

 Enhance Your Knowledge
Advance Your Career

Professional Mic rosoft SQL Ser ver 2008
Integration Services
978-0-470-24795-2
This book shows developers how to master the 2008 release of SSIS,
covering topics including data warehousing with SSIS, new methods of
managing the SSIS platform, and improved techniques for ETL operations.

Professional SQL Ser ver 2008 Reporting Services
978-0-470-24201-8
This book teaches solutions architects, designers, and developers how
to use Microsoft’s reporting platform to create reporting and business
intelligence solutions.

Professional Mic rosoft SQL Ser ver
Analysis Services 2008 with MDX
978-0-470-24798-3
Professional Microsoft SQL Server Analysis Services 2008 with MDX
shows readers how to build data warehouses and multidimensional
databases, query databases, and use Analysis Services and other
components of SQL Server to provide end-to-end solutions.

Professional Microsoft SQL Ser ver 2008 Programming
978-0-470-25702-9
This updated new edition of Wrox’s best-selling SQL Server book has been
expanded to include coverage of SQL Server 2008’s new datatypes, new
indexing structures, manageability features, and advanced time-zone
handling.

Professional Mic rosoft SQL Server 2008 A dministration
978-0-470-24796-9
A how-to guide for experienced database administrators, this book is
loaded with unique tips, tricks, and workarounds for handling the most
difficult SQL Server administration issues. The authors discuss data
capture, performance studio, Query Governor, and new techniques for
monitoring and policy management.

Professional

SQL Se rver® 2008 Reporting Se rvices
Microsoft®

Beginning Microsoft SQL Se rver 2008 P rogramming
978-0-470-25701-2
This comprehensive introduction to SQL Server covers the fundamentals and moves on to discuss how to create and change
tables, manage keys, write scripts, work with stored procedures, and much more.

Beginning T-SQL with Mic rosoft SQ L Server 2005 and 2008
978-0-470-25703-6
Beginning T-SQL with Microsoft SQL Server 2005 and 2008 provides a comprehensive introduction to the T-SQL programming
language, with concrete examples showing how T-SQL works with both SQL Server 2005 and SQL Server 2008.

Beginning Database De sign Solutions
978-0-470-38549-4
Beginning Database Design Solutions introduces IT professionals—both DBAs and database developers—to database design.
It explains what databases are, their goals, and why proper design is necessary to achieve those goals. It tells how to decide
what should be in a database to meet the application’s requirements. It tells how to structure the database so it gives good
performance while minimizing the chance for error.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.63"

Professional Microsoft® SQL Ser ver® 2008
Reporting Ser vices

Foreword ... xxv

Introduction ... xxvii

Part I: Getting Star ted
Chapter 1: Introducing Repor ting Ser vices ..3

Chapter 2: Business Intelligence Solutions ..23

Chapter 3: Repor ting Ser vices Installation ..39

Chapter 4: Repor ting Ser vices Architecture ..65

Part II: Repor t Design
Chapter 5: Basic Repor t Design ..89

Chapter 6: Repor t Layout and Formatting ..129

Chapter 7: Designing Data Access ..177

Chapter 8: Advanced Repor t Design ..227

Part III: Business Intelligence Repor ting
Chapter 9: Repor ting with Analysis Ser vices ...309

Chapter 10: Repor t Solution P atterns and Recipes345

Part IV: Enabling End-User Repor ting with
Report Builder 1.0

Chapter 11: Repor t Models ..391

Chapter 12: Repor t Builder 1.0 ..419

Part V: Administering Repor ting Ser vices
Chapter 13: Content Management ..451

Chapter 14: Repor t Ser ver Administration ...503

(Continues)

ffirs.indd iffirs.indd i 11/13/08 5:01:01 PM11/13/08 5:01:01 PM

Part VI: Reporting Ser vices Integration and
Custom Programming

Chapter 15: Integrating Repor ts into Custom Applications541

Chapter 16: Integrating Repor ts with ShareP oint ...595

Chapter 17: Extending Repor ting Ser vices ..635

Appendix A: RDL Object Model .. 685

Appendix B: T - SQL Command Syntax Reference ... 693

Appendix C: T - SQL System V ariables and Functions 715

Appendix D: MDX Reference .. 735

Index .. 759

ffirs.indd iiffirs.indd ii 11/13/08 5:01:02 PM11/13/08 5:01:02 PM

Professional

Microsoft® SQL Ser ver® 2008
Reporting Ser vices

ffirs.indd iiiffirs.indd iii 11/13/08 5:01:02 PM11/13/08 5:01:02 PM

ffirs.indd ivffirs.indd iv 11/13/08 5:01:02 PM11/13/08 5:01:02 PM

Professional

Microsoft® SQL Ser ver® 2008
Reporting Ser vices

Paul Turley, Thiago Silva, Bryan C. Smith, and Ken Withee
(Hitachi Consulting)

Wiley Publishing, Inc.

ffirs.indd vffirs.indd v 11/13/08 5:01:02 PM11/13/08 5:01:02 PM

Professional Microsoft® SQL Ser ver® 2008
Reporting Ser vices
Published by
Wiley Publishing, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com

Copyright © 2009 by Wiley Publishing, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-0-470-24201-8

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data

 Professional Microsoft SQL server 2008 reporting services / Paul Turley ... [et al.].
 p. cm.
 Includes index.
 ISBN 978-0-470-24201-8 (paper/website)
 1. SQL server. 2. Database management. I. Turley, Paul.
 QA76.9.D3P7663 2009
 005.75'85—dc22

2009042930

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
 Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
 Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for
 permission should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd.,
 Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or
warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim
all warranties, including without limitation warranties of fitness for a particular purpose. No warranty may
be created or extended by sales or promotional materials. The advice and strategies contained herein may
not be suitable for every situation. This work is sold with the understanding that the publisher is not engaged
in rendering legal, accounting, or other professional services. If professional assistance is required, the services
of a competent professional person should be sought. Neither the publisher nor the author shall be liable for
damages arising herefrom. The fact that an organization or web site is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the
information the organization or web site may provide or recommendations it may make. Further, readers
should be aware that Internet web sites listed in this work may have changed or disappeared between when
this work was written and when it is read.

For general information on our other products and services please contact our Customer Care Department
within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Wrox Programmer to Programmer, and related
trade dress are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the
United States and other countries, and may not be used without written permission. Microsoft and SQL
Server are registered trademarks of Microsoft Corporation in the United States and/or other countries. All
other trademarks are the property of their respective owners. Wiley Publishing, Inc., is not associated with
any product or vendor mentioned in this book.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be
available in electronic books.

ffirs.indd viffirs.indd vi 11/13/08 5:01:07 PM11/13/08 5:01:07 PM

www.wiley.com

 This is dedicated to the memory of my Mom, who always believed in me. To my family: my wife,
Sherri, for her unwavering love and support; my wonderful daughters and son for their

understanding and patience; and to my Dad, Mark, for always being there.

— Paul Turley

 I dedicate this book to the women in my life: my lovely wife, Michelle, who has patiently put
up with me and supported me in this venture; my beautiful daughter, Gabriella, whose

sunshine smiles have lit up my every day; and, finally, I dedicate this to my mother,
Lucia, who has encouraged me and given me words of wisdom my entire life.

— Thiago Silva

 I dedicate this book to my family, immediate and extended, for their support
and encouragement throughout the development of this book.

— Bryan C. Smith

 I dedicate this book to my wife, Rosemarie, and thank her for giving up nearly every
weekend outing during the summer of 2008 while I was writing this book. Rosemarie
has been my strength in this world, and her presence in my life has taken me further

than I ever dreamed was possible. I love you!

 — Ken Withee

ffirs.indd viiffirs.indd vii 11/13/08 5:01:08 PM11/13/08 5:01:08 PM

ffirs.indd viiiffirs.indd viii 11/13/08 5:01:08 PM11/13/08 5:01:08 PM

 About the Author s
 Paul Turley (Vancouver, WA) is a Manager of Specialized Services for Hitachi Consulting Education
Services. Paul manages the Business Intelligence training team and teaches classes for companies
throughout the world on Microsoft SQL Server technologies. He works with companies to design
architecture for and build BI and reporting solutions. He has been developing business database
solutions since 1991 for companies like Microsoft, Disney, Nike, and Hewlett - Packard. He has been a
Microsoft Certified Trainer since 1996 and holds several industry certifications, including MCTS and
MCITP for BI, MCSD, MCDBA, MSF Practitioner, and IT Project+.

 Paul has authored and coauthored several books and courses on database, business intelligence, and
application development technologies. He is the lead courseware developer for the Hitachi Consulting
courses: “ SQL Server 2008 Business Intelligence Solutions ” and “ SQL Server 2008 Reporting Services
Solutions. ” His books include Professional SQL Server 2005 Reporting Services , Professional SQL Server
Reporting Services (SQL Server 2000) , Beginning Transact - SQL with SQL Server 2000 and 2005 , Beginning SQL
Server 2005 Administration , Beginning Access 2002 VBA , Data Warehousing with SQL Server 2000 Analysis
Services , and Professional Access 2000 Programming — all from Wrox. He is also a contributing author to
 SQL Server 2005 Integration Services Step by Step from Microsoft Press.

 Thiago Silva (Dallas, TX) is a Manager of Specialized Services for Hitachi Consulting. Thiago has also
been designing and developing custom .NET, business intelligence, and Reporting Services solutions
since the early days of .NET and SQL Server 2000. He is a part of the Microsoft Strategic Alliance
leadership group within Hitachi Consulting, where he helps create, manage, and deliver internal
training materials and intellectual capital around the Microsoft technology stack. He also teaches the
SQL Server Reporting Services course offered by Hitachi Consulting.

 Thiago has been a featured guest on the talk show podcast .NET Rocks and is an active member of the
.NET development community, frequently writing on his blog Silvaware, at http://silvaware
.blogspot.com . Thiago holds a Bachelor of Business Administration degree in Management
Information Systems from Texas A & M University, and a MCAD.NET technical certification.

 Bryan C. Smith (Irving, TX) is a Manager of Specialized Services for Hitachi Consulting. Bryan has been
developing and administering database solutions since 1997 for clients in a variety of industries. These
days, he focuses on helping clients build Business Intelligence solutions using the Microsoft SQL Server
product suite. Bryan holds MCITP, MCTS, MCDBA, A+, Network+, and Server+ certifications, and
serves as an instructor for Hitachi Consulting ’ s SQL Server Analysis Services course.

 Ken Withee (Seattle, WA) is a Senior Consultant with Hitachi Consulting. He earned a Master of Science
degree in Computer Science studying under Dr. Edward Lank at San Francisco State University. Their
work has been published in the LNCS journals and was the focus of a presentation at the IASTED
conference in Phoenix. Their work has also been presented at various other Human Computer
Interaction conferences throughout the world.

 Ken has more than 7 years of professional computer and management experience working with a vast
range of technologies.

 Ken is a Microsoft Certified Technology Specialist and is certified with Microsoft Office SharePoint
Server 2007 and SQL Server 2005, and has passed the certification exam for .NET 2.0.

 Ken currently lives with his wife Rosemarie in Seattle, WA.

ffirs.indd ixffirs.indd ix 11/13/08 5:01:08 PM11/13/08 5:01:08 PM

ffirs.indd xffirs.indd x 11/13/08 5:01:08 PM11/13/08 5:01:08 PM

 Acquisitions Editor
 Katie Mohr

 Development Editor
 John Sleeva

 Technical Editor
 David Dillon

 Production Editor
 Christine O ’ Connor

 Copy Editor
 Cate Caffrey

 Editorial Manager
 Mary Beth Wakefield

 Production Manager
 Tim Tate

 Vice President and Executive Group Publisher
 Richard Swadley

 Vice President and Executive Publisher
 Joseph B. Wikert

 Project Coordinator , Cover
 Lynsey Stanford

 Proofreader
 Publication Services, Inc.

 Indexer
 Johnna VanHoose Dinse

Credits

ffirs.indd xiffirs.indd xi 11/13/08 5:01:08 PM11/13/08 5:01:08 PM

ffirs.indd xiiffirs.indd xii 11/13/08 5:01:08 PM11/13/08 5:01:08 PM

 Acknowledgments

 I acknowledge Thierry D ’ Hers, Brian Welcker, Jason Carlson, Chris Hays, Sean Boon, Lukasz Pawlowski,
and all the other members of the Reporting Services product team who have been so accessible and
supportive of this effort.

 Thanks to Lance Baldwin for his guidance; to Drew Naukam for his leadership; and to Stephanie Gulick,
Chris Leiter, D.J. Norton, and the rest of the Microsoft National team at Hitachi Consulting for their
support and many contributions. Thanks to Reed Jacobson for his contributions and to everyone at
Hitachi Consulting for being a world - class organization, co - workers, and friends.

 Thanks to Katie Mohr and John Sleeva at Wrox for their patience, support, and encouragement.

 Finally, thanks to the dedication of my coauthors: Thiago Silva for his hard work and resourcefulness,
Bryan C. Smith for his help and advice, and Ken Withee for stepping up to try something new. You ’ re all
true professionals.

 — Paul Turley

 I acknowledge:

 Thierry D ’ Hers, Robert Bruckner, Lukasz Pawlowski, Chris Hays, Chris Baldwin, and Brian Welcker, at
Microsoft, for their guidance and technical assistance during the authoring of the book;

 Lead author Paul Turley for giving me the opportunity to be a part of this project, as well as my
coauthors Bryan C. Smith and Ken Withee for assisting with ideas and insightful discussions throughout
the entire writing process.

 John Sleeva and Katie Mohr at Wrox for their flexibility and guidance during the development of the book.

 My colleagues at Hitachi Consulting, who have helped me sharpen my skills and become a better
consultant and developer.

 My family in Brazil, who have provided encouragement during the writing of this book.

 And, finally, God, who gives me strength each day and lifts me up when I ’ ve fallen down.

 — Thiago Silva

 I acknowledge:

 John Sleeva and Katie Mohr at Wrox for their guidance on the book.

 Carolyn Chau, Chris Baldwin, John Sirmon, and Matthew Hofacker at Microsoft for their response to
technical questions.

ffirs.indd xiiiffirs.indd xiii 11/13/08 5:01:09 PM11/13/08 5:01:09 PM

xiv

 Coauthors Paul Turley, Ken Withee, and Thiago Silva for their ideas, suggestions, and assistance in
designing and authoring the book.

 Haruka, Akimori Charles, and Harumi Katheryn for their patience and support throughout the last year.

 — Bryan C. Smith

 I acknowledge my mother, Maggie Blair, who has taught me persistence and compassion and who gave
me the best upbringing I could ever have hoped for; and my father, Ken Withee, who offered to
autograph copies for a price since he has the same name. Dad also taught me that commonsense will
take you very far in this world. Thanks, also, to my sister, Kate Henneinke, who is working her way
through college and who, I am confident, will achieve all of her goals. I am confident, as her older
brother, that she is a stronger person because of all the karate moves I pounded her with growing up.
I also acknowledge my grandma, Tiny Withee, who recently turned 95 and is as strong as ever; and in
memory of my grandpa, Del Withee, who taught me there is never a problem so difficult that it cannot
be solved with the right amount of thought and effort. Thanks also to my parents - in - law, Alfonso and
Lourdes Supetran, and family, for all their support and practicality. They have truly made me a global
thinker and taught me how to be a successful businessman. I only hope that Rosemarie and I can have a
fraction of the success they have had in their lifetimes.

 Thanks to Dr. Edward Lank, who got me started down the publishing path back in graduate school.

 I also acknowledge the Microsoft SSRS team (especially Thierry D ’ Hers), who have always taken the
time to answer questions and clarifications, and my fearless Microsoft National team at Hitachi
Consulting, including our leader Drew Naukam and my career advisor Dave Cooper.

 Thanks to Katie Mohr and John Sleeva at Wrox for their patience and support.

 Thanks to my coauthors: Paul Turley, who gave me the chance to be a part of this book; Bryan C. Smith,
for the long weekend chats as we nailed down technology; and Thiago Silva, for always going the extra
step to help through all aspects of the book. It has been a great experience, and I truly enjoy working
with all of you at Hitachi Consulting.

 — Ken Withee

Acknowledgments

ffirs.indd xivffirs.indd xiv 11/13/08 5:01:09 PM11/13/08 5:01:09 PM

Contents

Foreword xxv
Introduction xxvii

Part I: Getting Star ted

Chapter 1: Introducing Repor ting Ser vices 3

Not Your Father’s Repor ting Tool 4
Who Uses Repor ting Ser vices? 5
Application and Repor ting Technology 7

Blurring the Application/Reporting Line 8
Information, Now! 8

Solution Types 9
Out-of-the-Box Reports 10
Server-Based Reports 11
User-Designed and Ad hoc Reports 11

Report Design T ools 12
Report Builder 2.0 12
Business Intelligence Development Studio 13

Designing Repor ts 13
Simple Application Integration 15

Launching Reports from an Application 15
User Interaction and Dynamic Reporting 16
Intranet and Internet Report Access 17

Seamless Application Integration 17
Web Application Integration 18
Portal Integration 19
Windows Application Integration 19

Managing and Customizing the Repor t Ser ver 20
Summary 21

Chapter 2: Business Intelligence Solutions 23

Reporting Tool Options 24
Scalable Architecture 24

ftoc.indd xvftoc.indd xv 11/13/08 5:08:51 PM11/13/08 5:08:51 PM

Contents

xvi

Corporate Repor ting 24
Department and P ersonal Repor ting 25
Ad hoc and Self-Ser vice Repor ting 26
BI Solution Components 26

Report Data Sources 26
The BI Data Process 28
The BI Maturity Continuum 29
Report Types 30
Data Complexity and Report Performance 35

Summary 38

Chapter 3: Repor ting Ser vices Installation 39

The Basic Installation 39
Installing Reporting Services 40
Installing the Reporting Services Samples and SQL Server Sample Databases 58

The Enter prise Deployment 59
SQL Server Editions 60
Named Instances 62
Topology 62
Modes 63
Installation Options 63
Command-Line Installation 64

Summary 64

Chapter 4: Repor ting Ser vices Architecture 65

The Repor ting Life Cycle 66
Authoring 66
Management 67
Delivery 67

Reporting Ser vices Tools 67
Report Designer 67
Report Builder 68
Report Builder 2.0 68
Third-Party Authoring Tools 68
Report Manager 68
SharePoint Libraries and Web Parts 69
Reporting Services Configuration Manager 69
SQL Server Management Applications 69
Command-Line Utilities 70
HTML Viewer 70

ftoc.indd xviftoc.indd xvi 11/13/08 5:08:51 PM11/13/08 5:08:51 PM

Contents

xvii

Report Viewer Control 70
Reporting Ser vices Web Service 71

Reporting Services Windows Service 72
HT TP.SYS and the HT TP Listener 73
The Security Sublayer 74
Report Manager and the Web Service 75
Core Processing 75
Service Management 75
WMI and the RPC Interface 76
Reporting Services Processors and Extensions 77
The Report Processor 78
Data Processing Extensions 79
Report Items 80
Rendering Extensions 81
The Scheduling and Delivery Processor 83
Delivery Extensions 83

Reporting Ser vices Application Databases 84
ReportServer 84
ReportServerTempDB 86

Summary 86

Part II: Repor t Design

Chapter 5: Basic Repor t Design 89

Report Design 101 90
Report Designer s 91

Report Builder 2.0 92
Viewing and Setting Properties 98
Report Design with Report Builder 2.0 99
Integrated Development Environment 104

Report Design Elements 108
Data Sources 108
Data Sets 108
Reports 108

Report Definition Language 109
Report Migration and Integration 110

Report Design Elements in Detail 111
Data Regions 111
Textboxes 111
Lines 113
Rectangles 113

ftoc.indd xviiftoc.indd xvii 11/13/08 5:08:52 PM11/13/08 5:08:52 PM

Contents

xviii

Images 113
Subreports 114
The Tablix 116
Chart Essentials 119
Chart Type Categories 120
Gauges 124

Summary 128

Chapter 6: Repor t Layout and Formatting 129

Report Layout Types 130
Tabular Reports 130
Matrix Reports 131
List Reports 131
Chart Reports 131
Gauge Reports and Dashboards 132

Page Layout 132
Designing Tabular Reports 134

Defining Table Groups 138
Adding Totals and Subtotals 154
Formatting Report Data 154
Introduction to Dynamic Formatting 155

Designing Multicolumn Repor ts 156
Designing Matrix Repor ts 156
Designing Char t Repor ts 162
Designing Gauge Repor ts 170
Converting Repor ts from Other F ormats and Products 173

Importing Access Reports 174
Designing for Extensibility 174

Summary 176

Chapter 7: Designing Data Access 177

Federating Data Sources 179
Linked Servers and Ad hoc Distributed Queries 179

Business Intelligence Repor ting 180
Reporting for Relational Data 182
Data and Quer y Basics 182

Data Sources 182
Data Sources and Query Languages 188

T-SQL Quer y Design 189
Filtering Techniques 197

Filtering a Query 199

ftoc.indd xviiiftoc.indd xviii 11/13/08 5:08:52 PM11/13/08 5:08:52 PM

Contents

xix

Parameter Concepts 199
Filtering Data with Query Parameters 202
Using Stored Procedures 214

Using Other Data Sources 218
Microsoft Access 219
Microsoft Excel 222
Oracle P/L SQL 223
SyBase Adaptive Server 224

Best Practices 225
Summary 225

Chapter 8: Advanced Repor t Design 227

Configuring Headers and Footers 228
Aggregate Functions and Totals 230
Adding Totals to a Table or Matrix Report 232

Creating Repor t Templates 235
Creating Composite Repor ts 238

Anatomy of a Textbox 239
Padding and Indenting 240
Embedded Formatting 240
Designing Master/Detail Reports 244
Groups and Data-Set Scope 244

Designing Subrepor ts 252
Federating Data with a Subreport 253

Navigating Repor ts 259
Creating a Document Map 259
Links and Drill-through Reports 261

Reporting on Recur sive Relationships 263
Using Expressions and Custom Code 268

Using the Expression Builder 269
Calculated Fields 271
Conditional Expressions 273
IIF() Is Your Friend 274
Using Custom Code 277

Chart Repor ts 282
Chart Types 283
Column Charts 285
Area and Line Charts 288
Pie and Doughnut Charts 288
Bubble and Stock Charts 290
The Anatomy of a Chart 291

ftoc.indd xixftoc.indd xix 11/13/08 5:08:52 PM11/13/08 5:08:52 PM

Contents

xx

Chart Design Basics 292
Adding a Data Series 298
Adding a Secondary Axis 299
Using Multiple Chart Areas 302

Summary 304

Part III: Business Intelligence Repor ting

Chapter 9: Repor ting with Analysis Ser vices 309

Why Analysis Ser vices for Repor ting? 309
Using Repor ting Ser vices with Analysis Ser vices Data 311
Multidimensional Expression Language 312

MDX: Simple or Complex? 312
The MDX Builder 313

Non-Additive Measures 336
Using the Aggregate Function 338

MDX Proper ties and Cube F ormatting 339
Drill-Through Repor ts 340

Cube Report Actions 342
Parameter Safety Precautions 342

Best Practices and Pro visions 342
Summary 343

Chapter 10: Repor t Solution P atterns and Recipes 345

Reporting Project Requirement Guidelines 346
Key Success Factors 346
Reporting on Existing Data Sources 348
Building an End-to-End Reporting Solution 348
Report Specifications 350
Development Phases 351
Migrating and Converting Reports 354
Working with the Strengths and Limitations of the Architecture 355

Report Recipes 357
Multiple Criterion Report Filtering 357
Customizing Gauges with External Images 360
Creating a Business Scorecard 362
Reporting on SharePoint 3.0 List Data 366
Report Localization 371
Dynamic Grouping 377

ftoc.indd xxftoc.indd xx 11/13/08 5:08:53 PM11/13/08 5:08:53 PM

Contents

xxi

Dynamic Fields and Columns 380
Using Advanced and Third-Party Controls for Parameter Selection 382
Creating Sparklines 384

Summary 386

Part IV: Enabling End-User Repor ting with
Report Builder 1.0

Chapter 11: Repor t Models 391

Getting Star ted 391
Creating the Report Model Data Source 392
Building a Data Source View 395
Manipulating the Data Source View 398

Building the Repor t Model 404
Using the Report Model Wizard 404
Working with Reporting Services Report Models 408
Deploying the Report Model 413

Building Report Models from Analysis Ser vices Databases 414
Summary 416

Chapter 12: Repor t Builder 1.0 419

Report Model Over view 419
Accessing Repor t Builder 1.0 420
Building Reports 421

Table Layout 422
Matrix Layout 425
Chart Layout 430

Formatting Repor ts 434
Adding Text 434
Adjusting Column Width and Alignment 435
Modifying Font and Background Color 436

Filtering and Sor ting Repor ts 438
Filtering Reports 438
Sorting Reports 443

Adding Calculations with Expressions 443
Administration 446
The Future of Repor t Builder 1.0 447
Summary 448

ftoc.indd xxiftoc.indd xxi 11/13/08 5:08:53 PM11/13/08 5:08:53 PM

Contents

xxii

Part V: Administering Repor ting Ser vices

Chapter 13: Content Management 451

Using Repor t Manager 452
Content-Management Activities 456

Folders 457
Shared Data Sources 461
Report Models 463
Reports 466
Report Resources 480
Shared Schedules 480

Item-Level Security 483
Content-Management Automation 492

The RS Utility 492
Reporting Services Scripts 494
The RSScripter 500

Summary 501

Chapter 14: Repor t Ser ver Administration 503

Security 503
Account Management 504
System-Level Roles 508
Surface Area Management 510

Backup and Reco very 511
Application Databases 511
Encryption Keys 513
Configuration Files 515
Other Items 516

Monitoring 516
Set-up Logs 516
Windows Application Event Logs 517
Trace Logs 517
Execution Logs 520
Performance Counters 522
Server Management Reports 527

Configuration 528
Memory Management 528
URL Reservations 529
E-mail Delivery 531
Rendering Extensions 533

ftoc.indd xxiiftoc.indd xxii 11/13/08 5:08:53 PM11/13/08 5:08:53 PM

Contents

xxiii

My Reports 535
Summary 537

Part VI: Reporting Ser vices Integration and
Custom Programming

Chapter 15: Integrating Repor ts into Custom Applications 541

URL Access 542
URL Syntax 542
Accessing Reporting Services Objects 543
Reporting Services URL Parameters 549
Passing Report Information through the URL 555

Programmatic Rendering 557
Common Scenarios 558
Rendering through Windows 559
Rendering to the Web 578

Using the MicrosoftReportViewer Control 587
Embedding a Server-Side Report in a Windows Application 590

Summary 594

Chapter 16: Integrating Repor ts with ShareP oint 595

The SharePoint Technologies 596
Windows SharePoint Services (WSS) 597
Microsoft Office SharePoint Server (MOSS) 597
SharePoint Web Parts 598

Native Mode 598
Installation 598
Report Viewer 600
Report Explorer 601

Integrated Mode 603
Installation/Configuration 603
Publishing Reports 611
SharePoint Site Settings 620
Report Models 621
Report Builder 1.0 624
Report Management 626
SQL Server Reporting Services Report Viewer for Integrated Mode 629

Architecture 631
Native Mode ver sus Integrated Mode 632
Summary 634

ftoc.indd xxiiiftoc.indd xxiii 11/13/08 5:08:54 PM11/13/08 5:08:54 PM

Contents

xxiv

Chapter 17: Extending Repor ting Ser vices 635

Extension through Interfaces 637
What Is an Interface? 637
Interface Language Differences 638
Data Processing Extensions — A Detailed Look 640

Creating a Custom Data Processing Extension 643
The Scenario 643
Creating and Setting up the Project 644
Creating the DataSetConnection Object 647
Creating the DataSetParameter Class 655
Implementing IDataParameter 656
Creating the DataSetParameterCollection Class 658
Creating the DataSetCommand Class 660
Creating the DataReader Object 673
Installing the DataSetDataProcessing Extension 677
Testing the DataSetDataExtension 680

Summary 684

Appendix A: RDL Object Model 685

Appendix B: T - SQL Command Syntax Reference 693

Appendix C: T - SQL System V ariables and Functions 715

Appendix D: MDX Reference 735

Index 759

ftoc.indd xxivftoc.indd xxiv 11/13/08 5:08:54 PM11/13/08 5:08:54 PM

 Foreword

 Many people have asked me, “ How can you be so passionate about reporting when it is so mundane? ”
To me, the most exciting thing about reporting is that it is so very common. Like basic transportation,
everybody uses it in some way or another. A report is a piece of art meant to convey a message; but
unlike traditional art, that message changes based on the data driving it. The potential to help, and be
used by, millions of people and companies is one of the reasons I started writing software and eventually
joined Microsoft. No other company can reach out to so many people by making great products
accessible.

 Reporting is a very broad topic, covering areas ranging from packing lists and telephone bills to ad hoc
analysis and Excel spreadsheets. When designing Microsoft SQL Server Reporting Services, I started with
a simple definition for it: an information delivery platform. Although this definition is also very broad, it
did allow us to focus on our design while leaving us significant room to expand in later versions. This
book will help you understand the power of Reporting Services and to fully utilize its capabilities.

 Information is not just data; it is data that has been transformed into something meaningful. This
transformation is important. Any tool can read and display data; what people really need for doing their
jobs is well - thought - out, correct, and pertinent information. There are many tools that let anyone with
access to data build “ views ” or “ reports. ” However, often these users are unfamiliar with all of the
nuances of the data storage and this can produce inaccurate results or inadvertently affect the
performance of the data engine. Reporting Services acts as the official source so that there is only one
version of the truth that everyone uses.

 In the future, Microsoft plans to take this even further by integrating with Information Rights
Management so that not only will the information come from a single source, but it will also be certified,
can expire, and can be access - controlled even after it is delivered to the end - user. The data does not
always exist in one database or even come from a database. For those of us who have spent careers
working with corporate data, this is a painful truth. Very few reports (or sets of reports that give you
sufficient insight) come from a single source. Building some type of data mart or data warehouse is the
best solution, but it is not always possible because of timing, policy, or budgetary constraints. Reports
must be able to retrieve data from any source and combine them in a single report.

 What good is information if you do not have it when you need it? Delivering information is more than
just processing it and making it available; it is providing information when you need it, in any format,
and on any device you have. The common case today is the ubiquitous online access via HTML in a
browser. This is perfect when you have a computer and connectivity to the server. However, as we all
know, nothing is perfect. We need the reports when we are on a plane, in a car, with the customer, at the
game, on the production floor, and so on. This may include on your pager, telephone, fax machine,
laptop, paper, and other devices. We also need different capabilities: interactivity, pixel - perfect printing,
integration into applications like MS Excel for “ what if ” scenarios and additional analysis, universal
access via PDF, and the like. A single format and a single delivery channel are not enough, but how do
you know which ones you will need? Reporting Services insulates you from these choices. All reports
can be distributed in any channel or rendered in any format. Report design is independent of how it will
be consumed. It is the responsibility of the system to provide the report as accurately as possible, given
the constraints of the specific format or channel requested.

flast.indd xxvflast.indd xxv 11/13/08 5:01:51 PM11/13/08 5:01:51 PM

xxvi

 Building a platform is very different from building a solution. In fact, the goals are in many cases
completely opposed. A platform is successful if the developers and administrators have complete access
to all aspects of the product. They need to be able to optimize, extend, restrict, embed, and replace parts
of the product to meet their needs. This means that all of the APIs are available and documented, all
formats are open and described, and every component is configurable or replaceable. While there are
always restrictions due to the many trade - offs in software design, this was the goal when building
Reporting Services. Very much like Windows, SQL Server, or Visual Studio, Reporting Services is
designed to enable developers to build on a solid foundation and mold it to meet their business needs in
significantly less time and with more functionality, but without losing the flexibility and power of
building it themselves.

 Looking into the future, there ’ s an endless list of features and scenarios that Microsoft will add to make
the platform more powerful with little or no additional in - house development required. I have
mentioned some, and there are many that haven ’ t even been considered yet.

 We look forward to hearing from all our customers about what is important to them and how we can
make designing, building, and operating their information delivery systems easier, faster, and (I hope)
more fun.

 — Jason Carlson
 Product Unit Manager

 SQL Server Reporting Services
 Microsoft

 Jason Carlson is the Product Unit Manager for SQL Server Reporting Services. He joined Microsoft in 1996 as a
Program Manager for Visual Source Safe and Repository. In 1997, the Repository team joined SQL Server, and
Jason became the development manager for SQL Server Meta Data Services. In 2001 he built a team and started
work on V1 of Reporting Services. Before joining Microsoft, Jason owned and operated an independent software
development company. This company provided consulting and vertical software solutions for healthcare and
telecommunications.

Foreword

flast.indd xxviflast.indd xxvi 11/13/08 5:01:52 PM11/13/08 5:01:52 PM

 Introduction

 The book in your hands has been written and improved over the past 6 years and is now in its third
edition. As consultants, solution architects, and instructors, we spend our time at companies and in front
of many people who need serious solutions to meet business problems. We ’ ve been using SQL Server
Reporting Services to build reporting, business intelligence, and decision - support solutions for large and
small companies. The authors work for Hitachi Consulting, a leading business intelligence, information
technology, and business services solution provider. Since the earliest release of Reporting Services for
SQL Server 2000, we have developed and deployed many reporting solutions in dozens of corporate
environments, including the world ’ s largest software company; the largest airplane manufacturer; the
largest meat and poultry distributor; the leading cosmetics company; savings and investment banks;
the largest investment and insurance company; the world ’ s most recognizable sportswear company;
and the largest theme park, film, and entertainment company — to mention a few.

 We ’ ve helped business users understand their reporting needs and then designed reporting solutions
for many types of organizations. Reports were integrated into web sites and portals, intranet sites, and
desktop applications. We ’ ve trained hundreds of users, developers, and administrators, and have
presented at conferences. With this experience, we ’ ve learned a lot about how not to design reports and
how to build reporting solutions more efficiently. This book is based on this foundation of expertise.

 Who This Book Is F or
 There are several other books about Reporting Services. Some are for beginners and others for serious
developers and advanced report designers. Leonard Nimoy ’ s character Mr. Spock once said, “ The needs
of the many outweigh the needs of the few. ” While this generally may be a true statement, we ’ ve made
it a point to address the needs of the many without sacrificing the needs of the few. We wanted to write
a book that would meet the needs of the broad audience of report designers, developers, administrators,
and business professionals, without sacrificing any content. To meet this objective, we ’ ve divided this
book into six sections — “ mini - books, ” if you will. Depending on your needs, you may spend more of
your time focusing on the material in one of these sections and using the others for reference. This
book is written for the novice report designer and the expert interested in learning to use advanced
functionality. For the application developer, we will cover programming in reports and custom
applications that integrate reports. You will also learn about report server administration and
security issues.

 A common practice among development groups at Microsoft is to profile their target users and to even
give these personas names and profiles. As we ’ ve come to know more about the types of folks who
use Reporting Services in various ways, we thought it might be interesting to do something similar.
The following are descriptions of three fictitious people who are characteristic of the more common
Reporting Services users we have worked with. See if you can identify with any of these descriptions.

flast.indd xxviiflast.indd xxvii 11/13/08 5:01:52 PM11/13/08 5:01:52 PM

Introduction

xxviii

 Report Designer
 Mary works in the financial group for a company that provides consumer services. She is a computer -
 savvy worker who possesses a wide range of office skills. She has worked in this group for several years
and could easily do her boss ’ s job. She understands her company ’ s business processes, financial
reporting practices, invoicing, and billing systems. She ’ s not a computer genius, but she knows her way
around word processing, spreadsheets, e - mail, and simple database reporting. Mary started using
Microsoft Access a few years ago and used the wizards to create some simple reports from data exported
from the HR and customer billing systems. After a while, she learned how to write queries and build
Access reports without the wizards, with custom formatting, groups, and summaries. Two years ago, she
learned to use Crystal Reports to report on the data in the company ’ s data warehouse. She has designed
several reports with charts and pivots to analyze sales trends and profitability.

 Mary ’ s focus is on out - of - the - box reporting, getting reports designed and deployed as easily as possible,
using the tools readily available within the product. She may design standard server - based reports that
users will access from a central report server via the corporate intranet. She may also want to create her
own ad hoc, client - side reports from data models created by an administrator or more advanced designer.

 The following sections of the book will be of most interest to Mary:

 Part I: Getting Started

 Part II: Report Design

 Part IV: Enabling End - User Reporting with Report Builder 1.0

 Application Developer
 Joe has been writing database applications for several years. In 2004 he began using Microsoft .NET
programming tools and landed a programming position in the company ’ s Information Technology
group. Joe has designed many of the company ’ s web sites and portals using the Visual Basic .NET and
C# programming languages. Most of the reports Joe has created were written from scratch as custom
web pages. He has worked a little with a few specialized reporting applications. He wants to add
reporting capabilities to some of the company ’ s custom business applications.

 As far as Joe is concerned, writing simple reports is for others to do. His focus will likely be to add
filtering, custom formatting, and conditional logic using program code and query script. He will also
design his reports so that they fit right into applications as an integrated part of a solution. He may
also want to create customized management utilities to automate report server maintenance routines.

 Joe understands that Reporting Services offers many flexible options for integrating reports into different
application interfaces. He may want to build reports into a custom Windows desktop application, web
application, SharePoint Portal, or mobile device application.

 Joe will be most interested in these sections:

 Part II: Report Design

 Part III: Business Intelligence Reporting

 Part VI: Reporting Services Integration and Custom Programming

❑

❑

❑

❑

❑

❑

flast.indd xxviiiflast.indd xxviii 11/13/08 5:01:52 PM11/13/08 5:01:52 PM

Introduction

xxix

 Systems Engineer
 Bob is our Network Engineer and Database Administrator. He is more concerned with the security and
stability of the corporate servers than with the aesthetics and features of each report. He will want to
make sure that our report managers, designers, developers, and users are organized into roles and that
the report server is appropriately secured. Bob will install and configure options on the report server. He
will schedule maintenance tasks, optimize the database and queries, and provide ongoing maintenance
and disaster recovery.

 Bob will find these sections most useful:

 Part I: Getting Started

 Part V: Administering Reporting Services

 Business Leader
 As a business owner, corporate executive, or project manager, you may be the consumer of a
reporting solution or the director of the development effort. Perhaps you have enlisted the services of
a business intelligence consulting firm to architect a decision - support system to help you run your
business. You need to be informed about your options and understand the capabilities of the products
and technologies used to create your solution. This book will help you to understand these features and
the choices necessary to put them into practice. The implementers of this solution will look to you for
business requirements and feature choices. Chapters 1 and 2 are a good place to start. Part III, Business
Intelligence Reporting, may be of particular interest. The first section of Chapter 10 discusses how to
define and manage reporting business requirements and specifications. This will serve as a
communication forum between you and your report designers.

 What This Book Co vers
 This book is divided into six sections:

 Part I: Getting Started

 Part II: Report Design

 Part III: Business Intelligence Reporting

 Part IV: Enabling End - User Reporting with Report Builder 1.0

 Part V: Administering Reporting Services

 Part VI: Reporting Services Integration and Custom Programming

 Part I: Getting Started
 Chapters 1 – 4 provide an introduction to the capabilities and features of Reporting Services. You ’ ll learn
about its extensible architecture, which makes it a very powerful and flexible addition to nearly all
existing business systems. This section builds a foundation of understanding upon which you will learn
to design, deploy, manage, and, perhaps, customize business intelligence and reporting solutions.

❑

❑

flast.indd xxixflast.indd xxix 11/13/08 5:01:52 PM11/13/08 5:01:52 PM

Introduction

xxx

 Chapter 1, “ Introducing Reporting Services, ” gets you started with a high - level view of the uses and
applications for reporting solutions. Reporting Services can be used to easily deploy reports to a central
report server for use with the Report Manager web interface; or be integrated into a business portal
using Microsoft Office SharePoint Services. Reports can also be integrated into a simple application or a
fully customized business application. You ’ ll learn about report user profiles and report application and
solution types. The new report design tools for SQL Server 2008 will be introduced. These include the
new Business Intelligence Development Studio 2008 Report Designer and the new Report Builder 2.0.

 Chapter 2, “ Business Intelligence Solutions, ” explores reporting tool options. You will learn about the
Reporting Services scalable architecture and how a reporting solution can be used in businesses of all
sizes with relative ease. You will see how to plan for reporting in a small business, department and
business enterprise. Information - worker users can perform ad hoc and self - service reporting using
report models, the Report Builder 1.0, and the new Report Builder 2.0. This chapter discusses the
components of a complete BI solution that enables Reporting Services to work with a variety of data
sources, including operational data stores, a data warehouse, data marts, and OLAP cubes.

 Chapter 3, “ Installation, ” details the process by which Reporting Services is installed in your
development environment and introduces concepts critical to planning your enterprise deployment.

 Chapter 4, “ Reporting Services Architecture, ” will help you understand the core services and
technologies used by Reporting Services. This chapter addresses server and solution design. By learning
how the product works and how the components interact, you will be better prepared to design and
maintain a scalable solution.

 Part II: Report Design
 Designing reports can be as simple as running a wizard, or it can be a highly complex development
process to define advanced features. In Chapters 5 – 8, you ’ ll learn about how reports actually process and
render data and then how to use parameters and expressions to define creative report solutions.

 Chapter 5, “ Basic Report Design, ” starts with the fundamentals and teaches you to create basic reports
using simple design tools. You ’ ll learn the essentials about what you need to get started building basic
reports using the Report Wizard and common Report Designer features. You ’ ll be introduced to the
fundamental building blocks of report design: report items and report layout properties. This chapter
introduces the two report design tools used to create standard reports: Report Builder 2.0, for users
who want a simple, straightforward tool for designing simple reports; and the Business Intelligence
Development Studio, to manage report projects and to design reports in the Microsoft Visual Studio
development environment.

 Chapter 6, “ Report Layout and Formatting, ” addresses different report design layouts and the
components used to assemble a report. This chapter will introduce the report body, headers, footers, and
page - formatting properties. You will learn about the capabilities of each report item and the data range
components that are used to organize and present data.

 After you explore the basics, you ’ ll learn about grouping data, lists, and data regions; using tables and
the matrix reports; defining drill - through reports; and using charts. You ’ ll also learn to write expressions
and custom code to extend formatting and apply business logic, and to design reports for mobile
devices.

flast.indd xxxflast.indd xxx 11/13/08 5:01:52 PM11/13/08 5:01:52 PM

Introduction

xxxi

 Chapter 7, “ Designing Data Access, ” reveals that reports are based on a data source and that Reporting
Services may be used to present data from many different data sources. You ’ ll learn to define stand - alone
and shared data sources, queries, and datasets and to use parameters to filter data at the database and at
the Report Server. You ’ ll learn to use new parameter features introduced in the latest version of the
product.

 This chapter is a primer on T - SQL queries and stored procedures. You ’ ll also learn to build reports using
Analysis Services and the MDX Query Builder. Query examples are provided for Oracle PL/SQL,
Sybase, and Access SQL dialects.

 Chapter 8, “ Advanced Report Design, ” helps you take design elements to the next level and learn to
creatively use data groups and combinations of report items. Calculations and conditional formatting
may be added by using simple programming code. Whether you are an application developer or a report
designer, this chapter contains important information to help you design reports to meet your users ’
requirements and raise the bar with compelling report features.

 Part III: Business Intelligence Reporting
 Chapter 9, “ Reporting with Analysis Services, ” specifically addresses the design techniques and unique
best practices for reporting on OLAP cube data. You will learn to create MDX queries with parameters,
calculations, and aggregations.

 Chapter 10, “ Report Solution Patterns and Recipes, ” takes you into the real world of business problems
and reporting solutions. You ’ ll start by learning how to document business requirements and to manage
successful report projects.

 This chapter presents report design from a different view — not the nuts and bolts but the overall
pattern of design. We have assembled an extensive list of models and instructions to show you how to
build several detailed report solutions to address a variety of specific business problems. This chapter
serves as a practical guide to designing reports and building reporting solutions in the real world. It
contains several examples of advanced report designs as recipes to solve specific business problems. You
will apply the techniques you ’ ve learned in the previous three chapters to implement specific
functionality.

 Part IV: Enabling End - User Reporting with Report
Builder 1.0

 Report Builder 1.0 technology puts simple report design into the hands of everyday users without
requiring complex design tools. Chapters 11 and 12 introduce the Report Builder 1.0 platform and the
tools used to define data sources and semantic metadata models. Using the elements you deploy, your
users can create simple reports without installing software or learning the intricacies of report design.

 Chapter 11, “ Report Models, ” shows you that a report model is the key component behind performing
ad hoc, end - user queries. A model provides the means to navigate through either a SQL Server database
or an Analysis Services database. This chapter will teach you to build a Reporting Services report model
using sample data.

flast.indd xxxiflast.indd xxxi 11/13/08 5:01:53 PM11/13/08 5:01:53 PM

Introduction

xxxii

 Chapter 12, “ Report Builder 1.0, ” covers Report Builder 1.0, a platform for defining ad hoc reports
using prepared data structures. You ’ ll learn to use the Report Builder 1.0 application with a familiar
Microsoft Office interface for building reports. Using predefined report layouts, users can fulfill various
reporting needs with ease. You ’ ll learn to easily format, to sort and filter data, and to perform
calculations. Finally, you ’ ll learn how to manage and administer models and reports.

 Part V: Administering Reporting Services
 Report server administration has an important job: to keep data secure and available to the right users.
Server - side reports can be configured and secured to optimize performance and to provide the right
information to the appropriate user communities. Chapters 13 and 14 teach you how to use all of the
tools necessary to configure and manage your Report Server.

 Chapter 13, “ Content Management, ” teaches you how to use management tools and Reporting
Services features to publish reports and manage execution and delivery. You ’ ll learn to create automated
scripts and custom solutions to manage all the Report Server content. You ’ ll revisit the stages of report
execution from an administrator ’ s point of view and learn how to optimize them. You ’ ll also learn how
to automate report delivery and server management.

 Chapter 14, “ Report Server Administration, ” is a comprehensive administrator ’ s guide. You ’ ll explore
the related considerations for reporting requirements and deployment scenarios for Reporting Services.
You ’ ll learn about the configuration tools and utilities, backup and restore procedures, and monitoring a
Reporting Services instance for issues and optimal performance.

 Part VI: Reporting Services Integration and
Custom Programming

 Practically all the built - in functionality in Reporting Services can be automated and performed through
custom program code. This includes report rendering and the core services of the reporting environment:
data access, rendering formats, security, and delivery.

 Chapter 15, “ Integrating Reports into Custom Applications, ” shows you that Reporting Services is a
flexible reporting tool that can be easily incorporated in different applications. In this chapter, you ’ ll
learn to use URLs to access reports from document and web page links, use the Reporting Services Web
service to programmatically render reports, and use the ReportViewer controls to embed reports into
custom Windows Forms and ASP.NET Web Forms applications. You ’ ll learn to display reports in web
portals using SharePoint web parts and other techniques. You can use programmatic rendering, URL, or
the ReportViewer controls to create custom report viewers and parameter interfaces. Examples are
provided in C# and VB.NET.

 Chapter 16, “ Integrating Reports with SharePoint, ” shows you how to integrate Reporting Services
with the SharePoint technologies. SharePoint has quickly become widely adopted by many business
organizations and, as such, sits at the center of the information workers world. Integrating reports into
this world is a natural fit, and Microsoft has made it a priority to provide a tight and seamless
integration between these two products. This chapter walks you through the types of integration
available and how reports can be created, hosted, surfaced, secured, and managed in the SharePoint
environment.

flast.indd xxxiiflast.indd xxxii 11/13/08 5:01:53 PM11/13/08 5:01:53 PM

Introduction

xxxiii

 Chapter 17, “ Extending Reporting Services, ” is written for serious application developers using object -
 oriented programming techniques, with examples in C# and VB.NET. You will learn how to create
custom libraries and extensions to add functionality to the reports and Report Server features. These
extensions may be used to access unique data sources, to render reports to specific formats, to
authenticate users, and to deliver reports outside of the default methods provided with the product.

 Appendixes
 The appendixes at the end of this book include a comprehensive Reporting Services object programming
reference, T - SQL syntax, commands and functions, and MDX language functions and reference.

 What Y ou Need to Use This Book
 To use SQL Server Reporting Services and to run the samples presented in this book, you will need:

 SQL Server 2008, any edition. An evaluation version of SQL Server and Reporting Services may
be downloaded from Microsoft at www.microsoft.com/sql .

 The sample databases, AdventureWorks2008 and AdventureWorksDW2008, may be
downloaded from www.codeplex.com . In addition to the relational database sample, Chapter 9
uses the Adventure Works DW 2008 sample Analysis Services database.

 Windows Server 2003 SP2, Windows Server 2008, Windows Vista, or Windows XP
Professional SP2

 Pentium III class PC with a 1 GHz processor or better (2.0 GHz recommended) and at least 1 GB
of RAM

 Note that for Chapter 16, SharePoint has its own requirements. In particular, SharePoint requires a server
operating system (OS) such as Windows Server 2003 SP2 or Windows Server 2008. Although IIS is no
longer required by Reporting Services, it is still required by SharePoint. Refer to the Microsoft SharePoint
site for additional and specific recommendations around SharePoint requirements.

 The complete source code for the samples is available for download from our web site at www.wrox.
com. For programming examples, there are versions available in both Visual Basic .NET and C#.

 Conventions
 To help you get the most from the text and keep track of what ’ s happening, we ’ ve used several
conventions throughout the book.

❑

❑

❑

❑

 Boxes like this one hold important, not - to - be forgotten information that is directly
relevant to the surrounding text.

flast.indd xxxiiiflast.indd xxxiii 11/13/08 5:01:53 PM11/13/08 5:01:53 PM

Introduction

xxxiv

 Notes, tips, hints, tricks, and asides to the current discussion are offset and placed in italics like this.

 As for styles in the text:

 We highlight new terms and important words when we introduce them.

 We show keyboard strokes like this: Ctrl+A.

 We show filenames, URLs, and code within the text like so: persistence.properties .

 We present code in two different ways:

We use a monofont type with no highlighting for most code examples.

We use gray highlighting to emphasize code that’s particularly important in the
present context.

 Source Code
 As you work through the examples in this book, you may choose to either type in all the code manually
or use the source code files that accompany the book. All of the source code used in this book is available
for download at www.wrox.com. Once at the site, simply locate the book ’ s title (either by using the
Search box or by using one of the title lists) and click the Download Code link on the book ’ s Detail page
to obtain all the source code for the book.

 Because many books have similar titles, you may find it easiest to search by ISBN; this book ’ s ISBN is
978 - 0 - 470 - 24201 - 8.

 Once you download the code, just decompress it with your favorite compression tool. Alternatively, you
can go to the main Wrox code download page at www.wrox.com/dynamic/books/download.aspx to
see the code available for this book and all other Wrox books.

 Errata
 We make every effort to ensure that there are no errors in the text or in the code. However, no one is
perfect, and mistakes do occur. If you find an error in one of our books, like a spelling mistake or faulty
piece of code, we would be very grateful for your feedback. By sending in errata, you may save another
reader hours of frustration, and at the same time you will be helping us provide even higher-quality
information.

 To find the errata page for this book, go to www.wrox.com , and locate the title using the Search box or
one of the title lists. Then on the book Details page, click on the Book Errata link. On this page you can
view all errata that have been submitted for this book and posted by Wrox editors. A complete book list
including links to each book ’ s errata is also available at www.wrox.com/misc - pages/booklist.shtml .

 If you don ’ t spot “ your ” error on the Book Errata page, go to www.wrox.com/contact/techsupport
.shtml , and complete the form there to send us the error you have found. We ’ ll check the information
and, if appropriate, post a message to the book ’ s Errata page and fix the problem in subsequent editions
of the book.

❑

❑

❑

❑

flast.indd xxxivflast.indd xxxiv 11/13/08 5:01:53 PM11/13/08 5:01:53 PM

Introduction

xxxv

 p2p.wrox.com
 For author and peer discussion, join the P2P forums at p2p.wrox.com . The forums are a web - based
system for you to post messages relating to Wrox books and related technologies and interact with other
readers and technology users. The forums offer a subscription feature to e - mail you topics of interest of
your choosing when new posts are made to the forums. Wrox authors, editors, other industry experts,
and your fellow readers are present on these forums.

 At http://p2p.wrox.com , you will find several different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e - mail with information describing how to verify your account and complete
the joining process.

 You can read messages in the forums without joining P2P, but in order to post your own messages, you
must join.

 Once you join, you can post new messages and respond to messages that other users post. You can read
messages at any time on the web. If you would like to have new messages from a particular forum
e - mailed to you, click the “ Subscribe to this Forum ” icon by the forum name in the forum listing.

 For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specific to P2P and
Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxxvflast.indd xxxv 11/13/08 5:01:54 PM11/13/08 5:01:54 PM

flast.indd xxxviflast.indd xxxvi 11/13/08 5:01:54 PM11/13/08 5:01:54 PM

Part I

Getting Star ted

 Chapter 1: Introducing Reporting Services

 Chapter 2: Business Intelligence Solutions

 Chapter 3: Reporting Services Installation

 Chapter 4: Reporting Services Architecture

c01.indd 1c01.indd 1 11/13/08 4:23:37 PM11/13/08 4:23:37 PM

c01.indd 2c01.indd 2 11/13/08 4:23:38 PM11/13/08 4:23:38 PM

 Introducing
Reporting Ser vices

 What a long, strange trip it ’ s been. . . . SQL Server Reporting Services is all grown up now. This
product has matured quite a lot over the past five years or so since enjoying a favorable start in the
industry. This is our third edition of this book, about a product in its third version. We ’ ve seen it
grow from what was essentially a free download for SQL Server 2000, to a substantial but
relatively untested component of SQL Server 2005, to a serious force in the industry — and a very
capable, enterprise - ready reporting tool.

 Since we started writing about Reporting Services for the first edition of this book in 2003, there is
much more to say about this product and the rest of the integrated Microsoft SQL Server Business
Intelligence platform. There are stories to tell about IT projects, training classes, and consulting
engagements. Along the way, we ’ ve learned quite a lot from other members of the IT community
about the many creative ways to use Reporting Services. We ’ ll tell some of those stories and
discuss our experience with the past three generations of this product. But for now, let ’ s focus our
attention on the fundamental applications and capabilities. In other words, What can you do with
Reporting Services? Who should use it, and for what purpose?

 The topics introduced in this short chapter are explored in greater detail in the next chapter
and throughout this book. The purpose of this chapter is to provide a high - level introduction only
to the concepts and capabilities of this powerful reporting tool and the data analysis platform of
Microsoft SQL Server 2008. This chapter introduces common reporting scenarios, beginning with
the most basic and then moving to the more advanced. In subsequent chapters, you will explore
these capabilities in depth and learn to use them in your own reporting solutions.

c01.indd 3c01.indd 3 11/13/08 4:23:38 PM11/13/08 4:23:38 PM

Part I: Getting Started

4

 Not Y our Father ’ s Repor ting T ool
 Since 2003, when users were first able to work with Reporting Services, the way you use this product has
changed substantially. Rather than just a simple tool used to create tabular reports, it has become a
foundation upon which you can construct complete report, scorecard, and dashboard solutions for
business users and consulting customers. This is not your father ’ s reporting tool. Today, it does
everything from simple, ad hoc data reporting to delivering enterprise - ready, integrated reporting into
business portals and custom applications. Now, in the third release for SQL Server 2008, the report
design environment is dramatically improved, with a fine - tuned product architecture and the addition of
several feature improvements. Reporting Services not only comes with a proven track record, but also is
ready to meet the needs of serious IT developers and business information workers who just need a
simple tool without a lot of complex, technical sophistication.

 The Repor ting Ser vices Re volution
 It was during my morning commute that my life and career took a different path
because of this product. In 2003, my daily trek to downtown Seattle was by passenger
ferry with a group of fellow co - commuters. I had been working on a side project that
had a substantial reporting element. It was a web application with a lot of database
work that I was developing on my laptop during every spare minute I could muster.
I was trying to use the version of Crystal Reports included with Microsoft Visual Studio,
and according to some of the documentation, it should have been possible to integrate
Crystal into an ASP.NET web site. Whether or not it was possible, it certainly wasn ’ t
easy. After weeks of frustration, a friend on the boat, who worked as a data warehouse
architect for the Walt Disney company, handed me a CD - R with a beta 1 copy of SQL
Server Reporting Services. By the next day, I had working reports deployed to my web
site. I was hooked.

In 2003 and 2004, we wrote the first edition of Professional SQL Server Reporting Services .
At that time, I knew that Reporting Services was going to be a big deal, and I also knew
that writing a book on something as substantial as this new product wasn ’ t going to be
a walk in the park. In the coming years, my employer, Hitachi Consulting, took on
many reporting projects. We had several people with deep business intelligence and
report design experience. Companies, large and small, migrated their business
reporting to Reporting Services. They recognized its elegant architecture, which made
it adaptable and capable of meeting a range of needs from out - of - the - box reporting
solutions to tightly integrated application design. It was an overnight sensation.
Reporting Services became a staple product for us, and many large companies wanted
to convert their reports from other, less scalable and more expensive products. In 2005
and 2006, we wrote the second edition of this book for SQL Server 2005 — this time,
with a few more years of substantial project experience and having learned many of
the best practices for report design and solution deployment.

c01.indd 4c01.indd 4 11/13/08 4:23:39 PM11/13/08 4:23:39 PM

Chapter 1: Introducing Reporting Services

5

 We authors have learned a lot about this product with each project and continue to find creative
ways to stretch its capabilities. For the first edition of this book, we worked primarily with the beta -
 release product. The second edition was based on our experience with Reporting Services for SQL
Server 2000 and SQL Server 2005. Over the past five years, we ’ ve had many conversations with
members of the Reporting Services product team at Microsoft as we put the product through its
paces to learn what Reporting Services could and couldn ’ t do well. We ’ ve also done a lot of
consulting work for Microsoft, designing integrated reports for several Microsoft products that are
currently on the market today. Over the years, we ’ ve presented sessions at industry conferences and
written books, white papers, and knowledge - base articles. As with most Microsoft products, we
found that there are about 18 different ways to implement each feature. Since then, we have deployed
Reporting Services in many corporate environments and trained thousands to use it. We ’ ve talked to
business users to understand their reporting needs and then designed reporting solutions for many
types of organizations. We ’ ve integrated reports into web sites and portals, intranet sites, and
desktop applications. We ’ ve designed reports for savings and investment banks, financial services,
support centers, software companies, sales and customer management system vendors, sportswear
companies, theme park and entertainment companies, manufacturing, construction, supply chain,
retail, wholesale, and medical, government, and telecom organizations. Having the luxury to invest
so much energy into the use of one tool, we ’ ve learned how to do a few things really well, but I
think we ’ ve also learned to keep an open mind toward using creative new methods to solve problems.
We ’ ve learned a lot about how not to design some reports and how to build reporting solutions more
efficiently — and which of those 18 feature options makes the most sense. This book is based on this
foundation of experience.

 Who Uses Repor ting Ser vices?
 Probably one of the most significant lessons of the past five years of teaching training courses on
Reporting Services is how diverse the demographics of the audiences are. The roles and backgrounds
of those who design and implement reporting solutions are diverse. As an application developer, I was
accustomed to teaching programmers and other technology professionals whose life quest is to
make the world a better place by writing program code and software. However, I quickly learned that
there wasn ’ t a stereotypical report designer. Some are very business - focused and aren ’ t necessarily in
love with technology and program code. Many are simply charged with managing or facilitating a line
of business. They need tools to get information quickly and don ’ t want to reinvent the wheel or work
with cumbersome tools. The figures in the following table aren ’ t substantiated by any kind of survey
or study but are merely this author ’ s objective observation of those who attend Reporting Services
training classes:

c01.indd 5c01.indd 5 11/13/08 4:23:39 PM11/13/08 4:23:39 PM

Part I: Getting Started

6

 Approximate
Percentage

 Role Description

 15% Business Managers Those who working seriously with Reporting
Services, having attended classes or engaged in
consulting services. They are mainly interested in the
bigger picture: how reports can address their
analytical needs and help them make informed
decisions. They have little interest in the
implementation details or the technology used to
make it work. They direct people who can do the
detail work.

 15% System Administrators Consists of server system builders, hardware
professionals, and database administrators. In smaller
organizations, they often share with the software
developer and are typically concerned with the setup
and ongoing maintenance of servers and the
infrastructure to keep reporting solutions available
and working. They typically spend their time and
energy managing security and optimizing the system
for efficiency.

 20% Software Developers To achieve advanced reporting features, software
developers write complex queries and custom
programming code to process business rules and give
reports conditional formatting and behavior.
Developers typically feel right at home with the
report design environment because it ’ s very similar
to familiar programming tools.

 50% Business Information
Workers

 The people in this role have strong computer user
skills, but they don ’ t spend their time writing code
and using tools like Visual Studio, Enterprise
Manager, or SQL Server Management Studio. They
need to design reports to run their businesses.

 Wait a minute! This is a book about creating reports to display information in meaningful and interesting
ways. I can ’ t just display this information in a boring list, so I ’ ve created a simple report and put it into a
chart (an exploded, semitransparent doughnut chart, to be specific), shown in Figure 1 - 1 .

c01.indd 6c01.indd 6 11/13/08 4:23:39 PM11/13/08 4:23:39 PM

Chapter 1: Introducing Reporting Services

7

 As a software developer, coming to the realization that the largest group of reporting professionals is not
the software developer or other technical expert was a wake - up call. As I taught Reporting Services 2000
classes for Microsoft, I often spent a large portion of the classroom time just teaching students to use the
Visual Studio user interface. It was new to them and unlike any other application they were accustomed
to. Report designers who have been using other tools such as Crystal Reports, for example, will typically
be a little intimidated by the Reporting Services design tools because they may be unfamiliar and may
seem to be more “ raw ” and developer - centric than what they ’ re used to using. In order to take advantage
of advanced report capabilities, these individuals must either acquire some simple programming skills or
work with software developers to add custom code and expressions to their reports.

 Today, Reporting Services in SQL Server 2008 meets the needs of information workers and technology
professionals with two different design tools. The stand - alone report designer is simple, focused, and
familiar — with a user interface similar to Microsoft Office applications. A more advanced report design
experience is available to application developers and other technical professionals, integrated into the
Visual Studio solution design environment shell. This tool is optimized for adding custom expressions,
complex features, and program code.

 Application and Repor ting T echnology
 The definition of reporting is changing. Like so many components of the computer/information
industry, the lines between one thing and another have become very fuzzy. This applies to so many
concepts in our industry. For example, many traditional desktop applications now run in a web browser.
Are these client or server applications? These days it ’ s hard to draw a line and categorize a business
solution. Not long ago, if an application opened in a web browser, it was considered to be a server - side
application — all the processing occurred on a web server. Likewise, if an application ran from a shortcut
on your computer, it was a client - side application, where all the files and processing occurred on your
own computer. Have you attended an Internet - hosted meeting or seminar? If so, you probably navigated
to a site in your web browser, entered a meeting number, and, magically, you were looking at
PowerPoint slides and a demonstration running on the presenter ’ s desktop computer. Although you

Business Information
Workers

Software
Developers

System
Administrators

Business
Managers

 Figure 1 - 1

c01.indd 7c01.indd 7 11/13/08 4:23:39 PM11/13/08 4:23:39 PM

Part I: Getting Started

8

may have started from a web page and the conferencing application may have been started from your
web browser, it was actually running in a client - side application, which you allowed to be installed on
your computer, using advanced content - streaming technologies, allowing you to interact with the server -
 hosted conference.

 What does this have to do with reporting? Quite a lot, actually.

 Blurring the Application/Reporting Line
 With Reporting Services, you can integrate reports into applications in such a way that users may not be
able to tell the difference between the two. With a little bit of programming code, reporting features can
be extended to look and act a whole lot like applications. Where do applications stop and reports begin?
When do reports start replacing application functionality? What, exactly, is the difference between a
report, a dashboard, and a scorecard? The lines have become quite blurred. Your task is to decide which
tool best meets the need. Many intranet sites run on web portals, rather than custom - programmed web
sites, and Reporting Services naturally plays well in practically any web portal environment — and now
it has native integration with Microsoft Office SharePoint Services.

 The exciting news is that you now have a tool that can do some incredible things. As my favorite
superhero ’ s uncle said, “ With great power comes great responsibility. ” If you are a simple report
designer with simple needs, the good news for you is that using Reporting Services to design simple
reports is . . . well, simple. If you are a software developer and you intend to use this powerful
framework to explore the vast reaches of this impressive technology, welcome to the wonderful world of
creative, custom reporting.

 Information, Now!
 Imagine that you are sitting in a presentation meeting at the corporate office of a key customer. You are a
senior sales representative for a company that sells high - volume data backup systems, and the solution
they decide on will be implemented in several regional data centers around the world. Your team has
been preparing for this meeting for months. Your success depends on your ability to demonstrate your
competence to the customer and your clear understanding of their needs. Your team has done its
homework, and you know that the customer has a history of scanning printed medical records and
storing them as image files. Based on this information, you are certain that a particular product will
adequately provide the file backup facilities for their moderate volume of image files. You have made it a
point to familiarize yourself with the capabilities of the system that appears to be the best fit.

 During your customer ’ s opening presentation, they tell you that they have recently made a huge
investment in full - motion video - imaging equipment. Now they need a backup system that can handle
large file capacities. They are prepared to make an investment that is substantially larger than what you
had anticipated for a capable backup solution. Your company began to offer a large - scale solution just a
couple of weeks ago, but you aren ’ t very familiar with its capabilities. You ’ ve spent so much time
preparing to sell the smaller system that you haven ’ t had time to learn more about this new product.
Your associate is doing introductions, and it will be your turn in about 15 minutes.

 Discreetly, you open your Pocket PC Phone and access the World Wide Web. You log in to your
company ’ s secure report server, select the product catalog report, choose the product category, and then
drill down to the new product. The report has a drill - through option that lets you quickly view a
detailed specification report for the new, high - volume backup system. After noting the pertinent

c01.indd 8c01.indd 8 11/13/08 4:23:40 PM11/13/08 4:23:40 PM

Chapter 1: Introducing Reporting Services

9

specifications, you save this report to a PDF file and then choose the customer sales inquiry history
report. Looking up this customer, you learn that someone named Julie from this very company made an
inquiry about two months ago regarding video media backups.

 Looking around the room, you find a name card with Julie ’ s name on it. You explore the details of this
call, and you find that she had asked if you offer a solution comparable to a very expensive product from
a competitor. Checking the competition ’ s web site, you discover that the competing product Julie had
mentioned uses older technology, has a smaller capacity than the new system, and costs considerably
more. You save a report with all the pertinent specifications to your memory card, hand the card to the
administrative assistant sitting next to you, and ask that he make printed copies of the PDF file it
contains.

 Your colleague finishes her presentation and then introduces you. Taking another quick glance at the
new product specs, you begin your introduction (see Figure 1 - 2).

 Figure 1 - 2

 You explain that one of your team ’ s greatest strengths is your real experience and understanding of how
business can change direction from day to day. In order to be responsive and competitive, it ’ s necessary
to adapt to these changes. You show the brochure for the midscale product and explain that this product
would be an excellent solution for a company that just scans documents. But for digital video, a more
capable solution is required. You share the product specification and qualify the product to meet your
customer ’ s needs. During your presentation, the administrative assistant returns with the printed
specification report. Not missing a beat, you distribute copies to everyone and conclude your
presentation. You make brief eye contact with your colleague, who raises an eyebrow just before your
customer ’ s chief decision - maker, Julie, aggressively shakes your hand and thanks you profusely for your
time and the extra effort you made to understand their needs. After the big sale is closed, the promotion,
the new company car, and corner office . . . you get the idea.

 Solution T ypes
 One of the things I ’ ve learned in the business consulting field is that giving people a lot of choices
doesn ’ t necessarily solve their problems. An impressive aspect of Reporting Services is that there are so
many different ways to implement it into a business environment. The fact that reports could be

c01.indd 9c01.indd 9 11/13/08 4:23:40 PM11/13/08 4:23:40 PM

Part I: Getting Started

10

integrated into a custom desktop application, web application, static web site, or a document or through
low - level programming code may appeal to programmers because of the many choices and flexibility.
However, to a business user or leader, too many choices may just be confusing and overwhelming.
At the end of the day, someone must decide how reports will be used in the business environment and
set a standard for most report designers to follow. Experience has shown that the majority of new
Reporting Services implementations will use the de facto Web - based Report Manager interface. In more
sophisticated enterprise business intranet environments, SharePoint portal integration is becoming a
common choice. Most of the other options are specialized and may be used to meet specific business
needs but are less common. For completeness, these options are all covered.

 Reporting solutions come in a variety of sizes and shapes. These range from the standard Report
Manager Web interface to a completely customized application with integrated reporting features.
The types of software solutions that might incorporate reporting include:

 Out - of - the - box, server - based reporting features, using reports created by report designers and
deployed to a central web server

 Client - side ad hoc reports created by users on demand with the Report Builder tool using
predefined data models

 Reports integrated into web applications using URL links to open in a web browser window

 Reports integrated into SharePoint Portal server applications using SharePoint web parts

 Custom - built application features that render reports using programming code. Reports can be

displayed within a desktop or web application interface or saved to a file.

 Out - of - the - Box Reports
 What does Reporting Services provide if you just want to use its simplest features right out - of - the - box?
Quite a lot, actually.

 Since the product was released for SQL Server 2000, Reporting Services required the Microsoft
development environment to design and deploy reports to a central web server. Compared with other
report design tools on the market, this presented a challenge. Prior to the release of SQL Server 2005, the
development environment was available only as a separate product called Microsoft Visual Studio . This
was a tool for serious application developers to create custom software. It still is, but as of SQL Server
2005, the development environment, called the Business Intelligence Development Studio (or BIDS), installs
with the SQL Server client tools and has been tailored to manage SQL Server databases, write queries,
and design reports. Using this powerful tool has likely been the most significant challenge for the new
report designer.

 In the 2008 product, a simplified report design tool makes the process even easier than before. The stand -
 alone report designer serves only one purpose — keeping the interface simple and uncomplicated and
the process of report design as straightforward as possible. Experienced report designers who learned to
use the previous toolset will still have access to the Visual Studio/BIDS designer, which may be installed
with the SQL Server client tools.

 Once you learn the basics of the development environment, designing reports and managing projects are
actually quite easy. Both report design tools include a simple Report Wizard that can lead you through
designing common reports. Tabular, grouped, cross - tab, and chart reports are relatively easy to build just
by following the Wizard prompts and setting a few properties.

❑

❑

❑

❑

❑

c01.indd 10c01.indd 10 11/13/08 4:23:40 PM11/13/08 4:23:40 PM

Chapter 1: Introducing Reporting Services

11

 After a new report has been designed and tested, it can be deployed to a central report server, where it
will be available to all users through a simple web browser application called the Report Manager .

 Beyond Wizard - built reports, many aspects of more complex reports may be managed by creating simple
programming expressions. An expression builder guides the designer through the simple use of
functions and logical expressions that may be used to modify colors, visibility, and formatting aspects
and to perform calculations. Because the expressions in Reporting Services are based on Visual Basic
.NET, the power of conditional expressions is virtually limitless.

 Server - Based Reports
 It ’ s important to understand the difference between SQL Server Reporting Services and a desktop
reporting tool like Microsoft Access. Reporting Services isn ’ t an application that you would typically
install on any desktop computer but, rather, is designed for business use. It requires Microsoft SQL
Server, a serious business - class relational database management tool. For this and other reasons,
Reporting Services runs on a file server instead of a desktop computer. Therefore, you can scale this
powerful tool for use by thousands of users and report on very large sets of data stored in a variety of
database platforms. But just because Reporting Services is a business - sized product, this doesn ’ t mean
that reports have to be complicated or difficult to design.

 Report users need to be connected to a network, or perhaps the Internet, with connectivity to the report
server. When a report is selected for viewing from a folder in the Report Manager, it is displayed as a
web page in the user ’ s web browser. Optionally, the same report can be displayed in a number of
different formats including Word, Excel, Adobe PDF, or as a PNG, JPEG, GIF, or TIFF image. Reports
may be saved to files in these and other formats for offline viewing. Reports may also be scheduled for
automatic delivery by the report server by e - mail or may be saved to files. These features are standard
and require only simple configuration settings and minor user interaction.

 User - Designed and Ad hoc Reports
 With the stand - alone Report Builder report design tool, less - technical users can create standard reports
to be deployed beside enterprise reports developed by the IT staff. This bridges the gap to some degree
for the capable information worker. Standard reports are designed for users ahead of time and deployed
to the server for users to select and display, print, or save to a file. This may be useful for standard
reporting needs shared by most report users. However, savvy users cannot modify the design or these
reports without access to the design and development tools.

 Ad hoc reporting for Reporting Services is in a state of transition. Report Builder was introduced with
SQL Server 2005 Reporting Services and remains a viable tool for non - programmers to create their own
reports. It will eventually be replaced by a new tool called Report Builder 2.0 , which is being introduced
with the 2008 version of the product. Although the name is similar, the tool is very different. You can be
the judge, but for now, two options are available for creating simple reports with an easy - to - use
design tool.

 Ad hoc reporting is an alternative to creating predesigned, server - side reports. The Report Builder
design tool allows users to build their own reports on the fly, using prepared queries and data models.
Using this option, the IT staff or system administrator prepares a variety of common data models to
simplify and expose the underlying data sources in a concise form. This allows users to construct ad hoc
reports using simple drag - and - drop techniques. These reports may be used once and discarded, or saved
for others to use or to be built on in later sessions.

c01.indd 11c01.indd 11 11/13/08 4:23:41 PM11/13/08 4:23:41 PM

Part I: Getting Started

12

 The actual design work is performed using a client - side builder tool delivered on demand in the user ’ s
web browser. The user experience is quite simple. As far as the user is concerned, a new report is created
using a simple web page selection, and Report Builder opens in a browser window without specifically
installing a software package ahead of time. These reports are stored on the server in the same folder
space as other reports. The Report Manager web interface is used to access and maintain standard
Reporting Services reports as well as Report Builder reports and their associated data models.

 The advantages of Report Builder reports are that they give users the ability to design and customize
their own reports without involving a report designer or developer. Report styles and features include
standard report layouts like columnar, hierarchical, pivot/matrix, and charts but can only include one of
these data range elements, unlike standard reports that can include as many as you like. Report Builder
reports cannot contain or use custom code. Data - formatting options are more restrictive, and the
data models must be prepared ahead of time. Models may be created to mirror the details of source data
tables or may be simplified. This allows the data model designer to hide sensitive data and to simplify
complex data sources with alias columns, aggregations, and calculated data members.

 Repor t Design T ools
 When Reporting Services was released for use with SQL Server 2000, only one design tool could be used
to create reports. Since that time, third - party vendors began creating design tools designed specifically
for users with different needs. High - end report developers require different tools to create corporate
reporting solutions from those required by information workers to design personal and departmental
reports. Information Technology architects, database designers, and application developers who create
large - scale business intelligence solutions need a design environment that allows members of formal
teams to share and manage various files and reports. They need to write and debug program code and
shared components.

 Information workers may not need to use such sophisticated tools and will benefit from a simple design
environment with familiar features and options. A simplified, stand - alone report designer will assist
users to create departmental and personal reports that need to be deployed to a central server, shared
with other users, and available for future enhancements.

 An ad hoc design tool should be simple and lightweight and should require little or no installed software
on the user ’ s computer. It should allow IT professionals to expose a simplified and secure view of
corporate data sources that ad hoc report designers use to simply select predefined data elements and
organize them in common report presentations.

 Report Builder 2.0
 Report Builder 2.0 is an addition to the report design suite for the information worker to create fully
capable, server - hosted reports. It ’ s a serious tool with a moderate learning curve. Unlike its predecessors
Visual Studio or the Business Intelligence Development Studio, it doesn ’ t expose some advanced
capabilities that may be unnecessary for someone designing typical departmental or personal reports. In
Chapter 5, you learn to use to use the Microsoft Office - like user interface to design data sources, queries,
and report layouts to meet a variety of business needs.

c01.indd 12c01.indd 12 11/13/08 4:23:41 PM11/13/08 4:23:41 PM

Chapter 1: Introducing Reporting Services

13

 Report Builder 2.0 is a stand - alone application that may be installed on the desktop of any user from the
SQL Server 2008 installation media, or it may simply be launched from the central Report Manager Web
interface. Using this tool to design reports, a user will need permission to read data sources and will also
need permission to deploy reports to the report server using this tool.

 Business Intelligence Development Studio
 The Business Intelligence Development Studio tool (BIDS) is the most capable and sophisticated report
design tool that may be installed from the SQL Server 2008 installation media. BIDS is the more
traditional tool that report designers have been using with SQL Server 2005. It requires some project
management knowledge and has a steeper learning curve than those of the stand - alone Report Builder
2.0 or ad hoc Report Builder designers.

 BIDS is very similar to all the editions of Visual Studio and allows report projects to be integrated with
other database and business intelligence projects to form a comprehensive data analytic or BI solution.

 Designing Repor ts
 To recap, SQL Server 2008 Reporting Services currently has three different tools for designing reports:
The first option is the new Report Builder 2.0 report designer, which is optimized for non - technical users
and has a simplified interface, similar to Microsoft Office products. The purpose of this tool is to make
report design as easy as possible and accessible to users who just need to design simple reports but don ’ t
need to develop applications or structure business database solutions. The second option is the
integrated Report Designer, created with the information technology professional in mind. It is an add - in
for the Microsoft Development Environment or Visual Studio. In Reporting Services for SQL Server 2000,
report design was performed exclusively using Visual Studio, which had to be purchased separately. In
SQL Server 2005 and 2008, a lighter edition of the development environment is installed with the SQL
Server client tools, called the Business Intelligence Development Studio (or BIDS). Now reports may
be designed and created using either Visual Studio or BIDS, both of which are implementations of the
development environment. The third option is the older Report Builder tool, which, although easy to
use, creates less capable reports based on a different technology standard.

 Confused? You shouldn ’ t be. You can design reports using the Report Builder 2.0 report designer, which
is for non - technical folks who just want to design reports. The more technical tool comes in two flavors
depending on whether you have installed any edition of Microsoft Visual Studio on your computer. If
you only have the client tools for SQL Server 2008 installed, you will use BIDS. If you have Visual Studio
installed, you can use either Visual Studio or BIDS. Here ’ s a little secret. . . . BIDS is actually just a
shortcut to Visual Studio. If you have Visual Studio installed, they both take you to the same place
(shhh . . . don ’ t tell Microsoft that we figured this out). Regardless of the tool you use, your design
experience will be nearly the same, and throughout this book you are provided examples for each option.

 Building standard, server - side reports in the designer can be as simple as 1, 2, 3: First, you create a data
connection to the data source and dataset (or query) for the report. The second step is to design the
report layout using simple drag - and - drop tools. Formatting attributes are set by changing properties in
the Properties sheet or Dialogs. The report may be previewed and debugged within the designer. The
third and final step is to deploy the report to the report server. This may be done using a menu action or
a button. The stand - alone Report Builder 2.0 report designer, shown in Figure 1 - 3 , supports this
three - step paradigm with corresponding features and designer views.

c01.indd 13c01.indd 13 11/13/08 4:23:41 PM11/13/08 4:23:41 PM

Part I: Getting Started

14

 The report design tools are covered in Part II. You ’ ll learn about the basics beginning in Chapter 5,
 “ Basic Report Design, ” and about advanced techniques in Chapter 8, “ Advanced Report Design. ”
In Part III, Chapter 9, “ Reporting with Analysis Service, ” and Chapter 10, “ Report Solutions Patterns and
Recipes, ” will take you beyond the features and discuss several common business scenarios. In these
chapters, you will learn techniques for designing the best reporting and data analysis solutions to meet
some common and unique challenges.

 End - user and ad hoc reporting is covered in Part IV. These are different from Reporting Services ’
standard server - side reports. Because this feature is intended to give users the power to create and
modify their own reports, it does not require Visual Studio, Business Intelligence Development Studio,
or the new stand - alone Report Builder 2.0 designer to be installed on their computers. First, a data model
is prepared to support the reports users may build. These data models are stored on the report server
with shared data sources and reports. The data model serves two important purposes. First, it provides a
simplified view to hide the complexity of relational or hierarchal data. Second, it allows the data model
designer to control access to sensitive or irrelevant data stored in the database. When a user wants to
build a report from the Report Manager, the Report Builder design components are downloaded and
activated in the user ’ s web browser. This design environment shares common features and
characteristics with the Report Designer but is simpler to use and specifically designed for creating these
client - side reports. Report Builder reports are automatically laid out and formatted for ease of use.
Finished reports may be stored on the server for reuse.

 Figure 1 - 3

c01.indd 14c01.indd 14 11/13/08 4:23:41 PM11/13/08 4:23:41 PM

Chapter 1: Introducing Reporting Services

15

 Part IV, including Chapter 11, “ Report Models, ” and Chapter 12, “ Report Builder 1.0, ” thoroughly covers
client - side reporting concepts, data model preparation, and the Report Builder ad hoc design
environment.

 Simple Application Integration
 There are a few options available for integrating reports into business solutions. Using reports from an
external application isn ’ t hard to do, but choosing the right technique depends on the type of application
and the desired behavior of the report interface. Even with all these options, you may still have a few
different implementation choices. There are now several different methods for rendering reports in a
custom implementation, which include:

 A standard web request using a Uniform Resource Locator (URL)

 A report embedded into a Windows or web application using an IFrame or Browser control

 A programmatic web request using the Simple Object Application Protocol (SOAP)

 The ReportViewer control integrated into Visual Studio for custom Windows Forms or Web
Forms applications

 The ReportViewer web part for SharePoint Portal Server or Microsoft Office SharePoint Services

 The first option is much easier but may be used in a variety of ways. In its simplest form, a hyperlink is
used to open the report in the web browser. The user uses a standard toolbar to provide parameters for
filtering and other report options.

 Launching Reports from an Application
 Hyperlinks and application shortcuts can easily be added to documents and custom applications. Using
this simple technique, report links can be added to Windows Forms, documents, and web pages.

 Much of the standard report viewing environment may be controlled using parameters passed to the
report server in the URL. By incorporating these commands into a hyperlink, reports may be displayed
with or without toolbar options and features. You can change the zoom factor and modify the rendering
format. For example, clicking a link for one report may open it as a web page in HTML, and another link
for a different report may open it in Excel or the Adobe Reader.

 Reports may be designed to prompt users for parameter values used to filter data and to modify the
report format and output. These parameters may also be incorporated into a URL string. This way, one
hyperlink will display a report with one set of data, and another hyperlink will display the same report
with different data. Parameters can even be used to change display attributes such as font sizes and
colors, and to hide and show content.

❑

❑

❑

❑

❑

c01.indd 15c01.indd 15 11/13/08 4:23:42 PM11/13/08 4:23:42 PM

Part I: Getting Started

16

 User Interaction and Dynamic Reporting
 There are many opportunities to use report features that provide a rich user experience. In the past,
many reports were nothing more than a list of values with totals. Now reports can be a starting point
that can guide users to the information they need to make decisions. Report elements such as text labels,
column headers, and chart points can be used to navigate to different report sections and to new reports.
Since navigation links may be data - driven and dynamically created based on program logic, report links
(see Figure 1 - 4) may also be used to navigate into business applications. Imagine using your reports to
launch programs and to navigate to document libraries and online content!

 Figure 1 - 4

 Dynamic reporting means that the content and layout of a report can change as the user selects
parameter values or clicks different items. Summary headers (shown in Figure 1 - 5) may be used to
expand and collapse detail sections, giving users the ability to drill down to more specific information.

c01.indd 16c01.indd 16 11/13/08 4:23:42 PM11/13/08 4:23:42 PM

Chapter 1: Introducing Reporting Services

17

 Intranet and Internet Report Access
 One of the marvelous things about the SQL Server Reporting Services architecture is that it is based on
modern Internet technologies, namely, XML Web services and the .NET Framework. The report server,
running under Windows Server Internet Information Services, is essentially a complete web portal. At its
core, Reporting Services exposes all its features and capabilities as a web service. This means that there
are virtually no practical limits to how the features of reports and the report server may be expanded to
meet specific needs.

 At the simplest level, this means that reports may be accessed by privileged users who are connected
through a corporate intranet or through the World Wide Web. Reports may be made available through
the out - of - the - box Report Manager web page interface or may be built into custom applications, as you
will see in subsequent chapters.

 Seamless Application Integration
 How and why you would build reporting into a custom business application is a big question. Although
there are some common (and rather simple) techniques, there isn ’ t just one way to incorporate reports
into a business environment. Whether you want your users to simply link to a report in a standard
browser - based report viewer or to have report content seamlessly melded into a custom application user
interface, there are a handful of methods to get there. Whatever the chosen technique, users need not

 Figure 1 - 5

c01.indd 17c01.indd 17 11/13/08 4:23:43 PM11/13/08 4:23:43 PM

Part I: Getting Started

18

even realize that they are using Reporting Services to view their content. In fact, they may not even
realize that they are viewing a report. From the users ’ perspective, their experience is simply a
convenient and smooth flow of information as they navigate from one simple interface to another,
without ever leaving your business solution.

 Part V will help you explore opportunities for integrating Reporting Services reports into applications
and business solutions. Chapter 12 will show you different techniques for including reporting features in
Windows and web applications. You will learn how to program the Reporting Services web service to
gain control over the report - rendering process and to manage reports through custom applications.

 Web Application Integration
 It ’ s impossible to know for sure, but by some estimates, as many as 90 percent of all desktop business
applications have been replaced by browser - based applications, most in the past five years. The power of
the Web and Internet technologies has drastically changed the way we use our computers. For this
reason, web applications have come a long way in just the past few years. Once stodgy, static web pages,
many “ web sites ” have been replaced with interactive information portals and dynamic application
interfaces that provide feedback and tactile response to user interaction.

 The page paradigm has turned once - standard gray window dialogs into artistic - yet - efficient, fashionably
color - coordinated data input and management screens. One of the reasons that Reporting Services
integrates so easily with modern web applications is that it natively supports HyperText Markup
Language (HTML), the standard markup language used to create web pages.

 Techniques may be used to incorporate reports into a web application in a variety of ways, for example:

 Hyperlinking to navigate the web browser window to a report

 Hyperlinking to open reports in a separate web browser window, with control over report
display and browser features

 Embedding reports into a page using a frame, IFrame, or ReportViewer web control

 Programmatically feeding report content to an Active Server Page (ASP or ASPX) using server -
 side custom code

 Programmatically writing reports to files available for downloading from a web site

 Using a web part to embed reports into a SharePoint Web portal

 Fully integrating the report server in SharePoint Integration mode

 The fact is that there are a lot of creative ways to integrate reports into a web application. These
techniques range from very simple, requiring little more than a little HTML script, to very complex,
custom methods. And if it ’ s not enough to be able to embed reports into custom web pages, it ’ s also
possible to use custom program code to embed additional content into reports. Imagine the
possibilities . . . actually, you don ’ t have to imagine anything. Just keep reading!

❑

❑

❑

❑

❑

❑

❑

c01.indd 18c01.indd 18 11/13/08 4:23:43 PM11/13/08 4:23:43 PM

Chapter 1: Introducing Reporting Services

19

 Portal Integration
 As web technologies and products have matured, a new breed of web applications has evolved. Most
web sites consist of several HTML page files, which contain mainly text content. Portal frameworks like
Microsoft Office SharePoint Services, IBM Websphere, Plumtree, and DotNetNuke have replaced many
large, complex web sites. A portal server takes much of the programming out of web - site construction by
providing a framework and the building blocks to assemble an intricate web site from modules. Most of
the content is managed in a database rather than in physical web pages.

 Now your corporate reporting solution can be completely integrated into the enterprise intranet portal.
Chapter 16 covers report server integration with SharePoint. Rather than managing reports, security, and
configuration settings on a separate report server and then using a SharePoint portal to just display the
reports, SharePoint integrated mode allows all your reports and report administration to be managed
completely within SharePoint. If you choose to manage the report server separately from your
SharePoint portal, you can still use ShapePoint web parts to navigate folders and reports and to view
reports hosted on the report server running in Reporting Services Native mode.

 SharePoint integrated mode is supported in Microsoft Office SharePoint. A Reporting Services report can
integrate with practically any portal site in some of the same ways that it integrates standard web
pages — by using IFrames and hyperlinks. SharePoint integration is particularly easy for non - developers
because it involves the use of simple menu options rather than writing script or program code. Adding
the report viewer web part to a portal site page is as easy as dragging and dropping it into a page zone
and then setting some simple properties. Microsoft offers a simple portal framework with limited
features with Windows Server, called Windows SharePoint Services (WSS). The full - featured, corporate -
 scale edition — SharePoint Portal Server — is a separate product that adds features and advanced
scalability to the WSS foundation.

 Windows Application Integration
 Reports may be viewed in custom Windows desktop applications using one of two techniques. The
ReportViewer control or embedded web browser may be used to view server - based reports in a form.
These reports are still managed on the report server and maintain all the security settings and
configuration options defined by an administrator. Queries and data access are still performed on the
server. The other option is to embed these reports directly into the client - side application. The Windows
Forms ReportViewer controls can act as a lightweight report - rendering engine. This means that reports
built into a custom application can run independently from the report server. Figure 1 - 6 shows a report
rendered on a Windows Form using the ReportViewer control.

c01.indd 19c01.indd 19 11/13/08 4:23:44 PM11/13/08 4:23:44 PM

Part I: Getting Started

20

 Managing and Customizing
the Repor t Ser ver

 Reports may be delivered in a variety of ways (not just when a user navigates to a report in real
time). Reports may be automatically rendered to the server cache so that they open very quickly and
don ’ t burden data sources. They may be delivered via e - mail and to file shares on a regular schedule.
Using data - driven subscriptions, reports may be “ broadcast ” to a large audience during off - hours. Each
user may receive a copy of the report rendered in a different format or with data filtered differently. You
will learn to plan for, manage, and configure these features.

 Chapter 14 guides you through report server administration. You learn how to optimize, back up, and
recover the ReportServer database, web service, and Windows service. You also learn to use the
management utilities, configuration files, and logs to customize the server environment and to prevent
and diagnose problems.

 Chapter 17 covers programmatic extensions to the Report Server. You learn to write custom data source,
rendering, delivery, and security extensions. That chapter shows you how to build new features on top
of the Reporting Services architecture. As a report designer or business manager, you learn how these

 Figure 1 - 6

c01.indd 20c01.indd 20 11/13/08 4:23:44 PM11/13/08 4:23:44 PM

Chapter 1: Introducing Reporting Services

21

powerful capabilities enable you to address specialized requirements and to direct application
developers to develop custom extensions. As a system administrator, you learn to enable custom
extensions and define appropriate security allowances to enable custom extensions to run on your report
server. As a custom extension developer, you learn how to use the Reporting Services object model to
extend the features of reports and your server, to solve business problems and enable advanced
capabilities.

 Summary
 Different people use Reporting Services in different ways. Our goal in this book is to address the needs
of the broad community of power users, report designers, solution architects, system administrators, and
business managers. For some, the material contained in sections of this book will help them build and
deploy reporting solutions to meet their needs. For others, it may open their eyes to powerful
capabilities beyond their skill set and how to work beside other professionals as educated members of a
project team.

 As a non - programmer report designer using Reporting Services, you are likely to learn to write some
custom expressions and program functions to meet specific reporting needs. Perhaps this is as far as you
will need to take Reporting Services. For the vast majority, this is enough to design, build, and deploy
reports with capabilities far greater than any other reporting tools you may have used in the past. If you
are a serious programmer, then your needs are probably a little different from those of the casual report
designer. For the custom business solution developer, there are very few boundaries set by limitations of
this product. With some creativity and the techniques you will learn in the chapters ahead, you can take
reporting further than you have before and provide your users with real business intelligence rather than
just the ability to print out data.

 Reporting Services takes data accessibility to the next level. Microsoft is making good on its promise of
making information available “ any time, any place, and on any device. ” Reports may be designed using
specific rendering formats and page sizes to support mobile devices, the browser window, Office
documents, and — oh yes — the printed page.

c01.indd 21c01.indd 21 11/13/08 4:23:44 PM11/13/08 4:23:44 PM

c01.indd 22c01.indd 22 11/13/08 4:23:44 PM11/13/08 4:23:44 PM

 Business Intelligence
Solutions

 This chapter is less about Reporting Services and more about reporting and analyzing data in
general. By understanding the state of data analytics in the industry and characteristics of
reporting requirements, you will have a better understanding of how Reporting Services fits into
the bigger picture. A Business Intelligence (BI) solution is the foundation upon which a capable
business reporting platform can be constructed. Depending on your needs and your business
environment, this may simply entail designing a new database. Constructing a full - scale BI
solution may also encompass investing in and learning to use new database tools and
technologies.

 Somewhere between 1999 and 2005, the industry began to go through an important transition.
Prior to this period, businesses ran reports to keep track of simple things like sales totals, invoices,
inventory, and production runs. As an industry, we had reached a point where we were quite
proficient at gathering and storing data. Most businesses have gigabytes and terabytes of data to
report on. What we (as an industry) were less proficient in was transforming that data back into
useful and actionable information. Business has changed in recent years. Today, we compete on a
global scale. Business must be efficient, competitive, and adaptable. Large corporations merge,
acquire, outsource, downsize, and realign their strategies more often than ever before. Today ’ s
business leaders must be adaptable and prepared to react to industry trends and opportunities in
order to thrive.

 As a result of this demanding environment, yesterday ’ s static reporting applications are giving
way to BI solutions. True, BI is more than the ability to “ go get ” data. It involves mechanisms that
put high - level intelligence in front of leaders in the form of ad hoc report tools, dashboards, and
scorecards. It proactively alerts users when important events occur and when thresholds are
exceeded. A dynamic BI solution integrates with business forecasting and planning processes so
that leaders can investigate the cause and effect of activities and their related metrics.

c02.indd 23c02.indd 23 11/13/08 4:24:16 PM11/13/08 4:24:16 PM

24

Part I: Getting Started

 Repor ting T ool Options
 One of the greatest challenges with all the reporting and data analysis tools on the market is knowing
which product or application to use to solve a problem. On a daily basis, I see e - mail messages pass
through my inbox from some of our 1,500 - some IT consultants asking for advice about what product or
development platform would best meet a client ’ s data analytics needs. Just within the Microsoft product
line, we have tools like Excel, Excel Services, SharePoint, PerformancePoint, ProClarity, Access, and
Reporting Services. We also have the capability to develop custom desktop or web applications from the
ground up. And what about the packaged BI reporting solutions from companies like Business Objects,
Hyperion, Panorama, and Cognos? There are so many choices on the market. Some are very expensive
but offer a lot of functionality right out - of - the box. Others require custom programming, configuration,
and design effort before delivering results. Some require users to be savvy and educated, and others
require less training investment but give less flexibility.

 In Reporting Services, there are actually three different report design tools. Two of these report designers
are used to create the same type of standard reports. One is designed for simplicity and ease - of - use,
while the other is centered on more advanced capabilities and project management. Yet another option
applies a different type of reporting technology and a much simpler and somewhat less capable design
tool. Ad hoc reporting places report design into the hands of information workers rather than only IT
professionals and application developers.

 Scalable Architecture
 Simple report design tools like Microsoft Access and Excel are easy to use for analyzing data and
creating reports for an individual or a small group of users, but in all cases they will not serve a large
audience or provide adequate analysis over complex or large volumes of data. A scalable solution must
be hosted on a central server and based on technologies that allow information to be shared and
protected.

 Aside from the ability to create advanced report features and to present data in unique ways, Reporting
Services is designed from the ground up as a highly scalable, hosted service. Hosted reports are
delivered through standard Internet technologies and highly capable application programming
interfaces.

 Rather than requiring every user to install proprietary software to view reports, a revolutionary
approach allows reports to be rendered and delivered in standard formats such as HTML, Excel, and
PDF. Reports may also be delivered on - demand through a web interface or may be scheduled for
automated delivery by e - mail or file share.

 Reporting Services architecture and all of the related components are presented in Chapter 4 .

 Corporate Repor ting
 Designing and delivering reports to the masses requires a scalable, server - hosted reporting environment.
Rather than bringing data from source databases to the desktop for processing, Reporting Services
processes queries and then renders reports on the report server. Because Reporting Services uses
Windows Services, shared server - based components, and HTTP web services, all of the processing

c02.indd 24c02.indd 24 11/13/08 4:24:17 PM11/13/08 4:24:17 PM

Chapter 2: Business Intelligence Solutions

25

occurs in an efficient and secure environment. Standard data source connection providers for SQL Server
and other enterprise - class databases allow for connection pooling, which further promotes efficient use
of server resources. In simple terms, this means that many users can run reports at the same time while
consuming minimal server resources.

 A corporate BI reporting and data analysis solution typically involves the integration of data from
multiple sources into a data mart or data warehouse. Complex analysis solutions often require OLAP
data structures like those created with Microsoft Analysis Services. Reporting Services reports may
use data from all of these sources using Transact - SQL language queries for SQL Server relational data
sources or MDX queries for OLAP cubes hosted by Analysis Services.

 The Reporting Services report server exposes its functionality in the same way that a standard ASP.NET
web site is hosted for internal users or externally to Internet users yet is fully securable. This way, reports
may be accessed from anywhere within or outside of the corporate firewall and are still available only to
selected users.

 Reports deployed to the server are available to users through a standard web - site application
called Report Manager . This web site is installed with Reporting Services and requires very little
administrative effort to maintain. Reports are deployed to folders that are also managed and secured
through the Report Manager Web interface. Reports can also be exposed in custom - developed web
applications using practically any set of web technologies or development tools.

 Reporting Services offers integration with Microsoft Office SharePoint Services, which is used to build
and manage corporate portal sites without having to develop custom web sites. Using SharePoint,
reports may simply be viewed within standard portal site pages through an easy - to - use Report Viewer
web part, or the entire report server may be integrated with SharePoint to be managed as a single
service. With the latter option, reports are deployed to SharePoint report libraries with integrated
SharePoint security.

 Depar tment and P ersonal Repor ting
 Managing a fully scaled corporate BI solution can be complex and expensive. Fortunately, all of the
components of a working solution can be scaled down to a single server if necessary. Small and mid -
 scale reporting solutions may use a single, multipurpose database serving as an operational data store
and a reporting data structure. As the solution matures, the eventual separation of these databases is
almost inevitable. A small - scale data mart, populated from operational databases at regular intervals,
will provide a simpler data source for reporting that doesn ’ t compete with users and applications for
system resources.

 Simple reports are easy to design and to deploy for short - term use. With a little planning and discipline,
reports can be designed to meet future requirements. Properly designed reports can have advanced
features added to meet simple needs now but more sophisticated needs in the future.

 Individual users can create their own reports using Report Builder 2.0. Each user can have his or her
personal report folder.

c02.indd 25c02.indd 25 11/13/08 4:24:18 PM11/13/08 4:24:18 PM

26

Part I: Getting Started

 Ad hoc and Self - Ser vice Repor ting
 Ad hoc reporting technologies allow users to create reports on - the - fly using a simple reporting tool. This
employs simple drag - and - drop techniques to visualize data rather than having to learn how to write
queries and to design and deploy reports. Ad hoc reporting is simple and convenient, and with most
tools, there is typically a trade - off between the rich reporting experience you would expect from custom -
 designed reports and a simple ad hoc report.

 BI Solution Components
 Most businesses will progress through a series of reporting and data analytics stages as they grow and as
business data matures. Depending on the size and type of the business and the dependency on certain
technologies, the landscape will be different, but these patterns are common and somewhat predictable.
A small business will typically invest in a database system and then add others to automate certain
processes. Eventually they will recognize the need to report on this data and to integrate multiple systems.

 At first, a simple reporting application may use data from a data source or two, but eventually reports
may be based on multiple data sources. Sustainable BI solutions are designed around consistent and
reliable data sources engineered specifically for reporting. Data is transformed from multiple sources
into a central repository using data transformation packages and then may be processed into an OLAP
cube. Reports may use a relational data mart, data warehouse, or a cube. A variety of reports can be
created to support business leaders and the decisions they need to make about important business
processes. These decision - support reports may take on the form of charts, detail summaries, dynamic
drill - down and drill - through reports, dashboards, and business scorecards.

 Report Data Sources
 Operational data stores are often the most complex and largest databases. Some packaged products have
databases with hundreds or even thousands of tables. I recently presented at an industry conference on
this topic and asked the audience how many tables they had in their largest databases. One attendee said
that their customer relationship management system, purchased from a well - known vendor, contained
about 8,000 tables.

 As the dependence on databases and on data - driven computer systems increases, most organizations
will cross thresholds in three areas:

 The complexity of each database will grow to accommodate more complex processes.

 The volume of the data will increase.

 The number of different databases will increase to handle different business data
management needs.

❑

❑

❑

c02.indd 26c02.indd 26 11/13/08 4:24:18 PM11/13/08 4:24:18 PM

Chapter 2: Business Intelligence Solutions

27

 A relational database promotes a highly complex, normalized design in which tables and fields are
constrained by relational constraints and rules to govern and protect the consistency of data records as
they are added, modified, and deleted from various tables. All of these rules require processing overhead
on the server that can slow down queries and make it very cumbersome to obtain comprehensive
information from several tables at a time. The rules of normal form — a customary set of rules that
govern the design of standard database systems — encourage efficiency in data storage and reduce
duplicate values, but also promote a very complex environment for reporting applications.

 Aside from sheer complexity, it ’ s not uncommon for even mid - sized companies to store terabytes of
data. After all, database systems are relatively easy to design and maintain, and storage space is fairly
inexpensive when compared with equally capable systems just a few years ago. There may be great
value in tracking orders, shipments, calls, cases, and customers, but all of this adds up over time.
Recording all of this activity means that you simply have a lot of data on - hand for reporting. Putting
data into a database is the easy part. Getting intelligent, useful information back out — there ’ s the
challenge! Finally, different systems are used to manage the same types of data in different ways. For
example, a customer relationship management system tracks sales leads and potential customers for a
marketing organization differently than an order management system does to support the sales team. In
each of these two systems, you may track something called a “ customer, ” but in these systems, the
definition may vary. Perhaps a “ customer ” may represent a consumer, contact, or company in one
system, and a lead, vendor, or reseller in another system. Larger companies may have similar records
duplicated across other systems like enterprise resource planning, human resources management,
benefits, vendor management, accounting, and payables and receivables systems.

 At some point, most businesses will arrive at the conclusion that to obtain valuable reporting metrics
from all of these operational data sources, they will have to be consolidated into a central, simplified
data store specifically designed to support business reporting requirements. Although there may be
different disciplines of thought, generally a data mart or data warehouse system is a central data store used
to simplify and standardize the data extracted from these complex and specialized data sources. It
typically makes use of the same relational database technologies used to house the operational data
stores, but does so in a protected, Read Only environment to keep reporting simple and straightforward.

 Many businesses need to do more than just list transactional records on reports and add up the totals.
Simple data aggregation can be performed with large sets of data from a data warehouse, but deep
analysis requires special data storage technology and a more capable mathematical and statistical
reporting engine. On - Line Analytical Processing (OLAP) systems, like Microsoft SQL Server Analysis
Services, provide a simple platform to manage and report on complex, multidimensional, hierarchal data
structures called cubes . Designing OLAP databases is a specialized discipline that opens the door to high -
 level analytics using simple, user - enabling ad hoc reporting and data - browsing tools. Microsoft Office
Excel may be used to browse cubes using pivot tables and charts. In addition to ad hoc reporting and
cube browsing, standard Reporting Services reports may be used to report on cube data using a special
query language called Multi - Dimensional Expressions (MDX). See Figure 2 - 1 for a representation of what
Report Data Services can do with OLAP cubes and MDX queries.

c02.indd 27c02.indd 27 11/13/08 4:24:18 PM11/13/08 4:24:18 PM

28

Part I: Getting Started

 Designing reports for SQL Server 2008 Analysis Services, OLAP technologies, and key performance
indicators (KPIs) are discussed in Chapter 9 .

 The BI Data Process
 To manage the flow of data through a functional BI data process requires an investment in technologies
and in process and IT project mythology. The ideal solution takes planning, vision, and leadership. Some
trial - and - error is almost inevitable in any project of this magnitude, but with careful planning and some
experienced guidance, success is achievable. There are patterns of success that seasoned professionals
have learned to recognize and apply to BI solution projects of different scale.

 The process begins with a thorough understanding of the business analytic and reporting requirements.
It ’ s not imperative to understand the need for every report, but you must know what business entities
and measures will be required. Data attributes are translated into reporting facts and dimensions.
Dimensions encompass the descriptive attributes organized into hierarchies. Facts are the measure
values that can be aggregated for reporting. BI professionals typically work from a standard checklist of
requirements that includes the following:

 Granularity requirements of each dimension or the level of detail necessary for reporting —
 Aggregated data may be summarized at various roll - up levels across each dimension to support
high - level summaries with drill - down to lower - level detail.

 Frequency of data updates and reporting cycles — Some scenarios may require near - real - time
data visibility, while data refresh intervals often need to align with standard business reporting
and data reconciliation cycles.

 Auditing and historical reporting requirements for changing data — When existing data in the
source systems changes, how should these changes be reflected in reports, and how should
related discrepancies be resolved?

 Report performance requirements — How responsive must reports be to user requests? This
may depend on whether users will run reports interactively or whether reports will run
unattended and be delivered using automated batches.

❑

❑

❑

❑

Data Volume � Calculation/Aggregation Complexity

OLAP Data
Stores

Relational
Data

Warehouse

Operational
Data

Stores

Report Data Sour ces

Figure 2-1

c02.indd 28c02.indd 28 11/13/08 4:24:18 PM11/13/08 4:24:18 PM

Chapter 2: Business Intelligence Solutions

29

 Report visualization requirements — How do users prefer to view the report data? A variety of
graphical reporting tools may be used for analysis including charts, KPI dashboards, and
scorecards. However, many users prefer to export data to spreadsheets or view it in list or
printed form.

 These requirements will drive the data warehouse design and then the OLAP cubes that are based on the
warehouse tables. The bridge between operational data sources and the data warehouse or data mart is
an ETL package. SQL Server Integration Services may be used to Extract, Transform, and Load data from
the data sources to the data warehouse. An ETL package typically cleanses and standardizes records as it
loads them into a consistent structure. Once verified and isolated from all other applications, the data
warehouse becomes a “ single version of the truth ” and validated source for business reporting (see
Figure 2 - 2 for a graphical representation of this process).

