
W
EEK

EN
D

C
R

A
S
H

C
O

U
R
S
E

W
EEK

EN
D

C
R

A
S
H

C
O

U
R
S
E

™

KRIEGEL

MICROSOFT®SQL
SERVER 2000

ALEX
KRIEGEL,
MCSD

2 CD-ROMs
with a SQL Server
2000 trial, an
assessment test,
and more

30 Sessions
That Will Have
You Up and
Running with
SQL Server 2000
in Only 15 Hours

M
ICR

O
SO

FT
®SQ

L SER
V
ER

 2
0
0
0

HOUR

15

15he big day is Monday. The day you get to show off what you know
about SQL Server 2000. The problem is, you’re not really up to speed.

Maybe it’s been a while since you worked with SQL Server. Or maybe
you just like a challenge. In any event, we’ve got a solution for you —
Microsoft SQL Server 2000 Weekend Crash Course. Open the book Friday
evening and on Sunday afternoon, after completing 30 fast, focused
sessions, you’ll be able to get right to work on a SQL Server 2000 database.
It’s as simple as that.

The Curriculum

Get Up to Speed on
SQL Server 2000 —
in a Weekend!

Get Up to Speed on
SQL Server 2000 —
in a Weekend!

2 CD-ROMS INCLUDE:

• SQL Server 2000 120-
day Evaluation Edition

• SQL Programmer trial
version

• Evaluation versions
of database utilities,
including Rapid SQL,
DB Artisan, and
ER/Studio

• Web links to useful
SQL Server sites

• Sample code and
scripts

• Assessment software

System Requirements:

PC with Pentium 133 or higher;
Windows 2000 Server: 128MB
RAM. See the About the CD
Appendix for details and
complete system requirements.

Category:

Database

WEEKEND CRASH COURSEWEEKEND CRASH COURSE

T

™

ISBN 0-7645-4840-9

,!7IA7G4-feieag!:p;M;t;t;T

FRIDAY
Evening: 4 Sessions, 2 Hours
• Microsoft SQL Server 2000:

Getting Started
• Go Configure: After

Installation
• First Look at Enterprise

Manager Console
• Second Look at Enterprise

Manager Console

SATURDAY
Morning: 6 Sessions, 3 Hours
• Relational Database

Concepts
• SQL Server System

Databases
• Creating and Using a

Custom Database
• Transact-SQL Programming
• SQL Query Analyzer
• More Transact-SQL

Programming

SATURDAY, continued
Afternoon: 6 Sessions, 3 Hours
• Creating and Using Stored

Procedures and Triggers
• OSQL and ISQL
• Introducing Cursors
• Understanding

Transactions
• Locking
• Rules, Defaults, and

Constraints

Evening: 4 Sessions, 2 Hours
• Data Transformation
• SQL Server Back Up
• Server Replication
• User Management

SUNDAY
Morning: 6 Sessions, 3 Hours
• Managing Your Databases

— Visually
• Microsoft Distributed

Transaction Coordinator
• System Functions and

Stored Procedures
• Automating

Administration Tasks with
SQL Server Agent

• SQL Mail Agent
• Performance Tuning and

Optimization

Afternoon: 4 Sessions, 2 Hours
• Disaster Recovery
• SQL Server Security
• Database Connectivity
• Advanced Features of

SQL Server 2000

WEEKEND
CRASH
COURSE

HOURS

*85555-AIGGHi
For more information on
Hungry Minds, go to
www.hungryminds.com

$29.99 US
$44.99 CAN
£24.99 UK incl. VAT

4840-9 cover 8/20/01 9:17 AM Page 1

Microsoft® SQL Server 2000
Weekend Crash Course

014840-9 FM.F 8/28/01 12:51 PM Page i

014840-9 FM.F 8/28/01 12:51 PM Page ii

Microsoft® SQL Server 2000
Weekend Crash Course™

Alex Kriegel

Best-Selling Books • Digital Downloads • e-Books • Answer Networks
e-Newsletters • Branded Web Sites • e-Learning

New York, NY • Cleveland, OH • Indianapolis, IN

014840-9 FM.F 8/28/01 12:51 PM Page iii

Microsoft® SQL Server 2000 Weekend Crash
Course™

Published by
Hungry Minds, Inc.
909 Third Avenue
New York, NY 10022
www.hungryminds.com
Copyright © 2001 Hungry Minds, Inc. All rights
reserved. No part of this book, including interior
design, cover design, and icons, may be reproduce-
dor transmitted in any form, by any means (elec-
tronic, photocopying, recording, or otherwise)
without the prior written permission of the
publisher.
Library of Congress Control 2001089349
ISBN: 0-7645-4840-9
Printed in the United States of America
10 9 8 7 6 5 4 3 2 1
1B/RW/QZ/QR/IN
Distributed in the United States by Hungry Minds,
Inc.
Distributed by CDG Books Canada Inc. for Canada;
by Transworld Publishers Limited in the United
Kingdom; by IDG Norge Books for Norway; by IDG
Sweden Books for Sweden; by IDG Books Australia
Publishing Corporation Pty. Ltd. for Australia and
New Zealand; by TransQuest Publishers Pte Ltd. for
Singapore, Malaysia, Thailand, Indonesia, and Hong
Kong; by Gotop Information Inc. for Taiwan; by ICG
Muse, Inc. for Japan; by Intersoft for South Africa;
by Eyrolles for France; by International Thomson
Publishing for Germany, Austria, and Switzerland;
by Distribuidora Cuspide for Argentina; by LR
International for Brazil; by Galileo Libros for Chile;

by Ediciones ZETA S.C.R. Ltda. for Peru; by WS
Computer Publishing Corporation, Inc., for the
Philippines; by Contemporanea de Ediciones for
Venezuela; by Express Computer Distributors for
the Caribbean and West Indies; by Micronesia Media
Distributor, Inc. for Micronesia; by Chips
Computadoras S.A. de C.V. for Mexico; by Editorial
Norma de Panama S.A. for Panama; by American
Bookshops for Finland.
For general information on Hungry Minds’ products
and services please contact our Customer Care
department within the U.S. at 800-762-2974, out-
side the U.S. at 317-572-3993 or fax 317-572-4002.
For sales inquiries and reseller information, includ-
ing discounts, premium and bulk quantity sales,
and foreign-language translations, please contact
our Customer Care department at 800-434-3422,
fax 317-572-4002 or write to Hungry Minds, Inc.,
Attn: Customer Care Department, 10475 Crosspoint
Boulevard, Indianapolis, IN 46256.
For information on licensing foreign or domestic
rights, please contact our Sub-Rights Customer Care
department at 212-884-5000.
For information on using Hungry Minds’ products
and services in the classroom or for ordering exam-
ination copies, please contact our Educational Sales
department at 800-434-2086 or fax 317-572-4005.
For press review copies, author interviews, or other
publicity information, please contact our Public
Relations department at 317-572-3168 or fax 317-
572-4168.

For authorization to photocopy items for corporate, personal, or educational use, please contact
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, or fax 978-750-4470.

LIMIT OF LIABILITY/DISCLAIMER OF WARRANTY: THE PUBLISHER AND AUTHOR HAVE USED THEIR
BEST EFFORTS IN PREPARING THIS BOOK. THE PUBLISHER AND AUTHOR MAKE NO REPRESENTA-
TIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS
OF THIS BOOK AND SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. THERE ARE NO WARRANTIES WHICH EXTEND BEYOND THE
DESCRIPTIONS CONTAINED IN THIS PARAGRAPH. NO WARRANTY MAY BE CREATED OR EXTENDED
BY SALES REPRESENTATIVES OR WRITTEN SALES MATERIALS. THE ACCURACY AND COMPLETENESS
OF THE INFORMATION PROVIDED HEREIN AND THE OPINIONS STATED HEREIN ARE NOT GUARAN-
TEED OR WARRANTED TO PRODUCE ANY PARTICULAR RESULTS, AND THE ADVICE AND STRATEGIES
CONTAINED HEREIN MAY NOT BE SUITABLE FOR EVERY INDIVIDUAL. NEITHER THE PUBLISHER
NOR AUTHOR SHALL BE LIABLE FOR ANY LOSS OF PROFIT OR ANY OTHER COMMERCIAL DAMAGES,
INCLUDING BUT NOT LIMITED TO SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR OTHER DAMAGES.

Trademarks: Weekend Crash Course is a trademark or registered trademark of Hungry Minds, Inc.
Microsoft is a registered trademark or trademark of Microsoft Corporation. All other trademarks are prop-
erty of their respective owners. Hungry Minds, Inc. is not associated with any product or vendor men-
tioned in this book.

014840-9 FM.F 8/28/01 12:51 PM Page iv

About the Author
Alex Kriegel, MCSD, has worked for Psion Teklogix International Inc., Integration Services
Group for the past three years. Their main product is TekRF Integration Components for
SAP R/3. Alex participated in designing and implementing it from the very beginning back
in 1997. In addition to programming, he is also responsible for troubleshooting SQL Server
installations, optimizing performance, and devising SQL stored procedures and such. For the
past two years Alex has taught a course on SQL/SQL Server for a group of SAP analysts.

Acquisitions Editor
Terri Varveris

Project Editor
Valerie Perry

Technical Editors
Allen Wyatt and Trevor Dwyer

Copy Editor
S.B. Kleinman

Project Coordinator
Dale White

Graphics and Production Specialists
Joyce Haughey
Adam Mancilla
Betty Schulte
Brian Torwelle

Quality Control Technicians
Laura Albert
Susan Moritz
Angel Perez
Charles Spencer

Permissions Editor
Laura Moss

Media Development Specialist
Travis Silvers

Media Development Coordinator
Marisa Pearman

Proofreading and Indexing
TECHBOOKS Production Services

Credits

014840-9 FM.F 8/28/01 12:51 PM Page v

I dedicate this book to my teacher in a previous life,
Dr. Isaac I. Garbar, for everything I did not have time to
accomplish in the physics of wear and friction of metals

while I was taking my time to explore Zen teachings.

014840-9 FM.F 8/28/01 12:51 PM Page vi

SQL Server 2000 is a major milestone for Microsoft, which is trying to position
itself as a significant player in the database market. The demand for database-
driven sites on the Internet is exploding (some major sites are running SQL

Server 2000 as their back end, Microsoft included), creating a demand for qualified
people who understand the product — from technical support people to analysts to
programmers without database experience.

With so many SQL Server books on the market you may wonder why there is any
need for another one. There is more than one way to tell a story, and I like to
think that this book offers a special angle from which to approach the rather com-
plex topic of Relational Database Management Systems in general and SQL Server
2000 in particular.

I intend for this book to provide a no-nonsense, hands-on introduction to SQL
Server for the widest audience possible: technical-support people whose company
product includes SQL Server as part of its solution, small companies’ “jacks of all
trades” doing in-house maintenance, beginning and intermediate programmers
breaking into the field or switching careers or upgrading from some other database
system, managers who would like to know what SQL Server can do for them with-
out getting involved in a “holy war” of database vendors — and so on.

Who Should Read this Book

This crash course is comprised of a set of short lessons that you can grasp quickly—
in one weekend. While writing this book I kept two kinds of people in mind:

Those who need to learn SQL Server 2000 fast and do not know where to
start. These people have just the right mix of basic technical knowledge
and curiosity, and need to feel comfortable using SQL Server.

Those who worked with previous versions of SQL Server and would like a
brief, hands-on introduction to SQL Server 2000 — one basic enough for
beginners, but deep enough for intermediate users.

Preface

014840-9 FM.F 8/28/01 12:51 PM Page vii

What You Need to Have

In order to make the most of this book, you’ll need the following:

� A computer (Pentium 166 or higher) running Windows NT 4.0 Server or
Windows 2000 Server.

� Microsoft SQL Server 2000 Standard Edition installation.
� Lots of patience and the desire to find out what SQL Server 2000 is all about.

You can get by with most of the material in this book using Windows 98 and
the Personal Edition of SQL Server 2000, though this could not be considered
“making the most of it.”

What Results Can You Expect?

Can you become a SQL Server database administrator in a weekend? As much as I
would like to say the opposite, the answer is no. It takes much more than just
three days of studying to become a database administrator. Can you become a com-
petent user of SQL Server, and gain an understanding of some of the finer points of
SQL Server 2000 features, in a weekend? Absolutely.

This is not a reference book and it does not pretend to cover each and every
aspect of SQL Server in depth. It will help you to get up and runningand, at the
same time, show you where to look for further information.

You can expect to learn how to set up SQL Server 2000 with most standard fea-
tures (and troubleshoot the installation if anything goes wrong). I will provide a
thorough introduction to the most important SQL Server features and objects —
SQL Server administration, creating and destroying database objects, optimizing
performance, publishing information on the Internet, and much more — and to
using them for your own purposes.

Layout and Features

This book follows the standard Weekend Crash Course layout and includes the stan-
dard features of the series so that you can be assured of mastering basic SQL
Server 2000 skills within a weekend — 30 hours, to be precise. The book contains
30 sessions, each about one hour long, to be read over the course of three and a
half days. At the end of each session you’ll find “Quiz Yourself” questions, and at

Prefaceviii

014840-9 FM.F 8/28/01 12:51 PM Page viii

the end of each part you’ll find Part Review questions. These questions enable you
to test your knowledge and exercise your newly acquired skills. (The answers to
the part-review questions are in Appendix A.)

Layout

This Weekend Crash Course contains 30 one-hour sessions organized into six parts.
Each part corresponds to a time during the weekend, as outlined in the following
sections.

Part I: Friday evening

This is the “get started” part. You will go through the complete process of setting
up SQL Server 2000, starting from hardware and software considerations to select-
ing installation options to having an up-and-running instance of SQL Server. You
will go through the process of installing and configuring your server and will also
get a glimpse of what lies ahead.

Part II: Saturday morning

In this part you will get into the fundamental concepts of relational databases,
both examining SQL Server system databases and getting an introduction to creat-
ing and using user databases. You also will get an introduction to Structured Query
Language (SQL), the language of relational databases.

Part III: Saturday afternoon

In these sessions you will take your SQL Server 2000 programming skills to a new
level: You will be introduced to stored procedures, triggers, and cursors. The ses-
sion on indices will give you a thorough understanding of this important concept.
This part also includes in-depth discussions of locking, transactions, and the
integrity mechanisms of SQL Server 2000.

Part IV: Saturday evening

This part will introduce you to some advanced features of SQL Server such as Data
Transformation Services, backing up and restoring, and replication. It also will
cover the basics of user management in the context of SQL Server 2000.

Preface ix

014840-9 FM.F 8/28/01 12:51 PM Page ix

Part V: Sunday morning

Here you will be introduced to database-management issues. You will learn about
distributed transactions, obtaining system information, and automating adminis-
trative tasks with SQL Server Agent. The sections in this part will show you how to
configure SQL Server to send and receive e-mail. You will also learn how to opti-
mize and tune the performance of SQL Server.

Part VI: Sunday afternoon

In this part you will learn about disaster recovery and receive a comprehensive
introduction to SQL Server 2000 security. The sessions in this part will also address
connectivity issues and give an overview of the most advanced features in SQL
Server 2000.

Features

As you go through each session, look for the following icons that let you know
how much progress you’ve made in the session:

Remember, these are just suggestions: You may need more or less time to finish
the section. The book also contains other icons that call your attention to special
points of interest:

These alert you to important pieces of information that you
should file away in your head for later.

These give you helpful advice about the best ways to do things,
or tell you about a tricky technique that can make your HTML
programming go more smoothly.

These tell you where you can find related material in other
sessions.

Cross-Ref

Tip

Note

Prefacex

014840-9 FM.F 8/28/01 12:51 PM Page x

Accompanying CD-ROM

You will find a CD-ROM at the back of this book. It contains a skills-assessment
test, a PDF version of the book, and as many useful tools and as much information
as it is possible to fit there. For a complete description of each item on the
CD-ROM, see Appendix B.

Reach Out

I know this book could have been better given enough time and space (uh . . .
about five more years to write and 5,000 pages to hold the information). Neither
you nor I have this luxury. Any feedback that will help to make revised editions of
this book better and more comprehensive will be appreciated. Send your comments
about the content of this book to:

alexkriegel@hotmail.com

As the saying goes, all you know today is obsolete. With this cheerful thought,
you are ready to plunge into the relational database world — through the SQL
Server 2000 entrance.

Preface xi

014840-9 FM.F 8/28/01 12:51 PM Page xi

014840-9 FM.F 8/28/01 12:51 PM Page xii

M y gratitude goes to Grace M. Buechlein, who introduced me to the world of
book-writing and convinced me that I could do it. Thank you very much,
Grace!

I thank with all my heart my Development/Project Editor Valerie Perry, who
taught me how to be eloquent without sacrificing technical details along the way,
and who helped me with every step — all in spite of power shortages in California.
I really appreciate your help.

I am very grateful to my acquisitions editor, Terri Varveris, who pressed me hard
to meet deadlines, and who encouraged me and guided me with extreme patience
through all the intricacies of writing a technical book. Thank you, Terri!

I am very grateful to my copy editor, S. B. Kleinman, for all the work she did to
make the original text better, a lot better.

I would like to express my gratitude to my technical editor, Allen Wyatt, for
actually reading through these pages, picking out inconsistencies, bloopers, and
outright errors, and making valuable suggestions about how to improve the con-
tent of the book, chapter by chapter. My thanks also go to Trevor Dwyer, my other
technical editor who helped edit the first several chapters of this book.

This book would have been impossible without the meticulous work of the
Hungry Minds team that helped me to get everything in shape: Kyle Looper, Laura
Moss, Marissa Pearman, Nancy Maragioglio and Dale White. Thank you.

My thanks also go to Bradley Ruste, my colleague, for helping me to write the
chapter on SQL Server 2000 backup, as well as the general discussions of the SQL
Server topics we’re having from time to time.

I thank my parents, Lazar and Raisa Kriegel, for their lifelong understanding
and support, sometimes even against their best judgment.

My deepest gratitude goes to my wife, Liana, for her support when I needed it
most, and to my two sons, Phillip and Michael, for giving me endless hours of fun
as I explained to them the finer points of relational-database systems, and being
there for me when I needed them. Thank you.

Acknowledgments

014840-9 FM.F 8/28/01 12:51 PM Page xiii

Preface ...vii
Acknowledgments ..xiii

FRIDAY...2
Part I—Friday Evening ..4
Session 1–Getting Started ...5
Session 2–Go Configure ...19
Session 3–First Look at Enterprise Manager Console..29
Session 4–Second Look at Enterprise Manager Console37

SATURDAY ...48
Part II—Saturday Morning ..50
Session 5–Relational Database Concepts ..51
Session 6–SQL Server Databases ...61
Session 7–Creating and Using a Custom Database ..73
Session 8–Transact-SQL Programming Language ..81
Session 9–T-SQL and SQL Query Analyzer ..95
Session 10–Programming with T-SQL ...107

Part III—Saturday Afternoon ..124
Session 11–Creating and Using Stored Procedures ..125
Session 12–Trigger Happy ..137
Session 13–Introducing Cursors ...145
Session 14–Understanding Indexes..155
Session 15–Rules, Defaults, and Constraints ..167
Session 16–Understanding Transactions and Locks ..177

Part IV—Saturday Evening ..190
Session 17–Data Transformation Services ..191
Session 18–SQL Server Back Up ..201
Session 19–SQL Server Replication ..213
Session 20–User Management ...225

SUNDAY...238
Part V—Sunday Morning ...240
Session 21–Managing Your Databases Visually ...241
Session 22–Distributed Transaction Coordinator ...251
Session 23–Accessing SQL Server System Information......................................263

Contents at a Glance

014840-9 FM.F 8/28/01 12:51 PM Page xiv

Session 24–Automating Administration Tasks with SQL Server Agent273
Session 25–Configuring SQL Server Mail ..283
Session 26–Performance Tuning and Optimization ..293

Part VI—Sunday Afternoon...308
Session 27–Disaster Recovery ...309
Session 28–SQL Server Security ...319
Session 29–Database Connectivity ..331
Session 30–Advanced Features of Microsoft SQL Server 2000341

Appendix A–Answers to Part Reviews ..355
Appendix B–What’s on the CD-ROM? ...367
Index ...371

014840-9 FM.F 8/28/01 12:51 PM Page xv

014840-9 FM.F 8/28/01 12:51 PM Page xvi

Preface ...vii
Acknowledgments ..xiii

FRIDAY...2
Part I—Friday Evening ..4
Session 1–Getting Started..5

Understanding Microsoft SQL Server ...5
Installing SQL Server 2000 ...6

System requirements..7
Before you begin the installation ..8
Stepping through the installation..9
Completing the installation and rebooting your computer.................................17

Session 2–Go Configure ...19
Fixing a Faulty Installation...20
Running SQL Server Service Manager ..20
Managing Configuration Tasks ...22

Windows NT...22
Windows 2000 ...23

Locating SQL Server Files ...23
Adding Components ...25
Uninstalling SQL Server..25

Session 3–First Look at Enterprise Manager Console.......................................29
Starting the Enterprise Manager ...29
Creating Server Groups and Registering Servers ..31
Down Under: Inspecting Registered SQL Server Nodes33
Considering Your Options ...34
Accessing SQL Server Books Online ...36

Session 4–Second Look at Enterprise Manager Console37
Meeting the Wizards ..37

Database administration wizards..39
Database wizards ...40
The Replication Wizard ...41
The Web Assistant Wizard ...41

Running Command-Line Utilities ...42
Understanding Data Transformation Services ..44
Accessing SQL Server Agent ..45

Contents

014840-9 FM.F 8/28/01 12:51 PM Page xvii

SATURDAY ...48
Part II—Saturday Morning ..50
Session 5–Relational Database Concepts ...51

Identifying the Limitations of Spreadsheet Programs......................................51
Understanding Legacy Database Models ..52

Hierarchical databases ..52
Network databases ...54

Introducing the Relational Database Model ...54
Many-to-many relationships ..55
One-to-many relationships ..56
One-to-one relationships...56

Exploring Relational-Database Management-System Implementations56
Learning Relational-Database Terminology..58

Session 6–SQL Server Databases ...61
Understanding the SQL Server System Databases ...61

The Master database...62
The TempDB database...62
The Model database..63
The MSDB database ..63

Exploring the SQL Server Sample Databases...64
The Pubs database ...64
The Northwind database ...65

Learning the Basics of Relational Database Design ..65
Get normal..68
Common pitfalls of database design..70

Flat-file design ..70
Spreadsheet design...70
Design tied to a particular RDBMS implementation70

Session 7–Creating and Using a Custom Database ...73
Creating a New Database in SQL Server 2000 ...73
Modifying Database and Transaction Log Properties ..77
Deleting a Database..79

Session 8–Transact-SQL Programming Language ..81
Learning about Transact SQL ..81
Using the SELECT Keyword..82
Working with the JOIN and UNION Keywords ..87

The JOIN keyword ..87
The UNION keyword..90

Using the INSERT, UPDATE, and DELETE Keywords ...90
Using the INSERT keyword ..90
Using the UPDATE keyword..91
Using the DELETE keyword ..92

Knowing about Additional T-SQL Keywords and Functions93

Contentsxviii

014840-9 FM.F 8/28/01 12:51 PM Page xviii

Session 9–T-SQL and SQL Query Analyzer...95
Learning about T-SQL and SQL Query Analyzer ..95
Creating, Altering, and Dropping Databases with T-SQL98

Creating databases ...98
Altering databases ...99
Dropping databases ..100

Creating, Altering, and Dropping Tables with T-SQL.......................................100
Creating tables ..100
Altering tables ...101
Deleting tables...102

Getting Information about Your SQL Server ...102
Working with the Query Analyzer Templates and the Object Browser..............103

Session 10–Programming with T-SQL ...107
Declaring and Using T-SQL Variables ...107

Implicit conversion...109
Explicit conversion ...110

Using Control-of-Flow Statements ...111
Exploring T-SQL Operators ..113

Arithmetic operators...114
Comparison operators ...114
Logical operators..115
The assignment operator ...116
The string concatenation operator..116
Unary operators ...116
Operator precedence ...117

Working with Aggregate Functions ...118
Running Subqueries ...118
Using the CASE Function ..119

Part III—Saturday Afternoon ..124
Session 11–Creating and Using Stored Procedures125

Creating Stored Procedures ...125
Commenting Transact-SQL Code ..128
Error Handling ..129
Using Different Types of Stored Procedures...132

Temporary stored procedures ...132
Nested and recursive stored procedures...133
System stored procedures..134

Renaming and Dropping a Stored Procedure..134
Session 12–Trigger Happy ..137

Introducing Triggers...137
AFTER triggers ...139
INSTEAD OF triggers ...141

Contents xix

014840-9 FM.F 8/28/01 12:51 PM Page xix

Recursive triggers...142
Nested triggers ..142

Managing Triggers..143
Creating triggers ..143
Dropping (deleting) triggers ..143
Modifying triggers ..144

Session 13–Introducing Cursors ...145
Understanding Cursors ...145
Using Different Types of Cursors...148

Scrollable cursors ...148
Static cursors...149
Dynamic cursors...149
Keyset cursors..150
Forward-only cursors ..150

Understanding the Scope of the Cursors ..150
Setting Cursor Concurrency Options ..151
Choosing the Right Cursor ..152

Session 14–Understanding Indexes ...155
Using Indexes ..155

Clustered indexes ...156
Non-clustered indexes...157

Designing an Index ..157
Creating and Deleting an Index...158
Managing an Index...164

Session 15–Rules, Defaults, and Constraints ...167
Enforcing Data Integrity...167

Types of integrity...168
Types of constraints ...168

PRIMARY KEY constraints...168
FOREIGN KEY constraints ...169
UNIQUE constraints ..170
CHECK constraints ..171
RULE constraints ..172
DEFAULT constraints ..173

Understanding NULL Values ...175
Session 16–Understanding Transactions and Locks177

Understanding Transactions ...177
Explicit and implicit transactions ...180
Distributed transactions ..181

Setting Isolation Levels ..182
Introducing SQL Server Locks ...183
Exploring Lock Types..184
Dealing with Deadlocks ..185

Contentsxx

014840-9 FM.F 8/28/01 12:51 PM Page xx

Part IV—Saturday Evening ..190
Session 17–Data Transformation Services ...191

Introducing Data Transformation Services...191
Importing and Exporting Data through DTS ...192
Maintaining DTS Packages ..197
Using the Bulk Copy Command-Line Utility...198

Session 18–SQL Server Back Up ..201
Implementing Backup and Recovery Planning ...201
Using Different Backup Strategies...202

Complete database backups ...203
Differential backup...207
Transaction-log backup ...207

Selecting a Recovery Mode ..207
Simple recovery ...208
Full recovery..208
Bulk-logged recovery ..208

Restoring a Database ..208
Managing Backups..211

Session 19–SQL Server Replication ...213
Reviewing SQL Server Replication ..213

Basic replication terminology ..214
Selecting a Replication Model ..216
Preparing for Replication ...216

Snapshot replication...217
Transactional replication ...217
Merge replication ...217

Setting up Replication ...217
Creating publications..220
Managing subscriptions...222
Monitoring replication ..223

Session 20–User Management ..225
Setting Up a User Account ..225

Roles ..226
Logins...226

Managing User Permissions ..230
Managing a Multiuser Environment ...233

SUNDAY ..238
Part V—Sunday Morning ...240
Session 21–Managing Your Databases Visually ..241

Devising a Database-Maintenance Plan..241
Scripting and Documenting Your Database ..247
Moving and Copying Database Files ...248

Contents xxi

014840-9 FM.F 8/28/01 12:51 PM Page xxi

Session 22–Distributed Transaction Coordinator ..251
Using Remote Servers and Linked Servers ...251

Remote servers...252
Linked servers ...254

Accessing External Data Sources..258
Using Microsoft Distributed Transaction Coordinator (MSDTC)259

Session 23–Accessing SQL Server System Information263
Obtaining SQL Server System Information...263
Using Information Schema Views..264
Using System Stored Procedures..266

General stored procedures ...267
Catalog stored procedures..267
Security stored procedures ..268
SQL Server Agent stored procedures..269
Extended stored procedures...269

Session 24–Automating Administration Tasks with SQL Server Agent273
Configuring and Using SQL Server Agent...273

Configuration screen ..274
Properties..274

The Alert tab ...275
The Jobs tab ..275
The Connection tab...275

Scheduling Jobs ...276
Creating Alerts ...278
Managing Operators..280
Administering Multiple Servers...281

Session 25–Configuring SQL Server Mail ...283
Setting Up Your Mail Profile ...283
Configuring SQL Mail and SQL Server Agent Mail ...286
Sending Mail through Extended Stored Procedures ..288
Troubleshooting ...289

Session 26–Performance Tuning and Optimization..293
Monitoring and Profiling ..293
Tuning SQL Queries ..296
Using the Index Tuning Wizard...299
Optimizing TempDB and the Transaction Log...301

Optimizing TempDB performance..301
Optimizing Transaction Log performance...302

Using Database Consistency Check (DBCC)...302

Contentsxxii

014840-9 FM.F 8/28/01 12:51 PM Page xxii

Part VI—Sunday Afternoon...308
Session 27–Disaster Recovery...309

Planning for Disaster..309
Identifying Basic Disaster Scenarios ...310

Physical destruction ...311
Failed operating system ..311
Database corruption ...311
Verifying functionality..312

Creating Standby Servers ..312
Managing the Disaster ..313

Session 28–SQL Server Security ...319
Planning for Security ...319
Introducing SQL Server Authentication Modes ...320
Configuring SQL Server Roles..321

Fixed server roles ...322
Adding a member to a fixed server role ..322
Database roles..323
Adding a member to a database role ...324
Application roles..326

Using Views as a Security Mechanism..327
Understanding SQL Server File Permissions...328
Auditing SQL Server ...328

Session 29–Database Connectivity ..331
Introducing DBLIB, ODBC and OLE DB..331

DBLIB ...332
Open Database Connectivity (ODBC)..332
OLE DB..332

Configuring ODBC Data Sources...333
Presenting DAO, RDO, and ADO..337
Interoperability with Non-Windows Machines and the Internet339

Session 30–Advanced Features of Microsoft SQL Server 2000341
Using English Query ...341
Performing Full-Text Searches...343
Using SQL Server 2000 Analytical Services ..345
Running the Web Assistant Wizard ...347
Getting SQL Server XML Support ...349

Appendix A–Answers to Part Reviews ..355
Appendix B–What’s on the CD-ROM?xxii ..367
Index ...371

Contents xxiii

014840-9 FM.F 8/28/01 12:51 PM Page xxiii

024840-9 DPO1.F 8/28/01 12:51 PM Page 2

Part I — Friday Evening
Session 1
Getting Started

Session 2
Go Configure

Session 3
First Look at Enterprise Manager Console

Session 4
Second Look at Enterprise Manager Console

024840-9 DPO1.F 8/28/01 12:51 PM Page 3

P A R T

Friday
Evening

I

Session 1
Getting Started

Session 2
Go Configure

Session 3
First Look at Enterprise Manager Console

Session 4
Second Look at Enterprise
Manager Console

034840-9 po1.F 8/28/01 12:51 PM Page 4

Session Checklist

✔ Understanding Microsoft SQL Server
✔ Installing SQL Server 2000

This session will introduce you to SQL Server and guide you through the
installation process step-by-step. It explains hardware and software require-
ments and the reasons for making necessary choices along the way. The final

sidebar comparing SQL Server to other major players on the database market lists
the costs and benefits of various database-system implementations.

Understanding Microsoft SQL Server

Microsoft SQL Server is a scalable database system whose primary purpose is to
serve as a back-end database for a client program, such as your Web browser, an
accounting program, or a human resources application — anything that makes use
of the data. In the most common usage scenario, a client program connects to SQL
Server and requests some information, whereupon SQL Server processes the request
and returns results. The client must then interpret and display these results (for

S E S S I O N

Getting Started

1

044840-9 ch01.F 8/28/01 12:51 PM Page 5

example, a custom human-resources application displaying a list of employees in
alphabetical order).

Unlike text editors or games, which do not require any additional components
in order to be useful, MS SQL Server does not make much sense as a stand-alone
program or as a program that runs on a stand-alone computer. Although it is pos-
sible to have both a client and SQL Server running on the same computer, it is not
very useful. It would be something like hammering nails with a microscope, as SQL
Server is meant to be part of a network (local, wide, Internet — you name it) and
to serve more than one user.

SQL Server can store structured information in a variety of formats, and it
enables you to manipulate this information. For example, you can instantly search
through millions of records and view the results of the search in many different
formats; you can combine different data into one set; you can transform some for-
mats into others; you can set security rules to be enforced by SQL Server; and
so on.

Advanced features of MS SQL Server 2000 include On-Line Analytical Processing
(OLAP) and Data Mining, which enable you to analyze huge amounts of data to
discover hidden trends. Whatever business you’re in and however many users you
have, SQL Server will provide support for all your data needs and seamlessly inte-
grate into your enterprise.

You cannot expect SQL Server to think for you. To be even marginally useful, it
has to be told exactly what to do. SQL Server is very flexible, but it won’t prevent
you from shooting yourself in the leg.

Installing SQL Server 2000

Installing SQL Server 2000 is a snap — that is, if you stick to the default settings. I
recommend that you postpone trying your hand at mission-critical installations
until you actually understand the options and their ramifications.

All SQL Server 2000 installations require a Pentium 166 or higher computer
that’s equipped with a VGA monitor and at least 95MB of free disk space (the typi-
cal installation uses about 250MB). Unless you’re planning on installing from a
network, a CD-ROM drive is also required.

Microsoft warns against installing the product on older Cyrix
processor-equipped computers. They might not support the full
set of instructions that SQL Server requires.

Note

Friday Evening6

044840-9 ch01.F 8/28/01 12:51 PM Page 6

System requirements

Table 1-1 lists the operating system and RAM requirements as well as an overview
of the most important features.

Table 1-1
Overview of SQL Server 2000 Editions

Edition Features Hardware
Requirements Notes

Enterprise Edition Maximum database RAM: 64MB Supports all
size: 1,048,516 TB minimum; 128MB features available
Maximum SMP CPU: recommended in SQL Server
32 (on Win2000 OS: Windows NT 2000
Datacenter Server) Server or Windows

2000 Server

Standard Edition Maximum database RAM: 64MB Designed as a
size: 1,048,516 TB minimum; 128MB database server
Maximum SMP CPU: recommended for a workgroup
8 (on Windows NT 4 OS: Windows NT or department;
Server, Enterprise) Server or Windows supports the

2000 Server majority of SQLS
Server 2000
features

Personal Edition Maximum database RAM: 64MB Used mostly by
size: 2 GB minimum; mobile users
Maximum SMP CPU: 128MB running
2 (supports only 1 recommended applications
on Windows 98) OS: Windows NT requiring SQL

Server Windows Server support on
2000 Windows 98 a client computer

Developer Edition Maximum database RAM: 64MB Supports all
size: 1,048,516 TB minimum; 128MB features available
Maximum SMP CPU: recommended in SQL Server
32 (on Win2000 OS: Windows NT 2000 but is
Datacenter Server) Server or Windows licensed only for

2000 Server development and
testing

Continued

Session 1—Getting Started 7

Part I—
Friday Evening

Session 1

044840-9 ch01.F 8/28/01 12:51 PM Page 7

Table 1-1 Continued

Edition Features Hardware
Requirements Notes

Desktop Engine Varies according to Varies according A re-distributable
the application it to the application version that can
ships with it ships with be packaged with

an independent
vendor’s
application

Windows CE Edition Bound by Windows OS: Windows CE 3.0 A SQL Server
CE limitations version for

Windows CE
devices; can be
synchronized
with a enterprise
database

After you figure out your system requirements, you can start the installation.

Before you start your installation, make sure that all nonessen-
tial services are stopped, especially all members of the Microsoft
BackOffice family: Close your e-mail program, anti-virus pro-
gram, and so on. You also need to be logged onto your computer
with full administrative privileges (thus having a full access to
Windows registry on that machine).

Before you begin the installation

I have chosen Standard Edition for my examples, as it is the edition most suitable
for a workgroup or small department. For the purposes of this book I will assume
that you are running it on a Microsoft Windows NT 4.0/ 2000 Server. (I assume
that you’re installing MS SQL Server 2000 on a machine on which no previous ver-
sions of the product have been installed; if you are upgrading from any previous
MS SQL versions please refer to Appendix C.) If you’ve followed me this far, you are
ready to install SQL Server 2000 Components.

If you are running MS Windows 95, you must first install SQL Server 2000
Prerequisites (Common Controls Library Update). Keep in mind that Windows 95
supports only the client connectivity option, which allows applications to access

Tip

Friday Evening8

044840-9 ch01.F 8/28/01 12:51 PM Page 8

instances of SQL Server 2000 on other computers — that is, you will need a server
to connect to; you also may need to upgrade to Microsoft Internet Explorer 5.0 and
HTML Help 1.3. You can update Internet Explorer and HTML Help by downloading
the latest versions from http://www.microsoft.com. The HTML Help update file
is named Hhupd.exe. SQL Server 2000 was not designed to run on Win95, and if
you’re serious about learning SQL Server, it’s time to upgrade.

Stepping through the installation

Follow these steps to perform the installation:

1. Insert the Microsoft SQL Server 2000 Standard Edition CD into your
CD-ROM drive. If your computer supports the autorun feature, the instal-
lation will start automatically; otherwise, find your CD-ROM from
Windows Explorer and start autorun.exe.

2. From the very first installation screen, select SQL Server 2000
Components. The next screen gives you the following options:

� Install Database Server
� Install Analysis Services
� Install English Query

You may want to consider installing Analysis Services and/or English Query —
some other time. These are advanced options that deserve a separate book, and I
recommend mastering the basics before moving on.

3. Click Install Database Server. The Installation Wizard comes to life. It
guides you through the whole installation process. (You can go back and
change your choices until you click Finish.)

You can install SQL Server 2000 either locally or on a remote machine, as
shown in Figure 1-1.You need to specify your computer (server) name if
you are installing on a remote machine. Virtual Server is an advanced
option for enterprise-level database systems.

The installation program detects any previous instances of SQL Server
running on your machine and gives you appropriate install and/or
upgrade options. Depending on what is already installed on your com-
puter, you might have slightly different installation options enabled or
disabled.

Session 1—Getting Started 9

Part I—
Friday Evening

Session 1

044840-9 ch01.F 8/28/01 12:51 PM Page 9

Figure 1-1
This screen enables you to specify the computer on which you’re going to
install SQL Server 2000.

New Instance means that you can install and run several copies
of SQL Server 2000 on the same computer at the same time. All
instances will be administered from a single management con-
sole, but each instance is absolutely independent of the others.

Because you’re creating a new instance of SQL Server, the default option
shown in Figure 1-2 is the one you want. After you install SQL Server,
you can always change configuration settings and upgrade, remove, or
add components. Click Next to continue.

Advanced options are — as the name implies — for advanced
users; after you finish this book, you may want to explore them
on your own.

Note

Note

Friday Evening10

044840-9 ch01.F 8/28/01 12:51 PM Page 10

Figure 1-2
Choose an installation type on the Selection screen.

4. Enter your name and the name of your company in the spaces provided.
Click Next to continue to the License Agreement screen.

5. Before you can proceed, you need to agree to the terms of the license
agreement that comes with your copy of SQL Server 2000. Later in the
installation process, you will be prompted to select a licensing mode;
therefore, make sure that you select the proper licensing options.

6. Specify installation options, as shown in Figure 1-3. Choose Server and
Client tools and click Next. (The two other options are for users working
from remote servers.)

7. In order to install an instance of SQL Server, you need to specify a name
(I specified MYVERYOWNSQL, as shown in Figure 1-4); every subsequent
installation will have to have a different unique name. Only one instance
will be designated as the default (the grayed-out check box on this
screen indicates that I already have a default instance of SQL Server run-
ning). Click Next.

Session 1—Getting Started 11

Part I—
Friday Evening

Session 1

044840-9 ch01.F 8/28/01 12:51 PM Page 11

Figure 1-3
Select what you’re going to install.

Keep instance names to less than 15 characters; it makes them
easier to read.

8. Select the type of setup you wish to perform. I recommend sticking with
the Typical setup type until you have more SQL Server experience. Click
Next.

You also may want to change the physical location of the program and
database files by clicking Browse. Generally, it is not a very good idea to
keep program and data files in the same directory, as this can cause
costly mistakes when you are maintaining your databases or installing
service packs and upgrades.

I strongly advise against installing the minimum required
options, because if you do, you will not have most of the fea-
tures I am going to talk about in this book.

Never

Tip

Friday Evening12

044840-9 ch01.F 8/28/01 12:51 PM Page 12

Figure 1-4
Name your SQL server or use the default name.

9. Choose your SQL Server collation order, default language, and so on, as
shown in Figure 1-5. Collation defines how your data will be compared
and sorted. For English and any language using Latin characters, the
choice is easy; for Asian characters, it might not be so obvious. The colla-
tion order specified here determines the default code page and sort order
for all non-UNICODE characters and is the UNICODE collation order for all
SQL Server system databases. The sort order determines whether opera-
tions on your data will be case-sensitive or not. Click Next.

You can always reconfigure your server for a different
collation/sort order later. There is a high price to pay — you
have to rebuild all your databases and possibly lose some data.
It is better to use the correct order from the beginning.

10. Unless you have a valid reason (for example, if you need direct access to
your server from the Internet or from a client running on an Apple com-
puter), I recommend leaving the Network Libraries screen with its default
values, which are Named Pipes and TCP/IP. Click Next.

Tip

Session 1—Getting Started 13

Part I—
Friday Evening

Session 1

044840-9 ch01.F 8/28/01 12:51 PM Page 13

Figure 1-5
Select the options for collation order.

11. Define Services Accounts (see Figure 1-6). You can start each service on a
different account, thus fine-tuning access privileges. I recommend select-
ing the same account for each service and auto-start for SQL Server. That
way, the SQL Server and SQL Server Agent services will be started each
time you log on to you machine account and won’t require special autho-
rization. Click Next.

If your computer is part of a network, you should install SQL
Server on a domain user’s account, which does not need all the
privileges of your administrator’s account.

12. Specify the authentication mode to be used to start up SQL Server. SQL
Server 2000 has built-in security to protect data from unauthorized
access. If you choose Windows Authentication Mode your SQL Server
databases will be accessible as soon as you log onto your account with
your Windows NT/2000 login; Mixed Mode requires a user ID and pass-
word in order to connect to SQL Server after you log on. Click Next.

Note

Friday Evening14

044840-9 ch01.F 8/28/01 12:51 PM Page 14

Figure 1-6
Set up your Services Accounts.

If your computer is a part of a network and you have access
rights to this network, you will normally use your domain user
account if your machine is part of the domain. A domain is a
group of computers defined by an administrator; it has a unique
name and its own set of security policies that apply to all the
computers that comprise it.

13. The setup process informs you that it has collected enough information
to start the installation. This is your last chance to change your settings
before the install. (Once you’ve got SQL Server up and running you’ll
always be able to change it through SQL Server itself, using the SQL
Server Enterprise Manager interface or built-in commands.) Click Next.

Unless you are installing evaluation software you see one more screen,
which prompts you to choose your licensing mode. For the purposes of
this book I select Licensing Per Seat — meaning that only one connection
to my installation of SQL Server will be allowed at any one time.

Note

Session 1—Getting Started 15

Part I—
Friday Evening

Session 1

044840-9 ch01.F 8/28/01 12:51 PM Page 15

Consult the license agreement that comes with your installation
package. The Per Seat licensing mode requires a Client Access
License for each device that will access SQL Server 2000. Per
Seat is often the most economical choice for networks in which
clients connect to more than one server. With Processor licensing
you need a license for each processor installed on the computer
running SQL Server. The Processor license allows any number of
devices to access the server, whether over an intranet or the
Internet.

Tip

Friday Evening16

How Does SQL Server 2000 Compare to the Other Guys?

Microsoft SQL Server has come a long way from obscurity in 1988 to being
one of the major databases employed around the world today. Some esti-
mates indicate that more than half of the Web servers running on
Windows NT/2000 use SQL Server as a back end. It is reasonably priced,
robust, relatively easy to set up and administer, and very well integrated
with Windows and the rest of the Microsoft products. It enjoys tremendous
popularity, which means that you do not have to pay an arm and a leg for
database expertise.

In a recent survey of five database vendors, Microsoft SQL Server came
first in terms of pricing, value, and programming expertise. SQL Server
gets less stellar marks in terms of customer referrals, service, responsive-
ness, features, innovation, reliability, availability and so on. IBM’s DB2
came in first in these areas, followed by ORACLE, Sybase Adaptive Server,
and Informix.

Keep in mind that Microsoft fights for market share against entrenched
rivals with well-established customer bases that are heavily invested in
the ORACLE or DB2 products. Some companies believe that “serious” appli-
cations require UNIX, on which SQL Server does not run; others believe
that the “cool” applications run on Linux... You get the idea.

044840-9 ch01.F 8/28/01 12:51 PM Page 16

Completing the installation and rebooting your computer

Depending on your computer resources the whole installation process should take
between 15 minutes and an hour. Depending on the operating system you are run-
ning, the last screen you see may or may not prompt you to reboot. It is always a
good idea to reboot your computer after installation, even if the install program
doesn’t suggest it.

If you have followed the preceding steps, after restarting your computer and
logging on you should see a small icon (a computer tower and a small encircled
green triangle or encircled red square) in your system tray (usually in the lower
right-hand corner, with the clock). This icon provides you with quick access to
your SQL Server Service Manager. Make sure that the icon displays a small green
triangle: This means that SQL Server is up and running. You can bring up the SQL
Server Service Manager console by right-clicking the icon and then check the sta-
tus of installed services: MSDTC, SQL Server and SQL Server Agent. You also can
stop, start, or pause any of these services from this console. Depending on your
installation you may or may not see some additional services, but these three
should always be there.

REVIEW

� I described the different editions of SQL Server 2000 and their major
features.

� I discussed the hardware and software requirements for SQL Server 2000
installation.

� You performed a complete installation of the Microsoft SQL Server 2000
Standard Edition.

QUIZ YOURSELF

1. What is SQL Server?

2. Can you run more than one instance of SQL Server 2000 on the same
machine?

3. On which operating systems does SQL Server 2000 run?

4. What authentication modes are available for SQL Server 2000?

5. What licensing modes are available for SQL Server 2000?

Session 1—Getting Started 17

Part I—
Friday Evening

Session 1

044840-9 ch01.F 8/28/01 12:51 PM Page 17

044840-9 ch01.F 8/28/01 12:51 PM Page 18

Session Checklist

✔ Fixing a faulty installation
✔ Running SQL Server Service Manager
✔ Managing configuration tasks
✔ Locating SQL Server files
✔ Adding components
✔ Uninstalling SQL Server

I f you followed all the steps in Session 1, you should not have any problems
with your installation. If for some reason your SQL Server installation was
unsuccessful, however, there is still hope. This session begins by showing you

how to fix a faulty installation. If you don’t need to do this, skip to the explana-
tions of how to run SQL Server Service Manager, manage configuration tasks, add
components, and uninstall SQL Server.

S E S S I O N

Go Configure

2

054840-9 ch02.F 8/28/01 12:51 PM Page 19

Fixing a Faulty Installation

Start by examining the error-log files that SQL Server installation process has cre-
ated for sqlstp.log (located in the Windows directory) and errorlog (with no exten-
sion). It can also be helpful to examine the event log on your machine.

The first file — sqlstp.log — contains detailed information about all the errors
(and events) that occurred during setup. Although most of the messages may seem
incomprehensible, they can still help you determine the cause of your problem —
or help you explain the problem to an experienced database administrator (DBA).

The errorlog file is created during the configuration portion of the setup. At
this stage, all program files are already transferred, and setup tries to start SQL
Server and connect to it. Any errors that occur during this process are recorded in
errorlog (some are also recorded in sqlstp.log).

If you find some clues to what might have happened, you might be able to fix
the problem right away; read Books Online or on the Net for more information.
Setup problems are usually caused by inadequate administration privileges, soft-
ware incompatibility problems, currently running programs, corrupted OS installa-
tion, previous SQL Server installations, or hardware problems.

The Web sites listed on the accompanying CD might help you
solve the problem. Make sure that you know the error description,
error number, your computer configuration, and so forth because
it all might be useful.

Running SQL Server Service Manager

Figure 2-1 shows the top-level options that Microsoft SQL Server Standard Edition
has installed on your computer. Select Start ➪ Programs ➪ Microsoft SQL Server to
access these options. In this session, I address the Service Manager option only.

You can start SQL Server 2000 as a service (which is its normal operational
mode) or from the command line as a standard Windows program. You can also
start SQL Server in single-user mode in order to perform advanced administration
procedures and troubleshooting.

NT Service is a special type of executable. It gets special treatment from the
Windows operating system and is not allowed to have any kind of user interface.
Start the Service Manager from the system tray taskbar or from Start (Start ➪

Program Files ➪ Microsoft SQL Server ➪ Service Manager). You will see the dialog
box shown in Figure 2-2.

CD-ROM

Friday Evening20

054840-9 ch02.F 8/28/01 12:51 PM Page 20

Figure 2-1
Microsoft SQL Server 2000 offers these top-level menu options.

Figure 2-2
Microsoft SQL Server 2000 Service Manager.

The Server drop-down list box contains a list of SQL Servers accessible from your
machine: If you have sufficient privileges, you can start and stop the services of
any of these. The Services drop-down list box contains all the following services
pertaining to the SQL Server that you have selected from the Server list:

� SQL Server — SQL Server can run in two modes: as a command-line pro-
gram or as a service. Normally you use it as a service, resorting to com-
mand-line mode only to troubleshoot your server or change some advanced
configuration options.

� SQL Server Agent — You can use the SQL Server Agent for jobs, alerts, or
tasks automation. I cover it in greater detail in Session 24.

Session 2—Go Configure 21

Part I—
Friday Evening

Session 2

054840-9 ch02.F 8/28/01 12:51 PM Page 21

� Microsoft Distributed Transaction Coordinator (MSDTC) — The
Distributed Transaction Coordinator is a transaction manager that allows
any client application to work with disparate sources of data within one
transaction (the application should not care whether the data it requested
is local or somewhere across the network).

You can start, pause, or stop any of these services using either the SQL Server
Service Manager utility or the command-line utility. SQL Server Service is usually
marked for auto-start when OS starts by default, and if you decide to use the SQL
Server Agent, you’ll probably want it to auto-start as well.

Managing Configuration Tasks

Let’s look into the most common configuration tasks that you may need to do. If
you selected automatic startup of the SQL Server Service during installation, your
service will be up and running after you log on to your machine; if you opted for a
manual startup, you need to start up your SQL Server Service before you can pro-
ceed. You can do this from the SQL Server Service Manager utility, as I described
earlier in this session.

After you install your SQL Server, you will be able to connect to it with the user
ID and password that you specified during installation. No matter what interface
you use to connect to SQL Server (Query Analyzer, Enterprise Manager, a third-
party application), you will be prompted for a user ID and password. Unless you
have selected integrated security (wherein your OS login will be your SQL Server
login), at this point, you should change your password and ID so that you can
remember them. It is good practice to change your login entries after installation.

It is all too common for users to leave the default options for
login and password (sa and a blank password). Doing so compro-
mises the security of your system. Change your login and pass-
word as soon as possible.

In the next two sections, I’ll show you how to change the login account infor-
mation for Windows NT and Windows 2000, respectively.

Windows NT

Follow these steps to change SQL Server Services login account information for
Windows NT:

Note

Friday Evening22

054840-9 ch02.F 8/28/01 12:51 PM Page 22

1. From the Control Panel, double-click the Services group. The Services dia-
log box presents the full list of services running on your machine.

2. Double-click the service for which you want to change account informa-
tion. In the Services dialog box, under Log on as, select This account and
enter your information.

You now need to change the user-account information in SQL Server
Enterprise Manager (I cover this in Session 3).

Windows 2000

Follow these steps to change SQL Server Services login account information for
Windows 2000:

1. Select Start ➪ Programs/Administrative Tools.

2. Select Services.

3. Right-click the MSSQLServer service.

4. Select Properties.

5. Click the Log On tab and change your password.

You must set up each service individually. You can set distinct IDs and pass-
words for each service. These changes take effect after the service is restarted. You
must have administrator privileges to change security entries.

I’ll cover issuing SQL Server commands in Sessions 7, 8, and 9.

Locating SQL Server Files

SQL Server 2000 installs many files and alters some Registry settings. Table 2-1
shows files shared for all instances of SQL Server running on your machine.

The dBinn, Data, HTML, and 1033 directories are sacred. Never
delete or modify these files; you will need to reinstall SQL Server
if you do.

Note

Cross-Ref

Session 2—Go Configure 23

Part I—
Friday Evening

Session 2

054840-9 ch02.F 8/28/01 12:51 PM Page 23

Table 2-1
Locations of SQL Server 2000 Files

Location Description

\Program Files\Microsoft SQL Server Dynamic-link libraries (DLLs) for
\80\Com Component Object Model (COM) objects.

\Program Files\Microsoft SQL Server Resource files (RLLs) used by the DLLs in
\80\Com\Binn\Resources\1033 this COM directory. (Note: 1033 is for

U.S. English; localized versions use
different directory numbers.)

\Program Files\Microsoft SQL Server Tools for use with SQL Server — resource
\80\Tools\Binn executables, command-line utilities, and

so on.

\Program Files\Microsoft SQL Server Resource files used by the executables in
\80\Tools\Binn\Resources\1033 the Tools\Binn directory.

\Program Files\Microsoft SQL Server SQL Server Books Online files.
\80\Tools\Books

Program Files\Microsoft SQL Server Files for use by developers creating SQL
\80\Tools\DevTools\ Server client applications.

Program Files\Microsoft SQL Server HTML files containing the graphical
\80\Tools\Html interface to SQL Server used by Microsoft

Management Console (MMC) and SQL
Server. Opening these files in your Web
browser is not recommended.

Program Files\Microsoft SQL Server Template files containing SQL scripts for
\80\Tools\Templates creating database objects.

Some of the advanced features of SQL Server will actually require you to look
into the Tools\Binn directory. Some executable files in this directory (such as
bcp.exe) can be invoked from the command line; others (such as the DTS Wizard
executable) have a visual interface. Normally, the path to these utilities is auto-
matically added to the environment when you install SQL Server, though some pro-
grams you may install on the machine at a later time can change this convention.

Friday Evening24

054840-9 ch02.F 8/28/01 12:51 PM Page 24

Adding Components

Whenever you need to add a component for SQL Server, you need to rerun the
installation. Follow the steps described in Session 1 until you reach the screen pre-
sented in Figure1-2; then follow this procedure:

1. Instead of creating a new instance of SQL Server, choose the Upgrading,
Adding, or Removing components option from this screen and click Next.

2. If you want to modify the default instance of SQL Server, click Next.
Otherwise, uncheck the default check box and select the name of the SQL
Server you wish to add components to.

The SQL Server installation detects installed components and in the Select
Components dialog box presents you with a list of those available for installation.
All components are grouped in a hierarchy, and you can select a top level and
everything beneath it or select subcomponents individually. When you select an
item a brief description appears in the Description box in the Select Components
dialog box.

If you need to change your character set sort order or UNICODE
collation order, you must rebuild your master database (which I
show you how to do in Session 6); all custom databases will be
tossed (with all the data), and you will need to rebuild them
from scratch. It is not as scary as it sounds, but it requires care-
ful planning. You should have a very good reason for even con-
sidering it.

Unselecting a component does not remove it from the installation; you have to
remove SQL Server completely to do so. Selected components will be added (or
reinstalled, if they existed before) after you click Next on the Start Copying Files
dialog screen.

Uninstalling SQL Server

If you plan to uninstall SQL Server 2000 you have two options:

� Rerun the setup program and select Uninstall.
� Select the Add/Remove Programs utility from the Control Panel.

Note

Session 2—Go Configure 25

Part I—
Friday Evening

Session 2

054840-9 ch02.F 8/28/01 12:51 PM Page 25

To uninstall SQL Server Installation from the setup program (the first option)
follow these steps:

1. Start SQL Server Installation (from CD-ROM or the network).

2. Select SQL Server 2000 components and then select Install Database
Server.

3. Select the name of the computer (local or remote).

4. Select Upgrade, Remove, or Add Components.

5. Select the instance name from the presented dialog box. Leave the
default selected if you want to uninstall the default instance of SQL
Server.

6. Select Uninstall your existing installation.

7. Click Finish on the final dialog box to complete the uninstallation.

Quit all applications before uninstalling SQL Server, as some of
them may interfere with the process. Removing SQL Server from
the standard Control Panel option is no different from removing
any other program. To remove SQL Server from the Control Panel,
double-click the Add/Remove Programs icon and select the
instance you wish to remove. Each named instance must be
removed separately.

When SQL Server 2000 is uninstalled, some files may remain on your computer.
You may have to manually delete remaining directories and files whose physical
locations are specified in Table 2-1.

REVIEW

� Examining error-log files is the first step in fixing a faulty installation.
� SQL Server, SQL Server Agent, and MSDTC are the three essential SQL Server

2000 services.
� It’s good practice to change login entries after installation.
� You must rerun your installation before adding components.

Note

Friday Evening26

054840-9 ch02.F 8/28/01 12:51 PM Page 26

QUIZ YOURSELF

1. Where do you look for clues if an installation fails?

2. How do you reinstall a SQL Server component?

3. What are two options for uninstalling SQL Server 2000?

4. Why do you need to change your login properties?

5. What is a service?

6. What services are accessible from the SQL Server Service Manager?

Session 2—Go Configure 27

Part I—
Friday Evening

Session 2

054840-9 ch02.F 8/28/01 12:51 PM Page 27

054840-9 ch02.F 8/28/01 12:51 PM Page 28

Session Checklist

✔ Starting up Enterprise Manager
✔ Creating server groups and registering servers
✔ Inspecting SQL Server nodes
✔ Considering your options
✔ Accessing SQL Server Books Online

In this session, you learn about Enterprise Management console — what it is
and how to find your way around it. You go through the complete process of
registering SQL Server and organizing your SQL Servers into groups. I also

explain SQL Server 2000 nodes and their use, as well as the most useful options on
the SQL Server toolbar and menus.

Starting the Enterprise Manager

Fire up the SQL Server Enterprise Manager (Start ➪ Programs ➪ Microsoft SQL
Server ➪ Enterprise Manager). For the time being, it is your main means of

S E S S I O N

First Look at Enterprise
Manager Console

3

064840-9 ch03.F 8/28/01 12:51 PM Page 29

communicating with SQL Server (it isn’t the only means of interacting with SQL
Server, but it is the most convenient). Some other means of connecting to and
administering SQL Server 2000, such as command-line utilities and system stored
procedures, are covered in later sessions. The Enterprise Manager, however, pro-
vides access to virtually every feature of SQL Server you may need or want to use.

From the Enterprise Manager console, you can also administer
different versions of SQL Server, namely 7.0 and 2000. You can
view Version 6.5 from the same console, but your administrative
capabilities are rather limited. The Enterprise Manager uses stan-
dard Microsoft Management Console (MMC) for presenting infor-
mation: a tree view on the left pane of the console and details
about the selection on the right (see Figure 3-1).

Figure 3-1
The Enterprise Management console for SQL Server administration.

Tip

Friday Evening30

064840-9 ch03.F 8/28/01 12:51 PM Page 30

MMC serves as an integrated management console container
hosting a variety of administration snap-ins that can either come
from Microsoft (as in the case of SQL Server or the Internet
Information Server) or be custom-developed. You can also orga-
nize them into groups to create a custom administration console.

The choices presented by the Enterprise Manager, which enable or disable vari-
ous features, can be a bit overwhelming at first glance, but these choices provide
you with a great deal of power and flexibility. You can access most of the options
from the toolbar menu as well as from the right-click menu.

Creating Server Groups and Registering Servers

The tree pane lists all the registered SQL servers. In order to administer SQL Server
installation through the Enterprise Manager console, you must register a server. By
default you have one registered server — the one you’ve just installed. You can add
any available SQL Server to the console, provided that it is accessible to your net-
work. These servers will appear as valid choices in the wizard’s list box. You can
also remove all the servers from the console and have none (which pretty much
defeats the purpose). Microsoft enables you to organize all registered servers into
SQL Server groups. Just specify the group under which you want the server to be
registered (or create a new group altogether).

Your left pane may look different from the pane in Figure 3-1
unless you have selected the Taskpad option from the View
menu. (I will cover the Taskpad option later in this session.)

By default you have SQL Server Group node that you can rename to reflect your
particular needs by using the right-click menu. The group nodes shown in Figure
3-1 might be top-level nodes or sub-nodes of any of the existing groups that
enable you to create a structure of SQL Servers nodes.

Follow these steps to register a SQL Server under a particular group:

1. Select the group and right-click it. Choose New SQL Server Registration
from the pop-up menu.

2. The very first wizard screen, shown in Figure 3-2, outlines the three tasks
you must perform in order to register a new SQL Server. Click Next to
continue.

Note

Note

Session 3—First Look at Enterprise Manager Console 31

Part I—
Friday Evening

Session 3

064840-9 ch03.F 8/28/01 12:51 PM Page 31

Figure 3-2
Using the Register SQL Server 2000 Wizard.

3. The screen that appears asks you to select the SQL Server you want to
register. The Available Servers list box presents you with a list of all
servers currently active on your network. Make your choice and click
Next.

4. Select an authentication mode. If you are connecting to the SQL Server
installed on your machine, you can use Windows authentication (meaning
that you will use your Windows ID/password to connect to the server).
Click Next to continue.

5. The last screen asks you to confirm your selection: This is your last
chance to go back before registering the server. If you selected SQL Server
authentication during the installation, you should enter the same login
name and password that you specified before. If the server you wish to
register is across the network, then you need to supply a valid
login/password combination.

According to your network speed, it might take a long time for
the program to retrieve the list of available SQL Servers. If you
know the name of the server you can just type it in.

Tip

Friday Evening32

064840-9 ch03.F 8/28/01 12:51 PM Page 32

After you’re proficient in the use of SQL Server, you might want to skip the wiz-
ard altogether by selecting this option on the wizard’s start-up screen. Instead of
going through all the selection steps, you will have access to a unified interface
(see Figure 3-3) that contains some additional configuration options that are
selected by default.

Figure 3-3
Changing properties through the Registered SQL Server Properties screen.

Down Under: Inspecting Registered SQL Server Nodes

The following nodes under the registered server node provide an interface you can
use to view and manipulate all SQL Server 2000 objects (see Figure 3-1):

� Databases will contain all SQL Server system databases (covered in Session
6) and database objects (tables, views, stored procedures, and so on).

Session 3—First Look at Enterprise Manager Console 33

Part I—
Friday Evening

Session 3

064840-9 ch03.F 8/28/01 12:51 PM Page 33

� Data Transformation Services (DTS) provide you with a means of consoli-
dating data from a variety of sources and of transforming data from or into
a number of different formats. It also has a programmable interface that
enables you to create custom data-transformation packages as part of your
custom solution. DTS is covered in Session 17.

