows: 

   SELECT OBJECT_NAME (965578478) 
   ------------------------------ 
   accounts 

Whether tables or pages are being referenced, the number preceding the object ID or page 
number is the database ID. The DB_NAME() function can be used to find the database name, 
as follows: 

   SELECT DB_NAME(7) 
   ----------------- 
   BankingDB 

To find which object a page belongs, use the DBCC PAGE statement, as follows: 

DBCC TRACEON (3604) 
DBCC PAGE (7,1,50,0) 
 
 
PAGE: (1:50) 
------------ 
 
BUFFER: 
------- 
 
BUF @0x10EB7FC0 
--------------- 
bpage = 0x1BA2E000     bhash = 0x00000000      bpageno = (1:50) 
bdbid = 7              breferences = 1         bstat = 0x9 
bspin = 0              bnext = 0x00000000 
 
PAGE HEADER: 
------------ 
 
Page @0x1BA2E000 
---------------- 
m_pageId = (1:50)      m_headerVersion = 1     m_type = 1 
m_typeFlagBits = 0x0   m_level = 0             m_flagBits = 0x8000 
m_objId = 965578478    m_indexId = 0           m_prevPage = (0:0) 
m_nextPage = (0:0)     pminlen = 424           m_slotCnt = 16 



m_freeCnt = 1232       m_freeData = 6928       m_reservedCnt = 0 
m_lsn = (1274:16:151)  m_xactReserved = 0      m_xdesId = (0:0) 
m_ghostRecCnt = 0      m_tornBits = 805306369 
 
Allocation Status 
----------------- 
GAM (1:2) = ALLOCATED     SGAM (1:3) = NOT ALLOCATED 
PFS (1:1) = 0x63 MIXED_EXT ALLOCATED  95_PCT_FULL   DIFF (1:6) = CHANGED 
ML (1:7) = NOT MIN_LOGGED 

The field containing the object ID is in bold type. Note also that to the right of that field is the 
index ID of the index to which the page belongs, if it is an index page.  

The DBCC PAGE statement is specifying, in order, the database ID of 7, the file ID of 1, the 
page number 50, and 0 to indicate that we only need to see the header, not the data. 

Trace Flag 1204 

This trace flag returns the type of locks participating in a deadlock and the current commands 
involved. I usually set this trace flag with trace flag 3605 (log to errorlog) via the Startup 
Parameters in the General tab of Server Properties in the SQL Server Enterprise Manager. 
Here is some example output when a deadlock occurred. 

10:39:49.10 spid4     Deadlock encountered .... Printing deadlock 
information 
10:39:49.10 spid4 
10:39:49.10 spid4     Wait-for graph 
10:39:49.10 spid4 
10:39:49.10 spid4     Node:1 
10:39:49.10 spid4     RID: 7:1:537:14                CleanCnt:1 Mode: X 
Flags: 0x2 
10:39:49.10 spid4      Grant List:: 
10:39:49.10 spid4       Owner:0x1b69f380 Mode: X Flg:0x0 Ref:0 
Life:02000000 SPID:55 
ECID:0 
10:39:49.10 spid4        SPID: 55 ECID: 0 Statement Type: UPDATE Line #: 1 
10:39:49.11 spid4        Input Buf: UPDATE CUSTOMERS SET customer_lname = 
'Phillips' 
                                    WHERE customer_no = 1000 
10:39:49.11 spid4      Requested By: 
10:39:49.11 spid4        ResType:LockOwner Stype:'OR' Mode: U SPID:53 
ECID:0 
EC:(0x1b9e13e0) 
                          Value:0x1b6a3300 Cost:(0/A0) 
10:39:49.11 spid4 
10:39:49.11 spid4     Node:2 
10:39:49.11 spid4     RID: 7:1:338:9                 CleanCnt:1 Mode: X 
Flags: 0x2 
10:39:49.11 spid4      Grant List:: 
10:39:49.11 spid4        Owner:0x1b69f2e0 Mode: X        Flg:0x0 Ref:0 
Life:02000000 
SPID:53 ECID:0 
10:39:49.11 spid4        SPID: 53 ECID: 0 Statement Type: UPDATE Line #: 1 
10:39:49.11 spid4        Input Buf: UPDATE ACCOUNTS SET balance = 99 
                                    WHERE account_no = 2000 
10:39:49.11 spid4      Requested By: 
10:39:49.11 spid4        ResType:LockOwner Stype:'OR' Mode: U SPID:55 
ECID:0 



Ec:(0x1c1cd3e0) 
                          Value:0x1b6a33c0 Cost:(0/98) 
10:39:49.11 spid4     Victim Resource Owner: 
10:39:49.11 spid4      ResType:LockOwner Stype:'OR' Mode: U SPID:55 ECID:0 
Ec:(0x1c1cd3e0) Value:0x1b6a33c0 Cost:(0/98) 

I have removed the data from the date/time to fit more information onto the page. We can see 
that a deadlock was encountered, and by examining the output we can see the following: 

• SPID 53 and SPID 55 are involved in a deadlock. 
• Resources involved are RID: 7:1:537:14 and RID: 7:1:338:9. 
• The last statements sent by the participating connections were: 
• 'UPDATE CUSTOMERS SET customer_lname = 'Phillips' 
•    WHERE customer_no = 1000 ' 
• 'UPDATE ACCOUNTS SET balance = 99 WHERE account_no = 
• 2000' 
• SPID 55 was chosen as the deadlock victim. 
• The locks involved were update (U) locks. 

Trace Flag 1205 

This trace flag returns more detailed information about the deadlock. You will need to set 
trace flag 1204 to get information out of trace flag 1205, but, to be honest, the extra 
information is probably only likely to be useful (and understandable) by Microsoft Support. 

6.4 SQL Server locking in action 
Now that we understand how SQL Server uses its locking protocol, we can look at some 
examples. Our examples will all follow the same format, that of the T graph. Some people 
believe it is called a T graph because it looks like a T; others believe it is because the vertical 
axis represents time! Whatever the reason, it is a useful method for representing the 
interaction of locks in a multiuser scenario. In order to keep the output as clear as possible, the 
actual results of the SELECT statements are not shown. 

Our examples will use the Accounts table in the BankingDB database. In these examples, all 
indexes have been removed from this table unless otherwise specified. Also, until we change 
it, the default locking protocol will be used-that is, transaction isolation level read committed. 

Mike                                                                       
Katy 
 
SELECT * FROM accounts                 SELECT * FROM accounts 
    WHERE account_no = 1000               WHERE account_no = 2000 
 
*** OK ***                             *** OK *** 

In the above example, Mike retrieves all the rows in the Accounts table. Katy attempts to 
concurrently retrieve all the rows in the Accounts table and is successful. This is because 
Mike places and releases shared locks on the rows in the Accounts table as he scans through 
it. Katy also attempts to place shared locks on the rows in the Accounts table, and, since 
shared locks are compatible, her attempt is successful.  



In the following example, Mike updates all the rows in the Accounts table. He performs this 
operation within a transaction, which he does not end. Katy attempts to retrieve rows from the 
Accounts table. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 0 
    WHERE account_no = 1000 
 
                                  SELECT * FROM accounts 
                                      WHERE account_no = 2000 
 
*** OK *** 
 
                                  *** wait *** 

In this example, Mike is updating a row in the Accounts table, and so SQL Server takes out an 
exclusive (X) row lock. Katy's SELECT statement needs to search the table looking for rows 
that match her criteria (account_no = 2000). SQL Server decides that it is efficient to search 
using page locks. This is not unreasonable, since it knows it will be retrieving every row on 
every page. This is because, with no indexes present, a table scan is performed, and every 
page must be retrieved from the Accounts table. 

As Katy scans through the table acquiring and releasing shared (S) page locks, she reaches the 
page on which Mike as taken an exclusive (X) lock on his row. As SQL Server will have also 
placed an Exclusive Intent (IX) lock on the page in which his row resides, Katy's shared (S) 
page lock will be blocked. A shared (S) lock is not compatible with an exclusive intent (IX) 
lock. 

This example serves to illustrate a very important point: Transactions should be kept as short 
as possible. If they are not, then they could block another transaction for an unacceptable 
length of time. 

If we were to issue an sp_lock at this point, we would see the following fragment of output 
relating to Mike and Katy's connections. 

SPID   dbid   ObjId      IndId   Type   Resource   Mode   Status 
----   ----   -----      -----   ----   --------   ----   ------ 
53     7      965578478  0       TAB               IS     GRANT 
53     7      965578478  0       PAG    1:348      S      WAIT 
54     7      965578478  0       RID    1:348:14   X      GRANT 
54     7      965578478  0       PAG    1:348      IX     GRANT 
54     7      965578478  0       TAB               IX     GRANT 

Her shared lock is blocked on the page. An sp_who issued at this point would show the 
following columns (with some deleted). 

SPID   status    loginame   hostname        blk     dbname 
----   ------    --------   --------        ---     ------ 
54     sleeping  mike       PEGASUS         0       BankingDB 
53     sleeping  katy       PEGASUS         54      BankingDB 



In the following example, Mike again updates all the rows in the Accounts table. Again, he 
performs this operation within a transaction, which he does not end. This time Katy attempts 
to delete the rows in the Accounts table. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 0   BEGIN TRANSACTION 
    WHERE account_no = 1000 
 
                                  DELETE FROM accounts 
                                      WHERE account_no = 2000 
 
*** OK *** 
 
                                  *** wait *** 

In this example, Katy attempts to place an update (U) lock on the rows in the Accounts table 
while searching for a row that meets her criteria for deletion. Since there are no indexes on the 
table, every row must be checked. Eventually Katy attempts to place an update (U) lock on 
the row Mike has just updated, which holds an exclusive (X) lock. An exclusive (X) lock is 
incompatible with all other locks, so Katy is blocked. If we were to issue an sp_lock at this 
point, we would see the following fragment of output relating to Mike and Katy's connections. 