❑

Figure 2-2

 The BI Maturity Continuum
 One BI and reporting solution doesn ’ t fit all businesses. In fact, many small and mid - sized businesses
don ’ t require the complexity and sophistication of an end - to - end BI solution to meet their reporting
requirements. Figure 2 - 3 demonstrates this concept by comparing small - , medium - , and large - scale
business reporting needs. With relatively simple reporting requirements and with low data volumes and
complexity, reporting directly from an operational data store is sufficient.

c02.indd 29c02.indd 29 11/13/08 4:24:19 PM11/13/08 4:24:19 PM

30

Part I: Getting Started

 As the requirements grow, so does the need for more complex data. In a mid - sized business with
moderate data reporting needs and a few data sources, a small data mart or warehouse may serve as a
complete BI reporting solution. However, in a larger, sophisticated business environment, a
comprehensive ETL solution, data warehouse, and OLAP database may be used to feed the appetite for
deeper reporting and analysis.

 OLAP cubes are also much easier for users to explore and browse using ad hoc reporting tools. This is
because the data is organized into dimensional hierarchies and measure groups that most business users
already understand. The cost of this investment will often be recovered very quickly as information
workers and business - savvy users are empowered to browse cubes and design simple reports without a
lot of hand - holding and development support from the IT staff.

 Report Types
 Once reports were little more than transaction records printed on paper, called ledgers, journals, and
lists. As the need for more useful information arose, so did the sophistication of reporting. Today, reports
serve as more than just a method to dump records to the printed page. Users need to gain insight and

Figure 2-3

c02.indd 30c02.indd 30 11/13/08 4:24:19 PM11/13/08 4:24:19 PM

Chapter 2: Business Intelligence Solutions

31

education about their business. Dynamic reports allow users to interact and investigate trends in their
business environments, rather than just view static lists. The diagram shown in Figure 2 - 4 demonstrates
the progression of simple, static reporting — commonplace in many businesses — to sophisticated
reporting styles that provide true business insight.

C
om

pl
ex

ity

Predictive
analysis

Statistical
analysis

Actual vs. budget or
forecast

Trending and time period
comparisons

Activity summaries

Figure 2-4

 At the bottom of the pyramid, you can see that most consumers use reports for little more than
summarizing volumes of data on common business activities. As the sophistication of the business users
increases (as you move up the pyramid), so does the complexity of the data and the reporting medium.
You ’ ll also note that the general trend is from a historical perspective to the future. The top of the
diagram shows less - common predictive analysis and forecast reporting. Essentially, the more accurate
and reliable data you have about the past and present, with appropriate reporting models, you can use
this to forecast and predict trends and future activities.

 Take a look at some examples that match up to the categories in Figure 2 - 4 . The first example, shown in
Figure 2 - 5 , is a simple, columnar report of product information. This report is grouped and organized by
product category, subcategory, and then product.

c02.indd 31c02.indd 31 11/13/08 4:24:20 PM11/13/08 4:24:20 PM

32

Part I: Getting Started

 The second example, shown in Figure 2-6, is a variation on the first. Rather than requiring the user to
scan several pages to find what they are looking for, this report has product categories collapsed into
interactive drill - down regions. The user can click to expand a category and then expand a subcategory
to show more detail. Aggregated totals can be added to a drill - down report to show numeric summaries.

Figure 2-5

Figure 2-6

c02.indd 32c02.indd 32 11/13/08 4:24:20 PM11/13/08 4:24:20 PM

Chapter 2: Business Intelligence Solutions

33

 Charting may be used to visualize trends and numeric comparisons. The report in Figure 2 - 7 combines
textboxes to display product details with a chart to show a 2 - year sales trend. Rather than requiring the
user to digest a table of numbers, the area chart makes it much easier to follow the trend line and gain an
understanding with less effort. The image on this report also shows the product using visual information
stored in the product table.

 By combining two reports, users can navigate from a summary table to a detail report using data - driven
hyperlinks. This drill - through report, shown in Figure 2 - 8 , allows the user to click the report name on the
table report and then see the product detail and sales trend for the selected product.

Figure 2-8

Figure 2-7

c02.indd 33c02.indd 33 11/13/08 4:24:21 PM11/13/08 4:24:21 PM

34

Part I: Getting Started

 A variety of visualizations are possible with charts and gauges (see Figure 2 - 9). These provide visual
insight and summaries using graphical paradigms, familiar to most users and appropriate for a variety
of common business scenarios.

Figure 2-9

 The balanced scorecard, shown in Figure 2 - 10 , is created by combining several common report items.
Report design elements, like data range tables, pivot matrices, and lists, may be used as containers for
repeated icons, gauges, and charts. Interactive features allow the context of the report to change when a
user interacts with it by clicking a hotspot or hyperlinked data element. In this example, clicking a row
for a sales region displays a chart showing the sales trend for the selected region.

Figure 2-10

 Beyond the built - in capabilities of Reporting Services, additional features may be added with custom
programming or third - party components. The report in Figure 2 - 11 displays a map generated by a
custom rendering extension using a standard Web - based mapping service. Reporting functionality may
be extended to gain access to unique data sources, to render reports in customized formats or delivery
methods, and to override the default security authentication mechanisms for report users.

Figure 2-11

c02.indd 34c02.indd 34 11/13/08 4:24:21 PM11/13/08 4:24:21 PM

Chapter 2: Business Intelligence Solutions

35

 Data Complexity and Report Performance
 System performance is often one of the most significant drivers for a proper BI solution. As the reporting
needs for an organization become more sophisticated and the complexity and volume of the data
increase, the cost is usually measured first in performance. Queries take longer to run and will compete
for resources on the report and database servers. In this case, IT professionals typically react by
recognizing the value and need for a simplified database. Whether this is to be a truly enterprise - ready
data warehouse, a departmental data mart, or a simple “ reporting structure, ” the basic concepts are
usually the same — simplify the database design to focus on reporting requirements.

 As mentioned above, some performance and advanced analytical requirements may also drive the
maturity of the solution to include OLAP cubes. This doesn ’ t necessarily mean that all of the reports
designed against other data sources must be updated. There are a variety of reports that may work just
fine with an operational data source or relational data warehouse. But other more sophisticated reports
will require specialized data sources (like OLAP cubes) to perform well.

 Figure 2 - 12 demonstrates that as the data source efficiency improves as you move from the left to right
side of this model, so does the ability to produce more capable reports. This is because the report
designer has more time on his hands to invest in the report design. Because fewer debugging and testing
cycles are required for report design, you can spend more time developing more useful reports.

Figure 2-12

c02.indd 35c02.indd 35 11/13/08 4:24:22 PM11/13/08 4:24:22 PM

Part I: Getting Started

 I recall a consulting assignment where I developed reports with complex financial formulas using
the original database structure as the report data source. The TSQL queries were very complex and
difficult to debug. The client was thrilled when one of the more complicated reports was taking only
45 minutes to run instead of the 90 minutes it took before we “ optimized ” the query. After transforming
the same data into a simplified data mart structure, it took less than 3 minutes to run the same report.
With an OLAP cube in Analysis Services, the same report ran in just a few seconds. Needless to say, the
 “ acceptable ” 45 - minute report rendering time was no longer acceptable after the users found out that
they could run the same report in a few seconds!

 This example is not an exaggeration. As Figure 2 - 13 illustrates, as the database complexity, volume, and
query complexity increase, the query execution time increases exponentially in many cases. At a certain
point, a threshold is crossed at which point, query and report execution performance becomes
unacceptable. At some point, resource demands will be so extreme that complex reports simply cannot
execute, regardless of the performance. All technologies have their limits, and a relational database is not
the right solution for certain business analytics.

Figure 2-13

 One important consideration in this equation is that the cost of a data warehouse design or an OLAP
database can be very low when compared with poor report performance and unnecessarily long report
development cycles. SQL Server Analysis Services is an impressive and compelling technology with
tremendous value for even small and mid - sized businesses. If you have not explored this option and you
need to do reporting beyond the basics, we urge you to take a serious look at this impressive toolset so
that you can appreciate its value. To reinforce this point, take a look at the following diagrams that
demonstrate a realistic comparison between a common relational data source and reporting from an
OLAP cube. Figure 2 - 14 illustrates the result of a report developed against a complex relational data
structure. In this case, a complicated T - SQL query that joins 30 or so tables together returns about 500,000
rows of data in about 20 minutes. Because this query took so long to write, test, and debug, the report
designer had little time left to develop a useful report.

36

c02.indd 36c02.indd 36 11/13/08 4:24:23 PM11/13/08 4:24:23 PM

Chapter 2: Business Intelligence Solutions

37

 The next diagram (Figure 2 - 15) uses an OLAP cube. Because of the drastically more efficient data
structure, paired with preprocessed hierarchies and data aggregation, a query based on a much larger
volume of data runs in just a fraction of the time. Because the query was so much easier to create and
less time is invested in the query design, the report designer was able to invest more time and effort into
investigating report requirements and developed a KPI dashboard with interactive features.

Figure 2-14

Figure 2-15

37

c02.indd 37c02.indd 37 11/13/08 4:24:23 PM11/13/08 4:24:23 PM

38

Part I: Getting Started

 Summary
 Business Intelligence raises the bar beyond basic reporting. A BI solution will enable business leaders to
use the right technologies to be proactive and to make informed decisions about their business.
Sophisticated reporting and analytics allow information workers and leaders to look beyond the history
of their business data. By using the past and present, you can spot trends and patterns. Reliable business
analytics can be used to forecast future trends and to plan for improved business processes and to make
informed decisions.

 A data warehouse or data mart is a simplified data structure built using relational database technology,
designed specifically for reporting. Reports based on these data sources are easier to design and may
perform better than reports designed using transactional, operational data stores. OLAP databases, like
SQL Server Analysis Services, use specialized, multidimensional data storage and aggregation
technology to support sophisticated data analytics and reporting. OLAP queries are typically very fast,
enabling ad hoc reporting and advanced report visualizations.

 A BI solution is the foundation upon which solid business reporting rests. Understanding these core
concepts and investing in BI before report design will often reduce costs and enable you to create an
enduring reporting platform for your business users and leaders.

c02.indd 38c02.indd 38 11/13/08 4:24:23 PM11/13/08 4:24:23 PM

 Reporting Ser vices
Installation

 To gain familiarity with Reporting Services, developers and administrators often perform a basic
installation to a personal computer or development server. Although the basic installation glosses
over many of the choices critical in an enterprise deployment, it provides an environment in which
features and the installation process itself can be explored. Such an environment is ideal for
performing the exercises and tutorials found in Books Online and within this book.

 In this chapter, you will be guided through a basic installation of SQL Server 2008 Reporting
Services. Then you will review some important considerations for an enterprise deployment.

 The Basic Installation
 To understand the installation of Reporting Services, it is important to have some knowledge of its
components. At its core, Reporting Services is a Windows service that relies on a pair of databases
hosted by an instance of the SQL Server Database Engine. Interaction with the Reporting Services
Windows service is provided through applications such as Report Manager, hosted by Reporting
Services, and other applications such as the Business Intelligence Development Studio, installed on
client systems. These applications, the Windows service, and the Reporting Services databases are
explored in greater detail in Chapter 4.

 With the basic installation, server - and client - side components are installed on a single system. The
Reporting Services databases are also installed to a local instance of the SQL Server Database
Engine. With no dependencies on other systems, the basic installation is often referred to as a
 stand - alone installation .

c03.indd 39c03.indd 39 11/13/08 4:25:37 PM11/13/08 4:25:37 PM

Part I: Getting Started

40

 The basic installation typically makes use of the Developer or Enterprise Evaluation editions of the SQL
Server software. Both editions provide access to the full range of Reporting Services features. With the
Enterprise Evaluation edition, the software is free but restricted to 180 days of use. With the Developer
edition, the software is provided at a significantly reduced cost but is restricted to use in non - production
environments only. These editions are obtainable through the Microsoft site, subscription services, or
software vendors.

 In addition to providing access to the full suite of Reporting Services features at a reduced or no cost,
both editions support a wider range of operating systems than other production - ready versions of SQL
Server. The operating systems supported include Windows Server 2003 and 2008 but also various
editions of Windows Vista and XP.

 Additional system requirements include 512 MB of RAM and either a 1.0 GHz (32 - bit and IA64 64 - bit) or
1.4 GHz (x64 64 - bit) processor. As directed below, the basic installation will also require at least 2 GB of
free hard drive space plus additional space for the system updates and SQL Server samples.

 Installing Reporting Services
 Before performing the Reporting Services installation, it ’ s a good idea to be certain your system is up - to -
 date with the latest service packs. You will also need to be a member of the local Administrators group
on the system on which you intend to perform the installation or be prepared to run the set - up
application using the credentials of an account that is.

 To start the installation, access the installation media for SQL Server 2008 Enterprise Evaluation or
Developer Edition. This may be a DVD or installation files accessible on a local drive or file share. It is
important that the media be accessed from the system on which you intend to install the Reporting
Services software. Start the set - up application by launching SETUP.EXE , located at the root of the
installation media.

 The very first thing the set - up application will do is check your system for the Microsoft .NET
Framework 3.5 and the Windows Installer 4.5. If these are not present, the set - up application will initiate
their installation.

 The installation of the Windows Installer (presented as a hotfix) is quite fast, but the .NET Framework
can take significantly longer than the minute or two indicated by the set - up dialog. The steps for the
installation of these components are not shown here but are very typical of Microsoft software
installations. If either the .NET Framework or Windows Installer is installed by the set - up application,
your system may require a reboot. Upon restart, you will need to re - launch the SQL Server 2008 set - up
application.

 The set - up application will bring up the SQL Server Installation Center, as shown in Figure 3 - 1 . The
Installation Center is divided into several pages, each providing access to documentation and tools
supporting various aspects of the installation process.

c03.indd 40c03.indd 40 11/13/08 4:25:38 PM11/13/08 4:25:38 PM

Chapter 3: Reporting Services Installation

41

 For the purposes of the basic installation, proceed to the Installation page by clicking the appropriate
link on the left - hand side of the Installation Center form. On the Installation page, shown in Figure 3 - 2 ,
select the “ New SQL Server stand - alone installation or add features to an existing installation ” option.
This will launch the SQL Server Setup Wizard.

Figure 3-1

Figure 3-2

c03.indd 41c03.indd 41 11/13/08 4:25:38 PM11/13/08 4:25:38 PM

Part I: Getting Started

42

 The first step the SQL Server Setup Wizard performs is to compare your system against a set of
 “ setup support ” rules. These rules determine whether the system configuration prerequisites for
installation are met. Upon completion of the analysis, the Wizard shows summary information. If
there are violations, you will be presented with the list of rules identifying which ones require attention.
If there are no violations, you can click the Show Details button to see this same list, as shown in
Figure 3 - 3 .

 Clicking the “ View detailed report ” link on the Setup Support Rules page opens a new window with a
detailed report containing recommendations for addressing any warnings or violations, as illustrated in
Figure 3 - 4 . After reviewing this report, you can close this window.

Figure 3-3

c03.indd 42c03.indd 42 11/13/08 4:25:39 PM11/13/08 4:25:39 PM

Chapter 3: Reporting Services Installation

43

Figure 3-4

Figure 3-5

 On the Setup Support Rules page of the SQL Server Setup Wizard, click the OK button to take you to the
Product Key page, as shown in Figure 3 - 5 . You can select one of the free editions of SQL Server or enter
a product key for one of the other editions. Select the Enterprise Evaluation edition or enter the product
key of the Developer edition to proceed.

c03.indd 43c03.indd 43 11/13/08 4:25:39 PM11/13/08 4:25:39 PM

Part I: Getting Started

44

 Click the Next button to proceed to the License Terms page, as shown in Figure 3 - 6 . Carefully read the
terms of the Product License. To continue with the installation, check the box labeled “ I accept the license
terms. ”

Figure 3-6

 Click the Next button to enter the Setup Support Files page, as shown in Figure 3 - 7 . This page informs
you that some set - up files will be installed for the purposes of the set - up process. There is not much to
do on this page except click the Install button to proceed.

c03.indd 44c03.indd 44 11/13/08 4:25:40 PM11/13/08 4:25:40 PM

Chapter 3: Reporting Services Installation

45

 Once the support files are installed, the Wizard proceeds to another Setup Support Rules page, as shown
in Figure 3 - 8 , to confirm the system configuration against a different set of rules. As before, the “ View
detailed report ” link can be used to obtain additional information. You should review all warnings and
address all violations before proceeding.

Figure 3-8

Figure 3-7

c03.indd 45c03.indd 45 11/13/08 4:25:40 PM11/13/08 4:25:40 PM

Part I: Getting Started

46

 Click the Next button to proceed to the Feature Selection page, within which you select the SQL Server
products and features to install (see Figure 3 - 9). For the basic installation, select the Reporting Services
and Database Engine Services (with Full Text Search) features. In addition, select Business Intelligence
Development Studio, Client Tools Connectivity, SQL Server Books Online, and Management Tools, both
Complete and Basic. If you want to install other components, such as Analysis Services, you can select
these as well.

Figure 3-9

 The Feature Selection page also provides you with the ability to modify the path to which shared
components will be installed. For the basic installation, this will typically be left to the default location. If
you have a compelling reason to change this location, click the button next to the displayed path, and
select an appropriate alternate location.

 Click the Next button to enter the Instance Configuration page, as shown in Figure 3 - 10 . Here you will
identify the instance name for the Database Engine and Reporting Services instances selected on the
previous page. A list of other SQL Server instances already installed on the system is provided in
the bottom half of the page. If a default instance has not already installed, you can choose to perform
this installation to a default instance; otherwise, you will need to provide an appropriate instance name.

c03.indd 46c03.indd 46 11/13/08 4:25:40 PM11/13/08 4:25:40 PM

Chapter 3: Reporting Services Installation

47

 When naming an instance, it ’ s important to keep in mind that the name is not case - sensitive and must be
unique on the system. The name must also be no greater than 16 characters in length and may include
letters, numbers, underscores (_), and the dollar sign ($). The first character must be a letter, and the
instance name must not be one of the 174 set - up reserved words listed in Books Online. In addition, it is
recommended that the instance name not be one of the 235 ODBC reserved words, also listed in Books
Online.

 The Instance Configuration page also allows you to alter the path to which the instance - specific
components will be installed. As before, this will typically be left to the default location. If you have a
compelling reason to change this location, click the button at the end of the path, and select an
appropriate alternate location.

 The Instance Configuration page also allows you to enter an installation ID other than the instance
name. The instance ID is used to identify installation directories and registry keys for the SQL Server
instance. In general, you should not alter the instance ID without a compelling reason to do so.

Figure 3-10

c03.indd 47c03.indd 47 11/13/08 4:25:41 PM11/13/08 4:25:41 PM

Part I: Getting Started

48

 Click Next to enter the Server Configuration page. This page contains two tabs — Service Accounts and
Collation — with the Service Accounts tab being the default.

 On the Service Accounts tab, illustrated in Figure 3 - 12 , select the service account to be used for
each service to be installed. For the basic installation, it is generally recommended that you use the
local service or network service account for the Database Engine and Reporting Services Windows
services. As described in Chapter 14, you can change the service account after the installation.

Figure 3-11

 Click the Next button to proceed to the Disk Space Requirements page, as shown in Figure 3 - 11 . Here
you can review the amount of space consumed by the various components of the installation.

c03.indd 48c03.indd 48 11/13/08 4:25:41 PM11/13/08 4:25:41 PM

Chapter 3: Reporting Services Installation

49

 On the Collation tab, illustrated in Figure 3 - 13 , you can alter the collation to be used for the Database
Engine instance. The default selection is determined by the locale configured with the local operating
system. As with other options, it is generally recommended that you not alter the collation unless you
have a compelling reason to do so.

Figure 3-12

c03.indd 49c03.indd 49 11/13/08 4:25:41 PM11/13/08 4:25:41 PM

Part I: Getting Started

50

 Click the Next button to proceed to the Database Engine Configuration page. This page allows you to
configure the instance of the SQL Server Database Engine you are installing with Reporting Services. It is
divided into three tabs: Account Provisioning, Data Directories, and FILESTREAM.

 On the Account Provisioning tab, shown in Figure 3 - 14 , press the Add Current User button so that you
will be set up as an administrator of the Database Engine instance. Leave all other options on this tab as
they are, unless you have a compelling reason to change them.

Figure 3-13

c03.indd 50c03.indd 50 11/13/08 4:25:42 PM11/13/08 4:25:42 PM

Chapter 3: Reporting Services Installation

51

 On the Data Directories tab, shown in Figure 3 - 15 , you can alter various paths used by the Database
Engine instance. Again, unless you have a compelling reason to make changes, leave the settings as is.

Figure 3-14

Figure 3-15

c03.indd 51c03.indd 51 11/13/08 4:25:42 PM11/13/08 4:25:42 PM

Part I: Getting Started

52

 On the FILESTREAM tab, shown in Figure 3 - 16 , select the “ Enable FILESTREAM for Transact - SQL
access ” option. This is required for the Adventure Works 2008 database samples, which you will install
later. If you forget to set this during installation, you will need to alter the FILESTREAM properties of
the SQL Server Database Engine service using the SQL Server Configuration Manager and update the
configuration option “ filestream access level ” with an appropriate value using sp_configure .
Additional details of these steps for configuring the database engine can be found in Books Online.

Figure 3-16

c03.indd 52c03.indd 52 11/13/08 4:25:42 PM11/13/08 4:25:42 PM

Chapter 3: Reporting Services Installation

53

 Click the Next button to proceed to the Error and Usage Reporting page, as shown in Figure 3 - 18 . Select
whichever options align with your willingness to participate in this program. Although you are
encouraged to participate, the options you select will not affect the installation.

Figure 3-17

 Click the Next button to enter the Reporting Services Configuration page (see Figure 3 - 17). On this page,
you can select from one of three Reporting Services installation options. The various options are
discussed in the second half of this chapter. For most basic installations, you will want to select the
 “ Install the native mode default configuration ” option. The remainder of these instructions assumes that
you have selected this option.

c03.indd 53c03.indd 53 11/13/08 4:25:43 PM11/13/08 4:25:43 PM

Part I: Getting Started

54

 Click the Next button to enter the Installation Rules page (see Figure 3 - 19). These rules check that
everything is in order to proceed with the installation given the options you have selected. As before, the
 “ View detailed report ” link opens a separate report.

Figure 3-18

c03.indd 54c03.indd 54 11/13/08 4:25:43 PM11/13/08 4:25:43 PM

Chapter 3: Reporting Services Installation

55

 Click the Next button to enter the Ready to Install page, as shown in Figure 3 - 20 . Carefully review the
options you have selected. If you will be repeating this installation on other systems, consider copying
the path of the INI file listed at the bottom of the page. The INI file can be used for future command - line
installations, as described in the latter half of this chapter.

Figure 3-19

c03.indd 55c03.indd 55 11/13/08 4:25:43 PM11/13/08 4:25:43 PM

Part I: Getting Started

56

 Click the Install button to start the software installation. The installation processes can take quite a bit of
time to complete. During this time, you are presented with an Installation Progress page. Upon
completion, a summary of the installation process is presented, as shown in Figure 3 - 21 .

Figure 3-20

Figure 3-21

c03.indd 56c03.indd 56 11/13/08 4:25:44 PM11/13/08 4:25:44 PM

Chapter 3: Reporting Services Installation

57

 Click the Next button to proceed to the final page of the SQL Server Setup Wizard, as shown in
Figure 3 - 22 . Here you can review a summary log from the installation and notes on the components
installed. Click the Close button to complete the Wizard and return to the Installation Center.

Figure 3-22

 You can now close the Installation Center or use the “ Search for product updates ” option on the
Installation Center ’ s Installation page to look for any SQL Server hotfixes or service packs.

 With the installation completed, your final step should be to verify the installation. Open Internet
Explorer, and enter one of the following URLs:

 If you installed a default instance, enter http://localhost/reports .

 If you installed a named instance, enter http://localhost/reports_instancename , with
the appropriate substitution.

 The URL may take a little while to completely resolve upon this first use but should return a screen
like the one in Figure 3 - 23 that indicates the service is working properly. If you do not see the two
tabs and the options bar below them, as shown in the figure, try launching Internet Explorer as
Administrator.

❑

❑

c03.indd 57c03.indd 57 11/13/08 4:25:44 PM11/13/08 4:25:44 PM

Part I: Getting Started

58

 Installing the Reporting Services Samples and SQL Server
Sample Databases

 With the Reporting Services software installed, it ’ s now time to install the Reporting Services samples
and SQL Server sample databases. These are used throughout this book and in various tutorials available
through Books Online.

 The Reporting Services samples consist of various applications, extensions, models, reports, and scripts.
These samples can assist you in learning about various aspects of Reporting Services or, in some cases,
serve as starting points for production applications.

 The SQL Server sample databases primarily consist of two databases containing data related to a
fictional bicycle manufacturer, Adventure Works Cycles. The OLTP sample database contains structures
typical of a transactional system, whereas the DW sample database contains structures typical of
an analytical system. Together, these will assist you in gaining familiarity with both operational and
analytical reporting.

 The Reporting Services samples and SQL Server sample databases are available on the CodePlex web
site at www.CodePlex.com/SqlServerSamples . For each sample database and the Reporting Services

Figure 3-23

c03.indd 58c03.indd 58 11/13/08 4:25:44 PM11/13/08 4:25:44 PM

Chapter 3: Reporting Services Installation

59

samples, you will need to download an installation file appropriate to your hardware platform. These
files are identified in the table below.

 CPU MSI Sample

 32 - bit SQL2008.Reporting_Services.Samples.x86.msi Reporting Services Samples

 SQL2008.AdventureWorks_OLTP_DB_v2008.x86.msi AdventureWorks2008
Sample Database

 SQL2008.AdventureWorks_DW_BI_v2008.x86.msi AdventureWorks2008DW
Sample Database

 x64 64 - bit SQL2008.Reporting_Services.Samples.x64.msi Reporting Services Samples

 SQL2008.AdventureWorks_OLTP_DB_v2008.x64.msi AdventureWorks2008
Sample Database

 SQL2008.AdventureWorks_DW_BI_v2008.x64.msi AdventureWorks2008DW
Sample Database

 IA64 64 - bit SQL2008.Reporting_Services.Samples.ia64.msi Reporting Services Samples

 SQL2008.AdventureWorks_OLTP_DB_v2008. ia64.msi AdventureWorks2008
Sample Database

 SQL2008.AdventureWorks_DW_BI_v2008. ia64.msi AdventureWorks2008DW
Sample Database

 Before starting the sample installations, verify that the SQL Server Database Engine and Reporting
Services are running. Then, launch each downloaded MSI and follow the instructions provided to install
the samples.

 The move of the samples from the installation media to the CodePlex site makes the precise steps through
which they are obtained and installed highly subject to change. For this reason, we are unable to provide
detailed instructions. Please refer to information on the CodePlex web site for the most up - to - date
installation instructions for these files.

 The Enter prise Deplo yment
 As stated at the start of this chapter, the basic installation side - steps many of the considerations
important to an enterprise deployment of Reporting Services. This is done to avoid being overwhelmed
so early in the game, but when it ’ s time to start planning how Reporting Services will be installed,
configured, and distributed within your enterprise environment, the following topics need to be
carefully considered:

 SQL Server editions

 Named instances

❑

❑

c03.indd 59c03.indd 59 11/13/08 4:25:45 PM11/13/08 4:25:45 PM

Part I: Getting Started

60

 Topology

 Modes

 Installation options

 Command - line installation

 SQL Server Editions
 SQL Server 2008 comes in nine editions, the following seven of which include Reporting Services:

 Enterprise

 Standard

 Developer

 Enterprise Evaluation

 Workgroup

 Web

 Express with Advanced Services

 The Enterprise and Standard editions are the only editions supported in a production environment. The
Enterprise edition provides access to the full set of features available with Reporting Services and runs
on 32 - bit, x64 64 - bit, and IA64 64 - bit platforms. The Standard edition provides access to a reduced
feature set and does not support the IA64 64 - bit platform. It costs less than the Enterprise edition and
may be more appropriate for smaller installations.

 The Developer and Enterprise Evaluation editions provide access to the same features available
through the Enterprise edition. The Developer edition is very inexpensive and is intended for
development and testing environments only. The Enterprise Evaluation edition is free but expires after
180 days. These two editions support 32 - bit, x64 64 - bit, and IA64 64 - bit architectures and a wider range
of operating systems than either the Enterprise or Standard edition.

 Workgroup and Web editions support a reduced feature set, even more so than Standard edition, and
reduced capacity as may be appropriate for small - scale or web - based deployments, respectively. Both
editions support 32 - bit and x64 64 - bit platforms and have low licensing costs appropriate for their
intended uses.

 Finally, the Express with Advanced Services edition is a highly restricted edition of SQL Server with
limited support for Reporting Services. This edition is freely available, but its limitations make it
unlikely to be used for anything other than highly specialized needs. The Express with Advanced
Services edition is available on 32 - bit and x64 - bit platforms.

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

c03.indd 60c03.indd 60 11/13/08 4:25:45 PM11/13/08 4:25:45 PM

Chapter 3: Reporting Services Installation

61

 For precise system requirements and features available through each of these editions, please consult
SQL Server Books Online. A limited comparison of core feature and hardware differences relevant to
Reporting Services is provided in the following table. For the operating systems supported, please refer
to the details within Books Online.

 Feature Enterprise a Standard Workgroup Web Express
Advanced

 Reporting Services Windows
service

 Yes Yes Yes Yes Yes

 SharePoint Integrated mode Yes Yes

 Scale - Out topologies Yes

 Role - based security Yes Yes Yes, limited Yes, limited Yes,
limited

 Custom security extensions Yes Yes Yes Yes

 Export to Word, Excel, PDF,
and Images

 Yes Yes Yes Yes Yes

 Remote and non - relational
data sources

 Yes Yes

 Data source, Delivery, and
Rendering extensibility

 Yes Yes

 Report delivery Yes Yes

 Report history, scheduling,
subscription, and caching

 Yes Yes

 Data - driven subscriptions Yes

 BIDS Report Designer Yes Yes Yes Yes Yes

 Report Manager Yes Yes Yes Yes Yes

 Report Builder 1.0 Yes Yes Yes

 Infinite click - through Yes

 Server memory (minimum) 512 MB 512 MB 512 MB 512 MB 256 MB
(32 - bit)

512 MB
(64 - bit)

 Server memory
(recommended)

 2+ GB 2+ GB 2+ GB 2+ GB 1+ GB

 Server memory (max) Unlimited Unlimited 4 GB 4 GB 4 GB

(Continued)

c03.indd 61c03.indd 61 11/13/08 4:25:45 PM11/13/08 4:25:45 PM

Part I: Getting Started

62

 Feature Enterprise a Standard Workgroup Web Express
Advanced

 Supported CPU
architectures

 32 - bit
64 64 - bit
IA64 64 - bit

 32 - bit

x64 64 - bit

 32 - bit

x64 64 - bit

 32 - bit

x64 64 - bit

 32 - bit

x64 64 - bit

 CPU speed (minimum) 1.0 GHz
(32 - bit and
IA64 64 - bit)
1.4 GHz
(x64 64 - bit)

 1.0 GHz
(32 - bit)

1.4 GHz
(x64 64 - bit)

 1.0 GHz
(32 - bit)

1.4 GHz
(x64 64 - bit)

 1.0 GHz
(32 - bit)

1.4 GHz
(x64 64 - bit)

 1.0 GHz
(32 - bit)

1.4 GHz
(x64 64 - bit)

 CPU speed (recommended) 2.0+ GHz 2.0+ GHz 2.0+ GHz 2.0+ GHz 2.0+ GHz

aApplies to Enterprise, Enterprise Evaluation, and Developer editions.

 Named Instances
 On a single server, more than one instance of Reporting Services can be installed. Each instance runs
independently of the others and may be of a different version and/or edition. Each has its own Windows
service, its own code base, and its own pair of Reporting Services databases with which it interacts.
These databases may be housed on separate SQL Server Database Engine instances or on a shared
instance, so long as each database is assigned a unique name.

 To distinguish between the Reporting Services instances on a server, each is assigned a name, unique on
that system. This is referred to as the instance name , and an instance with a name assigned to it is known
as a named instance .

 In addition to named instances, one instance on a given server may be assigned no instance name. This is
referred to as the default instance . When only one instance is installed to a server, it is often a default instance.

 Multiple instances on a single server, whether all named or a combination of named and a default
instance, can be very practical for supporting the migration of a Reporting Services instance from SQL
Server 2000 or 2005 to SQL Server 2008 when server hardware is limited. Multiple instances can also be a
convenient way to minimize the licensing requirements associated with a deployment. That said,
historically it has been recommended that a single Reporting Services instance, whether named or default,
should be deployed to a production server for the optimal allocation of resources and overall stability.

 Topology
 Topology refers to how Reporting Services components are distributed among servers while presenting
users with unified access to the service ’ s features. The emphasis is on the Reporting Services Windows
service and the Reporting Services databases, as opposed to the client tools. Reporting Services provides
support for two generalized topologies: standard and scale - outs.

 In a standard topology, the Reporting Services Windows service is installed on a system. It interacts with
a pair of Reporting Services databases hosted locally or remotely and dedicated for use by this one
instance of Reporting Services. The basic installation performed at the start of this chapter is an example
of a standard topology.

c03.indd 62c03.indd 62 11/13/08 4:25:45 PM11/13/08 4:25:45 PM

Chapter 3: Reporting Services Installation

63

 With a scale - out topology, multiple instances of the Reporting Services Windows service are installed
across various servers. These instances share a pair of Reporting Services databases. By sharing these
databases, each server, referred to as a node , hosting the Reporting Services Windows service has access
to the same content and security configuration as the other nodes within the scale - out topology. If load -
 balancing hardware or software is available on the network, some or all of the nodes in the topology can
be presented to end - users as a single resource but with greater and more flexible capacity than available
through a standard deployment. Other nodes within the scale - out topology can be configured to be
dedicated to scheduled processing, removing this burden from other nodes in the environment.

 As you are deciding between a standard and scale - out topology, it is very important to note that
scale - outs are only supported with the Enterprise edition of the product. Setup of the scale - out will also
require additional configuration following the standard installation.

 Finally, if you are considering a scale - out topology in pursuit of higher availability, you may wish to
consider implementing the Reporting Services databases on a failover cluster. It ’ s important to keep in
mind that while the SQL Server Database Engine supports failover - clustering and Reporting Services can
interact with databases hosted on a cluster, the Reporting Services Windows service itself does not have
any clustering capabilities.

 Modes
 Reporting Services runs in one of two modes: Native or SharePoint Integrated. In the Native
mode, Reporting Services manages its content using its own internal, or “ native, ” functionality.
This is the traditional mode under which Reporting Services instances have been run.

 Reporting Services deployments using Enterprise, Developer, Enterprise Evaluation, or Standard
editions are capable of running in the SharePoint Integrated mode. In this mode, content management is
handled through SharePoint. Native content management interfaces, such as Report Manager, are no
longer accessible. A detailed discussion of the SharePoint Integrated mode is provided in Chapter 16.

 The SharePoint Integrated mode is a very appealing option for many organizations that want to leverage
SharePoint as their enterprise content - management solution; however, there are some limitations, such
as the lack of support for linked reports in this mode.

 For those organizations that want to run Reporting Services in Native mode but still want to display
Reporting Services content through SharePoint, the Reporting Services 2.0 web parts provide an
alternative to SharePoint Integrated mode. A detailed discussion of these web parts is provided in
Chapter 16.

 Installation Options
 During installation, you are presented with three Reporting Services configuration options. You can
install Reporting Services in Native mode using a default configuration, in SharePoint Integrated mode
also using a default configuration, or in a minimally configured mode, referred to as a files only
installation.

 The Native and SharePoint Integrated mode with default configuration options are only available if you
are installing Reporting Services and the Database Engine as part of the same installation process. These
installation options leave Reporting Services in an operational state following the completion of the

c03.indd 63c03.indd 63 11/13/08 4:25:46 PM11/13/08 4:25:46 PM

Part I: Getting Started

64

set - up process, although not all Reporting Services features (e.g., the unattended execution account and
e - mail delivery) are configured upon completion. If you are installing Reporting Services using the
SharePoint Integrated mode with default configuration options, additional steps must be performed for
integration to be completed, as outlined in Chapter 16.

 For enterprise deployments, the files - only installation is the option most frequently used. With the files -
 only option, the server components are installed but not configured. Following installation, you are
required to use the Reporting Services Configuration tool to configure the Reporting Services databases
and URLs for the Reporting Services Web service and Report Manager before the service can be made
operational. These steps are discussed in Chapter 14.

 Command - Line Installation
 For large - scale enterprise deployments, command - line installations using script files, as opposed to the
interface - driven installation performed at the beginning of this chapter, are encouraged. By making use
of a common script file across installations in your organization, greater consistency between
installations can be achieved.

 To execute the command - line installation, launch the SETUP.EXE application from the command line
using the /CONFIGURATIONFILE parameter. The /CONFIGURATIONFILE parameter requires the path of
the script file containing the installation instructions. This file can be created using a text editor and
information in Books Online or through an interactive setup, as mentioned in the first section of this
chapter. If you create the file through an interactive setup, you will need to review its parameter settings
and make appropriate modifications.

 The following demonstrates the call to SETUP.EXE for a command - line installation:

SETUP.EXE /CONFIGURATIONFILE=c:\temp\configuration.ini

 And the following are the contents of the INI file instructing SETUP to install a default instance of
Reporting Services using a files - only configuration:

[SQLSERVER2008]
QUIET=True
ACTION=Install
FEATURES=RS
INSTANCENAME=MSSQLSERVER
RSINSTALLMODE=FilesOnlyMode
RSSVCACCOUNT=”NT AUTHORITY\NETWORK SERVICE”
RSSVCSTARTUPTYPE=MANUAL

 Summary
 The purpose of this chapter was to help you get a basic installation of Reporting Services up and running
so that you can explore the product as you progress through this book. While highly useful, this
installation ignored many of the issues considered during an enterprise deployment. To assist you in
planning your enterprise deployment, a brief introduction to each of these issues was provided.

c03.indd 64c03.indd 64 11/13/08 4:25:46 PM11/13/08 4:25:46 PM

 Reporting Ser vices
Architecture

 In this chapter, you will explore how features in Reporting Services are implemented and exposed.
This information is foundational for both administrators and developers. Subsequent chapters in
this book build off concepts explored here.

 You will start with a look at the reporting life cycle. This provides you the context within which
Reporting Services is employed. You will then explore the various applications and utilities
associated with Reporting Services.

 Following this, you will dig a little deeper into Reporting Services itself by examining the
architecture of the Reporting Services Windows service, its components and supporting databases.
By the end of the chapter, you will have a solid understanding of how all these pieces come
together to deliver Reporting Services ’ functionality.

 This chapter covers:

 The reporting life cycle

 Reporting Services tools

 Reporting Services Windows service

 Reporting Services processors and extensions

 Reporting Services application databases

❑

❑

❑

❑

❑

c04.indd 65c04.indd 65 11/13/08 4:26:32 PM11/13/08 4:26:32 PM

66

Part I: Getting Started

 The Repor ting Life Cycle
 The reporting life cycle is often described as a process consisting of three sequential phases. A report is
first designed and developed in the authoring phase, made accessible to end - users in the management
phase, and then placed in the hands of end - users in the delivery phase. These three phases are illustrated
in Figure 4 - 1 and discussed in the following sections.

Authoring
• End-User
• Report Specialist Management

• Content
• System Delivery

• On-Demand (Pull)
• Subscription (Push)

Figure 4-1

 Authoring
 The authoring phase of the reporting life cycle starts with the gathering of requirements through formal
and informal processes. These requirements then drive the design of queries that provide data for
the report. Data is integrated with charts, tables, matrices, or other presentation elements to form the
basic report. Formatting and layout adjustments are then applied to produce a draft report that is
validated for accuracy and consistency with the requirements before being published to a centralized
management system in preparation for end - user consumption.

 Report authoring is handled by two general classes of workers:

 End - User Authors — End - user authors develop reports as a secondary part of their job. These
folks typically belong to the non - IT part of an organization and tend to require less technical,
more user - friendly report authoring tools. These tools present data in a manner that is easy to
interpret and incorporate into the report design and make report layout and formatting a
relatively simple task.

 Reporting Specialists — Reporting specialists, on the other hand, are focused on report
development as a primary part of their job. These folks often reside within the IT department.
Reporting specialists demand precise control over query and report design. Their authoring
tools tend to be more technical, providing access to the complete array of features available
through the reporting system.

 Of course, not every report author falls neatly into one of these two buckets. The end - user author
and the reporting specialist represent two ends of a spectrum, with many authors leaning toward one
end or the other. A variety of report development tools are needed to address the full range of needs
along this spectrum.

❑

❑

c04.indd 66c04.indd 66 11/13/08 4:26:43 PM11/13/08 4:26:43 PM

Chapter 4: Reporting Services Architecture

67

 Management
 In the management phase of the reporting life cycle, published reports are organized, secured, and
configured for end - user access. Resources employed by multiple reports and specialized features, such
as subscription delivery and caching, are configured. These activities are collectively referred to as
 content management and are often handled to some degree by both authors and administrators.

 The report management system itself requires configuration and ongoing maintenance to ensure its
continued operation. System management activities are often the exclusive domain of administrators.

 Delivery
 Once deployed and configured, a report is ready for end - user consumption, in the delivery phase of the
reporting life cycle. End - users may view reports on demand or may request that reports be delivered to
them on a predefined schedule. These are referred to as the pull and push methods of report delivery,
respectively. The key to successful report delivery is flexibility.

 Repor ting Ser vices T ools
 Reporting Services supports the full reporting life cycle. This support is provided through a collection of
tools that come with Reporting Services, as identified in the following table:

 Authoring Management Delivery

 Report Designer Report Manager Report Manager

 Report Builder 1.0 SharePoint reports library HTML Viewer

 Report Builder 2.0 Reporting Services Configuration
Manager

 SharePoint libraries and web parts

 Third - party authoring
tools

 SQL Server management
applications

 Report Viewer controls

 Command - line utilities Reporting Services Web service

 Subscriptions

 Report Designer
 Report Designer exposes the full range of available report - development features, providing report
specialists with precise control over their reports. The application is accessible through the Business
Intelligence Development Studio (BIDS), which is a collection of specialized designers available through
Visual Studio. BIDS is installed with SQL Server and integrates with existing installations of Visual
Studio. If Visual Studio has not been previously installed, SQL Server setup installs a Visual Studio shell
from which BIDS will be run.

c04.indd 67c04.indd 67 11/13/08 4:26:44 PM11/13/08 4:26:44 PM

68

Part I: Getting Started

 Report Designer is divided into two tabs: Design and Preview. Each of these tabs provides access to
interfaces supporting query development, report layout and formatting, and validation. Wizards and
dialogs accessible through Report Designer provide support for the development of highly customized,
sophisticated reports. In the chapters that follow, you will gain deep exposure to these features.

 Report Builder 1.0
 Report Builder 1.0 enables end - users to author their own reports. The application allows tables, matrices,
and even charts to be assembled with simple drag - and - drop functionality. Data access is supported
through report models, which shield less technical users from the technical challenges of query
development.

 Although highly approachable, Report Builder 1.0 provides access to a surprisingly rich array of
features, including the ability to implement formulas, parameters, and filters. Chapter 11 provides
detailed coverage of report models, and Chapter 12 addresses Report Builder 1.0.

 Report Builder 2.0
 The Report Builder 1.0 application is poised for a makeover. The Reporting Services product team has
been actively working on a new version, currently referred to as Report Builder 2.0 , that sports more of a
Microsoft Office look and feel.

 As of the time of this writing, Report Builder 2.0 is only available as a stand - alone, release
candidate application. It is currently expected that the product will be officially released as a stand - alone
application in an SQL Server 2008 Feature Pack and will displace the original Report Builder application
at a later date, possibly within the SQL Server 2008 product life cycle.

 Third - Party Authoring Tools
 Reporting Services reports are recorded as XML documents. The particular flavor of XML used
by Reporting Services is known as Report Definition Language (RDL). Report authoring tools provide
graphical interfaces for report development, shielding authors from the gory details of assembling the
underlying RDL document.

 As an open standard, third parties have developed their own report authoring tools generating RDL
documents that are consumable with Reporting Services. A list of third parties providing such tools is
available from the Microsoft web site at www.microsoft.com/sql/technologies/reporting/
partners.mspx .

 Report Manager
 Report Manager is primarily a content - management tool, providing access to reports and other items
through an intuitive, folder - based navigational structure. Because it is securable and easy to navigate,
Report Manager often serves double duty as a report delivery application. Use of Report Manager is
covered in detail in Chapter 13.

c04.indd 68c04.indd 68 11/13/08 4:26:45 PM11/13/08 4:26:45 PM

Chapter 4: Reporting Services Architecture

69

 It is important to note that Report Manager is available only with Reporting Services instances running
in Native mode. For instances running in SharePoint Integrated mode, content management and report
display functionality are provided through SharePoint. For more information on the Reporting Service
modes, refer to Chapter 3.

 SharePoint Libraries and Web Parts
 For Reporting Services instances running in SharePoint Integrated mode, reports and other Reporting
Services items are presented as part of standard SharePoint libraries and managed as SharePoint content.
The Report Viewer 3.0 web part, installed during the setup of SharePoint integration, allows reports
from instances in this mode to be presented through SharePoint.

 Access to Reporting Services content through SharePoint is not the exclusive domain of instances
running in SharePoint Integrated mode. Native - mode instances can also present content using the
Reporting Services SharePoint 2.0 web parts. These consist of the Report Explorer 2.0 and Report Viewer
2.0 web parts, which allow Report Manager and rendered reports from Native - mode instances to be
displayed within a SharePoint site.

 Books Online provides a detailed comparison of SharePoint Integrated mode and Native - mode
integration with the 2.0 web parts to assist you in determining the best option for your environment.
Chapter 16 provides more details on this topic as well, including instructions for installing the 2.0 web
parts and configuring an instance for SharePoint Integrated mode.

 Reporting Services Configuration Manager
 Access to system - critical settings is provided through the Reporting Services Configuration Manager. In
addition, the tool provides support for certain administrative tasks, such as creating the Reporting
Services application database and backing up and restoring encryption keys. These tasks and the use of
the Reporting Services Configuration Manager to perform them are covered in Chapter 14.

 SQL Server Management Applications
 Because Reporting Services is a member of the SQL Server product suite, support for it can be found
through the standard SQL Server management applications. SQL Server Management Studio allows
you to perform various administrative tasks including the management of shared schedules and
roles. Configuration of the Reporting Services Windows service is supported through the SQL
Server Configuration Manager, although some of this functionality is redundant with the Reporting
Services Configuration Manager. The use of SQL Server Management Studio for various management
tasks is addressed in Chapters 13 and 14.

c04.indd 69c04.indd 69 11/13/08 4:26:45 PM11/13/08 4:26:45 PM

70

Part I: Getting Started

 Command - Line Utilities
 To assist with the automation of management tasks, Reporting Services comes with a series of
command - line utilities. Each utility along with a brief description and its default location is listed in
the following table:

 Utility Description Default Location

 Rs.exe Executes VB.NET scripts, automating
administrative tasks. This tool may be used
with Reporting Services installations not
running in SharePoint Integrated mode.

 < drive > :\Program Files\
Microsoft SQL Server\100\
Tools\Binn\rs.exe

 Rsconfig.exe Modifies connection information for
the Report Services database and sets the
default execution account used by Reporting
Services to connect to data sources when no
credentials are provided.

 < drive > :\Program Files\
Microsoft SQL Server\100\
Tools\Binn\rsconfig.exe

 Rskeymgmt.exe Manages the encryption keys used by
Reporting Services. It is also used to join
a Reporting Services installation with
another Reporting Services installation to
form a “ scale - out ” deployment.

 < drive > :\Program Files\
Microsoft SQL Server\100\
Tools\Binn\rskeymgmt.exe

 HTML Viewer
 Web browsers, such as Microsoft Internet Explorer, are the most popular tools for viewing Reporting
Services reports. In most cases, when a report is rendered to HTML, Reporting Services adds JavaScript
to provide several interactive features. These features include a toolbar, document maps, fixed table
headers, and table sorting. Collectively, these script - based features are referred to as the HTML Viewer .

 To ensure compatibility with the HTML Viewer, it is recommended that you use the latest version of
Internet Explorer. Currently, Microsoft guarantees full HTML Viewer functionality in Internet Explorer
versions 6.0 and 7.0 with up - to - date service packs and scripting enabled.

 Other web browsers can be used to view Reporting Services reports rendered to HTML, but many of the
HTML Viewer features will not be available. Refer to Books Online for more details on which features
are supported by which browsers if you plan on distributing reports to users employing browsers other
than current versions of Internet Explorer.

 Report Viewer Control
 The Report Viewer control allows Reporting Services reports to be displayed within custom applications. The
Report Viewer control is actually two controls — one for use in web applications and the other for
Windows Forms applications. Each supports the same functionality.

c04.indd 70c04.indd 70 11/13/08 4:26:45 PM11/13/08 4:26:45 PM

Chapter 4: Reporting Services Architecture

71

 The Report Viewer control should not be confused with the Report Viewer 3.0 web part and the Report
Viewer 2.0 web part used to support the display of Reporting Services content within SharePoint.

 The Report Viewer control runs in one of two modes. In the default Remote Processing mode, reports are
rendered by a Reporting Services instance and displayed through the control. This is the preferred mode
as the full feature set of Reporting Services is available and the processing power of the Reporting
Services server can be employed.

 In situations in which a Reporting Services server is not available or retrieving data directly through the
client system is required, the Report Viewer control can be run in the Local Processing mode. In this
mode, the application retrieves data and couples it with the report definition to produce a rendered
report on the host system without the support of a Reporting Services server. Not all Reporting Services
features are available when the control is executed in Local Processing mode.

 Integration of reports with custom applications through the Report Viewer control is covered in detail in
Chapter 15.

 Repor ting Ser vices W eb Ser vice
 To support specialized application integration needs, Reporting Services offers a web service through
which reports can be both managed and delivered. As described in the following table, the web service
has several endpoints that provide access to various programmatic classes:

 Endpoint Description

 ReportExecution2005 Provides programmatic access to Reporting Services report
processing and rendering functionality. Available in both Native and
SharePoint Integrated modes, although different URLs are used.

 ReportService2005 Provides programmatic access to Reporting Services report
management functionality. Available in Native mode only.

 ReportService2006 Provides programmatic access to Reporting Services report
management functionality. Available in SharePoint Integrated
mode only.

 ReportService Authentication Provides support for user authentication when Reporting Services
runs in SharePoint Integrated mode and SharePoint is configured
for forms authentication.

 ReportService Provides access to the web services classes originally implemented
with Reporting Services 2000. This endpoint is available for
backward compatibility only and should not be used for new
applications.

 The use of the Reporting Services Web service is addressed in Chapter 15, and complete documentation
of each endpoint is provided through Books Online.

c04.indd 71c04.indd 71 11/13/08 4:26:45 PM11/13/08 4:26:45 PM

72

Part I: Getting Started

 A special feature of the Reporting Services Web service is referred to as URL access . Through URL access,
a rendered report is retrieved through a relatively simple call to a URL. Parameters and rendering
options are supplied in the URL ’ s query string to affect the resulting report. URL access is also addressed
in Chapter 15.

 Subscriptions
 Subscriptions allow you to put reports into the hands of your users based on a predefined schedule or
following an event, such as the update of data. Reporting Services has support for two types of
subscriptions:

 Standard — Through standard subscriptions , a report is rendered in a specific format with
predefined parameter values and delivered to a single, pre - set location. This type of subscription
meets the needs of many report consumers, allowing them sufficient freedom in determining
how, when, and where they will view reports.

 Data - Driven — Data - driven subscriptions support even more flexibility and are better suited
for managing delivery of reports to a large number of users with varying needs. These
subscriptions are established with a reference to a custom relational table holding a record for
each report recipient. Each record in the table may specify rendering and delivery options as
well as report parameter values. Through data - driven subscriptions, a single subscription can be
tailored to the specific needs of many individual consumers.

 By default, subscription delivery is limited to e - mail transmittal or file share drop - off. Additional
delivery options are supported through the integration of custom delivery extensions. Custom
extensions are addressed in Chapter 17.

 Reporting Services Windows Service
 In the previous section of this chapter, we looked at the applications through which authors,
administrators, and end - users interact with Reporting Services. In this section, we ’ ll look at the basic
architecture of the Reporting Services Windows service itself.

 Reporting Services runs as a Windows service on a host system. Interaction with the service takes place
through HTTP and WMI interfaces. The HTTP interfaces provide access to Reporting Services ’ core
report management and delivery functionality, while the WMI interface provides direct access to service
management functionality. External configuration files and application databases support the service.
A visual representation of these interfaces and features is provided in Figure 4 - 2 .

❑

❑

c04.indd 72c04.indd 72 11/13/08 4:26:46 PM11/13/08 4:26:46 PM

Chapter 4: Reporting Services Architecture

73

 The following sections explore each of these aspects of the Reporting Services Windows service:

 HTTP.SYS and the HTTP Listener

 The security sublayer

 Report Manager and the web service

 Core processing

 Service management

 Configuration files

 WMI and the RPC interface

 HT TP.SYS and the HT TP Listener
 When an HTTP request is sent to the Reporting Services server, the request is first received by the server
operating system through the HTTP.SYS driver. HTTP.SYS is responsible for managing a connection with
the requestor and routing HTTP communications to the appropriate application on the server.

 URL reservations recorded in the Registry by Reporting Services provide the instructions HTTP.SYS
requires to route communications to Reporting Services. The HTTP Listener feature of the Reporting
Services Windows service receives the rerouted requests from HTTP.SYS and engages either the Report
Manager or the web service application that it hosts.

❑

❑

❑

❑

❑

❑

❑

HTTP Listener

HTTP.SYSWMI Windows Service

RPC

Security SubLayer

Report Manager

Service Management

Reporting Services
Databases

Configuration Files

Reporting Services Windows Service

Web Service Core Processing

Figure 4-2

c04.indd 73c04.indd 73 11/13/08 4:26:46 PM11/13/08 4:26:46 PM

74

Part I: Getting Started

 Why is this important? Well, it ’ s important for various reasons, but the biggest is that Reporting Services
no longer uses Internet Information Server (IIS), Microsoft ’ s web server. This greatly simplifies the
installation and management requirements for this application and is expected to translate into greater
stability for Reporting Services.

 Although Reporting Services has no dependency on or interaction with IIS, you can still run IIS on the
Reporting Services server if you have some other need for it. So long as URL reservations recorded by
the two do not conflict, both Reporting Services and IIS can even communicate over the same TCP ports.

 The one exception is that IIS 5.1 and Reporting Services cannot share TCP ports on 32 - bit Windows
XP. If you have this configuration, you will need to alter the URL reservations to use different TCP port
numbers. You can alter the Reporting Services reservations using the Reporting Services Configuration
Manager, as described in Chapter 14.

 The Security Sublayer
 As requests are received, the HTTP Listener hands them over to the Reporting Services security sublayer.
The sublayer has responsibility for determining the requestor ’ s identity and then determining if the
user has the required rights for the request to be fulfilled. These steps are referred to as authentication
and authorization .

 The Reporting Services security sublayer is implemented through a component referred to as a security
extension . The extension handles the mechanics of authentication and authorization and exposes a standard
set of interfaces for Reporting Services to call. Various security extensions can be used with Reporting
Services, but Reporting Services deployment can be configured to make use of only one at a given time.

 Reporting Services comes preconfigured with the Windows - integrated security extension. This extension
authenticates users based on their Windows credentials. Four mechanisms for exchanging credentials,
referred to as authentication types , are supported by this extension. These are the following:

 Kerberos — Kerberos is the preferred mechanism for authentication if the feature is supported
within the domain. Kerberos is highly secure, and if delegation and impersonation are enabled,
Kerberos can be used to allow Reporting Services to impersonate the end - user when querying
an external data source.

 NTLM — NTLM employs a challenge - response mechanism to authenticate end - users. This is a
secure but limited method of authentication in that impersonation and delegation are not
supported.

 Negotiate — The Negotiate authentication type is the default authentication type of the
Windows Integrated Security extension. With this authentication type, Kerberos is used if
available. Otherwise, NTLM is used.

 Basic — Basic authentication is the least secure of the authentication types. With Basic
authentication, user credentials are passed between the client and Reporting Services in
plaintext. If you are using Basic authentication, you should consider implementing a Secure
Socket Layer (SSL) certificate to encrypt your HTTP communications.

 The default Windows Integrated Security extension is not ideal for all situations. Delivering reports
over the Internet or integrating Reporting Services functionality with applications employing custom
security mechanisms are two common scenarios within which Windows Integrated authentication may

❑

❑

❑

❑

c04.indd 74c04.indd 74 11/13/08 4:26:47 PM11/13/08 4:26:47 PM

Chapter 4: Reporting Services Architecture

75

not be an option. In these and other scenarios, custom security extensions may be developed and
employed by Reporting Services. Custom extensions are addressed in Chapter 17.

 Regardless of whether the default or a custom security extension is used, once identity is established, the
user ’ s rights to perform a requested action must be verified. (Closer to the actual sequence of events,
the user is authenticated, and the request is passed directly or indirectly to the web service, which then
calls back to the security extension for authorization.) Like many other Microsoft products, authorization
in Reporting Services is based on role assignments. As roles are created, the rights to perform system -
and item - level tasks are assigned to a role. Users are then made members of a role, providing the linkage
required to determine whether a user is authorized to perform a requested task.

 Report Manager and the Web Service
 All requests sent via HTTP are targeted to the Report Manager or web service applications.
The functionality of these applications is outlined in the previous section of this chapter.

 What ’ s important in the context of this discussion is to understand that both ASP.NET applications —
 the Report Manager and the Reporting Services web service — are hosted from within the Reporting
Services Windows service (with no dependencies on IIS, as discussed above). Both operate in their own
application domains. This allows the Windows service to manage these as independent applications
(despite Report Manager ’ s functional dependency on the web service). The benefit of this is that
problems within an application domain can be isolated. The Windows service can respond by starting a
new instance of the application domain while dissolving the problem instance of the application domain.

 Core Processing
 Reporting Services ’ core processing features — scheduling, subscription management, delivery, and
report processing — are performed by a collection of components hosted within the Windows service.
Although not based on ASP.NET, these components are managed as a third application domain within
the Windows service. In the “ Reporting Services Processors and Extensions ” section below in this
chapter, you will explore these components in more detail.

 Service Management
 There is a lot going on within Reporting Services. To ensure that resources are available and the service is
working properly, a collection of internal service management features is implemented. Although not
truly a single entity, these can be thought of collectively as a service management sublayer.

 One critical feature of the sublayer is application domain management. As mentioned above, Report
Manager, the web service, and core processing features are hosted within the Reporting Services
Windows service as three separate application domains. Occasionally, problems within these will arise.
The service management sublayer ’ s application domain management feature takes responsibility for
monitoring for these problems and recycling the affected application domains. This helps to ensure the
overall stability of the Reporting Services Windows service.

 Another critical feature of this sublayer is memory management. Report processing can be memory -
 intensive. The Reporting Services team has invested quite a bit of time and energy into improving
memory utilization in the 2008 release. Reporting Services is now significantly more responsive
to memory pressure. Much of this is achieved through dynamic memory allocation and the use of disk

c04.indd 75c04.indd 75 11/13/08 4:26:47 PM11/13/08 4:26:47 PM

76

Part I: Getting Started

caching in memory - constrained situations. (Changes to Reporting Services models for data retrieval and
integration are a big part of the story as well.) The Reporting Services memory management model is
outlined in Chapter 14.

 Configuration Files
 Reporting Services ’ internal and external features are controlled by collections of parameters recorded in
configuration files. Configuration files are XML documents that follow a prescribed structure containing
information governing the behavior of various components of the Reporting Services Windows service.
The most critical of these configuration files are identified in the following table:

 Configuration File Description Default Location

 ReportingServicesService.exe
.config

 Contains settings affecting
tracing and logging by the
Reporting Services Windows
service

 < drive > :\Program Files\
Microsoft SQL Server\
MSRS10. < instancename > \
Reporting Services \
ReportServer \Bin

 RSReportServer.config Contains settings affecting
numerous aspects of Reporting
Services. This is the primary
configuration file for Reporting
Services functionality.

 < drive > :\Program Files\
Microsoft SQL Server\
MSRS10. < instancename > \
Reporting Services \
ReportServer

 RSSrvPolicy.config Contains settings regulating
code access security policies for
the Reporting Services
extensions.

 < drive > :\Program Files\
Microsoft SQL Server\
MSRS10. < instancename > \
Reporting Services \
ReportServer

 RSMgrPolicy.config Contains settings regulating
code access security policies for
Report Manager.

 < drive > :\Program Files\
Microsoft SQL Server\
MSRS10. < instancename > \
Reporting Services \
ReportManager

 WMI and the RPC Interface
 Microsoft ’ s Windows Management Instrumentation (WMI) technology provides a mechanism for the
consistent management of devices and applications running on Windows platforms. The Reporting
Services Windows service exposes itself to WMI by registering two classes with the local WMI Windows
service. These classes expose properties and methods that the WMI service makes available to
administrative applications.

 The first of the two classes registered by Reporting Services, MSReportServer_Instance , provides
basic information about the Reporting Services installation, including edition, version, and mode.

c04.indd 76c04.indd 76 11/13/08 4:26:47 PM11/13/08 4:26:47 PM

Chapter 4: Reporting Services Architecture

77

 The second class, MSReportServer_ConfigurationSetting , provides access to many of the settings
in the RSReportServer.config configuration file and exposes a host of methods supporting critical
administrative tasks. Administrative interfaces such as the Reporting Services Configuration tool
leverage this provider for their functionality.

 Developers can also take advantage of these and other WMI interfaces. The chief difficulty is making
sense of the namespace organization within WMI. The WMI Code Creator utility, available from the
Microsoft web site, is an excellent tool for exploring the WMI namespaces and the properties and
methods exposed through each.

 A Remote Procedure Call (RPC) interface provided by the Reporting Services service acts as a bridge
between the WMI and Reporting Services Windows services. Through this bridge, calls against the
registered classes received by the WMI service are relayed to Reporting Services.

 Reporting Services Processors and Extensions
 In the previous section of this chapter, you looked inside the Reporting Services Windows service. The
service ’ s core processing features were introduced as an application domain whose functionality is
provided through a collection of components. You will now explore those components to gain a deeper
understanding of just how Reporting Services delivers its primary functionality and where that
functionality can be extended.

 Before jumping into the specific components, you should be aware of the difference between extensions
and processors. Processors are the coordinators and facilitators in Reporting Services ’ component
architecture. They are responsible for calling the extensions as needed and providing mechanisms for
data exchange between them (see Figure 4 - 3). Although configuration settings may alter their behavior,
the processors cannot be extended through custom code.

Scheduling and
Delivery Processor

Report Processor

Data Processing Extensions

Authentication Extension

Report Items

Rendering ExtensionsDelivery Extensions

Core Processing

Reporting Services W indows Ser vice
Security SubLayer

Figure 4-3

c04.indd 77c04.indd 77 11/13/08 4:26:48 PM11/13/08 4:26:48 PM

78

Part I: Getting Started

 Extensions are components registered with Reporting Services to provide specific functionality.
They expose standardized interfaces, which provide the mechanism by which Reporting Services
engages them.

 With these concepts in mind, let ’ s now take a look at the following:

 The Report Processor

 Data processing extensions

 Report items

 Rendering extensions

 The Scheduling and Delivery Processor

 Delivery extensions

 The security extension was discussed in the previous section of this chapter, The Security Sublayer .

 The Report Processor
 The Report Processor combines data and layout instructions to produce a report. Following the arrival of
a request for a report, the processor

 1. Calls the security extension to authorize the request.

 2. Retrieves the report definition from the Reporting Services database.

 3. Communicates data retrieval instructions in the report definition to the data processing
extensions.

 4. Combines data returned from the data processing extensions with layout instructions, using
report processing extensions if needed to produce an intermediate format report.

 5. Passes the intermediate format report to the appropriate rendering extension to produce the
final report.

 6. Returns the final report to the requestor.

 The intermediate format report is not viewable by end - users but is capable of being rendered to any
of the formats supported by Reporting Services. To reduce the time and resource expense of producing a
final report, the intermediate format report can be stored (cached) for reuse. This provides a mechanism
for skipping Steps 2, 3, and 4 in the sequence above, allowing a report to be returned with less time and
resource consumption. Reporting Services supports three forms of caching:

 Report session caching

 Report execution caching

 Snapshots

❑

❑

❑

❑

❑

❑

❑

❑

❑

c04.indd 78c04.indd 78 11/13/08 4:26:49 PM11/13/08 4:26:49 PM

Chapter 4: Reporting Services Architecture

79

 Report Session Caching
 When an end - user connects to Reporting Services, a session is established. Requests from an end - user
are made within the context of a specific session until that session expires.

 During a session, users will often request that the same report be rendered multiple times, possibly in
differing formats. Reporting Services anticipates this by storing the intermediate format report in its
Session cache. The cached copy is recorded with Session identifiers so that when an end - user repeats a
request for a report as part of his or her session, the cached copy can be leveraged. This feature of
Reporting Services, known as report session caching , is always enabled.

 Report Execution Caching
 Why tie cached reports to a session? Why not make them available to all users requesting the same
report? The reason has to do with security.

 Reports are populated by data retrieved from external data sources. Connections to those data sources
are established using credentials. The credentials used depend on the configuration of the report or the
shared data source used by the report.

 If data is retrieved using the requestor ’ s credentials, the report may contain data only appropriate for
that specific user. The intermediate report contains this data so that if it is cached and made available to
another requestor, that user may be exposed to data that he or she otherwise should not see.

 For this reason, only reports that do not use the requestor ’ s credentials to retrieve data from external
data sources can be configured for report execution caching. With report execution caching, the
intermediate report generated from a report request is cached for some period of time and used to render
reports for other users until the cached copy expires.

 Snapshots
 With both report session and report execution caching, the end - user requests a report, and the Report
Processor checks for a cached copy. If none exists, the Report Processor must assemble the intermediate
format report, store it in a cache for subsequent requests, and then render the requested final report.
While later requests may take advantage of the cached copy, the first request does not have this option.
This can lead to an inconsistent end - user experience.

 To address this, snapshots are scheduled to populate the cache in advance of an end - user request.
Snapshots are recorded in the same intermediate format and have the same security requirements as
report execution caching.

 Data Processing Extensions
 As mentioned above, the Report Processor reads data retrieval instructions from the report definition but
hands over the work of establishing connections and retrieving data from external sources to the data
processing extensions. These extensions expose a data reader interface back to the Report Processor,
allowing data to flow through them to the Report Processor and into the intermediate report.

c04.indd 79c04.indd 79 11/13/08 4:26:49 PM11/13/08 4:26:49 PM

80

Part I: Getting Started

 Multiple data source extensions can be in use on the Report Server and even employed from within a
single report. Reporting Services includes several data extensions, providing support for the following
data sources:

 Microsoft SQL Server

 Microsoft SQL Server Analysis Services

 OLE DB data sources

 ODBC data sources

 Oracle

 XML data sources

 SAP NetWeaver BI

 Hyperion Essbase

 Teradata

 It ’ s important to note that the SAP NetWeaver BI, Hyperion Essbase, and Teradata extensions require the
separate installation of client components or .NET data providers. If you need to make use of these data
processing extensions, refer to Books Online for details of how to make these fully operational.

 If access to other data sources is required, you can implement a custom data processing extension and
register it with Reporting Services. This topic is addressed in Chapter 17.

 Alternatively, you may be able to use a standard .NET or OLE DB data provider to obtain the data access
you require. As mentioned at the start of this topic, data processing extensions expose a standard data
reader interface. This interface is based on .NET specifications, which are themselves not that far
removed from interfaces exposed by some OLE DB providers. As a result, many .NET and OLE DB data
providers can be registered and used by Reporting Services in place of a formal data processing
extension. Books Online provides details on the registration of data providers for use with Reporting
Services.

 Report Items
 The Report Processor is capable of generating tables, matrices, charts, and various other report items.
These standard report items meet the needs of most report authors. Still, there are times when other
report items are required. In these situations, additional report items can be registered with Reporting
Services.

 Typically, these report items are purchased from third - party vendors. Dundas is one such vendor whose
products are very popular with report developers. Custom report items can be developed as well.

 Report items, whether purchased or custom, consist of both design and runtime components that must
be registered with the Report Designer and Reporting Services, respectively. Both expose standard
interfaces allowing the Report Designer or the Report Processor to interact with them appropriately.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c04.indd 80c04.indd 80 11/13/08 4:26:49 PM11/13/08 4:26:49 PM

Chapter 4: Reporting Services Architecture

81

 Rendering Extensions
 Once the intermediate format report has been generated (or retrieved from cache) by the Report
Processor, it is delivered to a rendering extension for translation to the end - user requested format.
Reporting Services comes standard with seven rendering extensions, as described in the following table,
each supporting one or more report formats. Custom rendering extensions are also supported, although
Microsoft does not encourage their development.

 Rendering Extension Formats Supported

 HTML HTML 4.0 (default)
MHTML

 CSV Excel - Optimized CSV (default)
CSV - Compliant CSV

 XML XML

 Image TIFF (default)
BMP
EMF
GIF
JPEG
PNG
WMF

 PDF PDF 1.3

 Excel Excel 97

 Word Word 97

 Parameters affecting how each rendering extension generates the final report are known as device
information settings . Default settings for each rendering extension can be set in the rsreportserver.config
file. These can be overridden as part of a specific request to deliver the report in the precise format
required.

 It is important to note that the Report Processor does not simply hand over the intermediate format
report to a rendering extension. Instead, the processor engages the rendering extension, which, in return,
accesses the intermediate report through the Rendering Object Model (ROM) exposed by the Report
Processor.

 The ROM has undergone some significant changes with the release of Reporting Services 2008. Custom
rendering extensions developed for the 2005 or 2000 versions of Reporting Services will not work with
this release. Although the changes are inconvenient for some, there are also many benefits. The most
significant of these is improved consistency between online and print versions of a report and reduced
memory consumption during rendering.

c04.indd 81c04.indd 81 11/13/08 4:26:49 PM11/13/08 4:26:49 PM

82

Part I: Getting Started

 The HTML Rendering Extension
 HTML is highly accessible and a generally good format for interactive reports. For these
reasons, HTML 4.0 is the default rendering format for Reporting Services reports.

 The downside to HTML is that web pages have never been very good for printing. The HTML Viewer, a
JavaScript - based application embedded in most HTML - rendered reports discussed toward the start of
this chapter, provides client - side printing that overcomes some of the challenges experienced when
printing from a web browser. (Client - side printing is accessed through the HTML Viewer toolbar.)

 The HTML rendering extension can be instructed to return MIME - HTML (MHTML) as an alternative
to the HTML 4.0 default. With MHTML, images, style sheets, and other referenced items are embedded
in the HTML document. This allows a report to be delivered without dependencies on external
resources. This can be very useful in certain scenarios such as the e - mail delivery of a report to a user.
(Not all e - mail products support MHTML, so check with your user community before selecting this
format for e - mail delivery.)

 The CSV - Rendering Extension
 The comma - separated values (CSV) - rendering extension renders the data portion of a report to a comma -
 delimited flat - file format accessible by spreadsheets and other applications. With the 2008 release of
Reporting Services, this extension has been improved to keep formatting elements out of the resulting
data file.

 The 2008 CSV - rendering extension operates in two modes. In the default, Excel - optimized mode, each
data region of the report is rendered as a separate block of comma - delimited values. In CSV - compliant
mode, the extension produces a single, uniform block of data accessible to a wider range of applications.

 The XML - Rendering Extension
 XML is another format commonly used for rendering reports. The XML - rendering extension incorporates
both data and layout information in the XML it generates.

 One of the most powerful features of the XML - rendering extension is its ability to accept an XSLT
document. XSLT documents provide instructions for converting XML to other text - based formats. These
formats may include HTML, CSV, XML, or a custom file format. The Reporting Services team
recommends attempting to leverage the XML - rendering format with XSLT for specialized rendering
needs before attempting to implement a custom rendering extension.

 The Image - Rendering Extension
 Through the Image - rendering extension , reports are published to one of seven image formats, the default of
which is Tagged Image File Format (TIFF). TIFF is a widely used format for storing document images.
Many facsimile (fax) programs use TIFF as their transfer standard, and many organizations make use of
it for document archives.

c04.indd 82c04.indd 82 11/13/08 4:26:50 PM11/13/08 4:26:50 PM

Chapter 4: Reporting Services Architecture

83

 The PDF - Rendering Extension
 Reporting Services comes with a rendering extension for Adobe ’ s Portable Document Format (PDF).
The PDF format is one of the most popular for document sharing over the Internet. It produces clean,
easy - to - read documents with exceptional printing capabilities. In addition, PDF documents are not
easily altered.

 Although not as interactive as an HTML report with the HTML Viewer, PDFs do support document
maps. This functionality enables the creation of a table-of-contents - like feature, which is invaluable with
large reports. Adobe Acrobat Reader 6.0 or higher is required for viewing the PDF documents produced
by Reporting Services. This application is available for free download from the Adobe web site.

 The Excel - Rendering Extension
 Rendering reports to Excel is another option supported by Reporting Services. Rendering to Excel is
highly useful if additional analysis is to be performed on the data by the end - user.

 Not all report elements translate to Excel. While many features not available in prior versions of the
Excel - rendering extension (such as nested data regions and subreports) are supported in this release,
other features continue to render poorly or not at all. It is a good idea to review your reports rendered to
this format prior to publication to end - users if Excel rendering is a critical requirement. Reporting
Services Books Online provides details of how each report feature is handled when rendered to Excel.

 The Word - Rendering Extension
 The Word - rendering extension is new for Reporting Services 2008. The extension renders reports in
Microsoft Word 97 format with many of the same features and limitations as rendering in PDF. Unlike
PDF, the Word format allows reports to be more easily edited by the end - user following rendering.

 The Scheduling and Delivery Processor
 The Scheduling and Delivery Processor ’ s primary function is to send requests for subscribed reports
to the Report Processor, accept the returned report, and engage the delivery extensions for subscription
delivery. The processor also handles the generation of snapshots.

 The processor works by periodically reviewing the contents of tables within one of the Reporting
Services application databases. These tables are populated through on - demand events, programmatic
execution of the Reporting Services Web service ’ s FireEvent method, or through schedules configured
through Reporting Services. Schedules themselves are jobs created by Reporting Services but executed
by the SQL Server SQL Agent Windows service. Reporting Services handles the details of setting up and
configuring these jobs when you create a schedule, but the use of schedules creates a dependency on this
additional Windows service.

 Delivery Extensions
 The delivery extensions are called by the Scheduling and Delivery Processor to send reports to
subscribers. Reporting Services comes with delivery extensions for e - mail and file share delivery. If
running in SharePoint Integrated mode, Reporting Services also supports the SharePoint delivery
extension for delivery of content to a SharePoint site.

c04.indd 83c04.indd 83 11/13/08 4:26:50 PM11/13/08 4:26:50 PM

84

Part I: Getting Started

 As with other extensions discussed in this chapter, custom delivery extensions can also be assembled
and registered for use by Reporting Services. Books Online provides sample code for a custom delivery
extension, sending reports directly to a printer.

 Repor ting Ser vices Application Databases
 Throughout this chapter, there have been repeated references to the Reporting Services application
databases. These databases store report definitions, snapshots, cache, security information, and much
more. Although it is strongly recommended that you not directly access these databases, it is important
to understand their basic structure and role within the Reporting Services architecture. These two
databases are:

 ReportServer

 ReportServerTempDB

 When run in SharePoint Integrated mode, Reporting Services stores content and settings in the
SharePoint content and configuration databases. These databases are the domain of the SharePoint
application and therefore are not discussed here. As with the Reporting Services databases, it is
recommended that you not directly access those databases.

 ReportServer
 The ReportServer database is the main store for data in Reporting Services. It contains all report
definitions, report models, data sources, schedules, security information, and snapshots. Because of this,
it is critical that the database be backed up regularly. Backup and recovery to the application databases
are discussed in Chapter 14.

 The following table lists some of the tables and their related functions:

 Functional Area Table Name Description

 Resources Catalog Contains report definitions, folder locations, and
data source information.

 DataSource Contains individual data source information.

 Security Users Contains user name and security ID (SID)
information for authorized users.

 Policies Contains a listing of references to different security
policies.

 PolicyUserRole Contains an association of users/groups, roles, and
policies.

❑

❑

c04.indd 84c04.indd 84 11/13/08 4:26:50 PM11/13/08 4:26:50 PM

Chapter 4: Reporting Services Architecture

85

 Functional Area Table Name Description

 Roles Contains a list of defined roles and the tasks the
roles can perform.

 Snapshots SnapshotData Contains information used to run an individual
snapshot, including query parameters and snapshot
dependencies.

 ChunkData Stores the report snapshots.

 History Stores a reference between stored snapshots and the
date they were captured.

 Scheduling Schedule Contains information for different report execution
and subscription delivery schedules.

 ReportSchedule Contains an association between a given report, its
execution schedule, and the action to take.

 Subscriptions Contains a listing of individual subscriptions,
including the owner, parameters, and delivery
extension.

 Notifications Contains subscription notification information such
as date processed, last run time, and delivery
extension.

 Event Contains temporary storage location for event
notifications.

 ActiveSubscriptions Contains subscription success/failure information.

 RunningJobs Contains the currently executing scheduled
processes.

 Administration ConfigurationInfo Contains Reporting Services configuration
information, which should be administered through
prescribed interfaces and not by directly editing this
table ’ s data.

 Keys Contains a listing of public and private keys for data
encryption.

 ExecutionLogStorage Contains a listing of reports that have been executed
and critical metadata about the event.

 Report Models ModelDrill Contains information used when implementing
Report Builder infinite drill - down feature.

 ModelItemPolicy Contains an association between a given report item,
model, and policy.

 ModelPerspective Contains an association between a given report
model and its perspectives.

c04.indd 85c04.indd 85 11/13/08 4:26:50 PM11/13/08 4:26:50 PM

86

Part I: Getting Started

 ReportServerTempDB
 The ReportServerTempDB stores temporary Reporting Services information. This includes both session
and cache data.

 Reporting Services will not function properly without the ReportServerTempDB database. Still, there is
no need to back up the database, as all data within it is temporary. If the database is lost, you can simply
rebuild it. The rebuilding of this database is covered in Chapter 14.

 The following table lists some of the tables and their related functions:

 Table Name Description

 ChunkData Stores report definition and data for session cached reports and cached
instances.

 ExecutionCache Stores execution information including time - out for cached instances.

 PersistedStream Stores session level rendered output for an individual user.

 SessionData Persists individual user session level information, including report paths and
time - outs for given session information.

 SessionLock Temporary storage to handle locking of session data .

 SnapshotData Stores temporary snapshot.

 Summary
 The purpose of this chapter was to give you a tour of the Reporting Services architecture. Through this
chapter, you have explored the following:

 The reporting life cycle as a three - phased process through which reports are authored by end -
 users and reporting specialists, managed as part of a centralized reporting system, and
ultimately delivered to end - users through various means

 The numerous applications provided by Reporting Services in support of the reporting life
cycle. These include but are by no means limited to Report Builder, Report Designer, Report
Manager, the Reporting Services Configuration tool, HTML Viewer, the Reporting Services Web
service, and subscriptions.

 The structure of the Windows service as well as the components (processors, extensions, and
databases) used by the service to provide its functionality

 The knowledge you have obtained in this chapter as well as the three preceding chapters will provide a
solid foundation for your detailed exploration of topics in the chapters that follow.

❑

❑

❑

c04.indd 86c04.indd 86 11/13/08 4:26:51 PM11/13/08 4:26:51 PM

Part II

Report Design

Chapter 5: Basic Report Design

Chapter 6: Report Layout and Formatting

Chapter 7: Designing Data Access

Chapter 8: Advanced Report Design

c05.indd 87c05.indd 87 11/13/08 4:27:37 PM11/13/08 4:27:37 PM

c05.indd 88c05.indd 88 11/13/08 4:27:37 PM11/13/08 4:27:37 PM

 Basic Repor t Design

 If you are new to Reporting Services, you ’ ll get started in this chapter with some basic report
design concepts. If you have had prior experience with earlier versions of Reporting Services, you
may be able to skip ahead after we introduce a few things that have recently changed. In order to
meet the needs of those readers who are new to the product and also those who have done report
design with SQL Server 2000 or 2005, we have organized this section on report design to make it
easy for you to learn what you need without having to read each of these chapters from start to
finish. Using this approach, you also shouldn ’ t have to learn about all the low - level details if you
simply want to know the basic steps. But you also shouldn ’ t have to read through an elementary
introduction of the topic if you are ready to take on advanced report design.

 Part II, “ Report Design, ” consists of the following four chapters:

 Chapter 5 introduces the report design environment and then teaches you the essentials of
the report design elements. The theme of this chapter is what you can do, rather than how
to do it. You ’ ll learn the fundamental components and building blocks: data sources,
datasets, report body, report items, data ranges, and page layout properties. You ’ ll see
how to use the Report Wizard to get started with common report design features. In this
chapter, you will learn to use both the new Report Builder 2.0 designer and the integrated
development report designer in Business Intelligence Development Studio (BIDS).

 In Chapter 6 , you will see how different types of reports are created using these report
items and design elements. Once you understand the core components and how to put all
the pieces together, you will learn design patterns for common report styles used in
creating real - world report solutions.

 Chapter 7 is about data access — designing data sources and datasets. You will learn
techniques for writing efficient queries to filter data and apply business logic. You will use
parameters to prompt users for input and filter and change the report output based on
user selections and values passed to the report. You also learn to use expressions to
modify report properties and to dynamically change the way data is displayed based on
parameterized input or field values.

❑

❑

❑

c05.indd 89c05.indd 89 11/13/08 4:27:37 PM11/13/08 4:27:37 PM

Part II: Report Design

90

 In Chapter 8 , you will learn to take reporting to the next level by combining the skills learned in
these previous chapters with techniques learned from many report projects. You will learn to
apply design patterns to solve business problems in creative ways. You ’ ll see how to combine
different report items and data ranges with data groups, parameters, variables, and expressions
to create “ super reports ” that have advanced and dynamic functionality. In this chapter, we will
demonstrate several actual reports based on real business problems encountered over the years
in report solution consulting.

 The four chapters in this section will progressively explore more functionality. It is the nature of this
technology that different report design elements will be introduced and then covered at more advanced
levels. To help you better understand our approach, refer to the following table of report design elements
and the degree to which each will be covered.

 Design
Element

 Chapter 5
Basic Report
Design

 Chapter 6
Report
Layout and
Formatting

 Chapter 7
Designing
Data Access

 Chapter 8
Advanced
Report Design

 Chapter 10
Report Solution
Patterns and
Recipes

 Textbox Introduction Example Detail Detail

 Table Example Exercise Detail Detail

 Matrix Example Exercise Example Detail Detail

 List Introduction Detail

 Chart Example Exercise Detail Detail

 Gauge Introduction Example Detail Detail

 Composite
reports

 Introduction Exercise

 Row and
column
groups

 Introduction Detail Detail

 Parameters
and filtering

 Introduction
and exercise

 Detail Detail

 Repor t Design 101
 You ’ re going to learn how to design reports using the simplest of all methods. If you are new to report
design and Visual Studio, you will find the Report Wizard to be a convenient way to design simple
reports. If you are an experienced report designer or application developer, or if you need to learn to
design complex, custom reports, you ’ re likely to use the Report Wizard a few times and then leave
it behind.

❑

c05.indd 90c05.indd 90 11/13/08 4:27:38 PM11/13/08 4:27:38 PM

Chapter 5: Basic Report Design

91

 Let ’ s take a look at the big picture of designing reports in SQL Server Reporting Services. We will
examine most of the important features of Reporting Services just to get an idea of what you can do with
the product. We ’ ll also point you to later chapters to get more information and to learn about the details.
We will be using Visual Studio to design and create reports. You may use any edition of Visual Studio
2003 or later.

 Before you read on, you need to get your bearings and get a sense of this chapter ’ s direction. In any
technical book, it ’ s necessary to get every reader to a basic level of understanding before moving on to
advanced material. Different readers may have varying levels of expertise or experience with Visual
Studio, so let ’ s start with the basics. Don ’ t worry — whether you ’ ve never seen Visual Studio before or
you are a tenured Visual Studio developer, we ’ re going to cover the right material at the right depth at
the right time. If you have used Visual Studio for application development, please be patient as you read
through the next section. If you have never written a line of code in your life or if you are new to Visual
Studio, you ’ re in luck.

 This chapter covers the following topics:

 Using the Report Wizard

 Importing reports

 Planning for extensibility

 Report items and data regions

 Formatting considerations

 Pagination and printing considerations

 Repor t Designer s
 One of the most significant changes in the SQL Server 2008 reporting arsenal is the introduction of a new
report design tool — and a major overhaul of the old one. That ’ s right; there are now two different report
design tools that you can use to create the same type of reports. Before we get into the longer version of
the story about these two different design tools, I ’ d like to introduce them at a very high level. Chances
are, as a report designer, your needs fall into one of two general categories:

 If you work in a small business unit and you just need to design a simple report, you aren ’ t concerned
about managing the reports that have been created by other report designers. You will likely find the
Report Builder 2.0 tool the easiest and best choice. This is for new report designers who don ’ t necessarily
want to contend with a lot of technical sophistication and features they won ’ t need to use.

 If you work in the IT group for your company and need to coordinate your report design efforts with
others, you may need a more capable tool. If you are familiar with project - based development tools,
work within a formal IT project methodology, and require version control, development, testing, and
deployment management, you will likely benefit from the Report Designer integrated with BIDS or
Visual Studio 2008.

 To understand how this came to be, here ’ s a quick Reporting Services history lesson. In 2003, I taught the
first beta delivery of the Reporting Services course we had written for Microsoft at a training center near

❑

❑

❑

❑

❑

❑

c05.indd 91c05.indd 91 11/13/08 4:27:38 PM11/13/08 4:27:38 PM

Part II: Report Design

92

Boston. The product was a few months from official release, but many people in the industry were
anxiously awaiting Microsoft ’ s first enterprise - ready reporting tool and wanted to learn to design
reports. I had been teaching Microsoft development technologies for years and was accustomed to
teaching classes for programmers and database professionals. On Monday morning, I had a room full of
report designers who were versed in using a competing report product. After I introduced the Reporting
Services architecture, I asked everyone to open Visual Studio and to create a new project. They just
looked at me, not understanding what I had asked them to do. I learned a valuable lesson that day. Like
the SQL Server product development teams at Microsoft, I was reminded that not everyone on the planet
who may need to design reports was a seasoned IT professional. That morning in Boston, it occurred to
me that these weren ’ t programmers, and most of them had never used Visual Studio before.

 As the release of SQL Server 2005 neared, which was to include the second edition of Reporting Services,
the product team added a tool designed specifically to enable nontechnical users to design their own
reports. This tool was called Report Builder , based on a newly acquired, third - party reporting technology.
Although the report design experience was somewhat similar to the programmers ’ tool, the resulting
report didn ’ t have the same capabilities as the standard reports designed using Visual Studio. When
the product shipped with SQL Server 2005, an edition of Visual Studio, called Business Intelligence
Development Studio (BIDS) , installed with the SQL Server client tools. Users could design their own
reports using the Report Builder technology, which was accessible from the central Report Manager web
site. Once users and IT managers learned about the limitations of Report Builder, when compared to the
more powerful features in standard Reporting Services, many chose to put the majority of their effort
into developing standard Reporting Services reports rather than using the Report Builder technology.

 The Report Builder experience taught us that users wanted a simple report design tool, but they also
wanted the option to leverage the more capable Reporting Services features, prompting an overhaul of
the Report Designer for creating standard reports. The result is a sleeker, easier - to - use report designer
that now comes in two flavors: a stand - alone application for dedicated report designer/power users and
an integrated version that runs in the Microsoft Visual Studio environment.

 Report Builder 2.0
 Let ’ s clear up any confusion about the name of this tool. If you are a SQL Server 2005 Reporting Services
user and are familiar with the old Report Builder, this isn ’ t the same thing. If you haven ’ t used the 2005
Report Builder, well, don ’ t worry about it.

Report Builder 2.0 A vailability
As of this printing, the Report Builder 2.0 report design tool is just wrapping up
development and is available for download from www.codeplex.com. This tool will
also be included with later service releases of SQL Server 2008.

 Report Builder 2.0 is a fully capable, stand - alone report designer used to create standard Reporting
Services reports. It ’ s simpler, though, and designed with the information worker in mind. Unlike Visual
Studio, it isn ’ t used to manage projects or IT solutions. It doesn ’ t have integrated version control or

c05.indd 92c05.indd 92 11/13/08 4:27:38 PM11/13/08 4:27:38 PM

Chapter 5: Basic Report Design

93

multiple deployment configurations. It ’ s simply a report designer with all the features necessary to
design simple and advanced reports.

 After installing Report Builder 2.0, you can start it by choosing Start All Programs SQL Server 2008
Report Builder > Report Builder 2.0.

 Rather than managing reports in a project, as you would with Visual Studio or BIDS, a single report is
opened from any location, just like a Word or Excel document (see Figure 5 - 1 .).

Figure 5-1

 Office Tabs and Ribbons
 The Report Builder 2.0 Designer sports a look much like the Office 2007 applications. Large icon buttons
are arranged on ribbons that may be accessed using tabs that are arranged along the top of the interface.
Tabs and ribbons are part of the Microsoft Office Fluent user interface and replace the dropdown menus
found in earlier Microsoft applications. When a tab is selected, the corresponding ribbon displays icon
buttons and commands related to different activities. Commands are organized into logical groups
that are enabled only when the appropriate object is selected or when you are in the appropriate
designer mode.

c05.indd 93c05.indd 93 11/13/08 4:27:38 PM11/13/08 4:27:38 PM

Part II: Report Design

94

 Home Tab
 The Home tab, as shown in Figure 5 - 2 , is the starting point in the Report Designer and contains common
layout and formatting features for designing reports.

Figure 5-2

 The formatting commands on the Home tab ribbon will work with multiple selected items. To select
multiple items, draw a marquee box entirely around a group of items while holding the left mouse
button, or click individual items while holding the Shift or Ctrl key. Note that most report item
properties may also be set using a custom Properties dialog that appears after right - clicking on an item,
but this option doesn ’ t work with multiple selected items. Using the Properties window or Ribbon
commands does work with multiple selected items.

 On the Home tab, you will find the following groups and commands:

 Clipboard — This group contains common Windows Clipboard features including Copy, Cut,
and Paste. The Clipboard is an essential tool in report design and is used often for duplicating
captions and expressions. You can use the Clipboard with objects such as report items and
images, in addition to text values that you might want to cut, copy, or paste using the Windows
Clipboard.

 Font — The items in this group correspond to the font - related properties for textboxes. Using
the command buttons on the ribbon is typically much faster than setting all the individual
properties for each object in the Properties window.

 Alignment — The Alignment commands allow you to easily format multiple report items by
aligning the edges or centers of all items selected. When this option is used with a group of
items, all items are aligned with the first selected item.

 Border — The Border commands allow you to quickly set the border style, weight, and color for
the top, left, right, and bottom borders of any object. Using the ribbon commands to set an
outside border for an item actually sets all these individual properties. Keep in mind that nearly
all items have border properties and may contain child items that also have borders. For
example, setting the borders for a table does not set the borders for all the cells within the table.
If you need to fine - tune borders, you may find it useful to set the borders for the entire table,
rows, columns, or a range of cells and then adjust the borders for individual cells afterward.

 Arrange — Commands in this group are used to change the layered order of report items and
are used for placing items in front of or behind other items. This feature is useful for managing
items in the design environment. Except in rare cases, it is not advisable to stack report items
unless an item is contained within another report item or data range. For example, two

❑

❑

❑

❑

❑

c05.indd 94c05.indd 94 11/13/08 4:27:39 PM11/13/08 4:27:39 PM

Chapter 5: Basic Report Design

95

textboxes or images shouldn ’ t share the same screen space, but a textbox or an image may be
placed into the cell of a table or into a rectangle item. Some report renderers will move stacked
items to make reports compatible with different viewers and browsers.

 Preview — Toggles between the Report preview and Design view of the report.

 Insert Tab
 The Insert tab and corresponding ribbon contain report design components that you can place on the
report body to visualize data or format the report layout (see Figure 5 - 3). Items in the Data Regions,
Report Items, and Subreports groups are added to the top - left corner of the report body when the ribbon
button is clicked. Note that this behavior differs from the Visual Studio report design Toolbox items. In
the other report designer, items are dragged or drawn onto the report body.

❑

Figure 5-3

 These items are organized into the following groups:

 Data Regions — The data regions consume data from a dataset and visualize it into rows,
columns, chart items, and gauges. Data regions are actually report items, but they are different
from standard report items because they consume whole sets of data rather than just individual
values.

 To add a data region to the report in Design view, click the ribbon button for the appropriate
data region. The data region is added to the top - left corner of the report body. Click once on the
item to show the repositioning handle, and then use the mouse to drag and drop the data region
to the right place on the report.

 Report Items — Report items may be visual elements used to enhance the report layout, such as
lines and rectangles. Some report items are designed to display or visualize a specific value or
aggregated value from a dataset, such as a textbox or image.

 Report items are added to the report body in the same manner as data regions. Often, you will
want to place a report item into a data region or other report item so that it becomes a container.

 Subreports — This group contains only one item — a subreport. This is a special report item
that allows you to place an existing report within this report body. If a subreport is placed
directly on the report body, it will be rendered once, at that location, within the report. If it is
placed within a data region, a separate instance of the subreport will be rendered for each row
or column of the data region. Subreports can be filtered based on a field value to define master/
detail relationships between datasets based on separate data sources.

 Header & Footer — This group is used to enable or disable page headers and page footers for
the report. Unlike the other items in the Insert table, headers and footers are not “ added ” to the
report body but are designated sections of the report.

❑

❑

❑

❑

c05.indd 95c05.indd 95 11/13/08 4:27:39 PM11/13/08 4:27:39 PM

Part II: Report Design

96

 View Tab
 The View tab and ribbon, as shown in Figure 5 - 4 , includes the Report Views group. You can view the
report design in one of two different modes. This group on the View tab enables you to view the report
in Design mode or to preview the report as it would appear if it were deployed to the report server.
You can toggle the view mode by using the Preview group/button on the Home tab and ribbon.

 The View tab also contains a group to show or hide utility panes and rulers. The Data pane, displayed
on the left side of the Report Designer, is used to manage built - in fields, parameters, images, data
sources, datasets, and data - set fields. This pane replaces the Data tab in earlier versions of the Report
Designer that contained some of these options.

Figure 5-4

 The grouping pane is displayed at the bottom of the Report Designer and shows the row and column
groups associated with the currently selected data range object. You can drag fields into the row and
column list boxes to create data groups. Each group is displayed with a set of tools to enable adding,
editing, and deleting a group. The dropdown button displayed on each group item enables a dropdown
menu with additional group management options.

 The Properties pane is used to browse and change nearly all the properties for the currently selected
design object. This is the traditional method used to manage property values. Although it duplicates
some property settings that may be set using more convenient methods, it provides a consistent interface
for managing all properties without the need to use different methods to access them.

 Run Tab
 When a report is previewed, the Run tab and ribbon are displayed with several feature groups and
corresponding icons.

 The Views group includes the Design button, which is used to return to the report designer.

 The Zoom group and button are used to change the magnification of the report preview.

 The Navigation group includes several buttons. The First, Previous, Next, and Last buttons
provide a convenient way to navigate through the report pages, and the page textbox allows
you to navigate to a specific page. The Refresh button will force a requery of all data sources
and rerender the report. The Stop button suspends report execution and stops the queries and
the report from running. The Back button navigates to a previous report when using a
drill - through report action.

 The Print group contains client - side printer controls.

 The Export button allows a report to be rendered into selected formats and to be exported to a
separate file.

❑

❑

❑

❑

❑

c05.indd 96c05.indd 96 11/13/08 4:27:40 PM11/13/08 4:27:40 PM

Chapter 5: Basic Report Design

97

 The Options button allows you to hide and show optional toolbars in the report preview
interface, including a document map (if the previewed report contains document map settings)
and the parameters selection pane.

 The Find group includes a search textbox and corresponding button used to find a string of text
within the body of the rendered report.

 Figure 5 - 5 shows a report in preview mode. While the report is previewed and the Run tab options
are visible, a smaller pane is displayed between the ribbon and the report with a link to change user
credentials and the View Report button. Click this button after making parameter selections to execute
the report with these selections.

❑

❑

Figure 5-5

 When the Run tab is displayed, you can switch back to design view using the Design button in the Views
group. This will replace the Run tab and ribbons with the Home, Insert, and View tabs that are visible
while in design mode. You can also always toggle between report design and preview using the smaller
icons in the status bar, to the left of the zoom slider control.

c05.indd 97c05.indd 97 11/13/08 4:27:40 PM11/13/08 4:27:40 PM

Part II: Report Design

98

 Viewing and Setting Properties
 You can set properties for different objects in the Designer using three different methods. The first and
most convenient method is to use the Home tab on the Ribbon. For simple report items, like a textbox,
just click the report item, and then use the Ribbon commands to make changes. You can also choose
multiple objects of the same type. This is easy to do with the properties font size, color, background
color, and so on.

 Another method is to use the Properties pane to display all the properties for a selected object or group
of objects. With more than one object selected, those properties with common values are displayed and
can be set as a group.

 The final method is to right - click on the object and then use the object - specific Properties dialog. This
window typically displays specific properties and has an interface designed specifically to manage
the selected object. This technique cannot, however, be used to change properties for multiple objects at
one time.

 Data Sources
 A new addition to the Report Builder 2.0 interface is the ability to use shared data sources that have been
deployed to the report server. Figure 5 - 6 shows the data source selection dialog in the New Table or
Matrix wizard. When using the report or report item wizard or when creating a dataset, you can select a
deployed data source, browse to a data source file in the local file system, or create a new data source,
using corresponding buttons in this interface.

Figure 5-6

c05.indd 98c05.indd 98 11/13/08 4:27:41 PM11/13/08 4:27:41 PM

Chapter 5: Basic Report Design

99

 Keep in mind that when prompted for a data source file location, you may use a traditional file path or
report server URL. If you are using SharePoint integrated mode, you may also have the option to
provide the URL for data sources located in a SharePoint data connection library.

 Server Reports
 The new Report Builder 2.0 is a true ad - hoc reporting tool that allows users to create reports directly
on the server without using the local file system. This capability is not enabled in a new Reporting
Services installation by default. To enable server reports, a script file is provided that will enable this
capability and set up folders on the report server for server - based report design for users running Report
Builder 2.0. The following command should be executed on the command line, substituting your report
server name for the hostname in this example:

rs.exe -i SetDefaultFolders.rs -s http://hostname/reportserver

 With server reports enabled on the report server, any standard reports to which the user has access can
be opened directly in Report Builder 2.0 using the standard Open dialog. To open a report on the server,
local, or network file system, click the “ orb ” start button in the top - left corner and choose Open from the
menu. You can navigate to a folder using the most recent items or other folder shortcuts on the Open
Report dialog window.

 Report Design with Report Builder 2.0
 Many of the report design features in Report Builder 2.0 are the same or very similar to the BIDS report
designer, but it ’ s a more sleek and uncomplicated interface. To create a new report, you can either use
the Report Wizard or manually build a data region and a dataset to supply its data. The basic theme in
Report Builder 2.0 is simplicity. To this end, designer and wizard dialogs will automatically open when a
required object (such as a data source, dataset, or report data region) must be defined. Although I do a
lot of report design in Visual Studio projects, I often prefer to start designing new reports with Report
Builder 2.0 because it ’ s so much more convenient.

 Figure 5 - 7 shows a basic report in the designer. In this example, the matrix data region was added to
the report body from the ribbon on the Insert tab. After defining a dataset, fields are dragged from the
Report Data pane on the left side of the designer directly into cells of the data region or to the Row
Groups or Column Groups lists below the report design surface.

c05.indd 99c05.indd 99 11/13/08 4:27:41 PM11/13/08 4:27:41 PM

Part II: Report Design

100

Figure 5-7

 You ’ ll learn more about specific report design techniques in the chapters that follow. Whether using the
BIDS report designer or Report Builder 2.0, the process is much the same.

 Data Region Wizards
 A new addition to Report Builder 2.0 is a set of data region - specific design wizards. Back in Figure 5 - 2 ,
you can see that when a new report is opened (or you simply open Report Builder 2.0), two icons are
displayed in the center of the new report design surface. Click either of these to launch the appropriate
design wizard that will lead you through the process of adding a data source and dataset query and
organizing data fields and groups in a table, matrix, or chart. Figure 5 - 8 shows the New Table or Matrix
dialog. After defining a query, fields are simply dragged into row or column groups, or into the data
area of a table or matrix report. Again, you will learn to design all these report types in the chapters
that follow.

c05.indd 100c05.indd 100 11/13/08 4:27:41 PM11/13/08 4:27:41 PM

Chapter 5: Basic Report Design

101

Figure 5-8

 Another convenient, new feature is shown in Figure 5 - 9 on the report wizard page titled Choose
the Layout. After you add field groups, a preview of the report using actual data is displayed in the
following wizard page. I ’ m impressed with this behavior because this is an actual preview of the report,
with all the features chosen in the report wizard up to this point in the design process.

Figure 5-9

c05.indd 101c05.indd 101 11/13/08 4:27:42 PM11/13/08 4:27:42 PM

Part II: Report Design

102

 Note the selections on this page, which include the option to include subtotals and totals. You can alter
the way totals are arranged and presented — in blocked headers rows (with totals above or below) or
in - line with group summaries. You can also include drill - down report functionality, in which group
details can be dynamically expanded or collapsed by the user.

 Figure 5 - 10 shows the report wizard page titled Choose a Style. These styles are based on templates that
affect default fonts, borders, and colors on the report.

Figure 5-10

 Formatting and Sample Values
 Numeric formatting can be applied very easily using the ribbon. This is another convenient design
feature and a significant improvement over previous versions of the report designer. Not only can you
apply a variety of predefined format options to a field on the report, but you can also preview the format
at design time. Figure 5 - 11 shows the Sample Values preview feature. Select the field value textbox in the
designer. A format can be applied using the Number group on the Home tab ribbon. Choose Sample
Values from the numbers drop - down list to view a representative formatted numerical value in the
textbox.

c05.indd 102c05.indd 102 11/13/08 4:27:43 PM11/13/08 4:27:43 PM

Chapter 5: Basic Report Design

103

Figure 5-11

 Report Builder 2.0 brings reporting to the business user. It enables information workers to design reports
without using tools that were created for application developers. The Report Builder tool introduced in
Reporting Services for SQL Server 2005 (now called Report Builder 1.0) made simple report design
possible for less - sophisticated users, but it doesn ’ t expose the powerful capabilities of the Reporting
Services architecture. The older tool, Report Builder 1.0, is still fully integrated with SQL Server 2008
Reporting Services and is available to use if you need to support the older Report Builder - style reports.
You can learn more about this tool in Chapter 12 .

 Report Builder 2.0 is a simple, easy - to - use report design tool that creates standard Reporting Services
reports with all the features and capabilities of those created with more complex design tools. This tool
effectively bridges the gap between ad - hoc, self - service reporting and enterprise reports that are
typically designed and supported by information technology professionals.

c05.indd 103c05.indd 103 11/13/08 4:27:43 PM11/13/08 4:27:43 PM

Part II: Report Design

104

 Integrated Development Environment
 Report design for Reporting Services has been performed using the Microsoft Visual Studio integrated
development environment (IDE). This wouldn ’ t be a true Microsoft product if they didn ’ t change the
name every few years. This tradition continues, and a special, license - free version of the Visual Studio
.NET IDE was first incorporated into the SQL Server 2005 client tools called Business Intelligence
Development Studio, commonly referred to as BIDS .

 When Reporting Services was introduced in 2004 for SQL Server 2000, the report designer was integrated
into Microsoft Visual Studio 2003. Anyone needing to design reports had to acquire a separate copy and
license for Visual Studio. In the SQL Server 2005 version, the relatively unchanged Report Designer
could be used in Visual Studio 2005 or in BIDS. Whether you had a retail version of Visual Studio or you
used BIDS, the report design experience was pretty much the same. The Report Designer has once again
been updated to work with the current version of Visual Studio or BIDS. However, the recent overhaul of
the Report Designer components has changed a few things in this familiar environment, with several
notable improvements.

 You should find it relatively easy to switch between the stand - alone Report Builder 2.0 designer and the
BIDS designer, as many of the components are the same. Some of the utility windows and menus are
unique to BIDS and work differently from the ribbon commands in the stand - alone designer.

 Using Business Intelligence Development Studio
 Business Intelligence Development Studio, or BIDS, is an edition of Microsoft Visual Studio 2008 with
project templates to create solutions that include Integration Services packages, Analysis Services cubes
and databases, and, of course, Reporting Services reports. With the SQL Server 2008 client tools installed,
you can open BIDS by choosing Start All Programs Microsoft SQL Server 2008 SQL Server
Business Intelligence Development Studio.

 If you have installed any edition of Microsoft Visual Studio 2008, that application will open when
you launch BIDS. You will note in Figure 5 - 12 that I have Visual Studio Team System 2008 installed,
which shows up in the Start Page header. If you are not using Visual Studio, you will see the Business
Intelligence Development Studio edition. The only significant different between these editions will be
the list of available project types and languages.

c05.indd 104c05.indd 104 11/13/08 4:27:44 PM11/13/08 4:27:44 PM

Chapter 5: Basic Report Design

105

Figure 5-12

 When the development environment is opened, a start page is displayed with the Visual Studio 2008
logo. The first order of business is to open an existing project or create a new one. To create a project, you
can either use the File menu or the left - most button on the toolbar. When you use either of these options
to create a new project, the New Project dialog is displayed (see Figure 5 - 13).

c05.indd 105c05.indd 105 11/13/08 4:27:44 PM11/13/08 4:27:44 PM

Part II: Report Design

106

Project template

Project name
& folder name

Root folder for
solutions

Solution name
& folder name

Solution & project files
in same or separate folders?