� Management and its sub-nodes enable you to perform database-mainte-
nance tasks, view current activity and server logs, and administer SQL
Server Agent (used for automating most of these tasks and discussed in
Session 21).

� Replication (covered in more detail in Session 15) enables you to distrib-
ute data and database objects from one database and to synchronize them.
Typically, replication is used between physically distributed servers.

� Security (covered in more detail in Session 28), as its name implies, han-
dles all security-related activities and states for your SQL Server installa-
tion as well as for linked and remote servers.

� Support Services includes the Distributed Transaction Coordinator (DTC,
covered in Session 22), full-text search, and SQL Mail, which enables you
to receive e-mail messages from SQL Server.

� Metadata Services enables you to manage metadata, or data about data.

Considering Your Options

The left pane of the SQL Server toolbar contains the three following menu choices,
which are shown in Figure 3-4:

� Action provides access to most administrative tasks, such as starting, stop-
ping, and pausing a server, registering a server, and editing registration
properties, as well as to more advanced Data Transformation Services
options. The menu structure is identical to the one you get by right-click-
ing the top levels of the tree pane.

� View enables you to customize your console, much as you would in
Windows Explorer: You can choose details, the size of the icons, and similar
preferences. I recommend that you select the Taskpad option — it provides
you with a very convenient interface to common SQL Server configuration
settings as well as to a list of wizards (add-on programs that guide you
through a variety of tasks).

Friday Evening34

064840-9 ch03.F 8/28/01 12:51 PM Page 34

� Tools gives you access to every task you may need or want to perform in
your budding DBA career. Though most of the options presented under this
menu choice will be explained later in this book, some are rather complex
and require an understanding of the SQL Server world that goes beyond the
scope of this book.

Figure 3-4
Accessing advanced options.

� External Tools enables you to launch any Windows NT/2000 application
directly from the SQL Server Management console. In order to do this you
must add the desired application (and specify its command-line parame-
ters, if any).

� Options is an advanced menu choice that provides you with an interface to
such configuration options as servers status polling, login/query timeout,
and some start-up options.

You should refrain from changing settings that you do not fully understand.
Though incredibly stable and intelligent, SQL Server requires expertise to adminis-
ter. Changing a setting option without understanding the ramifications can result
in an unusable installation.

Session 3—First Look at Enterprise Manager Console 35

Part I—
Friday Evening

Session 3

064840-9 ch03.F 8/28/01 12:51 PM Page 35

Accessing SQL Server Books Online

SQL Books Online is a great source of information. It installs with every SQL Server
installation (Standard and Enterprise). Greatly improved from the previous versions
in content as well as in format, it provides a wealth of information on all SQL
Server 2000 issues. Its interface is based on that of Internet Explorer, and it pro-
vides a table of contents, index, and search features. It also enables you to group
your most visited topics in the Favorites category. You can access SQL Server 2000
Books Online via the Help menu or from the Start menu (Start ➪ Programs ➪

Microsoft SQL Server ➪ Books Online). The standard F1 hot key invokes SQL Server
Books Online in the context of the object currently selected in the Enterprise
Manager console. You can go through a table of contents, access a topic by index,
or perform a search for a specific keyword, error code, and so on.

REVIEW

� The SQL Server 2000 Enterprise Management console is your main means of
accessing the SQL Server functionality. It’s based on the standard MMC
interface for SQL Server registration, and the organization of registered
servers into groups.

� Understanding the SQL Server administrative console structure (nodes rep-
resenting objects in SQL Server 2000) helps you to navigate SQL Server.

� SQL Server Books Online is your best source of information. It has a table
of contents, an index, and powerful search capabilities.

QUIZ YOURSELF

1. Is Enterprise Manager the only means of communicating with SQL Server?

2. Why do you need to register SQL Server?

3. What are registered SQL Server nodes and what are they used for?

4. What functionality do external tools provide?

5. How do you invoke Books Online?

Friday Evening36

064840-9 ch03.F 8/28/01 12:51 PM Page 36

Session Checklist

✔ Meeting the wizards
✔ Running command-line utilities
✔ Understanding Data Transformation Services
✔ Accessing SQL Server Agent

This session introduces wizards and command-line utilities — a number of
small programs supplied with SQL Server 2000 to help you with database
administration chores. You’ll also learn how to use SQL Server Agent to auto-

mate those utilities.

Meeting the Wizards

The easiest way to make SQL Server do something useful is to use a wizard, a pro-
gram that provides step-by-step guidance to help you accomplish a given task.
Microsoft provides a number of different wizards with its SQL Server 2000 installa-
tion, and some of these wizards are actually useful. If you look at the Taskpad
pane on the right side in your SQL Server Enterprise Manager console, you should
see something very similar to what is shown in Figure 4-1. Alternatively, you can
access these wizards from the SQL Server Tools menu (see Figure 4-2).

S E S S I O N

Second Look at Enterprise
Manager Console

4

074840-9 ch04.F 8/28/01 12:51 PM Page 37

Figure 4-1
A complete set of wizards in the Taskpad view assists you with database
chores.

Almost every task in SQL Server can be performed through a wiz-
ard. Although it might not be the only choice and is not always
the best choice, it’s a good idea to use these wizards until you
gain more experience.Tip

Friday Evening38

074840-9 ch04.F 8/28/01 12:51 PM Page 38

Figure 4-2
Try this alternative interface to access wizards’ functionality.

I’ll discuss these wizards in more detail in later sessions. For now, let’s take a
whirlwind tour of some wizards to gain a better understanding of what you can
use right now and of what to expect later.

Database administration wizards

As a database administrator you will often have to create, maintain, and query
objects in your SQL Server system. Under the General tab of the Taskpad view
(shown in Figure 4-1) are four wizards to help you:

� Register a SQL Server — Before you can manage a SQL Server from the
Enterprise Manager console, you must register it here. (See Session 3 for
details on registering SQL Server.)

� Books Online — This is the most up-to-date source of information on SQL
Server 2000, except for the official Microsoft SQL Server Web site. See
Session 3 for more information.

Session 4—Second Look at Enterprise Manager Console 39

Part 1—
Friday Evening

Session 4

074840-9 ch04.F 8/28/01 12:51 PM Page 39

� SQL Profiler — This tool, supplied by Microsoft, enables you to take a
closer look at SQL Server events. It is used primarily to find problems and
fine-tune SQL Server by monitoring a specific part of the SQL Server pro-
grams. All events for a particular trace are saved in a file and can be ana-
lyzed later for problems (such as slow-running queries) and to monitor SQL
Server performance. SQL Profiler also supports auditing for security-related
actions (such as unauthorized connection attempts). SQL Profiler will be
covered in Session 26.

� SQL Query Analyzer — This is your primary tool for designing and execut-
ing queries dynamically. But its usefulness goes beyond that: It also
enables you to execute Transact-SQL statements stored in a file, directly
execute stored procedures (covered in Session 11), analyze query perfor-
mance, modify data (insert, update, and delete rows), and even add your
favorite commands to the Tools menu. You can run SQL Query Analyzer
from the Start menu (Start ➪ Program Files ➪ Microsoft SQL Server ➪ Query
Analyzer), from the Enterprise Manager (Tools ➪ SQL Query Analyzer), or
with the command-line isqlw.exe utility.

When SQL Query Analyzer first starts, it will ask for a user ID and
password as well as for a target server name in order to connect.
Leaving the server name blank or specifying (local) — the paren-
theses are important — connects you to the default SQL Server
running on your computer.

Database wizards

The next group of wizards is the database wizards, which you will find under the
General tab of the Taskpad view. These wizards enable you to perform tasks such as
creating a database, an index, a view, or a stored procedure; importing or export-
ing data; and creating logins or a full-text indexing catalog for your database.

Importing and exporting data will be explained briefly later in
this session and more thoroughly in Session 17.

SQL Server Managing wizards comprise the next group in the General section.
Most common server-management chores are addressed here: backing up a data-
base, creating jobs and alerts, setting up master/target servers (for multi-server
environments), fine-tuning your database performance, and creating a database-
maintenance plan.

Cross-Ref

Note

Friday Evening40

074840-9 ch04.F 8/28/01 12:51 PM Page 40

The Replication Wizard

Replication is one of the technologies that enables you to keep virtually identical
sets of data across multiple sites. This means that you can keep timely and accu-
rate data accessible. I will discuss the SQL Server 2000 Replication Wizard in
Session 19.

The Web Assistant Wizard

The Web Assistant Wizard enables you to generate HTML (HyperText Markup
Language) documents based on the data contained in SQL Server 2000. Figure 4-3
shows sample HTML containing data from two tables of the Pubs database (covered
in Session 6) displayed in a Web browser. The Web Assistant is the next best thing
after dynamically generated Web pages (such as Active Server Pages or Cold
Fusion). The static HTML file is generated and subsequently can be served by a
Web server (such as Internet Information Server); moreover, you can use a trigger
to schedule automatic updates for the file based on a scheduled job (Session 24) or
a change to the data (Session 11).

Figure 4-3
The results of a SQL query appear as HTML in a Web browser.

In response to an ever-increasing demand for database-driven Web sites,
Microsoft provides tight integration between IIS and SQL Server 2000. In addition
to Web Assistant-generated HTML files, IIS supports dynamic queries run directly
from a Web page over HTTP (HyperText Transfer Protocol). These queries generate
HTML or XML output, which greatly improves performance, as most of the work
and formatting is done by SQL Server.

Session 4—Second Look at Enterprise Manager Console 41

Part 1—
Friday Evening

Session 4

074840-9 ch04.F 8/28/01 12:52 PM Page 41

Running Command-Line Utilities

In addition to the visual interface of the Enterprise Manager console and all the
wizards, SQL Server provides you with a number of command-line utilities that you
can run either from the DOS prompt or from Windows Explorer. Table 4-1 shows the
full list of command-line utilities (and installation directories) that are automati-
cally installed with Microsoft SQL Server 2000. All of these utilities are located in
the Program Files\Microsoft SQL Server\MSSQL\Binn directory, except distrib,
logread, replmerg, and snapshot — you’ll find these in Program Files\Microsoft SQL
Server\80\Com.

Table 4-1
Command-Line Utilities Installed with Microsoft SQL Server 2000

Utility Description

bcp Copies bulk data between SQL Server and an external data file

isql Executes Transact-SQL statements from the command line

sqlservr The main SQL Server executable; used to start SQL Server manually

vswitch Enables you to switch among different versions of SQL Server
(2000, 7.0, 6.5, or 6.0)

dtsrun Runs DTS (Data Transformation Services) packages (covered in
Session 17)

dtswiz The Data Transformation Services Import/Export Wizard; assists in
creating DTS packages (covered in Session 17)

isqlw Enables you to start SQL Query Analyzer from the command line

itwiz Enables you to execute the Index Tuning Wizard using a command-
prompt utility (covered in Session 26)

odbccmpt Enables or disables the compatibility option (different SQL Server
versions) for applications using the ODBC interface

osql Enables you to connect to SQL Server and execute Transact-SQL
statements

rebuildm Rebuilds the Master database (covered in Session 27)

Friday Evening42

074840-9 ch04.F 8/28/01 12:52 PM Page 42

Utility Description

wiztrace Enables you to execute the Index Tuning Wizard using a command-
prompt utility; unlike itwiz, it has a visual interface (covered in
Session 26)

scm A command-line interface to the SQL Server Service Manager

sqlftwiz The SQL Server Full-Text Indexing Wizard (covered in Session 30)

distrib Replication Agent Utilities (covered in Session 19)
logread
replmerg
snapshot

A well-behaved command-line utility is supposed to display a list
of the arguments (switches) it accepts, along with a brief
description of each. All you have to do is ask by entering in the
utility name followed by a slash and a question mark at the
prompt (for example, bcp /? will display a list of arguments for
the bulk-copy utility).

You can run any of these utilities either from a command line in the directory
where it is installed or by specifying the full path. For the purposes of this book
you will be concerned with only a handful of these utilities:

� BCP (Bulk Copy Program) — Copies bulk data between SQL Server and an
external data file. This utility dates back to the dawn of Microsoft SQL
Server (version 6.0, that is), and is very useful when you need to transfer
large amounts of data among different SQL Servers. It sometimes performs
the data transfer faster than any other available option, but this speed
comes at a price. BCP has an arcane syntax that supports over 30 optional
arguments (including one that enables you to set the version-compatibility
level) and using it requires an understanding of how SQL Server treats data
(for example, that computed columns are ignored with BCP).

� OSQL — A command-line utility used to connect to SQL Server and execute
Transact-SQL statements (covered in Session 8). The results of the executed
commands will be displayed in the DOS console window. OSQL uses the
ODBC (Open Database Connectivity) interface to connect to SQL Server.

� ISQL — Uses the DB-Library interface to communicate with SQL Server. It is
a database-specific interface and is not portable. In addition to this, ISQL
does not support many of the new features in Microsoft SQL Server 2000.

Tip

Session 4—Second Look at Enterprise Manager Console 43

Part 1—
Friday Evening

Session 4

074840-9 ch04.F 8/28/01 12:52 PM Page 43

� ISQLW — Essentially a way to start SQL Query Analyzer from the command
line.

Open Database Connectivity (ODBC) is an application program-
mer’s interface (API) that exposes underlying database cap-
abilities. An abstract layer (called an ODBC Driver) allows
applications to access virtually any relational database manage-
ment system without paying much attention to the differences
between them (as long as you have an appropriate ODBC driver).
In SQL Server 2000, all utilities except isql use the ODBC API and
the SQL Server ODBC Driver. To facilitate the use of ODBC by pro-
grammers, Microsoft has provided thin wrappers called active
data objects (ADO) and data access objects (DAO) around its
functions. To take a look at all ODBC drivers installed on your
machine, go to Settings ➪ Control Panel ➪ Data Sources (ODBC).
DB-Library is a proprietary SQL Server programming interface,
supported mainly for backward compatibility.

Understanding Data Transformation Services

The Data Transformation Services (DTS) group includes Import and Export Wizards.
DTS is a very important part of SQL Server that I explain in detail in Session 17.
Just like the bulk-copy utility, DTS is a tool for transferring large amounts of data;
unlike the bulk-copy utility, it has a visual interface and allows data transforma-
tion and data-objects transfer via views, stored procedures, indexes, and so on.

Data Transformation Services wizards can also create DTS packages — collections
of tasks, transformations, and rules and constraints. For now, you may think of a
DTS package as a program that is executed according to a schedule and that per-
forms some data-transfer or transformation tasks based on particular business
logic. You can create these packages either by using DTS Designer or programmati-
cally by using Visual Basic or Visual C++ (or any COM-compliant language). Either
way you must understand relational-database principles as well as business logic.

Accessing SQL Server Agent

SQL Server Agent will assist you in automating some of your database-management
chores. It executes scheduled jobs, raises alerts, and enables you to specify opera-

Note

Friday Evening44

074840-9 ch04.F 8/28/01 12:52 PM Page 44

tors. (See Session 24 for more information about SQL Server Agent.) Here are defi-
nitions of these terms:

� Job — A sequence of operations to be performed once, scheduled for exe-
cution, or run when a certain predefined condition occurs. SQL Server
Agent maintains a complete job history for every job, recording time of
execution, duration, and final result.

� Alert — Enables you to take an action in response to an event that has
occurred on the system. SQL Server Agent monitors the Event Log of your
machine; once it encounters an event for which you as a user created an
alert, it responds by taking an action. It can respond by invoking a job,
sending a message (via e-mail or to a pager), or (in a multi-server environ-
ment) passing these alerts to another SQL Server to process. It is inte-
grated with various performance counters, allowing it to take an action
whenever a certain threshold is crossed (such as when memory usage
climbs above a preset limit).

� Operator — The contact to whom a notification about an alert will be sent.
You can specify e-mail, pager, or net send notification.

The Net Send command, issued from a DOS window, sends a mes-
sage across the network to a specified computer or user. This
method is not supported for computers running the Windows
95/98 operating systems.

You can access SQL Server Agent through the Create a Job or Create an Alert
option on the right pane of the Enterprise Manager Wizards section. These options
are also available through an alternative wizards interface shown back in Figure 4-2.

REVIEW

� The SQL Server Management console provides a consistent interface with
which you can access all the features of the RDBMS system.

� SQL Server 2000 wizards provide the fastest way to accomplish even com-
plex database tasks.

� SQL Server provides command-line utilities for some administrative tasks
that cannot be easily accomplished through the visual interface, as well as
for backward compatibility with previous versions of SQL Server. In gen-
eral, they are for more experienced users.

Note

Session 4—Second Look at Enterprise Manager Console 45

Part 1—
Friday Evening

Session 4

074840-9 ch04.F 8/28/01 12:52 PM Page 45

� Data Transformation Services are used to import, export, and transform
large amounts of data between various sources.

� You can use SQL Server Agent to automate database tasks and keep a close
watch on the performance of SQL Server.

QUIZ YOURSELF

1. What is a wizard in SQL Server 2000 and what is it used for?

2. What is DTS and what is a DTS package?

3. What are command-line utilities and how do you install them?

4. What is SQL Server Agent?

Friday Evening46

074840-9 ch04.F 8/28/01 12:52 PM Page 46

1. What is SQL Server 2000?

2. On what operating systems can you install SQL Server 2000?

3. Name at least three installation versions of SQL Server 2000. What are the
differences between them?

4. What is collation order and how do you choose one?

5. What is a named instance and how does it differ from a default server?

6. What are the two authentication modes supported by SQL Server 2000?

7. What visual tool does Microsoft supply to manage SQL Server?

8. What are SQL Server services and how do you manage them?

9. How do you register a server with the SQL Server Enterprise Manager?

10. How many top-level objects do you see for each registered SQL Server?

11. Can you change your SQL Server configuration options?

12. How do you add or remove SQL Server components after installation?

13. How do you uninstall SQL Server 2000?

14. What are the SQL Server Books Online and where can you find them?

15. What is a wizard in SQL Server 2000 context?

16. What is RDBMS? What does it have to do with SQL Server?

17. What is the purpose of the BCP command-line utility?

18. What are ISQL and OSQL?

19. What are SQL Server Agent jobs and alerts?

20. What is the Web Assistant Wizard?

P A R T

#
P A R T

Friday Evening

I

084840-9 pr1.F 8/28/01 12:52 PM Page 47

094840-9 DPO2.F 8/28/01 12:52 PM Page 48

Part II — Saturday Morning
Session 5
Relational Database Concepts

Session 6
SQL Server Databases

Session 7
Creating and using a Custom Database

Session 8
Transact-SQL Programming Language

Session 9
T-SQL and SQL Query Analyzer

Session 10
Programming with T-SQL

Part III — Saturday Afternoon
Session 11
Creating and Using Stored Procedures

Session 12
Trigger Happy

Session 13
Introducing Cursors

Session 14
Understanding Indexes

Session 15
Rules, Defaults, and Constraints

Session 16
Understanding Transactions and Locks

Part IV — Saturday Evening
Session 17
Data Transformation Services

Session 18
SQL Server Backup

Session 19
SQL Server Replication

Session 20
User Management

094840-9 DPO2.F 8/28/01 12:52 PM Page 49

P A R T

Saturday
Morning

II

Session 5
Relational Database Concepts

Session 6
SQL Server Databases

Session 7
Creating and Using a Custom Database

Session 8
Transact-SQL Programming Language

Session 9
T-SQL and SQL Query Analyzer

Session 10
Programming with T-SQL

104840-9 po2.F 8/28/01 12:52 PM Page 50

Session Checklist

✔ Identifying the limitations of spreadsheet programs
✔ Understanding legacy database models
✔ Understanding the relational database model
✔ Exploring relational database–management system

implementations
✔ Learning relational-database terminology

This session will give you some background in the evolution of database sys-
tems. You will be introduced to three major database models — hierarchical,
network, and relational — with more emphasis placed on the last of these.

Identifying the Limitations of Spreadsheet Programs

Tabular representation is one of the most basic ways to organize data in order to
extract some useful information. You can get by with a spreadsheet system if you
are the only user. Of course, you will have to remember where the information is

S E S S I O N

Relational Database Concepts

5

114840-9 ch05.F 8/28/01 12:52 PM Page 51

stored. If the information changes in any way, you will have to go through all the
worksheets and manually update data (or write a neat macro to do it for you). Do
not forget to maintain (and update) multiple copies just in case the working copy
becomes corrupted or lost. If that does not scare you, I dare you to imagine shar-
ing the data with your coworkers by sending them a copy of your file, or loading it
from the network, thus effectively blocking everybody else from making any
changes to it. If everyone works independently for a while and you need to merge
data, how would you know which file was current? You could open both files at
the same time, call in your coworkers, and spend a couple of days arguing about
which changes to include in the final version. But imagine 200 people working on
the same file in addition to doing tons of manual work, handling unstructured
inconsistent data, and dealing with awkward search capabilities. It becomes obvi-
ous that something is terribly wrong with this approach.

All these problems (and much more) are taken care of automatically in any
modern database. Although the solution comes at the price of increased complex-
ity and cost, and the need for a higher degree of technological savvy, the alterna-
tive — using a spreadsheet — is not really an option.

Understanding Legacy Database Models

As promised, this section will discuss the two types of database models:

� Hierarchical
� Network

Hierarchical databases

The concept of the hierarchical database model is fairly intuitive: as the name
implies, the data within the database is stored in a hierarchy of tables. There was
nothing wrong with hierarchical databases, to start with. They were fast and effi-
cient, and fit well into the existing tape-storage systems used by mainframe com-
puters in the early 1970s.

A table is a basic structure wherein data are stored in the data-
base. It is composed of columns and rows, which in database ter-
minology are referred to as fields and records, respectively.

Note

Saturday Morning52

114840-9 ch05.F 8/28/01 12:52 PM Page 52

You can visualize the structure as multiple tree roots flowing from one “root”
table. Take a look at Figure 5-1, which shows the hierarchical database structure,
also known as an entity-relationship diagram, for some fictitious company. At the
root level is a Department table. The next level consists of a Projects table and an
Employees table, which lead to the Workers and Dependents tables, respectively, on
the next level.

Figure 5-1
A hierarchical database diagram.

All relationships within a hierarchical database are represented by a
parent/child paradigm: a parent table can have many child tables but a child table
can be related to one and only one parent. These tables are linked explicitly,
meaning that in order to maintain this relationship each table has to store some
information (a record) about the parent- or child- related table.

The data access within this model must begin from a root table and work its
way down the hierarchy sequentially, table by table. In the sample structure pre-
sented in Figure 5-1, you would have to follow these steps in order to find infor-
mation about an employee assigned to a specific project:

1. Start with the Department table.

2. Find out whether this department deals with this particular project.

3. Use the Workers table to find the ID/SSN of an employee assigned to this
project.

4. Submit a new query through the Department table to retrieve the infor-
mation about this employee from the Employees table.

Department

Projects Employees

Workers Dependents

Session 5—Relational Database Concepts 53

Part II—
Saturday M

orning
Session 5

114840-9 ch05.F 8/28/01 12:52 PM Page 53

This procedure implied an intimate knowledge of the database structure as well
as difficulty in changing this organization to accommodate new conditions or busi-
ness rules. The other drawback was redundancy of data: If performance was to be
satisfactory the data had to be duplicated in several places to address many-to-
many relationships. In other words, in the sample database on Figure 5-1,
employee data must be duplicated in the Workers table, especially if an employee
has been assigned to several projects. However, there were some advantages to this
model: For one thing, data retrieval could be very quick because the user knew the
exact location of the data. In addition, the referential integrity could not be com-
promised because it was enforced by the structure itself.

Referential integrity refers to a state of data in which there are
no “orphaned” records; each record in the child table must be
linked to an existing record in the parent table.

Hierarchical databases served their purpose well and human ingenuity devised a
number of workarounds to compensate for most of its shortcomings. Nevertheless,
the increasing complexity of data and the need to analyze them created a demand
for database enhancements. The next evolutionary step was the network database.

Network databases

Network databases took the hierarchical concept one step further. In a hierarchical
database, a child table could have one and only one parent; the network database
has replaced the parent/child relationship with the owner/member relationship.
This means that data access did not have to begin from the root table; instead,
one could work through the database structure by starting from any table and
going backward or forward through the related sets of tables. Data redundancy was
greatly reduced because users could access a member table from more than one
owner. Network databases were fast and efficient but they had the same major
drawback as hierarchical databases: They required that the user be familiar with
the structure of the databases to access any data. This structure could not be eas-
ily adapted to include new business logic.

Introducing the Relational Database Model

In 1970, Dr. E. F. Codd of IBM introduced the relational-database model (though it
took almost a decade for the first implementation to show up on the market).
Relational databases store data in files that are mapped to tables. Each table is

Note

Saturday Morning54

114840-9 ch05.F 8/28/01 12:52 PM Page 54

composed of records and each record is composed of one or several fields. Fields
contain some unique value or key and maintain their relation information in some
other field (a foreign key).

This model allows data to be maintained in the table independently of its physi-
cal location in the computer. Figure 5-2 represents the same sample database you
saw earlier in this session in its relational incarnation (I am assuming that projects
cannot be shared between departments and that each employee works for only one
department).

Figure 5-2
A relational-database diagram.

As in hierarchical and network databases, the tables maintain relations; unlike
them, relational databases offer three elegant schemes for any type of relation:

� Many-to-many
� One-to-many
� One-to-one

Many-to-many relationships

The many-to-many relationship is effectively the one that led to data redundancy
in legacy databases. This is because the user has to remember a relationship,
rather than understand database structure, in order to access data. For example,
let’s say that you’d like to know a number of dependents of an employee working
on a particular project. This is not an easy thing to determine with a legacy data-
base, but it is a snap with the relational database because you can access data by
specifying the desired tables and fields within these tables. The relationship is

Department

Projects/Employees

Projects Employees Dependents

Session 5—Relational Database Concepts 55

Part II—
Saturday M

orning
Session 5

114840-9 ch05.F 8/28/01 12:52 PM Page 55

declarative: that is, the Employees table is related to the Departments table by the
fact that both contain the field DepartmentID. That field is a primary key for
Departments and a foreign key for Employees.

One-to-many relationships

An example of a one-to-many relationship exists in the case where each employee
can be assigned to one and only one job, and each job can be assigned to one or
more employees. The Projects and Employees tables are examples of a many-to-
many relationship. This means that a given project can be assigned to one or more
employees. This situation is managed by an intermediate ProjectsEmployees table,
which consists of two one-to-many relationships.

One-to-one relationships

Employees whose information is stored in the Employees table can work for one
and only one department: this is a one-to-many relationship.

See Session 6 for a further discussion of relationships.

Exploring Relational-Database Management-System
Implementations

The hardware of 1970 is clearly not up to the task of running RDBMSes — rela-
tional database management systems. As processing capabilities, memory, and data
storage improved dramatically in the mid-1980s, it became feasible to run RDBMSes
and numerous implementations begun to sprout, first for mainframe monsters (IBM
DB2 and Oracle), and then for PC-based systems. Dbase by Ashton-Tate became an
almost instantaneous success, and was followed by FoxPro, R:BASE, and Paradox.
These database systems were relatively crude by today’s standards but they had the
advantage of being the first relational PC-based databases. The evolution of data-
base-management systems did not stop there; rather, it was taken to a new height
with the advent of client/server computing databases in response to the need for
data-sharing across the network.

Cross-Ref

Saturday Morning56

114840-9 ch05.F 8/28/01 12:52 PM Page 56

There are many different RDBMSes on the market and they all support various
levels of relational databases. All RDBMSes are supporting a subset or entry level of
SQL in addition to their proprietary extensions; Microsoft SQL Server and Sybase
support Transact-SQL, and ORACLE uses its own PL/SQL.

Two main standards of SQL exist: ANSI/ISO SQL Standard (1992)
and the ever-more-popular SQL-99 (also referred to as SQL3).
Microsoft SQL Server 2000 fully supports the entry level of SQL-92
and many features of the intermediate and full levels. This is in
addition to its own advanced proprietary features, some of which
comply with the emerging SQL3 standard.

The good news is that if you use only the standard entry-level subset of the
SQL-92 standard your SQL applications will be highly portable among different
database systems; the bad news is that you won’t be able to harvest the full power
of the RDBMS of your choice.

Recall that the choice of your RDBMS is affected by the operating system you’re
running, as follows:

� Microsoft SQL Server is a Windows-only application; the client application
can run on any platform, but the server requires Windows.

� Oracle Server is available for UNIX (any flavor), Linux, and Windows; Oracle
client libraries are available for the Macintosh.

� IBM DB2 is available for Windows, UNIX, Linux and, OS/2 operating
systems.

� Sybase Adaptive Server is available for Windows, UNIX, and Linux.
� Hordes of less known RDBMS implementations include Informix

(UNIX/Linux/Windows), INGRES (UNIX/Linux /Windows), MySQL
(UNIX/Linux/Windows), OCELOT (Windows), and more.

You may want to know how these databases match up in terms of performance,
computing power, user-friendliness, and such. There are no obvious criteria
because all of these benchmarks are environment-dependent: the hardware, oper-
ating system, and load conditions are just a few variables. The independent
Transaction Processing Performance Council (TPC) provides such information in the
form of standard TPC benchmarks. These benchmarks come in several flavors and
are quite complex: See the TPC frequently asked questions (FAQs) at http://www.
tpc.org/tpcc/faq.asp for a full explanation. The recent benchmark TPC mea-
sures raw data throughout. The benchmark gives Microsoft SQL Server 2000 first
place among the top 10 databases, followed by IBM and ORACLE database servers.

Note

Session 5—Relational Database Concepts 57

Part II—
Saturday M

orning
Session 5

114840-9 ch05.F 8/28/01 12:52 PM Page 57

Learning Relational-Database Terminology

Like every profession and trade, the RDBMS world has its own terminology. If you
are going to speak with other database professionals you should know the lan-
guage with which to convey your questions and ideas, and understand the
answers. Here is the absolute minimum you need to get by, and I strongly encour-
age you to learn more:

� Table — A basic structure wherein data is stored in the database. Each
database has at least one table.

� Field — A column within a table. Each table may have one or more fields.
The maximum number of fields you can define for a table is 1,024.

� Record — A row within a table that can contain one or more fields. No
physical limit exists on the number of rows allowed per table, but perfor-
mance deteriorates as the number of fields increases.

� Key — Essentially, a field that has a special meaning within a database
table. Keys serve a special purpose: A primary key uniquely identifies a
record within a table and a foreign key establishes a relationship between
two tables. Key fields are the basis of referential-data integrity.

� Data integrity — Refers to the consistency and accuracy of data in the
relational-database model. There are different levels of integrity, all of
which I discuss in Session 6.

� Index — A dependent structure within a database. It is used to speed up
searches, especially in large tables containing thousands of records. An
index is created for a table and is used by an RDBMS to locate the
requested records. The concept of a database index is almost identical to
that of a phone book.

� Entity — Think of an entity as an object or a concept that has its own
attributes. I will explain entities in detail in Session 6. An entity is usually
represented by a table that contains information relevant to that entity.

� Entity-relationship diagram (ERD) — A diagram representing a relation-
ship between entities; covered in detail in Session 6.

Saturday Morning58

114840-9 ch05.F 8/28/01 12:52 PM Page 58

REVIEW

� Relational databases enable you to automate spreadsheet functions.
� Hierarchical databases represent relationships using the parent/child

paradigm.
� Network databases represent relationships using the owner/member

paradigm.
� Relational databases maintain data in a table regardless of its physical

location on the computer.

QUIZ YOURSELF

1. What are the disadvantages of legacy database models?

2. What is an RDBMS?

3. How do you retrieve data from a relational database?

4. What is a record? What is a field?

5. Do all RDBMSes use the same query language?

6. What are the major RDBMS implementations?

7. How long did it take the relational-database model to be implemented
after the concept was introduced?

Session 5—Relational Database Concepts 59

Part II—
Saturday M

orning
Session 5

114840-9 ch05.F 8/28/01 12:52 PM Page 59

114840-9 ch05.F 8/28/01 12:52 PM Page 60

Session Checklist

✔ Understanding the SQL Server system databases
✔ Exploring the SQL Server sample databases
✔ Learning the basics of relational-database design

E very SQL Server installation comes with several preconfigured system and
sample databases. In this session you will learn about them, their purpose,
and what you can do with them. I will explain the database-design funda-

mentals as well as rules of normalization to help you get started with database
design.

Understanding the SQL Server System Databases

Every newborn SQL Server database system initially contains only six databases:
Master, TempDB, Model, MSDB, Pubs, and Northwind. The first four of these are
databases; Pubs and Northwind are sample databases provided to help you master
relational-database concepts. I describe these two in the next section.

S E S S I O N

SQL Server Databases

6

124840-9 ch06.F 8/28/01 12:52 PM Page 61

Although it is possible, you should never try to modify any sys-
tem database directly through the use of Transact-SQL state-
ments, as this may — and often will — render your RDBMS
unusable. Consider any system database (especially Master!) a
sanctum sanctorum and treat it accordingly.

The Master database

The Master database contains information about your whole SQL Server system:
login accounts, configuration settings, and a record of every custom database (and
its location) that you might have created. It also contains initialization informa-
tion that SQL Server uses on startup, system stored procedures (precompiled
chunks of Transact-SQL programs that perform various administrative tasks),
extended stored procedures (external compiled programs callable from within SQL
Server), and more.

System stored procedures are discussed further in Session 11 and
Session 23.

Always maintain a current backup of your Master database.
Create a new backup (as covered in Session 18) every time you
change system settings (such as collation order, default lan-
guage, and so on).

The TempDB database

TempDB holds all temporary tables (for intermediate results of sorting, for exam-
ple), static cursors (covered in Session 13), and temporary stored procedures. It is
a global workspace for every SQL Server process, available if any of those processes
requires some type of temporary storage. Unlike every other database in SQL
Server, TempDB is recreated, not recovered, every time SQL Server is started. This
means that SQL Server gets a clean copy of TempDB on startup; consequently,
TempDB never contains any information about previous SQL Server sessions.

Operations in TempDB are logged with just enough information that they can be
rolled back if necessary (all other databases log information sufficient for recovery).

Tip

Cross-Ref

Note

Saturday Morning62

124840-9 ch06.F 8/28/01 12:52 PM Page 62

This behavior is new in SQL Server (starting from version 7) and is intended to
increase performance.

Otherwise, TempDB behaves just like any other database in the system: It auto-
matically increases in size as needed (unless restricted to a particular size), is
capable of setting access rights, and so on.

Set a sufficient initial size for TempDB in order to boost your
SQL Server performance. Because TempDB is recreated at startup
with the Model database as a template, make sure that the size
of your Model database is the size you want your TempDB to be.

The Model database

The Model database is simply a template for all databases created on a system. A
newly created database will inherit all the objects and properties of the Model
database: permissions, sizes, tables, rules, datatypes, stored procedures, and so on.

You can modify the Model database to include certain character-
istics you’d like to see in your custom databases and in TempDB;
the latter is created with the Model database as a template.

The MSDB database

SQL Server Agent (covered in Session 24) uses the MSDB database for scheduling
alerts, jobs, backups, and replication tasks.

You cannot easily delete any system database; it is not even an
option in the Enterprise Manager console. You can delete physi-
cal files containing system databases in many ways, but there is
not a single reason why you would.

In SQL Server 2000 each database — system databases included — is placed into
a separate non-shared file. Each system database consists of at least two files, a
data file and a log file. Table 6-1 is modeled after the table from Books Online; it
provides the names and default sizes of the system databases. The default size of
the database is dependent on the setup type.

Note

Tip

Tip

Session 6—SQL Server Databases 63

Part II—
Saturday M

orning
Session 6

124840-9 ch06.F 8/28/01 12:52 PM Page 63

Table 6-1
SQL Server 2000 System File Names and Locations

Database file Physical file name Default size, typical setup

Master data Master.mdf 11.0MB

Master log Mastlog.ldf 1.25MB

TempDB data TempDB.mdf 8.0MB

TempDB log Templog.ldf 0.5MB

Model data Model.mdf 0.75MB

Model log Modellog.ldf 0.75MB

MSDB data Msdbdata.mdf 12.0MB

MSDB log Msdblog.ldf 2.25MB

You should make any changes to system databases using the administrative
tools provided by SQL Server system.

Though it is possible, do not code Transact-SQL statements that
directly query the system tables unless that is the only way to
obtain the information required by the application. In most
cases applications should obtain catalogues and system informa-
tion from INFORMATION_SCHEMA views (see Session 23).

Exploring the SQL Server Sample Databases

Each installation of SQL Server 2000, regardless of type, will include two sample
databases: Pubs and Northwind. These are databases for two fictitious companies,
created by Microsoft to illustrate its database concepts and features. Both data-
bases are referred to extensively throughout SQL Server documentation and Books
Online.

The Pubs database

The Pubs database is intentionally simple. It takes approximately 2MB of your
hard-drive space and can be deleted safely. I recommend leaving it, however, as it

Tip

Saturday Morning64

124840-9 ch06.F 8/28/01 12:52 PM Page 64

provides you with a safe environment within which to master your database
skills — especially Transact-SQL usage. You can do with the Pubs database and the
data it contains as you please, as you can restore this database any time by run-
ning a script in the SQL Query Analyzer window. You’ll find the file —
instpubs.sql — in the \Install sub-directory of your main SQL Server installation
directory.

The Northwind database

The Northwind database was originally developed for MS Access (and is still
shipped with it as a sample database) and demonstrates more advanced concepts
than Pubs. It takes twice as much space (around 4MB) but can be deleted from
your SQL Server system just as safely. Just as with the Pubs database, too, I recom-
mend leaving the Northwind database: Some samples in this book (and in a lot of
others) will use it. Feel free to use the database however you like, as you can
restore it to its original state by running the script instnwnd.sql.

Learning the Basics of Relational Database Design

While the sample databases Northwind and Pubs are useful, obviously they were
not your main reason for installing SQL Server. At some time or another you will
want to store and manage your own data and luckily, that is what a database
server does best. At some point you will need to design a database.

A database does not exist in a vacuum; it serves some specific business purpose.
A database for a pet store would be much different from a database for an automo-
bile manufacturer, and must be designed (and implemented) differently.

Database design is still more of an art than an exact science. If you design a
database from scratch you had better establish and follow the proper procedure for
analyzing requirements and collecting and analyzing data. The topic of database
design is well beyond the scope of this book — numerous books, some of which are
listed in the recommended reading section, are dedicated solely to this art.

Relational database management systems (RDBMSes) are in the business of stor-
ing and retrieving data, ideally — any data. Before you can store anything in a
relational database you need to tame the chaos by structuring your data in such a
way that they can be represented in a table format as a set of rows and columns.
The basic building unit of a database is the table.

In database-modeling jargon a table stores data concerning an entity, or object.
The Pubs database was designed to represent the business model of a small pub-
lishing company. If you look at the list of the tables inside Pubs you’ll see such

Session 6—SQL Server Databases 65

Part II—
Saturday M

orning
Session 6

124840-9 ch06.F 8/28/01 12:52 PM Page 65

tables as Departments, Employees, and Authors. They all represent entities: The
Departments table contains information about the different departments in the
company, the Employees table contains information about each employee, and the
Authors table contains information about the authors the company deals with.
Each row in these tables corresponds to one and only one department, employee,
or author, respectively.

When you first start analyzing business requirements for your database, you try
to identify entities in the specific business model; each entity is a prime candidate
for being a table in your database.

Once you’ve identified the tables, think of their attributes. An attribute is
something that defines an entity. For the Employee entity you might think of
something that identifies an employee, such as Social Security number, name, or
age. These attributes become columns in your table. Figure 6-1 shows the relation-
ship between entities and attributes.

Figure 6-1
Defining an entity and attributes.

Give meaningful names to your tables: it will simplify develop-
ment and maintenance, and might provide some insights into
your database structure. Usually table names are construed in
the plural, which reflects their purpose: Employees rather than
Employee, for example.

Relational databases are all about tables and the relationships among them.
Relationships are defined in terms of the parent/child paradigm, are derived from
the business model the database is designed for, and are implemented as
primary/foreign key pairs. Unlike in the real world, in the world of relational data-
bases it is the responsibility of a child to keep track of its parent. A parent table
contains the primary key, which becomes the foreign key in the child table.

Take a look at the Pubs database. Each employee from the Employees table is
assigned to do a specific job: these jobs are listed in the Jobs table. In order to
keep track of which employee has been assigned to which job, you have the col-
umn Job_ID in the Employees table and the Jobs table; this column is the primary
key in Jobs and the foreign key in Employees. If you think about it, Job_ID fits
naturally into the concept of the Jobs table and is external to the Employees

Tip

Employees

First Name
Last Name
Date Of Birth

Saturday Morning66

124840-9 ch06.F 8/28/01 12:52 PM Page 66

table — tomorrow a new job may be assigned and the Job_ID column may hold a
different value.

Should the business model require that many jobs be assigned to one employee,
the distribution of foreign/primary keys is different: The Jobs table contains an
Employee_ID column in addition to the Job_ID column, and the Employees table
does not have a Job_ID column at all. The strange-looking lines and shapes in
Figure 6-2 describe a one-to-many relationship.

Figure 6-2
Defining a one-to-many relationship.

Figure 6-2 is a diagram of a system wherein an employee can be assigned to one
and only one job (this is an example of a one-to-one relationship, indicated by the
notation 1:1), and one job can be assigned to one or more employees (one-to-
many, or 1:N). The special case of the many-to-many (N:N) relationship is resolved
with an intermediate table: If every employee can be assigned to one or more jobs
at the same time and each job can be assigned to one or more employees, then you
need to convert one N:N relationship into two 1:N relationships.

Take a look at the diagram in Figure 6-3: the Employees table contains nothing
to link it to the Jobs table, and the Jobs table does not contain a foreign key for
Employees. Instead there is a third table, Employee_Jobs, which links them
through the use of the primary keys of both tables: Employee_ID and Job_ID,
respectively.

Figure 6-3
Resolving a many-to-many relationship.

Employees

Employee_ID

Employee_ID

Jobs

Employees_Jobs

Job_ID

Job_ID

Employees

Employee_ID

Jobs

Job_ID

Employee_ID

Session 6—SQL Server Databases 67

Part II—
Saturday M

orning
Session 6

124840-9 ch06.F 8/28/01 12:52 PM Page 67

Get normal

Once you have established relationships in your database it is time for the normal-
ization process. Normalizing a database means disassembling large tables into
smaller ones in order to prevent data duplication. Some relationships may disap-
pear and new ones be added as you go through this process.

A normal form is a set of rules that you apply to a table to ensure its compli-
ance. At each level of normalization specific problems are addressed and solved.

The five normal forms measure the degree of normalization, but levels beyond
the third normal form are of mostly theoretical interest and are rarely applied (if
at all).

The first normal form deals with repeating groups. Consider the previous exam-
ple of the Employees and Jobs tables. You can combine both tables to hold the
same information, and the table structure (its fields) would look like what is
shown in Figure 6-4.

Figure 6-4
Combining two tables into one.

Surprisingly, this structure would actually work if it weren’t for the fact that
several jobs can be assigned to one employee. To amend the table structure to take
this fact into account, you have to add more fields to this table to record jobs
assigned to an employee, as shown in Figure 6-5.

Figure 6-5
Assigning several jobs to one employee.

The inefficiency of this design is obvious: If an employee is assigned fewer jobs
than there are fields in the table, some fields remain empty; if an employee is
assigned more jobs, you need to change the table’s structure.

Employee_ID Job_ID1 Job_ID2 Job_ID...

Employee_ID Job_ID

Saturday Morning68

124840-9 ch06.F 8/28/01 12:52 PM Page 68

Job_ID fields comprise a repeating group, and once discovered such a group is a
prime candidate for a separate table — Jobs, in this case. The two-table design is
efficient and elegant. You need to analyze every table in your database and make
sure that none has repeating groups.

The second normal form establishes that there can be no non-key attributes
(fields) that depend on a portion of the primary key. Now, what does that really
mean? A primary key is a field or a group of fields within the table that uniquely
identifies the record; it cannot be repeated in any subsequent row no matter how
many rows are added. A group of fields that together serve as a primary key are
called the composite key, and your second normal form really concerns itself with
composite fields. If your table contains fields identifiable only by part of the pri-
mary key then those fields really should be put in a table of their own.

Let’s take a look at the Employees_Jobs table from the previous example of a
many-to-many (N:N) relationship. You could define a composite primary key con-
taining two fields: Employee_ID and Job_ID. Now, if you add some more fields to
this table, such as Job_Description (depends on Job_ID only), or Employee_Name
(depends on Employee_ID only), this table is in direct violation of the second nor-
mal form. Put these fields where they belong — into the Jobs and Employees
tables. Your database design becomes clearer as the N:N relationship between the
Employees and Jobs tables becomes clearer.

The third normal form declares that there should not be attributes (fields)
depending upon other non-key attributes. That means that only relevant informa-
tion describing an entity has a place in your table. Though it might be tempting to
consider, a Job_Description field would be completely out of place in the
Employees table; it belongs to the Jobs table. It might take some practice to figure
out what is relevant information and what is not.

Most database designs stop at the third normal form, as a higher
degree of normalization negatively reflects on the performance
of the database. Even the third normal form should be
approached with caution, as normalizing increases the number of
tables in the database and degrades performance as a result. In
some cases denormalization of a database may increase perfor-
mance considerably as the number of joins needed to collect
data decreases.

Note

Session 6—SQL Server Databases 69

Part II—
Saturday M

orning
Session 6

124840-9 ch06.F 8/28/01 12:52 PM Page 69

Common pitfalls of database design

If the only tool you have is a hammer, every problem starts to look like a nail.
Nothing could be more true with regard to the mistakes people often make while
trying their hands at database design. It is previous experience that bogs us down
while we’re trying to learn new things. Programmers with previous experience in
non-relational databases may tend to design databases that resemble flat files or
spreadsheets.

Flat-file design

Flat-file design derives its name from the early days when data were stored without
structure in computer files, much as you store your records in a file cabinet. If
your table is designed this way it will have one or more of the following problems:

� Duplicate fields that present the same evil that the first normal form is
supposed to eliminate.

� Calculated fields, wherein the table contains fields whose values can be
calculated from the other fields existing in the table — such as an Age
field in addition to a Date of Birth field.

� Multipart fields, such as a field called Address containing the street
address, ZIP code, and city. Such fields are very inefficient, as in order to
find the ZIP (for example) you have to parse the field’s value to extract
this piece of information.

In addition, you may find that the table is difficult or virtually impossible to
index, as there is no single field or group of fields to uniquely identify the record,
and that it tends to represent more than one subject.

Spreadsheet design

Recall that a spreadsheet can’t serve as a substitute for a database. It suffers from
the same problems as the flat file and adds more of its own — such as an inability
to deal with many-to-many relationships.

Design tied to a particular RDBMS implementation

It can be really tempting to use every single hack a system might offer in order to
get better performance. Each system has its own features — documented or other-
wise — that you can use to improve performance, but at a price. The feature you
are using might not be supported in future releases, your company might migrate

Saturday Morning70

124840-9 ch06.F 8/28/01 12:52 PM Page 70

to a totally different RDBMS. Your database would need to be amended at best or
redesigned from scratch at worst — a sobering thought. There is no substitute for
good design principles, which you must apply with a full understanding of what
the results will be.

REVIEW

� Every SQL Server 2000 installation comes with predefined system databases
containing all the information about your server. This installation also
includes two sample databases, Northwind and Pubs, that you can use to
study relational-database concepts.

� Once you start building your own database you should follow the rules of
relational-database design. Each table in your database should go through
the normalization procedure to at least the second normal form.

� Never use non-relational paradigms such as flat files and spreadsheets
when designing a relational database.

QUIZ YOURSELF

1. How many system databases are installed with SQL Server 2000?

2. What is the purpose of the Master database?

3. What serves as a template for each database created in SQL Server?

4. How does TempDB differ from every other database in SQL Server — either
system or custom?

5. What is a normalization process?

6. What is a normal form?

7. What are some of the problems inherent in flat-file design?

Session 6—SQL Server Databases 71

Part II—
Saturday M

orning
Session 6

124840-9 ch06.F 8/28/01 12:52 PM Page 71

124840-9 ch06.F 8/28/01 12:52 PM Page 72

Session Checklist

✔ Creating a new database in SQL Server 2000
✔ Modifying database and transaction-log properties
✔ Deleting a database

N ow that you know your way around the sample databases Northwind and
Pubs, you can start storing and managing your own data. This session will
teach you how to create, modify, and delete a database with the Create

Database Wizard. I’ll explain the most common options and some of the considera-
tions involved in selecting them. Successfully creating and manipulating database
properties is the foundation of success with SQL Server.

Creating a New Database in SQL Server 2000

SQL Server 2000 gives you three ways to create your very own custom database:

� The Database Wizard visual interface — This is the best method for
beginning database users. The Database Wizard provides step-by-step guid-
ance with a short explanation of every step.

S E S S I O N

Creating and Using a
Custom Database

7

134840-9 ch07.F 8/28/01 12:52 PM Page 73

� The Databases node (right-click menu option New Database) — This is a
visual interface for more experienced users that combines all the Database
Wizard steps on one screen. It also enables you to make use of the more
advanced option settings, such as collation order.

� Direct Transact SQL commands — This method is for advanced users and
those creating databases through a command-line connection; it will be
covered in Session 9, once you’ve mastered Transact-SQL basics.

These three methods are essentially the same, as behind the
scenes your Database Wizard builds and executes the T-SQL
statements that create your database.

There are at least two major components of each database: the data component
(which includes database objects like rules, roles, stored procedures, and so on)
and the transaction-log component. As I mentioned before, in SQL Server 2000 a
database is physically stored in separate non-shared files — one (or more) for the
data (default extension .mdf), and one (or more) for the transaction log (default
extension .ldf). The database can span several files; by convention, the extension
of the primary file is .mdf and that of each secondary data file is .ndf. These files
are exactly the same as any Windows file and are treated as such by the operating
system.

You can give your database file any extension you want, though
adhering to conventional standards reduces confusion and makes
file management easier.

Let’s create a database using the Database Wizard interface. You can access it
from the Enterprise Manager Tools ➪ Wizards menu.

1. Select Create Database Wizard and click OK. The first screen explains the
steps you’re going to take to create your database. Click OK.

2. The second screen prompts you to specify a name for your database as
well as a location for the files for your primary database file and transac-
tion log. Click Next to continue.

If you leave the default Unrestricted file growth option selected,
SQL Server will enlarge your database file as necessary automati-
cally. It’s a good idea to stick with the default values until you
have a little more experience in creating databases, but keep in
mind that unrestricted file growth can affect your system’s
performance.

Tip

Tip

Note

Saturday Morning74

134840-9 ch07.F 8/28/01 12:52 PM Page 74

3. The next screen prompts you to name your database file. By default SQL
Server will name your database file <your database name>_Data.mdf and
will name your transaction-log file <your database name>_Log.ldf. You
can change the name of the file to whatever you want. By default, also,
the initial size of these files will be 1MB; change this value to something
in line with your expected database size.

If you want all new databases in your SQL Server System to pos-
sess certain properties (such as initial size or data type), you
may specify these properties in your Model database and every
custom database you subsequently create will inherit it. (After
you are through with the database-creation process, try modify-
ing your Model database, setting its database size to 10MB and
its log to 2MB and recreating your custom database, to see how
this affects the new database properties.)

4. Now it is time to specify some properties of your yet-to-be-created data-
base (see Figure 7-1). I recommend leaving the Automatically grow the
database files option selected. The last option on this screen deals with
the file-growth restriction: If you choose to restrict file growth, the file
will grow only until it reaches a specified limit. This is an important
option because unrestricted file growth can potentially chew up all your
hard-drive space. Click Next.

One of my pet peeves is the option to increase file size by per-
cents. Doing this can result in your running out of space, as you
have no control over the number of megabytes allocated once the
maximum capacity is reached. If your database occupies 1GB, a
10 percent increase means an increase of 100MB to accommo-
date only 1MB of new data. Specifying growth in megabytes gives
you greater control over space usage. It is also a good idea to
specify the maximum possible size for the transaction log so it
does not fill up quickly.

5. Essentially, you repeat the same operations for your new database trans-
action log: choosing the name and initial size. In selecting the initial size
(and in using the file-growth option on the next screen) the rule of
thumb is to keep log size at approximately 25 percent of data-file size.
Click Next.

6. The same considerations for Step 4 apply to the option selection for this
step. Click Next.

Tip

Tip

Session 7—Creating and Using a Custom Database 75

Part II—
Saturday M

orning
Session 7

134840-9 ch07.F 8/28/01 12:52 PM Page 75

Figure 7-1
Set your database properties.

7. Now you see a summary screen displaying all the options you selected in
the previous steps. It’s a good idea to go through this summary and make
sure that the options specified are the ones you want. You can still go
back and change them or cancel the whole operation.

After you click Finish, SQL Server will create your database, which you will be
able to see on your Enterprise Manager console under the Databases node. If you
used the wizard interface, SQL Server will prompt you to create a database mainte-
nance plan; while it is a very good idea to have one, the topic of maintenance
plans is beyond the scope of this session and will be covered in Sessions 21, 26,
and 27.

Most of the time SQL Server will succeed. If SQL Server is unable
to create your database it will display an error message and an
error code you can use to find a more detailed explanation in
Books Online (for example, SQL Server displays the error message
“There is not enough disk space” and the error code 112 if you
attempt to create a 100GB database on a 20GB hard drive).

Note

Saturday Morning76

134840-9 ch07.F 8/28/01 12:52 PM Page 76

If you followed me through this session you should have a brand new database
showing under the Databases node on your Enterprise Manager console. Let’s take
a closer look at all the objects that make up your database.

You can create a database simply by issuing a Transact-SQL com-
mand from the SQL Query Analyzer window: create database
<database_name>. The size and all the properties will be the
same as those of the Model database, and the default file
names will be the same as those that appear in Step 3 of the
Create Database Wizard: <database_name>_Data.mdf and
<database_name>_Log.ldf. The files will be physically located in
the default directory of your SQL Server installation under that
name.

At this point all you have is an empty shell ready to be filled with your data-
base content. It contains 19 system tables, roles, and user(s) inherited from the
Model database. I will show you how to add your own tables, views, rules, and
stored procedures in Sessions 9, 11, and 16.

Modifying Database and Transaction Log Properties

You can examine (and modify) the properties of your newly created database by
locating the database in your SQL Server Manager console under the Databases
node and selecting the Properties option. You’ll see a screen like the one shown in
Figure 7-2.

There are six tabs on this screen. The first tab, General, displays some informa-
tion about your database, such as free space and time of last backup. This informa-
tion is for display only — you cannot modify anything from here. The next tab,
Data Files, combines steps 3 and 4 of the Create Database Wizard. Here you can
increase allocated space and change file-growth properties.

You cannot decrease the size of either the database file or
transaction-log file to be less than its initial size when created.

The Transaction Log tab gives you access to the same options as the Data Files
tab, only for transaction-log files.

Note

Note

Session 7—Creating and Using a Custom Database 77

Part II—
Saturday M

orning
Session 7

134840-9 ch07.F 8/28/01 12:52 PM Page 77

Figure 7-2
Adjust your database properties.

The Filegroups tab displays information about the filegroup a data file belongs
to. By default all data files are placed into the PRIMARY group. The idea behind
filegroups is to improve performance for large databases (usually over 1GB); sec-
ondary files can be placed on different servers and have access to additional
resources there.

The Options tab is probably the most important. Here you can restrict access to
the database so that only members of a specific group have access, or put the
database in single-user mode, thus denying access to anyone but you (which can
be useful for troubleshooting).

These options are for advanced users. You should familiarize
yourself with the concepts involved before attempting to modify
any of them. I recommend that you at least finish this book first.

Note

Saturday Morning78

134840-9 ch07.F 8/28/01 12:52 PM Page 78

The Recovery option enables you to specify how you intend to recover your
database in case of corruption, data loss, server crash, or some other unforeseen
disaster. Later, in Sessions 21 and 27, I will explain what your choices are and how
to choose the one that’s best for you. For now, I recommend leaving the default
setting, which is Full. The remaining eight options in the Settings group of the
Options tab require more than a basic understanding and you will be better off if
you leave them intact for the moment.

SQL Server 2000 provides four levels of compatibility with previous versions of
SQL Server. The default is obviously SQL Server 2000 itself (level 80); there are also
levels 70, 65, and 60, each representing a major version of SQL Server. The compat-
ibility levels are provided to ensure that legacy applications can still use the data-
base or be ported to it from the previous versions without much hassle. Unless you
are planning on using legacy databases, I recommend leaving this option at its
default, which is SQL Server 2000 itself.

The last tab on the screen, Permissions, enables you to control the use of your
database. With it you can restrict rights to create a table or view, or rights to per-
form database backup. I cover Permissions in more detail in Session 28.

Once you’ve changed any of the settings described above, you need to click OK
to finalize the change.

Deleting a Database

Selecting the database node from the Enterprise Manager console and choosing
Delete from the right-click menu deletes the database and corresponding log files.
You will be asked whether you want to delete the backup and restore the database
history; unless you really need this information for future reference, answer yes to
remove it. You do not have to restart SQL Server after deleting a database. SQL
Server removes data files, transaction-log files, and all database objects (such as
tables, rules, and so forth).

You can also drop a database by issuing a Transact-SQL command from the SQL
Query Analyzer (covered in Session 9):

drop database <database name>[,..n]

You have to be in the context of the Master database to execute the query
(make sure that the combo box on the Query Analyzer toolbar reads Master); make
sure that you are not currently viewing the database you want to delete in the
Enterprise Manager and that no clients are connected to it, as you cannot delete a
database that is in use. You must also have sufficient permissions in order to drop

Session 7—Creating and Using a Custom Database 79

Part II—
Saturday M

orning
Session 7

134840-9 ch07.F 8/28/01 12:52 PM Page 79

a database — you must be a member of the sysadmin or dbcreator group. You can
drop multiple databases with the same command by specifying a comma-delimited
list of the database names from the Query Analyzer window.

No system database — meaning Master, Msdb, Model, or
TempDB — can be dropped; SQL Server effectively prevents it
from happening. Hacking your way around this protection is not
recommended.

Be absolutely sure about your decision to delete: all your data will be lost, and
you will only be able to restore it if you performed a full backup immediately prior
to deleting.

REVIEW

� The Create Database Wizard makes creating a custom database much easier
by guiding you step by step through the whole process.

� You can modify any custom database in a number of ways or drop it alto-
gether.

� Modifying database properties through the Database Properties window is
relatively easy but requires a thorough understanding of SQL Server.

QUIZ YOURSELF

1. What are the three ways of creating a database with SQL Server 2000?

2. Do databases behave in different ways if they are created differently?

3. What is a transaction log? Why do you need one?

4. Why would you want to allow a database file to automatically increase in
size?

5. What is the default compatibility level for SQL Server 2000?

Note

Saturday Morning80

134840-9 ch07.F 8/28/01 12:52 PM Page 80

Session Checklist

✔ Learning about Transact-SQL
✔ Using the SELECT keyword
✔ Working with JOIN and UNION keywords
✔ Using the INSERT, UPDATE, and DELETE keywords
✔ Knowing about additional Transact-SQL keywords and functions

This session will introduce you to the basic concepts of Transact-SQL, with an
emphasis on obtaining immediate results. You’ll learn the fundamentals of
data manipulation and running SQL queries, as well as how to use built-in

functions and operators.

Learning about Transact SQL

Now it is time to take a closer look at the heart of Microsoft SQL Server —
Transact-SQL (or T-SQL). I mentioned in Session 5 that T-SQL is a dialect of the
standard ANSI SQL supported both by Microsoft and Sybase. It is a programming

S E S S I O N

Transact-SQL
Programming Language

8

144840-9 ch08.F 8/28/01 12:52 PM Page 81

language used exclusively for communicating with RDBMSes. Though many dialects
exist, they all are required to comply with at least entry-level ANSI SQL guidelines.

T-SQL is a third-generation procedural language and, as such, is lacking all the
features of the object-oriented programming model found in more advanced lan-
guages (such as C++, Java, and Visual Basic). T-SQL is all about data and how to
manipulate them; unlike other programming languages, you cannot use it to cre-
ate stand-alone programs — its statements can only be understood and executed in
the context of SQL Server. T-SQL statements can be executed directly through the
Query Analyzer utility, passed from the command line, or submitted to SQL Server
via a custom client application. T-SQL was designed specifically for querying and
modifying data in relational databases, and that is what it does best.

T-SQL keywords also include built-in functions like COUNT (which
returns a number of records) or AVG (which calculates the aver-
age for a particular field). One of the new features of SQL Server
2000 is the ability to define your own custom functions, thus
expanding the T-SQL vocabulary.

All T-SQL keywords are grouped into four categories:

� Data Definition Language (DDL) — Contains keywords dealing with
defining database structures — creating a table or index, or dropping or
modifying various objects within SQL Server.

� Data Manipulation Language (DML) — Contains keywords for manipulat-
ing data.

� Data Query Language (DQL) — Contains one keyword — SELECT — that is
used to compose queries that extract data from the SQL database.

� Data Control Language (DCL) — Contains keywords controlling access to
the database objects.

This session is concerned primarily with the DML and DQL groups.

Using the SELECT Keyword

In previous sessions, you learned about the two sample databases supplied with
Microsoft SQL Server 2000 — Pubs and Northwind. Now, it’s time to use the data
that these databases contain.

Suppose you want to get a list of all authors from the Authors table in the Pubs
database, as shown in Figure 8-1.

Note

Saturday Morning82

144840-9 ch08.F 8/28/01 12:52 PM Page 82

Figure 8-1
View the Authors table from the Pubs database.

The T-SQL command you would use looks like this:

SELECT * FROM authors

Except for the asterisk (*) — which stands for “every single field in the
table” — this command looks a lot like a plain English statement. If you run this
statement from the Query Analyzer window, you will see a result set containing all
23 rows in the Authors table and all fields in each row. The result set (sometimes
called the recordset) represents a virtual copy of the Authors table.

If you know the structure of the table you are querying, you can be more
specific:

SELECT au_fname, au_fname, phone from Authors

The query will partition the underlying table vertically, returning a subset of
the 23 Authors records — namely the author’s first name, last name, and phone
number — and leaving out all other fields.

But while it is useful for producing lists of records, you will sometimes need the
SELECT statement to be more precise, more specific. What if the table contains mil-
lions of records? To filter through the records, to partition the table horizontally,
you can use the WHERE clause.

The syntax of the WHERE clause is very intuitive. Suppose that you want a list
of all the authors living in the state of California. The following is the statement
that will return the first name, last name, and phone number of every author in
the database who lives in California. This query returns only 15 records out of 23
present in the table, as shown in Figure 8-2.

SELECT au_fname, au_fname, phone, state from Authors WHERE
state = ‘CA’

Session 8—Transact-SQL Programming Language 83

Part II—
Saturday M

orning
Session 8

144840-9 ch08.F 8/28/01 12:52 PM Page 83

Figure 8-2
Records returned from the Authors table.