Spid   dbid   ObjId      IndId   Type   Resource   Mode   Status 
----   ----   -----      -----   ----   --------   ----   ------ 
53     7      965578478  0       RID    1:348:14   U      WAIT 
53     7      965578478  0       PAG    1:348      IU     GRANT 
53     7      965578478  0       TAB               IX     GRANT 
54     7      965578478  0       TAB               IX     GRANT 
54     7      965578478  0       RID    1:348:14   X      GRANT 
54     7      965578478  0       PAG    1:348      IX     GRANT 

We can see Katy's blocked update (U) lock on row 1:348:14. This example is similar to the 
previous example with the exception that Katy is searching with update (U) locks on rows 
rather than shared (S) locks on pages. 

In the following example Mike will again update rows in the Accounts table and Katy will 
retrieve them. This is the same as the second example except that now Katy will issue her 
SELECT statement first. We will use BEGIN TRANSACTION for both users. 

Mike                         Katy 
 
                                  BEGIN TRANSACTION 
 
                                  SELECT * FROM accounts 
                                      WHERE account_no = 2000 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 0 
    WHERE account_no = 1000 
 
                                  *** OK *** 
 
*** OK *** 



In this example, Katy attempts to place shared locks in the Accounts table. She is successful, 
since Mike has not issued his update yet. Mike then issues his update, which is also 
successful. Mike's exclusive lock is not blocked by Katy's shared locks, because SQL Server 
will have released the shared locks when the SELECT statement completed. Katy's locks were 
gone before Mike issued his update. The fact that Katy issues her SELECT statement within a 
transaction is irrelevant. 

Because SQL Server runs at the default transaction isolation level of READ COMMITTED, 
shared locks are not held until the end of the transaction but are released as soon as the row or 
page is read. This increases concurrency (and therefore performance), but this does mean that 
the read is not guaranteed to be repeatable, as we shall see shortly. 

Let us now create some indexes on the Accounts table. 

   CREATE UNIQUE NONCLUSTERED INDEX NCI_AccountNo 
      ON accounts (account_no) 

Mike will now update rows in the Accounts table while Katy attempts to delete them. We will 
use a WHERE clause in order to choose different rows. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 0 
    WHERE account_no = 1000       BEGIN TRANSACTION 
 
                                  DELETE FROM accounts 
                                      WHERE account_no = 2000 
 
*** OK *** 
 
                                  *** OK *** 

Both users succeeded. This is because indexed access can now be used, and, consequently, 
row-level locks can be taken out just on the resources required. If we were to issue an sp_lock 
at this point, we would see the following fragment of output. 

Spid   dbid   ObjId      IndId   Type   Resource       Mode   Status 
----   ----   -----      -----   ----   --------       ----   ------ 
53     7      965578478  0       RID    1:537:14       X      GRANT 
53     7      965578478  2       KEY    (ea003d68f923) X      GRANT 
53     7      965578478  0       PAG    1:537          IX     GRANT 
53     7      965578478  2       PAG    1:2612         IX     GRANT 
53     7      965578478  0       TAB                   IX     GRANT 
54     7      965578478  0       TAB                   IX     GRANT 
54     7      965578478  0       RID    1:348:14       X      GRANT 
54     7      965578478  0       PAG    1:348          IX     GRANT 

We can see that all locks have been granted. Katy (SPID 53) holds exclusive locks on a row 
and an index entry. This is because her delete will not only remove the row but will also 
remove the index entry. Mike holds an exclusive lock on the row only, since he will not 
change the index entry in any way-he is updating the balance column, not the account_no 
column. 



Suppose Mike and Katy insert rows into the Accounts table. Let us assume that there are no 
indexes on the Accounts table. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
INSERT INTO accounts VALUES 
   (112501, 2000, 1000, 156.77, 
'some notes') 
 
                                  BEGIN TRANSACTION 
 
                                  INSERT INTO accounts VALUES 
                                     (112502, 2012, 987, 123.78, 
                                  'some notes') 
 
*** OK *** 
 
                                  *** OK *** 

There is no problem. Because SQL Server supports row-level locking, there is generally no 
blocking on insert. The same is true if indexes are present on the table, since the individual 
index entries will be locked with KEY locks. 

6.5 Uncommitted data, repeatable reads, phantoms, and 
more 
With our knowledge of locking protocols we can now investigate how SQL Server deals with 
the reading of uncommitted data, nonrepeatable reads, and phantoms. 

6.5.1 Reading uncommitted data 

Figure 6.1 illustrated the problems with reading uncommitted data. As should already be 
clear, SQL Server forbids this by virtue of the fact that any row that has been changed cannot 
be read by another user, since an exclusive lock will prevent the row from being retrieved 
until the write transaction ends. 

SQL Server, however, allows the default behavior to be overridden. A query is allowed to 
read uncommitted data with the use of the READUNCOMMITTED keyword, introduced 
earlier in this chapter. For example, the following SELECT statement would read the row 
from the Accounts table regardless of whether another transaction had a row locked with an 
exclusive lock. 

   SELECT balance FROM accounts WITH (READUNCOMMITTED) 
      WHERE account_no = 15000 

The lock hint is recommended rather than NOLOCK, which is retained for backward 
compatibility. 

Suppose Mike updates a row in the Accounts table. He performs this operation within a 
transaction, which he does not end. Katy attempts to retrieve rows from the titles table. 



Mike                                                               Katy 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 500 
   WHERE account_no = 5000 
 
                                                                    SELECT 
balance FROM accounts 
                                                                      WITH 
(READUNCOMMITTED) 
                                                                         
WHERE account_no = 5000 
*** OK *** 
 
                                                                     *** OK 
*** 

In this example, Katy does not attempt to place a shared lock and she can read the row that 
Mike has updated. She will read a balance of 500. Mike may well ultimately choose to roll 
back his change, leaving Katy with incorrect balance information. 

This behavior is the same as if the connection had set the transaction isolation level to READ 
UNCOMMITTED. However, the behavior would apply to all the transactions executed on 
that connection until another SET TRANSACTION changed the isolation level, or the 
statement overrode the isolation level for itself with a lock hint. 

6.5.2 Nonrepeatable reads 

In the case of a nonrepeatable read, a transaction is allowed to read a data item on more than 
one occasion and retrieve different values each time. This is shown in Figure 6.18. By default, 
SQL Server allows nonrepeatable reads. It is sometimes desirable, however, to guarantee 
repeatable reads-that is, each read of the same data item while in the same transaction returns 
the same value. The means of guaranteeing repeatable reads in SQL Server is by the use of 
the REPEATABLEREAD keyword. 

 
Figure 6.18: Nonrepeatable reads  

If the REPEATABLEREAD keyword is used, when the page is read the first time a shared 
lock is taken out as usual. This then remains until the end of the transaction. This blocks any 
other transaction from changing the data item. 



Mike                              Katy 
 
                                  BEGIN TRANSACTION 
 
                                  SELECT balance FROM accounts 
                                     WITH (REPEATABLEREAD) 
 
                                        WHERE account_no = 5000 
 
                                  *** OK *** 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 
50.00 
   WHERE account_no = 5000 
 
*** wait *** 
 
                                  SELECT balance FROM accounts 
                                     WITH (REPEATABLEREAD) 
 
                                        WHERE account_no = 5000 
 
                                  *** OK *** 

Now Mike is forced to wait. Katy's shared locks block Mike's exclusive lock, and when Katy 
repeats her read she will receive the same value-hence, the use of the REPEATABLEREAD 
keyword has provided repeatable reads. Again, this is at the expense of concurrency. 

Setting the isolation level to REPEATABLE READ (or SERIALIZABLE) will also provide 
repeatable reads. 

Mike                              Katy 
 
                                  SET TRANSACTION 
                                     ISOLATION LEVEL REPEATABLE 
                                  READ 
 
                                  BEGIN TRANSACTION 
 
                                  SELECT balance FROM accounts 
 
                                     WHERE account_no  = 5000 
 
                                  *** OK *** 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 
50.00 
   WHERE account_no = 5000 
 
*** wait *** 
 
                                  SELECT balance FROM accounts 
 
                                     WHERE account_no = 5000 
 
                                  *** OK *** 



Again, Mike is forced to wait. Katy's shared locks block Mike's exclusive lock, and when 
Katy repeats her read she will receive the same value. The use of the REPEATABLEREAD 
lock hint is not required, since the set transaction isolation level repeatable read statement has 
provided repeatable reads. 

6.5.3 Phantoms 

The phantom problem was illustrated in Figure 6.2. By default, SQL Server does not forbid 
phantoms, but the use of the SERIALIZABLE hint will prevent them, as the following 
examples show. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
SELECT SUM(balance) FROM accounts 
   124961532.6600 
 
*** OK *** 
 
                                  INSERT INTO accounts VALUES 
                                     (112502, 2012, 987, 123.78, 
                                  'some notes') 
 
                                  *** OK *** 
 
SELECT SUM(balance) FROM accounts 
   124961656.4400 
 
*** OK *** 

In the previous example, phantoms are allowed to occur. The two sums of the same list of 
values give different results. In the following example, Katy's transaction is blocked, and the 
phantom phenomenon is not allowed to occur. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
SELECT SUM(balance) 
   FROM accounts WITH 
(SERIALIZABLE) 
      124961532.6600 
 
*** OK *** 
 
                                  INSERT INTO accounts VALUES 
                                     (112502, 2012, 987, 123.78, 
                                  'some notes') 
 
                                  *** wait *** 
Mike                              Katy 
 
SELECT SUM(balance) 
   FROM accounts WITH 
(SERIALIZABLE) 
      124961532.6600 
 



*** OK *** 

The use of the SERIALIZABLE keyword is not required if the set transaction isolation level 
serializable is used. 

Mike                              Katy 
 
SET TRANSACTION 
   ISOLATION LEVEL SERIALIZABLE 
 
BEGIN TRANSACTION 
 
SELECT SUM(balance) FROM accounts 
   124961532.6600 
 
*** OK *** 
 
                                  INSERT INTO accounts VALUES 
                                     (112502, 2012, 987, 123.78, 
                                  'some notes') 
 
                                  *** wait *** 
 
SELECT SUM(balance) FROM accounts 
   124961532.6600 
 
*** OK *** 

Note that the SERIALIZABLE lock hint is recommended rather than HOLDLOCK, which is 
retained for backward compatibility. 