Figure 5-13

 The Reporting Services installation adds a project type category to the Microsoft Integrated Development
Environment called Business Intelligence Projects , which you see in this dialog under the “ Project types ”
pane. Select this item to display the installed project templates in the pane on the right.

 Choosing Report Server Project enables the Report Designer for the new project. Pay attention to the
properties at the bottom of the New Project dialog, and enter an appropriate project name and solution
name before you click the OK button. It ’ s important to take your time with these settings because this
will result in creating several folders and files. It ’ s easier to name these correctly the first time than to go
back and reorganize an existing project. By default, new solution and project folders are stored under the
path in the Location field. Note that the default path is under the user - profile - specific My Documents
folder. In this case, C:\Users\Administrator\Documents translates to the Documents user folder when
the Administrator is logged in to this Windows Server 2008 system. If another user were logged into this
computer, the Documents folder would represent a different path. Where you store your projects is up to
you, but you should have a plan. Personally, I like to create a Projects folder on my C: drive and keep
all the projects organized in subfolders for clients, classes, and other events. I also make it a point to
name the solution and the project differently, especially if my solution will include multiple projects.

 Designer Utility Windows
 The Visual Studio interface, as shown in Figure 5 - 14 , includes several utility windows that can be docked
to the inside edges of the main application window or set to float independently. Each of these utility
windows can be shown, hidden, or set to auto - hide when the mouse pointer is placed over an icon. This
gives you access to features while maximizing report design screen real estate by moving these windows
out of the way when not in use.

c05.indd 106c05.indd 106 11/13/08 4:27:45 PM11/13/08 4:27:45 PM

Chapter 5: Basic Report Design

107

 The “ dockable ” utility windows used for report design include:

 Report Data — Tree view shows built - in fields, parameters, data sources, datasets, and fields
that can be dragged into the Report Designer to assemble report design elements.

 Toolbox — Lists report items available to be added to the report design surface.

 Solution Explorer — Used to manage all projects and project files. For a report project, contains
shared data sources and reports.

 Properties — Shows all the properties for the object currently selected in the Report Designer.

 The tabbed Report Designer windows are located in the center. Unlike Report Builder 2.0, you can
have multiple report designers open at the same time. Each has a tab that allows you to switch
between them.

❑

❑

❑

❑

Solution
explorer

Report data

PropertiesReport designerToolbox

Figure 5-14

c05.indd 107c05.indd 107 11/13/08 4:27:46 PM11/13/08 4:27:46 PM

Part II: Report Design

108

 Repor t Design Elements
 Reporting Services uses a modular approach, making the report design process logical and flexible.
A typical report consists of data sources, datasets, a report body with headers and footers, and various
report items and data regions bound to fields in a dataset — that are placed in the report body.

 Data Sources
 A data source stores connection information used to access databases or other resources that return data
to a report. A data source can be either embedded into a report definition or stored as a separate file and
shared among multiple reports. Shared data sources are easier to maintain in formal business
environments where you have several reports using multiple database servers. If the location or name of
a server changes, it will be much more convenient to modify one data source than to open and modify
each report. On the other hand, it does require a little more coordination among report designers and
administrative personnel.

 A data source references a data provider installed on the report designer ’ s computer and on the report
server. Data providers enable connectivity to database products and may include .NET native providers,
OLE DB providers, and ODBC drivers. SQL Server 2008 installs several data providers for Microsoft and
third - party products that will allow reports to retrieve data from different versions of SQL Server, SQL
Server Analysis Services, Microsoft Access, Oracle, XML data, and other third - party sources.

 Datasets
 A dataset is typically a query or database object reference used to retrieve a set of records for reporting.
The query language used for a dataset is specific to the data provider or processing extension specified
in the data source. A dataset must have only one data source. But a data source, whether embedded or
shared, can serve any number of datasets. Because the query command text is processed by the data
provider, queries must be in the native query language of the data source. For example, a dataset for SQL
Server uses the T - SQL query language. When using an Oracle data source, the query is written in Oracle
P/L SQL. For SQL Server Analysis Services, queries are written using the MDX query language.

 Appendixes B, C, and D provide detailed information about specific T - SQL and MDX query language
commands.

 Reports
 There is a specific hierarchy of objects used to manage all the items and properties within a report. Keep
in mind that a report definition is stored in an XML file and all the objects accessed in the Properties
window relate to nested XML element tags in the XML structure of a Report Definition Language (RDL)
file. The Report object contains properties related to the report itself but not the data regions on the
report. These data regions are contained within the report body. Report properties are defined within
these categories.

c05.indd 108c05.indd 108 11/13/08 4:27:48 PM11/13/08 4:27:48 PM

Chapter 5: Basic Report Design

109

 Page Setup
 These properties consist of the page scale units, page orientation, height, width, and margins. The Report
object also contains the following advanced properties used for adding custom internal or externally
referenced programming code, which can be used to extend a report ’ s capabilities:

 Code — Custom Visual Basic functions may be written and stored in the report and then called
from expressions on any of the properties for this report.

 References — Like custom functions stored in the Code element, external code libraries may be
referenced and also used in property expressions. The advantage of this approach is that a single
code library may be used by multiple reports.

 Variables — Custom variables may be defined and used within the report to enable dynamic
and advanced functionality. These variables are typically set and used within expressions or
custom code functions in the report.

 Body
 The Body object contains just a few properties and serves as a container for all the data ranges and report
items within the report. In the Designer, the report body really is a blank canvas on which you place
report items and data ranges. This is a unique approach when comparing Reporting Services with most
other reporting products. This is a very flexible approach to report design that encourages free - form
report formatting and unconstrained layout. Rather than being constrained to placing items at specific
rows or columns, you have the freedom to place items anywhere within the report body. Later, you ’ ll see
how the List data region extends this pattern by repeating a free - form region for each record.

 Headers and Footers
 As a result of the free - form approach, there is no need to designate a specific area to be the report header
or footer. Essentially, the report header is all the space at the top of the report body before the first data
range. Likewise, the space between the last data range and the end of the report body is the report footer .

 This is because of the way a report is rendered. Like the carriage of a typewriter (or inkjet printer, for
those of you who might have no idea what a typewriter is), the report is rendered from the top - left - hand
corner, from left to right, and then down the page until it reaches the bottom - right corner of the report
body. Any singe report items, like textboxes and images, are rendered once. Data ranges, like tables and
matrices, cause rows and columns to be repeated, making the report body grow. It ’ s really quite an
elegant approach — and the area of the report body above and below these data ranges is the report
header and footer, respectively.

 A report, however, does have a specific area defined for the page header and page footer. In the Designer,
these areas are enabled using the Header & Footer group on the Home ribbon or the Report menu in the
BIDS designer.

 Repor t Definition Language
 One very compelling aspect of this product is that the definition of each report is managed in a standard,
text - based file format called Report Definition Language (RDL). An RDL file is an XML document with
a standard definition for markup tags that define all the properties for a report. All objects added to a
report in the Report Designer and the related property settings result in entries made to the RDL content

❑

❑

❑

c05.indd 109c05.indd 109 11/13/08 4:27:48 PM11/13/08 4:27:48 PM

Part II: Report Design

110

for that report. This simple approach makes it easy for independent software vendors and custom
solution developers to generate a report definition from a variety of sources and tools. It also makes it
easy for report designers and developers to open the report definition in a text editor to make changes
outside of the Report Designer. Contrast this with the proprietary binary formats used in other popular
reporting products.

 As an example, the following is a small snippet of RDL file content describing a textbox report item:

 < Textbox Name=”textbox1” >
 < Style >
 < PaddingLeft > 2pt < /PaddingLeft >
 < PaddingBottom > 2pt < /PaddingBottom >
 < PaddingTop > 2pt < /PaddingTop >
 < PaddingRight > 2pt < /PaddingRight >
 < /Style >
 < Top > 0.25in < /Top >
 < rd:DefaultName > textbox1 < /rd:DefaultName >
 < Height > 0.25in < /Height >
 < Width > 1in < /Width >
 < CanGrow > true < /CanGrow >
 < Value / >
 < Left > 0.375in < /Left >
 < /Textbox >

 The textbox described by this XML element has default padding properties of 2 points all around.
It ’ s located a quarter - inch from the top of the report body and .375 inches from the left edge. It ’ s
a quarter - inch tall and one inch wide.

 Report Migration and Integration
 There are now several applications and products that have the ability to create report definitions for
Reporting Services. The extensible RDL allows reports to be created, converted, or modified by custom
tools. For example, I ’ ve worked with products from Panorama and Cizer that provide custom report
designer front - ends within their own web browser – based business intelligence reporting applications.
These products put report design capabilities in front of corporate business users without installing
complex desktop report authoring software.

 Because RDL is simply an XML grammar, building reports can be performed programmatically with
relative ease. Because of the complexities of parsing and deciphering proprietary report formats,
converting existing reports from other products is more complicated. To date, there are no universal
report conversion utilities on the market. Report conversion is a common request from businesses that
have already invested in older, expensive reporting products and want to migrate to Reporting Services.
Hitachi Consulting offers report migration as a service rather than a product for this reason. If this is an
option that you or your company are considering, report migration may be more cost - effective than
starting from scratch.

 A point to consider is that the fundamental approach for designing reports most effectively may be quite
different using different products. A “ converted ” report, like the one you design in another tool, may not
run as efficiently or give you the flexibility to use Reporting Services to its full capability.

c05.indd 110c05.indd 110 11/13/08 4:27:49 PM11/13/08 4:27:49 PM

Chapter 5: Basic Report Design

111

 Repor t Design Elements in Detail
 Report design elements — or items than can be added to the report body in the Designer — consist of
data regions and report items. Technically, a data region is a type of report item, but we differentiate
between data regions, which consume a whole dataset, and report items, which may consume a single
row and field value.

 Data Regions
 Data regions are discussed and demonstrated in Chapter 8 , “ Advanced Report Design. ” In brief, data
regions are used to render and display the results of an entire data set query. The tablix , which can be
designed to behave as a table, matrix, or list, renders rows and columns containing constituent report
items. A table, for example, contains a textbox in each cell, used to display a specific row and column
value.

 Charts don ’ t grow and shrink with the data but translate rows and columns into graphical form.
A chart ’ s data region can be configured to render several different standard chart presentations as row,
column, line, area, pie, and radial charts, just to name a few.

 Textboxes
 The textbox item can be used to display data from a dataset, calculations, or expressions, or static data,
much like a label control in a Windows Forms project. When you drag fields from the Fields list onto
the Report Designer, data - bound textbox items are created. Common expressions can refer to a field
in the report.

 Figure 5 - 15 shows a textbox used as a label and another textbox bound to the LastName field of the
report data source.

Figure 5-15

 Right - click on the textbox, and select Properties from the pop - up menu to display the Text Box Properties
dialog, as shown in Figure 5 - 16 .

c05.indd 111c05.indd 111 11/13/08 4:27:49 PM11/13/08 4:27:49 PM

Part II: Report Design

112

 You can also view and set properties by using the standard Properties pane located to the right of the
Designer. This window may be pinned down or will auto - hide by default. As in Figure 5 - 17 , this
window contains quite a bit more detail than the custom Properties window. However, the property
information is not as conveniently organized. As a general rule, use the right - click Properties dialog to
get to the most common properties, and use the Property pane when you need to set other properties.

Figure 5-16

Figure 5-17

c05.indd 112c05.indd 112 11/13/08 4:27:49 PM11/13/08 4:27:49 PM

Chapter 5: Basic Report Design

113

 Lines
 Lines can be drawn in any direction and can be set to a variety of styles and colors. The properties for a
line are simple and can be set using the Properties window or Designer toolbar.

 It ’ s the job of each format - rendering extension on the Report Server to use the appropriate technique to
build each report element output. Because each extension creates a different output format, elements as
simple as lines are output in different ways. For example, the Excel renderer will use cell borders. Some
clever techniques are used to render lines in HTML. Depending on the need, lines may be rendered as
table borders, as a DIV tag filled using a JavaScript function, or even using Virtual Reality Modeling
Language (VRML) commands.

 Rectangles
 A rectangle item can have many different uses. A rectangle is simply used to visually separate a region
of the report. It can be used to visually contain other items. If items such as textboxes, grids, and so on
are placed into a rectangle, all these items can be moved together by simply moving the rectangle.
A rectangle may also be used as a data container for data items and can be related to and repeated with a
parent container.

 Images
 Images can be embedded into a report, linked to an external file or URL location, or obtained from a
data source. Images can be of the BMP, GIF, JPEG, JPE, PNG, or X - PNG type. Adding an image in the
Designer is pretty straightforward. A critical factor is that images are sized and cropped prior to being
added to a report. You can resize the image in the Report Designer, but this will not result in a smaller
file size. Use a graphics editing tool like the Office Picture Library, the free Paint.NET, Adobe PhotoShop,
or Adobe Fireworks to resize or crop the image, and then save it to a new file. You can scale and fit an
image to fit the image item container, but it ’ s advisable to use image files that are already the correct size.
This conserves disk space, improves performance, and prevents image distortion.

 Dropping an image item from the Insert ribbon or Toolbox onto the report will launch the Image
Properties dialog (see Figure 5 - 18). Select the method you want to use; the image can be from a table in
the database or a file and may be linked or embedded into the report. Getting external image files to
render correctly can be a bit tricky at times owing to file access permissions on the server. If in doubt, it
may be easiest to either store the image in the database or embed it into the report definition.

c05.indd 113c05.indd 113 11/13/08 4:27:50 PM11/13/08 4:27:50 PM

Part II: Report Design

114

 Embedded images are encoded as text and stored in the report definition file. Although this increases the
size of the report definition file, it can simplify the deployment and configuration. Selecting the Database
option will allow you to extract an image stored in an Image or Binary type column within a database,
exposed through your dataset. The External option allows you to use a URL to reference an existing file
either on the Report Server or elsewhere. If your picture data is stored in the database and the Database
option is selected, the Database Field page is displayed in the Wizard. This gives you the option to derive
an image file type from the image.

 Generally, the JPEG format is most conservative, and PNG graphics are higher quality and more
flexible. The GIF and JPEG formats are the most widely used on the Internet and are supported by all
web browsers. The GIF or PNG formats support transparency If you need an image to appear non -
 rectangular (such as an icon and indicator graphic), set backgrounds to white over a white report area,
or place the transparent image inside a rectangle item.

 Subreports
 A subreport is a container for another report embedded into a parent report. The subreport can contain
practically any other report with its own, independent data source. It can optionally have its data linked
to a key or value in the main report, often referred to as a master/detail report . Subreports are an important
element in complex report designs. Figure 5 - 19 shows a simple report containing a master record and
related detail records in the subreport.

Figure 5-18

c05.indd 114c05.indd 114 11/13/08 4:27:50 PM11/13/08 4:27:50 PM

Chapter 5: Basic Report Design

115

 The design details of the subreport are not visible in the Designer. The report shown in Figure 5 - 20 is
designed separately and then inserted into the main report as a subreport item.

Figure 5-19

Figure 5-20

 Be cautious about using subreports with large results. This report item is appropriate for embedding
unrelated content within a report that is bound to a different data source or for detail rows related to few
master records. Although this may be a useful technique for consolidating reusable report content, it can
be very inefficient when compared with some other techniques. For example, if you create a complex
query to return all related data in a single result set, a single table item may be used in place of the
subreport and may prove to be more efficient. Significant improvements have been made in the 2008
product for subreport support. In addition to the inherent performance issues, rendering subreports to

c05.indd 115c05.indd 115 11/13/08 4:27:51 PM11/13/08 4:27:51 PM

Part II: Report Design

116

different formats has been problematic in the past. For example, a report containing a subreport
wouldn ’ t render correctly to an Excel workbook. Most of these types of issues have been resolved in the
current product, but if you test the limits of report design and rendering, you will likely find the
boundary with subreports first. As a rule, use subreports when necessary, and test them thoroughly
when you need to render reports to different formats.

 The Tablix
 In earlier versions of Reporting Services, there were three different data range items that could be used
to group data across rows or columns. The list, table, and matrix had some similar characteristics and
capabilities but were three distinctly different objects, each with its own design goals, capabilities,
and limitations. Shortly after the release of SQL Server 2005 Reporting Services, the product team began
an effort to combine all these capabilities to create a super data - region item to replace the former list,
table, and matrix items. Now, the tablix serves this purpose — and, yes, as the name suggests, it ’ s a
 “ table/matrix. ”

 Combinations of properties will cause an instance of the tablix to behave and exhibit the characteristics
of a list, a table, or a matrix. The advantage of this design is that you are no longer bound by the
limitations of any one of these objects. For example, the characteristic of a table is that it has static
columns that are typically bound to individual fields in the dataset. You will often define dynamic row
groups that expand with each distinct field value according to the row group definition. But, if you
decide, after the original design, to add a dynamic column group, this is now a possibility without
having to start over with a different data range item.

 During report design, you will drag a table, matrix, or list onto the report body, which creates a tablix
with present row and columns with these pre - set property values.

 Static and Dynamic Columns and Rows
 An additional concept introduced with the tablix is that of static and dynamic columns and rows. A static
column or row is a band of cells with an associated field expression. Take a row group, for example; for
records in the dataset, as long as the group expression ’ s field value remains the same, this causes only
one instance of the row group to be rendered. All detail rows below this grouping may either be
displayed as lower - level detail rows, or field values may be aggregated at the group level. Previous
versions of the matrix have always treated columns in this way. Now, in the Tablix, a column may be
inserted at any position and designated to behave as a static column (without grouping) or as a dynamic
(or grouped) column. By taking this approach, the Tablix has more flexibility than the previous table, list,
or matrix data regions.

 When the row group spits out a new distinct value, a new row for the group will be rendered, perhaps
with lower - detail rows under it or with values to be rolled up and aggregated for inclusion in the row.

 By far, the majority of report designers will not concern themselves with adding dynamic columns to
change the natural order of things and contend with the delicate balance of a happily working table or
matrix, which is why each of these fine, preconfigured items — the table, matrix, and list — stands alone
in both Designers. As far as we are concerned, a table is a table, and a matrix is a matrix.

 On the off chance that you are brave enough to contend with the natural order of things and rewire a
table so that it behaves somewhat like a list or a matrix, this could get interesting. The practical use for
these concepts will make more sense as we apply them to an understandable business case.

c05.indd 116c05.indd 116 11/13/08 4:27:51 PM11/13/08 4:27:51 PM

Chapter 5: Basic Report Design

117

 Row Groups in a Table
 A table has a static list of columns — one for each field — and rows are either grouped on a field value or
simply output one per row from the dataset. Any number of row groups may be added to a single row,
and a row can have no row groups, one, or any number of row groups. This provides a tremendous
amount of flexibility to table design. Compared with Reporting Services in SQL Server 2000 and 2005,
the model has changed, but the same design patterns are reproducible, with even more options.

 The example report shown in Figure 5 - 21 has row headers with simplified field labels. Five columns are
used to return values for the Year, Category, Product, Order Quantity, and Extended Amount fields,
respectively. Note that in the Designer, three row groups are defined by dragging fields into the Row
Groups pane in the lower - left - hand corner of the Designer window.

Figure 5-21

 Figure 5 - 22 shows the first page of this report in Preview mode. Note that the 2001 year header precedes
the Accessories category, and then three products are listed before a subtotal row for this category.

c05.indd 117c05.indd 117 11/13/08 4:27:51 PM11/13/08 4:27:51 PM

Part II: Report Design

118

 When this type of report is used, a fixed number of columns are rendered. In this example, the five
columns are fixed, but rows are generated from row groups that can span many pages in the final report.

 Column Groups in a Matrix
 A matrix is simply a table with dynamically grouped columns — so that each distinct group value
outputs a new column. The example shown in Figure 5 - 23 uses the same query to output groups of data
in the same order. Note the groups defined in the Row Groups and Column Groups panes at the bottom
of the Designer window. The difference between this and the previous report is that the CalendarYear
group is on columns rather than rows.

Figure 5-22

Figure 5-23

c05.indd 118c05.indd 118 11/13/08 4:27:52 PM11/13/08 4:27:52 PM

Chapter 5: Basic Report Design

119

 When this report is previewed, column headers are generated for each year, and then rows are generated
for the category and product field values. Figure 5 - 24 shows the first page of this report.

Figure 5-24

 Chart Essentials
 In 2007, Microsoft acquired the latest generation of charting gauge components from Dundas Data
Visualization, Inc., the company that originally developed the charting components that were integrated
into Reporting Services for SQL Server 2000. The result is that in SQL Server 2008, several new chart
types were added, along with many new charting features and capabilities. This is a very capable and
easy - to - use charting solution with a variety of available chart types.

 Data Aggregation
 Numeric data values are always aggregated, usually using the SUM() function, along axis groups.
This grouping and aggregation is functionally similar to a matrix, with aggregated values representing
the intersection points of distinct group values. The difference is that a chart plots or visualizes the
values rather than displaying the number in a cell.

 Series Groups
 The series group is the axis associated with the chart ’ s legend, if you choose to include it. In a column
chart, for example, series values are displayed in the legend and/or column clusters.

 Category Groups
 Category groups are the labeled group values that are usually represented with a single column, point, or
bar. In a column chart, categories are plotted along the X - axis with labels typically along the bottom of
the chart.

c05.indd 119c05.indd 119 11/13/08 4:27:53 PM11/13/08 4:27:53 PM

Part II: Report Design

120

 Chart Type Categories
 There are now many different types of charts available. Following are most of the categories and all the
essential charts used in basic report design. Some of the advanced charts are showcased in later chapters
to demonstrate more advanced features.

 Column Charts
 Probably the most common and most recognizable chart type is the column chart. The example in
Figure 5 - 25 shows sales data for a given year, grouped by quarter and the sales territory country. The
total sales amount is plotted on the category or Y - axis (columns) of the chart.

Figure 5-25

 Adding a group to the series axis can cause the column chart to show a cluster of columns side by side.
The columns are color - coded with a color key shown in the legend. Figure 5 - 26 shows a category group
based on the CalendarYear field with a cluster of two columns. Column clusters may be displayed in a
flattened, two - dimensional view like this or arranged along the Z - axis when three - dimensional (3D)
visualizations are enabled. Figure 5 - 27 shows the same chart in 3D mode.

Figure 5-26

c05.indd 120c05.indd 120 11/13/08 4:27:53 PM11/13/08 4:27:53 PM

Chapter 5: Basic Report Design

121

 One of the powerful features of the chart item is the ability to group data within each axis. Figure 5 - 28
shows a simple column chart with two field groups on the X - axis, representing related categories. In this
example, columns are grouped by calendar year and then by the sales territory country.

Figure 5-27

Figure 5-28

 A number of these features — including multiple axes, clustering, and nested groups — can be combined
to create some interesting and compelling chart visualizations.

 Some charts require only one axis group. For example, the pie chart shown in Figure 5 - 29 uses only a
series group, based on the SalesTerritoryRegion field. Pie charts put proportional values into perspective.
This type of chart comes in two pastry types: pie and doughnut. Values are presented visually as a
percentage of the total for all values in a series. Pie and doughnut chart views may be either simple or
 exploded . The exploded presentation may help to visually separate values, especially the smaller slices.
These types of charts can be useful for placing values into comparative perspective.

c05.indd 121c05.indd 121 11/13/08 4:27:54 PM11/13/08 4:27:54 PM

Part II: Report Design

122

Figure 5-29

 All the chart types discussed so far existed in the SQL Server 2000 and 2005 versions of Reporting
Services. Following are just a few of the newer chart types introduced in the 2008 product.

 Polar and Radar Charts
 Figure 5 - 30 shows one of these new charts. This is a radar chart, one of the new and polar chart types in
the new product. This is an interesting visualization that combines elements of a line chart with a pie
chart - like format.

Figure 5-30

c05.indd 122c05.indd 122 11/13/08 4:27:54 PM11/13/08 4:27:54 PM

Chapter 5: Basic Report Design

123

Figure 5-32

 Shape Charts
 Some special - purpose charts are commonly used to visualize data for certain vertical applications. For
example, the funnel chart, shown in Figure 5 - 31 , is commonly used as an illustration of customer sales
leads “ flowing down ” through the funnel in customer relationship management (CRM) solutions, to
help manage a sales opportunity pipeline.

Figure 5-31

 Figure 5 - 32 shows another unique shape - type chart that expresses data values in a pyramid. This is
commonly used for organizational ranking and progression.

c05.indd 123c05.indd 123 11/13/08 4:27:55 PM11/13/08 4:27:55 PM

Part II: Report Design

124

Figure 5-33

 Bar Charts
 Bar charts and column charts are pretty much the same in functionality. You can tilt your head to the side
to get the same view as the other. Figure 5 - 33 shows the same data from the previous column chart, in a
bar chart. When this chart type is chosen, category group values are visualized with values plotted on
the Y - axis and the value scale along the X - axis — a 90 - degree rotation of the same column chart.

 In addition to the standard, single - bar view, the stacked view provides a consolidated look at a series of
values by using fewer bars or columns. Each bar is like a mini pie chart, where each value in the bar ’ s
range is in proportion to the others. A series of related values is stacked in the column to show the
aggregate sum of values and their proportional values. A variation, the 100 percent stacked bar or chart,
displays each bar with the same height or length as others, regardless of the total values. This type of
chart is useful for comparing values within the bar ’ s range but not for comparing the aggregates
represented by each bar.

 There are many chart variations and special chart types that are not pictured here. Some of the more
advanced chart implementations are covered in Chapters 8 and 10 .

 In addition to the standard report items that ship with the product, application developers and third -
 party companies can create custom report items (CRI) that can be installed and used in the Designer. You
are likely to see more CRI suites for Reporting Services that will add even more capabilities to your
reports.

 Gauges
 Humans have been measuring things for a long time, and we use a lot of different ways to keep track of
things like air and water pressure, speed, torque, and temperature. Whether using a ruler, meter stick,
progress bar, or the dashboard of a car, we are all accustomed to using a variety of standard gauges.
In the right situations, gauges are an ideal visualization for business data using a familiar display
metaphor. Many users will immediately identify with important information displayed using a variety

c05.indd 124c05.indd 124 11/13/08 4:27:55 PM11/13/08 4:27:55 PM

Chapter 5: Basic Report Design

125

of linear and radial gauge indicators that apply context and importance to measurements, status
indicators, and business metrics. The new gauge report items introduced in Reporting Services 2008
enable you to control virtually every aspect of gauges, including background colors and shading,
borders, scales, pointers, and markers. Practically any characteristic you ’ ve seen in a physical gauge or
meter is possible. You can even reproduce the tachometer and speedometer in a Mercedes S550, the
pressure value on a fire extinguisher, or the Sick Bay vital sign monitors in the Star Ship Enterprise.

 Although there are many properties, most are fairly easy to work with and to discover with just a little
bit of guidance. Figure 5 - 34 shows the chart types dialog, which provides a thumbnail preview of all the
available gauge types.

Figure 5-34

 When I started working with the Dundas Gauges product a few years ago, before it was integrated into
Reporting Services as a standard feature, I spent several hours configuring the interface to get each one
just right, simply because this tool gave me so much control. I warn you that this cool new report
capability can lead to late night obsessive report design if you have a propensity toward design
perfection.

 Like the new chart data range, a single gauge can contain several gauge areas. This essentially lets you
create an entire dashboard with one gauge item. Each gauge area has its own scales, pointers, ranges,
and markers.

 Scales
 The scale is the set of markers and reference numbers around the dial of a radial gauge or along the range
of a linear gauge. Any number of scales can be added to a single gauge.

 Pointers and Markers
 In a radial gauge, pointers are typically needles and arrows or small “ tick ” marks that can extend from
the center of the gauge and point to a scale, or simply indicate certain points on a scale. Several pre - set
pointers and markers are available in different shapes. Each can be resized and, like every other element,
can be set with solid or gradient shading.

c05.indd 125c05.indd 125 11/13/08 4:28:01 PM11/13/08 4:28:01 PM

Part II: Report Design

126

 Ranges
 Ranges typically are used to provide some sort of context and are typically displayed on or near the
scale, behind pointers and markers. A range can be used to indicate that a value is within acceptable or
exceptional boundaries. Ranges can be color - coded, tapered, or shaded with solid or gradient fills.

 Radial Gauges
 Radial gauges can be circular or partially circular, with one or more pointers extending from a central
fulcrum. The simplest form of gauge, shown in Figure 5 - 35 , has a single scale and pointer. The maximum
scale value in this example is set with an expression to indicate the total number of sales units for a
calendar year. The pointer value gets its value from an expression to show the total units in a quarter,
thus showing the proportion of the quarter units to the year.

Pointer

Scale

Figure 5-35

Figure 5-36

 Figure 5 - 36 shows an example of the same gauge with a second pointer added. The larger arrow pointer
indicates units sold for the quarter, and the smaller pointer shows units for the month on the same scale
as the previous example.

c05.indd 126c05.indd 126 11/13/08 4:28:02 PM11/13/08 4:28:02 PM

Chapter 5: Basic Report Design

127

Scale

Ranges

Marker

Figure 5-37

Figure 5-38

 Linear Gauges
 Linear gauges can be arranged vertically or horizontally in a variety of formats. Markers are typically
used in the place of radial pointers but behave in much the same way. The example in Figure 5 - 37 shows
a linear gauge with a single marker. This gauge has three color - coded ranges, which are used to indicate
threshold values along the scale.

 Gauges become very useful when they are used to compare a group of related values side by side. For
example, Figure 5 - 38 shows a composite report designed by embedding a single gauge into a tablix with
repeating columns.

c05.indd 127c05.indd 127 11/13/08 4:28:05 PM11/13/08 4:28:05 PM

Part II: Report Design

128

 Summary
 In this chapter, you learned about the essentials of report design and were introduced to the report
building blocks. You were introduced to the report design tools, which include Report Builder 2008, for
information workers to create their own ad hoc and server - hosted reports. For the corporate information
technology staff, you also learned how advanced report design capabilities continue to be part of the
Microsoft integrated development environment, through Business Intelligence Development Studio and
Visual Studio. These tools allow application developers and solution teams to share report source code
and manage reports as part of a business intelligence project or corporate solution.

 You used the Report Wizard to create a simple report with little effort. Like the other report design tools,
this defines a report as an RDL file. The visual report design tools provide a graphical user environment
to manage the objects and properties in an RDL file.

 You learned that the building blocks of a report are the report, report body, data regions, and report
items. This modular object approach provides greater flexibility to report design and management.
Report items such as a textbox contain properties that control the value and formatting of report data
and content. Nearly all properties can be set using expressions to provide dynamic behavior and
formatting.

 The tablix is the new replacement for the data regions in previous Reporting Services versions. This one
object provides greater flexibility and capabilities than the old table, matrix, and list. The Report
Designer offers these three objects as predefined instances of the tablix data region, used to present entire
sets of data returned from data set queries.

 A table is used to present grouped rows of columnar data — where columns correspond to query fields,
and rows are rendered from the records returned from a data table or query. These values may be
grouped, with separate headers, footers, and subtotals. The matrix is a pivot table and, like a table,
renders grouped rows with headers and summaries. But a matrix also groups values into columns,
which may also be summarized. A list is a simple data region that repeats a section of the report based
on a row grouping. It is typically used to repeat other data regions or report items presented in a free -
 form layout.

 Subreports allow you to combine the functionality of an existing report into another report. This makes it
easy to combine prebuilt reports into composite reports with reusable functionality. Using a list or other
data region, a subreport may be used to integrate data sources and to federate data into repeating groups
and sections.

 The new charting engine includes many new capabilities including multiple chart areas — used to create
composite charts. Several new chart types have been added in the 2008 product, making this a much
more powerful tool than before. Gauges were also added to the toolbox, enabling compelling new
visualizations and options to present linear data in creative ways.

 The chapters that follow expand these topics. You will learn to build advanced reporting solutions
using the elements discussed in this chapter.

c05.indd 128c05.indd 128 11/13/08 4:28:07 PM11/13/08 4:28:07 PM

 Report Layout and
Formatting

 You have numerous options for presenting information in a report. One of the most important
factors in report design is to understand these options and to provide an appropriate report layout
to meet the needs of your users and their business requirements.

 This chapter will introduce the features of report layout and formatting in the following areas.
For most of these features, I will provide brief instructions to implement that feature and show
some examples:

 Basic report layout types, including the table, matrix, list, and chart reports

 Page layout options for tabular, matrix, list, chart, dashboard, and composite reports

 Report navigation features

 Formatting properties for visually enhancing various reports

 Pagination control

 Over the years in some industries, we have been presenting data the same way for a long time.
I think this is the case for a variety of reasons. The primary reason is that many of us started out
using restrictive tools that only provided limited options. Another reason is that the business
community has become accustomed to doing things the same way for a long time, even if there
might be a better way. I ’ ve become a firm believer in getting the requirements at the beginning of a
project. This way, we know up front what kind of reports we are designing, and what a report
should and shouldn ’ t do. This chapter is about report design options and the elements you will
use in later report design.

 I like to shake things up sometimes, and I think change can be a healthy thing in business. But we
also need to maintain some consistency. For some of your users, the reports you create will be their
lifeline to important business information. The manner in which you present data may affect
business decisions and the way people go about doing their jobs. When I start a report project or a

❑

❑

❑

❑

❑

c06.indd 129c06.indd 129 11/13/08 4:28:49 PM11/13/08 4:28:49 PM

Part II: Report Design

130

new set of reports, I try to carefully consider these factors and take the time to show users and business
leaders a selection of report layout options and then discuss the pros and cons of each option, to decide
which are most appropriate and valuable to the people who will be using them.

 Your challenge as a report designer is to find the best way to present information to business users so
that it ’ s logical, makes sense, and is appealing and readable. The right format for your business users
may be different for someone in a different industry, culture, or discipline.

 I learned an important lesson a few years ago when I was asked to design a set of reports for a large,
commercial airplane manufacturer. The users were all structural and aerospace engineers, and they had
been using the same, static, mono - spaced, spreadsheet - like reports for ages. I decided to add some flair
to the new reports with charts and graphics. I made them colorful and attractive. I made a point to use
different font sizes and weights. I added background shading and borders. Proud of the updated design,
I created a standard report template with the company colors and logo in the report header, as I had for
other clients in the past. When the users saw the first report, they immediately shot them down and
complained about the “ fluff ” and “ pretty pictures. ” In their rigid, engineering world, data is a serious
matter and shouldn ’ t be dressed up and decorated. At the request of our project sponsor, I took out the
graphics and embellishments and changed all the text to one size of Courier New. They were elated with
the design.

 Repor t Layout T ypes
 Report layout can be boiled down to a few, simple design patterns. These simple styles also can be
combined with others to form composite reports and more advanced layout to visualize data. This
section offers a quick review of the report layout types, followed by some examples.

 Tabular Reports
 Tabular reports have been around for thousands of years. Well, they may not have been reports in the
modern sense, but when you think about it, some common reports are really little more than “ lists of
stuff ” organized into rows and columns. Ever since early merchants began trading seashells or precious
gems for beaver pelts or goat cheese, someone was recording the transaction in some kind of list, be it on
papyrus, stone tablets, or a tablet PC.

 Ever since VisiCalc, the predecessor to Lotus 123 and Microsoft Excel, was released in 1981, the tabular
spreadsheet format has become the way many computer users are accustomed to viewing business data.
For decades, the only printed reports available from mainframe and midrange computer systems were
green - bar reports printed on pin - fed, fan - folded “ greenbar ” paper in classic spreadsheet style.

 In Reporting Services for SQL Server 2000 and 2005, Tabular reports were defined using the Table data
range item. In addition to the repeating detail rows, data can be grouped on various fields, and each
group can have headers, footers, breaks, and subtotals. Tabular reports have a finite number of columns,
typically representing the fields in a database table.

c06.indd 130c06.indd 130 11/13/08 4:28:51 PM11/13/08 4:28:51 PM

Chapter 6: Report Layout and Formatting

131

 Matrix Reports
 Tabular reports can be fine for logging detailed transactions and lists, but business reporting is often
about summarizing information for analysis and to provide context to all the numbers and listed items.
This is often best done by rolling up the details along groups and hierarchies and then viewing the
aggregate totals, rather than the details. A matrix, cross - tab, or pivot report aggregates data along the
X - axis and Y - axis of a grid to form a summarized table. The most unique characteristic of a matrix is that
columns are not static but are based on grouped values. Both rows and column groups may be multilevel
hierarchies, and there may be an infinite number of grouped members on rows and columns.

 A matrix is most useful for viewing aggregated values along two different dimensional hierarchies, such
as time and geography. For example, a product sales summary report might show aggregated sales with
years and months on the columns axis and then the customers ’ countries and regions along the rows
axis. At the intersection of each member along each axis, a cell displays the summarized product sales
for that time and geography. For example, a single cell might represent the total sales for April of 2008 in
Berlin, Germany.

 List Reports
 A List report consists of a single, rectangular detail area that repeats for every record or group value in
the underlying dataset. If you think about it, a list is a simplified table of sorts, but it has no headers with
only one column and only one detail row. The main purpose of the list data region is to contain other
related data regions and report items, and to repeat them for a group of values. A chart, table, matrix,
and any combination of textboxes or images can be repeated as a group for every record or distinct
group value returned by a query.

 Because the table, list, and matrix had similar characteristics, all three have been combined into one
designer object in the 2008 product, called the tablix . The capabilities and unique behaviors of each of
these three reporting paradigms are made possible by enabling different group types and properties.

 Chart Reports
 Behold, the mighty chart — no longer an exception, but very much the rule for expressing aggregated
data values for comparison and trending. Column and line charts have become a natural medium to
visualize a series of data in a meaningful and intuitive way. We ’ ve grown accustomed to seeing charts on
the stock page of the newspaper, and on the home page of our news portal site, showing gas prices and
housing market data. And, of course, we expect to see charts in the executive board room, used to
explain the latest widget sales trends.

 The nice thing about charts is that they provide visual context for a lot of different kinds of data. When
used appropriately, the right chart types can tell a complex and important story with very little
explanation required. Your challenge is to choose the right type of charts to visualize data in the most
meaningful way for your users. In addition to the typical set of column, bar, line, point, and pie charts,
you have a huge array of specialized chart types at your disposal.

c06.indd 131c06.indd 131 11/13/08 4:28:51 PM11/13/08 4:28:51 PM

Part II: Report Design

132

 Gauge Reports and Dashboards
 The term dashboard reports gets tossed around loosely these days, often without much qualification.
Although different people may not be able to clearly define exactly what a Dashboard report is or is not,
I think the essential concept is quite clear. Think of the dashboard in your car. Its purpose is not to
provide deep and detailed analysis of your car ’ s performance. If it did, there would be more road
accidents because of distracted drivers. No, the purpose of a dashboard is to provide a quick, at - a - glance
status of important metrics. All you really need to know is if your speed is in an acceptable range,
whether the engine is revving too little or too much, if the oil and water are too hot or too cold,
and whether you have enough gas to get to the office for that meeting in 10 minutes (or if you ’ re going
to have to make your presentation to the CEO by phone with your hand cautiously cupped over your
cell phone at the filling station).

 Dashboard reports are the same — important information available at a glance. Everyone knows how to
read a simple gauge, so why not use the same gauge visualizations as those we ’ re accustomed to using
in the car or on the machines on the production floor? Actually, there are several tangible gauge - type
metaphors that are very appropriate in business, and the great thing about using these components is
that when a business user sees a thermometer, VU meter, dial, or partially full cylinder, they immediately
understand its meaning.

Composite Repor ts
The layout types discussed above are more than a set of finite report design options.
These report items and data range objects can be used as building blocks to assemble
more complex and compelling report solutions.

Once you have the basics down, you can combine the report design and layout
elements to create more advanced and compelling reports. Different report items and
data ranges can be embedded into a data range to repeat the data visualization within
the scope of a group row or column. We’ll explore techniques used to combine report
items in Chapters 8 and 10.

 Page Layout
 Let ’ s discuss some important information you need to understand before you move on. These examples
were created on a computer configured with US/English regional settings. As a result, all of the scaling
units are set to inches. If your computer is configured for another culture or regional setting, your
environment may use metric units.

 It ’ s also important to understand how a report fits onto a page. The report content fits onto a design
element called the body . The report defines the page for printing and displaying purposes with
associated margins. The relationship between these two design elements will be discussed shortly.

 Different scaling units — such as inches, points, pixels, and metric scale units — can be used for the
report, body, and margins and control size measurements. The Designer will automatically use either
inches (“ in ”) or centimeters (“ cm ”), depending on the current locale setting in Windows. The following

c06.indd 132c06.indd 132 11/13/08 4:28:51 PM11/13/08 4:28:51 PM

Chapter 6: Report Layout and Formatting

133

examples use inches, with the default “ US letter 8.5in � 11in ” page size. If you are using metric units or
a different page size, it should be a simple matter to make the appropriate adjustments. For example, if
you are designing reports for A4 paper, the report width and height would be set to “ 21.0cm ” and
 “ 29.7cm, ” respectively.

 By default, the Report Designer is only 5 inches wide, and the grid containing the fields partially fills this
space. You need to make some adjustments to use the available space.

 You should be able to use all of the available space to fill your target page size. Apply the following
formula to calculate the report page width:

Report Width = Body Width + Left Margin + Right Margin

 You can set the report size by either resizing the report body in the Designer with the mouse or by
setting the Height and Width values in the Properties window. Although it usually makes sense to match
the report size to the paper size for printed reports, the report width can be set as wide as 160 inches.

 If you are using Report Builder 2.0, you will need to enable the Property pane from the View ribbon. If
you are using Business Intelligence Development Studio (BIDS), the Properties window should be visible
by default. If not, select it from the View menu.

 Click on the report background, and view the Properties window (either right - click and choose
Properties, or just click the Properties tab on the right side of the Designer). Verify that Body is displayed
in the dropdown list at the top of the Properties window. Now, click the small plus sign next to Size to
expand this item and set the properties, as shown in Figure 6 - 1 .

Figure 6-1

c06.indd 133c06.indd 133 11/13/08 4:28:51 PM11/13/08 4:28:51 PM

Part II: Report Design

134

 To set the report margins, click outside the report body. You should see the Report displayed in the
Properties window. Expand the Margins item. Change the Left, Right, Top, and Bottom margins, as
shown in Figure 6 - 2 .

Figure 6-2

 Here ’ s a quick review: The report body contains the actual report content. This area must fit within the
area defined for a page of the report.

 Using the Properties window, set the report dimensions to be 8.5 inches wide by 11.0 inches tall, with the
left and right margins set to 0.25 inches each. This leaves 8.0 inches of available width for the report
body. To use all this horizontal space for report data, set the body to be 8.0 inches wide.

 Designing T abular Repor ts
 We ’ re all familiar with the Tabular report style because it resembles a paper ledger. Tabular reports have
been around for many years and are still the mainstay for many business units because of their
simplicity. Tabular, or table - like, reports have a fixed number of columns that typically correspond to
static fields in the underlying data source — like a spreadsheet or grid.

 Beyond a simple list of records, Tabular reports can be grouped with headers, footers, and subtotals for
each band of grouped records. Grouping is performed on one or more column values, with group
values either repeated on each row, appearing only once in the grouped field column, or appearing only
in the group header. Aggregated values for numeric columns may be displayed in the group header or
footer. Aggregation is performed using one of several aggregate functions, such as SUM or AVG . Some
aggregations can be used with non - numeric columns, such as COUNT or COUNTDISTINCT .

c06.indd 134c06.indd 134 11/13/08 4:28:52 PM11/13/08 4:28:52 PM

Chapter 6: Report Layout and Formatting

135

 Chapter 7 covers the details of data access. Just to get you started, I ’ ll step quickly through the process of
creating a simple data - set query using one of the sample databases provided for SQL Server 2008.
Whether you choose to use Business Intelligence Development Studio or Report Builder 2.0, the process
is the same, and there are only subtle differences in the tool interface. If you are unfamiliar with these
tools, I recommend that you use the new Report Builder 2.0 to follow along. If you have been using
Reporting Services in earlier versions of SQL Server, you may use the BIDS Designer instead.

 Place a table on the report body. Using Report Builder 2.0, select the Insert tab, and then click Table on
the ribbon (see Figure 6 - 3). In Business Intelligence Development Studio, a table is added from the
toolbox.

Figure 6-3

Figure 6-4

 You will need to repeat the following steps for creating a data source and dataset in the report design
examples for a matrix and chart that follow. I ’ ll step through them here but will not repeat these steps
for each example.

 Since the new report didn ’ t previously contain a dataset and data source, a dialog opens to define
these objects. Using the Data Source Properties window, enter a name for the new data source (see
Figure 6 - 4). I ’ m calling this data source AWDW2008 , which is an abbreviated form of the database name:
AdventureWorksDW2008, the sample data warehouse database available for SQL Server 2008. Enter the
data source name, and then click the Edit button to create the data source connection string.

c06.indd 135c06.indd 135 11/13/08 4:28:52 PM11/13/08 4:28:52 PM

Part II: Report Design

136

 The Connection Properties dialog, shown in Figure 6 - 5 , is used to build a connection string. Leave the
default Data Source set to Microsoft SQL Server (SqlClient).

 For the Server Name property, type LocalHost or the name of your database server. In the section titled
 “ Connect to a database, ” click the dropdown list button, and select the AdventureWorksDW2008
database. Click OK to accept these settings and close this dialog.

 You should notice that the “ Connection string ” property has been set in the Data Source Properties
dialog, as shown in Figure 6 - 6 . Click Next to accept this and move forward.

Figure 6-5

Figure 6-6

c06.indd 136c06.indd 136 11/13/08 4:28:59 PM11/13/08 4:28:59 PM

Chapter 6: Report Layout and Formatting

137

 Chapter 7 will cover query design in detail. Our present task is to focus on report design, so for this and
the following report examples, I ’ ll just provide a query string for you to type in the Query Designer
window.

 Type the following T - SQL script into the Query Designer, as shown in Figure 6 - 7 . Note that carriage
returns, tabs and leading spaces aren ’ t critical:

SELECT CalendarYear, SalesTerritoryRegion, SalesAmount
FROM
 FactResellerSales AS F INNER JOIN DimDate AS D
 ON F.OrderDateKey = D.DateKey
 INNER JOIN DimSalesTerritory AS ST
 ON F.SalesTerritoryKey = ST.SalesTerritory
ORDER BY CalendarYear, SalesTerritoryRegion

Figure 6-7

 You can test the query by using the Run button (the red exclamation mark icon). If you typed the query
script correctly, results are displayed in the grid below; otherwise, an error will be reported. Click Finish
to complete the process and save the new dataset.

c06.indd 137c06.indd 137 11/13/08 4:29:00 PM11/13/08 4:29:00 PM

Part II: Report Design

138

Figure 6-8

 If you are designing the report in BIDS, either drag the table item from the toolbar or click once and
draw the table wherever you like on the report body. Fields can be dropped directly into the table cells
from the data window, or a list of fields is provided when you click in a table cell. If you need to group
on any field values, hold off on dragging these fields into the table.

 Defining Table Groups
 Groups are used throughout Reporting Services and are useful in many ways. A significant change has
been made from the 2000 and 2005 versions of Reporting Services in the way that groups are created and
managed. The SQL Server 2008 report design environment now uses field drop zones to define groups
located at the bottom of the Designer pane. When any part of the table is selected in the Designer,
separate list boxes are displayed for Row Groups and Column Groups.

 In earlier product versions, each table group was used to define a separate group header row or footer
row. Although this pattern is still possible, multiple groups can now be defined on the same row with
separate headers that don ’ t take up additional row space.

 In this example, you ’ ll be grouping the rows of this table on the CalendarYear and then the
SalesTerritoryRegion fields. Note that, by default, a DetailsGroup item is displayed in the Row Groups
list. This is a placeholder for fields to include at the detail level of this table. To add the CalendarYear
field as a group at a level above the details row, drag and drop this field from the Data window to above
the DetailsGroup item in the Row Groups list, as shown in Figure 6 - 9 .

 Remember that the Data Source Properties dialog popped up when you added a table to the report.
Now that you ’ ve finished adding the dataset, you ’ ll see that the table has been placed in the top - left
corner of the report body. You can move the table by clicking and dragging the repositioning handle, as
shown in Figure 6 - 8 . Objects in the Designer will automatically snap to align with other objects on the
report body.

c06.indd 138c06.indd 138 11/13/08 4:29:01 PM11/13/08 4:29:01 PM

Chapter 6: Report Layout and Formatting

139

Figure 6-10

Figure 6-9

 A new group is created for the CalendarYear field that appears above the DetailsGroup item in the Row
Groups list.

 To add the second group, drag the SalesTerritoryRegion field from the Data window to the Row Groups
list, just below the CalendarYear and above the DetailsGroup, as shown in Figure 6 - 10 .

c06.indd 139c06.indd 139 11/13/08 4:29:02 PM11/13/08 4:29:02 PM

Part II: Report Design

140

 Measure values typically appear on each detail row and are then summarized in header or footer rows.
In this example, the SalesAmount field will serve this purpose. Drag the SalesAmount field from the
Data window to the third column in the details row, as shown in Figure 6 - 11 .

Figure 6-11

 Group Expressions and Options
 By dragging and dropping fields into the Row Groups list, you automatically add group definitions to
the tablix. If you have used the table data region in prior versions of Reporting Services, you ’ ll recall that
this required a few more steps. If you need to modify a group or define specific properties, you can do
so using the Tablix Group Properties dialog. To do this, in the Designer, select any part of the table to
enable the Row Groups list. Clicking the down arrow on any row group will enable the menu. From this
menu, select Edit Group to display the Tablix Group Properties dialog, as shown in Figure 6 - 12 . (I ’ ve
edited the CalendarYear in the dialog.)

c06.indd 140c06.indd 140 11/13/08 4:29:02 PM11/13/08 4:29:02 PM

Chapter 6: Report Layout and Formatting

141

Figure 6-12

 These properties are covered in later chapters that explore more advanced design patterns. Keep in mind
that this is where a lot of the magic happens. The following steps are used to dress up the report. Start
with the font weight and background color of the table header. Select the table header by clicking the
row selection handle for the header row (see Figure 6 - 13). Any property buttons enabled in the ribbon or
items in the properties window will be applied to all cells in the selected row as you apply formatting to
the table values in the following steps.

Figure 6-13

 Formatting Table Values
 Values in a table are formatted using the properties of constituent report items. Since each cell contains a
textbox, property settings are applied to each textbox, including the background color, foreground color,
font style, size, weight, and number formatting. On the Home ribbon, click the Bold icon to set the

c06.indd 141c06.indd 141 11/13/08 4:29:05 PM11/13/08 4:29:05 PM

Part II: Report Design

142

header text to be bold. Use the background fill bucket icon to show a color palette, and then choose a tan
background for the header, as shown in Figure 6 - 14 .

 The SalesAmount field is a currency type value and should be formatted appropriately. Text formatting
is set for each textbox, and there are a few different methods you can use to do this, including using the
Properties pane window to set the Format property and the right - click menu in the following step.
Right - click on the SalesAmount textbox, and then choose Textbox Properties, as shown in Figure 6 - 15 .

 The Text Box Properties dialog, shown in Figure 6 - 16 , contains a list of property categories on the left
side. Selecting Number displays several numeric formatting options. Select Currency, and then check the
box indicating that you want to include a thousands separator. Click OK to apply these settings and
return to the Designer.

Figure 6-14

Figure 6-15

c06.indd 142c06.indd 142 11/13/08 4:29:13 PM11/13/08 4:29:13 PM

Chapter 6: Report Layout and Formatting

143

 You ’ ll recall that when the table was added to the report body, it contained three blank columns. Adding
the two groups created two new columns, and dragging the SalesAmount field occupied one of the
empty columns. You are left with two empty columns that need to be deleted. The best way to do this
is to drag the mouse across both of the blank column headers and then right - click to show the menu
shown in Figure 6 - 17 . Choose Delete Columns to remove the columns from the table.

Figure 6-16

Figure 6-17

 Now pause to take a look at the report so far. Using the Preview button on the Home ribbon, the report is
rendered and displayed, as shown in Figure 6 - 18 .

c06.indd 143c06.indd 143 11/13/08 4:29:14 PM11/13/08 4:29:14 PM

Part II: Report Design

144

 Switch back to Design view. Two different design methods may be used to add totals to the end of a group
break with the same result. These include adding an explicit row to the group and choosing the Add
Totals menu option. The first technique is more convenient, but the latter provides a little more flexibility.

 Right - click on the SalesTerritoryRegion textbox, and choose Insert Row Inside Group - Below (see
Figure 6 - 19).

Figure 6-18

Figure 6-19

c06.indd 144c06.indd 144 11/13/08 4:29:15 PM11/13/08 4:29:15 PM

Chapter 6: Report Layout and Formatting

145

 The new row is added below the group values. Hover the mouse over the new cell below the
SalesAmount field, and then click on the field list icon. This displays a list of fields like you see in
Figure 6 - 20 . Select the SalesAmount field to set the value of this cell to that field.

 If you ’ ve worked with earlier versions of Reporting Services, the end result is the same as before, even
though the design experience is a little different. Simply selecting a field for this cell applies the SUM
function to this field in the footer row of the group.

 Optionally, you can apply formatting to the field value, as shown in Figure 6 - 21 . As you see, I have
changed the number format of the textbox. I ’ ve also changed the font size and weight.

 To view the report in Report Builder 2.0, click the Preview button on the Home or Preview ribbon. To
view the report in BIDS, click the Preview tab.

Figure 6-20

Figure 6-21

c06.indd 145c06.indd 145 11/13/08 4:29:17 PM11/13/08 4:29:17 PM

Part II: Report Design

146

 Sorting Options
 You have a few different options for sorting the data displayed in a table. The best method to choose
depends on your needs and any interactive features you may want to support. When the report
is executed, after making a connection to the data source, the first thing that happens is that queries are
executed by the data source, and records are presented to the report items in their natural order or the
order specified in the query. A dataset is more than just a fancy name for a query. It ’ s actually an object
managed by the report execution engine that holds a cache of the report data. As the data - set records
flow to a data region, it can group and reorder the records before the report is rendered.

 In short, you have three options: If you always want records to be displayed in a specific order, you
should use a query or database object to sort them. In case you use a data provider that doesn ’ t allow
sorting or you need to reorder records after a query runs, you also have the option to reorder records in
the report. If you need to provide some dynamic data reordering using a parameter selection or some
other creative report design, you can sort records in the report using more advanced methods. These
options are covered thoroughly in Chapter 7 .

Sorting in the Query
 It ’ s important to realize that the SQL Server database engine, like many other relational database
products, doesn ’ t guarantee that records will be returned from the database tables in a particular order
unless you specify this in a query. To be on the safe side, it ’ s a good idea to be specific and use an ORDER
BY clause in your T - SQL queries when records should always appear in a specific order. The query
feeding data to this report table includes an ORDER BY clause that will always return records sorted by
the CalendarYear and then the SalesTerritoryRegion field values:

SELECT
 DimDate.CalendarYear, DimSalesTerritory.SalesTerritoryRegion,
 SUM(FactResellerSales.SalesAmount) AS SalesAmount
FROM FactResellerSales INNER JOIN DimDate
 ON FactResellerSales.OrderDateKey = DimDate.DateKey
 INNER JOIN DimSalesTerritory
 ON FactResellerSales.SalesTerritoryKey =
 DimSalesTerritory.SalesTerritoryKey
ORDER BY DimDate.CalendarYear, DimSalesTerritory.SalesTerritoryRegion

 To optimize report performance, if you intend to use dynamic features in the report to reorder these
records, it might be best to leave off the ORDER BY clause so that your report isn ’ t working against the
database engine. Another option would be to parameterize the query to dynamically change the ORDER
BY clause, letting the database engine do the reordering rather than the reporting engine. You ’ ll see an
example of this technique in Chapter 7 . To keep things simple, I will typically specify a natural ORDER
BY in a query and then use other sorting features to apply exceptional rules, unless I have good reason to
do otherwise.

Sorting in a Group
 Part of the tablix ’ s job is to apply groups and sorting options. Any group can be sorted in any order
using any combination of data fields and expressions. For example, to set the sort order for the
CalendarYear group to show more recent years first, click the down arrow on the first group listed in the
Row Groups list when the table is selected in the Designer, and then select Edit Group from the
dropdown menu, as shown in Figure 6 - 22 .

c06.indd 146c06.indd 146 11/13/08 4:29:18 PM11/13/08 4:29:18 PM

Chapter 6: Report Layout and Formatting

147

 The Tablix Group Properties dialog, shown in Figure 6 - 23 , is displayed with a list of pages on the left
side. Select Sorting, and then click on the Add button to add a new sorting expression.

Figure 6-22

Figure 6-23

 Complex expressions and combinations of fields may be used for sorting and grouping. This simple
example shows a typical sorting expression based on one of the fields displayed in the report. Simply
select CalendarYear from the “ Sort by ” field list in the column labeled Column, and then specify
descending order (Z to A) from the dropdown list in the Order column (see Figure 6 - 24). In a more
complex report, you might add multiple sorting definitions based on different column/field values or
other expressions.

c06.indd 147c06.indd 147 11/13/08 4:29:18 PM11/13/08 4:29:18 PM

Part II: Report Design

148

Figure 6-24

 Use the Preview button to eyeball the report. The results are shown in Figure 6 - 25 . Note that the
CalendarYear values are now displayed, from highest to lowest, in the first table column.

Interactive Sort
 The Interactive Sort feature was added to the table in the 2005 product and now works much the
same way in the tablix. Interactive sorting is applied after the groups are processed, so the entire
report doesn ’ t need to be re - rendered each time a user clicks the column header to reorder column
values. This is actually a feature of a textbox located in a header. To add interactive sorting for the
SalesRegionTerritory field, right - click on the cell for this column header, and choose Textbox Properties.
The resulting Text Box Properties dialog is shown in Figure 6 - 26 .

Figure 6-25

c06.indd 148c06.indd 148 11/13/08 4:29:27 PM11/13/08 4:29:27 PM

Chapter 6: Report Layout and Formatting

149

 On the Interactive Sort page of this dialog, choose the group name and Sort by field. In this case, the
group name is the same as the field name because the group was created by dragging the field into
the Row Groups list. By specifying this group, rows within this group will be sorted within their parent
group. In other words, when a user clicks on the column header textbox, the SalesTerritoryRegion rows
will be resorted in either ascending or descending order, while the CalendarYear heading values will
remain the same. Figure 6 - 27 shows a preview of the report. Before resorting the column, a pair of up
and down arrows is displayed. Hovering over these arrows changes the mouse pointer to indicate that
each is a hyperlink.

Figure 6-26

Figure 6-27

c06.indd 149c06.indd 149 11/13/08 4:29:32 PM11/13/08 4:29:32 PM

Part II: Report Design

150

Figure 6-28

 Click the up button to sort in descending order or the down arrow to sort in ascending order. After
sorting, the arrows pair changes to a single up or down arrow to indicate a toggled state for the sort
order. Click the up arrow to sort the regions in descending order, as shown in Figure 6 - 28 .

 Adding Headers and Footers
 By combining the table, list, and matrix reports from previous product versions into the tablix data
region, the grouping paradigm has changed slightly in SQL Server 2008 Reporting Services, enabling a
more flexible reporting interface. In previous versions, inserting a group into a table would add two
additional rows by default: one header row and one footer row. This same pattern is still possible, but
the tablix now works differently out - of - the - box. The default behavior for a group is more akin to the old
matrix data region. When a group is added, a non - repeating header is automatically added to the same
row rather than a separate header row. This new design pattern looks a little different from the old
method that required more vertical table space for header rows.

 To apply the former method, you can create a group and then add a row within the group, either above
or below. Figure 6 - 29 is an example of a table with separate group header and footer rows.

Figure 6-29

c06.indd 150c06.indd 150 11/13/08 4:29:33 PM11/13/08 4:29:33 PM

Chapter 6: Report Layout and Formatting

151

Figure 6-30

 Adding Page Breaks
 By default, page breaks are added when repeated data fills the available space for a page. You can add
page breaks explicitly before or after a tablix region. You can also add page breaks before or after a group
value changes. To force a break for the entire table, display the Tablix Properties dialog, and use the
 “ Page break options ” section on the General page, as shown in Figure 6 - 30 .

 You ’ ve seen that this dialog is opened when editing a group from the Row Groups or Column Groups
pane in the Report Designer window. The Tablix Properties dialog is also opened when you select a
table, list, or matrix and then right - click on the top - left gray selection handle and choose Tablix
Properties.

 You can also control page breaks at the group level. This is a common reporting requirement to break
before or after a group header or subtotals displayed in a footer row. Show the Tablix Group Properties
dialog, and then use the Page Breaks page to set the page break options for the group (see Figure 6 - 31).
It ’ s often a good idea to repeat header information at the top of each printed page. This is done using the
Repeat header rows on each page option in the Tablix Properties dialog (refer to Figure 6 - 30).

c06.indd 151c06.indd 151 11/13/08 4:29:43 PM11/13/08 4:29:43 PM

Part II: Report Design

152

Figure 6-31

Figure 6-32

 Creating Drill - Down Reports and Dynamic Visibility
 A dynamic reporting experience is created by hiding and showing report elements. Various techniques
may be used to show and hide fields, groups, rows, columns, and entire data regions using conditional
expressions and toggle items. All report items and group definitions have a Visibility property that
can be set either permanently or conditionally.

 A common use for the Visibility property is to create drill - down reports, where table or matrix group
headers are used to toggle, or expand and collapse, details. Typically, a plus [+] or minus [–] icon is
displayed next to the toggle item row or column header. Figure 6 - 32 shows a drill - down report with
toggle items set for the group header rows of a table.

c06.indd 152c06.indd 152 11/13/08 4:29:44 PM11/13/08 4:29:44 PM

Chapter 6: Report Layout and Formatting

153

 Creating a drill - down report is a simple matter of hiding a group and setting its ToggleItem property to
refer to a report item, usually a textbox, in a higher - level group. In our example report, records are
grouped by Calendar Year and then Sales Territory Region. The properties for the latter group are set
using the group pane in the lower part of the Design window, as shown in Figure 6 - 33 .

 In the Visibility page of the Group Properties dialog, set the display options to Hide the group contents,
check the box labeled “ Display can be toggled by this report item, ” and then select the textbox bound to
the CalendarYear field, as shown in Figure 6 - 34 . Note that this textbox may not always have the same
name as the field to which it is bound. Click OK to save these property changes.

Figure 6-33

Figure 6-34

 Dynamic visibility can also be used to hide and show areas of a report based on parameters or field
threshold values. With a little creativity and some basic programming skills, some very interesting things
are possible.

c06.indd 153c06.indd 153 11/13/08 4:29:45 PM11/13/08 4:29:45 PM

Part II: Report Design

154

 Adding Totals and Subtotals
 Even the simplest table or list reports will typically have summary totals. A grand total is typically
placed at the bottom of the report body or at the end or beginning of a data range. Group totals or
subtotals (totals applied to any intermediate group) can also appear before or after a range of group
values. To add totals to a group, use the group pane at the bottom of the Report Designer. Click on the
dropdown button for the group, select Add Total, and then choose either Before or After.

 Note that the grouping feature has been changed from Reporting Services in SQL Server 2000 and 2005.
It is no longer necessary to add group header or group footer rows to a table. The table report item is
now based on the new tablix, which is easier to design and offers greater flexibility.

 Figure 6 - 35 shows the previous drill - down table report with totals added to the CalendarYear and
SalesTerritoryRegion groups.

Figure 6-35

 Formatting Report Data
 Nearly as important as the data displayed on the report are the layout and the visual elements that
make the data readable. For reports to be functional, data must be presented in a format that makes
sense to the user and conforms to a standard that is both readable and visually appealing. Reports may
be static in design, or certain elements can be set to dynamically adapt to user requests. Report elements
can be designed to change or to appear only under specific conditions.

 All formatting features are based on property settings. Static formatting involves the use of several
properties, such as background color to apply shading, the font, font size, weight, style, foreground
color, and borders.

c06.indd 154c06.indd 154 11/13/08 4:29:45 PM11/13/08 4:29:45 PM

Chapter 6: Report Layout and Formatting

155

 In Report Builder 2.0, formatting properties are applied to selected items using the Format ribbon. In
Business Intelligence Development Studio, formatting can be applied using the Report Format toolbar.

 Background colors, font sizes, weights, and borders are added using either the formatting options
on the Report Builder 2.0 Home ribbon or the Report Formatting toolbar in BIDS. The ribbon and
toolbar buttons are used to set properties that can also be changed using the Properties window.
Figure 6 - 36 shows the same report with these properties changed on the group footer rows for the
SalesTerritoryRegion and CalendarYear groups. This makes the report easier to read and helps the user
to visually separate each group section with the corresponding details and totals.

Figure 6-36

 Introduction to Dynamic Formatting
 You ’ ve seen how a report can be formatted using simple features and properties. Totals can be added to
groups; sections can be made to expand or collapse using drill - down toggle items; values can be
formatted; and areas of the report can be dressed up using borders, shading, font sizes, weights, and
colors.

 Expressions are the heart and soul of dynamic reports. You can design simple reports without special
coding, but if you want to take your reports to the next level, you ’ ll need to learn some simple
programming. Chapters 8 and 10 demonstrate how to use expressions to incorporate more advanced
report design techniques. Here, I ’ d just like to give you a taste of the kinds of things you can do.

 As the reports grow and evolve in a business, often different reports are just variations of other reports.
You can define unique behaviors, such as dynamic sorting, filtering, or visual subsets of report data, by
using a single report to include all the features, and then use expressions to modify the report ’ s behavior
and to enable or disable certain features.

c06.indd 155c06.indd 155 11/13/08 4:29:46 PM11/13/08 4:29:46 PM

Part II: Report Design

156

 Chapter 8 demonstrates a table report designed for use by two different groups of users. A parameter
is used to indicate whether the report should display retail or wholesale sales information. Using this
dynamic formatting technique, you can create one report to meet the reporting requirements for
multiple users.

 Designing Multicolumn Repor ts
 Tabular reports can be designed to display continuous data in snaking columns. To create a multicolumn
report, add a table to the report body that occupies a fraction of the report width, allowing for column
margin spacing. The Columns and ColumnSpacing properties are set for the Report object in the
Properties window. For example, a report with two columns should contain a table that is less than
one - half of the report width plus the ColumnSpacing. Use the following formula to calculate the width
of a multicolumn report:

Report Width = (Body Width x # Columns) + (ColumnSpacing x # Margins between
columns) + Left Margin + Right Margin

 Designing Matrix Repor ts
 Matrix reports allow you to visualize data in a pivot or crosstab table, with groups defined on rows and
on columns. Values displayed in the intersecting cells between the row and column group headers are
aggregated. Like a table report, totals can be added along with formatting and styling such as headers,
footers, and drill - down report features.

 With the table and matrix overhaul made since the 2005 product, designing table and matrix reports is
now very similar. Since both of these report styles use the tablix report item, the option to design a table,
matrix, or list report simply applies a set of templated properties to a tablix object. Regardless of what
the designer does behind the scenes, you still select one of these specific report items to place on the
report body. The only significant difference between a table and a matrix is that the columns of a matrix
are dynamically generated from grouped values.

 To demonstrate the design of a matrix, let ’ s begin by creating a brand new report. If you are using Report
Builder 2.0, click the Start button “ pearl ” in the top - left corner and then choose New. If you are using
BIDS, right - click on the Reports folder in Solution Manager, select Add New Item, and then select
Report from the Add New Item dialog. Name this report Reseller Sales by Quarter and Region .

 From the Insert ribbon (in Report Builder 2.0) or the Insert toolbar (in BIDS), add a matrix to the report
body. In Report Builder 2.0, the matrix is added by clicking the Matrix icon in the ribbon. In BIDS, you
drag and drop the Matrix from the toolbox.

 You need a dataset with a few more fields than the previous example. Follow the steps to design a
tabular report, and then use the following query instead of using the Query Designer. You will learn
more about query design and data access in Chapter 7 . For now, this query will serve to provide a set of
data for the following sample reports. Remember that you can see the finished reports in the Chapter 6
sample project provided on the Wrox download site for this book. If you would like to create the
following reports yourself and you ’ d like to save yourself some typing, I recommend that you copy and

c06.indd 156c06.indd 156 11/13/08 4:29:53 PM11/13/08 4:29:53 PM

Chapter 6: Report Layout and Formatting

157

paste the query text from the Reseller Sales by Quarter and Region report in the sample project.
Otherwise, type the following text directly into the Query Designer:

SELECT
 CalendarYear, CalendarQuarter, EnglishMonthName, SalesTerritoryCountry,
 SalesTerritoryRegion, SUM(FactResellerSales.SalesAmount) AS SalesAmount,
 SUM(FactResellerSales.OrderQuantity) AS OrderQuantity
FROM
 FactResellerSales INNER JOIN DimDate
 ON FactResellerSales.OrderDateKey = DimDate.DateKey
 INNER JOIN DimSalesTerritory
 ON FactResellerSales.SalesTerritoryKey = DimSalesTerritory.SalesTerritoryKey
GROUP BY
 CalendarYear, CalendarQuarter, MonthNumberOfYear, EnglishMonthName,
 SalesTerritoryCountry, SalesTerritoryRegion
ORDER BY
 CalendarYear, CalendarQuarter, MonthNumberOfYear, EnglishMonthName,
 SalesTerritoryCountry, SalesTerritoryRegion

 Drag the CalendarYear field from the data - set Field list on the left to the Column Groups pane in the
lower right area of the designer. Drag the CalendarQuarter field to the Column Groups pane, and drop it
under the CalendarYear field. This is demonstrated in Figure 6 - 37 .

Figure 6-37

c06.indd 157c06.indd 157 11/13/08 4:29:53 PM11/13/08 4:29:53 PM

Part II: Report Design

158

Figure 6-38

 Drag and drop the SalesTerritoryRegion field to the Row Groups pane, under the Report Designer on
the left side.

 Drag the OrderQuantity to the cell labeled Data in the matrix. Drag the SalesAmount field to the
right side of the new OrderQuantity cell. Before you release the mouse button, make sure that the bold
 “ I - beam ” marker indicates that the field will be dropped to the immediate right of the existing cell.
This should appear as it does in Figure 6 - 38 . Release the mouse button to drop the SalesAmount field
at this location.

 At this point, the report is functional but should be formatted to be more readable.

c06.indd 158c06.indd 158 11/13/08 4:29:54 PM11/13/08 4:29:54 PM

Chapter 6: Report Layout and Formatting

159

Figure 6-39

 Before adding the totals, test the report to see what you ’ ve done so far. Use the Preview option from the
Home ribbon to view the report. Figure 6 - 40 shows the results. For each unique combination of sales
region and quarter, the order quantity and sales amount values are aggregated and displayed in an
intersecting cell.

 Left - justify the CalendarYear and CalendarQuarter fields by dragging across and selecting both cells,
and then click the left text alignment button on the Home ribbon, as shown in Figure 6 - 39 . Select
the same cells again, set the text to bold, and set the background color to a light shade of gray using the
Paint Bucket icon. Do the same for the SalesTerritoryRegion field in the detail row.

c06.indd 159c06.indd 159 11/13/08 4:29:55 PM11/13/08 4:29:55 PM

Part II: Report Design

160

 Adding totals is a simple matter. First, switch back to Design view. In the grouping pane, below the
Designer window, click the dropdown arrow for the SalesTerritoryRegion group. From the dropdown
list, select Add Total After (see Figure 6 - 41).

Figure 6-40

c06.indd 160c06.indd 160 11/13/08 4:29:56 PM11/13/08 4:29:56 PM

Chapter 6: Report Layout and Formatting

161

 This action adds a new row after the detail row, within the SalesTerritoryRegion group. As shown in
Figure 6 - 42 , a textbox, labeled Total , has the same font, size, weight, and background color as the row
group header label. The new cells under the OrderQuantity and SalesAmount column headings also take
on the formatting of the detain cells by default.

Figure 6-41

Figure 6-42

c06.indd 161c06.indd 161 11/13/08 4:29:56 PM11/13/08 4:29:56 PM

Part II: Report Design

162

 Select these two cells in the last row, and set the font weight to bold using the Home ribbon format
options. Finally, preview the report again to see the new footer with the totals (see Figure 6 - 43).

Figure 6-43

 There is much more that can be done in a table or matrix report. Chapter 8 will take over where we left
off and show you how to create more compelling and powerful reports by building on the basics you ’ ve
learned so far.

 Designing Char t Repor ts
 Charts are a simple and effective way to visualize aggregated measure values grouped along one or
more axes. The charting capabilities of Reporting Services have been expanded significantly in SQL
Server 2008. If you have worked with Reporting Services in SQL Server 2000 or 2005, you will notice
some differences in the design environment. The same types of charts can be created, but several new

c06.indd 162c06.indd 162 11/13/08 4:29:57 PM11/13/08 4:29:57 PM

Chapter 6: Report Layout and Formatting

163

types and capabilities have been added. Designing a chart is a lot like creating a matrix report in that you
can group field values on one or two axes and then the measure fields are aggregated along these
groups. Groups and data point aggregations are defined by simply dragging fields into drop zones
within the Designer.

 We will use the same dataset as in the matrix report example. The easiest way to do this is to open the
Matrix sample report and then use the Save As option to create a duplicate copy of the report.

 Delete the matrix from the report body, and then insert a chart from the Insert ribbon or toolbox. The
Select Chart Type dialog opens, as shown in Figure 6 - 44 , to show all of the chart - type selections. Select
the “ 3 - D Clustered Cylinder ” chart, and click OK.

Figure 6-44

 Reposition the chart and resize it so that it occupies most of the Design window. Click once in the center
of the chart to show the field drop zones, as displayed in Figure 6 - 45 . These zones are labeled “ Drop data
fields here, ” “ Drop series fields here, ” and “ Drop category fields here, ” respectively.

c06.indd 163c06.indd 163 11/13/08 4:29:58 PM11/13/08 4:29:58 PM

Part II: Report Design

164

 Defining the data series, series group, and category groups is as simple as dropping the appropriate
fields into these zones.

 From the data - set tree in the Data window, drag and drop the OrderQuantity field into the data field
zone above the chart. Drop the SalesTerritoryRegion field to the right in the series zone, and drop the
CalendarYear field into the category, below the chart. Your designer should look like Figure 6 - 46 .

Figure 6-45

c06.indd 164c06.indd 164 11/13/08 4:29:58 PM11/13/08 4:29:58 PM

Chapter 6: Report Layout and Formatting

165

 Preview the report to see the rendered chart, as shown in Figure 6 - 47 . Note that the title and axis labels
have default values.

Figure 6-46

c06.indd 165c06.indd 165 11/13/08 4:30:06 PM11/13/08 4:30:06 PM

Part II: Report Design

166

 Changing the chart title and axis labels is simple. Switch back to Design view, and then click on the Chart
Title text. Replace the Chart Title text with Reseller Quantity Sold . Do the same to change the X - axis
text to Sales Territory Region and the Y - axis to Sales Units . Figure 6 - 48 shows a preview of the report
with these changes.

Figure 6-47

Figure 6-48

c06.indd 166c06.indd 166 11/13/08 4:30:21 PM11/13/08 4:30:21 PM

Chapter 6: Report Layout and Formatting

167

 Changing chart types is easy as long as the chart type is suitable for the dataset and fields you have used.

 Switch back to Design view, right - click over the chart, and then choose Change Chart Type. When the
Select Chart Type dialog opens, change the column chart to a pie chart by selecting the 3 - D Exploded Pie
(see Figure 6 - 49), and then click OK.

Choosing Char t Types
There’s some philosophy and perhaps a little tradition behind chart-type selection.
Given all the choices, there are certainly some creative and interesting ways to express
a trend or business metric graphically using a chart. The most important consideration
is to choose a visualization that meets the need and adds business value to the report.
In brief, linear bar and column charts are good for visualizing quantitative data points
along two different axes. When time is measured on one axis and the data values
progress to show a trend, a line chart may be the best choice. To express portions and
ratios, a pie or stacked chart is often suitable. Most other chart types are either special
in purpose or adaptations of these basic chart types.

Figure 6-49

 Pie charts are typically used only to display one group axis. Strange things happen when grouping on
both category and series fields in a pie chart. Select the CalendarYear field in the category field drop
zone, and press the Delete key to remove it. This leaves only the SalesTerritoryRegion field on the series
axis, as you can see in Figure 6 - 50 .

c06.indd 167c06.indd 167 11/13/08 4:30:23 PM11/13/08 4:30:23 PM

Part II: Report Design

168

 We ’ re almost done with this chart, but first let ’ s display data point labels over each pie slice.

 Right - click on a slice, and select Show Data Labels from the menu. By default, this displays black text
labels over every color in the current chart area fill palette. Since there are some dark colors in the
palette, however, this may not be ideal. To set a contrasting label fill color, right - click on a data point
label, and select Series Label Properties (see Figure 6 - 51).

Figure 6-50

Figure 6-51

c06.indd 168c06.indd 168 11/13/08 4:30:24 PM11/13/08 4:30:24 PM

Chapter 6: Report Layout and Formatting

169

 In the Series Label Properties dialog, change the number format and the fill color as you see in
Figures 6 - 52 and 6 - 53 .

Figure 6-52

Figure 6-53

c06.indd 169c06.indd 169 11/13/08 4:30:24 PM11/13/08 4:30:24 PM

Part II: Report Design

170

 Finally, preview the report to see the data point label with contrasting background colors. The report is
shown in Figure 6 - 54 .

Figure 6-54

 There are several properties that may be used to change the style, layout, and format of the chart and
values. A little experimentation with various chart properties will reveal some very creative ways to
visualize data.

 Designing Gauge Repor ts
 A Dashboard report is comprised of different report items that provide quick status information at a
glance. A recent addition to Report Services, and a simple and compelling new visualization tool, is the
Gauge report item.

 Gauges are simple to use but can be a bit time - consuming to set up because there are so many properties
and so much opportunity to make adjustments and customize a gauge. Figure 6 - 55 is an example of a
Radial gauge, where the scale radiates from the pointer axis. You can control the sweep angle to create
a quarter - angle gauge, for example.

c06.indd 170c06.indd 170 11/13/08 4:30:25 PM11/13/08 4:30:25 PM

Chapter 6: Report Layout and Formatting

171

 The scale and pointers both have minimum and maximum value properties that can be set to either
fixed or variable values using expressions and field values. A gauge can have multiple pointers using a
common scale or multiple scales. Figure 6 - 56 shows the same gauge with two pointers having different
characteristics.

Figure 6-55

Figure 6-56

c06.indd 171c06.indd 171 11/13/08 4:30:26 PM11/13/08 4:30:26 PM

Part II: Report Design

172

 Although there are two distinct types of gauges (radial and linear), there are several varieties made
possible by adjusting various properties. The Select Gauge Type dialog is displayed when you add a
gauge to a report. Making any of the selections shown in Figure 6 - 57 will add a new radial or linear
gauge with properties based on one of these templates.

 Although gauge design is quite simple, Gauge reports typically require the use of some design
techniques we ’ ll cover in subsequent chapters. Several practical examples of Gauge reports are provided
in Chapters 8 , 9 , and 10 . The following is one example of a simple Gauge report. Figure 6 - 56 shows an
example of a completed dashboard that includes four radial gauges. Each gauge displays a monthly total
for a different metric, including the reseller sales, freight charges, sales quantity, and the total Internet
sales. You can view this working report in the Chapter 6 sample project. Each gauge consists of a scale
and a pointer. The pointer is set to a field expression that shows the current value for a selected
month and year. The scale for that gauge shows the highest monthly value for the selected year and
then divides the range into thirds, displaying the first, second, and third range value for comparison.

 Figure 6 - 57 shows the first gauge in the dashboard, with callouts to show the values for three significant
properties (which are set using field expressions). You can see that the pointer represents the sum of the
SalesAmount field value; the scale maximum value is the Max, or highest monthly value, for the year;
and the scale interval is one - third of this range so that it doesn ’ t become crowded with several very large
numbers. You ’ ll learn more about using expressions and working with parameterized and grouped
data - set queries in the chapters that follow, all of which are used to feed data to a simple gauge item like
this one.

Figure 6-57

c06.indd 172c06.indd 172 11/13/08 4:30:29 PM11/13/08 4:30:29 PM

Chapter 6: Report Layout and Formatting

173

 Conver ting Repor ts from Other
Formats and Products

 Because each report is defined in a single Report Definition Language (RDL) XML file, a report can be
generated from a custom application or report migration utility. Microsoft has made a point to document
the RDL specification and encourages third - party vendors to build report - generation tools. We have
worked with several consulting clients, using internally developed tools at Hitachi Consulting to convert
Crystal Reports files to RDL - based reports. With more than 5 years of report migration experience on
many projects, we ’ ve learned how these reporting products differ. Our report migration tool suite has
gone through several version cycles as features and capabilities have been added. Certain report design
elements can be converted straight across, while others require redesign because of the architectural
similarities and differences between the two products.

 Compared to some other report tools, a key difference is that Reporting Services uses a modular
approach for report design and data rendering. Rather than the report binding to a query and defining
groups, headers, footers, and detail rows, all this functionality is provided by the individual data range
report items. And since a single report can contain any number of distinct datasets and data ranges, this
changes the way report design is approached. In the end, report conversion tools are helpful to reduce
redundant report redesign, but we have found that no tool can effectively replace experience and
expertise with differing report platforms.

 Students and clients ask me the same question all the time: “ Which is a better reporting tool, Reporting
Services or XYZ Reports? ” That ’ s a very subjective question. I think Reporting Services is the most
flexible reporting solution available, but is every feature superior to its competitors? To answer yes
across the board would be a bit naive. Every tool is different.

 When migrating reports from another reporting tool, break down the report design into logical steps,
and answer these questions:

 What is the data source?

 How is the data filtered and sorted at the source or the query within the report?

 What parameters or calculations are applied before the data is parsed and rendered?

 How is the data grouped and organized?

 What aggregations are performed on numeric measure fields?

 How is the grouped and aggregated data visualized in the report interface?

 An automated report conversion tool can be useful for migrating a large volume of reports from
another product if the source and target layouts are similar. But if the architecture of the reporting tool
is so different that the design can ’ t be nearly duplicated, or if you need to change the design to take
advantage of more advanced features in Reporting Services, you ’ d do well to start over. In many cases,
converting reports helps you to discover the need to redesign. Again, some of the reports may convert
straight across, while others warrant a fresh start — usually with much better results.

❑

❑

❑

❑

❑

❑

c06.indd 173c06.indd 173 11/13/08 4:30:30 PM11/13/08 4:30:30 PM

Part II: Report Design

174

 Importing Access Reports
 Using the Report Designer, you have the ability to import reports from Microsoft Access. Prior to
Reporting Services for SQL Server 2000, Access was the only substantial reporting tool in the Microsoft
armada of products. Since the early 1990s, Access was the product of choice for creating reporting
solutions and still is for many desktop solutions. Its greatest limitation, however, is that it must be
installed on the user ’ s desktop and can effectively be used only in a single - user or small - network
environment.

 If you are already familiar with creating reports in Access, this may be a good starting point to learn
report design in Reporting Services. Most basic Access reports will import very nicely. There are some
functions and expressions used in Access that are not supported, and Access reports that run program
code behind them will likely not work without some adjustments. Most basic report functionality will
work. Grouping and sorting features are preserved, as are most expressions and formatting. The use of
domain functions and any custom code is not supported. Once you get the basics down, though, I would
recommend that you leave Access reports behind and learn to design more advanced reports the
Reporting Services way.

 Designing for Extensibility
 If your goal is to create a reporting solution that will work for users with different needs, there are
several things to be considered. The users may need to:

 Browser Compatibility — View reports in Internet Explorer or different web browsers.

 Offline Viewing — Download reports for offline viewing.

 Mobile Device Support — Access reports from a web - enabled hand - held device or cell phone.

 Rendering Format Limits and Considerations — View or save reports in Microsoft Excel to
manipulate report data after rendering.

 Reporting Services can meet all these needs if you understand the requirements and plan ahead. Let ’ s
briefly discuss some of these design considerations.

 Browser Compatibility
 A solution should be designed to meet the needs of the least capable user or application platform. The
optimal design for the Web has always been a moving target. If, when designing reports, you view them
only in the latest version of Internet Explorer, you may not be aware of incompatibilities or design issues
for other browsers. Creating solutions independent of the client platform for a diverse audience will
always be challenging, with a certain degree of unpredictability.

 Reporting Services renders to HTML 4.0 by default, which, theoretically, should work in any compatible
web browser. However, the interpretation of this standard is subtle, and Microsoft doesn ’ t guarantee
that reports will work correctly in any other browser but the current, released version of Internet
Explorer. Reports with interactive design elements like drill - down and auto - hide sections, for example,
generate client - side JavaScript. This script runs in the user ’ s browser to produce effects and interactive
functionality. Theoretically, pages containing many JavaScript functions should run in newer versions of
Internet Explorer and other browsers. In a report, scripted features include documentation maps,
bookmarks, and show/hide features (used for drill - down reports). On the standard report toolbar,
scripted features provide the ability to zoom, search, refresh, export, and request help.

❑

❑

❑

❑

c06.indd 174c06.indd 174 11/13/08 4:30:30 PM11/13/08 4:30:30 PM

Chapter 6: Report Layout and Formatting

175

 Another variable to consider when using HTML is the font typeface and size. If you make a point to use
common fonts, this is not typically an issue. However, the user ’ s configuration isn ’ t always predictable.
Font files on the user ’ s computer can be uninstalled or deleted, and default font sizes can be changed in
the browser. A popular solution for unpredictable HTML results is to use a proprietary document format
typically read in a downloadable viewer. Rendering reports to an Adobe Portable Document Format
(PDF) document will ensure that reports are displayed and printed consistently.

 Offline Viewing
 Reporting Services can render reports in three different forms of HTML, including HTML 4.0 for desktop
browsers, HTML 3.2 for mobile devices, and a MIME - encoded HTML called MHTML (or web archive).
MHTML is a more recent standard that encapsulates content that would normally be linked to separate
files, typically graphics, into a single document. Using this format simplifies web content rendering for
portability, but it isn ’ t supported in all browsers (including Pocket Internet Explorer). Even when using
standard HTML format, most report files will be self - contained with the exception of any graphics. If all
the content is contained in one file, it will be easier to download and view offline. If your users are
consistently using Internet Explorer or a browser you have tested thoroughly, consider rendering reports
in MHTML to preserve embedded graphics content. If you don ’ t have that kind of control over the user ’ s
environment, PDF document rendering may be the best choice.

 Another possibility is to allow the user to download report content into a storage file and then render the
content using your own client - side solution. Reports rendered as Comma Separated Values (CSV) can be
opened in Microsoft Excel, where the user can format or further manipulate the data. Data saved to an
XML file may be imported or read using Excel, Word, or a custom application. The Excel rendering
format currently supports Microsoft Excel versions 2002 and 2003 only.

 Mobile Device Support
 Portable electronic devices are available in different sizes and shapes. This medium could prove to be a
very convenient reporting solution for users who need to get information on - the - go. Web - enabled
cellular phones generally fit into three categories:

 The Windows Mobile, Pocket PC, and Palm OS devices with integrated cellular phones have the
advantage of a relatively larger display (240 � 320 pixels) and a more traditional - style web
browser.

 The new generation of smartphones runs a slightly scaled - down version of the Windows Mobile
operating system with a smaller display (176 � 220 pixels) and fewer features, but in a more
convenient size.

 The standard web - enabled cell phone. It ’ s hard to find a new cell phone that doesn ’ t offer the
capability to surf the web. Most of these phones have very small displays, and many will
display only text.

 The simple fact is that you can develop reporting solutions using Reporting Services for all these devices,
making it possible and convenient for users to access information wherever they are.

 Of course, screen size is one of the most significant limitations, so reports may simply be scaled down
to a smaller page size to fit a smaller screen size. The Pocket PC and Smart Phone browsers will run
client - side JavaScript to support drill - down and other such effects. To support less capable devices, you
can design simple text reports rendered in HTML.

❑

❑

❑

c06.indd 175c06.indd 175 11/13/08 4:30:30 PM11/13/08 4:30:30 PM

Part II: Report Design

176

 Rendering Format Limits and Considerations
 A significant design goal for Reporting Services is its ability to render reports into a variety of formats.
This offers a great deal of flexibility and opportunity for reports to meet specific business requirements
and to be integrated into a variety of business solutions. It ’ s important to understand that each rendering
format has certain capabilities and restrictions. I hear from consulting clients on a regular basis who ask
when a rendering limitation is going to be “ fixed ” or enhanced. Although the product team does their
best to enhance each rendering extension within reason, we simply have to accept the architectural
characteristics of the different viewers and applications used to view reports. My response (often echoed
from similar questions posed to the product team) is that each renderer generally uses the capabilities of
the related viewer. Here are some examples:

 PDF - and image - rendered reports don ’ t support drill - down and drill - through features. This is
simply not possible.

 Subreports often don ’ t work well with Excel rendering. Although several enhancements were
made to the Excel renderer because of its popularity, you can still expect these reports to behave
differently than HTML at times. In HTML rendering, items can be placed at any axis point in the
report body. The Excel renderer has to define rows and columns for the resulting worksheet and
then output report items to an exact grid. This means that textboxes and other items that are
slightly misaligned at design time may end up in the same column in the resulting report.

 HTML - rendered reports can have pages of differing lengths. HTML is not considered to be a
pixel - perfect print format, and, because of the different ways that an HTML browser handles
tables, borders, or margins, the report layout may not be ideal for page printing. If you want to
print a report, render it to PDF or use the client - side printing capability in the Report Manager.

 Summary
 Like constructing a house or building, you must first lay a foundation and start with the basic building
blocks. In this chapter, you saw some examples and learned to use the essential constructs of common
reports. You learned to create a data source and dataset to obtain data from a database. In Chapter 7 , you
will learn more about consuming data from different data sources and how to filter and manipulate that
data as it flows to your reports.

 Using the common data range items and report items — namely, the textbox, table, matrix and chart —
 you can visualize a range of data by aggregating a grouping on meaningful field values. You learned to
add totals, fixed sorting, and interactive sorting to a table. You also learned to do some basic formatting
to the table and matrix layout.

 You used some basic chart styles to visualize reseller product sales data by sales territories and time
periods. You ’ ve seen how basic column and pie charts are used to display data in a meaningful way.

 You learned about report rendering and formatting options and how reports can be read on mobile
devices, third - party viewers, and different web browsers. Reporting Services is highly extensible, and
reports can be integrated into different types of applications.

 This chapter was a starting point for report design. In the following chapters, you will apply these and
other techniques to create more advanced and compelling report solutions to solve business problems
and to enable users and business leaders to be more effective and to make informed decisions.

❑

❑

❑

c06.indd 176c06.indd 176 11/13/08 4:30:31 PM11/13/08 4:30:31 PM

 Designing Data Access

 Chapter 6 used the new Report Builder 2.0 to design some simple reports. As of the initial release
of SQL Server 2008, Report Builder 2.0 doesn ’ t include the Graphical Query Designer and Report
Wizard tools; these features are due to be added in a service pack or subsequent product release.
To demonstrate the full report design experience, this chapter uses Business Intelligence
Development Studio (BIDS). The differences between the two report designers are minor enough
that it really shouldn ’ t make a difference, and you should be able to use either.

 A big part of the report design process is often query design. In nearly all cases, your reports are based
on a data source of some kind. Therefore, the first order of business when designing a report is to
create a connection and define the queries necessary to retrieve the report data. This chapter discusses
the essential first steps of report design — how to consume data. Although this is typically simple and
straightforward, there are several options to be considered when designing data sources and queries.
Although SQL Server Reporting Services is packaged with the SQL Server database product, it may be
used with other database products as data sources. This chapter discusses the following topics:

 Creating stand - alone and shared data sources

 Designing queries and datasets

 Grouping and filtering data in a T - SQL query

 Using parameters to filter data at the database

 Using parameters to filter data at the Report Server

 Obtaining data from other data sources

 Every report will have at least one data source (with the rare exception of a special - purpose report
that doesn ’ t use any data). The simplest of reports will have a single data source to provide data
for a single dataset. The data source defines a connection as a string of text stored either in
the report definition file or in a separate shared data source file that can be shared among several
reports. This connection information may include security credentials. The dataset defines a query
expression or a reference to query objects stored in the database. The dataset is also contained
within the report definition. Figure 7 - 1 depicts how data flows to the report. The data source

❑

❑

❑

❑

❑

❑

c07.indd 177c07.indd 177 11/13/08 4:31:43 PM11/13/08 4:31:43 PM

Part II: Report Design

178

provides the ability to connect to the database, and the dataset contains a query expression that
populates the report with data.

Data Source

Data Source=MyServer;
UserID=fred;pwd=xyz;
Initial Catalog=
MyDataBase

Dataset

SELECT WidgetID,
Name, StockValue
FROM WidgetSales

Report

 Figure 7 - 1

Data Source Datasets Report

 Figure 7 - 2

Data Sources Datasets Report

 Figure 7 - 3

 More complex reports may require multiple datasets to provide data for different data ranges or items in
the report or to feed values to parameter value selection lists. Datasets can be based on query expressions
from the same data source, as shown in Figure 7 - 2 :

 Multiple datasets can get their data from multiple data sources. This model would enable a report to
have parameter selection values to be obtained from a local database and report data to be obtained from
a central data store. In some cases, data regions, subreports, and various report items might obtain data
from multiple sources through associated datasets, as shown in Figure 7 - 3 .

c07.indd 178c07.indd 178 11/13/08 4:31:44 PM11/13/08 4:31:44 PM

Chapter 7: Designing Data Access

179

 As you can see, almost anything is possible in terms of combining data sources and datasets. Data
sources can be practically any database product or any data source you can query by means of standard
connection libraries or drivers. Reporting Services consumes data using the .NET data providers, which
include support for SQL Server, Oracle, and all OLE DB providers. These include almost any database
product that supports ODBC access or a capable ISAM driver. Datasets in Reporting Services are always
Read Only, so there is no need to specify cursor types or locking options.

 Federating Data Sources
 It ’ s true that you can combine the data from multiple data sources into a single report, but each data
region gets its data from a single dataset. This means that to group data together in a table, matrix, list,
or chart, the data must come from a single query fed by one data source. Before you get too excited about
this architectural restriction, you need to understand the bigger picture and then plan accordingly. There
are a few ways to work with Reporting Services to combine data from more than one data source.

 Here ’ s a quick story to explain: I was working with a large consulting client a couple of years ago.
Microsoft had subcontracted with Hitachi Consulting to send me out to teach a Reporting Services class
and to do a little group mentoring. I was to introduce Reporting Services to a dozen or so of their
developers and discuss some of the challenges they were facing with a competing product. They also
sent a junior - level consultant with me from Microsoft Consulting Services. The client let me know up
front that one of their requirements was that they must be able to combine the data from two separate
database platforms into a single report table, and that if we couldn ’ t make Reporting Services do this,
they weren ’ t interested in using the product. I thought this might be an opportunity to have some fun
with the greenhorn consultant from MCS.

 At the start of the class, our client sponsor said something to the effect of, “ Before we go any further, let ’ s
get to the bottom of this issue . . . product XYZ, which we ’ ve been using for report design, allows us to
federate multiple data sources into a single query. Can we do this with Reporting Services? ” I said,
 “ Well, let ’ s ask the guy from Microsoft! ” He squeamishly answered that Reporting Services wasn ’ t
designed to do this, and the client was about ready to send us both home. At this point, I spoke up and
told them that the SQL Server platform actually handles this elegantly and more efficiently. Because
Reporting Services is part of an enterprise - capable data platform, federated queries are possible at the
database server level using linked servers and ad hoc distributed queries — and this is far more efficient,
secure, and appropriate than bringing result sets to the report server to combine them. To do so using the
other method promotes inefficient design. Another method is to use a subreport to combine and
coordinate the results from two sources. Just keep in mind that this can be even less efficient than the
former method.

 Linked Servers and Ad hoc Distributed Queries
 There are really two different ways to federate data in SQL Server. One is to create a persistent
connection to a remote database server from a designated SQL Server, known as a linked server . This is an
administrative task performed on the SQL Server using the sp_addlinkedserver system stored
procedure and managed within the Server Objects area in SQL Server Management Studio. A linked
server can be used to connect to any data source or database product using an ODBC driver or OLE DB
provider. User credentials for the remote connection are stored in the linked server definition. Once
established, a table accessed through the linked server connection can be used as if it were in a local
database.

c07.indd 179c07.indd 179 11/13/08 4:31:47 PM11/13/08 4:31:47 PM

Part II: Report Design

180

 Rather than defining a permanent connection, another option is to use the OPENDATASOURCE or
 OPENROWSET system functions in a query. These functions enable you to specify remote databases and
tables in a query. If the Report Designer has appropriate permissions to access remote objects, tables
from different servers can be specified in the query, yet the data is actually combined at the data source
hosting the query before being returned to the Report Server. Because these queries can be complex to
write and debug, it ’ s often a good idea to create views or stored procedures on the database server to
contain the script, rather than to promote the use of ad hoc federated queries in reports. Keep in mind
that federating data will inevitably come with some added cost of query performance, increased network
traffic, and security compromises.

 The need to perform federated data source reporting is often a symptom of a greater business need that
should be addressed at the solution level. When it becomes necessary to combine data from multiple
sources for reporting and data analysis, this should help define the requirement for a central data
warehouse with data fed from different sources at scheduled intervals.

 Business Intelligence Repor ting
 When designing any kind of business solution, it ’ s always a good idea to step back and look at the big
picture. Maintaining a solution - level perspective will usually help to ensure that your report design
efforts will continue to solve changing business problems. With an intelligent design reporting
application, the introduction of future requirements is less likely to render the whole solution obsolete.

 One of the most important considerations of a reporting solution is the structure of the data used for
reporting. Nearly all business goes through a similar cycle of data evolution. At the beginning, the data
structure is simple. Reports are often based on a few simple tables in a single, relational database used to
manage day - to - day operations and for simple reporting. As time goes on, multiple data sources are
introduced, each housing specialized data to support various business processes. Because business
decisions are made based on information from multiple sources, this data must be consolidated. As users
and applications compete for access to databases, using transactional data sources may no longer be
viable. As a result, data marts and data warehouses may become necessary to simplify the data used in
reports. A query used to bring together data from complex data structures can be complicated, slow, and
difficult to manage.

 Along with the volume and complexity of business data, reporting requirements also expand, making it
more and more difficult to squeeze meaningful reporting metrics out of traditional data sources.
Relational data bases and T - SQL queries may be used to group, aggregate, and perform calculations, but
these queries can be slow and complicated. The next step in the process may be to store data in a
multidimensional data structure designed specifically for data analysis. Microsoft SQL Server Analysis
Services is an On - Line Analytical Processing (OLAP) storage engine that can significantly improve
performance and support for self - service reports and reports with complex calculations.

 An exhaustive discussion of BI data sources is beyond the scope of this book, but these are important
considerations. Although we will not cover relational data warehouse or OLAP cube design, we will talk
about designing reports to use these data structures as sources. In brief, the general choices for report
data sources are:

c07.indd 180c07.indd 180 11/13/08 4:31:47 PM11/13/08 4:31:47 PM

Chapter 7: Designing Data Access

181

 Operational, transactional database with data stored in normalized table structures using a
relational database product such as SQL Server or Oracle

 Relational data mart or data warehouse using simplified fact/dimension star schemas

 Multidimensional OLAP cubes such as SQL Server Analysis Services

 A non - traditional data source such as an XML web service

 We work with a lot of companies, large and small, to architect enterprise reporting solutions. Typically,
the best way to build a business reporting solution is to make sure that reports don ’ t use live application
databases for their data sources. If you can simplify the way data is stored and optimize a decision -
 support database used only for reporting, life will be so much simpler. I realize that may be a big
undertaking. Very often the person charged with designing reports has been directed to use a specific
data source, and it may be completely outside the scope of a person in that role to build a utopian BI
solution. However, if you have the tools, the skills, and the time to “ do it right, ” designing a full - fledged
BI solution with a relational data mart and OLAP cubes can make the reporting part of the equation
much easier and faster (both to design reports and for users to run).

 Although there is much to consider, depending on the size and scope of the data and business reporting
needs, Figure 7 - 4 depicts the general layout of a fully evolved, corporate reporting environment. Due to
the relative complexity of the data stored in the operational databases illustrated on the left side of the
diagram, operational reports are typically static and simple in design, based on unstructured data. Data
is organized as it moves through transformation packages and into a data warehouse and OLAP cubes,
where the data is structured and simplified. This affords the opportunity to design more complex and
useful reports that run quickly and produce reliable results. Reports on the right side of the illustration
require less effort to design and debug because of the efficiency of hierarchal data structures.

❑

❑

❑

❑

 Figure 7 - 4

c07.indd 181c07.indd 181 11/13/08 4:31:47 PM11/13/08 4:31:47 PM

Part II: Report Design

182

 The examples in this chapter will use a relational data warehouse. Chapter 9 demonstrates reports using
data from an OLAP cube.

 Repor ting for Relational Data
 Now you ’ ll take a closer look at how queries are created and how data is provided for a report. At this
point, it ’ s important to understand the basic building blocks for reports. The discussion will begin with
some of these fundamentals. You will go through several short walk - through exercises so that you can
see and experience how it works.

 A query or command statement that produces a set of report data is called a dataset . Within the report
design tool, this is actually referred to as both a “ dataset ” and a “ dataset. ” I would argue that the first is
more correct than the latter, but it ’ s probably not a point worthy of a street fight or even a simple
argument.

 By the way, the term dataset in Reporting Services has nothing in common with a programming object in
the ADO.NET namespace with the same name. Why does the term dataset mean two completely different
things in different Microsoft technologies? We ran out of new words in the English language a long time
ago, so we ’ re now recycling some words and phrases.

 Data and Quer y Basics
 Reporting Services is capable of obtaining data from a variety of data sources. Nearly all relational
database products are queried using a form of Structured Query Language (SQL), which means that a
query created for one database product (say, IBM DB2) may be somewhat portable to a different data
source (perhaps Oracle, MySQL, SyBase, or Microsoft SQL Server). Most database products implement a
form of SQL conforming to the ANSI SQL standard. Microsoft SQL Server, for example, conforms to the
ANSI 92 SQL standard, and other products may conform to other revisions (like ANSI 89 SQL or ANSI
99 SQL). Beyond the most fundamental SQL statements, most dialects of SQL are not completely
interchangeable and will require some understanding of their individual idiosyncrasies.

 Other specialized database products may use a different query language. Microsoft SQL Server Analysis
Services is a data storage and analysis product that uses multidimensional cube structures to organize
complex data for business intelligence and decision - support systems.

 The main point here is that you can use whatever query language your database product understands.
Reporting Services provides a Query Editor designed especially for T - SQL and a generic Editor that will
accommodate other query languages or SQL dialects.

 Data Sources
 A data source contains the connection information for a dataset. Data sources either can be created only
for a specific report dataset or can be shared among different reports. Because most reports will get data
from a common data source, it often makes sense to create a shared data source. There are several

c07.indd 182c07.indd 182 11/13/08 4:31:56 PM11/13/08 4:31:56 PM

Chapter 7: Designing Data Access

183

advantages in using shared data sources. Even if you don ’ t have several reports that need to share a
central data source, it takes no additional effort to create a shared data source. This may still be
advantageous in this case as the data source is managed separately from each report and can be easily
updated if necessary. Then, as you add new reports, the shared data source will already be established
and deployed to the Report Server.

 There are three different ways to create a data source in a BIDS/Visual Studio report project:

 From the Add Item template, launched from the Project right - click menu

 In the Report Wizard

 When defining a dataset

 Let ’ s look at each of these options in detail.

 Creating a Data Source from the Project ‘ Add Item ’ Template
 You can add a new shared data source to a project and then use that data source in any report in the
project. To do this, in the Solution Explorer, point to Reports, and then right - click on and choose
Add Add New Item. The options in this dialog include Report Wizard, Report, and Data Source.
Selecting the Data Source option creates a shared data source.

 Using this technique will present the Shared Data Source Properties dialog. Although the layout of this
window is slightly different, the functionality is exactly the same as the Wizard pages described in the
following section.

 Creating a Data Source in the Report Wizard
 The following steps are provided to help get you started with data sources and datasets. In this exercise,
you will run the Report Wizard in a BIDS report project and then define the data source and dataset
properties for a new report. The exercise will continue in the following sections to help you develop
some basic T - SQL query language skills and then to use parameters and filtering in a report design. If
any of these topics are not new to you, you should be able to quickly skip ahead to later material that
will be more educational for you.

 The Report Wizard is launched from a report project in BIDS. From the Solution Explorer, right - click on
the Reports folder, and choose Add Report to launch the Report Wizard. The first page in the Wizard will
give you the opportunity to select an existing shared data source or create a new data source, as shown
in Figure 7 - 5 . Name the data source AdventureWorksDW2008 . You can name a data source anything
you like, but I typically use the actual name of the database for which the data source provides
connectivity.

❑

❑

❑

c07.indd 183c07.indd 183 11/13/08 4:31:56 PM11/13/08 4:31:56 PM

Part II: Report Design

184

 For this SQL Server 2008 database, leave the data source Type property as Microsoft SQL Server. Click
the Edit button to build a connection string. This opens the Connection Properties dialog, as shown in
Figure 7 - 6 .

 Figure 7 - 5

 Figure 7 - 6

c07.indd 184c07.indd 184 11/13/08 4:31:57 PM11/13/08 4:31:57 PM

Chapter 7: Designing Data Access

185

 Note that this dialog might be a little different if you select a different option in the Type dropdown list.
Although many of these options do correspond to standard data providers (and may include .NET
native providers, OLE DB data providers, and ODBC drivers), these are actually data processing
extensions that were installed with, or added to, the Reporting Services configuration. For example,
selecting the SQL Server Analysis Services type will result in a dialog window that is unique to Analysis
Services connections.

 Whether using the Report Wizard or adding a new data source directly from the Project Add Items
dialog or the Data Sources folder in the Solution Explorer, the interface is the same. The only significant
difference is whether you click OK to save the data source or Next to move to the next page in the
wizard.

 A word of caution about this dialog. . . . You can either type or select from a list of
database servers in the Server name dropdown list. If you choose to use the drop-
down option, rather than typing the server name, a process runs that searches all
available servers on your network. This can be time - consuming, so if you are on a
large corporate network, you might just want to type your database server name. If
the database server is a default instance, simply type the server name or address. If it
is a named instance, type the server name or address followed by a backslash and
the instance name.