Let’s be even more selective. Here is the query that returns one record only:

SELECT au_fname, au_lname , phone, state from Authors WHERE
state = ‘CA’

AND au_fname = ‘Cheryl’

Of course, if you have more than one Cheryl in your database, and all of them
happen to live in California, T-SQL will return more than one record. As you can
see, issuing very selective commands requires a thorough knowledge of the table
structure.

If you happen to have a table that contains duplicate records, T-SQL enables
you to filter them with a DISTINCT keyword: T-SQL will return only the first occur-
rence of the record, ignoring the rest, as in the following example:

SELECT DISCTINCT au_fname, au_lname , phone, state from
Authors

WHERE state = ‘CA’ AND au_fname = ‘Cheryl’

So far you’ve learned query basics: the SELECT statement, the FROM clause, the
WHERE clause, and the AND clause; you also learned that * means “all fields in the
table,” and that if you request specific fields, you must separate them from each
other with commas. The following query will select information about all authors
in the Pubs database living either in California or in Utah:

SELECT au_fname, au_lname , phone, state from Authors WHERE
state = ‘CA’

OR state = ‘UT’

What if you do not know what state Cheryl Carson lives in? You can combine
several modifiers, such as AND and OR, in the same query.

Saturday Morning84

144840-9 ch08.F 8/28/01 12:52 PM Page 84

SELECT au_fname, au_lname , phone, state from Authors WHERE
au_fname = ‘Cheryl’ AND au_lname =’ Carson’ AND (state = ‘CA’

OR
state = ‘UT’)

The uses of the SELECT statement can be much more complex
than the samples given in this session. For full SELECT-statement
syntax please refer to Books Online or a book specializing in
T-SQL.

As you learn more about T-SQL, you will find more than one way to achieve the
results you want. The important thing is to understand your selection criteria and
the order in which they are applied.

With the last query, T-SQL will return one and only one record (assuming that
you do not have more than one person named Cheryl Carson in your Authors
table). The results are quite different if you remove the brackets: Instead of the
record pertaining to Cheryl Carson only, you will also receive records for com-
pletely irrelevant Utah residents. Why’s that? The query is supposed to return all
the records for a Cheryl Carson living in the state of California — as well as all the
records for Utah residents, regardless of what their names are. If you apply brack-
ets, you instruct SQL Server to return the records for any Cheryl Carsons that hap-
pen to live in California or Utah. The lesson here: Be careful what you query for.

You are in total control of the way the records appear in the final result set. If
you want to combine one or more fields under a different name, this is the query
you use:

SELECT au_fname + ‘,’ + au_lname AS FullName, phone, state
from

Authors WHERE au_fname = ‘Cheryl’ AND au_lname =’ Carson’ AND
(state = ‘CA’ OR state = ‘UT’)

The values of the two fields — au_fname and au_lname — will be concatenated
under the new field name FullName. The only restriction on this kind of concate-
nation is that the fields must be of compatible data types — meaning that you
cannot concatenate character data and numeric data, for example, to produce one
column.

T-SQL is a strongly typed language, which means that prior to using a variable
in your code, you must declare it as being of a particular data type. The very basic
data types are characters, numbers, and date/time values. SQL Server 2000 also
introduces the new data type sql_variant, which can contain any of the basic
types. Table 8-1 lists all supported data types.

Note

Session 8—Transact-SQL Programming Language 85

Part II—
Saturday M

orning
Session 8

144840-9 ch08.F 8/28/01 12:52 PM Page 85

Table 8-1
SQL Server 2000 Supported Data Types

Numeric Dates Binary Data Text SQL server
Data Types Types Data Types Special Data

Types

decimal, float, timestamp, binary, nchar, text, uniqueidentifier,
smallint, smalldatetime, image ntext, nvarchar, sql_variant,
tinyint, bit, datetime varbinary varchar, char sysname, NULL
int, real,
money,
bigint,
smallmoney

Using the correct data type saves resources and helps ward off implicit conver-
sion errors. (Assigning a numeric value to a variable declared as varchar, for exam-
ple, will result in an error message.)

You may have noticed that I enclose values for the state and the
names in single quotes. This is because T-SQL requires that all
data assigned to a variable of character string type be so
enclosed. Numbers — integers, doubles, and so on — do not
require quotes.

Now let’s order the result set. To get a list of all Californian writers alphabetized
by last name, issue the following request:

SELECT au_fname, au_lname , phone, state from Authors WHERE
state = ‘CA’
ORDER BY au_lname

The result is a list in ascending alphabetical order (from A to Y); with the
ORDER BY clause, ascending order is the default. For descending alphabetical order,
simply add the following modifier:

SELECT au_fname, au_lname , phone, state from Authors WHERE
state = ‘CA’
ORDER BY au_lname DESC

You have more options for arranging records in the result set, such as using the
GROUP BY and HAVING clauses. These are more advanced options and require an
understanding of aggregate functions, which I will explain in Session 10.

Note

Saturday Morning86

144840-9 ch08.F 8/28/01 12:52 PM Page 86

Working with the JOIN and UNION Keywords

So far you have been querying only one table — but the whole point of a relational
database is the ability to assemble information from related tables into one result
set. Take a closer look at the Pubs database diagram, shown in Figure 8-3. I’ve
selected four tables: Authors, Titles, Publishers, and TitleAuthors.

Figure 8-3
Four selected tables from the Pubs database.

The tables Authors and Titles are in a many-to-many relationship, because an
author may have written more than one book, and a book may have been written
by more than one author. The table AuthorTitles resolves this N:N relationship,
replacing it with a one-to-many relationship between itself and each of the related
tables. The table Publishers is related to the table Titles in a one-to-many relation-
ship, because one publisher can publish many titles. In Figure 8-1 you can see this
relationship diagram defined by primary and foreign keys in the related tables.

The JOIN keyword

To enable you to assemble information from different tables into one result set,
T-SQL provides you with the keyword JOIN. Five types of joins are at your disposal:
INNER JOIN (also called NATURAL JOIN), LEFT OUTER JOIN, RIGHT OUTER JOIN,
FULL OUTER JOIN, and CROSS JOIN. You choose which one to use when assembling
information from one or more tables, based on the information you require.

Session 8—Transact-SQL Programming Language 87

Part II—
Saturday M

orning
Session 8

144840-9 ch08.F 8/28/01 12:52 PM Page 87

When you join two tables with an INNER JOIN you are asking for matching data
from both tables: For each row in one table there must be one row in the second
table. Suppose you want to know what publisher published which title. You can
use a command like the following:

SELECT * FROM publishers INNER JOIN titles ON
titles.pub_id =

publishers.pub_id

The result set is comprised of rows from both Publishers and Titles. Of course,
you could be more selective, as in the following example:

SELECT * FROM publishers INNER JOIN titles ON
titles.pub_id =

publishers.pub_id WHERE titles.title = ‘ The Gourmet Microwave ’

An OUTER JOIN will ask for additional rows from one of the tables even if no
matching rows exist in the other table; fields returned from the table where no
matching records exist will contain NULLs. This is where the RIGHT and LEFT key-
words come in handy. LEFT OUTER JOIN will return all records for the table men-
tioned in the FROM clause — that is, all matching records from the JOINed table
plus NULL records where no matching records were found. RIGHT OUTER JOIN does
the opposite — the table mentioned in the FROM clause will be the one containing
NULLs.

NULL values are not zero; they are a special data type indicating
absence of any value in the field. When SQL Server evaluates the
content of the fields, one NULL is never equal to another NULL
unless you turned off the database option ANSI NULLS.

The following query returns a result set, made up of 23 records, wherein rows 19
through 23 contain some data for the fields from Publishers and NULLs for the
fields borrowed from Titles. This is because these five records represent publishers
that have not published any books yet, and whose pub_id fields consequently have
no matches in the Titles table.

SELECT * FROM publishers LEFT OUTER JOIN titles ON
publishers.pub_id = titles.pub_id

While a publisher might not have published a single book yet, a published book
must have at least one publisher: RIGHT OUTER JOIN, therefore, will yield results
identical to those returned by INNER JOIN.

Note

Saturday Morning88

144840-9 ch08.F 8/28/01 12:52 PM Page 88

FULL JOIN will return all records in both tables only where they match.
CROSS JOIN will return a result set containing every possible combination of the

rows in both tables. The following query will produce a result set consisting of 144
rows: the table Publishers contains 8 rows and the table Titles 18 rows, and 8 times
18 equals 144.

SELECT * FROM publishers CROSS JOIN titles

There are two ways to define a JOIN between two (or more)
tables — one that was introduced in SQL-89 and one that was
introduced in the newer version SQL-92. Both are supported in
SQL Server 2000, though there is strong indication that the old
syntax has to go. The preceding query can be rewritten as
follows:
SELECT * FROM publishers WHERE publishers.pub_id =
titles.pub_id

For the purpose of clarity this book will use the new syntax
exclusively.

After you learn how to join two tables, you can proceed to joining multiple
tables.

Suppose you want to find all the titles published by authors living in California.
Some of the required information is in the Authors table and some is in the Titles
table: The query you use to extract it is a JOIN query. The JOIN query returns 17
records:

select T.title,A.au_lname,A.au_fname from titles as T
join titleauthor as TA on T.title_id = TA.title_id join authors

A
on TA.au_id = A.au_id where A.state = ‘CA’

This is three-way inner join wherein table names are aliased for better readabil-
ity — Titles is aliased to T, Authors to A, and TitleAuthors to TA. You can just as
easily use the full table names.

Though there is no limit on the number of the tables you can
join in one query, use your common sense and keep joins to a
minimum. Any more may have a negative effect on SQL Server
performance.Tip

Note

Session 8—Transact-SQL Programming Language 89

Part II—
Saturday M

orning
Session 8

144840-9 ch08.F 8/28/01 12:52 PM Page 89

The UNION keyword

The UNION keyword combines the results of two or more queries into a single
result set. The following query produces a single-column result set of 40 records,
the results from the second query being appended to the results from the first:

SELECT title from titles UNION SELECT au_lname from authors

By default, the UNIONized result set will remove all duplicate rows; to include
all records, use the ALL keyword. The following query returns 41 records. The pre-
vious query eliminated one duplicate record in the case of two people — Anne and
Albert — with the last name Ringer.

SELECT title from titles UNION ALL SELECT au_lname from authors

Using the INSERT, UPDATE, and DELETE Keywords

Now that you have mastered the SELECT statement, INSERT, UPDATE, and DELETE
are a breeze. Unlike SELECT, these keywords actually change the data in the
table — and for this reason, you should exercise particular caution in using them.

Using the INSERT keyword

INSERT inserts data into the table. To insert data into a table you must know not
only the structure but also the data type of each field in this table. See Figure 8-4.

Figure 8-4
The structure of the Publishers table from the Pubs database.

Suppose that you want to add a new publisher to the Publishers table. I know
that the columns to be filled are pub_id, pub_name, city, state, and country (see

Saturday Morning90

144840-9 ch08.F 8/28/01 12:52 PM Page 90

Figure 8-1). The syntax for the INSERT statement looks like one of the following
examples:

INSERT INTO PUBLISHERS (pub_name, pub_id, city, state ,country)
VALUES (‘Alex Publishing’,’9912’,’Vancouver’,’WA’,’USA’)

or

INSERT INTO PUBLISHERS VALUES (‘9912’,’Alex
Publishing’,’Vancouver’,’WA’,’USA’)

You can omit the list of fields if the values are supplied in the same order in
which the fields occur in the table.

If you look closely at the Publishers table structure in Figure 8-4, you’ll notice a
field called Allow Nulls; a check mark signifies that these fields allows NULL val-
ues, meaning that the INSERT query does not have to supply any values because
NULL is assigned by default. The ability to allow NULLs is a useful feature — when
you create a record you might not know the country of the publisher, or the state.

INSERT INTO PUBLISHERS (pub_id) VALUES (‘9913’)

After this T-SQL statement executes, the rest of the fields will be filled with
NULLs waiting for UPDATE. It is important to pay attention to data types as well as
to data range. For example, attempting to insert a five-character value into the
field defined as char (4) — a character field allowing four characters — results in
an error; attempting to insert a numeric value in a character field results in an
error; attempting to insert out-of-range values such as 100,000 into an integer
field results in an error.

Using the UPDATE keyword

UPDATE modifies existing data. In the previous INSERT sample you inserted pub_id
9913 into the Publishers table and left all the other fields NULL; now imagine that
you would like to update this record with some additional information.

By their nature UPDATE queries tend to be highly selective and — unless you
want to change the value of each and every record in your table — should use the
WHERE clause.

The following simple statement will change the value of the field pub_name to
‘New Publisher’ for every record in the Publishers table.

UPDATE Publishers SET pub_name = ‘New Publisher’

Session 8—Transact-SQL Programming Language 91

Part II—
Saturday M

orning
Session 8

144840-9 ch08.F 8/28/01 12:52 PM Page 91

If it is your intention to update only a single record, the following statement is
more appropriate:

UPDATE Publishers SET pub_name = ‘New Publisher’ WHERE
pub_id = ‘9913’

One query can update more than one field at the same time, as in the following
code:

UPDATE Publishers SET pub_name = ‘New Publisher’,
city=’Portland’,

state =’OR’ WHERE pub_id = ‘9913’

Using the DELETE keyword

The DELETE keyword is very similar to UPDATE. As its name implies, it removes one
or more records from the table. You must also be very selective when using it,
unless you want to remove all records from the table. The following query deletes
all records from the Publishers table:

DELETE publishers

And this one removes only the record that you’ve just updated:

DELETE publishers WHERE pub_id = ‘9913’

As in the case of the UPDATE keyword, you can modify this query with calcu-
lated values, joins, and so forth.

All these statements can be — and usually are — very complex if
you use all the optional arguments. This brief introduction is by
no means an exhaustive discussion of the proper syntax and
usage for each of these statements, but rather a sample of some
useful scenarios appropriate for beginners.

Note

Saturday Morning92

144840-9 ch08.F 8/28/01 12:52 PM Page 92

Knowing about Additional T-SQL Keywords and Functions

You can use the following keywords in your T-SQL queries right away:

� LIKE — When you know only some of your search criteria you can use pat-
tern-matching with this keyword and wildcard characters (see Table 8-2).

� IS (NOT) NULL — Use this keyword to search the database for records in
which a certain field is or is not NULL.

� RTRIM — It is not uncommon for data to contain trailing blank spaces. In
the T-SQL world the values “Cheryl” and “Cheryl “ are not the same.

� LTRIM — LTRIM is essentially the same as RTRIM, except that it deals with
leading blank spaces, such as in the value “ Cheryl.”

Table 8-2
Transact-SQL Wildcard Examples

Wildcard Description Query Example Output

% Consider any number SELECT au_fname Cheryl
of characters, before fromAuthors WHERE Charlene
or after the sign state = ‘CA’ and

au_fname LIKE ‘C%’

_ Consider only one SELECT au_fname Cheryl
character in place of Sheryl
the underscore from Authors WHERE

state = ‘CA’ and
au_fname LIKE ‘_heryl’

[] Consider any single SELECT au_fname Cheryl
character within the from Authors WHERE Sheryl
specified range ([A-Y]) state = ‘CA’ and
or set ([ABCYX]) au_fname LIKE

‘[CS]heryl’

[^] Consider any single SELECT au_fname Sheryl
character that is not from Authors WHERE
within the specified state = ‘CA’ and
range ([^A-Y]) or set
([^ABCYX]) au_fname LIKE

‘[^C]heryl’

Session 8—Transact-SQL Programming Language 93

Part II—
Saturday M

orning
Session 8

144840-9 ch08.F 8/28/01 12:52 PM Page 93

REVIEW

� Transact-SQL is a strongly typed programming language you need to mas-
ter in order to query and manipulate data in the SQL Server relational
database.

� Transact-SQL consists of keywords and operators that you combine with
logic to produce code.

� INNER, OUTER, and CROSS JOINs help you to combine, update, or delete
data from two or more tables.

� A Transact-SQL query can contain wildcards if the exact selection criteria
are not known.

QUIZ YOURSELF

1. What is Transact-SQL and how does it correspond to other SQL
implementations?

2. What would you use the WHERE clause for?

3. What would you use the DISTINCT keyword for?

4. What is the difference between an INNER JOIN and an OUTER JOIN?

5. What keyword would you use with the UPDATE statement?

6. Why is it usually a good idea to specify the WHERE clause when issuing
UPDATE and DELETE commands?

Saturday Morning94

144840-9 ch08.F 8/28/01 12:52 PM Page 94

Session Checklist

✔ Learning about T-SQL and SQL Query Analyzer
✔ Creating, altering, and dropping databases with T-SQL
✔ Creating, altering, and dropping tables with T-SQL
✔ Getting information about your SQL Server
✔ Working with Query Analyzer templates and the Object Browser

SQL Query Analyzer provides you with a way of executing ad hoc Transact-SQL
(T-SQL) queries against a SQL Server database. You’re going to learn how to
use it with T-SQL batch commands to create, modify, and destroy various SQL

Server objects (such as tables and databases). SQL Server provides you with a num-
ber of useful utilities such as the Object Browser, which you can use to facilitate
developmental and administrative tasks.

Learning about T-SQL and SQL Query Analyzer

If there were no way to execute them, T-SQL programs would be nothing more
than an exercise in logic — amusing but useless. SQL Query Analyzer is a client

S E S S I O N

T-SQL and SQL Query Analyzer

9

154840-9 ch09.F 8/28/01 12:53 PM Page 95

utility that enables you to execute Transact-SQL statements and displays the
results; it also enables you to analyze query performance.

You can start the SQL Query Analyzer in three ways: from the Programs ➪

Microsoft SQL Server startup menu, from the Tools menu in the Enterprise Manager
console, or from the MS-DOS command-line prompt (with the command
isqlw.exe).

Once Query Analyzer has started it will prompt you for a login and password;
either supply this information or, if you have set up SQL Server to use Windows
Authentication, just click OK. See Figure 9-1.

Figure 9-1
Connecting Query Analyzer to SQL Server 2000.

Try running several queries from the previous session to see whether they really
produce the results they’re supposed to. Enter the query shown in Figure 9-1 and
press F5 to execute it (or click the small green triangle on the toolbar). Chances
are that your screen will show something like what’s shown in Figure 9-1. If it
does not, check the drop-down list on the toolbar to make sure that your database
context is Pubs and run the query again. See Figure 9-2.

Saturday Morning96

154840-9 ch09.F 8/28/01 12:53 PM Page 96

Figure 9-2
Displaying the results of a T-SQL query.

The results of the query are displayed in a table; you can use the Query menu
on the toolbar to display them in a grid or in text form. You can also use the
Query menu to save the results in a file.

Let’s analyze what you see. The query requested all records from the Author
table and 23 rows were returned. The topmost row in the results pane (shown in
Figure 9-2) shows the names of the fields in the Authors table: au_id, au_fname,
and so on. If you selected the Grid view option there are two tabs on the results
pane: Grid and Messages. If you’re displaying results in text Grid and Messages are
displayed in the same pane.

The number of tabs on the results pane will vary depending on the execution
mode you select. Execution mode refers to the type and amount of information you
wish to collect about the query being executed; some of these modes require an
advanced understanding of SQL Server and are better left alone for now.

The Query Analyzer editor differentiates among T-SQL keywords,
variables, and comments by coloring them differently. The
palette and font are totally adjustable — if you prefer a different
font or color scheme you can make the change by right-clicking
inside the query pane and choosing Font from the pop-up menu.

Tip

Session 9—T-SQL and SQL Query Analyzer 97

Part II—
Saturday M

orning
Session 9

154840-9 ch09.F 8/28/01 12:53 PM Page 97

You can maintain several distinct connections to SQL Server
through Query Analyzer windows, because each window in SQL
Query Analyzer opens its own connection.

Now that you have a tool I encourage you to go through all the queries you
were presented with in the previous session and verify their accuracy. While you’re
doing that I suggest looking into the Query Execution Plan, one of the execution
mode options. In short, the Query Execution Plan shows you all the steps the SQL
Server Query Engine takes to process a query and return results. It shows you the
total cost of each step, each operation performed, and so on, which can be very
helpful in query optimization. I will cover it in more detail in Session 26; here I
just want to point out that such an option exists.

Creating, Altering, and Dropping Databases with T-SQL

In the previous session you learned about Data Query Language (DQL) and Data
Manipulation Language (DML); now take a look at the basic Data Definition
Language (DDL) statements.

Creating databases

Using DDL syntax you can create and destroy virtually any object in SQL Server
2000 — DEFAULT, PROCEDURE, FUNCTION, SCHEMA, VIEW, and TRIGGER, to name
just a few. Though different in their usage they all follow the same syntax:

CREATE <object type> <object name>

followed by the specifics of the particular object. The same rule applies to
destruction:

DROP <object type> <object name>

In Session 7, you learned about creating a SQL Server database using a wizard;
now take a look at the hardcore T-SQL that actually did the job.

While creating a database with all the options from T-SQL might be a daunting
task, fortunately almost all of these options can be defaulted. A simple statement
like the following would do the job:

CREATE DATABASE MyDatabase

Tip

Saturday Morning98

154840-9 ch09.F 8/28/01 12:53 PM Page 98

Leaving everything to its default might make your life easier in the short run,
but can create problems in the future. With the preceding query you have no con-
trol over where the physical database files will be located, what the maximum size
of the database and its log will be, how the database will grow, and so on. Using a
simple template can help you to stay in control.

The basic syntax for creating a database is as follows:

CREATE DATABASE SampleDatabase
ON
(NAME = MyDatabase,

FILENAME = ‘C:\program files\MyData\mydatabasefile.mdf’,
SIZE = 10MB,
MAXSIZE = UNLIMITED,
FILEGROWTH = 1MB)

LOG ON
(NAME = MyDatabase_LOG,

FILENAME = ‘C:\program files\MyData\mydatabaselog.ldf’,
SIZE = 5MB,
MAXSIZE = 25MB,
FILEGROWTH = 5MB)

GO

You may want to change the path to change the location, which is fine as long
as you make sure that the path is valid and the directories exist.

This T-SQL query creates a database called SampleDatabase with an initial size
of 10MB and potential unlimited growth in increments of 1 MB. The physical file
mydatabasefile.mdf will be placed into the directory C:\Program Files\MyData\; its
log file will be created with an initial size of 5MB and will be limited to 25MB in
increments of 5MB. You can specify many other options when creating a database;
full database-creation syntax is available from SQL Server Books Online.

Altering databases

You can add or remove files and filegroups from an existing database as well as
change the name of the database, the names of files and filegroups, or even the
size of a data file. The basic syntax is as follows:

ALTER DATABASE SampleDatabase
ADD FILE
(
NAME = MyDatabase1,

Session 9—T-SQL and SQL Query Analyzer 99

Part II—
Saturday M

orning
Session 9

154840-9 ch09.F 8/28/01 12:53 PM Page 99

FILENAME =’c:\program files\MyData\mydatabasefile2.ndf’,
SIZE = 10MB,
MAXSIZE = 50MB,
FILEGROWTH = 1MB
)

Dropping databases

The syntax for deleting a database is very simple:

DROP DATABASE SampleDatabase

You can delete multiple databases at once by supplying a comma-delimited list
of the databases to destroy.

DROP DATABASE SampleDatabase, SampleDatabase1, SampleDatabase3

Once you have dropped a database it disappears from the
Enterprise Manager and the physical database files are deleted.
Your only chance to restore it is by using full backups (covered
in Session 18).

Creating, Altering, and Dropping Tables with T-SQL

Adding tables to your database is easy with the wizard and not much more diffi-
cult with raw T-SQL.

Creating tables

Once you’ve decided on the table structure you can assemble T-SQL statements to
bring your table into existence, as in the following example:

CREATE TABLE MyTable (
Field1 int PRIMARY KEY,
Field2 char(10) NOT NULL),
Field3 datetime

)

Note

Saturday Morning100

154840-9 ch09.F 8/28/01 12:53 PM Page 100

You need to specify fields’ names and data types as well as whether certain
columns can accept NULL as a valid value (by default a field does accept NULLs).
Though you can use this table immediately after running a statement in the Query
Analyzer to create it, there is a lot of room for improvement: You can specify a
FOREIGN KEY, an index, computed fields, constraints, rules, default values, and
more. These features will be covered in sessions 10, 16, and 26.

The table created with the preceding statement is stored permanently in your
database and you can view it in the Tables collection of the Enterprise Manager.
But sometimes you will need to create a table that you will soon discard. You can
create a temporary table with an almost identical query:

CREATE TABLE #MyTable (
Field1 int PRIMARY KEY,
Field2 char(10) NOT NULL),
Field3 datetime

)

The pound sign (#) as the first character specifies that the table is temporary.
Temporary tables can be either local or global, the difference being the degree of
visibility: Local tables are accessible only to the connection in which they were
created, while global tables are accessible to all processes in all current connec-
tions. The global temporary-table identifier is a double pound sign as the first two
characters of the table name, as in ##MyTable.

Both local and global temporary tables are physically created in the TempDB
database.

Altering tables

To modify an existing table you can use the ALTER statement. With the following
statement you can add or remove fields in the table, and add, drop, or disable con-
straints. (To modify a table you need to have the privileges of the database owner
or administrator.)

ALTER TABLE MyTable ADD Field4 VARCHAR(10) NULL

To remove a field from the table, use the following command:

ALTER TABLE MyTable DROP COLUMN Field4

Some restrictions apply when you are adding fields to a table. This is the when
a table already contains data; when rules exist; or if constraints or triggers are
bound to the table. For the complete syntax, consult Books Online.

Session 9—T-SQL and SQL Query Analyzer 101

Part II—
Saturday M

orning
Session 9

154840-9 ch09.F 8/28/01 12:53 PM Page 101

Deleting tables

Deleting a table is just as easy as deleting an entire database:

DROP TABLE MyTable

Temporary tables have a different life span from regular tables: If a temporary
table is not explicitly dropped it will be dropped as soon as the last task referenc-
ing it is completed.

Getting Information about Your SQL Server

SQL Server provides you with a number of system functions that you can use to
retrieve some important information about it. You can type these statements
directly into the query window and see the results in the Messages tab, as shown
in Figure 9-3. The following is a list of the most common functions; there are many
more.

� SELECT ←NGUAGE displays the name of your SQL Server language.
� SELECT @@SERVERNAME displays the name of the SQL Server for the cur-

rent connection.
� SELECT @@VERSION displays information about Microsoft SQL Server —

version, build, edition, and so on.
� SELECT @@TRANCOUNT displays the number of open transactions for the

current connection.
� SELECT @@ERROR displays an error number giving you a clue about the

source of an error and the reason it occurred.

I’ll discuss SELECT@@TRANCOUNT in greater detail in
Session 14.

Cross-Ref

Saturday Morning102

154840-9 ch09.F 8/28/01 12:53 PM Page 102

Figure 9-3
Displaying return results of the system function.

Working with the Query Analyzer Templates and the Object
Browser

SQL Server comes with a number of useful templates that will save you time in cre-
ating T-SQL programs. The templates are canned T-SQL framework solutions that
you can modify for your own use. You can get to the Templates dialog either from
the toolbar of the SQL Query Analyzer or from its Edit menu. Templates are avail-
able for every occasion: for creating databases, creating tables, managing indexes,
moving databases from server to server, and more.

The Object Browser (see Figure 9-4) is another important feature provided to
make your life easier. In addition to the Templates browser it also includes a full
list of supported T-SQL functions and all supported system data types. The Object

Session 9—T-SQL and SQL Query Analyzer 103

Part II—
Saturday M

orning
Session 9

154840-9 ch09.F 8/28/01 12:53 PM Page 103

Browser also provides a full description of the functions and their accepted para-
meters. Once you’ve decided which function to use, you can transfer its text (dec-
laration and arguments) into the current pane of the Query Analyzer or a new
pane. To do this, select the appropriate option from the right-click menu — it sure
does reduce the amount of typing you have to do.

Figure 9-4
SQL Server’s Object Browser and templates.

REVIEW

� SQL Query Analyzer enables you to execute T-SQL queries directly against
SQL Server and analyze the results.

� You can use T-SQL to create, modify, and delete various objects in SQL
Server 2000, such as databases and tables.

Saturday Morning104

154840-9 ch09.F 8/28/01 12:53 PM Page 104

� SQL Server 2000 contains a vast collection of system functions that you
can use in your T-SQL code to perform specific tasks and retrieve system
properties.

� Query Analyzer templates and the Object Browser provide you with an easy
way to locate and use specific system functions, and reduce the amount of
typing you have to do.

QUIZ YOURSELF

1. What is the SQL Query Analyzer?

2. What parameter(s) is/are not optional when you’re creating a database
with T-SQL statements?

3. Where in SQL Server are temporary tables placed upon creation?

4. Is it possible to modify a table after it has been created?

5. How do you invoke the Object Browser?

6. What are system functions?

Session 9—T-SQL and SQL Query Analyzer 105

Part II—
Saturday M

orning
Session 9

154840-9 ch09.F 8/28/01 12:53 PM Page 105

154840-9 ch09.F 8/28/01 12:53 PM Page 106

Session Checklist

✔ Declaring and using T-SQL variables
✔ Using control-of-flow statements
✔ Exploring T-SQL operators
✔ Working with aggregate functions
✔ Running subqueries
✔ Using the CASE function

This session is about programming SQL Server 2000 using its own built-in lan-
guage, Transact-SQL. You will learn how to produce working programs using
T-SQL, as well as when and how to use variables, T-SQL operators, conver-

sions, and aggregate functions.

Declaring and Using T-SQL Variables

The concept of a variable is central to programming and T-SQL is no exception. A
variable is a conceptual placeholder that can contain data and to which you, the
programmer, can assign these data at will. Until a value is assigned to the variable,

S E S S I O N

Programming with T-SQL

10

164840-9 ch10.F 8/28/01 12:53 PM Page 107

the variable is empty. For strongly typed languages like T-SQL, the assigned value
of the variable must be of the same or a compatible data type.

In T-SQL, as in many programming languages, a variable must be declared prior
to use. The syntax for declaring a variable is simple:

DECLARE @Counter int
DECLARE @FirstName varchar(25)

This declares a local variable named @Counter of type integer and a local vari-
able @FirstName of type varchar, which is capable of holding up to 25 characters.
You can declare several variables on the same line, as in the following example:

DECLARE @FirstName varchar(25), @Counter int

All local variables are preceded by the commercial at sign (@).
This example brings up another important concept — scope of variables. The

variable declared in a stored procedure or a batch job is visible within it. You may
find some literature that refers to names preceded by the double at sign (@@) as
global, but in reality these are system functions that you learned about in the pre-
vious session. No true global variables exist in T-SQL, which means that you can-
not share variables between connections.

See Session 11 for a discussion of stored procedures.

The main function of variables is to store intermediate data, keep a counter for
the loop, or return a single value from the stored procedure. You assign a value to
a variable with code such as the following:

SET @Counter = 1
SET @FirstName = ‘Alex’

If the assigned value is a result of a query, the syntax is different, as follows:

SELECT @FirstName = au_fname FROM authors where au_lname =
‘Carson’

You need to understand what it means if a query returns more than one row. If
the table contains more than one record in which the last name of the person is
Carson, then the last record’s au_fname value will be assigned to the variable
@FirstName. For example, the following query, executed in the context of the Pubs

Cross-Ref

Saturday Morning108

164840-9 ch10.F 8/28/01 12:53 PM Page 108

database, returns two records in ascending alphabetical order (the default): first
‘Albert’ and then ‘Anne’.

SELECT au_fname FROM authors WHERE au_lname = ‘Ringer’

The query

SELECT @FirstName = au_fname FROM authors where au_lname =
‘Ringer’

will put ‘Anne’ into the variable @FirstName.
T-SQL provides support for many different data types. It is important to use the

correct data type in order to prevent errors. When dealing with financial data you
may want to use the highest-precision numeric data type to avoid rounding errors,
while for an inventory count you may want to use integers to speed up processing
and consume fewer system resources.

Variables can be converted to different data types either explicitly or implicitly;
no data type can be converted to every other data type, but every data type can be
converted to some other data type.

Implicit conversion

Implicit conversion is taken care of by SQL Server itself. It occurs either when a
variable of one data type is assigned to another variable of a compatible data type,
or when an operation, such as comparison, requires both variables to be of the
same type. In either case you must understand the potential ramifications of an
implicit conversion, which might introduce subtle, hard-to-catch bugs into your
T-SQL program. Consider a situation wherein you have two variables, one of the
float type and another of the integer type. The float-type variable holds a value
representing your account, with all cents represented as digits after the decimal
point, as follows:

DECLARE @AccountValue money
DECLARE @IntermediateHolder int
SET @AccountValue = 1234.56
SET @IntermediateHolder = @AccountValue

At this point SQL Server implicitly converts @AccountValue into an integer and
@IntermediateHolder hereafter contains 1,234 dollars — your 56 cents are gone
forever if you use @IntermediateHolder for future calculations.

Session 10—Programming with T-SQL 109

Part II—
Saturday M

orning
Session 10

164840-9 ch10.F 8/28/01 12:53 PM Page 109

Explicit conversion

In order to convert from one type to another you need to use the special conver-
sion functions CAST and CONVERT. These functions behave similarly, but CAST is
preferable to CONVERT: It complies with SQL-92 standards, so you can use it when
porting your SQL code to other vendors’ products.

CAST (expression AS data_type)
CONVERT (data_type [(length)] , expression [, style])

Here are some examples of explicit conversion. If for some reason you want to
convert all postal codes from the Authors table into numbers, you use the follow-
ing statement:

SELECT CAST (zip AS int) FROM authors

It might not be obvious why you would want to turn data represented as a char-
acter string into numbers. Consider the following: The ZIP field is of the varchar
type and you cannot do arithmetic with characters, but you need to add up all the
ZIP codes from the Authors table — your boss requires it for his astrological
research. You can do this using CAST and the aggregate function SUM (covered
later in this session). The result, by the way, is 1,904,317.

The following query using CONVERT will produce exactly the same result. You do
not have to specify the length of the data for the basic type, as it is implied by
default.

SELECT SUM(CONVERT (int , ZIP)) FROM authors

When converting date/time into strings you may want to add a third
argument — style — to produce results of a specific format (such as dd/mm/yyyy).
For the full syntax of this argument see Books Online.

Some data types cannot be converted into each other. Figure 10-1, taken from
Microsoft SQL Server Books Online, specifies which data types can be converted to
which others — implicitly or explicitly.

Saturday Morning110

164840-9 ch10.F 8/28/01 12:53 PM Page 110

Figure 10-1
Data-type conversion options.

Using Control-of-Flow Statements

Control-of-flow statements direct the execution path based on some condition.
A BEGIN...END statement defines a block that executes as one; it is usually fol-

lowed by a WHILE, IF, or IF...ELSE statement.
The classic example is the IF...ELSE construct. Somewhere in your HR depart-

ment database there might a T-SQL that runs once a year to update your salary in
the Salaries table, using as its criterion your Social Security number:

DECLARE @increase money
DECLARE @salary money

Session 10—Programming with T-SQL 111

Part II—
Saturday M

orning
Session 10

164840-9 ch10.F 8/28/01 12:53 PM Page 111

SET @increase = $1000
SELECT @salary = salary FROM salaries WHERE ssn=’123456789’
IF @salary < $100000

BEGIN
SET @salary = @salary + @increase
UPDATE salaries SET salary = @salary WHERE ssn =

‘123456789’
END

ELSE
PRINT ‘HAVE A NICE DAY’

Often you need to organize a loop construct to scroll through a range of possi-
ble values. T-SQL provides the WHILE construct for this purpose. Suppose that
management decides to give everybody a bonus — within its means, of course;
management does not want the total of all employees’ salaries to exceed a cool
million dollars. So it will do incremental salary increases until the preset limit
is met.

WHILE (SELECT SUM(bonus) FROM salaries) <= $1000000
BEGIN

UPDATE salaries SET bonus = salary * 0.02
END

In the preceding code I used an aggregate function, SUM, that I will come back
to later in this session. The loop will incrementally increase bonuses by two per-
cent of the annual salary for all employees until the limit is reached. The check
condition of the WHILE loop must evaluate to Boolean — true or false.

The loops can be nested: While updating bonuses you can also increase the
number of vacation days, again based on some upper or lower limit.

To give you more control over the execution of a loop T-SQL provides two addi-
tional keywords to go with the WHILE statement: BREAK and CONTINUE.

BREAK triggers an immediate exit from the innermost WHILE loop and jumps to
the line after END statement. If you are using nested loops you will need to use
the BREAK statement for every loop in order to get out completely.

CONTINUE immediately returns you to the WHILE condition; not a single state-
ment following CONTINUE will be executed.

RETURN is used in stored procedures (covered in the next session). It causes
execution to stop immediately and returns results to the calling procedure or the
client.

Saturday Morning112

164840-9 ch10.F 8/28/01 12:53 PM Page 112

WAITFOR introduces a delay in the execution. The following statement will sus-
pend execution until 6:15 p.m.; a statement on the next line will be executed
after this time.

WAITFOR TIME ‘18:15’

You can also suspend the process for a certain amount of time, in the following
example, it’s five seconds:

WAITFOR DELAY ‘000:00:05’

One of the most maligned flow-control statements is the infamous GOTO:

IF @salary < 10000
GOTO ask_for_raise
many more statements here

ask_for_raise:
UPDATE salaries SET salary = @salary * 0.1

This block of code will jump unconditionally to the label ask_for_raise (which
you specify by adding a semicolon after the name), no matter where in the T-SQL
program the block is located.

This keyword has been unanimously condemned by every professional
programmer — for a reason. It causes a jump from the current statement to the
place in your SQL program where it finds the specified label. It is easy to argue
that frequent use of this keyword greatly reduces clarity and may lead to spaghetti
code — hard to read, impossible to maintain. Nevertheless, I vouch for its validity
when applied judiciously. For example, if one validation fails and you wanted to
bypass all other validations, and you had several such validations in your proce-
dure, would it not make sense to use GOTO to go to a CLEANUP label on condition
of a failure?

Exploring T-SQL Operators

Once you’ve got variables you need tools in order to perform operations on them.
SQL Server uses the following categories of operators:

� Arithmetic operators
� Comparison operators
� Logical operators
� Assignment operators

Session 10—Programming with T-SQL 113

Part II—
Saturday M

orning
Session 10

164840-9 ch10.F 8/28/01 12:53 PM Page 113

� String concatenation operators
� Unary operators

You have been using some of them for quite a while. Using bitwise operators
requires a thorough understanding of programming concepts and low-level com-
puter operations; I will touch on this subject only briefly.

Arithmetic operators

Table 10-1 introduces five arithmetic operators you can use with your T-SQL
programs.

Table 10-1
Arithmetic Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo (returns the integer remainder of a division)

Comparison operators

You use the comparison operators shown in Table 10-2 to evaluate expressions or
specify selection criteria.

Table 10-2
Comparison Operators

Operator Description

= Equal to

> Greater than

< Less than

Saturday Morning114

164840-9 ch10.F 8/28/01 12:53 PM Page 114

Operator Description

>= Greater than or equal to

<= Less than or equal to

<> Not equal to

! = Not equal to (SQL-89 standard)

! < Not less than (SQL-89 standard)

!> Not greater than (SQL-89 standard)

Examples of using comparison operators are shown throughout this session.

Logical operators

Logical operators evaluate to true or false following the rules of Boolean algebra —
they are, in fact, Boolean operators. The full list of the logical operators is given in
Table 10-3.

Table 10-3
Logical Operators

Operator Description

ALL True if all of a set of compared values evaluates to true

AND True if both expressions evaluate to true

ANY True if any one of a set of compared values evaluates to true

BETWEEN True if the value is within a specified range

EXISTS True if a subquery (introduced later in this session) returns any
records

IN True if the result is equal to one in a list

LIKE True if the result matches a pattern

NOT Reverses the value of any other logical operator (such as NOT IN)

OR True if either logical expression evaluates to true

SOME True if some of a set of compared values evaluates to true

Session 10—Programming with T-SQL 115

Part II—
Saturday M

orning
Session 10

164840-9 ch10.F 8/28/01 12:53 PM Page 115

The compared values or set of compared values is evaluated based on the opera-
tors’ order of precedence.

The assignment operator

Transact-SQL only has one assignment operator, and you’ve probably guessed it
already — it’s the equals sign (=). You use it when assigning values to variables or
specifying column headings.

The string concatenation operator

String concatenation is an operation you’ll find yourself performing over and over
again. Luckily, it is very intuitive — T-SQL uses the plus sign (+) to concatenate
strings. You can use it in SELECT statements like the following:

SELECT au_fname + ‘,’ + au_lname FROM authors

You can also use it to produce console output:

DECLARE @MyString VARCHAR(40)
SET @MyString = ‘concatenating’ + ‘ ‘ + ‘strings’ + ‘ is ‘ +
‘easy’
PRINT @MyString

Unary operators

The unary operators listed in Table 10-4 work only on a numeric type of the vari-
able. They enable you to use negative and positive numbers. The default for a
number is positive — a number without a negative sign is considered positive.

Table 10-4
Unary Operators

Operator Description

+ The number is positive

- The number is negative

Saturday Morning116

164840-9 ch10.F 8/28/01 12:53 PM Page 116

The following sample creates two variables, assigns an integer value to one of
them, and assigns the negative value of the first variable to the second.

DECLARE @Num1 int
DECLARE @Num2 int
SET @Num1 = 5
SET @Num2 = -@Num2
PRINT CAST(@Num2 AS VARCHAR(2))

In Books Online you also will find the bitwise unary operator (~), which per-
forms the logical NOT operation.

Operator precedence

Precedence determines the order in which operators will be executed. Pay special
attention to the precedence of operators when assembling complex queries,
because the order of execution affects the final results. Here are the operators, in
order of precedence:

� + (positive), - (negative), ~ (bitwise NOT)
� * (multiply), / (divide), % (modulo)
� + (add), + (concatenate), - (subtract)
� =, >, <, >=, <=, <>, =, >, < (comparison operators)
� ^ (bitwise exclusive OR), & (bitwise AND), | (bitwise OR)
� NOT
� AND
� ALL, ANY, BETWEEN, IN, LIKE, OR, SOME
� = (assignment)

You can influence the order of precedence by using parentheses,
which causes the operators to be executed in the exact sequence
you specify. Consider, for example, (x * y - z) versus x * (y - z).

Tip

Session 10—Programming with T-SQL 117

Part II—
Saturday M

orning
Session 10

164840-9 ch10.F 8/28/01 12:53 PM Page 117

Working with Aggregate Functions

I used some aggregate functions earlier in this session while explaining how to
control flow statements. The syntax and usage of the aggregate functions is fairly
intuitive. The general syntax is as follows:

<function’s name> ([ALL | DISTINCT] expression)

� DISTINCT tells the query to ignore duplicate values, and ALL is a default
(for applying the function to all values).

� SUM returns the total of all the values in a numeric field, as in the exam-
ple used earlier in this session:

SELECT SUM(bonus) FROM salaries

� AVG returns the average of all the values in the numeric column:

SELECT AVG(bonus) FROM salaries

� COUNT returns the number of records in the group:

SELECT COUNT(DISTINCT au_lname) FROM authors

� COUNT(*) tells Transact-SQL to select all records fulfilling the condition.
� MAX returns the highest value in the column:

SELECT MAX(bonus) FROM salaries

� MIN returns the lowest value in the column:

SELECT MAX(bonus) FROM salaries

You can apply aggregate functions only to numeric columns, because aggregate
functions can accept only numeric values as arguments.

Running Subqueries

I mentioned earlier that you can use subqueries in logical expressions. The concept
of a subquery is really simple — it’s a query within a query, or a query within a
query within a query, and so on ad infinitum. You’ll typically use subqueries when
the WHERE clause contains a selection criterion that must be calculated or selected
on the fly from a table (usually an unrelated lookup table). The following query
prepares a result set of all authors living in states wherein tax is lower than two
percent:

Saturday Morning118

164840-9 ch10.F 8/28/01 12:53 PM Page 118

SELECT * FROM authors WHERE state IN (SELECT state FROM
states

WHERE tax < 2)

As you can see, the second query — the subquery, that is — returns a list of the
states wherein tax is lower than two percent, and the first query selects only those
authors who live in the states on this list. A statement in a subquery evaluates
before the query: This means that states were selected before the search for
authors began. If you can find a relationship between tables it is easy to rewrite
the query with an equivalent JOIN statement.

You can use subqueries with UPDATE, DELETE, and INSERT statements.

If you can use a JOIN operation instead of a subquery, I recom-
mend using it; subqueries, though useful, are expensive in terms
of system resources.

Using the CASE Function

In T-SQL the CASE function compares two or more values and returns some prede-
fined result. Consider the following sample in which your boss wants a suggestion
based on overall employee performance.

SELECT Emp_FirstName + ‘,’ + Emp_LastName, suggestions =
CASE rating

WHEN ‘excellent’ THEN ‘deserves a bonus’
WHEN ‘good’ THEN ‘needs to improve’
WHEN ‘poor’ THEN ‘ready to be fired’
ELSE ‘no suggestions’

END
FROM employees

To those who program in any other language, the CASE statement
of T-SQL can be somewhat confusing. It is not equivalent to the
CASE you might know from C or Visual Basic, but it is similar to
the IIF function. For example, consider the following: variable =
IIF(expression, true part, false part). In plain English, this
means that if the expression yields true then the true part will
be returned; otherwise, false part is assigned to the variable.

Note

Tip

Session 10—Programming with T-SQL 119

Part II—
Saturday M

orning
Session 10

164840-9 ch10.F 8/28/01 12:53 PM Page 119

No restrictions exist on the number of CASE statements you can have in your
SELECT statement. You can apply CASE to every field (column) you wish to return
in your result set.

REVIEW

� Variables are the data holders you can use in your T-SQL programs to store
various data types; a variable must be declared of a specific type and used
to store data of this type.

� Some types can be converted into others implicitly, while others need to
be converted explicitly.

� Control-of-flow statements enable you to control the program’s execution
path based on certain conditions.

� T-SQL supports a wide range of operators: Use them carefully, paying
attention to precedence.

� Transact-SQL provides a number of aggregate functions for computational
queries; an aggregate function computes a single value for a single column
from a number of records returned.

� Subqueries always execute before the parent query; use them to specify
selection criteria based on another selection.

� The CASE statement is a great tool for formatting returned data without
resorting to row-by-row processing.

QUIZ YOURSELF

1. Why do we need different types of data?

2. Can you share global variables between connections?

3. What is an implicit conversion? An explicit conversion?

4. How do you exit a loop construct?

5. Which operator takes the highest precedence?

6. Can you use aggregate functions on a column of the varchar data type?

Saturday Morning120

164840-9 ch10.F 8/28/01 12:53 PM Page 120

1. What is a relational database and how is it different from a flat file or a
spreadsheet?

2. What is referential integrity?

3. How is data integrity enforced in RDBMS?

4. What is the difference between a key and an index?

5. What databases are supplied with every SQL Server installation?

6. What is the purpose of the Master database in SQL Server?

7. Which SQL Server system database is a template database?

8. How do you resolve many-to-many relationships in RDBMS?

9. What is data normalization?

10. What is the purpose of the first normal form?

11. What components must you define for every database created in SQL
Server?

12. How do you create a database with T-SQL?

13. What is the T-SQL syntax for deleting a database?

14. Which databases cannot be deleted from SQL Server?

15. How are SQL Server databases physically stored under Windows 2000?

16. What is the internal language of SQL Server 2000?

17. How do you execute T-SQL statements?

18. What is a variable? How do you declare one?

19. What value could be assigned to VARCHAR datatype.

P A R T

#
P A R T

Saturday Morning

II

174840-9 pr2.F 8/28/01 12:53 PM Page 121

20. What are the four basic queries in SQL?

21. What are the main control-of-flow T-SQL constructs?

22. What are the different types of joins and what do they do?

Part II–Saturday Morning Part Review122

174840-9 pr2.F 8/28/01 12:53 PM Page 122

174840-9 pr2.F 8/28/01 12:53 PM Page 123

P A R T

Saturday
Afternoon

III

Session 11
Creating and Using Stored Procedures

Session 12
Trigger Happy

Session 13
Introducing Cursors

Session 14
Understanding Indexes

Session 15
Rules, Defaults, and Constraints

Session 16
Understanding Transactions and Locks

184840-9 po3.F 8/28/01 12:53 PM Page 124

Session Checklist

✔ Creating stored procedures
✔ Commenting Transact-SQL code
✔ Handling errors
✔ Using different types of stored procedures
✔ Renaming and dropping stored procedures

M icrosoft SQL Server enables you to store compiled T-SQL statements as a
special database object known as a stored procedure. Stored procedures in
SQL Server are very similar to the procedures in other programming lan-

guages, though there are some important differences you should be aware of.

Creating Stored Procedures

The T-SQL statements that you learned to write and execute in Sessions 8, 9, and 10
were compiled before being executed. The major difference between an interpreted

S E S S I O N

Creating and Using
Stored Procedures

11

194840-9 ch11.F 8/28/01 12:53 PM Page 125

program and a T-SQL program is that the latter is compiled all at once before it
runs, whereas the former is compiled line by line. The difference between a stored
procedure and T-SQL statements in the Query Analyzer window is that, unlike the
stored procedure, the T-SQL batch is compiled and optimized every time it runs. As
you may imagine, compilation is a time-consuming operation that will hinder per-
formance.

Like standard functions, stored procedures can accept input parameters and
return values to the calling procedure or batch as output parameters only; a func-
tion can return a value. Stored procedures can also return a status value, which
can only be of the integer data type; this value is normally used to report success
or failure of the procedure (0 for success and 1 for failure); a function’s return
value can be of any data type.

Functions are usually compiled into an executable and distributed; stored proce-
dures are meaningless outside SQL Server.

The T-SQL statements that make up the body of a stored procedure can perform
database operations like INSERT, DELETE, UPDATE, and SELECT as well as call
another stored procedure(s).

Here is the basic syntax for a stored procedure:

CREATE PROCEDURE <PROCEDURE NAME>

A stored procedure consists of a batch of T-SQL statements compiled under a
specific name and adhering to specific rules. The following is a simple stored pro-
cedure named MyStoredProcedure that returns the total number of authors in the
table Authors, which is contained in the Pubs database. It accepts no input para-
meters and returns an integer. Make sure that the code is executed in the context
of the Pubs database.

CREATE PROCEDURE MyStoredProcedure AS
DECLARE @count_authors int
SELECT @count_authors = COUNT(*) FROM authors

RETURN @count_authors

You can execute this batch from the Query Analyzer window or use the SQL
Server visual interface.

You also can create a stored procedure through a visual interface shown in
Figure 11-1. (Select a Stored Procedures node for a given database and then select
New Stored Procedure from the right-click menu.) This interface enables you to do
some useful things such as check the correctness of the syntax or save the stored
procedure as a template for all future stored procedures you may create there.

Saturday Afternoon126

194840-9 ch11.F 8/28/01 12:53 PM Page 126

Figure 11-1
Create a new stored procedure.

Once you have created the stored procedure you can execute it from the SQL
Query Analyzer window using the following syntax:

EXECUTE MyStoredProcedure

You can use a shorthand version: PROC instead of PROCEDURE and EXEC instead
of EXECUTE.

In order to see the results this procedure returns you need to elaborate a bit:
You must place a return value into a variable in the calling procedure.
MyStoredProcedure returns an integer value that is subsequently assigned to the
@result variable:

DECLARE @result int
EXECUTE @result = MyStoredProcedure
PRINT CAST(@result as varchar(5))

You cannot print an integer value in the Messages window without converting it
into a text value first: use the CAST function to do that.

Session 11—Creating and Using Stored Procedures 127

Part III—
Saturday Afternoon
Session 11

194840-9 ch11.F 8/28/01 12:53 PM Page 127

The following is an example of a stored procedure that accepts an input parame-
ter of a string type and returns an integer:

CREATE PROCEDURE MyStoredProcedure @State AS
DECLARE @count_authors int
SELECT @count_authors = COUNT(*) FROM authors where

state=@State
RETURN @count_authors

To find the number of authors living in the state of California you use the fol-
lowing syntax:

DECLARE @result int
EXEC @result = MyStoredProcedure(‘CA’)

The stored procedure can accept input parameters and return a value with out-
put parameters (note the difference between stored-procedure return values and
output parameters). Here is the syntax for a stored procedure returning parameters:

CREATE PROCEDURE MyStoredProcedure
@state varchar(2),@count_authors int OUTPUT AS

SELECT @count_authors=COUNT(*) FROM authors where state=@state
RETURN 0

The calling-statement syntax has changed — you need to send a variable into
the stored procedure for the output parameter, as shown here:

DECLARE @result int
EXECUTE MyStoredProcedure ‘CA’, @result OUTPUT

You still have to convert between data types in order to print the
output value; if a return parameter is varchar however, you can
print it without conversion.

Commenting Transact-SQL Code

With the ability to create increasingly complex Transact-SQL programs comes the
responsibility to comment your code. While comments might not be important in a

Note

Saturday Afternoon128

194840-9 ch11.F 8/28/01 12:53 PM Page 128

single-line statement, they become of paramount importance in a complex stored
procedure or batch implementing business logic. The reason for commenting code
is simple — maintainability. Keep in mind that down the road, months or years
from now, you or somebody else will have to make changes in the stored procedure
to reflect changing business rules, and that without clear comments about what
the stored procedure is expected to produce, and why a certain block of code was
written, this will be very time-consuming. Comments in SQL Server come in two
flavors: double-dash format and block format. A double dash in front of the line
excludes it from the compilation process and therefore renders it non-executable
as an inline comment, as shown in the following example:

CREATE PROCEDURE MyStoredProcedure
- - returns total count for authors in specific state
@state varchar(2),@count_authors int OUTPUT AS

SELECT @count_authors=COUNT(*) FROM authors where state =
@state
RETURN 0

You can use block comments when more than one line of comments is required:
Use the opening and closing slash/asterisk combination, as follows:

/* put your comments here
and continue for as many lines
as you wish as long as you remember to close
it with */

Error Handling

Programming and debugging are two parts of the same process. Virtually all code
ever written has needed to be debugged. Unfortunately, even the most thoroughly
debugged and tested code might throw an exception under some unforeseen cir-
cumstances. It is well worth the effort to provide your program with the ability to
trap an exception, handle it, and gracefully recover.

An exception is an error in a program that usually results in
abnormal termination of the program unless special efforts have
been taken to handle the error.

Note

Session 11—Creating and Using Stored Procedures 129

Part III—
Saturday Afternoon
Session 11

194840-9 ch11.F 8/28/01 12:53 PM Page 129

How do you know that an exception had occurred in your program — before the
computer crashes, that is? Whenever your T-SQL code executes you can inquire
about errors using the @@ERROR SQL Server function shown in the next example
(0 indicates an error-free state):

IF @@ERROR <> 0
BEGIN

PRINT ‘AN ERROR HAS OCCURRED’
END

If you execute an error while generating a batch or stored procedure from
within the Query Analyzer window, SQL Server will give you quite a bit of informa-
tion about each error it detects. Table 11-1 lists some information you might
expect about an error.

Table 11-1
Components of SQL Server Errors Reported to Clients

Component Description

Error number The unique number assigned to this error

Error message Concise information about the possible cause of the error

Severity The seriousness of the error

State code Additional information that you can use to diagnose a problem
(the same error might have one or more causes, depending on
the state of the system)

Procedure name The name of the stored procedure that raised the error

Line number The location; the line number of the T-SQL statement that
generated the error

Not all the information in the preceding table is available to you at all times;
you may need to dig a little to get a coherent picture of what has happened.

If you trap the error to analyze it in a calling procedure then you may want to
get all your error information from the master.dbo.sysmessages table; all the
@@ERROR function returns is an integer representing the error code. Try execut-
ing the following code in the Query Analyzer:

SELECT * FROM master.dbo.sysmessages WHERE error = 8134

Saturday Afternoon130

194840-9 ch11.F 8/28/01 12:53 PM Page 130

Here is the result you will get:

error severity dlevel description msglangid

------- -------- ------ -------------------------- ---------
8134 16 0 Divide by zero error encountered 1033

(1 row(s) affected)

You also can define an error of your own based on some business-logic criterion
specific to your application. You can do it by placing the RAISERROR statement
anywhere in a stored procedure or batch. The general format is as follows (the first
three arguments are required; those in brackets are optional):

RAISERROR (custom error message OR error message ID, severity
level, state, [argument (...n)], WITH [options...])

Here is an example of a custom error message, severity 3, state 5:

RAISERROR (‘Guess what? An Error!!’, 3,5)

Use your best judgment in selecting severity levels for your custom messages.
Severity levels 0 to 19 are considered informational; they are used to report execu-
tion status or return some trace message. For example, level 10 reports status, lev-
els 11–16 are for errors that can be corrected by user, level 18 is for non-fatal
internal errors, and so on. Levels 20 to 25 indicate fatal errors from which the
application cannot recover: Level 23 indicates a database-integrity problem, and
level 24 indicates hardware failure. For a full list of severity levels please consult
Books Online.

It is easy to get carried away by defining a high custom level of
severity; keep in mind, though, that if the severity level speci-
fied is 20 or higher, the client connection to the server is termi-
nated after the error is returned. Also, the error is logged in both
the error log and the application log.

Again, you can hardcode in your stored procedure all the parameters that
RAISERROR requires, or add your custom data to the sysmessages table using the
system stored procedure sp_addmessage. The RAISERROR statement is very power-
ful and provides you with many options for formatting error information to supply
as many details as possible. I encourage you to explore its full capabilities and take
advantage of them.

Note

Session 11—Creating and Using Stored Procedures 131

Part III—
Saturday Afternoon
Session 11

194840-9 ch11.F 8/28/01 12:53 PM Page 131

Keep in mind that every application that accesses data in SQL
server goes through layers of connectivity interfaces provided
with SQL Server. Each layer may raise its own errors, such as OLE
DB Provider, ODBC Driver, Enterprise Manager, Net Libraries, and
so on. These errors will not be in the sysmessages table; look
them up in the MSDN (Microsoft Developers Network) Library or
in the documentation supplied with the application.

Using Different Types of Stored Procedures

The following are the three categories of stored procedures:

� Temporary
� Nested and recursive
� System

I’ll describe each in the following sections.

Temporary stored procedures

As you may have guessed, a stored procedure can be temporary just as a table can
be temporary, and just like a table the temporary stored procedure can be both
local and global. The similarity extends to syntax as well:

CREATE PROCEDURE #MyStoredProcedure

The preceding code creates a local temporary stored procedure; the following
code creates a global temporary stored procedure:

CREATE PROCEDURE ##MyStoredProcedure

Any connection with sufficient privileges has access to the global stored proce-
dure; a temporary local stored procedure is visible within the context of the con-
nection with which it was created. The life span of a local temporary stored
procedure is the same as that of the connection, whereas a global temporary
stored procedure exists as long as the current SQL Server session. Once the server
is restarted all temporary stored procedures are gone.

Note

Saturday Afternoon132

194840-9 ch11.F 8/28/01 12:53 PM Page 132

Nested and recursive stored procedures

A stored procedure can call another stored procedure, which in its turn can call yet
another stored procedure, and so on for a total of up to 32 nested levels. No limit
exists to how many stored procedures you can call from within a given stored
procedure.

A stored procedure is a stored procedure and there is no reason why it cannot
call itself. This is called recursion and refers here to a programming technique in
which an output parameter is used as input for the next cycle (a call to itself)
until a certain condition is met. The same nesting-levels rule applies to recursive
stored procedures: They can call themselves for a total of up to 32 nested levels.

You can also use recursive stored procedures as an alternative to cursors (intro-
duced in Session 13). The following example uses recursion to calculate a factorial
and populate the Factorials table; it assumes the existence of such a table with two
fields (Number and Result) of type integer:

CREATE PROCEDURE usp_FindFactorial
(

@Number int,
@Result int

) AS
-- e.g. 5! = 5 * 4 * 3 * 2 * 1
-- multiply result
SET @Result = @Result * @Number
-- decrement number
SET @Number = @Number - 1
-- check that you get the value and limit of recursions is not
-- exceeded
IF @@NESTLEVEL <=32

BEGIN
IF @Number = 1

BEGIN
INSERT INTO Factorials (Number,Result)
VALUES((@@NESTLEVEL+1),@Result)

RETURN 0
END

ELSE
-- not yet, continue multiplication
EXEC usp_FindFactorial @Number, @Result

END
GO

Session 11—Creating and Using Stored Procedures 133

Part III—
Saturday Afternoon
Session 11

194840-9 ch11.F 8/28/01 12:53 PM Page 133

You call the preceding stored procedure from the SQL Query Analyzer with the
following syntax to calculate the factorial of 5. The values will be stored in the
Factorials table:

EXEC usp_FindFactorial 5,1

This example will not work for numbers greater than 12 (it is limited by data-
size restriction), but it serves to illustrate the principle.

A stored procedure written in T-SQL has all the strengths and
weaknesses of SQL itself. Sometime you need to access function-
ality beyond what is provided by SQL Server and T-SQL. Microsoft
SQL Server enables you to invoke an extended stored procedure
implemented as a Dynamic Linked Library (DLL), usually in
C/C++. Extended stored procedures comply with the same calling
conventions as regular stored procedures.

System stored procedures

Microsoft SQL Server 2000 uses stored procedures extensively: It comes with a
number of precompiled system stored procedures to assist you in performing vari-
ous tasks that are difficult or dangerous to perform directly (such as querying
system tables).

The system stored procedures are stored in the Master database. Microsoft SQL
Server 2000 comes with 930 canned system stored procedures.

Every system stored procedure starts with the prefix sp_ and is callable from
any database without a fully qualified path; similarly, any custom stored procedure
with the prefix sp_ that is stored in the Master database can be executed from any
database within a given SQL Server installation.

I’ll discuss system stored procedures at greater length in
Session 23.

Renaming and Dropping a Stored Procedure

Once created, a stored procedure can be renamed. The easiest way to rename a
stored procedure is from the same menu you would invoke when creating a new

Cross-Ref

Note

Saturday Afternoon134

194840-9 ch11.F 8/28/01 12:53 PM Page 134

stored procedure through the Enterprise Manager interface. Behind the scenes the
following Transact-SQL system stored procedure is executed:

sp_rename <OldName>, <NewName>

Session 11—Creating and Using Stored Procedures 135

Part III—
Saturday Afternoon
Session 11

The Advantages and Disadvantages of
Using Stored Procedures

The following are the major advantages of using stored procedures:

� T-SQL statements for the stored procedure are compiled and optimized
only once, and thus execute quickly.

� Stored procedures introduce the benefits of structured programming to
the otherwise unstructured Transact-SQL. Dividing the logic and imple-
menting it in a number of stored-procedure modules makes debugging
and making changes easier, because you can recompile one stored proce-
dure without affecting another (as long as you do not change the input
and output parameters).

� Several applications can reuse a single stored procedure: You can create
your own library of stored procedures and use these precompiled and
presumably bug-free modules to build your application.

� A built-in security mechanism enables you to assign privileges for exe-
cuting particular stored procedures.

� Stored procedures consume relatively few resources, both in terms of
network traffic for distributed applications (compare the transfer of tens
of lines of T-SQL statements to the transfer of a single line representing
the name of the stored procedure), and in terms of memory and system
resources for compilation and optimization.