To enforce serializability the lock manager must use some special techniques. In a sense, if 
we consider our previous example, the lock manager must lock something that does not exist! 
It cannot lock the row that Katy inserts, because it does not exist at the time of the first 
SELECT operation. Now SQL Server could lock the whole table if it wanted to, and, if there 
were no relevant indexes on the table, this is possibly what it might do. This would certainly 
stop phantoms. 

However, if there are indexes on the table, then the SQL Server lock manager uses a 
technique known as key-range locking. A key-range lock works by covering the index rows 
and the ranges between those index rows. Any row insertion, update, or deletion within the 
range by another connection that requires a modification to the index causes the second 
connection to wait.  

For example, suppose we execute the following query against the Branches table. 

   SELECT branch_no, branch_name FROM branches 
      WHERE branch_name BETWEEN 'Ealing' AND 'Exton' 

We find the following branch names. 

   branch_no   branch_name 
   ---------   ----------- 
   1081        Ealing 
   1021        Eden 



   1031        Edmonton 
   1051        Elton 
   1061        Epsom 
   1071        Eton 
   1041        Exton 

We may want to ensure that we cannot insert a new branch between executions of this query. 
To do this we run the statement with the SERIALIZABLE lock hint. 

   BEGIN TRANSACTION 
 
   SELECT branch_no, branch_name FROM branches WITH 
   (SERIALIZABLE) 
      WHERE branch_name BETWEEN 'Ealing' AND 'Exton' 
      : 
      : 

If we investigate the locks acquired during this transaction, we find the following (simplified) 
output from sp_lock. 

SPID   dbid   ObjId      IndId   Type   Resource       Mode      Status 
----   ----   -----      -----   ----   --------       ----      ------ 
57     7      0          0       DB          S         GRANT 
57     7      981578535  2       KEY    (680236ce107b) RangeS-S  GRANT 
57     7      981578535  0       PAG    1:102          IS        GRANT 
57     7      981578535  0       PAG    1:103          IS        GRANT 
57     7      981578535  0       PAG    1:100          IS        GRANT 
 
57     7      981578535  2       KEY    (b8020849fa4b) RangeS-S  GRANT 
57     7      981578535  2       KEY    (b802f9924eb9) RangeS-S  GRANT 
57     7      981578535  2       KEY    (b702b7e93c9b) RangeS-S  GRANT 
57     7      981578535  2       KEY    (b002a45d0732) RangeS-S  GRANT 
57     7      981578535  2       KEY    (b802194c7ac6) RangeS-S  GRANT 
57     7      981578535  2       KEY    (bb025ab1833d) RangeS-S  GRANT 
57     7      981578535  2       KEY    (6c028abdf769) RangeS-S  GRANT 

There are eight key locks acquired, but if we look at the mode we can see RangeS-S. This 
tells us that these are key-range locks. Basically, a key-range lock covers a range of values 
starting with the key before the key that is locked. 

In our example, the first branch name in our range is Ealing. The branch name preceding the 
start of our range is Ducklington. The key-range lock on the index entry Ealing would cover 
Ducklington to Ealing and this would then prevent a branch being inserted with the name 
Eaglesfield or Duddington, because those key values lie in between Ducklington and Ealing. 
In theory this is too restrictive, since these are not in our range. This said, key-range locking is 
pretty good and a lot better than locking the whole page or table; after all, we can successfully 
insert the local branch in Duchally! 

Similarly, the branch name following the end of our range is Fairford. We would not be able 
to insert branches named Eyam or Failsworth, but we would be able to insert Fairlight. 

 Note In fact, we would be able to insert branches named Ducklington or Fairford but, of 
course, only if the index on branch_name was not unique. 



The number of RangeS-S locks held is N + 1, where N is the number of rows that satisfy the 
query. In our case, seven rows satisfy the query, so eight RangeS-S locks are held. 

The name of the key-range mode is in two parts. The RangeS part represents the lock mode 
protecting the range between two consecutive index entries, and the part after the "-" 
represents the lock mode protecting the index entry itself. So, RangeS-S means the range is 
locked in shared mode and the index entry itself is locked in shared mode. Another key range 
mode is RangeS-U. The difference between RangeS-S and RangeS-U is similar to the 
difference between shared (S) and update (U) locks, which has been discussed previously. 
RangeX-X is used when a key in a range is updated. Finally, RangeI-N is used as a probe to 
test ranges before inserting a key into an index. 

6.5.4 More modified locking behavior 

While showing examples of how the lock hints and transaction isolation levels can modify the 
default locking behavior, it is also worth looking at examples of some of the other lock hints 
introduced earlier in this chapter. Let us look at TABLOCKX, for example. The TABLOCKX 
keyword forces an exclusive table lock to be taken on a table, which means that no other user, 
regardless of his or her Transact-SQL statement, can access rows in the table. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
SELECT SUM(balance) FROM 
   accounts WITH (TABLOCKX) 
 
*** OK ***                        BEGIN TRANSACTION 
 
                                  SELECT SUM(balance) FROM accounts 
 
                                  *** wait *** 

Even though the two transactions are only reading the table, Katy is forced to wait. 

Another interesting lock hint is READPAST. Consider the case when we have no index on 
the Accounts table. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 0 
   WHERE account_no = 1000 
 
                                  SELECT * FROM accounts 
                                     WHERE account_no = 2000 
 
*** OK *** 
 
                                  *** wait *** 



This was our second example. Katy is forced to wait because her sequential table scan hits 
Mike's locked row and cannot get past it With the READPAST lock hint Katy will skip the 
locked row and continue searching. 

Mike                              Katy 
 
BEGIN TRANSACTION 
 
UPDATE accounts SET balance = 0 
   WHERE account_no = 1000 
 
                                  SELECT * FROM accounts WITH 
                                  (READPAST) 
                                     WHERE account_no = 2000 
 
*** OK *** 
 
                                  *** OK *** 

6.6 Application resource locks 
SQL Server 2000 exposes an interface to its lock manager with the system stored procedure 
sp_getapplock and sp_releaseapplock. Suppose we execute sp_getapplock, as follows: 

   DECLARE @resultcode int 
   EXEC @resultcode = sp_getapplock @Resource = 'Store 5', 
                                    @LockMode = 'Exclusive', 
                                    @LockOwner = 'Session' 

We are taking out an exclusive lock on a resource named Store 5. Although this resource may 
have no relationship to objects in the SQL Server database, we are able to use the SQL Server 
2000 lock manager to manage our application lock protocol. Any other connection attempting 
to take out a lock on a resource named Store 5 will be forced to wait. 

An application resource lock may be acquired with an owner of Transaction (the default) or 
Session. If the owner is Transaction the application resource lock behaves like any other lock 
acquired in an explicit transaction-it will disappear when the transaction completes with a 
commit or rollback. However, if the owner is Session, the application resource lock will be 
held until it is explicitly released with the system stored procedure sp_releaseapplock. For 
example: 

DECLARE @resultcode int 
EXEC @resultcode = sp_releaseapplock @Resource = 'Store 5', 
                                     @LockOwner = 'Session' 

This is very useful, since it means that an application resource lock may be acquired for a 
period of time that is independent of the individual SQL Server transactions that are being 
performed on the underlying data. In our example, we can take out an application resource 
lock on a resource known as Store 5. This stops any other user from working on Store 5. 
However, our inserts, updates, and deletes against the database data that represent Store 5 can 
be performed in very short transactions, so normal SQL Server resource locks do not become 
bottlenecks. 



6.7 A summary of lock compatibility 
We have seen a number of scenarios involving locks and it is worth now summarizing the 
compatibility between different locks. Locks can be shared (S), exclusive (X), or update (U). 
They can also be intent shared (IS), intent exclusive (IX), or intent update (IU). These interact 
as shown in Table 6.9. 

Table 6.9: Lock Compatibility  
Mode of Requested Lock  Mode of Currently Granted Lock 
  IS S U IX SIX X 
intent shared (IS)             
shared (S)             
update (U)             
intent exclusive (IX)             
shared with intent exclusive (SIX)             
exclusive (X)             

We mentioned schema stability locks earlier in this chapter. They too have a compatibility. 
The schema stability lock (Sch-S) is compatible with all lock modes except the schema 
modification lock (Sch-M). The schema modification lock (Sch-M) is incompatible with all 
lock modes. The bulk update (BU) lock is compatible only with schema stability and other 
bulk update locks. This is how parallel BCP loads are possible. 

This chapter has discussed locking. In a multiuser system that has not been designed with 
concurrency in mind, lock conflict is often the cause of performance degradation, and the 
effects of this are second only to the effects of bad query/index design. 

Chapter 7: Monitoring Performance 
7.1 Introduction 
As we have mentioned on a number of occasions, physical database design is not a static, one-
off process. Once the database has gone into production, the user requirements are likely to 
change. Even if they do not, the database data is likely to be volatile, and tables are likely to 
grow. Figure 7.1 shows a typical monitoring and tuning cycle. 



 
Figure 7.1: The monitoring and tuning cycle  

In the previous chapters, we have seen a number of tools that can be used to monitor 
performance. There are also other tools that have hardly been mentioned. This chapter will 
look at the array of tools the database administrator can use to monitor SQL Server 
performance. These tools include the following: 

• System stored procedures 
• Windows 2000 System Monitor, Performance Logs, and Alerts 
• SQL Profiler 
• Index Tuning wizard 
• Query Analyzer 

7.2 System stored procedures 
There are a number of system stored procedures that can assist in performance monitoring, 
including: 

• sp_lock  
• sp_who  
• sp_monitor  

The system stored procedures sp_lock and sp_who provide information on locks, blocked 
connections, and much more. Both these system stored procedures were described in Chapter 
6, so we will concentrate on sp_monitor here. 