 Figure 7 - 7

 If your development database is the default instance on your development computer, you can simply
type LocalHost , (local) , or a period to have the local database server name automatically discovered by
the data provider.

c07.indd 185c07.indd 185 11/13/08 4:31:58 PM11/13/08 4:31:58 PM

Part II: Report Design

186

 If you are working with a local development database server installed on the same computer, type
 LocalHost . Otherwise, enter the name of the database server. In the next step, you choose the security
authentication method to be used by the database server to check security credentials. SQL Server may
be configured to use Integrated Windows Authentication or both SQL Server Security and Integrated
Windows Security. In a development environment, integrated security is a simple choice.

 Finally, select or type the database name. Click the OK button to close this dialog and enter the new
information into the Connection string property, as shown in Figure 7 - 7 .

 Click the Next button to move to the page titled Design the Query , as shown in Figure 7 - 8 . You can enter a
query in one of three ways: typing directly into the Query string box in this page of the Report Wizard,
using the generic Query Builder window to enter the query text, or using the Graphical Query Designer
to generate the query text.

 Figure 7 - 8

 Click the Query Builder button. This opens the Query Designer window, as shown in Figure 7 - 9 . After
using the Query Designer to enter or design a query, the resulting script will be placed in the Query
string box in this page of the Report Wizard.

c07.indd 186c07.indd 186 11/13/08 4:31:59 PM11/13/08 4:31:59 PM

Chapter 7: Designing Data Access

187

 This Designer window has two views: the generic Query window and the Graphical Query Builder.
You can toggle between these two modes using the “ Edit As Text ” button on the toolbar in the upper - left
corner. You used the graphical builder in the previous chapter, so I ’ m not going to repeat the same
exercise here. This is a useful tool, and I continue to use the Graphical Query Builder, especially when I
am less familiar with the source database or I need to throw together a query quickly for prototyping.
However, if you ’ re not careful, it can promote poor query design.

 With some experience and familiarity with a database, you may choose to just type the query text into
the Query string box. We ’ ll come back to this in just a moment. Go ahead and leave the Query Designer
open in preparation for the rest of the exercise.

 After a query has been entered, you will click OK on the Dataset Properties dialog, which will generate
the fields definitions for the dataset, allowing you to design the report.

 Creating a Data Source When Defining a Dataset
 If you create a new report without using the Report Wizard, data sources are selected or created using
the Report Data pane when creating a dataset. When you place the first data range object on the report
body, the Data Source Properties dialog is presented, which will lead you through the process of defining
a data source and dataset without using the Report Wizard.

 Regardless of the method used, a data source is simply a connection string saved into the report definition
or shared data source file.

 Figure 7 - 9

c07.indd 187c07.indd 187 11/13/08 4:31:59 PM11/13/08 4:31:59 PM

Part II: Report Design

188

 Data Sources and Query Languages
 The examples in this chapter are based on the SQL Server 2008 sample databases and use the native SQL
Server and Analysis Services client data providers. When creating a data source, if you choose any data
provider other than SQL Server, queries must be written in the query language appropriate for that
product. For most relational database products, this will be a dialect of SQL. For example, Oracle uses a
version of SQL called PL/SQL , and Microsoft Access uses Access SQL. Some providers require unique
types of query expressions or scripting code specifically designed for that data source environment.

 When defining a dataset ’ s query expression, the Designer will display one of the two similar query
windows. If you are using the SQL Server data provider, the T - SQL Query Designer will be displayed.
In the case of another data provider that uses another query language or dialect of SQL, a generic Query
window is displayed.

 To query cube structures in Analysis Services (which is an OLAP database engine), a specialized
expression language called Multidimensional Expressions (MDX) is used. Like SQL Server 2005, the current
implementation of Reporting Services supports MDX queries. Unlike the Cube Browser in Analysis
Services and other specialized multidimensional data query tools, reports are based on data that is
flattened to two - dimensional (2D) structures and represented as rows and columns like a SQL query.

 If you have not used MDX with OLAP cubes, you might find it interesting to contrast this language with
more familiar SQL queries. In this sample MDX query expression for the Adventure Works DW 2008
OLAP database, measures and KPI values (from a key performance indicator, defined in the Adventure
Works cube) are returned on the columns axis, and dimension hierarchy members are on the rows axis:

SELECT
 {
 [Measures].[Reseller Sales Amount]
 , [Measures].[Reseller Gross Profit Margin]
 , KPIGoal(“Channel Revenue”)
 , KPIStatus(“Channel Revenue”)
 } ON Columns,
 (
 [Date].[Calendar].[Calendar Year]
 , [Sales Territory].[Sales Territory].[Region]
) ON Rows
FROM [Adventure Works]
;

 This example is offered merely to pique your interest at this point. You will learn how to design datasets
and reports for SQL Server Analysis Services in Chapter 9 .

c07.indd 188c07.indd 188 11/13/08 4:32:00 PM11/13/08 4:32:00 PM

Chapter 7: Designing Data Access

189

 T - SQL Quer y Design
 If you are using SQL Server as the report data source, queries are written using T - SQL. For some reports,
writing the query will be a simple matter of using the Graphical Query Designer that you used in the
previous chapter to create a basic report. However, most business reports require a little more than just
drag - and - drop queries, so some basic T - SQL skills are essential for report design.

 This section takes you through some of the basics and even demonstrates some intermediate - level
grouping and filtering techniques. If you are new to T - SQL and will be using SQL Server 2005 or 2008
for your report data sources, you should pick up a copy of Beginning T - SQL for Microsoft SQL
Server 2005 and 2008 .

 Serious query design is performed in SQL Server Management Studio. You will use Management Studio
to design queries and then paste the text into the Reporting Services Query Designer.

 In the following exercise, you will design a series of T - SQL queries, progressively adding features, and
then use this for a report dataset. You will use the generic Query Designer in the Reporting Services
report design environment and the Query Designer in SQL Server Management Studio. You ’ ll begin
where you left off — with a data source that provides a connection to the AdventureWorksDW2008
relational data warehouse.

 Leave the Report Designer open, and then open SQL Server Management Studio. When prompted,
connect to the relational database engine on your local server, as shown in Figure 7 - 10 .

 Figure 7 - 10

 Using the Object Explorer on the left side of the window, expand Databases, and then select the
AdventureWorksDW2008 database. In the toolbar, click the New Query button
(see Figure 7 - 11).

c07.indd 189c07.indd 189 11/13/08 4:32:00 PM11/13/08 4:32:00 PM

Part II: Report Design

190

 Figure 7 - 11

Data Warehouse Star Schema
If you haven’t worked with a data warehouse star schema before, let’s just take a
 moment to discuss some simple concepts. In a book on the topic of data warehouse
 design, the following information would occupy one of several chapters (in much
greater detail, of course).

The purpose of a database of this type is to simplify data for reporting. Records are
organized into two categories of tables. The numeric values that feed summarized or
aggregated data point values are called measures or business facts. These exist in Fact tables
(often prefixed with Fact . . .). The Dimension tables (often prefixed by Dim . . .) contain
attributes used to organize and describe these business facts. The dimensional attributes
can be used to form multilevel hierarchies (e.g., the date dimension is often used to group
measure data by the year, quarter, and then month). That’s it — the ten-cent tour of data
warehouse dimensional design. In summary, for our purposes, the dimension table
attribute columns will be used to group, order, and organize records, and the measure
columns, from a fact table, are used as aggregated numeric reporting metrics.

c07.indd 190c07.indd 190 11/13/08 4:32:00 PM11/13/08 4:32:00 PM

Chapter 7: Designing Data Access

191

 A new Query window opens in the Management Studio design pane. The Management Studio Query
Designer includes IntelliSense code completion features that help with query design. If you write queries
in the right way, the Designer will suggest object names and complete the query script as you type.
To take advantage of this useful functionality, write the structure of the query first.

 Type the following text into the query pane:

SELECT

FROM

ORDER BY

;

 This is the essential structure for a T - SQL query. Each of these language clauses is followed by a database
object name used to return data from the query.

 You can use the Object Explorer to see the table and column names that you will use. You can drag these
from the tree view into the Query pane, or you can type them. This query will use columns from the
DimDate, FactResellerSales, and DimSalesTerritory tables.

 The completed FROM clause should match the following added text:

SELECT

FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey

ORDER BY

;

 Rather than memorizing the database object names and typing the whole thing by hand, however, let the
Designer do the work for you.

 Begin typing the first table name and . . . magic things happen! Notice that when you type the first few
characters, a list of object names appears, and the characters you type are matched against the items in
the list. You can also use the keyboard ’ s up and down arrow keys to find an item nearby in the list.
As soon as you have the DimDate table selected (Figure 7 - 12), press the Tab key.

c07.indd 191c07.indd 191 11/13/08 4:32:01 PM11/13/08 4:32:01 PM

Part II: Report Design

192

 Rather than continuing to use the long object names (like DimDate), I ’ ve defined object aliases. By
preceding the table name DimDate with the letter D , from now on I simply use the letter D to represent
this table name.

 Now fill in the SELECT clause by listing the columns separated by commas.

 The ORDER BY clause is similar but includes only the dimension table columns. The fact table values
(OrderQuantity and SalesAmount) will be aggregated in the report, so I don ’ t care about the order of
these values in the query result set. Since I want the report to be grouped by the dimension attributes
CalendarYear, CalendarQuarter, SalesTerritoryCountry, and SalesTerritoryRegion, sorting records in this
order will assist the report design.

 The completed query is ready for testing. Verify that your query matches the following text, and then
click the Execute button on the Management Studio toolbar.

SELECT
 D.CalendarYear, D.CalendarQuarter, ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , F.OrderQuantity, F.SalesAmount
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
ORDER BY
 D.CalendarYear, D.CalendarQuarter, ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

 The query results should look like those in Figure 7 - 13 .

 Figure 7 - 12

c07.indd 192c07.indd 192 11/13/08 4:32:01 PM11/13/08 4:32:01 PM

Chapter 7: Designing Data Access

193

 Note the record count in the lower - right corner of the Query results pane. I ’ ll come back to this. For now,
just note that the query returns 60,855 rows.

 The following examples will work in either report designer, BIDS or Report Builder 2.0. Keep in mind
that there are subtle differences between the two designer interfaces, but the functionality of these tools
is very similar.

 Highlight and copy the query text from the Management Studio Query Designer window. Now switch
back to the Report Designer, and paste the query text into the Dataset Properties or Query Design
window. Click OK to close the Query Design window (if you were using this window), and then click
OK to close the Dataset Properties window (see Figure 7 - 14).

 Figure 7 - 13

c07.indd 193c07.indd 193 11/13/08 4:32:02 PM11/13/08 4:32:02 PM

Part II: Report Design

194

 Figure 7 - 15 shows the report design after this dataset has been created. The Report Data pane in BIDS or
the Data pane in Report Builder 2.0 displays the available field for the newly added dataset.

 Figure 7 - 14

 Figure 7 - 15

c07.indd 194c07.indd 194 11/13/08 4:32:10 PM11/13/08 4:32:10 PM

Chapter 7: Designing Data Access

195

 To build the report, add a matrix from the Insert menu or toolbox. Move the matrix down the report
body to make room for a title.

 Drag the Report Name from the Built - in Fields list into the top of the report body.

 Drag fields from the dataset into the matrix column and row group header cells. Drag the CalendarYear
and CalendarQuarter fields into the column headers. Drag the SalesTerritoryCountry and
SalesTerritoryRegion fields into the row headers, to match Figure 7 - 16 .

 Figure 7 - 16

 Drag the SalesAmount field into the Data cell. Right - click on the cell, and format the number as currency.

 Click the Preview button on the ribbon, or choose the Preview tab in the Report Design window to view
the report. Remember that you haven ’ t done any formatting, so it should look like Figure 7 - 17 .

c07.indd 195c07.indd 195 11/13/08 4:32:10 PM11/13/08 4:32:10 PM

Part II: Report Design

196

 With the exception of a little beautification effort, this report design is pretty much done . . .

. . . or is it? Think about it. The query returns more than 60,000 rows of raw data that has aggregated into
10 rows and 12 columns in this matrix report. In a production environment, the results of this query
would be streamed across the corporate network from the database server to the Report Server, only to
be grouped and summed up into only 120 cells? This is not a particularly efficient solution. When
designing a report, always consider the scalability of your design. Imagine if there were 100 times the
volume of data — that ’ s 6 million rows. This would be grossly inefficient!

 For the rest of the query examples, you will be making simple changes to the base query defined above.
You can simply edit the dataset with these changes. Of course, you also have the option to make
modifications in the Management Studio Query Designer and then copy - and - paste the changes into the
report dataset.

 Since the results will be grouped in the report, if you can group the data in the query, you save the report
rendering engine from having to do dual duty, and you can send a lot less data over the network.
Grouping in the query does add some complexity to the SQL statement, but it reduces this complexity
elsewhere.

 Figure 7 - 17

c07.indd 196c07.indd 196 11/13/08 4:32:11 PM11/13/08 4:32:11 PM

Chapter 7: Designing Data Access

197

 The grouped version of this query looks like this:

SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , SUM(F.OrderQuantity) AS OrderQuantity
 , SUM(F.SalesAmount) AS SalesAmount
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
GROUP BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

 Even though the complexity of this query has grown, you ’ ll notice that it ’ s a little easier to read. At some
point in the process of adding more and more appendages to a query, try to clean it up and make it
easier to read. I can ’ t emphasize how important it is to make sure that your query scripts are well
organized and easy for you and others to read. Use tabs, returns, and spaces liberally. By placing
delimiting commas at the beginning, rather than the end, of each line, they are not only easier to read but
easier to remark out or remove without breaking the query.

 This T - SQL language pattern is relatively simple as long as you adhere to some basic rules. Every column
in the SELECT list must either be included in the GROUP BY list or must be passed to an aggregate
function. In the example, the two measure fields are aggregated using the SUM function. The output
from a function doesn ’ t naturally return a column name, so it ’ s common to define an alias using the AS
keyword. This example actually defines the column aliases using the original column names, which is
perfectly acceptable. You will typically want to set the ORDER BY list to match the GROUP BY list.

 This query design is very “ copy - and - paste - able. ” In other words, once you get this working in one query,
it ’ s pretty easy to duplicate the pattern in subsequent queries and reports.

 Executing this query in the Management Studio Query Designer produces only 96 rows. This means that
the result set is less than 1/600th of the size with exactly the same report results! Imagine how much
faster this report might run if you had proportionally more data.

 Filtering Techniques
 When retrieving report data from a data source, it ’ s important to consider the most efficient way to filter
report data based on the user ’ s selection criteria. Many databases contain large amounts of data.
Therefore, it is always important to retrieve just the right amount of data required for reporting.
At times, a report will only be used to view data for a narrow range of values, and at other times,
the user may specify different criteria, causing the report to render a varied range of related values.

c07.indd 197c07.indd 197 11/13/08 4:32:11 PM11/13/08 4:32:11 PM

Part II: Report Design

198

In the case of a narrow range of possible values, it makes more sense to retrieve only the associated data.
However, if users specify different criteria during a session — causing the data source to be re - queried
multiple times — it could prove to be slow and an inefficient use of resources.

 In Figure 7 - 18 , parameters presented to the data source cause data to be filtered and return only the data
for a single rendering of the report. The dataset represents the database server ’ s result set on the client
side (the Report Server). As you see in the diagram, this is a small volume of data, because it has already
been filtered at the database.

Database

Stored
Procedure
or Query

Database Server
(data provider)

Report Server
(data consumer)

Report
Dataset

Unfiltered Data

Parameters

Network
Traffic

Result Set

 Figure 7 - 19

Database

Stored
Procedure
or Query

Database Server
(data provider)

Report Server
(data consumer)

Report
Dataset

Filtered
Data

Parameters

Network
Traffic

Result Set

 Figure 7 - 18

 By passing selection criteria parameters at the database object level, network traffic can be greatly
reduced, and the report is rendered more efficiently. However, if the user will be providing different
parameter values to render several views of the same report within a session, the database will be
queried repeatedly, perhaps resulting in longer overall wait times, and much of the same data will be
moving across the network multiple times. In Figure 7 - 19 , a larger volume of data is returned from the
database server since it is unfiltered. Filtering then occurs by using report parameters on the Report
Server against the cached set of records on the Report Server.

c07.indd 198c07.indd 198 11/13/08 4:32:11 PM11/13/08 4:32:11 PM

Chapter 7: Designing Data Access

199

 If all of the data necessary for each query to be executed in a user ’ s session is obtained in one result set, it
will result in a greater volume of network traffic for a single execution. However, it may reduce
subsequent report rendering times.

 Selection parameters can be applied to data at the report level rather than at the data source. Because all
the data is cached (held in memory), reports will render much faster. This technique can reduce the
overall network traffic and rendering time. The report can also be configured so that the cached data is
saved to disk, usually for a specific period of time. This technique is presented in Chapter 13 .

 You certainly don ’ t want to retrieve unnecessary data from the data source, so a combination of these
two techniques may be the appropriate solution, depending on specific reporting needs. For example, if
you are a regional sales manager and you wish to get sales summaries for each of the territories within
your region, you may begin your session by retrieving all of the regional sales data for a range of dates.
For each territory report, this data is simply filtered down to the territory level. If these were long -
 running report queries, it might actually be more efficient to retrieve all the sales data for the date range
and then filter the sales regions on the Report Server.

 Filtering a Query
 Filtering records in the query is performed by adding a WHERE clause. Make the following changes to the
query:

SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , F.OrderQuantity, F.SalesAmount
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
WHERE
 D.CalendarYear = 2003
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

 Before rows are returned from the database server, candidate rows are scanned, and only qualifying
rows are returned when the CalendarYear value is 2003. Execute the report, and note that only the 2003
calendar year and related quarters are displayed in the matrix.

 Parameter Concepts
 Using parameters in report design isn ’ t complicated, but until you have a chance to do some creative
things with them in both queries and report expressions, you might not fully appreciate the power of
parameters. This section starts by explaining how parameters are defined in simple queries and reports
and explains how you might need to use (and define) parameters in more complex reports.

c07.indd 199c07.indd 199 11/13/08 4:32:12 PM11/13/08 4:32:12 PM

Part II: Report Design

200

 There are two (and possibly three, depending on your query technique) different types of parameters
with which you may contend in report design: data - set parameters and report parameters. Data set
parameters can be derived from database objects, such as stored procedures and user - defined functions,
or they can be derived from a parameterized query statement. As Figure 7 - 20 illustrates, there can be
three different layers in the design process where you can encounter parameters.

 Figure 7 - 20

 Most commonly, report parameters will be derived from parameters defined in an ad hoc query or SQL
stored procedure. But you don ’ t have to have a parameterized query to use parameters in a report, as
you ’ ll see in a later example.

 When using SQL Server as the data source, parameters are defined in the SQL syntax by prefixing the
names with a single @ symbol. In a stored procedure, these parameters are defined first and then used in
the procedure body much as you would in an ad hoc query. The Report Designer automatically
parses the query and generates corresponding report parameters. The third section of Figure 7 - 20 shows
the Report Parameters dialog open with the two derived parameters. If you use the Graphical Query
Builder or generic Query Designer to write a T - SQL statement, the Report Designer will resolve data - set
parameters and database object parameters and prompt for the parameter values when running the
query. Data - set parameters are mapped to report parameters in the Dataset Properties dialog. This dialog
is accessible when editing the dataset in the Report Data pane of the Report Designer.

 For most basic queries, the Report Designer will populate this dialog and match the parameters for you.
But if have created a very complex or unusual data - set query, you may need to match the data - set and
report parameters manually. Parameter resolution is performed when you test a query in the Query
Designer, click the Refresh Fields button, or close the Dataset Properties dialog.

 Let ’ s step out of this exercise for a moment to show a different example. The following query contains
two parameters used to specify a range of date values for filtering a Date type field:

c07.indd 200c07.indd 200 11/13/08 4:32:13 PM11/13/08 4:32:13 PM

Chapter 7: Designing Data Access

201

SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , D.MonthNumberOfYear
 , D.FullDateAlternateKey AS OrderDate
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , SUM(F.OrderQuantity) AS OrderQuantity
 , SUM(F.SalesAmount) AS SalesAmount
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
WHERE
 D.FullDateAlternateKey BETWEEN @ShipDateFrom AND @ShipDateTo
GROUP BY
 D.CalendarYear
 , D.CalendarQuarter
 , D.MonthNumberOfYear
 , D.FullDateAlternateKey
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , D.MonthNumberOfYear
 , D.FullDateAlternateKey
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

 For each of these two parameters, the Data type has been set to Date/Time in the Report Parameter
Properties dialog (see Figure 7 - 21).

 Figure 7 - 21

c07.indd 201c07.indd 201 11/13/08 4:32:13 PM11/13/08 4:32:13 PM

Part II: Report Design

202

 When the report is run, the result is that a date picker control is used to select a date (see Figure 7 - 22).
The user clicks the calendar icon next to the textbox to reveal the calendar dropdown; uses the controls
to select a year, month, and date; and then clicks the View Report button on the parameter bar.

 Figure 7 - 22

 Filtering Data with Query Parameters
 Parameters are often used to filter data at the data source. Whether the data is to be filtered within the
report or not, filtering at least some of the data within the database is an essential technique for
most report solutions. If you have created parameterized stored procedures in SQL Server, you are
already familiar with this pattern. The technique applies to stored procedures and query expressions that
use very similar syntax. Let ’ s start with a simple ad hoc query expression and then move on to creating a
stored procedure.

 Query parameters begin with the @ symbol and must conform to the naming convention standards for
T - SQL identifiers. The name should not contain spaces or certain punctuation characters and can ’ t begin
with a numeral; for simplicity, just use letters. In stored procedures, parameters must be declared before
they are used. In an ad hoc query, simply make up parameter names when you need them. In the WHERE
part of our example SQL statement, use a parameter to represent a variable valuable, as follows:

SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , F.OrderQuantity
 , F.SalesAmount
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
WHERE
 D.CalendarYear = @Year
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

c07.indd 202c07.indd 202 11/13/08 4:32:14 PM11/13/08 4:32:14 PM

Chapter 7: Designing Data Access

203

 To test this query, you must execute it in the Report Designer ’ s Query Editor, because Management
Studio doesn ’ t know what to do with the parameter. If you execute this query and enter 2003 when
prompted for the Year parameter, the original 60,855 rows are reduced to 26,758. Aside from letting the
user see only the data he or she wanted, this certainly won ’ t hurt performance.

 Now, let ’ s combine filtering with grouping records and see what happens. Add the GROUP BY clause
from the earlier example, and then execute this query in the Report Designer Query Editor. Enter 2003
for the Year parameter. Viola! Only 36 rows are returned.

SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , SUM(F.OrderQuantity) AS QtySum
 , SUM(F.SalesAmount) AS AmtSum
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
WHERE
 D.CalendarYear = @Year
GROUP BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

 Over time, reports tend to grow and expand. Users will inevitably ask for more fields, more totals, and
other features. Allowing the requirements to evolve in this manner can make your reports unruly
and difficult to support — especially when you have different people involved in this haphazard and
incremental style of design. Writing well - designed queries will go a long way in achieving efficient,
maintainable reports. Carefully consider whether functionality should be built into the query or the
report design. Often, handling business challenges in the query will make the report design much easier.

 Creating a Parameter List
 When you run this report, you are prompted to type a parameter value into the parameter bar area
above the report. Although this works, it ’ s not very convenient. You can provide a list of values for the
user to select from by modifying the properties of the Year parameter. You can either create a list of
available values by adding them in the Available Value page of the Parameter Properties dialog or use a
query to return a list of available values.

c07.indd 203c07.indd 203 11/13/08 4:32:14 PM11/13/08 4:32:14 PM

Part II: Report Design

204

 To create a query - driven list, first create a new dataset called YearList under the same data source as the
previous dataset. Enter the following T - SQL statement, and verify that this returns a list of calendar year
values:

SELECT DISTINCT CalendarYear
FROM DimDate
ORDER BY CalendarYear

 Figure 7 - 23 shows the Dataset Properties dialog for this new data - set query.

 Figure 7 - 23

 To set up the parameter list, right - click on the Year parameter in the Report Data pane, and choose
Parameter Properties. Select the Available Values page of the Report Parameter Properties dialog, and
select the radio button labeled Get value from a query. Now, just select the new dataset and the
CalendarYear field for both the Value field and Label field properties. Verify that this page looks like
Figure 7 - 24 , and then click OK.

c07.indd 204c07.indd 204 11/13/08 4:32:14 PM11/13/08 4:32:14 PM

Chapter 7: Designing Data Access

205

 You can build a simple table report to view the results of the query. A sample report is provided in the
Chapter 7 sample project.

 Now, preview the report. Select a year from the dropdown list, and click View report to see the results.
You ’ ll see that only sales records from the selected year are included in the results.

 Multi - Value Parameters
 You can configure parameters so that a user has the option to select a combination of values. This is easy
to do using the Report Parameter Properties dialog.

 Modify the Year parameter by right - clicking on and selecting Parameter Properties for the Year
parameter in the Report Data pane. Check Allow multiple values in the resulting Report Parameter
Properties dialog (see Figure 7 - 25), and click OK.

 Figure 7 - 24

c07.indd 205c07.indd 205 11/13/08 4:32:15 PM11/13/08 4:32:15 PM

Part II: Report Design

206

 Changing this setting changes the behavior of the parameter dropdown list, but it doesn ’ t enable the
SQL Server database engine to deal with the changes. A simple modification is required in the query
syntax. By making the report parameter multi - valued, this changes it to an array type object. When the
report parameter value(s) is mapped to the corresponding query parameter value (which is not an
array), the value is converted to a string value containing a comma - separated list. Both T - SQL and MDX
contain parsing functions that know how to deal with comma - delimited values. In T - SQL, the IN
function will match a field value against items in such a list.

 Modify the main data - set query by making the following change in the WHERE clause. Replace the equals
sign with the IN function, and place parentheses around the @Year parameter reference.

SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , SUM(F.OrderQuantity) AS QtySum
 , SUM(F.SalesAmount) AS AmtSum
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
WHERE
 D.CalendarYear IN (@Year)
GROUP BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

 Figure 7 - 25

c07.indd 206c07.indd 206 11/13/08 4:32:19 PM11/13/08 4:32:19 PM

Chapter 7: Designing Data Access

207

 Now run the query. You should see, as in Figure 7 - 26 , that the Year parameter dropdown list contains
items preceded with checkboxes.

 Figure 7 - 26

 Select any combination of Year values, and then click the View Report button to test the report. Records
should be filtered for the set of years you ’ ve selected.

 Cascading Parameters
 A parameter can depend on another parameter so that the list of available values for a parameter is
filtered based on another parameter selection. For example, if you offer users a list of product categories
and another list of product subcategories, the subcategory list would only show subcategories for a
selected category.

 The Report Data pane in Figure 7 - 27 shows the objects defined in the finished report. As you can see, two
parameters are defined for the user to select the product category (named CatKey in this example) and
the product subcategory (named SubcatKey). A data - set query corresponds to each parameter. These are
named CatList and SubcatList , respectively. (I like to give parameters names that are similar to the fields.)

 Figure 7 - 27

c07.indd 207c07.indd 207 11/13/08 4:32:46 PM11/13/08 4:32:46 PM

Part II: Report Design

208

 The most logical way to define these objects is to work backward through the process from the user ’ s
perspective. That is, a user will select a product category to see a filtered list of subcategories. After he or
she selects a subcategory, the report will be filtered, based on the subcategory selection. To design this,
you would add the subcategory filtering to the main data - set query and then create the filtered
subcategory query and corresponding parameter. Finally, you would define the category query and
parameter. The following steps you through creating each of these objects and the filtering mechanism in
the main data - set query in the proper order:

 1. Right - click on the main report dataset, and choose Query. Your dataset may be named Dataset1 .
It ’ s renamed to ResellerSales in this example. Note that if you rename a dataset after using it, you
must update the DatasetName of any affected data range or report items used in the report.

 2. Modify the FROM and WHERE clauses to match the following query script:

SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , SUM(F.OrderQuantity) AS QtySum
 , SUM(F.SalesAmount) AS AmtSum
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
 INNER JOIN DimProduct P ON F.ProductKey = P.ProductKey
WHERE
 D.CalendarYear = @Year AND P.ProductSubcategoryKey = @SubcatKey
GROUP BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

c07.indd 208c07.indd 208 11/13/08 4:32:46 PM11/13/08 4:32:46 PM

Chapter 7: Designing Data Access

209

 3. Now for the subcategory list query. Right - click on the AdventureWorksDW2008 data source,
and add a new query named SubcatList . Either use the Query Builder or manually enter this
query text:

SELECT ProductSubcategoryKey, EnglishProductSubcategoryName
FROM DimProductSubcategory
WHERE ProductCategoryKey = @CatKey
ORDER BY EnglishProductSubcategoryName

 When you closed the Dataset Properties dialog after making changes to the main dataset, the
referenced SubcatKey parameter was automatically generated and added to the list of available
parameters.

 4. Right - click on the SubcatKey parameter, and select Parameter Properties from the menu. The
Report Parameter Properties dialog is displayed (see Figure 7 - 28).

 Figure 7 - 28

 5. Change the Prompt to a friendly name for this parameter. Your users don ’ t need to see the
cryptic parameter name. Change the Data type to Integer.

c07.indd 209c07.indd 209 11/13/08 4:32:46 PM11/13/08 4:32:46 PM

Part II: Report Design

210

 6. Choose the Available Values page, and select Get values from a query. Three dropdown lists are
displayed, as shown in Figure 7 - 29 .

 Figure 7 - 29

 6.1. From the Dataset list, select the name of the dataset that returns product subcategory
values. It should be named SubcatList .

 6.2. From the Value field list, select the ProductSubcategoryKey field. This is the field con-
taining numeric key values that will be used for filtering the main query after the user
makes a subcategory selection.

 6.3. From the Label field list, select EnglishProductSubcategoryName. This is the friendly
value the user will see in the parameter list. Click OK to close the Report Parameter
Properties dialog.

 7. Right - click on the AdventureWorksDW2008 data source, and add a new query named CatList .
Either use the Query Builder or manually enter the following for the query text. Click OK to
close the Dataset Properties dialog.

SELECT ProductCategoryKey, EnglishProductCategoryName
FROM DimProductCategory
ORDER BY EnglishProductCategoryName

 8. In the Report Data pane, right - click on the CatKey parameter, and select Parameter Properties
from the menu. The Report Parameter Properties dialog is displayed.

 9. Like the main report dataset, when you closed the Dataset Properties dialog after making
changes to the SubcatList dataset, the referenced CatKey parameter was automatically generated
and added to the list of available parameters.

c07.indd 210c07.indd 210 11/13/08 4:32:47 PM11/13/08 4:32:47 PM

Chapter 7: Designing Data Access

211

 10. Right - click on the CatKey parameter, and select Parameter Properties from the menu. The
Report Parameter Properties dialog is displayed (see Figure 7 - 30).

 Figure 7 - 30

 Figure 7 - 31

 11. Change the Prompt to a friendly name for this parameter. Your users don ’ t need to see the cryptic
parameter name. Change the Data type to Integer. Choose the Available Values page, and select
 Get values from a query. Three dropdown lists are displayed, as shown in Figure 7 - 31 .

c07.indd 211c07.indd 211 11/13/08 4:32:48 PM11/13/08 4:32:48 PM

Part II: Report Design

212

 11.1. From the Dataset list, select the name of the dataset that returns product subcategory
values. It should be named CatList .

 11.2. From the Value field list, select the ProductCategoryKey field. This is the field
 containing numeric key values that will be used for filtering the main query after the
user makes a category selection.

 11.3. From the Label field list, select EnglishProductCategoryName. This is the friendly
value the user will see in the parameter list.

 12. Click OK to close the Report Parameter Properties dialog.

 13. The last thing to do is make sure the parameters are in the right order. Referring back to
Figure 7 - 27 , verify that the CatKey parameter is listed before the SubcatKey parameter. You can
rearrange parameters using the up and down arrows in the toolbar of this pane. If everything
checks out, you should be ready to test the report.

 Preview the report. Since the Year parameter was left over from the previous example, make sure it has a
valid selection.

 The Category parameter list is displayed with a list of all product categories (see Figure 7 - 32). Note that
the Subcategory list is disabled and empty.

 Figure 7 - 32

 Figure 7 - 33

 Make a category selection, and you will see the Subcategory list become available with a list of values
filtered by the previous category selection. Select a subcategory, and then click the View Report button
(see Figure 7 - 33).

 The report should run with results filtered for the selected product subcategory. As you can see, multiple
parameters may be used to coordinate filtered parameters or to narrow down the results of the report. In
Chapters 9 and 10 , you will see how to use parameters with expressions to design even more interesting
report behaviors and to build very creative solutions.

 Report Parameters
 In addition to report parameters derived from data - set parameters, you can explicitly add report
parameters of your own. These report parameters (that do not have corresponding query parameters)
can be added to support additional report functionality, such as hiding and showing report sections,
page numbers and dynamic formatting.

c07.indd 212c07.indd 212 11/13/08 4:32:50 PM11/13/08 4:32:50 PM

Chapter 7: Designing Data Access

213

 The following example demonstrates some simple report parameters used to dynamically set values on
the report. Later we ’ ll apply this technique to some more practical report features. This example is
intended to demonstrate two very simple report parameters for academic purposes.

 1. First, create a new report without using the Wizard. You can use the Start “ pearl ” button in
Report Builder 2.0, or in BIDS, you can select Add and then Add New Item from the Solution
Explorer ’ s right - click menu.

 2. Select Report from the report item templates in the Add New Item dialog. Do not specify a
dataset for the new report.

 3. Report parameters are added in the Report Data pane. Right - click Parameters, and add a report
parameter named ReportTitle .

 4. Click OK to save the parameter, and then repeat the process to add a report parameter named
 TextColor . For this parameter, use the Available Value page to add a list of simple color values
like Red, Blue, Yellow, and Black. The Value and Label for each of the items should be the same.
Click OK to save this parameter.

 5. Next, drag and drop each of the two parameters onto the report body. This creates a textbox for
each. Click in the second textbox, and insert text before the “ @TextColor ” reference, as you see in
Figure 7 - 34 . You can also change the font size and weight for these textboxes.

 Figure 7 - 34

 I ’ ll be covering the use of expressions thoroughly in Chapter 8 . Using an expression to set properties is
easy, though. You ’ ve actually been doing this just by dragging and dropping fields and parameters into
the Report Designer.

 6. With the Property Pane visible, click on the second textbox, find the Color property, and then
either type or use the Expression Builder to set the property to an expression. Set the Color
property for the second textbox to use the following expression:

 =Parameters!TextColor.Value

 Now preview the report, and notice what happens. The parameter bar prompts you to enter a report title
and to select a color. When you click on the View Report button, the first textbox displays the text
entered into the ReportTitle parameter, and the second textbox displays not only the specific color name
but the text, as well (see Figure 7 - 35).

c07.indd 213c07.indd 213 11/13/08 4:32:51 PM11/13/08 4:32:51 PM

Part II: Report Design

214

 Yes, I know this book is printed in black and white, so to clarify, the text in this figure, “ This text is Blue ”
is blue.

 As you can “ see, ” this is an effective way to feed values to the report to be used in expressions. Chapter 8
expands this technique to provide filtering and dynamic formatting.

 Using Stored Procedures
 There are several advantages to using stored procedures rather than verbose T - SQL queries in a report.
Complex queries can be stored as reusable database objects. Stored procedures can run more efficiently
and provide greater security and control.

 The following T - SQL script is used to create a stored procedure in SQL Server Management Studio. Once
created, the procedure is simply referenced and executed by name from the report.

CREATE PROCEDURE spGet_ResellerSalesByRegion
 @ShipDateFrom Date
 ,@ShipDateTo Date
AS
SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , D.MonthNumberOfYear
 , D.DateKey
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , F.OrderQuantity
 , F.SalesAmount
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
WHERE
 D.FullDateAlternateKey BETWEEN @ShipDateFrom AND @ShipDateTo
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , D.MonthNumberOfYear
 , D.DateKey
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
;

 Figure 7 - 35

c07.indd 214c07.indd 214 11/13/08 4:32:52 PM11/13/08 4:32:52 PM

Chapter 7: Designing Data Access

215

 The best way to go about querying a data source will depend highly on your requirements. Refer
back to the earlier discussion about filtering techniques where processing parameters (on the database
server, the client, or both) affects performance, efficiency, and the flexibility of your reporting solution.
Handling parameters on the database server will almost always be more efficient, while processing
parameters on the client will give you the flexibility of handling a wider range of records and query
options without needing to go back to the database every time you need to render the report.

 Using a parameterized stored procedure is typically going to provide the most efficient means for
filtering data since it returns only the data matching your criteria. Stored procedures are compiled to
native processor instructions on the database server. When any kind of query is processed, SQL Server
creates an execution plan, which defines the specific instructions that the server uses to retrieve data. In
the case of a stored procedure, the execution plan is prepared the first time it is executed, and then it is
cached on the database server. In subsequent executions, results will be returned faster since some of the
work has already been done.

 Filtering Data with Report Parameters
 So far you ’ ve only filtered data at the database level. In cases in which users may be using the same
report in one sitting to view data for different criteria, it may be more effective to retrieve a larger result
set from the data source and then filter the report data on the Report Server.

 As you ’ ve already seen, parameters defined in a query or stored procedure that serves as a report dataset
are pulled into the report as report parameters. You can also define your own parameters and use
expressions to filter data at the report level.

 Using the report from the previous query filtering exercise, suppose that you want to return records for
all subcategory values from the database and then filter by SubcatKey on the Report Server. Why
would you want to return more records from the database server than those displayed in the report?
This may seem to be inefficient at first, but perhaps not if you consider the bigger picture. If you have a
long - running query and you anticipate that a user will run the report multiple times with different
parameter values, it may actually be more efficient to get all the data at the beginning of the user ’ s
session. Query results can be cached on the server for a user ’ s session or for all users. After it has been
deployed to the server, a report can be configured to cache data for a period of time, to the benefit of
other users.

 The first change to make is to remove the query filter for the SubcatKey parameter. This query will
continue to filter results for the product subcategory, using the Year parameter.

 You must also add the ProductSubcategoryKey column to the SELECT column list. You didn ’ t have to
return this column when you used it for filtering in the query. In order to use this field for data - set
filtering, it must now be returned.

c07.indd 215c07.indd 215 11/13/08 4:32:53 PM11/13/08 4:32:53 PM

Part II: Report Design

216

SELECT
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , P.ProductSubcategoryKey
 , SUM(F.OrderQuantity) AS QtySum
 , SUM(F.SalesAmount) AS AmtSum
FROM
 DimDate D INNER JOIN FactResellerSales F ON D.DateKey = F.OrderDateKey
 INNER JOIN DimSalesTerritory ST ON F.SalesTerritoryKey = ST.SalesTerritoryKey
 INNER JOIN DimProduct P ON F.ProductKey = P.ProductKey
WHERE
 D.CalendarYear IN (@Year)
GROUP BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , P.ProductSubcategoryKey
ORDER BY
 D.CalendarYear
 , D.CalendarQuarter
 , ST.SalesTerritoryCountry
 , ST.SalesTerritoryRegion
 , P.ProductSubcategoryKey
;

 The SubcatKey parameter remains in the report definition even though it ’ s been removed from the query.

 In the Report Data pane, right - click on the main dataset, and then choose Dataset Properties. In the
Dataset Properties dialog, select the Filters page. Click the Add button to define a new filter expression
for the dataset. Select the ProductSubcategoryKey field in the Expression dropdown list. Next to the
Value textbox, click on the Expression button (labeled fx), as shown in Figure 7 - 36 .

 Figure 7 - 36

c07.indd 216c07.indd 216 11/13/08 4:32:53 PM11/13/08 4:32:53 PM

Chapter 7: Designing Data Access

217

 Clicking on this button on any Dialog window opens the Expression window, allowing you to build an
expression using fields, built - in objects, and parameters in the report.

 To create an expression that references the SubcatKey parameter value, choose Parameters in the
Category list. In the Values list on the right side of the dialog, double - click on the SubcatKey parameter
to insert the expression into the Expression box at the top.

 You can also type text directly into this window. Verify that your expression looks like Figure 7 - 37 , and
then click the OK button to accept these changes.

 Figure 7 - 37

 If you ’ ve worked with previous versions of Reporting Services, you ’ ll notice that expressions now
appear in a different format. The Value box in Figure 7 - 38 shows a token for the SubcatKey parameter
that corresponds to the complete expression you generated in the Expression Editor dialog. Click OK to
accept these changes.

c07.indd 217c07.indd 217 11/13/08 4:32:53 PM11/13/08 4:32:53 PM

Part II: Report Design

218

 This report should behave just like it did before, with one important difference. If you run the report once
with a set of parameter values, it will take as long to run and render the report as it has before. However, if
you choose a different subcategory value from the parameter dropdown list and then re - run the report, it
should run faster than before. This may not be as apparent with a small set of data, but in production, with
much larger data volumes, this design change would have a significant impact on performance.

 Let ’ s review how data - set filtering works. The Year parameter filters data at the database. The resulting
data is cached in memory on the Report Server, where the subcategory filter further limits results.

 You could easily extend the design of this report using more complex items, sorting, and grouping. The
data - set query could also be replaced with a stored procedure. With these building blocks, you now have
the ability to create efficient reports that move the appropriate volume of data across network
connections and allow users to use filtering criteria without needing to re - query the entire dataset.

 Using Other Data Sources
 After using Reporting Services with SQL Server databases and then later with others, I realized that I
had become a bit spoiled. It ’ s true that you can use practically any standard database product as a data
source for reports; you ’ re not going to have the assistance of the Graphical Query Builder and other
automated features of the Report Designer. Nevertheless, Reporting Services can work with the language
syntax and features of most databases; you ’ ll just need to do some of the easy stuff yourself. This section
showcases a few different products we ’ ve used as data sources. One point to keep in mind is that the
compatibilities and behaviors will be influenced by a number of factors, including the features and
capabilities of the data provider or database driver you are using. Many database product vendors don ’ t
develop their own data providers, so the capabilities and behaviors of a data source will vary not only
between different versions of a product, but also by the native or third - party provider you have installed.

 Figure 7 - 38

c07.indd 218c07.indd 218 11/13/08 4:32:54 PM11/13/08 4:32:54 PM

Chapter 7: Designing Data Access

219

 The technique demonstrated a little later in the chapter with an Access query (in the section “ Building a
Query in a String Expression ”) is a universal pattern that applies to all database products. I strongly
recommend that you take a look at this technique as it will be useful to you at some point, regardless of
the data source you use for reporting.

 Microsoft Access
 Microsoft Access is built on top of the JET Database Engine, with data stored in a single MDB file. This is
simple and convenient for small, portable databases. However, Microsoft continues to take steps to
replace JET databases with SQL Server and the desktop implementations of SQL. These include the SQL
Server 2000 Desktop Database Engine (MSDE) and SQL Server 2005 Express Edition. As a desktop
application, Access may also be used as a front - end to SQL databases. If you have the luxury to build a
new database solution, it may be best to use one of these newer products in place of older Access
databases. But if you have existing solutions based on older Access databases, it will likely be easier to
continue to work with them in their present form.

 There are two standard data providers that may be used to connect to Access databases. The JET 4.0
.NET OLE DB provider is newer and should be a little more efficient than using the older Access ODBC
driver. The fact is that the data provider is rarely going to be a performance bottleneck, so this is
probably a moot point. The OLE DB provider is easier to use and doesn ’ t require a separate ODBC Data
Source Name (DSN) to be configured. One of the nice features of the new data provider is that it will
accept Transact - SQL and translate it into Access - specific syntax. Although Access SQL and Transact - SQL
are very close, there are some subtle differences. This feature enables the Report Designer to use the
Transact - SQL Graphical Query Builder when a dataset uses a JET data source.

 Figure 7 - 39 shows the Connection Properties dialog used when defining an Access database connection
using the JET OLE DB provider.

Figure 7-39

c07.indd 219c07.indd 219 11/13/08 4:32:54 PM11/13/08 4:32:54 PM

Part II: Report Design

220

 Note that the default security credentials used with an unsecured Access database are the Admin user
with a blank password. Even if you were to explicitly provide this information and check the Blank
password box, the dialog doesn ’ t show these values. This is because the data provider knows to use
default credentials when the database hasn ’ t been secured.

 The connection string and credentials are shown in Figures 7 - 40 and 7 - 41 , respectively.

Figure 7-41

Figure 7-40

c07.indd 220c07.indd 220 11/13/08 4:33:01 PM11/13/08 4:33:01 PM

Chapter 7: Designing Data Access

221

 Select the Credentials tab to view or modify the user authentication information.

 Access has some minor quirks that you should be aware of. Any file - based data source can present a
challenge for Reporting Services because the service must have the necessary security access to open the
database file. If the MDB file is on the Report Server, this shouldn ’ t be a concern, but if the file is on
another network share, it may be. If you get file sharing errors, make sure that Reporting Services runs
using a network account that has privileges to open the Access database file and its containing folder.

 Parameterized Access queries have always presented a challenge in custom code, outside of simple
Access forms applications. The JET database engine has difficulty resolving parameter values passed
into queries and may report errors even if the values are passed using the correct data type and format.
For example, the following Access query defines and then uses two parameters to filter order records in
the Northwind sample database:

PARAMETERS [ShipDateFrom] DateTime, [ShipDateTo] DateTime;
SELECT Orders.ShippedDate
 , Orders.OrderID
 , [Order Subtotals].Subtotal
 , Format([ShippedDate],”yyyy”) AS [Year]
FROM Orders INNER JOIN [Order Subtotals]
 ON Orders.OrderID = [Order Subtotals].OrderID
WHERE (((Orders.ShippedDate) Is Not Null AND (Orders.ShippedDate)
 BETWEEN [ShipDateFrom] AND [ShipDateTo]));

 Even when the ShipDateFrom and ShipDateTo query parameters are correctly mapped to corresponding
report parameters, the report runs with an error. If you are connecting via the JET OLE DB provider, it
reports this error:

No value given for one or more required parameters.

 If the Access ODBC driver is used, the native JET error is reported:

Too few parameters. Expected 2.

 The easiest way I ’ ve found to work around the Access query parameterization issue is to build the query
string using an expression rather than to rely on this feature. It ’ s not hard to do. The first step is to define
the parameters in your report. With the report parameters in place, they can be referenced in the data - set
query expression. There is no need to define the parameters or any other properties of the dataset,
because this will be handled in the expression.

 Building a Query in a String Expression
 This technique can be used typically when other options, such as using the Graphical Query Builder and
defining query parameters, won ’ t work in the Designer. Any expression may be used to build a text
string and can include Visual Basic functions and custom code. The resulting string is simply presented
to the database engine through the connection ’ s data provider. No other parsing or processing is
performed. The query expression must be entered using the generic Query Designer window for the
dataset.

c07.indd 221c07.indd 221 11/13/08 4:33:03 PM11/13/08 4:33:03 PM

Part II: Report Design

222

=”SELECT Orders.ShippedDate, Orders.OrderID, [Order Subtotals].Subtotal,
ShippedDate “
 + “FROM Orders INNER JOIN [Order Subtotals] ON Orders.OrderID = [Order
Subtotals].OrderID “
 +
“WHERE Orders.ShippedDate Is Not Null AND Orders.ShippedDate BETWEEN #” +
Parameters!ShipDateFrom.Value + “# AND #” + Parameters!ShipDateTo.Value + “#”

 Because this is a Visual Basic expression, double quotes are used to encapsulate literal text. Line breaks
cannot be used without terminating and concatenating the string using the + or & characters. Parameter
values are concatenated into the query string with appropriate delimiters. The two parameter
expressions refer to the parameters I defined in the report.

 Note that this is an Access SQL query, rather than T - SQL. Pound sign characters (#) are used to delimit
dates, rather than single quotes.

 Some variations of this technique can be useful to meet specific needs. Rather than building the entire
query string in the data - set designer, you can call a custom Visual Basic function to do the work in
programming code. Parameters could be passed to this function that returns the entire query.

 An unfortunate side effect of using this expression query technique is that the data - set designer will not
allow you to execute the query. If you need to make any changes to the query expression that will
update the fields available to the report, you must convert the query back to a SQL expression
(by removing the = and ' characters), execute the query, and update the Fields list using the Refresh
button. Another option is to manually edit the Fields list.

 I recommend that you paste the expression into Notepad, modify the expression in the data - set designer
to update the Fields list, and then paste the expression back into the designer. This will save effort and
give you an “ undo ” option if things don ’ t go well.

 Microsoft Excel
 As a quick - and - easy data source, Excel is a great tool. I am continually amazed by the proliferation of
Excel spreadsheets as production enterprise databases used in large business. Even at Microsoft, this
practice is commonplace. I think this is largely due to the fact that business data comes from business
people, and business people use Excel. I ’ ll leave the data management and consolidation discussion for
another time. The fact remains that a lot of important data exists in Excel files, and you can create reports
to view this data as you would with any database system.

 Figure 7 - 42 shows an Excel data source example. When connecting to Excel, you use the simple OLE DB
connection type and then build a connection string that includes the JET OLE DB provider and the full
path to the Excel document file. This currently works with XLS files up to the Office 2003 version.

c07.indd 222c07.indd 222 11/13/08 4:33:04 PM11/13/08 4:33:04 PM

Chapter 7: Designing Data Access

223

 The data - set query text uses a simplified version of the SQL query language. The data provider treats a
Worksheet object as if it were a table and Worksheet columns like table columns. The Worksheet name is
enclosed in square brackets with the name preceded by a dollar sign. The column names are derived
from column header text in the first row, and any text containing spaces or other disallowed characters
must be enclosed in square brackets, like this:

SELECT
 CustomerID
 , CustomerName
 , [Street Address]
 , City
 , State
 , [Zip Code]
 , Phone
FROM [Sheet1$]

 Oracle P/L SQL
 Connecting reports to an Oracle database is quite easy to do. Depending on the version of Oracle and the
Oracle client software, you can use the ODBC, Simple OLEDB, or native Oracle Client data providers.
The native Oracle Client provider is preferred and is simple to use. When creating a data source, choose
the Microsoft OLE DB Provider for Oracle; enter the server name and the user name and password
required to log in to the Oracle database server.

 Oracle PL/SQL is an ANSI - compliant dialect that is very similar to Transact - SQL in most regards. Newer
implementations use the ANSI join syntax rather than the =, * = , and = * syntax in the WHERE clause to
denote joins. This style was popular until just a few years ago and is still habitual for many Oracle SQL
query designers.

Figure 7-42

c07.indd 223c07.indd 223 11/13/08 4:33:04 PM11/13/08 4:33:04 PM

Part II: Report Design

224

 Oracle has a handful of data types that are equivalent to T - SQL types. Since Reporting Services uses the
.NET data types used in Visual Basic.NET expressions, it ’ s advisable to explicitly convert field values
when they are used in expressions. Use the Visual Basic conversion functions [i.e., CStr() , CDbl() ,
 CInt() , CDate() , CBool() , etc.] liberally.

 The syntax for PL/SQL variables and parameters is quite different from T - SQL. Rather than prefixing
them with an @, these items are prefixed with a colon (:). Variables used in PL/SQL script may be
assigned a value when they are declared. T - SQL doesn ’ t allow this. Here is a brief example of a
parameterized PL/SQL expression:

SELECT
 SL.STORE_CODE
 ,SL.LOCATION_NAME
 ,SL.TELEPHONE_NUMBER AS LOCATION_PHONE
FROM STORE_LOCATION SL
 INNER JOIN REGION R ON R.LOCATION_ID = SL.LOCATION_ID
WHERE SL.STORE_CODE = :STORE_CD

 Testing for equality with a numeric type works as you would expect. However, character type
comparisons may be performed using the LIKE operator. String concatenation is performed using
double pipe symbol characters, rather than the plus sign used in T - SQL.

SELECT
 SL.STORE_CODE
 ,SL.LOCATION_NAME
 ,SL.TELEPHONE_NUMBER AS LOCATION_PHONE
FROM STORE_LOCATION SL
 INNER JOIN REGION R ON R.LOCATION_ID = SL.LOCATION_ID
WHERE SL. LOCATION_NAME LIKE ‘%’ || UPPER(:STORE_NM) || ‘%’

 SyBase Adaptive Server
 Adaptive Server ’ s query language is most similar to SQL Server because these products share some
history. Like SQL Server, SyBase databases can implement stored procedures for modularized, more
efficient query processing. Overall, I ’ ve found Adaptive Server to be fairly easy to use with Reporting
Services, but it may require a little extra effort to prepare SQL queries. Simple queries can be written
using the generic Query Designer. Stored procedures are executed using a string expression similar to
the following example:

=”spMonthEndSalesByCust

 ‘” + Parameters!MonthEndDateMonth.Value, Parameters!monthEndDateYear.Value + “’”

 There are some known minor data - type incompatibilities with report parameters. In particular, you may
find it easier to use string - type parameters for dates rather than the native Date type. If you use date or
numeric parameters, you may need to convert them in the query expression. Since SQL queries and
stored procedure calls are assembled as a string expression, parameters need not be converted to explicit
types. Type conversion will be performed by the database engine.

 The Report Server and development computer will need to have the Sybase ASE OLE DB Provider
installed and configured correctly. This will enable you to create connections using the Microsoft Simple
OLE DB Provider with the installed Sybase client components.

c07.indd 224c07.indd 224 11/13/08 4:33:04 PM11/13/08 4:33:04 PM

Chapter 7: Designing Data Access

225

 Best Practices
 Use shared data sources to reuse the connection information. Data sources are not redeployed to
the server by default to preserve server settings. Remove the report and data source file from the
Report Server and re - deploy to update connection information and certain report metadata.

 When using complex query expressions, keep a copy of the last working query script in a
separate query tool window or in Notepad.

 When using an expression for a dataset (e.g., = “ SELECT … “), if changes are made to the query
expression, you may need to remove the string encapsulation characters from the text to run the
query. Make a point to execute the query and click on the Refresh toolbar button to update the
report fields definition. After the fields metadata has been updated, make any changes you like
to the query text.

 Filter records in the query or stored procedure to reduce network traffic and reduce Report
Server processing overhead. Filter data in the report to reuse the same result set in an improved
response time for longer, interactive report sessions.

 Plan ahead and filter data consistently in the dataset, report item, or group.

 In MDX queries, add and configure parameters before making any manual changes to MDX
script. You cannot modify or view the query using the graphical MDX Query Designer after
making manual changes. Chapter 9 covers these options in greater detail.

 Summary
 Defining data sources and datasets to manage data source queries is the starting point for almost any
data - driven report. It ’ s essential to understand basic data storage and query architecture to achieve the
best design. Data can be filtered within the database server or in the report. Making the correct choice
and finding the best combination of these options will improve performance and provide flexibility with
the least amount of overhead.

 Defining shared data sources in your projects makes it much easier to maintain data connections for all
of your reports as a group. Changing the database location or security credentials becomes a much
simpler proposition. The datasets for your reports define queries for retrieving data and may be used as
the source for the report and repeatable data regions or to provide data values for report parameters.

 An ad hoc query expression is stored in the report within the report definition, and a stored procedure is
stored in the database. Using stored procedures is an effective means for processing parameters and
filtering data before sending it to the report, while using a report filter lets you reuse the data you ’ ve
already retrieved. A combination of these parameterized filtering techniques may be an optimal solution
for more complex reporting needs.

 By applying the skills and techniques you ’ ve learned in this chapter, you can start designing more
powerful and useful reports that consume and visualize the right data in the most appropriate way.

❑

❑

❑

❑

❑

❑

c07.indd 225c07.indd 225 11/13/08 4:33:04 PM11/13/08 4:33:04 PM

c07.indd 226c07.indd 226 11/13/08 4:33:05 PM11/13/08 4:33:05 PM

 Advanced Repor t Design

 In Chapter 5 , you learned about basic report design components and building blocks for simple
reports. Chapter 6 showed you how to lay out a report using these report items and data regions.
In this chapter, you will learn how to use these same essential components to assemble more
complex and useful reports. You can follow along using the sample reports contained in the
Chapter 8 project that is included with the book downloads at Wrox.com.

 The real power behind Reporting Services is its ability to creatively use data groups and
combinations of report items. Calculations and conditional formatting may be added by using
simple programming code. Whether you are an application developer or a report designer, this
chapter contains important information to help you design reports to meet your users ’
requirements, and to raise the bar with compelling report features.

 The following topics are covered in this chapter:

 Advanced data grouping features

 Headers and aggregation

 Lists and data regions

 Links and drill - through reports

 Building advanced expressions

 Using custom code to extend formatting and apply business logic

 Advanced charting features

 Previous chapters have used the Report Builder 2.0 Designer and Business Intelligence
Development Studio, demonstrating the similarities and subtle differences between these two
tools. At this point, you have graduated from the Report Wizard and Graphical Query Designer.
This chapter focuses on report design techniques rather than the tools for the demonstrations.
I will use the BIDS Designer only. The same techniques and design patterns can be applied with
either tool; however, the Report Builder 2.0 Designer is optimized for simple reports. If you are

❑

❑

❑

❑

❑

❑

❑

c08.indd 227c08.indd 227 11/13/08 4:34:25 PM11/13/08 4:34:25 PM

Part II: Report Design

228

unfamiliar with the BIDS Designer or Visual Studio 2008, please work through Chapters 5 and 6 before
you continue. You should be able to add a new report to a project, create or select a shared data source,
create a dataset, and add items to the Report Designer by now.

 Although you will be exploring more advanced report design techniques, I ’ ve made it a point to keep the
datasets simple. For most of the examples, you ’ ll simply use a list of products with categories and
subcategories. This will help to keep things simple while focusing on report design features rather than
the intricacies of the data.

 Configuring Header s and F ooters
 Page headers and footers can be configured so that they are displayed and printed on all pages or
omitted from the first and/or last pages. Unlike many other reporting tools, there is no designated report
header or footer. This is because the report body will act as a header or footer, depending on where you
place data region items. If you were to place a table an inch below the top of the report body, this would
give you a report header 1 inch tall. And since there is no set limit to the number of data regions or other
items you can add to a report (and you can force page breaks at any location), all of the space above,
below, and in - between these items is essentially header and footer space.

 You have a lot of flexibility for displaying header and footer content. In additional to the standard report
and page headers and footers, data region sections can be repeated on each page, creating additional
page header and footer content. Figure 8 - 1 shows a table report with each of the header and footer areas
labeled.

Figure 8-1

 To make this report easier to view, I ’ ve shortened the page height on this report to 5 inches in order to
conserve space. Figure 8 - 2 shows the first rendered page of this report.

c08.indd 228c08.indd 228 11/13/08 4:34:26 PM11/13/08 4:34:26 PM

Chapter 8: Advanced Report Design

229

 Note the page header containing the date at the top of this page, the repeated table header, and the table
footer showing the continuation of the CategoryName group and then the page footer with the page
number and page count.

 In earlier versions of Reporting Services, you were restricted from placing fields in the page headers and
footers because these areas were added to the final report output after the data was processed and before
pagination was applied by the rendering extension. This restriction is no longer in place. As you can see,
I am referring to the ProductCategoryName field in the page footer. You also have access to several
resources such as global variables, parameters, and report items.

 If you have prior version experience with Reporting Services, it will be helpful to point out some
changes. What were previously called Globals are now referred to as Built - in fields , which are now
accessible from the Report Data pane to the left of the Report Designer pane. The way that expressions
are displayed in the Designer has also changed. Behind the scenes, expressions haven ’ t changed, but
they appear to be more sentence - like than the literal string concatenation syntax used previously.
The mechanics of expressions are explored in greater detail below in this chapter, in the section titled,
 “ Using Expressions and Custom Code. ”

Figure 8-2

c08.indd 229c08.indd 229 11/13/08 4:34:26 PM11/13/08 4:34:26 PM

Part II: Report Design

230

 Here are the steps used to design this report if you would like to build it from scratch. The report in
Design view is shown in Figure 8 - 3 . You can also review the finished report in the Chapter 8 sample
project and use the following steps to review the design:

Figure 8-3

 1. Enable the page header and footer by selecting Add Page Header and Add Page Footer from the
Report menu while the report is open in Design view. Using the report properties, you can
optionally leave a page header or footer off the first or last page of the report.

 2. Now that the page header and footer are visible in the Report Designer, drag the Report Name
built - in field from the Report Data pane into the header area. Drag the Execution Time built - in
field to the page header, click in the new textbox, and then add the text Products as of before the
ExecutionTime field expression.

 3. Add a line and place it immediately below this textbox in the page header. Resize the page
header area as needed.

 4. After the table in the report body, add a textbox with some static text: Product cost & pricing
information is confidential and for internal use . This will serve as the report footer and will
only be displayed once on the last page, below the table.

 5. Add the ProductCategoryName field to the page footer. Place the cursor in this textbox and add
the text continued after the field reference and a space.

 6. Draw a new textbox in the right side of the page footer. Drag and drop the PageNumber built - in
field, type a space, the word of , a space, and then drag the built - in field TotalPages to the
textbox — in that order. Check the results with Figure 8 - 3 .

 7. Finally, add a horizontal line below the textbox in the page header, and add another line above
the two textboxes in the page footer.

 Aggregate Functions and Totals
 So far you ’ ve seen that if you drop a numeric field into a group or table footer cell, an expression is
added applying the SUM() aggregate function. The Designer only assumes that you will want to sum
these values, but this function can be replaced with one of several others.

c08.indd 230c08.indd 230 11/13/08 4:34:27 PM11/13/08 4:34:27 PM

Chapter 8: Advanced Report Design

231

 Reporting Services supports several aggregate functions, similar to those supported by the T - SQL query
language. Each aggregate function accepts one or two arguments. The first is the field reference or
expression to aggregate. The second, optional argument is the name of a dataset, report item, or group
name to indicate the scope of the aggregation. If not provided, the scope of the current data region or
group is assumed. For example, suppose a table contains two nested groups based on the Category and
Subcategory fields. If you were to drag the SalesAmount field into the Subcategory group footer, the
 SUM(SalesAmount) expression will return the sum of all SalesAmount values within the scope of each
distinct Subcategory group range:

 Function Description

 AVG() The average of all non - null values

 COUNT() The count of values

 COUNTDISTINCT() The count of distinct values

 COUNTROWS() The count of all rows

 FIRST() Returns the first value for a range of values

 LAST() Returns the last value for a range of values

 MAX() Returns the greatest value for a range of values

 MIN() Returns the least value for a range of values

 STDEV() Returns the standard deviation

 STDEVP() Returns the population standard deviation

 SUM() Returns a sum of all values

 VAR() Returns the variance of all values

 VARP() Returns the population variance of all values

 In addition to the aggregate functions, there are special - purpose functions that behave in a similar way
to aggregates but have special features for reports:

 Function Description

 LEVEL() Returns an integer value for the group level within a recursive hierarchy.
The group name is required.

 ROWNUMBER() Returns the row number for a group or range.

 RUNNINGVALUE() Returns an accumulative aggregation up to this row.

 Examples of aggregate function expressions and recursive levels are found in the following sections for
table and matrix report items.

c08.indd 231c08.indd 231 11/13/08 4:34:50 PM11/13/08 4:34:50 PM

Part II: Report Design

232

 Adding Totals to a Table or Matrix Report
 We ’ ve had the ability to add totals and subtotals to matrix groups in previous versions of Reporting
Services, but this capability has been improved significantly in the latest version. Because the matrix and
table data regions are both based on the tablix report item, the technique you ’ ll see here will work the
same way for both of these report types.

 Before continuing, let ’ s clarify how this feature works. Adding a total to a group adds a new row
(for row groups) or column (for column groups) that applies an aggregate function to all the members of
 that group. If you think about this, we ’ re actually adding a total that applies to the parent of the group.
Think about it using this example: if columns are grouped by Quarter and then by Year, and if you were
to add a total to the Quarter column group, the total would be for all of the Quarters adding into the
Year. This means that a total applied to the top - most group will always return the grand total for all
records in the data region. We ’ ve included a report with the samples to help make this point. You can see
this report in Design view at the end of this section in Figure 8 - 9 .

 Start with the Reseller Sales by Quarter and Region report in the Chapter 8 samples project. The
following example adds a column group total to the existing matrix report and then modifies the total to
use a different aggregation function from the detail cells. Start by reviewing the basic matrix report
shown in Figure 8 - 4 . This simple report uses a dataset with values grouped by Sales Territory Region on
rows and two groups: CalendarYear and Calendar Quarter on columns. A total has already been added
to the row group.

Figure 8-4

c08.indd 232c08.indd 232 11/13/08 4:34:50 PM11/13/08 4:34:50 PM

Chapter 8: Advanced Report Design

233

 Adding a total to a group displays total values for all fields in the data area of the matrix. Since this
matrix contains only the SalesAmount field, this is the value that will be totaled. Our objective is to
define a total for all CalendarYear group values. Since this is the top - level column group, this will
essentially be a grand total for all rows. Defining a total for a group at a lower level would create a
subtotal break. Totals can be placed before or after group values. For a column group, adding totals after
the group inserts a total column to the right of the group. Inserting a total before the group places totals
to the left of the group columns.

 Now to add a column group total, right - click on the CalendarYear header cell, and choose
Add Total After (see Figure 8 - 5).

Figure 8-5

 Note the new column added to the right of the CalendarYear and the associated cells.

 By default, group totals are aggregated like the data cells in the same group, using a sum in this case.
Let ’ s apply a different aggregation function at the total level.

 Double - click on the data cell in the right - most column for the SalesTerritoryRegion row group. This
opens the Placeholder Properties dialog you see in Figure 8 - 6 . The Value property for this textbox was
copied from the original data cell, which is [Sum(SalesAmount)] . Modify this expression to use the
 AVG() function in place of the SUM() function. Verify the syntax with Figure 8 - 6 .

c08.indd 233c08.indd 233 11/13/08 4:34:51 PM11/13/08 4:34:51 PM

Part II: Report Design

234

Figure 8-6

 Figure 8 - 7 shows the finished report in Design view.

Figure 8-7

Figure 8-8

 Switch to the Preview tab in order to view the report. Note that the right - most column contains the
average quarter price for each year (see Figure 8 - 8).

c08.indd 234c08.indd 234 11/13/08 4:34:51 PM11/13/08 4:34:51 PM

Chapter 8: Advanced Report Design

235

 We ’ ve included a final example to demonstrate a more complex matrix report with row and column
totals at a few more levels. This report is included in the sample project for you to analyze on your own.
As mentioned, it might be easier to think of a group total as the total of a group ’ s parent. Figure 8 - 9
demonstrates this point in a report with three groups on rows and three groups on columns. We ’ ve made
a point to label the two column group total headers appropriately. Note that the total for the
Calendar_Year group is labeled the Grand Total. The total placed on the Calendar_Quarter group is
titled Calendar_Year Total.

Figure 8-9

 Creating Repor t T emplates
 When you choose to create a report from the Solution Explorer or File menu in BIDS, the new RDL file is
actually copied from a selected template. A template is really nothing more than a partially completed
report file. You can add your own report templates to the BIDS report project template items folder. The
default installation path for this folder is C:\Program Files\Microsoft Visual Studio 9.0\Common7\
IDE\PrivateAssemblies\ProjectItems\ReportProject.

 Simply design a report with any settings, items, and formatting you want to use as a starting point for
new reports, and save the RDL file to this location.

c08.indd 235c08.indd 235 11/13/08 4:34:52 PM11/13/08 4:34:52 PM

Part II: Report Design

236

 On a new consulting client project, I will typically create a new report with page headers and footers,
built - in fields such as page numbers, standard titles, borders, colors, and background images to match
the client ’ s UI standards. I will add the company logo and save a portrait and landscape page
orientation version of the report to the templates folder. I typically will not add a dataset or any
data - bound data region items to the template.

 Figure 8 - 10 shows a simple example. This report contains a page header and footer with tiled
background images and some standard built - in fields and titles. The report header contains our
company logo image and a textbox with the formatted report execution date and time. The report page
size height and width properties are set for a portrait and landscape version of this file.

Figure 8-10

 To make these templates available for future report design, copy them to the project template items
folder (see Figure 8 - 11).

c08.indd 236c08.indd 236 11/13/08 4:34:52 PM11/13/08 4:34:52 PM

Chapter 8: Advanced Report Design

237

 Now, right - click on the Reports folder in Solution Explorer and choose Add New Item.

 The Add New Item dialog opens, showing the new report templates. As Figure 8 - 12 shows, when you
select a template, a new report will be added to the project using the template name followed by an
incremental number.

Figure 8-11

Figure 8-12

c08.indd 237c08.indd 237 11/13/08 4:34:53 PM11/13/08 4:34:53 PM

Part II: Report Design

238

 Report design goes much faster because a lot of the work has already been done. After adding a dataset
and table, all the items contained in the template are integrated with the standard report. Figure 8 - 13
shows the finished report.

Figure 8-13

 Creating Composite Repor ts
 In this section, you will see how to build more capable reporting interfaces by combining data regions
and other report items.

 As a product like Reporting Services matures, it will inevitably become easier to use. In SQL Server 2008
Reporting Services, we ’ re seeing this principle in action. Compared with prior versions, it ’ s much easier
to design a report by simply dragging and dropping objects onto the design surface. In order to design

c08.indd 238c08.indd 238 11/13/08 4:34:53 PM11/13/08 4:34:53 PM

Chapter 8: Advanced Report Design

239

more advanced reports, it ’ s often necessary to work with objects at a lower level and to understand their
core architecture, rather than relying so much on the simplified design tools.

 Before moving on to start building bigger, better, and more sophisticated reports, let ’ s go back to the
basics and take a closer look at a few of the fundamental report design components at a deeper level.

 Anatomy of a Textbox
 The textbox is one of the most fundamental and most common report items. Generally, all text and data
values are displayed using textboxes. The cells of a table and matrix contain individual textboxes.
In addition to the text displayed, there are several useful properties used to manage the placement, style,
and presentation of data. Font , Color , BackGroundColor , and BackGroundImage properties make it
possible to dress up your report data with tremendous flexibility.

 The BorderStyle properties of a textbox are similar to those of other report items (such as a rectangle,
list, table, and matrix). Once you have mastered the textbox properties, you should be able to use these
other items in much the same way. When using a table, group separation lines are created by setting the
border properties for textboxes in header and footer rows (typically by selecting the entire row and
setting the textbox properties as a group).

 Three property groups are used for borders. In the Properties window, these groups are expanded using
the plus sign (+) icon to reveal individual properties. The group summary text can actually be
manipulated without expanding the properties, but it ’ s usually easier to work with specific property
values. The BorderColor , BorderStyle , and BorderWidth properties each contains a Default value that
will apply to individual properties (e.g., Left, Right, Top, and Bottom) that have not otherwise been set.
This provides a means to set general properties and then override the exceptions. By default, a textbox has
a black BorderColor and a 1 point BorderWidth with the BoderStyle set to None. To add a border to all
four sides, simply set the Default BorderStyle to Solid. Beyond this, individual properties may be used to
add more creative border effects. Figure 8 - 14 shows a textbox with a variety of border styles.

Figure 8-14

 Most report items support padding properties, which are used to offset the placement of text and other
related content within the item. Padding is specified in points. A unit of measure from the printing
industry, a PostScript point is 1/72 of an inch, or approximately 1/28 of a centimeter.

c08.indd 239c08.indd 239 11/13/08 4:34:54 PM11/13/08 4:34:54 PM

Part II: Report Design

240

 Padding and Indenting
 Figure 8 - 15 depicts the four padding properties, in the Padding group of the Properties pane, applied to
all textbox items. The Padding properties provide an offset between textbox borders and the contained
text. This can be used to indent text and provide an appropriate balance of white space.

Figure 8-15

 Three similar properties were added to the 2008 product version that provide more flexibility for text
indentation. Use the HangingIndent , LeftIndent , and RightIndent properties to control paragraph -
 style text in rich - formatted textboxes. These properties also enable the new Word rendering extension to
apply hanging static text indentations.

 Embedded Formatting
 A new capability, introduced in SQL Server 2008, allows the text in a textbox to be structured and
formatted, much like a document or Web page.

 To format a range of text, simply highlight the text in the textbox and use the toolbar or Properties
window to set properties for the selected text. Figure 8 - 16 shows a range of highlighted text with the
 HangingIndent and LeftIndent properties set to 18 points and 12 points, respectively. Note that
certain keywords and phrases within the text are also set using bold and italics. Some title text has also
been isolated with bold and larger fonts.

c08.indd 240c08.indd 240 11/13/08 4:34:54 PM11/13/08 4:34:54 PM

Chapter 8: Advanced Report Design

241

 Embedded HTML Formatting
 Another option is to embed simple HTML tags within text. This provides a great deal of flexibility for
using expressions or custom code to return formatted text. The following HTML tags are supported:

 Tag Description

 < A > Anchor

For example: < HRef= ” www.somesite.com ” > Click Here < /A >

 < FONT > Sets font attributes for a group of text. Used with the attributes
color, face, point size, size, and weight.

For example:
< FONT color=Blue face= “ Arial ” size=6 > Hello < /FONT >

 < H1 > , < H2 > , < H3 > , < H4 > , ... Headings

 < SPAN > Used to set text attributes for a range of text within a paragraph.

Figure 8-16

(continued)

c08.indd 241c08.indd 241 11/13/08 4:34:54 PM11/13/08 4:34:54 PM

Part II: Report Design

242

 Tag Description

 < DIV > Used to set text attributes for a block of text.

 < P > Paragraph break

 < BR > Line break

 < LI > List new line

 < B > Bold

 < I > Italic

 < U > Underscore

 < S > Strikeout

 < OL > Ordered list

 < UL > Unordered list

 Here is an example of a textbox containing embedded HTML tags. The text shown in Figure 8 - 17 with
embedded tags can also be stored in a database table and bound to the textbox using a data - set field.

Figure 8-17

 When using static text, rather than text fed from a dataset, it is necessary to set one more property — the
 MarkupType . Highlight the text containing the embedded HTML tags, right - click, and choose Text
Properties from the menu. In the Text Properties dialog, on the General page, set the Markup type
property to the selection shown in Figure 8 - 18 , “ HTML - Interpret HTML tags as styles. ”

c08.indd 242c08.indd 242 11/13/08 4:34:55 PM11/13/08 4:34:55 PM

Chapter 8: Advanced Report Design

243

 The output for the rendered report is shown in Figure 8 - 19 .

Figure 8-18

Figure 8-19

c08.indd 243c08.indd 243 11/13/08 4:34:55 PM11/13/08 4:34:55 PM

Part II: Report Design

244

 Designing Master/Detail Reports
 Most data can be expressed in a hierarchal fashion. Whether data is stored in related tables in a relational
database, as dimensional hierarchies in a cube structure, or as separate spreadsheets or files, this information
can usually be organized into different levels. This is often a very natural way to present information for
reporting. Common examples of master/detail data include invoices and line items, customers and orders,
regions and sales, categories and products, colors and sizes, and managers and workers.

 The best way to organize this data in a master/detail report will depend largely on how your users want to
see the data visualized. For each master record, details may be presented in a rigid tabular or spreadsheet - like
form or in free - forum layout with elements of different sizes and shapes placed at various locations within a
repeating section. And, of course, details may also be expressed visually using charts, icons, and gauges.

 The last consideration for master/detail report design is whether the data source for the master records
and detail records can be combined into a single data stream. If records exist in different tables in the
same database, this is a simple matter of joining tables using a query. If the records can ’ t be combined in
a query or view, the two result sets should expose the fields necessary to join them together, and a
subreport can be used. This section about composite reports explores techniques for combining data
ranges to filter a single dataset and then uses subreports to combine two separate data sources.

 Groups and Data - Set Scope
 One of the fundamental reasons that composite reports work — and are relatively easy to construct — is
the principle of data - set scope. The term scope refers to the portion of data from a dataset that is available
within a group. When a data region, such as a table, list, or matrix, is rendered, the data is sectioned off
into the subranges according to a group definition. Any report items or data region items placed in a
grouped area, header, or footer only have visibility to the data currently in scope. This means that if a
table, for example, has a group based on the ProductCategory field and another table is placed in the
group header, a table will be rendered for each distinct ProductCategory value. Each table instance will
 “ see ” a range of detail records filtered by this group value. This can be an incredibly powerful feature as
there is no stated limit to the number of items that can be embedded within a group; nor is there a limit
to group levels and nested embedded data regions. Now, with that said, we have not found it practical to
embed several data regions to create overly complex reports.

 In this section, we will apply this principle of group embedded data regions for each of the data region
containers. This includes the list, table, and matrix.

 Using a List to Combine Report Items and Data Regions
 The list item is the simplest of all data regions. Like the table and matrix, a list is an implementation of
the tablix report item with certain properties pre - set to provide the list behavior. It contain one cell with
no headers or footers, and, instead of a textbox, it contains an embedded rectangle item. This allows
other report items to be dragged and dropped anywhere within the list area.

 We ’ ve created a report called Product Cost and List Price — List . You can open and review this report
in the Chapter 8 project as you learn how it was created.

 One list visually represents one group, and the body of the list is simply repeated for each underlying
data row. Using the properties for the list, it is associated with a dataset. After placing a list item on the
report, fields dragged from a dataset in the Report Data pane will bind the list to the dataset and create
data - bound textboxes. The example in Figure 8 - 20 shows formatted textboxes used for labels and values

c08.indd 244c08.indd 244 11/13/08 4:34:56 PM11/13/08 4:34:56 PM

Chapter 8: Advanced Report Design

245

and a line used a row separator. The textbox on the right contains an expression to calculate a product ’ s
profit margin by subtracting the StandardCost from the ListPrice field values.

Figure 8-20

Figure 8-21

 Like most report items, properties for the list may be set using the standard Properties window or the
custom Properties dialog.

 We ’ ve already defined a dataset for this report. The DataSetName property for the list was set when we
dragged a field from this dataset into the list item in the Report Designer. We ’ ll set the Grouping in the
next step.

 Note that a list contains a details group by default, but this needs to be set up to group on a distinct field
value — usually a field with redundant values so that each group will contain multiple detail rows.

 Click the dropdown list on the (Details1) Row Groups, and then choose the Group Properties item from
the menu (see Figure 8 - 21).

c08.indd 245c08.indd 245 11/13/08 4:34:56 PM11/13/08 4:34:56 PM

Part II: Report Design

246

 In the Group Properties dialog (Figure 8 - 22), add a group expression and select the EnglishProductName
field in the “ Group on ” row. Click OK to save this setting.

Figure 8-22

 Figure 8 - 23 shows what the report looks like in preview.

Figure 8-23

c08.indd 246c08.indd 246 11/13/08 4:34:57 PM11/13/08 4:34:57 PM

Chapter 8: Advanced Report Design

247

 For each product, I want to see the related orders. Expand the list height to make some room, and add a
table within the list area. Drag appropriate order detail fields to the table. You can see this table and the
fields we ’ ve added in Figure 8 - 24 .

Figure 8-24

 A finished copy of the following report in the sample project is named Product Cost and List Price —
 Embedded Table .

 When previewed, this report shows order detail in a table below each product detail section, as shown in
Figure 8 - 25 .

c08.indd 247c08.indd 247 11/13/08 4:34:57 PM11/13/08 4:34:57 PM

Part II: Report Design

248

 To demonstrate how the list can be used as a container for other data range items, we ’ ve added a chart
item to the list in place of the table. Since the list contains a detail group that returns only one record at a
time and the chart is configured to recognize this parent group, the chart has visibility to this level of
detail. In other words, each instance of the chart sees only one product record.

 Data fields (or data point fields) are dropped into or selected in the drop zone at the top of the chart. If a
pie chart has a Series Axis expression (drop zone to the right), multiple pie slices are rendered for each
distinct group value. Since this chart has no series value, two fields will result in two slices; one for the
StandardCost and another for the ListPrice field value. You ’ ll learn more about configuring the chart
below in this chapter.

 Figure 8 - 26 shows the finished sample report, named Product Cost and List Price — Embedded Chart .

Figure 8-25

c08.indd 248c08.indd 248 11/13/08 4:34:57 PM11/13/08 4:34:57 PM

Chapter 8: Advanced Report Design

249

 Figure 8 - 27 shows this report in preview. Each row of the report displays a pie chart with the calculated
profit as a percentage of the ListPrice field value.

Figure 8-26

Figure 8-27

c08.indd 249c08.indd 249 11/13/08 4:35:04 PM11/13/08 4:35:04 PM

Part II: Report Design

250

 Now the best of both worlds: the sample report named Product Cost and List Price — Embedded Table and
Chart contains both the table and the chart. Figure 8 - 28 shows it in preview.

Figure 8-28

 The list item works well when repeating graphical items such as images and charts. Although the list
offers a great deal of flexibility, it can require quite a lot of detail work if used for complex columnar
reports and those with multiple levels of grouping. Consider using a table instead of a list when all the
data fits into rows and columns.

 The next couple of reports, showing a chart embedded into a table and a matrix, are created using the
same basic pattern, so we need not go over the design details. These are included in the Chapter 8
sample project. The report shown in Figure 8 - 29 is a table report grouped on Fiscal Year and then Fiscal
Quarter. You cannot have an embedded object within a details group, so we removed the details group
in the Row Groups pane. The chart is dragged into an empty cell. With the details group removed, the
SalesAmount and the embedded chart are in the scope of the lowest - level table group (which is the
Fiscal Quarter).

c08.indd 250c08.indd 250 11/13/08 4:35:05 PM11/13/08 4:35:05 PM

Chapter 8: Advanced Report Design

251

 As you see, the chart category axis is grouping on the product category field with a single data point
based on the sales quantity field. Each instance of the table shows the isolated sales quantities across
each product category for a specific fiscal quarter.

 A chart can also be placed in a matrix group in the same manner. The Product Category Sales Profile by
Year and Region report (shown in Figure 8 - 30) has a column group defined on the SalesTerritoryGroup
field. Because columns are rendered for each distinct group value, the chart is repeated in each column
group, and the scope of the chart is for a combination of fiscal quarter and sales territory group.

Figure 8-29

c08.indd 251c08.indd 251 11/13/08 4:35:05 PM11/13/08 4:35:05 PM

Part II: Report Design

252

 In summary, data region objects (such as charts, tables, and matrices) can be embedded within other data
region groups, as long as the data is served up from a single dataset.

 Designing Subrepor ts
 The concept of a subreport isn ’ t new. In fact, most reporting tools offer this feature, and the Reporting
Services implementation of subreports is not much different from tools like Microsoft Access or Crystal
Reports. Before getting into the details of subreport design, let ’ s review some basic guidelines.

 When I started using Reporting Services to design reports with nested groups and data regions, my first
impulse was to use subreports. This seemed like the best approach because I could design simple,
modular reports and then put them together. The programming world promotes the notion of reusable
objects. However, the downside to this approach is that subreports can create some challenges for the
report rendering engine, resulting in formatting issues and poorer performance. In SQL Server 2000 and
2005, subreports didn ’ t render in Excel, and they still can ’ t be used in a page header or footer.
Improvements have been made for Excel rendering, but I ’ m not quite ready to dismiss my bias and
recommend the use of subreports in all cases.

 The bottom line is that subreports are useful for implementing a variety of design patterns, but they are
not the cure - all. If you can design a report by embedding data regions into a list, table, or matrix, you
may get better results than if you use a subreport to do the same thing.

 A subreport is a stand - alone report that is embedded into another report. It can be entirely independent, with
its own dataset, or, using parameters, you can link the contents of a subreport to data in the main report.

Figure 8-30

c08.indd 252c08.indd 252 11/13/08 4:35:06 PM11/13/08 4:35:06 PM

Chapter 8: Advanced Report Design

253

 There are some limitations to the content and formatting that can be rendered within a subreport.
For example, a multicolumn report may not be possible within a subreport (depending on the rendering
format used). If you plan to use multiple columns in a subreport, test your report with the
rendering formats that you plan to use.

 There are generally two uses for subreports. The first use is for embedding one instance of a separate
report into the body of another report with an unassociated data source. The other scenario involves
using the subreport as a custom data region to display repeated master and detail records in the body of
the main report. From a design standpoint, this makes perfect sense. Using a subreport allows you to
separate two related datasets and perhaps even data sources, linked as you would join tables in a SQL
query. It allows you to reuse an existing report so you don ’ t have to redesign functionality you ’ ve
already created. However, there may be a significant downside. If the master report will consume more
than just a few records, this means that the subreport must execute its query and render the content
many times. For large volumes of data, this can prove to be a very inefficient solution. Carefully
reconsider the use of subreports with large result sets. It may be more efficient to construct one larger
report with a more complex query and multiple levels of grouping, rather than assume the cost of
executing a query many times. I rarely use subreports in standard reporting scenarios. If I do, the main
report is limited to one or a few records.

 A subreport can be linked to the main report using a correlated parameter and field reference, so that it
can be used like a data region, but this is not essential. A subreport could be used to show aggregated
values unrelated to groupings or content in the rest of the report.

 Creating a subreport is like creating any other report. You simply create a report and then add it to
another report as a subreport. If you intend to use the main report and subreport as a Master/Detail
view of related data, the subreport should expose a parameter that can be linked to a field in the main
report. In the following walk - through, you ’ ll build a simple report that lists products and exposes a
subcategory parameter. The main report will list categories and subcategories, and the product list report
will then be used as a data region, like a table or list in previous examples.

 Federating Data with a Subreport
 When the data source for a master data region is different from the data source for detail records, using a
subreport can be just the ticket for creating a master/detail report. The following example combines
report data from two different data sources.

 In the Chapter 8 sample project, you will find two reports named Product Details and Product Orders
Subreport . The Product Details report contains a list whose data source is the data warehouse database:
AdventureWorks2008. The Product Orders Subreport contains a table with a data source based on the
OLTP database: AdventureWorksDW2008. Records in the DimProduct table, located in the
AdventureWorksDW2008 database, can be related using the ProductAlternateKey column. This contains
ProductNumber values from the Product table in the AdventureWorks2008 database.

 Figure 8 - 31 shows the Product Orders Subreport in the Designer. This report is simply a table bound to
the following query. The data source for this dataset is the AdventureWorks2008 transactional database.

c08.indd 253c08.indd 253 11/13/08 4:35:06 PM11/13/08 4:35:06 PM

Part II: Report Design

254

SELECT
 Sales.SalesOrderDetail.ProductID
 , Production.Product.ProductNumber
 , Sales.SalesOrderDetail.OrderQty
 , Sales.SalesOrderDetail.LineTotal
 , Sales.SalesOrderHeader.OrderDate
FROM
 Sales.SalesOrderDetail
 INNER JOIN Sales.SalesOrderHeader
 ON Sales.SalesOrderDetail.SalesOrderID = Sales.SalesOrderHeader.SalesOrderID
 INNER JOIN Production.Product ON Sales.SalesOrderDetail.ProductID =
Production.Product.ProductID
WHERE
 Product.ProductNumber = @ProductNumber
ORDER BY Sales.SalesOrderHeader.OrderDate

 The actual query in the sample report limits records to a small date range to keep the number of records
manageable. This isn ’ t relevant to the example, so I ’ ve simplified the query script shown here.

 Note the ProductNumber parameter, which will be passed from the master report. Each instance of this
report will be filtered for a specific product.

 The master report is shown in Figure 8 - 31 . This report contains a list data region that is bound to the
following query and whose data source is the AdventureWorksDW2008 data warehouse database.

Figure 8-31

c08.indd 254c08.indd 254 11/13/08 4:35:06 PM11/13/08 4:35:06 PM

Chapter 8: Advanced Report Design

255

SELECT
 ProductKey
 , ProductAlternateKey
 , EnglishProductName
 , StandardCost
 , ListPrice
FROM DimProduct
WHERE (StandardCost IS NOT NULL) AND (ListPrice IS NOT NULL)
ORDER BY EnglishProductName

 The WHERE clause criterion is to simplify the example and may be omitted in production.

 The details group for the list is set to the EnglishProductName field. This satisfies the requirement that in
order for a data range to contain a nested data range object, it must have a group defined. The subreport
is created by dragging and dropping the Product Orders Subreport report from the Solution Explorer
into the list area.

 Note that regardless of the dimensions of a subreport at design time, when dropped into a containing
report, it will always appear as a square area that will usually use up more design space than necessary
(which will also expand the dimensions of its container). After resizing the subreport, I also had to resize
the list to appear as it does in Figure 8 - 32 .

Figure 8-32

 Right - click on the subreport, and choose Subreport Properties to set the parameter/field mapping.
The Subreport Properties dialog, shown in Figure 8 - 33 , is used to map a field in the container report to a
parameter in the subreport.

c08.indd 255c08.indd 255 11/13/08 4:35:07 PM11/13/08 4:35:07 PM

Part II: Report Design

256

 Navigate to the Parameters page, and then click Add to define a parameter mapping. Under the Name
column, select the ProductID parameter. Under the Value column, select the ProductAlternateKey field.
Click OK to save these changes and close the Subreport Properties dialog.

 This completes the report design. Using lists and subreports typically makes the design process more ad
hoc and artful than when using more rigid tables. Go back and check the size and placement of items so
that they fit neatly within the subreport space. This often takes a few iterations of preview and layout to
make the appropriate adjustments.

 At this point, you should be able to preview the report and see the nested table/subreport, as shown in
Figure 8 - 34 .

Figure 8-33

c08.indd 256c08.indd 256 11/13/08 4:35:09 PM11/13/08 4:35:09 PM

Chapter 8: Advanced Report Design

257

 Execution and Resource Implications
 There is no doubt that subreports enable you to do some things you can ’ t do with any other report
design technique. But to give you an appreciation for the ugly side of subreports, let ’ s run a trace using
SQL Server Profiler to compare the embedded table report we created above with this subreport. Let ’ s
see how many queries run on the server and how individual connections are required. We ’ ll start the
Profiler trace and then run the Product Cost and List Price — Embedded Table report.

 Figure 8 - 35 shows the trace results. As you can see, after the initial session start - up, only one query runs.
(Each query will have a BatchStarting and BatchCompleted event.)

Figure 8-34

c08.indd 257c08.indd 257 11/13/08 4:35:10 PM11/13/08 4:35:10 PM

Part II: Report Design

258

 Contrast this to the subreport. We ’ ll start a new trace and then run the subreport. The trace results in
SQL Server Profiler are shown in Figure 8 - 36 . Note the height of the vertical scroll bar; this is only the
last page of a very long set of trace results. The entire trace screen capture would be 12 pages long!
To save a tree or two, just imagine what this would look like. Imagine that after this report were put into
production for a few years and business expanded, that it was run for a thousand products. Never
assume that data volumes will always be small or that users will always make reasonable parameter
selections before running a report.

Figure 8-35

Figure 8-36

c08.indd 258c08.indd 258 11/13/08 4:35:10 PM11/13/08 4:35:10 PM

Chapter 8: Advanced Report Design

259

 The Profiler trace for this report recorded 294 individual query executions (once for the master query,
returning products in the AdventureWorksDW2008 database, and then once for each of the
corresponding product orders in the AdventureWorks2008 database). For each query, a connection is
open, an execution plan is prepared and run, and the connection is reset — 294 times. Although the .NET
native SQL Server client and the database engine will optimize this process by recycling connections and
query execution plans, the overall result will certainly not be as efficient as a report running on a
single query.

 In the final analysis, if you must coordinate data in a master/detail fashion, you generally have three
options:

 Stage the data into one physical database.

 Create a federated view on the server using a linked server or OPENROWSET query.

 Create a subreport like the one you just examined.

 In any case, try to keep the number of master records to a minimum by using a static filter or
parameter in the WHERE clause. If the data for the master and detail area of the report can be sourced
from a single query and you can ’ t limit the scope of the master records, avoid using a subreport, and use
an embedded data range instead.

 Navigating Repor ts
 Reports of yesterday were static, designed for print, and could, at best, be previewed on a screen. To find
important information, users would simply browse through each page until they found the information
they were looking for. Today, you have several options to provide dynamic navigation to important
information — in the same report or to content in another report or an external resource.

 Creating a Document Map
 The document map is a simple navigation feature that allows the user to find a group label or item value
in the report by using a tree displayed along the left side of the report. It ’ s sort of like a table of contents
for report items that can be used to quickly navigate to a specific area of a large report. You typically will
want to include only group - level fields in the document map rather than including the detail rows.

 The document map is limited to the HTML - , Excel - , and PDF - rendering formats. In Excel and HTML
formats, the document map may not survive when saving report files to an older document format, such
as Pocket Excel on a Pocket PC device.

 The sample report provided in the Chapter 8 project is Products by Category and SubCategory
(Doc Map). We ’ ve added the CategoryName and SubCategoryName groupings to the document map.
In the Group Properties dialog for the Category row group (see Figure 8 - 37), on the Advanced page,
set the Document map property using the dropdown list to the ProductCategoryName field.

❑

❑

❑

c08.indd 259c08.indd 259 11/13/08 4:35:19 PM11/13/08 4:35:19 PM

Part II: Report Design

260

 Be careful and specify the document map label property only for items that you want to include in the
document map. For example, if you specify this property for a grouping (as is done here), don ’ t do
the same for a textbox containing the same value. Otherwise, you will see the same value appear twice
in the document map.

 A report with a document map is illustrated in Figure 8 - 38 . The report name is the top - level item in the
document map, followed by the product category and subcategory names.

Figure 8-37

Figure 8-38

c08.indd 260c08.indd 260 11/13/08 4:35:20 PM11/13/08 4:35:20 PM

Chapter 8: Advanced Report Design

261

 You can show or hide the document map using the left - most icon in the Report Designer ’ s Preview or
the Report View Toolbar in the Report Manager or SharePoint Report Viewer web part after the report is
deployed to the server.

 My experience has been that the drill - down and document map features usually don ’ t work well
together since these both provide some duplicate functionality. The document map should be used to
navigate to a visible area of the report.

 Links and Drill - through Reports
 Links and drill - through reports are powerful features that enable a textbox or image to be used as a link
to another report by passing parameter values to the target report. The target report can consist of a
specific record or multiple records, depending on the parameters passed to the target report. The
following example uses the Products by Category report in the Chapter 8 sample project. The Product
Name textbox is used to link to a report that will display the details of a single product record. The
Product Details report, shown in Figure 8 - 39 , is very simple. It contains only textboxes and an image
bound to fields of a dataset based on the Products table. This report accepts a ProductID parameter to
filter the records and narrow down to the record requested.

Figure 8-39

c08.indd 261c08.indd 261 11/13/08 4:35:20 PM11/13/08 4:35:20 PM

Part II: Report Design

262

 Any textbox or image item can be used for intra - report or inter - report navigation, for navigation to
external resources like Web pages and documents, and also to send e - mail. All these features are enabled
by using navigation properties that can be specified in the Textbox Properties or Image Properties dialog.
First, open the Text Box Properties dialog by right - clicking on the textbox and selecting Properties from
the menu. In the Text Box Properties dialog, use the Actions page to set the drill - through destination and
any parameters you would like to pass.

 Figure 8 - 40 shows the Text Box Properties dialog Action page for the Products by Category — Table with
Groupings and Drillthrough report in the Chapter 8 sample project.

Figure 8-40

 Note the navigation target selections under the “ Enable as a hyperlink ” option list. When you choose
 “ Go to report, ” the report selection dropdown is enabled, listing all reports in the project. A report
selected from this list must be deployed to the same folder on the Report Server as the source report.
A drill - through report is typically used to open the report to a filtered record or result set based on the
value in this textbox. (Remember that the user clicked this textbox to open the target report.) The typical
pattern is to show a user - friendly caption in the textbox (the product name in this case) and then pass a
key value to the report parameter to uniquely identify records to filter in the target report. In this case,
the ProductID value is passed.

 To enable this behavior, add a parameter mapping used when running the target report. All parameters
in the target report are listed in the Name column. In the Value column, select a field in the source report
to map to the parameter. A new feature is apparent in the right - most column. An expression may be
used to specify a condition in which the parameter is not passed to the target report.

 By default, drill - through reports are displayed in the same browser window as the source report. There
are a few techniques for opening the report in a secondary window, but none are out - of - the - box features.

c08.indd 262c08.indd 262 11/13/08 4:35:20 PM11/13/08 4:35:20 PM

Chapter 8: Advanced Report Design

263

My favorite technique is to use the “ Go to URL ” navigation option and open the target report using a
URL request. Although this is a little more involved, it provides a great deal of flexibility.

 To navigate to a report in a separate web browser window, call a JavaScript function to create a pop - up
window using any browser window modifications you like. The function call script, report folder path,
report name, and filtering parameters are concatenated together using an expression. Here ’ s an example:

=”JavaScript:void window.open(‘http://localhost/reportserver?/Sales Reports/
Product Sales Report & rc:Toolbar=False & ProductID=” & Fields!ProductID.Value &
“’, ‘_blank’, ‘toolbar=0,scrollbars=0,status=0,location=0,menubar=0,resizable=0,
directories=0,width=600,height=500,left=550,top=550’);”

 Expressions are discussed below, but this short example at least gives you an idea about the kinds of
customizations possible with custom code and expressions.

 Navigating to a Bookmark
 A bookmark is a textbox or image in a report that can be used as a navigational link. If you want to allow
the user to click an item and navigate to another item, assign a bookmark value to each of the target
items. To enable navigation to a bookmark, set the “ Go to bookmark ” property to the target bookmark.

 Using bookmarks to navigate within a report is very easy to do. Each report item has a BookMark
property that can be assigned a unique value. After adding bookmarks to any target items, use the
 “ Go to bookmark ” selection list to select the target bookmark in the properties for the source item.
This allows the user to navigate to items within the same report.

 Navigating to a URL
 The “ Go to URL ” option can be used to navigate to practically any report or document content on your
Report Server; files, folders, and applications in your Intranet environment; or the World Wide Web.
With some creativity, this may be used as a powerful, interactive navigation feature. It can also be set to
an expression that uses links stored in a database, custom code, or any other values. It ’ s more accurate
to say that any URI (Uniform Resource Identifier) can be used since a Web request is not limited only to a
Web page or document. With some creative programming, queries, and expressions, your reports could
be designed to navigate to a Web page, document, e - mail address, Web Service request, or a custom web
application, directed by data or custom expressions.

 A word of caution: Reporting Services does not make any attempt to validate a URL passed in an
expression. If a malformed URL is used, the Report Server will return an error, and there is no easy way
to trap or prevent this from occurring. The most effective way to handle this issue is to validate the URL
string before passing it to the “ Go to URL ” property.

 Repor ting on Recur sive Relationships
 Representing recursive hierarchies has always been a pain for reporting and often a challenge to
effectively model in relational database systems. Examples of this type of relationship (usually facilitated
through a self - join) can be found in the DimEmployee table of the AdventureWorksDW2008 sample
database. Most reporting tools were designed to work with data organized in traditional, multi - table
relationships. Fortunately, our friends at Microsoft built recursive support into the reporting engine to
deal with this common challenge. A classic example of a recursive relationship (where child records are
related to a parent record contained in the same table) is the employee/manager relationship.

c08.indd 263c08.indd 263 11/13/08 4:35:21 PM11/13/08 4:35:21 PM

Part II: Report Design

264

The Employee table contains a primary key, EmployeeID , that uniquely identifies each employee
record. The ManagerID is a foreign key that depends on the EmployeeID attribute of the same table, and
it contains the EmployeeID value for the employee ’ s manager. The only record that won ’ t have a
 ManagerID would be the president of the company or any such employee who doesn ’ t have a boss.

 Representing the hierarchy through a query would be quite difficult. However, defining the dataset for
such a report is very simple. You simply expose the primary key, foreign key, employee name, and any
other values that you want to include on the report.

 To see how this works, perform the following steps:

 1. Create a new report and define a dataset using the AdventureWorksDW2008 shared data source.
The data - set query is very simple and includes both the primary key and a recursive foreign key.
The ParentEmployeeKey for each employee contains the EmployeeKey value for that
employee ’ s supervisor or manager.

SELECT EmployeeKey, ParentEmployeeKey, LastName, Title
FROM DimEmployee
WHERE Status = ‘Current’

 2. Add a table data region to the report body, and drag the LastName and Title fields to the detail
row. For demonstration purposes, we ’ ve also dragged the EmployeeKey and
ParentEmployeeKey fields.

 3. Insert a column to the table titled Org Level . (We ’ ll get to this momentarily.)

 4. Now, edit the Detail group properties using the dropdown button for this item in the Row
Groups pane, as shown in Figure 8 - 41 .

Figure 8-41

c08.indd 264c08.indd 264 11/13/08 4:35:21 PM11/13/08 4:35:21 PM

Chapter 8: Advanced Report Design

265

 This action opens the Group Properties dialog. To define a recursive group, two properties need
to be set. First, the group must be based on the unique identifier for the child records. This is
typically a key value and must be related to the unique identifier for parent records — usually a
parent key column in the table.

 5. Use the General page to set the group expression to the EmployeeKey field, as shown in Figure 8 - 42 .

Figure 8-42

 6. Move to the Advanced page on this dialog, and set the Recursive parent property to the
ParentEmployeeKey field, as shown in Figure 8 - 43 .

Figure 8-43

c08.indd 265c08.indd 265 11/13/08 4:35:22 PM11/13/08 4:35:22 PM

Part II: Report Design

266

 7. Go ahead and preview the report. Although the records are actually arranged according to each
employee ’ s pecking order in the company, it ’ s not very obvious that this recursive hierarchy
report is really working. You need to make a change so that the report lets you visualize the
employee hierarchy (who reports to whom).

 8. Switch back to Design view and right - click on the detail cell in that new Org Level column.
Select Expression from the menu, and type the following in the Expression dialog:

 =LEVEL(“ Details ”)

 This expression calls the LEVEL function, passing in the name of the Details group. This function
returns an integer value for a row ’ s position within the recursive hierarchy defined for this
group.

 9. Click OK on the Expression dialog, and then preview the report again.

 This time, you see numbers in the Org Level column. The CEO (the only employee record without
a ParentEmployeeKey value) shows up at level 0. This is Ken Sanchez. The employees who report
to Mr. Sanchez are listed directly below and are at level 1 within the hierarchy . . . and so on.

 You ’ re not done. The report ’ s still not very visually appealing, so let ’ s indent each employee ’ s name
according to their level. The easiest way to do this is to use a little math to set the Left Padding property
for the LastName textbox. You ’ ll start with the same expression as before. Padding is set using Postscript
points. A point is about 1/72 of an inch, and there are about 2.83 millimeters to a point. Since this is such
a small unit of measure, we ’ ll indent our employee names 20 points per level.

 10. Right - click on the LastName textbox, and choose Textbox Properties.

 11. Once in the Textbox Properties dialog, move to the Alignment page. Under the Padding options
section, click on the Expression button (labeled fx) next to the Left property box.

 12. In the Expression dialog, type the following text:

 =((LEVEL(“ Details ”) * 20) + 2).ToString & “ pt ”

 13. Verify that your design environment looks like Figure 8 - 44 .

c08.indd 266c08.indd 266 11/13/08 4:35:23 PM11/13/08 4:35:23 PM

Chapter 8: Advanced Report Design

267

 14. Click OK on the Expression Editor window, and then click OK to close the Text Box Properties
dialog.

 As of this printing, the DimEmployee table in the AdventureWorksDW2008 database contains some
logic errors that cause this report to return erroneous data. Since this sample data may have been
corrected by the time you read this, check your report with Figure 8 - 44 . If you see incorrect results, run
the following query in Management Studio to remove these erroneous records from the report results:

USE AdventureWorksDW2005
GO
UPDATE DimEmployee SET Status = NULL
WHERE EmployeeKey IN(2,32,49,72,84,158,195,48,73,280,106,109)

 15. Preview the report, and check it against Figure 8 - 45 . Now you see each employee name indented
according to his or her position in the organization. You can verify these results by noting the
level value in the Org Level column and the correspondence between the EmployeeKey and
ParentEmployeeKey column values.

Figure 8-44

c08.indd 267c08.indd 267 11/13/08 4:35:23 PM11/13/08 4:35:23 PM

Part II: Report Design

268

 After verifying the report, you should remove these extra columns in a production - ready report.

 Using Expressions and Custom Code
 Perhaps we ’ ve put the cart before the horse with regard to expressions. In previous examples, you ’ ve
typed some expression text without receiving any explanation. This couldn ’ t be avoided because using
expressions is central to doing a lot of interesting things in Reporting Services. But we ’ ve just gotten
started!

 Any textbox bound to a data - set field or built - in field actually contains an expression, but in an effort to
simplify the design interface, expressions are no longer displayed in the Report Designer. Perhaps this
might make life less hectic for entry - level report designers, but the rest of us have to be mindful that
what we see in the Designer is not exactly what ’ s going on behind the report design surface.

 You ’ ll recall that you can build simple composite expressions in a textbox by dragging items from the
Report Data pane into a textbox. For example, if you want to display the page number and total number
of report pages in the page footer, insert a textbox into the page footer and do the following:

 1. Drag the PageNumber built - in field from the Report Data pane into the textbox.

 2. Place the cursor at the end of this text, hit the space bar, type the word of , hit the space bar, and
then drag the TotalPages built - in field to the end of the text.

Figure 8-45

c08.indd 268c08.indd 268 11/13/08 4:35:24 PM11/13/08 4:35:24 PM

Chapter 8: Advanced Report Design

269

 This produces an expression that appears like this in the Report Designer:

[& PageNumber] of [& TotalPages]

 After the cursor leaves the textbox, the Report Designer displays the following nondescriptive label
in gray:

 < < Expr > >

 Now let ’ s get to the bottom of this. What value is really stored in this textbox? Right - click and choose
Expression to find out. This opens the Expression Builder dialog to reveal the true identity of the
expression. If you ’ ve worked with previous versions of Reporting Services, this will look very familiar.
That ’ s right — it ’ s the same Visual Basic expression code that Reporting Services has used all along.
Nothing has changed except the Report Designer user interface. The expression built by doing the drag -
 and - drop thing in the Designer is really just a simplified shorthand representation of this VB expression
that Reporting Services stores in the RDL file:

=”Page “ & Globals!PageNumber & “ of “ & Globals!TotalPages

 There ’ s a little history behind this that may be worth pointing out. You ’ ll recall that Reporting Services
was originally designed to be an application developer - centric tool, used by programmers in Microsoft
Visual Studio. As time went on and the product matured, the powers - that - be at Microsoft took a good
hard look at Reporting Services and realized that the industry was asking for a more information
worker - centric reporting tool. Several incremental steps have helped Reporting Services become this
dual - identity product that appeals to both programmers and business users. The downside is that, in
places, the product can be a bit schizophrenic. In addition to the Designer ’ s drag - and - drop expressions
and the Expression Editor ’ s expression syntax differences, the built - in fields in the Report Data pane are
referred to as members of the Globals collection within true report expressions. The term built - in fields is
just a friendly term and not a syntax convention.