The following are the major disadvantages of using stored procedures:

� Once you are using a stored procedure control over database logic is no
longer with a client application; you will need administrative privileges
to create or modify a stored procedure.

� The business logic of the client application becomes dispersed among
separate objects — applications and stored procedures — which makes
maintaining the logic somewhat difficult.

194840-9 ch11.F 8/28/01 12:53 PM Page 135

You can execute this system stored procedure directly from the Query Analyzer.
To remove a stored procedure from the procedures collection for any given data-

base you follow the same conventions you would follow for any other database
object: Select the right-click menu option Delete, or direct the execution of the
underlying T-SQL statement and issue the following command:

DROP PROCEDURE MyStoredProcedure

Be aware that renaming a stored procedure does not change the
name inside any other stored procedure that is used to call that
stored procedure by its old name: Unless you manually replace
the old name with the new one, this can cause errors. Similarly,
dropping a stored procedure does not remove references to it
from any calling procedure or client application.

REVIEW

� Stored procedures are compiled blocks of Transact-SQL Statements stored
within SQL Server under unique names.

� You use different types of stored procedures in different situations.
� It is important to comment your stored procedures for maintenance

purposes.
� You need to properly handle any error your stored procedure may produce.

QUIZ YOURSELF

1. Is a stored procedure interpreted or compiled?

2. How do you return results from a stored procedure?

3. What is the syntax for inserting inline comments into T-SQL code?

4. Why do you need error-handling code in your stored procedures?

5. What are the advantages of using stored procedures as opposed to T-SQL
batch statements?

Tip

Saturday Afternoon136

194840-9 ch11.F 8/28/01 12:53 PM Page 136

Session Checklist

✔ Introducing triggers
✔ Managing triggers

T riggers are a powerful SQL Server mechanism for implementing complex busi-
ness logic and maintaining database integrity. In this session you are going
to learn about the different types of triggers and their implementations, and

how to create and use them. You will also learn when and when not to use trig-
gers, and about some alternatives.

Introducing Triggers

Triggers are in virtually all RDBMSes as a means of enforcing business logic in a
relational database. In essence a trigger is no different from a stored procedure
(see Session 11). What makes a trigger different from a stored procedure is how it
executes: Unlike a stored procedure, which you have to call by name, a trigger exe-
cutes (fires) automatically in response to some event.

S E S S I O N

Trigger Happy

12

204840-9 ch12.F 8/28/01 12:53 PM Page 137

Triggers are one of the advanced features of SQL Server and
ought to be implemented with caution, as there are so many
options and conditions to be taken into account. This session
is only a brief introduction to the most essential aspects of
triggers.

A trigger is created for a specific base table or view and cannot exist without
one. Three events can fire a trigger: an UPDATE, DELETE, or INSERT statement exe-
cuted on the table that the trigger is associated with. Each of these events fires a
specific trigger designed specifically for it, and this enables you to apply complex
business logic to the data being INSERTed, DELETEd, or UPDATEd.

Once you read past Session 16 you will be able to compare triggers to SQL Server
constraints (such as CHECK constraints or FOREIGN KEY constraints) and decide
which is more efficient in any given situation; for now triggers are the only thing
you have learned about that is capable of validating data against rules that make
your database a system.

There are four types of triggers:

� AFTER
� INSTEAD OF
� Recursive
� Nested

Though a trigger creating T-SQL statements can be very complex if all the
options are specified, the basic syntax for creating a trigger is as follows:

CREATE TRIGGER <trigger name> ON <table name>
AFTER|FOR UPDATE,INSERT,DELETE

AS
<Transact SQL statements>

As you may have noticed, you can use two keywords for AFTER
triggers: AFTER and FOR. These keywords are identical in their
action and I speculate that FOR is provided only for compatibility
with previous versions of SQL Server. AFTER is a default type of
SQL Server trigger.

Another type of trigger, INSTEAD OF, has a slightly different syntax, reflecting
its specific status:.

Note

Note

Saturday Afternoon138

204840-9 ch12.F 8/28/01 12:53 PM Page 138

CREATE TRIGGER <trigger name> ON <table name>
INSTEAD OF [UPDATE,INSERT,DELETE’]

AS
<Transact SQL statements>

You can create triggers through the Query Analyzer or the Enterprise Manager’s
console, much as you would create a stored procedure. The only difference is that
the trigger is tied to a particular table. From the Tables collection select a table
you’d like to create a trigger for; then from the right-click menu select All Tasks ➪

Manage Triggers, as shown in Figure 12-1.

Figure 12-1
Managing triggers through the Enterprise Manager interface.

In the following sections we’ll look at these and other triggers in more detail.

AFTER triggers

There were only two types of triggers available with earlier versions of SQL
Server — FOR and AFTER. These types of triggers began working after data in the
table was modified; as I mentioned before, though featuring different keywords,
these triggers are identical in their action. They are fully supported in SQL Server
2000 as well.

Let’s say that in your database there is a table into which you record data about
your employees’ salaries, and that you do not want to give your employees raises
of more than twenty percent at a time. You can control this action with a trigger.
In Figure 12-2, I show you how to create a trigger using the Enterprise Manager
console (you can run the same code from the Query Analyzer):

Session 12—Trigger Happy 139

Part III—
Saturday Afternoon
Session 12

204840-9 ch12.F 8/28/01 12:53 PM Page 139

Figure 12-2
Creating, modifying, and deleting triggers.

If you are updating the record from the Query Analyzer window the appropriate
message will be printed; alternatively, you can choose to raise an error to a calling
application or just silently log this error into a table. This Transact-SQL code uses
the concept of transaction. Though I will discuss transactions later (in Session 16),
it is important to understand now that the operation (INSERT in my sample) and
the trigger comprise a single block that either succeeds or fails as a whole; ROLL-
BACK TRANSACTION rolls back the whole transaction, nullifying the update — the
data in the Employees table will remain as it was before the update.

SQL Server also introduces two virtual tables, INSERTED and DELETED, for use
with triggers. When data is about to be modified by insertion, updating, or dele-
tion there is no guarantee that the operation will be completed: Some business
logic implemented as constraints (Session 15) or triggers may prevent this. SQL
Server creates INSERTED and DELETED automatically whenever a particular action
occurs. The DELETED table contains rows as they were prior to the modification,
and the INSERTED table contains modified rows, as does the base table itself
(remember, the trigger fires after data is modified). The number of rows in each
table matches exactly the number of rows affected by the T-SQL statement.

Saturday Afternoon140

204840-9 ch12.F 8/28/01 12:53 PM Page 140

These tables are to be used for information only; you cannot
directly access them to modify data.

Now, the preceding sample implies that only one row at the time will be
updated. This is not always the case. You can update one row at a time with the
modified records by organizing a loop or using a cursor (covered in Session 13).
From the trigger’s code you can access any other table.

I use PRINT statements in the trigger to make the results more
visual, assuming that you execute all UPDATE statements from
the Query Analyzer. Normally triggers are not supposed to print
messages or otherwise visually manifest their action.

You can define a single AFTER trigger to respond to UPDATE, DELETE, or INSERT
actions, or you can define one trigger per action. You can even define multiple
triggers for the same action, as long as they have different names.

The sequence in which the same-action triggers are executed is usually deter-
mined by the sequence in which they were created; you can partially override this
default by using a system stored procedure, sp_settriggerorder, as shown in the
following code:

EXECUTE sp_settriggerorder trg_UpdateAction2, first, ‘update’
EXECUTE sp_settriggerorder trg_UpdateAction1, last, ‘update’

Using this stored procedure you can only specify which trigger will be executed
first and which will be executed last; the rest of the triggers will execute in the
order in which they were created.

INSTEAD OF triggers

INSTEAD OF triggers are new to SQL Server 2000. They can perform some validating
action before any data are inserted into the table, and are normally used to imple-
ment updates on views that normally do not support updates.

Unlike with AFTER triggers, there can be only one INSTEAD OF trigger for each
INSERT, UPDATE, or DELETE. The INSTEAD OF UPDATE, INSTEAD OF DELETE, and
INSTEAD OF INSERT triggers will be executed before any AFTER triggers get a
chance, effectively preventing them from being executed — ever.

Note

Note

Session 12—Trigger Happy 141

Part III—
Saturday Afternoon
Session 12

204840-9 ch12.F 8/28/01 12:53 PM Page 141

You can encrypt triggers or stored procedures to prevent anyone
from looking into your source code. Just add the modifier WITH
ENCRYPTION right before the AS keyword.

Recursive triggers

A trigger can call itself recursively (if the database option that allows it is set to
true). For example, if a FOR UPDATE trigger contains an UPDATE statement for the
base table, this trigger will be called again as this UPDATE executes, and again,
and yet again. The maximum number of recursive calls is 32, which is also the
maximum nesting depth. While a valid programming tool, recursive triggers can be
tricky to write and you should exercise caution in using them.

Besides implementing business logic, triggers are mainly used to
enforce referential integrity (see Session 5). Though the best
way to maintain referential integrity is normally to use the
FOREIGN KEY constraint, triggers and stored procedures become a
viable alternative in some situations. Check out Books Online or
some advanced books on SQL Server 2000 for some examples of
such situations.

Nested triggers

Triggers can be nested. They follow the same rules defined for stored procedures
and cannot exceed 32 levels. One example of nested triggers can be a table whose
FOR UPDATE makes an INSERT into the same table, thus invoking a FOR INSERT
trigger, which in turn invokes a FOR DELETE trigger. It is possible that one trigger
will invoke another that in turn invokes the first one, causing a so-called indefi-
nite loop. Because of the maximum depth of nesting levels, this loop will stop after
32 cycles. The SQL Server 2000 default setting allows nested triggers. You can dis-
able this option on the Server-level right-click menu by selecting Properties fol-
lowed by an option on the Server Settings menu, or by executing the following
system stored procedure:

exec sp_configure ‘nested triggers’, 0

Note

Note

Saturday Afternoon142

204840-9 ch12.F 8/28/01 12:53 PM Page 142

Disabling nested triggers will automatically disable recursive
triggers, regardless of the setting you may have in your database.
Recursive triggers are a special kind of nested triggers.

Managing Triggers

The easiest way to manage triggers is through a visual interface (see Figure 12-1).
You can view, modify, or delete a trigger. Behind the scenes, SQL Server will assem-
ble and execute a batch of T-SQL statements; you can, of course, also create and
execute these statements yourself.

Triggers are powerful, built-in tools for implementing business rules in the SQL
Server database as well as for enforcing referential integrity. I strongly recommend
reading Session 16, “Understanding Transactions and Locks,” before attempting
any real-life implementations.

Creating triggers

To create a trigger, simply run the code shown in Figure 12-2 from a Query
Analyzer window.

Dropping (deleting) triggers

To drop/delete a trigger, use the following syntax:

DROP TRIGGER <trigger name>

You can drop more than one trigger at the same time by specifying a list of trig-
gers. Dropping a trigger does not affect its base table.

You can remove a trigger by dropping it or by dropping the table
that it is associated with. When a table is dropped, all associated
triggers are also dropped.

Tip

Note

Session 12—Trigger Happy 143

Part III—
Saturday Afternoon
Session 12

204840-9 ch12.F 8/28/01 12:53 PM Page 143

Modifying triggers

The easiest way to modify a trigger is to drop it and then create another one under
the same name. If, for whatever reason, you need to preserve the trigger’s internal
ID (a unique number under which the trigger is listed among system objects), you
can use the ALTER TRIGGER statement. The T-SQL code following the AS keyword
will replace the original code :

ALTER TRIGGER tr_TwentyPercentRule ON employees
AFTER UPDATE

AS
PRINT ‘NO MORE RULES’

You can quickly view the information about triggers defined on a
table by using the system stored procedure sp_helptrigger. The
syntax is as follows: exec sp_helptrigger <table name>

REVIEW

� Many different types of triggers exist; each has a different use.
� You manage triggers as you would any other SQL Server database objects:

either with T-SQL commands or through the Enterprise Console manager.

QUIZ YOURSELF

1. What is a SQL Server trigger?

2. How is a trigger different from a stored procedure?

3. What are the SQL Server trigger types?

4. In response to what events would a trigger be fired?

Tip

Saturday Afternoon144

204840-9 ch12.F 8/28/01 12:53 PM Page 144

Session Checklist

✔ Using different types of cursors
✔ Understanding the scope of cursors
✔ Setting cursor concurrency options
✔ Choosing the right cursor

This session introduces Transact-SQL cursors, a very powerful programming
tool for data manipulation. You will learn about different types of cursors,
their advantages and disadvantages, programming considerations affecting

cursors, and how to choose the right cursor for any given job.

Understanding Cursors

In the SQL Server environment sets are the most efficient means of accessing or
modifying data, and you should use them whenever possible. For everything else
there is a cursor. Cursor is an extension provided by SQL Server to enable you to

S E S S I O N

Introducing Cursors

13

214840-9 ch13.F 8/28/01 12:53 PM Page 145

work with result sets returned by SELECT statements — one row at the time. From
examples in previous sessions you should have a general idea of what will be
returned by the following statement on the Pubs database:

SELECT * FROM authors WHERE state = ‘CA’

This statement returns a result set of 15 rows. This is the result set you are
working with and there is no way to access a single row within this result set
without losing the rest of the rows. That is, unless you are using a cursor. If you
want to update each record in a table differently, you either have to run a differ-
ent query for each row, or use a cursor.

You can request a cursor in SQL Server in two ways: inside the server itself by
using Transact-SQL statements, or via a client application by using one of the sup-
ported interfaces, such as Microsoft Active Data Objects, ODBC (Open Database
Connectivity), OLE DB (the latest database interface from Microsoft), or DB-Library
(a low-level programming interface to SQL Server). In this session I will concen-
trate mainly on server-side cursors created with Transact-SQL.

The basic syntax for declaring a simple cursor is similar to a standard T-SQL
batch statement:

DECLARE cur_California CURSOR FOR
SELECT * FROM authors WHERE state = ‘CA’

Since the primary reason for opening a cursor is to scroll it, all cursors are scrol-
lable (that is, you can navigate from record to record sequentially). In the interest
of preserving system resources the default scrolling is forward-only; if you need to
scroll backward, you open a specific type of cursor. (I’ll go into more detail about
cursor types later in this session.)

Once a cursor is declared you need to OPEN it so it can be populated with
records:

OPEN cur_California

Once the cursor is open you can access the data by scrolling the cursor. In order
to retrieve a row from a cursor you have to FETCH it as shown here:

FETCH NEXT FROM cur_California

FETCH instructs SQL Server to retrieve a single row from the result set contained
in the cursor. Once you’ve examined the content of this row it is time to move on
as follows:

WHILE @@FETCH_STATUS = 0
BEGIN

Saturday Afternoon146

214840-9 ch13.F 8/28/01 12:53 PM Page 146

The following code is executed as long as the previous FETCH succeeds:

FETCH NEXT FROM cur_California
END

You have to organize a loop to scroll the cursor and you also need to know
when to stop. The system function @@FETCH_STATUS will let you know when you
reach the end of the cursor: 0 means that a row was successfully FETCHed, and
anything else means that the FETCH NEXT statement failed. Once you are through
with the cursor you need to explicitly close and destroy it:

CLOSE cur_California
DEALLOCATED cur_California

Closing and de-allocating cursors is very important. An open cur-
sor takes up a lot of memory that will not be freed until the cur-
sor is closed and de-allocated; nor will you be able to open
another cursor with the same name.

If you run all the T-SQL statements introduced earlier in this session as a batch
from the Query Analyzer window, in your Results pane you will see 15 separate
rows as opposed to a single result set of 15 rows.

In the preceding sample you FETCHed the whole row. It is possible to FETCH
only the fields (columns) you are interested in; you can also declare a cursor on a
join. You can use any valid T-SQL SELECT statement to produce a cursor.

Here is an example of creating and scrolling a cursor containing records of the
last names and first names of the authors living in California, ordered alphabeti-
cally by last name:

USE Pubs
DECLARE @FirstNameVARCHAR(20)
DECLARE @LastName VARCHAR(20)

DECLARE cur_California CURSOR FOR
SELECT au_lname,au_fname FROM authors WHERE state = ‘CA’ ORDER BY
au_lname
OPEN cur_California

FETCH NEXT FROM cur_California INTO @FirstName, @LastName

WHILE @@FETCH_STATUS = 0
BEGIN
PRINT @LastName+ “,” + @FirstName

Note

Session 13—Introducing Cursors 147

Part III—
Saturday Afternoon
Session 13

214840-9 ch13.F 8/28/01 12:53 PM Page 147

The following code is executed as long as the previous FETCH succeeds:

FETCH NEXT FROM cur_California INTO @FirstName, @LastName
END

CLOSE cur_California
DEALLOCATE cur_California

The result of this batch executed from the Query Analyzer will be a comma-
delimited list of all authors’ first and last names.

Using Different Types of Cursors

According to your particular needs you may choose one of the four following types
of cursors:

� Scrollable cursors
� Static cursors
� Dynamic cursors
� Keyset cursors
� Forward-only cursors

You specify the type of cursor you want through a specific modifier in the dec-
laration statement, as shown here:

DECLARE cur_California CURSOR STATIC FOR
SELECT au_fname, au_lname FROM authors WHERE state = ‘CA’

I discuss each type of cursor in the following sections.

Scrollable cursors

So far you have only scrolled the cursor forward. Forward-only is the default for
any cursor type that opens for which no options are specified. To get a scrollable
cursor that scrolls both ways, you should ask for one:

DECLARE cur_California CURSOR SCROLL FOR
SELECT au_fname, au_lname FROM authors WHERE state = ‘CA’

Saturday Afternoon148

214840-9 ch13.F 8/28/01 12:53 PM Page 148

Now you can move backward and forward. You can navigate a cursor using the
FETCH command.

� FETCH PRIOR — Moves to the previous record in the result set.
� FETCH FIRST — Moves to the first record in the result set.
� FETCH LAST — Moves to the last record in the result set.
� FETCH ABSOLUTE number — Retrieves a specific position within the result

set (FETCH ABSOLUTE 4, for example, retrieves the fourth record from the
beginning.) The number you specify must be a positive integer.

� FETCH RELATIVE number — Works like FETCH ABSOLUTE, with the exception
that the count starts from the current row: If you are on the fourth record
in your result set FETCH RELATIVE 3 will take you to the seventh row from
the beginning. The number you specify must be a positive integer.

You should always check @@FETCH_STATUS to verify that the
record was retrieved. At the beginning of the result set FETCH
PRIOR does not yield any results and @@FETCH_STATUS is -1;
when you are trying to fetch a row that was deleted after the
cursor was opened, @@FETCH_STATUS is -2. The value of
@@FETCH_STATUS is global to all cursors created on a particular
connection, meaning that all cursors you happen to create and
that have not yet been destroyed will affect its value.

Static cursors

Static cursors represent snapshots of the data: Once created, a static cursor does not
reflect any subsequent changes to the underlying data. Static cursors in SQL Server
are always read-only. They are the least resource-intensive scrollable type of cursor.

Dynamic cursors

Dynamic cursors, as their name implies, never lose a contact with the data from
which they were created. Every modification (INSERT, UPDATE, or DELETE) is visi-
ble through this cursor — that is, if it has been made through the cursor itself or
committed to the database by other clients (to see uncommitted modifications
made by others to the same set of data requires more advanced techniques). The
dynamic cursor is always scrollable.

Tip

Session 13—Introducing Cursors 149

Part III—
Saturday Afternoon
Session 13

214840-9 ch13.F 8/28/01 12:53 PM Page 149

Keyset cursors

KEYSET cursors behave almost exactly like DYNAMIC cursors, with the exception
that the KEYSET cursors are — well — keyset-based. A keyset is a unique set of
columns that the cursor’s SELECT statement contains, and only these values are
guaranteed to be there while you are scrolling the cursor. When you OPEN the cur-
sor the list of all key values is created in TempDB, a workbench for all databases in
the SQL Server system. The keyset membership is fixed — after the cursor is
OPENed, only the data present at that moment will be available for viewing.

Forward-only cursors

The forward-only cursor does not support scrolling, which means that you can only
use FETCH NEXT — there’s no going back. The cursor is not built upon executing
the OPEN statement; the FETCH NEXT command fetches the row directly from the
database.

Understanding the Scope of the Cursors

By default, the cursor is global for the connection it was created with. This means
that unless you close and de-allocate the cursor, you can use it throughout every
T-SQL batch you execute on the connection. While this is certainly a convenient
feature, you must be careful not to keep the cursor open longer than necessary.
This is because SQL Server will generate an error if a T-SQL block or batch tries to
open the same cursor before you close it. If you forget to de-allocate the cursor it
will be hanging around until the connection to the SQL Server is closed.

If you want to create a local version of a cursor you must explicitly state this at
the database-settings level by setting CURSOR_DEFAULT to LOCAL (it is set to
GLOBAL by default), or specifying it in the declaration of the cursor, as in the fol-
lowing example:

DECLARE cur_California CURSOR LOCAL FOR
SELECT * FROM authors WHERE state = ‘CA’

Local cursors are visible only within the batch with which they were created
and last only as long as it takes that batch to execute; they are implicitly
de-allocated afterwards.

Saturday Afternoon150

214840-9 ch13.F 8/28/01 12:53 PM Page 150

If you need to perform another cursor operation while scrolling a
cursor, feel free. Unlike nested stored procedures or triggers, cur-
sors are not limited to any nesting depth. Just keep in mind that
the @@FETCH_STATUS function is global for the whole connection
and that both cursors will affect it.

Setting Cursor Concurrency Options

Concurrency can become an issue in a fast-paced environment wherein many users
are working on the same data set. How can users be sure that their changes are not
being accidentally overridden by other users? By preventing anyone from modifying
the record until you’re done— in other words, by placing a lock on it—you can pro-
tect your changes. If you think that there’s a good chance that somebody else will
try to modify the data while you are working with them, you may try other options.

SQL Server 2000 supports four concurrency options:

� READ_ONLY — Use this option when you need only to see the data, not to
modify it; this option uses the least system resources.

� OPTIMISTIC WITH VALUES — Use this option when you do want to update
your data but estimate that the chances that a second user might try to
update the same record at the same time are very slim: Any other user will
get an error notification upon trying to update values that you’ve just
changed.

� OPTIMISTIC WITH ROW VERSIONING — Use this option when you are still
optimistic and prepared to take your chances, but want to make sure that
only the whole row can be updated, not just some fields within it.

� SCROLL_LOCK — Use this option when you trust no one: Nobody can mod-
ify a thing in the result set affected by your cursor until you are through
with it.

Unless you are using a cursor within a transaction (see Session 16), the cursor
does not lock the records it was created against. This means that while you are
scrolling your cursor somebody else can modify the underlying data. Depending on
the type of cursor you are using you might not be aware of the changes until you
close the cursor and reopen it. DYNAMIC cursors let you see the changes as they
come — but you must take precautions in order to manipulate them correctly. By
placing a lock on the underlying records you effectively deny anyone access to the

Tip

Session 13—Introducing Cursors 151

Part III—
Saturday Afternoon
Session 13

214840-9 ch13.F 8/28/01 12:53 PM Page 151

records while you are working with them. You can lock the whole result set speci-
fied by the SELECT criteria, as in the following example:

DECLARE cur_California CURSOR SCROLL SCROLL_LOCK FOR
SELECT * FROM authors WHERE state = ‘CA’

This will prevent other users from modifying the data, although they will still
be able to view it.

No strict rules determine which concurrency option you should choose in any
given situation. You need to take into consideration the desired throughput, fre-
quency of updates, available system resources, system load, and so on.

Choosing the Right Cursor

You have a wide range of opinions when you are deciding which cursor to use or
even whether to use cursors at all. The choices can be overwhelming but they do
not have to be. Consider these priorities and the tradeoffs they entail:

� For data consistency, consider locking records.
� For system performance, consider using the STATIC or READ_ONLY option.
� For code maintainability, ask yourself this: Is my code too complex and

convoluted?

You will certainly come up with your own set of priorities. As a rule of thumb,
if you can avoid using cursors — do it. If you do need to perform row-by-
row operations, then consider your options: use the STATIC cursor with the
READ_ONLY option when you only want to look at the data, the DYNAMIC
cursor when you need to be aware of changes in the underlying data, and
the SCROLL_LOCK cursor when you need to shield your data from any
intrusion while you are working on them.

REVIEW

� Cursors are powerful tools in your Transact-SQL toolbox that operate row
by row.

� The four different types of cursors differ in terms of how they communi-
cate with the data they were created for. You need to choose an appropri-
ate type of cursor for the task at hand.

Saturday Afternoon152

214840-9 ch13.F 8/28/01 12:53 PM Page 152

� Cursors can be either global or local. You can set the visibility scope of the
cursor through database properties or through the cursor declaration. The
default setting is GLOBAL.

� When using cursors you need to pay attention to concurrency issues: Other
users can modify the underlying records while you are working on the
data set.

QUIZ YOURSELF

1. How are cursors different from T-SQL batch statements?

2. What are the four basic types of cursors?

3. What is the purpose of the @@FETCH_STATUS system function?

4. What is the default scope of a cursor? How can you change it?

5. Why should you care about concurrency issues?

Session 13—Introducing Cursors 153

Part III—
Saturday Afternoon
Session 13

214840-9 ch13.F 8/28/01 12:53 PM Page 153

214840-9 ch13.F 8/28/01 12:53 PM Page 154

Session Checklist

✔ Using indexes
✔ Designing an index
✔ Creating and deleting an index
✔ Managing an index

Y ou can greatly improve database performance by designing and implement-
ing proper indexes. In this session you will learn about the different types
of indexes and general index-design considerations, as well as how to opti-

mize and manage an index.

Using Indexes

An index in the database does not differ much from an index in the phone book. It
serves the same purpose: speeding up the search process. Imagine flipping through
each and every page to find a particular phone number in a thousand-page phone

S E S S I O N

Understanding Indexes

14

224840-9 ch14.F 8/28/01 12:53 PM Page 155

book with randomly assembled phone numbers and then think of finding the same
number quickly in a phone book wherein the records are organized alphabetically by
last name. This is the difference an index can make to your database performance.

You create an index for a table or a view. You can create it either for a single
column or for a combination of columns. Indexes are stored separately from tables,
which increases overall database size. Information about every index defined for
the tables in a particular database is stored in the sysindexes system table for that
database. You can create an index for virtually any data type except bit, ntext,
text, and image.

SQL Server automatically creates an index for the table’s primary key. The total
number of indexes you can define for a single table is 250 (this includes one clus-
tered index and 249 non-clustered indexes — I’ll explain the distinction later in
this session).

Give careful consideration to the column(s) you choose for an index: A properly
selected index can increase performance tenfold, while a poorly selected index can
actually slow down your database.

Clustered indexes

When you create a clustered index for a table the data in this table are physically
ordered around this key. This explains why you can have only one clustered index:
Once your phone book is ordered alphabetically by last name you cannot order it
by first name — at the same time.

When you create a clustered index all the rows in the table must be shuffled to
reflect that index. This operation is fairly resource-intensive and requires some
free swap space on your hard drive; also, be aware that all previously declared
non-clustered indexes will be dropped.

A clustered index is usually created on a primary key, though you have the
power to override this default behavior and create a clustered index on any named
column. The only requirement is that the values in the column be unique; if the
values are not unique the efficiency of the index will be greatly diminished,
because SQL Server will create a secondary index on the rows that have duplicates
in the primary index.

A clustered index is particularly efficient for frequent searches for a specific
value: The table is physically sorted (clustered) on the column containing this
value, or for the ranges of values, because rows containing the values within a
range will be grouped together.

Saturday Afternoon156

224840-9 ch14.F 8/28/01 12:53 PM Page 156

Non-clustered indexes

A non-clustered index is merely a pointer to the row containing data. It corresponds
to the index of a textbook: You find the keyword and then go to the specified page.
Non-clustered indexes do not affect the order of the rows in the table. When you
make a request for a particular column, SQL Server searches through the index, finds
the actual records and goes directly there. This is not as efficient as searching with a
clustered index but is still far superior to looking through the table record by record
in search of a value. A non-clustered index is especially helpful when the query is
searching for an exact value.

You can create multiple non-clustered indexes for different columns or combina-
tions of columns and use them in different queries.

SQL Server 2000 enables you to define an index on computed
columns. This is rather an advanced feature: Refer to Books
Online for a discussion of the computed-columns indexes.

Designing an Index

While it is always a good idea to have indexes — a clustered index and one or more
non-clustered indexes — you should give some consideration to the design issues.
Not all indexes are created equal: Some will speed up operations while others
might slow it down. In order to choose proper columns for indexing you must have
intimate knowledge of the database structure and business logic. Ask these ques-
tions when it comes to choosing columns: Which data are accessed? How often?
Are the data in the table static or do they change all the time? Is the value
unique? Is it too long?

Ideally, you should run SQL Server Profiler to determine what types of queries
are run against your database, and then use the Index Tuning Wizard, which sug-
gests the columns to use for the index (these techniques will be described in
Session 26, which deals with tuning and optimization).

Until you gain some experience in using the Index Tuning Wizard, some simple
rules can help you make a choice. You should create an index (either clustered or
non-clustered) for the following items:

Note

Session 14—Understanding Indexes 157

Part III—
Saturday Afternoon
Session 14

224840-9 ch14.F 8/28/01 12:53 PM Page 157

� Large tables containing more than one hundred rows
� Frequently searched-for columns
� Columns used in aggregate functions
� Columns used in GROUP BY and ORDER BY clauses
� Columns used in JOIN queries

You should not create an index for:

� Small tables
� Columns rarely or never used in queries
� Columns containing long strings of data
� Columns in which values are updated frequently

If you have a primary key in your table (and it is a good idea to have one) you
already have a clustered index: the same applies if you have defined a UNIQUE
constraint (see Session 15). You should create a clustered index on frequently
searched unique keys, columns with strong selectivity (a large count of unique val-
ues), and columns used by several different queries.

The prime candidates for non-clustered indexes are foreign keys, columns used
in the WHERE clause, columns used in aggregate functions, and columns returning
small result sets.

Creating and Deleting an Index

Like most SQL Server database objects, an index can be created in two ways: with
Transact-SQL statements, or visually, through a wizard (which creates the equiva-
lent T-SQL statements for you).

To create an index visually using the wizard, follow these steps:

1. Select Enterprise Manager ➪ Tools ➪ Create Index Wizard. The Welcome
screen briefly explains the other steps you will follow while creating the
index. Click Next.

Saturday Afternoon158

224840-9 ch14.F 8/28/01 12:53 PM Page 158

2. The next screen asks you to select a database and a table for which you
wish to create an index. (I have selected Pubs and Titles in Figure 14-1.)
Click Next.

Figure 14-1
Selecting a database and a table.

3. The next screen displays all the information about existing indexes for
the selected table (see Figure 14-2). Make sure that you are not attempt-
ing to create an index on the same columns. Click Next.

Session 14—Understanding Indexes 159

Part III—
Saturday Afternoon
Session 14

224840-9 ch14.F 8/28/01 12:53 PM Page 159

Figure 14-2
Inspecting existing indexes.

4. The next screen displays the structure of the selected table. You can
choose the columns you would like to include in your index (see Figure
14-3) as well as the sort order (ascending or descending, ascending being
the default). Click Next.

Saturday Afternoon160

224840-9 ch14.F 8/28/01 12:53 PM Page 160

Figure 14-3
Selecting columns and sort order.

5. The next screen enables you to specify the index options: clustered or
non-clustered, unique or non-unique, default or custom fill factor (see
the Note in this section). Figure 14-4 shows this screen. Click Next.

Session 14—Understanding Indexes 161

Part III—
Saturday Afternoon
Session 14

224840-9 ch14.F 8/28/01 12:53 PM Page 161

Figure 14-4
Specifying the index options.

The fill factor specifies how full the page should be before
another page is allocated for the growing index. The fill factor
option is provided for fine-tuning; in the majority of situations
you should use the default.

6. Every object in SQL Server is supposed to have a name (see Figure 14-5).
Name your index and, if more than one column is used for the index,
select the order in which the columns will appear. Click Finish.

I suggest using some kind of descriptive name (such as
titles_id_nc_title_type) for your indexes. This will help you
remember the columns for which you created the index, whether
the index is clustered or non-clustered, whether it is created or
primary, and so on.

Tip

Note

Saturday Afternoon162

224840-9 ch14.F 8/28/01 12:53 PM Page 162

Figure 14-5
Creating the index.

You also can create the same index using pure Transact-SQL by issuing the fol-
lowing commands:

CREATE NONCLUSTERED INDEX titles_id_nc_title_type
ON titles (title,type)

The full syntax for creating an index is more complex: You can specify many
options, such as FILLFACTOR, IGNORE_DUP_KEY, and more. Refer to Books Online
for the complete list of options.

To remove an index you can execute a Transact-SQL statement like the following:

DROP INDEX titles.titles_id_nc_title_type

Note that the index name is preceded by the table name for which this index
was created. To drop indexes created with PRIMARY KEY and UNIQUE constraints,
you must first drop the constraints (see Session 15). To drop the index from the
Enterprise Manager console, refer to “Managing an Index,” the next section in this
session.

Session 14—Understanding Indexes 163

Part III—
Saturday Afternoon
Session 14

224840-9 ch14.F 8/28/01 12:53 PM Page 163

Managing an Index

Once your index is created you manage it from the Enterprise Manager console.
Select a table and from the right-click menu select Manage Indexes (see
Figure 14-6).

Figure 14-6
Managing indexes.

From the Manage Indexes window you can rename the index, change its options
(such as fill factor), or delete (drop) it altogether.

You also can use system stored procedures to retrieve information about indexes
on a particular table, as shown here:

USE Pubs
EXEC sp_helpindex Titles

Saturday Afternoon164

224840-9 ch14.F 8/28/01 12:53 PM Page 164

Finally, you can use the system stored procedure sp_rename to rename the
index with the following syntax:

sp_rename ‘titles.sample_index’, ‘titles.new_index’,’INDEX’

SQL Server will display the following message: “Caution: Changing any part of
an object name could break scripts and stored procedures.” You’ll receive a report
of the status and find out whether or not the object was renamed.

REVIEW

� Indexes created for a particular table can greatly speed up queries on that
table.

� You can create one clustered and up to 249 non-clustered indexes for a table.
� SQL Server automatically creates a clustered index for a primary-key column;

it is good practice to have a primary key defined for virtually every table.
� You must be very careful when selecting the columns for which to build an

index, as a poor choice can slow down the query.
� You can create an index either with the Create Index Wizard or with raw

Transact-SQL; both methods produce identical results.
� Once you have created an index, you can manage it through the Index

Manager or by using system stored procedures.

QUIZ YOURSELF

1. What is an index and why do you need it?

2. How many indexes can be created for a table?

3. What’s the difference between clustered and non-clustered indexes?

4. What columns should you consider for a clustered index?

5. In what situations do you not want an index on your table?

Session 14—Understanding Indexes 165

Part III—
Saturday Afternoon
Session 14

224840-9 ch14.F 8/28/01 12:53 PM Page 165

224840-9 ch14.F 8/28/01 12:53 PM Page 166

Session Checklist

✔ Enforcing data integrity
✔ Understanding NULL values

M aintaining integrity is the paramount goal of any database administrator.
SQL Server provides you with a number of different mechanisms with
which to enforce different types of integrity. In this session you will learn

about constraints and how to use them to insure the integrity of your data.

Enforcing Data Integrity

Relational databases are all about data, and in order to be useful data must main-
tain its integrity, which refers to the quality of the data. If a table contains invalid
data it is said to have lost its integrity.

S E S S I O N

Rules, Defaults, and Constraints

15

234840-9 ch15.F 8/28/01 12:53 PM Page 167

Types of integrity

These are the four different types of integrity you can enforce in SQL Server:

� Entity integrity — Refers to a row in the table. Every row represents an
entity whose integrity is maintained by means of indexes and constraints.
Entity integrity basically ensures that every column in the row is unique;
if a PRIMARY KEY or UNIQUE constraint is applied then the row must be
unique within that table.

� Domain integrity — Refers to the data itself: they must be valid and in
the correct format. SQL Server enforces domain integrity through the use
of data types, CHECK constraints, rules, and DEFAULTs.

� Referential integrity — What makes RDBMS. Referential integrity ensures
the consistency of key data across the database. You enforce it with PRI-
MARY KEY and FOREIGN KEY constraints (see Session 5).

� User-defined integrity — A part of your business logic enforced by all the
aforementioned constraints, rules, and defaults, as well as triggers and
stored procedures.

Types of constraints

These are the six types of constraints:

� PRIMARY KEY constraints
� FOREIGN KEY constraints
� UNIQUE constraints
� CHECK constraints
� RULE constraints
� DEFAULT constraints

Each of these is discussed in the following sections.

PRIMARY KEY constraints

In Session 5 you learned about the PRIMARY KEY and FOREIGN KEY constraints.
You can define a primary key on a column or a group of columns; a table can have
only one primary key and by definition the key must be unique. This requirement
precludes the use of NULL as a value in any column that contains the primary key.

Saturday Afternoon168

234840-9 ch15.F 8/28/01 12:53 PM Page 168

When a primary key is specified SQL Server creates a unique index on this col-
umn(s), which prevents you from inserting a duplicate record. If you do try to
insert a duplicate record SQL Server will generate an error. For example, if you try
to insert a duplicate record into the Authors table of the Pubs database from the
Query Analyzer, you will see this message:

Violation of PRIMARY KEY constraint ‘UPKCL_auidind’. Cannot insert
duplicate key in object ‘authors’. The statement has been
terminated.

You can create a primary key and a table at the same time or add the primary
key later. Again, you can either go through the Enterprise Manager (by selecting
Design Table from the right-click menu on the table node) or directly issue
Transact-SQL commands. T-SQL gives you several ways to specify PRIMARY KEY
constraints; here is an example of the most basic method:

CREATE TABLE SampleTable
(

Sample_ID varchar(5) NOT NULL PRIMARY KEY,
Sample_Key varchar(10)

)
GO

To modify a PRIMARY KEY constraint you need to drop it and recreate it again,
as in the following example:

ALTER TABLE [dbo].[SampleTable] DROP CONSTRAINT
[PK__SampleTable__6C190EBB]
GO

SQL Server generates a name for the constraint, thus ensuring that the name
will be unique.

In relational databases a primary key in one table is often referenced by a for-
eign key in another table. In this case, you cannot drop the PRIMARY KEY con-
straint without dropping the FOREIGN KEY constraint first.

FOREIGN KEY constraints

Recall that FOREIGN KEY constraints are a means of enforcing referential integrity.
SQL Server 2000 enables you to specify what action to take if a FOREIGN KEY con-
straint is violated. You can specify NO ACTION, meaning that no custom action is
to be taken if a violation occurs when trying to delete a record; a deletion is pre-
vented and an error message is returned to a client application. Alternatively, you

Session 15—Rules, Defaults, and Constraints 169

Part III—
Saturday Afternoon
Session 15

234840-9 ch15.F 8/28/01 12:53 PM Page 169

can specify CASCADE to propagate the deletions to all the rows referenced by this
key. This feature is new to this version of SQL server (though it is similar to the
cascading in Microsoft Access).

Here is a sample of FOREIGN KEY constraint declaration:

CREATE TABLE SampleTable
(
Sample_ID varchar(5) NOT NULL PRIMARY KEY,

Sample_Key varchar(10)NOT NULL REFERENCES OtherTable(Sample_Key)
ON UPDATE NO ACTION ON DELETE CASCADE

)
GO

The parent table, OtherTable, contains the primary key Sample_Key; if a record
in SampleTable (referencing the primary key in OtherTable) is deleted, then the
record in OtherTable also has to go — no orphaned records are allowed. The
Sample_Key column in SampleTable is specified as NOT NULL, meaning that for
each record in the parent table at least one record must be stored in the child
table.

A theoretical limit of 253 exists for foreign keys declared for a
table. I recommend declaring as few foreign keys as possible for
good performance.

UNIQUE constraints

The UNIQUE constraint and the PRIMARY KEY constraint are essentially the same.
The idea behind the UNIQUE constraint is that you can enforce the uniqueness of
columns in the table without their having to be part of a primary key, as shown
here:

CREATE TABLE SampleTable
(
Sample_ID varchar(5) NOT NULL PRIMARY KEY,
Sample_Key varchar(10),
CONSTRAINT sample_key_unique UNIQUE (Sample_Key)

)
GO

The same rules apply to the UNIQUE constraint as to the primary key: no NULL
values, the ability to include more than one column, and so on.

Note

Saturday Afternoon170

234840-9 ch15.F 8/28/01 12:53 PM Page 170

CHECK constraints

The CHECK constraint enforces domain integrity by applying specific business logic
to the value that can be entered into the column. Like all the constraints I men-
tioned earlier in this chapter you can create it either during or after table defini-
tion. The following sample creates a table, SampleTable, with two columns and a
constraint on the column Sample_Key that restricts the possible values for this
column to letters only:

CREATE TABLE SampleTable
(
Sample_ID varchar(5) NOT NULL PRIMARY KEY,
Sample_Key varchar(1),
CONSTRAINT sample_key_check CHECK([Sample_Key] LIKE ‘[A-Z]’)

)

The CHECK constraint sample_key_check will raise an error every time you
attempt to insert an invalid value — in this case anything that is not a letter.

You can modify an existing table to add a CHECK constraint, like this:

ALTER TABLE SampleTable ADD CONSTRAINT
sample_key_check CHECK([Sample_

Key] LIKE ‘[A-Z]’)

When applying a CHECK constraint to a table with existing data you may choose
not to check those data against the constraint, as shown here:

ALTER TABLE SampleTable WITH NOCHECK ADD CONSTRAINT
sample_key_check2 CHECK ([Sample_Key] LIKE ‘[1-3]’)

By default (if WITH NOCHECK is specified) all existing data are checked against
the constraint. SQL Server will raise an error if the constraint is violated.

Sometimes you need to disable a constraint temporarily: the following T-SQL
statement will do that.

ALTER TABLE SampleTable NOCHECK CONSTRAINT sample_key_check

As with most SQL Server objects you can choose to use T-SQL or the visual
interface of the Enterprise Manager to create or destroy constraints (choose Design
Table from the right-click menu in the Tables node).

Figure 15-1 shows the properties for a constraint on the Publishers table from
the Pubs database. This constraint ensures that the values entered into column
pub_id fall within a certain range.

Session 15—Rules, Defaults, and Constraints 171

Part III—
Saturday Afternoon
Session 15

234840-9 ch15.F 8/28/01 12:53 PM Page 171

Figure 15-1
Modifying a CHECK constraint on a table.

You can define multiple CHECK constraints for the same table: they will be
applied in the order in which you create them. No limit exists on the number of
CHECK constraints you can specify for a column.

RULE constraints

RULE constraints act very much like CHECK constraints, the only difference being
that they are applied to multiple tables at once. In the previous examples, if the
column Sample_Key were present in more than one table it would make perfect
sense to create a RULE instead of modifying each and every table in the database
that happened to contain this column.

Saturday Afternoon172

234840-9 ch15.F 8/28/01 12:53 PM Page 172

You can access the Rules node from the Enterprise Manager; it is global for the
entire database. Select New Rule from the right-click menu in the Rules node to
bring up the Rule Properties window. The rule shown in Figure 15-2 will reject any
attempts to insert values that do not fall into the certain range values.

Figure 15-2
Changing the rules.

The column name is represented by the @value variable. Once you have created
a rule you can bind it to a column in the tables; the name of the column is not
important as long as the logic of the rule can be applied to it. You can select mul-
tiple columns in multiple places. Binding a rule to a column produces the same
results as creating CHECK constraints for that column.

DEFAULT constraints

A DEFAULT constraint enables you to specify the value that will be assigned to the
column if an INSERT statement has nothing to assign to it. The value you assign
can be a constant or a result of a system function. As with all the constraints you
have learned about so far, you can add DEFAULT constraints to the table definition,
as shown here:

Session 15—Rules, Defaults, and Constraints 173

Part III—
Saturday Afternoon
Session 15

234840-9 ch15.F 8/28/01 12:53 PM Page 173

CREATE TABLE SampleTable
(
Sample_ID varchar(5) NOT NULL PRIMARY KEY,
start_date datetime DEFAULT (getdate())

)
GO

You can also alter the existing table like this:

ALTER TABLE SampleTable WITH NOCHECK ADD
CONSTRAINT DF_start_date DEFAULT (getdate()) FOR [start_date]

This T-SQL statement adds a default constraint to the column start_date; the
system function getdate() will return a current date to be assigned to this field
whenever an INSERT statement is executed on the SampleTable and no value is
specified for this field.

A DEFAULT constraint works like a RULE constraint: it is applied to a single col-
umn only but can be defined for the entire database and bound to specific
columns. Although DEFAULT constraints help maintain data integrity while simpli-
fying the client application’s job, they need to be applied judiciously. Consider a
scenario in which your application inserts some data into a database and one of
the columns maintains the date and time of insertion. What if you insert data
remotely from a different time zone? Should you insert the time from the com-
puter on which you run your client application, or the time from your database
server? The answer depends on the business logic of your application.

Also, you need to watch out for possible conflicts with other constraints.
Consider this syntax:

CREATE TABLE SampleTable
(
Sample_ID varchar(5) NOT NULL PRIMARY KEY,
start_date datetime NOT NULL DEFAULT NULL

)
GO

It defines a table with the column start_date, which must not contain NULL val-
ues with DEFAULT constraints that assign NULL to this column if no value is speci-
fied in the INSERT query. SQL Server will have no problems creating such a table,
but any insert statement relying on DEFAULT will fail and return the error message
“column does not allow nulls.”

Saturday Afternoon174

234840-9 ch15.F 8/28/01 12:53 PM Page 174

Understanding NULL Values

When data are inserted into the table and neither a value nor a DEFAULT constraint
is specified for a field, SQL Server 200 enters NULL into that field by default. NULL
is a special value assigned to a field in a table when no value is specified. NULL is
not zero; though it is not a data type per se, you may consider it a special case of
the data type. Let’s say that you enter a job ID and job description into some Jobs
table that contains the columns job_id, description, and salary, but that you have
not yet determined the salary level for the job in question. SQL Server will assign
the value NULL to that field. The query returning all jobs that have not yet been
assigned salary levels looks like this:

SELECT job_id, description FROM Jobs WHERE salary IS NULL

The opposite — a query returning all jobs to which a salary has been
assigned — looks like this:

SELECT job_id, description FROM Jobs WHERE salary IS NOT NULL

When using NULL in a query you must consider the database setting ANSI
NULLs default, which determines how NULL values are evaluated in the Transact-
SQL query. According to the SQL-92 standard (ANSI), NULLs on any comparative
statement (<> or =) against the field containing NULL evaluates to false.

When ANSI NULLs option is set to OFF, SQL Server can compare NULLs: For
example, if the value in compared fields is NULL, the fields evaluate to true.

REVIEW

� Constraints play an important role in maintaining the integrity of the
database.

� You can use different types of constraints to maintain data integrity.
� You can specify constraints at the table-definition level or add them later,

using either T-SQL statements or the Enterprise Manager console.
� You can modify a constraint after it has been created; some constraints

have to be dropped and recreated in order for this to work.
� NULL is not zero; the way in which NULL is evaluated depends on the data-

base settings.

Session 15—Rules, Defaults, and Constraints 175

Part III—
Saturday Afternoon
Session 15

234840-9 ch15.F 8/28/01 12:53 PM Page 175

QUIZ YOURSELF

1. What are the four integrity types supported by SQL Server 2000?

2. What kind of integrity is enforced by the PRIMARY KEY constraint?

3. What kind of integrity is enforced by the FOREIGN KEY constraint?

4. How does the UNIQUE constraint differ from the PRIMARY KEY constraint?

5. How many CHECK constraints can you define for a column?

6. What is the scope of the RULE constraint?

7. What values can you use for the DEFAULT constraint?

Saturday Afternoon176

234840-9 ch15.F 8/28/01 12:53 PM Page 176

Session Checklist

✔ Understanding transactions
✔ Setting isolation levels
✔ Learning about SQL Server locks
✔ Exploring lock types
✔ Dealing with deadlocks

T ransactions are used in applications where maintaining data consistency is of
importance. This session is all about transactions and the mechanisms that SQL
Server uses to support them. SQL Server locks protect data in multiuser envi-

ronments and are used in conjunction with transactions to ensure data consistency.

Understanding Transactions

By now you are already used to retrieving and modifying data through Transact-
SQL batches or stored procedures. These methods do work flawlessly and the
results do not bring any surprises — in a world where you are the only user of the

S E S S I O N

Understanding Transactions
and Locks

16

244840-9 ch16.F 8/28/01 12:54 PM Page 177

database, where nothing ever interrupts the power supply, and where your com-
puter hardware never fails. You might yet get there; but for now you should be
concerned with the real world.

What turns your regular T-SQL batch statements into a transaction is their abil-
ity to pass what is referred to as the ACID test. ACID is an acronym for:

� Atomicity — Either all changes are made, or none.
� Consistency — All data involved must be left in a consistent state upon

completion of the transaction; a database must maintain its integrity.
� Isolation — One transaction must not be aware of any modifications to the

data by any other transaction; it must either see the data in the original
state or after the other transaction has been completed.

� Durability — The results of the completed transaction must be preserved
in the database no matter what.

You might wonder how to implement all of these requirements; fortunately, this
is something the SQL Server takes care of for you. In order to run a T-SQL batch as
a transaction you need to BEGIN TRANSACTION and, assuming that everything goes
well, COMMIT TRANSACTION.

Say you want to withdraw some money from a bank: The transaction is sup-
posed to check how much you have in your account, subtract the required sum,
and put the money into your hands. At no point during this transaction should
there be an inconsistent state wherein, for example, you get the money without
the same amount being deducted from your account or — even worse — the money
is deducted from your account without making it into your hands.

The following code is intentionally simple, created just to demonstrate the con-
cept behind transactions; actual code implementing this operation would be much
more complex and dependent on the particular business logic that the bank uses.

BEGIN TRANSACTION tWithdrawal
BEGIN
-- initialize @TotalSavings variable
SET @TotalSavings = 0
-- verify that the client has enough money for withdrawal
SELECT @TotalSavings = account_value FROM savings WHERE
account_id = ‘12345’
IF @TotalSavings >= @RequestedAmount
BEGIN

-- subtract money from the client’s account
UPDATE savings SET account_value = (@TotalSavings -

@RequestedAmount) WHERE account_id = ‘12345’

Saturday Afternoon178

244840-9 ch16.F 8/28/01 12:54 PM Page 178

-- send notice to the bank machine to release requested --
amount of money; implemented as a stored procedure ----------
sp_releasemoney

-- details of implementation are irrelevant at this point,
-- assumes that it returns 0 on success and 1 on failure
execute @Status = sp_releasemoney @RequestedAmount
IF @Status = 0

BEGIN
-- client’s got his/her money; the amount was deducted ----- from
his/her account

COMMIT TRANSACTION tWithdrawal
END

ELSE
-- something went wrong, undo all the changes

ROLLBACK TRANSACTION tWithdrawal
END

ELSE
-- there is no enough money or user does not exist
ROLLBACK TRANSACTION tWithdrawal

END

Once a BEGIN TRANSACTION statement is issued no data modifications are per-
manent until the COMMIT TRANSACTION statement is issued; the ROLLBACK state-
ment rolls back all the changes made during the course of the transaction up to
the last statement.

Every transaction is a named transaction. You must specify the
name in the BEGIN TRANSACTION statement, but you can omit it
in either the COMMIT or ROLLBACK statement.

This is as close as you can get to ensuring atomicity within SQL Server, short of
divine intervention. Evolved mechanisms of ensuring isolation and durability (such
as replication, mirroring, and so forth) exist, and data consistency will be ensured
by the constraints applied to the database.

The following T-SQL statements are not allowed in transactions.

� ALTER DATABASE
� BACKUP LOG
� CREATE DATABASE
� DROP DATABASE

Note

Session 16—Understanding Transactions and Locks 179

Part III—
Saturday Afternoon
Session 16

244840-9 ch16.F 8/28/01 12:54 PM Page 179

� DUMP TRANSACTION
� DISK INIT
� LOAD DATABASE
� LOAD TRANSACTION
� RECONFIGURE
� RESTORE DATABASE
� RESTORE LOG
� UPDATE STATISCTICS

The next two sections discuss the three following types of transactions:

� Explicit transactions
� Implicit transactions
� Distributed transactions

Explicit and implicit transactions

Any transaction that you start, end, or roll back using BEGIN TRANSACTION, COM-
MIT TRANSACTION, or ROLLBACK TRANSACTION is an explicit transaction. The code
in the preceding section is a sample of an explicit transaction.

Implicit transactions are more subtle and complex. SQL Server automatically
starts an implicit transaction when it encounters one of the following T-SQL state-
ments (grouped according to functionality):

� SELECT, INSERT, UPDATE, DELETE
� ALTER TABLE
� TRUNCATE TABLE
� OPEN, FETCH
� GRANT, REVOKE

Imposing a transaction on these statements is just plain common sense, because
data might be left in an inconsistent state should the statement fail. You have the
power to turn the implicit-transactions mode off by issuing a T-SQL statement at
the beginning of your batch, as follows:

SET IMPLICIT_TRANSACTIONS OFF

Saturday Afternoon180

244840-9 ch16.F 8/28/01 12:54 PM Page 180

To turn the implicit-transactions mode back on, use the following statement:

SET IMPLICIT_TRANSACTIONS ON

SQL Server autocommits every T-SQL statement by default if no errors were
encountered during execution; you can override this default behavior by starting
an explicit transaction.

Explicit transactions can be nested — that is, you can begin a
transaction within a transaction. Only the outermost transaction,
which envelops all other transactions, can commit results; if you
call COMMIT from any other level, SQL Server will simply ignore it.

Distributed transactions

Two types of distributed transactions exist: transactions that run across two or more
databases within a single SQL Server, and transactions that involve two or more
servers. The first type of distributed transaction is managed internally by SQL Server,
which hides the nature of the transaction: To the client it appears to be a standard
transaction. The second type, cross-server distributed transactions, is inherently
more complex and follows stricter rules. The coordination of the transactions in this
case is performed by a transaction coordinator such as Distributed Transaction
Coordinator (MSDTC), the one supplied by Microsoft, shown in Figure 16-1. If you
want to process distributed transactions, this service must be running.

Figure 16-1
Running Microsoft Distributed Transaction Coordinator.

Tip

Session 16—Understanding Transactions and Locks 181

Part III—
Saturday Afternoon
Session 16

244840-9 ch16.F 8/28/01 12:54 PM Page 181

The BEGIN TRANSACTION statement does not differ much from that of a local
transaction, but the COMMIT phase is a wee bit different. In order to minimize the
effects of a possible network failure, the COMMIT in distributed transactions is
managed in two phases. In the first phase (called the Prepare phase), the DTC
sends a message to all resource managers involved to prepare to commit. Upon
receiving this message, the resource manager saves the state of the transaction
and notifies the DTC of either success or failure. Only if all involved parties report
success does the DTC send the second-phase (called the Commit phase) message to
actually commit the transaction. Each resource manager involved attempts to com-
mit the transaction and report the status of its attempts to the DTC. If any
resource manager reports failure the transaction is rolled back for each of them;
otherwise, the transaction is completed.

You can start a distributed transaction explicitly, as follows:

BEGIN DISTRIBUTED TRANSACTION tWithdrawal

You can also start a transaction on a linked server, a remote server registered
with your Enterprise Manager Console; the syntax you use is identical to that
which you would use for a local transaction and it will be up to the DTC to attend
to the details of implementation.

In case of failure you can use a ROLLBACK command on part of
the transaction, rather than affecting the whole thing. At any
time after a BEGIN TRANSACTION statement you may use the
SAVE TRANSACTION <name> statement to set the rollback point.
When issuing the ROLLBACK command using the saved-point
name, you roll back to this saved point and not to the beginning
of the transaction. Consult Books Online for more details.

Setting Isolation Levels

SQL server provides fine granularity when it comes to what a particular transaction
can and cannot see. This granularity is closely connected to locking, which I dis-
cuss later in this session. Setting the isolation level prevents the surprises that
can occur when two or more transactions are working on the same data.

Following the SQL-92 standard, SQL Server allows transactions to run at four
isolation levels:

� Read uncommitted — The lowest isolation level, which ensures only that
the transaction does not read physically corrupt data.

Note

Saturday Afternoon182

244840-9 ch16.F 8/28/01 12:54 PM Page 182

� Read committed — Allows the transaction to see the data after they are
committed by any previous transactions. This is the default isolation level
for SQL Server 2000.

� Repeatable read — Ensures just that: Reading can be repeated.
� Serializable — The highest possible level of isolation, wherein transactions

are completely isolated from one another.

Table 16-1 outlines the behavior exhibited by transactions at the different levels
of isolation.

Table 16-1
Data Availability at Different Isolation Levels

Isolation Level Dirty Read Non-Repeatable Read Phantom Read

Read uncommitted Yes Yes Yes

Read committed No Yes Yes

Repeatable read No No Yes

Serializable No No No

Dirty read refers to the ability to read records that are being modified; since the
data are in the process of being changed, dirty reading may result in unpredictable
results.

Phantom read refers to the ability to “see” records that have already been
deleted by another transaction.

When designing transactions keep them as short as possible, as
they consume valuable system resources.

Introducing SQL Server Locks

Locking is there to protect you. It is highly unlikely that you have the luxury of
being the only user of your database. It is usually a case of tens, hundreds, or — in
case of the Internet — thousands of concurrent users trying to read or modify the
data, sometimes exactly the same data. If not for locking, your database would
quickly lose its integrity.

Tip

Session 16—Understanding Transactions and Locks 183

Part III—
Saturday Afternoon
Session 16

244840-9 ch16.F 8/28/01 12:54 PM Page 183

Consider a scenario wherein two transactions are working on the same record. If
locking is not used the final results will be unpredictable, because data written by
one user can be overwritten or even deleted by another user.

Fortunately, SQL Server automatically applies locking when certain types of
T-SQL operations are performed. SQL Server offers two types of locking control:
optimistic concurrency and pessimistic concurrency.

Use optimistic concurrency when the data being used by one process are
unlikely to be modified by another. Only when an attempt to change the data is
made will you be notified about any possible conflicts, and your process will then
have to reread the data and submit changes again.

Use pessimistic concurrency if you want to leave nothing to chance. The
resource — a record or table — is locked for the duration of a transaction and can-
not be used by anyone else (the notable exception being during a deadlocking sit-
uation, which I discuss in greater detail later in this session).

By default, SQL Server uses pessimistic concurrency to lock
records. Optimistic concurrency can be requested by a client
application, or you can request it when opening a cursor inside a
T-SQL batch or stored procedure.

Exploring Lock Types

The following basic types of locks are available with SQL Server:

� Shared locks — Enable users to read data but not to make modifications.
� Update locks — Prevent deadlocking (discussed later in this session).
� Exclusive locks — Allow no sharing; the resource under an exclusive lock

is unavailable to any other transaction or process.
� Schema locks — Used when table-data definition is about to change — for

example, when a column is added to or removed from the table.
� Bulk update locks — A special type of lock used during bulk-copy opera-

tions (Bulk-copy operations are discussed in Session 17).

Usually SQL Server will either decide what type of lock to use or go through the
lock-escalation process, whichever its internal logic deems appropriate.

Note

Saturday Afternoon184

244840-9 ch16.F 8/28/01 12:54 PM Page 184

Lock escalation converts fine-grained locks into more coarsely
grained locks (for example, from row-level locking to table-level
locking) so the lock will use fewer system resources.

You can override SQL Server’s judgment by applying lock hints within your T-SQL
batch or stored procedure. For example, if you know for sure that the data are not
going to be changed by any other transaction, you can speed up operation by speci-
fying the NOLOCK hint:

SELECT account_value FROM savings WITH (NOLOCK)

Other useful hints include ROWLOCK, which locks the data at row
level (as opposed to at the level of a full table), and HOLDLOCK,
which instructs SQL Server to keep a lock on the resource until
the transaction is completed, even if the data are no longer
required. Use lock hints judiciously because: they can speed your
server up or slow it down, or even stall it. Use coarse-grained
locks as much as possible, as fine-grained locks consume more
resources.

Another option you may want to consider when dealing with locks is setting
the LOCK_TIMEOUT parameter. When this parameter is set the lock is released after
a certain amount of time has passed, instead of being held indefinitely. This set-
ting applies to the entire connection on which the T-SQL statements are being
executed. The following statement instructs SQL Server to release its lock after
100 milliseconds:

SET LOCK_TIMEOUT 100

You can check the current timeout with the system function @@LOCK_TIMEOUT.

Dealing with Deadlocks

Strictly speaking, deadlocks are not RDBMS-specific; they can occur on any system
wherein multiple processes are trying to get a hold of the same resources.

In the case of SQL Server, deadlocks usually look like this: One transaction holds
an exclusive lock on Table1 and needs to lock Table2 to complete processing;

Tip

Note

Session 16—Understanding Transactions and Locks 185

Part III—
Saturday Afternoon
Session 16

244840-9 ch16.F 8/28/01 12:54 PM Page 185

another transaction has an exclusive lock on Table2 and needs to lock Table1 to
complete. Neither transaction can get the resource it needs, and neither can be
rolled back or committed. This is a classic deadlock situation.

SQL Server periodically scans all the processes for a deadlock condition. Once a
deadlock is detected, SQL Server does not allow it to continue ad infinitum and
usually resolves it by arbitrarily killing one of the processes; the victim transaction
is rolled back. A process can volunteer to be a deadlock victim by having its
DEADLOCK_PRIORITY parameter set to LOW: the client process usually does this
and subsequently traps and handles the error 1205 returned by SQL Server.

Deadlocks should not be ignored. The usual reason for deadlocks is a poorly
designed stored procedure or poorly designed client application code, although
sometimes the reason is an inefficient database design. Any deadlock error should
prompt you to examine the potential source.

The general guidelines for avoiding deadlocks, as recommended by Microsoft, are
as follows:

� Access objects in the same order — In the previous example, if both
transactions try to obtain a lock on Table1 and then on Table2, they are
simply blocked; after the first transaction is committed or rolled back, the
second gains access. If the first transaction accesses Table1 and then
Table2, and the second transaction simultaneously accesses Table2 and
then Table1, a deadlock is guaranteed.

� Avoid user interaction in transactions — Accept all parameters before
starting a transaction; a query runs much faster than any user interaction.

� Keep transactions short and in one batch — The shorter the transaction
the lesser the chance that it will find itself in a deadlock situation.

� Use a low isolation level — In other words, when you need access to only
one record on a table, there is no need to lock the whole table. If the read
committed is acceptable, do not use the much more expensive serializable.

REVIEW

� Transactions are T-SQL statements executed as a single unit. All the
changes made during a transaction are either committed or rolled back. A
database is never left in an inconsistent state.

� ACID criteria are applied to every transaction.
� Transactions can either be implicit or explicit. SQL statements that modify

data in the table are using implicit transactions by default.