SQL Server keeps resource use information available through system statistical functions and 
sp_monitor then formats and displays this information. In fact, it displays the current values 
of resource use and the difference between these current values and the values last time 
sp_monitor was run. 

EXEC sp_monitor 
 



last_run                   current_run               seconds 
-----------------------    -----------------------   ------- 
2000-08-17 18:33:25.263    2000-08-17 18:36:43.500   198 
 
cpu_busy           io_busy        idle 
--------------     -------        ------------ 
62(61)-30%         1(0)-0%        651(130)-65% 
 
packets_received   packets_sent   packet_errors 
----------------   ------------   ------------- 
110(66)            109(66)        0(0) 
 
total_read         total_write    total_errors   connections 
-------------      -----------    ------------   ----------- 
432(217)           69(6)          0(0)           18(2) 

The cpu_busy, io_busy, and idle values are measured in seconds. The value 62(61)-30% is 
decoded as 62 seconds of CPU use since SQL Server was started, and (61) is decoded as 61 
seconds of CPU use since sp_monitor was last executed. The CPU has been busy 30 percent 
of the time since sp_monitor was last executed. Similarly, for total_write the value 69(6) can 
be decoded as 69 writes since SQL Server was started and (6) is decoded as six writes since 
sp_monitor was last executed. 

These functions are available to be executed by Transact-SQL statements if the database 
administrator prefers his or her own format. The sp_monitor Transact-SQL definition can 
easily be examined using the SQL Enterprise Manager. 

Many database administrators use their own home-grown stored procedures to interrogate the 
system tables. Taking this approach means that the output is customized to individual 
preference and is fine-tuned for the application. 

7.3 System monitor, performance logs, and alerts 
The System Monitor and Performance Logs and Alerts are provided with Windows 2000 to 
facilitate performance monitoring through a graphical interface. They can be accessed by 
selecting Administrative Tools from Start Menu/Programs and then Performance. 

There are many objects that can be monitored for Windows 2000, such as the processor object 
and the memory object, and for each object various counters can be monitored. The processor 
object has counters such as %Processor Time. 

There are special objects for SQL Server, including the following: 

• SQLServer: Access Methods 
• SQLServer: Backup Device 
• SQLServer: Buffer Manager 
• SQLServer: Buffer Partition 
• SQLServer: Cache Manager 
• SQLServer: Databases 
• SQLServer: General Statistics 
• SQLServer: Latches 
• SQLServer: Locks 



• SQLServer: Memory Manager 
• SQLServer: Replication Agents 
• SQLServer: Replication Dist. 
• SQLServer: Replication Logreader 
• SQLServer: Replication Merge 
• SQLServer: Replication Snapshot 
• SQLServer: SQL Statistics 
• SQLServer: Use Settable Object 

If multiple instances of SQL Server are being used, the object name is formed from the 
instance name. For example, the SQL Server instance named SQL2000_A will use object 
names such as MSSQL$SQL2000_A: Locks. 

Ensuring that System Monitor is selected in the console pane, click the Add (+) button. This 
will display drop-down lists of objects and counters and the computers that can be monitored. 
Monitoring performance will affect performance, so running the System Monitor on a 
computer other than the server being monitored will reduce its impact on that server. 

The SQLServer: Access Methods object has associated counters such as Page Splits/sec, the 
SQLServer: Buffer Manager object has associated counters such as Buffer cache hit ratio, the 
SQLServer: Databases object has associated counters such as Percentage Log Used, and the 
SQLServer: Locks object has associated counters such as Lock Requests/sec. A typical 
display, showing Buffer cache hit ratio and three other counters, is shown in Figure 7.2. 

 
Figure 7.2: The System Monitor chart display  

Many counters can be displayed simultaneously, and the display can be changed to a 
histogram or a report. A report display using SQLServer: Databases counters is shown in 
Figure 7.3. 



 
Figure 7.3: The System Monitor report display  

Alerts can also be defined via Performance Logs and Alerts. This must be selected and 
expanded in the console pane. The Alerts folder is right mouse-clicked and New Alert 
Settings chosen. A counter is selected and a threshold value chosen over (or under) which the 
alert is signaled. When an alert is signaled, various actions can be taken, such as an entry 
being logged in the application event log, a program executed, or a network message sent. 

Figure 7.4 shows the performance console with two alerts running, and Figure 7.5 shows a 
network message sent when one of the alerts has been exceeded. 

 
Figure 7.4: The alert display  

 
Figure 7.5: A network message resulting from an alert  

A useful feature is the capability to log counters to a file and then monitor the logged values 
later. This facility is very useful, since it means that samples can be taken, say every few 
minutes, over a period of days. Performance monitoring over a long period of time makes it 



easier to spot trends and sustained bottlenecks. A log is set up via Performance Logs and 
Alerts. This must be selected and expanded in the console pane. The Counter Logs folder is 
right mouse-clicked and New Log Settings chosen. 

The System Monitor and Performance Logs and Alerts are key tools for monitoring SQL 
Server performance, and any SQL Server database administrator should familiarize himself or 
herself with these tools. 

7.4 The SQL Profiler 
The SQL Profiler is probably one of the most useful tools for performance investigation. It 
allows the database administrator to trace the events that are happening on a SQL Server. One 
or more traces are defined that are designed to capture a set of events. The trace definition 
will also specify what information is to be captured concerning the events and what filtering 
criteria are to be used. It may be that you only wish to capture events for a particular database 
or that exceed a minimum duration. 

The information captured by the trace can be displayed graphically and can also be written to 
a file and/or a database table. This allows the traced data to be analyzed later. 

7.4.1 What events can be traced? 

There are many events that can be traced. These are known as event classes, and event classes 
that are related are grouped into event categories. For example, the Lock:Acquired and 
Lock:Timeout event classes are grouped together in the Locks event category. Some event 
classes are very useful and are often traced, while some event classes are more obscure. You 
will often find that the traces you wish to create will involve the same event classes. For this 
reason, as we shall see, templates can be created containing your common event classes that 
can then form the basis of your traces. 

Table 7.1 lists the SQL Profiler event categories. 

Table 7.1: SQL Profiler Event Categories  
Event Category  Definition  
Cursors Event classes concerned with cursors 
Database Event classes concerned with data and log file growth and shrinkage 
Errors and 
Warnings 

Event classes concerned with errors, warnings, and writes to error logs 

Locks Event classes concerned with locks 
Objects Event classes concerned with an object being opened, closed, created and 

deleted, as well as the execution of autostats 
Performance Event classes concerned with query plans and parallelism 
Scans Event classes concerned with table and index scans 
Security Audit Event classes concerned with security operations; logins/logouts; and server 

starts, stops, and pauses 
Server Event classes concerned with server memory changes 



Table 7.1: SQL Profiler Event Categories  
Event Category  Definition  
Sessions Event classes concerned with connects and disconnects 
Stored 
procedures 

Event classes concerned with stored procedures 

Transactions Event classes concerned with transactions starting and stopping-includes 
MS DTC transactions and writes to the transaction log 

TSQL Event classes concerned with SQL statements and batches 
User 
Configurable 

Event classes concerned with user-defined events created with the stored 
procedure sp_trace_generateevent 

7.4.2 What information is collected? 

Before looking at specific event classes, let us look at the information that can be collected 
about them and how they are filtered. The elements of information that can be collected are 
known as Data Columns and there are over 40 of them. Some data columns are not relevant 
for an event class. For example, the Reads data column is not relevant for the Lock:Aquired 
event class. Generally speaking, though, many data columns are relevant for most event 
classes. 

Some data columns contain information whose definition remains the same regardless of the 
event class being traced. A data column such as CPU, which holds the amount of CPU time 
(in milliseconds) used by the event, always holds this value for any event that CPU is relevant 
for. On the other hand, data columns such as Binary Data, Integer Data, and TextData hold 
values that are dependent on the event class captured in the trace. For example, the Errorlog 
event class, which occurs when error events have been logged in the SQL Server error log, 
causes the Text data column to hold the text of the error message. On the other hand, the 
Missing Column Statistics event class, which occurs when column statistics that could be 
used by the query optimizer are not available, causes the Text data column to hold the list of 
the columns with missing statistics. 

When defining a trace, the data columns can be grouped. Grouping overrides the default 
behavior in the graphical interface of the SQL Profiler by displaying events in the order that 
they occur. For example, grouping the events by Application Name groups together all the 
events for an application. 

7.4.3 Filtering information 

In order to reduce the volume of information traced, it can be filtered. Filtering can also 
reduce the impact of the trace on the server. You will need to take care, however, that what 
you choose to filter out of the trace is not a participant in the situation you are trying to 
observe. It may be that filtering out events whose duration is less than one second will help 
you see the wood for the trees, but if a SQL:StmtCompleted event takes just less than a 
second but is being executed thousands of times, it may be the culprit behind a performance 
problem. 



Most, but not all, data columns can have filters defined for them. We can create a filter that 
includes applications with a filter that specifies LIKE MyProc% or NOT LIKE MS EM%. 
The % symbol represents a wildcard character, which can substitute for zero or more 
characters (just the same as LIKE in Transact-SQL). We might specify that we only wish to 
trace events with Duration greater than or equal to 1,000 or DatabaseID = 7. 

7.4.4 Creating a SQL profiler trace 

Now that we have introduced the basic concepts behind a SQL Profiler trace, we can create 
one. Let us start by creating a trace to capture events whose duration is greater than or equal 
to one-hundredth of a second. This will filter out very short-lived events. Let us assume we 
are interested in looking for rogue Transact-SQL statements. 

Having launched the SQL Profiler from the Start menu, we will be faced with a fairly blank 
window, as shown in Figure 7.6. 

 
Figure 7.6: The SQL Profiler initial window  

We can then select File → New → Trace, click on the New Trace button, or type CTRL+N. 
Having responded to the connection prompt with appropriate security credentials, the SQL 
Profiler displays the Trace Properties window, as shown in Figure 7.7. 