 Using the Expression Builder
 You ’ ve already used a few expressions in the basic report design work you ’ ve done so far. Any field
reference is an expression. In the Group Properties dialog, you used a field expression. In an earlier
example (Figure 8 - 10), we created a report template and used an expression to show the page number
and total pages so that it reads Page X of Y when the report is rendered. Expressions are used to create a
dynamic value based on a variety of built - in fields, data - set fields, and programming functions.
Expressions can be used to set most property values based on a variety of conditions, parameters, field
values, and calculations. Let ’ s take a quick look at common methods to build simple expressions. We ’ ll
use the same example as before, only this time in the Expression Builder.

 To display the page number and page count, right - click on the textbox and in the dropdown list, select
Expression, and use the Expression window to create the expression. There are two different ways to
enter the expression. One method is to select and paste items from the object tree and member lists. You
can either double - click on an item or click Paste to add items to the expression. The other method is
to simply type text into the expression text area. This uses the IntelliSense Auto List Members feature to
provide dropdown lists for known items and properties.

c08.indd 269c08.indd 269 11/13/08 4:35:24 PM11/13/08 4:35:24 PM

Part II: Report Design

270

 1. Begin by typing

 =”Page” &

 in the Expression box, and then click the Built - in Fields item on the object tree view. All related
members are listed in the adjacent list box.

 2. Double - click on the PageNumber item in the list.

 3. Place the cursor at the end of the text, and type the text

 & ”of ” &

 and then select and insert the TotalPages field.

 The finished expression should read as follows:

=”Page “ & Globals!PageNumber & “ of “ & Globals!TotalPages

 The Expression window (also called the Expression Builder) should appear, as shown in Figure 8 - 46 .

Figure 8-46

 The term globals (or built - in Fields) applies to a set of variables built in to Reporting Services that provide
useful information like page numbers. A list of available global variables, fields, and parameters can be
found in the Expression Builder.

 As mentioned, you ’ ll see this dialog again. In fact, it ’ s something that you will likely use quite a bit.
In the Properties window, you can set many property values by using the dropdown list to select the
item labeled < Expression . . . > . In the custom Properties dialog for each report item, the Expression dialog
is invoked using the buttons labeled fx adjacent to each property value. In the previous chapter, you

c08.indd 270c08.indd 270 11/13/08 4:35:24 PM11/13/08 4:35:24 PM

Chapter 8: Advanced Report Design

271

learned how parameter values are passed into a query to limit or alter the result set. Parameters may also
be used within the report to modify display characteristics by dynamically changing item properties.

 Calculated Fields
 Custom fields can be added to any report and can include expressions, calculations, and text manipulation.
This might be similar in functionality to alias columns in a query or view, but the calculation or expression
is performed on the Report Server after data has been retrieved from the database. Calculated field
expressions can also use Reporting Services global variables and functions that may not be available in a
SQL expression.

 Let ’ s start with a report you have already seen and replace a simple expression previously used in a
textbox with a calculated field. This is the Product Details report we used in the Subreport section, prior
to placing the Product Orders Subreport into the list data region. Figure 8 - 47 shows a textbox used to
calculate the profit margin for each product by subtracting the StandardCost field from the ListPrice.
The Expression dialog is shown for this textbox.

Figure 8-47

 Rather than performing the calculation on the textbox, let ’ s add a calculated field to the data - set
definition so that this calculation can be reused by other objects in the report.

 Use the Report Data pane in the Report Designer to select the dataset that you want to use. Right - click
on the dataset, and choose Add Calculated Field (see Figure 8 - 48).

c08.indd 271c08.indd 271 11/13/08 4:35:25 PM11/13/08 4:35:25 PM

Part II: Report Design

272

 The Dataset Properties dialog opens. In the Fields page, click on the Add button to add a new item to the
Fields collection. Type the new field name, and then click the expression button (fx) next to the Field
Source box on this new row.

 When the Expression dialog opens, simply type or build the same expression as before. Verify the results
with Figure 8 - 49 , and then click OK on both of these dialogs to save the newly calculated field to the
dataset.

Figure 8-48

Figure 8-49

c08.indd 272c08.indd 272 11/13/08 4:35:25 PM11/13/08 4:35:25 PM

Chapter 8: Advanced Report Design

273

 Using the calculated field is no different from using any other field derived from the data - set query.
Just drag and drop the new field from the Report Data pane to the textbox on the report. Note the
ProductProfit field reference in the textbox, as shown in Figure 8 - 50 .

Figure 8-50

 You can use the expression button to invoke the Expression Builder to use any functionality available
within the design environment in addition to the database fields exposed by the data - set query. These
calculations will be performed on the Report Server rather than on the database server.

 Conditional Expressions
 You ’ ve seen some simple examples of using expressions to set item values and properties. Let ’ s take a
look at one more example of a conditional expression, and then we ’ ll discuss using program code to
handle more complex situations. We ’ re using the Conditional Formatting 1 report in the Chapter 8
sample project. The table in this report returns a list of products with current inventory values. The
Product table in the AdventureWorks2008 database contains a ReorderPoint value that informs stock
managers when they need to reorder products. If the inventory count falls below this value, you can set
the inventory quantity to appear in red next to the name. Using a conditional expression in this manner
is similar to using conditional formatting in Excel.

 The following example uses a dataset with the SQL expression:

SELECT Product.Name, Product.ReorderPoint
 , ProductInventory.Quantity
FROM ProductInventory INNER JOIN Product
 ON ProductInventory.ProductID = Product.ProductID
ORDER BY Product.Name

c08.indd 273c08.indd 273 11/13/08 4:35:26 PM11/13/08 4:35:26 PM

Part II: Report Design

274

 The table bound to this dataset has three columns: Name, ReorderPoint, and Quantity. On the Quantity
textbox in the detail row of the table, the Color property is set to an expression containing conditional
logic instead of set to a value. You can use the Expression Builder or just type this expression into the
Properties window under the Color property:

=IIF(Fields!Quantity.Value < Fields!ReorderPoint.Value, “Red”, “Black”)

 We ’ ve also done the same thing with the Font > FontWeight property so that if the inventory quantity
for a product is below the reorder point value, the quantity is displayed in both red and bold text.

 Preview the report to check the results; these should be as shown in Figure 8 - 51 .

Figure 8-51

 IIF() Is Your Friend
 Even if you ’ re not a programmer, learning a few simple Visual Basic commands and functions will prove
to be very valuable and will likely meet the vast majority of your needs. The most common and useful
function you ’ re likely to use in simple expressions is the IIF (Immediate If) function. As you saw in the
previous example, the IIF() function takes three arguments. The first is an expression that returns
either True or False . If the expression is True , the value passed into the second argument is returned.
Otherwise (if the first expression is False), the third argument value is returned. Take another look at
the expression used in the previous example:

=IIF(Fields!Quantity.Value < Fields!ReorderPoint.Value, “Red”, “Black”)

c08.indd 274c08.indd 274 11/13/08 4:35:34 PM11/13/08 4:35:34 PM

Chapter 8: Advanced Report Design

275

 If the expression Fields!Quantity.Value < Fields!ReorderPoint.Value yields a True result
(where the Quantity is less than the ReorderPoint), the value “ Red ” is returned. Otherwise the value
returned is “ Black ” .

 In cases where an expression may return more than two states, IIF() functions can be nested to form
multiple branches of logic. In this example, three different conditions are tested:

=IIF(Fields!Quantity.Value < Fields!ReorderPoint.Value, “Red”,
IIF(Fields!ListPrice.Value > 100, “Blue”, “Black”))

 Let ’ s analyze the logic. If Quantity is not less than the ReporderPoint , the third IIF() function
argument is invoked. This contains a second IIF() function, which tests the ListPrice field value. If
the value is greater than 100 , the value “ Blue ” is returned; otherwise, the return value is “ Black ” .
According to the definition of this function, the second argument is the “ TruePart ” value, and the third
argument is the “ FalsePart ” value. This means that the value in the second position is returned if the
expression evaluates to True , and the value in the third position is returned if it is False .

 Beyond the simplest of nested functions, expressions can be difficult to write and to maintain. In
addition to decision structures, you can use common functions to format the output, parse strings, and
convert data types. Count the opening and closing parentheses to make sure that they match. This is yet
another example of where writing this code in a Visual Basic class library or forms project is helpful
because of the built - in code - completion and integrated debugging tools. Consider using these other
functions in place of nested IIF() functions.

 The SWITCH() function accepts an unlimited number of expression and value pairs. The last argument
accepts a value that is returned if none of the expressions resolves to True . You can use this in place of
the previous nested IIF() example:

=SWITCH(Fields!Quantity.Value < Fields!ReorderPoint.Value, “Red”,
 Fields!ListPrice.Value > 100, “Blue”, 1=1, “Black”)

 A completed version of the sample report containing this modification is named Conditional Formatting 2 .

 Unlike the IIF() function, there is no FalsePart value. Each expression and return value are passed as
a pair. The first expression in the list that evaluates to True causes the function to stop processing and
return a value. This is why we included the expression 1=1 . Since this expression will always evaluate to
 True , this becomes the catch - all expression that returns “ Black ” if no other expressions are True .

 Visual Basic .NET supports many of the old - style VBScript and VB 6.0 functions, as well as newer overload
method calls. In short, this means that there may be more than one way to perform the same action.

c08.indd 275c08.indd 275 11/13/08 4:35:35 PM11/13/08 4:35:35 PM

Part II: Report Design

276

The following table contains a few other Visual Basic functions that may prove to be useful in basic
report expressions:

 Function Description Example

 FORMAT() Returns a string value formatted
using a regular expression format
code or pattern. Similar to the
Format property but can be
concatenated with other string
values.

 =FORMAT(Fields!TheDate
.Value, “ mm/d/yy “)

 MID()

LEFT()

 RIGHT()

 Returns a specified number of
characters from a specified
position [if using MID()] and for a
specific length. You can also use
the .SUBSTRING() method.

 =MID(Fields!TheString
.Value, 3, 5)

 =LEFT(Fields!TheString
.Value, 5)

= Fields!TheString.Value
.SUBSTRING(2, 5)

 INSTR() Returns an integer for the first
character position of one string
within another string. Often used
with MID() or SUBSTRING() to
parse strings.

 =INSTR(Fields!TheString
.Value, “ , ”)

 CSTR() Converts any value to a string
type. Consider using the newer
 TOSTRING() method.

 =CSTR(Fields!TheNumber
.Value)

 =Fields!TheNumber
.Value.TOSTRING()

 CDATE()

CINT()

 CDEC()

...

 Type conversion function similar
to CSTR () . Used to convert any
compatible value to an explicit
data type. Consider using the
newer CTYPE() function to
convert to an explicit type.

 =CDATE(Fields!TheString
.Value)

 =CTYPE(Fields!TheString
.Value, Date)

 ISNOTHING() Tests an expression for a Null
value. May be nested within an
 IIF() to converts nulls to another
value.

 =ISNOTHING(Fields!TheDate
.Value)

 =IIF(ISNOTHING(Fields!The
Date.Value), “ n/a ” ,
Fields!TheDate.Value)

 CHOOSE() Returns one of a list of values
based on a provided integer index
value (1, 2, 3, etc.).

 =CHOOSE(Parameters!Font
Size.Value, “ 8pt “ ,
 “ 10pt ” , “ 12pt ” , “ 14pt “)

 There are hundreds of Visual Basic functions that can be used in some form, so this list is just a starting
point. For additional assistance, view the Online Help index in Visual Studio, under Functions
[Visual Basic]. This information is also available in the public MSDN library at msdn.Microsoft.com.

c08.indd 276c08.indd 276 11/13/08 4:35:35 PM11/13/08 4:35:35 PM

Chapter 8: Advanced Report Design

277

 Using Custom Code
 When you need to process more complex expressions, it may be difficult to build all the logic into one
expression. In such cases, you can write your own function to handle different conditions and call it from
a property expression.

 There are two different approaches for managing custom code. One is to write a block of code to define
functions that are embedded into the report definition. This technique is simple, but the code will be
available only to that report. The second technique is to write a custom class library compiled to an
external .NET assembly and reference this from any report on your Report Server. This approach has the
advantage of sharing a central repository of code, which makes updates to the code easier to manage.
The downside of this approach is that the configuration and initial deployment are a bit tedious.

 Why Visual Basic?
 Before releasing the .NET Framework in 2002, Microsoft offered two significant programming languages
with very different capabilities. The C++ language was for very serious programming but required
serious programming skills. The Visual Basic language has long been the flagship extension to practically
all Microsoft desktop products. VB programming emphasizes simplicity and ease - of - use. Along with the
framework, a new language, called C# (“ C - sharp ”) was created to use all of the new .NET capabilities.
The Visual Basic language underwent a major overhaul to bring it up to speed with the framework. One
of the goals of the .NET platform was to separate the capabilities of the framework from the syntax of the
languages. Since the inception of .NET, there has been a long - standing debate over the relative strengths
and weaknesses of these two languages. Although there have been numerous articles and white papers
comparing VB and C#, even industry experts have been reluctant to make broad statements about one
language being superior to another. An unspoken belief among seasoned professionals is that C# is the
 “ more serious ” programming language.

 At the pre - launch event for SQL Server 7.0 in 1998, Steve Ballmer offered career advice to the many database
administrators in attendance. His advice was to learn Visual Basic programming. This seemed like a bold
statement to make to the System Admin (rather than the developer) community. Years later, this advice
seems apropos given that Windows services — including the file and directory systems, Web Server, and
database transformation services — may all be scripted and automated using Visual Basic code.

 When Reporting Services was still in beta test phase, I was asked to make a presentation for the .NET
Programmers User Group at Microsoft campus. When I announced that Reporting Services supports
only Visual Basic embedded code, half the group was nearly transformed into a lynch mob — and I was
looking for an exit. Why was VB chosen over C#? Was this an effort to “ dummy down ” or simplify
report programming? Perhaps VB is the “ lowest - common denominator ” of the languages. At a lunch
meeting with members of the Reporting Services product development team, I posed this question. Jason
Carlson told me that they chose VB because it ’ s a natural expression language. In most cases, conditional
report logic must be processed in one line of code. The C# language, although powerful, tends to require
multiple lines, whereas multiple functions can be nested in one line using a VB expression. I have used
both languages, but as a long - time VB programmer, I was delighted to learn that VB was clearly a better
choice for this job.

 Using Custom Code in a Report
 A report can contain embedded Visual Basic .NET code that defines a function you can call from
property expressions. The Code Editor window is very simple and doesn ’ t include any editing or
formatting capabilities. For this reason, you might want to write the code in a separate Visual Studio

c08.indd 277c08.indd 277 11/13/08 4:35:36 PM11/13/08 4:35:36 PM

Part II: Report Design

278

project to test and debug before you place it into the report. When you are ready to add code, open the
Report Properties dialog. You can do this from the Report menu. The other method is from the Report
Designer right - click menu. Right - click on the Report Designer outside of the report body, and select
Properties. On the Properties window, switch to the Code tab, and write or paste your code in the
Custom Code box.

 The following example starts with a new report. Here is the code along with the expressions that you
will need to create a simple example report on your own. The following Visual Basic function accepts a
phone number or Social Security Number (SSN) in a variety of formats and outputs a standard
U.S. phone number and properly formatted SSN. The Value argument accepts the value, and the Format
argument accepts the values Phone or SSN. You ’ re only going to use it with phone numbers, so you can
leave the SSN branch out if you wish.

‘***
‘ Returns properly formatted Phone Number or SSN
‘ based on Format arg & length of Value arg
‘ PT
‘***
Public Function CustomFormat(Value as String, Format as String) as String
 Select Case Format
 Case “Phone”
 Select Case Value.Length
 Case 7
 Return Value.SubString(0, 3) & “-” & Value.SubString(3, 4)
 Case 10
 Return “(“ & Value.SubString(0, 3) & “) “ _
 & Value.SubString(3, 3) _
 & “-” & Value.SubString(6, 4)
 Case 12
 Return “(“ & Value.SubString(0, 3) & “) “ _
 & Value.SubString(4, 3) & “-” & Value.SubString(8, 4)
 Case Else
 Return Value
 End Select
 Case “SSN”
 If Value.Length = 9 Then
 Return Value.SubString(0, 3) & “-” _
 & Value.SubString(3, 2) & “-” & Value.SubString(5, 4)
 Else
 Return Value
 End If
 Case Else
 Return Value
 End Select
End Function

c08.indd 278c08.indd 278 11/13/08 4:35:36 PM11/13/08 4:35:36 PM

Chapter 8: Advanced Report Design

279

 The dataset in this report gets its data from the Vendor and related tables in AdventureWorks2008 and
returns three columns: FirstName, LastName, and Phone. The SQL expression used to retrieve this
information is as follows:

SELECT Contact.FirstName, Contact.LastName, Contact.Phone
FROM Vendor
 INNER JOIN VendorContact ON Vendor.VendorID = VendorContact.VendorID
 INNER JOIN Contact ON VendorContact.ContactID = Contact.ContactID

 These three columns are used in a table bound to the dataset. The Value property of the Phone column
uses an expression that calls the custom function preceded by a reference to the Code object:

=Code.CustomFormat(Fields!Phone.Value, “Phone”)

 Figure 8 - 52 shows the report in design layout view. I didn ’ t think you needed to see a preview of the
report. It ’ s a list of contacts with a properly formatted phone number. Trust me.

Figure 8-52

 Using a Custom Assembly
 Rather than embedding code directly into each report, using a custom assembly can be a central
repository of reusable code to extend the functionality of multiple reports. In Reporting Services, custom
assembly support is enabled by default. However, the code in the assembly will have restricted access to
system resources. If you intend for the assembly to interact with the filesystem or perform data access,
you will need to modify some configuration settings in order to grant the appropriate level of access to
your code. We ’ ll discuss these conditions after a simple walk - through to create an assembly that won ’ t
require any special settings.

 To begin, create a class module project. You can write this code in any .NET language since it ’ s going to
be built into an assembly. The methods you create can be either static or instanced. It ’ s a little easier
to use static methods so that you don ’ t have to manage the instancing and life of each object. This simply
means that you will declare public functions in your class using the Static keyword in C# or the

c08.indd 279c08.indd 279 11/13/08 4:35:36 PM11/13/08 4:35:36 PM

Part II: Report Design

280

 Shared keyword in Visual Basic. Using the same code logic as in the previous example, the Visual Basic
class code would look like this:

Public Class Report_Formats
 ‘***
 ‘ Returns properly formatted Phone Number or SSN
 ‘ based on Format arg & length of Value arg
 ‘ PT
 ‘***
 Public Shared Function CustomFormat(Value as String _
 , Format as String) as String
 Select Case Format
 Case “Phone”
 Select Case Value.Length
 Case 7
 Return Value.SubString(0, 3) & “-” _
 & Value.SubString(3, 4)
 Case 10
 Return “(“ & Value.SubString(0, 3) & “) “ _
 & Value.SubString(3, 3) _
 & “-” & Value.SubString(6, 4)
 Case 12
 Return “(“ & Value.SubString(0, 3) & “) “ _
 & Value.SubString(4, 3) & “-” _ & Value.SubString(8, 4)
 Case Else
 Return Value
 End Select
 Case “SSN”
 If Value.Length = 9 Then
 Return Value.SubString(0, 3) & “-” _
 & Value.SubString(3, 2) & “-” _ & Value.SubString(5, 4)
 Else
 Return Value
 End If
 Case Else
 Return Value
 End Select
 End Function
End Class

 After debugging and testing the code, save and build the class library project in Release configuration,
and then copy the assembly (DLL) file to the ReportServer\bin folder. The default path to this folder is
C:\Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin.

 In the Report Properties dialog (this is where you entered the code in the previous topic example), select
the References page, and add the reference by browsing to the assembly file. The reference line shows
metadata from the assembly, including the version number, as you can see in Figure 8 - 53 .

c08.indd 280c08.indd 280 11/13/08 4:35:36 PM11/13/08 4:35:36 PM

Chapter 8: Advanced Report Design

281

 To use a custom method in an expression, reference the namespace, class, and method using standard
code syntax. The expression for the CustomFormat method should look like this:

=Reporting_Component.Report_Formats.CustomFormat(Fields!Phone.Value, “Phone”)

 The report should look exactly as it did in the previous example.

 Custom Assembly Security
 When using a custom assembly deployed to your Report Server, the assembly must run with the
appropriate level of security access. This is a common challenge for all server - side .NET applications.
A thorough discussion of this topic is beyond the scope of this book. If you are a seasoned developer,
these should be familiar topics, and if you are not, you should consult a .NET application developer to
assist with the configuration of your custom assemblies.

 In short, the steps to deploy and configure an assembly to run on your Report Server are not much
different from any other remotely deployed component, and the permissions will depend on the
resources used by the assembly. For example, a component that interacts with the local filesystem or
consumes features of another component or database connections will require privileges to do so.
The following are some of the more common steps to make custom assemblies more accessible:

 1. Build the assembly with a strong name. Use the SN.exe command - line utility to create a
strongly named key pair, and then reference the generated key file within the AssemblyInfo
class file in the class library project.

 2. Register the assembly in the Global Assembly Cache (GAC) on the Report Server. Not only does
this elevate the trustworthiness for the assembly, it also provides downward version
compatibility control.

Figure 8-53

c08.indd 281c08.indd 281 11/13/08 4:35:37 PM11/13/08 4:35:37 PM

Part II: Report Design

282

 3. You can apply the AllowPartiallyTrustedCallers assembly attribute to allow the Reporting
Services engine to call into this code.

 4. You can explicitly enable nondefault security permissions for the assembly using policy
configuration files. Two files are used to manage these permissions. The rssrvpolicy.config
file controls assembly permissions for the development and preview environment.
The rspreviewpolicy.config file controls permissions on the Report Server.

 For additional assistance with specific security considerations and configuration details, use SQL Server
2008 Books Online to look up the topic “ Using Reporting Services Security Policy Files. ”

 Errors, Warnings, and Debugging Code
 When you preview or try to deploy a report, all the expressions and embedded code in the report are
cranked through the .NET Common Language Runtime debugger and native code compiler. If no errors
are found, an assembly is built on the Report Server. This means that when reports execute, all the
expression and program code actually run from compiled binaries rather than from the Visual Basic
source code.

 Errors are listed in the task list if this process fails. The Report Designer has a quirk that can be a bit
confusing until you get used to it. Along with errors that prevent the code compiling and report
deployment, there is another set of information that shows up in this list. Some conditions may cause
Reporting Services to be less than ecstatic with your code but not unhappy enough to prevent it from
compiling. These are called warnings , and they appear on the task list below any errors. The confusing
thing is that Visual Studio displays this list only when errors occur. This means that you can build a big,
elaborate report that runs perfectly until you make one, small mistake in the code. When you try to
preview this report, you might suddenly see 30 issues displayed on the task list. These may include
 “ can ’ t deploy shared datasource … ” and “ textbox42 has a BackgroundColor set to … which is invalid. ”
If this happens to you, don ’ t get too excited — this is just the way the Designer works. Those warnings
were there all along. Visual Basic just didn ’ t put the list in front of you until you committed a serious
infraction. Start at the top of the list, and work down until you see an error description that makes sense.
Double - click on this line. In most cases, this will go to the properties for the offending report item,
allowing you to make the correction and move on.

 When testing reports in the Visual Studio Report Designer, your custom assembly is loaded into
memory when it is first invoked and cannot be unloaded until you exit Visual Studio. This means that if
you make code changes and re - deploy the assembly, these changes may not be available to the report
unless you cycle the Visual Studio application. The best way to work around this is to make a point to
deploy your report to your local Report/Web Server and test it using the Report Manager.

 Char t Repor ts
 The charting capabilities in SQL Server 2008 Reporting Services have been amped up significantly
since the product was released. The fact is that charting was pretty good to begin with, but there ’ s
always room for improvement. A chart data region is based on a dataset just like any data region and
uses groups, query parameters, and filters in much the same way as a table, list, or matrix.

 The original chart capabilities in Reporting Services for SQL Server 2000 were based on the 2003 edition
of Dundas Charts from Dundas Software. Microsoft licensed this code, and Dundas went on to add new

c08.indd 282c08.indd 282 11/13/08 4:35:37 PM11/13/08 4:35:37 PM

Chapter 8: Advanced Report Design

283

features while the feature set in Reporting Services remained fairly constant and unchanged through the
2005 version. The 2008 version brings a relatively full - featured adaptation of the current Dundas Charts
feature set. The product team has done an impressive job of making chart design behave a lot like the
rest of the report design experience.

 Because charts are now so capable and feature - laden, you can take them as far as you need to.
Subsequently, the effort necessary for chart design may range from very simple to very tedious. Having
been down this road many times, I recommend that after you familiarize yourself with charting basics,
you approach design with some specific design objectives. Otherwise, you ’ re likely to get lost in the
interface.

 Why use a chart to present data? After all, isn ’ t a chart simply a graphical representation of a group of
numbers? Wouldn ’ t rows and columns of values be just as effective? To fully understand the impact and
perhaps the importance of presenting information graphically, it ’ s important to understand the needs
and objective of the report reader and how the information will be used.

 Analyzing information is usually a process rather than a single event. Regardless of the type of business
or industry, users typically approach business information in stages. First, it ’ s important to consider the
different roles of users in order to understand their respective stages of information discovery. Some may
have a specific task they perform, and the information they use will be focused on that task. Other users
may be leaders and decision - makers in various capacities, whose objectives are more broad and complex.

 Consider the CEO whose first objective is often to find out whether there are any disasters to address.
This executive isn ’ t concerned with specific details or even short - term trends, but in getting a meter
reading on the business. After the CEO learns that there are no fires to put out, the next objective is to get
a broad view of sales and productivity trends for different areas of the business. Typically, one of the
most important questions addressed by effective business reporting solutions is “ How Are We Doing? ”
Depending on the size and type of business, a high - level leader may also be interested in understanding
some of the lower - level details regarding operations, production, sales, and other business specifics.
Executives typically benefit from dashboard - type reports that provide the high - level status information
they use to take periodic business meter readings. Executives also need access to more detailed
information to be used for occasional follow - up but will usually get their information from others.

 Contrast the perspective of the CEO with that of the operational business leaders: the Sales Manager,
Marketing Director, or Production Manager. These people need to have their finger on the pulse of
specific business areas. They will be concerned with short - and long - term trends in their respective areas
of responsibility. Questions to be answered for operational leaders might be “ What products or
campaigns are successful and which are not? ” or “ Who are my top (and bottom) producers? ” Unlike the
CEO, these individuals must be connected with every aspect of their micro - organization and must be
armed with detailed, accurate information so that they can make proactive decisions.

 Consider that some users might need to have information spoon - fed to them in a specific format,
whereas others might want to explore data — pivoting, sorting, and grouping it themselves.

 Chart Types
 Some of the more common chart types (like column, bar, line, and area) can be used for different views
of the same data. Pie and doughnut charts present a more simplified view and work well with fewer
dimensions. Other charts are more specialized and may be appropriate for multi - value data points,
range values, and variances.

c08.indd 283c08.indd 283 11/13/08 4:35:38 PM11/13/08 4:35:38 PM

Part II: Report Design

284

 When a report is viewed, the chart output is rendered to a bitmap and streamed to a PNG - type image.
This image is then linked or embedded in the report. There are 12 general chart types available, as
described in the following table:

 Chart Type Description

 Column This is a classic vertical bar chart with columns representing values along the Y - axis.
Like - valued items along the X - axis are grouped together, and bars representing the
same X - axis values in each group have the same colors or patterns. Series values may
also be grouped and subgrouped. Columns can have point labels, and the colored
bars may be labeled using a legend. Columns may be arranged side - by - side (along the
X - axis) or in front of one another (along the Z - axis.) Columns may appear to be
extruded from their base using a rectangular or circular (cylindrical) shape.

 Bar This is functionally the same as a column chart turned 90 ̊ . It has the advantage of
more accurately depicting value comparisons for layouts in which you have more
available horizontal space.

 Area Like a column chart with a trend line drawn from one point to the next in the series.
This type of chart is appropriate for a series of values that tend to progress over a
relatively even plane that describes a “ level, ” “ up, ” or “ down ” trend. It is not at all
appropriate for series values that tend to jump around. The solid shading of the
charted area depicts a volume of data values.

 Line Like the area chart, but the area of the charted area isn ’ t filled. This type of chart is
useful for comparing multiple series (along the Z - axis) without obscuring trend lines
behind a series.

 Pie The classic pie chart is an excellent tool for comparing relative values. Unlike bar,
column, line, and area charts, the aggregate value isn ’ t quantified. Users understand
pie charts because they put comparative values into a proportional context and can
drive quick decision support at a glance. Pie chart views can be exploded to visually
separate each slice.

 Doughnut A doughnut is a pie with a hole in the middle. A three - dimensional (3D) doughnut
rendering may expose smaller slices more clearly than a pie chart since each slice has
four sides rather than three.

 Scatter Plots several points in a range (both X and Y) to show trends and variations in value.
The result is more like a cloudy band of points rather than a specific aggregated point
or line.

 Bubble This chart is a technique for charting points on three dimensions. Values are plotted
using different sized points, or bubbles, on a two - dimensional (2D) grid. The size of
the bubble indicates the related value along the Z - axis.

c08.indd 284c08.indd 284 11/13/08 4:35:38 PM11/13/08 4:35:38 PM

Chapter 8: Advanced Report Design

285

 Chart Type Description

 Stock This chart plots values vertically like a column chart. For each item along the Y - axis
series, a vertical line indicates a start and end value for the range. A tick mark in the
line can indicate a significant value in that range or an aggregation of the range. This
type of chart is useful for showing trading stocks with opening, closing, and purchase
values; wholesale, retail, and discount prices and so on.

 Shapes Shape charts like the funnel and pyramid are effectively a single, stacked column
chart. These are typically used to model sales and production against goals, and sales
opportunity pipelines.

 Ranges Range and Gantt charts are often used to visualize project phases and the progress of
stages in a process.

 Polar Polar and radar charts plot points from a central hub at different angles and distances
in a radial fashion.

 Column Charts
 The chart shown in Figure 8 - 54 is an example of a simple column chart. The X - axis series values are
product categories, and the Y - axis values represent annual sales revenue. In this view, the legend at the
bottom indicates the X - axis series values. Several visual elements can be modified to alter the color,
shading, borders, text, formatting, labeling, and value placement. This figure shows the default property
settings.

Figure 8-54

c08.indd 285c08.indd 285 11/13/08 4:35:38 PM11/13/08 4:35:38 PM

Part II: Report Design

286

 Figure 8 - 55 shows the same chart with 3D modeling.

Figure 8-55

 You can use 3D modeling to show data in a more interesting presentation, but this can also be distracting
and less effective for analysis. Figure 8 - 56 shows a more extreme 3D view of the same data with
perspective. This chart is set up with a fairly extreme 3D and perspective view, just to show you what
can be done. This type of view tends to distort the values, and the clustering (stacking the columns along
the Z - axis) can hide some columns from view.

Figure 8-56

 You have control over several 3D properties to generate more realistic representation of the chart data.
Be careful to maintain the appropriate balance between artistry and accuracy. Notice that it ’ s difficult to
quantify and distinguish the difference in height between the front - right column and the right - most
column in the back. The degree to which it makes sense to use these features will depend largely on the

c08.indd 286c08.indd 286 11/13/08 4:35:39 PM11/13/08 4:35:39 PM

Chapter 8: Advanced Report Design

287

purpose of the chart. Is it sufficient to demonstrate that one data point is less than or greater than
another, or do these points need to be strictly measurable? This type of view can be effective for making
an impact, but a flatter view is usually more appropriate to maintain accuracy.

 Figure 8 - 57 is a 3D view with cylindrical columns arranged in a clustered formation. When used
correctly and in appropriate moderation, this 3D chart adds a sense of realism while remaining readable.

Figure 8-57

 Stacked Charts
 Column and bar charts can have their bars stacked. This appends the different colored bars (for a like
series value) into one bar with multiple colored bands. This may be an appropriate method for showing
the accumulation of all values within the series point. The individual values are displayed in a different
color as a percentage of the bar. In essence, each bar becomes like a linear pie chart (see Figure 8 - 58).

Figure 8-58

c08.indd 287c08.indd 287 11/13/08 4:35:39 PM11/13/08 4:35:39 PM

Part II: Report Design

288

 To emphasize the proportion of like values rather than the comparative accumulation, the 100 percent
stacked view (not pictured) will make all of the bars in the chart the same length rather than depicting
the sum of all the values in the bar.

 Area and Line Charts
 An area chart plots the values of each point and then draws a line from point to point to show the
progression of values along the series. This is an effective method for analyzing trends and works well
when values tend to climb, decline, or remain level in the series. This type of chart is accurate when data
exists for all category values on the X - axis. It typically doesn ’ t work well to express a series of values
that are not in a relatively uniform plane. Figure 8 - 59 is an example of an area chart.

Figure 8-59

 A line chart is a variation of an area chart using a line or ribbon rather than a solid area. The line chart
works better than the area chart for comparing multiple categories for a series of values, as one layer
may obscure another in the area view. In the preceding example, the area chart works because values are
sorted in a way that larger values are in the background and other points in the foreground are smaller,
and the trend increases back to front.

 Pie and Doughnut Charts
 A pie chart is an excellent tool for comparing proportional values. Display options for a pie chart include
exploded and 3D views. The 3D pie chart in Figure 8 - 60 clearly shows that Touring Bike sales are a small
percentage, around 10 percent of total Bike Sales, and that Road Bike sales account for about half of the
total sales. I call this piece “ Pacman Gets a Root Canal. ”

c08.indd 288c08.indd 288 11/13/08 4:35:40 PM11/13/08 4:35:40 PM

Chapter 8: Advanced Report Design

289

 A doughnut chart is a pie chart with a hole in it. This is a rather profound concept, isn ’ t it? Actually, in
cases in which there may be several smaller slices, the doughnut chart can be a little easier to read and
provides a little variation on an age - old chart theme. The chart shown in Figure 8 - 61 is the same as the
previous chart without the exploded view and a legend showing the series labels.

Figure 8-60

Figure 8-61

 Pie charts traditionally are used to show multiple slices representing their data point percentage of the
whole. In the usual form, data values grouped on another axis will result in slices automatically generated
with the same style settings and contrasting colors from a standard color pallet. There are eight color
pallets provided in the Designer. Sometimes data may need to be presented as a percentage value, or you
might simply have two values and need to express one as a percentage of the other. This is possible by
adding multiple value groups to the chart with each representing a specific slice. In Figure 8 - 62 , only
two values are presented. In this example, values in the dataset exist for Bike Sales and Total Sales. Using
an expression or a calculation in the query, subtracting Bike Sales from the total provides a value for
Other Sales.

c08.indd 289c08.indd 289 11/13/08 4:35:41 PM11/13/08 4:35:41 PM

Part II: Report Design

290

 I created a specific group for these two values. Another advantage of using this approach is that you can
set the color and styles for each slice independently.

 Bubble and Stock Charts
 Bubble charts are essentially a point plotted in a grid representing three dimensions. The value of the
Z - axis is expressed by the size of the bubble. Imagine that the bubble exists in a 3D plane and will appear
large if it is closer to you. Actually the “ bubble ” can be a circle, square, triangle, diamond, or cross shape.
This also means that a combination of shapes can be used to represent different data elements in the
same chart space.

 In Figure 8 - 63 , employees ’ vacation and sick hours are plotted above their names. The number of
vacation hours is represented by the bubble ’ s vertical distance from the 0 baseline, and the number of
sick hours is represented by the size of the bubble.

Figure 8-62

Figure 8-63

 The chart shown in Figure 8 - 64 is a stock chart. For each product, a line is plotted to span a range of
values and has a large tick mark to indicate the position of a value within the high/low range. In this
example, the beginning (lowest point of the line) of the range is the standard cost of the product. The tick
mark represents the last receipt cost, and the high range of the line is the list price.

c08.indd 290c08.indd 290 11/13/08 4:35:41 PM11/13/08 4:35:41 PM

Chapter 8: Advanced Report Design

291

 The Anatomy of a Chart
 There is typically a lot of detail work involved in chart design and many properties to manage.
Figure 8 - 65 shows the major property groups for charts. Although some charts have a few unique
properties and some may not support all properties, generally these properties are shared across all
chart types.

Figure 8-64

Figure 8-65

 The chart is just a container, and the chart area does most of the work.

 After placing the chart in the report body, you can drag fields from the Dataset window directly onto the
chart design surface. At minimum, a chart should have one aggregated field for the value and one
grouped field for the category. The category and series groups represent the X - axis and Y - axis in bar,
column, line, area, and point charts.

c08.indd 291c08.indd 291 11/13/08 4:35:42 PM11/13/08 4:35:42 PM

Part II: Report Design

292

 Char t Design Basics
 To get started with chart design, let ’ s start with a column chart, the most basic report type. After
designing a single axis report, you ’ ll add some additional functionality. Finished copies of all these
reports are in the Chapter 8 sample project.

 First, create a new report, and add a data source for the following data - set query. The same query is used
in all the chart examples:

SELECT
 DimDate.CalendarYear AS Year
 , DimDate.EnglishMonthName AS Month
 , DimSalesTerritory.SalesTerritoryCountry AS Country
 , SUM(FactResellerSales.OrderQuantity) AS Qty
 , SUM(FactResellerSales.TotalProductCost) AS Cost
FROM
 DimSalesTerritory INNER JOIN FactResellerSales
 ON DimSalesTerritory.SalesTerritoryKey = FactResellerSales.SalesTerritoryKey
 INNER JOIN DimDate
 ON FactResellerSales.ShipDateKey = DimDate.DateKey
GROUP BY
 DimDate.CalendarYear, DimDate.EnglishMonthName
 , DimSalesTerritory.SalesTerritoryCountry, DimDate.MonthNumberOfYear
HAVING
 (DimDate.CalendarYear = 2003)
 AND
 DimSalesTerritory.SalesTerritoryCountry IN(‘Canada’, ‘United Kingdom’, ‘France’)
ORDER BY
 Year, DimDate.MonthNumberOfYear, Country

 Next, add a new 3D clustered chart to the report body.

 This is where understanding the basic chart anatomy is helpful. The design interface is optimized for
working interactively with design - time objects. There are a lot of objects in the chart Designer with
clickable hotspots. Until you get the hang of it, selecting the right object is like poking around in the
dark. As soon as you click an object, a selection border and handles are displayed. You will also see the
object name and type in the Properties window.

 For practice, click on different objects and watch the Properties window to see which objects you ’ ve
found. For any selected object, you can right - click to view a Properties dialog or object - specific options.

 If you decide against the 3D effect, this is easy to change. Find the Chart Area object, and right - click to
show the menu. Choose Chart Area Properties (see Figure 8 - 66).

c08.indd 292c08.indd 292 11/13/08 4:35:51 PM11/13/08 4:35:51 PM

Chapter 8: Advanced Report Design

293

 Disable the 3D effect using the “ Enable 3D ” checkbox on the 3D Options page, as shown in Figure 8 - 67 .
This keeps the cylinder columns but flattens the chart, which will be more appropriate for the rest of this
demonstration.

Figure 8-66

Figure 8-67

c08.indd 293c08.indd 293 11/13/08 4:35:51 PM11/13/08 4:35:51 PM

Part II: Report Design

294

 Click once on the chart background and then once again to show the axis group drop zones. The Data
Axis zone is titled “ Drop data fields here. ” The series and category zones are similarly titled. You can
add fields using two different techniques: either drag fields from the Report Data pane data - set field list
or hover over the drop zone to display the smart tag field list. Using either technique, add the Qty field
to the Data Axis. Figure 8 - 68 shows this selection in the smart tag field list.

Figure 8-68

 Add the Year and Month fields to the category drop zone. You can use either technique, but make sure
they appear in the correct order, as shown in Figure 8 - 69 . Adding multiple Category Axis fields causes
the values to be displayed in multiple levels with set braces around each group of distinct values. You ’ ll
see this for the Year and Month groups when this report is previewed.

Figure 8-69

c08.indd 294c08.indd 294 11/13/08 4:35:53 PM11/13/08 4:35:53 PM

Chapter 8: Advanced Report Design

295

 Believe it or not, you have created a functional chart. Preview the report to view the data shown in
Figure 8 - 70 . It ’ s not pretty (yet), but it works.

Figure 8-70

 For this chart type, adding a field to the Series Axis on the right side of the chart Designer will place
multiple columns in each Category Axis group. This type of visualization is appropriate when you can
control the data characteristics so that you have a small number of distinct series values. Since this query
is limited to three Country values, this will work.

 Add the Country field to the Series Axis zone on the right side of the Designer, as in Figure 8 - 71 .

Figure 8-71

 A preview of the report, shown in Figure 8 - 72 , has groups of three columns displayed for each month.
The default color palette is being used, so each Country corresponds to a color indicated by a color
swatch and key label in the legend.

c08.indd 295c08.indd 295 11/13/08 4:35:54 PM11/13/08 4:35:54 PM

Part II: Report Design

296

 The final step for this report is to dress it up with correctly formatted axis labels and titles.

 Set the Series Axis format by right - clicking on the number on the left side of the chart. Use the Axis
Properties menu selection (see Figure 8 - 73) to open the Value Axis Properties dialog.

Figure 8-72

Figure 8-73

 Several properties can be set for each axis using a dialog similar to the one shown in Figure 8 - 74 ,
including label characteristics, major and minor tick marks, scale lines, grids, and various formatting.
Use the Number page to format these labels similar to the example given here.

c08.indd 296c08.indd 296 11/13/08 4:35:55 PM11/13/08 4:35:55 PM

Chapter 8: Advanced Report Design

297

 The chart title and the series and category two axis title text can be edited in place by simply clicking
each title. Label these as appropriate, and then preview the report. The results should be similar to
Figure 8 - 75 .

Figure 8-74

Figure 8-75

 This gets you started, but it ’ s certainly not the end of the road. This chart report shows some basic
information with only one data point. Next, you ’ ll learn how to add another field to the Data Axis and
display these values in a meaningful way for your users.

c08.indd 297c08.indd 297 11/13/08 4:35:55 PM11/13/08 4:35:55 PM

Part II: Report Design

298

 Adding a Data Series
 There are some important considerations when you need to display multiple data fields in a single chart.
The purpose of a chart is to simplify data so that the user can immediately understand the scope and
meaning of the data presented without confusion. The challenge is that when you add elements, the
chart can become cluttered and confusing. I like to bring the state of this chart to that point and then
resolve the problem by mixing different axis scales, chart types, and chart areas.

 In the Designer, adding another field to the Data Axis is easy. Figure 8 - 76 shows the addition of the
Cost field.

Figure 8-76

Figure 8-77

 Figure 8 - 77 shows that we have a confusing report interface. We ’ ve created a mess by adding these two
fields side by side. We have two different fields that have little to do with each other being measured on
the same scale. The Series Axis scale is formatted for sales quantities and not for costs.

c08.indd 298c08.indd 298 11/13/08 4:35:56 PM11/13/08 4:35:56 PM

Chapter 8: Advanced Report Design

299

 We not only have both quantities and costs in each group, but countries are also in the mix. The chart is
doing its best to make sense of this by combining the Data Series and Category Series values in the
legend labels and assigning a unique color to each combination. This is far too busy. If we are going to
add the cost axis to this chart, the Country will have to go. There are other ways to visualize this data
across multiple countries, perhaps using a composite layout — but not in this report.

 Delete the Country field from the Category Axis area on the right.

 Adding a Secondary Axis
 Most of the 2D chart types support a primary and a secondary axis. To enable this feature to show a
different scale for the Cost field, right - click on the field in the Data Axis area, and choose Series
Properties from the menu. Use the Axis and Chart Area page on the Series Properties dialog to change
the series axis position to the Secondary Axis (see Figure 8 - 78).

Figure 8-78

 The Secondary value axis enables a separate numeric scale on the right side of the chart. This series will
be completely independent from the Primary value axis, even though values are plotted in the same
chart space.

 You can format the secondary axis using the same procedure as above for the primary axis.

c08.indd 299c08.indd 299 11/13/08 4:35:57 PM11/13/08 4:35:57 PM

Part II: Report Design

300

 By default, the chart - rendering engine applies some smart logic to resize axis labels and will often hide
some of the label values if all the values don ’ t fit comfortably in the axis caption area. This will be the
case with the Month field labels unless you intervene.

 Right - click on the Category Axis, and change these properties. On the Axis Options page of the Category
Axis Properties dialog, change the Interval property to the value 1, as shown in Figure 8 - 79 . Click OK to
accept this change.

Figure 8-79

 I ’ ve also set the Number format for currency and added the chart legend. Figure 8 - 80 shows the previewed
report results. Each month has two columns: one for the sum of the Qty field across each month. This value
corresponds to the primary axis scale on the left. The second, lighter column for each month is the sum of
the Cost field and is measured using the secondary axis scale on the right side of the chart.

Figure 8-80

c08.indd 300c08.indd 300 11/13/08 4:35:57 PM11/13/08 4:35:57 PM

Chapter 8: Advanced Report Design

301

 There is one more thing you can do to make this chart a little easier to read. Most users will probably
struggle with a side - by - side columns metaphor for each month. It ’ s confusing that for a given month,
two columns of the same height represent two drastically different values. If the two series were
displayed as a different but compatible chart type, it would be easier to make the distinction. This is an
easy change to make.

 In the Designer, right - click on the Cost field in the Data Axis area, and choose “ Change Chart Type ”
(see Figure 8 - 81). Choose the “ Line with Markers ” chart type.

Figure 8-81

 That ’ s it! The chart is ready for primetime viewing. Figure 8 - 82 shows the finished chart, complete with
two separate axes and scales. Total sales quantities are plotted using columns on the primary axis scale,
displayed on the left. A secondary axis scale is formatted to reflect the total cost for each month. These
values are expressed using a line chart, which is visually separate from the column chart values. The
chart legend adds clarity, and everything is neatly titled and formatted. It ’ s a beautiful thing.

Figure 8-82

c08.indd 301c08.indd 301 11/13/08 4:35:58 PM11/13/08 4:35:58 PM

Part II: Report Design

302

 Using Multiple Chart Areas
 Reporting Services charts now support multiple chart areas. This powerful feature enables you to place
multiple charts, of different types and characteristics, in the same chart container. Each of these chart
areas is based on the same dataset and can be aligned and correlated with a sibling chart in a variety of
different ways. The following is a simple example.

 Using the chart report we have been designing, you are going to separate the two data fields into
different chart areas, arranged vertically. By aligning the Category Axis, any changes in the data will be
consistently reflected in both chart areas.

 To make room for the second chart area, increase the height of the chart by stretching it vertically.
Right - click on the chart, and choose “ Add New Chart Area, ” as shown in Figure 8 - 83 .

Figure 8-83

 The new chart area will appear as only white space until a series axis is assigned to it. Right - click on the
Cost field in the data Axis area and choose Series Properties. In the corresponding Series Properties
dialog, on the Axes and Chart Area page, use the Change chart area dropdown list to select the new
chart area. Verify your settings with Figure 8 - 84 , and then click OK to close the Series Properties dialog.

c08.indd 302c08.indd 302 11/13/08 4:36:01 PM11/13/08 4:36:01 PM

Chapter 8: Advanced Report Design

303

 To set properties for the chart area, right - click on the chart in the Designer, and choose Chart Area
Properties (ChartArea1). The Chart Area Properties dialog is shown in Figure 8 - 85 . On the Alignment
page, use the “ Align with chart area ” dropdown list to choose the Default chart area. Click OK to accept
this change and then preview the report.

Figure 8-84

Figure 8-85

c08.indd 303c08.indd 303 11/13/08 4:36:01 PM11/13/08 4:36:01 PM

Part II: Report Design

304

 Figure 8 - 86 shows the final report with two aligned chart areas. The first column chart displays sales
quantity values, and the second line chart shows total costs.

Figure 8-86

 Summary
 This chapter covered a lot of ground. Building on the basic design concepts and building blocks you
learned in the previous three chapters, you were able to raise the bar and create more powerful and
compelling reports using a variety of design techniques.

 Report page headers and footers can be defined in a report template, where the design can be reused in
all of your new reports. Built - in fields and summary information can be added to page headers and
footers to display and print useful information such as the report name, execution date and time, page
numbers, and the report user — to provide important context information if the report is printed or
archived.

 The essential design patterns for composite reports include the use of embedded data regions and
subreports. Report elements, including complex data regions, can be nested in a list, table, or matrix to
create more sophisticated interface paradigms. Subreports can provide this same functionality when a
master/detail report must coordinate related information managed in different data sources. Report
navigation features take reporting beyond static, passive data browsing. Document maps, drill - down,
and drill - through techniques allow users to interact with reports to create a dynamic information
analysis and discovery experience.

c08.indd 304c08.indd 304 11/13/08 4:36:02 PM11/13/08 4:36:02 PM

Chapter 8: Advanced Report Design

305

 Expressions and custom programming take report design to new heights by allowing a single report to
deliver more functionality, behaving more like a multifunction business application than a traditional
report.

 The charting capabilities in Reporting Services for SQL Server 2008 are vastly improved and easier to use
in many ways. New chart types provide more options to visualize business data to information workers.
Advanced charts provide a more flexible means to deliver actionable information through compelling
new features that include multi - series charts and chart areas.

c08.indd 305c08.indd 305 11/13/08 4:36:02 PM11/13/08 4:36:02 PM

c08.indd 306c08.indd 306 11/13/08 4:36:03 PM11/13/08 4:36:03 PM

Part III

Business Intelligence
Reporting

Chapter 9: Reporting with Analysis Services

Chapter 10: Report Solution Patterns and Recipes

c09.indd 307c09.indd 307 11/13/08 4:37:51 PM11/13/08 4:37:51 PM

c09.indd 308c09.indd 308 11/13/08 4:37:51 PM11/13/08 4:37:51 PM

 Reporting with Analy sis
Ser vices

 SQL Server 2008 Analysis Services is used to store and aggregate data, specifically to support
decision - support systems, ad hoc reporting, and business data analysis. Once designed, cube data
is easy to navigate to produce complex, business - relevant results for business leaders and
information workers.

 This chapter will introduce some of the basic concepts of OLAP and multidimensional storage
systems. You will use the Report Designer to create Multidimensional Expressions (MDX)
language queries, with and without the MDX Graphical Query Builder. You will learn to build
advanced and compelling reports using parameters, pivot tables, and KPI indicators in a table or
matrix report.

 Finally, you will learn to use cube actions and apply best practices and safety checks to your report
solutions that use OLAP data stores.

 Why Analysis Ser vices for Repor ting?
 Every year at the Professional Association for SQL Server (PASS) Community Summit, I take a poll
of the Reporting Services session attendees and ask who is using Analysis Services or plans to in
the near future. Over the past three years, the number of positive respondents has increased
significantly, but the overall percentage is still a significant minority — perhaps 25 percent. Do you
need to use SQL Server Analysis Services to manage your data for reporting and analytics? This
depends on a few factors.

 You ’ ll recall that Chapter 7 discussed data storage options for business reporting data and referred
to the diagram in Figure 9 - 1 . In all but the smallest business environment, the data collected and
managed by various business processes is stored in different databases and systems. Getting
reliable answers to important business questions from these data sources can be challenging

c09.indd 309c09.indd 309 11/13/08 4:37:52 PM11/13/08 4:37:52 PM

Part III: Business Intelligence Reporting

310

at best. Consolidating this data into a central data store is no simple matter, but the value to the business
is significant and often critical.

 Data is transformed from multiple data sources, staged, validated, and optimized for reporting. The
simplified relational data structures are stored in subject area data marts or a central data warehouse.
The data organized in a relational data warehouse structure supports faster queries and helps report
designers create reports without the unnecessary complexity found in most operational database
systems that are primarily designed for transactions.

 The fact is that once the necessary effort has been expended to build and populate a data warehouse,
taking the next step of creating OLAP cubes on this data is relatively easy.

Figure 9-1

 Making the leap from the operational data store to a relational data warehouse may be sufficient in a
small business with unsophisticated reporting needs. However, even for a medium - scale business
environment, there are many advantages to including Analysis Services in the solution. Generally,
moving to an OLAP solution enables capabilities in four categories:

 Data in a cube is “ browseable ” without writing sophisticated queries. Information is organized
into dimensional hierarchies so that report designers can simply drag and drop to design report
datasets.

 Information workers can design their own reports without understanding the underlying data
structure and with no query - writing skills. Users simply select from predefined measures and
hierarchies to create queries and design reports.

 Sophisticated calculations are built into the cube using calculated members. Users and report
designers can select from calculated members as easily as they can use standard measures and
other cube members.

❑

❑

❑

c09.indd 310c09.indd 310 11/13/08 4:37:52 PM11/13/08 4:37:52 PM

Chapter 9: Reporting with Analysis Services

311

 Cube - based queries typically run very fast, even when the cube is derived from very large sets
of data. The improved performance is due primarily to preaggregated values stored in
optimized, non - relational hierarchies in the OLAP data storage engine.

 The bottom line is that building an OLAP cube with Analysis Services is generally easy to do if you have
a properly designed relational date warehouse. It ’ s much easier to navigate than a relational database.
Cubes enable self - service reporting and effective data exploration. And, sometimes most importantly,
cubes can be very fast compared to other data sources and reporting solutions.

 If you work for a small company or in an environment with manageable volumes of data, you will likely
find significant advantages. Because Analysis Services is already covered under your SQL Server
product license, there is little or no cost to build cubes and realize these benefits.

 If you work for a large company and work with larger volumes of complex business data, you probably
don ’ t need much persuasion to recognize the advantages of using cubes to help solve these challenges.
Making the move to OLAP cubes will help you take reporting to the next level while solving
performance and query design issues at the same time.

 Using Repor ting Ser vices with Analysis
Ser vices Data

 Reporting Services works natively with several Analysis Services capabilities. These include:

 Native support for non - additive measures and calculations. Rather than building sophisticated
expressions and calculation logic into reports, Reporting Services lets you take advantage of
features already built into the Analysis Services cube.

 Analysis Services and the MDX query language support custom formatting defined for
measures in the cube. Reports may be designed to use this formatting without duplicating this
effort in the report design.

 Drill - through reports can work for MDX datasets with some basic knowledge of MDX member
reference formatting and special field properties present in Reporting Services for MDX reports.

 Cube data may be protected through user role - based security. This works with no special report
provisions if user credentials are provided to data sources using Windows Authentication.

 Summary reports that would normally aggregate a lot of data run much faster with cubes. Take
advantage of this capability by designing summary reports and dashboards with drill - through
actions to lower - level, detail reports.

 Most reports that use Analysis Services as a data source are fairly easy to design for two reasons. The
mission of OLAP is to make data easy to use. A properly designed cube simplifies your business data by
organizing it into predefined, hierarchal structures with business facts preaggregated and ready to use
by dragging and dropping into the MDX Query Designer. The Report Designer is friendly with an MDX -
 based dataset and will automatically generate parameter lists, cascading parameters, and filtering logic.
In many ways, designing a report for OLAP is easier than for a relational database, owing to the
simplification applied in the cube and these enhancements to the Report Designer.

❑

❑

❑

❑

❑

❑

c09.indd 311c09.indd 311 11/13/08 4:37:53 PM11/13/08 4:37:53 PM

Part III: Business Intelligence Reporting

312

 Most OLAP reports are usually simple in design, just because of the nature of the cube. With predefined
drill - down paths, and multiple multilevel hierarchies, it should be natural to visualize this information
in a matrix or multi - axis chart. Business leaders now expect to see data presented in standard formats,
using key performance indicators (KPIs) to present business metrics in dashboards and business
scorecards with gauges and iconized graphical indicators. In the following exercises, you will see how
using an OLAP data source with dimensional hierarchies, measures, KPIs, calculated members, and
related cube elements makes business report design simple and manageable.

 Multidimensional Expression Language
 The MDX query language is part of the OLEDB for OLAP specification from Microsoft. The MDX query
language is used in several different OLAP products from different vendors such as IBM Cognos,
Hyperion EssBase, Business Objects, and, of course, Microsoft SQL Server Analysis Services. Like SQL,
the language varies from product to product, but the concepts and core features are the same — or at
least very similar in some categories.

 MDX : Simple or Complex?
 Most IT professionals who want to learn MDX already know a little or a lot of SQL. They have worked
through the process of reporting on transactional databases, migrating to a data warehouse, and building
queries on a relational/dimensional model, and now realize the benefits of a truly dimensional storage
engine to solve complex business problems. This presents an interesting challenge for most of these
people. You see, MDX is a simple query language that sits squarely on the multidimensional foundations
of OLAP technologies — all of which exists for the sole purpose of the simplification of business data.
So, if OLAP and MDX are so simple , why does the industry perceive it to be so difficult to learn? There ’ s
a simple answer. MDX is very different from SQL, but on the surface it looks a lot like SQL. This means
that anyone making the transition must struggle through a mental paradigm shift — from two -
 dimensional (2D), row - set - based thinking to multidimensional, axis - based cell - set thinking. Making this
mental transition is not so difficult with a little bit of practice, but it ’ s easy to slip back into an SQL
mindset if you don ’ t stay in practice. Here ’ s the interesting twist: when you ’ re done working with all
these cool, multidimensional concepts, you ’ re going to take the output and pound it back into a 2D result
so that you can display it on a screen or print it on a 2D sheet of paper.

 I ’ d love to launch into a discourse on sets, axes, tupples, slicers, subcubes, and other really nifty OLAP
concepts, but this isn ’ t the time or place. This is one of those topics that can ’ t be introduced without
sufficient background and an exhaustive set of exercises. So, you are not going to learn everything you
need to know about MDX in this short section of this book on Reporting Services. My purpose is to
provide some exposure to the kinds of things you can do using this powerful query language for OLAP.
For most cube report work, you shouldn ’ t need to know more than some basic commands and functions.
However, if you plan to do extensive work with MDX, you should pick up Professional Microsoft SQL
Server 2008 Analysis Services with MDX or take a class on MDX for SQL Server Analysis Services.
The language and query techniques haven ’ t changed much between SQL Server 2005 and 2008.

c09.indd 312c09.indd 312 11/13/08 4:37:53 PM11/13/08 4:37:53 PM

Chapter 9: Reporting with Analysis Services

313

 The MDX Builder
 When choosing the SQL Server Analysis Services data processing provider as you define a report data
source, the MDX Query Designer is automatically invoked for any new datasets. Your first objective will
be to work with data - set results from a query generated by the MDX Query Designer. After exploring
this feature, you ’ ll write MDX queries without the aid of the builder.

 I teach a lot of classes on MDX and Analysis Services reporting and have worked on projects with IT
professionals who have substantial MDX experience. I hear criticism about the MDX builder tool and some
if its limitations. Rather than just echoing the product documentation, I ’ d like to comment on this. I suppose
that the baseline for building queries is the T - SQL Query Builder tool, which has been in production for at
least 12 years. Manual modifications to a T - SQL query are captured by the graphical builder and reformatted
for forward compatibility. In contrast, the MDX builder doesn ’ t have this capability. Even the slightest
modification to the generated query script will render the graphical builder inoperable.

 Here ’ s what I think: The graphical MDX Query Designer generates well - formed, efficient MDX script.
If you design all necessary calculated members into the cube, you shouldn ’ t have to make changes to the
report queries. If you do need to write advanced MDX queries, then you probably don ’ t need to use
the graphical designer anyway. Compared to T - SQL, MDX queries are usually simpler and less verbose
because business rules are resolved in the cube rather than in the query. Regardless of what I think, the
MDX Query Designer works the way it does, and you ’ re best off to work with it and take advantage of
its capabilities when it serves your needs.

 Creating a Data Source
 Let ’ s start by creating a shared data source for the Adventure Works DW 2008 sample Analysis Services
database:

 1. In the Solution Explorer for a report project, right - click Shared Data Sources, and choose Add
New Data Source. The Shared Data Source Properties dialog opens (see Figure 9 - 2).

Figure 9-2

c09.indd 313c09.indd 313 11/13/08 4:37:53 PM11/13/08 4:37:53 PM

Part III: Business Intelligence Reporting

314

 2. Select the Microsoft SQL Server Analysis Services data provider from the Type dropdown list.

 3. Click on the Edit button to the right of the Connection string box to open the Connection
Properties dialog, as shown in Figure 9 - 3 .

Figure 9-3

 4. Type LocalHost or the name of your Analysis Services server in the “ Server name ” box. From
the dropdown list in the “ Connect to a database ” section, select the Adventure Works DW 2008
OLAP database. Click OK to accept these connection settings.

 5. Back in the Shared Data Source Properties dialog, change the Name to AdventureWorksDW2008_AS
(see Figure 9 - 4). This is to differentiate between a relational data source and this Analysis
Services data source for databases that have the same or similar names.

Figure 9-4

c09.indd 314c09.indd 314 11/13/08 4:37:53 PM11/13/08 4:37:53 PM

Chapter 9: Reporting with Analysis Services

315

 You can see that a connection string is generated and placed in the Connection string box. Click
OK to save the new shared data source.

 You will choose this shared data source for all the examples used in this chapter. Because the data source
uses the Analysis Services data provider, the Report Designer will generate MDX queries rather than the
T - SQL queries you ’ ve seen in previous examples using the SQL Server data provider.

 Building the Data - Set Query
 Now let ’ s design a report using a key performance indicator (KPI) defined in the Adventure Works cube.
A KPI is a standardized set of related members used to report the state of a business metric. In this case,
you want to report the current value, goal, and status of Channel Revenue by product category, for a
selected calendar year. This section will not step you through every click and keystroke since you
already know how to design reports. This section will step through the MDX - specific features and then
instruct you to use the report design skills you ’ ve acquired in previous exercises. Of course, you ’ re also
welcome to open the completed report in the Chapter 9 sample project.

 1. To get started, create a new report without using the Report Wizard, and add a table to the
report body. When the table is added, a new data source and dataset will be generated. The Data
Source Properties dialog opens, as shown in Figure 9 - 5 . Note that this is actually a Wizard dialog
and that the Next and Back buttons are used to navigate between pages.

Figure 9-5

 2. From the “ Use shared data source reference ” dropdown list, select the new shared data source
you created. Copy (Ctrl+C) the name of the shared data source, and paste (Ctrl+V) it into the
Name box at the top of this dialog. Click Next to move to the Query Designer page.

 The MDX Query Designer, shown in Figure 9 - 6 , is used to construct the query using simple
drag - and - drop. I ’ ve labeled this figure to point out the important components of this screen.
At first, you will use the cube metadata pane to select cube members and then drag them into
the cube member drop area (or data pane). I ’ ll refer back to other components on this figure as
we continue to work with this tool.

c09.indd 315c09.indd 315 11/13/08 4:37:54 PM11/13/08 4:37:54 PM

Part III: Business Intelligence Reporting

316

 I tend to work from the inside out, dragging in measures and then the dimension members. This may
seem a little backward, but it ’ s a logical approach.

Cube selector

Cube metadata
pane

Cube member drop area
I-beam indicates drop

column order

Slicer/Filter pane Execute query
button

Graphical MDX builder & generic
query window toggle

Figure 9-6

 3. Using the “ Cube metadata pane, ” expand the KPIs node and the Channel Revenue KPI. Drag
the Value, Goal, and Status members into the data pane. Note that a large, vertical I - beam bar
indicates the drop position of the current member. Use this to position these members in the
proper order.

 The metadata pane enables you to explore and select from any member of the cube structure. Figure 9 - 7
details various members of the Adventure Works sample cube. In short, measures, calculated members,
and KPIs represent numeric values for reporting. All other members are used to group, filter, and
provide navigational paths to these values. I ’ ve expanded nodes in the metadata pane to demonstrate
examples of each of these elements.

c09.indd 316c09.indd 316 11/13/08 4:37:54 PM11/13/08 4:37:54 PM

Chapter 9: Reporting with Analysis Services

317

 All cube attributes are organized into subject - specific dimensions. Dimensions have two types of
hierarchies — attribute hierarchies and user hierarchies. An attribute hierarchy is simply a flat collection of
dimension members derived from a specific data attribute. A user hierarchy has multiple levels of
attributes organized into a logical drill - down structure. For the most part, you want to use user
hierarchies for all drill - down and structured reporting. As a matter of convention, hierarchies consist of
levels and members. Members are just the individual attribute values for a level (e.g., Years, Quarters,

Measure

Calculated
member

KPI

KPI member

Dimension

Folder

Attribute
hierarchy

User
hierarchy

Level

Member

Figure 9-7

c09.indd 317c09.indd 317 11/13/08 4:38:03 PM11/13/08 4:38:03 PM

Part III: Business Intelligence Reporting

318

or Months). Note that attribute hierarchy levels typically have the same name as the hierarchy
(e.g., [Date].[CalendarYear].[CalendarYear]), and user hierarchies do not. The user attribute name is
typically more explicit (e.g., [Date].[Calendar].[CalendarYear]). Unless specifically hidden in the cube
design, the members of every user hierarchy level will correspond to the members of an attribute
hierarchy.

 4. After dragging the KPI members to the data pane, expand the Product dimension and drag the
Product Categories hierarchy to the left - most position in the drop area (also known as the Data
pane), as shown in Figure 9 - 8 . The Query Designer parses the hierarchy levels and generates
columns for each. The query runs and shows the results grouped by the attribute members,
in order of the column placement.

Figure 9-8

 Using Parameterized Queries
 The query created with the previous steps is complete and usable but returns results for all the cube
data. To filter data from a cube, you “ slice ” the cube to limit the scope of the query to certain members of
a hierarchy. This is performed using the filtering pane of the MDX Query Designer. Use the following
steps to add a parameterized filter to the query you just created:

c09.indd 318c09.indd 318 11/13/08 4:38:05 PM11/13/08 4:38:05 PM

Chapter 9: Reporting with Analysis Services

319

 1. To filter the results, drag the Calendar Year attribute hierarchy into the Filter pane (see Figure 9 - 9).
This will parse the hierarchy and place elements into the Dimension, Hierarchy, and Operator
columns.

Figure 9-9

 2. Use the Filter Expression dropdown window to set the default filter member. Note that every
hierarchy has an “ All ” member, used to include all members of the hierarchy. Check on
“ All Periods ” to set the filter to include all members. This essentially negates the filter unless a
different selection is made.

 3. Depending on your screen size, the right - most column may not be in view. If not, scroll and
adjust the columns to view the Parameter column. Check on this box to generate a related report
parameter for this filter.

 Slicing the Cube
 The concept of a filter is actually contrary to the way OLAP works. We commonly use the term filter because
most people understand this notion based on their experience with relational database technologies.
However, what we ’ ve actually defined here is more accurately known as a slicer . To limit the results of an
OLAP dataset, we aren ’ t going to tell the query engine to scan through individual rows, looking for values

c09.indd 319c09.indd 319 11/13/08 4:38:06 PM11/13/08 4:38:06 PM

Part III: Business Intelligence Reporting

320

that match certain criteria. We ’ re actually telling it to “ slice ” off a portion of the cube, which is already
organized into predefined ranges of grouped and sorted attributes. An important distinction between these
two conventions is that slicing doesn ’ t toss out the rest of the cube that doesn ’ t meet the WHERE clause
criteria (as a true filter would). It sets the context, or CurrentMember property, for the specified hierarchy.
Members of the hierarchy outside this scope are still accessible to functions and operators that may be used
in the query. The default slicer, shown in Figure 9 - 10 , is set to use the All member, which will return data for
all calendar year members. Of course, users can change this parameter selection when they run the report.

Figure 9-10

 The Value and Goal KPIs are typically used to return a measure or calculated value. The Status and Trend
members are used to simplify the state of the KPI performance based on some scripted logic and to drive
a graphical dashboard indicator of some kind. In the case of Channel Revenue, the Status KPI member
returns an integer with one of three values to indicate the state of channel revenue. The value negative 1
(− 1) indicates poor performance, 0 is marginal, and 1 indicates acceptable or exceptional performance.

 After the query, designing most reports that use Analysis Services is no different from any other. Figure 9 - 11
shows a table report we ’ ve designed for this query. This is the Channel Revenue by Territory report in the
Chapter 9 sample project. We ’ ve simply defined groups on the sales territory region hierarchy levels and
used the fields derived from the Value and Goal KPI members in the detail row of the table. To visualize the
Status KPI member, we added a radial gauge (180 ° N) to the detail group and set the following properties:

 Object Property Value

 RadialScale1 MinimumValue – 2

 MaximumValue 2

 RadialRange1 FillColor Red

 FillGradientType None

 StartValue – 2

 EndValue 0

 StartWidth 60

 EndWidth 60

 Placement Cross

c09.indd 320c09.indd 320 11/13/08 4:38:06 PM11/13/08 4:38:06 PM

Chapter 9: Reporting with Analysis Services

321

 Object Property Value

 RadialRange2 FillColor Lime

 FillGradientType None

 StartValue 0

 EndValue 2

 StartWidth 60

 EndWidth 60

 Placement Cross

 RadialPointer1 FillColor Black

 Value =Sum(Fields!Channel_Revenue_Status.Value)

 MarkerLength 35

Figure 9-11

 After setting up the detail row textboxes and gauge, we added a total to the Country group and copied
and pasted the gauge to the same column cell in the total row. The only change for this gauge is that the
pointer value must use an AVG function instead of a SUM function. The gauge shows a red and a lime - green
range with the pointer pointing to one of three positions, depending on the Status KPI member value.

c09.indd 321c09.indd 321 11/13/08 4:38:07 PM11/13/08 4:38:07 PM

Part III: Business Intelligence Reporting

322

 You are encouraged to explore some of the standard features that were added as a result of using the
MDX Query Designer. The parameter dropdown is completely configured and populated with a hidden
dataset to provide Calendar Year values. Items on the list below the All member are indented. Had we
used a user hierarchy, all the levels would be indented appropriately to indicate their position within the
hierarchy. All parameter lists are automatically generated as multi - valued selection lists. This, of course,
can be changed in the Report Parameter Properties dialog.

 The majority of reports we create with an Analysis Services data source are this simple. Because the
calculation and KPI business logic are designed into the cube, no extra work is necessary when reports
are designed. With the Report Builder 2.0 Designer, information workers can design reports with very
little or no knowledge of cube design or MDX query scripting. Using practically any MDX - based dataset,
reports can be designed with a table, matrix, chart, or combinations of the data ranges and other report
items, to visualize business information in the most appropriate format.

 Modifying the MDX Query
 We ’ re now crossing a bridge, and on the other side is an environment that is a little more complex and
delicate than the one we just left behind. Reporting Services enables you to do a lot of very interesting
things with MDX and OLAP data sources, but the Query Designer was not engineered for advanced
MDX. We do a lot of MDX reporting, and we often step into client projects where others have tried to
implement complex MDX queries and have failed. Over the past few years, working on these projects,
we ’ ve discovered what has and hasn ’ t worked, and we ’ ve developed techniques for achieving the
desired results. One of our most important lessons has been to work with the product and its
capabilities. I ’ ve had numerous conversations with members of the Reporting Services product team on
this topic, and the advice I often receive is “ We didn ’ t intend for you to write an MDX query that way,
and we don ’ t support that particular technique. You can achieve the same result by doing it this way. ”
I ’ d like to share some of these techniques with you.

 I ’ ve not had very good luck adding my own parameter logic to a handwritten query. It can be done, but
the Query Designer is very particular about script changes and will intervene at the most inconvenient
times. I recommend that you do one of the following:

 Use the MDX Query Designer to design the original query with the built - in parameter logic and
supporting datasets, and then make modifications to the query logic, leaving the parameter
logic alone.

 Manually write a simple query with a hard - coded filtering to set up the query metadata, and
then replace the entire query with an expression or custom code function.

 We will explore both of these options in turn.

Building a Query Using the MDX Designer
 Let ’ s start with a copy of the report you just completed. The objective is to define three calculated
members, based on the same KPI members you used. These calculated members don ’ t exist in the cube,
and let ’ s say that you don ’ t have permission to modify the cube structure to add them to the cube
design. In addition to the Value, Goal, and Status members for the Channel Revenue KPI, you also need
to see what these values were for the prior year.

❑

❑

c09.indd 322c09.indd 322 11/13/08 4:38:07 PM11/13/08 4:38:07 PM

Chapter 9: Reporting with Analysis Services

323

 1. To get started, open the main data - set query in the report, switch to the generic query view, and
then copy the MDX script to the Clipboard.

 2. Open SQL Server Management Studio, connect to Analysis Services, and then click on the New
Query button on the toolbar to open a new MDX query.

 3. Paste the query from the Report Designer in the Query window.

 4. Apparently, the Reporting Services MDX Query Designer was created before carriage returns
were invented. Add a few to make this query more readable.

 5. The nested parameter references won ’ t work in Management Studio, so simplify this query to
run without them. The easiest way to do this is to divide the first part of the script, up to the ON
ROWS expression, from the rest with a few carriage returns. (This example uses only the first part
for testing.) To complete the test query, you just need to add a FROM clause with the cube name
and terminate this query with a semicolon.

 6. Highlight only the first query, and click on the Execute button on the toolbar. Your screen should
look like Figure 9 - 12 .

Figure 9-12

c09.indd 323c09.indd 323 11/13/08 4:38:08 PM11/13/08 4:38:08 PM

Part III: Business Intelligence Reporting

324

 7. To add the calculated members to the query, type the following into the Query window before
the existing script:

WITH
 MEMBER Measures.[Last Year Value]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIValue(“Channel Revenue”))
 , FORMAT_STRING=”$#,##0.00”
 MEMBER Measures.[Last Year Goal]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIGoal(“Channel Revenue”))
 , FORMAT_STRING=”$#,##0.00”
 MEMBER Measures.[Last Year Status]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIStatus(“Channel Revenue”))

 To explain the logic for each of these calculated members, we ’ ll examine the first one. A new member
named Last Year Value is added to the Measures collection, applying this expression:

([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIValue(“Channel Revenue”))

 This member will return the Channel Revenue KPI Value for the previous Calendar Year, based on
whatever the current member of the Calendar Year hierarchy is. If your user selects 2004 for the
 DateCalendarYear parameter, the WHERE clause uses the parameter to set this as the current member.
The PREVMEMBER function causes the expression to return the Channel Revenue KPI Value for Calendar
Year 2003. Because the final report query will be parameterized, this functionality is completely dynamic.

 8. You want to add these three new members to the COLUMNS axis of the query, which will be
interpreted as three new fields in the report. Remove the NON EMPTY directive after the SELECT
clause. This ensures that all columns will be returned, even if no data is present.

 To add the new calculated members to the query, apply the following changes:

WITH
 MEMBER Measures.[Last Year Value]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIValue(“Channel Revenue”))
 , FORMAT_STRING=”$#,##0.00”
 MEMBER Measures.[Last Year Goal]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIGoal(“Channel Revenue”))
 , FORMAT_STRING=”$#,##0.00”
 MEMBER Measures.[Last Year Status]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIStatus(“Channel Revenue”))

SELECT { KPIValue(“Channel Revenue”)
 , KPIGoal(“Channel Revenue”)
 , KPIStatus(“Channel Revenue”)
 , [Last Year Value], [Last Year Goal], [Last Year Status]
 } ON COLUMNS
 , NON EMPTY { ([Sales Territory].[Sales Territory].[Region].ALLMEMBERS) }
 DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON ROWS
 -- Added FROM clause for testing:
 FROM [Adventure Works]
;

c09.indd 324c09.indd 324 11/13/08 4:38:08 PM11/13/08 4:38:08 PM

Chapter 9: Reporting with Analysis Services

325

 9. Run the query to verify that it works. You should now see six columns in the results. The reason
that the new members don ’ t return a value is that the current member of the Calendar Year has
not been set. To do this, add a WHERE clause to slice the cube on Calendar Year 2004.

WITH
 MEMBER Measures.[Last Year Value]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIValue(“Channel Revenue”))
 , FORMAT_STRING=”$#,##0.00”
 MEMBER Measures.[Last Year Goal]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIGoal(“Channel Revenue”))
 , FORMAT_STRING=”$#,##0.00”
 MEMBER Measures.[Last Year Status]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIStatus(“Channel Revenue”))

SELECT { KPIValue(“Channel Revenue”)
 , KPIGoal(“Channel Revenue”)
 , KPIStatus(“Channel Revenue”)
 , [Last Year Value], [Last Year Goal], [Last Year Status]
 } ON COLUMNS
 , NON EMPTY { ([Sales Territory].[Sales Territory].[Region].ALLMEMBERS) }
 DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON ROWS
 -- Added FROM clause for testing:
 FROM [Adventure Works]
 WHERE [Date].[Calendar Year]. & [2004]
;

 10. Apply this change, check your query with the following script, and then run the query. You
should now see the 2003 values for the new calculated members. You can check this by making
note of the values, changing the WHERE clause with 2003 rather than 2004, and then running it
again.

 11. To prepare the query for the report, you need to add all the parameter logic from the original
query. Remove the FROM and WHERE lines from the new query, and then merge the two halves
back together. Your final query should look like this:

WITH
 MEMBER Measures.[Last Year Value]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIValue(“Channel Revenue”))
 , FORMAT_STRING=”$#,##0.00”
 MEMBER Measures.[Last Year Goal]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIGoal(“Channel Revenue”))
 , FORMAT_STRING=”$#,##0.00”
 MEMBER Measures.[Last Year Status]
 AS ([Date].[Calendar Year].CurrentMember.PREVMEMBER, KPIStatus(“Channel Revenue”))

SELECT { KPIValue(“Channel Revenue”)
 , KPIGoal(“Channel Revenue”)
 , KPIStatus(“Channel Revenue”)
 , [Last Year Value], [Last Year Goal], [Last Year Status]
 } ON COLUMNS
 , NON EMPTY { ([Sales Territory].[Sales Territory].[Region].ALLMEMBERS) }

(continued)

c09.indd 325c09.indd 325 11/13/08 4:38:08 PM11/13/08 4:38:08 PM

Part III: Business Intelligence Reporting

326

 DIMENSION PROPERTIES MEMBER_CAPTION, MEMBER_UNIQUE_NAME ON ROWS
FROM (SELECT (STRTOSET(@DateCalendarYear, CONSTRAINED)) ON COLUMNS
 FROM [Adventure Works]) WHERE (IIF(STRTOSET(@DateCalendarYear,
 CONSTRAINED).Count = 1,
 STRTOSET(@DateCalendarYear, CONSTRAINED), [Date].[Calendar Year].currentmember))
 CELL PROPERTIES VALUE, BACK_COLOR, FORE_COLOR, FORMATTED_VALUE, FORMAT_STRING,
 FONT_NAME, FONT_SIZE, FONT_FLAGS

 12. Now you ’ re ready to update the query in the report. Copy the query from the Management
Studio Query window, and paste it over all of the script in the Report Designer Query
window (see Figure 9 - 13). Click on the Execute button to test the query and refresh the field
collection.

(continued)

Figure 9-13

 The rest of the report design is pretty straightforward. As you can see in Figure 9 - 14 , the three new
calculated members are added to the data - set fields collection and can be used to add columns to the
table using the same drag - and - drop technique you have used before.

c09.indd 326c09.indd 326 11/13/08 4:38:09 PM11/13/08 4:38:09 PM

Chapter 9: Reporting with Analysis Services

327

 The gauges can also be copied and pasted from the original Status column. On the new gauge, click
on the pointer, and then use the smart tag to update the field binding to use the Last_Year_Status
field.

 Figure 9 - 15 shows this report in preview. A copy of the completed report is also available in the
Chapter 9 sample project.

Figure 9-14

c09.indd 327c09.indd 327 11/13/08 4:38:09 PM11/13/08 4:38:09 PM

Part III: Business Intelligence Reporting

328

 Building a Query without Using the MDX Designer
 You can write your own queries without the aid of the MDX Query Designer quite easily, but it can get
tricky when queries become complex. Writing your own queries can provide more flexibility than the
Query Designer affords, but you must start with a simple query to define the query metadata. You can
then typically get away with making changes to the column axis members logic, adding function calls
and calculated members, that don ’ t otherwise affect the structure of the query metadata.

 A simple MDX query can be typed or pasted directly into the Query Designer ’ s generic Query window,
and, as long as the query conforms to the Designer ’ s standards, it should work just fine. One of these
rules is that all measures must be on the columns axis. Typically, measures belong on the columns axis,
which might seem to be a reasonable assumption for most any query, although it is not a restriction in
the language itself.

 Use the Reseller Sales and Margin report in the Chapter 9 sample project for reference as you walk
through the steps to create it.

 First, create a new dataset using an Analysis Services data source. Manually adding the following query
script is perfectly acceptable to the Query Designer:

SELECT
 {[Measures].[Reseller Sales Amount]
 , [Measures].[Reseller Gross Profit Margin]} on Columns
 , ([Product].[Product Categories].Members) On Rows
FROM [Adventure Works]
WHERE [Date].[Fiscal Year]. & [2004]
;

Figure 9-15

c09.indd 328c09.indd 328 11/13/08 4:38:10 PM11/13/08 4:38:10 PM

Chapter 9: Reporting with Analysis Services

329

 However, if you want to parameterize the slicer expression on the WHERE clause, the Query Designer
won ’ t accommodate an in - line expression to dynamically build the WHERE logic. Here ’ s a simple work -
 around using an expression to build the query text.

 First, to make things interesting, add two report parameters to be used dynamically in the query.
Manually add a string - type parameter named Year and a Boolean - type parameter named IncludeEmpty .

 The Year parameter ’ s available values will come from a list of Fiscal Year members based on the
following MDX query:

WITH
 MEMBER Measures.YearUniqueName AS
 [Date].[Fiscal Year].CurrentMember.UniqueName

SELECT
 {Measures.YearUniqueName} ON COLUMNS
 , [Date].[Fiscal Year].Members ON ROWS
FROM [Adventure Works]
;

 The YearUniqueName calculated member in this query value is then substituted for the Year parameter
placeholder in the query. In the sample report, view the Available Values properties for this parameter.
Note that the parameter isn ’ t associated with the dataset, because this will be resolved in an expression.

 The Boolean - type parameter named IncludeEmpty is used to determine when rows with blank cells in
each column should be returned in the query results. In MDX, this feature is enabled by placing the text
 NON EMPTY before the row axis expression.

 You can accomplish all this by using an expression to build the query script. Rather than opening
the Query Designer from the Dataset Properties dialog, click on the expression button to the right of the
Query box (see Figure 9 - 16).

Figure 9-16

c09.indd 329c09.indd 329 11/13/08 4:38:12 PM11/13/08 4:38:12 PM

Part III: Business Intelligence Reporting

330

 In the Expression window, build the following script using VB.NET string concatenation techniques
(see Figure 9 - 17). I ’ ve broken this string up into several lines for readability, with the parameter values
assembled in line. The same technique can easily be applied to a larger query.

Figure 9-17

 This works great for simple string concatenation. But if you need to apply more complex, conditional
logic, you can build the query in a VB function embedded in the report and then call the function from
an expression. To create the function, open the Report Properties dialog from the Reports menu or right -
 click on the Report Designer window outside the Body to open this dialog.

 Here is the custom code for this report:

‘***
‘ Custom function returns complete MDX query for DataSet CommandText
‘ WHERE clause is built from YearParam parameter
‘ IncludeEmpty parameter determines whether empty row are returned.
‘ P. Turley - 8-30-08
‘***
Function ReportQuery(YearParam As String, IncludeEmpty As Boolean) As String
 Return “SELECT {[Measures].[Reseller Sales Amount] “ _
 & “, [Measures].[Reseller Gross Profit Margin]} on Columns “ _
 & “, “ & IIF(IncludeEmpty, “”, “NON EMPTY “) _
 & “[Product].[Product Categories].Members On Rows “ _
 & “FROM [Adventure Works] “ _
 & “WHERE “ & YearParam
End Function

c09.indd 330c09.indd 330 11/13/08 4:38:13 PM11/13/08 4:38:13 PM

Chapter 9: Reporting with Analysis Services

331

 Similar functions can be compiled to, and referenced from, a central .NET assembly to be shared among
multiple reports. This assembly, based on a Visual Studio Class Library project, can be written using C#
or any other .NET - compliant programming language. To learn more about referencing an external
library, see Chapters 8 and 17 .

 To modify a report outside the Report Designer, first close the Report Designer for the report you want to
modify. Using the Solution Explorer, select the report, and copy and paste it to make a backup copy.

 Right - click on the report, and choose View Code. This opens the RDL file without the Report Designer.
Use the Find feature (Ctrl+F) to search for the word DataSet , and then scroll down to the dataset you
need to change. The element tag for a dataset named DataSet1 will read < DataSet Name= ” DataSet1 ” > .

 Find the CommandText element, and paste the MDX script or make the change in this tag.

 Close and save the RDL file. You can open this report in the Designer to test it, but you shouldn ’ t try to
open the Query Designer unless you ’ re prepared to go back and apply these changes again.

 Also, before making manual changes in the MDX Query Designer, always copy the current working
query to Notepad or Management Studio first. This way, if the Query Designer decides that it doesn ’ t
like your changes, you can always revert back to the last working version.

 Using Date Parameters
 You ’ ve probably noticed by now that date values are handled differently in cubes than in typical
relational database scenarios. Date values are usually parsed and separated into specific date part
members and then organized into hierarchies. This is for convenience and efficiency. When filtering data,
rather than contending with real date - type ranges (which are the source of many application logic
errors), cubes generally organize data values by year, quarter, month, week, day, and so on. This way,
you typically can say “ Give me the sales from this month to that month ” rather than “ Give me the sales
records from 5:00:00.000 A.M. on this date through 11:59:59.999 P.M. on another date. ” See the difference?
Because you ’ re not managing transactions in a cube, a measure value can simply belong to a month or
week or day, rather than to a specific point in time.

 There are many occasions when users will want reports to include data for a range of dates. Even though
you typically don ’ t store dates as date/time - type values in the dimensions, you can still accommodate
these users with a little bit of creative design.

 The Reseller Sales by Territory and Date sample report has a data - set query that slices sales using a range
of Date member values. The Date member is not a date/time type but a string including the month, date
number, and year. Regardless of the face value of this member, a range of these date members can be

c09.indd 331c09.indd 331 11/13/08 4:38:13 PM11/13/08 4:38:13 PM

Part III: Business Intelligence Reporting

332

used to filter measure values. Your objective is to use two date - type parameters to drive a standard
calendar selection interface. The selected dates will be converted to dimension member key values and
then passed as parameters to the query. You ’ ll build the report to show the default behavior, and then
add support for the date - type parameters.

 Figure 9 - 18 shows the query design. Note the Range option chosen for the filter operator applied to the
Date member.

Figure 9-18

 There ’ s nothing particularly special about this matrix report. As you can see in Figure 9 - 19 , the
parameter list contains one row per date. If you had only 5 years of dates in the cube, each list would
have more than 1,800 items to scroll through. This is marginally functional and not the most ideal
method to prompt users for date values.

c09.indd 332c09.indd 332 11/13/08 4:38:13 PM11/13/08 4:38:13 PM

Chapter 9: Reporting with Analysis Services

333

 Now to work the magic.

 1. Start by changing the parameter data type from Text to Date/Time (see Figure 9 - 20). This will
change the parameter prompt to use a calendar dropdown, but the resulting value will be
incompatible with the Date member in the query.

Figure 9-19

Figure 9-20

c09.indd 333c09.indd 333 11/13/08 4:38:14 PM11/13/08 4:38:14 PM

Part III: Business Intelligence Reporting

334

 You need to have a way to convert the date values returned by the parameter selections into
values compatible with the Date member referenced in the query. The actual Date member
is expressed using the UniqueName property of the Date dimension attribute member.
For example, the key value for December 25, 2008 is [Date].[Date]. & [20081225] . This is
easy enough to convert using a VB.NET function you will embed into the report.

 2. Open the Report Properties dialog, and enter the following text into the Code window:

Function DateParameter(DateValue As Date) As String
 Dim sDateUniqueName As String
 Dim sDateKey As String
 sDateKey = YEAR(DateValue).ToString() _
 & RIGHT(“0” & MONTH(DateValue).ToString, 2) _
 & RIGHT(“0” & DAY(DateValue).ToString(), 2)
 sDateUniqueName = “[Date].[Date]. & [“ & sDateKey & “]”
 Return sDateUniqueName
End Function

 This function takes a date value as the input argument DateValue , parses it into properly
formatted date parts, assembles the date member UniqueName reference, and then returns this
value from the function.

 3. In the DataSet Properties dialog for the main report dataset, the date - type report parameters are
mapped to the query parameters through this function. On the Parameters page, as shown in
Figure 9 - 21 , click on the Expression button (fx) next to the first parameter to open the Expression
Builder.

Figure 9-21

 Figure 9 - 22 shows the correct syntax to call the DateParameter function, passing in the
 FromDateDate report parameter.

c09.indd 334c09.indd 334 11/13/08 4:38:14 PM11/13/08 4:38:14 PM

Chapter 9: Reporting with Analysis Services

335

 4. Click OK to accept the expression.

 5. In the DataSet Properties dialog, open the Expression Builder for the second parameter. Repeat
this step, and enter the same expression for the ToDateDate report parameter.

 The report is ready to preview. Figure 9 - 23 shows the parameter bar after you ’ ve made these changes.
Calendar controls are now displayed for each parameter, making a date selection much easier.

Figure 9-22

Figure 9-23

 The previewed report, shown in Figure 9 - 24 , reveals that the report runs with these changes. For testing
purposes, we ’ ve added four textboxes above the table to show the two parameter values. The second
row of values displays the output from the DateParameter function — the same values you passed into
the data - set query.

c09.indd 335c09.indd 335 11/13/08 4:38:15 PM11/13/08 4:38:15 PM

Part III: Business Intelligence Reporting

336

 Non - Additive Measures
 Often, the values you need to see on reports are calculated using more complex logic than simple sums.
Measure values can be based on statistical functions, on rolling or weighted averages, or on industry -
 specific standard calculations. Special logic is often required to calculate common metrics such as
inventory counts, profit, and ratios. Regardless, these aren ’ t calculations you should have to repeat
in every report. One of the great advantages of using SQL Server Analysis Services is that all the
necessary business logic for reporting and analysis can be designed into the cube. This means that once
the business rules are sorted out in the cube design, you simply use the measures, calculated members,
and KPIs with full confidence that the results will be accurate and reliable.

 Let ’ s use a simple example of an average sales amount calculation. You can use your imagination to
extend this scenario to other business cases that would apply to your situation. The Adventure Works
cube contains a measure named Reseller Average Sales Amount . The logic behind this calculation relies on
the knowledge of individual transaction sales amounts that are actually not present in the cube. In fact,
unless we were to go back to the original data source for these sales records, we couldn ’ t calculate this
value ourselves. Fortunately, Analysis Services performs some magic when it processes the cube and
aggregates this measure value. It figures out which values must be stored in the cube and which values
can be derived at query time. In the case of an average measure, it must store the average at every level
of a dimensional hierarchy, because it ’ s not possible to derive an average from a range of average values
at a lower level. Although it ’ s interesting to know how Analysis Services performs these aggregations
and stores selected values, you can sleep soundly at night knowing that you don ’ t have to worry about it.

Figure 9-24

c09.indd 336c09.indd 336 11/13/08 4:38:15 PM11/13/08 4:38:15 PM

Chapter 9: Reporting with Analysis Services

337

 Enter Reporting Services. When you drag - and - drop a field onto a report item or data region at a group
level above a detail row, the Report Designer always applies the SUM function to a numeric value.
It assumes that you want to roll up individual values into a summed total. This is a helpful assumption
most of the time but not when your measure fields don ’ t sum, or if you want to do something else with
them. What if the measure were a standard deviation or a weighted, rolling average? How would you
roll this up into a group footer?

 It doesn ’ t matter. This is Analysis Services ’ job, and you should not have to worry about it. Here ’ s a
simple example to illustrate the simple solution. Figure 9 - 25 shows a basic matrix report, named AS Avg
Sales in the Chapter 9 sample project. The detail and total value cells were designed by dragging the
 Sales_Amount_Quota and Reseller_Average_Sales_Amount fields to the detail area of the matrix.
We ’ ve made a point to expand the column widths so that you can see the expressions. As you see, the
Designer applied the SUM function to all four of these cells.

Figure 9-25

 Figure 9 - 26 shows the report in preview. We ’ ve called out one example showing that the total for two
quarterly sales averages is the sum of these values. This is an inaccurate total. (Read on.)

c09.indd 337c09.indd 337 11/13/08 4:38:16 PM11/13/08 4:38:16 PM

Part III: Business Intelligence Reporting

338

 Using the Aggregate Function
 The solution to this problem is to let Reporting Services know that it should not try to aggregate any
values. The measure values for an OLAP query have already been aggregated, and the value at each
level represents the appropriate roll - up of subordinate levels. This is done by replacing occurrences of
 SUM with the AGGREGATE function.

 Figure 9 - 27 shows the report with these changes. We have replaced all of the SUM function references
with AGGREGATE by editing each expression.

Sum of averages

Figure 9-26

Figure 9-27

c09.indd 338c09.indd 338 11/13/08 4:38:16 PM11/13/08 4:38:16 PM

Chapter 9: Reporting with Analysis Services

339

 Preview the report again to see the results. Note that all the Sales_Amount_Quota total values remain
the same, because this is an additive measure and these values were already using the SUM function
in the cube. The summed value from the cube (which you see here) and the summed values in the report
are the same. However, the Reseller_Average_Sales_Amount totals are different. This is because the
calculation returned from the cube in Figure 9 - 28 is the calculated average rather than the sum of
averages you saw in the previous example.

True average

Figure 9-28

 MDX Proper ties and Cube F ormatting
 As you ’ ve looked at the MDX queries generated by the MDX Query Designer, you may have noticed
several properties references in the MDX script under the headings CELL PROPERTIES, DIMENSION
PROPERTIES, and CUBE PROPERTIES. This is evidence of one of the most significant differences
between Analysis Services and a relational database product like SQL Server 2008. When you run a
T - SQL query for an SQL Server database, the result set contains very little information aside from the
column names and values. Sure, there is a little bit of metadata used by the data provider and client
components, such as data types, numeric scales, and string lengths. The formatting of the query results is
entirely in the hands of whichever client application is consuming the data.

 MDX - based queries provide a mechanism for returning a variety of useful information about different
objects returned from a query. Within the cube design, every measure can be formatted, and every
calculated member can have font, color, and other styling characteristics associated with it. Dynamic
expressions defined in the cube are used to modify these properties based on threshold values or any
other logic. This way, profit - related measures are displayed in green, and losses are in red and bold text.
These properties are returned through the query results as metadata tags associated with each cell and
dimension member. The query script can explicitly request that certain properties be returned.

c09.indd 339c09.indd 339 11/13/08 4:38:17 PM11/13/08 4:38:17 PM

Part III: Business Intelligence Reporting

340

 Reporting Services uses these properties by generating corresponding properties for each field object it
derives from an MDX query. These field properties are accessible in the Report Designer Expression
dialog. When you select a field, the Value property is referenced by default. Just back the cursor up to the
period following the field name to see all the available field properties. Figure 9 - 29 shows an example
setting the Color property of the textbox used to display the Sales_Amount_Quota.

Figure 9-29

 Unfortunately, the current version of the Adventure Works DW 2008 sample Analysis Services database
doesn ’ t implement any dynamic formatting, so I ’ m unable to easily demonstrate this feature without
using a cube you don ’ t have access to.

 Drill - Through Repor ts
 As you know, a drill - through report uses a report action to navigate to a second report when the user
clicks on a report item (often a textbox) that contains a reference value of some kind. The typical scenario
for drill - through reports is where a high - level summary report lists dimension members in a data region
in a table or matrix. Using the example of a table report showing sales summary information for
products, if users were to click on a product name, they might expect to see sales details for that product.
If a report based on relational tables were used for drill - through, you would expect a key value, such as
the ProductID , to be passed from the source report to a parameter in the target report, and used to filter
records.

 MDX - based reports can play this role as well as any other data source. The difference is in the way that
keys and unique identifiers are defined in a cube. Every dimensional attribute does have a key value, but
it might not necessarily correspond to a primary key value in a relational data source. Because attributes

c09.indd 340c09.indd 340 11/13/08 4:38:18 PM11/13/08 4:38:18 PM

Chapter 9: Reporting with Analysis Services

341

are organized into hierarchies, the unique value used to describe an attribute preserves the entire
hierarchy lineage through a property called the UniqueName . This is the value passed to any parameters
generated by the MDX Query Designer, and it is considered to be a best practice to use the same
technique for drill - through reports. The value of a dimension member is derived from the MDX Name
property for a member by default. For a product, this would just be the product name as it appears on
the report. The UniqueName property value is derived from the ProductKey field in the DimProduct
table and would look something like this:

[Product].[Product]. & [470]

 The example provided in the Chapter 9 sample project consists of a source and target report that you can
use as an example of this functionality. The Top 10 Product Internet Sales by Year report contains a table
with an action configured for the Product textbox. The Product Sales by Year report has a parameter
called Product that filters an MDX query bound to a chart. The source report contains an action defined
on the Product textbox, which passes a value using the following expression to the target report:

=Fields!Product.UniqueName

 The target report, Product Sales by Year (MDX drill - through target), contains a query parameter named
 ProductProduct that was generated by the MDX Query Designer when this report was designed.

 Figure 9 - 30 shows the Action settings for the source report product textbox. Note the expression used in
the Value column of the parameter mapping.

Figure 9-30

c09.indd 341c09.indd 341 11/13/08 4:38:18 PM11/13/08 4:38:18 PM

Part III: Business Intelligence Reporting

342

 Cube Report Actions
 Report navigation can also be driven by the cube itself. Cube actions are designed in a cube and exposed
as metadata in an MDX query cell - set result. When a compatible cube - browsing client (which includes
Excel PivotTables, Office Web Components PivotTable, and Proclarity UI components) displays a query
result, hotspots are generated for the related cells. The user can choose a drill - through action for the
relevant cell and navigate to a report or other target defined by the cube action.

 From a report design perspective, designing a report to receive a report action is exactly the same as
designing a drill - through target report. You simply create a parameter to filter the results of a query.

 Parameter Safety Precautions
 If a drill - through report, URL, or cube report action is exposed to the Internet or an uncontrolled
network environment, precautions should be taken to prevent script injection attacks. There are two
common safety precautions used when passing parameters to an MDX query. The first is implemented
by default in the script generated by the MDX Query Designer. Parameters are passed to the functions
 STRTOSET or STRTOMEMBER with the CONSTRAINED optional argument flag. This flag instructs the MDX
query processing engine to disallow any dynamic script or function calls in the parameter text. The other
provision that you can implement yourself is the URLEscapeFragment function. Passing any MDX
object reference to this function will MIME - encode any characters that could be used to embed script.
The query processor will decode any valid characters on the receiving end after validating the unaltered
text. This sample code returns a properly escaped form of a dimension member reference:

UrlEscapeFragment(SetTostr({[Dim].[MyHierarchy].CurrentMember}))

 Best Practices and Pro visions
 The following are some important considerations for designing reports for Analysis Services. Keep these
factors in mind as you create reports:

 Leverage the Cube — Design business rules and calculations into the cube. Report and query
design with a comprehensive cube is a simple matter of dragging and dropping members into
the Query Designer.

 Allow Empty Rows — By default, the MDX Query Designer eliminates rows that have all
empty cells. This may impede certain reports such as charts and matrices. To include all rows,
regardless of empty cells, remove the NON EMPTY directive on the rows axis.

 Let the Cube Manage Aggregation — Replace the SUM or FIRST aggregate functions added by
the Report Designer with the AGGREGATE function. This instructs Reporting Services to let the
Analysis Services query engine take care of the aggregate values.

 Sorting Months — When you use the Report Wizard to create a table or matrix report, groups
are sorted on the same field as the group. Fields like Months will be sorted in alphabetical order.
Since the members are already sorted correctly in the cube dimension, this is resolved by
removing the Sort expression for the group.

❑

❑

❑

❑

c09.indd 342c09.indd 342 11/13/08 4:38:19 PM11/13/08 4:38:19 PM

Chapter 9: Reporting with Analysis Services

343

 Cascading Parameters — Auto - built MDX queries create multiple datasets with interdependent
parameters. Removing an unneeded parameter can be challenging. Check each hidden data - set
query for references to the parameter, and remove those references or delete the dataset and
rebuild it without the parameter.

 Use the Query Designer to Create Parameters — Allow the MDX Query Designer to create
parameter and filter logic, and then make modifications to the query after making a backup copy.

 Use Expressions and Custom Code — As an alternative to using the Query Designer in either
graphical or generic mode, assemble the query using an expression or custom function.

 Summary
 SQL Server 2008 Analysis Services is a powerful tool to store and manage critical business information to
support business decisions and analytics. If Analysis Services is used correctly, compelling and useful
reports can be created very easily using Reporting Services. Business users shouldn ’ t need to understand
the MDX language to design day - to - day reports with Report Builder 2.0, but with some basic MDX
knowledge, BI solution developers can create advanced visualizations and powerful business
dashboards that would be slow and difficult to design with a relational data source.

 The advantages afforded by Analysis Services and the OLAP query engine are numerous. Queries are
lightening fast, data is simplified and accessible, and business - specific calculations are managed in a
central location. Using Reporting Services to design reports for Analysis Services data can create a fast,
secure, and reliable BI solution with uniform results across the business enterprise.

❑

❑

❑

c09.indd 343c09.indd 343 11/13/08 4:38:19 PM11/13/08 4:38:19 PM

c09.indd 344c09.indd 344 11/13/08 4:38:19 PM11/13/08 4:38:19 PM

 Report Solution P atter ns
and Recipes

 This chapter serves as a practical guide to designing reports and building reporting solutions in
the real world. It contains a few examples of advanced and creative report designs as recipes to
solve specific business problems. This is a high - level guide and not step - by - step instructions. You
will use the techniques you ’ ve learned in the previous chapters to implement specific functionality.
Specifically, this chapter covers the following topics:

 Reporting project guidelines, key success factors, and the solution scope

 Defining and managing report specifications and the development process phases

 Migrating and converting reports from other reporting tools

 Working with the strengths and limitations of the Reporting Services architecture

 Recipes and models for several advanced reporting features and techniques

 In the previous chapters, you ’ ve learned what you can do with Reporting Services, and you have
been given several options to implement various report functionality. The last edition of this book
provided a chapter that offered practical guidance for designing reports based on real - world
experience. This chapter takes a different approach to introducing report development patterns
by focusing not on what you can do but what you should do. Over the past three years, I have
spent the majority of my professional time building reporting solutions for consulting clients.
Collectively, we ’ ve developed reporting solutions for a very large software producer, one of
the world ’ s largest media and entertainment companies, a global aerospace manufacturer, an
international investment bank, utility companies, retail services, food services, telecommunications
providers, and government agencies. I ’ ve made it a point to build the content for this chapter over
time while working on different projects. These and other projects have afforded us challenging
opportunities to discover effective patterns for designing a variety of report styles.

❑

❑

❑

❑

❑

c10.indd 345c10.indd 345 11/13/08 4:39:04 PM11/13/08 4:39:04 PM

Part III: Business Intelligence Reporting

346

 We have also had the opportunity to work closely with members of the Reporting Services product team
at Microsoft to better understand the long - term goals for Reporting Services ’ features and capabilities.
This has provided insight into the mechanics of the product ’ s components and why they behave as they
do. Without fully understanding the design goals in constructing the architecture of this product, it ’ s
easy for a report designer to ask questions like, Why does it work that way? . . . Why did that do that?
Reporting Services has some limitations that may not make sense to the casual user. I ’ ve found that most
advanced capabilities that I would like to include in reports can be implemented, but not necessarily
using my chosen technique. As I ’ ve run up against limitations and have discussed these with the product
architects and product managers, the answers are often in the vein of: “ That feature wasn ’ t designed to
work that way. You can accomplish the same thing by using this other feature or technique. ” My goal is
to share these techniques and capabilities with you.

 Unlike the previous chapters on report design, I ’ m not going to do much hand - holding in this chapter.
By now, you should know how to use the features of the Report Designer and how to change properties,
create queries, and use all of the report items. For each of the report design techniques that follow, I ’ ll
give you enough information to explain the concept and demonstrate the technique, but I won ’ t walk
you through the entire process from start to finish. This will save time and avoid redundancy with
material covered in the previous chapters.

 Repor ting Project Requirement Guidelines
 Reporting projects are a special breed of software solutions. In the software world, successful projects
don ’ t just happen without deliberate efforts to manage evolving requirements and to steer the creative
effort. Whether you are a corporate application developer, an independent consultant, or the person who
wears all the hats in the department, your project should have a sponsor who defines the requirements
and takes delivery of the finished product. We could spend volumes discussing lessons learned about
failed and successful projects. In short, the secrets of success nearly all come down to effective
communication and the involvement of a customer stakeholder. We ’ ve discussed some of these
principles and ideas in previous chapters. This section is a concise set of guidelines that you may
consider using to help you and your project sponsor to cover the essentials.

 Key Success Factors
 Reporting projects have a much better chance of being successful when the business requirements are
well defined and clearly communicated. In particular:

 Report specifications should be documented using a standard format for all reports.

 Report specifications are a “ living, breathing ” document that will evolve as the report goes
through its life cycle.

 Report layout should be mocked up and included in the specifications, in order to capture the
stakeholder ’ s vision.

 Report designers must understand the source data. In cases in which the designer isn ’ t familiar
with the database design and business data, specific queries or stored procedures should be
defined and prepared before report design.

 The database schema should be frozen before work begins.

❑

❑

❑

❑

❑

c10.indd 346c10.indd 346 11/13/08 4:39:12 PM11/13/08 4:39:12 PM

Chapter 10: Report Solution Patterns and Recipes

347

 Accurate samples or real data should be available to support the design and testing of all
reports.

 Report designers should update report specifications to reflect any layout, data, and business
rule changes that might have occurred during development, and to include further relevant
details to assist in future maintenance.

 These may seem like lofty goals. The fact is that often you may not be able to control all of these factors.
Experience will help you to know where to draw the line between the situations in which you should
work with less - than - ideal conditions and the situations in which you should put your foot down and
insist that these conditions be met before you begin work. In any case, be sure to clearly communicate
your concerns and the associated risks.

 Solution Scope
 Reports often have many dependencies on other parts of a solution, and if these pieces aren ’ t in place
before reports are designed, this can hold up the report work and waste considerable time and money.
Reporting solutions require that the right type of database is in place, that it has been populated with all
of the data necessary to build the reports, and that the user and business report requirements are well
defined and documented. They also require that at least two environments have been set up to host the
reports: a development environment and a production environment. (In more involved scenarios, you
might want to introduce a test/QA environment.)