Saturday Afternoon186

244840-9 ch16.F 8/28/01 12:54 PM Page 186

� Distributed transactions execute over several servers and databases. They
need a Distributed Transaction Coordinator (DTC) in order to execute.

� Isolation levels refer to the visibility of the changes made by one transac-
tion to all other transactions running on the system.

� A transaction can place several types of locks on the resource. Locks are
expensive in terms of system resources and should be used with caution.

� Avoid deadlock situations by designing your transactions carefully.

QUIZ YOURSELF

1. What does the acronym ACID stand for?

2. What are two possible outcomes of a transaction?

3. What is the difference between explicit and implicit transactions?

4. What SQL Server component do distributed transactions require in order
to run?

5. What are the four isolation levels supported by SQL Server 2000?

6. What are the two forms of concurrency locking offered by SQL Server 2000?

7. What is a deadlock?

Session 16—Understanding Transactions and Locks 187

Part III—
Saturday Afternoon
Session 16

244840-9 ch16.F 8/28/01 12:54 PM Page 187

1. How does a stored procedure differ from a T-SQL batch?

2. Where is a stored procedure stored?

3. What is the scope of the stored procedure?

4. What is the scope of the @@ERROR system function?

5. What is a nested stored procedure?

6. What are the advantages and disadvantages of using stored procedures?

7. How is a trigger different from a stored procedure? From a T-SQL batch?

8. What events can a trigger respond to?

9. What are the two virtual tables SQL Server maintains for triggers?

10. What does the INSTEAD OF trigger do?

11. What is a SQL Server cursor?

12. What are the four different cursor types?

13. What is concurrency and how does it apply to cursors?

14. What is an index in the context of SQL Server?

15. What is the difference between a clustered and a non-clustered index?

16. How many clustered indices can you define for one table? Non-clustered?

17. Would it be a good idea to create an index on a table that always con-
tains 10 records? Why or why not?

18. What columns would you use for a non-clustered index?

19. What are the four types of integrity?

20. What types of integrity are enforced by a foreign-key constraint?

P A R T

#
P A R T

Saturday
Afternoon

III

254840-9 pr3.F 8/28/01 12:54 PM Page 188

21. When can you add the CHECK constraint to a table?

22. In order for a RULE to be functional what do you need to do after it is
created?

23. What is a NULL in SQL Server? How does it differ from zero?

24. What is a transaction?

25. What do the letters in the acronym ACID stand for?

26. What are explicit and implicit transactions?

27. What are the two types of concurrency?

28. What are the four isolation levels?

29. What is locking escalation? When does it occur?

30. What is a deadlock? How do you avoid deadlocks?

Part III—Saturday Afternoon Part Review 189

254840-9 pr3.F 8/28/01 12:54 PM Page 189

P A R T

Saturday
Evening

IV

Session 17
Data Transformation Services

Session 18
SQL Server Backup

Session 19
SQL Server Replication

Session 20
User Management

264840-9 po4.F 8/28/01 12:54 PM Page 190

Session Checklist

✔ Learning about Data Transformation Services
✔ Importing and exporting data through DTS
✔ Maintaining DTS packages
✔ Using the Bulk Copy command-line utility

This session deals with SQL server mechanisms for moving data among differ-
ent, sometimes heterogeneous data sources. Data Transformation Services
provide you with a powerful interface that is flexible enough to transform

data while moving them.

Introducing Data Transformation Services

Data Transformation Services (DTS) were introduced in SQL Server 7.0 and
improved in the current version of SQL Server 2000. They were designed to move
data among different SQL Servers (especially those with different code pages,

S E S S I O N

Data Transformation Services

17

274840-9 ch17.F 8/28/01 12:54 PM Page 191

collation orders, locale settings, and so on), to move data among different data-
base systems (for example, between ORACLE and SQL Server), and even to extract
data from non-relational data sources (such as text files and Excel spreadsheets).

The DTS components installed with SQL Server are DTS wizards and support tools.
The important part of Data Transformation Services is the database drivers — small
programs designed to provide an interface with a specific data source, such as an
ASCII text file or Access database. These drivers come as OLE DB providers (the lat-
est Microsoft database interface) and Open Database Connectivity (ODBC) drivers.

The basic unit of work for DTS is a DTS package. A DTS package is an object
under SQL Server 2000 that contains all the information about the following:

� Data sources and destinations
� Tasks intended for the data
� Workflow procedures for managing tasks
� Data-transformation procedures between the source and the destination as

needed

SQL Server 2000 provides you with DTS wizards to help you create packages for
importing and exporting the data, and with DTS Designer to help you develop and
maintain the packages.

You can also use DTS to transfer database objects, create programmable objects,
and explore the full advantages of ActiveX components (COM objects).

Importing and Exporting Data through DTS

Creating a DTS package can be a daunting task. I recommend that you stick to the
basics for now and explore DTS’s more advanced features once you’ve gained some
experience.

To create a simple DTS Export package using the DTS Import/Export Wizard, fol-
low these steps:

1. Select DTS Export Wizard from the Tools ➪ Wizards menu.

You can access the DTS Import/Export Wizard in several different
ways. You can choose Start ➪ Program Files ➪ Microsoft SQL
Server ➪ Import and Export Data; you can go to the Enterprise
Manager Console, right-click on the Data Transformation Services
node, and choose All Tasks; or you can even enter dtswiz from
the prompt on the command line.

Tip

Saturday Evening192

274840-9 ch17.F 8/28/01 12:54 PM Page 192

Let’s say you want to export data from your SQL Server into a plain
comma-delimited file. Figure 17-1 shows the screen after the one that
greets you into the Import/Export Wizard. The dialog prompts you to
select the data source, authentication (security mode for establishing a
connection to this source), and database (since your data source is
RDBMS in this case).

Figure 17-1
Selecting a data source.

2. Select your local server (you can use this wizard to import or export data
from any server you have access to on your network) and the Pubs data-
base. Click Next.

3. The next screen (shown in Figure 17-2) prompts you to select a destina-
tion. Initially, it will be almost identical to the screen shown in Figure
17-1. The specifics of the screen you see depend on the data source you
selected. Select Text File as a data source (your screen should now look

Session 17—Data Transformation Services 193

Part IV—
Saturday Evening

Session 17

274840-9 ch17.F 8/28/01 12:54 PM Page 193

exactly like the one shown in Figure 17-2) and enter the name of the file
in which you wish to save the data. You can browse for a specific file or
type in the name and the absolute path. Click Next.

Figure 17-2
Selecting a destination for the data.

From the screen you see in Figure 17-3 you can either export a single
table or specify a T-SQL query of which the results will be saved into the
specified file. Of course, choosing to export data into a file prevents you
from transferring database objects like indexes, constraints, and such;
only data and data structure will be exported.

4. Specify the Authors table as the one you want to export, and then select
the destination file format — (ANSI or UNICODE), the row delimiter, the
column delimiter, and the text qualifier. You also can decide whether or
not the first row will represent column names for the exported table. The
default column mapping (which you can change in the Transformation
dialog) will be that of the source: that is, the au_id column of the source
will be mapped to the au_id column of the destination.

Saturday Evening194

274840-9 ch17.F 8/28/01 12:54 PM Page 194

Figure 17-3
Specifying the format of the data in the destination file.

The Transform button takes you to a screen wherein you can specify addi-
tional data transformation for each column being exported. For example,
you can specify that every number be converted into a string of type var-
char, or instruct the package to ignore columns or to export them under a
different name. You can also apply an ActiveX script — usually written in
VBScript — to implement more complex transformation rules. Transform is
an advanced feature and deserves a book of its own: Here I just mention
its existence and encourage you to explore it — carefully. Click Next.

5. From the dialog shown in Figure 17-4 you can select whether you want to
run this package immediately or schedule it for future (possibly recur-
rent) execution. You can also save the package here if you wish. The Save
option is probably the most confusing one: It takes advantage of SQL
Server’s ability to preserve the script in a variety of formats. The impor-
tant point to remember here is that saving with SQL Server or SQL Server
Metadata Services saves the package as an object inside the SQL Server,
while the two other options (Structured Storage File and Visual Basic File)

Session 17—Data Transformation Services 195

Part IV—
Saturday Evening

Session 17

274840-9 ch17.F 8/28/01 12:54 PM Page 195

save the package outside it. If you are familiar with Visual Basic you may
want to look into the contents of a file saved as a Visual Basic module to
see what is really happening behind the scenes.

Figure 17-4
Saving and scheduling the package.

Using Meta Data Services is beyond the scope of this book. This
is an advanced topic, which involves tracing the lineage of a par-
ticular package and cataloging the metadata of the databases
referenced in the package.

6. If you schedule the package it will also be automatically saved. Let’s say
you wish to save the package with SQL Server and run it immediately.
Click Next.

7. The next screen will prompt you for the name and description of the pack-
age you are about to create. Select some descriptive name: As you accumu-
late a number of packages they might help you maintain your sanity. You
also may choose to protect your package from unauthorized use with pass-
words: one for the owner, one for the user (the owner can modify the

Note

Saturday Evening196

274840-9 ch17.F 8/28/01 12:54 PM Page 196

package while the user can only run it). Scheduling a recurring task is
self-explanatory: The options enable you to schedule the execution daily,
weekly, or monthly. You can schedule multiple executions within one day,
and specify the start and expiration date.

8. The last screen will present a summary of all your choices. From here you
still can go back and change your selections. When you click Finish, SQL
Server will save your package and then run it. If you followed all the
steps properly and the export was successful, you should receive the fol-
lowing message: “Successfully copied 1 table(s) from Microsoft SQL Server
to Flat File.”

You can open the resulting file in Notepad or Microsoft Excel and
view the way in which the exported data were saved.

Following similar steps you may move the data among various data sources. The
import procedure is very similar to the export procedure.

Maintaining DTS Packages

Once a package has been created you can modify it, extend its functionality, add
and delete packages, and so on. To edit a data package you use the DTS Designer.

This tool enables you to visually design new packages and modify existing ones.
The interface (shown in Figure 17-5) borrows heavily from other Microsoft Visual
Studio tools. Tasks and connections are represented by small icons in the toolbox;
you assemble a package by dragging the icons and dropping them into the designer
pane, where they are treated as objects. Once you have done this you can right-
click an object and select the Properties option to customize it.

The DTS Designer tries to hide as much complexity as possible from you.
However, if you plan to use it for anything but trivial tasks, you’ll need an under-
standing of the process as well as some experience.

All local packages are assembled under the Local Packages node
of Data Transformation Services.

If you open the package you just created in this session (select the pop-up
menu option Design Package), you’ll see that it is represented by two connection

Note

Tip

Session 17—Data Transformation Services 197

Part IV—
Saturday Evening

Session 17

274840-9 ch17.F 8/28/01 12:54 PM Page 197

objects — one SQL Server (source) and one flat file (destination). Examining their
properties will reveal all the specifications you made during the creation process.
The fat arrow pointing from the source to the destination is also an object — a
Task object. Its properties maintain all the transformation procedures, data
description, and such; it is quite enlightening to explore its five-tab property
sheet (available from the right-click menu).

Figure 17-5
Exploring DTS Designer.

Designing and modifying the package requires intimate knowledge of the
processes and data involved as well as some basic programming skills. Until
you acquire these, I recommend using the simpler (though just as powerful)
Import /Export Wizard interface.

Using the Bulk Copy Command-Line Utility

In the dawning era of SQL Server, the Bulk Copy Program (BCP) was the one and
only tool to use to get data in and out of the SQL Server database. The tradition

Saturday Evening198

274840-9 ch17.F 8/28/01 12:54 PM Page 198

continues virtually unchanged. The BCP utility is included with every SQL Server
installation. It is best used for importing data from a flat file into SQL Server, and
exporting data from SQL Server into a flat file.

This program uses the low-level DB-Lib interface of SQL Server (the one that C
programmers use to code their client programs); for SQL Server 7.0 and 2000 it
uses ODBC (Open Database Connectivity). As a result it is extremely fast and effi-
cient. Its main drawback is rigid, arcane, unforgiving syntax. It is also gives you
relatively few options for transferring data between heterogeneous data sources.

The basic syntax for BCP is as follows:

Bcp pubs..authors out authors.txt –c –U sa –P password

This essentially means “Export data from the Authors table in the Pubs database
into a flat file named authors.txt, the user ID is -sa and the password is password.”
The parameter -c specifies that data will be exported to a non–SQL Server destina-
tion (ASCII file).

To import data with BCP, use this syntax:

Bcp pubs..authors in authors.txt –c –U sa –P password

When you’re importing data with BCP constraints will be enforced, though trig-
gers will not be fired.

Command-line arguments for BCP are case-sensitive: -c and -C
represent different parameters.

BCP supports three different modes of data format:

� Character mode (-c) is used for importing from or exporting to an ASCII text.
� Native mode (-n) is a SQL Server proprietary binary format; it is used when

both the source and the destination are SQL Server databases.
� Wide mode (-w) is used for importing from or exporting to a UNICODE text.

You can incorporate BCP commands into MS-DOS batch files or
VBScript files (extension .vbs, executed in Windows Scripting
Host) to create powerful data import/export procedures. You also
can schedule the execution of these procedures with the
NT/Windows 2000 at service.

Tip

Note

Session 17—Data Transformation Services 199

Part IV—
Saturday Evening

Session 17

274840-9 ch17.F 8/28/01 12:54 PM Page 199

BCP supports about 40 different parameters and switches, and as you find your-
self more involved with DBA daily routines you will decide for yourself which ones
you find most useful. Please refer to Books Online for the full list of these switches
and their uses.

One of the important parameters to use with BCP is a
compatibility-level switch. When you’re importing into
SQL Server 7.0/2000 data that were exported in a native
format out of an earlier version of SQL Server, this switch tells
BCP to use compatible data types so the data will be readable.
To make the data compatible set the -6 switch.

REVIEW

� Data Transformation Services (DTS) is a powerful mechanism for moving
data and objects in and out of different data sources .

� The easiest way to create and schedule DTS packages is through the
Import/Export Wizard.

� You can maintain, modify, and enhance a DTS package using DTS Designer,
a visual-development environment provided by SQL Server.

� The BCP utility is a small legacy utility that enables you to import and
export data to and from SQL Server and some other data sources.

QUIZ YOURSELF

1. What are two methods of importing and exporting data with SQL Server?

2. What can be transferred using Data Transformation Services?

3. What are acceptable destinations for data being transferred from SQL
Server?

4. How can you transform data while transferring it from the source?

5. What is BCP and what can you use it for?

6. How can you schedule a BCP import/export execution?

Tip

Saturday Evening200

274840-9 ch17.F 8/28/01 12:54 PM Page 200

Session Checklist

✔ Implementing backup and recovery planning
✔ Using different backup strategies
✔ Selecting a recovery mode
✔ Restoring a database
✔ Managing backups

In this session I’ll discuss the SQL Server backup and recovery procedures. You
will learn about the different backup methods, the various recovery models,
and how to create, perform, and restore a backup.

Implementing Backup and Recovery Planning

Before you can begin to set up a backup procedure, you need to determine which
databases need to be backed up, how often they should be backed up, and more.
You should consider the following questions when creating a plan:

S E S S I O N

SQL Server Backup

18

284840-9 ch18.F 8/28/01 12:54 PM Page 201

� What type of database are you backing up? User databases will need to
be backed up frequently, while the system database will not. The master
database will only need to be backed up after a database is created, con-
figuration values are changed, or any other activity is performed that
changes this database. If the master database becomes corrupt the whole
server ceases to function.

� How important is the data? A development database may be backed up
weekly, while a production database should be backed up at least daily.

� How often are changes made to the database? The frequency of change
will determine the frequency of backups. If the database is read-only there
is no reason to back it up frequently. A database that is updated con-
stantly should be backed up much more often.

� How much downtime is acceptable? Mission-critical databases will have
to be up and running almost immediately. In these cases you need to back
up to disk rather than to tape. You may even have to use multiple backup
devices.

� What are your off-peak hours? The best time to back up is when data-
base usage is low. This will allow the backup to complete in the shortest
time possible. You must always schedule your backups carefully.

Using Different Backup Strategies

When backing up a database you will need to use a variety of techniques to ensure
a full and valid database recovery in the event of a failure.

The basic types of backups include the following:

� Complete database backup — Backs up the entire database, including all
objects, system tables, and data. The backup also incorporates all changes
logged to the transaction log up to the time of completion of the backup.
This ensures that you can recover the complete state of the data up to the
time the backup finishes.

� Differential backup — Backs up all data that have changed since the last
complete backup. This kind of backup runs much faster than a full backup.

Saturday Evening202

284840-9 ch18.F 8/28/01 12:54 PM Page 202

You can use a differential backup only in conjunction with a full backup,
and it is not allowed on the Master database.

� Transaction-log backups — When you back up a transaction log, the
backup contains the changes that have occurred since the last transaction-
log backup. After completion the log is flushed of all transactions. This
type of backup records the state of the transaction log when it starts,
unlike the two previous backups, which record the state of the log when
they end.

� File and file-group backup — Enables you to back up specific database
files and file groups rather than the entire database.

Complete database backups

The easiest way to perform a backup is to go through the Backup Wizard and fol-
low these steps:

1. Select Enterprise Manager Tools ➪ Wizards. Then, from the Management
node on the general wizards menu, select Backup Wizard.

The welcome screen describes the steps you are about to be guided
through. Click Next.

2. Choose a database to back up from the drop-down combo box. Only data-
bases managed by this instance of Enterprise Manager will appear there.
Select a database and click Next.

3. You are prompted for the name and description of your yet-to-be-created
backup. You will need this name down the road in order to manage your
backups. Specify the requested information and click Next.

On this screen (shown in Figure 18-1) you need to select the type of
backup you wish to perform. Click Next.

This screen (shown in Figure 18-2) requires further explanation. If you
have a tape device installed, by all means use it; this is the most common
way to preserve frequent backups. The second choice is a file; select it
and the backup will be saved on your drive — local or remote.

Session 18—SQL Server Backup 203

Part IV—
Saturday Evening

Session 18

284840-9 ch18.F 8/28/01 12:54 PM Page 203

Figure 18-1
Selecting backup type.

4. Next you must choose a backup device. In its simplest form a backup
device is a structured storage file stored on your hard drive or tape; the
only difference between it and a backup file is that while organizing
devices, inside it you may create a logical device to be referred to. The
device has a name under which SQL Server knows it: By this name SQL
Server stores information about the physical location of the backup
device. It is much easier to keep track of Employees_Backup than it is to
keep track of C:\dir1\dir2\dir3\emp1.bak. If you have no devices defined
for the system, select New Backup Device from the drop-down Backup
Device combo box; you will be prompted to create a new device.
Alternatively, you can create a new backup device from the Enterprise
Manager console Management/Backup node.

The Properties area of the screen shown in Figure 18-2 asks you how you
wish to handle your sequential backups. If a backup already exists you
can either overwrite it or append it to the existing file. Your choice
depends on your business needs, considerations presented earlier in the

Saturday Evening204

284840-9 ch18.F 8/28/01 12:54 PM Page 204

section “Implementing Backup and Recovery Planning,” the amount of
free space you have, and so on. Also, make sure to check Read and Verify
Data Integrity of Backup After Backup; this will ensure that your backup
is valid and readable. Click Next.

Figure 18-2
Setting backup properties.

5. If you have chosen to overwrite the backup media option, the next
screen will prompt you for media initialization. You may choose to keep
the old option (this is the default) or re-initialize. Click Next.

If you selected Append To the Backup Media from the screen shown in
Figure 18-2, this option also appears after you click Next and come to the
screen you see in Figure 18-3. Here you can to check the Media Set
option (otherwise a backup may be written into the wrong place), and to
schedule a backup to be performed periodically. The Backup Set
Expiration option will be enabled if you selected Overwrite the backup
media from the screen shown in Figure 18-2. Click Next.

Session 18—SQL Server Backup 205

Part IV—
Saturday Evening

Session 18

284840-9 ch18.F 8/28/01 12:54 PM Page 205

Figure 18-3
Verifying and scheduling backup.

6. The last screen will present you with a summary of the steps you took.
Click Finish to start your backup. If you scheduled this backup it will be
performed periodically and will appear under the Jobs node of SQL Server
Agent in your Enterprise Management console.

The Backup Wizard does the job for you by creating Transact-SQL statements
behind the scenes. If you feel adventurous you can examine these statements or
perform a backup manually. The following code creates a logical device called
Pubs_Backup on the disk (hard drive) and performs a full backup on it.

EXECUTE sp_addumpdevice ‘disk’, ‘Pubs_BackUP’, DISK =’C:\Program
Files\Microsoft SQL Server\MSSQL\BACKUP\PubsBackup.dat’

-- Back up the full Pubs database.
BACKUP DATABASE Pubs TO Pubs_BackUP’

The full syntax for creating and executing a backup can be quite intimidating
if you specify all the options. Please refer to SQL Server Books Online for this
information.

Saturday Evening206

284840-9 ch18.F 8/28/01 12:54 PM Page 206

You also can perform a backup by selecting a database node in
the Enterprise Manager console, and selecting All Tasks and then
Backup from its right-click menu.

Differential backup

A differential backup records all changes to the database since the last database
backup. These are smaller and faster than full database backups and can therefore
be run more frequently. You need to have performed at least one full backup
before you can run a differential one. The steps for performing a differential
backup with the Backup Wizard are essentially the same as those for performing a
full backup: Just select the Differential database option on the screen shown in
Figure 18-1.

Transaction-log backup

A transaction-log backup contains a sequential record of all transactions since the
last differential or database backup. These enable you to recover the database up
to an exact point in time (that is, up to the last time you performed a transaction-
log backup). These backups generally use fewer resources than the previous types
of backups and should be run the most frequently.

You can run a transaction-log backup or schedule it to run by selecting
Transaction log from the screen shown in Figure 18-1 during the process of creat-
ing a backup with the Backup Wizard.

By having different transaction-log and database backups you
can recover to a specific point in time (that is, you can restore
the database to its state a day, week, or year ago).

Selecting a Recovery Mode

The recovery model is a database property. It defines the method you wish to use
when recovering your database; depending on the mode you select, different
amounts of information will be preserved for each backup. When a database is cre-
ated it follows the default simple-recovery model; the other two choices are full
recovery and bulk-logged recovery.

Tip

Note

Session 18—SQL Server Backup 207

Part IV—
Saturday Evening

Session 18

284840-9 ch18.F 8/28/01 12:54 PM Page 207

Simple recovery

This option restores a database to its state at the time of its most recent backup.
Any changes made after the last full or differential backup are lost (no transaction-
log backups are made). Simple recovery involves these two steps:

1. Restore the most recent full backup.

2. Restore the most recent differential backups, if any exist.

Full recovery

This option restores a database to its state at the point of failure, and involves
these steps:

1. Back up the currently active transaction log (if possible).

2. Restore the most recent database backup without recovery.

3. Restore the most recent differential backups.

4. Restore each transaction-log backup since the last restored backup.

5. Apply the log backup from Step 1.

Bulk-logged recovery

This option enables bulk-logged operations, which means that certain database
operations, such as SELECT INTO operations or BCP/Bulk Copy, will be logged mini-
mally or not at all. The risk of data loss is higher than with the full-recovery
model, as bulk-logged recovery does not provide point-in-time recovery.

Restoring a Database

Restoring a database is a manual process. You cannot schedule it, as it is not a
normal activity; you do it only when you have to.

Follow these steps to restore a database visually:

1. Highlight the Databases node of the Enterprise Manager. Then select the
Restore Database option from the right-click menu.

The resulting dialog box, shown in Figure 18-4, prompts you to select a
database to restore. (With regard to the Restore as database combo box —

Saturday Evening208

284840-9 ch18.F 8/28/01 12:54 PM Page 208

yes, you can restore a database under a different name, overwriting an
existing database; see the discussion of the Option tab later in this
session).

Figure 18-4
Restoring a database.

2. You now select where you are going to restore from (your backup files,
devices, and so forth). If you have multiple backups, you also need to
select the backup you wish to use. The Point-in-time restore option will
record the time of your last transaction-log backup; selecting this option
will apply a transaction-log restore after a database is restored.

3. On the Options tab (shown in Figure 18-5) of the Restore database dialog
box (shown in Figure 18-4) you may specify additional settings prior to
restoring the database. These settings include Force restore over existing
database, which will cause your database in SQL server to be dropped and
then recreated from the restore. If you are restoring differential backups
you may want to be prompted before each backup is applied.

Session 18—SQL Server Backup 209

Part IV—
Saturday Evening

Session 18

284840-9 ch18.F 8/28/01 12:54 PM Page 209

Figure 18-5
Specifying restore-database options.

After your database is restored you have several choices:
� Leaving the database operational, which means that the restored

database and its log do not allow any additional restore operations;
the database is ready for use.

� Making the database non-operational, if you intend to apply more
transaction logs in the future.

� Creating a read-only database enabling the restoration of additional
transaction logs; this selection also enables the undo file, which you
will use to roll back any changes should the restoration of the trans-
action log be unsuccessful.

Click OK to run the restore operation.

Saturday Evening210

284840-9 ch18.F 8/28/01 12:54 PM Page 210

Managing Backups

Managing your database backups is a very important part of your backup strategy.
You must be careful to ensure that you can restore your system when you need to.
Each backup contains a description as well as expiration information. You can use
this information to identify individual backups as well as to determine when it is
safe to overwrite a backup. It is not necessary to keep all backups forever. In addi-
tion, the MSDB database contains a complete history of all backups and restore
operations on the server.

Use expiration dates on backups to prevent the overwriting of
recent backups.

Ensure that your backups are in a secure place, usually off-site. Keep old back-
ups for a while so you’ll have something even if the most recent backups are dam-
aged or lost.

You can see a list of the database and transaction-log files contained in the
backup set. Here you’ll find the logical name, physical name, file type, file size (in
bytes), maximum allowed file size, and other information.

If you performed a backup of a database to a device created on this system, you
can view this information by examining Backup node members (you’ll find them in
the Enterprise Manager console’s Management/Backup node); you can view backup
performed to tape or file either by clicking the Properties button on the Restore
Database screen (shown in Figure 18-4) or by clicking the Contents button of the
Backup Database screen (an option of the database node right-click menu, All
Tasks ➪ Backup Database).

You can also retrieve information from the media header and the backup header
for each backup. The backup header is recorded each time the backup is run and
includes the backup devices used, the type of backup performed, and the start and
stop time of the backup. The media header includes the media name and descrip-
tion, and the name of the software that created the media.

Verifying a backup confirms that the backup is correctly written
and readable. It does not, however, validate the structure of the
data contained within the backup. To verify the structure of the
data before creating a backup, perform database consistency
checks (DBCC, discussed in more detail in Session 26).

Note

Tip

Session 18—SQL Server Backup 211

Part IV—
Saturday Evening

Session 18

284840-9 ch18.F 8/28/01 12:54 PM Page 211

REVIEW

� Database backup is essential for minimizing the risks of data loss; deciding
what to back up and how frequently should be a part of your backup
strategy.

� You can choose from four different types of backup: full, differential,
transaction-log, and file-group. Select your database backup type based on
your business requirements.

� Each database is assigned one of three recovery modes, which determines
what information is preserved for backups. They are simple recovery, full
recovery, and bulk-logged recovery.

� Each backup should be verified and stored in a safe place off site.
� Restoration is a manual process. You can restore any database under any

name. It doesn’t matter where the backup was created as long as you have
a full set of restores.

QUIZ YOURSELF

1. What is the difference between a full backup and a differential backup?

2. Why do you need to back up the transaction log?

3. Name the three recovery models. What is the default recovery model?

4. How do you restore your database to a specific point in time?

5. Why is it not a good idea to store your backups on the same drive on
which you have your SQL Server installed?

Saturday Evening212

284840-9 ch18.F 8/28/01 12:54 PM Page 212

Session Checklist

✔ Reviewing SQL Server replication
✔ Selecting a replication model
✔ Preparing for replication
✔ Setting up replication

In this session you will learn how to plan, set up, and administer a basic repli-
cation system in order to distribute data across multiple databases. You will
acquire a basic understanding of the choices a replication presents, and learn

how to configure the replication process through the Publishing and Distribution
Wizard.

Reviewing SQL Server Replication

Replication distributes data from the central database to one or more target data-
bases, and merges changes from a target database into the central one. Both the
source database and the destination database can be implemented as a SQL Server

S E S S I O N

SQL Server Replication

19

294840-9 ch19.F 8/28/01 12:54 PM Page 213

database or as any other data source, as long as an OLE DB provider is available to
handle the nitty-gritty details of the particular data source you choose (such as
ORACLE, Access, and so on).

The practical reasons to perform replication are to distribute workload and to
synchronize data among remote databases that you want to keep in sync. By main-
taining identical data sets across multiple databases you can provide better perfor-
mance. Local users can connect to and use their own local databases, instead of
connecting to a remote central server. Your mobile sales force will be able to send
sales leads back to a central database. Or you can use replication to keep a standby
server in sync so you can switch to it should your primary server fail.

The replication architecture is quite complex, as it was designed to meet a vari-
ety of needs. Here are the basic concepts you ought to understand before you set
up and administer a replication process.

Replication is tricky to configure and administer, and chances are
that if you need to set it up you are not the only DBA on duty. I
recommend getting all the help you can until you feel at home
with replication.

Basic replication terminology

Replication consists of two major components:

� Replication components — SQL Server components used in replication:
the Publisher, Distributor, and Subscriber.

� Replication Agents — Utility programs that assist in the replication
process: the Snapshot Agent, Distribution Agent, Log Reader Agent, Queue
Reader Agent, and Merge Agent.

The replicated data are organized into the following categories:

� Publication — A wrapper for distributed data; a collection of one or more
articles scheduled for publication (replication).

� Article — A basic unit of replication. It can be a table, certain columns in
the table, certain rows in the table, a view, or even a stored procedure.
More than one article together comprises a publication.

� Subscription — A request to receive a publication. The two basic types of
subscription are the Pull subscription (initiated by the Subscriber) and the
Push subscription (initiated by the Publisher).

Note

Saturday Evening214

294840-9 ch19.F 8/28/01 12:54 PM Page 214

In versions of SQL Server prior to version 7.0 it was possible to
publish a single article. Now, the minimum amount you can pub-
lish or subscribe to is a publication that may contain only one
article.

Each server participating in the replication is assigned one or more of the fol-
lowing roles:

� Publisher — A source server for the distributed data. It maintains all the
information about data specified for publishing.

� Distributor — An intermediary between the Publisher and the Subscriber;
it can also be both Publisher and Subscriber. Its role varies according to
the type of replication.

� Subscriber — The final destination of the distributed data. It is a recipient
of the publications it has subscribed to; depending on the type of replica-
tion, it may also be able to propagate changes to its own set of data onto
the Publisher.

You cannot publish any of the system databases or any system
tables in the Master database.

SQL Server supports three different types of replication:

� Snapshot replication — This type of replication takes a snapshot of the
data in the Publisher database and replaces it with the entire data set of
one or more subscribers; subsequent replication again replaces the com-
plete data set in the subscriber database(s). Though notable for being vir-
tually foolproof in providing synchronous data sets, this type of replication
increases network traffic and, as intervals increase, data sets become less
synchronized.

� Transactional replication — This type of replication is all about changes.
It propagates changes only to subscribers. It starts with an initial snapshot
replication and then distributes selected transactions in the Publisher
database transaction log (marked for replication) to the target servers.
Snapshot replication is also regularly scheduled to ensure consistency of
the data. Its major advantages are more timely updates and much lighter
network traffic than you get with pure snapshot replication.

Note

Note

Session 19—SQL Server Replication 215

Part IV—
Saturday Evening

Session 19

294840-9 ch19.F 8/28/01 12:54 PM Page 215

� Merge replication — This type of replication allows subscribers who make
changes to their local copies of the data to merge these changes into the
source database. Merge replication is not transactional and relies on con-
flict resolution to determine the precedence of the changes.

Selecting a Replication Model

The term model refers to the physical structure of the replication process. As my
favorite book says, the key to successful replication is proper planning. The follow-
ing models of replication scenarios are designed to fit different needs:

� Central publisher — The most common replication model. It maintains
Publisher and Distributor databases on the same server, with subscribers
configured somewhere else.

� Central publisher with remote distributor — The Publisher database is
on one server and the Distributor database on another; subscribers are by
default placed on remote servers (you do not need to maintain a Subscriber
on the same server as a Publisher).

� Central subscriber — One Subscriber collects data from several publishers;
the data can then be republished, as nothing prevents the server from
wearing several hats — it can be a Subscriber, a Publisher, and a Distributor
at the same time.

� Publishing subscriber — Republishes received data to other Subscribers;
see the preceding description of the central-subscriber model.

When selecting a replication model, keep in mind the main pur-
pose of replication: reducing workload on the main server. The
central-publisher model makes administration easier because
both databases are on the same server; on the other hand, it
puts an additional workload on the server for the same reason.

Preparing for Replication

After you have selected your replication type and replication model you still need
to perform a couple of preliminary tasks.

Tip

Saturday Evening216

294840-9 ch19.F 8/28/01 12:54 PM Page 216

Snapshot replication

For snapshot replication you need to consider space requirements, because the
data will be moved as a whole, and timing, because replication is a strain on net-
working resources as well as on database resources. Also, you need to determine
when replication should be performed — it makes no sense to distribute old data.

Transactional replication

Since transactional replication is based on snapshot replication it should make you
think of all the things relevant to snapshot replication and then a few more. With
this type of replication transaction logs become very important: You might con-
sider increasing transaction-log space and taking special measures to ensure that
no transactions are purged from the publisher database until they have been suc-
cessfully replicated.

For transactional replication and merge replication, all published
tables must have a primary key.

Merge replication

Merge replication is probably the most confusing type of replication. Since so
much depends on conflict resolution, every distributed table must have a primary
key; if any foreign key is specified, you must include the referenced table. Merge
replication also places some restrictions on the data types allowed for publication.

Setting up Replication

As you might expect, SQL Server 2000 provides you with wizards to guide you
through the process of setting up and configuring replication. In fact, it provides
you with five of them (from the Enterprise Manager console toolbar select Tools ➪

Wizards). No doubt you are going to have hours and hours of fun exploring the
available wizards, as replication is a subject complex enough to deserve a book of
its own.

Note

Session 19—SQL Server Replication 217

Part IV—
Saturday Evening

Session 19

294840-9 ch19.F 8/28/01 12:54 PM Page 217

For the purpose of this session I am going to configure replication in one step,
using the Configure Publishing and Distribution Wizard. You’ll find this wizard in
the Replication tab of the SQL Server Properties screen. If your SQL Server is not
configured for replication Configure will be the only option available, as you can
see from Figure 19-1.

Figure 19-1
Configuring replication

Clicking Configure will invoke the Configure Publishing and Distribution Wizard,
which will guide you through the following three-step procedure:

1. Configure a Distributor, as shown in Figure 19-2. Here you need to select
the model of your replication, the default being central publisher.

Saturday Evening218

294840-9 ch19.F 8/28/01 12:54 PM Page 218

Figure 19-2
Selecting a Distributor

Since replication is a scheduled task, SQL Server Agent must be
running. In addition, SQL Server Agent must use an account dif-
ferent from the system account.

2. The next screen will prompt you for the startup options for SQL Server
Agent. Unless you are going to manually administer your replication, I
recommend choosing the default, Start Automatically.

Snapshot data are the foundation of every replication. In the screen
shown in Figure 19-3 you need to specify the folder where these data are
going to be stored. You need to have full administrative privileges on your
machine to use this folder, whether on a network or locally. Click Next.

3. The wizard prepares a summary of your choices. If you wish you can cus-
tomize your configuration according to the needs of your organization;
here I am accepting all defaults, meaning that I configure a central-
publisher replication, with the Distributor residing on the same server
as the Publisher. Click Next.

Note

Session 19—SQL Server Replication 219

Part IV—
Saturday Evening

Session 19

294840-9 ch19.F 8/28/01 12:54 PM Page 219

Figure 19-3
Specifying a physical location for snapshot data

SQL Server will implement all the options you’ve selected, creating the distribu-
tion database, configuring the Distributor, and enabling the Publishers,
Subscribers, and Publication databases.

Once the replication is configured on your machine, the Replication tab on the
SQL Server Properties screen (shown in Figure 19-1) acquires additional controls,
enabling you to disable the replication and add a Replication Monitor Group to
your Enterprise Manager console.

Creating publications

Again, you are going to rely on the same wizard to do all the work in the following
steps:

1. From the Replication node in the Enterprise Manager console, select the
New Publication right-click menu option.

After you go past the Welcome screen (be sure to click the Show Advanced
Options check box at the bottom) the wizard presents you with all the
databases on your Publisher server that are available for replication: These

Saturday Evening220

294840-9 ch19.F 8/28/01 12:54 PM Page 220

will be your custom databases, as system databases and TempDB cannot be
replicated. Select the database you wish to replicate and click Next.

If you already have one publication defined for this database, the wizard
will prompt you to use this publication as a template. Feel free to ignore
this suggestion and create a new publication. Click Next.

2. On the next screen, Select Publication Type, select the type of publica-
tion, of course. (Refer to the section “Preparing for Replication” earlier in
this session for help selecting an appropriate option.) Click Next.

3. The next screen, Updateable Subscriptions, offers you two choices regard-
ing how the Subscriber will handle the replication — whether the changes
will all be distributed immediately or whether they will be queued until
they can be applied to the Publisher. (Refer to the section “Preparing for
Replication” earlier in this session for help selecting an appropriate
option.) Click Next.

4. The following screen is entitled Specify Subscriber Types.

Your newly created publication has no subscribers as yet, but you should
already know who’s going to subscribe to this publication: SQL Server
2000 or 7.0, or some heterogeneous data source like ORACLE. Select the
options appropriate to your needs and click Next.

5. You see the screen shown in Figure 19-4, which gives you the opportu-
nity to specify your articles. Recall that an article can be almost any
database object, though most often it is a table. You need to specify the
objects you wish to publish.

A publication must have at least one article to be valid; at the other
extreme, you can publish the entire database. Depending on the selected
table structure, the wizard might need to resolve some issues — by disal-
lowing IDENTITY columns from being published, for example; if other
types of objects are selected for publication the nature of the issues may
be different. If any issues arise, the wizard will notify you with a very
detailed explanation of the action the wizard took to resolve the issue.
Click Next.

6. Name your subscription: You should also give it a short description to
make it easier to maintain. Click Next.

7. You can either create your publication with all the options you’ve speci-
fied, leaving the rest to defaults, or you can apply filters to create subset
data, allow anonymous subscriptions, and so on. I recommend leaving
this screen to its own devices — for now. Click Next.

Session 19—SQL Server Replication 221

Part IV—
Saturday Evening

Session 19

294840-9 ch19.F 8/28/01 12:54 PM Page 221

Figure 19-4
Selecting articles for publication

8. This is the last screen, which informs you that the design process is com-
plete. Click Finish and observe the status report telling you that the pub-
lication was successfully created.

You can at any time modify or remove a publication from the Enterprise
Manager console, Replication node, or Publications sub-node.

Managing subscriptions

Once a publication is created you can push (send) it to subscribers. (Subscriber
servers can also initiate a Pull (request) subscription on their own.) The Push
Subscription Wizard guides you through the process.

1. From the Publications sub-node collection, select a publication you would
like to push, and from its right-click menu select the Push New
Subscription option.

2. The Push Subscription Wizard prompts you to select a Subscriber server
from the list of available subscribers. Select one and click Next.

Saturday Evening222

294840-9 ch19.F 8/28/01 12:54 PM Page 222

3. Select the recipient database. All replicated objects in the recipient data-
base must have the same structure as the database of origin. Click Next.

4. Next, schedule your subscription: Either it will run continuously (usually
not a good idea) or it is scheduled to occur every so often. The major
considerations here are network load and the availability of data. Click
Next.

5. If this is a new subscription, it has to be initialized. This means that the
Snapshot Agent will create an initial snapshot of the data and the data-
base schema for the subscriber. Click Next.

6. Subscription relies on certain services. The next screen, Start Required
Services, will show you the status of these services and prompt you to
start them if they’re not running. Click Next and then Finish on the next
screen to create a Push subscription.

Pull subscriptions are created in essentially the same way, only from the
Subscriber side: Choose New Pull Subscription from the Publications sub-node col-
lection to initiate a Pull subscription.

Monitoring replication

Once the replication process is set in motion you need to monitor it. SQL Server
provides you with the Replication Monitor, accessible through the Enterprise
Manager console. To show the Replication Monitor in the console, go to the SQL
Server Properties menu option (accessible from the right-click menu on the regis-
ter SQL server node); then, from the Replication tab, select the Show Replication
Monitor Group check box.

Through the Replication Monitor you can examine all current Publishers, publica-
tions, and subscriptions defined for the Distributor. It also enables you to view the
status of replication agents and helps you troubleshoot the Distributors database.

REVIEW

� Replication is a process of distributing data based on the
Publisher/Subscriber paradigm.

� You can set up replication to include non-SQL Server components (such as
ORACLE and DB2).

� The three different types of replication are Snapshot, Transactional, and
Merge. Each type of replication serves a different business need.

Session 19—SQL Server Replication 223

Part IV—
Saturday Evening

Session 19

294840-9 ch19.F 8/28/01 12:54 PM Page 223

� Each server participating in replication has to be assigned the role of
Publisher, Distributor, and/or Subscriber. It is possible for a server to
perform more than one role at a time.

� The two main types of subscription are Pull subscriptions and Push sub-
scriptions. The first type is initiated by the Subscriber, the second by the
Publisher.

QUIZ YOURSELF

1. What is the main purpose of replication?

2. Describe the roles of the Publisher, Distributor, and Subscriber.

3. What are the three different types of replication?

4. What are the advantages and disadvantages of using a central publisher
with remote distributor replication model?

5. What is the difference between Pull subscriptions and Push subscriptions?

6. How do you monitor the replication process?

Saturday Evening224

294840-9 ch19.F 8/28/01 12:54 PM Page 224

Session Checklist

✔ Setting up a user account
✔ Managing user permissions
✔ Managing a multiuser environment

In this session you learn how to set up and administer user accounts and man-
age access permissions for the database object. I also introduce you to some
of the considerations involved in setting up and administering multiuser

environments.

Setting up a User Account

Sooner or later you will have to allow someone other than yourself to connect to
your SQL Server, and you have to make sure that he or she has just enough rights
to do his or her job — no more, no less.

S E S S I O N

User Management

20

304840-9 ch20.F 8/28/01 12:54 PM Page 225

I’ll discuss security issues in depth in Session 28.

Roles

SQL Server uses roles. Two layers of access exist: access to the SQL Server and
access to a database object within the server. Each can be configured separately.
While I will discuss SQL Server roles in greater detail in Session 28, it will be bene-
ficial for you to learn about some fixed database roles, namely these four:

� Public — Essentially anyone who has enough rights to connect to the
database; the lowest role possible in terms of database permissions.

� db_owner — Someone who has full rights to this database, including the
right to delete it altogether, create objects, and so on.

� db_data_reader — Someone who is allowed to read the data without any
modifications, and who cannot create objects.

� db_datawriter — Someone who is allowed to read and write data, but who
cannot create objects.

These roles are contained in every database, including system databases. Every
user will belong to at least one of them.

Logins

Each database has one or more users who have specific privileges for accessing
data in this database. You can grant database access while creating a login or add
a user to the database who would use an existing login. In any case you must cre-
ate a login first and then add users and assign privileges. To do so, follow these
steps:

1. Start by creating a new login for your SQL Server. From the Enterprise
Manager console, choose Tools ➪ Wizards ➪ Create Login Wizard. On the
Welcome screen, click Next.

Cross-Ref

Saturday Evening226

304840-9 ch20.F 8/28/01 12:54 PM Page 226

2. The next screen (shown in Figure 20-1) prompts you to select an authen-
tication mode. In general, you should connect to SQL Server using
Windows account information (Windows Authentication) if you have a
domain-based network, but in this case the user will be required to pro-
vide his or her credentials by logging in with a login ID and password. A
SQL Server login is commonly used for dialup connections and peer-to-
peer networks. Click Next.

Figure 20-1
Selecting the authentication mode

3. If you selected SQL Server Authentication you are prompted to enter a
login ID and password, as shown in Figure 20-2. If you are using Windows
Authentication you are asked for a valid Windows account on the net-
work. Click Next.

Session 20—User Management 227

Part IV—
Saturday Evening

Session 20

304840-9 ch20.F 8/28/01 12:54 PM Page 227

Figure 20-2
Supplying a login ID and password for SQL Server authentication

4. You may wish to grant access to security roles (see Session 28), though
for the purpose of this session you should leave nothing selected on the
screen shown in Figure 20-3. Click Next.

Saturday Evening228

304840-9 ch20.F 8/28/01 12:54 PM Page 228

Figure 20-3
Granting access to security roles

5. The next screen (shown in Figure 20-4) enables you to set up database
access permissions. This is what you are after: Select the databases you
wish this login to access. Click Next.

6. The last screen will display a summary of what you’ve specified. Click
Finish to create the login.

Session 20—User Management 229

Part IV—
Saturday Evening

Session 20

304840-9 ch20.F 8/28/01 12:54 PM Page 229

Figure 20-4
Granting access to databases

Managing User Permissions

After the login is created, it is automatically entered into the Users collection of
every database it was assigned to. By default it is also assigned to the Public data-
base role. You may revoke these default privileges either by modifying the proper-
ties of the login or by going to the Users collection for the database and deleting
any user you do not want accessing your data. If you assigned database privileges
for more than one database you will have to go to each of the databases to revoke
the privileges assigned.

To view and adjust properties, or to delete the user, expand the Databases node
in the Enterprise Manager and select the database you wish to examine. In the
Users sub-node for this database locate the user (login ID) and double-click it.

From the screen displayed in Figure 20-5 you can assign membership to differ-
ent database roles such as db_owner and db_datawriter. The names of these roles
are descriptive enough that you can guess what kind of privileges they grant.

Saturday Evening230

304840-9 ch20.F 8/28/01 12:54 PM Page 230

Figure 20-5
Modifying database user properties

SQL Server provides various levels of data-access granularity: You can restrict
access to a particular view or table in the database, or even to a particular column
within a table, and on the table you can grant permission to read data but not to
update them (the same is true on the column level). You can also deny the right to
execute a particular stored procedure (see Figure 20-6) for a particular user or
group of users.

DRI stands for Declarative Referential Integrity. By checking this column’s boxes
you grant rights to execute these constraints. Double-clicking will prohibit execu-
tion; you will see a red cross in place of a green check mark.

The wealth of security choices is rather overwhelming and mak-
ing the right choices requires meticulous planning. By granting
more rights than necessary you compromise the security of your
database, but by granting too few you hamper database perfor-
mance and compromise maintainability.

Note

Session 20—User Management 231

Part IV—
Saturday Evening

Session 20

304840-9 ch20.F 8/28/01 12:54 PM Page 231

Figure 20-6
Granting privileges to database objects

The Permissions button gives you access to the permissions assignment for the
highlighted database role (see Figure 20-7). You can add or remove members of
this particular role.

The fixed public role is the least flexible: You cannot add or drop members. For
more on roles and database security please refer to Session 28.

You can directly assign permissions to all objects in the database
for the database role using the Permissions tab on the Database
Properties screen.

You may revoke permissions in exactly the same way that you grant them.
Dropping a particular login will result in the removal from all databases of all users
associated with that login; you may use this operation to disable the user account
of an employee leaving your company, for example.

Tip

Saturday Evening232

304840-9 ch20.F 8/28/01 12:54 PM Page 232

Figure 20-7
Adding members to fixed database roles

Managing a Multiuser Environment

Most likely, your SQL Server databases will operate in a multiuser environment, a
database accessed by multiple users at the same time. Using such an environment
increases the possibility of conflicts, as several users can access and modify the
same data at the same time.

SQL Server provides you with several ways to reduce the probability of conflict.
You can use locks, database design, referential integrity, and so on. The most
important factor in preventing conflict, though, is managing the permissions
assigned to users. It may make sense for you to assign different privileges to every-
one in your organization. For example, you might give a salesperson permission
to view data, a supervisor permission to remove or modify data, and a manager

Session 20—User Management 233

Part IV—
Saturday Evening

Session 20

304840-9 ch20.F 8/28/01 12:54 PM Page 233

permission to insert new stuff into the database. You probably do not want your
users to have privileges to drop and create objects; you probably also don’t want
everyone to have access to the company’s sensitive data.

Though it adds to your maintenance burdens, administering user privileges in a
multiuser environment will eventually pay off in the form of fewer headaches for
you as DBA (no surprises or corrupted data) and for the management of your orga-
nization (no security breach involving sensitive data).

REVIEW

� SQL Server 2000 provides several layers of access to the server, to the data-
base, and to the database objects.

� Every user of the database is automatically given a membership in the
public role.

� In order to access data, a user must be associated with a valid login.
� You can assign permission to access the database, and to view, modify, or

delete the data. Finely granulated security enables you to restrict access at
the column level and determine the type of operations users can perform
in a given column.

QUIZ YOURSELF

1. What type of access is controlled by database roles and server roles?

2. What are the considerations involved in selecting an authentication
mode?

3. How can you add a user to every database at once?

4. What database role does not enable you to either add or remove members?

Saturday Evening234

304840-9 ch20.F 8/28/01 12:54 PM Page 234

1. What is the purpose of DTS?

2. What data sources can DTS connect to?

3. How do you transform data during the export/import procedure?

4. What tool can you use you use to design and modify DTS packages?

5. What is BCP?

6. What are the differences between BCP and the data transformation
package?

7. What databases do you need to back up? Why?

8. What media can you back up to?

9. What is a backup device?

10. What are the two ways of creating a backup of a SQL Server database?

11. What is the purpose of a database transaction log?

12. What might cause a database transaction log to fill up?

13. How does full backup differ from differential backup?

14. Is it possible to create a differential backup for a transaction log?

15. What are the steps for restoring a database from a normal backup?

16. How does backup and restoration of the Master database differ from any
other backup and restore operation?

17. What is the main purpose of a replication?

P A R T

#
P A R T

Saturday Evening

IV

314840-9 pr4.F 8/28/01 12:54 PM Page 235

18. What are the three types of servers (components) in the replication
model and what are their purposes?

19. What are the two types of subscription?

20. Name the replication agents.

Part IV–Saturday Evening Part Review236

314840-9 pr4.F 8/28/01 12:54 PM Page 236

314840-9 pr4.F 8/28/01 12:54 PM Page 237

324840-9 DPO3.F 8/28/01 12:54 PM Page 238

Part V — Sunday Morning
Session 21
Managing Your Databases Visually

Session 22
Distributed Transaction Coordinator

Session 23
Accessing SQL Server System Information

Session 24
Automating Administration Tasks with SQL Server Agent

Session 25
Configuring SQL Server Mail

Session 26
Performance Tuning and Optimization

Part VI — Sunday Afternoon
Session 27
Disaster Recovery

Session 28
SQL Server Security

Session 29
Database Connectivity

Session 30
Advanced Features of SQL Server 2000

324840-9 DPO3.F 8/28/01 12:55 PM Page 239

P A R T

Sunday
Morning

V

Session 21
Managing Your Databases Visually

Session 22
Distributed Transaction Coordinator

Session 23
Accessing SQL Server System Information

Session 24
Automating Administration Tasks with
SQL Server Agent

Session 25
Configuring SQL Server Mail

Session 26
Performance Tuning and Optimization

334840-9 po5.F 8/28/01 12:55 PM Page 240

Session Checklist

✔ Devising a database-maintenance plan
✔ Scripting and documenting your database
✔ Moving and copying database files

This session shows you how to create, modify, and schedule your database-
maintenance plan to ensure its optimal performance. It also introduces several
database wizards that can help you perform various database-related tasks.

Devising a Database-Maintenance Plan

Once created, a database has to be maintained. This goes double for the SQL Server
system databases. Maintenance involves making sure your database is properly tuned
for optimum performance, checking database integrity, and ensuring that you have
the most recent backup of the database and its transaction log— just in case.

To do all this manually would be quite a task (which some hardcore DBAs still
do). Fortunately, Microsoft supplies a Database Maintenance Plan Wizard to guide
you through the process of creating such a plan and scheduling it.

S E S S I O N

Managing Your Databases Visually

21

344840-9 ch21.F 8/28/01 12:55 PM Page 241

With the Enterprise Edition of the SQL Server you can even
schedule the transfer of transaction logs to a different server:
This is one way to keep data consistent across different servers.

You can start up the Database Maintenance Plan Wizard from the Tools ➪ Wizards
menu (found under the Management node), or you can access it from the right-click
menu of the Database node by selecting All Tasks ➪ Maintenance Plan. Alternatively,
you may start the wizard from the right-click menu in the Database Maintenance
Plans node under the Management node in the Enterprise Manager console.

1. After skipping the Welcome screen of the wizard you get to the Select
Database screen, shown in Figure 21-1.

Figure 21-1
Selecting databases for the maintenance plan

From here you can select the database for which you are going to create
the plan. It is usually a very good idea to maintain all your system data-
bases, especially your Master database. This example will create a mainte-
nance plan for all system databases. Click Next to proceed to the next
screen, shown in Figure 21-2.

Note

Sunday Morning242

344840-9 ch21.F 8/28/01 12:55 PM Page 242

Figure 21-2
Specifying the tasks for your database-maintenance plan

2. You should select these options depending on your needs. Reclaiming
unused space is usually a good idea if conserving disk space is of concern
to you; reorganizing data and index pages makes sense in a database in
which data changes frequently; you may choose to update statistics used
by the SQL Query Optimizer. This option becomes enabled when you
decide not to organize data and index pages, in order to speed up your
queries. You can schedule all these tasks to be performed recurrently; if
you do, keep in mind that this kind of operation is very resource-inten-
sive and that the databases will not be functional until the procedure
completes. Click Next.

Statistics are created for each table automatically, unless you
turn off the AUTO_CREATE_STATISTICS database option. This
option, which pertains to the distribution of the values in the
tables’ indexed columns, is accessible from Auto Create Statistics
on the Options tab of the Database Properties screen. The SQL
Query Optimizer uses these statistics to determine which index
to use for a particular query. Your choice of index has a signifi-
cant impact on the efficiency of the query.

Tip

Session 21—Managing Your Databases Visually 243

Part V—
Sunday M

orning
Session 21

344840-9 ch21.F 8/28/01 12:55 PM Page 243

3. The next screen (shown in Figure 21-3) deals with database integrity.
Unless you have a really compelling reason to skip these checks, I recom-
mend performing them every time. As a result the whole procedure might
take longer, sometimes considerably longer, but there is no price too high
for peace of mind. You may schedule this procedure as well. However,
keep in mind that it is resource-intensive; if you schedule it to execute
very often it may bog down your server because of the integrity checks.
Click Next.

Figure 21-3
Checking database integrity

3. The next screen is fairly self-explanatory (that’s why it is not shown
here). It enables you to include a database backup as part of the mainte-
nance plan. This is usually a good idea, if time, disk space, and tape
availability permit it. Choosing to verify integrity upon completion will
increase your down time but will also increase your peace of mind.

You also need to decide how long you wish to preserve your old backups.
The answer usually comes from your company’s policy for preserving data:
Some companies are really paranoid and wish to keep every bit of infor-
mation, while others have a more casual attitude. Click Next.

Sunday Morning244

344840-9 ch21.F 8/28/01 12:55 PM Page 244

5. This screen is an exact replica of the one before it (which, again, is why I
don’t show it here). It deals with transaction logs. Everything I said
about database backup also applies to transaction logs, which keep track
of all changes and are very helpful in restoring the exact state of a data-
base after the unmentionable — a server crash. Click Next.

6. The next screen (shown in Figure 21-4) enables you to set reporting
options. After a maintenance cycle is completed a report is generated and
stored in a file form; you may also choose to send e-mail notification to
any of the operators on the list (Session 26 covers setting up the SQL
Server Mail Agent and operators). Click Next.

Figure 21-4
Generating reports

7. The next screen enables you to choose how many records of each occur-
rence of the maintenance-plan execution you wish to keep; 1,000 rows of
buffer space seems reasonable to me.

Session 21—Managing Your Databases Visually 245

Part V—
Sunday M

orning
Session 21

344840-9 ch21.F 8/28/01 12:55 PM Page 245

Sometimes things do not go exactly as planned. You need to maintain a
history of your maintenance-plan executions in order to find out where
things went wrong and, if possible, to find out why. How much informa-
tion you wish to preserve is up to you; the default setting limits the
amount to 1,000 rows for this particular plan. Click Next.

8. The last screen presents you with a summary of the steps you took.
Clicking Finish will store the newly created database-maintenance plan in
the Maintenance Plans collection under Management ➪ Database
Maintenance Plans in the Enterprise Manager.

After the plan is created you can always modify its properties, or delete it alto-
gether. Locate your maintenance plan under the Database Maintenance Plans node
and choose Properties from the right-click menu on the plan you wish to modify or
delete. Figure 21-5 depicts the screen you’ll see after combining all the steps
you’ve just been through.

Figure 21-5
Viewing the database-maintenance plan

Sunday Morning246

344840-9 ch21.F 8/28/01 12:55 PM Page 246

From the window shown in Figure 21-5 you can change the options you set when
you created the plan, reschedule, apply this plan to another database, and so on.

Scripting and Documenting Your Database

Your database is a living thing. It changes every so often, new tables come into
existence, new rules replace old ones, and new stored procedures are created con-
stantly. This analogy continues to the point when your database dies — either
peacefully or not.

To be in control of the situation you need to know your database structure at
any given point in time, or close to it, as database changes happen often. Start by
scripting and documenting your database. SQL Server 2000 makes it easy for you:
Select All Tasks ➪ Generate SQL Scripts from the right-click menu on the database
you want to document. Figure 21-6 shows SQL objects to be scripted for the Pubs
database (make sure you’ve clicked Show All, and then check Script All Objects).

Figure 21-6
Scripting the entire database

Session 21—Managing Your Databases Visually 247

Part V—
Sunday M

orning
Session 21

344840-9 ch21.F 8/28/01 12:55 PM Page 247

On the Formatting tab select the formatting options. The options you choose
depend on the kind of objects you have in your database and on your business
requirements. For example, including a DROP command for each object in the data-
base will prevent an error that would occur when you try to create an object that
already exists. Setting compatibility levels to 8.0 (SQL Server 2000) instructs SQL
Server to use syntax that might be incompatible with previous releases.

The Options tab presents you with a variety of options:

� Security options — All your database users and roles, permissions and logins.
� Table options — Script indexes, full text indexes, triggers, and constraints.
� File options — Determines how the script file is formatted and saved. For

example, saving a file as UNICODE will prevent the script from running on
SQL Server 6.5 and earlier; you can also choose to have one file per object
or all objects scripted in one big file.

For documenting purposes you probably want to include every option. Click OK
to generate an .sql file: This is your database-structure snapshot. You may wish to
open it to examine the resulting script, add your comments, and so on. Save it in a
safe place. Of course, you will need to update it from time to time as your database
changes.

Using Generate Script you can script virtually any object in your
database. Then you can run the script through the SQL Query
Analyzer to create the scripted object. Remember that any data
contained by an existing object will be lost: They are dropped
before a new object is created.

Moving and Copying Database Files

You may not do this very often but knowing how to move databases around will
help you in your daily routine. Recall that SQL Server 7.0/2000 databases are
physically stored as files on your system. If you copy these files with .mdf and .ldf
extensions to a different server where SQL Server is installed, SQL Server will be
totally unaware of them until you attach them to the server as a database.

To ensure its integrity, always follow proper procedures when
detaching and attaching a database; do not simply copy or move
the files as you would any other file on your system.

Note

Tip

Sunday Morning248

344840-9 ch21.F 8/28/01 12:55 PM Page 248

Follow these steps for detaching a database:

1. Select the database you would like to move and choose All Tasks ➪ Detach
Database from the right-click menu. SQL Server determines whether there
are any connections to this database and reports the status.

2. If the database is ready to be detached, you may do so by clicking OK.
However, you may want to consider updating the statistics first. You will
see your chosen database disappear from the Enterprise Manager Console.
Now you can copy the files to any location you want.

Once the files are copied to a new location you need to attach the database. To
do so, right-click the All Tasks menu on the Databases node in the Enterprise
Manager console. All you have to do is to specify the location of your main .mdf
file; SQL Server will recognize the structure and display information about the
database the file contains. Click OK to attach the file to the SQL Server. An
attached database will immediately appear under the Databases node (if it does
not, choose Refresh from the right-click menu of the Databases node).

If you prefer doing things the hard way you can use the system
stored procedures sp_attach_db and sp_detach_db to attach and
detach databases, respectively.

Detaching and re-attaching a database is a great way to move it around, but
what if you just want to create a copy of the existing database on some other
server? Meet the Copy Database Wizard. It enables you to copy a database between
two servers and to copy the corresponding objects: logins, metadata, and so on.

1. Start the Copy Database Wizard by selecting Databases ➪ All Tasks ➪ Copy
Database Wizard.

2. The first screen prompts you to select the source server. The default is
your local server, but you can choose any server accessible to you from
the network.

3. Select the destination server(s) — yes, you can copy to several servers at
once.

4. Select the database(s) to be copied, as well as all the other objects you
wish to copy. Click OK to start the process; once it is completed you will
have an exact copy of your database on the destination server(s).

You cannot copy any of the system databases using this wizard.

Note

Tip

Session 21—Managing Your Databases Visually 249

Part V—
Sunday M

orning
Session 21

344840-9 ch21.F 8/28/01 12:55 PM Page 249

SQL Server 2000 tries to make your life as a database administrator easier with
a number of different wizards. But you should not think of these wizards as a sub-
stitute for knowledge of what is going on behind the scenes, of how things are
really working.

REVIEW

� You went through the process of creating a database-maintenance plan. It
is very important to maintain a current maintenance plan and to execute
it at regular intervals to ensure the integrity and optimum performance of
your database.

� Scripting a database provides you with a documented schema for it, which
you can use to recreate your database or to create an empty database copy
on a different system.

� SQL Server 2000 provides you with a number of wizards with which to per-
form various administrative tasks. Detaching and attaching databases are
two of these tasks.

� The other way to create a copy of your database is to use the Database
Copy Wizard.

QUIZ YOURSELF

1. Why do you need a database-maintenance plan?

2. What processes are included in your maintenance plan?

3. Where is a database-maintenance plan stored?

4. Why is it a good idea to script and document your databases?

5. How do you move databases around?

6. How do you create a copy of a database on a remote machine?

Sunday Morning250

344840-9 ch21.F 8/28/01 12:55 PM Page 250

Session Checklist

✔ Using remote servers and linked servers
✔ Accessing external data sources
✔ Using Microsoft Distributed Transaction Coordinator (MSDTC)

In this session you are going to learn about accessing external data sources
from your SQL Server. You can do this in several different ways, including with
linked or remote servers, or by using ad hoc queries. Microsoft Distributed

Transaction Coordinator (MSDTC) handles distributed transactions that span more
than one database and/or server.