 
Figure 7.7: The SQL Profiler Trace Properties window  

First of all, the trace is named and the SQL Server or SQL Server instance that is to be traced 
selected. A trace template is then selected. A trace template contains a predefined set of event 
classes and data columns. These are used as a convenience when creating new traces. Their 
event classes and data columns can be added to or removed, and the resulting template can be 
saved under a new name if desired. Apart from Blank, there are 16 template names to choose 
from. We will choose the SQLServerProfilerStandard template, since this fits our needs quite 
well. 

Next, we must specify where we are going to save trace information, if at all. The information 
will always be displayed in the SQL Profiler graphical interface, but we also have the choice 
of saving the information in a file or database table, or both. Microsoft suggests that saving 
data to a file is faster than saving data to a database table. Analyzing data in a table, though, is 
much easier. To have the best of both worlds save the trace information to a file and then 
afterwards open the trace file and save it as a trace table. 

If Save to file is checked, the SQL Profiler will prompt for a location and filename. This SQL 
Profiler trace file will have an extension of .trc. A maximum file size (MB) may be optionally 
specified. A trace whose maximum file size has been specified, finishes saving trace 
information to the file after the maximum file size has been reached. Another option, Enable 
file roll-over, may be checked if the Set maximum file size (MB) is checked. With this option 
set, when the original file reaches the maximum size, a second file is opened and trace data is 
written to it. When the second file reaches the maximum size, a third file is opened and so on. 
The SQL Profiler adopts a simple strategy for the filenames. It merely appends an integer to 
the original filename. The filename MyTrace.trc becomes MyTrace_1.trc, then 
MyTrace_2.trc, and so on. 

The Server processes SQL Server trace data option may be checked if the server running the 
trace is to process the trace data rather than the client. Selecting this option may adversely 



affect the performance of the server being traced, since it ensures that no events are skipped-
even when the server is overloaded. 

As well as, or instead of, capturing trace information to a file, it can also be captured in a 
table. The table can be present on any SQL Server, and, by default, it takes the name of the 
trace. The maximum number of rows to capture can be set, after which no more trace 
information is stored in the table. 

Finally, a stop time can be set. Once this time is reached, the trace will stop and close itself. 
Figure 7.8 shows an example of the General tab of the SQL Profiler Trace Properties window. 

 
Figure 7.8: The SQL Profiler Trace Properties General tab  

Next, the event classes that are to be traced must be specified. The event classes are chosen in 
the Events tab of the SQL Profiler Trace Properties window. An example of this is shown in 
Figure 7.9. 



 
Figure 7.9: The SQL Profiler Trace Properties Events tab  

The tab is split into two lists-Available event classes and Selected event classes. The event 
classes can be moved between the two lists with the Add » and « Remove buttons. Depending 
on the template chosen in the General tab, an assortment of event classes will already be 
present in the Selected event classes list. We will add another event class. We will select 
Execution Plan from the Performance event category so we can see the query execution plan 
for a traced query. 

Now we will choose the information we need to capture about our event classes. The Data 
Columns tab of the SQL Profiler Trace Properties window is now selected. Again, as shown 
in Figure 7.10, we find two lists-Unselected Data and Selected Data. There are a number of 
selected data columns based on our template. Apart from changing the data column order with 
the Up and Down buttons, we have not changed the list of selected data columns. 



 
Figure 7.10: The SQL Profiler trace properties Data Columns tab  

Finally, we must specify our filter. Filters are specified using the Filters tab of the SQL 
Profiler Trace Properties window. An example of this is shown in Figure 7.11. 

 
Figure 7.11: The SQL Profiler Trace Properties Filters tab  

We have decided only to include events of duration greater or equal to one-hundredth of a 
second. Now all we have to do is click the run button and our trace will start. 



Our trace window is shown in Figure 7.12. 

 
Figure 7.12: SQL Profiler trace output  

We can see the data columns arranged across the top of the window, and the traced events are 
displayed one after the other in time sequence. We can see a SQL:BatchCompleted event, 
and, when we highlight it, the TextData column is displayed in the lower pane, showing us the 
SQL statement that was executed. We can also see other columns, such as the duration of the 
statement and the amount of CPU it took (both in milliseconds). The number of logical reads 
can also be seen. 

We also added the Execution Plan event class to this trace, and, if we select that event, we can 
see the execution plan simply described in the lower pane. This is shown in Figure 7.13. 

 
Figure 7.13: SQL Profiler trace output with the execution plan event  

In reality, as a database administrator, you will probably be so busy that sitting and watching 
a SQL Profiler trace graphically will not be the best use of your time. It is often more 
convenient and productive to analyze the trace output that you have captured into a table. For 
example, the trace we have just run was captured in the database table MyTrace in database 
PerfStatsDB. 

Suppose we execute the following query: 

SELECT TextData, Duration, CPU FROM MyTrace where Duration > 
1000 

Sample output would be as follows: 



TextData                                           Duration   CPU 
------------                                     --------   ------- 
SELECT * FROM accounts WHERE balance = 100         1693       40 
SELECT * FROM customers WHERE customer_no = 1000   1540       40 

By using familiar Transact-SQL statements, the trace data can be analyzed to look for 
problem statements. As well as responding to problems, traces can be run on a regular basis 
and the trace data analyzed to monitor trends. The Transact-SQL functions AVG, MIN, and 
MAX are useful, and the data can be grouped by the first few characters of the TextData 
column so that the statements are distinguished. 

Statement         AverageDuration  MaxDuration  AverageCPU  MaxCPU 
---------         ---------------  -----------  ----------  ------ 
exec USP_CustBal  33.333333        40           33.333333   40 

This line of output was generated by the following Transact-SQL statement. 

SELECT 
CAST(TextData AS CHAR(16)) AS Statement, 
   AVG(Duration) AS AverageDuration, 
   MAX(Duration) AS MaxDuration, 
   AVG(CPU) AS AverageCPU, 
   MAX(CPU) AS MaxCPU 
   FROM MyTrace4 
   WHERE Duration > 10 
   GROUP BY CAST(TextData AS CHAR(16)) 

The GROUP BY uses as CAST of CHAR(16) to group only by the stored procedure name 
and not include any parameters. Of course, the other aggregate functions, such as COUNT, 
can be used. It is also useful to filter out the stored procedures and statements you are 
interested in with a LIKE operator in the WHERE clause. 

7.4.5 Creating traces with stored procedures 

As well as using the SQL Profiler graphical interface to create, modify, start, and stop traces, 
various system stored procedures can also be used. These are all documented, but the easiest 
way to create a script that utilizes them is to create a trace using the SQL Profiler graphical 
interface and then from the File menu in the graphical interface choose Script Trace. The trace 
can be scripted using the SQL Server 2000 system stored procedures or using the SQL Server 
7.0 extended stored procedures for backward compatibility. The script produced can then be 
edited and executed using the query analyzer. 

There are only a few system stored procedures that need to be used when creating and 
managing a trace. The ones we will use are as follows: 

• sp_trace_create  
• sp_trace_setevent  
• sp_trace_setfilter  
• sp_trace_setstatus  

The system stored procedure sp_trace_create is typically run first to create the trace. 
Information such as the stop time, trace file name, maximum file size, and whether file 



rollover is performed can be specified. This system stored procedure returns an integer trace 
ID, which is subsequently used to identify the trace. 

The system stored procedure sp_trace_setevent is used to add or remove an event or event 
column to a trace. The event ID and column ID pair is specified and is either turned on or off. 
The trace that is to be modified is identified through the trace ID. 

The system stored procedure sp_trace_setfilter is used to specify filters. The trace that is to be 
modified is identified through the trace ID. A column is specified together with a value 
specifying whether it will be ANDed or ORed with other filter conditions. A value to 
represent a comparison operator, such as Greater Than, is specified for the column together 
with the value to be compared. Finally, the system stored procedure sp_trace_setstatus is used 
to stop and start the event. Again, the trace that is to be started or stopped is identified through 
the trace ID. 

Here is a trace script generated by the SQL Profiler. 

   -- Create a Queue 
   DECLARE @rc int 
   DECLARE @TraceID INT 
   DECLARE @maxfilesize BIGINT 
   SET @maxfilesize = 5344176266805258 
   EXEC @rc = sp_trace_create @TraceID OUTPUT, 2, N'C:\ 
   MyTrace.trc', @maxfilesize, NULL 
   IF (@rc != 0) GOTO error 
 
   -- Client side File and Table cannot be scripted 
 
   -- Set the events 
   DECLARE @on BIT 
   SET @on = 1 
   EXEC sp_trace_setevent @TraceID, 10, 1, @on 
   EXEC sp_trace_setevent @TraceID, 10, 6, @on 
   EXEC sp_trace_setevent @TraceID, 10, 9, @on 
   EXEC sp_trace_setevent @TraceID, 10, 10, @on 
   EXEC sp_trace_setevent @TraceID, 10, 11, @on 
   EXEC sp_trace_setevent @TraceID, 10, 12, @on 
   EXEC sp_trace_setevent @TraceID, 10, 13, @on 
   EXEC sp_trace_setevent @TraceID, 10, 14, @on 
   EXEC sp_trace_setevent @TraceID, 10, 16, @on 
   EXEC sp_trace_setevent @TraceID, 10, 17, @on 
   EXEC sp_trace_setevent @TraceID, 10, 18, @on 
   EXEC sp_trace_setevent @TraceID, 12, 1, @on 
   EXEC sp_trace_setevent @TraceID, 12, 6, @on 
   EXEC sp_trace_setevent @TraceID, 12, 9, @on 
   EXEC sp_trace_setevent @TraceID, 12, 10, @on 
   EXEC sp_trace_setevent @TraceID, 12, 11, @on 
   EXEC sp_trace_setevent @TraceID, 12, 12, @on 
   EXEC sp_trace_setevent @TraceID, 12, 13, @on 
   EXEC sp_trace_setevent @TraceID, 12, 14, @on 
   EXEC sp_trace_setevent @TraceID, 12, 16, @on 
   EXEC sp_trace_setevent @TraceID, 12, 17, @on 
   EXEC sp_trace_setevent @TraceID, 12, 18, @on 
   EXEC sp_trace_setevent @TraceID, 14, 1, @on 
   EXEC sp_trace_setevent @TraceID, 14, 6, @on 
   EXEC sp_trace_setevent @TraceID, 14, 9, @on 
   EXEC sp_trace_setevent @TraceID, 14, 10, @on 
   EXEC sp_trace_setevent @TraceID, 14, 11, @on 