 The scope of the solution should be understood before report work begins. Without a clear
understanding of all the related components of the solution, the project can easily spin out of control,
with more work being started than finished.

 Common examples of solution scope challenges include:

 Report performance problems prompt database schema changes or the constructing of
de - normalized fact tables containing duplicate data.

 Realizing that changing transactional data doesn ’ t support reporting scenarios, the database is
redesigned while in production.

 Database and report features are added as you go and not according to a predefined plan,
causing each report to take on different behavior and features.

 The process of periodic data extraction to populate the reporting database system is known as
ETL (Extract, Transform, and Load). A separate data mart or data warehouse is created to store
preaggregated decision - support data. A complex ETL process is created to periodically copy new data
into the decision - support database.

 When a data warehouse is not available and out of the scope of the report project, you may consider
using an operational data store (ODS). An ODS reflects transactional data closer to real time, as opposed
to the historical volumes in a data warehouse, but which has gone through some data cleansing and
integrity checking for more accurate reports.

 Needless to say, if these kinds of issues aren ’ t mitigated and managed, even simple projects may be
doomed before they start. Ideally, a report designer should be on the receiving side of business
requirements and should participate in helping to clarify the details rather than making up new

❑

❑

❑

❑

❑

c10.indd 347c10.indd 347 11/13/08 4:39:13 PM11/13/08 4:39:13 PM

Part III: Business Intelligence Reporting

348

requirements as the project moves along. In most cases, the report designer should rely on the business
analyst/information worker as the subject - matter expert of the data in context, allowing for a separation
of concerns and better defined tasks.

 Reporting on Existing Data Sources
 If you are walking into an environment where the databases already exist, you should carefully review
and discuss the long - term viability of the solution with your project sponsor. If this is a small, simple
database that isn ’ t likely to grow significantly over its useful life, then you may be in good shape.
However, small - database reporting solutions that perform well in test and design scenarios may not
fare so well when loaded up with truckloads of data and accessed by many concurrent users.

 The system should have a defined capacity and a plan to scale up when you need to support large
volumes of data and high workloads.

 Reporting on Transactional Sources
 In even moderately sized systems, reporting on live data can often be challenging. If user applications
are locking data rows and inserting new records while reports run, this creates resource contention and
performance issues. Reporting on changing data can also be risky because the report can only capture a
single moment in time, while this data continues to change. While using common solutions such as
 “ dirty reads ” (uncommitted reads) might address the contention issue, you would still need to identify
whether reading uncommitted data is acceptable for your reporting solution.

 Decision - support database systems are typically designed to be exclusively Read Only and use data
structures much simpler than those used by equivalent transactional databases. This optimizes report
performance and keeps the data consistent for a set period of time. Users understand that they aren ’ t
looking at the most current data, but they know it should be accurate as of the end of business on the
previous day.

 One of the challenges when reporting on data in an existing database is that the database may not have
been designed with your reporting requirements in mind. Even the simplest reporting requirements can
often be difficult to meet without writing very complex queries. This can slow performance and only
support a certain amount of data. For small and simple database systems, reporting on the same tables in
a transactional database as the rest of the applications may be the easiest choice.

 Building an End - to - End Reporting Solution
 With Reporting Services, you can create an entire user experience by prompting for input parameters,
customizing query operations, interactive filtering, sorting, and using report item actions and navigation
features for drilling down (and through) to more details. However, this all assumes that the data sources
contain the necessary data in a form that is both accessible and scalable to meet future demands.
If this isn ’ t the case, what might have looked like a simple reporting project can take on a whole new
dimension. Decision - support systems often involve a separate database that is populated at regular
intervals from one or more transactional sources. Typically, scripts run during off hours to copy new data
from the main database into a set of simplified tables designed especially for reporting.

c10.indd 348c10.indd 348 11/13/08 4:39:13 PM11/13/08 4:39:13 PM

Chapter 10: Report Solution Patterns and Recipes

349

 Data Marts and Data Warehouses
 A data mart is a decision - support database used within a department or business unit to serve up report
data to meet a set of specific business requirements. It could be as simple as a small set of de - normalized
tables in a relational database, or it could be a set of OLAP cubes in a hierarchical database system like
Microsoft Analysis Services. Queries for OLAP reporting will be written in a hierarchical expression
language, like MDX, rather than the set - based T - SQL language.

 Data warehouses and data marts are similar in principle but different in scale. A data warehouse is
typically a large - scale, enterprise - wide system that meets the reporting needs of many business groups
and departments, and will nearly always be deployed as a specialized OLAP system.

 An effective ETL process involves not only copying new data from one system to another, but also
transforming many rows from many source tables into preaggregated rows of conformed data that
describe specific facts. The conformation process means that similar data from disparate systems can be
ubiquitously identified, regardless of which system it originated from. In the end, the decision - support
data, populated by the ETL process, helps meet reporting business requirements as effectively as
possible. Tools such as SQL Server Integration Services (formerly Data Transformation Services, or DTS)
are often used to implement ETL.

 Sample and Test Data
 During report design, it is very important to work with data similar to that of report users. Sample or
 “ mocked - up ” data is often meaningless in a business context and doesn ’ t exhibit the same characteristics
as the real thing. This data should represent variety and should adhere to the same business rules as real
data so that data grouping, sorting, and filtering features can be designed with predictable results.
Where possible, production data (or at the very least, production - like data) should be used for report
design and testing. Sensitive information can be scrubbed by using search - and - replace iterations and
calculations to modify numeric and currency values.

 It is usually harder to implement new reporting solutions in parallel with the implementation of a
new decision - support system because realistic test data may not be available. In those cases, it is
recommended to start the reporting system design and implementation later in the project timeline of
the main transactional system implementation. Not only does this allow for business data analysts and
information workers to become familiar with the new data model, but it also provides a richer set of test
data for testing with the new reports.

 In addition to using real data, it ’ s important to work with a manageable set of data so that reports run
quickly. Large data volumes can slow report design significantly. To design a bug - free report typically
takes several iterations of testing after adding each feature. If it takes several minutes to render a report,
this can slow the process by hours and days. When it takes a long time to test a report, I often find
myself trying to use this downtime more effectively by working on other tasks. In the end, I find myself
starting (more than finishing) multiple things on a slow - running machine. While this is partially
mitigated by the .RDL.DATA files created by the Report Designer, in order to cache preview data, if you
are dealing with a large dataset to begin with, you still have a delayed response while the report is being
rendered. It ’ s tough to keep track of all the loose ends, especially when queries are timing out and
reports are crashing with errors.

c10.indd 349c10.indd 349 11/13/08 4:39:13 PM11/13/08 4:39:13 PM

Part III: Business Intelligence Reporting

350

 Report Specifications
 Work with your users and project sponsor to design a report specification template that addresses your
unique business needs. Some reports may query data from multiple tables, and users may not be
familiar enough with the data structures to specify column names and keys for joins. In this case, you
may need to involve a database expert to help with these requirements. Other reports may get their data
from existing views or stored procedures, making this part of the process a whole lot easier.

 You might find that if the project sponsor and users aren ’ t familiar with the data structures, you are left
to make assumptions about how the tables should be joined and queried. In these cases, the report
specification becomes more of a checklist and a forum to validate assumptions and to answer questions.
This also lengthens the development cycle of the report because you have the onus of learning the details
of the data model.

 Ultimately, the burden must be left to the project sponsor to provide and approve the specific
requirements for each report. This, of course, should be performed with the assistance and cooperation
of the report designer as you discuss each feature. Remember that the key to success is effective
communication. On larger projects or when reporting on more complex databases, you may need to
separate the business requirements of the report from the technical specification, perhaps by using
two separate documents to gather these requirements. In any case, the key is to involve users and
business stakeholders in obtaining buy - off and validating the results.

 The following table contains a list of suggested sections for a report specification that should work for
most report projects, but can be edited to meet any special requirements.

 Report Specification
Description

 Full report name and description

 Report Category or
Group

 Reports are often grouped by business function, features, or user
audience.

 Priority 1 = High, 2 = Medium, 3 = Low

 Business Problems/
Questions Answered

 Describe the business problem and include any details and
assumptions made that lead to the report dataset.

 Data Source Database, tables, stored procedures, cubes, etc.

 Fields Schema Field Name Column Title Format

 Table columns and cube
dimension member and
measures are collectively
called fields in Reporting
Services. List all fields by
name with the related
report column title and
data format.

 Actual table column
or member name

 Report column
heading title

 Currency, percent,
date/time – short/
long, decimal places,
etc.

c10.indd 350c10.indd 350 11/13/08 4:39:13 PM11/13/08 4:39:13 PM

Chapter 10: Report Solution Patterns and Recipes

351

 Row Heading(s) If report format and data are not self - described, some sections of table
row headings may require labels.

 Filtering How is the data filtered — static filters and parameter - based filters?
At database server? At report server? List filtered fields and criteria.

 Grouping How is data grouped — Static, dynamic, or based on parameter field
selection? Subgroups? Are groups indented or formatted differently?
List groups and field(s) for each group.

 Sorting How is data sorted — static, parameter - based, sorting within groups,
interactive (column header sorting)? List the sort field(s).

 Parameters Parameter Name Source Default

 Parameters used for user
input or selection may be
presented in textboxes,
checkboxes, radio buttons,
or dropdown lists. May be
used to filter, group, sort,
show/hide items, rows,
columns, etc.

 Name and prompt
text for parameter
(if applicable)

 Single value, static
list, data - driven list
of values

 The default value of
the parameter

 Calculations and
Calculated Fields

 What calculations are performed in the report? Indicate operational
order of precedence and conditions — e.g., if 0 or NULL values;
division by zero; negative results; conditional formatting.

 Layout Sample Include a sample of the report (can be an Excel mockup, or a
screenshot).

 Query Details If including technical details, include SQL or MDX query or explain
logic driving any calculations, joins, and aggregations.

 Notes

 Development Phases
 As with any software development project, each component or report should progress through a series
of design and development phases. These may include prototyping or proof - of - concept, design, testing,
and deployment. There are a couple of different ways to keep reports organized: multiple environments
or multiple logical folders and/or projects for each phase.

 Multiple Reporting Environments
 The multiple environment approach involves maintaining multiple reporting environments that reflect the
phases of design and development. The most common scenario is to have a development report server, a
test/QA server, and, finally, the production environment. This is more involved, requiring a well - defined
report promotion and deployment path. It also requires that multiple server environments be set up.

c10.indd 351c10.indd 351 11/13/08 4:39:14 PM11/13/08 4:39:14 PM

Part III: Business Intelligence Reporting

352

 The idea is to keep the report development in the dev/sandbox environment, and as report development
is complete, the report can be deployed to the next stage, testing. In the test/QA environment, analysts
can verify the report ’ s integrity and validate report data and layout. Once the report has gone through
testing and validation, it can be marked ready for production, and go through any formalized promotion
processes, such as change control, and so on.

 I like to take advantage of the built - in deployment mechanism in Visual Studio for report projects and
the support for multiple configurations within one solution. The solution ’ s Properties dialog offers a
Configuration Manager from which you can edit and add new configuration options to your solution
(see Figure 10 - 1). You can then create a new configuration for each phase of the project and set different
deployment targets for those configurations.

Figure 10-1

 With recent advances in hardware virtualization technology, this approach may not be as difficult or
expensive — especially if the IT group already supports virtualization for other projects — although it
may require a bit more effort up front. When virtualization is not an option, though, the cost of hardware
and licensing may quickly shoot down this option.

c10.indd 352c10.indd 352 11/13/08 4:39:14 PM11/13/08 4:39:14 PM

Chapter 10: Report Solution Patterns and Recipes

353

 Multiple Logical Folders and Projects
 When following the multiple folder approach, you might find it helpful to create separate projects and
folders and then graduate reports from one project to another as they are verified and pass testing
criteria.

 For each of the Visual Studio projects, within a master solution, create duplicate shared data sources. You
can drag and drop reports from one project to another and then remove the previous report using the
Solution Explorer. When you right - click on the old report and choose the Remove option, the second
Remove option will leave the file in the project folder and simply remove the entry from the project file.
Because a new copy is created in the destination project, you should choose the Delete option so that you
maintain only one copy of the report definition file.

 For each report project, set the TargetFolder property of a deployment folder to a name that
corresponds to the project name (i.e., Prototype Phase , Design Phase , Test Phase , and Completed Reports).

 Finally, there is one last thing to remember about what will happen on practically every report project.
In the beginning, your sponsor will tell you what reports and features they want and you ’ ll work with
them to capture all of the requirements in detail. Things will generally go pretty smoothly until they
begin testing and you come up on a deadline. In the eleventh hour, users will start asking for things and
your sponsor will request changes.

 You ’ ll learn of some minor misunderstandings you may have had about the early requirements, and this
will prompt even more changes. Some last - minute changes are inevitable in any project, but when a
change is requested, it must be in writing. Whether in hand - written form, in a document, or an e - mail
message, keep and save these requests. You should be able to trace every new request back to an earlier
requirement or obtain a clear understanding that it is a new requirement. If users request changes, you
should have the project sponsor approve them. In the end, managing these changes will go a long way
toward ensuring the success of your report project.

Quick and Easy Repor t Deployment
By combining both of the techniques described above, you can actually achieve a very
easy, although less formalized, deployment process. If you maintain separate physical
(or virtual) reporting environments, which, in turn, have multiple folders to which
reports are deployed, you can configure Visual Studio to push your reports to the
correct folders for each environment!

Just set up the Configuration Manager options for your solution, and then use separate
projects within the solution that represent each folder within the Report Server. Finally,
in the Project properties, set each project’s TargetFolder to the appropriate
destination folder in the report server.

Now you can choose a target environment (Development, Test/QA, Production), right-
click on the solution name in Solution Explorer, and choose Deploy. This will send
every project’s items (reports and shared data sources) to their respective folder on the
Report Server. Alternatively, you can “control-click” each report in the Solution Explorer
in order to select multiple items, and then right-click on the selection and choose
Deploy so that only the report you selected will be deployed to the Report Server.

c10.indd 353c10.indd 353 11/13/08 4:39:15 PM11/13/08 4:39:15 PM

Part III: Business Intelligence Reporting

354

 Migrating and Converting Reports
 One of the most common scenarios in large businesses moving to Reporting Services is the desire to
migrate or convert reports created using another reporting tool. Many large businesses that have existing
applications will have reporting solutions in Crystal Reports, Business Objects, or Access reports. There
has been a significant interest in “ converting ” Crystal Reports to Reporting Services reports. There are
several challenges making this difficult to achieve easily.

 Recognizing this need, some third - party report migration tools have been developed by companies that
offer report migration services. In many cases, these do an effective job of moving Crystal Reports into
Reporting Services Report Definition Language (RDL) files. These tools leverage the fact that the Report
Definition Language is an open specification format that provides a well - documented set of guidelines
for building RDL documents.

 There is no single method for fully automating report conversion from Crystal Reports without some
manual intervention. One of Reporting Services ’ greatest strengths is the ability to consolidate similar
reports into one, to achieve a more flexible, single report. In many cases, several Crystal Reports or
Access reports may be distilled into a handful of SSRS reports to address the same business challenges.
There are several features that other reporting applications don ’ t offer when compared with Reporting
Services. Moreover, the guidelines and best practices for designing reports with Reporting Services do
not always align with those of other tools, and by simply copying a report design from another tool, you
will not take advantage of what Reporting Services has to offer. The best practice for report migration is
to start, not just with existing reports, but with the user and business requirements, and meet them by
effectively using the unique features in Reporting Services. With a large number of existing reports,
report conversion can move this process along in large strides.

 If you can use existing reports to model design elements, layout and formatting, calculation expressions,
query strings, and connection information, this will likely save time and money when compared with
starting over from scratch. However, you are almost guaranteed to find better ways to meet your
requirements by considering a different approach, consolidating similar reports, and using updated
features. The structure of these reports will often be different.

 For example, Crystal Reports uses a banding approach for grouped data, wherein the report itself
defines data - bound grouped sections. In contrast, a Reporting Services report is simply a blank design
canvas upon which report items are used to define data regions for one or more datasets or query result
sets. Since grouped data regions may be implemented using a tablix, chart, or gauge report item,
depending on the need, there isn ’ t a one - to - one correspondence between these report architectures.

 Crystal Reports also relies heavily on formulas and functions for mathematical calculations and
conditional formatting, whereas Reporting Services allows designers and developers to use one of three
techniques including Visual Basic in - line expressions, code - behind VB functions and snippets, or
external .NET assemblies written in your language of choice. This provides a great deal of flexibility to
implement custom functionality. Converting all but the simplest expressions from Crystal Reports
formulas to Visual Basic expressions would be nearly impossible, especially when the original Crystal
Report did not use VB syntax for formulas and calculations.

 Finally, one of the most significant challenges for developers who might want to create and distribute a
report conversion application is a legal constraint imposed by the proprietary Crystal Reports format
(RPT). Programmatically querying the structure of a Crystal Reports report requires components and

c10.indd 354c10.indd 354 11/13/08 4:39:15 PM11/13/08 4:39:15 PM

Chapter 10: Report Solution Patterns and Recipes

355

libraries licensed by Business Objects (owners of the Crystal Reports technology), which prohibits their
use for report conversion and distribution with third - party software.

 Working with the Strengths and Limitations
of the Architecture

 Never assume that anything works the way you want it to. Keep in mind that some of the chief goals of
this product are to render reports in a variety of presentation formats using server - side components.
In doing so, a report rendered to a specific format may not take advantage of all the capabilities offered
by that format, a client tool, or markup language. For example, reports rendered to HTML don ’ t offer all
of the advanced behavior you might implement in a custom - built web page with cascading style sheets
and JavaScript. If you were to design a report in Microsoft Excel, you might design the workbook with
formulas used to recalculate the spreadsheet rather than using literal values for summaries and totals.
The general approach is that Reporting Services renders using methods to address the commonality of
all these formats. There ’ s always room for more features and advanced functionality. Some of these may
be added to the product in later versions because this makes sense for mass consumption. Because of
the modular architecture of Reporting Services, certain features can be added through custom
programming extensions.

OfficeWriter for Repor ting Ser vices
An interesting feature that did not make the final cut for Reporting Services 2008 is
the OfficeWriter tools, which enable users to design reports completely in Office Word
and Excel while using Reporting Services for calculations and data retrieval in the
background.

This feature will push the envelope in terms of allowing non-developers, information
workers, and analysts to develop Reporting Services reports using a tool they are
already familiar with. They never have to leave the Word or Excel environment and can
fully leverage their capabilities while building out new reports.

We will definitely be watching for this feature set in a future release or service pack of
the product.

 I think it ’ s important to define boundaries, not to be critical but to better understand the possibilities and
limitations. In software, we ’ re always trying to do something new — something that has never been
done before (at least not within a particular environment). To this end, there are some fundamental
questions that can help you understand just how you might approach a problem and whether a goal can
be achieved within the constraints of your capabilities and resources. When I go into a new consulting
opportunity, the first thing that I try to do is to take inventory of the skills necessary to get the job done
and then let my client know where we stand: “ I can do this . . . I ’ ve done that . . . I know someone who
can help me with this . . . but I don ’ t know much about that thing, and I don ’ t know if I ’ m the right
person to tackle it. I ’ ll give it a shot, but we may need to consider bringing in another resource. ” After all,
if I ’ m not honest with my clients, this could just turn out to be a bad experience for everyone, damaging
my credibility and the business relationship with the client.

c10.indd 355c10.indd 355 11/13/08 4:39:15 PM11/13/08 4:39:15 PM

Part III: Business Intelligence Reporting

356

 This is the approach I ’ d like to take in this section. Reporting Services can do some wonderful things,
but it ’ s important to understand the boundaries and limitations of certain features. Perhaps the same
capability may be possible using another feature, or perhaps you may be barking up the wrong tree
entirely. You are not likely to build every conceivable type of report, and over time you will probably
create a handful of reports using techniques that you will duplicate repeatedly as you build more reports
of the same style. Therefore, not all of these reports may apply to you, but they may give you some ideas
about new ways to solve old problems.

 It ’ s not easy to find the limits of most products. For some reason, that information isn ’ t listed in the
product specifications and documentation — at least not in bold type. I ’ ve had very little success going
to a large software vendor asking: “ Hey, tell me what your product can ’ t do. ” Wouldn ’ t it be nice when
shopping for a car or a house, if the salespeople would just list the comparative shortcomings of their
product? I think it would make the process so much easier. For this discussion, that is where I ’ d like to
start. The following table details some of the more recognizable limitations of the Reporting Services
architecture. This is by no means intended to be a complete list, nor is it a list of bugs or issues. It ’ s
simply a guideline of design constraints to be aware of when taking reports to the next level. I ’ ve also
provided some common alternatives to implement desired functionality.

 Area Limitation Alternatives

 Data
presentation

 In the report body or a group
section, all fields must be
aggregated, even if the
dataset only returns one row.

 Use an aggregate function even if your query
returns one row or all rows for the field return the
same value. Typically, you should use the FIRST()
function for character and date data and the
 SUM() function for numeric data.

 Formatting Conditional formatting
expressions can be
complicated and difficult to
maintain, especially when
nesting Boolean logic and
when same expression is
repeated for multiple report
items and fields.

 Write a Visual Basic function in the Report
Properties Code window, and call the function as
an expression for each report item — for example,
= Code.MyFunction(Fields!MyField.Value)

In certain cases, you might also be able to leverage
the newly introduced Report and Group variables
to hold certain values.

 Aggregate functions don ’ t
return zero for summaries on
 “ NULL ” values. Our users
want to see zeros.

 Use a Visual Basic function to return a zero in place
of a NULL value — for example,
= IIF(IsNothing(SUM(Fields!MyField
.Value)), 0, SUM(Fields!MyField.Value))

Or, pass values to a Visual Basic function to convert
null, empty string, or no value to a zero or another
value — for example,
= Code.NullToZero (Fields!MyField.Value)

c10.indd 356c10.indd 356 11/13/08 4:39:16 PM11/13/08 4:39:16 PM

Chapter 10: Report Solution Patterns and Recipes

357

 Area Limitation Alternatives

 Rendering HTML rendering doesn ’ t
support some table design
formatting. For example,
narrow columns used for
spacing and borders are
padded with extra space.

 This is a characteristic of HTML rendering and is
not considered a bug. If reports require more exact
tolerances, users should be instructed to use printer -
 friendly rendering formats like PDF and TIFF.

 Using images in place of
borders causes extra vertical
and horizontal padding and
column misalignment.

 Most rendering formats were not designed to use
images in place of borders. Images placed in table
cells will typically be padded. Report design is a
little different from web design, and some of the
techniques may not work. Reports should be tested
in all common rendering formats when using
images borders.

 Reports don ’ t support events
like Access does. I want to
count pages, rows, groups,
and report item values.

 Reporting Services 2008 introduces the concept of
on - demand processing, and Report and Group
Variables. These variables are set once and can be
retrieved from within their scope. With the
combination of these new variable types and some
custom code, you are able to recreate those counts.

 Actions Code variables aren ’ t tracked
across multiple “ postings ” of
an interactive report. I need
to keep track of values that
are modified by code as my
user interacts with a report.

 You can use report parameters and set the action of
the interactive item to “ post ” to the same report,
passing the changed value in the parameter
collection.

 Repor t Recipes
 In the following section, I ’ ve compiled a description of reporting challenges and solutions we ’ ve
encountered, developing reports for our clients. For each “ solution recipe, ” I provide a brief list of skills,
techniques, and resources needed to apply the report feature. This should give you a good idea of how
prepared you may be to use the techniques based on your skill set and the level of complexity. Some of
these are easy to duplicate, whereas others require more advanced skills, which may include Transact - SQL
and Visual Basic programming. These are not intended to be exercises or step - by - step instructions. I have
made a point to provide enough information to demonstrate the concepts and techniques. However, to
implement these solutions, you will need to apply the skills you learned in the previous chapters.

 Multiple Criterion Report Filtering
 Report design requirements may call for complex combinations of parameter values used to filter report
data. Using Transact - SQL, you should be able to handle practically any advanced filtering criteria and
filter the data before it reaches the report server. However, if you need to use report filtering to provide
the same kinds of filtering support against data already cached by the dataset query, the Report
Designer has some significant limitations in this area. For example, let ’ s say that my report has two

c10.indd 357c10.indd 357 11/13/08 4:39:16 PM11/13/08 4:39:16 PM

Part III: Business Intelligence Reporting

358

parameters for filtering product records: ProductCategory and PriceRange . In this simplified
example, the parameter values for both of my parameter lists are the same as the parameter label values.

 The ProductCategory parameter list values are shown in the following table:

 Parameter Value Product Category Field Match

 Bikes Bikes

 Components Components

 Clothing Clothing

 Accessories Accessories

 All Bike Related All Bike Related

 All All

 And the following table shows the PriceRange parameter list values:

 Parameter Value Price Range Field Match

 Less than 50 < 50

 50 to 99 > =50 AND < 100

 100 to 499 > =100 AND < 500

 500 and higher > =500

 All All prices

 Contending with the various combinations of these and other parameter values in the confines of the
Report Designer ’ s filtering user interface would be very difficult to do. The most flexible method is
to write a separate Visual Basic function to handle the matching logic for each parameter and field
combination. This code is called for each row. The function returns a value to be matched with a field
in the row. If the values match, the row is returned. The following custom code is added to the report on
the Code tab of the Report Properties dialog:

Function MatchProductCategory(ParamValue As String, FieldValue As String) As String
 Select Case ParamValue
 Case “Bikes”, “Components”, “Clothing”, “Accessories”
 Return ParamValue
 Case “All Bike Related”
 If FieldValue = “Bikes” Or FieldValue = “Components” Then
 Return FieldValue
 End If
 Case “All”
 Return FieldValue
 End Select

c10.indd 358c10.indd 358 11/13/08 4:39:16 PM11/13/08 4:39:16 PM

Chapter 10: Report Solution Patterns and Recipes

359

End Function

Function MatchPriceRange(ParamValue As String, FieldValue As String) As Decimal
 Select Case ParamValue
 Case “Less than 50”
 If FieldValue < 50 Then Return FieldValue
 Case “50 to 100”
 If FieldValue > = 50 And FieldValue < 100 Then Return FieldValue
 Case “100 to 500”
 If FieldValue > = 100 And FieldValue < 500 Then Return FieldValue
 Case “500 and Higher”
 If FieldValue > = 500 Then Return FieldValue
 Case “All”
 Return FieldValue
 End Select
End Function

 Using the Filters tab on the Dataset Properties dialog, as shown in Figure 10 - 2 , executes each of the
functions, matching its return value to the corresponding field.

 This technique takes all the complexity out of this simple dialog and puts it where it belongs — in
program code. That environment gives you the control needed to contend with practically any set of
business rules.

Figure 10-2

c10.indd 359c10.indd 359 11/13/08 4:39:17 PM11/13/08 4:39:17 PM

Part III: Business Intelligence Reporting

360

 Customizing Gauges with External Images
 The new gauge report items offer a high level of customization, allowing the report designer to create
gauges that satisfy the needs of most business requirements. There are so many properties waiting to be
customized, that most of us will ever need to tweak them all.

 As discussed in previous chapters, you can customize gauges all the way down to the pointer(s) and
dials. An interesting option is to set the BackFrame to a custom image, whether embedded or external.
If you prefer that your gauges mimic those of the hot rod dashboard, then you are in for a treat!

 You will need:

 A good - quality PNG or GIF image at 96 DPI of a custom frame for your gauge.

 A gauge item to apply the image back frame.

 Begin by embedding a new image into the report definition. You simply need to right - click on the
Images item in the Report Data window and select Add Image. Find the file location of your custom
gauge frame image, and click OK.

 Now, drag and drop a new gauge item from the toolbox onto the report body. Select the Radial Gauge
type, as shown in Figure 10 - 3 , and click OK. Click inside the body of the gauge so the actual radial gauge
item is selected and not the panel or another child item of the gauge.

❑

❑

Figure 10-3

 In the Properties window for the selected gauge, expand the BackFrame section, and then expand the
 FrameImage section. Set the Source property to Embedded and the Value property to the name of
the custom image you embedded into the report in the first step, as shown in Figure 10 - 4 .

c10.indd 360c10.indd 360 11/13/08 4:39:23 PM11/13/08 4:39:23 PM

Chapter 10: Report Solution Patterns and Recipes

361

 Your frame should now display with the new frame image. Figure 10 - 5 shows a before - and - after shot of
the gauge item, in which a custom frame was applied as well as several customizations to the pointer
size and color, scale radius and number placement, and so on.

 As you can see, you can create very realistic and appealing gauges that are sure to catch the
reader ’ s eyes.

Figure 10-4

Figure 10-5

c10.indd 361c10.indd 361 11/13/08 4:39:27 PM11/13/08 4:39:27 PM

Part III: Business Intelligence Reporting

362

 Creating a Business Scorecard
 This type of reporting scenario has quickly become a mainstay in enterprise business applications. Also
known as executive dashboards, business scorecards provide summary level progress and success status
information for business leaders.

 You will need:

 A query expression with data - based or calculated target, budget, variance, and actual values.

 A multigroup table with drill - down features.

 Small images for use as progress indicators.

 An expression used to translate KPI and target values to indicator images.

 Executive Dashboards
 To understand and appreciate the value of this type of reporting interface, you need to walk in the shoes
of corporate business leaders. A typical corporate officer deals with a lot of people and a variety of
information in a day and often needs to make immediate decisions based on this information. When
moving from meeting to meeting, transaction - level details are too granular for most decisions. Business
leaders need to know how the business is performing overall and whether there are areas of concern or
notable success. I ’ ve sat in a lot of meetings with a general manager or director sitting on one side of the
table and subject experts on another. The officer begins by saying, “ So, how are we doing? ” The subject
expert gives a lengthy presentation, stepping through PowerPoint slides, charts, graphs, and diagrams
that depict trends and variances based on mountains of data. After the presentation, the officer
concludes with the question, “ So, how are we doing? ” Scorecards and dashboards answer this all -
 important question using succinct summary values and simple graphical, symbolic progress indicators.

 Although simplification is a key concept, scorecards go beyond just keeping reports simple. Trends and
success indicators should be clear and easy to understand but should provide an avenue to discover
more detail and to view related trends and summaries. These objectives are easily achieved using
drill - down and drill - through report features.

 Targets and KPI s
 These are the fundamental concepts behind business scorecards. For any given measurement, a target is
simply an objective value. Targets are often data - driven values such as a Budget, Quota, Baseline, or
Goal. A KPI, or Key Performance Indicator, is a set of thresholds used to measure actual values with the
target. KPIs may define banding indicators to signify a range of variances like poor, acceptable, and
exceptional performance. KPI thresholds may be a single point, corresponding to the target, percentage,
or fixed increment offsets with any number of indicator bands.

 When considering longer - term trends, you may want to recognize the difference between a positive
trend using a KPI and whether or not a value represents a successful outcome, as a KSI (key success
indicator). For example, sales for a particular product may have been unprofitable since it went on the
market. If sales are rising, a KPI would show positive sales growth, whereas a KSI would indicate that
the company is still in the red. We might simply define two targets, one to measure short - term progress
and the other to measure overall profitability.

❑

❑

❑

❑

c10.indd 362c10.indd 362 11/13/08 4:39:32 PM11/13/08 4:39:32 PM

Chapter 10: Report Solution Patterns and Recipes

363

 Indicators
 Indicators are graphical icons, representing the state of an actual value with respect to a KPI band. On
the scorecard, corresponding indicator icons might be red, yellow, and green symbols. Indicators are
typically common symbolic metaphors such as traffic lights, colored shapes, progress bars, gauges, and
directional arrows. Figure 10 - 6 shows some common indicator graphics embedded in a sample report.

Figure 10-6

 Calculating Variance
 Variance is the difference between an actual and a target value. If time variances will be used extensively,
the queries used to make these calculations can be very intensive. Aggregating and calculating sales
totals, for example, for a given month over last month, quarter, or year can require some heavy - duty
query processing (even with a modest number of detail rows). Ideally, this type of data should be stored
in a data mart or data warehouse with precalculated variance values stored in the database. The
AdventureWorksDW database contains some preaggregated summary values, but as you can see, even
for this simple report with only year - over - year variances, the query is fairly complex.

SELECT
 ThisYearSales.SalesTerritoryRegion
 , ThisYearSales.SalesTerritoryKey
 , ThisYearSales.CalendarYear
 , ThisYearSales.LastName
 , ThisYearSales.FirstName
 , ThisYearSales.EmployeeName
 , SUM(ThisYearSales.ExtendedAmount) AS ExtendedAmountSum
 , SUM(ThisYearSales.SalesAmountQuota) AS SalesAmountQuotaSum
 , SUM(LastYearSales.ExtendedAmountSum) AS ExtendedAmountSumLastYear
FROM (
 SELECT
 DimSalesTerritory.SalesTerritoryRegion
 , DimSalesTerritory.SalesTerritoryKey
 , DimDate.CalendarYear
 , DimEmployee.LastName
 , DimEmployee.FirstName
 , DimEmployee.EmployeeKey
 , DimEmployee.FirstName + ‘ ‘ + DimEmployee.LastName AS EmployeeName
 , FactResellerSales.ExtendedAmount
 , FactSalesQuota.SalesAmountQuota
 FROM DimEmployee
 INNER JOIN FactSalesQuota
 ON DimEmployee.EmployeeKey = FactSalesQuota.EmployeeKey
 INNER JOIN DimDate
 ON FactSalesQuota.DateKey = DimDate.DateKey
 INNER JOIN FactResellerSales
 ON DimEmployee.EmployeeKey = FactResellerSales.EmployeeKey

(continued)

c10.indd 363c10.indd 363 11/13/08 4:39:32 PM11/13/08 4:39:32 PM

Part III: Business Intelligence Reporting

364

 AND DimDate.DateKey = FactResellerSales.OrderDateKey
 INNER JOIN DimSalesTerritory
 ON DimSalesTerritory.SalesTerritoryKey =
 FactResellerSales.SalesTerritoryKey
) AS ThisYearSales
INNER JOIN
 (SELECT
 FactResellerSales.EmployeeKey
 , DimDate.CalendarYear
 , DimSalesTerritory.SalesTerritoryKey
 , DimSalesTerritory.SalesTerritoryRegion
 , FactResellerSales.ExtendedAmount AS ExtendedAmountSum
 FROM FactResellerSales
 INNER JOIN DimDate
 ON FactResellerSales.OrderDateKey = DimDate.DateKey
 INNER JOIN DimSalesTerritory
 ON DimSalesTerritory.SalesTerritoryKey =
 FactResellerSales.SalesTerritoryKey
) AS LastYearSales
 ON LastYearSales.CalendarYear = ThisYearSales.CalendarYear - 1
 AND ThisYearSales.EmployeeKey = LastYearSales.EmployeeKey
 AND ThisYearSales.SalesTerritoryKey = LastYearSales.SalesTerritoryKey
GROUP BY
 ThisYearSales.SalesTerritoryRegion
 , ThisYearSales.SalesTerritoryKey
 , ThisYearSales.CalendarYear
 , ThisYearSales.LastName
 , ThisYearSales.FirstName
 , ThisYearSales.EmployeeName
ORDER BY
 ThisYearSales.SalesTerritoryRegion
 , ThisYearSales.CalendarYear
 , ThisYearSales.LastName
 , ThisYearSales.FirstName

 When running complex queries like this one, you may need to increase the default connection time - out
setting on the data source. The default setting is 15 seconds, which may not be sufficient for this query
on all hardware. In a production application with data volumes greater than the sample database,
I would recommend testing query performance and possibly using an Analysis Services database with
cubes and precalculated aggregates. To populate the data warehouse, you will use queries similar to this
one and store the results for later retrieval.

 Figure 10 - 7 shows a simple tablix with two groups, in the SalesTerritoryRegion and CalendarYear
fields. This tablix is much like several previous examples. The detail row is hidden by default, allowing
for drill - down using the SalesTerritoryRegion textbox. Two more images will serve as indicators.
These are based on expressions used to change the indicator image.

Figure 10-7

(continued)

c10.indd 364c10.indd 364 11/13/08 4:39:32 PM11/13/08 4:39:32 PM

Chapter 10: Report Solution Patterns and Recipes

365

 You will notice that the images have a white background even though background colors are used to
separate the rows. This is done only to simplify this example. The images are simply added to the cells in
the table header. If you want to use transparent images over a colored or shaded background, you will
need to add rectangles to the header cells and then place images in the rectangles. This way, you can set
the BackgroundColor property for each rectangle and take advantage of the image transparency.

 Looking at the columns with text headers, the first column contains the SalesTerritoryRegion field in
the first group header and the CalendarYear field in the detail row.

 The second column contains the EmployeeName in the detail row.

 The third text column is for the SalesAmountQuotaSum field. The header uses the SUM() function to
aggregate the details for the sales territory.

 The fourth text column contains total sales values, using the ExtendedAmountSum field.

 The last column of text boxes, labeled Year Variance , calculates the total sales amount annual variance.
In the header row, the expression uses the SUM() function. In the detail row, the SUM() function is
omitted. Values in this column are formatted as percentages.

=1-(Sum(Fields!ExtendedAmountSumLastYear.Value) /
Sum(Fields!ExtendedAmountSum.Value))

 The expression for the sales first set of indicators (the images column after total sales column) calls a
Visual Basic function to apply the KPI threshold banding. Figure 10 - 8 shows this custom code.

Figure 10-8

c10.indd 365c10.indd 365 11/13/08 4:39:33 PM11/13/08 4:39:33 PM

Part III: Business Intelligence Reporting

366

 Because the image names for the green, yellow, and red indicators contain their respective names, you
just need to build the string with these values and return it in the Value property of the image item using
the following expression:

=”indicator_” & Code.SalesQuotaVarianceIndicator(Sum(Fields!ExtendedAmountSum.Value)
 , Sum(Fields!SalesAmountQuotaSum.Value)) & “_16”

 For variety, I ’ ve resolved the second indicator column images using only an in - line expression rather
than using a custom function. This is the expression for the header row. The detail row expression is the
same but without the SUM() function. As a rule, once I ’ ve decided to use custom code, I ’ ll typically
continue to use custom functions for all but the simplest expressions so that I can keep business logic in
one place.

=IIF(Sum(Fields!ExtendedAmountSum.Value) / Sum(Fields!ExtendedAmountSumLastYear
.Value) < .8, “indicator_yellow_16”, nothing)

 This expression returns the yellow warning icon image when this year ’ s sales amount is less than
80 percent of last year ’ s. Figure 10 - 9 shows the rendered report with some region sections drilled open.

Figure 10-9

 Reporting on SharePoint 3.0 List Data
 The SharePoint platform is Microsoft ’ s technology for enterprise portal and content management. It is
a very powerful platform with a rich set of features and tools to allow storage and categorization of
documents and data, collaboration, and the like. At the center of SharePoint ’ s content are lists, which are
synonymous with data tables. Lists contain data and metadata that can be queried via SharePoint ’ s Web
Service layer.

c10.indd 366c10.indd 366 11/13/08 4:39:33 PM11/13/08 4:39:33 PM

Chapter 10: Report Solution Patterns and Recipes

367

 Reporting Services ships with an XML data provider that you can use to connect to an XML Web Service
and retrieve data to be consumed by a report. In this section, you will be leveraging this data provider
to connect to SharePoint ’ s Web Service endpoint and retrieve list data.

 You will need:

 An existing, running SharePoint 3.0 instance, with at least one site configured.

 Access to the SharePoint Web Service URL.

 First, add a new report, or open an existing report in your report project. Then add a new data source
(embedded or shared). In the data source ’ s General Properties dialog, choose the XML type for a data
connection from the dropdown list.

 Next, you need to provide the URL to the SharePoint Web Service that retrieves List data. The URL will
be in the format shown in Figure 10 - 10 .

❑

❑

Figure 10-10

c10.indd 367c10.indd 367 11/13/08 4:39:34 PM11/13/08 4:39:34 PM

Part III: Business Intelligence Reporting

368

 The < app_path > is optional and may depend on how your SharePoint site is configured in the web
server. For example, if you have a portal configured at the URL http://MyPortal.com , your URL to
the web service should be http://MyPortal.com/_vti_bin/Lists.asmx .

 Now switch to the Data Source Properties dialog ’ s Credentials page, and choose Windows
Authentication (Integrated Security), or, if your SharePoint site is configured for anonymous
authentication, choose No Credentials. Those are the two credential options that you will be able to
leverage while using SharePoint, and which are supported by the Report Designer.

 Now you are ready to create your report dataset that will consume the XML data. Add a new dataset to
the report, give it a name, and choose the SharePoint data source created in the previous steps. The
SharePoint Lists Web Service endpoint provides several web methods that you can invoke for working
with lists, content types, list items, and files. For the purpose of this report, you are concerned only with
two of these following web methods:

 GetListCollection — Gets the names and GUIDs for all lists in the SharePoint site.

 GetListItems — Gets information about items in a list specified by the query parameters

 Let ’ s start with GetListCollection . This web method does not require a parameter and is, therefore, a
quick and easy way to ensure that you can connect and retrieve data from SharePoint. Enter the
following XML text in the Query textbox for your dataset (remember that XML is case - sensitive):

 < Query >
 < Method Namespace=”http://schemas.microsoft.com/sharepoint/soap”
 Name=”GetListCollection” / >
 < /Query >

 You should now be able to go into the Query Designer, execute your query, and return data. This will
confirm that you have connected to SharePoint successfully. Under the covers, the SharePoint web site is
serving up XML fragments in the form of CAML (Collaborative Application Markup Language — an
XML - based language used by Windows SharePoint Services to describe/define views and fields in a
list). Click OK to finish creating your dataset.

 Now, let ’ s look at the GetListItems method. This web method requires a set of parameters to be passed
in. Here is a list of required parameters (in the order of the method signature):

 listName (string) — The display name or GUID of the list, surrounded by curly braces ({})

 viewName (string) — The GUID of the view to be used for the list, surrounded by curly
braces ({}). If blank, the default view will be used for the list.

 query (XMLNode) — An XML fragment representing the query that determines the records to
be returned and in what order

❑

❑

❑

❑

❑

c10.indd 368c10.indd 368 11/13/08 4:39:36 PM11/13/08 4:39:36 PM

Chapter 10: Report Solution Patterns and Recipes

369

 viewFields (XMLNode) — An XML fragment representing the fields that should be
determined and in what order

 rowLimit (string) — Represents the number of items to be returned by the result set

 queryOptions (XMLNode) — An XML fragment representing the different options that can be
assigned for the SharePoint Query object

 webID (string) — An optional string representing the GUID of the parent web site for the list.
We will not be using this parameter for our example

 A caveat of reporting on SharePoint lists is that not every list has the same schema definition. This means
that you cannot dynamically change the list name parameter value in the report to any list you may have
in SharePoint. Reporting Services expects a fixed set of columns in the dataset so that it can map out the
fields for the report.

 With that in mind, you ’ ll create a new report that queries for a particular list and displays its data. Start
by adding a new report to your project. Then, add a new dataset to the report, similar to the one in the
previous steps, and give it a name. Enter the following XML fragment in the Query textbox of your dataset
(make sure that there is no trailing slash after the web method name in the URL of the SoapAction
element):

 < Query >
 < Method Namespace=”http://schemas.microsoft.com/sharepoint/soap/”
 Name=”GetListItems” >
 < Parameters >
 < Parameter Name=”listName” >
 < DefaultValue > My List Name < /DefaultValue >
 < /Parameter >
 < Parameter Name=”viewName” >
 < DefaultValue > < /DefaultValue >
 < /Parameter >
 < Parameter Name=”rowLimit” >
 < DefaultValue > < /DefaultValue >
 < /Parameter >
 < /Parameters >
 < /Method >
 < SoapAction > http://schemas.microsoft.com/sharepoint/soap/GetListItems < /SoapAction >
 < /Query >

 Notice that you must specify the DefaultValue element for the listName parameter so that the Report
Designer can statically define the fields for the dataset. You also include two other parameter names,
 viewName and rowLimit , but leave their inner values empty in XML so that Reporting Services can pass
report parameters to them.

❑

❑

❑

❑

c10.indd 369c10.indd 369 11/13/08 4:39:36 PM11/13/08 4:39:36 PM

Part III: Business Intelligence Reporting

370

 When you create the data - set parameters and don ’ t specify parameter values, the Report Designer
automatically creates report parameters that match the name of the data - set parameter and then assigns
the report parameter values to the data - set parameters. This saves you a few steps and mouse clicks.
One last thing before you click OK to finish creating the dataset is to click the Refresh Fields button. This
will make the Designer run the query and grab metadata about the result set in order to build the fields
that you can use in the report.

 Now you are ready to start building your table with report data. Just drag and drop a new table on the
report body and then drag a few of the fields from the dataset onto the table details row. When you
are done, you should be able to preview the report and get back SharePoint list data, as shown in
Figure 10 - 12 .

Figure 10-11

 If you don ’ t specify the Parameters XML Node with a default value for the listName , you may
experience SOAP exceptions while running the query. It is best to always explicitly include it instead of
only relying on the XML data provider in Reporting Services to “ translate ” data - set parameters into the
method ’ s parameters.

 So, let ’ s set up the parameters for the dataset to match those parameters provided in XML. In the
Parameters section of the Dataset Properties dialog, add new parameters, as shown in Figure 10 - 11 .

c10.indd 370c10.indd 370 11/13/08 4:39:36 PM11/13/08 4:39:36 PM

Chapter 10: Report Solution Patterns and Recipes

371

 Report Localization
 At some point during your endeavors as a report designer/developer, you will run into the issue of
 report localization . Localization simply means that you have taken care of using lookup resources for each
supported locale and culture in order to hold any static strings that will be displayed on the report — it
allows you to have language and culture - aware reports. With localization, your reports should strive to
be culture - neutral and language - neutral so that you can truly achieve a good level of globalization.

 Reporting Services provides several mechanisms that take care of certain aspects of localization. The
RDL schema provides a Report Language property that can be used to set the appropriate culture and
locale information that will be used to format dates, numbers, and currency. It also provides support for
right - to - left languages such as Hebrew. The ReportViewer control and most of the Report Manager UI
provide localized strings, which means that UI elements surrounding your report RDL will already be
translated and formatted according to the user ’ s current culture settings (defined by browser and OS).
Out of the box, Reporting Services, configured in native mode, supports 10 languages. In SharePoint
Integration Mode, you get an additional 12 (see http://msdn.microsoft.com/library/ms156493
.aspx for more details).

Figure 10-12

c10.indd 371c10.indd 371 11/13/08 4:39:37 PM11/13/08 4:39:37 PM

Part III: Business Intelligence Reporting

372

 However, you are still required to take a few additional steps in order to provide a fully localized RDL —
 that is, one that knows how to handle string lookups for the current culture. With the use of .NET
Globalization features and a custom code assembly, you can accomplish this very easily.

 Multicultural Considerations
 There are some considerations to keep in mind when following this approach. You will be using a single
report RDL to display text in different languages. For tabular reports, column headers that contain static
localized text will need to accommodate the longest string values among the language you plan to
support; otherwise, you might encounter odd text wrapping, which can be an issue for glyph - or
character - based languages such as Japanese or Chinese, where the different combination of characters
implies different meanings.

 If your report displays currency amounts, you need to identify whether you will be providing converted
currency values. If your data stores only U.S. dollar amounts, you may have to specify in the report
the currency that is being used, or you may choose to use an external service that provides currency
conversion calculations. In either case, you will want to be extremely careful about how you present this
type of information, and also take into consideration any latency incurred from making expensive
invokations to external services.

 Parameter Prompt Expressions and the RDCE
 In early previews of Reporting Services 2008, there was a new feature that allowed the
ability to apply expressions to Report parameter prompt text. While this would go
hand - in - hand with the ability to fully localize a report and provide seamless culturally
neutral reports, the feature was removed in the final release version.

 As in previous versions of Reporting Services, the parameter prompt text still can only
hold static text, which means that you cannot use the standard parameter toolbar to
collect user input for multilanguage reports without forcing all end - users to
understand the same language.

 To address this shortcoming, developers might be forced to create multiple copies of
the same report, each for a different language, which unfortunately defeats the purpose
of dynamic string lookups for localization.

 A new feature in Reporting Services 2008 named the Report Definition Customization
Extensions (RDCE) provides hooks into the preprocessing of reports so that the
developer can customize the report definition. Using the RDCE, the developer can
ultimately address the parameter prompt issue by extending Reporting Services.

 This is particularly interesting for report localization because it allows the
custom extension to investigate values in parameters and user and locale
information, and then provide a customized report definition on the fly that gets
executed for that report request. More information is available at the following URL:
 http://msdn.microsoft.com/library/cc281022.aspx .

c10.indd 372c10.indd 372 11/13/08 4:39:44 PM11/13/08 4:39:44 PM

Chapter 10: Report Solution Patterns and Recipes

373

 Creating the External Resource Lookup with . NET
 This section shows how you can leverage .NET Globalization and Resource files to store your static
string values for multiple languages, and then how to retrieve those values from within the report body.
The .NET project will provide a set of “ satellite ” assemblies that will contain the culture - specific
resources.

 You will need:

 A .NET class project with different resource files for each supported language, defining the static
text you want the report to look up.

 A static method that takes a key and returns a value from the current culture ’ s resource file.

 An RDL file that defines an external assembly reference.

 Textbox expressions within the report body that call the external assembly.

 The following example does not get into details of how to write code or create classes using .NET. If you
need to implement this solution, you should have a certain level of experience with writing custom code.

 In Visual Studio, create a new class library project, in your language of choice, and give it a name. Within
your class file, add the following lines of code:

using System;
using System.Globalization;
using System.Resources;
using System.Reflection;

namespace Wrox.Localization
{
 public class Localizer
 {
 private ResourceManager rm;
 public string ResourceName { get; set; }

 public Localizer()
 {
 Initialize();
 }

 public Localizer(string resourceName)
 {
 this.ResourceName = resourceName;
 Initialize();
 }

 void Initialize()
 {
 string currentNs = this.GetType().Namespace;
 rm = new ResourceManager(currentNs + “.” + this.ResourceName
 , Assembly.GetExecutingAssembly());

❑

❑

❑

❑

(continued)

c10.indd 373c10.indd 373 11/13/08 4:39:44 PM11/13/08 4:39:44 PM

Part III: Business Intelligence Reporting

374

 }

 public string GetLocalText(string key)
 {
 return rm.GetString(key);
 }

 public string GetLocalText(string key, string culture)
 {
 return rm.GetString(key, new CultureInfo(culture));
 }
 }
}

 This defines your class with a private member, the ResourceManager object that will get values out of
the resource files. It also defines a public method, GetLocalText() , with two overloads: one that takes
a key and another that takes both a key and a culture name. This is important to note, because by
allowing a resource name to be set as a class property, you can reuse this class for other reports and
won ’ t need to hardcode report - specific details.

 Next, you need to add a new resource file to the project for each culture that you need to support. The
main resource filename does not include a culture. However, satellite resource filenames for different
cultures need to have the culture name appended after the resource name, but before the file extension.
The naming syntax is < Resource Name > . < Culture Name > .resx .

 For example, if the default culture file is MyResource.resx , the Chinese (Taiwan) equivalent would
be MyResources.zh - TW.resx . Figures 10 - 13 and 10 - 14 show the contents of the sample resource
files for both the default culture (en - US) and the French (fr - FR) culture, respectively. To include new
cultures later on, just create new resource files (with Visual Studio or any text editor), and then use the
 RESGEN.exe command - line tool, if not using Visual Studio, or build from the IDE, to compile into
satellite assemblies that you can just drop into the report server ’ s BIN folder.

(continued)

Figure 10-13

Figure 10-14

c10.indd 374c10.indd 374 11/13/08 4:39:44 PM11/13/08 4:39:44 PM

Chapter 10: Report Solution Patterns and Recipes

375

 Make sure that each of the resource files in the project has the Build Action property set to Embedded
Resource. This tells the compiler to build each resource file in its own satellite assembly and place the file
in its respective culture folder under the project ’ s BIN folder.

 The next step is to deploy the main assembly and the satellite assemblies to Visual Studio ’ s PrivateAssemblies
folder, as well as to the report server ’ s BIN folder. The former allows you to execute the report in the preview
window of the Report Designer, and the latter is the actual server where the report will be deployed once it
has been developed. Figure 10 - 15 shows all the files and folders that need to be copied over.

Figure 10-15

Figure 10-16

 You will need to restart Visual Studio in order for the new assemblies to be loaded. Next, open your
report in the Designer, and add a reference to the assembly from the Report Properties window, as
shown in Figure 10 - 16 .

c10.indd 375c10.indd 375 11/13/08 4:39:58 PM11/13/08 4:39:58 PM

Part III: Business Intelligence Reporting

376

 Because you used an overloaded constructor to your Localizer() class, you cannot use the Class
Name/Instance Name options in the References window to create an object instance of your custom
class. This would invoke the default constructor. In order to create the object instance, you must override
the OnInit event of the Report ’ s Code object and place your object instantiation within that event. This
technique is described in the SQL Server Books Online.

 Also, you must create a public variable in the report scope to which you can assign the newly
instantiated Localizer() object. Figure 10 - 17 shows the code snippet required to do just that.

Figure 10-17

 The last step is to modify the expression for each of the textboxes in the report that contain static text
with a call to your custom code for the localized strings. The expression syntax should look as follows:

=Code.m_loc.GetLocalText(“SalesTerritory”)

 The string “ SalesTerritory ” represents the key that you are retrieving from the current culture ’ s
resource assembly. When you have updated all static text with lookup expressions, you can deploy your
report and view the result. Figure 10 - 18 shows the final result of the report running in Internet Explorer
with the Languages settings for the browser configured with fr - FR as the primary culture. You can see
that the text strings are being retrieved correctly, and you can also see the rest of the Report Manager UI
utilizing the built - in Globalization features of Reporting Services.

c10.indd 376c10.indd 376 11/13/08 4:39:58 PM11/13/08 4:39:58 PM

Chapter 10: Report Solution Patterns and Recipes

377

 Dynamic Grouping
 I get called in to consulting client sites often to rebuild a set of existing Crystal or Access reports in
Reporting Services. They will typically have several reports for each data entity or table that are
grouped, sorted, and filtered a little differently. This solution allows you to consolidate data groups for
the same table into one report. The following example consolidates the reports “ Product Sales by
Territory, ” “ Product Sales by Category, ” and “ Product Sales by Subcategory ” into one report with user -
 selectable field grouping.

 You will need:

 A tablix presenting a tabular set of grouped values.

 A report parameter with a list of fields in the dataset for sorting.

 A group expression using the report parameter to resolve the grouping field name.

 Heading and summary expressions referring to the dynamic group expression.

❑

❑

❑

❑

Figure 10-18

c10.indd 377c10.indd 377 11/13/08 4:39:59 PM11/13/08 4:39:59 PM

Part III: Business Intelligence Reporting

378

Figure 10-19

Figure 10-20

 This works best with simple tabular reports that have one group. The dynamic grouping is based on a
single parameter selection that returns the name of a field from the report ’ s main dataset. Figures 10 - 19
and 10 - 20 show the settings for the GroupBy parameter. Note that the Value column for the parameter
list contains the actual Field names for selected fields in the dataset.

c10.indd 378c10.indd 378 11/13/08 4:40:00 PM11/13/08 4:40:00 PM

Chapter 10: Report Solution Patterns and Recipes

379

 A group is defined in the table based on an expression that uses this parameter to resolve the field
value. In the report header, you want to show the Field name, and in the group header, you want to
show the actual field value. To return the friendly Field name that was displayed in the parameter
dropdown list, refer to the Label property of the parameter. The field value is displayed using the
compound expression: = Fields(Parameters!GroupBy.Value).Value . The inner reference
 (Parameters!GroupBy.Value) is resolved first to return the Field name, which is passed to the outer
expression (Fields(< field name >).Value) to resolve the field value from the Field name.

 Figure 10 - 21 shows the properties for the Tablix group. The same expression is used to define the group.
On the Sorting tab of the Grouping and Sorting Properties dialog, shown in Figure 10 - 22 , the sorting
expression is set to match the group expression.

Figure 10-21

c10.indd 379c10.indd 379 11/13/08 4:40:00 PM11/13/08 4:40:00 PM

Part III: Business Intelligence Reporting

380

Figure 10-22

 Since grouping should always be performed on values in the same sort order, the same expression is
used on the Sorting tab.

 Dynamic Fields and Columns
 Under some conditions, you may need to display different field values in table columns. There are
several ways this can be accomplished. One of the simplest methods to change column sources and
values is to parameterize the query expression. This will work if you are using ad hoc SQL expressions
but not if you are using preexisting stored procedures. Both of the techniques used in this example are
more efficient, resolving fields and columns in the report without passing parameters back to the
database server.

 You will need:

 A data - set query, including any source fields you need to consolidate into a dynamic column.

 A parameter with a list of values used for field selection.

 An expression defined on a calculated field, referencing the parameter list values.

 The first step is to include all the source fields in the data - set query. You want to define a calculated field
called Price that will dynamically be mapped to either of two existing data fields. The Product table
contains two price fields, StandardCost and ListPrice , which represent the wholesale and retail
product prices.

❑

❑

❑

c10.indd 380c10.indd 380 11/13/08 4:40:00 PM11/13/08 4:40:00 PM

Chapter 10: Report Solution Patterns and Recipes

381

 A report parameter named PriceSource is configured with the list values Wholesale and Retail .
These values are used to switch the custom field mapping between these two data fields. Figure 10 - 23
shows the custom field expression for the custom Price field in the Dataset Properties dialog ’ s
Fields page.

Figure 10-23

 Instead of using the StandardCost and ListPrice fields in the report body, you are using the
calculated field Price , which reflects the parameter value.

 Dynamically Hiding and Showing a Row or Column
 This technique is very simple. Using a parameter, a row or column may be dynamically shown or hidden
by setting the Hidden property. Instead of the custom field used in the previous example, both of the
data fields could have been included in the report. The table columns then could be shown and hidden
based on the parameter selection.

c10.indd 381c10.indd 381 11/13/08 4:40:01 PM11/13/08 4:40:01 PM

Part III: Business Intelligence Reporting

382

 This example will hide or show a column based on a parameter selection. I ’ ve added a report parameter
of type Boolean, named ShowProductNumber . Figure 10 - 24 shows the expression used to manipulate the
Hidden property for the selected column. The expression simply uses Boolean logic to set the column ’ s
visibility to a hidden state when the expression evaluates to true .

Figure 10-24

 Using Advanced and Third - Party Controls
for Parameter Selection

 From a custom Windows or web application, you can replace the parameter selection interface with your
own controls and interface.

 You will need:

 Visual Studio 2008.

 A Windows Forms or ASP.NET Web Forms application project.

 Visual Basic or C# programming skills with the .NET Framework.

 Any parameterized report.

 Depending on the application type and the programming tools available, there are a few different ways
to incorporate reporting into applications. Reporting Services includes a ReportViewer control for .NET
Windows Forms and ASP.NET Web Forms projects, which ships with Visual Studio 2008. You can also
use a Frame or an IFrame HTML tag to encapsulate a report in an ASP.NET project or in practically any
other type of web application, and then use the URL Access features of Reporting Services to generate
reports.

 It is important to point out that the ReportViewer control that ships with Visual Studio 2008 RTM and
SP1 is still based on the Reporting Services 2005 processing and rendering engine. Thus, it can only
consume 2005 - based RDL reports in local mode. However, the ReportViewer control can still connect to
a Reporting Services 2008 server in server mode and thereby even render 2008 - based RDLs that use
features such as RichText. The only limitation of the VS 2008 controls in server mode is that the Windows
Forms incarnation of the control specifically cannot visualize all RichText capabilities, but you still get all
2008 features on exporting to formats like Excel, PDF, and the like.

❑

❑

❑

❑

c10.indd 382c10.indd 382 11/13/08 4:40:01 PM11/13/08 4:40:01 PM

Chapter 10: Report Solution Patterns and Recipes

383

 The product team at Microsoft is currently working on updating the ReportViewer controls to be
released likely in early 2009, based on the completely new Reporting Services 2008 processing and
rendering engine, and therefore will be able to consume 2008 - based RDLs in local mode. In addition,
the updated version will behave correctly when placed into an ASP.NET AJAX UpdatePanel .
(Thanks to Robert Bruckner at Microsoft for the insight into the future of the ReportViewer control.)

 Using the ReportViewer control, the standard parameter bar can be hidden, and then standard or
third - party UI controls may be used to prompt the user for parameter values. There are many advanced
controls available for Windows and web application development. Figure 10 - 25 shows a Windows
Forms application that uses controls from the Infragistics NetAdvantage suite. Two MonthView controls
are used for the date range selection. A pair of UltraTree controls allows countries to be selected by
dragging and dropping flag icons from one list to another.

Figure 10-25

 The nice thing about using ready - made, custom controls is that you can get a lot of bang for the buck
and save yourself programming time. There are several good third - party control offerings from different
companies. The example above showcases the Infragistics NetAdvantage suite of UI controls. It ’ s one of
the most evolved and comprehensive, containing several dozen very capable and attractive controls that
require little programming effort to implement impressive functionality.

c10.indd 383c10.indd 383 11/13/08 4:40:02 PM11/13/08 4:40:02 PM

Part III: Business Intelligence Reporting

384

 The ReportViewer control rounds out the Reporting Services features by allowing reports to be tightly
integrated into business applications with ease and tremendous flexibility. I encourage you to be
creative and use your imagination to develop interesting report wrappers and parameter selection
interfaces. Use advanced controls like these to enhance the user ’ s experience and take reporting beyond
out - of - the - box features.

 Creating Sparklines
 Edward Tufte, one of the most recognized experts on the subject of data visualization, presents the idea
of sparklines . As Tufte describes it in his book Beautiful Evidence , sparklines are “ small, high - resolution
graphics embedded in a context of words, numbers, and images. ” These are simple, word - sized graphics
that are an alternative to large, busy charts used to communicate a simple trend or series of
measurements. In order to be meaningful, sometimes charts need to have annotated gridlines, point
labels, and legends. However, some charts can effectively serve their purpose without the use of
supporting text labels. To illustrate observations like “ sales are improving, ” “ a product is profitable, ” or
that a trend is cyclical, a simple trend chart needs little or no labeling. Sparklines are best used when
embedded in text or other report formats.

 You will need:

 A query expression used to return trend data.

 A small, simplified chart item.

 A table item to display master rows.

 Column and line charts are best suited for this type of presentation. The example uses a line chart to
show sales trends data from the AdventureWorksDW2008 database.

 Sales Trends
 This example shows product category sales on each row and sales by year in an associated line chart,
plotting sales totals by month. This report ’ s dataset is based on a query that returns aggregated reseller
and Internet sales by year and month, and then by product category.

 In Figure 10 - 26 , the table and chart are added and set up in separate areas of the report body. They ’ re
both bound to the same dataset. After the table is configured, the dataset is added to the table.
As in previous examples, a group header row is used in place of the detail row.

❑

❑

❑

c10.indd 384c10.indd 384 11/13/08 4:40:02 PM11/13/08 4:40:02 PM

Chapter 10: Report Solution Patterns and Recipes

385

 The chart is configured with no gridlines or labels at all. Its purpose is to show relative sales trends, not
specific values. In a production reporting solution, I might create a separate chart report, similar to the
sparkline chart but with more detail. Figure 10 - 27 shows this report in Design view.

Figure 10-26

Figure 10-27

c10.indd 385c10.indd 385 11/13/08 4:40:02 PM11/13/08 4:40:02 PM

Part III: Business Intelligence Reporting

386

 Finally, Figure 10 - 28 shows the finished report. The trend line shows sales totals over the course of the
year. Whether data points represented days, weeks, or months, the effect would be the same.

Figure 10-28

 Summary
 With Reporting Services, you can create just about any type of report design that is required. Advanced
solutions often take a bit of creative thought, and you may need to step outside the standard feature
set to get there. Given the flexible architecture of this product, many compelling results can be achieved.
In summary, this chapter covered the following topics:

 We began with a set of simple guidelines for gathering report requirements and managing your
user and sponsor ’ s expectations by creating a detailed specification for each report.

 The key success factors for reporting projects include a clear understanding of the entire solution
scope and where reports fit into the picture. Requirements should be specified before you begin,
and requirement changes must be documented and approved.

 When you understand the limitations and capabilities of the Reporting Services platform, you
will find interesting ways to achieve your reporting goals. You saw several examples of how
requirements can be addressed by applying some of the techniques discussed in earlier chapters.
You also saw several advanced techniques involving the creative use of the flexible architecture
of this very capable product. Most advanced capabilities require the use of some custom
programming, and extending most features requires only simple expressions.

❑

❑

❑

c10.indd 386c10.indd 386 11/13/08 4:40:03 PM11/13/08 4:40:03 PM

Chapter 10: Report Solution Patterns and Recipes

387

 Using Windows Forms or ASP.NET Web Forms controls, user input and parameter selection can
be enhanced to provide a richer user experience. Through programmatic rendering and image
manipulation, reports may be enhanced to include dynamic graphical content, extending
capabilities beyond standard reporting features.

 By combining the tablix with a chart component in the group details, you are able to deliver
compelling, eye - catching sparkline reports that represent trend data in a tabular format.

 By now, you should have a few tricks up your sleeve to answer reporting requirements with some nifty
features. With your imagination and a little experimentation, you ’ re likely to find the right techniques
for your solutions by building on what you ’ ve learned here.

❑

❑

c10.indd 387c10.indd 387 11/13/08 4:40:03 PM11/13/08 4:40:03 PM

c10.indd 388c10.indd 388 11/13/08 4:40:03 PM11/13/08 4:40:03 PM

Part IV

Enabling End-User
Reporting with

Report Builder 1.0

Chapter 11: Report Models

Chapter 12: Report Builder 1.0

c11.indd 389c11.indd 389 11/13/08 4:41:30 PM11/13/08 4:41:30 PM

c11.indd 390c11.indd 390 11/13/08 4:41:30 PM11/13/08 4:41:30 PM

 Report Models

 A report model is a predefined way to access data that has already been set up by an experienced
report designer. The model provides end - users with all the data they will need to build the reports
that interest them. Without the report model, end - users would have to track down each piece of data
in the database system, likely with the help of a Database Administrator (DBA). The correct data is
often in disparate tables throughout the database system. The model allows for these end - users to
then use this model data and perform ad hoc queries against it. A report model can be built against
an SQL Server database, an SQL Server 2005 or later Analysis Services cube, or an Oracle database
running version 9.2.0.3 or later. To better understand how report models are built and which features
they include, you will do a simple walk - through using the AdventureWorksDW2008 database.

 This chapter covers:

 Creating Reporting Services report models

 Working with report model data sources

 Creating report model data source views

 Setting report model properties

 Deploying report models

 Creating report models for Analysis Services

 Getting Star ted
 To begin, open up the SQL Server Business Intelligence Development Studio (BIDS). In the
Development Studio, you can create various business intelligence projects. Go to File New
 Project, and select the Report Model Project template, as shown in Figure 11 - 1 .

 Once you have opened a new report model project, there are three folders within the Solution
Explorer:

❑

❑

❑

❑

❑

❑

c11.indd 391c11.indd 391 11/13/08 4:41:30 PM11/13/08 4:41:30 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

392

 Data Sources — Contains connection information to one or more SQL Server databases.

 Data Source Views — Contains logical representations of SQL Server databases.

 Report Models — Contains models that translate SQL Server structure into user - friendly entities
and attributes.

 The next sections walk you through each of these three major components: Data Sources, Data Source
Views, and Report Models.

 Creating the Report Model Data Source
 Data sources contain information for connecting to an SQL Server or Oracle database. Data sources can
use either the SqlClient Data Provider or the OracleClient Data Provider, as shown in Figure 11 - 2 .

❑

❑

❑

Figure 11-1

c11.indd 392c11.indd 392 11/13/08 4:41:31 PM11/13/08 4:41:31 PM

Chapter 11: Report Models

393

 To create a new data source, navigate to the Solution Explorer, right - click on the Data Sources folder, and
select Add New Data Source, as illustrated in Figure 11 - 3 .

Figure 11-2

Figure 11-3

 When adding a new data source, the Data Source Wizard is initiated. This Wizard will step you through
the creation of a database connection. After moving past the Welcome screen, select the New button to
open the Connection Manager window, as shown in Figure 11 - 4 .

c11.indd 393c11.indd 393 11/13/08 4:41:31 PM11/13/08 4:41:31 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

394

 The Connection Manager screen appears, which allows for the detailed connection information for the
new data source. Fill out the screen to connect to the AdventureWorksDW2008 database, as shown in
Figure 11 - 5 .

Figure 11-4

Figure 11-5

c11.indd 394c11.indd 394 11/13/08 4:41:31 PM11/13/08 4:41:31 PM

Chapter 11: Report Models

395

 Once you have set up the new connection, continue through the Data Source Wizard by clicking Next.
The final screen of the Wizard will let you assign a name to your data source. In this scenario, you can
leave the default name as “ Adventure Works DW2008 ” and then click Finish, as shown in Figure 11 - 6 .

Figure 11-6

 The Connection Manager and Data Source Wizard are now common components used throughout
projects in the BIDS. Once you have created a data source in Connection Manager, it will be available for
use in Analysis Services and Integration Services projects.

 Now that the data source has been created, you can move on to creating the Data Source view.

 Building a Data Source View
 Data Source views represent a logical layer above the database schema. Within a Data Source view, you
can create primary keys and foreign key relationships as well as calculated values. Building a well -
 defined Data Source view is one of the key steps to creating a report model. All report models must be
based on information retrieved from the Data Source view. In this section, you look at building the Data
Source view, working with productivity features and the code behind a Data Source view.

 To create a Data Source view, navigate to the Solution Explorer, right - click the Data Source Views folder,
and select Add New Data Source View, as shown in Figure 11 - 7 .

Figure 11-7

c11.indd 395c11.indd 395 11/13/08 4:41:32 PM11/13/08 4:41:32 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

396

 The first step to creating a Data Source view is specifying the data source. Only one data source can be
defined per Data Source view. Figure 11 - 8 illustrates selecting the AdventureWorksDW2008 connection
created earlier in the chapter.

Figure 11-8

 After selecting the data source and specifying relationship matching, the Data Source View Wizard
enables you to select tables and views defined in the data source. In this example, you select a limited
number of tables from the AdventureWorksDW2008 database, although there is no limitation that
prevents you from selecting all available tables and views. Select the following tables, as illustrated in
Figure 11 - 9 :

 DimProduct

 DimProductCategory

 DimProductSubcategory

 DimGeography

 DimDate

 FactResellerSales

 DimReseller

 DimSalesTerritory

❑

❑

❑

❑

❑

❑

❑

❑

c11.indd 396c11.indd 396 11/13/08 4:41:32 PM11/13/08 4:41:32 PM

Chapter 11: Report Models

397

Figure 11-9

 Below in this section, you look at creating new diagrams within the Data Source view to help group
logical subject areas within a large set of tables.

 The final step in the Data Source View Wizard allows you to name the view. In this example, give the
view the name Adventure Works DW2008 DSV , as illustrated in Figure 11 - 10 , and click Finish to
complete the Wizard. A new file named Adventure Works DW2008DSV.dsv is now listed in the Data
Source Views section.

Figure 11-10

c11.indd 397c11.indd 397 11/13/08 4:41:33 PM11/13/08 4:41:33 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

398

 In the next sections, you look at working with Data Source views after completing the Data Source View
Wizard.

 Manipulating the Data Source View
 The Data Source View Wizard is a nice starting point for getting your main tables established, but in
most situations, the Data Source view will need to be massaged a little. This section describes how to
create additional diagrams to organize your views, add new relationships, and work with named
queries.

 Data Source View Diagrams
 The example data source view in this chapter uses only a small number of tables. In a relatively
small database application, the number of tables can often be substantial. When dealing with a large
number of tables, it often becomes difficult to organize them in a single relational diagram. To help
alleviate some of this confusion, Microsoft has included the ability to create multiple relational diagrams
within a single Data Source view. Start by opening the AdventureWorks DW2008 DSV.dsv Data Source
view created above by double - clicking on it in the Solution Explorer. In the upper - left corner of the Data
Source View Designer, you should notice a pane called Diagram Organizer , which you will use to create
new diagrams. Figure 11 - 11 illustrates adding a new diagram to the Data Source view created above.

Figure 11-11

 After clicking New Diagram, you can rename the diagram to Products . Now that you have added
a new diagram to the project, you can simply drag tables from the Tables window to include them in the
diagram. All the tables listed in the Tables window represent the objects contained within the Data
Source view. Diagrams are simply a logical representation to ease editing of the objects. If you make a
change to a table in one diagram, it will be reflected in all other diagrams with which the table is
associated.

 Drag DimProduct, DimProductSubcategory, and DimProductCategory over to the Diagram pane, as
shown in Figure 11 - 12 .

c11.indd 398c11.indd 398 11/13/08 4:41:47 PM11/13/08 4:41:47 PM

Chapter 11: Report Models

399

 Building Data Source View Relationships
 In a Data Source view, you can also work with primary key – foreign key relationships within a data
source. Creating new primary key – foreign key relationships is often necessary if the underlying database
does not already contain the relationships. Since relationships created in the Data Source view are only
logical relationships, this will not affect the underlying database.

 The FactResellerSales table in the AdventureWorksDW2008 database contains three time - related
columns: OrderDateKey, ShipDateKey, and DueDateKey. These columns relate to the DimDate table
based on the DateKey column. Open the “ < All Tables > ” diagram by clicking on it in the Diagram
Organizer pane, as illustrated in Figure 11 - 13 .

Figure 11-12

c11.indd 399c11.indd 399 11/13/08 4:41:52 PM11/13/08 4:41:52 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

400

 In this diagram, you should notice the three relationships from FactResellerSales to DimDate. To
examine how the relationship is defined, double - click on the arrows connecting the two tables. In this
example, you can click on the left - most arrow connecting to DimDate to view the FactResellerSales.
ShipDateKey - to - DimDate.DateKey relationship, as illustrated in Figure 11 - 14 .

Figure 11-13

Figure 11-14

c11.indd 400c11.indd 400 11/13/08 4:41:55 PM11/13/08 4:41:55 PM

Chapter 11: Report Models

401

 Within the Edit Relationship window, you can specify tables and columns used as both the primary and
foreign keys. You can also reverse relationships, if they were created incorrectly, and add a meaningful
description.

 Relationships in the Data Source view are extremely important in a report model. These relationships
will later be used to create roles within the report model. A role allows a user to navigate from one
section of the report model to another and tells the semantic query processor how to retrieve data. Roles
are also used to implement a feature of Report Builder 1.0 called infinite drill - through . This feature allows
the report developer to create a single report, and then Reporting Services will create reports at run time
when users click on related items. For example, a user could build a report that contains the sales
amount for each of the product categories. Once the report is deployed, a user can click on a product
category and see sales information for each of the related subcategories.

 Using Named Queries in Data Source Views
 Another major feature of the Data Source view is its ability to use named queries. When a table or view
is added to a Data Source view, a reference to that table or view is created. If the table or view schema
changes, items bound to the schema can break. It is not uncommon in applications to have column
names or table names change during the life of the application. Therefore, to alleviate this issue, queries
instead of direct references can be created within the Data Source view.

 Queries offer flexibility on top of the Data Source view. If a column name changes in the underlying
database schema, the query can be updated to reflect this change. Column names can be aliased, and
breaking changes can be avoided. It can be considered best practice to change your Data Source view
tables to named queries. There is no negative performance impact, so the flexibility you gain is well
worth it. Figures 11 - 15 and 11 - 16 illustrate replacing the FactResellerSales table with a new named query
by right - clicking on the table in the Data Source view.

Figure 11-15

c11.indd 401c11.indd 401 11/13/08 4:41:56 PM11/13/08 4:41:56 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

402

 Now that you have seen some of the core features around creating a Data Source view, let ’ s look at the
XML code generated by the designer.

 Data Source View Code Behind
 All the source files created in a report model project are stored as XML files. This is important for a
couple of reasons. First, the use of XML allows developers to manipulate files easily through
programmatic interfaces such as the .NET System.Xml assembly. Second, report model developers can
now use standard source control systems such as Visual SourceSafe to store their projects. This offers the
advantage of versioning to Business Intelligence projects. If a mistake is made while a file is being
updated, users of a source control system can simply revert their changes and avoid costly and
sometimes error - prone rework.

 In this section, you will take a look at the XML behind a Data Source view. If you have worked with
typed datasets in ADO.NET, the XML schema should look very familiar. To view the XML behind a Data
Source view, right - click on the AdventureWorksDW2008DSV.dsv file in the Solution Explorer, and click
View Code. Figure 11 - 17 illustrates viewing the XML behind the AdventureWorksDW2008 DSV we
created.

Figure 11-16

c11.indd 402c11.indd 402 11/13/08 4:41:57 PM11/13/08 4:41:57 PM

Chapter 11: Report Models

403

 The Data Source view XML starts with both an ID tag and a Name tag. The ID tag is the object name given
to the Data Source view. When new objects, such as a report model, are associated with the Data Source
view, they will reference the value in the ID tag. If the ID values are changed after objects are associated
with the Data Source view, those items will be unable to read from it. The Name tag is the friendly name
displayed in the Business Intelligence Development Studio interface. This value can be updated as
needed without breaking other items. By default, the ID and Name tags will have the same value.

 The next major section of the Data Source view is contained within the Annotation tag. Each
 Annotation tag contains information about how the Data Source view should be displayed within the
designer. Annotation tags also contain information related to how initial relationships were established
within the Data Source view. Once the Data Source view is created, the Annotations section does not
include any information crucial to the function of the view — it is solely for display purposes. Thus, if
you delete the entire section, the report model will continue to function; however, you will not have a
very pretty designer to work in.

 Following the Annotations tag is the DataSourceID tag. This tag represents a reference to the ID tag in
one of the project ’ s data sources. Modifying this tag can break the relationship between the two objects.

 The next tag in the document is the Schema tag. This tag contains the core definition of the Data Source
view. It breaks down into two major areas: elements and relationships.

 The section starts with one main element tag. This tag represents the entire Data Source view as a single
complex type. Within the main element tag are element tags for each of the individual tables. The table
element tags contain the name of the object as well as a query or reference to the underlying table.
Within each element tag for a table are element tags for the table ’ s different columns. The column
element tags contain the column names, data type, and other defining properties.

 After moving through all of the table element tags, you will find a variable list of tags for each unique
constraint within the Data Source view. These tags contain information about primary keys defined
within the view. Each constraint will have an indication of its type as well as an XPath reference to its
related table and column.

Figure 11-17

c11.indd 403c11.indd 403 11/13/08 4:41:57 PM11/13/08 4:41:57 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

404

 The final section of the Data Source view XML contains information about the references defined
between the tables in the view. These sections are enclosed in xs:keyref tags. Each primary key – foreign
key relationship is identified.

 Now that you have seen how to create a relational data source connection and Data Source view, let ’ s
take a look at generating a report model.

 Building the Repor t Model
 In this section, we ’ ll look at the Report Model Wizard and build a simple model based on the
AdventureWorksDW2008 database. Once the model is created, you will look at different ways to
improve your report model. Finally, you will look at deploying the model for end - users to work with.

 Using the Report Model Wizard
 You start building a report model by using the Report Model Wizard. The Wizard will step through
selecting the relational data source as well as the Data Source view. However, the final step of the Wizard
runs the model generation rules. These rules are key to creating a layer that end - users can easily
understand.

 Let ’ s first take a look at adding a new report model to our project. To add a new report model, right - click
on the Report Models folder in the Solution Explorer, and select Add New Report Model (see Figure 11 - 18).

Figure 11-18

 Adding a new report model invokes the Report Model Wizard. The first step in the Wizard has you
select your Data Source view. Figure 11 - 19 illustrates selecting the AdventureWorksDW2008 DSV.dsv
Data Source view created in this chapter.

c11.indd 404c11.indd 404 11/13/08 4:41:57 PM11/13/08 4:41:57 PM

Chapter 11: Report Models

405

 The Select Data Source View dialog will display a list of all Data Source views associated with an SQL
Server connection. It is possible to add other Data Source views to your report model project. Below in
this chapter, creating report models using Analysis Services is discussed.

 After selecting a Data Source view, you will see the “ Select report model generation rules ” dialog. This
dialog, which is key to creating the report model, allows you to select all the rules that will be applied to
the underlying Data Source view (see Figure 11 - 20).

Figure 11-19

Figure 11-20

c11.indd 405c11.indd 405 11/13/08 4:41:58 PM11/13/08 4:41:58 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

406

 The report model is generated by going through two passes of rules defined on the report server. The
implementation of the rules can be found at the following location:

 < install drive > \Program Files\Microsoft SQL Server\MSRS10.MSSQLSERVER\Reporting
Services\ReportServer\ModelGenerationRules.smgl

 Tables 11 - 1 and 11 - 2 show each of the rules and describe how they are implemented against the Data
Source view.

Table 11-1: P ass 1

Name Description

Create entities for all
tables.

Builds report model entities for any tables contained in the Data Source
view. System tables and the dtproperties table are excluded from the Model
Generation Wizard.

Create entities for
non-empty tables.

Builds report model entities only for tables that have a row count greater
than 0.

Create count
aggregates.

For each entity in the report model, a count aggregate is added. If the Data
Source view contains a table named Product, an entity called Product will be
created along with an attribute #Product that represents the count of rows
within the Product table.

Create attributes. Creates attributes for each column in a table that is not a foreign key and
not an auto-increment column.

Create attributes for
non-empty columns.

Creates only attributes for columns that contain data. A query against the
data source is required to identify the number of unique values stored in a
given column. If that number is greater than 0, the column is included.

Create attributes for
auto-increment
columns.

If this option is selected, auto-increment columns are also included as
attributes of an entity.

Create date variations. For columns that have a data type of DateTime, additional attributes are
added for the day, month, quarter, and year of each date.

Create numeric
aggregates.

For columns of type Integer, Float, and Decimal, attributes for Sum,
Average, Min, and Max aggregates of the column are added.

Create date
aggregates.

For columns of type DateTime, Min, and Max, aggregates of the column
are added.

Create time
aggregates.

Very similar to the data aggregates, but instead specialized for time.

Create roles. Creates a role for each primary key–foreign key relationship defined in the
Data Source view

c11.indd 406c11.indd 406 11/13/08 4:41:58 PM11/13/08 4:41:58 PM

Chapter 11: Report Models

407

Table 11-2: P ass 2

Name Description

Lookup entities Once the attributes are created through Pass 1, Pass 2 looks at each attribute
to identify if it is eligible to become a lookup. By default, lookups are added to
columns that are not aggregated (DateTime, Integer, Float, Decimal) and
are not auto-increment columns.

Small lists Lists are created for entities with less than 200 rows.

Medium lists Lists are created for entities with between 200 and 500 rows.

Large lists Filter lists are created for entities with greater than 500 rows.

Very large lists Requires that large entities (greater than 5,000 rows) have mandatory
filters.

Set identifying
attributes.

Identifying attributes are columns that can uniquely identify items in the
entity. Identifying attributes are determined based on a combination of
non-null requirements, data types, and use as a foreign key.

Set default detail
attributes.

Default detail attributes are identified as those attributes most likely to
further define an entity. Default detail attributes are also defined based on a
combination of non-null requirements, data types, and use as a foreign key.

Role name only Looks at identifying attributes and determines the role name to be used in
role definitions.

Numeric/date
formatting

Sets the default sort direction to Descending for numeric and date
attributes.

Integer/decimal
formatting

Sets the default formatting for Integer and Decimal type attributes to
General Number format.

Float formatting Sets the default formatting for Float type attributes to two decimal places.

Date formatting Sets the default formatting for DateTime type attributes to the General
Date format.

Discourage grouping. Discourages grouping of items that have a unique occurrence of greater
than 80%.

Dropdown value
selection

Creates dropdown selections for attributes that have greater than 0 and less
than 200 unique values.

List value selection Creates list selections for attributes that have greater than 200 and less than
1,000 unique values.

 After selecting the generation rules, the Wizard moves to the Update Statistics dialog. This dialog
presents two options: “ Update model statistics before generating ” and “ Use current model statistics in
the data source view. ” The statistics this dialog is referring to are not statistics from the underlying
database; they are statistics from the Data Source view. These statistics include properties such as the
maximum length of a column. The Report Model Designer uses this information to help create the new
report model.

c11.indd 407c11.indd 407 11/13/08 4:41:58 PM11/13/08 4:41:58 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

408

 Statistics on a report model only need to be updated when the database changes. So, for the first run of
the Wizard, it is suggested that you select the “ Update model statistics before generating ” option. Any
further passes through the Wizard can simply use the information then stored in the Data Source view.

 Completing the Report Model Wizard requires two steps. The first step is to name the model. In this
example, give your report model the name Adventure Works DW2008 DSV , as shown in Figure 11 - 21 .
The second step is to run the Rules Generation Wizard.

Figure 11-21

 To start the Report Model Wizard, click the Run button. Running the Wizard can take a few moments.
As the model is generated, you will see an output of all the rules that are applied. You should see all the
tables identified in the Data Source view, as well as their corresponding columns. After the run has
completed, click the Finish button.

 After clicking Finish in the Report Model Wizard, you will see a new file named AdventureWorks DW2008
DSV.smdl in the Solution Explorer. The file is also opened in the Designer on the main canvas of Visual
Studio. SMDL, which stands for “ Semantic Model Definition Language, ” is the XML schema used to
represent a Reporting Services report model. The next section will explore the makeup and editing of the
report model.

 Working with Reporting Services Report Models
 To understand the report model, you will explore the model created in the previous section. In this
section, you will add the DimEmployee table to your repost model. The first step to adding the
DimEmployee table is to edit the AdventureWorks DW2008 DSV.dsv Data Source view. Open the Data
Source view by double - clicking on it in the Solution Explorer. Right - click the design surface and select
Add/Remove Tables, as illustrated in Figure 11 - 22 .

c11.indd 408c11.indd 408 11/13/08 4:41:59 PM11/13/08 4:41:59 PM

Chapter 11: Report Models

409

 In the Add/Remove Tables dialog, select the table DimEmployee and move it to the “ Included objects, ”
as illustrated in Figure 11 - 23 .

Figure 11-22

Figure 11-23

c11.indd 409c11.indd 409 11/13/08 4:41:59 PM11/13/08 4:41:59 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

410

 Click OK to close the Add/Remove Tables dialog, save and close the Data Source view, and then return
to the Adventure Works DW2008 DSV.smdl designer.

 To add DimEmployee attributes to your report model, right - click on the Model node, and select New
 Entity, as illustrated in Figure 11 - 24 .

Figure 11-24

 Right - click on the new entity, select Rename, and rename it Dim Employee . Before you can generate the
new Dim Employee entity, you must set its Binding property. The Binding property tells the report
model which table or view in the Data Source view contains the attributes for the entity. Using the
Properties window, modify the Dim Employee entity ’ s Binding property to use the DimEmployee table,
as illustrated in Figure 11 - 25 .

Figure 11-25

c11.indd 410c11.indd 410 11/13/08 4:42:00 PM11/13/08 4:42:00 PM

Chapter 11: Report Models

411

 Now that you have bound the new entity, you are ready to generate its model. Right - click on the Dim
Employee entity, and select Autogenerate, as illustrated in Figure 11 - 26 .

 You will be prompted with a warning that says “ Regenerating an existing model item cannot be
reversed. ” In this case, that is perfectly acceptable because you have not done any modifications to the
Dim Employee entity. If this were an existing entity that you had modified, you would not want to auto -
 generate the model. For this example, select Yes from the warning dialog. Click through the Report
Model Wizard dialog, using the defaults, and notice that it is the same dialog as illustrated above when
you first created the report model. When you are finished running the Wizard, you should have a
completed entity like that shown in Figure 11 - 27 .

Figure 11-26

Figure 11-27

c11.indd 411c11.indd 411 11/13/08 4:42:00 PM11/13/08 4:42:00 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

412

 The final step in adding the Dim Employee entity is to define its identifying attributes. In this case,
 EmployeeKey will uniquely identify the entity. To set the identifying attributes, navigate to the
Properties window of the Dim Employee entity, and click the Builder button (the button with the ellipsis)
for the IdentifyingAttributes property. This will launch the AttributeReference Collection Editor, as
shown in Figure 11 - 28 .

Figure 11-28

Figure 11-29

 To add the EmployeeKey, click the Add button, and select “ # Employee Key ” from the List Fields. Click
OK to close the dialog, and the resulting AttributeReference Collection Editor should appear, as shown
in Figure 11 - 29 . Click OK to apply the property setting and save the report model.

c11.indd 412c11.indd 412 11/13/08 4:42:00 PM11/13/08 4:42:00 PM

Chapter 11: Report Models

413

 Now that you have seen how to create and manipulate a report model, you will look at deploying the
model to the report server.

 Deploying the Report Model
 Report models are deployed to a central report server in much the same way as reports. The smdl file,
along with the data source, is published via the Reporting Services Web service. Once the report model is
published, it can be used by end - users.

 One slight difference between the deployment of models and reports is the number of folders that are
created. In reports, you deploy to a single target folder. With report models, you can deploy to both a
target Data Source folder and target Model folder. By default, these are simply set to Data Sources and
Models, respectively. To change the target folders, right - click on the Report Model project in the Solution
Explorer, and select Properties. From there, you will see properties for the different folder locations as
well as the Overwrite Data Sources property and Target Server URL.

 Once you are ready to deploy the report model to the server, click the Build menu and select Deploy
 < project name > . Deployment of the model consists of two steps: building the model and sending the
deploy command.

 Building the model consists of checking expression syntax, validating the availability of files, verifying
IDs of related objects, and performing other types of validation activities. If the project is verified, the
process will continue with the deployment of the package.

 To deploy the package, SQL Server Business Intelligence Development Studio invokes the Reporting
Services Web service, which contains methods for publishing to the server. When you are deploying a
project, you are really deploying the smdl file. This file will be stored in the ReportServer database in the
Catalog table. Whenever users make a request for the model, Reporting Services will simply read it back
from the database. No file is actually stored on the server ’ s filesystem.

 To check that the project has deployed successfully, open Internet Explorer, and connect to the report
server URL — for example, http://localhost/Reports/ . You should see a Data Source folder and a
Models folder now created, as shown in Figure 11 - 30 . If you expand the Models folder, you will see your
project listed.

c11.indd 413c11.indd 413 11/13/08 4:42:01 PM11/13/08 4:42:01 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

414

 Now that the report model has been created and deployed, you can move on to creating reports using
the Report Builder 1.0. Chapter 12 walks you through using the Report Builder 1.0 to allow end - user
development of reports.

 Building Repor t Models from Analysis
Ser vices Databases

 The bulk of this chapter discussed building Reporting Services report models using SQL Server. It is also
possible, and in my opinion much simpler, to create report models using Analysis Services. Creating a
report model from Analysis Services requires the initial creation of an Analysis Services database.
Creating Analysis Services databases is outside the scope of this text, so here you will use the
AdventureWorks DW2008 Analysis Services sample provided with SQL Server 2008.

 To create a report model from an Analysis Services database, you do not need to use the Business
Intelligence Development Studio. Most of the work that was done to create a report model from SQL

Figure 11-30

c11.indd 414c11.indd 414 11/13/08 4:42:01 PM11/13/08 4:42:01 PM

Chapter 11: Report Models

415

Server is the same type of work that is done to create an Analysis Services database. Therefore, all you
need to do is create a connection to the Analysis Services database in Report Manager and then generate
the model from it. The first step is to open the Report Manager in the web browser. The default location
is http://localhost/reports .

 From Report Manager, click on the New Data Source button to launch the New Data Source entry page.
In the New Data Source page, simply give the data source a name and connection string to the Analysis
Services database, as illustrated in Figure 11 - 31 . Make sure that you set the appropriate connection string
for your database and specify “ Windows integrated security ” for the “ Connect using ” setting. Once you
have entered the correct settings, click OK to create the data source.

Figure 11-31

 The details of the Adventure Works DW2008 data source are shown, as illustrated in Figure 11 - 31 . Scroll
to the bottom of the page, and you will see a Generate Model button.

 Clicking on the Generate Model button will take you to a new page that allows you to name the Report
Model and specify its location. For this example, name the model Adventure Works DW2008 AS Report
Model , change the location to the Models directory, and click OK, as illustrated in Figure 11 - 32 .

c11.indd 415c11.indd 415 11/13/08 4:42:01 PM11/13/08 4:42:01 PM

Part IV: Enabling End-User Reporting with Report Builder 1.0

416

Figure 11-32

 Reporting Services uses the Analysis Services definition to generate the report model. The Analysis
Services database already contains relationship information as well as information about formatting and
aggregates. For this reason, you do not have to go through all of the steps necessary to create a report
model from SQL Server. Once the model is created, you can use it just like a SQL Server – based report
model. Chapter 12 discusses using the Report Builder 1.0 to create reports from report models.

 Summary
 This chapter looked at creating Reporting Services report models. You started by creating a data source
within your report model project. A data source in a report model project can connect to a SQL database
or an Oracle database running version 9.2.0.3 or later. Other databases are not currently supported.

 After you created a data source, you looked at adding a Data Source view. The Data Source view is a
logical representation of the underlying database. It allows you to add a level of abstraction from your
source. You then created named queries to help shield your model from database changes as well as
create diagrams to more easily view certain objects.

c11.indd 416c11.indd 416 11/13/08 4:42:02 PM11/13/08 4:42:02 PM

Chapter 11: Report Models

417

 Once the Data Source view was in place, you could run the Report Model Wizard. The Report Model
Wizard runs through several steps, but the key process is generating the model rules. You saw what
rules are implemented and how they use the underlying Data Source view to create objects.

 After running the Report Model Wizard, you looked at editing the report model. The report model is an
XML - based file known as the Semantic Model Definition Language (SMDL). This file is made up of three
major components: entities, attributes, and roles. Entities generally represent tables in the Data Source
view; attributes generally represent columns; and roles represent relationships between entities.

 When the model is completed, you can deploy it to the report server. Deployment consists of two steps:
build and deployment. Building the project checks to make sure that the model is syntactically valid.
Deploying the project invokes the Reporting Services Web service and publishes the smdl file to the server.

 Once the report model is deployed, users can start building reports. After reading this chapter, you
should now have an understanding of:

 The types of data sources that can be used for report models — SQL Server, SQL Server 2005
Analysis Services or later, and Oracle version 9.2.0.3 or later.

 How Data Source views are created and some best practices for using named queries.

 How report models are generated and where you can find information about generation rules.

 How report models are deployed to the report server.

 How report models are created for Analysis Services databases.

 In the next chapter, you ’ ll look at the Report Builder 1.0 client and see how it can be used against an
existing model.

❑

❑

❑

❑

❑

c11.indd 417c11.indd 417 11/13/08 4:42:03 PM11/13/08 4:42:03 PM

c11.indd 418c11.indd 418 11/13/08 4:42:03 PM11/13/08 4:42:03 PM

 Report Builder 1.0

 This chapter looks at using the traditional Report Builder 1.0 application, now termed Report
Builder 1.0 by Microsoft, to perform ad hoc reporting. The traditional Report Builder 1.0 application
discussed in this chapter has not changed since SQL Server 2005 Reporting Services and is the
recommended tool for users who want to continue benefitting from the query design experience as
well as the infinite drill capability. As of this writing, Microsoft is working hard on a new version of
Report Builder — Report Builder 2.0. Microsoft ’ s plans for the new version of Report Builder 1.0
are discussed later in this chapter.

 In March 2004, Microsoft purchased a company called ActiveViews. ActiveViews had a technology
that allowed users to build a user - friendly model on top of their data. This model has become the
backbone of ad hoc reporting in Reporting Services.

 As you move through this chapter, you will be introduced to the Report Builder 1.0 application.
Report Builder 1.0 has a traditional Microsoft Office interface for building reports. You will also see
how to use different report layouts to fulfill various reporting needs. Once you understand the
report layouts, you will move on to formatting and filtering data. The chapter ends with a few
administrative items you need to be aware of when deploying this tool to your users.

 Repor t Model Over view
 Report models are the key to creating ad hoc reports. They represent the semantic layer on top of
your SQL Server Analysis Services data. Report models help users easily identify data elements as
well as navigate their relationships.

 In Chapter 11 , you built a report model using the AdventureWorksDW2008 database. In this
chapter, you will leverage that model to create your own ad hoc reports.

 If you have not built a report model up to this point, I suggest reviewing the material in the
previous chapter and familiarizing yourself with the process. Above and beyond creating reports,
building the model is the single most important aspect of doing ad hoc analysis. Without a solid
model, users will most likely find creating reports confusing and time - consuming.

c12.indd 419c12.indd 419 11/13/08 4:43:21 PM11/13/08 4:43:21 PM

420

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Accessing Repor t Builder 1.0
 Ad hoc reporting in Reporting Services uses a Windows smart client application. Smart client
applications combine the rich user interface of a Windows application with the ease of deployment
found in web applications. To run a smart client application, users navigate to a web server. From the
web server, the executable and any dependencies are loaded onto the client machine. The smart client
then runs on the user ’ s local machine and can access all the local resources. When an update to the
application is available, the smart client application downloads the new bits and is ready to go.

 Microsoft decided that to effectively develop ad hoc reports, users would need more functionality than a
traditional web application can provide. For this reason, Report Builder 1.0 was introduced using smart
client technology.

 There are two methods available for accessing Report Builder 1.0. First, you can access Report Builder 1.0
through the following URL:

http://servername/reportserver/ReportBuilder/ReportBuilder.application

 You will need to replace servername with the name of your report server and reportserver with the
name of the report server virtual directory. Using this URL, you could create your own buttons to launch
the Report Builder 1.0 application.

 The second method for accessing Report Builder 1.0 is through the Report Manager Web interface. When
you navigate to Report Manager (http://servername/reports), you will see a Report Builder 1.0 button,
as illustrated in Figure 12 - 1 . Click on the Report Builder 1.0 button to launch the smart client application.

Figure 12-1

 When a user clicks on the Report Builder 1.0 button, the smart client application verifies that the
required prerequisites to run the application are installed on the local computer. If the prerequisites are
not installed, the user is prompted to install them. To run Report Builder 1.0 users will need version 2.0
of the Microsoft .NET Framework installed on the local computer.

 In the next section, you ’ ll look at building Reporting Services reports using Report Builder . 1.0

c12.indd 420c12.indd 420 11/13/08 4:43:22 PM11/13/08 4:43:22 PM

Chapter 12: Report Builder 1.0

421

 Building Repor ts
 Once you launch Report Builder 1.0, you will be presented with a dialog to select a report model. As was
discussed in the previous chapter, report models are the key component for creating ad hoc reports. They
represent an easy - to - use representation of your data.

 The list of report models presented represents all report models that you have access to on the given report
server. You might also notice a + next to some of the report models. You can expand the report model node
to view any perspectives associated with the model. Perspectives are views of the report model that present
a subset of information to the user.

 In the previous chapter, you created a small report model from the AdventureWorksDW2008 database.
To start designing reports, select the Adventure Works DW2008 AS Report Model data source, which is
located in the Getting Started dialog box on the right - hand side of the screen. You will use this model
throughout the rest of this chapter. If you have not deployed the report model, please walk through
Chapter 11 , “ Report Models. ”

 Before you build your report, you need to decide which type of layout is appropriate. In the Report
Layout window, you are presented with three options:

 Table

 Matrix

 Chart

 The following sections describe creating reports with these three layout types.

 After you select a report layout in the Getting Started dialog and click OK, the Report Builder 1.0 will
present four main windows:

 Explorer

 Fields

 Report Layout

 Designer

 The Explorer window displays a list of entity collections from the report model. As you select items
in the Explorer window, you will notice that the Fields window updates to display all the available
attributes for the selected entity. You will use the Explorer and Fields windows to construct your first
report. The Report Layout window is where the layout for the report is located. The Designer is where
the report will be built. These windows will be discussed in detail as we continue through the chapter.

❑

❑

❑

❑

❑

❑

❑

c12.indd 421c12.indd 421 11/13/08 4:43:22 PM11/13/08 4:43:22 PM

422

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Table Layout
 To understand the table report layout, you will create a simple report that shows Products in the
hierarchy (Product Category, Product Subcategory, Product Name) with their associated Sales Amount
and Order Quantity. This will build a base around working with related data as well as aggregated
values.

 To start, select the Adventure Works DW2008 AS Report Model and Table layout from the Getting
Started dialog (see Figure 12 - 2).

Figure 12-2

 After selecting the Table layout, you will notice that the Design window displays a base report with one
column. You want to start building your report based on the Product Category, Product Subcategory,
and Product Name hierarchy. Start at the lowest level of the hierarchy and work your way up. Since
 English Product Name is the lowest level of detail required, you start with that field. Select the Dim
Product node from the Explorer window. This will refresh the Field List with all the attributes of
Product. Select “ English Product Name ” from the list, and drag it onto the table in the Design window.
Figure 12 - 3 illustrates adding the Product Name field.

c12.indd 422c12.indd 422 11/13/08 4:43:23 PM11/13/08 4:43:23 PM

Chapter 12: Report Builder 1.0

423

 Now that English Product Name has been added to the report, you should notice a change in the
Explorer window, as shown in Figure 12 - 4 . Selecting the Product Name field told Report Builder 1.0 that
you were going to use the Product entity for this report. The change in the Explorer window shows all
the related entities to Product. In this model, Product Subcategory, Fact Internet Sales, and Fact Reseller
Sales have a direct relationship to product.

Figure 12-3

Figure 12-4

c12.indd 423c12.indd 423 11/13/08 4:43:23 PM11/13/08 4:43:23 PM

424

Part IV: Enabling End-User Reporting with Report Builder 1.0

 The next step in building the report is the addition of Product Subcategory and Product Category. You
are moving from the lowest level of detail to the highest, so your next field will be English Product
Subcategory. To add the field, select the Product Subcategory node from the Explorer window.
This should change the Field List to display Product Subcategory attributes. Select “ English Product
Subcategory Name, ” and drag it to the left of Product Name, as illustrated in Figure 12 - 5 .

Figure 12-5

 To finish the Product hierarchy, click on the Product Category node in the Explorer, and add the English
Product Category Name field to the left of Product Subcategory Name. You can also repeat these steps
to add Total Sales Amount and Total Order Quantity from the Fact Reseller Sales as Product node.
Figure 12 - 6 illustrates the finished layout.

c12.indd 424c12.indd 424 11/13/08 4:43:37 PM11/13/08 4:43:37 PM

Chapter 12: Report Builder 1.0

425

 Notice that Report Builder 1.0 recognized the hierarchy between Product Name, Product Subcategory,
and Product Category. Based on the hierarchy, it created subtotals for each of the levels. You might have
noticed that the English Product Name total is unnecessary since it is the lowest level of detail. There are
several formatting improvements that you can make. After discussing the different types of layouts, you
will come back to formatting your reports. For now, save this report as Table Layout Product Sales .

 Click on the Save button in the application toolbar to save the report. Clicking on the Save button will
present a list of folders located on the report server. Report Builder 1.0 reports are always saved on the
report server. Saving reports to the report server requires Publish permissions. Required permissions are
covered later in this chapter.

 Now that you have created a basic table report, let ’ s look at the next layout option, matrix.

 Matrix Layout
 The matrix layout is very similar to the table layout. Both deal with a report as rows and columns.
However, the matrix report allows you to dynamically change the number of columns based on the data
returned. This differs from the static column layout of a table.

 The ability to expand a report across columns is sometimes referred to as a cross - tab or pivot table . A
matrix changes its columns based on the data returned. It does not give users the ability to change layout
on - the - fly like Microsoft Excel.

Figure 12-6

c12.indd 425c12.indd 425 11/13/08 4:43:47 PM11/13/08 4:43:47 PM

426

Part IV: Enabling End-User Reporting with Report Builder 1.0

 That being said, it is a very powerful layout. It will allow you to build very dynamic reports. Some of the
most common examples are reports based on time. These examples could include displaying products
along the rows with the weeks for a month across the columns. Weeks in a month are a prime candidate
for the matrix. Depending on how the calendar for a particular year works out, months can potentially
have 4 or 5 weeks. Dynamically expanding your columns in a regular table to accommodate this type of
variation can be extremely difficult. With a matrix report, you simply and automatically bring back the
appropriate data and the report layouts.

 The downside of a matrix report is printing. Anytime you want something to print well, you need to be
able to control the page width. Length is less of an issue because data can simply continue on to the next
page without losing continuity. However, if the columns fall off to the right of the page, it is often
difficult to line items back up again. You can increase a report ’ s width, but when you deal with a matrix
report, you will never know with certainty how wide the report will be. For that reason, I always warn
my users that if the columns can dynamically grow, there is no guarantee of a beautiful print layout.

 Now that you ’ ve walked through some of the benefits and trade - offs of the matrix report, let ’ s take a
look at creating one. You will again use the Adventure Works DW2008 AS Report Model. In this section,
you ’ ll create a report that displays “ Total Sales Amount with Product Categories ” along your rows and
 “ Year (based on Order Date) ” across your columns.

 To start, on the Report Builder 1.0 menu, select File New. In the Getting Started window, select the
Adventure Works DW2008 AS Report Model and the Matrix (cross - tab) Report Layout, as illustrated in
Figure 12 - 7 .

Figure 12-7

c12.indd 426c12.indd 426 11/13/08 4:43:49 PM11/13/08 4:43:49 PM

Chapter 12: Report Builder 1.0

427

 After you select the Matrix layout, the Design window will load with the Matrix template. The Matrix
template is similar to that of the table. However, it is broken down into three distinct areas: Rows,
Columns, and Totals.

 In this scenario, you want to display Product Categories along your rows. To access the Product Categories,
you need to select “ Dim Product Category ” from the Explorer Window. Once Product Categories is
selected, the Field List will include the English Product Category Name attribute. To add it to your report,
click “ English Product Category Name, ” and drag it to the report layout section that says “ Drag and drop
row groups. ” Figure 12 - 8 illustrates adding the Product Category Name to the rows.