Using Remote Servers and Linked Servers

If you have one and only one SQL Server running in your organization and never
intend to add more to your system, you may safely skip to the next session with-
out feeling you missed something. Chances are, at some point in your DBA career

S E S S I O N

Distributed Transaction
Coordinator

22

354840-9 ch22.F 8/28/01 12:55 PM Page 251

you will need to use more than one RDBMS in general, and more than one SQL
Server in particular. As systems become more and more distributed so do the data.

Remote servers

SQL Server provides you with several tools to help you integrate various data
sources with your SQL Server installation — tools like partitioned data, remote and
linked servers, and replication. Remote servers enable you to execute stored proce-
dures remotely; linked servers give you the same functionality as remote servers
plus the ability to use distributed queries (explained later in this session). MSDTC
manages transactions that span multiple databases on one or more servers. If any
of these tools sounds like it might meet your current needs, read on.

The purpose of the remote server is to allow a client application connected to
one server to use the services provided by another server (the remote one) without
having to connect to it explicitly. With a remote server the client can call a remote
stored procedure much as it would call a local one. Only SQL Servers can be set up
for remote connection; heterogeneous data sources (such as ORACLE) are not
allowed.

Remote servers are a thing of the past. SQL Server 2000 enables you to add a
remote SQL Server only for backward compatibility, and you should avoid using
them in new systems as they might not be supported in future releases. At the
same time, they might be useful in legacy systems during the migration stage.

Remote servers are supported in newer versions of SQL Server for
backward compatibility. The new feature introduced with version
7.0, linked servers, provides essentially the same functionality
as remote servers. Use it instead of remote servers whenever
possible.

To set up a remote-server connection, follow these steps:

1. From the SQL Server Query Analyzer run the following commands:

EXEC sp_addlinkedserver <Server1>, ‘SQL Server’

EXEC sp_addlinkedserver <Server2>

EXEC sp_configure ‘remote access’, 1

RECONFIGURE

GO

Note

Sunday Morning252

354840-9 ch22.F 8/28/01 12:55 PM Page 252

2. Stop and restart <Server1>

3. On the remote server (<Server2>), run the following T-SQL commands:

EXEC sp_addlinkedserver <Server2>, local

EXEC sp_addlinkedserver Server1

EXEC sp_configure ‘remote access’, 1

RECONFIGURE

GO

4. Add a login for the first server:

EXEC sp_addremotelogin <Server1>, <Server1 Login>,
<Server2 Login>

GO

5. Stop and restart <Server2>.

Replace the names in angle brackets with the names of your local and remote
servers, and make sure that you are using SQL Server Authentication Mode (with
login and password). For the purpose of this example I assume that the passwords
are the same for both servers. You also can use the stored procedure sp_addserver,
which is still supported for backwards compatibility. To drop the remote server, use
the sp_dropserver system stored procedure.

SQL Server also provides you with visual tools with which to set up a remote
server. From the Enterprise Manager console select and expand the Security node,
and then select the Remote Servers node. From the right-click menu select New
Remote Server.

In the screen shown in Figure 22-1, supply the name of the remote server to be
identified under the SQL Server console (you must supply a valid name of a SQL
Server accessible from your network). Check the RPC box if you want to perform
remote procedure calls, and provide login information.

To execute the stored procedure sp_StoredProc in the Pubs database of
<Server2> from <Server1>, use the following syntax:

EXECUTE <Server2>.Pubs.. sp_StoredProc <arg1>, <arg2>...

Session 22—Distributed Transaction Coordinator 253

Part V—
Sunday M

orning
Session 22

354840-9 ch22.F 8/28/01 12:55 PM Page 253

Figure 22-1
Adding a remote server.

Linked servers

Linked servers offer much more flexibility than remote servers do. First of all, they
can be anything as long as an appropriate OLE DB provider can support the remote
server’s functionality. A remote server can only execute stored procedures. Linked
servers support distributed transactions across multiple heterogeneous data sources,
such as those between a database in ORACLE and a database in SQL Server 2000.

An OLE DB provider (discussed in Session 29) is an interface that
manages interactions with a particular data source. Think of it as
a communication layer: On the data-source side it knows all the
details of your specific data source, and exposes the consistent
interface expected by the client on the other end.

Note

Sunday Morning254

354840-9 ch22.F 8/28/01 12:55 PM Page 254

From the Enterprise Manager console select the Security node and expand it.
Select the Linked Servers node, and from the right-click menu select New Linked
Server.

As I mentioned before, the linked server can be anything; it doesn’t have to be
another SQL Server. To demonstrate this, I will add an Access database file as a
linked server (see Figure 22-2). The file is named myDB.mdb, and it contains a sin-
gle table named Customers. It is located in the C:\test\ directory. I created this file
using Microsoft Access 2000; please substitute your data-source name and loca-
tion. The name and structure are of no importance here; just make sure you have
at least one table. Users of Microsoft Visual Studio 6.0 have the Nwind.mdb sample
database installed, which is an Access version of the Northwind database supplied
with SQL Server. (I assume that you have enough expertise to create an Access
database. If not, send me an e-mail and I will send you a copy: You can find my
contact information in the “Reach Out” section of the preface for this book.)

Figure 22-2
Adding a linked server.

Session 22—Distributed Transaction Coordinator 255

Part V—
Sunday M

orning
Session 22

354840-9 ch22.F 8/28/01 12:55 PM Page 255

As you fill in the various boxes on this screen, a brief description will appear in
the lower pane. In Figure 22-2, the new linked server will be added as ACCESS
DATA, and refers to the file myDB.mdb in the specified path. With the Provider
Options button you can access the properties of this particular connection, as
shown in Figure 22-3.

Figure 22-3
Configuring OLE DB Provider properties.

These options are provider-specific: You need to know the product (in my case
Microsoft Access) in order to use them properly.

Next you need to set up security in the Security tab. Essentially, you must spec-
ify the login and password information required to access this server, and specify
whether or not you wish to use the security context for each login that you did
not specify. The default is No security context, which means that every process
that tries to connect to this server has to supply a login/password combination to
be forwarded to the server, which will then decide which privileges to assign.

Sunday Morning256

354840-9 ch22.F 8/28/01 12:55 PM Page 256

The last tab on this screen (shown in Figure 22-4) deals with the linked-server
properties such as collation order, data access, and connection timeout. RPC stands
for remote procedure call: You need to decide whether you wish to allow the
remote client to invoke procedures remotely on this server as well as allowing the
server to call out.

Figure 22-4
Configuring linked-server properties.

Once all the properties are set, click OK. If all the information supplied is cor-
rect, you now have access to the data contained in this database.

If you followed my example and linked to the Access database, myDB.mdb, you
see the single table Companies in the myDB.mdb database (all Access system tables
appear as well, but I ignore them because they are used internally by Access
itself). Now you can query data directly from your SQL Query Analyzer and use
data contained in the linked server in your distributed queries.

Session 22—Distributed Transaction Coordinator 257

Part V—
Sunday M

orning
Session 22

354840-9 ch22.F 8/28/01 12:55 PM Page 257

Using the Enterprise Manager interface you can remove your linked server as
you would any other object from your SQL Server: by selecting an object’s node
and selecting Delete from a right-click pop-up menu. By deleting the linked server
you do not delete the database itself, just its registration information within your
SQL Server.

Although in theory any OLE DB–compliant data source can be
linked to SQL Server, Microsoft has only tested SQL Server against
the OLE DB provider for SQL Server, Microsoft OLE DB provider for
Jet, Microsoft OLE DB provider for Oracle, Microsoft OLE DB
Provider for Indexing Service, and Microsoft OLE DB Provider
for ODBC.

Accessing External Data Sources

You use a different (from that of a standard T-SQL query) syntax to query linked
servers’ data tables. For example, to get all the information from the Companies
table (from the preceding example), you run the following query:

SELECT * FROM OPENQUERY(ACCESS_DATA,’SELECT * FROM Companies’)

Note the new keyword OPENQUERY, which you need to use in order to access
data in the linked server.

SQL Server 2000 enables you to perform ad hoc queries against external hetero-
geneous (non-SQL Server) data sources. You can access an external data source
without linking it to the SQL Server beforehand, though you need to supply more
information. To query an external data source (such as my sample myDB.mdb data-
base) without linking it, you must first specify the data source in the query, as
shown here:

SELECT * FROM OPENDATASOURCE(‘Microsoft.Jet.OLEDB.4.0’,
‘Data Source=”C:\test\myDB.mdb”’)...Companies

Another keyword you can use to access external data sources is OPENROWSET.

SELECT tblCompanies.*
FROM OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,

‘C:\test\myDB.mdb’;;,Companies)
AS tblCompanies

Note

Sunday Morning258

354840-9 ch22.F 8/28/01 12:55 PM Page 258

You can think of a rowset as a virtual table, a data snapshot created from the
external source. The preceding code snippet first creates tblCompanies and then
performs the selection; tblCompanies was used to make the whole process more
visual. You can rewrite this query as follows and get identical results:

SELECT *
FROM OPENROWSET(‘Microsoft.Jet.OLEDB.4.0’,

‘C:\test\myDB.mdb’;;,Companies)

If your data source requires that you provide a login and password, you must
supply these in place of the blanks I left in the preceding query (right after the
full path to the data file, <data file>;<blank space>;<blank space>). Please
note that the login and password must be enclosed in single quotes (‘) when they
are in the data-source path.

Using these techniques you can query any data source, provided there is an OLE
DB Provider for it.

With the distributed queries and transactions you cannot use any
of the Data Definition Language (DDL) statements like CREATE
and DROP. If you need to use these or similar statements you
must create and call remote stored procedures.

Using Microsoft Distributed Transaction
Coordinator (MSDTC)

On the surface, distributed transactions are no different from local transactions,
save for the fact that they span disparate data sources. Distributed transactions
use either distributed queries or remote procedure calls.

An application can start a distributed transaction in two ways:

� Explicitly, by using the BEGIN DISTRIBUTED TRANSACTION keyword.
� Implicitly, by using a distributed query or calling a remote stored proce-

dure within a local transaction.

I mentioned distributed transactions briefly in Session 16. In the same session I
mentioned Microsoft Distributed Transaction Coordinator (MSDTC). Here we’ll take
a closer look (see Figure 22-5).

Tip

Session 22—Distributed Transaction Coordinator 259

Part V—
Sunday M

orning
Session 22

354840-9 ch22.F 8/28/01 12:55 PM Page 259

Figure 22-5
Starting Microsoft Distributed Transaction Coordinator (MSDTC).

MSDTC must be running on every server involved in the transaction. You start it
or configure it for auto-start from the SQL Service Manager. Any given computer
can have only one MSDTC service, regardless of the number of SQL Server instances
running.

MSDTC goes through two phases in the commit process:

� In the prepare phase, it sends the prepare command to all resource man-
agers involved. The resource managers tell MSDTC whether they succeeded
or failed at the task.

� Once MSDTC has received these responses it initiates the commit phase by
issuing the commit command, whereupon each of the resource managers
attempts to commit the transaction. If all resource managers report success
the transaction is marked as committed; otherwise it is considered suspect
and must be resolved in order to continue. Unresolved transactions are
rolled back. Previous versions of SQL Server had a visual interface with
which to manage MSDTC; in SQL Server 2000 you have to take the vendor’s
word that it will work properly. The only way to troubleshoot distributed
transactions is the SQL Server log, which can help you to pinpoint in-
doubt transactions. If you see the following message in your SQL error log

<SQL Server detected a DTC in-doubt transaction for UOW
<UOW_ID>. Please resolve it following the guideline for
Troubleshooting DTC Transactions.>

Sunday Morning260

354840-9 ch22.F 8/28/01 12:55 PM Page 260

you can kill the UOW (unit of work), either with a COMMIT or a ROLLBACK
command, as follows:

KILL UOW_ID WITH { COMMIT | ROLLBACK }

You can use this KILL syntax only to resolve in-doubt transactions in the pre-
pare phase.

REVIEW

� You can access many data sources through SQL Server 2000 as long as they
have appropriate OLE DB providers.

� You can access an external data source by linking it to the SQL Server or to
an ad hoc query.

� SQL Server 2000 supports linked servers and remote servers. Remote
servers must be other SQL Servers; linked servers can potentially access
any data source.

� A transaction spanning one or more servers is called a distributed transac-
tion. The Microsoft Distributed Transaction Coordinator (MSDTC) manages
distributed transactions across multiple servers.

� Distributed transactions are committed in a two-phase process. (The two
phases are the prepare phase and the commit phase.)

QUIZ YOURSELF

1. What is the difference between a remote server and a linked server?
Which should you use in a new system?

2. What types of data sources can you access through linked servers?

3. What additional keywords would you use when querying ad hoc external
data sources?

4. What is a distributed transaction? How do you start one?

5. What is MSDTC?

6. How do you resolve in-doubt distributed transactions?

Session 22—Distributed Transaction Coordinator 261

Part V—
Sunday M

orning
Session 22

354840-9 ch22.F 8/28/01 12:55 PM Page 261

354840-9 ch22.F 8/28/01 12:55 PM Page 262

Session Checklist

✔ Obtaining SQL Server system information
✔ Using information schema views
✔ Using system stored procedures

This session introduces several ways to obtain information about SQL Server
objects, and shows you how to manipulate these from outside the Enterprise
Manager console.

Obtaining SQL Server System Information

Sooner or later your client applications will need system information. How many
tables are in the database? What are their names? What is the data type of the
columns I am about to update? This information is vital to SQL Server itself. It is
contained in system-catalog tables that contain metadata about all system objects.

One of the ways to obtain this information would be by querying
these tables directly. Don’t. There is one point Microsoft is very
specific about: The system tables are not for querying, as they
will change in future releases.Note

S E S S I O N

Accessing SQL Server
System Information

23

364840-9 ch23.F 8/28/01 12:55 PM Page 263

You have several legitimate ways to access system information in SQL Server 2000:

� Information schema views — An abstraction layer on top of system cata-
logs. They are independent of the catalog structure and thus any applica-
tion using them is portable among SQL-92–compliant RDBMS(es).

� ODBC catalog functions — A set of ODBC API functions designed to retrieve
information about underlying RDBMSes. It is implemented in ODBC drivers.

� System stored procedures and functions — A set of global stored proce-
dures and functions installed with every SQL Server installation in the
Master database.

� OLE DB schema rowsets — A programming interface exposed by OLE DB
providers. It is independent of system catalogs, and applications using it
should be portable (at least in theory).

INFORMATION_SCHEMA and system stored procedures are the two main means of
getting information about your SQL Server system.

Metadata is data that describes data; in the case of SQL Server
the term is used to describe objects in the RDBMS.

Using Information Schema Views

The information schema views included in SQL Server conform to the SQL-92
Standard definition for INFORMATION_SCHEMA, though SQL Server uses different
names. Table 23-1 maps SQL Server object names to their equivalents in the SQL-92
standard.

Table 23-1
SQL Server Equivalents in the SQL-92 Standard

SQL Server SQL-92 Standard

Database catalog

Owner schema

Object object

User-defined data type domain

Note

Sunday Morning264

364840-9 ch23.F 8/28/01 12:55 PM Page 264

Use INFORMATION_SCHEMA as a prefix for the name of the object you would like
to find information about. The basic syntax for using INFORMATION_SCHEMA is as
follows:

SELECT * FROM INFORMATION_SCHEMA.TABLES

When run from the Query Analyzer, this query will produce the output shown in
Figure 23-1.

Figure 23-1
Querying INFORMATION_SCHEMA tables’ information

Here are some samples of the more frequently used INFORMATION_SCHEMA
objects — the names are very descriptive, though you should consult documenta-
tion (such as Books Online) to verify the view’s columns you wish to query.

� Table information:

VIEW_TABLE_USAGE

TABLE_CONSTRAINTS

TABLE_PRIVILEGES

TABLES

VIEWS

Session 23—Accessing SQL Server System Information 265

Part V—
Sunday M

orning
Session 23

364840-9 ch23.F 8/28/01 12:55 PM Page 265

� Column information:

COLUMNS

VIEW_COLUMN_USAGE

KEY_COLUMN_USAGE

� Constraint information:

CHECK_CONSTRAINTS

CONSTRAINT_COLUMN_USAGE

CONSTRAINT_TABLE_USAGE

REFERENTIAL_CONSTRAINTS

Using System Stored Procedures

Using system stored procedures is a black art that can never be mastered in full.
Yes, you can know them all by heart (all 930 of them plus 174 extended stored
procedures) — only to find that the number has increased, and that names and
parameter types have been changed in the newest release.

Until recently, no alternative to using system stored procedures was available.
Even since the advent of INFORMATION_SCHEMA they remain the most comprehen-
sive set of tools for your SQL Server system. You can use system stored procedures
to administer SQL Server, to query it for information, and to create and drop data-
base objects. In fact, SQL Server uses them itself, behind the scenes, in performing
various administrative tasks. Unlike INFORMATION_SCHEMA, system stored proce-
dures not only display information, but also modify it. Proceed with caution.

You can access most of the functionality offered by system stored procedures
through the Enterprise Manager interface, but it’s worth your while to familiarize
yourself with the most common of them. To execute them directly you can use any
of the access interfaces available: Query Analyzer, ISQL, OSQL, and so on.

The system stored procedures can be grouped into categories: Microsoft Books
Online lists 10 of them. Here’s a list of the ones you are most likely to use:

� General stored procedures
� Catalog stored procedures
� Security stored procedures
� SQL Server Agent stored procedures
� Extended stored procedures

I discuss these stored procedures in the following sections.

Sunday Morning266

364840-9 ch23.F 8/28/01 12:55 PM Page 266

General stored procedures

These procedures help you with basic system administration. General stored proce-
dures, as the name implies, support general SQL Server activity. Table 23-2 lists
some selected stored procedures.

Table 23-2
Selected General Stored Procedures

Stored Procedure Description

sp_help Provides information about any object listed in the
sysobjects table.

sp_helptext Provides access to the text of a rule, default, unencrypted
stored procedure, or user-defined function, trigger, or view.

sp_helpindex Provides information about all indexes defined for a specific
table or view.

sp_helpuser Provides information about SQL server users, roles, and so on.

sp_who Provides information about current users and processes.

sp_lock Provides information about locks.

Catalog stored procedures

Catalog stored procedures return information about tables, columns, data types,
privileges, and such. These procedures have been largely supplanted by INFORMA-
TION_SCHEMA views. See Table 23-3 for a list of selected catalog stored procedures.

Table 23-3
Selected Catalog Stored Procedures

Stored Procedure Description

sp_databases Provides a list of all accessible databases in a given
instance of SQL Server.

sp_tables Provides a list of all tables in a database.

Continued

Session 23—Accessing SQL Server System Information 267

Part V—
Sunday M

orning
Session 23

364840-9 ch23.F 8/28/01 12:55 PM Page 267

Table 23-3 Continued

Stored Procedure Description

sp_columns Provides column information for a table.

sp_server_info Provides information about the SQL Server.

sp_stored_procedures Provides a list of all stored procedures in a database.

Unless the documentation states otherwise, all system stored
procedures are functions whose return value is 0 on success and
an error-number value on failure.

Security stored procedures

These procedures are among those that modify system tables. Proceed with cau-
tion, and use the Enterprise Manager interface instead of these stored procedures
whenever possible. Table 23-4 lists several security stored procedures.

Table 23-4
Selected Security Stored Procedures

Stored Procedure Description

sp_addrole Creates a new role for a database.

sp_adduser Adds a new security account.

sp_helpuser Provides information about a particular user or database role.

sp_helplogins Provides information about logins defined on the system.

sp_password Adds or resets a user’s password in SQL Server.

In examining a sysobjects system table (especially that of the
Master database) you mzight find undocumented procedures.
Refrain from using any of these, as it might lead to unpre-
dictable results and non-portable systems.Note

Note

Sunday Morning268

364840-9 ch23.F 8/28/01 12:55 PM Page 268

SQL Server Agent stored procedures

These stored procedures are called behind the scenes to perform the tasks associ-
ated with SQL Server Agent — scheduling jobs, creating alerts, and so on. Unless
you wish to create these objects programmatically, the SQL Server Agent interface
should be your tool of choice. Table 23-5 lists some of the SQL Server Agent stored
procedures.

Table 23-5
Selected SQL Server Agent Stored Procedures

Stored Procedure Description

sp_add_alert Adds an alert to SQL Server Agent.

sp_add_job Adds a job to SQL Server Agent.

sp_add_jobschedule Creates a schedule for a given job.

sp_addtask Creates a scheduled task.

sp_help_alert Provides information about all alerts defined for the system.

Most “add” stored procedures have a corresponding “drop”
procedure.

Extended stored procedures

Extended stored procedures are your window onto the operating system. They
enable you to do things that would be difficult or impossible in T-SQL; at the same
time they can open up potential security loopholes that provide access to your
network through SQL Server. Extended stored procedures are usually, but not
always, prefixed with xp_.

You create an extended stored procedure as an external Dynamic Linked Library
(DLL), usually in C++, and link it into SQL Server. When an extended stored proce-
dure is called, SQL Server actually loads a program (DLL), passes parameters to it,
and retrieves the return values.

Tip

Session 23—Accessing SQL Server System Information 269

Part V—
Sunday M

orning
Session 23

364840-9 ch23.F 8/28/01 12:55 PM Page 269

To execute an extended stored procedure you must have sufficient privileges.
See Table 23-6 for a list of selected extended stored procedures.

Table 23-6
Selected Extended Stored Procedures

Stored Procedure Description

xp_cmdshell Executes a command as you would from the command line,
and returns text rows.

xp_logininfo Provides details of the account and privileges for the login.

xp_sprintf Formats values into an output string.

xp_sscanf Reads formatted information from a string into the arguments’
location.

xp_logevent Logs event information into the Windows Event log as well as
into the SQL Server log.

API system stored procedures are reserved exclusively for OLE DB
providers, ODBC drivers, and DB-LIB functions. You should not
call these procedures directly.

REVIEW

� SQL Server gives you several ways to access its system information.
� The recommended way to obtain information about SQL Server objects and

their properties is to use INFORMATION_SCHEMA views. These hidden views
are created for each database in SQL Server 2000.

� You can use system stored procedures to retrieve most of the information
available through INFORMATION_SCHEMA; in addition, system stored proce-
dures enable you to perform many administrative tasks.

� You should use the Enterprise Manager interface in place of system-stored
procedures whenever possible, to ensure that the system stored procedures
are used properly.

Note

Sunday Morning270

364840-9 ch23.F 8/28/01 12:55 PM Page 270

QUIZ YOURSELF

1. What are the two primary methods of retrieving system information from
SQL Server 2000?

2. What is an INFORMATION_SCHEMA?

3. Why is it not usually a good idea to query SQL server system tables
directly?

4. What is the purpose of system stored procedures?

5. How does an extended stored procedure differ from a standard stored
procedure?

Session 23—Accessing SQL Server System Information 271

Part V—
Sunday M

orning
Session 23

364840-9 ch23.F 8/28/01 12:55 PM Page 271

364840-9 ch23.F 8/28/01 12:55 PM Page 272

Session Checklist

✔ Configuring and using SQL Server Agent
✔ Scheduling jobs
✔ Creating alerts
✔ Managing operators
✔ Administering multiple servers

Automating some of the SQL Server administrative tasks will make your life
easier. With SQL Server Agent, you can create and schedule various tasks,
from database maintenance to data manipulations; you also can use alerts

to keep in touch with your SQL Server via e-mail, Net Send pop-up messages, or
even a pager.

Configuring and Using SQL Server Agent

Behind every automated task executed in SQL Server 2000 stands SQL Server Agent
(which I mentioned briefly in Session 4). Using it you can define, execute, and

S E S S I O N

Automating Administration Tasks
with SQL Server Agent

24

374840-9 ch24.F 8/28/01 12:55 PM Page 273

schedule for execution various database tasks. The system database MSDB drives it:
When you modify its properties, schedule a new job, or add an alert, all the data
are written into MSDB to be read by SQL Server Agent; there is no direct communi-
cation with the Agent.

You should never attempt to modify MSDB tables directly: doing
so could result in a corrupted system. Always use the interfaces
provided by the SQL Server wizards.

In order to run, SQL Server Agent requires that the SQL Server Agent Service be
running. Usually you’ll want the service to start when Windows starts: You can set
it to do this in the SQL Server Service Manager. Running the service will ensure
that any scheduled tasks are executed on time. You need to configure SQL Server
Agent to run properly on your system.

Configuration screen

You can access the configuration screen, shown in Figure 24-1, from the Enterprise
Manager console ➪ Management node ➪ SQL Server Agent node ➪ right-click menu
Properties option. You will specify an account to use on startup; this account must
have all the necessary permissions to execute tasks in SQL Server. If you wish to
receive notifications from your SQL Server via e-mail or pager you will need to set
a mail profile (I describe this process in detail in Session 25) corresponding to one
on your e-mail server (which must be a MAPI-compliant application such as
Microsoft Exchange). The Agent writes an error log for all its activities into a
specific file, and if your system is on the network you can send the log to a net
recipient by specifying the other computer’s name.

Properties

As you go through the tabs on the SQL Server Agent properties dialog you can
instruct the Agent (on the Advanced tab) to restart SQL Server if it shuts down
unexpectedly and even to restart itself. In a multi-server environment you may
want to forward alerts and messages to some other server(s).

Note

Sunday Morning274

374840-9 ch24.F 8/28/01 12:55 PM Page 274

Figure 24-1
Configuring SQL Server Agent

The Alert tab

The Alert tab enables you to specify the alert format as well as its recipients and a
fail-safe operator (some poor guy to be awakened at 3:00 AM when something goes
wrong) to be notified via e-mail or pager.

The Jobs tab

The Jobs tab, as the name implies, deals with jobs — their scheduling, logging
properties, job execution timeout, and such. I recommend leaving these to their
defaults at this time.

The Connection tab

The Connection tab enables you to set up the account the Agent will use to con-
nect to SQL Server after it has started. This account may or may not be the same
as the startup account. Make sure that it has all the necessary privileges.

Session 24—Automating Administration Tasks with SQL Server Agent 275

Part V—
Sunday M

orning
Session 24

374840-9 ch24.F 8/28/01 12:55 PM Page 275

Scheduling Jobs

A job in SQL Server 2000 is a sequence of operations to be performed once, sched-
uled for execution, or run when a certain predefined condition occurs. The SQL
Server Agent maintains a complete job history for every job, recording time, dura-
tion, and final result. You can access the Job Creation Wizard from the SQL Server
Agent node: From the right-click menu choose New ➪ Job. Figure 24-2 shows the
first screen you’ll see.

Figure 24-2
Creating a new job, General tab

A job can consist of one or more steps. In the following instructions you can
specify a new step and edit or delete existing ones; you can insert the new step
before or after an existing step.

1. On the Steps tab, click New to create a step. The screen shown in Figure
24-3 pops up; you need to add T-SQL statements to do the actual job. In
this case I choose to schedule the backup of my Pubs database to disk in
a backup file.

On the Advanced tab you can specify the step that will be executed next,
according to the success or failure of the previous step.

You can reorder the steps or force the execution of the next step
if any of the previous steps has a certain outcome. For example,
if your scheduled backup fails and the next step is to drop the
database, you obviously want to bypass that step.Tip

Sunday Morning276

374840-9 ch24.F 8/28/01 12:55 PM Page 276

Figure 24-3
Steps in creating a job

2. The Schedules tab (shown in Figure 24-4) enables you to schedule the
job, add a new schedule to it, and/or create an alert (covered later in this
session). Scheduling a job is very similar to scheduling any other task: in
fact, it uses the same interface.

Figure 24-4
Scheduling jobs and adding alerts

Session 24—Automating Administration Tasks with SQL Server Agent 277

Part V—
Sunday M

orning
Session 24

374840-9 ch24.F 8/28/01 12:55 PM Page 277

3. The Notifications tab (shown in Figure 24-5) enables you to specify who is
to be notified when certain events occur during the execution of the job.
You can notify any of the operators (discussed later in this session) defined
for the system, and also select the method of notification: e-mail, pager, or
Net Send command (the result of the last will appear as a pop-up message
on the network computer specified). You can specify that the results be
written into a log file for future examination. You can also automatically
delete a job if you have executed it once and don’t need it anymore.

Figure 24-5
Sending notifications

All jobs created for the system are maintained under the SQL Server Agent
node in the Jobs collection. Once the job is created it appears in the Details
pane of the Jobs node. You can edit, delete, or disable the job at any time:
To do so, choose Properties from the job’s right-click menu option.

Creating Alerts

Alerts enable your system to take an action in response to some event on the sys-
tem. The SQL Server Agent monitors the Event Log of your machine, and if it
encounters an event for which you created an alert it responds by taking an
action: by invoking a job, sending a message (via e-mail or to a pager), or (in a
multi-server environment) passing the alert to other SQL Servers to process.

Sunday Morning278

374840-9 ch24.F 8/28/01 12:55 PM Page 278

The Event Log is a system log wherein Windows reports all events
that occur on the system. You can view it with the Event Viewer
(Start ➪ Program Files ➪ Administrative Tools ➪ Event Viewer).

You can specify an alert during job creation or independently, as shown in
Figure 24-6. If you specify an alert during job creation the alert will refer to an
event that may occur during the execution of the job.

Figure 24-6
Setting new alert properties

You specify type, specific error number or severity (how serious the event is),
the scope (all databases or just one), and the text of the message: This text will be
entered into the Event Log and sent to you via e-mail or the Net Send feature.

Next you must specify the response — the course of action to be taken when
the event occurs. You may choose to execute some canned job, or, if the event
requires human intervention, to send a message to an operator (which I’ll discuss
in the next session).

Note

Session 24—Automating Administration Tasks with SQL Server Agent 279

Part V—
Sunday M

orning
Session 24

374840-9 ch24.F 8/28/01 12:55 PM Page 279

Alerts also are integrated with various performance counters,
enabling SQL Server Agent to take an action whenever a certain
threshold is crossed (for example, when memory usage climbs
above a preset limit).

Once saved, an alert joins the alerts collection under the SQL Server Agent
node; you can view, modify, or delete it at any time through a properties window
accessible from its Properties menu option.

Managing Operators

An operator is a contact to whom an alert will send notification. (You can specify
e-mail, pager, or Net Send notification.) As with jobs and alerts, you can access the
operator’s properties in a variety of ways, the most obvious being through New
Operator from the right-click menu of the Operators node under the SQL Server
Agent (as shown in Figure 24-7).

Figure 24-7
Creating a new operator, General tab

Tip

Sunday Morning280

374840-9 ch24.F 8/28/01 12:55 PM Page 280

You also can set up the times an operator can be reached via a pager. You
should test every method of notification (use the Test button on the right) to
make sure that the intended person can be reached.

In order to notify an operator via e-mail you have to configure a
SQL Server Mail Agent (explained in Session 25).

Next, from the Notifications tab, select the type of notification (alerts or jobs)
for this particular operator. If you select alerts, all alerts defined for the system
will be displayed. If you select jobs, all jobs this operator is assigned to will be dis-
played. You cannot assign a job to an operator; you assign an operator to a job
from the Jobs menu.

Administering Multiple Servers

SQL Server 7.0 enables you to use SQL Server Agent in multi-server administration.
When administering multiple servers you need to set up one server as a master
that manages jobs for the target servers and processes alerts from these target
servers by means of event forwarding. This feature pertains to networks with multi-
ple SQL Server installations, and it can be a great time-saver. For example, by for-
warding events to a central server, you avoid having to configure alerts for each
and every server on your network. The same goes for jobs: By configuring a job to
run on a remote server you avoid having to physically access your target servers
whenever you want to modify the job. You make your modifications once, on your
Master server.

You can configure event forwarding on the Advanced tab of the SQL Server
Agent Properties screen (shown in Figure 24-1).

You configure your servers through MSX and TSX wizards, available from the
Multi- Server Administration option on the right-click menu on the SQL Server
Agent node; MSX refers to the Master server and TSX to the target server.

These are advanced features that you certainly need to learn more about — once
you are through with this book.

Note

Session 24—Automating Administration Tasks with SQL Server Agent 281

Part V—
Sunday M

orning
Session 24

374840-9 ch24.F 8/28/01 12:55 PM Page 281

REVIEW

� You can automate various database tasks using SQL Server Agent. An auto-
mated task is called a job and can be scheduled to execute recurrently.

� SQL Server Agent enables you to send notifications and alerts to desig-
nated operators using e-mail, pager, or the Net Send feature.

� Every alert is entered into the system Event Log as an event, the severity
level of which determines its status: notification, error, and so on. In
response to an alert you can set your system to notify an operator or to
execute a job defined on the system.

� You can run jobs on multiple servers by setting one server up as the Master
server and all others as target servers; the alerts can be forwarded from the
target to the Master for an appropriate response.

QUIZ YOURSELF

1. Where does the SQL Server Agent find information about the jobs it is
supposed to execute?

2. What service must you configure in order to receive notifications via
e-mail?

3. If a job takes more than one step to be executed, how do you specify the
next step?

4. Can a job raise an alert?

5. How do alerts relate to system events logged in the Event Log?

6. What is an operator?

7. How do you automate tasks on multiple servers?

Sunday Morning282

374840-9 ch24.F 8/28/01 12:55 PM Page 282

Session Checklist

✔ Setting up your mail profile
✔ Configuring SQL Mail and SQL Server Agent Mail
✔ Sending mail through extended stored procedures
✔ Troubleshooting

The ability to communicate via e-mail is one of the useful features of SQL
Server 2000. In this session you are going to learn how to set up and config-
ure a mail account for SQL Server Agent and SQL Mail.

Setting up Your Mail Profile

SQL Server 2000 enables you to communicate with it via e-mail. To help you do
this, SQL Server provides two services: SQL Mail and SQL Server Agent Mail.
Collectively, these two services are referred to as SQL Server mail services. You use

S E S S I O N

Configuring SQL Server Mail

25

384840-9 ch25.F 8/28/01 12:55 PM Page 283

the first service, SQL Mail, to execute stored procedures remotely and return results
by e-mail. You use the second service, SQL Server Agent Mail, for e-mail and pager
notifications.

SQL Server uses your existing infrastructure, which means you need to have a
MAPI-compliant e-mail server and a compatible mail client (such as Microsoft
Outlook). You need a MAPI-compliant client because it will supply components —
MAPI extensions — used by both SQL Server mail services.

MAPI stands for Messaging Application Programming Interface.
It is an industry standard that enables Windows-based applica-
tions to communicate with many other messaging services,
such as the Internet, Microsoft Exchange, CompuServe, and
so on.

I assume for the purpose of this discussion that you are running Microsoft
Exchange, which is the de facto standard for Windows servers. Follow these steps
to set up your mail profile:

1. Create a distinct mailbox for both SQL Server mail services. You can use
your existing ones, though it is usually not a good idea as things can get
mixed up very easily. It makes more sense to set up a separate mailbox
for each service. You create the mailbox on the Exchange Server machine;
you will probably need assistance from your network administrator to use
this feature.

SQL Server Mail runs in the security context of MSSQLService,
and you therefore have to configure its Exchange mailbox for
a domain account with sufficient privileges to run MSSQLService.
SQL Server Agent Mail runs in the context of the SQL Server
Agent service, and you must configure the mailbox for this
service for a domain account with sufficient privileges to
run it.

2. Create a valid mail profile using the Mail control panel on the machine on
which SQL Server is installed, as shown in Figure 25-1.

3. Click Show Profiles. This will display all the existing profiles and enable
you to add a new one, as shown in Figure 25-2.

Note

Note

Sunday Morning284

384840-9 ch25.F 8/28/01 12:55 PM Page 284

Figure 25-1
Examining mail-profile properties

Figure 25-2
Creating a new profile

Session 25—Configuring SQL Server Mail 285

Part V—
Sunday M

orning
Session 25

384840-9 ch25.F 8/28/01 12:55 PM Page 285

Since you have already installed a mail client program (such as Microsoft
Outlook) you will see at least one profile. From here you can add a new
profile to be used by SQL Server. The procedure is no different from the
one you use to set up any regular e-mail account: You specify the e-mail
server to use, the mailbox (the one you’ve created for this account), and
the profile name. Click Apply to save your settings.

4. Test your mail profile. When configuring my profile I instruct SQL Server
to use this newly created profile to start my Microsoft Outlook mail
client; I suggest that you do the same, if you haven’t already.

5. Log onto the system using an account with sufficient privileges for SQL
Server, start up your mail client, and send an e-mail message to the mail-
box assigned to either of your services. Once you’ve received the message,
consider the job done (if you use more than one mailbox, remember to
test them all).

Configuring SQL Mail and SQL Server Agent Mail

You configure SQL Mail from the Enterprise Manager console. To do so, select
Support Services node ➪ SQL Mail sub-node ➪ choose Properties from the right-
click menu. From the drop-down box shown in Figure 25-3, select the profile you
are going to use.

Figure 25-3
Configuring SQL Mail

Sunday Morning286

384840-9 ch25.F 8/28/01 12:55 PM Page 286

Test the profile by clicking Test. If the test is passed, you are ready to use your
new mail capabilities; otherwise, refer to the “Troubleshooting” section later in
this session.

The procedure for configuring SQL Server Agent is essentially the same: Choose
Properties from the right-click menu of the SQL Server Agent (under the
Management node) and specify a mail session (see Figure 25-4). You can use the
same profile you’ve just tested or specify a different one. It is a good idea to test
the profile before you click OK.

Figure 25-4
Configuring SQL Server Agent Mail

You should configure both SQL Mail and SQL Server Agent to start up automati-
cally once the SQL Server starts, in order to provide constant e-mail access.

Session 25—Configuring SQL Server Mail 287

Part V—
Sunday M

orning
Session 25

384840-9 ch25.F 8/28/01 12:55 PM Page 287

Sending Mail through Extended Stored Procedures

Once you have your mail configured properly you can use your SQL Server Query
analyzer to send e-mails. To do this, you use the following extended stored
procedures:

� xp_startmail, to start a MAPI session.
� xp_stopmail, to stop a MAPI session.
� xp_sendmail, to send an e-mail message to any valid e-mail address.
� xp_readmail, to read the message from your mailbox into the SQL Server

Query Analyzer.
� xp_processmail, to retrieve the full message, not just headers.
� xp_deletemail, to purge your messages.

For example, the stored procedure executed inside SQL Query Analyzer sends an
e-mail to an outside e-mail recipient, as shown in Figure 25-5.

Figure 25-5
Sending e-mail with an extended stored procedure

Because my SQL Mail is configured to auto-start, I do not need to use
xp_startmail.

Sunday Morning288

384840-9 ch25.F 8/28/01 12:55 PM Page 288

Of course, you can call these extended stored procedures in
your own stored procedures like this: exec xp_sendmail
‘somebody@somewhere.com’,’greetings from the SQL Server!’

Troubleshooting

If things go well everything will be up and running in no time; if they do not —
well — then it won’t. This section deals with the problems you are most likely to
encounter while setting and configuring your mail services.

The simple fact that you can send and receive mail through your mail applica-
tion does not guarantee that SQL Mail and SQL Server Agent Mail will run.

Most problems with configuring the mail capabilities come from account-security
settings. If you find that you are unable to set up your mail, check the following:

� Is your mail client running on the same account as your SQL Server Service?
It should be. You can verify this or set it up from Control Panel ➪ Services
in Windows NT, or Administrative Tools ➪ Services in Windows 2000.

� Is SQL Server running under the same account for which you’ve set up your
mailbox?

� Is your mail messaging service installed? You can set this in your Mail con-
trol panel.

In order for SQL Server Mail to function properly in the network environment
you have to log onto your machine as the domain account under which your SQL
Server Service is running. From the Services menu you can view and modify the
properties of the accounts under which these services are running. The screen
shown in Figure 25-6 shows you how to change these properties on Windows
NT/2000; clicking Browse will present you with all the accounts accessible from
the machine you’re using.

Note that you must supply your domain password in order to use this service.

If none of these tips helps, try Internet links on the CD supplied
with this book. If you decide to join some SQL Server mailing
list, be warned — you may get what you ask for and more (I am
getting about 150 mail messages a day).Tip

Tip

Session 25—Configuring SQL Server Mail 289

Part V—
Sunday M

orning
Session 25

384840-9 ch25.F 8/28/01 12:55 PM Page 289

Figure 25-6
Configuring SQL Server Service for a domain account

REVIEW

� In order to use SQL Server Mail and SQL Server Agent Mail you need a
MAPI-compliant mail client configured to connect to your e-mail server.

� You need to set up mailboxes for these services and add to the profiles on
your computer a valid MAPI profile that points to them.

� Though you configure SQL Mail and SQL Server Agent Mail separately, the
procedures you use are essentially the same. You can use one MAPI profile
for both services.

� You must configure your SQL Server Service and your SQL Server Agent
Service to start on the same account as your Exchange service.

Sunday Morning290

384840-9 ch25.F 8/28/01 12:55 PM Page 290

QUIZ YOURSELF

1. What is the difference between SQL Mail and SQL Server Agent Mail?

2. What is MAPI? What is a MAPI profile?

3. Does SQL Server have mail-server capabilities, or does it need an external
mail server to receive and send e-mail messages?

4. On what domain account should you start SQL Server if you want to com-
municate with a MAPI-compliant mail server?

Session 25—Configuring SQL Server Mail 291

Part V—
Sunday M

orning
Session 25

384840-9 ch25.F 8/28/01 12:55 PM Page 291

384840-9 ch25.F 8/28/01 12:55 PM Page 292

Session Checklist

✔ Monitoring and profiling
✔ Tuning SQL queries
✔ Using the Index Tuning Wizard
✔ Optimizing TempDB and the Transaction Log
✔ Using Database Consistency Check (DBCC)

This session introduces tools and techniques you can use to achieve and main-
tain high SQL Server system performance, from monitoring and profiling SQL
Server to the Index Tuning Wizard to Database Consistency Check statements.

Monitoring and Profiling

To get the most out of your SQL Server you need to tune it for the tasks it is run-
ning. Microsoft includes a graphical tool, SQL Profiler, that you can use to trace
the performance of hundreds of events happening in your server. You can search
the results for potential bottlenecks and other problems.

S E S S I O N

Performance Tuning
and Optimization

26

394840-9 ch26.F 8/28/01 12:55 PM Page 293

Follow these steps to set up monitoring and profiling:

1. Start SQL Profiler from the Tools menu in the Enterprise Manager console.

2. Click New Trace on the toolbar to design a new trace or to use one of the
canned templates. A trace is a record of the process execution wherein
you specify what events you want to monitor. Templates describe stan-
dard traces, the ones that fit most common scenarios: Whenever possible,
save time by choosing one of these.

3. Set up the trace properties from the Trace Properties screen, shown in
Figure 26-1. Several predefined trace templates are installed with SQL
Server: I recommend using them until you acquire more experience in
running traces.

Figure 26-1
Specifying general trace properties

Sunday Morning294

394840-9 ch26.F 8/28/01 12:55 PM Page 294

You can save the results of a trace to a file or to a table within a database.
Unless you really wish to sift through the tons of information generated
by SQL Profiler you probably want to limit the number of rows in the trace
table. If you’re sending output to a file, set a maximum size in megabytes.
You also can specify both a file and a table for your trace-output results.

4. Select the events you wish to monitor by displaying the Events tab, shown
in Figure 26-2. Start with a vague idea of what might need improvement
on your database. You might want to determine if the cursors are slowing
down your servers, or it might be that locking issues keep you up at night,
or simply that you would like to monitor the performance of your database.
Use your common sense in selecting what to monitor, in addition to using
the general recommendations from this book and SQL Server Books Online.

Figure 26-2
Selecting events to trace.

Session 26—Performance Tuning and Optimization 295

Part V—
Sunday M

orning
Session 26

394840-9 ch26.F 8/28/01 12:55 PM Page 295

5. Select the data you would like to capture for these events. You do this
from the Data Columns tab. Again, common sense will substitute for
experience: If it is performance you are after, select data relevant to per-
formance — such as reads, CPU usage, and so on; if it’s security, select
security-related columns.

6. Finally, apply a filter from the Filters tab. You might want to filter out
some events that you deem unnecessary for your trace (like accumulating
data on SQL Profiler itself while running the trace). Click Run.

You can use the accumulated data to monitor the performance of your SQL
Server, and to identify bottlenecks (like slow queries) and potential problems (such
as memory or CPU usage). You can also use it when debugging stored procedures,
as it enables you to view each step involved in the execution. One of the most
common ways to use a trace is as a means of optimizing index performance with
the Index Tuning Wizard.

You can record a trace on your live production server and then
replay it on your test machine to identify problems without
shutting down the production environment.

One way to use SQL Profiler is during auditing, as it enables you to use SQL
Server to record a number of events for a client, from login attempts to attempts
to access various database objects (tables, stored procedures, and the like).

Make sure that the user account on which you are running SQL
Profiler has sufficient privileges to connect to SQL Server and
execute SQL Profiler–related stored procedures.

You may want to monitor your SQL Server with the System Monitor or third-
party tools: This will give you some information about how SQL Server interacts
with the system, and how it affects or is affected by it.

Tuning SQL Queries

In order to tune a query you have to understand what is involved in query execu-
tion. One of the features of SQL Query Analyzer I haven’t discussed yet is the

Note

Tip

Sunday Morning296

394840-9 ch26.F 8/28/01 12:55 PM Page 296

execution plan. Viewing how SQL Server executes a particular query, the properties
and cost of each step, and the indexes used, can be invaluable when you’re opti-
mizing SQL queries.

Consider a simple query performed in the Pubs database:

SELECT * FROM authors

To view this query’s Execution Plan, select Query Analyzer ➪ Query ➪ Display
Estimated Execution Plan (Figure 26-3).

Figure 26-3
Viewing the Estimated Execution Plan for a simple SQL query

To execute this query, SQL Server performs a clustered index scan at a cost of
100 percent (meaning that the whole operation takes 100 percent of the allocated
time). Place your cursor onto the node in the Query Execution Plan and you’ll see a
pop-up screen showing you the details of the operation. There is nothing you can
optimize here.

Session 26—Performance Tuning and Optimization 297

Part V—
Sunday M

orning
Session 26

394840-9 ch26.F 8/28/01 12:55 PM Page 297

More complex queries yield somewhat different results, as shown in Figure 26-4.

Figure 26-4
Viewing the Estimated Execution Plan for a complex SQL query

Here I resolve a many-to-many relationship (see Session 6) between the Authors
table and the Titles table. SQL Server chooses to perform an Index Scan operation
on the table Authors and an Index Seek on the Titles and Title_Author tables.
Running a trace on this query might provide some useful suggestions for index
strategy.

Some queries just cannot be optimized beyond a certain point
because of their inherent complexity and database limitations.
You can get around this problem by adding more memory, revis-
ing your business logic, or rewriting the query altogether.

In general, you can optimize queries by reducing your use of cursors, eliminat-
ing nested loops with GROUP BY or CASE statements, and using subqueries.

Note

Sunday Morning298

394840-9 ch26.F 8/28/01 12:55 PM Page 298

You can speed up query execution on a multi-processor machine
by implementing parallel processing, the details of which are
quite complex and beyond the scope of this book. If you need
more information, refer to Books Online or some more advanced
books on SQL Server.

With SQL Server 2000 you can create statistics on the values distribution in the
column in the table. These statistics are used by the SQL Server Query Optimizer to
determine the best path of the execution for a particular query. This information
is created automatically whenever an index is created for a table, and in addition,
you may maintain statistics on non-indexed columns frequently used in queries.
Over time, as data in the index columns are changed, these statistics may become
obsolete, resulting in less-than-optimal Execution Path decisions.

SQL Server automatically updates statistics, unless you instruct it not to. The
frequency of updates depends on the size of the table and the relative number of
rows that change. Statistics can become out of date on very large tables in which
few rows (say, fewer than 10 percent of the total) are changed over time. You can
manually update statistics by issuing a T-SQL command, like this:

UPDATE STATISTICS authors

This ensures that the Authors table has up-to-date statistics for use with the
Query Optimizer.

Using the Index Tuning Wizard

The Index Tuning Wizard helps you analyze queries and improve performance. To
use the Index Tuning Wizard you need workload data, which are represented by a
SQL script or SQL Server Profiler trace file (see “Monitoring and Profiling” earlier in
this session).

Follow these steps to run this wizard:

1. Start the wizard from the Enterprise Manager console by selecting Tools ➪

Wizards, or from SQL Profiler’s Tools menu.

2. Click Next on the Welcome screen and select the database you wish to
optimize (see Figure 26-5). Also, if you can afford (in terms of time and
server resources) the Thorough Tuning mode, go for it; do not use it on a
live production server, however. Click Next.

Note

Session 26—Performance Tuning and Optimization 299

Part V—
Sunday M

orning
Session 26

394840-9 ch26.F 8/28/01 12:55 PM Page 299

Figure 26-5
Selecting a database for optimization with the Index Tuning Wizard

3. On the next screen, Specify Workload, choose a workload file or trace.
(Refer to “Monitoring and Profiling,” earlier in this session, to learn how
to create a trace.) On the same screen you can set Advanced Options to
limit the number of queries, restrict the maximum size of recommended
indexes, and so on. Click Next.

4. On the next screen, Select Tables to Tune, choose the tables you wish to
optimize. Click Next.

The wizard examines the data to determine if any good would come of
applying indexes. It returns to you a number of suggested indexes on the
tables for which you created the workload data, along with an estimate
of how much improvement implementing these indexes would produce. It
will also show you the 100 queries that would benefit the most from the
recommended indexes.

5. Click the Analysis button on the preceding screen, Index Recommen-
dations, to see how the Index Wizard came to its conclusions.

Sunday Morning300

394840-9 ch26.F 8/28/01 12:55 PM Page 300

You can make your workload data as big as you wish, within physical limits;
make sure that you are selecting meaningful and diverse queries to represent the
whole spectrum of queries used in your database.

The wizard will also ask you if you would like to implement these improvements
right away. If you are in a production environment I strongly advise against that;
click OK only if you are using a test server.

It is possible to analyze a single query by using the Index Tuning Wizard in the
SQL Query Analyzer. Type the query into the Query Analyzer window and select
the Index Tuning Wizard from the Query menu. Instead of a workload or trace table
the input for the wizard will now be the SQL query.

Take the Index Tuning Wizard’s suggestions with a grain of salt. It does have
the very best intentions but only you know what is best for your database.
Remember that while an index can speed up some operations it can also slow down
others (such as INSERT, UPDATE, and DELETE, because of the need for SQL Server to
update the indexes at the same time).

Optimizing TempDB and the Transaction Log

TempDB is a system database that may affect the performance of every other data-
base on the system; therefore, it should be optimized for maximum performance.
The Transaction Log is a major database component that you should keep in mind
when optimizing general database performance.

Optimizing TempDB performance

TempDB is a whiteboard for everything that is happening on the server (which
I discuss in detail in Session 6). Make sure that its initial size is such that no
resources will be wasted expanding it to fit your needs. Because TempDB is recre-
ated on every SQL Server startup, save the size, growth rate, and other settings
to the model database.

Also, when increasing the size of TempDB, make a sufficient allowance for
growth so that it won’t be too small nor require frequent resizing. Placing TempDB
separately on a subsystem with good input/output time may further improve
performance.

Session 26—Performance Tuning and Optimization 301

Part V—
Sunday M

orning
Session 26

394840-9 ch26.F 8/28/01 12:55 PM Page 301

According to Microsoft, it doesn’t matter which file system you
choose (FAT or NTFS). Keep in mind, though, that the FAT file
system is more prone to fragmentation (and thus to slower per-
formance) than NTFS.

Optimizing Transaction Log performance

The Transaction Log is a very busy component. After all, it keeps track of virtually
everything that happens in SQL Server. SQL Server 2000 does shrink and expand
files automatically. If you need the last drop of performance, you are better off
doing the shrinking yourself, rather than waiting for the SQL Server (see Session
7). Do not try this on a busy server, though, as the process will slow it down.

You can improve the performance of SQL Server processes on your
Windows NT or Windows 2000 machine by configuring virtual
memory and server tasking (priority). This is a rather advanced
setting, so you may need to refer to Windows OS Help.

Using Database Consistency Check (DBCC)

Maintaining your database integrity is an important part of your duties as an
administrator. Microsoft supplies you with a set of commands that you can run on
your system just as you would run a SQL query. These commands fall into four
broad categories, listed in Table 26-1.

Table 26-1
DBCC Commands Categories

Category Purpose

Maintenance Performs general maintenance of a database, index, or filegroup.

Status Report Reports on the status of a specific object.

Validation Performs validation operations on the database and database
objects.

Miscellaneous Does everything else.

Tip

Note

Sunday Morning302

394840-9 ch26.F 8/28/01 12:55 PM Page 302

Usually you run these commands whenever you suspect a problem with your
database. About 30 DBCC commands exist and mastering them will take some time.
The SQL Server 2000 DBCC statements can repair some minor problems.

Here is a sampling of the commands you are likely to use most often:

� DBCC DBREINDEX — Rebuilds one or more indexes for a particular table.
� DBCC DBREPAIR — The name is quite misleading, as this command drops a

damaged database; it is supported for backwards compatibility only.
� DBCC INDEXDEFRAG — Defragments indexes of a table or view.
� DBCC SHRINKDATABASE — Shrinks the size of the data files in the database.
� DBCC UPDATEUSAGE—Reports and corrects inconsistencies in the sysindexes

table.
� DBCC SQLPERF — Provides statistics about the use of Transaction Log space

for all databases.
� DBCC SHOW_STATISTICS — Displays the current distribution statistics.
� DBCC CHECKDB — Checks the allocation and structural integrity of all the

objects in the database.
� DBCC CHECKTABLE — Checks the integrity of the data and index as well as

the pages of the specified table or indexed view.

SQL Server performance optimization is a vast topic that deserves a book of its
own. In this three-day course I can only cover some basics and point to what is
available. SQL Server Books Online provides a wealth of information on the subject,
and numerous books also address it.

Session 26—Performance Tuning and Optimization 303

Part V—
Sunday M

orning
Session 26

Service Packs

Once in a while, Microsoft releases a Service Pack for its products (SQL
Server included). “Service Pack” is a euphemism for “bug fix,” and nor-
mally you should apply one as soon as it’s available. Be cautious when
using Service Packs because they can introduce new bugs even while fix-
ing the old ones. Read the description of every new Service Pack and
determine whether you use the buggy features that it is supposed to fix.
Keep in mind the old saying: If it ain’t broke, don’t fix it. At the time of
this book printing, Microsoft has released Service Pack 1 for SQL Server
2000. It’s available for download from Microsoft’s Web site.

394840-9 ch26.F 8/28/01 12:55 PM Page 303

REVIEW

� It is vitally important to monitor and profile your SQL Server system in
order to maintain optimum performance.

� Inside the SQL Server you can use a trace to maintain top performance.
Outside, you can use third-party tools or the System Monitor.

� To tune indexes for your database tables you use the Index Tuning Wizard.
This wizard takes as its input trace data produced by SQL Profiler.

� You can use an Execution Plan to fine-tune your SQL queries.
� Optimizing the Transaction Log and TempDB helps you achieve maximum

performance.
� DBCC provides you with tools for checking and maintaining database

integrity.

QUIZ YOURSELF

1. What is the purpose of using SQL Profiler?

2. What is the purpose of filters in a SQL Profiler trace?

4. What do you use an Execution Plan for?

3. Where do you access the Estimated Execution Plan?

5. What does the Index Tuning Wizard use as input data?

6. What is the main function of DBCC?

Sunday Morning304

394840-9 ch26.F 8/28/01 12:55 PM Page 304

1. What is a database maintenance plan and why do you need one?

2. Why it is usually a good idea to maintain a script of your database?

3. How do you detach and attach a database?

4. What databases cannot be attached or detached?

5. What is the difference between a linked server and a remote server?

6. What data sources besides SQL Server can you link to SQL Server 2000?

7. How do you start a distributed transaction in SQL Server 2000?

8. What is the two-phase commit procedure?

9. What are the two main legitimate ways to gain access to SQL Server 2000
system information?

10. What is an INFORMATION_SCHEMA?

11. How do you execute a system stored procedure?

12. What are catalog system stored procedures?

13. What is an extended stored procedure in SQL Server 2000?

14. What is the purpose of SQL Server Agent?

15. Where does SQL Server Agent store and pick up information about tasks
scheduled for the system?

16. What is an Operator in SQL Server? ?

17. What is event forwarding?

18. What is one example of a MAPI-compliant server?

P A R T

#
P A R T

Sunday Morning

V

404840-9 pr5.F 8/28/01 12:55 PM Page 305

19. What is the difference between SQL Server Mail and SQL Server Mail
Agent?

20. What is the security context of SQL Server Mail Agent?

21. How do you send ad hoc e-mail messages?

22. What is the SQL Server Profiler and what can you do with it?

23. How do you view an estimated execution plan for a query?

24. How do you create statistics for a table? Who uses statistics?

25. What would you use as input data for the Index Tuning Wizard?

26. How can you optimize transaction-log performance?

27. What is DBCC?

Part V–Sunday Morning Part Review306

404840-9 pr5.F 8/28/01 12:55 PM Page 306

404840-9 pr5.F 8/28/01 12:55 PM Page 307

P A R T

Sunday
Afternoon

VI

Session 27
Disaster Recovery

Session 28
SQL Server Security

Session 29
Database Connectivity

Session 30
Advanced Features of SQL Server 2000

414840-9 po6.F 8/28/01 12:56 PM Page 308

Session Checklist

✔ Planning for disaster
✔ Identifying basic disaster scenarios
✔ Creating standby servers
✔ Managing the disaster

D isaster can happen to your system at any time. It might be a hardware fail-
ure, a software failure, or both; it might be a problem with your power sup-
ply; it might be one of thousands of other things. You need to be prepared

to recover from any of these disasters. This session deals with the most common
disaster scenarios and the ways to recover from them.

Planning for Disaster

No matter how well-tuned your system, or how well-behaved your client applica-
tions, sooner or later it is going to happen: You are going to get a call at 3:00 AM
telling you that your server is down, nobody can connect to the database, and
your presence is required immediately. If I had only enough time to give you one

S E S S I O N

Disaster Recovery

27

424840-9 ch27.F 8/28/01 12:56 PM Page 309

piece of advice, it would be this: Don’t panic. Fortunately, I have more time and
space to elaborate on the subject.

The basis of disaster recovery is planning. Recovery is really easy — in theory:
All you need to do is plan ahead for a disaster and then, when it happens, imple-
ment your plan — step by step. Later in this session I discuss the most common
disaster scenarios. You will need a separate plan for each one of them, and then
for every additional one you can think of. However, for practical reasons, you prob-
ably won’t create more than a dozen plans.

Every SQL Server RDBMS system consists of at least three components:

� Operating system
� SQL Server
� Client applications that connect to SQL Server

Any of these components can malfunction. While you probably won’t have to fix
the OS or client-application problems, you should have enough information on
hand that other professionals will be able to do so.

Start with the assumption that your data are of paramount importance and
must be protected. Next, ask yourself: What could go wrong? Blackout, faulty hard
drive, computer virus, hacker’s attack, earthquake, alien invasion ... to mention
just a few.

You need to have a valid up-to-date recovery plan; moreover this plan has to be
tested, and the amount of testing should be proportional to the importance of
your data. While you are at it, make sure that you are not the only person capable
of performing the recovery, because you might be away just when you are needed
the most.

To sum it up:

� Disasters happen
� You need multiple recovery plans, one for each possible scenario
� You need to test your plans and keep them up to date
� Don’t panic

Identifying Basic Disaster Scenarios

So you’ve got your server up and running: Your cleverly written custom applica-
tions pump tons of data into your properly designed databases, and get them back
when necessary. What could possibly go wrong?

Sunday Afternoon310

424840-9 ch27.F 8/28/01 12:56 PM Page 310

Physical destruction

Chances are that you have one or two computers in your system (it’s mightily diffi-
cult to run RDBMS without them, you know). The only way to recover from physical
destruction of one of these computers is to replace your system with an identical or
compatible (and tested!) hardware configuration. So that you’ll be able to do this if
the need should arise, you need to maintain a detailed hardware-configuration list
for your system.

Your hardware is your first line of defense: Take proper care of it.
You need UPS—uninterruptible power supply— so that your com-
puters can shut down gracefully in the event of a power failure.
If you can afford it, I recommend an air conditioner to keep your
computer lab at a constant temperature. Computers do produce
heat, and they can operate only within a fairly narrow range of
temperatures.

Failed operating system

Computers cannot run without operating systems, and SQL Server requires
Windows NT or Windows 2000 Server. The purpose of configuration management is
to maintain a fully restorable configuration: You need to know, in addition to the
OS that is in use, the Service Pack that is required, what other software has been
installed on the server, and the sequence in which that software was installed. You
need ready access to all the software you need to install from scratch and you need
step-by-step instructions for installing it.

Though not foolproof, one technique is to create and archive
(possibly Zip) an image of your fully functional system. You will
be able to restore this image in much less time than it would
take you to perform a step-by-step installation of all the neces-
sary stuff; of course, the image must be up to date to be useful.

Database corruption

On a typical system you will have one or more SQL Server instances, each contain-
ing one or more custom databases, plus the master, model, MSDB, and TempDB
databases. Any of these can become corrupted. Corruption can occur on various
levels — from compromised data integrity to physical corruption of the data files
and Windows Registry.

Tip

Tip

Session 27—Disaster Recovery 311

Part VI—
Sunday Afternoon

Session 27

424840-9 ch27.F 8/28/01 12:56 PM Page 311

Verifying functionality

Once you’ve restored your working configuration you need to verify that all the
functionality is there. You need to do this yourself; you cannot rely on the users
to tell you. This means that you need a testing program (preferably a script you
can run from the command line) that will test the base functionality of the
restored system.

You need a disaster-recovery plan for each of the scenarios I’ve mentioned so
far. Your plan must be up-to-date and it must be tested — you’ll have no time for
tune-up operations while recovering a system.

Creating Standby Servers

When you’re dealing with disaster recovery time is always in short supply. Your
database is supposed to be operational five minutes ago; it was not supposed to be
down in the first place.

Sunday Afternoon312

Back Up and Restore!

When it comes to restoring data and databases nothing beats backups. I
discuss backing up databases and transaction logs in Session 18; I hope
I’ve convinced you of the paramount importance of timely backups. Once
you’ve got your OS, SQL Server, and all the applicable Service Packs
installed, restore the master database from your backup.

Restoring your master database from a backup is not the same as rebuild-
ing it. Restoring it from backup brings the old master database back to
life, with all the old changes and preferences; rebuilding gives you a new
master database with all the default settings of a newborn SQL Server.

You need to have a full up-to-date backup of every important database in
your SQL Server installation (you can restore Northwind and Pubs databases
from SQL scripts, however; see Session 6 for details). Moreover, you must
store these backups safely so that they will not perish with your RDBMS
system. You must maintain proper records of the basic configuration of your
SQL Server: passwords, network libraries used, collation order— all the
choices you made when installing and configuring your SQL Server.

424840-9 ch27.F 8/28/01 12:56 PM Page 312

While you are trying your patience restoring your primary server, you can
switch a standby server into operation to supply all the data services.