   EXEC sp_trace_setevent @TraceID, 14, 12, @on 
   EXEC sp_trace_setevent @TraceID, 14, 13, @on 
   EXEC sp_trace_setevent @TraceID, 14, 14, @on 
   EXEC sp_trace_setevent @TraceID, 14, 16, @on 
   EXEC sp_trace_setevent @TraceID, 14, 17, @on 
   EXEC sp_trace_setevent @TraceID, 14, 18, @on 
   EXEC sp_trace_setevent @TraceID, 15, 1, @on 
   EXEC sp_trace_setevent @TraceID, 15, 6, @on 
   EXEC sp_trace_setevent @TraceID, 15, 9, @on 
   EXEC sp_trace_setevent @TraceID, 15, 10, @on 
   EXEC sp_trace_setevent @TraceID, 15, 11, @on 
   EXEC sp_trace_setevent @TraceID, 15, 12, @on 
   EXEC sp_trace_setevent @TraceID, 15, 13, @on 
   EXEC sp_trace_setevent @TraceID, 15, 14, @on 
   EXEC sp_trace_setevent @TraceID, 15, 16, @on 
   EXEC sp_trace_setevent @TraceID, 15, 17, @on 
   EXEC sp_trace_setevent @TraceID, 15, 18, @on 
   EXEC sp_trace_setevent @TraceID, 17, 1, @on 
   EXEC sp_trace_setevent @TraceID, 17, 6, @on 
   EXEC sp_trace_setevent @TraceID, 17, 9, @on 
   EXEC sp_trace_setevent @TraceID, 17, 10, @on 
   EXEC sp_trace_setevent @TraceID, 17, 11, @on 
   EXEC sp_trace_setevent @TraceID, 17, 12, @on 
   EXEC sp_trace_setevent @TraceID, 17, 13, @on 
   EXEC sp_trace_setevent @TraceID, 17, 14, @on 
   EXEC sp_trace_setevent @TraceID, 17, 16, @on 
   EXEC sp_trace_setevent @TraceID, 17, 17, @on 
   EXEC sp_trace_setevent @TraceID, 17, 18, @on 
 
 
   -- Set the Filters 
   DECLARE @intfilter INT 
   DECLARE @bigintfilter BIGINT 
 
   EXEC sp_trace_setfilter @TraceID, 10, 0, 7, N'SQL Server 
   Profiler%' 
   SET @intfilter = 100 
   EXEC sp_trace_setfilter @TraceID, 13, 0, 4, @intfilter 
 
   EXEC sp_trace_setfilter @TraceID, 35, 1, 6, N'BankingDB' 
   -- Set the trace status to start 
   EXEC sp_trace_setstatus @TraceID, 1 
 
   error: 
   GO 

This trace creates a trace file, C:\MyTrace.trc, with file rollover (option value 2). There is no 
stop time (NULL) and the maximum file size possible is set. 

Event IDs 10, 12, 14, 15, and 17 are set. These are RPC:Completed, SQL:BatchCompleted, 
Login, Logout, and ExistingConnection, respectively. The sp_trace_setevent stored procedure 
sets each required event ID and column ID pair. Therefore, we see examples such as the 
following: 

   EXEC sp_trace_setevent @TraceID, 12, 13, @on 

This sets event ID 12 (SQL:BatchCompleted) with column ID 13 (Duration) on. 



Filters are set to specify that the database must be BankingDB, the duration is greater than 
100 milliseconds, and the application is not the SQL Profiler itself. 

Finally, the trace is set to status value 1, which means start. A status value of 0 means stop. To 
subsequently view the trace file with the profiler, it is necessary to first stop the trace with 
status value 0 and then close it with status value 2. 

To view information about current traces a useful function is ::fn_trace_getinfo. This takes a 
trace ID as an argument. Specifying NULL returns information for all existing traces. For 
example: 

SELECT * FROM ::fn_trace_getinfo(NULL) 
 
traceid   property   value 
-------   --------   ------------------------------------------------------
--------- 
1         1          2 
1         2          
C:\DocumentsandSettings\Administrator\MyDocuments\MyTrace11.trc 
1         3          5344176266805258 
1         4          NULL 
1         5          1 

The property value 1 is the trace option value to sp_trace_create. In our example, 2 means file 
rollover is enabled. The property value 2 is the trace file name, and 3 is the maximum file 
size. The property value 4 is the stop time, and 5 is the current trace status, as set in 
sp_trace_setstatus. In our example, no stop time is specified. The trace status 1 means the 
trace is started.  

The SQL Profiler is a very powerful tool, and I would urge database administrators to 
familiarize themselves with it. It has many other capabilities, which we will not cover here, 
but it can, for example, replay a trace file, which is useful for regression and stress testing. It 
is also able to single step through a trace file, similar to a debugger. Also, a workload saved 
by the SQL Profiler can be used in the Index Tuning wizard, described next. 

7.5 Index Tuning wizard 
The Index Tuning wizard can make suggestions about the most effective indexes that could be 
created on a table (or view) based on a workload previously captured by the SQL Profiler. 
The Index Tuning wizard assumes that the workload is representative, and so the onus is on 
the database administrator to ensure that this is the case. I personally use the Index Tuning 
wizard to get a second opinion on my index design rather than as a tool that produces a 
definitive index design. 

The Index Tuning wizard can be launched from the SQL Server Enterprise Manager, the SQL 
Profiler, or the Query Analyzer. It then presents the database administrator with a dialog, 
which enables him or her to specify information to it and to check an analysis of its design. It 
also enables the database administrator to implement the design immediately, later, or not at 
all. 

Following the initial information window and the login window, the Index Tuning wizard 
displays a Select Server and Database window. This is shown in Figure 7.14. 



 
Figure 7.14: The Index Tuning wizard Select Server and Database window  

As its name suggests, this allows the server and database that are to participate in the tuning to 
be selected. The Index Tuning wizard may be very resource intensive, so executing it on a 
server different from the production server is recommended. 

The Select Server and Database window also allows other options to be specified. The option 
Keep all existing indexes is checked by default. The Index Tuning wizard will not suggest 
that any indexes should be removed if this option is selected. It will only suggest new indexes. 

The Tuning Mode options Fast, Medium, and Thorough specify whether the Index Tuning 
wizard performs a more thorough analysis. This can often result in a more accurate index 
design but is at the expense of the time taken for the Index Tuning wizard to perform its 
analysis. 

Finally, this window allows the database administrator to specify that the suggested design 
may incorporate indexed views. 

The next window to be displayed is the Specify Workload window. This is shown in Figure 
7.15. 



 
Figure 7.15: The Index Tuning wizard Specify Workload window  

The database administrator can specify the location of a file or table that holds workload 
information previously traced by the SQL Profiler. The Query Analyzer option will be 
highlighted if the Index Tuning wizard was launched from the Query Analyzer. 

The Advanced Options button can be mouse clicked. This then allows the database 
administrator to specify restrictions in terms of the space available for new indexes, the 
maximum columns per index, and the maximum number of queries to tune. Current space 
utilization is also reported. 

The next window, shown in Figure 7.16, is the Select Tables to Tune window. 

 
Figure 7.16: The Index Tuning wizard Select Tables to Tune window  

This enables the specification of the tables to tune. The fewer tables selected in this window, 
the less analysis the Index Tuning wizard will have to perform. The database administrator 
can also input a value for the projected number of rows for a table to allow for future growth. 



Once you proceed past this window, the Index Tuning wizard starts to analyze the workload. 
After a period of time, it will display an Index Recommendations window similar to the one 
shown in Figure 7.17. 

 
Figure 7.17: The Index Tuning wizard Index Recommendations window  

In our example, the Index Tuning wizard has recommended that three indexes, if created, 
should improve performance based on the workload. In fact, it predicts an 83 percent 
improvement. 

The indexes recommended are as follows: 

• A clustered index on the Accounts table on columns balance (accounts1) 
• A nonclustered index on the Accounts table on columns balance, account_no 

(accounts4) 
• A nonclustered index on the Accounts table on column customer_no (accounts5) 
• A clustered index on the Customers table on column customer_no (customers2) 

To investigate this further we can mouse click the Analysis... button. This displays a set of 
reports. The first report is an Index Usage report based on the recommended configuration-
that is, with the new indexes. This is shown in Figure 7.18. 



 
Figure 7.18: The Index Tuning wizard Index Usage report  

This report shows the percentage of queries in the workload that would make use of the new 
index and the estimated size of the new index. 

The next report shows index use based on the current configuration. We have no indexes at 
present on our base tables, so this is not a meaningful report for us. Next is the Table Analysis 
report. This is shown in Figure 7.19. 

 
Figure 7.19: The Index Tuning wizard Table Analysis report  

This report shows the top 100 tables most heavily used by the workload. In our example we 
only have two tables used by our workload. The report sums up the costs of all queries each 
table participates in, and then reports those costs as a fraction of the cost of the entire 
workload for the current and recommended index configuration. 

The next report is the View - Table Relations report. This shows which tables are involved in 
building a particular indexed view. We have no new indexed views in the recommendation, so 
this is not a meaningful report. 



The next report, perhaps the most useful, is the Query - Index Relations report for the 
recommended configuration. This shows us the queries in the workload and the indexes that 
the query is predicted to use. This is shown in Figure 7.20. 

 
Figure 7.20: The Index Tuning wizard Table Analysis report  

In our example, the queries in the workload are as listed in Table 7.2. 