Figure 12-8

 The second piece of information you want to display in this report is the Year (based on order date)
across your columns. The Order Date field you need is located in the Reseller Sales entity. As the report
is now, you cannot see the Reseller Sales entity. This is because Product Category has no direct
relationship with Reseller Sales. Product Category is related to Reseller sales through the Product and
Product Subcategory entity. Thus, to navigate to Order Date, you will need to select “ Dim Product
Subcategories ” from the Explorer window, then “ Dim Products, ” next “ Fact Reseller Sales, ” and finally
 “ Order Date. ” Figure 12 - 9 illustrates the movement through this hierarchy.

c12.indd 427c12.indd 427 11/13/08 4:43:51 PM11/13/08 4:43:51 PM

428

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Now that you have accessed the Order Date field from the report model, you can add Year to the
columns of your report. In the Field List, you will see various fields that define Order Date. One of those
fields is the Total Calendar Year. This breakdown was defined when the report model was created and
allows the user to easily use different date variations in their reports. To add Calendar Year to the report,
expand the Total Calendar Year field and then click on “ Calendar Year, ” and drag it to the Report
Designer area labeled “ Drag and drop column groups, ” as illustrated in Figure 12 - 10 .

Figure 12-9

Figure 12-10

c12.indd 428c12.indd 428 11/13/08 4:43:52 PM11/13/08 4:43:52 PM

Chapter 12: Report Builder 1.0

429

 The final item you need to add to the report is a data element to total. In this scenario, you are using
Total Sales Amount from the Reseller Sales entity. After adding the Calendar Year field to the report, the
Explorer displays all the other attributes related to Fact Reseller Sale in the Field List. Select “ Total Sales
Amount, ” and drag and drop it on the report area labeled “ Drag and drop totals. ” Once you have added
the final field, you should see a report layout similar to the one in Figure 12 - 11 .

Figure 12-11

 To view the results of the report, click the Run Report button from the toolbar. As shown in Figure 12 - 12 ,
the calendar years are repeated across the columns based on the data returned. You might need to go
back to the Designer Report view and widen the columns in order to match the figure exactly.
(Formatting a report is discussed below in this chapter.) Finally, click the Save button, and save the
report as Matrix Layout Product Sales .

Figure 12-12

c12.indd 429c12.indd 429 11/13/08 4:43:54 PM11/13/08 4:43:54 PM

430

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Chart Layout
 The Chart layout enables you to display information in your report graphically. There are a number of
different chart types to choose from, including bar charts, line charts, and pie charts. Microsoft recently
acquired data - visualization technology from Dundas, which was integrated into SQL Server 2008. In
addition, the Dundas technology acquired by Microsoft also brought to the company several graphical
components that can be embedded in custom applications.

 To start the Chart report, select File New from the Report Builder 1.0 menu. In the Getting Started
window, select the Adventure Works DW2008 AS Report Model and the Chart report layout
(see Figure 12 - 13).

Figure 12-13

 For the Chart report, you want to display a pie chart with Total Order Quantity broken down by Sales
Territory Region. By default, the Chart type is set to a bar chart. To change the Chart type, right - click on
the chart in the designer, and select Chart Type, Pie, Simple Pie, as shown in Figure 12 - 14 .

c12.indd 430c12.indd 430 11/13/08 4:43:56 PM11/13/08 4:43:56 PM

Chapter 12: Report Builder 1.0

431

 Once you have selected the Chart type, the chart in the designer surface exposes the drop areas for data
fields. Charts have three different drop areas:

 Data Value Fields — Data value fields represent the information that will determine how the
Chart area is drawn. For bar charts, they will represent the length of the bars. For pie charts,
they will represent the size of the pie pieces.

 Series Fields — Series fields are used to display multiple values side - by - side in the chart.

 Category Fields — Category fields are used to define the overall grouping of the chart.

 In this scenario, you want to display Total Order Quantity by Sales Territory Region. Start by selecting
 “ Fact Reseller Sale ” in the Explorer window. From the Field List, select “ Total Order Quantity, ” and drag
it to the “ Drag and drop data value fields ” section in the chart (see Figure 12 - 15).

❑

❑

❑

Figure 12-14

c12.indd 431c12.indd 431 11/13/08 4:43:57 PM11/13/08 4:43:57 PM

432

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Now that you have added Total Order Quantity, you can add your Sales Territory Region. From the
Explorer, select “ Sales Territory. ” Drag the Sales Territory Region field from the Field List, and drop it
on the “ Drag and drop category fields ” area of the chart. Figure 12 - 16 illustrates adding the Sales
Territory Region.

Figure 12-15

c12.indd 432c12.indd 432 11/13/08 4:43:57 PM11/13/08 4:43:57 PM

Chapter 12: Report Builder 1.0

433

 Once you have added both fields to the chart, select Run Report from the toolbar. You should now see
Order Quantity broken down by Sales Territory Region. Figure 12 - 17 shows the rendered Chart report.
Save this report as Chart Order Quantity by Sales Territory Region .

Figure 12-16

Figure 12-17

c12.indd 433c12.indd 433 11/13/08 4:44:09 PM11/13/08 4:44:09 PM

434

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Formatting Repor ts
 Now that you have seen the different types of report layouts, you will look at formatting your reports.
You will start by looking at adding text elements to the reports, move on to editing field names and
widths, and, finally, work with fonts, borders, and alignment.

 Adding Text
 Let ’ s start by adding a title to the table report created in the previous section. To open the existing report,
click on the Open button in the Report Builder 1.0 toolbar, and open the Table Layout Product Sales report.

 You should notice a textbox at the top of the Report Designer. This textbox is available for adding titles to
your report. To edit the title, click the textbox to get a cursor, and then simply type the title for the report.
In this example, you use the title Product Sales . Figure 12 - 18 shows the table report with the new title.

Figure 12-18

 Now that your report has a title, go ahead and clean up the formatting for the rest of the table, starting
with the column headers. To modify the column headers, simply click on the header to display the
cursor, and then type in the new header text. Change your columns to the following:

 Category

 Subcategory

 Product Name

 Sales Amount

 Order Quantity

 Figure 12 - 19 illustrates the new column headings.

❑

❑

❑

❑

❑

c12.indd 434c12.indd 434 11/13/08 4:44:10 PM11/13/08 4:44:10 PM

Chapter 12: Report Builder 1.0

435

 Adjusting Column Width and Alignment
 Now that your text is displayed correctly, you need to work on the layout of the fields. If you preview
the report, you will notice that the Category and Subcategory column widths are larger than necessary to
accommodate the text returned from the query. You ’ ll want to reduce those columns to give a little better
presentation. To decrease the column width, select the table by clicking on it, and then hover your cursor
between the columns. When you move your cursor between the columns, it will change to indicate that
you can modify the width. Click between the columns and move the mouse right or left to increase or
decrease the width of the columns.

 After adjusting the column widths, you might also notice that the alignment of the “ Sales Amount ” and
 “ Order Quantity ” column headers is incorrect. Number fields are right - aligned, and it is good practice to
do the same with their respective column headers. In this report, they are left - aligned. To clean this up,
highlight the “ Sales Amount ” and “ Order Quantity ” cells. To highlight both cells at once, click on “ Sales
Amount, ” hold down the Shift key, and click on “ Order Quantity. ” Once you have selected both cells,
click the Right Justify button in the toolbar, as illustrated in Figure 12 - 20 .

Figure 12-19

c12.indd 435c12.indd 435 11/13/08 4:44:11 PM11/13/08 4:44:11 PM

436

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Now that you have your numbers formatted correctly and the alignment set, we ’ ll take a look at working
with the font and background color.

 Modifying Font and Background Color
 In your report, there are three levels to the Product hierarchy. To improve the report, you will modify the
font for the top - level elements as well as alter the background color for the individual products.

 To set the font in your reports, you can simply use the Report Builder 1.0 toolbar. In the sample report,
click the Category field textbox directly beneath the “ Category ” column header, and set the font to 12
point, as shown in Figure 12 - 21 .

Figure 12-20

c12.indd 436c12.indd 436 11/13/08 4:44:11 PM11/13/08 4:44:11 PM

Chapter 12: Report Builder 1.0

437

 You can repeat the same process to set the Subcategory font to 10 point. This should allow you to more
easily distinguish the different levels.

 The second formatting feature is setting the background color for a set of items. In this scenario, you want
to format the Product Name items. You will set the background color to Light Turquoise. To set the
background color, select the Product Name, Sales Amount, and Order Quantity detail lines by clicking on
the textboxes directly under the column headers and holding down the Shift key. Once you have
highlighted the desired cells, use the Fill Color button in the toolbar to select Light Turquoise. Figure 12 - 22
illustrates setting the background color.

Figure 12-21

c12.indd 437c12.indd 437 11/13/08 4:44:13 PM11/13/08 4:44:13 PM

438

Part IV: Enabling End-User Reporting with Report Builder 1.0

 There are several formatting features that you can add to your reports. Now that you have given your
report a nice look, you need to clean up the data a little. One thing you might have noticed in your report
is that some rows come back with no data. There is also no distinct sort order defined in the report. In
the next section, you look at how to filter out those empty rows and how to update the sort order.

 Filtering and Sor ting Repor ts
 Another key set of features for any reporting tool is the ability to filter and sort the data. In this section,
you look at removing empty rows from your report, giving users the option to filter the report based on
a given time period, and sorting the report alphabetically based on the Product Name.

 Filtering Reports
 The first thing to do is to remove all the empty data rows. In the Report Builder 1.0 toolbar, you will see a
button labeled Filter . Clicking on this button will bring up the Filter Data dialog, as shown in Figure 12 - 23 .

Figure 12-22

c12.indd 438c12.indd 438 11/13/08 4:44:14 PM11/13/08 4:44:14 PM

Chapter 12: Report Builder 1.0

439

 There are three main windows within the Filter Data window: Entities, Fields, and the Filter List. The
Entities and Fields windows should be familiar from previous sections in this chapter. They contain the
data elements and related attributes in the report model. You should notice that your Entities window is
already limited to items related to Dim Product, since this is the information contained within your
report.

 The majority of the filtering functionality will be handled in the Filter List on the right side of the Filter
Data dialog. The first item that should be pointed out is the title over the Filter List. In this scenario, it
displays the text “ Dim Products with. ” If you click the text, you will be presented with a dropdown list
like that shown in Figure 12 - 24 .

Figure 12-23

c12.indd 439c12.indd 439 11/13/08 4:44:15 PM11/13/08 4:44:15 PM

440

Part IV: Enabling End-User Reporting with Report Builder 1.0

 The dropdown in Figure 12 - 24 presents four options:

 All of Represents a logical AND condition. All of the expressions in the Filter List must be True
to return a result set.

 Any of Represents a logical OR condition. If any one of the conditions in the Filter List is True,
the data row is returned.

 None of Represents a logical exclusive AND condition. If all the conditions are False, the data
row is returned.

 Not all of Represents a logical exclusive OR condition. If any one of the conditions is True, but
not all of them, then the data is returned.

 For this scenario, you will use the “ All of ” option. You will create conditions to test if Sales Amount is
not empty and Order Quantity is not empty. If both of those statements are True, you want to return the
data row. You will add this filter after examining the other filter types.

 An “ Any of ” report might be something like “ Show me all of the sales for people in the United States
and Canada. ” You could add filters to specify “ Country ” equal to “ Canada ” or “ Country ” equal to
 “ United States. ” “ Any of ” these two values would be acceptable.

 “ None of ” could be used in a reverse scenario from the previous example. You might want to see sales
for people not in the United States or Canada. In that example, you would set filters for “ Country ”
equals “ Canada ” or “ Country ” equals “ United States. ” If either of those conditions is True, you would
want to remove them from the report.

❑

❑

❑

❑

Figure 12-24

c12.indd 440c12.indd 440 11/13/08 4:44:17 PM11/13/08 4:44:17 PM

Chapter 12: Report Builder 1.0

441

 The last condition, “ Not all of, ” is a little more difficult. Let ’ s say that you want to find customers who
purchase only one of a list of products that normally are purchased together. For example, you want to
see people who purchase Bikes but not Helmets, or purchase Helmets but not Bikes. In this scenario, you
would set filters for “ Product ” equals “ Bikes ” or “ Product ” equals “ Helmets ” and set the overall
condition to “ Not all of. ” Your result set would contain only those people who have purchased one of the
products but not both.

 Now that you have seen the different conditional statements, you will add the filter for removing empty
data rows. There are two elements that you need to test: Sales Amount and Order Quantity. If they are
both empty, then you will remove them from the report.

 Start by selecting “ Fact Reseller Sales ” in the Entities window. The Field List now contains the Reseller
Sales attributes. Click and drag “ Sales Amount ” over to the Filter List (large, gray area on the right side
of the dialog). You can click the word equals and select “ Not. ” In the textbox to the right of “ not equal
to, ” set the value to 0 . You can do the same with “ Order Quantity ” by dragging it from the Field List to
the Filter List.

 You should notice that Order Quantity does not have a textbox to enter criteria in. When the report
model was generated, it found a small number of unique values for Order Quantity. Because there were
a limited number of items, it decided to make it a lookup field. This is probably more appropriate for
items like Product, but it does illustrate the point.

 To filter out empty Order Quantities, select “ equals, ” and change it to Is Empty . Finally, click again on
 “ Is Empty, ” and select “ Not. ” The resulting filter should look like Figure 12 - 25 .

Figure 12-25

c12.indd 441c12.indd 441 11/13/08 4:44:17 PM11/13/08 4:44:17 PM

442

Part IV: Enabling End-User Reporting with Report Builder 1.0

 If you run the report, you should notice that the empty data rows have been removed.

 In addition to adding individual filters, you can add groupings. Grouping helps nest logical conditions
together. If you click the New Group button in the Filter Data window, you will notice the same four
filters outlined above in this section. Within the group, you can then add multiple conditions that are
evaluated together.

 The second filter you want to add is the ability for the user to select a date range. You will use
Order Date in this example. Go back to the report design view, and click on the Filter button. To add
the order date, select “ Order Date ” in the Entities window. You should see a list of attributes related to
Order Date. Drag “ Full Date Alternate Key ” onto the Filter List, and change the condition from “ equals ”
to On or After . Since you want a range of dates, you will take Full Date Alternate Key again and drag it
into the Filter List, this time changing “ equals ” to On or Before . The final step is to allow the user to
select a value. Click either one of the Date filters, and select Prompt from the dropdown. Repeat the same
step on the other date. When you have it all set, your Filter List should look like Figure 12 - 26 . Note that
you will need to fill in default dates in order for the query to run properly.

Figure 12-26

 For this example, I simply entered in a large date range. If you click the date dropdown list, you will see
an item at the bottom of the calendar labeled “ Relative Date. ” Hovering over “ Relative Date ” exposes a
large list of possible time periods. Using the relative dates, you can modify the report to display Product
Sales for the last 60 days. You can click the OK button and run the report to see the updated results.

c12.indd 442c12.indd 442 11/13/08 4:44:18 PM11/13/08 4:44:18 PM

Chapter 12: Report Builder 1.0

443

 Sorting Reports
 The final item to look at in your report is the sort order. It is important in many cases that the user be
presented with information that is easily navigable. Right now your report simply shows a list of
products in alphabetical order. It might be more useful to show those products with the largest sales
amount first.

 To add a Sort to your report, first click the Sort and Group button in the Report Builder 1.0 toolbar. When
the Sort dialog opens, you should see a listing of all the groups available in a report. In this scenario, you
have Product Category, Product Subcategory, and Product.

 Within your report, the item that you will be sorting is Product. To sort Products, select Product in
the “ Select Group ” list. For the “ Sort by ” criteria, you will specify Sales Amount in descending order.
Figure 12 - 27 shows the finished sorting.

Figure 12-27

 You can add multiple sorts for a single item by adding additional values in the Sort dialog. When you
run the report, you should notice that within each Product Subcategory, the Products are sorted by Sales
Amount in descending order.

 You have now seen the core features required to create a report. You ’ ve covered the different types of
report layouts, adding fields to your reports, formatting numbers, fonts, and backgrounds, and, finally,
setting filters and sorting the reports. In the next section, you will look at working with expressions
inside reports.

 Adding Calculations with Expressions
 An advanced feature of Report Builder 1.0 is its ability to add expressions to your reports. Expressions
enable you to add custom fields, modify filters, and modify report results. In this section, you look at
adding a new custom field to your report. In the process, you will learn about the main areas of the
Expression Editor and how they are used.

c12.indd 443c12.indd 443 11/13/08 4:44:18 PM11/13/08 4:44:18 PM

444

Part IV: Enabling End-User Reporting with Report Builder 1.0

 For this section, you will continue to use the Table Layout Product Sales report. Make sure that the report
is open in Design view with the Explorer window and Field List on the left - hand side. Above the Field
List is an icon to add new fields. You want to add a field to your report that calculates the Average
Price based on Sales Amount divided by Order Quantity. Click on the New Field button, as shown in
Figure 12 - 28 , to bring up the Define Formula dialog, as shown in Figure 12 - 29 . Be sure that “ Fact Reseller
Sale ” is selected in the Explorer window.

Figure 12-28

Figure 12-29

c12.indd 444c12.indd 444 11/13/08 4:44:19 PM11/13/08 4:44:19 PM

Chapter 12: Report Builder 1.0

445

 The Define Formula dialog has three main sections: Fields, Functions, and the Expression Editor.
Fields is the same dialog you have seen throughout Report Builder 1.0. It is broken down into Entities
and Fields. The Functions tab presents a list of all available functions within Report Builder 1.0. The
functions are grouped by types. Thus, you will find AND, OR, and NOT under the logical folder. As
well, you will find AVG, SUM, and COUNT under the aggregate folder. The Expression Editor contains
a Field name textbox to define the name of your calculation and the Formula textbox for setting the
calculation logic.

 To define your expression for Average Price, take the Total Sales Amount (expand the Sales Amount
field to see this) divided by the Total Order Quantity (under Order Quantity). It is important that you
use the Total and not simply the Sales Amount or Order Quantity. The Total allows you to define your
average calculation at different levels without having to rework the formula. Finally, rename the Field
name from “ New Fact Reseller Sale Field ” to Average Price . Figure 12 - 30 shows the completed Average
Price calculation.

Figure 12-30

 Once you have added the formula, you can add it to your report like any other field. Simply click the
field in the Field List, and drag it onto the report table. The final layout, including Average Price, should
look similar to Figure 12 - 31 .

c12.indd 445c12.indd 445 11/13/08 4:44:19 PM11/13/08 4:44:19 PM

446

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Now that you have seen how to create reports with Report Builder 1.0, as well how as to work with
formatting, filters and expressions, let ’ s take a look at a few administrative requirements.

 Administration
 This section covers a few topics on Administration and Report Builder 1.0. First, it looks at the client
machine requirements; then it discusses the permissions required to save reports; and finally, it outlines
strategies for organizing user reports.

 The first thing pointed out in this chapter is that Report Builder 1.0 is not just a simple web application.
Report Builder 1.0 is a Windows client delivered over the Internet. To support this functionality, users
will have to have Microsoft .NET Framework 2.0. Microsoft has no plans to ship Report Builder 1.0 to
support earlier versions of the .NET Framework.

 When using Report Builder 1.0, users save reports to the report server. In order to save . rdl files (the
structured file created by Report Builder 1.0), a user must have publish permissions. Using Report
Manager, you can grant permissions on different folders and set the user role to Publisher. Publisher is a
default item - level role created when Reporting Services is installed. This role will have sufficient item -
 level permissions to add and remove reports. However, it also has permissions to create folders, remove
models, and to handle a few other tasks that you might not want your users to perform.

Figure 12-31

c12.indd 446c12.indd 446 11/13/08 4:44:20 PM11/13/08 4:44:20 PM

Chapter 12: Report Builder 1.0

447

 If you are concerned about giving users too high a level of permissions, there are two approaches you
can use, either independently or together. The first approach is to create your own item - level role. Within
the role, you can limit the users ’ actions to simply managing reports. This will eliminate their ability to
move or delete folders, data sources, and other items. If you still want more granular control, you can
take advantage of the My Reports feature. This feature can be enabled from either Management Studio
or Report Manager. By enabling My Reports, you give the users their own personal folders. They can
publish content, add folders, and generally have control over their own small areas in the report server.
This feature has been available since Reporting Services 2000; however, there was never a real need for it.
With Report Builder 1.0, it has become a much more popular option.

 For more information on setting permissions, see Part V, “ Administering Reporting Services. ”

 The Future of Repor t Builder 1.0
 As of this writing, Microsoft is working on a new version of Report Builder — Report Builder 2.0 — that
will eventually replace the current version of Report Builder 1.0 completely. Report Builder 2.0 will be a
completely new application designed to drastically broaden the base of people building custom reports.

 In previous versions of SQL Server Reporting Services, users needed to develop full - fledged reports
inside a Visual Studio environment. Report Builder 2.0 is planning to change all that by providing a
more user - friendly, stand - alone experience. Report Builder 2.0 is being designed from the ground up
with the business user in mind and will make use of the Office 2007 Ribbon environment. In fact, Report
Builder 2.0 will look and feel just like any other Office 2007 application, such as Word or Excel. In
addition to being easy to use, Report Builder 2.0 will have the powerful ability to build reports against
report models, relational databases, and OLAP cubes.

 In essence, Report Builder 2.0 will have all the report building functionality of the traditional Business
Intelligence Development Studio (BIDS) environment. The main difference between Report Builder 2.0
and the BIDS environments will be the target audience. The BIDS environment is targeted at software
developers and others who require a full - fledged Integrated Development Environment (IDE) that
makes use of software development functionality and techniques such as source control and integration
with Team Foundation Server. Report Builder 2.0, on the other hand, will be a stand - alone report -
 building environment targeting business analysts, managers, and other information workers who need
to be able to quickly build data - intensive reports for immediate business knowledge.

 Microsoft is designing Report Builder 2.0 and BIDS to use the same report - building code base in order to
maintain a parallel report - building experience across both environments. Report Builder 2.0 can be
previewed as a separate download.

c12.indd 447c12.indd 447 11/13/08 4:44:20 PM11/13/08 4:44:20 PM

448

Part IV: Enabling End-User Reporting with Report Builder 1.0

 Summary
 In this chapter, you looked at creating ad hoc reports. Ad hoc reports require two major components.
First, you need a semantic model that puts your data into a user - friendly form. You saw that Reporting
Services 2008 has a report model project that will help you create a user - friendly model. Second, users
will need an easy - to - use tool with familiar interfaces. You saw that Report Builder 1.0 provides both a
rich user experience and a traditional Microsoft Office – like look and feel.

 After reading this chapter, you should have an understanding of:

 How to create new reports with Report Builder 1.0

 How the different layouts can be used to create interesting reports

 How to format report items

 How to add filtering and sorting capabilities to your reports

 How to add calculations to your reports

 Where Report Builder 1.0 is going in the future

 Ad hoc reports have been a feature sadly lacking from Reporting Services in the past. It had been our
most common reason for implementing competing products. With the introduction of Report Builder 1.0
in SQL Server 2005 Reporting Services, and its continued development into the future, Microsoft has
shown that it is committed to building an enterprise - level reporting tool.

❑

❑

❑

❑

❑

❑

c12.indd 448c12.indd 448 11/13/08 4:44:20 PM11/13/08 4:44:20 PM

Part V

Administering
Reporting Ser vices

Chapter 13: Content Management

Chapter 14: Report Server Administration

c13.indd 449c13.indd 449 11/13/08 4:52:51 PM11/13/08 4:52:51 PM

c13.indd 450c13.indd 450 11/13/08 4:52:52 PM11/13/08 4:52:52 PM

 Content Management

 As discussed in Chapter 4 , reports are made available through a three - phased process of
authoring, management, and delivery. This is referred to as the reporting life cycle .

 Much of the material in the preceding chapters focused on the authoring phase of the life cycle.
This chapter marks the book ’ s transition in focus to the management and delivery phases. The goal
of this and many of the subsequent chapters is to show you how to effectively put content you
have spent hours, days, or even weeks developing into the hands of your users. All readers,
including those primarily focused on report authoring, are encouraged to understand this
material.

 In this chapter, you explore the management of Reporting Services content. Reporting Services
content includes reports, report models, shared data sources, and report resources, as well as the
folder structure within which these are maintained. Shared schedules, used by reports for
subscriptions, history, and snapshots, are also addressed in this chapter, although these items are
maintained at the site level, outside the folder structure.

 In Native mode, Reporting Services content management is performed primarily through the
Report Manager application. Scripts executed through the RS utility provide an alternative means
of performing these tasks.

 In SharePoint Integrated mode, content - management activities are performed in a similar manner
but through the SharePoint site or through the ReportServer2006 web services endpoint. In this
mode, Report Manager and the RS utility are not available.

 This chapter focuses on content management in Native mode installations. If you are running in
SharePoint Integrated mode, it is important that you understand the concepts explored here and
then review the SharePoint - specific aspects addressed in Chapter 16 .

c13.indd 451c13.indd 451 11/13/08 4:52:52 PM11/13/08 4:52:52 PM

Part V: Administering Reporting Services

452

 This chapter covers:

 Using Report Manager

 Content - management activities

 Item - level security

 Automating content management

 Please note, the examples and screenshots presented in this chapter make use of a Reporting Services site
with the Reporting Services samples installed. General instructions on obtaining these are provided in
Chapter 3 .

 Using Repor t Manager
 Report Manager is the primary content - management tool for Reporting Services installations running in
Native mode. The application provides an easy - to - use, graphical interface for the navigation of the
Reporting Services site. Through Report Manager, various items can be accessed or even altered
assuming that you have the appropriate permissions.

 For default installations, Report Manager is accessed through the URL http://servername/reports .
If you are accessing Report Manager from the server on which Reporting Services is installed, you can
use localhost for the servername . Otherwise, provide the IP address or network name for the server.
For named instances, use a URL of the form http://servername/reports_instancename , with appropriate
substitutions for servername and instancename .

 If you are unable to connect to Report Manager using these URLs, verify with your administrator that
the application has not been explicitly disabled or that its URL reservation is not configured for an
alternate address or non - default port number. If the URL reservation has been altered, you can use
Reporting Services Configuration Manager to obtain an alternative URL for Report Manager, as
described in the next chapter.

 Once you first connect to Report Manager, you are presented with the Contents page of the Home folder
(see Figure 13 - 1). A number of Report Manager ’ s basic features are on display through this page.

❑

❑

❑

❑

c13.indd 452c13.indd 452 11/13/08 4:52:52 PM11/13/08 4:52:52 PM

Chapter 13: Content Management

453

 At the top of the page is the header. The header provides navigational assistance and access to site - level
functionality.

 In the far left corner of the header, you see the name of the current item in bold and an icon for the item
type. By clicking on the “ AdventureWorks 2008 Sample Reports ” folder item, in the body of the page,
you enter this folder, and the name in bold changes appropriately, as illustrated in Figure 13 - 2 .

 Figure 13 - 1

 Figure 13 - 2

c13.indd 453c13.indd 453 11/13/08 4:52:53 PM11/13/08 4:52:53 PM

Part V: Administering Reporting Services

454

 Notice in Figure 13 - 2 that a delimited list has appeared just above the name in bold. This list identifies
the current item ’ s path within the folder hierarchy. Each entry in the list is a link to the identified folder.
As the AdventureWorks 2008 Sample Reports folder exists just below the Home folder, this list contains
just one entry, Home . Clicking the Home entry will take you back to the Home folder. The header for the
Home folder does not present this delimited list because the Home folder represents the site ’ s root.

 On the right - hand side of the header, you will notice a series of links. Which links appear depends on
your rights on the system. The following table identifies potentially available links:

 Link Description

 Home This link takes you to the Content page of the Home folder.

 My Subscriptions This link takes you to the My Subscriptions site - level page. This page displays
all subscriptions on the site that you own.

 Site Settings This link provides access to the Site Settings pages. From these pages, you can
modify general site - level settings, site - level security, and shared schedules.

 Help This link opens a separate browser window displaying the Report Manager
Help and Support pages.

 Just below these links is a Search box. By entering text in the box and clicking the green button to its
right, Report Manager performs a case - insensitive search for items with names and descriptions
matching the text you entered. The search, as presented through Report Manager, does not support
wildcards or Boolean operators.

 The Search feature calls the FindItems method of the ReportService2005 class. FindItems
supports more complex searches, including the use of Boolean operators and wildcards. In addition,
 FindItems supports the search of a wider range of item properties, not just the name and description
properties.

 Below the header is the page body. While the header varies little across the site, the page body varies
significantly. As you access various types of items, you will notice type - specific pages presented within
the page body. Depending on the type of item engaged, you may be provided access to one or more
pages through which you can access various properties of that item. Pages are accessed by first selecting
a particular item. That item ’ s default page is presented, with other pages accessible through tabs across
the top of the page ’ s body. Tabs provide access to one or more related pages associated with the item.
If more than one page is supported within a tab, a list appears on the left - hand side of the page body for
accessing these.

 Figure 13 - 3 shows the General Properties page of the AdventureWorks 2008 Sample Reports folder. This
page is accessed by selecting the “ AdventureWorks 2008 Sample Reports ” folder and then clicking its
Properties tab. The Properties tab supports a General Properties page and a Security Properties page.
The General Properties page is the default for this tab.

c13.indd 454c13.indd 454 11/13/08 4:52:53 PM11/13/08 4:52:53 PM

Chapter 13: Content Management

455

 Folders support both a Properties tab and a Contents tab. Clicking the Contents tab of the
AdventureWorks 2008 Sample Reports folder takes you to the folder ’ s Contents page (refer to
Figure 13 - 2).

 The Contents page is the default page of a folder item. Notice that items in this folder are presented in a
two - column list. This is referred to the folder Contents page ’ s List view or simply the folder ’ s List view.

 Clicking the Show Details button in the gray bar above the list takes you into the folder Contents page ’ s
detail view. Notice in Figure 13 - 4 that the page has been reloaded with content displayed in a tabular
format. Also notice more options are available through the gray bar.

 Notice, too, that the Show Details button now displays the text Hide Details . Clicking on the Hide
Details button will return you to the Contents page ’ s List view layout.

 Figure 13 - 3

c13.indd 455c13.indd 455 11/13/08 4:52:53 PM11/13/08 4:52:53 PM

Part V: Administering Reporting Services

456

 The gray bar is used to provide access to various actions throughout the Report Manager application.
Notice in the screenshot of Figure 13.4 that the Delete and Move buttons are disabled. Many buttons
on the gray bar are disabled until one or more items on the page are selected. Items are selected by
clicking the checkbox to their left. Select All functionality is provided by the checkbox in the table heading.

 Tables, such as this one, are a frequently used display mechanism in Report Manager. The top most line
of the table identifies Field names, while the lines below represent individual items.

 Many tables allow you to sort their contents by clicking individual fields. Not all fields are sortable, but
you can easily identify which are by placing your cursor just above a Field name and observing the
cursor ’ s icon switch to indicate that a link is present.

 Content - Management Activities
 Now that you are familiar with Report Manager basics, it ’ s time to take a look at the management of
various Reporting Services items through the application. If you skipped over the previous section of
this chapter, please review it quickly so that you are familiar with the terminology used here.

 In this section of the chapter, you will explore the management of:

 Folders

 Shared data sources

 Report models

❑

❑

❑

 Figure 13 - 4

c13.indd 456c13.indd 456 11/13/08 4:52:54 PM11/13/08 4:52:54 PM

Chapter 13: Content Management

457

 Reports

 Report resources

 Shared schedules

 Folders
 Most Reporting Services items are housed within a folder hierarchy. This provides a simple, familiar
structure for organizing content.

 The folder hierarchy is a virtual structure — that is, you will not find it re - created on a Reporting
Services server ’ s drives. Instead, the structure exists as a set of self - referencing records in the
ReportServer database.

 The root of the folder hierarchy is the Home folder. This folder is often denoted by the forward - slash
symbol, /. When you first open Report Manager, the Home folder is the folder with which you are first
presented.

 The Home folder is a special folder within Reporting Services. It cannot be moved, modified, or deleted.
Other special folders include the My Reports and User Folders folders, which are discussed in
Chapter 14 as part of the My Reports feature. Your ability to alter these folders is also limited.

 The default page for the Home folder and every folder in Reporting Services is the Contents page.
On the Contents page, items within the folder including any child folders are presented in a
double - column list. This is referred to as the folder ’ s List view and is illustrated in Figure 13 - 5 .

❑

❑

❑

 Figure 13 - 5

c13.indd 457c13.indd 457 11/13/08 4:52:54 PM11/13/08 4:52:54 PM

Part V: Administering Reporting Services

458

 In the List view, items are identified by name, an optional description, and an icon denoting the item ’ s
type. Types and associated icons are presented in the following table:

 Icon Type

 Folder

 Report

 Linked report

 Report model

 Shared data source

 Resource

 Standard subscriptions

 Data - driven subscriptions

 The gray bar at the top of the folder Contents page list presents buttons for creating new folders and
shared data sources and uploading items to the folder. You will explore the creation of new shared data
sources and upload of items below in this section of this chapter. Of interest now is the New Folder
button.

 Clicking on the New Folder button takes you to the New Folder page, as shown in Figure 13 - 6 . On this
page, you enter a name and a description for your new folder. Selecting the “ Hide in list view ” option
makes the folder hidden in its parent folder ’ s List view.

Figure 13-6

c13.indd 458c13.indd 458 11/13/08 4:52:55 PM11/13/08 4:52:55 PM

Chapter 13: Content Management

459

 Clicking OK submits the request to create the new folder. If a folder or other item with the same name
already exists under the parent folder, an error message is presented. If the request is successful, you are
taken back to the Contents page of the parent folder from which you originally clicked the New Folder
button, as shown in Figure 13 - 7 .

Figure 13-7

 If the folder is configured to be hidden in the List view, you will need to switch to the parent folder ’ s
Detail view in order to see the new folder. To switch to the Detail view, click on the Show Details button
in the gray bar.

 To switch back to the List view, click the Hide Details button presented in the Detail view ’ s gray bar.

 In Detail view, as shown in Figure 13 - 8 , all the folder ’ s contents are displayed in a tabular format, as
discussed in the previous section of this chapter. The table supports Edit, Type, Name, Description,
Modified Date, Modified By, and When Run fields, with all but the Edit field being sortable. The default
sort is by name, as indicated by the small arrow to the right of the Name field heading.

c13.indd 459c13.indd 459 11/13/08 4:52:55 PM11/13/08 4:52:55 PM

Part V: Administering Reporting Services

460

 Clicking on an individual item ’ s Edit icon takes you to that item ’ s General Properties page. Clicking on
an item ’ s Type icon or its name will take you to that item ’ s default page. For reports and reporting
resources, the default page is the View page. For folders, the default page is the Contents page in List
mode. For all other items, the default page is the General Properties page.

 While in the Detail view of a folder ’ s Contents page, selecting the checkbox to the left of one or more
items enables the Delete and Move buttons along the gray bar. The Delete button confirms and then
drops the items you have selected. The Move button takes you to the Move Items page, which requires
you to select where in the site ’ s folder structure the items are to be moved. If you are deleting or moving
a folder, the operation will succeed only if you have the required permissions on each item that it
contains.

 A folder can also be deleted or moved through buttons presented at the bottom of its General Properties
page. This page is accessed by clicking the Edit icon to the left of a folder in the Detail view or by
selecting the Properties tab of the current folder. It ’ s important to note that this page is not available for
the special folders Home, My Reports, and User Folders. Figure 13 - 9 presents the General Properties
page of the AdventureWorks 2008 Sample Reports folder.

Figure 13-8

c13.indd 460c13.indd 460 11/13/08 4:52:55 PM11/13/08 4:52:55 PM

Chapter 13: Content Management

461

 So, now that you know how to create, alter, and remove folders, what kind of folder structure should
you build for your site? There are a variety of well - reasoned opinions on this subject, providing guidance
on naming conventions, standard folder locations, and the balance of the breadth and width of the site ’ s
folder hierarchy.

 However you ultimately decide to organize your site, our recommendation is that it be driven by a set of
guidelines adopted in advance of site construction. In developing those guidelines, it is further
recommended you keep the end - user experience at the forefront of your thought process and you
consider the maintenance and security implications of your scheme. (Security is discussed below in this
chapter.) The guidelines should be reviewed with administrators, report developers, and end - user
representatives to not only obtain support but to begin the process of educating those who will be
working within this structure.

 Shared Data Sources
 Shared data sources hold connection information in a secure manner, allowing this information to be
centrally administered while being shared among reports and report models throughout the site.

 Shared data sources are often created by report authors as part of the report development process in
BIDS, as described in Chapter 7 . However, Report Manager provides functionality for you to create
shared data sources directly within the site. To do this, open Report Manager, and navigate to the folder
within which the item will be housed. If you have installed the Reporting Services samples, you will
notice a folder called Data Sources under the Home folder within which sample shared data sources are
stored.

Figure 13-9

c13.indd 461c13.indd 461 11/13/08 4:52:56 PM11/13/08 4:52:56 PM

Part V: Administering Reporting Services

462

 Click on the New Data Source button located on the gray bar of the folder ’ s Contents page. In the
resulting New Data Source page, shown in Figure 13 - 10 , enter a name and description for the new item.
Set the options that control whether the item is displayed in its parent folder ’ s Contents page List view
and/or enabled for use on the site. Then select the registered data extension to be used and enter an
appropriate connection string. Which data extension you select determines the syntax of the connection
string.

Figure 13-10

 It is important to note that Report Manager does not verify the connection string you enter. Unless you
have an existing connection string or are very familiar with connection string syntax, you will likely
not want to use this feature of Report Manager for creating shared data sources.

 Below the connection string, set the security context to be used when establishing the connection. You
are provided with the following four basic options, with many of these supporting one or more
variations:

 Credentials Supplied by the User Running the Report — This option allows you to configure a
prompt to be presented to the user. The checkbox associated with this option instructs Reporting
Services whether to treat these as Windows user credentials.

 Credentials Stored Securely in the Report Server — This option allows you to enter a
username/password combination, which will be encrypted and stored in the primary Reporting
Services application database. Again, an option is presented to have Reporting Services treat
these as Windows or source - specific credentials. The associated “ Impersonate the authenticated
user after a connection has been made to the data source ” option allows database user

❑

❑

c13.indd 462c13.indd 462 11/13/08 4:52:56 PM11/13/08 4:52:56 PM

Chapter 13: Content Management

463

impersonation to be employed after the connection has been established. This option provides
support for the use of SETUSER functionality within SQL Server.

 Windows Integrated Security — This option allows the user to be impersonated when making
the connection to the external data source. In order for this feature to work, the external data
source must be local to the Reporting Services server, or Kerberos must be enabled on the
domain. In addition, the Reporting Services server must not have been re configured following
installation to disable integrated security.

 Credentials Are Not Required — This option instructs Reporting Services to use the unattended
execution account when establishing the connection. This account is not enabled by default and
is not recommended for use against most data sources. Whether or not the unattended execution
account is enabled, this option is displayed. If you attempt to leverage a data source with this
option set and the unattended execution account is not enabled, you will receive an error
indicating an invalid data source credential setting. The unattended execution account is
covered in more detail in Chapter 14 .

 Clicking OK creates the data source item and displays it in its folder ’ s Contents page. Clicking on the
new shared data source item takes you to its General Properties page, where all the options discussed
above can be altered.

 In addition, the General Properties page allows the data source to be moved, renamed, or deleted.
Moving or renaming a shared data source has no impact on the Reporting Services items referencing it.
However, deleting a shared data source will break the reports, report models, and subscriptions
dependent on it. To view those items referencing the shared data source prior to deleting it, click the
shared data source ’ s Dependent Items and Subscriptions tabs. If the shared data source is deleted, those
items listed on these pages will be broken until they are pointed to a new data source.

 The shared data source General Properties page also presents a Generate Model button. Use of this
button is discussed in the following section.

 Report Models
 Report models provide the data layer for ad hoc reporting. They record metadata about the structures of
an external data source in a manner that makes interaction with these easier for less - technical users. In
Reporting Services 2008, report models support SQL Server, Analysis Services, and Oracle (9.2.0.3 or
later) data sources. A report model typically is constructed through a Report Model project in BIDS, as
described in Chapter 11 . Like shared data sources, report models can also be created through Report
Manager, although you will have less control over the structure of the model with this approach.

 To create a report model within Report Manager, locate a SQL Server, Analysis Services, or Oracle shared
data source on the site. In the following screenshots, this is being done using the Adventure Works
shared data source within the Data Sources folder created by the Reporting Services samples.

 The AdventureWorks2008 database makes use of data types for primary keys that are not
supported within report models. Attempting to generate a model with Report Manager using the
AdventureWorks2008 shared data source that references the AdventureWorks2008 database will result
in an error. For this reason, the model generated in the following screenshots is based on the Adventure
Works shared data source that references the Adventure Works 2005 database. This database is available
as a sample database for SQL Server 2008 from the CodePlex web site. Its installers are SQL2008.

❑

❑

c13.indd 463c13.indd 463 11/13/08 4:52:56 PM11/13/08 4:52:56 PM

Part V: Administering Reporting Services

464

AdventureWorks_DW_BI_v2005.x86.msi (32 - bit), SQL2008.AdventureWorks_DW_BI_v2005.x64
.msi (x64 64 - bit), and SQL2008.AdventureWorks_DW_BI_v2005.ia64.msi (IA64 64 - bit).

 Clicking on a shared data source takes you to its General Properties page. On this page, verify that the
data source makes use of stored credentials or Windows Integrated Security, as shown in Figure 13 - 11 .

Figure 13-11

 Notice the Generate Model button at the bottom of this page. Click on this button to open the New
Model page shown in Figure 13 - 12 . On this page, enter a name and description for your model.

c13.indd 464c13.indd 464 11/13/08 4:52:57 PM11/13/08 4:52:57 PM

Chapter 13: Content Management

465

Figure 13-12

 The folder within which the new report model will be placed is identified just below the description.
If you want to place the model somewhere else on the site, use the Change Location button to set an
alternative location.

 Clicking OK starts the model generation process. Depending on the data source used, model generation
can be an intensive process, taking quite a bit of time to complete. Once completed, you are presented
with the new report model ’ s General Properties page, as shown in Figure 13 - 13 .

Figure 13-13

c13.indd 465c13.indd 465 11/13/08 4:52:57 PM11/13/08 4:52:57 PM

Part V: Administering Reporting Services

466

 From the report model ’ s General Properties page, you can edit its properties and apply basic item
management. Before deleting a report model, be sure to review the Dependent Items and Subscriptions
pages to identify which Reporting Services items will be affected by this operation.

 The model ’ s General Properties page also provides functionality to regenerate the model. You will need
to regenerate the model when structural changes have occurred in the external data source that need to
be reflected in the model. As with generation, model regeneration can take quite a bit of time to
complete.

 If a report model is in use when you attempt to regenerate it, an error will occur. To prevent this, access
the General Properties page of the shared data source used by the model as shown in Figure 13 - 11 .
De - select the “ Enable this data source ” option, and submit the change. Once model regeneration is
completed, re - enable the data source.

 The report model ’ s General Properties page also provides access to the model ’ s definition. Clicking the
Edit link returns an SMDL file that you can add to a BIDS Report Model project for modification. Any
changes made to this definition will need to be deployed from BIDS.

 In addition to the General Properties page, Report Manager provides the following Properties pages for
the management of report models:

 The Data Sources Properties page enables you to select the data source used by the report
model. As stated above, report models are limited to SQL Server, Analysis Services, and Oracle
9.2.0.3 (or later), and must use stored credentials or Windows Integrated Authentication.

 The Clickthrough Properties page enables you to replace the pages that Report Builder generates
when users click on interactive data elements in reports based on report models. Through this
interface, you can specify which custom reports are used when one or multiple elements are
engaged.

 The Model Item Security Properties page enables you to specify a finer level of access to data
provided through the report model. By enabling the “ Secure individual model items
independently for this model ” option, you can then select which model elements inherit
permissions from their parent items and which will grant Read access to a custom list of groups
and users. Books Online provides much more information on the use of this feature.

 Reports
 Reports present data to end - users in an easy - to - consume manner. They consist of a set of instructions
encoded in Report Definition Language (RDL) that is processed by Reporting Services to retrieve data
from one or more sources and present this data in various report elements.

 Reports are typically created and deployed through report authoring tools such as the Report Designer
in BIDS or Report Builder. If you have access to an RDL file, you can deploy a report to a Reporting
Services site using Report Manager.

 To do this, open the Contents page of the folder within which you wish to place the report, and click on
the Upload File button on the gray bar of the folder ’ s Contents page. Through the resulting Upload File
page, shown in Figure 13 - 14 , identify the RDL file for the report, set the basic report properties, and then
click OK to upload the file.

❑

❑

❑

c13.indd 466c13.indd 466 11/13/08 4:52:57 PM11/13/08 4:52:57 PM

Chapter 13: Content Management

467

Figure 13-14

 Clicking on a report item in Report Manager takes you to its View page. The View page presents an
HTML - rendered version of the report (see Figure 13 - 15). It ’ s a good idea to review your report here after
publication to identify any discrepancies between the published report and how it was presented in the
Preview mode of your report authoring tool.

Figure 13-15

c13.indd 467c13.indd 467 11/13/08 4:52:58 PM11/13/08 4:52:58 PM

Part V: Administering Reporting Services

468

 Clicking on a report ’ s Properties tab takes you to its General Properties page, where you can set the
report ’ s basic properties (see Figure 13 - 16). The Edit link located halfway down the page just below
the line labeled “ Report Definition ” returns the report ’ s RDL file, and the Update link provides another
means to upload the RDL file for this report. The Delete and Move buttons do just what you would
expect. Deleting a report removes any subscriptions and history for it and orphans any linked reports
built off it.

Figure 13-16

 The Create Linked Report button at the bottom of the report ’ s General Properties page takes you to the
New Linked Report page within which you can create and configure a linked report. You can think of a
linked report as a kind of shortcut to a standard report, except that you can configure the linked report ’ s
properties differently from those of the report that it references. This includes setting alternative
parameter, execution, and security properties. The only thing you cannot configure differently from the
base report is the data source to be used.

c13.indd 468c13.indd 468 11/13/08 4:52:58 PM11/13/08 4:52:58 PM

Chapter 13: Content Management

469

 If a report makes use of a data source (as most will), the Data Sources properties page is available (see
Figure 13 - 18). On this page, you can configure the report - specific and shared data sources used by a
report. You can also swap out report - specific and shared data sources in use by the report. Again, this
page is not available for linked reports.

 In the sample report displayed below, the data source has been switched from a shared data source to a
report - specific data source. This has been done so that modifications to the report ’ s data source, required
to support report history, do not affect other sample reports.

Figure 13-17

 If a report, linked or otherwise, has parameters, a Parameters properties page is available (see
Figure 13 - 17). On this page, you can set the default value, nullability, visibility, and prompt settings for
each report parameter. These settings can be different from those specified during the report authoring
phase.

c13.indd 469c13.indd 469 11/13/08 4:52:59 PM11/13/08 4:52:59 PM

Part V: Administering Reporting Services

470

Figure 13-18

 The Execution Properties tab, shown in Figure 13 - 19 , is used to configure a report ’ s use of the Reporting
Services caching features. By default, the “ Always run this report with the most recent data ” option is
selected. If the “ Do not cache temporary copies of this report ” suboption is selected, neither report
execution caching nor snapshots are employed. (Session caching, discussed in Chapter 4 and configured
at the site level, is still in effect.)

Figure 13-19

c13.indd 470c13.indd 470 11/13/08 4:52:59 PM11/13/08 4:52:59 PM

Chapter 13: Content Management

471

 Selecting the “ Cache a temporary copy of the report ” suboptions enables report execution caching. With
either of these options set, a copy of the report is cached when the report is run, unless a valid cached
copy already exists. That cached copy is held in the ReportServerTempDB database to fulfill subsequent
requests until the cache expires. The first of the two “ Cache a temporary copy of the report ” options
instructs Reporting Services to expire the cached copy after a fixed number of minutes. The second
option instructs Reporting Services to expire the cached copy at a fixed point in time. The second option
allows you to set a report - specific schedule or to use a shared schedule.

 The set of suboptions under the “ Render this report from a report execution snapshot ” option instruct
Reporting Services to create and render the report from a snapshot. The snapshot is a scheduled
execution of the report. Snapshots eliminate the potentially long run times experienced by the first user
of a report once a cached copy has expired. You can specify a report - specific or shared schedule for the
timing of the snapshot and can elect to run the snapshot immediately following its configuration.
The snapshot will remain valid until the next snapshot is executed.

 To leverage either report execution caching or snapshots, the report must make use of data sources with
cached credentials. The reason behind this is discussed in Chapter 4 .

 If a report contains parameters, default values for each of these must be specified for the snapshot. This
can limit your ability to make use of snapshots as an execution option. However, the well - thought - out
use of dataset filters can allow you to make wider use of a report snapshot. Chapter 7 provides more
details on this technique.

 The bottom of the Execution Properties page contains settings affecting report execution time - out. The
default for a report is to use the system - level setting (which is set to a default value of 1,800 seconds).
The “ Do not timeout report execution ” option specifies that the report will not time out, whereas the
 “ Limit report execution to the following number of seconds ” option allows you to specify a report -
 specific time - out, overriding the system - level setting.

 It is generally recommended that you make use of an execution time - out, whether system - or report -
 specific. The time - out should be sufficient for data to be retrieved and the report to be fully rendered. If
you find that you must set long time - outs for your report, consider the use of caching or snapshots as
well as the use of subscription features — unless you want your users staring at their screens waiting for
the report to render.

 Next, the History Properties page is used to configure how report history is maintained within the
ReportServer database (see Figure 13 - 20). The “ Allow report history to be created manually ” option
instructs Reporting Services to allow snapshots to be generated upon demand and cached within report
history. (In Report Manager, this is reflected by the presentation of a New Snapshot button in the gray
bar on this History page, discussed below.)

 For a report to support history, its data sources must make use of stored credentials, and all parameters
must have been assigned default values. The sample report shown in Figure 13 - 20 has been modified as
described above to meet these criteria.

c13.indd 471c13.indd 471 11/13/08 4:52:59 PM11/13/08 4:52:59 PM

Part V: Administering Reporting Services

472

Figure 13-20

 The “ Store all report execution snapshots in history ” option stores all snapshots configured in the
Execution Properties page as part of the report history. The “ Use the following schedule to
add snapshots to report history ” option allows you to configure an alternative schedule for
recording snapshots to history.

 The storage of report history can start to add up within the ReportServer database. The History
Properties page provides a set of options to limit the number of historical snapshots maintained for a
report. The “ Use default setting ” option instructs Reporting Services to retain history for this report
according to the site - level history setting. This setting has a default value of 10 days. The other two
options override the site - level setting with a report - specific value, allowing you to keep history
indefinitely or for simply an alternative number of days.

 To actually see historical snapshots for a report, navigate to the History page by clicking the report ’ s
History tab. Report snapshots stored in history are presented here in a detailed, tabular view, as shown
in Figure 13 - 21 .

c13.indd 472c13.indd 472 11/13/08 4:53:00 PM11/13/08 4:53:00 PM

Chapter 13: Content Management

473

Figure 13-21

 If you enabled the “ Allow report history to be created manually ” option on the History Properties page,
you can manually generate a snapshot by clicking the New Snapshot button along the gray bar. Note
that in Figure 13 - 21 , manual snapshots have been generated for illustration purposes.

 The When Run value associated with each snapshot enables you to see a copy of the report rendered
using the selected snapshot. You can remove a snapshot from history by clicking the checkbox to the far
left of an item and then clicking on the Delete button in the gray bar above the table.

 Clicking the Subscriptions tab opens the report Subscriptions page. On this page, existing subscriptions
associated with the report are presented in a sortable table (see Figure 13 - 22).

 In Figure 13 - 22 , two subscriptions are displayed for illustration purposes. These are not automatically
created for the Reporting Services samples.

c13.indd 473c13.indd 473 11/13/08 4:53:00 PM11/13/08 4:53:00 PM

Part V: Administering Reporting Services

474

 Clicking on the New Subscription button allows you to set up a new standard subscription. On the New
Subscription page, you specify the subscription delivery mechanism for the report, which then
determines what additional information is needed. The settings for both e - mail and file share
subscription delivery are identified in the following table:

 Delivery Method Setting Description

 e - mail To A semicolon - delimited list of e - mail addresses to which the
report will be delivered. These addresses will be listed on
the To line of the e - mail message.

 Cc A semicolon - delimited list of e - mail addresses to which the
report will be delivered. These addresses will be listed on
the Cc line of the e - mail message.

 Bcc A semicolon - delimited list of e - mail addresses to which the
report will be delivered. These addresses will not be listed in
the e - mail message.

 Reply - To The e - mail address to which replies should be directed.

 Subject The subject line of the e - mail message. The default subject
line includes two variables that will be replaced with
appropriate values at the time of execution.

Figure 13-22

c13.indd 474c13.indd 474 11/13/08 4:53:00 PM11/13/08 4:53:00 PM

Chapter 13: Content Management

475

 Delivery Method Setting Description

 Include Report Indicates whether the report should be rendered and
included in the e - mail message.

 Render
Format

 Specifies the format to which the report should be rendered
if it is to be included in the e - mail message. If you specify
 “ Web Archive, ” the report is embedded in the message body.
For any other format, the report is included as an
attachment.

 Include Link Indicates whether a link to the report on the Reporting
Services site should be included in the e - mail message.

 Priority Indicates the flag to be used for the message importance.

 Comment A message to be included in the body of the e - mail message.

 Windows File
Share

 File Name The name of the file to deliver. You can supply an extension
or select the “ Add a file extension when a file is created ”
option to add an extension based on the rendering format
selected below.

 Path The UNC path of the folder to which the file will be
delivered.

 Render
Format

 A rendering format selected from a dropdown list of those
available on the site.

 Credentials
Used to Access
the File Share

 The username and password combination used as
credentials when accessing the file share specified in the Path
setting.

 Overwrite
Options

 One of three options indicating how to respond to the
existence of a file with the name identified in the File Name
setting. Options allow the file to be overwritten, the
subscription to fail if the file exists, or the file to be written to
the share but under a name with a sequential, numeric value
appended.

 Below the delivery method options are the subscription processing options. These determine whether
the subscription is delivered based on a subscription - specific or shared schedule. If the report includes
parameters, values for these are entered in the Report Parameter Values section at the bottom of the New
Subscription page. Clicking OK creates the new subscription.

 Clicking the New Data - Driven Subscription button from the report Subscriptions page opens the Create
Data - Driven Subscription Step 1 page, as shown in Figure 13 - 23 , where you give the subscription a name
and identify its delivery type. All subscribers of this data - driven subscription will make use of this
delivery method.

c13.indd 475c13.indd 475 11/13/08 4:53:01 PM11/13/08 4:53:01 PM

Part V: Administering Reporting Services

476

 The Step 1 page requires you to specify the data source through which subscription data will be
retrieved. You can use a shared data source or elect to create a subscription - specific data source. The data
source is then either selected or configured on the Step 2 page. The configuration of a new data source is
illustrated in Figure 13 - 24 .

Figure 13-23

Figure 13-24

c13.indd 476c13.indd 476 11/13/08 4:53:01 PM11/13/08 4:53:01 PM

Chapter 13: Content Management

477

 On the Step 3 page, shown in Figure 13 - 25 , you enter a query that retrieves the information required by
the subscription, along with a time - out. What information is required depends on how you intend to
map fields to various options in the next step. A list of delivery method settings and report parameters is
provided toward the middle of the page to assist you in developing your query.

Figure 13-25

 In Figure 13 - 25 , a query is configured with hard - coded values for report parameters. Typically, you will
create a table in a relational database recording various values used to drive your reports.

 Toward the bottom of the Step 3 page, you can specify the query time - out and use the Validate button to
test your query against the data source. Clicking on the Next button automatically validates the query
before taking you to the Step 4 page.

 On the Step 4 page, as shown in Figure 13 - 26 , you map delivery method settings to fields returned by
your query. Alternatively, you can map these settings to constants or, in some cases, elect to provide no
value.

c13.indd 477c13.indd 477 11/13/08 4:53:01 PM11/13/08 4:53:01 PM

Part V: Administering Reporting Services

478

 If the report contains parameters, clicking on the Next button takes you to the Step 5 page, where you
map parameters in the report to fields in the query (see Figure 13 - 27). Again, you can also map a
parameter to a constant or elect to provide no value, as appropriate.

Figure 13-26

c13.indd 478c13.indd 478 11/13/08 4:53:02 PM11/13/08 4:53:02 PM

Chapter 13: Content Management

479

 Clicking Next takes you to the Step 6 page (see Figure 13 - 28). Here you identify whether a subscription -
 specific or shared schedule will be used to control the timing of subscription delivery. You can also elect
to have the subscription delivered whenever data for the snapshot associated with the report is updated.
If you elect to use a subscription - specific schedule, you will click Next to be taken to the Step 7 page,
where this schedule is defined. Otherwise, you will click Finish on the Step 6 page to complete the setup
of the data - driven subscription.

Figure 13-27

Figure 13-28

c13.indd 479c13.indd 479 11/13/08 4:53:02 PM11/13/08 4:53:02 PM

Part V: Administering Reporting Services

480

 Report Resources
 Resources are files referenced by a report. Image files are the most commonly used reporting resources,
but HTML, XML, XSLT, text, PDF, and Microsoft Office files are often used as well. Reporting Services
does not implement any kind of restriction on what kind of resource can be leveraged by a report, so the
possibilities are endless. That said, there are practical limitations to what may be used as a reporting
resource.

 Reporting Services simply serves as a means of storing and returning the binary image of a resource file.
The consuming application, whether the Reporting Services report processor or a custom report
processing extension, must understand how to consume the resource item for it to be incorporated into
the report. Otherwise, your only option is to provide a link to the resource and depend on the report
viewing tool, typically a web browser, to handle the binary image for you.

 To upload a resource to Reporting Services, open the parent folder ’ s Contents page, and click on the
Upload File button. Locate the file to upload, and click OK. Once the file is uploaded, you should see the
item displayed within the folder.

 Clicking on the item takes you to the resource ’ s View page. If your web browser can render a resource,
such as a JPEG or GIF file, the item will be displayed within the body of the Report Manager page.
If your web browser cannot render a resource, such as a TIFF file, the browser will prompt you to save
the file to your local system.

 Clicking a resource ’ s Properties tab provides you access to the resource item ’ s General Properties page.
Through this page, you can perform basic maintenance on the item.

 Shared Schedules
 Shared schedules enable you to define and administer schedules in a centralized manner for use
throughout the site.

 Shared schedules are managed at the site level, outside the folder structure. To access shared
schedules, click on the Site Settings link in the upper - right corner of the Report Manager header.
Move to the Schedules page to see a tabular representation of shared schedules on the system
(see Figure 13 - 29).

c13.indd 480c13.indd 480 11/13/08 4:53:03 PM11/13/08 4:53:03 PM

Chapter 13: Content Management

481

 Figure 13 - 29 displays a shared schedule. This schedule has been created for illustration purposes and is
not created with the Reporting Services samples.

 The table on the Schedule ’ s page presents Name, Schedule (description), Creator, Last Run, Next Run,
and Status fields, all of which can be used to sort the table ’ s contents. Selecting one or more items in the
table enables the Delete, Pause, and Resume buttons within the gray bar.

 Clicking on the New Schedule button in the gray bar on this page takes you to the Scheduling page (see
Figure 13 - 30), where you can enter a name for the schedule and set its frequency of execution. You can
also set a date range during which this schedule is executed.

Figure 13-29

c13.indd 481c13.indd 481 11/13/08 4:53:03 PM11/13/08 4:53:03 PM

Part V: Administering Reporting Services

482

 Clicking OK submits the request to create the schedule. Behind the scenes, Reporting Services attempts
to create a scheduled job through SQL Agent. If the SQL Agent Windows service is not started, you will
receive an error message indicating this to be the issue.

 Back on the Schedules page, clicking a schedule item ’ s name or schedule value takes you back to the
Scheduling page, where you can edit its configuration. Before making changes, it is a good idea to
review the schedule ’ s Reports page to identify reports dependent on it.

 You can also create and manage shared schedules through SQL Server Management Studio. Open SQL
Server Management Studio, connect to the Reporting Services instance, and locate the Shared Schedules
folder under the instance icon. You can right - click on the Shared Schedules folder to create or delete a
shared schedule. You can also right - click on an individual schedule to delete it or to access its Properties
page. The Properties page provides access to the same properties presented through Report Manager.

Figure 13-30

c13.indd 482c13.indd 482 11/13/08 4:53:03 PM11/13/08 4:53:03 PM

Chapter 13: Content Management

483

 Item - Level Security
 Whether through Report Manager or any other application, to perform an action against a Reporting
Services item, you must have been granted the required permissions. Reporting Services supports a fixed
set of permissions associated with each type of item, as identified in the following table:

 Item Permissions

 Report Create Any Subscription
Create Link
Create Report History
Create Subscription
Delete Any Subscription
Delete Report History
Delete Subscription
 Delete Update Properties
Execute Read Policy
 List Report History
Read Any Subscription
 Read Content
Read Data Sources
Read Properties
Read Report Definition
Read Report Definitions
Read Security Policies
 Read Subscription
 Update Any Subscription
Update Data Sources
Update Parameters
Update Policy
Update Report Definition
Update Security Policies
 Update Subscription

 Report Model Delete Update Content
Read Content
Read Data Sources
Read Model Item Authorization Policies
Read Properties
Update Data Sources
Update Model Item Authorization Policies
Delete Update Properties

 Shared Data Source Update Properties
Delete Update Content
Read Properties
Read Security Policies
Update Security Policies

(continued)

c13.indd 483c13.indd 483 11/13/08 4:53:03 PM11/13/08 4:53:03 PM

Part V: Administering Reporting Services

484

 Item Permissions

 Reporting Resource Delete Update Content
 Read Content
Read Properties
Read Security Policies
Update Properties
Update Security Policies

 Folder Create Data Source
 Create Folder
 Create Model
Create Report
Create Resource
Delete Update Properties
Execute And View
 List Report History
 Read Properties
Read Security Policies
 Update Security Policies

 Explicitly assigning the right combinations of permissions required to perform an action on the site
would be challenging. To simplify things, Reporting Services organizes these permissions into a more
condensed set of item - level tasks. These tasks more naturally align with the kinds of activities users need
to perform. The table below identifies the task - to - permission mappings.

 While important to understand as the underlying mechanism behind item - level security, Reporting
Services does not expose these permissions. In addition, Reporting Services does not allow tasks to be
created or altered.

 Item Task Permissions

 Folder Manage data sources. Create Data Source

 Manage folders. Create Folder
Delete Update Properties
Read Properties

 Manage models. Create Model

 Manage reports. Create Report

 Manage resources. Create Resource

 Set security for individual items. Read Security Policies
Update Security Policies

 View folders. Read Properties
Execute and View
List Report History

c13.indd 484c13.indd 484 11/13/08 4:53:04 PM11/13/08 4:53:04 PM

Chapter 13: Content Management

485

 Item Task Permissions

 Reports Consume reports. Read Content
Read Report Definitions
Read Properties

 Create linked reports. Create Link
Read Properties

 Manage all subscriptions. Read Properties
Read Any Subscription
 Create Any Subscription
Delete Any Subscription
Update Any Subscription

 Manage individual subscriptions. Read Properties
Create Subscription
Delete Subscription
Read Subscription
 Update Subscription

 Manage individual subscriptions. Read Properties
 Create Subscription
 Delete Subscription
 Read Subscription
Update Subscription

 Manage report history. Read Properties
Create Report History
Delete Report History
Execute Read Policy
 Update Policy
List Report History

 Manage reports. Read Properties
Delete Update Properties
 Update Parameters
Read Data Sources
Update Data Sources
Read Report Definition
Update Report Definition
 Execute Read Policy
Update Policy

 View reports. Read Content
Read Properties

 Set security for individual items. Read Security Policies
Update Security Policies

(continued)

c13.indd 485c13.indd 485 11/13/08 4:53:04 PM11/13/08 4:53:04 PM

Part V: Administering Reporting Services

486

 Item Task Permissions

 Data sources Manage data sources. Update Properties
 Delete Update Content
Read Properties

 Manage data sources. Update Properties
Delete Update Content
Read Properties

 View data sources. Read Content
 Read Properties

 Set security for individual items. Read Security Policies
 Update Security Policies

 Models Manage models. Read Properties
Read Content
 Delete Update Content
Read Data Sources
Update Data Sources
Read Model Item Authorization Policies
Update Model Item Authorization Policies
Delete Update Properties

 View models. Read Properties
 Read Content
Read Data Sources

 Resources Set security for individual items. Read Security Policies
Update Security Policies

 Manage resources. Update Properties
Delete Update Content
 Read Properties

 View resources. Read Content
Read Properties

c13.indd 486c13.indd 486 11/13/08 4:53:04 PM11/13/08 4:53:04 PM

Chapter 13: Content Management

487

 Within Reporting Services, tasks are assigned to roles. Reporting Services contains a set of five
predefined roles for item - level tasks, as identified in the following table:

 Role Description Tasks

 Browser Run reports and navigate through the
folder structure.

 View reports.
View resources.
View folders.
View models.
Manage individual subscriptions.

 Content Manager Define a folder structure for storing
reports and other items, set security
at the item level, and view and
manage the items stored by the server.

 Consume reports.
 Create linked reports.
 Manage all subscriptions.
 Manage data sources.
 Manage folders.
 Manage models.
 Manage individual subscriptions.
 Manage report history.
 Manage reports.
 Manage resources.
 Set security policies for items.
 View data sources.
 View reports.
 View models.
 View resources.
 View folders.

 Report Builder Build and edit reports in Report
Builder.

 Consume reports.
 View reports.
 View resources.
 View folders.
 View models.
 Manage individual subscriptions.

 Publisher Publish content to a Report Server. Create linked reports.
 Manage data sources.
 Manage folders.
 Manage reports.
 Manage models.
 Manage resources.

 My Reports Build reports for personal use or store
reports in a user - owned folder.

 Create linked reports.
 Manage folders.
 Manage data sources.

c13.indd 487c13.indd 487 11/13/08 4:53:05 PM11/13/08 4:53:05 PM

Part V: Administering Reporting Services

488

 To modify the tasks assigned to these roles, open SQL Server Management Studio and connect to the
Reporting Services instance. In the Object Explorer pane, expand the Security folder and its Roles
subfolder. You will see the Reporting Services item - level roles listed, as shown in Figure 13 - 31 .

Figure 13-31

 Right - click on a role, and select Properties from the Context menu to open its User Role Properties dialog
(see Figure 13 - 32). Here you can change the role ’ s description and tasks assigned to it. Clicking OK saves
your changes.

c13.indd 488c13.indd 488 11/13/08 4:53:05 PM11/13/08 4:53:05 PM

Chapter 13: Content Management

489

 Reporting Services also allows new roles to be created. To create a new role, right - click on the Roles
subfolder in the SQL Server Management Studio Object Explorer pane, and select New Role from the
Context menu. In the resulting New User Role dialog, similar to the User Role Properties dialog pictured
in Figure 13 - 32 , provide the name, description, and task assignments for this role. Click OK to create
the role.

 To drop a role, right - click on the role, and select Delete from the Context menu. You will be asked to
confirm this action before the role is dropped. You can drop both custom and predefined Reporting
Services roles.

 Item - level security is finally implemented in Reporting Services by linking users, roles, and items. In
Report Manager, this “ linking ” is implemented by first navigating to an item and then engaging its
Security Properties page. Figure 13 - 33 shows this page for the Home folder.

Figure 13-32

c13.indd 489c13.indd 489 11/13/08 4:53:12 PM11/13/08 4:53:12 PM

Part V: Administering Reporting Services

490

 Clicking on the New Role Assignment button takes you to the New Role Assignment page, as shown in
Figure 13 - 34 . Here, you enter the account name for the user or group to which you wish to assign this
access and then select one or more of the roles as appropriate. Clicking OK submits the assignment to
Reporting Services.

Figure 13-33

Figure 13-34

c13.indd 490c13.indd 490 11/13/08 4:53:14 PM11/13/08 4:53:14 PM

Chapter 13: Content Management

491

 Creating item - user - role assignments for every item on the site would get old very quickly. So, instead,
Reporting Services makes use of inheritance for item - level security. When a user is assigned to one or
more roles on a folder, this assignment is inherited by that folder ’ s child items. If these child items
include folders, the inheritance cascades down the folder hierarchy.

 Inheritance makes administering security much easier, but you might need to break inheritance to set
permissions exactly as required. To break inheritance for an item, navigate to that item ’ s Security
Properties page in Report Manager. Figure 13 - 35 shows this for the AdventureWorks 2008 Sample
Reports folder located just under the Home folder.

Figure 13-35

 Notice that the New Role Assignment button has been replaced by the Edit Item Security button in the
gray bar. Clicking on the button triggers a message box asking you to confirm that you wish to break
inheritance for this item. Clicking OK on the message box reloads the Security Properties page. You will
now notice that the New Role Assignment button is available, as shown in Figure 13 - 36 , allowing you
to now create user - role assignments for this item.

c13.indd 491c13.indd 491 11/13/08 4:53:14 PM11/13/08 4:53:14 PM

Part V: Administering Reporting Services

492

 You will also notice that the user - role assignments that would have been inherited from this folder ’ s
parent are preassigned to this item. Selecting the checkbox for any unnecessary assignments and clicking
on the Delete button on the gray bar will remove these.

 Finally, should you wish to reset this item ’ s security to once again make use of inheritance, click on the
Revert to Parent Security button along the gray bar. The item will revert back to inherited security, and
any non inherited assignments will be dropped.

 Content - Management Automation
 Content management consists of many repetitive tasks. Performing these manually can be very time -
 consuming and risks the introduction of errors. Scripts allow these frequently performed tasks to be
automated. If implemented correctly, scripts can produce significant time savings and minimize the risks
associated with changes to your environment.

 The RS Utility
 The RS utility allows scripts to be run against local and remote instances of Reporting Services running
in Native mode. The application, rs.exe , is typically located within the < drive > :\Program Files\
Microsoft SQL Server\100\Tools\Binn folder. It is responsible for creating an environment within which
a Reporting Services script can be executed.

Figure 13-36

c13.indd 492c13.indd 492 11/13/08 4:53:15 PM11/13/08 4:53:15 PM

Chapter 13: Content Management

493

 As part of this responsibility, it handles communications with an instance of the Reporting Services web
service. It also handles the declaration and instantiation of variables supplied through the command - line
call. These features allow flexible scripts to be developed with relative ease.

 The following demonstrates a very simple call to the RS utility. Note the use of the – i parameter to
identify the Reporting Services script. The script file is a simple text file with an RSS file extension. Also,
note the identification of the web service URL with the – s parameter. In this example, the script is being
pointed to the web service presented by the local, default instance of Reporting Services.

rs.exe -i “c:\my scripts\my script.rss” -s http://localhost/reportserver

 In the previous call to the RS utility, the connection to the Reporting Services web service is established
using the current user ’ s identity. To specify an alternate identity, a username and password combination
can be specified with the – u and – p parameters. In the next example, the connection is being made
through the fictional MyDomain\JoeUser account, which has a password p@55w0rd .

rs.exe -i “c:\my scripts\my script.rss” -s http://localhost/reportserver-u
MyDomain\JoeUser -p p@55w0rd

 In Native mode, the Reporting Services web service presents two endpoints, each exposing different
classes and functionality:

 ReportService2005 — The ReportService2005 endpoint exposes classes used for content
management.

 ReportExecution2005 — The ReportExecution2005 endpoint exposes classes used for report
rendering.

 In the preceding command - line examples, no endpoint is specified, so RS utility defaults to the
ReportService2005 endpoint for content - management functionality. To explicitly identify an endpoint,
use the – e parameter with the Mgmt2005 value to indicate that the ReportService2005 endpoint should
be used, or the Exec2005 value to indicate that the ReportExecution2005 endpoint should be used. Here
is the previous call to the RS utility with the Mgmt2005 endpoint explicitly identified:

rs.exe -i “c:\my scripts\my script.rss” -s http://localhost/reportserver-u
MyDomain\JoeUser -p p@55w0rd -e Mgmt2005

 As mentioned at the start of this section, the RS utility declares and instantiates variables on behalf of
your script. Variables are specified using the – v parameter followed by one or more variable – value
combinations. Variable – value combinations are separated by an equal sign. Values containing spaces
should be wrapped in double quotes. The RS utility will remove the leading and trailing quotation
marks when assigning the value to an internal variable. Here is a sample call to the utility with three
variables that illustrates these concepts:

rs.exe -i “c:\my scripts\my script.rss” -s http://localhost/reportserver-v VarA=1
VarB=apple VarC=”keeps the doctor away”

❑

❑

c13.indd 493c13.indd 493 11/13/08 4:53:15 PM11/13/08 4:53:15 PM

Part V: Administering Reporting Services

494

 The following table shows a complete list of parameters supported by the RS utility:

 Parameter Description

 - i Identifies the script file to execute.

 - s Identifies the URL of the Reporting Services web service.

 - u Supplies the username used to log in to the Reporting Services site.

 - p Supplies the password associated with the username used to log in to the Reporting
Services site.

 - e Identifies the Reporting Services web service endpoint to employ:
Exec2005 — ReportExecution2005 endpoint
Mgmt2005 — ReportService2005 endpoint

 - l Specifies the number of seconds before the connection with Reporting Services times
out. The default is 60 seconds. A value of 0 indicates an infinite connection time - out.

 - b Indicates that the script should be executed as a batch.

 - v Provides variables and values to pass to the script.

 - t Instructs the utility to include trace information in error messages.

 Reporting Services Scripts
 Reporting Services scripts are implemented in VB.NET. Only a few namespaces are supported, making
the scripts fairly limited but still powerful enough to handle most content management tasks. Supported
namespaces include System , System.Diagnostics , System.IO , System.Web.Services , and
 System.Xml .

 Every script must contain a Sub Main code block. This serves as the script ’ s entry point. However, the
 Sub Main block does not have to be the first or only code block in the script. This allows you to move
code to additional subroutines and functions you declare in the script.

 Within the script, the Reporting Services web service is engaged through the rs object. You do not need
to declare this object or mess with the details of connecting the object to the web service endpoint
specified along the command line. The RS utility handles all those details for you.

 The requirement for the script developer is to call the appropriate classes and methods exposed by this
endpoint through the rs object. To understand the classes and methods available for each endpoint, refer
to documentation available through Books Online.

 Variables specified at the command line are automatically declared and initialized for use within the
script using the variable name identified at the command line. If you reference a variable that is not
explicitly declared within the script or whose name does not match (case - insensitive) the name of a
variable declared along the command line, you will receive an undeclared variable error. All variables
passed from the command line are passed into the script as strings.

c13.indd 494c13.indd 494 11/13/08 4:53:15 PM11/13/08 4:53:15 PM

Chapter 13: Content Management

495

 The following code sample is a very simple demonstration script within which the name of the contents
of a folder and its subfolders is recursively sent to a text file. The script consists of a single code block,
 Sub Main . The ReportService2005 endpoint is accessed through the rs object to recursively read the
contents of the site starting from a folder identified by the MyFolder variable. The MyFolder variable is
passed in from the command line.

Sub Main

 ‘Write the starting folder to the screen
 Console.WriteLine(“The starting folder is “ + MyFolder)

 ‘Open the Output File
 Dim OutputFile As New IO.StreamWriter(_
 “c:\my scripts\contents.txt”, False)

 ‘Obtain an array of Catalog Items
 Dim Contents As CatalogItem() = rs.ListChildren(MyFolder, True)

 ‘Loop through Array of CatalogItems
 For i As Int32 = 0 To Contents.GetUpperBound(0)

 ‘Write CatalogItem Type & Path to Output File w/ Pipe Delimiter
 OutputFile.Write(Contents(i).Type.ToString)
 OutputFile.Write(“|”)
 OutputFile.WriteLine(Contents(i).Path)
 Next

 ‘Close Output File
 OutputFile.Close()

End Sub

 This script is saved to a file named List Contents.RSS located in the C:\My Scripts folder and is executed
against the local Reporting Services instance through the following command - line call:

rs.exe -i “c:\my scripts\list contents.rss” -s http://localhost/reportserver-v
MyFolder=”/”

 The “ / ” value represents the Home folder in the Reporting Services folder hierarchy.

 This is a very simple script but demonstrates the basics of Reporting Services script development. Four
more scripts, identified in the following table, are available with the Reporting Services samples. These
demonstrate a broader range of functionality than the script above but rely on the same basic concepts
explored here. If you have installed the Reporting Services samples, you can typically find these scripts
within the < drive > :\Program Files\Microsoft SQL Server\100\Samples\Reporting Services\Script
Samples folder.

c13.indd 495c13.indd 495 11/13/08 4:53:15 PM11/13/08 4:53:15 PM

Part V: Administering Reporting Services

496

 Script File Description

 AddItemSecurity.rss Demonstrates how to use a script to set item security policies in
the Report Server namespace.

 CancelRunningJobs.rss Demonstrates a sample administration script that cancels jobs
that are running on a Report Server.

 ConfigureSystemProperties.rss Demonstrates a script that can be used to set system - level, Report
Server properties.

 PublishSampleReports.rss Demonstrates a script that publishes the sample reports to a
Report Server.

 The readme file, located in the same folder, emphasizes that these four scripts are not considered
production - ready. A production - ready script will make use of a wide array of variables to improve
flexibility and reusability. A production - ready script will also make use of proper error - handling to
improve stability and your ability to troubleshoot problems.

 These four sample scripts (and the one above) all make use of the ReportService2005 endpoint. This
endpoint provides access to content - management functionality, which is what you will most often want
to employ with scripts. However, you may occasionally need to render a report through script. The
ReportExectution2005 endpoint can be leveraged for this purpose, as demonstrated in the following
sample, which renders the Company Sales 2008 sample report to PDF.

 Sub Main()
 rs.Credentials = _
 System.Net.CredentialCache.DefaultCredentials

 ‘Get Report Info
 Dim MyExecutionInfo As ExecutionInfo = rs.LoadReport(_
 “/AdventureWorks 2008 Sample Reports/Company Sales 2008”, Nothing)

 ‘Set Parameters
 Dim MyParameters() As ParameterValue = {New ParameterValue(), _
 New ParameterValue(),New ParameterValue()}
 MyParameters(0).Name = “ShowDescription”
 MyParameters(0).Value = “True”
 MyParameters(1).Name = “StartDate”
 MyParameters(1).Value = “1/1/2002 12:00:00 AM”
 MyParameters(2).Name = “EndDate”
 MyParameters(2).Value = “12/31/2003 12:00:00 AM”
 rs.SetExecutionParameters(MyParameters, “en-US”)

 ‘Render Report to Byte Array
 Dim MyReportBytes() As Byte
 MyReportBytes = rs.Render(“PDF”, Nothing, Nothing, _
 Nothing, Nothing, Nothing, Nothing)

 ‘Write Bytes to File

c13.indd 496c13.indd 496 11/13/08 4:53:16 PM11/13/08 4:53:16 PM

Chapter 13: Content Management

497

 Dim MyOutputStream As New System.IO.FileStream(_
 “c:\my scripts\test.pdf”, FileMode.Create)
 MyOutputStream.Write(MyReportBytes, 0, MyReportBytes.Length)
 MyOutputStream.Close()

 End Sub

 This script is saved to the Render Report.RSS file in the same folder as before and then called with the
following command - line statement:

rs.exe -i “c:\my scripts\render report.rss” -s http://localhost/reportserver -e
Exec2005

 Note that the script presents the ReportExecution2005 endpoint as an object named rs , just as in
the previous samples. Regardless of which endpoint is used, the RS utility will expose it through the
 rs object.

 Like the first code sample, this last sample is very basic and requires only limited knowledge of VB.NET
and the classes supported by the Reporting Services endpoints. To develop more sophisticated code
samples, a tool such as Visual Studio 2008 with automatic syntax checking, IntelliSense, and step - by - step
debugging functionality is very helpful (if not essential).

 To leverage this tool for script development, launch Visual Studio 2008, and select File New Project
to start a new project. In the New Project dialog, shown in Figure 13 - 37 , select the Visual Basic Windows
project type and Console Application project template. Provide a name and location for your project, and
click OK. In the screenshots that follow, the project has been named ConsoleApplication1 .

Figure 13-37

c13.indd 497c13.indd 497 11/13/08 4:53:16 PM11/13/08 4:53:16 PM

Part V: Administering Reporting Services

498

 The project should open up the Module1.vb code module. From the Project menu, select Add Service
Reference. In the resulting dialog, click on the Advanced button to open the Service Reference Settings
dialog. Click the Add Web Service button to take you to the Add Web Reference dialog. In the URL
textbox, enter the path for the endpoint of interest. Generic paths to the ReportService2005 and
ReportExecution2005 endpoints are provided below:

 Endpoint URL

 ReportService2005 http:// < servername > /ReportServer/ReportService2005.asmx?wsdl

 ReportExecution2005 http:// < servername > /ReportServer/ReportExecution2005
.asmx?wsdl

 Press the Go button to retrieve the web service definition from Reporting Services. If successfully
retrieved, the box below the URL should be populated with a list of methods. In Figure 13 - 38 , a reference
to the ReportService2005 endpoint of the web service provided by the local, default instance of Reporting
Services has been established.

Figure 13-38

 Halfway down the right - hand side of the Add Web Reference dialog is a textbox for the name of the web
reference. Enter a name in this textbox (other than “ rs ” to avoid confusion), and click on the Add
Reference button. In this example, the name rs2005 has been used.

c13.indd 498c13.indd 498 11/13/08 4:53:16 PM11/13/08 4:53:16 PM

Chapter 13: Content Management

499

 Visual Studio should have taken you back to the Module1.vb code module. You now add an Imports
statement for the web reference just above the module declaration. This will allow you to reference
objects from the web service without declaring their direct affiliation. This is the style expected by the
 RS utility.

 You now instantiate an object named rs to represent the endpoint within the script. You declare this
object at the module level, so place your Dim statement just below the line reading Module Module1 .
If you are using the ReportService2005 endpoint, your declaration should read:

Dim rs as New ReportingService2005

 If you are using the ReportExecution2005 endpoint, your declaration should read:

Dim rs as New ReportExecutionService

 Finally, add the following line immediately below Sub Main() :

 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 Your code module sample should now look something like the code block below. Remember that in this
example, rs2005 represents a reference to the ReportService2005 endpoint, which is why rs has been
declared of the type ReportingService2005.

Imports MyScriptingProject.rs2005

Module Module1

 Dim rs As New ReportingService2005

 Sub Main()
 rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 End Sub

End Module

 Next, return to the Project menu, and select the ConsoleApplication1 Properties item. This should be the
last item in the menu list. Selecting this should take you to the project Properties page.

 If your project is named differently, the name of the menu item will be adjusted appropriately.

 On this page, move to the References tab (see Figure 13 - 39). Alter the selections in the Imported
Namespaces list so that only System , System.Diagnostics , System.IO , System.Web.Services , and
 System.Xml are selected. Move back to the Module1.vb code module, and save your project.

c13.indd 499c13.indd 499 11/13/08 4:53:17 PM11/13/08 4:53:17 PM

Part V: Administering Reporting Services

500

 You now have a project within Visual Studio that provides an environment similar to that available
through the RS utility. You can develop and test your script with all the features available through Visual
Studio at your fingertips. If you intend to pass variables to your script, you can declare these just above
the Dim rs statement. Any script - level variables you need to declare but do not intend to pass from the
command line should be declared below the Dim rs statement. This will help keep things simple in
the next step.

Figure 13-39

 Once the code has been properly tested and you are ready to use it with the RS utility, comment out
the rs.Credentials statement at the top of the Sub Main block. Then copy all the code just below the
 Dim rs statement to the end of the module, excluding the End Module statement, to a text file. Save
the file in an appropriate location and with an optional RSS file extension. You should now have a
working script for use with the RS utility.

 The RSScripter
 A very common task for content managers is the migration of items from one Reporting Services site to
another, often as part of a formal change - control process. This operation is an excellent candidate for
automation, so much so that Jasper Smith has developed a utility to auto - generate scripts for this task.
RSSScripter is freely available through the SQL DBAs web site at http://www.sqldbatips.com/
showarticle.asp?ID=62 .

c13.indd 500c13.indd 500 11/13/08 4:53:17 PM11/13/08 4:53:17 PM

Chapter 13: Content Management

501

 If you decide to download and use this tool, keep in mind that it is not an official Microsoft product and
is distributed “ as is ” and without warranty of any kind.

 Summary
 In this chapter, you explored various aspects of the management of reports, shared data sources, report
models, report resources, and shared schedules. This includes basic content - management activities, item -
 level security, and automation.

 In the next chapter, you will take a look at another important aspect of the management phase of the
reporting life cycle: administration.

c13.indd 501c13.indd 501 11/13/08 4:53:17 PM11/13/08 4:53:17 PM

c13.indd 502c13.indd 502 11/13/08 4:53:17 PM11/13/08 4:53:17 PM

 Report Ser ver Administration

 To ensure the integrity and reliability of your Reporting Services environment, it is important that
you develop a comprehensive administrative plan for it. This plan should address the following
general concerns:

 Security

 Backup and recovery

 Monitoring

 Configuration

 In this chapter, you will explore these topics as they relate to Reporting Services. This will provide
you the basic knowledge you will need to then engage users, developers, and IT administrators in
the development of a plan tailored to the specific needs of your organization.

 Security
 Properly securing your Reporting Services environment requires you to find the right balance
between risk, availability, and supportability. Following good network, system, and facilities
management practices goes a long way toward securing your installation. Specific to Reporting
Services, you should consider how to best approach:

 Account management

 System - level roles

 Surface area management

❑

❑

❑

❑

❑

❑

❑

c14.indd 503c14.indd 503 11/13/08 4:54:22 PM11/13/08 4:54:22 PM

504

Part V: Administering Reporting Services

 Account Management
 Reporting Services must interact with various resources. To access these resources, Reporting Services
must present its requests as originating from a specific, valid user. Reporting Services stores credentials,
typically username and password combinations, for the following three accounts, each of which is used
to handle specific interactions with resources:

 The service account

 The application database account

 The unattended execution account

 Whenever possible, it is recommended that you make use of Windows domain user accounts as the
source of the credentials for these three application accounts. This allows you to leverage Windows ’
security infrastructure for credential management.

 In addition, it is recommended that you employ accounts dedicated for use in these roles. Reuse of
credentials can make longer - term management of these accounts more difficult and can lead to
unintended resource access. This can also lead to the accumulation of permissions associated with an
account. An account used for one of these roles should have no more permissions than those required for
it to successfully complete its operations.

 Finally, you should limit the number of trusted individuals with knowledge of these credentials. As
individuals move out of roles requiring them to have this knowledge (or move out of the organization
altogether), these accounts should be updated to maintain a secure environment. If Windows accounts
are used (as is recommended above), inappropriate use can be prevented by prohibiting their use for
interactive logins to Windows systems.

 The Service Account
 During installation, as described in Chapter 3 , you are asked to specify the account under which the
Reporting Services Windows service operates. This is referred to as the service account . Through this
account, the Reporting Services Windows service will access various system resources. If your
installation runs in SharePoint Integrated mode, this is the account that Reporting Services will also use
to access the SharePoint databases.

 The Reporting Services service account can be one of three built - in accounts or a Windows user account
that you define. Each of these account options is outlined in the following table:

 Account Details

 Local System The Local System account is a built - in account that behaves as a member of the local
Administrators group. When accessing resources on the network, it uses the
computer ’ s credentials. It is not recommended that you use this for the service
account.

 Local Service The Local Service account is a built - in account that behaves as a member of the local
Users group. It accesses resources on the network with no credentials.

❑

❑

❑

c14.indd 504c14.indd 504 11/13/08 4:54:23 PM11/13/08 4:54:23 PM

Chapter 14: Report Server Administration

505

 Account Details

 Network
Service

 The Network Service account is a built - in account that behaves as a member of the
local Users group. When accessing resources on the network, it uses the computer ’ s
credentials. It is no longer recommended that you use this for the service account.

 User Account The User Account option allows you to enter the credentials of a local or domain
Windows user account. If a local account is used, access to network resources is with
no credentials. If a domain account is used, access to network resources is through
the domain account. This is the recommended account type for the service account.

The service account requires permissions to specific resources on the system on which the Reporting
Services Windows service runs. Instead of granting these rights to the service account itself, the service
account obtains these rights through membership in a local group created by the SQL Server set-up
application during installation. This group is named SQLServerReportServerUser$ComputerName$MSRS10
.InstanceName, with MSSQLSERVER used as the instance name for the default instance.

 There is no need to directly alter membership to this group when making changes to the service account.
Instead, you are strongly recommended to make any changes to the service account using the Service
Account page of the Reporting Services Configuration Manager (see Figure 14 - 1). The tool handles the
details of managing membership to this group, updating the Windows service, adjusting encryption
keys, altering URL reservations, and granting access to the Reporting Services application databases
(if the service account is used as the application database account) — all of which must be performed
with a change in the service account.

 Figure 14 - 1

c14.indd 505c14.indd 505 11/13/08 4:54:23 PM11/13/08 4:54:23 PM

506

Part V: Administering Reporting Services

 Finally, if you are running in SharePoint Integrated mode and you switch the service account, make sure
that the account has appropriate access to the SharePoint databases. To do this, open SharePoint Central
Administration. In the Reporting Services section, click “ Grant database access, ” and enter the Reporting
Services service account information in the resulting dialog. Once this change is saved, it is recommended
that you restart the SharePoint Services service to ensure that the appropriate credentials are being used.

 The Application Database Account
 Reporting Services depends on content stored in its application databases. These databases are hosted by
a local or remote instance of SQL Server, as described in Chapter 4 . To connect to its databases, Reporting
Services must maintain connection string data along with valid credentials for establishing a connection.
The credentials are referred to as the application database account .

 You have three options for the application database account. You can specify a SQL Server authenticated
username and password, provide the credentials for a valid Windows user account, or elect to have
Reporting Services simply use its service account when establishing the connection.

 The SQL Server Authenticated User option requires the SQL Server instance hosting the application
databases to support both Windows and SQL Server authentication. By default, SQL Server is configured
for Windows (Integrated) authentication only, as SQL Server authentication is considered less secure. It is
recommended that you employ the SQL Server Authenticated User option only in special circumstances,
such as when Windows user accounts cannot be authenticated.

 The application database account is set during installation and can be modified later using the Reporting
Services Configuration Manager (see Figure 14 - 2). If you installed using a default configuration, as
described in Chapter 3 , the application database account was automatically set to use the service account.

 Figure 14 - 2

c14.indd 506c14.indd 506 11/13/08 4:54:23 PM11/13/08 4:54:23 PM

Chapter 14: Report Server Administration

507

 If you use the service account or Windows user option, a login will be created within SQL Server
mapped to this Windows account. (If you use the SQL Server Authenticated User option, you will need
to create a login in advance.) The login is then granted access to the two Reporting Services application
databases as well as the master and msdb system databases. Within each database, the account is
mapped to a collection of roles that provide it the rights it needs to handle Reporting Services ’ database
operations, including the creation and management of jobs through a SQL Agent. The following table
identifies the database roles to which the application database account is mapped:

 Database Roles

 Master public

RSExecRole

 Msdb public

RSExecRole

 SQLAgentOperatorRole

 SQLAgentReaderRole

 SQLAgentUserRole

 ReportServer db_owner

 public

RSExecRole

 ReportServerTempDB db_owner

 public

 RSExecRole

 It is important to note that if you change the application database account used by Reporting Services to
connect to its application databases, the Reporting Services Configuration Manager does not remove the
previous application database account from the SQL Server instance. Instead, a valid login is left within
the instance of SQL Server Database Engine, retaining its membership in the database roles identified
in the preceding table. If you change the application database account, you should follow up by
removing the prior login from these roles or the SQL Server instance altogether.

 The Unattended Execution Account
 Reports might need to access files on remote servers or data sources that do not require authentication.
To access these resources, you can specify that no credentials are required as part of the data source
definition. When you do so, you are instructing Reporting Services to use the credentials it has cached
for the unattended execution account (also known as the unattended report processing account or simply the
 execution account) when accessing the resource.

 By default, the unattended execution account is disabled and should remain so unless a specific need is
recognized that cannot be addressed by other reasonable means. To enable the account and configure its
credentials, access the Execution Account page within the Configuration Manager, and provide the
required credentials, as shown in Figure 14 - 3 .

c14.indd 507c14.indd 507 11/13/08 4:54:24 PM11/13/08 4:54:24 PM

508

Part V: Administering Reporting Services

 System - Level Roles
 System - level roles provide members the rights to perform tasks across the Reporting Services site. The
following table identifies the tasks that can be granted at the system level:

 Task Description System Administrator System User

 Execute report
definitions.

 Start execution from
report definition without
publishing it to Report
Server.

 Yes Yes

 Generate events. Provides an application
with the ability to
generate events within
the Report Server
namespace.

 No No

 Manage jobs. View and cancel running
jobs.

 Yes No

Figure 14-3

c14.indd 508c14.indd 508 11/13/08 4:54:24 PM11/13/08 4:54:24 PM

Chapter 14: Report Server Administration

509

 Task Description System Administrator System User

 Manage Report
Server properties.

 View and modify
properties that apply to
the Report Server and to
items managed by the
Report Server.

 Yes No

 Manage roles. Create, view, modify, and
delete role definitions.

 Yes No

 Manage shared
schedules.

 Create, view, modify, and
delete shared schedules
used to run reports or
refresh a report.

 Yes No

 Manage Report
Server security.

 View and modify system -
 wide role assignments.

 Yes No

 View Report
Server properties.

 View properties that
apply to the Report
Server.

 No Yes

 View shared
schedules.

 View a predefined
schedule that has been
made available for
general use.

 No Yes

 Reporting Services comes preconfigured with two system - level roles: System User and System
Administrator. The System User role allows users to retrieve information about the site and to execute
reports in Report Builder 1.0 that have not yet been published to the site. The System Administrator role
allows administrators the rights required to manage the site, including the rights to create additional
roles. The specific system - level tasks assigned to these roles are identified in the preceding table.

 Additional site - level roles can be created using SQL Server Management Studio, allowing you to
permit site - level tasks to be performed by others without granting them System Administrator rights.
The process of creating these roles, assigning tasks, and granting membership is nearly identical to the
creation of item - level roles, as discussed in Chapter 13 , the only difference being that system - level roles
are created through the System Roles folder instead of the Roles folder within SQL Server Management
Studio (see Figure 14 - 4).

c14.indd 509c14.indd 509 11/13/08 4:54:24 PM11/13/08 4:54:24 PM

510

Part V: Administering Reporting Services

 By default, the BUILTIN\Administrators group is assigned to both the System Administrator system -
 level and Content Manager item - level role within the Home folder. You are encouraged to alter this so
that a more appropriate user account or group is assigned these permissions. If you decide to leave the
BUILTIN\Administrators group in these roles, carefully consider who is allowed administrative rights
on your servers.

 Surface Area Management
 A feature that is not enabled is not one that can be exploited. This is the general principle behind surface
area management .

 Reporting Services comes with several features disabled. These include the execution account, e - mail
delivery, and My Reports. Still other features — such as Report Builder 1.0, Report Manager, the use of
Windows Integrated security to access report data sources, and scheduling and delivery functionality —
 are enabled by default but not necessarily required within your Reporting Services environment.
Carefully consider which Reporting Services features are truly required, and disable any not needed.
Books Online provides documentation on the disablement for each of these features.

Figure 14-4

c14.indd 510c14.indd 510 11/13/08 4:54:24 PM11/13/08 4:54:24 PM

Chapter 14: Report Server Administration

511

 Backup and Reco ver y
 Although redundant hardware solutions offer considerable protection against many types of failure,
they do not shield you from every eventuality. Regular backups of the critical components of your
Reporting Services environment are required to better ensure its recoverability.

 Of course, simply taking backups is not enough. Your backups must be properly managed to ensure
their availability following a failure event. This typically involves secured, off - site storage and the
development of retention schedules so that you have the option to recover to various points in time.

 In addition, those responsible for recovery should have experience with the recovery techniques. They
should also be well versed in the procedures for accessing the backup media. It ’ s not a lot of fun to
attempt a recovery when you do not know how to locate and use the recovery media.

 Finally, you should establish policies regarding how communications and decision making will be
handled during a recovery event. You will want to ensure that all those potentially involved understand
these policies. This will help minimize confusion during what can be an already stressful situation.

 This section of the chapter reviews the backup and recovery of the following critical components of a
Reporting Services environment:

 Application databases

 Encryption keys

 Configuration files

 Other items

 Application Databases
 Reporting Services makes use of two application databases. The primary database houses content,
whereas the secondary database houses cached data. These databases are typically named ReportServer
and ReportServerTempDB , respectively.

 Although the names of the application databases can vary, the secondary application database must
always be named the same as the primary with TempDB appended. For example, if the primary
application database is named MyRS , the secondary database associated with it must be named
 MyRSTempDB . The names of these databases should not be altered once created, and the two databases
must always exist within the same SQL Server instance.

 The primary application database, ReportServer, should be backed up on a regular basis and following
any significant content changes. This database operates under the Full recovery model, which allows
both data and log backups to be performed. If properly managed, the combination of data and log
backups allows for point - in - time recovery of the ReportServer database.

❑

❑

❑

❑

c14.indd 511c14.indd 511 11/13/08 4:54:25 PM11/13/08 4:54:25 PM

512

Part V: Administering Reporting Services

 The secondary application database, ReportServerTempDB, does not actually require a backup. If you
need to recover it, you can create a new database appropriately named within the SQL Server instance
housing the ReportServer database. Within this new database, execute the CatalogTempDB.sql script
found within the < drive > :\Program Files\Microsoft SQL Server\MSRS10. < instancename > \
Reporting Services\ReportServer folder. The script will re - create the database objects required by Reporting
Services. Be sure to run this from within the ReportServerTempDB database you just created.

 If you decide to back up the ReportServerTempDB, it is important to note that it operates under the
Simple recovery model. This model allows for data backups but not log backups.

 Books Online includes a script for the backup and recovery of the ReportServer and
ReportServerTempDB databases to another server. This script makes use of the COPY_ONLY backup
option and modifies the recovery model used with ReportServerTempDB. It is important to note that
this script is provided in the context of performing a database migration, not a standard backup and
recovery operation. Be sure to work with your database administrators to develop a backup and recovery
plan that is tailored to the needs of your environment and that you have tested prior to promoting an
environment to production status.

 If you recover a backup of ReportServerTempDB, be sure to purge its content following recovery. The
following statement can be used to perform this task. Once the database is purged, it is recommended
that you restart the Reporting Services service.

exec ReportServerTempDB .sys.sp_MSforeachtable
 @command1=’truncate table #’,
 @replacechar=’#’

 If you need to recover your application databases to another SQL Server instance, it is important to
preserve the original names of the databases. If Reporting Services uses a SQL Server – authenticated
account to connect to its application databases, you will need to re - create that login in the new SQL
Server instance. Following the restore of the databases, you will then need to reassociate the user account
in your application databases with the re - created login. The script below demonstrates one technique for
performing this task:

exec ReportServer .dbo.sp_change_users_login
 @Action = ‘Update_One’,
 @UserNamePattern = ‘ MyDbAccount ’,
 @LoginName = ‘ MyDbAccount ’

exec R eportServerTempDB .dbo.sp_change_users_login
 @Action = ‘Update_One’,
 @UserNamePattern = ‘ MyDbAccount ’,
 @LoginName = ‘ MyDbAccount ’

 Once the database user and login are properly associated, launch the Reporting Services Configuration
Manager against your Reporting Services instance, and locate the Database page, as shown in
Figure 14 - 5 .

c14.indd 512c14.indd 512 11/13/08 4:54:25 PM11/13/08 4:54:25 PM

Chapter 14: Report Server Administration

513

 From this page, click on the Change Database button, and in the resulting dialog, enter the information
required to connect to the primary application database at its new location. Restarting Reporting
Services from the Reporting Service Configuration Manager completes the process.

 Encryption Keys
 Reporting Services protects the sensitive information it stores through encryption based on a symmetric
key generated during initialization. The symmetric key, per its definition, is used in both encryption and
decryption operations. To prevent unauthorized decryption of sensitive data, the symmetric key itself
must be protected. This is accomplished by encrypting the symmetric key using an asymmetric key pair
generated by the operating system.

 Although this protects the symmetric key, also referred to as the encryption key , it raises the
administrative complexity of the system. Certain operations invalidate the asymmetric key pair. Unless
handled properly, these operations will cause Reporting Services to lose its ability to decrypt the
symmetric key, leaving its sensitive data inaccessible. These operations include:

 Resetting the service account ’ s password

 Changing the Reporting Services Windows service account

 Changing the name of the server

 Changing the name of the Reporting Services instance

❑

❑

❑

❑

Figure 14-5

c14.indd 513c14.indd 513 11/13/08 4:54:25 PM11/13/08 4:54:25 PM

514

Part V: Administering Reporting Services

 If you need to perform these operations, it is critical that you follow the steps outlined in this chapter
and in Books Online. If the precise steps required by these operations are not followed, the symmetric
key can no longer be decrypted. Your options then are either to recover the key from a backup or to
delete it. Deleting the key, as described below, is highly disruptive to your site.

 To back up the encryption key, use either the Encryption Keys page of the Reporting Services
Configuration Manager (see Figure 14 - 6) or the rskeymgmt command - line utility with the – e parameter,
as illustrated below. With either approach, you will need to provide a name for the backup file along
with a password to protect its contents.

Figure 14-6

rskeymgmt.exe -e -i MSSQLSERVER -f c:\backups\rs_20080901.snk -p p@ssw0rd

 The – i parameter is used to specify the name of the Reporting Services instance on the local system. The
default instance is identified with the MSSQLSERVER keyword.

 It is recommended that you back up the encryption key when the server is first initialized, the service
account is changed, or whenever the key is deleted or re - created. Although it is password - protected, the
backup file should be secured to prevent unauthorized access to sensitive information.

 If you suspect that the encryption key has been compromised, you can re - create it using the Reporting
Services Configuration Manager or the rskeymgmt command - line utility with the – s parameter, as
illustrated below. This operation can be time - consuming, so you might want to restrict user access to the
Reporting Services instance until finished.

c14.indd 514c14.indd 514 11/13/08 4:54:26 PM11/13/08 4:54:26 PM

Chapter 14: Report Server Administration

515

 If your Reporting Services instance is part of a scale - out deployment, you will need to reinitialize the
other instances in the environment with the newly created key per instructions provided in Books Online.

rskeymgmt.exe -s -i MSSQLSERVER

 To recover the encryption key, use either the Reporting Services Configuration Manager or the
 rskeymgmt command - line utility with the – a parameter. Both approaches will require you to identify
the backup file and supply its password.

rskeymgmt.exe -a -i MSSQLSERVER -f c:\backups\rs_20080901.snk -p p@ssw0rd

 Deletion of the encryption key is considered an operation of last resort. Once completed, you will need
to re - create all shared and report - specific connection strings containing it and reactivate all subscriptions.
As before, this operation can be performed using the Reporting Services Configuration Manager or the
 rskeymgmt command - line utility, this time with the – d parameter, as illustrated below:

rskeymgmt.exe -d -i MSSQLSERVER

 If your Reporting Services instance is part of a scale - out deployment, you will need to delete the key on
each of the instances in the environment. Please refer to Books Online for instructions for completing
this operation.

 Configuration Files
 Several configuration files affect Reporting Services. To fully recover your installation, you will want
backups of these files. Reporting Services itself does not provide a mechanism for this. However, you can
use any number of file backup techniques to safeguard these files. The following table identifies the
configuration files that you will want to back up and their default locations:

 Configuration File Default Location

 ReportingServicesService.exe.config < drive > :\Program Files\Microsoft SQL Server\
MSRS10. < instancename > \Reporting Services\ReportServer\Bin

 RSReportServer.config < drive > :\Program Files\Microsoft SQL Server\
MSRS10. < instancename > \Reporting Services\ReportServer

 RSSrvPolicy.config < drive > :\Program Files\Microsoft SQL Server\
MSRS10. < instancename > \Reporting Services\ReportServer

 RSMgrPolicy.config < drive > :\Program Files\Microsoft SQL Server\
MSRS10. < instancename > \Reporting Services\ReportManager

 Web.config < drive > :\Program Files\Microsoft SQL Server\
MSRS10. < instancename > \Reporting Services\ReportServer

 Web.config
 < drive > :\Program Files\Microsoft SQL Server\
MSRS10. < instancename > \Reporting Services\ReportManager

 Machine.config
 < drive > :\Windows\Microsoft.NET\Framework\ < version > \
CONFIG

c14.indd 515c14.indd 515 11/13/08 4:54:26 PM11/13/08 4:54:26 PM

516

Part V: Administering Reporting Services

 Other Items
 Your backup and recovery plan should consider any custom scripts or components in use by your
installation. In addition, you will want to make sure purchased components, installation media, service
packs, and hotfixes are available during a recovery event. If you have created a database to house
execution log data (discussed below in this chapter), you may want to back this up as well.

 Monitoring
 Effective monitoring should allow you to quickly identify or even anticipate problems within your
environment. Reporting Services provides various features to support this activity. Reporting Services
can be used as a tool to present this data to administrators in an easier - to - consume manner.

 This section explores the use of:

 Setup logs

 Windows application event log

 Trace logs

 Execution log

 Performance counters

 Server management reports

 Set - up Logs
 During installation, the set - up application creates a series of text - based log files recording messages
and statistics generated as part of the process. By default, these are located in subfolders of the
< drive > :\Program Files\Microsoft SQL Server\100\Setup Bootstrap\LOG folder. These subfolders are
named using the convention YYYYMMDD_nnnn , where YYYY , MM , and DD represent the year, month,
and day of the installation. The nnnn portion of the name represents an incrementing four - digit number,
the highest value of which identifies the most recent installation attempt.

 The contents of these folders are a bit overwhelming but worth exploring if you experience errors during
an installation attempt. To review the summary status of the most recent installation attempt, simply
direct your attention to the Summary.txt file within the < drive > :\Program Files\Microsoft SQL Server\
100\Setup Bootstrap\LOG folder.

❑

❑

❑

❑

❑

❑

c14.indd 516c14.indd 516 11/13/08 4:54:26 PM11/13/08 4:54:26 PM

Chapter 14: Report Server Administration

517

 Windows Application Event Logs
 Reporting Services writes critical error, warning, and informational messages to the Windows application
event log . These messages are identified as originating from the Report Server, Report Manager, and
Scheduling and Delivery Processor event sources.

 The complete list of Reporting Services event log messages is documented in Books Online.
Administrators will want to familiarize themselves with this list and periodically review the Windows
Application event log for these and other critical messages. The Windows event logs are viewable using
the operating system ’ s Event Viewer applet.