To create a standby server, follow these steps:

1. Install an identical copy of SQL Server on identical or compatible hard-
ware. Make sure that the configuration of both servers is identical (iden-
tical passwords, collation order, code page, and so on).

2. Copy all the databases from the primary server to the standby server. You
can do this in a variety of ways: by restoring backups of the primary
server to the standby; by copying databases through DTS; by running SQL
scripts, and so on.

3. Periodically synchronize data between the primary server and the standby
server.

When your primary server fails, bring your standby server online. Before doing
this you need to restore the most recent backup and apply all the transaction logs
from the primary server.

Any changes you make to your standby server you must also
make to your primary server after bringing it back to life.

It is important to remember that all the current users of a primary server must
log onto this standby server once it is brought online; none of the user processes
will be switched to the standby server.

Managing the Disaster

It has happened. You have all this expensive hardware junk in front of you and
you need to bring it back to life — now. But you aren’t panicking — you are
prepared!

If you are using standby servers, bring one online immediately (do not forget to
apply the most recent backups). Ask users to save whatever work they might be in
the middle of, log off, and log on again. This will give you time to concentrate on
the task at hand: restoring your primary server.

Note

Session 27—Disaster Recovery 313

Part VI—
Sunday Afternoon

Session 27

424840-9 ch27.F 8/28/01 12:56 PM Page 313

Evaluate the type of disaster and characterize it as one of the following:

� Hardware failure
� OS failure
� SQL Server failure
� Some combination of the above

Once you’ve determined the type, you need to determine your course of action,
based on the plans you prepared and tested for a case like this. (Though recovery
from hardware failure and OS malfunction in general is a fascinating topic, here I
will discuss SQL Server recovery only, being constrained by the topic of the book.)

You might only have a corrupted database (although this hardly qualifies as a
disaster): In this case you can restore the database from a backup, verify its func-
tionality, and bring the server back online.

Things will get much hairier if you cannot start SQL Server. The simplest thing
is to reboot the system. If SQL Server comes back normally, analyze the logs for a
possible cause and run a series of tests before bringing it back online; if it does
not, try starting from the command line. The <instance name> in the following
code refers to your SQL Server name. Drop it if you are starting the default SQL
Server instance. Also make sure that you are in the directory in which the SQL
Server executable is installed.

sqlservr.exe -c - m -s <instance name>

Starting SQL Server in single-user mode ensures that nobody else can interfere
with recovery. If this operation succeeds you may continue restoring your master
database and then proceed with the rest of your plan.

If your attempt to start SQL Server fails you can try rebuilding the Registry
with a SQL Server installation. This procedure falls a little short of reinstalling SQL
Server: It fixes any Registry settings for your SQL Server installation that might
have been corrupted, but it will not fix a corrupted master database. If you
included the Registry rebuild in your recovery plan, make sure you perform it cor-
rectly by following these steps:

1. Repeat all the steps you went through in Session 1 when installing SQL
Server for the first time. Make sure that you select all the options you
installed SQL Server with originally.

Sunday Afternoon314

424840-9 ch27.F 8/28/01 12:56 PM Page 314

2. Select Advanced from the Installation Selection Screen (shown in
Figure 27-1).

Figure 27-1
Selecting the Advanced installation option

3. Select Registry Rebuild from the screen shown in Figure 27-2. SQL Server
warns you about the importance of specifying all the same options you
specified in the original installation; if you are not sure which options
you specified, you are better off reinstalling the server.

If after rebuilding the Registry you still cannot start SQL Server, you have one
more option before choosing to reinstall: rebuilding the master database. SQL
Server comes with a utility, Rebuildm.exe, that does this. This utility is located in
the directory Microsoft SQL Server\80\Tools\Binn. Unlike many command-line
commands, this one actually offers a visual interface. Click Browse to specify the
location of your data files, and — once you have made your selections — click
Rebuild.

Session 27—Disaster Recovery 315

Part VI—
Sunday Afternoon

Session 27

424840-9 ch27.F 8/28/01 12:56 PM Page 315

Figure 27-2
Rebuilding the registry from SQL Server

Once your master database is rebuilt you should apply the backups you made of
the previous master database so you won’t lose your information.

Rebuilding the master database is only slightly less drastic than
reinstalling SQL Server from scratch, because doing so will cause
you to lose all the information about your custom databases and
you will have to restore them from backups. The other use of the
Rebuildm.exe utility is to change the collation order for your SQL
Server: The same warning applies.

If rebuilding the master database does not enable you to start SQL Server, your
last option is to reinstall SQL Server from scratch. Follow the guidelines in Session
1 for SQL Server installation. Please make sure that you follow the guidelines
exactly and that you select exactly the same options you selected when installing
SQL Server the first time.

Once you have installed SQL Server, first apply the most recent full backup, and
then perform the Transaction Log backup. Run scripts to confirm the basic func-
tionality of your system.

Note

Sunday Afternoon316

424840-9 ch27.F 8/28/01 12:56 PM Page 316

If you were running a standby server while repairing the primary one, you need
to apply the most recent active Transaction Log backup to the primary server
before bringing it back online.

Once your primary server is up and running you have time to
examine the SQL Server log and OS Event Log for clues as to what
happened and what you can do to prevent similar disasters in the
future.

As you gain more experience with SQL Server you may forget all the advice I’ve
given you in this session and find better ways of doing things, but trust me on
this one: Don’t panic.

REVIEW

� You need recovery plans for different disaster scenarios.
� You must have backups for every database in your SQL Server, especially

the master database.
� Using a standby server might be a bit expensive but it is a viable option if

your database needs a lot of up time.
� Though this is simple common sense, it is often overlooked: When recover-

ing from a disaster, move sequentially from a simple fix to a full restore
(if necessary). Try the solution that is least expensive — in terms of time
and complexity — first.

QUIZ YOURSELF

1. Why do you need a disaster-recovery plan?

2. What is a disaster scenario? How many disaster scenarios do you need to
go through for your system?

3. What is a standby server and why might you need one?

4. How do you rebuild the Registry?

5. How do you rebuild the master database?

6. How do you verify the base functionality of your SQL Server?

Tip

Session 27—Disaster Recovery 317

Part VI—
Sunday Afternoon

Session 27

424840-9 ch27.F 8/28/01 12:56 PM Page 317

424840-9 ch27.F 8/28/01 12:56 PM Page 318

Session Checklist

✔ Planning for security
✔ Understanding SQL Server Authentication Modes
✔ Configuring SQL Server roles
✔ Using views as a security mechanism
✔ Understanding SQL Server file permissions
✔ Auditing SQL Server

This session will give you an overview and some hands-on examples of setting
up and administering your SQL Server security on various levels, from con-
nection authentication mode through adding members to the Server Fixed

roles through setting up custom database roles.

Planning for Security

Your company relies on the data contained in your SQL Server database. The data-
base might contain sensitive information that could compromise your company’s
position on the market if discovered by competitors, or your employees might be

S E S S I O N

SQL Server Security

28

434840-9 ch28.F 8/28/01 12:56 PM Page 319

less than thrilled to find out that they are in the lowest-paid category in the
company — you can add your own examples and concerns.

Your data are sacred and must be secured. SQL Server provides multi-layered fine-
grained security and all you need to do is use it. Each user in your company hierar-
chy should be assigned just enough rights to perform his or her job efficiently.

You need to formulate a security plan according to your company’s business
practices. The plan must be tightly integrated with your network security, because
SQL Server Service usually runs in a high-privileges security context and can be
used to penetrate your network.

Introducing SQL Server Authentication Modes

SQL Server 2000 supports two modes of authentication:

� Windows Authentication Mode
� Mixed Mode for Windows Authentication and SQL Server Authentication

Windows Authentication Mode is very similar to the authentication mode you
use to log onto the network computer. Your network administrator creates a user
account and assigns certain privileges for accessing network resources. SQL Server
is such a resource because it revalidates the account name and password either by
calling Windows back (in the case of a user with an account on the machine run-
ning SQL server) or by using the Windows domain controller. The actual built-in
Windows security is much more complex than this, but as a DBA-in-training you
can afford to have this simplistic view.

SQL Server authentication handles non-trusted connections. A user who
requests connection is validated against a SQL Server–maintained login, and once
validated has all the privileges and permissions assigned to this login. If validation
fails, the user receives the SQL Server error message “Login failed.”

Follow these steps to set up your authentication mode from the Enterprise
Manager console:

1. Click on the Properties option and select the Security tab from the screen
shown in Figure 28-1.

2. From this tab select either Windows Authentication (Windows only) or
Mixed Authentication Mode (SQL Server and Windows).

Optionally, you may want to set the Audit level (which I’ll discuss later in
this session), which will keep track of all login attempts, either success-
ful, unsuccessful, or both, depending on the option you select.

Sunday Afternoon320

434840-9 ch28.F 8/28/01 12:56 PM Page 320

Figure 28-1
Setting Authentication Mode for SQL Server 2000

SQL Server Authentication is provided for compatibility with pre-
vious versions (version 7.0 and earlier) as well as for SQL Server
instances running on Windows 98.

Configuring SQL Server Roles

Roles in SQL Server 2000 are modeled after Windows groups and make it easier to
assign or revoke permissions and privileges to a group of users at once. SQL Server
supports two groups of roles:

Note

Session 28—SQL Server Security 321

Part VI—
Sunday Afternoon

Session 28

434840-9 ch28.F 8/28/01 12:56 PM Page 321

� Fixed server roles — Applied and administered at the SQL Server level.
� Database roles — Applied and administered at the database level.

Fixed server roles

Server roles are predefined (fixed). You cannot add a new role on the server level,
although you can add users to these roles. Table 28-1 lists the fixed server roles
adapted from Microsoft SQL Server Books Online.

Table 28-1
SQL Server 2000 Fixed Server Roles

Fixed Server Role Description

sysadmin Grants you the highest security privileges possible.
Overlaps any other role (fixed or not); enables you to
perform any task possible in SQL Server.

serveradmin Enables you to configure server-wide settings.

setupadmin Enables you to add and remove linked servers, and to
execute some system stored procedures.

dbcreator Creates and alters databases.

diskadmin Manages physical disk files.

securityadmin Manages server logins.

processadmin Manages processes running in an instance of SQL Server.

bulkadmin Executes the BULK INSERT statement.

Adding a member to a fixed server role

Follow these steps to add a member to a fixed server role:

1. From the Enterprise Manager console, expand the Security node and select
the Server Roles node: Fixed security roles appear in the right-hand pane.

Sunday Afternoon322

434840-9 ch28.F 8/28/01 12:56 PM Page 322

2. Select an appropriate role and from the right-click menu choose
Properties. From the Server Role Properties screen (shown in Figure 28-2)
you can add any valid login defined on the SQL Server.

Figure 28-2
Adding a member to a fixed server role

3. From the Permissions tab you can view the privileges this role has; you
cannot change this list.

Any Windows (NT or 2000) users belonging to the BUILTIN\
Administrators group are automatically members of the SQL
Server sysadmin fixed server role.

Database roles

Database roles are more flexible than fixed server roles in that they include fixed
roles to which you can add new members as well as custom roles you can create for
your own use. You learned a bit about fixed database roles in Session 20 when you
learned how to set up a new SQL Server user. The list of predefined roles for the
database is presented in Table 28-2.

Note

Session 28—SQL Server Security 323

Part VI—
Sunday Afternoon

Session 28

434840-9 ch28.F 8/28/01 12:56 PM Page 323

Table 28-2
Fixed Database Roles

Fixed Database Role Description

db_owner The highest possible permission level for the database;
overlaps any other database role.

db_accessadmin Enables you to control access and set up or remove user
accounts.

db_datareader Enables you to read (see) all the data in the entire
database.

db_datawriter Enables you to add, change, or delete data in all user
tables in the database.

db_ddladmin Adds, modifies, or drops database objects (runs all DDLs).

db_securityadmin Manages roles and members of SQL Server 2000 database
roles, and manages statement and object permissions in
the database.

db_backupoperator Enables you to back up the database.

db_denydatareader Denies permission to select data in the database.

db_denydatawriter Denies permission to change data in the database.

Adding a member to a database role

Adding a user to a database role is no different from adding a user to a fixed server
role. A user must exist before he or she can be added to the role, and the user can
belong to more than one role in the same database.

If you ever need to create a custom database role, you can do it, though the
fact that you can create a database role does not necessarily mean you should.
Microsoft suggests creating new database roles only if there is no existing Windows
group that satisfies your criteria, or you simply do not have the rights to adminis-
ter Windows accounts.

Adding a Windows (NT or 2000) login to a database role when
there is no corresponding user account in the database results in
SQL Server creating the user account automatically.

Note

Sunday Afternoon324

434840-9 ch28.F 8/28/01 12:56 PM Page 324

Once you’ve decided that you need a new database role, follow these steps:

1. From the Enterprise Manager console, select the database for which you
wish to create the role.

2. Expand the database node and select Roles from the database nodes.

3. Finally, choose the New Database Role right-click menu option. On the
Database Role Properties screen (shown in Figure 28-3), type in the name
of your new role and add users.

Figure 28-3
Creating a new database role

If you have more than one custom database role created for your
database, you will be able to add these roles as members of the
newly created role. Doing this will establish a hierarchy of rights
and privileges. Avoid deep nesting of roles, as it will have a neg-
ative impact on your database performance.

Tip

Session 28—SQL Server Security 325

Part VI—
Sunday Afternoon

Session 28

434840-9 ch28.F 8/28/01 12:56 PM Page 325

Application roles

You may also restrict database users’ access by specifying an application role. Users
assigned to an application role can access the database through a specific applica-
tion only. Application roles differ from other types of roles in that they have no
members, must be activated, and once activated bypass all standard permissions.

Essentially, using an application role tells SQL Server that an application, rather
than SQL Server itself, is going to manage security. You can create an application
role much as you would create an ordinary database role, through the Enterprise
Manager (as shown in Figure 28-4).

Figure 28-4
Creating a new application role

Instead of Standard role, select Application role and provide a password.
This password is the only means by which the SQL Server can authenticate the
application.

Sunday Afternoon326

434840-9 ch28.F 8/28/01 12:56 PM Page 326

In order to use this role you must activate it through a system-stored proce-
dure, sp_setapprole.

EXEC sp_setapprole ‘AppTest’, ‘Test’

Once the role is activated, all previous user privileges are dropped.

It might be a good idea to encrypt the password before sending
it over the network to the SQL Server. You can use ODBC encryp-
tion: EXEC sp_setapprole ‘AppTest’, {Encrypt N ‘Test’}, ‘odbc’.

Using Views as a Security Mechanism

Using views you can access data from one or more underlying tables. A view is a
database object that behaves very much like a standard table in SQL Server, except
that it is based on the T-SQL query.

Views are created, altered, and dropped in the same way that SQL Server tables
are. SQL Server 2000 also gives you the ability to index views. Views are in general
not updateable, though SQL Server 2000 enables you to create an INSTEAD OF trig-
ger on a view to update it.

Here is the sample syntax for creating a view. Say that you decide to give the
Fishing Committee access to some information about your employees. The commit-
tee does not need to know anything about the employees except their names,
phone numbers, and the fact that they indicated fishing as a primary hobby on
their résumés.

CREATE VIEW Employees_Hobbies
AS
SELECT FirstName, LastName, Phone WHERE hobby = ‘Fishing’
FROM emloyees e LEFT OUTER JOIN hobbies h ON e.emp_id = h.emp_id

Once the view is created you can access it just as you would a regular table.
Views are provided primarily for convenience, speed, and security. The view

restricts the data available to the user, and you can assign separate permissions for
different views. The view usually operates on a data subset, hiding the rest of the
columns from the users (even if they have full permissions to see the view, they
will see only the columns listed in the T-SQL statement underlying it).

Tip

Session 28—SQL Server Security 327

Part VI—
Sunday Afternoon

Session 28

434840-9 ch28.F 8/28/01 12:56 PM Page 327

Understanding SQL Server File Permissions

Almost all database objects in SQL Server 2000 are stored as physical files on your
hard drive. This being the case, SQL Server must maintain some security context
for accessing these files. This context is set up by a security account; which
account is used depends on how SQL Server was started in the first place.

If you start SQL Server from the Service Control Manager it will use the SQL
Server Service security account; if you start it at the command prompt it will use
the security account of the logged user. Adjust the security of these accounts
accordingly to prevent unauthorized file access.

Windows 98 does not support Windows services. Though these
services will be simulated, there is no need to create user
accounts for them.

Auditing SQL Server

Audit logs are maintained for security reasons, in case you need to analyze who
was connected to the server, how long a connection lasted, and so forth. You set
the audit level from the Server Properties screen (shown in Figure 28-1). The
records of clients’ activities are accumulated in audit logs.

The maximum size for an audit log is 200MB; when this limit is reached a new file
is created. Once you’ve run out of space on your hard drive, SQL Server will stop.

You can configure SQL Server 2000 to perform C2 auditing, which is an
advanced security feature that has more to do with standard guidelines than with
SQL Server itself. Use it only if your system is C2 certified by U.S. government
standards.

REVIEW

� SQL Server 2000 supports two modes of user authentication: Windows
Authentication Mode and Mixed Mode (both Windows and SQL Server
authentication).

� You set the authentication mode on the server level; it applies to all SQL
Server objects.

Note

Sunday Afternoon328

434840-9 ch28.F 8/28/01 12:56 PM Page 328

� You can assign users in SQL Server to roles, which are modeled after
Windows user groups.

� Two types of roles exist: server roles and database roles. Server roles are
fixed and cannot be custom-created; database roles include both fixed and
custom roles.

� You can use views as a security mechanism by restricting data access.
� SQL Server supports auditing, which is set up at the server level. The audit

logs contain information about all attempts to connect to the server.

QUIZ YOURSELF

1. What are the two Authentication Modes supported by SQL Server 2000?

2. How are server roles different from database roles?

3. Which role are members of the Windows account BUILTIN\Administrators
automatically assigned in SQL Server?

4. How does a view differ from a table?

5. What is the maximum size of an audit-log file?

Session 28—SQL Server Security 329

Part VI—
Sunday Afternoon

Session 28

434840-9 ch28.F 8/28/01 12:56 PM Page 329

434840-9 ch28.F 8/28/01 12:56 PM Page 330

Session Checklist

✔ Understanding DBLIB, ODBC and OLE DB
✔ Configuring the ODBC data source
✔ Learning about DAO, RDO, and ADO
✔ Interoperability with non-Windows machines and the Internet

SQL Server serves as the foundation (back end, in programming jargon) for
client applications that connect to it to request or change data. The interfaces
DBLIB, ODBC, and OLE DB provide you with connectivity. You can use network

libraries to connect to SQL Server from virtually any non-Windows platform. Coupled
with Internet Information Server (IIS), SQL Server can be accessed via Internet stan-
dard Hypertext Transfer Protocol (HTTP). This session covers these topics, and more.

Introducing DBLIB, ODBC, and OLE DB

Every single application designed to use SQL Server services must first establish a
connection. Establishing a connection enables a client to send requests and receive
responses. Client applications can be running on the same machine, across the

S E S S I O N

Database Connectivity

29

444840-9 ch29.F 8/28/01 12:56 PM Page 331

network, or over the Internet. SQL Server 2000 provides a number of interfaces you
can use to establish a connection.

DBLIB

The oldest interface still supported is DBLIB. This is a call-level interface (CLI) to
the SQL Server libraries. It is adapted for use with the C/C++ programming lan-
guage and is sometimes used to squeeze the last drop of performance from
client/server communications. It is a relatively complex interface that requires
considerable expertise in programming. Though this interface is still supported for
backwards compatibility, Microsoft increasingly discourages users from accessing
SQL Server with DBLIB by providing new, more user-friendly interfaces.

The main reason for not using DBLIB is that it is a vendor-
specific interface: If you change your data source to a different
RDBMS vendor, you will have to revise and recompile your
application.

Open Database Connectivity (ODBC)

By and large, the most popular connectivity mechanism is ODBC. It is an applica-
tion-programming interface (API) that supports access to virtually any data source
for which an ODBC driver is available. It is also a non-proprietary open standard
supported by American National Standards Institute (ANSI) and International
Organization for Standardization (ISO) standards. You can easily switch a client
that uses ODBC from one data source to another (for example, from Oracle to SQL
Server), simply by reconfiguring Data Source Name entries (covered later in this
session in the section “Configuring ODBC Data Sources”).

OLE DB

This is the latest interface from Microsoft. It is a COM/OLE/ActiveX-based interface
designed for COM-compliant clients. (For non-OLE–compliant clients OLE DB
Provider for ODBC is available.) Unlike ODBC, OLE DB has no externally configurable
components; you specify the OLE DB provider right in your application inside a
connection string.

Tip

Sunday Afternoon332

444840-9 ch29.F 8/28/01 12:56 PM Page 332

Configuring ODBC Data Sources

In order to use an ODBC data source you must create it on the machine on which
the client is going to be installed. ODBC DSN (Data Source Name) is nothing more
than a number of entries in the Windows Registry. You can set it up manually or
programmatically, or use a visual interface provided by Microsoft in the Windows
control panel.

To create a DSN on your machine, follow these steps:

1. Select Start ➪ Settings ➪ Control Panel and then double-click the Data
Sources (ODBC) icon (ODBC32 on Windows 9x machines).

As DSN can be configured for every data source for which there is an
ODBC driver, you are likely to see several of these drivers on your
machine (such as Microsoft Access Driver, SQL Server Driver, and so on).
Because you are creating DSN for SQL Server, select ODBC Driver for
SQL Server.

You can select System DSN, User DSN, or File DSN. The main difference
among these is scope: A User DSN is local and can be accessed only by
the current user for whom it was created; a System DSN is also local, but
accessible to every user on the machine; and a File DSN is represented
by a physical file and can be placed either on a local machine or on the
network.

2. The Drivers tab lists all currently available ODBC drivers on your com-
puter. To add a new driver, use that drive’s install program.

3. The Tracing tab enables you to configure traces to monitor drivers’ usage.
This information is stored as a log file.

Connection pooling contributes to a more rational use of resources as it allows
several applications to use one open connection; when the connection is released
by one client it can be given to another without the need for more connections.
Connection pooling also lets you enable the Performance Monitor (Perf Mon) in
order to accumulate statistics for optimization analysis.

The last tab on the screen shown in Figure 29-1, the About tab, will provide you
with information about which libraries serve which ODBC components.

Session 29—Database Connectivity 333

Part VI—
Sunday Afternoon

Session 29

444840-9 ch29.F 8/28/01 12:56 PM Page 333

Now I’ll walk you through the process of configuring System DSN for SQL Server:

1. Start the ODBC Data Source Administrator (in Windows NT go to the
Control Paneland double-click the Data Sources (ODBC) icon; in Windows
2000 select Programs ➪ Administrative Tools ➪ Data Sources (ODBC)) and
select the System DSN tab. Click Add.

Figure 29-1
Adding DSN for a local SQL Server

2. Select the appropriate driver to use with your DSN from the screen shown
in Figure 29-2. Click Finish. Now the wizard takes you through the
process of creating the DSN.

3. On the screen shown in Figure 29-3, enter the name of your DSN (your
client application will use this name to connect to SQL Server), a descrip-
tion, and the SQL Server instance you wish to connect to. The drop-down
combo box will contain a list of all SQL Servers visible from your machine.
Click Next.

Sunday Afternoon334

444840-9 ch29.F 8/28/01 12:56 PM Page 334

Figure 29-2
Selecting the ODBC driver for SQL Server

Figure 29-3
Specifying properties and the destination data source

Session 29—Database Connectivity 335

Part VI—
Sunday Afternoon

Session 29

444840-9 ch29.F 8/28/01 12:56 PM Page 335

4. On the next screen (shown in Figure 29-4), select the authentication mode
for the client; you should generally use Windows Authentication on the
trusted network and SQL Server authentication in other cases. Click Next.

Figure 29-4
Choosing an authentication mode

5. The next screen prompts you for default database settings (which data-
base context the client will be in once the connection is open). For
example, if you are configuring your DSN for the Pubs database you may
want to change the database context to Pubs; in this case you leave all
other settings at their defaults. Click Next.

6. The next screen enables you to set some advanced settings, such as the
language of returned messages (the default is English), where to save sta-
tistics, and what to do with the queries that take too long to complete.
Optionally you can set up data encryption and instruct the driver to for-
mat output into local settings. Click Finish.

Sunday Afternoon336

444840-9 ch29.F 8/28/01 12:56 PM Page 336

7. The last screen to appear is the summary of the ODBC DSN you just cre-
ated. Click OK to finish the process.

The last screen will also contain the Test Data Source button with
which you can test your new DSN. Click it and make sure that you
see the message “Tests Completed Successfully”; otherwise, act
on the information in your error message. The most common
problem is an invalid login or password.

Now your client can use your newly created ODBC DSN to connect to your SQL
Server. You can always reconfigure the properties of your DSN from the same ODBC
Data Source Administrator.

Presenting DAO, RDO, and ADO

To provide access for its database products Microsoft went through several itera-
tions, and as a result application developers have a wealth of components to work
with: ODBC API (call-level interface), DAO (Data Access Objects), RDO (Remote Data
Objects), and ADO (Active Data Objects).

As the story has it: In the beginning there was DAO and Microsoft saw that DAO
was good and took it through several iterations to version 3.6 and stopped there.
Then Microsoft introduced RDO and RDO lived long enough to give birth to ADO,
and ADO grew and grew and became the data-access component of choice, as it
remains today.

All these three-letter acronyms represent object models on top of data-access
layers, such as ODBC drivers or OLE DB providers; to ensure backwards compatibil-
ity Microsoft created MSDASQL, the OLE DB Provider for ODBC, with which your
ODBC applications can continue to work while using the new OLE DB interface.

The relationships between data-access components such as ADO and the ODBC-
OLE DB layer are represented on the diagram shown in Figure 29-5.

In order to use any of these data-access objects an application must either be
COM-compliant or use ODBC API and DBLIB. The exact syntax for opening a con-
nection will depend on the programming language of choice for the application
making use of the SQL Server database.

Tip

Session 29—Database Connectivity 337

Part VI—
Sunday Afternoon

Session 29

444840-9 ch29.F 8/28/01 12:56 PM Page 337

Figure 29-5
Visualizing the data-access components relationship

Table 29-1 lists the OLE DB providers tested with SQL Server; it’s adapted from
Microsoft SQL Server 2000 Books Online.

Table 29-1
List of OLE DB Providers for SQL Server 2000

Data Source Provider Name

SQL Server 6.5 or later Microsoft OLE DB Provider for SQL Server

ODBC Data Sources Microsoft OLE DB Provider for ODBC

Microsoft Access (Jet) databases Microsoft OLE DB Provider for Jet version 4.00

Microsoft Excel spreadsheets Microsoft OLE DB Provider for Jet version 4.00

Data Transformation Service Microsoft OLE DB Provider for DTS Packages
Package Data Source Object

Oracle databases Microsoft OLE DB Provider for Oracle version 2.6

Application

ADO

Network Protocols

SQL Server

DAO RDO

ODBC Driver OLE DB Provider (and MSDASQL)

Sunday Afternoon338

444840-9 ch29.F 8/28/01 12:56 PM Page 338

Data Source Provider Name

Local file system Microsoft OLE DB Provider for Microsoft Indexing
(through Indexing Services) Service (requires Microsoft Windows NT 4.0

Service Pack 4 or later)

IBM DB2 databases Microsoft OLE DB Provider for DB2

You do not need to configure OLE DB providers; it remains the responsibility of
the clients to connect to them programmatically.

Interoperability with Non-Windows Machines
and the Internet

Microsoft has tightly integrated its Internet Information Server (IIS) with SQL
Server 2000. There is nothing mysterious about that, but some assembly is
required.

A client can submit POST and GET commands via HTTP, or even execute a SQL
query. The standard Internet addressing syntax is supported. An HTTP request
directed to SQL Server is then redirected to the ISAPI filter and submitted to SQL
Server. The results are returned to the client as an XML document, as shown here:

http://<IISServer>/Pubs?sql=SELECT+*+FROM+Authors+FOR+XML+AUTO&roo
t=root

It is the responsibility of the client application to parse the XML document, and
before queries can be specified using HTTP, you must create a virtual root using
the IIS Virtual Directory Management for SQL Server. This requires some familiarity
with IIS, which is beyond the scope of this book.

You can run clients accessing SQL Server from the following platforms:

� Windows NT Workstation
� Windows 2000 Professional
� Windows 9x
� Apple Macintosh
� UNIX
� OS/2

Session 29—Database Connectivity 339

Part VI—
Sunday Afternoon

Session 29

444840-9 ch29.F 8/28/01 12:56 PM Page 339

The actual connection is supported via one of the network libraries, such as
TCP/IP, AppleTalk, Banyan VINES, Named Pipes, and so forth. These hide the
complexity of the communication, wrapping it in familiar interfaces that can be
accessed by clients running on heterogeneous platforms.

While creating DSN on the screen where you specify authentica-
tion mode, you can specify that the client use one of these net-
work libraries. To do so, click Configure Client on the screen.

REVIEW

� You have several choices regarding how the client application will connect
to the SQL Server: namely, you can use DBLIB, ODBC, or OLE DB.

� ODBC Data Sources provide information for the client applications access-
ing a particular instance of SQL Server. You can configure ODBC to point to
any data source for which an ODBC driver exists.

� OLE DB is the latest data-access interface provided by Microsoft. It is COM/
ActiveX-based and supports ODBC (through the OLE DB provider for ODBC)
for backwards compatibility.

� You can access SQL Server through HTTP over the Internet; to do this you
will need Internet Information Server (IIS).

� You can access SQL Server from any non-Windows machine as long as the
appropriate network libraries are installed to support it.

QUIZ YOURSELF

1. In what sequence were the data-access interfaces (DBLIB, ODBC, and
OLE DB) introduced?

2. What does DSN stand for? What are the differences among User DSN,
System DSN, and File DSN?

3. What components did Microsoft provide to enable you to program data
access to its data sources?

4. What is the prerequisite for accessing SQL Server via HTTP?

5. From which platforms can you connect to SQL Server?

Tip

Sunday Afternoon340

444840-9 ch29.F 8/28/01 12:56 PM Page 340

Session Checklist

✔ Using English Query
✔ Performing full-text searches
✔ Using SQL Server 2000 Analytical Services
✔ Running the Web Assistant Wizard
✔ Getting SQL Server XML support

This session introduces you to some advanced features of SQL Server. English
Query enables you to query SQL Server data in plain English. You’ll learn how
to conduct searches within text data without splitting information into

columns first. You’ll also learn how to use SQL Server to support complex business
decisions. Finally, I’ll show you how to connect SQL Server to the Web with standard
HTML (Hypertext Markup Language), and how to use HTML’s superset eXtensible
Markup Language (XML).

Using English Query

The language you use to query SQL Server — Transact SQL — is a powerful and ver-
satile programming language. As such it serves very well anyone who took the time

S E S S I O N

Advanced Features of
SQL Server 2000

30

454840-9 ch30.F 8/28/01 12:56 PM Page 341

to learn it, which probably does not apply to the majority of the people on this
planet. The rest of humanity (the rest of whatever percentage of humanity uses
SQL Server, anyway) has two choices: abstain from ad hoc SQL Server queries, or
learn English and use Microsoft English Query.

English Query does not enable you to query SQL Server in English, make no
mistake about that. It only provides you with the means to build an application
capable of translating English into Transact SQL.

English Query is not a part of the standard SQL Server installation; you must
install it separately. To install it, repeat the steps you went through in Session 1
when installing SQL Server 2000. From the Welcome screen select SQL Server 2000
components; on the next screen select Install English Query. Now, the English
Query installation comes in two flavors: Full Installation (which enables you to
develop English Query applications), and Run Time (which only supports the
deployment of an English Query application).

If you choose Full Installation you will be able to develop an English Query appli-
cation. Microsoft provides two wizards to assist you with this task: the SQL Project
Wizard and the OLAP (On Line Analytical Processing) Project Wizard. I’ll discuss OLAP
in more detail later in this session, in the section “Using SQL Server 2000 Analytical
Services.”

After the wizard creates a basic model consisting of entities and relationships
(see Session 5) you can refine the model by testing it with your business require-
ments until it satisfies all your criteria. Then you can build, compile, and deploy
your application.

You can deploy an English Query application in two ways:

� As a stand-alone Visual Basic or Visual C++ application (or any ActiveX
supporting technology, for that matter).

� As part of a Web page running on the Microsoft Internet Information
Server (IIS). In this case your English Query application runs as part of
ASP (Active Server Pages).

ActiveX is a Microsoft programming technology that helps
ActiveX-compliant Windows applications provide services to each
other. Active Server Pages is a technology for generating dynamic
Web pages on Microsoft Internet Information Server; it uses a
mix of VBScript (or JavaScript) and HTML/XML.

Note

Sunday Afternoon342

454840-9 ch30.F 8/28/01 12:56 PM Page 342

Along the way, you will encounter numerous wizards that will assist you in
deploying your English Query applications; please refer to the English Query Books
Online (supplied with the English Query installation) for more information about
these wizards.

Performing Full-Text Searches

Transact SQL (and now English Query) enables you to conduct searches wherein
selection criteria are values in different columns; it will not help you find a phrase
in the text. The main requirement for running the Relational Database Systems is
that the data be structured. Structuring the data brings them closer to the
machine and thus requires a computer language (T-SQL) to manipulate them. But
the world around us is chock-full of unstructured data we would love to query:
Structuring them is not always feasible, and sometimes it’s downright impossible.
Full-text indexing solves this problem — to some extent.

See Session 6 for a discussion of the first normal form.

The full-text search engine (Microsoft Search Service) is installed by default
with a typical installation of any edition of Microsoft SQL Server 2000, but to use
it you need to enable and configure it. You can start and stop the Microsoft Search
Service from the SQL Server Service Manager console.

Each database must be enabled to allow full-search indexing, and the tables you
are going to use in full-text searches must be enabled as well. The easiest way to
index them is to use the Full-Text Indexing Wizard, which will guide you through
the process of selecting indexes and columns for the search string and saving all
the information in a full-text search catalog. These catalogs are distinctive objects
in the database, viewable under their own node, Full-Text Catalogs, in the
Enterprise Manager console.

Once the full-text catalog is created you can issue queries against indexed
columns. Unlike a regular-pattern search with the LIKE predicate, the full-text
search operates on words and phrases.

You issue queries on full-text search columns in much the same way that you
issue standard queries. Transact-SQL introduces the new predicates CONTAINS and
FREETEXT for use in full-text queries.

Cross-Ref

Session 30—Advanced Features of SQL Server 2000 343

Part VI—
Sunday Afternoon

Session 30

454840-9 ch30.F 8/28/01 12:56 PM Page 343

Here are a couple of examples to help you visualize what full-text queries are
all about. Let’s say you are in the habit of scanning your employees’ résumés, and
instead of bothering with structuring the information they contain into a bunch of
tables, you dump it as text into a single column Résumé of the Employees table —
not that you would normally do that!

Now say you need to find an employee whose résumé lists “salmon fishing” as a
favorite activity, because you need a companion for your fishing trip. You would
issue this query against your Employee database:

SELECT resume FROM employees WHERE CONTAINS (resume, ‘“salmon
fishing”’)

You can see that your standard LIKE search would not help you with unstruc-
tured data, because the Résumé column contains much more than employees’
recreational activities.

You also can use the FREETEXT predicate, as follows:

SELECT resume FROM employees WHERE FREETEXT (resume,’”salmon
fishing”’)

The difference is that with CONTAINS the search engine looks for the exact
phrase “salmon fishing,” whereas with FREETEXT you are likely to find employees
who also fish for halibut or swordfish, as well as those whose favorite dish is
salmon soufflé.

Using full-text search predicates you can conduct searches on the
Image data-type columns. SQL Server provides support for many
other types of documents you can store in databases, such as
Microsoft Word documents, Excel documents, ASCII text files, and
HTML files.

Take into consideration that full-text searches are usually less precise than reg-
ular searches, which is a reflection of their “human” nature.

No support exists for the full-text search function over SQL
Server–linked servers.

Recall that you need to create and maintain full-text indexes in order to con-
duct full-text searches. Regular and full-text indexes are significantly different.
Table 30-1, from Microsoft Books Online, lists these differences.

Note

Tip

Sunday Afternoon344

454840-9 ch30.F 8/28/01 12:56 PM Page 344

Table 30-1
Differences and Similarities between Regular SQL Indexes and Full-Text Indexes

Regular SQL Indexes Full-Text Indexes

Stored under the control of the Stored in the file system, but
database in which they are defined. administered through the database.

Several regular indexes are allowed Only one full-text index is allowed per
per table. table.

Updated automatically when You can request the addition of data to
the data upon which they are based full-text indexes, which is called
are inserted, updated, or deleted. population, through either a schedule or

a specific request, or you can set it to
occur automatically with the addition of
new data.

Not grouped. Grouped within the same database into
one or more full-text catalogs.

Created and dropped with SQL Server Created, managed, and dropped with SQL
Enterprise Manager, wizards, or Server Enterprise Manager, wizards, or
Transact-SQL statements. stored procedures.

Since full-text indexes are not stored in the SQL Server database, you cannot
back them up and recover them with the standard BACKUP and RECOVERY proce-
dures; you need to manage them manually.

Using the Microsoft Indexing Service along with the Microsoft
Search Service you can conduct full-text searches against data in
regular system files. The Indexing Service is included as part of
the Windows 2000 OS, and you can install it on Windows NT with
the Windows NT 4.0 Option Pack.

Using SQL Server 2000 Analytical Services

SQL Server 2000 Analytical Services are new to this version of SQL Server. In ver-
sion 7.0 they were called OLAP, and lower versions did not mention them at all.
Whether you are using these built-in services or decide on third-party components

Tip

Session 30—Advanced Features of SQL Server 2000 345

Part VI—
Sunday Afternoon

Session 30

454840-9 ch30.F 8/28/01 12:56 PM Page 345

Sunday Afternoon346

Linking OLAP and Business Logic

Using OLAP services requires a deep understanding of the business logic of
your company and what kind of analysis is required. Consider the follow-
ing sample scenario.

You are the manager of a successful fast-food chain. Your accounting
department just warned you that your profits are down in spite of the
advertising campaign for a line of new super-burgers: The campaign costs
you an arm and a leg and you need to know what’s wrong. Your database
contains all the information you need: sales figures for various regions,
population, age distribution, number of customers per day, economic
activity, and much more.

You decide to compare sales of this new super-burger with sales of your
mega-burger, which was introduced a year ago and has met with a huge
success. You create two groups of sales figures and create a ratio between
these two groups, and then you track this ratio by location and customer
group.

You can see that in some regions sales of your super-burger far exceed
sales of your other burgers, and that in some regions sales are lagging.
Comparing historical data with your current data you see that in some
regions sales of the super-burger took off much more slowly than in others;
but the same thing happened before with your mega-burger. Are the lack-
luster sales the result of inadequate promotion? Or a recent anti-fast-food
campaign in the region? You dig up the data and see that the regions
lagging in sales are in the Bible Belt; the historical data also show that
these regions are in general suspicious of your flashy new “welcome to the
future” ads.

Now, combine all this information into one simple OLAP query so that
your OLAP software will visualize it for you in charts, Gantt-Charts, his-
tograms and such, and report to upper management or make a decision.

This is a simple example, but it offers you a glimpse into the potential
OLAP offers.

(such as Business Intelligence Platform by Cognos), one thing is sure: You need to
know what you are doing.

454840-9 ch30.F 8/28/01 12:56 PM Page 346

Online Analytical Processing (OLAP) Services and the Multidimensional
Expressions (MDX) they use are by far the most complex and advanced SQL Server
components. Companies are using OLAP more and more as they try to make sense
of their tons of accumulated data. OLAP is used in the mysterious field called “data
analysis,” and many books are dedicated to this use. This session will only briefly
mention these services and their potential uses.

The standard database table represents a flat matrix; SQL Server 2000 Analysis
Services use the notion of cubes. The data and corresponding objects are multidi-
mensional, having more dimensions than our four-dimensional space-time contin-
uum; the number of dimensions is limited only by your imagination and hardware
capabilities.

You must install SQL Server Analytical Services. You do this in much the same
way that you install English Query. Make sure you go through Books Online for the
Analytical Services and work through the samples it includes, because using them
isn’t simple.

Running the Web Assistant Wizard

I briefly introduced the Web Assistant Wizard in Session 4. This wizard provides
you with an easy way to publish your information on the Internet. Follow these
steps to use it:

1. Launch the Web Assistant Wizard from the Enterprise Management
Console (Tools ➪ Wizards ➪ Management ➪ Web Assistant Wizard). Click
Next on the Welcome screen.

The next screen, Select Database, will prompt you to select the database
you wish to publish. Select Pubs and click Next.

2. On the next screen, Start a New Web Assistant Job, specify a job name
and the data you want to be published. The choices are as follows:

� Data from the tables and columns you specify
� Result set of a stored procedure you specify
� Data from a T-SQL query you specify

Name your Web assistant job and select Data from the Tables and Columns
you specify. Click Next.

Session 30—Advanced Features of SQL Server 2000 347

Part VI—
Sunday Afternoon

Session 30

454840-9 ch30.F 8/28/01 12:56 PM Page 347

3. On this screen, Select a Table and Columns, select Authors and all its
columns except the Contract column.

4. The next screen, Select Rows, enables you to limit the number of rows
displayed on the page, and to format them into several pages. Select the
option All of the Rows to publish all the rows in the authors table. Click
Next.

5. On the next screen, Schedule the Web Assistant Job, determine a sched-
ule. Do you want this page to be a one-time creation, or should it be cre-
ated only when requested, or should it be created at regular intervals?

I’ve chosen to update my page every time data are changed in the under-
lying table (say, when an author moves to a different location). Click
Next.

6. This screen, Monitor a Table and Columns, prompts you to specify the
exact column(s) in which the change of data would trigger an update.
Click Next.

7. The next screen, Publish the Web Page, prompts you for a physical loca-
tion for the HTML file you’re going to produce. The best place is in the
directory of your Web server. Click Next.

If you wish, you can specify a template for your Web page, or format one
with the help of SQL Server. If you choose to accept SQL Server’s help,
the next several pages will guide you through formatting issues such as
selecting captions and choosing fonts. Click Next on each of these screens
when you are through.

Figure 30-1 shows the final result of the example you’ve just completed as it
appears in your Web browser. Of course, you may enhance your Web page by adding
a colorful background, a texture, sound, and so forth, but the idea remains the
same. Because I scheduled the information on this page to be refreshed every time
the author’s information is changed, the update will be triggered as soon as at
least one value in the Authors table is updated or deleted. The authors.htm file
will then be overwritten, and whoever requests this page afterward will get an
updated version of it.

In order to publish information on the Internet you will need a
Web server such as Microsoft Internet Information Server or
Apache Server.

Note

Sunday Afternoon348

454840-9 ch30.F 8/28/01 12:56 PM Page 348

Figure 30-1
Displaying information in Internet Explorer

Getting SQL Server XML Support

If you have ever opened a trade magazine, browsed the Web, or watched the news,
you must have heard about eXtensible Markup Language (XML). It is touted as the
best thing since sliced bread, or even the best thing ever — period. Marketing hype
aside, I do believe that XML is useful. It represents a superset of HTML. Both HTML
and XML use tags, special markers that tell a browser how to interpret a document.

XML is all about data, never about its visual representation. Unlike HTML,
which you have to learn, and which has only a finite number of tags, XML enables
you to define your own language and a practically unlimited number of tags.
What’s the catch? You will be the only one who understands this language, though
its structure will be transparent to everybody.

Session 30—Advanced Features of SQL Server 2000 349

Part VI—
Sunday Afternoon

Session 30

454840-9 ch30.F 8/28/01 12:56 PM Page 349

The following HTML tag will instruct the browser to display the text in size H3.

<H3>Personal Authors Information</H3>

And this sample represents XML notation of a single author record:

<author>
<name>Johnson White</name>
<address>10932 Bigge Rd.</address>
<city>Menlo Park</city>
<state>CA</state>
<zip>94025</zip>

</author>

As you can see, XML logically orders data in a hierarchy and uses pairs of tags to
define the data. Note that XML says nothing about how to represent the data —
nothing about font type, size, or anything similar.

Displaying the preceding XML document in your browser will — in the best
case — present the information in exactly the structure you see here. To format
these data into a visually pleasing page with color, different fonts, and such, you
use XSL (eXtensible Stylesheet Language) or CSS (Cascading Stylesheets). A discus-
sion of either of these languages is well beyond the scope of this book.

SQL Server 2000 adds XML support. This means that you can query a SQL Server
instance by using a URL (a Web address) via HTTP (HyperText Transfer protocol,
which is the Internet standard), and the SQL Server will return results as XML doc-
uments. To do this you have to use the special clause FOR XML:

SELECT authors.au_fname,au_lname,address,city,state,zip
FROM authors WHERE au_fname = ‘Johnson’
FOR XML AUTO

You can submit this query over HTTP and receive a result set formatted as XML
to be parsed later by an application or displayed in a browser accompanied by a
Cascading Stylesheet link.

The new OPENXML function enables you to convert an XML docu-
ment into a rowset, and then use it to insert, update, or delete
data in the database. You also can use the results of OPENXML as
a table in a standard T-SQL query.Note

Sunday Afternoon350

454840-9 ch30.F 8/28/01 12:56 PM Page 350

REVIEW

� You learned about some advanced features of SQL Server 2000, such as
English Query, full-text search, Analysis Services, and Internet-related
capabilities.

� English Query provides a framework and support services for creating and
distributing SQL applications that enable users to query relational data in
English instead of in Transact-SQL.

� Full-text searches enable you to query unstructured data in SQL Server
tables and outside documents.

� You can publish data from your database on the Internet using the Web
Assistant Wizard (you need a Web server to actually publish the data on
the Internet).

� SQL Server 2000 provides internal support for XML, including the ability
for the user to submit a query over the Internet and get the results as an
XML document.

QUIZ YOURSELF

1. How do you install Microsoft English Query?

2. What programming language would you use to create an English Query
application?

3. What does OLAP stand for?

4. Under what circumstances would you use a full-text search?

5. Where are full-text indexes physically stored?

6. What is XML and can you use it to retrieve data from SQL Server?

Session 30—Advanced Features of SQL Server 2000 351

Part VI—
Sunday Afternoon

Session 30

454840-9 ch30.F 8/28/01 12:56 PM Page 351

1. What are the three major components of a database system?

2. How does preparing a disaster scenario help in the recovery process?

3. What is a standby server?

4. How do you rebuild the Registry for SQL Server 2000?

5. How do you rebuild the Master database in SQL Server 2000?

6. What are the two Authentication modes for SQL Server 2000?

7. What are the two groups of roles in SQL Server 2000?

8. What is a fixed role?

9. To which groups does an application role belong?

10. What makes a SQL Server view suitable for security purposes?

11. What are the most commonly used connection interfaces for
SQL Server 2000?

12. How do you configure an ODBC data source?

13. What are ADO, RDO, and DAO in the context of SQL Server 2000?

14. What Microsoft application is required to provide access to SQL Server via
the Internet?

15. How do you install the English Query? What would you use it for?

16. What data sources can you search once you’ve installed the full-text
search capabilities?

P A R T

#
P A R T

Sunday Afternoon

VI

464840-9 pr6.F 8/28/01 12:56 PM Page 352

17. Where is a full-text index physically stored?

18. What is the primary use of SQL Server Analytical Services?

19. How can you automatically update a Web page created with the Web
Publishing Wizard for SQL Server 2000?

20. What is XML and how does SQL Server 2000 support it?

Part VI–Sunday Afternoon Part Review 353

464840-9 pr6.F 8/28/01 12:56 PM Page 353

464840-9 pr6.F 8/28/01 12:56 PM Page 354

F ollowing are the answers to the part review questions at the end of each part
in this book. Think of these reviews as mini-tests that are designed to help
you prepare for the final – the Skills Assessment Test on the CD.

Friday Evening Review Answers

1. SQL Server 2000 is a relational database management system (RDBMS)
from Microsoft.

2. You can install SQL Server 2000 on Windows NT 4.0, Windows 2000 Server,
Windows 98 and Windows CE.

3. Enterprise, Standard, Professional, Developer Edition and Windows CE
Edition.

The differences between these versions lie in the maximum size of the
supported database, the number of CPUs, and support for enterprise-level
features such as replication, scheduling, and so forth.

4. Collation order refers to the way the data in a database are sorted and
compared. Collation order for the server is set during installation; you
can change it later, though it requires reinstalling the SQL Server.

Collation order for a custom database can be set during creation of
the database - it could be different from the default collation order of the
server.

APPENDIX

Answers to Part Reviews

A

4840-9 appA.F 8/28/01 12:56 PM Page 355

Appendix A356

5. Starting from SQL Server version 7.0 you can run several instances of SQL
Server on the same machine. The first installed instance is designated the
default and given the name of the machine on which it is installed; every
named instance must have a unique name.

6. Windows authentication mode and mixed mode.

7. The SQL Server Enterprise Server Manager.

8. Services are a specific type of Windows programs that run as background
process and usually do not require(or allow) direct user interaction. SQL
Server depends on the following services to run: SQL Server Service,
SQL Server Agent Service and MSDTC Service; you manage services
through the SQL Server Service Manager or from Control Panel’s Services
option.

9. Through the Register SQL Server Wizard in the Enterprise Manager
Console.

10. Depending on the installation version, you will have anywhere from five
to seven top-level objects with each registered server.

11. Yes. Doing so usually requires re-running install and selecting different
options; sometimes it might be necessary to reinstall SQL Server altogether.

12. By re-running installation and selecting the components you wish to add.

13. Rerun the installation program and select the uninstall option, or use the
Add/Remove Programs utility in the Control Panel.

14. They are the most comprehensive source of information on SQL Server,
and they are installed with every version of SQL Server.

15. A program that guides you step by step through the process of complet-
ing a specific task.

16. A relational database management system (RDBMS) is a means of storing
and managing data in a system of related entities/tables; SQL Server is
one of many implementations of the RDBMS concept.

17. It assists in speedily transferring large amount of data into or out of a
database.

18. Both are command-line utilities for performing ad-hoc SQL queries. ISQL
is a command-line utility based on the DB Library interface; it is provided
for compatibility with previous versions of SQL Server and does not sup-
port all SQL Server 2000 features. OSQL is ODBC-based and supports all
the features of SQL Server 2000; it can also run UNICODE stored scripts.

4840-9 appA.F 8/28/01 12:56 PM Page 356

Answers to Part Reviews 357

19. SQL Server Agent assists with automating some of your database-
management chores. A SQL Server Agent job is a sequence of database
tasks scheduled for execution, either periodically or as the result of some
predetermined condition. SQL Server alerts enable you to take action in
response to some event that occurs on the system by notifying an opera-
tor - either via e-mail or pager.

20. The Web Assistant Wizard is a tool for generating (HyperText Markup
Language (HTML) documents based on the data extracted from SQL Server
databases.

Saturday Morning Review Answers

1. A relational database is a collection of database objects: tables maintain-
ing relationships based on the primary/foreign key principle, various
means of manipulating these tables, and the rules that enforce the rela-
tionships and their integrity. Unlike spreadsheet tables or flat files,
RDBMS tables are related in a parent/child-like relationship.

2. Referential integrity is a relational database concept referring to a state
of data meaning that there are no “orphaned” records; each record in the
child table must be linked to an existing record in the parent table.

3. Data integrity is enforced on four levels through indices, constraints,
rules, and triggers.

4. A key is a column or combination of columns within the table; each table
can have one primary key and several foreign keys. An index is a separate
database structure created to facilitate faster data access.

5. System databases (Master, MSDB, Model, Temp) and sample databases
(Pubs, Northwind).

6. The Master database contains information about the entire SQL Server
instance: settings, startup information, a description of every database
created on the system, and system stored procedures.

7. The Model database serves as a template for every custom database cre-
ated on the system.

8. You resolve a many-to-many relationship with an intermediate table,
which usually consists of primary-key columns of the tables it relates.

4840-9 appA.F 8/28/01 12:56 PM Page 357

Appendix A358

9. Data normalization is a process of breaking large tables into smaller
ones to prevent redundancy and data duplication.

10. The first normal form eliminates repeating groups.

11. In order to create a database you must define the data component and
the transaction log component.

12. Execute the statement CREATE DATABASE <database name> with all the
appropriate optional parameters.

13. DROP DATABASE <database name>. You can specify more than one data-
base in a single statement.

14. You cannot delete any system databases.

15. A database created within SQL Server 2000 is physically maintained as
two or more system files.

16. Transact SQL (Structured Query Language).

17. You can pass Transact SQL statements to SQL Server to be executed
through a number of interfaces: Query Analyzer, ISQL command line,
OSQL, or any client application programmed to connect to the SQL
Server.

18. A variable is a data holder; declaring a variable reserves space where
eventually value would put when it assigned to the variable. You declare
a variable in Transact-SQL with the DECLARE keyword, followed by the
variable name and type. (For example, DECLARE @MyVariable VAR-
CHAR(10)).

19. Any text data (character string) up to a length specified in that variable
declaration. It cannot be a number, or date or binary.

20. SELECT, INSERT, UPDATE, and DELETE.

21. IF, IF...ELSE, WHILE, GOTO <label>, BREAK, and CONTINUE.

22a. INNER JOIN — Selects the matching records from both joined tables: for
each record from one table there must be a corresponding record in the
second table.

22b. LEFT JOIN or LEFT OUTER JOIN — Selects additional records from the left
joined table; even if no matching rows exist these returned fields will
contain NULLs.

22c. RIGHT JOIN or RIGHT OUTER JOIN — Works like a LEFT JOIN or LEFT
OUTER JOIN, except that it applies to the right table.

22d. CROSS JOIN — Returns a result set containing every possible combina-
tion of the rows in both tables.

4840-9 appA.F 8/28/01 12:56 PM Page 358

Answers to Part Reviews 359

Saturday Afternoon Review Answers

1. A stored procedure is a database object compiled and stored under a
unique name and is stored in SQL Server; it can have input and output
parameters as well as a return value. A T-SQL batch is stored as a file and
must be executed through one of the SQL Server interfaces; it does not
have input or output parameters and it is always interpreted.

2. It is stored in the Stored Procedures collection of a particular database on
SQL Server. Stored procedures global in their scope reside in the Master
database.

3. The scope of the stored procedure is usually within the database in which
it is created; stored procedures prefixed with sp_ and stored in the
Master database are global for the SQL Server instance.

4. It always has a global scope.

5. Calling a stored procedure from within another stored procedure makes it
a nested stored procedure.

6. Stored procedures usually execute faster than T-SQL batches and consume
fewer resources; they are maintained by SQL Server; they enable you
to create reusable libraries; also they give you benefits of structured
programming.

However, they shift control to SQL Server from the client application and
are usually more difficult to modify than batches.

7. Unlike a stored procedure, a trigger is tied to a specific table and is exe-
cuted only in response to certain actions performed on this table; you
cannot call a trigger directly; and a trigger is compiled.

8. Any events that modify data: A trigger can be set to respond to an
INSERT, UPDATE, or DELETE event.

9. DELETED and INSERTED.

10. An INSTEAD OF trigger is executed instead of the T-SQL statement that
triggered the action.

11. A programming object (structure) established on the result-set base. It
enables you to manipulate records in the set row by row.

12. Static, dynamic, forward-only, and keyset-driven.

13. Concurrency refers to the visibility of the data set, which may be accessi-
ble by several users at the same time; you set the cursor’s concurrency in
the cursor declaration or client application.

4840-9 appA.F 8/28/01 12:56 PM Page 359

Appendix A360

14. An index speeds up search operations by creating a system of pointers to
the actual data. It is maintained separately from the table it indexes.

15. A clustered index physically re-organizes data in the table; a non-clustered
index just maintains pointers to the actual locations of the records.

16. You can define only one clustered index and up to 249 non-clustered
indices.

17. No. For a small amount of data, a table scan is more efficient than an
index.

18. Columns used in JOIN queries, aggregate functions, GROUP BY, or ORDER
BY clauses.

19. Entity, domain, referential and user-defined.

20. Domain integrity (range of values) and referential integrity (preserves
relationship among tables).

21. You can define the CHECK constraint during the creation of the table, or
later with the ALTER TABLE statement.

22. You need to bind it to a column or user-defined type.

23. NULL indicates an absence of data; unless your server is set to compare
NULLs, one NULL is never equal to another. Zero is an actual value repre-
sented by a number.

24. A SQL Server transaction is a collection of T-SQL statements that either
executes as a whole or fails and leaves data unchanged.

25. Atomicity, consistency, isolation and durability.

26. Any transaction that you explicitly start (BEGIN TRANSACTION), end (END
TRANSACTION), or commit (COMMIT TRANSACTION) is an explicit transac-
tion. Implicit transactions are those that SQL Server automatically starts
when it encounters one of the following T-SQL statements:

SELECT, INSERT, UPDATE, DELETE

ALTER TABLE

TRUNCATE TABLE

OPEN, FETCH

GRANT, REVOKE

27. Optimistic and pessimistic.

28. Read uncommitted, read committed, repeatable read, and serializable.

4840-9 appA.F 8/28/01 12:56 PM Page 360

Answers to Part Reviews 361

29. Lock escalation converts fine-grained locks into coarser-grained locks (for
example, row-level locking to table-level locking) when SQL Server figures
out that another lock will use less system resources.

30. A deadlock refers to a situation wherein a process (transaction) has
obtained a lock on a resource and tries to get a lock on a second resource
while another process tries to simultaneously obtain a lock on that same
resource and keep a lock on some third resource; neither of the processes
can get the lock on the resource, nor can they commit or abort.

To avoid deadlocks applications should access database objects in a spe-
cific order, user interaction during transactions should be eliminated,
transactions should be kept as short as possible, and you should use the
lowest isolation level possible.

Saturday Evening Review Answers

1. DTS imports and exports data from a SQL Server database.

2. Any data source for which there is a valid OLE DB provider.

3. Either by attaching a VBScript module or T-SQL conversions to the DTS
package.

4. DTS Export/Import wizards.

5. BCP is the Bulk Copy command-line utility program; it uses the DB
Library interface to import and export large amounts of data into or out
of SQL Server.

6. BCP has only limited support for transferring data between heteroge-
neous data sources, virtually no support for data transformation, and no
visual interface for administration.

7. The system databases, especially the Master database, must be backed up
periodically, and before and after any major change to server properties,
so that you will be able to recover from a disaster. User databases should
be backed up periodically to minimize potential data loss.

8. Tape backup devices, files, and logical backup devices.

9. A backup device is a structured storage file. You can organize it in such a
way that it becomes storage for logical devices.

10. With the Database Backup Wizard or with Transact-SQL statements.

4840-9 appA.F 8/28/01 12:56 PM Page 361

Appendix A362

11. It is a sequential record of all transactions since the last differential or
database backup. You can use it to recover a database up to the point of
failure.

12. Unfinished transactions.

13. A differential backup backs up all data that have changed since the last
complete backup. It is much faster than a complete backup but can only
be used in conjunction with a full backup, and is not allowed on the
Master database.

14. No, transaction log can be backed up only all at once. Transaction log
keeps track of the changes made to the database and is used to deter-
mine what part is supposed to be backed up during a differential backup
of the database.

15. First restore the last full backup; then apply all transaction-log backups,
starting from the oldest.

16. You can only perform a full backup of the Master database, not a differ-
ential or transaction-log backup; when restoring the Master database you
should use only the Recovery Complete option.

17. Distribution of identical data across several data sources.

18. Publisher — A source server for the distributed data. It maintains all the
information about the data specified for publishing.

Distributor — An intermediary between the Publisher and the Subscriber,
which can also be both Publisher and Subscriber. Its role varies depending
on the type of replication you select.

Subscriber — The final destination of the distributed data.

19. PUSH subscriptions and PULL subscriptions.

20. Replication agents are utilities that assist in the replication process.

Sunday Morning Review Answers

1. A Database Maintenance Plan is a job scheduled under SQL Server Agent.
It consists of one or more steps such as backup, reclaiming unused space,
updating statistics, checking database integrity, and so on.

2. To document the database structure and possibly restore it in case of a
disaster.

4840-9 appA.F 8/28/01 12:56 PM Page 362

Answers to Part Reviews 363

3. By using the appropriate options from the right-click menu of the
Databases node or by using the system stored procedures sp_attach_db
and sp_detach_db.

4. System databases cannot be attached, detached, or copied.

5. Remote servers allow a client application connected to one SQL Server to
run a stored procedure on another without having to connect to it explic-
itly. Linked servers extend this functionality to heterogeneous data
sources, and also support Distributed transactions.

6. Any data source that has an OLE DB provider or ODBC driver for it.

7. Explicitly, by using the BEGIN DISTRIBUTED TRANSACTION keyword, or
implicitly, by using a distributed query or calling a remote stored proce-
dure within the local transaction.

8. The way to ensure the integrity of a distributed transaction process
across multiple servers.

9. By using the system catalog stored procedures or the
INFORMATION_SCHEMA tables.

10. An INFORMATION_SCHEMA is a view created for each user database that
provides access to the metadata for the database objects.

11. System stored procedures have global scope. To execute a system stored
procedure on a local server you do not need to specify the fully qualified
path or be in the context of any particular database.

12. System stored procedures that provide information about SQL Server
database objects.

13. A compiled dynamic link library that SQL Server can call to perform tasks
that are difficult or impossible to implement in Transact-SQL.

14. To define, schedule for execution, and execute various database tasks.

15. MSDB contains all the information about scheduled tasks.

16. An operator is a contact to which an alert will send notification via
e-mail or pager.

17. Configuring SQL Server to send events to a central server in a multi-
server environment to be processed there.

18. Most of the mail servers are MAPI compliant. The samples would be:
Microsoft Exchange, Sun Internet Mail Server, Mdaemon Mail Server and
dozens more.

4840-9 appA.F 8/28/01 12:56 PM Page 363

Appendix A364

19. You use SQL Server Mail to execute stored procedures remotely and return
results by e-mail; you use SQL Server Agent Mail to send e-mail and pager
notifications.

20. SQL Server Mail runs in the security context of MSSQLService.

21. Using extended stored procedures.

22. SQL Server Profiler is a graphical tool you can use to trace the perfor-
mance of SQL Server in your server and to help analyze the results to find
potential bottlenecks and problems.

23. From the Query Analyzer toolbar menu Query, select Display Estimated
Execution Plan.

24. Statistics information is created automatically whenever an index is cre-
ated for a table, but you can also create statistics using the CREATE STA-
TISTICS statement. Statistics are used by SQL Server Query Optimizer to
determine the best path of execution for a particular query.

25. Workload data created with SQL Server Profiler.

26. By setting a large initial size and big increments, so resources are not
wasted when you expand the log.

27. DBCC is a set of SQL Server commands for performing consistency checks
and various database-management tasks pertaining to the integrity of the
database.

Sunday Afternoon Review Answers

1. Every SQL Server RDBMS system consists of at least three components: an
operating system, SQL Server, and the client applications that connect to
SQL Server.