Table 7.2: Workload Queries  
Query  Indexes  
SELECT customer_lname, customer_fname,account_no, balance FROM 
customers C INNER JOIN accounts A ON C.customer_no = 
A.customer_no WHERE C.customer_no = 1100  

[accounts5], 
[customers2]  

SELECT account_no FROM accounts WHERE balance = 100  [accounts4]  
SELECT account_no FROM accounts WHERE balance BETWEEN 100 
AND 200  

[accounts4]  

SELECT customer_lname, customer_fname FROM customers WHERE 
customer_no = 1100  

[customers2]  

The first query, an inner join of the Accounts table and the Customers table on the 
customer_no column uses the indexes accounts5 and customers2. These are the indexes on the 
customer_no column in the Accounts table and the Customers table, respectively. This is 
reasonable, since this column is used in the join and the WHERE clause of the query. 

The second query, a simple selection from the Accounts table, uses the index accounts4. This 
is a covering index, since it contains both the balance and account_no columns. We discussed 
covering indexes in Chapter 3, and we know that these can be very efficient. 

The third query is similar to the second query but uses a BETWEEN operator. This also uses 
the index accounts4. Since this is a covering index, this makes sense. 



The fourth query, a simple selection from the Customers table, uses the index customers2. 
This makes sense, since this index supports the WHERE clause of the query, which uses the 
customer_no column. 

The next report is the Query Cost report. This shows us the most expensive 100 queries in the 
workload and the performance improvement predicted for the recommended configuration. 
This is shown in Figure 7.21. 

 
Figure 7.21: The Index Tuning wizard Query Cost report  

The next report is the Workload Analysis report. This report groups the queries into ten cost 
groups based on the most expensive query for the current and recommended configuration. In 
other words, the most expensive query defines the most expensive cost group. The other 
queries are then placed in the appropriate cost group. The distinction is also made between the 
type of query-SELECT, INSERT, UPADTE, and DELETE. This is shown in Figure 7.22. 

 
Figure 7.22: The Index Tuning wizard Workload Analysis report  



The final report is the Tuning Summary report. This gives an overview of the analysis 
performed by the Index Tuning wizard and is shown in Figure 7.23. 

 
Figure 7.23: The Index Tuning wizard Tuning Summary report  

Any of the above reports can be saved in a textual format. 

Once we have studied the reports, we can mouse-click Close and we will return to the Index 
Recommendations window. If we now mouse-click Next, the Schedule Index Update Job 
window is displayed. This gives the database administrator the opportunity to apply the 
recommended changes. This window is shown in Figure 7.24. 

 
Figure 7.24: The Index Tuning wizard Schedule Index Update Job window  

If we wish to apply the changes, they can be applied immediately or scheduled for a time and 
date in the future. Whether we apply the changes or not, a script file containing the changes 
may optionally be generated. In fact, after applying the recommendations, the queries used the 
indexes as predicted. Interestingly, the Index Tuning wizard created a clustered index on the 
Accounts table on the balance column. It predicted that it would not use this and it didn't! 



It's worth a few words here regarding how the Index Tuning wizard approaches the problem 
of index analysis. It basically takes each query in the workload (unless the database 
administrator sets a limit on the number of queries to analyze) and designs single-column 
indexes. It then moves into a phase where it designs multicolumn indexes. All the time it is 
eliminating indexes that do not improve performance. As you can imagine, there are 
theoretically many indexes that could be defined for even a simple workload. Most 
importantly, the Index Tuning wizard works with the query optimizer. In fact, it creates 
pseudoindexes by defining an entry in the sysindexes system table but not actually creating 
the physical index structure. The query optimizer then may or may not use the index when the 
Index Tuning wizard asks it to optimize the workload. If you look at the indexes present on a 
table while using the Index Tuning wizard, you will see these indexes. They generally have 
names such as hind_965578478_2_1_4, where hind means hypothetical index. 

To summarize, the Index Tuning wizard works with statistical information, just like the query 
optimizer, so it's not perfect-yet! It does a pretty good job though, and for many users of SQL 
Server with limited experience it will be a great asset. For database administrators with many 
years tuning experience it will be a useful assistant. 

7.6 Query analyzer 
We have already looked at the query analyzer extensively in previous chapters but in the 
context of viewing estimated query execution plans. There are other capabilities in the query 
analyzer that are worth a mention. These are Show Server Trace and Show Client Statistics. 

These options can be selected from the Query menu or the Execute mode button. 

The Show Server Trace option shows the impact on a query on the server. It displays the 
event classes with some data columns we are familiar with from the SQL Profiler. An 
example of the Trace tab is shown in Figure 7.25. 

 
Figure 7.25: The Query Analyzer Trace tab  

At the time of writing, with a full release of SQL Server 2000, I still find that this server trace 
is giving me problems. Sometimes the query is not traced at all, and sometimes the statistics 
completely disagree with the SQL Profiler. 

The Show Client Statistics option shows client-side information about the execution of the 
query. An example of the Statistics tab is shown in Figure 7.26. 



 
Figure 7.26: The Query Analyzer Statistics tab  

The client statistics are grouped into three areas, as follows: 

1. Application Profile Statistics-containing information such as the number of SELECT 
statements 

2. Network Statistics-containing information such as the number of server roundtrips 
3. Time Statistics-containing information such as the cumulative client processing time 

We have looked at a number of monitoring tools in this chapter. I find the SQL Profiler 
particularly useful when hunting for poorly performing queries. The Query Analyzer is then 
really useful for analyzing the problem query to check on the query plan. As an initial step, 
the System Monitor is very useful for getting an overall feel for the system. 

Chapter 8: A Performance Tuning Checklist 
Here are a few thoughts that might be useful as an aide-memoir when you are considering 
performance issues. 

8.1 System resource use 
Establish trends. Use the System Monitor to monitor resources into a log file over a period of 
time. Get to know the normal ranges of the key counters. 

When using the System Monitor interactively, run the graphical user interface on a machine 
other than the server being monitored to minimize the System Monitor impact. 

Do not jump to conclusions. The performance problem may be caused by something you do 
not expect. It's easy to become convinced that something is causing a problem and to 
subconsciously twist the evidence to fit your theory. 



Remember that system resource bottlenecks may be a symptom of something else. A classic is 
a disk I/O bottleneck caused by paging due to a memory shortage. 

Ensure that you have sufficient page file space. 

Remove services and protocols you are not using from the server. Do not run a screen saver 
on the server. 

Try to run SQL Server on a dedicated server with no other applications running. It is much 
easier to optimize SQL Server in this situation. Try to avoid installing SQL Server on a 
Domain Controller (PDC). 

Place tempdb on a fast device. Use the System Monitor or Alert subsystem to track it if it 
expands dynamically. By default it will be reset to its initial size on SQL Server restart. It may 
be beneficial to manually expand it to the size to which it frequently grows. 

Use RAID for your database and transaction log. One approach would be to use a RAID 0 
stripe set for the database and mirror it. Use a dedicated disk for the transaction log and mirror 
it. Hardware-based RAID is faster than software-based RAID. 

Use a good quality network card. A 32-bit network card has better throughput that a 16-bit 
card. 

8.2 Choosing efficient indexes 
It is likely that for all but the smallest of tables the database designer will need to define 
indexes. These will probably consist of a clustered index with a number of nonclustered 
indexes. Queries benefit from lots of indexes, but too many indexes will degrade the 
performance of Transact-SQL statements that change data, such as INSERT, UPDATE, and 
DELETE, since all the indexes will need to be maintained, which requires CPU and disk I/O. 
Even worse, many indexes being updated are likely to increase lock contention. 

Consider using a clustered index in the following situations. 

• The physical ordering supports the range retrievals of important queries-that is, 
queries that use BETWEEN and LIKE. 

• Few duplicate values mean that an equality test (=) returns few rows. 
• Many duplicate values mean that an equality test (=) returns many rows. 
• The clustered index key is used in the ORDER BY clause of critical queries. 
• The clustered index supports the GROUP BY clause of critical queries. 
• For a given row in the outer table of a join, there are few rows that match in the inner 

table. A clustered index on the join column in the inner table will be beneficial. 
• For a given row in the outer table of a join, there are many rows that match in the 

inner table. A clustered index on the join column in the inner table will be beneficial. 

Avoid using a clustered index on a volatile column-that is, a column that is updated 
frequently. This would result in the data row moving around the table repeatedly.  

Consider using a nonclustered index in the following situations. 



• Few duplicate values mean that an equality test (=) returns few rows. 
• The nonclustered index key is used in the ORDER BY clause of critical queries. 
• The nonclustered index supports the GROUP BY clause of critical queries. 
• For a given row in the outer table of a join, there are few rows that match in the inner 

table. A clustered index on the join column in the inner table will be beneficial. 
• A critical query can be efficiently covered. 

Avoid using a nonclustered index when a query returns many rows, such as a range retrieval, 
or when there are many duplicate values returned by an equality test. Also, if, for a given row 
in the outer table of a join, there are many rows that match in the inner table, a nonclustered 
index on the join column in the inner table will not be beneficial. 

Avoid using a nonclustered index on a volatile column. The result may not be as unfavorable 
as using a clustered index, since the data row will not move; however, the index will still have 
to be maintained. 

Also, consider that many applications will require the selection of a row by the primary key. 
This is a single-row selection and therefore would normally benefit from the creation of an 
index containing the same columns as the primary key. Since it is not common to request 
ranges of primary keys, a nonclustered index is probably the best option. If a primary key 
constraint is created, the index will be automatically created; it is recommended that this be a 
nonclustered index. 

Do not create an index on a column that is not very selective. An example of this would be a 
column that contained a status flag containing two or three values. It is unlikely that such an 
index would be used by the query optimizer. 

Be careful when creating indexes with large keys. Fewer keys can be held in an index page, 
resulting in many index pages and deeper indexes. Take care with a large key in a clustered 
index. This will be used as the pointer in all the nonclustered indexes on the table. 