2. It enables you to identify potential problems and practice steps for recov-
ery in order to minimize downtime and data loss.

3. A standby server is an identical copy of a production SQL Server that is
usually installed on a different machine. It mirrors the production server
very closely so you can use it as a substitute production server in case of
a server disaster.

4. By running the SQL Server installation program again and choosing
Advanced options.

4840-9 appA.F 8/28/01 12:56 PM Page 364

Answers to Part Reviews 365

5. Using the command-line utility Rebuildm.exe.

6. Windows Authentication and Mixed Authentication modes.

7. Server roles, which are applied and administered at the SQL Server level,
and database roles, which are applied and administered at the database
level.

8. A predefined role in SQL Server that cannot be changed. There are eight
fixed server roles.

9. It is a database role.

10. Normally, a SQL Server view does not allow updates and inserts into
underlying tables; you can limit a view to several columns in the table
while hiding the rest.

11. OLE DB and ODBC.

12. Through the ODBC component in the Control Panel (Windows NT) or Data
Sources from the Administrative Tools menu.

13. ADO, RDO, and DAO are ActiveX components for accessing data sources
through ODBC or OLEDB provider interfaces.

14. Microsoft Internet Information Server.

15. By choosing English Query during the SQL Server 2000 installation
process. This helps to create custom solutions that enable you to query
SQL Server in plain English rather than with Transact-SQL.

16. Any data in SQL Server database as well as any text contained in system
files.

17. It is stored as a system file, separate from SQL Server.

18. Analyzing large amount of data in a process called data mining in order
to discover hidden trends.

19. Using the SQL Server Web Publishing Wizard you may specify that the
data in the published set be updated periodically or upon changes to the
data in a particular column(s).

20. XML stands for eXtensible Markup Language. It is an emerging standard
for data-interchange formats for the distributed systems. SQL Server 2000
supports XML by providing special keywords, FOR XML and OPENXML.

4840-9 appA.F 8/28/01 12:56 PM Page 365

4840-9 appA.F 8/28/01 12:56 PM Page 366

There are two CD-ROMs included with this book to help you to make the most
of it. One CD-ROM contains the 120-day evaluation version of SQL Server 2000.
It is a fully functional version provided by Microsoft that is yours to use and

explore for three months.
On the other CD-ROM, you get an electronic form of this book in PDF format

(which is great for searching and sharing); you may or may not have software for
reading this file so I also included Adobe Acrobat Reader 5.0 as well as some other
general-purpose utilities.

Several products on this CD-ROM may make your life easier. While Microsoft
tries very hard to provide everything you need, in certain areas third-party tools
such as the ones in the following list might be better or easier to use:

� ER/Studio — A data-modeling tool from Embarcadero Technologies that
enables you to create (or reverse-engineer) your logical and database
design. It is a rather advanced tool for data architects, database adminis-
trators, and developers.

� DBArtisan — An advanced database-administration tool from Embarcadero
Technologies. It helps you with routine database tasks in order to achieve
and maintain high availability, optimize performance, and enhance secu-
rity. It also enables you to manage heterogeneous databases like SQL
Server, Oracle, and DB2 from one place. It fits nicely into the
database-administrator toolbox, though it is no substitute for Enterprise
Manager for SQL Server.

APPENDIX

What’s on the CD-ROM

B

4840-9 appB.F 8/28/01 3:00 PM Page 367

Appendix B368

� Rapid SQL — A development tool from Embarcadero Technologies for creat-
ing and deploying server-side objects residing in SQL Server databases. It
supports HTML and Java Web development as well as plain vanilla Transact-
SQL.

� Sylvain SQL Programmer 2001 — A development tool from BMC Software
with an extensive support for debugging, documenting, and scripting. It
works with every major database (MS SQL server, DB2, Oracle).

� Microsoft Internet Explorer — Yes, it is still free to download. It looks as if
Microsoft has won the battle of the browsers — this version of its popular
browser is faster and has more support for the latest technologies (like
XML) than its rivals.

� WinZip — By far the most popular archiving utility on the Web, this utility
from Nico Mak Computing supports most of the popular archiving formats
like ARC, ZIP, TAR, GZIP, and ARJ; it also compresses your files by up to 90
percent. Great for reclaiming hard-drive space, storing e-mails, and much
more.

� SnagIt — A very popular screen-capture utility from TechSmith. If you can
see it you can save it — onto the clipboard or into a variety of file formats
(BMP, JPEG, GIF, TIF, and so on). Works on any Windows platform.

Each of these programs resides in its own folder on the CD-ROM and comes with
its own installation program. Try them out!

Links on the Internet

Sooner or later you are going to have a question that this book won’t be able to
answer. Unless you have a seasoned database administrator to coach you, the only
place to find up-to-date information is going to be the Internet.

Here are sites for all your SQL Server questions. You’ll also find tons of articles,
downloadable scripts, programs, and newsletter groups.

4840-9 appB.F 8/28/01 3:00 PM Page 368

What’s on the CD-ROM 369

General-interest SQL Server sites

http://www.sqlservercentral.com/
http://www.sswug.org
http://www.swynk.com
http://www.mssqlserver.com/
http://www.sql-server-performance.com/
http://www.sqlwire.com/

Publishers of SQL Server magazines

http://www.sqlmag.com
http://www.pinnaclepublishing.com/sq

Windows NT/2K sites with some SQL Server–related stuff

http://www.ntfaq.com/Articles/
http://www.windows2000faq.com/

SQL Security issues

http://www.sqlsecurity.com/

Ask all your questions here — you might get an answer

http://www.devx.com/gethelp/
http://www.experts-exchange.com/jsp/qList.jsp?ta=mssql

Microsoft sites

http://www.msdn.microsoft.com/sqlserver/
http://www.microsoft.com/sql/evaluation/compare/tpc.asp
http://www.microsoft.com/sql/
http://www.microsoft.com/technet/
http://www.microsoft.com/sql/support/

4840-9 appB.F 8/28/01 3:00 PM Page 369

Appendix B370

The most comprehensive site for any technical questions
you may have about MSFT products

http://msdn.microsoft.com/library/default.asp

Independent organizations conducting
comparative benchmark testing

Here you’ll find information on the latest performance benchmarks across all data-
base vendors.

http://www.tpc.org

4840-9 appB.F 8/28/01 3:00 PM Page 370

Numerics
1033 file, 23

�
access

logins, 226–230, 232
multiuser environments,

233–234
permissions, 230–234
restrictions, 78
roles, 226
See also connections

accessing
external data sources, 258
SQL Books Online, 35
SQL Server Agent, 45
system information, 263–264
wizards, 37–39

accounts
mail accounts, 284–286
SQL Server Agent, 275
startup account, 275
user accounts, 225–234

ACID, 178
Active Data Objects (ADO),

337–338
Active Server Pages (ASP), 342
ActiveX, 342
adding

components, 25
servers, 31

administration, multi-server,
281

ADO (Active Data Objects),
337–338

advanced options, 10
AFTER keyword, 138
AFTER triggers, 138–141
Agent

accessing, 45
accounts, 275

alerts, 45, 275, 278–280
capabilities, 21, 45, 273–274
configuration screen, 274
configuring, 274–275
connections, 275
event forwarding, 281
jobs, 45, 275–278
MSDB database, 63
operators, 45
properties, 274–275
starting, 274
stored procedures, 269

aggregate functions, 118
alerts

creating, 278–279
definition, 45
deleting, 280
jobs, 277, 279
messages, 279
modifying, 280
options, 275
performance counters, 280
removing, 280
viewing, 280

altering
databases, 99–100
tables, 101
triggers, 144

Analytical Services, 345–347
analyzing queries with Query

Analyzer
capabilities, 40
connections, 98
display options for results, 97
e-mail, 288
execution mode, 97
execution plan, 98, 296–298
starting, 40, 96
templates, 103
testing, 96
Transact-SQL, 95–102
triggers, 139
uses, 95
using, 96

answer key to review
questions, 355–365

App Viewer (CAST), 367
application roles, 326–327
arguments (command-line

utilities), 43
ASP (Active Server Pages), 342
assigning permissions, 232
attributes, 66
audit logs, 328
authentication modes, 14,

320–321
automating tasks, 273

�
Backup Wizard, 203–206
backups

backup header, 211
complete database backups,

202–207
databases, 312
differential backups, 202–203,

207
file backups, 203
file group backups, 203
importance, 312
managing, 211
Master database, 62
media header, 211
operating systems, 311
planning, 201–202
recovery modes, 207–208
restoring, 208–210
storing, 211
strategies, 202
transaction-log backups,

203, 207
verifying, 211

bcp utility, 42–43, 198, 200
BEGIN TRANSACTION

statement, 178–179
benchmarks for RDBMSs, 57

Index

494840-9 Index.F 8/28/01 12:56 PM Page 371

BMC Software Sylvain SQL
Programmer 2001,
368

Books Online, 35
Books Online wizard, 39
browsers

Internet Explorer 5.0, 9
Internet Explorer 5.5, 368

bugs, 303
Bulk Copy Program, 42–43,

198–200
business logic

OLAP, 346
triggers, 137

�
C2 auditing, 328
CASE function, 119–120
CAST App Viewer, 367
CAST SQL-Builder, 367
catalogs, full-text, 343
CD-ROM, 367–368
changing

login entries, 22
passwords, 22
properties, 33
user IDs, 22

CHECK constraints, 171–172
client/server environment, 5–6
closing cursors, 147
clustered indexes, 156
Codd, Dr. E. F., 54
collation order, 13–14, 25
command-line utilities

arguments, 43
bcp, 42–43, 198–200
distrib, 43
dtsrun, 42
dtswiz, 42
isql, 42, 44
isqlw, 42, 44
itwiz, 42
logread, 43
odbccmpt, 42
osql, 42–43
rebuildm, 42, 315
replmer, 43
scm, 43
snapshot, 43
sqlftwiz, 43
sqlservr, 42
starting, 42
switches, 43
vswitch, 42
wiztrace, 43

commands
DBCC commands, 303
Net Send, 45

Start, Programs,
Administrative Tools, 23

Start, Programs, SQL Server, 20
Start, Programs, SQL Server,

Books Online, 35
Start, Programs, SQL Server,

Enterprise Manager, 29
Start, Programs, SQL Server,

Service Manager, 20
comments in Transact-SQL,

128–129
COMMIT TRANSACTION

statement, 178–179
comparing data

collation order, 13–14, 25
sort order, 13

components, 25
composite key, 69
concurrency of cursors,

151–152
Configure Publishing and

Distribution Wizard,
218–220

configuring
ODBC data sources, 333–337
replication, 218–220
roles, 321–327
SQL Mail, 286
SQL Server Agent, 274–275
SQL Server Agent Mail, 286

connection pooling, 333
connections

ADO, 337–338
DAO, 337–338
DBLIB, 332
Internet, 339–340
non-Windows machines,

339–340
ODBC, 332–337
OLE DB, 332, 338–339
purpose, 331
Query Analyzer, 98
RDO, 337–338
SQL Server 2000, 15–16
SQL Server Agent, 275

consistency checking, 302–303
constraints

CHECK constraints, 171–172
DEFAULT constraints, 173–174
FOREIGN KEY constraints,

169–170
PRIMARY KEY constraints,

168–169
RULE constraints, 172–173
types, 168
UNIQUE constraints, 170

control-of-flow statements,
111–113

Copy Database Wizard, 249
copying databases, 248–249
corruption of databases, 311

Create Index Wizard, 159–163
Create Login Wizard, 226–230
cubes, 347
cursors

choosing the right one, 152
closing, 147
concurrency, 151–152
creating, 147–148
de-allocating, 147
declaring, 146
definition, 145
dynamic cursors, 149
fetching rows, 146–147
forward-only cursors, 150
global cursors, 150
keyset cursors, 150
local cursors, 150
opening, 146
requesting, 146
scope, 150
scrollable cursors, 148–149
scrolling, 146–148, 151
static cursors, 62, 149
syntax, 146
types, 148–149

custom databases
access restrictions, 78
creating, 73–77
data files, 77
deleting, 79–80
dropping, 79–80
file growth, 75
filegroups, 78
naming, 75
properties, 75–78
recovering, 79
removing, 79–80
transaction log files, 77

Cyrix processors, 6

�
DAO (Data Access Objects),

337–338
Data Access Objects (DAO),

337–338
Data Control Language (DCL),

82
Data Definition Language

(DDL), 82, 98–102,
259

data files, 23, 77
data integrity

definition, 54, 57
domain integrity, 168
enforcing, 167
entity integrity, 168
hierarchical databases, 54
locking, 183–186

Index372

494840-9 Index.F 8/28/01 12:56 PM Page 372

referential integrity, 54, 168,
231

triggers, 137, 142
user-defined integrity, 168

Data Manipulation Language
(DML), 82

Data Mining, 6
Data Query Language (DQL),

82
data sources

external data sources,
258–259

ODBC data sources, 333–336
Data Transformation Services

(DTS)
database drivers, 192
DTS Import/Export Wizard,

192–195, 197
exporting data, 192–197
importing data, 192–197
overview, 44
packages, 44, 192, 197–198
purpose, 191–192
registered server node, 34

data types, 85–86
database administration

wizards, 39–40
Database Consistency Check

(DBCC), 302–303
Database Maintenance Plan

Wizard, 241, 244–247
database models

hierarchical databases, 52–54
network databases, 54
relational databases, 54–56

Database Wizard, 73–74
database wizards, 40–41
databases

access, 225–234
access restrictions, 78
altering, 99–100
backups, 201–211, 312
client/server environment, 5–6
collation order, 13–14, 25
components, 74
constraints, 168–174
copying, 248–249
corruption, 311
creating, 73–77, 98–99
cursors, 62, 145–152
custom databases, 73–80
data files, 77
data integrity, 54, 57, 137,

142, 167–168, 231
deleting, 79–80, 100
designing, 65–66, 68–71
detaching, 249
diaster recovery, 309–317
documenting, 247–248
dropping, 79–80, 100
entities, 57, 66

entity-relationship diagram
(ERD), 57

fields, 52, 57
file growth, 75
filegroups, 78
files, 74
indexes, 57, 155–165
keys, 57, 168–169
locking, 183–186
maintenance, 241–248
monitoring, 294–296
moving, 248–249
naming, 75
normalization, 68
ODBC data sources, 337
ODBC drivers, 44
performance issues, 74
profiling, 294–296
properties, 75–78
re-attaching, 249
records, 52, 57
recovering, 79, 207–210,

309–310
relationships, 66–67
removing, 79–80, 100
replication, 213–215,

217–219, 221–223
restoring, 208–210, 309–310
roles, 226, 322–323, 325
sample databases, 64–65
scripting, 247–248
searches, 343
security, 319–328
sort order, 13
system databases, 61–64, 80,

241, 249, 301–302
tables, 52, 57, 66
TempDB, 301–302
transaction log files, 77

Databases node, 33, 74
DB-Examiner (DBE Software),

367
DBArtisan 5.4 (Embarcadero

Technologies), 367
DBCC (Database Consistency

Check), 302–303
DBE Software DB-Examiner, 367
dBinn file, 23
DBLIB, 332
DCL (Data Control Language),

82
DDL (Data Definition

Language), 82,
98–102, 259

de-allocating cursors, 147
deadlocks, 185–186
debugging Transact-SQL,

129–131
Declarative Referential

Integrity (DRI), 231

declaring
cursors, 146
Transact-SQL variables,

107–108
DEFAULT constraints, 173–174
defining

attributes, 66
entities, 66

DELETEs
overview, 92
triggers, 138

deleting
alerts, 280
components, 25
data from tables, 92
databases, 79–80, 100
indexes, 163–164
jobs, 278
logins, 232
sample databases, 64–65
servers, 31
stored procedures, 136
system databases, 63, 80
tables, 102
triggers, 143

designing
databases, 65–66, 68–71
indexes, 157–158
transactions, 183

Desktop Engine MS SQL Server
2000, 8

detaching databases, 249
Developer Edition MS SQL

Server 2000, 7
diagrams, entity-relationship

diagram (ERD), 57
diaster recovery

planning, 309–310
scenarios, 310–312
standby servers, 312–313
step-by-step process, 313–317

DISTINCT keyword, 84
distrib utility, 43
Distributed Transaction

Coordinator (DTC),
22, 181–182, 252,
259–261

distributed transactions, 181
DML (Data Manipulation

Language), 82
documenting databases,

247–248
domain integrity, 168
domains, 15
DQL (Data Query Language), 82
DRI (Declarative Referential

Integrity), 231
drivers

DTS database drivers, 192
ODBC drivers, 44

Index 373

494840-9 Index.F 8/28/01 12:56 PM Page 373

dropping
databases, 79–80, 100
indexes, 163–164
logins, 232
stored procedures, 136
system databases, 63, 80
tables, 102
triggers, 143

DTC (Distributed Transaction
Coordinator), 22,
181–182, 252,
259–261

DTS (Data Transformation
Services)

database drivers, 192
DTS Import/Export Wizard,

192–195, 197
exporting data, 192–197
importing data, 192–197
overview, 44
packages, 44, 192, 197–198
purpose, 191–192
registered server node, 34

DTS Designer, 44, 197–198
DTS Import/Export Wizard,

192–197
dtsrun utility, 42
dtswiz utility, 42
dynamic cursors, 149

�
e-mail, 283–290
editing jobs, 278
Embarcadero Technologies

DBArtisan 5.4, 367
ER/Studio 4.21, 367
Rapid SQL 5.7, 368

encrypting
stored procedures, 142
triggers, 142

enforcing data integrity, 167
English Query

applications, 342–343
capabilities, 341–342
full-text searches, 343–344
installing, 342
wizards, 342–343

Enterprise Edition MS SQL
Server 2000, 7

Enterprise Manager
capabilities, 30
command-line utilities, 42–44
Data Transformation Services

(DTS), 44
Microsoft Management

Console (MMC), 30–31
options, 34–35
registered server nodes, 33–34
server groups, 31–33

server registration, 31–33
SQL Books Online, 35
SQL Server Agent, 45
starting, 29
triggers, 139
wizards, 37–41

entities
defining, 66
definition, 57

entity integrity, 168
entity-relationship diagram

(ERD), 57
ER/Studio 4.21 (Embarcadero

Technologies), 367
ERD (entity-relationship

diagram), 57
error handling

levels of connectivity
interfaces, 132

Transact-SQL, 129–131
error messages, 76, 131
errorlog, 20
errors

errorlog, 20
exceptions, 129–130
sqlstp.log, 20

event forwarding, 281
Event Log, 279
events

SQL Profiler, 40
triggers, 138

exceptions, 129–130
executing

T-SQL statements, 82
triggers, 137–138

explicit transactions, 180–181
Explorer 5.0, 9
Explorer 5.5, 368
exporting data

Bulk Copy Program, 198–200
DTS (Data Transformation

Services), 192–197
eXtensible Markup Language

(XML), 349–350
extensions (filenames), 74
external data sources

accessing, 258
queries, 258–259

�
faulty installation, fixing,

19–20
FETCH statement, 146–147, 149
fetching rows from cursors,

146–147
fields

definition, 52, 57
NULL values, 175

file groups, 78, 203
file growth, 75

file permissions, 328
file size

decreasing, 77
increasing, 75
restricting, 75

files
1033, 23
backups, 203
Data, 23
data files, 77
dBinn, 23
errorlog, 20
extensions, 74
HTML, 23
locations, 24
sqlstp.log, 20
system databases, 63–64

fixed server roles, 322–323
fixing installation problems, 19
flat-file databases and

database design, 70
FOR keyword, 138
FOREIGN KEY constraints,

169–170
foreign keys, 169
forward-only cursors, 150
FROM clause, 83
full-text indexes, 343, 345
Full-Text Indexing Wizard, 343
full-text searches, 343–344
functions

aggregate functions, 118
built-in functions, 82
CASE function, 119–120
custom functions, 82
system functions,

102–103, 264

�
grouping servers, 31–32

	
hardware requirements for SQL

Server 2000, 6–8
help, 35
hierarchical databases

diagram of structure, 53
overview, 52–54
referential integrity, 54
relationships, 53–54

HTML
Web Assistant Wizard, 41, 348
XML, 349–350

HTML file, 23
HTML Help 1.3, 9
Hypertext Markup Language.

See HTML

Index374

494840-9 Index.F 8/28/01 12:56 PM Page 374

IBM, 54
IIS (Internet Information

Server), 41, 339
implicit transactions, 180–181
importing data

Bulk Copy Program, 198–200
DTS (Data Transformation

Services), 192–197
Index Tuning Wizard, 157,

299–301
Index Wizard, 158–163
indexes

advantages, 155
clustered indexes, 156
creating, 158–163
definition, 57
deleting, 163–164
designing, 157–158
dropping, 163–164
fill factor, 162
full-search indexes, 343
full-text indexes, 345
location, 156
managing, 164–165
modifying, 164
naming, 162
non-clustered indexes, 157
performance issues, 157–158
purpose, 155–156
removing, 163–164
renaming, 164–165
retrieving information about

indexes, 164
tables, 156–157
views, 156

Indexing Service, 345
information about system

accessing, 263–264
information schema views,

264–266
ODBC catalog functions, 264
OLE DB schema rowsets, 264
system functions, 102–103,

264
system stored procedures,

264, 266–270
information schema views,

264–266
inserting data into tables,

90–91
INSERTs

overview, 90–91
triggers, 138

Installation Wizard, 9
installing

Analytical Services, 347
components, 25
English Query, 342
SQL Server 2000, 6, 8–17

instances, 10–12
INSTEAD OF triggers, 138–139,

141
integrity

definition, 54, 57
domain integrity, 168
enforcing, 167
entity integrity, 168
hierarchical databases, 54
locking, 183–186
referential integrity, 54, 168,

231
triggers, 137, 142
user-defined integrity, 168

interfaces
DBLIB, 332
ODBC, 332–337
OLE DB, 332

Internet connections, 339–340
Internet Explorer 5.0, 9
Internet Explorer 5.5, 368
Internet Information Server

(IIS), 41, 339
interoperability, 339–340
IS (NOT) NULL keyword, 93
isolation levels (transactions),

182–183
isql utility, 42, 44
isqlw utility, 42, 44
itwiz utility, 42

�
Job Creation Wizard, 276
jobs

alerts, 277, 279
definition, 45
deleting, 278
disabling, 278
editing, 278
history, 276
modifying, 278
notifications, 278
options, 275
removing, 278
scheduling, 276–278

JOIN statement, 87–89

�
keys

composite key, 69
definition, 57
foreign keys, 169
primary keys, 168–169

keyset cursors, 150

keywords
AFTER keyword, 138
DCL (Data Control Language),

82
DDL (Data Definition

Language), 82
DELETE keyword, 92
DISTINCT keyword, 84
DML (Data Manipulation

Language), 82
DQL (Data Query Language),

82
FOR keyword, 138
functions, 82
INSERT keyword, 90–91
IS (NOT) NULL keyword, 93
JOIN keyword, 87–89
LIKE keyword, 93
LTRIM keyword, 93
overview, 82
RTRIM keyword, 93
SELECT keyword, 82–86
UNION keyword, 87, 90
UPDATE keyword, 91–92

license agreement, 11, 16
licensing modes, 15–16
LIKE keyword, 93
linked servers, 252, 254–258
locks

bulk update locks, 184
deadlocks, 185–186
escalation, 184–185
exclusive locks, 184
hints, 185
purpose, 183–184
schema locks, 184
shared locks, 184
timeouts, 185
update locks, 184

login account information
Windows 2000, 23
Windows NT, 22–23

logins
changing, 22
creating, 226–230
deleting, 232
dropping, 232
removing, 232

logread utility, 43
logs

audit logs, 328
errorlog, 20
Event Log, 279
sqlstp.log, 20
transaction log, 74, 77, 203,

207, 302
LTRIM keyword, 93

Index 375

494840-9 Index.F 8/28/01 12:56 PM Page 375

�
mail accounts, 284–286
mail services, 283–290
maintenance

Database Maintenance Plan
Wizard, 241–247

documenting, 247–248
scripting, 247–248

managing
backups, 211
indexes, 164–165
operators, 280
permissions, 230–232
triggers, 139, 143

many-to-many relationships,
55–56, 67

MAPI (Messaging Application
Programming
Interface), 284

Master database, 62, 315–316
MDX (Multidimensional

Expressions), 347
memory requirements, 7–8
messages (alerts), 279
Messaging Application

Programming
Interface (MAPI), 284

metadata, 264
Microsoft Distributed

Transaction
Coordinator, 22,
181–182, 252,
259–261

Microsoft English Query,
341–343

Microsoft Indexing Service, 345
Microsoft Internet Explorer 5.0,

9
Microsoft Internet Explorer 5.5,

368
Microsoft Internet Information

Server (IIS), 339
Microsoft Management Console

(MMC), 30–31
Microsoft Search Service, 343
Microsoft SQL Server 2000

advanced options, 10
authentication modes, 14
client/server environment,

5–6
collation order, 13–14, 25
comparison with other

database products, 16
connections, 15–16
cost, 16
Cyrix processors, 6
Data Mining, 6
editions, 7–8
faulty installation, 19–20

file locations, 24
hardware requirements, 6–8
icon, 17
installing, 6, 8–17
instances, 10–12
license agreement, 11, 16
licensing modes, 15–16
memory requirements, 7–8
modes, 21
OLAP (On-line Analytical

Processing), 6
overview, 5
popularity, 16
reinstalling, 23, 316
restarting, 274
Service Pack, 303
setup, 12
sort order, 13
starting, 17, 20
system requirements, 6–8
uninstalling, 25–26
uses, 6

Microsoft SQL Server 2000
Prerequisites, 8

Microsoft Web sites, 369
Micrsoft IIS, 41
MMC (Microsoft Management

Console), 30–31
Model database, 63
modifying

alerts, 280
indexes, 164
jobs, 278
properties, 77–78
system databases, 62, 64
triggers, 144

monitoring, 223, 294–296
moving databases, 248–249
MS English Query, 341–343
MS Internet Explorer 5.0, 9
MS Internet Explorer 5.5, 368
MS Internet Information Server

(IIS), 41, 339
MS SQL Server 2000

advanced options, 10
authentication modes, 14
client/server environment,

5–6
collation order, 13–14, 25
comparison with other

database products, 16
connections, 15–16
cost, 16
Cyrix processors, 6
Data Mining, 6
editions, 7–8
faulty installation, 19–20
file locations, 24
hardware requirements, 6–8
icon, 17

installing, 6, 8–17
instances, 10–12
license agreement, 11, 16
licensing modes, 15–16
memory requirements, 7–8
modes, 21
OLAP (On-line Analytical

Processing), 6
overview, 5
popularity, 16
reinstalling, 23, 316
restarting, 274
Service Pack, 303
setup, 12
sort order, 13
starting, 17, 20
system requirements, 6–8
uninstalling, 25–26
uses, 6

MS SQL Server 2000
Prerequisites, 8

MSDB database, 63
MSDTC (Microsoft Distributed

Transaction
Coordinator), 22,
181–182, 252,
259–261

multi-server administration,
281

Multidimensional Expressions
(MDX), 347

multiuser environments,
233–234

�
naming

databases, 75
indexes, 162
instances, 11–12
stored procedures, 134–136
transactions, 179
triggers, 144

nesting
stored procedures, 133
transactions, 181
triggers, 142–143

Net Send command, 45
network databases, 54
networks

domains, 15
SQL Server 2000 installation,

14–15
Nico Mak Computing WinZip

8.0, 368
nodes

Data Transformation Services
(DTS), 34

Databases, 33, 74

Index376

494840-9 Index.F 8/28/01 12:56 PM Page 376

non-clustered indexes, 157
normalization, 68–69
Northwind database, 65
notifications

e-mail, 284
jobs, 278
operators, 280–281
pagers, 284
sending, 278

NULL values, 175

�
Object Browser, 104
ODBC (Open Database

Connectivity), 44,
332

ODBC catalog functions, 264
ODBC data sources, 333–337
ODBC drivers, 44
odbccmpt utility, 42
OLAP (On-line Analytical

Processing), 6,
346–347

OLE DB, 332
OLE DB providers, 254,

256–258, 338–339
OLE DB schema rowsets, 264
On-line Analytical Processing

(OLAP), 6, 346–347
one-to-many relationships, 56,

67
one-to-one relationships, 56
Open Database Connectivity

(ODBC), 44, 332
OPEN statement, 146
opening cursors, 146
operating systems

backups, 311
recovering, 311
restoring, 311

operators
creating, 280
definition, 45
managing, 280
notifications, 280–281

operators (Transact-SQL),
113–117

optimizing
DBCC (Database Consistency

Check), 302–303
queries, 296–299
TempDB, 301–302
transaction log, 302

ORDER BY clause, 86
osql utility, 42–43

�
pager notifications, 284
passwords, changing, 22
pausing services, 22
Pentium processors, 6
performance counters, 280
performance issues

database size, 74
filegroups, 78
indexes, 157–158
system databases, 63
transactions, 183

performance tuning
DBCC (Database Consistency

Check), 302–303
Index Tuning Wizard,

299–301
monitoring, 294–296
profiling, 294–296
queries, 296–299

permissions
assigning, 232
file permissions, 328
managing, 230–232
multiuser environments,

233–234
revoking, 232

Personal Edition MS SQL Server
2000, 7

planning
backups, 201–202
diaster recovery, 309–310
replication, 216–217
security, 319–320

popularity of SQL Server 2000,
16

Prerequisites, SQL Server 2000,
8

PRIMARY KEY constraints,
168–169

primary keys, 168–169
procedures (stored procedures)

advantages, 135
creating, 125–128
deleting, 136
disadvantages, 135
dropping, 136
encrypting, 142
naming, 134–136
nested stored procedures, 133
recursive stored procedures,

133–134
removing, 136
renaming, 134–136
sending e-mail, 288–289
syntax, 126–128
system functions, 264

system stored procedures,
134, 264, 266–270

temporary stored procedures,
62, 132

Transact-SQL, 125–126, 134
types, 132–134

processors, 6
Profiler

capabilities, 40, 293
monitoring, 296
profiling, 296
traces, 294–296

profiling, 294–296
Programs, Administrative Tools

command (Start
menu), 23

Programs, SQL Server command
(Start menu), 20

Programs, SQL Server, Books
Online command
(Start menu), 35

Programs, SQL Server,
Enterprise Manager
command (Start
menu), 29

Programs, SQL Server, Service
Manager command
(Start menu), 20

properties
changing, 33
modifying, 77–78
setting, 75–76
SQL Server Agent, 274–275

Pubs database, 64–65
Push Subscription Wizard,

222–223

�
queries

DELETE statement, 92
English Query, 341–344
external data sources,

258–259
full-text queries, 343–344
Index Tuning Wizard,

299–301
INSERT statement, 90–91
JOIN statement, 87–88
optimizing, 296–299
SELECT statement, 82–86
statistics, 299
subqueries, 118–119
system tables, 263
tuning, 296–297, 299
UNION statement, 87
UPDATE statement, 91–92

Index 377

494840-9 Index.F 8/28/01 12:56 PM Page 377

Query Analyzer
capabilities, 40
connections, 98
display options for results, 97
e-mail, 288
execution mode, 97
execution plan, 98, 296–298
starting, 40, 96
templates, 103
testing, 96
Transact-SQL, 95–102
triggers, 139
uses, 95
using, 96

Query Optimizer, 299

�
RAISERROR statement, 131
RAM requirements, 7–8
Rapid SQL 5.7 (Embarcadero

Technologies), 368
RDBMSs (relational database

management systems)
benchmarks, 57
design pitfalls, 70–71
implementations, 56–57
terminology, 57
Transact-SQL, 82

RDO (Remote Data Objects),
337–338

re-attaching databases, 249
rebooting, 17
rebuilding

master database, 315–316
Registry, 314–316

rebuildm utility, 42, 315
records, 52, 57
recovering databases

diaster recovery situations,
309–310

recovery modes, 207–208
Recovery option, 79
step-by-step instructions,

208–210
recovering operating

systems, 311
recursive stored procedures,

133–134
recursive triggers, 142
referential integrity, 54,

168, 231
Register a SQL Server

wizard, 39
Register SQL Server 2000

Wizard, 31–32
registered server nodes

Data Transformation Services
(DTS), 34

Databases, 33

Management, 34
Metadata Services, 34
Replication, 34
Security, 34
Support Services, 34

Registered SQL Server
Properties dialog box,
33

registering servers, 31–32
Registry, 8, 314–316
reinstalling SQL Server 2000,

23, 316
relational database

management systems
(RDBMSs)

benchmarks, 57
design pitfalls, 70–71
implementations, 56–57
terminology, 57
Transact-SQL, 82

relational databases
access restrictions, 78
creating, 73–77
data files, 77
data integrity, 57
deleting, 79–80
designing, 65–66, 68–71
diagram of structure, 55
dropping, 79–80
entities, 57
entity-relationship diagram

(ERD), 57
fields, 57
file growth, 75
filegroups, 78
keys, 57
naming, 75
normalization, 68
overview, 54–55
performance issues, 74
properties, 75–78
RDBMSs, 56–57
records, 57
relationships, 55–56, 66–67
removing, 79–80
tables, 57
terminology, 57
transaction log files, 77

relationships
hierarchical databases, 53–54
many-to-many relationships,

55–56, 67
network databases, 54
one-to-many relationships,

56, 67
one-to-one relationships, 56
relational databases, 55–56,

66–67
Remote Data Objects (RDO),

337–338
remote servers, 252–254

removing
alerts, 280
components, 25
databases, 79–80, 100
indexes, 163–164
jobs, 278
logins, 232
sample databases, 64–65
servers, 31
stored procedures, 136
system databases, 63, 80
tables, 102
triggers, 143

renaming
indexes, 164–165
stored procedures, 134–136

replication
agents, 214
articles, 214, 222
components, 214
configuring, 218–220
definition, 213
distributors, 215
merge replication, 216–217
models, 216
monitoring, 223
planning, 216–217
publications, 214, 220–222
publishers, 215
purpose, 214
setting up, 217–220
snapshot replication, 215, 217
subscribers, 215
subscriptions, 214, 221–223
transactional replication, 215,

217
wizards, 217–220, 222–223

Replication Monitor, 223
Replication wizard, 41
replmerg utility, 43
requesting cursors, 146
restarting SQL Server 2000,

274
restoring

databases, 208–210, 309–310
operating systems, 311

restricting file growth, 75
review questions answer key,

355–365
revoking permissions, 232
roles

application roles, 326–327
configuring, 321–327
database roles, 323–325
db_data_reader role, 226
db_datawriter role, 226
db_owner role, 226
fixed server roles, 322–323
public role, 226

ROLLBACK statement, 179
rollbacks, 179

Index378

494840-9 Index.F 8/28/01 12:56 PM Page 378

RTRIM keyword, 93
RULE constraints, 172–173

�
sample databases

deleting, 64–65
Northwind, 65
Pubs, 64–65
removing, 64–65

scheduling
database maintenance,

241–247
jobs, 276–278
Web Assistant jobs, 348

scm utility, 43
scripting databases, 247–248
scrollable cursors, 148–149
Search Service, 343
searches

full-text searches, 343–344
See also queries

security
audit logs, 328
authentication modes, 14,

320–321
file permissions, 328
passwords, 22
planning, 319–320
roles, 321–327
user ID, 22
views, 327

Select Components dialog box,
25

SELECT statement, 82–86
selecting

components, 25
servers, 32
services, 21–22

sending
e-mail, 288–289
notifications, 278

server nodes
Data Transformation Services

(DTS), 34
Databases, 33
Management, 34
Metadata Services, 34
Replication, 34
Security, 34
Support Services, 34

servers
adding, 31
deleting, 31
e-mail servers, 284
grouping, 31–32
Internet Information Server

(IIS), 339
linked servers, 252, 254–258

multiple server
administration, 281

registered server nodes, 33–34
registering, 31–32
remote servers, 252–254
removing, 31
roles, 322–323
selecting, 32
standby servers, 312–313

Service Manager
accessing, 17
auto-start, 22
services, 21–22
starting, 20–21

Service Packs, 303
services

login account information,
22–23

mail services, 283–290
MSDTC (Microsoft Distributed

Transaction
Coordinator), 22

pausing, 22
selecting, 21–22
SQL Server, 21
SQL Server Agent, 21
starting, 22
stopping, 22

Services dialog box, 23
setting properties, 75–76
setup problems, 20
SnagIt32 (TechSmith), 368
snapshot utility, 43
sort order, 13
sorting data

collation order, 13–14, 25
sort order, 13

spreadsheets
database design, 70
limitations, 51–52

SQL
standards, 57
Transact-SQL, 81

SQL Books Online, 35
SQL Mail, 283–290
SQL Profiler

capabilities, 40, 293
monitoring, 296
profiling, 296
traces, 294–296

SQL Query Analyzer
capabilities, 40
connections, 98
display options for results, 97
e-mail, 288
execution mode, 97
execution plan, 98, 296–298
starting, 40, 96
templates, 103
testing, 96

Transact-SQL, 95–102
triggers, 139
uses, 95
using, 96

SQL Server 2000
advanced options, 10
authentication modes, 14
client/server environment,

5–6
collation order, 13–14, 25
comparison with other

database products, 16
connections, 15–16
cost, 16
Cyrix processors, 6
Data Mining, 6
editions, 7–8
faulty installation, 19–20
file locations, 24
hardware requirements, 6–8
icon, 17
installing, 6, 8–17
instances, 10–12
license agreement, 11, 16
licensing modes, 15–16
memory requirements, 7–8
modes, 21
OLAP (On-line Analytical

Processing), 6
overview, 5
popularity, 16
reinstalling, 23, 316
restarting, 274
Service Pack, 303
setup, 12
sort order, 13
starting, 17, 20
system requirements, 6–8
uninstalling, 25–26
uses, 6

SQL Server 2000 Prerequisites,
8

SQL Server Agent
accessing, 45
accounts, 275
alerts, 45, 275, 278–280
capabilities, 21, 45, 273–274
configuration screen, 274
configuring, 274–275
connections, 275
event forwarding, 281
jobs, 45, 275–278
MSDB database, 63
operators, 45
properties, 274–275
starting, 274
stored procedures, 269

SQL Server Agent Mail,
283–290

Index 379

494840-9 Index.F 8/28/01 12:56 PM Page 379

SQL Server Enterprise Manager
capabilities, 30
command-line utilities, 42–44
Data Transformation Services

(DTS), 44
Microsoft Management

Console (MMC), 30–31
options, 34–35
registered server nodes, 33–34
server groups, 31–33
server registration, 31–33
SQL Books Online, 35
SQL Server Agent, 45
starting, 29
triggers, 139
wizards, 37–41

SQL Server Query Optimizer, 299
SQL Server Service Manager

accessing, 17
auto-start, 22
services, 21–22
starting, 20–21

SQL Server versions, 79
SQL servers

adding, 31
deleting, 31
grouping, 31–32
registered server nodes, 33–34
registering, 31–32
removing, 31
selecting, 32

SQL-Builder (CAST), 367
sqlftwiz utility, 43
sqlservr utility, 42
sqlstp.log file, 20
Standard Edition MS SQL Server

2000, 7–8
standby servers, 312–313
Start menu commands

Programs, Administrative
Tools, 23

Programs, SQL Server, 20
Programs, SQL Server, Books

Online, 35
Programs, SQL Server,

Enterprise Manager, 29
Programs, SQL Server, Service

Manager, 20
starting

command-line utilities, 42
Enterprise Manager, 29
Query Analyzer, 96
Service Manager, 20–21
services, 22
SQL Query Analyzer, 40
SQL Server 2000, 17, 20
SQL Server Agent, 274

statements (Transact-SQL)
* (asterisk), 83–84
ALTER TRIGGER, 144
BEGIN TRANSACTION, 178–179

CASE statement, 119–120
COMMIT TRANSACTION,

178–179
control-of-flow statements,

111–113
DELETE, 92
executing, 82
FETCH, 146–147, 149
FROM clause, 83
INSERT, 90–91
IS (NOT) NULL, 93
JOIN, 87–89
LIKE, 93
LTRIM, 93
OPEN, 146
ORDER BY clause, 86
Query Analyzer, 95–102
RAISERROR, 131
ROLLBACK, 179
RTRIM, 93
SELECT, 82–86
stored procedures, 125–126,

134
transactions, 177–178, 180
UNION, 87, 90
UPDATE, 91–92
WHERE clause, 83
wildcards, 93

static cursors, 62, 149
statistics, 243, 299
stopping services, 22
stored procedures

advantages, 135
creating, 125–128
deleting, 136
disadvantages, 135
dropping, 136
encrypting, 142
naming, 134–136
nested stored procedures, 133
recursive stored procedures,

133–134
removing, 136
renaming, 134–136
sending e-mail, 288–289
syntax, 126–128
system functions, 264
system stored procedures,

134, 264, 266–270
temporary stored procedures,

62, 132
Transact-SQL, 125–126, 134
types, 132–134

storing backups, 211
subqueries, 118–119
switches (command-line

utilities), 43
switching versions of SQL

Server, 42
Sylvain SQL Programmer 2001

(BMC Software), 368

syntax
cursors, 146
stored procedures, 126–128
triggers, 138–139

system databases
copying, 249
data file, 63
deleting, 63, 80
dropping, 63, 80
file names, 64
locations, 64
log file, 63
maintenance, 241
Master, 62
Model, 63
modifying, 62, 64
MSDB, 63
overview, 61
performance issues, 63
removing, 63, 80
TempDB, 62–63, 301–302

system functions, 102–103
system information

accessing, 263–264
information schema views,

264–266
ODBC catalog functions, 264
OLE DB schema rowsets, 264
system functions,

102–103, 264
system stored procedures,

264, 266–270
system requirements for SQL

Server 2000, 6–8
system stored procedures, 134,

264, 266–270
system tables, 263

�
T-SQL

aggregate functions, 118
CASE function, 120
comments, 128–129
cursors, 145–152
data types, 85–86
debugging, 129–131
error handling, 129–131
keywords, 82
operators, 113–117
overview, 81–82
subqueries, 118–119
support, 81
templates, 103

T-SQL statements
* (asterisk), 83–84
ALTER TRIGGER, 144
BEGIN TRANSACTION, 178–179
CASE statement, 119–120

Index380

494840-9 Index.F 8/28/01 12:56 PM Page 380

COMMIT TRANSACTION,
178–179

control-of-flow statements,
111–113

DELETE, 92
executing, 82
FETCH, 146–147, 149
FROM clause, 83
INSERT, 90–91
IS (NOT) NULL, 93
JOIN, 87–89
LIKE, 93
LTRIM, 93
OPEN, 146
ORDER BY clause, 86
Query Analyzer, 95–102
RAISERROR, 131
ROLLBACK, 179
RTRIM, 93
SELECT, 82–86
stored procedures, 125–126,

134
transactions, 177–178, 180
UNION, 87, 90
UPDATE, 91–92
WHERE clause, 83
wildcards, 93

T-SQL variables
declaring, 107–108
explicit conversion, 110–111
implicit conversion, 109, 111
using, 108–109

tables
altering, 101
attributes, 66
creating, 100–101
definition, 52, 57
deleting, 102
deleting data, 92
dropping, 102
indexes, 156–157
inserting data, 90–91
joins, 87–89
removing, 102
statistics, 243
system tables, 263
temporary tables, 62
triggers, 138–139, 141
unions, 87, 90
updating data, 91

tasks
automating, 273
database maintenance,

241–247
wizards, 38

TechSmith SnagIt32, 368
TempDB database, 62–63,

301–302
templates

Model database, 63
Object Browser, 104

Query Analyzer, 103
Transact-SQL, 103

temporary stored procedures,
62, 132

temporary tables, 62
third-party tools on CD-ROM,

367–368
toolbar, 34–35
tools

arguments, 43
bcp, 42–43, 198–200
distrib, 43
dtsrun, 42
dtswiz, 42
isql, 42, 44
isqlw, 42, 44
itwiz, 42
logread, 43
odbccmpt, 42
osql, 42–43
rebuildm, 42
rebuildm.exe, 315
replmer, 43
scm, 43
snapshot, 43
sqlftwiz, 43
sqlservr, 42
switches, 43
vswitch, 42
wiztrace, 43

ToolsBinn directory, 24
TPC (Transaction Processing

Performance Council),
57

traces, 294–296
Transact-SQL

aggregate functions, 118
CASE function, 119–120
comments, 128–129
cursors, 145–152
data types, 85–86
debugging, 129–131
error handling, 129–131
keywords, 82
operators, 113, 115–117
overview, 81–82
subqueries, 118–119
support, 81
templates, 103

Transact-SQL statements
* (asterisk), 83–84
ALTER TRIGGER, 144
BEGIN TRANSACTION, 178–179
CASE statement, 119–120
COMMIT TRANSACTION,

178–179
control-of-flow statements,

111–113
DELETE, 92
executing, 82
FETCH, 146–147, 149

FROM clause, 83
INSERT, 90–91
IS (NOT) NULL, 93
JOIN, 87–89
LIKE, 93
LTRIM, 93
OPEN, 146
ORDER BY clause, 86
Query Analyzer, 95–102
RAISERROR, 131
ROLLBACK, 179
RTRIM, 93
SELECT, 82–86
stored procedures,

125–126, 134
transactions, 177–178, 180
UNION, 87, 90
UPDATE, 91–92
WHERE clause, 83
wildcards, 93

Transact-SQL variables
declaring, 107–108
explicit conversion, 110–111
implicit conversion, 109, 111
using, 108–109

transaction logs
backups, 203, 207
ldf extension, 74
optimizing, 302
viewing, 77

Transaction Processing
Performance Council
(TPC), 57

transactions
ACID, 178
beginning, 178–179
committing, 179
designing, 183
Distributed Transaction

Coordinator (DTC), 22,
181–182, 252, 259–261

distributed transactions, 181
explicit transactions, 180–181
implicit transactions, 180–181
isolation levels, 182–183
locks, 183–186
naming, 179
nested transactions, 181
performance issues, 183
rollbacks, 179
Transact-SQL, 177–180
uses, 177–178

triggers
AFTER triggers, 138–141
business logic, 137
caution about using, 138
creating, 138–139, 143
database integrity, 137, 142
deleting, 143
dropping, 143

Continued

Index 381

494840-9 Index.F 8/28/01 12:56 PM Page 381

triggers (continued)
encrypting, 142
events, 138
executing, 137–138
INSTEAD OF triggers,

138–139, 141
managing, 139, 143
modifying, 144
naming, 144
nested triggers, 142–143
recursive triggers, 142–143
referential integrity, 137, 142
removing, 143
syntax, 138–139
tables, 138–139, 141
types, 138–143
viewing information about

triggers, 144
troubleshooting

errorlog, 20
faulty installation, 19–20
mail services, 289–290
setup problems, 20
SQL Books Online, 35
sqlstp.log, 20

tuning
DBCC (Database Consistency

Check), 302–303
Index Tuning Wizard,

299–301
monitoring, 294–296
profiling, 294–296
queries, 296–299

�
uninstalling SQL Server 2000,

25–26
UNION statements, 87, 90
UNIQUE constraints, 170
UPDATEs

overview, 91–92
triggers, 138

updating data in tables, 91
upgrades

HTML Help, 9
Internet Explorer, 9

user accounts
logins, 226–230, 232
multiuser environments,

233–234
permissions, 230–232
roles, 226
setting up, 225

user IDs, 22
user-defined integrity, 168
utilities

arguments, 43
bcp, 42–43, 198–200
distrib, 43

dtsrun, 42
dtswiz, 42
isql, 42, 44
isqlw, 42, 44
itwiz, 42
logread, 43
odbccmpt, 42
osql, 42–43
rebuildm, 42
rebuildm.exe, 315
replmer, 43
scm, 43
snapshot, 43
sqlftwiz, 43
sqlservr, 42
switches, 43
vswitch, 42
wiztrace, 43

�
values

CASE function, 119–120
NULL values, 175

variables
declaring, 107–108
explicit conversion, 110–111
implicit conversion, 109, 111
using, 108–109

verifying backups, 211
versions of SQL Server, 42, 79
viewing

alerts, 280
data files, 77
transaction log, 77
trigger information, 144

views
creating, 327
indexes, 156
security uses, 327

Visual Basic, 44
Visual C++, 44
vswitch utility, 42

�
Web Assistant Wizard, 41,

347–348
Web browsers

Internet Explorer 5.0, 9
Internet Explorer 5.5, 368

Web servers, 348
Web sites

general-interest SQL Server
Web sites, 368

Microsoft Web sites, 369
SQL Security issues Web

sites, 369

SQL Server magazine Web
sites, 369

Transaction Processing
Performance Council
(TPC), 57

Windows NT/2K sites Web
sites, 369

WHERE clause, 83
wildcards (Transact-SQL), 93
Windows 2000 login account

information, 23
Windows CE Edition MS SQL

Server 2000, 8
Windows NT login account

information, 22–23
Windows Registry, 8
WinZip 8.0 (Nico Mak

Computing), 368
wizards

accessing, 37–39
Backup Wizard, 203–206
Books Online wizard, 39
Configure Publishing and

Distribution Wizard,
218–220

Copy Database Wizard, 249
Create Login Wizard, 226–230
Database Maintenance Plan

Wizard, 241–247
Database Wizard, 73–74
definition, 37
DTS Import/Export Wizard,

192–197
English Query, 342–343
Full-Text Indexing Wizard, 343
Index Tuning Wizard, 157,

299–301
Index Wizard, 158–163
Installation Wizard, 9
Job Creation Wizard, 276
Push Subscription Wizard,

222–223
Register a SQL Server

wizard, 39
Register SQL Server 2000

Wizard, 31–32
Replication, 41
SQL Profiler wizard, 40
SQL Query Analyzer wizard, 40
using, 38
Web Assistant Wizard, 41,

347–348
wiztrace utility, 43

�
XML, 349–350

Index382

494840-9 Index.F 8/28/01 12:56 PM Page 382

Hungry Minds, Inc.
End-User License Agreement

READ THIS. You should carefully read these terms and conditions before opening the
software packet(s) included with this book (“Book”). This is a license agreement
(“Agreement”) between you and Hungry Minds, Inc. (“HMI”). By opening the accompanying
software packet(s), you acknowledge that you have read and accept the following terms and
conditions. If you do not agree and do not want to be bound by such terms and conditions,
promptly return the Book and the unopened software packet(s) to the place you obtained
them for a full refund.

1. License Grant. HMI grants to you (either an individual or entity) a nonexclusive
license to use one copy of the enclosed software program(s) (collectively, the
“Software”) solely for your own personal or business purposes on a single com-
puter (whether a standard computer or a workstation component of a multi-user
network). The Software is in use on a computer when it is loaded into temporary
memory (RAM) or installed into permanent memory (hard disk, CD-ROM, or other
storage device). HMI reserves all rights not expressly granted herein.

2. Ownership. HMI is the owner of all right, title, and interest, including copyright,
in and to the compilation of the Software recorded on the disk(s) or CD-ROM
(“Software Media”). Copyright to the individual programs recorded on the Software
Media is owned by the author or other authorized copyright owner of each pro-
gram. Ownership of the Software and all proprietary rights relating thereto remain
with HMI and its licensers.

3. Restrictions On Use and Transfer.
(a) You may only (i) make one copy of the Software for backup or archival pur-

poses, or (ii) transfer the Software to a single hard disk, provided that you
keep the original for backup or archival purposes. You may not (i) rent or
lease the Software, (ii) copy or reproduce the Software through a LAN or
other network system or through any computer subscriber system or bulletin-
board system, or (iii) modify, adapt, or create derivative works based on the
Software.

(b) You may not reverse engineer, decompile, or disassemble the Software. You
may transfer the Software and user documentation on a permanent basis,
provided that the transferee agrees to accept the terms and conditions of this
Agreement and you retain no copies. If the Software is an update or has been
updated, any transfer must include the most recent update and all prior
versions.

4. Restrictions on Use of Individual Programs. You must follow the individual
requirements and restrictions detailed for each individual program in the About the
CD appendix of this Book. These limitations are also contained in the individual
license agreements recorded on the Software Media. These limitations may include
a requirement that after using the program for a specified period of time, the user
must pay a registration fee or discontinue use. By opening the Software packet(s),
you will be agreeing to abide by the licenses and restrictions for these individual
programs that are detailed in the About the CD appendix and on the Software

504840-9 EULA.F 8/28/01 12:56 PM Page 383

Media. None of the material on this Software Media or listed in this Book may ever
be redistributed, in original or modified form, for commercial purposes.

5. Limited Warranty.
(a) HMI warrants that the Software and Software Media are free from defects in

materials and workmanship under normal use for a period of sixty (60) days
from the date of purchase of this Book. If HMI receives notification within
the warranty period of defects in materials or workmanship, HMI will replace
the defective Software Media.

(b) HMI AND THE AUTHOR OF THE BOOK DISCLAIM ALL OTHER WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PUR-
POSE, WITH RESPECT TO THE SOFTWARE, THE PROGRAMS, THE SOURCE
CODE CONTAINED THEREIN, AND/OR THE TECHNIQUES DESCRIBED IN
THIS BOOK. HMI DOES NOT WARRANT THAT THE FUNCTIONS CONTAINED
IN THE SOFTWARE WILL MEET YOUR REQUIREMENTS OR THAT THE OPER-
ATION OF THE SOFTWARE WILL BE ERROR FREE.

(c) This limited warranty gives you specific legal rights, and you may have other
rights that vary from jurisdiction to jurisdiction.

6. Remedies.
(a) HMI’s entire liability and your exclusive remedy for defects in materials and

workmanship shall be limited to replacement of the Software Media, which
may be returned to HMI with a copy of your receipt at the following address:
Software Media Fulfillment Department, Attn.: Microsoft SQL Server 2000 Crash
Course, Hungry Minds, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, or
call 1-800-762-2974. Please allow four to six weeks for delivery. This Limited
Warranty is void if failure of the Software Media has resulted from accident,
abuse, or misapplication. Any replacement Software Media will be warranted
for the remainder of the original warranty period or thirty (30) days,
whichever is longer.

(b) In no event shall HMI or the author be liable for any damages whatsoever
(including without limitation damages for loss of business profits, business
interruption, loss of business information, or any other pecuniary loss) aris-
ing from the use of or inability to use the Book or the Software, even if HMI
has been advised of the possibility of such damages.

(c) Because some jurisdictions do not allow the exclusion or limitation of liability
for consequential or incidental damages, the above limitation or exclusion
may not apply to you.

7. U.S. Government Restricted Rights. Use, duplication, or disclosure of the
Software for or on behalf of the United States of America, its agencies and/or
instrumentalities (the “U.S. Government”) is subject to restrictions as stated in
paragraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause
of DFARS 252.227-7013, or subparagraphs (c) (1) and (2) of the Commercial
Computer Software - Restricted Rights clause at FAR 52.227-19, and in similar
clauses in the NASA FAR supplement, as applicable.

504840-9 EULA.F 8/28/01 12:56 PM Page 384

8. General. This Agreement constitutes the entire understanding of the parties and
revokes and supersedes all prior agreements, oral or written, between them and
may not be modified or amended except in a writing signed by both parties hereto
that specifically refers to this Agreement. This Agreement shall take precedence
over any other documents that may be in conflict herewith. If any one or more
provisions contained in this Agreement are held by any court or tribunal to be
invalid, illegal, or otherwise unenforceable, each and every other provision shall
remain in full force and effect.

504840-9 EULA.F 8/28/01 12:56 PM Page 385

CD-ROM Installation Instructions

The CD that comes with this product features an Autorun program. Install the disc
(face-up) into your CD-ROM drive and wait for the program to begin. You will see
an interface with five buttons, as follows:

� Install Test: This button starts the process that installs the special
Weekend Crash Course assessment test onto your computer.

� View eBook: This button allows you to view the book in a searchable,
electronic format.

� Browse CD: Look through the contents of this CD, and install the preview
materials included on the CD.

� Links: This button provides you with a compendium of the URLs in this
book presented as live Internet links.

� Exit: Quits the autorun program.

For more information about the CD, see the “What’s on the CD-ROM” appendix.

514840-9 cdinstall.F 8/28/01 12:56 PM Page 386

	Microsoft ® SQL Server 2000 Weekend Crash Course ™ Alex Kriegel
	Front Matter
	Who Should Read this Book
	What You Need to Have
	What Results Can You Expect?
	Layout and Features
	Accompanying CD-ROM
	Reach Out

	Part I Friday Evening
	Getting Started
	Session Checklist
	Understanding Microsoft SQL Server
	Installing SQL Server 2000
	How Does SQL Server 2000 Compare to the Other Guys?
	Session Checklist

	Go Configure
	Fixing a Faulty Installation
	Running SQL Server Service Manager
	Managing Configuration Tasks
	Locating SQL Server Files
	Adding Components
	Uninstalling SQL Server

	First Look at Enterprise Manager Console
	Session Checklist
	Starting the Enterprise Manager
	Creating Server Groups and Registering Servers
	Down Under: Inspecting Registered SQL Server Nodes
	Considering Your Options
	Accessing SQL Server Books Online

	Second Look at Enterprise Manager Console
	Session Checklist
	Meeting the Wizards
	Running Command-Line Utilities
	Understanding Data Transformation Services
	Accessing SQL Server Agent

	Friday Evening Questions

	Part II Saturday Morning
	Relational Database Concepts
	Session Checklist
	Identifying the Limitations of Spreadsheet Programs
	Understanding Legacy Database Models
	Introducing the Relational Database Model
	Exploring Relational-Database Management-System Implementations
	Learning Relational-Database Terminology

	SQL Server Databases
	Session Checklist
	Understanding the SQL Server System Databases
	Exploring the SQL Server Sample Databases
	Learning the Basics of Relational Database Design

	Creating and Using a Custom Database
	Session Checklist
	Creating a New Database in SQL Server 2000
	Modifying Database and Transaction Log Properties
	Deleting a Database

	Transact-SQL Programming Language
	Session Checklist
	Learning about Transact SQL
	Using the SELECT Keyword
	Working with the JOIN and UNION Keywords
	Using the INSERT, UPDATE, and DELETE Keywords
	Knowing about Additional T-SQL Keywords and Functions
	Session Checklist
	Learning about T-SQL and SQL Query Analyzer

	T-SQL and SQL Query Analyzer
	Creating, Altering, and Dropping Databases with T-SQL
	Creating, Altering, and Dropping Tables with T-SQL
	Getting Information about Your SQL Server
	Working with the Query Analyzer Templates and the Object Browser

	Programming with T-SQL
	Session Checklist
	Declaring and Using T-SQL Variables
	Using Control-of-Flow Statements
	Exploring T-SQL Operators
	Working with Aggregate Functions
	Running Subqueries
	Using the CASE Function

	Saturday Morning Questions

	Part III Saturday Afternoon
	Creating and Using Stored Procedures
	Session Checklist
	Creating Stored Procedures
	Commenting Transact-SQL Code
	Error Handling
	Using Different Types of Stored Procedures
	Renaming and Dropping a Stored Procedure
	The Advantages and Disadvantages of
	Using Stored Procedures
	Session Checklist
	Introducing Triggers

	Trigger Happy
	Managing Triggers

	Introducing Cursors
	Session Checklist
	Understanding Cursors
	Using Different Types of Cursors
	Understanding the Scope of the Cursors
	Setting Cursor Concurrency Options
	Choosing the Right Cursor

	Understanding Indexes
	Session Checklist
	Using Indexes
	Designing an Index
	Creating and Deleting an Index
	Managing an Index

	Rules, Defaults, and Constraints
	Session Checklist
	Enforcing Data Integrity
	Understanding NULL Values

	Understanding Transactions and Locks
	Session Checklist
	Understanding Transactions
	Setting Isolation Levels
	Introducing SQL Server Locks
	Exploring Lock Types
	Dealing with Deadlocks

	Saturday Afternoon Questions

	Part IV Saturday Evening
	Data Transformation Services
	Session Checklist
	Introducing Data Transformation Services
	Importing and Exporting Data through DTS
	Maintaining DTS Packages
	Using the Bulk Copy Command-Line Utility

	SQL Server Backup
	Session Checklist
	Implementing Backup and Recovery Planning
	Using Different Backup Strategies
	Selecting a Recovery Mode
	Restoring a Database
	Managing Backups

	SQL Server Replication
	Session Checklist
	Reviewing SQL Server Replication
	Selecting a Replication Model
	Preparing for Replication
	Setting up Replication

	User Management
	Session Checklist
	Setting up a User Account
	Managing User Permissions
	Managing a Multiuser Environment

	Saturday Evening Questions

	Part V Sunday Morning
	Managing Your Databases Visually
	Session Checklist
	Devising a Database-Maintenance Plan
	Scripting and Documenting Your Database
	Moving and Copying Database Files

	Distributed Transaction Coordinator
	Session Checklist
	Using Remote Servers and Linked Servers
	Accessing External Data Sources
	Using Microsoft Distributed Transaction Coordinator (MSDTC)

	Accessing SQL Server System Information
	Session Checklist
	Obtaining SQL Server System Information
	Using Information Schema Views
	Using System Stored Procedures

	Automating Administration Tasks with SQL Server Agent
	Session Checklist
	Configuring and Using SQL Server Agent
	Scheduling Jobs
	Creating Alerts
	Managing Operators
	Administering Multiple Servers

	Configuring SQL Server Mail
	Session Checklist
	Setting up Your Mail Profile
	Configuring SQL Mail and SQL Server Agent Mail
	Sending Mail through Extended Stored Procedures
	Troubleshooting

	Performance Tuning and Optimization
	Session Checklist
	Monitoring and Profiling
	Tuning SQL Queries
	Using the Index Tuning Wizard
	Optimizing TempDB and the Transaction Log
	Using Database Consistency Check (DBCC)
	Service Packs

	Sunday Morning Questions

	Part VI Sunday Afternoon
	Disaster Recovery
	Session Checklist
	Planning for Disaster
	Identifying Basic Disaster Scenarios
	Creating Standby Servers
	Back Up and Restore!
	Managing the Disaster

	SQL Server Security
	Session Checklist
	Planning for Security
	Introducing SQL Server Authentication Modes
	Configuring SQL Server Roles
	Using Views as a Security Mechanism
	Understanding SQL Server File Permissions
	Auditing SQL Server

	Database Connectivity
	Session Checklist
	Introducing DBLIB, ODBC, and OLE DB
	Configuring ODBC Data Sources
	Presenting DAO, RDO, and ADO
	Interoperability with Non-Windows Machines and the Internet

	Advanced Features of SQL Server 2000
	Session Checklist
	Using English Query
	Performing Full-Text Searches
	Using SQL Server 2000 Analytical Services
	Linking OLAP and Business Logic
	Running the Web Assistant Wizard
	Getting SQL Server XML Support
	Sunday Afternoon Questions

	Appendix A: Answers to Part Reviews
	Friday Evening Review Answers
	Saturday Morning Review Answers
	Saturday Afternoon Review Answers
	Saturday Evening Review Answers
	Sunday Morning Review Answers
	Sunday Afternoon Review Answers

	Appendix B: What's on the CD-ROM
	Hungry Minds, Inc. End- User License Agreement
	CD-ROM Installation Instructions