Regularly check the levels of internal and external page fragmentation with DBCC 
SHOWCONTIG. Tidy up by rebuilding indexes. Make sure that there is enough free space in 
the database to rebuild clustered indexes. Another approach is to use the Database 
Maintenance Wizard.  

Consider using DBCC INDEXDEFRAG on tables where there is little opportunity for 
maintenance-for example, a 24 × 7 system. 

8.3 Helping the Query Optimizer 
Ensure that the UPDATE STATISTICS statement (or sp_updatestats) is run regularly. 

Set the database options to allow automatic statistics updating and creation. 

Always test query performance on representative data. Data distributions that do not reflect 
live data in the production database and tables that are smaller than those in the production 
database could result in query plans different from those used when the application goes live. 



Make sure that join conditions are not omitted. Always check in the case of joins involving 
many tables that N tables must have a minimum of N - 1 join conditions. Better still, use the 
ANSI SQL-92 join syntax. 

Try to establish a standard so that program documentation includes an attached showplan 
output. This has a number of advantages. First, it forces the SQL developer to actually run the 
query and obtain a showplan output, which otherwise may not have happened. Second, it 
allows the person responsible for database performance to quickly scan the showplan output 
for obvious problems. Third, if the query performance suddenly degrades in the future, it is 
easy to check if the query optimizer has adopted a new query plan. Attaching statistics IO 
output is also recommended. 

Use query optimizer hints only if it is absolutely necessary. Revisit them to check if the plan 
they force is still the most efficient. 

Ensure that stored procedures are not being passed a range of parameters such that a highly 
inefficient query plan is being used for some values. 

The use of order by, distinct, and union in a query results in SQL Server having to do more 
work. If they can be avoided, do so. It might be that you know there are no duplicates, or a 
sort may be performed elsewhere, perhaps on the client. 

8.4 Avoiding lock contention 
No matter how well the database is tuned to minimize disk I/O, all the database designer's 
efforts will be wasted if lock contention is prevalent in the database. SQL Server's locking 
mechanisms were described in Chapter 6, and we will now look at some general guidelines to 
follow when designing a database. Remember: In most multiuser systems that make changes 
to data some lock contention is unavoidable. The secret is to minimize both the locking hot 
spots and the length of time for which locks are held. 

8.4.1 Rule 1: Keep transactions as short as possible 

If a transaction has placed an exclusive lock on a row, page, or table, it will keep that lock 
until it ends with a commit or rollback. This is also true with shared locks if the 
REPEATABLE, SERIALIZABLE, or HOLDLOCK hints are used or the repeatable read or 
serializable isolation level is used. The longer the lock is held, the more chance there will be 
that the lock blocks another user. This has a cascade effect, with the blocked user blocking 
other users. Minimize the time the locks are held. Do not perform work inside a transaction 
that can be performed outside of it. 

8.4.2 Rule 2: Do not hold locks across user interactions 

This follows from Rule 1. Unless special considerations apply, you have a real need to, and 
you know what you are doing, this rule should be adhered to at all costs in a multiuser 
environment. What does this mean? It means that transactions should be completed before 
control is passed back to the user, and the transaction should not be active while the user is 
staring at the screen. 



The reasons are obvious. The computer may process a transaction's workload in less than a 
second, and if that transaction then completes, another transaction will only have waited a 
fraction of a second before it acquired its locks. If, however, a transaction places locks on 
rows, pages, or tables, and the transaction is left active while the application returns to the 
user, it will keep its locks while the user stares at the screen, scratches his or her head, chats 
with a colleague, or, worse still, goes to lunch! 

This could be, and usually is, disastrous for system throughput, and it is more commonplace 
that one might imagine! I know of instances where businesses have stopped trading for 
critical periods of time because a user went to lunch while a screen prompt sat on his or her 
workstation. This is not the user's fault. Blame resides with the application designer. 

If it becomes necessary to retrieve data in the database for later modification, it is usually far 
better to choose an option where locks are not held on database objects and an optimistic 
locking approach is taken-that is, the retrieved rows are not locked and, when updates are 
eventually performed, a check is made in the application to see if another user has changed 
the data since the data was read. SQL Server provides the rowversion data type to assist the 
developer. 

8.4.3 Rule 3: Try not to interleave updates and reads 

If a transaction changes data when it starts, it will hold exclusive locks until it finishes. Try 
not to change data and then spend time reading data. If possible read the data, save all of the 
updates until the end of the transaction, and then issue them in one short burst. This 
minimizes the length of time that exclusive locks are held. 

8.4.4 Rule 4: Help the query optimizer to choose indexed access 

The query optimizer chooses whether a table scan or index is used to retrieve data. Judicious 
use of indexes and care when writing Transact-SQL statements will help the query optimizer 
to choose an indexed access. From a locking contention viewpoint this is preferable to a table 
scan, since a table scan may lock at the table or page level if shared locks are to be held. 

8.4.5 Rule 5: Only lock as strictly as is necessary to meet your integrity 
requirements 

Only hold shared locks if you require that the row you have read must not be changed by 
anyone else before your transaction ends. 

8.4.6 Rule 6: Update tables in the same order throughout the application 

If one program updates table A and then updates table B, and another program updates table B 
and then updates table A, there is potential for deadlock. It is better to settle on some simple 
application development standard, such as always updating tables in alphabetical order 
wherever possible. 

In this case, the first program will cause the second program to wait cleanly and avoid the 
potential deadlock scenario.  



8.4.7 Rule 7: Perform multiuser testing before the application goes live 

This is often forgotten or left to the last minute. Whether you use sophisticated multiuser 
testing products or you persuade your users to stay late in the evening-do it! 

We could add more rules but we have found that if the above seven are adhered to, lock 
contention should be minimized. 

8.5 Database integrity 
Integrity is the natural enemy of performance. The greater the data consistency requirements 
the more the impact on performance. 

Do not implement your data integrity checks at the last minute before you go live. It does not 
matter whether you have used triggers or constraints, your performance is likely to suddenly 
drop. 

Remember that if you do not index your foreign key column(s), you are likely to experience 
bad performance if you delete a row from the referenced table, since a table scan will 
probably be performed on the child table. 

A table that has many foreign key constraints defined on it will have degraded insert 
performance, since many lookups will be performed against the referenced tables. 

8.6 Database administration activities 
Avoid running DBCC statements, UPDATE STATISTICS, and backups during periods of 
high user activity. 

Consider creating a reporting database to off-load reporting and ad hoc querying. This could 
be kept up-to-date by replication or log shipping if required. 

When loading a table using Data Transformation Services, the BULK INSERT statement, or 
BCP, be aware of the logging impact of the different SQL Server recovery models. 

Put the file to be loaded on the same server as the database and data file to avoid network 
traffic.  

Creating indexes will usually impact performance on the server, so it is better to perform 
index rebuilds during a quiet period. 

Creating a nonclustered index has less impact than creating a clustered index. Clustered index 
creation uses an exclusive table lock, whereas nonclustered index creation uses a shared table 
lock. 

Use the DROP_EXISTING clause of the CREATE INDEX statement when rebuilding a 
clustered index to minimize the impact on the nonclustered indexes on the table. 



Consider using the SORT_IN_TEMPDB option on the CREATE INDEX statement to spread 
the I/O load across multiple disk drives. 

When creating a database, try to set a realistic initial size to avoid multiple file extensions. 

It might be better to switch variable-length datatypes to fixed-length datatypes in some cases 
to avoid the potential use of forwarding pointers. 

Consider shrinking database files at periodic intervals. 

8.7 Archiving data 
This is a requirement that usually gets left until the last minute. The fact remains, however, 
that the larger a database gets, the more performance is likely to degrade. Many database 
administration tasks will also take longer: database backups, the update of statistics, DBCC 
checks, and index builds. 

The reasons that performance degrades include the following. 

• Larger tables mean longer table scans. 
• Larger tables mean deeper indexes-hence, more I/O to reach the table row. 
• Longer table scans and index traversals mean locks may be held longer. 

Ensure that there is an archiving strategy in place before the database gets too large. 

8.8 Read only report databases 
If we consider a typical OLTP production system comprised of many users, we would 
probably expect to find that the system included many short transactions that updated the 
tables in the database in real time. In reality, we would also find that there was a requirement 
to run long and perhaps complex reports against portions of the database. The fast-response 
time requirements of the lightweight online transactions and the data-hungry requirements of 
the heavyweight report transactions often do not mix well. The report transactions can 
severely impact the response times of the online transactions in the production system and in 
the worst case may cause lock conflict. 

One option is to separate these two different workloads into their own databases on their own 
server. This can never, in reality, be done completely, since there is usually no clear break 
between the requirements of the two systems. However, there is a case for off-loading as 
much reporting work as possible to another database. This also means that there will be a 
natural frozen cut-off point. If the report database is only updated overnight, then it will hold 
the close of day position all the following day, which can be a useful asset. 

A separate report database can also have extra indexes added to it that would have been 
unacceptable in the production database for performance reasons. 

Updating information in the report database could be a simple matter of restoring it from last 
night's backup of the OLTP database, or the replication capabilities present in SQL Server 



could be used. Whatever the method, consider the approach of separating the different 
workloads, since this can greatly help performance and increase flexibility. 

If the report database is created from last night's backup, there are also two more added 
bonuses. First, the fact that you are restoring your backup means that you can feel confident 
that your backup/restore scripts work. Second, since the database is identical to the OLTP 
database, those lengthy DBCC integrity checks can be run on the report database instead of 
the OLTP database. 

8.9 Denormalization 
Before considering denormalization, a fully normalized database design should be your 
starting point. A fully normalized database design helps to avoid data redundancy and 
possible update anomalies, but it usually results in a design that requires tables to be joined 
frequently. 

Possible approaches to denormalization include the duplication of columns from one or more 
tables into another to avoid the join in a critical query. For columns that are volatile, this can 
make updates more complex.  

Another denormalization technique is to store derived data in the database. Transactions that 
change data can, usually by means of triggers, modify the derived data column. This can save 
query time, since the work has already been done calculating the derived column. The 
downside is that the modifying transactions have additional work to do. 
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