 Trace Logs
 The trace logs are a great source of information about activity taking place within the Reporting Services
Windows service. You can locate these files in the < drive > :\Program Files\Microsoft SQL Server\
MSRS10. < instancename > \Reporting Services\LogFiles folder. The logs are by default named
 ReportServerService__MM_DD_YYYY_hh_mm_ss , where MM , DD , YYYY , hh , mm , and ss represent the
month, day, year, hour, minute, and second, respectively, the file was created. Each of these files is
viewable using a simple text editor.

 By default, Reporting Services is configured to write exceptions, warnings, re - start, and status
messages to the trace logs files. Log files are retained for a configurable number of days, and a new log
file is created at the top of the day, when the Reporting Services Windows service is started, or when
the file reaches a configurable maximum size. The configuration settings affecting the trace logs are found
within the RStrace section of the ReportingServicesService.exe.config file typically located within the
< drive > :\Program Files\Microsoft SQL Server\MSRS10. < instancename > \Reporting Services\
ReportServer\Bin folder. The RStrace settings are identified in the following table along with their
defaults:

 Setting Default Description

 FileName ReportServerService_ The first part of the filename. A string
indicating the date and time the file was
created along with a .log extension is
appended to this to produce the full
filename.

 FileSizeLimitMb 32 The maximum size of the trace file in
megabytes (MB). A value < 0 is treated as 1.

 KeepFilesForDays 14 The number of days to retain a trace file.
A value < 0 is treated as 1.

 TraceListeners debugwindow,file A comma - delimited list of one or more trace
log output targets. Valid values within the
list include debugwindow, file, and stdout.

 TraceFileMode Unique (default) A value indicating that each trace file
should contain data for a single day. Do not
modify this setting.

(continued)

c14.indd 517c14.indd 517 11/13/08 4:54:27 PM11/13/08 4:54:27 PM

518

Part V: Administering Reporting Services

 Setting Default Description

 DefaultTraceSwitch 3 The default trace level for any component
identified in the Components setting but for
which no trace switch is provided. Values
include:

 0 — Disabled
 1 — Exceptions and re - starts
 2 — Exceptions, re - starts, and warnings
3 — Exceptions, re - starts, warnings, and
status messages
 4 — Verbose mode

 Components All:3 A comma - delimited list of components and
their associated trace levels determining the
information to be included in the trace.

 The components represent activities capable
of producing trace messages. The valid
components are:

 RunningJobs — Report and subscription
execution

 SemanticQueryEngine — Report model
usage SemanticModelGenerator — Report
model generation

All — Any of the components, except http ,
not otherwise specified

 http — HTTP requests received by
Reporting Services

 The type of message written for each
specified component is controlled by a trace
level. These levels are:

0 — Disabled
1 — Exceptions and re - starts
 2 — Exceptions, re - starts, and warnings
 3 — Exceptions, re - starts, warnings, and
status messages
 4 — Verbose mode

 The http component identified in the table above is new to SQL Server 2008 Reporting Services. It
instructs Reporting Services to record HTTP requests to a separate trace log file in the traditional W3C
extended log format.

 The http component is not covered by the All component. Therefore, the default Components setting of
 All:3 leaves HTTP logging disabled. To enable HTTP logging, append the http component to the

c14.indd 518c14.indd 518 11/13/08 4:54:27 PM11/13/08 4:54:27 PM

Chapter 14: Report Server Administration

519

 Components list with a trace level of 4. Any other trace level for the http component will leave it
disabled.

 The HTTP trace log files are stored in the same folder as the traditional trace files. Trace configuration
settings such as FileSizeLimitMb and KeepFilesForDays serve double duty, affecting the
management of both the traditional and HTTP trace log files.

 Two HTTP trace log - specific settings, HttpTraceFileName and HttpTraceSwitches , are manually
added to the ReportingServicesService.exe.config file to override the default HTTP trace log file name and
data format, respectively. If the HttpTraceSwitches setting is not specified, those fields identified as
defaults in the following table are recorded to the HTTP trace logs.

 Field Description Default

 Date The date of the event No

 Time The time of the event No

 ActivityID The activity identifier Yes

 SourceActivityID The source activity identifier Yes

 ClientIp The IP address of the client accessing the Report Server Yes

 UserName The name of the user who accessed the Report Server No

 ServerPort The port number used for the connection No

 Host The content of the host header No

 Method The action or SOAP method called from the client Yes

 UriStem The resource accessed Yes

 UriQuery The query used to access the resource No

 ProtocolStatus The HTTP status code Yes

 BytesSent The number of bytes sent by the server No

 BytesReceived The number of bytes received by the server No

 TimeTaken The time (in milliseconds) from the instant that HTTP.SYS
returns request data until the server finishes the last send,
excluding network transmission time

 No

 ProtocolVersion The protocol version used by the client No

 UserAgent The browser type used by the client No

 CookieReceived The content of the cookie received by the server No

 CookieSent The content of the cookie sent by the server No

 Referrer The previous site visited by the client No

c14.indd 519c14.indd 519 11/13/08 4:54:27 PM11/13/08 4:54:27 PM

520

Part V: Administering Reporting Services

 The following sample shows the RSTrace section of the ReportingServicesService.exe.config file with
both traditional and HTTP logging enabled and the HttpTraceFileName and HttpTraceSwitches
settings explicitly configured. Note the Components setting with the http component specified with a
trace level of 4.

 < RStrace >
 < add name=”FileName” value=”ReportServerService_” / >
 < add name=”FileSizeLimitMb” value=”32” / >
 < add name=”KeepFilesForDays” value=”14” / >
 < add name=”Prefix” value=”tid, time” / >
 < add name=”TraceListeners” value=”debugwindow, file” / >
 < add name=”TraceFileMode” value=”unique” / >
 < add name=”HttpTraceFileName” value=”RS_HTTP_” / >
 < add name=”HttpTraceSwitches” value=”Date,Time,ActivityID,
 SourceActivityID,ClientIp,UserName,Method,
 UriStem,UriQuery,ProtocolStatus,BytesSent,
 BytesReceived,TimeTaken” / >
 < add name=”Components” value=”runningjobs:3,all:2,http:4” / >
 < /RStrace >

 It is important that when you modify the configuration file, you make a backup should a problem arise
with your changes. Also, please be aware that setting names are case - sensitive although the values do
not appear to be.

 Execution Logs
 Reporting Services stores quite a bit of data about the execution of reports in a collection of tables in the
ReportServer database. Collectively, these tables are referred to as the execution log .

 To make this data accessible, Reporting Services provides a SQL Server Integration Services (SSIS)
package named RSExecutionLog_Update.dtsx with the Reporting Services samples. The package extracts
execution log data from the ReportServer database into a secondary database. If you have installed
these samples, you can typically find this package at < drive > :\Program Files\Microsoft SQL Server\
100\Samples\Reporting Services\Report Samples\Server Management Sample Reports\Execution Log
Sample Reports.

 The package makes reference to a SQL Server database named RSExecutionLog , which you will need to
create. After you have created the RSExecutionLog database, you will need to create the table structures
it will use to hold your data. The Createtables.sql script provided in the same folder as the SSIS
package will handle this task for you. When executing this script, be sure that you are using the
RSExecutionLog database, as the script itself does not contain a USE statement.

 Once the database is created, verify that the Connection Managers within the SSIS package are pointed
to it. With this done, you are now able to extract data from the ReportServer database to the
RSExecutionLog database for review and analysis.

 The volume of data associated with the execution logs can get quite large. Reporting Services is
configured by default to retain execution log data for 60 days. You can alter this setting through SQL
Server Management Studio by connecting to the Reporting Services instance, right - clicking on the
instance object, and selecting Properties from the context menu. In the Server Properties dialog, navigate
to the Logging page, as shown in Figure 14 - 7 . Here you can change the number of days that the data is
retained or disable execution logging altogether.

c14.indd 520c14.indd 520 11/13/08 4:54:28 PM11/13/08 4:54:28 PM

Chapter 14: Report Server Administration

521

 The RSExecutionLog database does not have a built - in data clean - up mechanism. The Cleanup.sql
script provided in the same folder as the SSIS package can be used to purge old data from the
RSExecutionLog database. The script uses a hard - coded date of January 1, 2004 as the cut - off point for
data expiration. The following code sample shows a section of the Cleanup.sql script modified to
drop data older than 180 days (about 6 months) from the current date and time.

/*
Change this constant for the earliest data
 Everything earlier will be deleted
 */
DECLARE @EarliestTimeStart datetime
/* ORIGINAL CODE
SET @EarliestTimeStart = ‘2004-01-01 00:00:00’
 -- ** Always use ODBC cannonical form **
 -- i.e. yyyy-mm-dd hh:mi:ss(24h)SET
*/
-- NEW CODE
SET @EarliestTimeStart = DATEADD(dd, -180, GETDATE())

 To consume the execution log data, the Reporting Services samples come with three predefined
reports: Execution Status Codes, Report Summary, and Execution Summary. The reports are pretty
self - explanatory and can be used as a starting point for the development of a larger array of
administrative reports.

Figure 14-7

c14.indd 521c14.indd 521 11/13/08 4:54:28 PM11/13/08 4:54:28 PM

522

Part V: Administering Reporting Services

 Performance Counters
 Windows performance counters provide insight into system utilization and stability. Administrators
have long used these to monitor the overall health of a system, identify trends that may lead to
problems, and verify the effect of changes to various system components. To support this activity,
Reporting Services provides three performance objects: MSRS 2008 Web Service, MSRS 2008 Windows
Service, and ReportServer Service.

 The MSRS 2008 Web Service object presents counters related to report processing, whereas the MSRS
2008 Windows Service object presents counters related to scheduled operations, such as subscription
execution and delivery and snapshot execution. The ReportServer Service object presents counters
related to HTTP - and memory - related events. Although focused on different subject areas, many of
the counters presented by these objects are named and defined identically. The following table lists the
counters and the objects with which they are associated.

 MSRS 2008
Web Service

 MSRS 2008
Windows Service

 Report Server
Service Counter Description

 No Yes Yes Active
Connections

 Number of
connections active
against server

 Yes Yes No Active Sessions Number of active
sessions

 No Yes Yes Bytes Received
Total

 Number of bytes
received

 No Yes Yes Bytes Received/
Sec

 Rate of bytes
received per second

 No No Yes Bytes Sent Total Number of bytes
sent

 No No Yes Bytes Sent/Sec Rate of bytes sent
per second

 Yes Yes No Cache Hits/Sec Number of Report
Server cache hits
per second

 Yes Yes No Cache Hits/Sec
(Semantic Models)

 Number of times
per second that
models can be
retrieved from the
cache

 Yes Yes No Cache Misses/Sec Number of times
per second that
reports cannot be
retrieved from the
cache

c14.indd 522c14.indd 522 11/13/08 4:54:28 PM11/13/08 4:54:28 PM

Chapter 14: Report Server Administration

523

 MSRS 2008
Web Service

 MSRS 2008
Windows Service

 Report Server
Service Counter Description

 Yes Yes No Cache Misses/Sec
(Semantic Models)

 Number of times per
second that models
cannot be retrieved
from the cache

 No No Yes Errors Total The total number of
errors that occur
during the
execution of HTTP
requests (error
codes 400s and 500s)

 No No Yes Errors/Sec Number of errors
that occur during
the execution of
HTTP requests
(error codes 400s
and 500s) per
second

 Yes Yes No First Session
Requests/Sec

 Number of new
user sessions that
are started per
second

 No No Yes Logon Attempts
Total

 Number of logon
attempts for
RSWindows
authentication
types

 No No Yes Logon Attempts/
Sec

 Rate of logon
attempts

 No No Yes Logon Successes
Total

 Number of
successful logons
for RSWindows
authentication
types

 No No Yes Logon Successes/
Sec

 Rate of successful
logons

 Yes Yes No Memory Cache
Hits/Sec

 Number of times
per second that
reports can be
retrieved from the
in - memory cache

(continued)

c14.indd 523c14.indd 523 11/13/08 4:54:29 PM11/13/08 4:54:29 PM

524

Part V: Administering Reporting Services

 MSRS 2008
Web Service

 MSRS 2008
Windows Service

 Report Server
Service Counter Description

 Yes Yes No Memory Cache
Miss/Sec

 Number of times
per second that
reports cannot be
retrieved from the
in - memory cache

 No No Yes Memory Pressure
State

 A number from
1 to 5 indicating the
current memory
state of the server:
(1) no pressure,
(2) low pressure,
(3) medium
pressure, (4) high
pressure,
(5) exceeded
pressure

 No No Yes Memory Shrink
Amount

 Number of bytes
the server requested
to shrink

 No No Yes Memory Shrink
Notifications/Sec

 Number of shrink
notifications the
server issued in the
last second

 Yes Yes No Next Session
Requests/Sec

 Number of requests
per second for
reports that are
open in an existing
session

 Yes Yes No Report Requests Number of active
report requests

 Yes Yes No Reports
Executed/Sec

 Number of reports
executed per
second

 No Yes Yes Requests
Disconnected

 Number of requests
that have been
disconnected
because of a
communication
failure

 No No Yes Requests
Executing

 Number of requests
currently executing

c14.indd 524c14.indd 524 11/13/08 4:54:29 PM11/13/08 4:54:29 PM

Chapter 14: Report Server Administration

525

 MSRS 2008
Web Service

 MSRS 2008
Windows Service

 Report Server
Service Counter Description

 No Yes Yes Requests Not
Authorized

 Number of requests
failing with HTTP
401 error code

 No Yes Yes Requests Rejected Total number of
requests not
executed because of
insufficient server
resources

 No No Yes Requests Total The total number of
requests received
by the Report
Server service since
service startup

 Yes Yes Yes Requests/Sec Number of requests
per second

 No Yes Yes Tasks Queued Tasks Queued
represents the
number of tasks
that are waiting for
a thread to become
available for
processing

 Yes Yes No Total Cache Hits Total number of
Report Server cache
hits

 Yes Yes No Total Cache Hits
(Semantic Models)

 Total number of
cache hits made in
the model cache

 Yes Yes No Total Cache
Misses

 Total number of
cache misses

 Yes Yes No Total Cache
Misses (Semantic
Models)

 Total number of
cache misses made
in the model cache

 Yes Yes No Total Memory
Cache Hits

 Total number of
cache hits made in
the in - memory cache

 Yes Yes No Total Memory
Cache Misses

 Total number of
cache misses made
in the in - memory
cache

(continued)

c14.indd 525c14.indd 525 11/13/08 4:54:29 PM11/13/08 4:54:29 PM

526

Part V: Administering Reporting Services

 MSRS 2008
Web Service

 MSRS 2008
Windows Service

 Report Server
Service Counter Description

 Yes Yes No Total Processing
Failures

 Total number of
processing failures

 Yes Yes No Total Rejected
Threads

 Total number of
rejected threads as a
result of thread
pressure

 Yes Yes No Total Reports
Executed

 Total number of
reports executed

 Yes Yes No Total Requests Total number of
requests being
processed

 Together, these three objects present 72 counters with which you can monitor an installation. It is not
advised that you monitor each one of these. Instead, consider using high - level statistics such as Active
Sessions, Requests/Sec, Reports Executed/Sec, and First Session Requests/Sec for your day - to - day
monitoring. As specific needs arise, you will want to incorporate additional counters until those needs
are addressed.

 In addition to the Reporting Services performance counters, you might consider monitoring the
Reporting Services Windows service from the operating system ’ s perspective. Windows provides a
Process performance object through which a number of performance counters are provided. A few of the
more commonly monitored counters under this object are listed in the following table:

 Counter Description

 % Processor Time The percentage of elapsed time that all process threads used the
processor to execute instructions

 Page Faults/sec The rate at which page faults by the threads executing in this process
are occurring

 Virtual Bytes The current size, in bytes, of the virtual address space the process is
using

 Finally, you will want to keep tabs on a few counters that indicate the overall health of the systems on
which Reporting Services resides. Commonly monitored performance counters in this category include
those listed in the following table:

c14.indd 526c14.indd 526 11/13/08 4:54:30 PM11/13/08 4:54:30 PM

Chapter 14: Report Server Administration

527

 Object Counter Description

 Processor % Processor Time This counter is the primary indicator of processor
activity and displays the average percentage of
busy time observed during the sample interval.

 System Processor Queue Length Processor Queue Length is the number of threads
in the processor queue .

 Memory Pages/sec The rate at which pages are read from or written
to disk to resolve hard page faults. This counter
is a primary indicator of the kinds of faults that
cause system - wide delays.

 Logical Disk % Free Space % Free Space is the percentage of total usable
space on the selected logical disk drive that
was free.

 Physical Disk Avg. Disk Queue Length Avg. Disk Queue Length is the average number
of both Read and Write requests that were
queued for the selected disk during the sample
interval.

 Network Interface Current Bandwidth Current Bandwidth is an estimate of the current
bandwidth of the network interface in bits per
second (BPS). For interfaces that do not vary in
bandwidth or for those where no accurate
estimation can be made, this value is the nominal
bandwidth.

 Network Interface Bytes Total/sec Bytes Total/sec is the rate at which bytes are sent
and received over each network adapter,
including framing characters. Network
Interface\Bytes Total/sec is a sum of
Network Interface\Bytes Received/sec
and Network Interface\Bytes Sent/sec.

 Server Management Reports
 As mentioned above in this chapter, the Reporting Services samples come with three reports for the
review of the extracted execution log data. Two other sample reports are provided with the Reporting
Services tasks to provide administrators insight into database structures. Collectively, these are known as
the server management reports .

c14.indd 527c14.indd 527 11/13/08 4:54:30 PM11/13/08 4:54:30 PM

528

Part V: Administering Reporting Services

 The server management reports are not intended to address all of your administrative needs. Instead,
they illustrate how Reporting Services can be used as a tool supporting its own administration and
management. It is not hard to imagine a number of additional administrative reports providing deeper
insight into the execution log data. With a little bit of effort, data sources such as the performance
counters, trace logs, and the Windows Application event logs can also be integrated and made accessible
for reporting.

 The possibilities for server management reporting are endless. With some up - front investment to
consolidate data sources, you can leverage Reporting Services functionality to reduce the overall
administrative burden of your environment.

 Configuration
 Reporting Services supports several configurable features and options to support the precise needs of
your organization. Books Online documents many of these, and still others can be identified with a little
exploration. The following sections explore a few of the more frequently configured Reporting Services
elements:

 Memory management

 URL Reservations

 E - mail delivery

 Rendering extensions

 My Reports

 Memory Management
 The following four settings in the RSReportServer.config configuration file, typically located within the
 < drive > :\Program Files\Microsoft SQL Server\MSRS10. < instancename > \Reporting Services\
ReportServer folder, determine how Reporting Services manages its memory:

 WorkingSetMinimum

 WorkingSetMaximum

 MemorySafetyMargin

 MemoryThreshold

 The WorkingSetMinimum and WorkingSetMaximum settings determine the range of memory that
Reporting Services may use. By default, these settings are not recorded in the configuration file.
Instead, Reporting Services assumes values of 60 percent and 100 percent of the system ’ s physical
memory, respectively.

❑

❑

❑

❑

❑

❑

❑

❑

❑

c14.indd 528c14.indd 528 11/13/08 4:54:31 PM11/13/08 4:54:31 PM

Chapter 14: Report Server Administration

529

 To override these defaults, you can add the settings to the configuration file under the same parent as
 MemorySafetyMargin and MemoryThreshold . The values associated with the WorkingSetMinimum
and WorkingSetMaximum settings represent absolute kilobytes of memory. If you are running multiple
memory - intensive applications on your Reporting Services server, you should consider implementing
these settings to avoid memory contention.

 Within the range of memory available to it, Reporting Services implements a state - based memory
management model. The MemorySafetyMargin setting, defaulted to 80 percent of the
 WorkingSetMaximum , defines the boundary between the low and medium memory pressure states. The
 MemoryThreshold setting, defaulted to 90 percent of the WorkingSetMaximum , defines the boundary
between the medium and high memory pressure states.

 Within each memory pressure state, Reporting Services grants and takes back memory for report
requests differently. For systems experiencing consistent loads, operating in the low and medium states
is ideal. The default settings for MemorySafetyMargin and MemoryThreshold favor these states.

 For systems experiencing spikes in memory utilization, such as might occur if multiple, large reports are
simultaneously processed, the medium and even high memory states may allow for greater concurrency
although reports may be rendered a bit more slowly. If this better matches the usage pattern of your
system, you might want to lower the MemorySafetyMargin and MemoryThreshold settings to more
quickly move into these memory states.

 URL Reservations
 If you performed a Files Only installation of Reporting Services, you must configure URL reservations
for the Reporting Services Web service and Report Manager. URL reservations tell the operating system ’ s
HTTP.SYS driver where to direct requests intended for Reporting Services. URL reservations minimally
consist of a virtual directory, an IP address, and a TCP port.

 Advanced configuration options enable you to associate an SSL certificate with the URL reservation.
This is addressed in Books Online.

 The virtual directory identifies the application to which communications will be targeted. Report
Manager typically uses the reports virtual directory, whereas the Web service typically uses the
 reportserver virtual directory.

 Named instances typically use the reports_ instancename and reportserver_ instancename
virtual directories for Report Manager and the Web service, respectively.

 The URL reservation ’ s IP address identifies which IP addresses in use by the server the Reporting
Services application will be associated with. The URL reservation is typically configured to be associated
with all IP addresses in use on the server, but you can configure it to be associated with a specific IP
address, including the loopback address, or to work with any IP addresses not explicitly reserved by
other applications. This latter option is not recommended in most situations.

c14.indd 529c14.indd 529 11/13/08 4:54:31 PM11/13/08 4:54:31 PM

530

Part V: Administering Reporting Services

 Finally, the URL reservation is tied to a TCP port. Typically, HTTP communications take place over TCP
port 80. You may have multiple applications on a given server listening on the same TCP port so long
as the overall URL reservation is unique on the server. If you specify a TCP port other than 80 (or 433
if you are using HTTPS communications), you will need to include the port number in the URL
whenever you communicate with Report Manager or the Web service.

 If you are running Reporting Services on 32 - bit Windows XP (SP2), TCP ports cannot be shared
between URL reservations. Therefore, it is suggested that you use TCP port 8080 on this system
for HTTP communications with Reporting Services. For more information on this topic, please see
Books Online.

 To configure a URL reservation for the Reporting Services Web service, access the Web Service URL page
of the Reporting Services Configuration Manager, as shown in Figure 14 - 8 . On this page, enter the virtual
directory, IP address, and TCP port for the Web Service ’ s URL reservation. Once changes are applied,
you are presented with the Web services URL, which you can click on to test.

Figure 14-8

 To configure a URL reservation for the Report Manager application, access the Report Manager URL
page of the Reporting Services Configuration Manager, as shown in Figure 14 - 9 . The Report Manager
URL reservation will leverage the IP address and TCP port settings of the Web service ’ s reservation.
Enter the Report Manager ’ s virtual directory, apply the changes, and click on the provided URL to test
the changes.

c14.indd 530c14.indd 530 11/13/08 4:54:31 PM11/13/08 4:54:31 PM

Chapter 14: Report Server Administration

531

Figure 14-9

 This has been a high - level discussion of URL reservations. Advanced options are available that require
deeper knowledge of networking concepts. Those familiar with these topics should have no problems
understanding the interfaces and configuring Reporting Services appropriately. If you need to configure
the Reporting Services URL reservations differently from what is discussed here, it is recommended that
you engage your network support staff to explore your options.

 E - mail Delivery
 E - mail delivery of reports is a powerful feature of Reporting Services for driving report consumption. It also
provides opportunities for overuse and abuse and raises the administrative overhead of the environment.
Because of this and the potential complexity of its configuration, the feature is disabled by default.

 To enable e - mail delivery, you simply configure the e - mail delivery extension. Books Online documents
several variations for its configuration, but most systems will make use of what is described as the
 “ minimum configuration. ”

 The minimal configuration requires the name or IP address of a remote SMTP server (or gateway) and a
valid e - mail account on the SMTP server. This information is entered into the E - mail Settings page of the
Reporting Services Configuration Manager, as shown in Figure 14 - 10 , to enable the delivery extension.

c14.indd 531c14.indd 531 11/13/08 4:54:31 PM11/13/08 4:54:31 PM

532

Part V: Administering Reporting Services

Figure 14-10

 Communication with the SMTP server will be through the Reporting Services service account. The
service account will require SendAs rights with the SMTP server in order to send e - mail through
the configured e - mail account.

 If this is not properly set or any other problems prevent Reporting Services from sending e - mail through
the SMTP server, error messages will be displayed in the Windows application event log as well as in the
status message associated with e - mail - based subscriptions in Report Manager. However, problems with
e - mail delivery downstream from the SMTP server will not be reflected in Reporting Services. For this
reason, it is recommended that you test your e - mail configuration by setting up a test subscription to a
monitored e - mail account and verify end - to - end delivery of the subscription message.

 Once configured, users assigned the “ Manage individual subscriptions ” or “ Manage all subscriptions ”
tasks are presented the option to use e - mail delivery (and any other enabled delivery options) when
setting up subscriptions. Reporting Services does not provide a mechanism to secure the e - mail delivery
option separately from other delivery mechanisms.

 Once enabled, you can disable e - mail delivery by simply removing the settings recorded in the
Reporting Services Configuration Manager. Please be aware that although this disables e - mail delivery,
subscriptions already configured to use this delivery mechanism will continue to run as is and fail until
they are disabled or reconfigured to use another delivery mechanism. For this reason, it is suggested that
you disable e - mail delivery in phases.

c14.indd 532c14.indd 532 11/13/08 4:54:32 PM11/13/08 4:54:32 PM

Chapter 14: Report Server Administration

533

 In the first phase, prevent the creation of new e - mail - based subscriptions by commenting out the
appropriate Extension entry within the DeliveryUI section of the RSReportServer.config file. This
removes e - mail delivery as an option in Report Manager. The following code sample illustrates this
modification:

 < DeliveryUI >
 < !-- Extension Name=”Report Server Email”
Type=”Microsoft.ReportingServices.EmailDeliveryProvider.EmailDeliveryProviderControl,
 ReportingServicesEmailDeliveryProvider” >
 < Configuration >
 < RSEmailDPConfiguration >
 < DefaultRenderingExtension > MHTML < /DefaultRenderingExtension >
 < /RSEmailDPConfiguration >
 < /Configuration >
 < /Extension -- >
 < Extension Name=”Report Server FileShare”
Type=”Microsoft.ReportingServices.FileShareDeliveryProvider.FileShareUIControl,
 ReportingServicesFileShareDeliveryProvider” >
 < DefaultDeliveryExtension > True < /DefaultDeliveryExtension >
 < /Extension >
 < /DeliveryUI >

 It is important to note that although this removes e - mail delivery as an option in Report Manager, this
does not prevent applications from creating new e - mail - based subscriptions through the Web services
interface. If applications make use of this interface to create subscriptions, work with the application
owners to disable this feature.

 The second phase of disabling e - mail delivery involves reconfiguring any subscriptions making use of
e - mail delivery. Work with content owners to determine appropriate alternatives as part of this work. Once
migration is completed, you can then safely proceed with disabling e - mail delivery, as described above.

 Rendering Extensions
 Reporting Services comes preconfigured to render reports to a number of formats. The formats available
are determined by the rendering extensions installed on the server and configured in the Render section
of the RSReportServer.config file. Below is a sample entry for the Image rendering extension:

 < Extension Name=”IMAGE”
Type=”Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,
 Microsoft.ReportingServices.ImageRendering”/ >

 Each rendering extension entry minimally consists of name and type attributes. These identify the
extension within the configuration file. The value associated with the Name attribute serves as a unique
identifier for the extension within the configuration file. The Type attribute associates the entry with a
particular rendering extension.

 The name of the extension displayed to end - users is the rendering extension ’ s default display name,
unless an OverrideNames setting is entered into the configuration file. The OverrideNames setting is
recorded with the extension, as demonstrated below. In this sample, the default name of the Image
rendering extension, TIFF File , is overridden with the shortened name of TIFF .

c14.indd 533c14.indd 533 11/13/08 4:54:32 PM11/13/08 4:54:32 PM

534

Part V: Administering Reporting Services

 < Extension Name=”IMAGE”
Type=”Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,
 Microsoft.ReportingServices.ImageRendering” >
 < OverrideNames >
 < Name Language=”en-US” > TIFF < /Name >
 < /OverrideNames >
 < /Extension >

 It is important to note that the Language attribute associated with the OverrideNames setting should
match the language settings of the Reporting Services server. If the wrong or no language is specified,
the OverrideNames entry is ignored, and the rendering extension ’ s default name is used.

 As was mentioned in Chapter 4 , rendering extensions are capable of supporting various formats. In
addition, aspects of how each extension renders to a particular format are configurable. To override the
default rendering settings of a particular rendering extension, DeviceInfo settings can be added to an
extension ’ s entry in the configuration file. In addition, more than one entry for a rendering extension,
typically with a different set of DeviceInfo settings, can be recorded in the configuration file so long as
each extension entry is identified with a unique name attribute.

 The following sample illustrates this using the Image rendering extension. In this example, the Image
rendering extension is registered twice. In the first entry, the Image rendering extension is configured for
its default settings allowing TIFF images to be produced. In the second entry, the Image rendering
extension is configured to produce BMP images.

 < Extension Name=”IMAGE”
Type=”Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,
 Microsoft.ReportingServices.ImageRendering”/ >
 < Extension Name=”BMP”
Type=”Microsoft.ReportingServices.Rendering.ImageRenderer.ImageRenderer,
 Microsoft.ReportingServices.ImageRendering” >
 < OverrideNames >
 < Name Language=”en-US” > BMP < /Name >
 < /OverrideNames >
 < Configuration >
 < DeviceInfo >
 < OutputFormat > BMP < /OutputFormat >
 < PageHeight > 11in < /PageHeight >
 < PageWidth > 8.5in < /PageWidth >
 < /DeviceInfo >
 < /Configuration >
 < /Extension >

 DeviceInfo settings are rendering - extension - specific. Books Online documents these settings for each
of the default rendering extensions. It is important to note that without configuring device info settings
in the RSReportServer.config file, you can still supply device info settings when accessing a report
through URL access or Web services calls to control the rendering of the report for a specific request. In
addition, URL access is the only mechanism allowing device info settings for the CSV rendering
extension to be set resulting in a tab - delimited file.

c14.indd 534c14.indd 534 11/13/08 4:54:32 PM11/13/08 4:54:32 PM

Chapter 14: Report Server Administration

535

 Finally, the Extension entry for any rendering extensions you do not intend to use should be disabled by
commenting it out in the RSReportServer.config file. However, if you simply wish to prevent a file
format from being used with a particular subscription delivery option, you should add its name to the
 ExcludedRenderFormats section under the appropriate delivery extension within the RSReportServer
.config file. In the following example, the extensions with Name attributes set to HTMLOWC , NULL , RGDI ,
and IMAGE are excluded from use with File Share delivery:

 < Extensions >
 < Delivery >
 < Extension Name=”Report Server FileShare”
Type=”Microsoft.ReportingServices.FileShareDeliveryProvider.FileShareProvider,
 ReportingServicesFileShareDeliveryProvider” >
 < MaxRetries > 3 < /MaxRetries >
 < SecondsBeforeRetry > 900 < /SecondsBeforeRetry >
 < Configuration >
 < FileShareConfiguration >
 < ExcludedRenderFormats >
 < RenderingExtension > HTMLOWC < /RenderingExtension >
 < RenderingExtension > NULL < /RenderingExtension >
 < RenderingExtension > RGDI < /RenderingExtension >
 < RenderingExtension > IMAGE < /RenderingExtension >
 < /ExcludedRenderFormats >
 < /FileShareConfiguration >
 < /Configuration >
 < /Extension >
 ...
 < /Delivery >

 ...
 < /Extensions >

 My Reports
 The My Reports feature provides users a personal folder in Reporting Services within which they can
manage and view their own content. This is a powerful feature for users but one that can get out of hand
fast. The critical concern is that users are by default assigned elevated rights within their My Reports
folder that allow them to store content on the site with no mechanism to restrict the type or size of that
content.

 By default, the My Reports feature is disabled. If enabled, a My Reports folder is presented to each user
in his or her home directory. The folder is actually a link to a user - specific folder created by Reporting
Services within the Users Folders folder. Only System Administrators have direct access to the Users
Folders folder.

 Within his or her My Reports folder, a user is a member of a pre - set role. By default, this is the My
Reports role, which has the following tasks assigned to it:

 Create linked reports.

 View reports.

 Manage reports.

❑

❑

❑

c14.indd 535c14.indd 535 11/13/08 4:54:33 PM11/13/08 4:54:33 PM

536

Part V: Administering Reporting Services

 View resources.

 View folders.

 Manage folders.

 Manage report history.

 Manage individual subscriptions.

 View data resources.

 Manage data sources.

 These tasks, discussed in the previous chapter, provide elevated rights within this space. You might
consider removing some of these tasks from the My Reports role or creating an alternative role with
lesser privileges and using that as the default role assignment for the My Reports feature.

 To enable the My Reports feature, open SQL Server Management Studio, and connect to the Reporting
Services instance. Right - click on the instance object, and select Properties to launch the Server Properties
dialog. Within the default General page of this dialog, as shown in Figure 14 - 11 , use the checkbox next to
the “ Enable a My Reports folder for each user ” option to toggle this feature on and off. If enabled, you
can assign a role to each user within his or her My Reports folder through the dropdown just below the
checkbox.

❑

❑

❑

❑

❑

❑

❑

Figure 14-11

c14.indd 536c14.indd 536 11/13/08 4:54:33 PM11/13/08 4:54:33 PM

Chapter 14: Report Server Administration

537

 If you decide to enable this feature, closely monitor the consumption of space by users, and work with
them to understand the feature ’ s appropriate use. If you decide to disable the feature after having
made it available, users will no longer be able to access their My Reports folder. However, the content
of these folders remains within the system. Any subscriptions and snapshots associated with reports
in these folders will continue to run. To properly clean up the My Reports folders, you will need to
work with your users to migrate or drop their content.

 Summary
 In this chapter, you have explored elements of Reporting Services with the goal of developing a
comprehensive administrative program. Although there are recommended best practices, there is no one
right approach. It is important to understand your options and then work with your users, developers,
and administrators to develop a program tailored to your specific needs. Once in place, it then becomes
important to follow through on the actions specified and to be on the lookout for threats and changes in
needs that may require adjustments to your routines and practices.

c14.indd 537c14.indd 537 11/13/08 4:54:33 PM11/13/08 4:54:33 PM

c14.indd 538c14.indd 538 11/13/08 4:54:33 PM11/13/08 4:54:33 PM

Part VI

Reporting Ser vices
Integration and Custom

Programming

Chapter 15: Integrating Reports into Custom Applications

Chapter 16: Integrating Reports with SharePoint

Chapter 17: Extending Reporting Services

c15.indd 539c15.indd 539 11/13/08 4:55:37 PM11/13/08 4:55:37 PM

c15.indd 540c15.indd 540 11/13/08 4:55:37 PM11/13/08 4:55:37 PM

 Integrating Repor ts into
Custom Applications

 Reporting Services was designed to be a flexible reporting technology that can be easily integrated
into a variety of scenarios. Many reporting needs will never expand beyond the out - of - the - box
functionality provided by Reporting Services. However, if the requirement arises, Reporting
Services includes endless opportunities for integration with custom - built applications. The next
chapter will explore integrating Reporting Services into a SharePoint environment. However, there
are also organizations that maintain a custom corporate reporting portal. In these situations,
developers might need a way to display numerous reports in a Web environment. Reporting
Services can also be embedded into any of the lines of business applications. Developers might
want to use Reporting Services to create invoices or purchase orders directly from their
applications. Some organizations may decide that the default Report Manager is not robust
enough for their needs. In this situation, a custom reporting management application can be built
that completely replaces and expands on the functionality of the out - of - the - box Report Manager.

 All these issues can be solved with the features available in Reporting Services. In this chapter, you
will take a look at the following three methods of rendering reports from Reporting Services:

 Using URLs to access reports

 Using the Reporting Services Web service to programmatically render reports

 Using the MicrosoftReportViewer controls to embed reports

 URL access allows you to quickly incorporate Reporting Services reports in applications such as
web portals. Programmatic rendering allows for creating custom interfaces. Developers can do
anything from implementing their own security architecture around Reporting Services to creating
their own parameter interface.

❑

❑

❑

c15.indd 541c15.indd 541 11/13/08 4:55:37 PM11/13/08 4:55:37 PM

Part VI: Reporting Services Integration and Custom Programming

542

 In this chapter, you learn about:

 The syntax and structure for accessing Reporting Services through the URL

 The reporting items that can be accessed through the URL

 The parameter options that can be passed to the URL to control report output

 Creating a Windows application that renders reports to the filesystem

 Creating a web application that returns rendered reports to the browser

 Easily embedding reports in a Windows application using controls

 URL Access
 Reporting Services ’ main means for accessing reports is through HTTP requests. These requests can be
made through URLs in a web browser or a custom application. By passing parameters in the URL, you
can specify the report item, set the output format, and perform various other tasks. In the next few
sections, you will look at the features available through URL requests, URL syntax, passing parameters,
and setting the output format.

 URL Syntax
 The basic URL syntax is as follows:

 http://server/virtualroot?[/pathinfo] & [prefix:]param=value[& [prefix:]param=value] . . . n]
The parameters in the syntax are as follows:

 server — Specifies the instance of Report Server you would like to access. To access your local
machine, you can either type the machine name or use the localhost alias.

 virtualroot — Specifies the IIS virtual directory you specified during the setup. When
installing Reporting Services, you must enter two virtual directories: one for the Report
Manager and one for the Reporting Services Web service. By default, the virtual directory you
would access is reportserver.

 pathinfo — After specifying the server and virtual directory to the Reporting Services Web
service, you can pass several parameters to access report objects. The first parameter you pass is
 pathinfo , which specifies the path to the resource you want to access. To access the root of the
Report Server, you can simply place a single forward slash (/).

 Once you have listed the path, you can pass various parameters. These parameters will depend on the
type of object you are referencing. Reports will have a number of parameters to specify properties such

❑

❑

❑

❑

❑

❑

❑

❑

❑

c15.indd 542c15.indd 542 11/13/08 4:55:38 PM11/13/08 4:55:38 PM

Chapter 15: Integrating Reports into Custom Applications

543

as the rendering format. Each parameter is separated by an ampersand (&) and contains a name=value
pair for the parameter.

 Here is a quick look at retrieving the list of items under the Professional SQL Reporting Services folder:

 Note that in the examples throughout this chapter, the text should not contain a carriage return.
This was added only for printing.

http://localhost/reportserver?%2fProfessional+SQL+Reporting+Services
 & rs:Command=ListChildren

 Now that you ’ ve taken a look at the basic URL syntax, let ’ s see how it is implemented in each of the
Reporting Services objects.

 Accessing Reporting Services Objects
 URL requests are not limited to just reports. You can access various Reporting Services items, including:

 Folders

 Data sources

 Resources

 Reports

 In this section, you will look at accessing each of the items listed above. You will go through sample
URLs and look at items provided in the Adventure Works SQL Server 2008 Sample Databases and
Reports.

 The Adventure Works SQL Server 2008 Sample Databases and Reports can be downloaded at the
following URL: www.codeplex.com/SqlServerSamples .

 Folders
 Accessing folders will be your starting point for looking at URL requests. Let ’ s take a look at the simplest
URL request you can make:

http://localhost/reports

 That URL is redirected to the default Home page in Report Manager. With this request, you can see a
listing of all reports, data sources, resources, and folders in the root directory of the Report Server, as
shown in Figure 15 - 1 . To access another server, simply replace localhost with the name of the server.

❑

❑

❑

❑

c15.indd 543c15.indd 543 11/13/08 4:55:38 PM11/13/08 4:55:38 PM

Part VI: Reporting Services Integration and Custom Programming

544

 To see how other folder URL requests work, simply enter in the URL of the Report Server:

http://localhost/reportserver

 A list of directories hosted by the Report Server is displayed. Clicking on the AdventureWorks 2008
Sample Reports link will give you the following URL, as shown in Figure 15 - 2 :

http://localhost/reportserver?%2fAdventureWorks+2008+Sample+Reports
 & rs:Command=ListChildren

Figure 15-1

c15.indd 544c15.indd 544 11/13/08 4:55:38 PM11/13/08 4:55:38 PM

Chapter 15: Integrating Reports into Custom Applications

545

 This URL contains the following items:

 Path to the Report — %2fAdventureWorks+2008+Sample+Reports

 Command to List the Contents of the Directory — rs:Command=ListChildren

 You ’ ll take a closer look at the URL parameters in the “ Reporting Services URL Parameters ” section
below in this chapter.

 Data Sources
 Through URL requests, you can also view the contents of data sources. Let ’ s take a look at the Data
Sources folder. The Data Sources folder can be accessed by either clicking the Data Sources folder from
the root folder or entering the following URL:

http://localhost/reportserver?%2fData+Sources & rs:Command=ListChildren

❑

❑

Figure 15-2

c15.indd 545c15.indd 545 11/13/08 4:55:39 PM11/13/08 4:55:39 PM

Part VI: Reporting Services Integration and Custom Programming

546

 If you have deployed the sample reports, you will notice that one of the items listed is
AdventureWorks2008. You can tell that this item is a data source by the < ds > tag next to the item name.
If you follow the AdventureWorks2008 link, you will be able to view the contents of that data source.
Figure 15 - 4 shows the AdventureWorks2008 data source contents.

Figure 15-3

 You ’ ll see the listing of items, as shown in Figure 15 - 3 .

c15.indd 546c15.indd 546 11/13/08 4:55:39 PM11/13/08 4:55:39 PM

Chapter 15: Integrating Reports into Custom Applications

547

 Let ’ s take a look at the URL used to view the AdventureWorks2008 data source:

http://localhost/reportserver?%2fData+Sources%2fAdventureWorks2008
 & rs:Command=GetDataSourceContents

 This URL contains the following items:

 Path to the Data Source — %2fData+Sources%2fAdventureWorks2008

 Command to View the Data Source Content — rs:Command=GetDataSourceContents

 Viewing the data source enables you to quickly see how your data source is configured. Notice that this
information is returned in XML format. This allows you to easily work with the data source information.
If you have your own reporting application that shares a single connection, you could use this URL to
dynamically load this data source information. This information could then be used to make other
database connections in your application.

❑

❑

Figure 15-4

c15.indd 547c15.indd 547 11/13/08 4:55:40 PM11/13/08 4:55:40 PM

Part VI: Reporting Services Integration and Custom Programming

548

 Resources
 Resources are items that you use in your reports, such as images or additional resources that have been
added to a Report Server folder, such as Word and Excel documents. You can use URLs to access
resources stored on the Report Server. Depending on the type of resources you reference, either you will
be prompted to open or save a file, such as a Word or Excel document, or the resource will be rendered
directly in the browser. The GetResourceContents command can be used in the URL to reference the
resource. For example, if an image is stored in a directory called Images , the URL to the directory and the
command GetResourceContents can be used to reference that resource, as follows:

http://localhost/Reportserver?%2fImages%2fMyImage.jpg & rs:Command=GetResourceContents

 The URL contains the following contents:

 Path to the Resource — %2fImages%2fMyImage.jpg

 Command to Retrieve the Resource Content — rs:Command=GetResourceContents

 You can use this information in other applications. If you want to reference the image from a web page,
you could simply set the src attribute of an image tag (< img >) to reference the earlier URL.

 Resources can also be incredibly handy for storing documents. In your reporting solution, you might
want to store readme files to accompany your reports. You can store these documents as resources on the
Report Server and then apply different properties to them, such as security. Your application could then
point to the resource URL to allow downloading of the document.

 Reports
 The most important objects you can access through the URL are your reports. This section provides a
quick look at the syntax for accessing reports. Below we ’ ll discuss the various parameters you can pass
to change things such as report parameters, output formats, and other items.

 The basic syntax for accessing a report is very similar to accessing all of your other resources. You should
first specify a path to the report and then provide the commands for its output. Let ’ s look at the basic
URL for accessing the Company Sales report:

http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fAdventureWorks+2008
+Sample+Reports%2fCompany+Sales+2008 & rs:Command=Render

 View the Company Sales report, as shown in Figure 15 - 5 .

❑

❑

c15.indd 548c15.indd 548 11/13/08 4:55:40 PM11/13/08 4:55:40 PM

Chapter 15: Integrating Reports into Custom Applications

549

 The URL contains the following contents:

 Path to the Resource — %2fAdventureWorks+2008+Sample+Reports%2fCompany+Sales+2008

 Command to Retrieve the Resource Content — rs:Command=Render

 Using URLs is the easiest and most convenient way to embed Reporting Services reports into custom
applications. A custom application can simply point to the desired report by either creating a simple
hyperlink or by using an HTML rendering object such as the WebBrowser class to render the report
within a Windows Forms application. A special Windows Forms control designed for viewing reports
will also be covered in the Programmatic Rendering section below in this chapter.

 The following section looks at the parameters that can be passed through the URL, including setting
report parameters and output format.

 Reporting Services URL Parameters
 Now that you have seen the basics of obtaining items from your Report Server using URLs, let ’ s take a
look at passing some parameters. The next few sections will move through how parameters are passed
to Reporting Services and what values for these parameters are available. The majority of the parameter
functionality will be focused on report rendering, but some items will also apply to your data source,
resources, and folder.

❑

❑

Figure 15-5

c15.indd 549c15.indd 549 11/13/08 4:55:40 PM11/13/08 4:55:40 PM

Part VI: Reporting Services Integration and Custom Programming

550

 Parameter Prefixes
 The first thing you need to take a look at is the different parameter prefixes in Reporting Services. There
are five main parameter prefixes in Reporting Services: rs , rc , rv , dsp , and dsu . The following sections
look at these prefixes in detail.

rs Prefix
 In the earlier examples, you saw the parameter rs:Command . This parameter contains the prefix rs . The
 rs prefix is used to send commands to the Report Server. The following URL shows an example of
the rs prefix being used to call the Command parameter and pass the ListChildren argument to it:

http://localhost/reportserver?%2fAdventureWorks+2008+Sample+Reports
 & rs:Command=ListChildren

 rc Prefix
 The second main parameter prefix in Reporting Services is the rc prefix. This prefix is used to interact
with the given report output format. For example, if you are outputting your report as HTML, you can
control the HTML viewer. You can use this prefix to pass parameters that do things such as hide toolbars
or control the initial state of toggle items. The following URL calls the Employee Sales Summary report
and turns off the parameter inputs:

http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fAdventureWorks+2008
+Sample+Reports%2fEmployee+Sales+Summary+2008 & rs:Command=Render & rc:Parameters=False

 rv Prefix
 The rv prefix is new and is used to pass parameters to reports that are stored in a SharePoint document
library. In a SharePoint document library, a SharePoint Report Viewer Web Part is used to display a
report, and thus the rv prefix should be used for these reports.

 dsu and dsp Prefixes
 Parameter prefixes can also be used to send database credentials. Use the dsu prefix to pass the data source
username, and use the dsp prefix to pass the data source password. In any Reporting Services report, you
could incorporate multiple data sources. So, you need a way to specify which data source the credentials
should be passed to. That ’ s where the prefixes come in. The full syntax to use these prefixes is as follows:

[dsu | dsp]:datasourcename=value

 For example, to pass the username guest with a password guestPass to your AdventureWorks2008 data
source, you would use the following URL parameters:

 & dsu:AdventureWorks2008=guest & dsp:AdventureWorks2008=guestPass

 Be aware that these credentials will be passed unencrypted over the Internet and will be visible to the
end - user. You can encrypt the URL using the Secure Sockets Layer (SSL) on your web server. This will

c15.indd 550c15.indd 550 11/13/08 4:55:41 PM11/13/08 4:55:41 PM

Chapter 15: Integrating Reports into Custom Applications

551

prevent the information from being sent unencrypted but will not prevent the end - user from viewing the
credentials that you pass. Make sure that you consider these factors in your reporting solution
architecture.

 Now that you have seen the different parameter prefixes in Reporting Services, we ’ ll move on to the
available parameters that can be used with the rv , rs , and rc prefixes.

 Parameters
 First, let ’ s take a look at the new SharePoint endpoint parameter that can be used with reports that are
hosted in a SharePoint Integrated mode Report Server configuration. The next chapter will go into detail
about SharePoint integration, but for now, let ’ s look at the parameters that can be used with the rv
prefix. The following table lists the four available values and their uses:

 Parameter Use

 Toolbar The Toolbar parameter is used to modify the toolbar display of the
SharePoint Report Viewer Web Part. The default value is Full , but a value of
 Navigation and None can also be passed to the Web Part. The Full value
displays the entire toolbar. The Navigation value displays only the page
navigation in the toolbar. And finally, the None value removes the toolbar
entirely.

 HeaderArea The HeaderArea parameter is used to modify the header area of the
SharePoint Report Viewer Web Part. The default value is Full , but a value of
 BreadCrumbsOnly and None can also be passed to the Web Part. The Full
value displays the complete header. The BreadCrumbsOnly value bread -
 crumbs in the header. A value of None removes the header from view entirely.

 DocMapAreaWidth The DocMapAreaWidth parameter is used to display the width of the
parameter area of the SharePoint Report Viewer Web Part. The value should
be a non - negative number and defined in pixels.

 AsyncRender The AsyncRender parameter is used to inform the SharePoint Report Viewer
Web Part to either render the report asynchronously or not. The value must
be a Boolean value of True or False , with True meaning that the report will
render asynchronously. If this parameter is not specified, the default value of
 True is used.

c15.indd 551c15.indd 551 11/13/08 4:55:41 PM11/13/08 4:55:41 PM

Part VI: Reporting Services Integration and Custom Programming

552

 Now that you have seen the different rv parameters, let ’ s take a look at the rs parameters. The following
table lists the four available values and their uses:

 Parameter Use

 Command The Command parameter is used to send instructions to the Report Server
about the item being retrieved. Available values return the report item and
set session time - out values.

 Format The Format parameter is used when rendering reports. Any rendering
formats available on the Report Server can be passed using this parameter.

 ParameterLanguage The ParameterLanguage parameter is used to pass a language in the
URL that is different from the language specified in the browser. If this
parameter is not specified, then the default is to use the cultural value of
the browser.

 Snapshot The Snapshot parameter is used to retrieve historical report snapshots.
Once a report has been stored in snapshot history, it is assigned a time/
date stamp to uniquely identify that report. Passing this time/date stamp
will return the appropriate report.

 Now that you have seen the different rs parameters, let ’ s take a look at some of their available values.

Command Parameter
 The Command parameter is your main parameter for setting the output of a given report item. It can also
be used for resetting a user ’ s session information, which guarantees that a report is not rendered from
the session cache. Here is a listing of the possible values that can be passed to the Command parameter:

 Value Use

 GetDataSourceContents The GetDataSourceContents command can be used to return data
source information in an XML format. You can use this parameter on
shared data sources.

 GetResourceContents This command returns the binary of your Reporting Services
resources, such as images, via the URL.

 ListChildren Used in combination with a Reporting Services folder. This lets you
view all the items in a given folder.

 Render Allows you to render the report using the URL. Probably the most
frequently used command.

 ResetSessionTimeout Can be used to refresh a user ’ s session cache. Because Reporting
Services works typically via HTTP, it is crucial for the server to
maintain state information about the user. However, if you want to
ensure that a report is executed each time the user views a report, this
state information needs to be refreshed. Use this parameter to reset
the user ’ s session and remove any session cache information.

c15.indd 552c15.indd 552 11/13/08 4:55:41 PM11/13/08 4:55:41 PM

Chapter 15: Integrating Reports into Custom Applications

553

 Format Parameter
 The Format parameter is the main parameter for controlling the report output. The available values for
this parameter are determined by the different rendering extensions available on your Report Server. The
following table shows the output formats available with the default installation of Reporting Services:

 Value Output

 Web Formats

 HTML3.2 HTML version 3.2 output. Used for older browsers.

 HTML4.0 HTML version 4.0. This format is supported by newer browsers, such as
Internet Explorer 4.0 and above.

 MHTML MHTML standard output. This output format is used for sending HTML
documents in e - mail. Using this format will embed all resources, such as
images, into the MHTML document instead of referencing external URLs.

 Print Formats

 IMAGE The IMAGE format allows you to render your reports to several different
graphical device interfaces (GDI) such as BMP, PNG, GIF, or TIFF.

 PDF The Portable Document Format (PDF) can be used for viewing and printing
documents.

 Data Formats

 WORD Word output. Users can use this format to output a report into a standard
Microsoft Word document format.

 EXCEL Excel output. Users can use this format to further manipulate report data.

 CSV Comma Separated Value (CSV) format. CSV is a standard data format and can
be read by a wide variety of applications.

 XML Extensible Markup Language (XML) format. XML has become a standard
data format, used by many different applications.

 Control Format

 NULL The NULL provider allows you to execute reports without rendering. This can
be very useful when working with reports that have cached instances. You
can use the NULL format to execute the report for the first time and then store
the cached instance.

 When you set the rendering formats via the URL, the report will either be rendered directly in the
browser or you will be prompted to save the output file. Let ’ s take a look at rendering the Company
Sales 2008 report in PDF format. Enter the following URL using the rs:Format=PDF parameter:

http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fAdventureWorks+2008+Sample
 +Reports%2fCompany+Sales+2008 & rs:Command=Render & rs:Format=PDF

 Figure 15 - 6 shows the output.

c15.indd 553c15.indd 553 11/13/08 4:55:41 PM11/13/08 4:55:41 PM

Part VI: Reporting Services Integration and Custom Programming

554

 Notice that the browser will now prompt you to save the rendered report. This can be easily
incorporated into your own custom applications or portals. You can simply give your users a link
containing the rs:Format parameter and automatically output the correct format.

Setting Device Information
 Now that you have seen the various output formats available in Reporting Services, you need to take a
look at the different device information settings for the various formats. The Format parameter enables
you to specify the type of format you want, but each format has specific settings that can be useful
to you. For example, if you specify the IMAGE format, you get an output in TIFF. What if you wanted a
bitmap or JPEG image? Well, to output in a different image format, all you need to do is to just specify
device information when passing the URL. Take a look at outputting your Company Sales 2008 report in
JPEG format using the following URL (Figure 15 - 7 shows the output):

http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fAdventureWorks+2008
 +Sample+Reports%2fCompany+Sales+2008 & rs:Command=Render & rs:Format=IMAGE
 & rc:OutputFormat=JPEG

Figure 15-6

c15.indd 554c15.indd 554 11/13/08 4:55:42 PM11/13/08 4:55:42 PM

Chapter 15: Integrating Reports into Custom Applications

555

 Notice that the file type sent back to you is a JPEG image. There are numerous device information
settings you can use for each of the rendering extensions. Each device information setting is prefixed
using the rc prefix. The following syntax can be used for passing device information:

http://server/virtualroot?/pathinfo & rs:Format=format & rc:param=value[& rc:param=value...n]

 Now that you have seen the different output formats and commands you can pass to Reporting Services,
let ’ s take a look at passing information to your individual reports.

 Passing Report Information through the URL
 The previous sections illustrated how a URL can be used to control report rendering. In the next section,
you look at how a URL can be used to control report execution. This section starts with an explanation of
passing report parameters. These are the parameters that you define while authoring your report.
Finally, you ’ ll see how historical snapshots can be rendered using the URL.

 Report Parameters
 Many of your reports have parameters to control all kinds of behavior. You can use parameters to alter
your query, filter datasets and tables, and even change the appearance of your reports. Reporting
Services allows you to pass this information directly via a URL request. In the above section, you saw a
lot about the parameter prefixes and the available values that can be sent to Reporting Services. With
report parameters, you simply need to remove the prefix and directly call the parameter name.

Figure 15-7

c15.indd 555c15.indd 555 11/13/08 4:55:42 PM11/13/08 4:55:42 PM

Part VI: Reporting Services Integration and Custom Programming

556

 In this example, the Employee Sales Summary 2008 report accepts three parameters: EmployeeID ,
 ReportMonth , and ReportYear . You might want to allow your users to update these parameters
through a custom interface you define. When you call the report, you will need to provide the parameter
values in the URL, as shown here:

http://localhost/ReportServer/Pages/ReportViewer.aspx?%2fAdventureWorks+2008
 +Sample+Reports%2fEmployee+Sales+Summary+2008 & rs%3aCommand=Render & EmployeeID=284
 & ReportMonth=12 & ReportYear=2003

 Note that the values come from the AdventureWorks2008 database. You can see a list
of all of the employees and their IDs by using the following SQL command:

SELECT BusinessEntityID, FirstName, LastName
FROM Person.Person
ORDER BY LastName ASC

 Let ’ s take a look at calling the report with an EmployeeID of 283, which is David Campbell (see Figure 15 - 8).

Figure 15-8

 Notice that by passing the parameters in your URL, the HTML viewer updates to reflect the values. The
parameter name that you use in the URL is defined in the report definition. Since your Report Parameter
is called EmployeeID , that name is used in your URL.

c15.indd 556c15.indd 556 11/13/08 4:55:42 PM11/13/08 4:55:42 PM

Chapter 15: Integrating Reports into Custom Applications

557

 Now that you have seen how to pass report parameters to the URL, let ’ s look at passing snapshot IDs to
render historical execution snapshots.

 Rendering Snapshot History
 One of the major features of Reporting Services is the ability to create execution snapshots of reports. Say
you have a report in which the data updates on a monthly basis. Once the data is updated, it does not
change for another month. A perfect example of this would be monthly financial statements. If your data
changes only once a month, there is no reason to query your database every time you need a report.
Therefore, you can use execution snapshots to store this information after the query has been executed.
Going along the same lines as a monthly report, what should happen when your data updates from, say,
January to February? You don ’ t want to lose the January snapshot once the February information is
available. That is where historical snapshots come into play. When you create the February snapshot,
you add January to the snapshot history, and so on for each subsequent month.

 Now that you have execution snapshots stored in history, you need some way to access them. Reporting
Services gives you a very easy way to do this. As you have already seen, each report has a report path
that can be used to render the report. To render a historical snapshot, you simply need to add a
parameter for the historical snapshot ID.

 The syntax to pass your snapshot ID is as follows:

http://server/virtualroot?[/pathinfo] & rs:Snapshot=snapshotid

 The snapshot ID for your historical snapshot will be the time and date stamp of when the report was added
to the history. The time is adjusted to GMT based on the time zone where the historical snapshot was added.

 URL Rendering Summary
 Through URL rendering, you have seen the various commands that can be passed to Reporting Services
that can be used to control the report item display, the format to use, and snapshot information using the
 rs prefix. Once you have created your commands for the Report Server, you can pass parameters
specific to the output format. Using the rc prefix and the device information parameters, you can specify
things such as encoding and which items to display in the HTML viewer. After you have specified the
report item, you need to know how to output it. You can pass parameters to your report by simply
passing the parameter name and value combination.

 The next section takes a look at the second part of rendering Reporting Service reports. You can use
URLs for simple web applications and web portals, but sometimes you need finer control over report
access and rendering. To achieve this, you ’ ll use the Reporting Service Web service to programmatically
render your reports.

 Programmatic Rendering
 There are several ways that reports may be integrated into custom Windows Forms and web
applications. These include:

 Link to a report in web browser window using a URL rendering request.

 Replace web page content with a report by using SOAP rendering to write binary content to the
web Response object.

❑

❑

c15.indd 557c15.indd 557 11/13/08 4:55:43 PM11/13/08 4:55:43 PM

Part VI: Reporting Services Integration and Custom Programming

558

 Use SOAP rendering to write report content to a file.

 Embed a report in an area of a web page by setting the source of a frame or IFrame tag.

 Use the Microsoft ReportViewer control in a Windows Forms or Web Forms application.

 Rendering using a URL is very handy and easy to implement in many situations, but it does have its
limitations. When rendering from the URL, you have to make sure that you use the security infrastructure
provided with Reporting Services. For some applications, such as public web sites, you might want to
implement your own security. In that case, rendering from the URL will not provide the functionality you
need. In this section, you will take a look at rendering reports using the Reporting Services Web service.

 You ’ ll connect to the Reporting Services Web service, return a list of available reports, retrieve their
parameters, and finally render the report. Let ’ s take a look at three implementations of programmatic
rendering. The first implementation is using a Window Forms application to render reports to a file. This
will help you to understand the basic principles without a lot of interface work. The second
implementation will take you through rendering through an ASP.NET page. You ’ ll see some of the items
that need to be considered when working through a web application. Last, you ’ ll read about how the
 MicrosoftReportViewer control can embed reports in a Windows Forms application for viewing.

 Common Scenarios
 Before you look at the actual programming code for rendering reports, it is important to understand a
couple of scenarios in which it is reasonable to do so. There are two scenarios that are commonly
experienced while working with clients. They do not represent the only scenarios in which you would
write your own rendering code, but do illustrate how and when custom code can be used. Let ’ s look at
each of these scenarios.

 Custom Security
 One of the biggest questions around Reporting Services involves how to use Reporting Services without
using the standard security infrastructure. Reporting Services requires you to connect to reports using a
Windows identity. In many organizations, this is just not possible. They have mixed environments or
nontrusted domains that do not allow for identification to the Report Server. Some clients also have
large - scale authentication and authorization infrastructures already implemented.

 You can still use Reporting Services in these situations. Using your own security infrastructure involves
creating both authentication and authorization code in your environment. After you have determined
that a user can access a report, a Windows identity that you define can be used to connect to reports.
To hide this security implementation, the Reporting Services Web service can be used. You can render
reports directly to a browser or file without passing the original user identity to the Report Server.

 Server - Side Parameters
 Although URL rendering is by far the easiest way to incorporate Reporting Services in your applications,
it does have some limitations. When you send information via a URL, it is very easy for a user to change
that URL or see what it is that you pass.

 By using the Reporting Services Web service, you can easily hide the details of how you retrieve report
information. Parameters are passed through your code instead of the URL. This gives you complete

❑

❑

❑

c15.indd 558c15.indd 558 11/13/08 4:55:43 PM11/13/08 4:55:43 PM

Chapter 15: Integrating Reports into Custom Applications

559

control over how that information is retrieved without exposing it to the users. Let ’ s take a look at your
first rendering application.

 Rendering through Windows
 This section looks at the mechanics of rendering using the Reporting Services Web service. You are going
to build a simple Windows application that returns a list of reports from the Report Server. Once you
have the list of reports, you ’ ll use the Web service to return a list of report parameters. After entering any
report parameters, you ’ ll render the report to a file. These steps will illustrate the main components of
rendering through program code.

 Building the Application Interface
 To start, you need to build your application interface. Let ’ s start by building a simple Windows form. For
this example, I ’ ve added labels, textboxes, and buttons for basic functionality. Figure 15 - 9 shows the
design view of the form.

Figure 15-9

 This form will allow you to query a given Report Server to return a list of reports. Once it has returned
the reports, you can use it to access a list of parameters for the reports. Finally, you ’ ll need to render the
report to a given folder location.

c15.indd 559c15.indd 559 11/13/08 4:55:43 PM11/13/08 4:55:43 PM

Part VI: Reporting Services Integration and Custom Programming

560

 Setting up the Web Services
 Before you can get into rendering reports, you need to set up a reference to the Reporting Services and
Report Execution Web services. Once you have created your web references, you can start to develop the
application. The next few figures show you how to create references to the Web services. Start by adding
the web references to your project.

 Open the Solution Explorer, right - click on the References folder, and then click on the “ Add Service
Reference ” menu item, as shown in Figure 15 - 10 . In the bottom - left corner, click on the Advanced button
to open the Service Reference Settings dialog box, as shown in Figure 15 - 11 . Click on the “ Add Web
Reference ” button on the bottom left to open the Add Web Reference dialog.

Figure 15-10

Figure 15-11

c15.indd 560c15.indd 560 11/13/08 4:55:44 PM11/13/08 4:55:44 PM

Chapter 15: Integrating Reports into Custom Applications

561

 In the Add Web Reference dialog, enter the location of Web service in the URL dialog. This URL will
depend on the Report Server name and the installed location of the Report Server virtual directory.
By default, the Report Server virtual directory is located under the root as “ /reportserver. ” For the
default virtual directory on a local machine, enter the following URL:

http://localhost/reportserver/reportservice2005.asmx

 If the Report Server is running in SharePoint Integrated mode, the reportservice2006.asmx Web
service should be used.

 Once you have entered the URL, hit [Enter] to view a description of the Web service. Enter a name for
the new web reference, and click Add Reference. This example uses the name RSService . The dialog
should look like Figure 15 - 12 when filled in.

Figure 15-12

 Now add the Report Execution Web service by following the same procedure but using a URL similar to
the following:

http://localhost/reportserver/reportexecution2005.asmx

 In the example, this service is named REService .

 Now that you have referenced the Web services, you are ready to start writing your code. The first thing
you can do is add a using (C#) or Imports (VB) statement to your code. The first part of the using
statement will be the application name followed by the web reference name. In the example, the project
is called Reporting_Service_Rendering for the C# project and Reporting_Service_Rendering_VB for the Visual
Basic project.

c15.indd 561c15.indd 561 11/13/08 4:55:44 PM11/13/08 4:55:44 PM

Part VI: Reporting Services Integration and Custom Programming

562

 C #
using System;
using System.Collections;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.IO;
using System.Web.Services.Protocols;
using Reporting_Service_Rendering.RSService;
using Reporting_Service_Rendering.REService;

 VB
Imports Reporting_Service_Rendering_VB.RSService
Imports Reporting_Service_Rendering_VB.REService

 After you have added the using or Imports statement, you need to create an instance of the
 ReportingService2005 and ReportExecutionService objects. These are the main objects that will
be used to retrieve a list of reports and their associated parameters and then render the report. At the top
of the Windows Forms class code, create the declarations shown in the following sections. The class
declaration is included for clarity.

 C #
public partial class Form1 : Form
{
 private ReportingService2005 _rs = new ReportingService2005();
 private ReportExecutionService _rsExec = new ReportExecutionService();

 VB
Public Class Form1
 Private _rs As New ReportingService2005
 Private _rsExec As New ReportExecutionService

 Next, you need to set the security credentials that will be used by these objects. In your code, pass the
credentials of the currently logged - on user. If you already have your own custom authentication and
authorization method in place, you could pass a system identification that you define instead of the
current user.

 Open the Form Load event in the Windows Form. This is a suitable place for setting the credentials.
Inside this event, set the ReportingService2005 and ReportExecutionService object ’ s
 Credentials property to System.Net.CredentialCache.DefaultCredentials . This will give
the Web services the credentials of the currently logged - on user.

c15.indd 562c15.indd 562 11/13/08 4:55:45 PM11/13/08 4:55:45 PM

Chapter 15: Integrating Reports into Custom Applications

563

 C #
_rs.Credentials = System.Net.CredentialCache.DefaultCredentials; _rsExec.
Credentials = System.Net.CredentialCache.DefaultCredentials;

 VB
_rs.Credentials = System.Net.CredentialCache.DefaultCredentials _rsExec.Credentials
= System.Net.CredentialCache.DefaultCredentials

 The final piece you need to add to the Form Load event is the code to populate your dropdown list. This
code will add all the format names to the list along with appropriate extensions for each. Begin by
creating a small class that helps you populate the dropdown:

 C #
/* Helper class for format extensions. */
private class Format
{
 private string _name;
 private string _extension;

 public Format(string name, string extension)
 {
 _name = name;
 _extension = extension;
 }

 public string Name
 {
 get{return _name;}
 }

 public string Extension
 {
 get{return _extension;}
 }
}

 VB
‘ Helper class for format extensions.
Private Class Format
 Private _name As String
 Private _extension As String

 Public Sub New(ByVal name As String, ByVal extension As String)
 _name = name
 extension = extension
 End Sub

 Public ReadOnly Property Name() As String

(continued)

c15.indd 563c15.indd 563 11/13/08 4:55:45 PM11/13/08 4:55:45 PM

Part VI: Reporting Services Integration and Custom Programming

564

 Get
 Return _name
 End Get
 End Property

 Public ReadOnly Property Extension() As String
 Get
 Return _extension
 End Get
 End Property
End Class

 With these classes, you can finish off your Form Load event code. Add the few last lines of code to
populate your format combo box:

 C #
private void Form1_Load(object sender, EventArgs e)
{
 _rs.Credentials = System.Net.CredentialCache.DefaultCredentials;

 //load the format values
 Format[] formats = new Format[8];
 formats[0] = new Format(“Excel”, “.xls”);
 formats[1] = new Format(“WORD”, “.docx”);
 formats[2] = new Format(“HTML3.2”, “.html”);
 formats[3] = new Format(“HTML4.0”, “.html”);
 formats[4] = new Format(“XML”, “.xml”);
 formats[5] = new Format(“CSV”, “.csv”);
 formats[6] = new Format(“PDF”, “.pdf”);
 formats[7] = new Format(“IMAGE”, “.tif”);

 cboFormat.DataSource = formats;
 cboFormat.DisplayMember = “Name”;
 cboFormat.ValueMember = “Name”;
}

 VB
Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 _rs.Credentials = System.Net.CredentialCache.DefaultCredentials

 ‘load the format values
 Dim formats(7) As Format
 formats(0) = New Format(“Excel”, “.xlsx”)
 formats(1) = New Format(“Word”, “.docx”)
 formats(2) = New Format(“HTML3.2”, “.html”)
 formats(3) = New Format(“HTML4.0”, “.html”)
 formats(4) = New Format(“XML”, “.xml”)
 formats(5) = New Format(“CSV”, “.csv”)

(continued)

c15.indd 564c15.indd 564 11/13/08 4:55:45 PM11/13/08 4:55:45 PM

Chapter 15: Integrating Reports into Custom Applications

565

 formats(6) = New Format(“PDF”, “.pdf”)
 formats(7) = New Format(“IMAGE”, “.tif”)

 cboFormat.DataSource = formats
 cboFormat.DisplayMember = “Name”
 cboFormat.ValueMember = “Name”

End Sub

 You have now created an instance of the ReportingService2005 object, passed the logged - on user ’ s
credentials to it, and populated the format dropdown list. The next section looks at connecting to the
Report Server and retrieving a list of available reports.

 Retrieving Report Information
 Now that you have set up the Reporting Services Web service, you need to retrieve your list of reports.
To do this, specify the Report Server that you want to query, and then call the ListChildren method of
the ReportingService2005 object. ListChildren returns a list of all items, including data sources,
resources, and reports. Once you have retrieved the list, you will need to pull out only report items.
Finally, you will add the report items to the dropdown.

 Let ’ s start by setting the URL to your Report Server. Open the click event of the Get Items button to start
your code. Remember that _rs is your reference to the Web service.

 C #
_rs.Url = txtServer.Text + “/ReportService2005.asmx”;

 VB
_rs.Url = txtServer.Text + “/ReportService2005.asmx”

 The preceding code uses the server location specified in the Server Address textbox concatenated with
the reference to the Reporting Services Web service.

 Once the URL for the Web service is set, you can get the list of reports. Create an array of CatalogItem
objects, and then call the ListChildren method. This method takes two parameters: the folder path on
the Report Server and a Boolean value indicating whether to recurse through the directory.

 C #
CatalogItem[] items;
items = _rs.ListChildren(“/”, true);

 VB
Dim items() As CatalogItem
items = _rs.ListChildren(“/”, True)

c15.indd 565c15.indd 565 11/13/08 4:55:45 PM11/13/08 4:55:45 PM

Part VI: Reporting Services Integration and Custom Programming

566

 The last step is to loop through the returned list of items and add them to a dropdown list. Similarly to
how the formats were loaded, create a class to help data - bind the report items. Let ’ s take a look at the
code for this class:

 C #
private class ReportItem
{
 private string _name;
 private string _path;

 public ReportItem(string name, string path)
 {
 _name = name;
 _path = path;
 }

 public string Name
 {
 get{return _name;}
 }

 public string Path
 {
 get{return _path;}
 }
}

 VB
Private Class ReportItem
 Private _name As String
 Private _path As String

 Public Sub New(ByVal name As String, ByVal path As String)
 _name = name
 _path = path
 End Sub

 Public ReadOnly Property Name() As String
 Get
 Return _name
 End Get
 End Property

 Public ReadOnly Property Path() As String
 Get
 Return _path
 End Get
 End Property
End Class

c15.indd 566c15.indd 566 11/13/08 4:55:46 PM11/13/08 4:55:46 PM

Chapter 15: Integrating Reports into Custom Applications

567

 Using the ReportItem class just created, you can now add the report catalog items to the combo box.
The following code is for the GetItems button click event, including populating the report dropdown:

 C #
private void btnGetItems_Click(object sender, EventArgs e)
{
 // Set the path to the report server.
 _rs.Url = txtServer.Text + “/ReportService2005.asmx”;

 // Return a list of items from the report server.
 CatalogItem[] items;
 items = _rs.ListChildren(“/”, true);

 //populate your report combo box
 cboReports.Items.Clear();
 foreach(CatalogItem item in items)
 {
 if(item.Type == ItemTypeEnum.Report)
 {
 cboReports.Items.Add(new ReportItem(item.Name, item.Path));
 }
 }

 cboReports.DisplayMember = “Name”;
 cboReports.ValueMember = “Path”;

}

 VB
Private Sub btnGetItems_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click

 ‘return a list of items from the report server
 _rs.Url = txtServer.Text + “/ReportService2005.asmx”

 ‘return a list of items from the report server
 Dim items() As CatalogItem
 items = _rs.ListChildren(“/”, True)

 ‘populate your report combo box
 cboReports.Items.Clear()
 Dim item As CatalogItem
 For Each item In items
 If item.Type = ItemTypeEnum.Report Then
 cboReports.Items.Add(New ReportItem(item.Name, item.Path))
 End If
 Next item
 cboReports.DisplayMember = “Name”
 cboReports.ValueMember = “Path”

End Sub

c15.indd 567c15.indd 567 11/13/08 4:55:46 PM11/13/08 4:55:46 PM

Part VI: Reporting Services Integration and Custom Programming

568

 You will now be able to open your form and return a list of report items. In the next section, you will
look at retrieving the parameters for a report.

 Retrieving Report Parameters
 The next area of programmatic rendering consists of retrieving a list of parameters for your report. This
bit of code can be used in various scenarios. The parameter interface that is provided by Reporting
Services works well for simple parameters. However, it does not handle many things, like multi - select
parameters or more advanced interfaces such as calendar controls. Being able to return a list of
parameters allows you to create your own dynamic interface.

 In the following example, we will create a simple list of parameters. For each parameter, we will
dynamically add a label control and textbox to your form. This example will also include the
 GetParameters click event to run your code. The first thing you need to do is identify the report that is
selected in your report dropdown list.

 C #
ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

 VB
Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

 This creates a new ReportItem variable using the selected item of your combo box. The ReportItem
class created in the previous section contains a Name and a Path property. You can use this Path
property to retrieve your list of parameters.

 To return your list of parameters, call the GetReportParameters method of the
 ReportingService2005 object. This method has two functions. It returns a list of parameters and can
validate parameters against the available values defined when creating the report. Let ’ s take a look at the
arguments of the GetReportParameters method:

 Report — This is the path to the report you want to retrieve.

 HistoryID — This is the ID used to identify any historical snapshots of your report.

 ForRendering — This Boolean argument can be used to retrieve the parameters that were set
when the report was executed. For example, you might create a snapshot of your report or
receive it in an e - mail subscription. In both cases, the report is executed before the user views it.
By setting the ForRendering property to true , you can retrieve these values and use them in
your own custom interface.

 ParameterValues — The ParameterValues argument can be used to validate the values
assigned to a parameter. This can be useful in guaranteeing that the parameter values you pass
to your report match the parameter values accepted by the report.

 Credentials — These are the database credentials to use when validating your query - based
parameters.

 Since you are not working with historical reports or validating values, a number of the properties will
not be set. The following code can be used for calling the GetReportParameters method.

❑

❑

❑

❑

❑

c15.indd 568c15.indd 568 11/13/08 4:55:46 PM11/13/08 4:55:46 PM

Chapter 15: Integrating Reports into Custom Applications

569

 C #
ReportParameter[] parameters;
parameters = _rs.GetReportParameters(reportItem.Path, null, false, null, null);

 VB
Dim parameters() As ReportParameter
 parameters = _rs.GetReportParameters(reportItem.Path, Nothing, False, _
 Nothing, Nothing)

 The last piece of work to do is to create a user interface for your parameters. The ReportParameter
objects returned by Reporting Services contain information useful for creating a custom interface. Some
of the key properties include the parameter data type, prompt, and valid values. All of these can be used
to define your own interface. Finish your code by simply adding a label and textbox to your form for
each ReportParameter . Following is the completed GetParameter click event code:

 C #
private void btnParameters_Click(object sender, EventArgs e)
{
 // Return the list of parameters for the report item.
 ReportItem reportItem = (ReportItem)cboReports.SelectedItem;
 ReportParameter[] parameters;
 parameters = _rs.GetReportParameters(reportItem.Path, null, false, null, null);

 //add the parameters to the parameter list UI
 int left = 10;
 int top = 20;
 foreach (ReportParameter parameter in parameters)
 {
 Label label = new Label();
 TextBox textBox = new TextBox();

 label.Text = parameter.Prompt;
 label.Left = left;
 label.Top = top;

 textBox.Name = parameter.Name;
 // make sure there is a default value
 if (parameter.DefaultValues != null)
 textBox.Text = parameter.DefaultValues[0];
 textBox.Left = left + 150;
 textBox.Top = top;
 top += 25;

 grpParamInfo.Controls.Add(label);
 grpParamInfo.Controls.Add(textBox);
 }
}

c15.indd 569c15.indd 569 11/13/08 4:55:47 PM11/13/08 4:55:47 PM

Part VI: Reporting Services Integration and Custom Programming

570

 VB
Private Sub btnParameters_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles Button2.Click

 ‘return the list of parameters for the report item
 Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

 Dim parameters() As ReportParameter
 parameters = _rs.GetReportParameters(reportItem.Path, Nothing, False, _
 Nothing, Nothing)

 ‘add the parameters to the parameter list UI
 Dim left As Integer = 10
 Dim top As Integer = 20
 Dim parameter As ReportParameter
 For Each parameter In parameters
 Dim label As New Label
 Dim textBox As New TextBox
 label.Text = parameter.Prompt
 label.Left = left
 label.Top = top

 textBox.Name = parameter.Name
 ‘if there is no value then empty string, otherwise put default value
 If parameter.DefaultValues Is Nothing Then
 textBox.Text = “”
 Else
 textBox.Text = parameter.DefaultValues(0)
 End If
 textBox.Left = left + 150
 textBox.Top = top
 top += 25

 grpParamInfo.Controls.Add(label)
 grpParamInfo.Controls.Add(textBox)
 Next parameter

End Sub

 Now that you have retrieved your list of reports and built a parameter list, let ’ s take a look at outputting
the report to a file.

 Rendering a Report to a File on the Filesystem
 This section takes a look at rendering a report to a file on the filesystem. Using the
 ReportExecution2005 web service, you can retrieve a byte array that contains the final report. This
byte array can be used in a variety of ways. This example will write the byte array to a file by using the
filesystem object. Another example in a later section will write the byte array to the HTTP Response
object.

 The ReportExecution2005 web service was already set up in the previous sections, so now it can be
used to render a report to a file on the filesystem. In the btnRender_Click method, set the URL by
concatenating the server text that was entered by the user with the ReportExecution2005.asmx string.

c15.indd 570c15.indd 570 11/13/08 4:55:47 PM11/13/08 4:55:47 PM

Chapter 15: Integrating Reports into Custom Applications

571

 C #
_rsExec.Url = txtServer.Text + “/ReportExecution2005.asmx”;

 VB
_rsExec.Url = txtServer.Text + “/ReportExecution2005.asmx”

 Next, you need to set a string argument that will be used for the path of the report.

 Before you get into the rendering code, let ’ s take a look at the Render method that is contained within
the ReportExecutionService object of the ReportExecution2005 web service. The different
parameters are shown in the following table:

 Parameter Data Type Description

 Format String Output format of the report

 DeviceInfo String Information used by a specified rendering format, e.g.,
specifying the image type (GIF, JPEG) with the IMAGE
format

 Extension (out) String The file extension of the rendered report

 Encoding (out) String The encoding used for the rendering of the report

 MimeType (out) String Output returned from Reporting Services containing the
MIME type of the underlying report. Useful when
rendering a report to the Web. The MIME type can be
passed to the Response object to ensure that the browser
correctly handles the document returned.

 Warnings (out) Warning Array Output of any warning returned from Reporting Services
during report processing

 StreamIDs (out) String Array Output of the stream IDs that can be used with the
 RenderStream method

 The Render method returns an array of bytes that represents the rendered report. The array can then be
used just as any other byte array, such as writing it to a file on the filesystem or sending it over a TCP
connection.

 The parameters of the Render method are similar to the values that can be passed using URL rendering.

 Now that you have seen the basics around the Render method, let ’ s take a look at the code you need to
write for your Render button click event. The first thing you need to do in your code is to retrieve the
selected report and output format. Use the Format and ReportItem classes created earlier to retrieve
the selected items in your dropdowns.

c15.indd 571c15.indd 571 11/13/08 4:55:47 PM11/13/08 4:55:47 PM

Part VI: Reporting Services Integration and Custom Programming

572

 C #
Format format = (Format)cboFormat.SelectedItem;
ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

 VB
Dim format As Format = CType(cboFormat.SelectedItem, Format)
Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

 You need to retrieve the input parameters specified by the user. Then, you need to create a new function
that loops through the textboxes you ’ ve created earlier to retrieve their values and return an array of
 ParameterValue objects.

 C #
private REService.ParameterValue[] GetParameters()
{
 ArrayList controls = new ArrayList();

 //get the values from the parameter controls
 int len = grpParamInfo.Controls.Count;
 for (int i = 0; i < len; i++)
 {
 if (grpParamInfo.Controls[i] is TextBox)
 {
 controls.Add(grpParamInfo.Controls[i]);
 }
 }

 //add the control information to parameter info objects
 len = controls.Count;
 REService.ParameterValue[] returnValues =
 new REService.ParameterValue[len];

 for (int i = 0; i < len; i++)
 {
 returnValues[i] = new REService.ParameterValue();
 returnValues[i].Name = ((TextBox)controls[i]).Name;
 returnValues[i].Value = ((TextBox)controls[i]).Text;
 }

 return returnValues;
}

c15.indd 572c15.indd 572 11/13/08 4:55:48 PM11/13/08 4:55:48 PM

Chapter 15: Integrating Reports into Custom Applications

573

 VB
Private Function REGetParameters() As REService.ParameterValue()
 Dim controls As New ArrayList

 ‘get the values from the parameter controls
 Dim len As Integer = grpParamInfo.Controls.Count
 Dim i As Integer
 For i = 0 To len - 1
 If TypeOf grpParamInfo.Controls(i) Is TextBox Then
 controls.Add(grpParamInfo.Controls(i))
 End If
 Next i

 ‘add the control information to parameter info objects
 len = controls.Count - 1
 Dim returnValues(len) As REService.ParameterValue
 For i = 0 To len
 returnValues(i) = New PREService.arameterValue
 returnValues(i).Name = CType(controls(i), TextBox).Name
 returnValues(i).Value = CType(controls(i), TextBox).Text
 Next i

 Return returnValues
End Function

 You can now use the REGetParameter function to build an array of input parameters. You can add the
following code to your Render click event to retrieve the input parameters.

 C #
REService.ParameterValue[] parameters = REGetParameters();

 VB
Dim parameters As REService.ParameterValue() = REGetParameters()

 Above in this chapter, we explained how to get the EmployeeID parameter value from the sample
database. If you need a quick ID to put in for the Employee parameter, you can use 284 for testing.

 Now that you have your list of input parameters, you are almost ready to call the Render method. For
this, you need to declare variables that will be used for the HistoryID , DeviceInfo , Encoding ,
 MimeType , Extension , Warnings , and StreamIDs . Not all of these variables are needed since they are
set to null and not used; however, they have been declared here to show the syntax of the Render
method. The final variable you will need for the Render method is an array of bytes. This byte array can
then be written to the filesystem.

c15.indd 573c15.indd 573 11/13/08 4:55:48 PM11/13/08 4:55:48 PM

Part VI: Reporting Services Integration and Custom Programming

574

 C #
byte[] result = null;
string historyID = null;
string devInfo = null;
string encoding;
string mimeType;
string extension;
REService.Warning[] warnings = null;
string[] streamIDs = null;

// Load the report, set the parameters and then render.
_rsExec.LoadReport(pathToReport, historyID);
_rsExec.SetExecutionParameters(parameters, “en-us”);
result = _rsExec.Render(outputFormat, devInfo, out extension,
 out encoding, out mimeType, out warnings, out streamIDs);

 VB
Dim result() As Byte
Dim historyID As String
Dim devInfo As String
Dim encoding As String
Dim mimeType As String
Dim extension As String
Dim warnings() As REService.Warning
Dim streamIDs() As String

_rsExec.LoadReport(reportItem.Path, historyID)
_rsExec.SetExecutionParameters(parameters, “en-us”)
result = _rsExec.Render(selectedFormat.Name, devInfo, extension, _
 encoding, mimeType, warnings, streamIDs)

 Finally, you need to take the byte array returned from the Render method and write it to the filesystem.
Use the output path specified in the output textbox along with the report name and format file extension
to open a file stream. Following is the entire Render button click event along with the final piece of code
for writing the file to the filesystem:

 C #
private void btnRender_Click(object sender, EventArgs e)
{
 // Set the URL by concat with server text.
 _rsExec.Url = txtServer.Text + “/ReportExecution2005.asmx”;

 // Grab the path from the selected report and put it in a string.
 ReportItem reportItem = (ReportItem)cboReports.SelectedItem;

 // Grab the format that is selected an dput it in a string.
 Format selectedFormat = (Format)cboFormat.SelectedItem;

 // Prepare report parameter.

c15.indd 574c15.indd 574 11/13/08 4:55:48 PM11/13/08 4:55:48 PM

Chapter 15: Integrating Reports into Custom Applications

575

 REService.ParameterValue[] parameters = REGetParameters();

 // Variables used to render the report.
 byte[] result = null;
 string historyID = null;
 string devInfo = null;
 string encoding;
 string mimeType;
 string extension;
 REService.Warning[] warnings = null;
 string[] streamIDs = null;

 // Make sure the parameters have been set first.
 if (parameters.Length != 0)
 {
 // Load the report, set the parameters and then render.
 _rsExec.LoadReport(reportItem.Path, historyID);
 _rsExec.SetExecutionParameters(parameters, “en-us”);
 result = _rsExec.Render(selectedFormat.Name, devInfo, out extension,
 out encoding, out mimeType, out warnings, out streamIDs);

 // Make sure there is an output path then output the file system.
 if (txtOutputFolder.Text != “”)
 {
 string fullOutputPath = txtOutputFolder.Text + “\\”
 + reportItem.Name + selectedFormat.Extension;
 FileStream stream = File.Create(fullOutputPath, result.Length);
 stream.Write(result, 0, result.Length);
 stream.Close();
 MessageBox.Show(“Report Rendered to File System.”);
 }
 else
 {
 MessageBox.Show(“Choose a folder first”);
 }
 }
 else
 {
 MessageBox.Show(“No parameters, click Get Parameters button”
 + “first and then set values.”);
 }
}

 VB
Private Sub btnRender_Click(ByVal sender As System.Object, ByVal e As System
.EventArgs)
 Handles btnRender.Click

 ‘return a list of items from the report server
 _rsExec.Url = txtServer.Text + “/ReportExecution2005.asmx”

 ‘Grab the format that is selected and put it in a string.

(continued)

c15.indd 575c15.indd 575 11/13/08 4:55:49 PM11/13/08 4:55:49 PM

Part VI: Reporting Services Integration and Custom Programming

576

 Dim selectedFormat As Format = CType(cboFormat.SelectedItem, Format)

 ‘Grab the path from the selected report and put it in a string.
 Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)

 ‘Prepare report parameters.
 Dim parameters As REService.ParameterValue() = REGetParameters()

 ‘Variables used to render the report.
 Dim result() As Byte
 Dim historyID As String
 Dim devInfo As String
 Dim encoding As String
 Dim mimeType As String
 Dim extension As String
 Dim warnings() As REService.Warning
 Dim streamIDs() As String

 ‘ Make sure the parameters have been set first
 If ((reportHasParameters = True And parameters.Length < > 0) Or _
 reportHasParameters = False) Then
 _rsExec.LoadReport(reportItem.Path, historyID)
 _rsExec.SetExecutionParameters(parameters, “en-us”)
 result = _rsExec.Render(selectedFormat.Name, devInfo, extension, _
 encoding, mimeType, warnings, streamIDs)
 If txtOutputFolder.Text < > “” Then
 Dim fullOutputPath As String = txtOutputFolder.Text + “\” + _
 reportItem.Name + selectedFormat.Extension
 Dim stream As FileStream = File.Create(fullOutputPath, _
 result.Length)
 stream.Write(result, 0, result.Length)
 stream.Close()
 MessageBox.Show(“Report Rendered to: “ + fullOutputPath)
 End If
 Else
 MessageBox.Show(“No parameters, click Get Parameters button first _
 and then set values.”)
 End If
End Sub

Private Sub btnRender_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
 Handles btnRender.Click

 ‘get the format and report item from the comboboxes
 Dim format As Format = CType(cboFormat.SelectedItem, Format)
 Dim reportItem As ReportItem = CType(cboReports.SelectedItem, ReportItem)
 ‘set up variables needed to call render method
 Dim parameters As ParameterValue() = GetParameters()
 Dim encoding As String
 Dim mimeType As String
 Dim parametersUsed() As ParameterValue
 Dim warnings() As Warning

(continued)

c15.indd 576c15.indd 576 11/13/08 4:55:49 PM11/13/08 4:55:49 PM

Chapter 15: Integrating Reports into Custom Applications

577

 Dim streamIds() As String

 ‘render the report
 Dim data() As Byte
 data = _rs.Render(reportItem.Path, format.Name, Nothing, Nothing, _

 parameters, Nothing, Nothing, encoding, mimeType, _
 parametersUsed, warnings, streamIds)
 ‘create a file stream to write the output
 Dim fileName As String = txtOutputLocation.Text & “\” & reportItem.Name & _
 format.Extension

 Dim fs As New System.IO.FileStream(fileName, _
 System.IO.FileMode.OpenOrCreate)

 Dim writer As New System.IO.BinaryWriter(fs)
 writer.Write(data, 0, data.Length)
 writer.Close()
 fs.Close()
 MessageBox.Show((“File written to: “ + fileName))
End Sub

 Now that you have completed the code for rendering the application, let ’ s try it out. You need to build
and run the project. When the form opens, enter your server information in the Server Address
textbox and click on the Get Items button, as shown in Figure 15 - 13 .

Figure 15-13

 Select a report that takes parameters (the example uses the Employee Sales Summary 2008 sample
report), click on the Get Parameters button, and then fill in the parameters (the example uses 283 for the
Employee ID field). Finally, select an output folder and the rendering format as PDF. After specifying
these items, you can click on the Render button to render your report. When the rendering is complete,
you will receive a message box letting you know that the file has been written to the specified location,
as shown in Figure 15 - 14 . You can now open your saved file in Adobe Acrobat.

c15.indd 577c15.indd 577 11/13/08 4:55:49 PM11/13/08 4:55:49 PM

Part VI: Reporting Services Integration and Custom Programming

578

 Rendering a Report to the Filesystem Summary
 In this section, you learned the basic steps of rendering a report to the filesystem:

 Using the ReportingService2005 object ’ s ListChildren method to return a list of reports

 Using the ReportingService2005 object ’ s GetReportParameters method to return a list of
report parameters

 Using the Render method of the ReportExecutionService object to output your report in a
given format

 These basic steps can be used in numerous applications to render a report. Using these methods, users
can create their own custom list of reports and customer report parameter pages, and output the report
using the returned byte array. In the next section, you will use some of these same steps to render a
report to the Web via the Response object.

 Rendering to the Web
 In the preceding section, you saw the mechanics of rendering to a filesystem. However, most of today ’ s
applications are written for the Web. Along with URL requests, you can also use Reporting Services Web
services to render reports programmatically to the Web.

 While doing this, most of your steps will be identical to rendering to the filesystem — you simply
change the interface. Using the ListChildren method, developers can easily bind reports to an ASP.
NET data grid or create a tree view of available reports. Likewise, developers could also use the
 GetParameters method to create their own parameter interface.

 Since you have seen both the ListChilden and GetParameters methods, in this section, you will work
more with the specifics around developing ASP.NET applications. You ’ ll look at changes that can be
made to the web.config file to pass credential information to Reporting Services. Then you will look at
the mechanics of rendering to the ASP.NET Response object.

 Using Integrated Windows Authentication
 There are two main components to every security model: authentication and authorization. In Reporting
Services, you can use Integrated Windows Authentication within an ASP.NET application to authenticate
users. Before you start this example, you need to ensure that your application is configured to use
Integrated Windows Authentication.

 After creating a new ASP.NET web application, you need to open IIS and change some settings of the
virtual directory. Make sure that the Anonymous Access has been turned off and Integrated Windows
Authentication has been turned on in IIS.

❑

❑

❑

Figure 15-14

c15.indd 578c15.indd 578 11/13/08 4:55:50 PM11/13/08 4:55:50 PM

Chapter 15: Integrating Reports into Custom Applications

579

 In the sample created for this chapter, the virtual directory used in IIS is the default web site. The pages
are called Render.aspx and RenderVB.aspx for the C# and Visual Basic projects, respectively. To set the
virtual directories to use Integrated Windows Authentication, you need to check their settings in IIS.
Using Integrated Windows Authentication in an ASP.NET web application is the easiest way to take
advantage of the security features in Reporting Services. Using this method allows developers to
concentrate on other areas of an application without having to build their own authentication
mechanism. It also allows for taking full advantage of the Reporting Services role - based security model.

 After updating the IIS settings to use Integrated Windows Authentication, you will have to make some
modifications to your ASP.NET web application.

 Modifying the web.config File
 In the web application created for this demonstration, you want to pass the user ’ s security credentials to
the Reporting Services Web service. To accomplish this, you have to allow your ASP.NET application to
impersonate the currently logged - on user. Setting up impersonation requires adding the following line
of code to the web.config file. Place this line after the authentication tag in the file:

 < identity impersonate=”true” / >

 Confirming ASP . NET 2.0
 Make sure that in the properties for the web site on the ASP.NET page that ASP 2.0, as shown in
Figure 15 - 5 .

Figure 15-15

c15.indd 579c15.indd 579 11/13/08 4:55:50 PM11/13/08 4:55:50 PM

Part VI: Reporting Services Integration and Custom Programming

580

 Confirm that ASP.NET 2.0 is listed as Allowed under the Web Service Extension list, as shown in
Figure 15 - 16 . If ASP.NET 2.0 is not listed, you can install it using the following aspnet_regiis
command:

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727 > aspnet_regiis /i
Start installing ASP.NET (2.0.50727).
.........................
Finished installing ASP.NET (2.0.50727).

C:\WINDOWS\Microsoft.NET\Framework\v2.0.50727 >

Figure 15-16

 Setting up the Report Execution Web Service
 The example only needs Rendering functionality, so you will only use the Report Execution Web service.
However, you would generally need to also interact with the reportingservice2005.asmx web
service, as discussed in the previous section.

 For this example, we ’ ve added a web reference to http://localhost/reportserver/
reportexecution2005.asmx and named it REService .

 Rendering to the Response Object
 Now that you have set up Integrated Windows Authentication, modified the web.config file, and
configured ASP.NET 2.0, you ’ re ready to write some code. In this application, you will have one page
that takes in a report path and format from the URL. You ’ ll use this information to call the Render
method of the Report Execution Web service object and write that information back to the response
stream.

c15.indd 580c15.indd 580 11/13/08 4:55:50 PM11/13/08 4:55:50 PM

Chapter 15: Integrating Reports into Custom Applications

581

 This sample will use one ASP.NET page called Render.aspx. Place your code sample in the Page_Load
event of the page. This would be a logical approach when developing an application around Reporting
Services. It allows you to have one point of entry to the Report Server. The page could then be referenced
from other areas of an application. For the entry page, you will use a simple Default.aspx page that has the
path and format as a textbox and dropdown box. The Default.aspx page will pass the Format and Path
parameters to the Render.aspx page on a button event. Although the input for this example is very simple,
a more robust example could be built using the same technique as was shown in the previous section.

 Let ’ s add some code to the page ’ s Page_Load event to retrieve the report path and format from the
HTTP Request object:

 C #
string path = Request.Params[“Path”];
string format = Request.Params[“Format”];

 VB
Dim path As String = Request.Params(“Path”)
Dim format As String = Request.Params(“Format”)

 Now that you have the report path and format, you can start setting up the ReportExecutionService
object. This is an instance of the Web Service reference, similar to what you did in the Windows Forms
application. As you did with the Windows Forms application, you will create an instance of the
 ReportExecutionService object and then set the credentials to the credentials of the currently logged -
 on user.

 C #
//create the ReportExecutionService object
ReportExecutionService _rsExec = new ReportExecutionService();

//set the credentials to be passed to reporting services
_rsExec.Credentials = System.Net.CredentialCache.DefaultCredentials;

 VB
‘create the ReportingService object
Dim _rsExec As New ReportExecutionService

‘set the credentials to be passed to Reporting Services
_rsExec.Credentials = System.Net.CredentialCache.DefaultCredentials

 Once the ReportingService object has been created and your credentials are set, you can go ahead and
render the report. You will create variables to pass any report parameters (none in this example) and
capture the reports encoding, MIME type, parameters used, warnings, and stream IDs. The key output
parameter, through which you ’ ll render your report, is the MIME type. This parameter will tell the HTTP
 Response object which type of document is being passed back. The following code renders your report
to the web application. You should notice that it is identical to the code used in the Windows Forms
application.

c15.indd 581c15.indd 581 11/13/08 4:55:51 PM11/13/08 4:55:51 PM

Part VI: Reporting Services Integration and Custom Programming

582

 C #
ParameterValue[] parameters = new ParameterValue[0];
string encoding;
string mimeType;
ParameterValue[] parametersUsed;
Warning[] warnings;
string[] streamIds;

//render the report
byte[] data;
data = rs.Render(path, format, null, null, parameters, null, null,
 out encoding, out mimeType, out parametersUsed,
 out warnings, out streamIds);

 VB
Dim parameters As ParameterValue()
Dim result() As Byte
Dim historyID As String
Dim devInfo As String
Dim encoding As String
Dim mimeType As String
Dim extension As String
Dim warnings() As Warning
Dim streamIDs() As String

_rsExec.LoadReport(path, historyID)
_rsExec.SetExecutionParameters(parameters, “en-us”)
result = _rsExec.Render(format, devInfo, extension, encoding, mimeType, warnings,
streamIDs)

 The Render method of the ReportExecutionService object passes back a byte array that can be used
in several ways. For the Web, you will write this information directly back to the HTTP Response object.
Before you write back the data, however, you need to set some information about the report — namely, a
filename. To do this, you use the name of the report followed by an extension that you determine using
the value returned in the extension variable.

 Now construct the filename using the following code. The code makes use of the information returned
from the Render method.

 C #
string reportName = path.Substring(path.LastIndexOf(“/”) + 1);
string fileName = reportName + “.” + extension;

 VB
Dim reportName As String = path.Substring(path.LastIndexOf(“/”) + 1)
Dim fileName As String = reportName & “.” & extension

 Finally, you need to put it all together by writing the data and file information back to the Response
object. For this, you:

c15.indd 582c15.indd 582 11/13/08 4:55:51 PM11/13/08 4:55:51 PM

Chapter 15: Integrating Reports into Custom Applications

583

 1. Start by clearing out any information that is already in the response buffer.

 2. Set the content type of the response equal to the MIME type of your rendered report.

 3. Make sure to attach your filename information to the response, if your report is in a format other
than HTML.

 4. Use the BinaryWrite method to write the rendered report byte array directly to the Response
object.

 The following is the completed code for the Page_Load event:

 C #
protected void Page_Load(object sender, EventArgs e)
{
 //get the path and output format from the query string
 string path = Request.Params[“Path”];
 string format = Request.Params[“Format”];

 ReportExecutionService _rsExec = new ReportExecutionService();

 _rsExec.Url = @”http://localhost/reportserver/ReportExecution2005.asmx”;
 _rsExec.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Prepare report parameter.
 // the GetParameters method could be implemented as was shown in
 // the previous section on rendering to the file system.
 ParameterValue[] parameters = new ParameterValue[0];

 // Variables used to render the report.
 byte[] result = null;
 string historyID = null;
 string devInfo = null;
 string encoding;
 string mimeType;
 string extension;
 REService.Warning[] warnings = null;
 string[] streamIDs = null;

 // Load the report and render it.
 _rsExec.LoadReport(path, historyID);
 _rsExec.SetExecutionParameters(parameters, “en-us”);
 result = _rsExec.Render(format, devInfo, out extension, out encoding, _
 out mimeType, out warnings, out streamIDs);

 // Build the report name and path.
 string reportName = path.Substring(path.LastIndexOf(“/”) + 1);
 string fileName = reportName + “.” + extension;

 //write the report back to the Response object
 Response.Clear();
 Response.ContentType = mimeType;

(continued)

c15.indd 583c15.indd 583 11/13/08 4:55:51 PM11/13/08 4:55:51 PM

Part VI: Reporting Services Integration and Custom Programming

584

 //add the file name to the response if it is not a web browser format.
 if(mimeType!=”text/html”)
 Response.AddHeader(“Content-Disposition”, “attachment; filename=” +
 fileName);

 Response.BinaryWrite(result);
}

 VB
Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 Handles Me.Load

 Dim path As String = Request.Params(“Path”)
 Dim format As String = Request.Params(“Format”)

 ‘create the ReportingService object
 Dim _rsExec As New ReportExecutionService

 ‘set the credentials to be passed to Reporting Services
 _rsExec.Credentials = System.Net.CredentialCache.DefaultCredentials

 ‘Prepare report parameters.
 Dim parameters(0) As ParameterValue

 ‘Variables used to render the report.
 Dim result() As Byte
 Dim historyID As String
 Dim devInfo As String
 Dim encoding As String
 Dim mimeType As String
 Dim extension As String
 Dim warnings() As Warning
 Dim streamIDs() As String

 _rsExec.LoadReport(path, historyID)
 _rsExec.SetExecutionParameters(parameters, “en-us”)
 result = _rsExec.Render(format, devInfo, extension, encoding, _
 mimeType, warnings, streamIDs)

 Dim reportName As String = path.Substring(path.LastIndexOf(“/”) + 1)
 Dim fileName As String = reportName & “.” & extension

 ‘write the report back to the Response object
 Response.Clear()
 Response.ContentType = mimeType
 ‘add the file name to the response if it is not a web browser format.
 If mimeType < > “text/html” Then
 Response.AddHeader(“Content-Disposition”, “attachment; _
 filename=” & fileName)
 End If
 Response.BinaryWrite(result)

End Sub

(continued)

c15.indd 584c15.indd 584 11/13/08 4:55:52 PM11/13/08 4:55:52 PM

Chapter 15: Integrating Reports into Custom Applications

585

 This example quickly demonstrates some of the key pieces of code that can be used to render reports to
the Web. You first need to set the security context for the application by configuring Integrated Windows
Authentication and allowing impersonation from your application. Next, you retrieve a report from
Reporting Services by specifying the report path and format. Finally, you use the rendered report data
along with its associated MIME type to render the report using the HTTP Response object.

 Now that the code for your web application is complete, let ’ s take a look at using your Render.aspx
page. You can use a simple query string to render your report. A sample query string that renders the
Employee List report from the Professional Reporting Services sample reports in HTML 4.0 format is as
follows:

http://localhost/Render.aspx?Path=%2fAdventureWorks+2008+Sample+Reports
 %2fCompany+Sales+2008 & Format=HTML4.0

 This URL does the following:

 It calls the Render.aspx page from your C# project.

 It passes in the required parameters: the path (/AdventureWorks 2008 Sample Reports/
Company Sales 2008) and the Format (HTML 4.0).

 If you place this URL into Internet Explorer, you ’ ll get the HTML output shown in Figure 15 - 17 .

❑

❑

Figure 15-17

c15.indd 585c15.indd 585 11/13/08 4:55:52 PM11/13/08 4:55:52 PM

Part VI: Reporting Services Integration and Custom Programming

586

 Notice that when you enter HTML 4.0 as the output format, the report data is rendered directly in the
browser. In your code, the MIME type of your HTTP Response is text/html in this scenario. When the
browser receives the response, it recognizes the MIME type and renders it directly to the browser.

 Depending on your security settings, IE 7 will ask if you want to save the .html page or open it. You can
click Open to view the report in the browser.

 Let ’ s take a quick look at rendering in a format that does not go directly to the browser. Use the
following URL to render the same Employee List report but in the EXCEL format:

http://localhost/Render.aspx?Path=%2fAdventureWorks+2008+Sample+Reports
 %2fCompany+Sales+2008 & Format=EXCEL

 Figure 15 - 18 shows the result.

Figure 15-18

 Notice this time that when you set the format to EXCEL, you are prompted to save to the filesystem. In
this case, the MIME type needs to be set to application/vnd.ms - excel . You also need to add header
information to the Response object that contains the filename Employee_List.xls. The MIME type
notifies Internet Explorer that you are sending a file, and the added header gives it the appropriate
filename.

c15.indd 586c15.indd 586 11/13/08 4:55:53 PM11/13/08 4:55:53 PM

Chapter 15: Integrating Reports into Custom Applications

587

 In this section, you saw some of the base mechanics around rendering a report using an ASP.NET
application. To start, you need to pass the currently logged - on user ’ s credentials. This is accomplished
by setting the application virtual directory to use Integrated Windows Authentication and then
modifying the web.config file for the application to use impersonation. In the code, you need to call the
Report Execution Service Web service to retrieve the report along with content information such as
MIME type. Once you have the binary report data, you can write that information directly back to the
 Response object.

 Using the MicrosoftReportViewer Control
 Many improvements have been made in Visual Studio 2008 for working with adding SQL Server 2008
Reporting Services reports to your custom applications. For starters, there is now a Reports Application
project listed in the New Project list, as shown in Figure 15 - 19 .

Figure 15-19

 When the Reports Application project template is selected, it automatically starts the Report Wizard, as
shown in Figure 15 - 20 .

c15.indd 587c15.indd 587 11/13/08 4:55:53 PM11/13/08 4:55:53 PM

Part VI: Reporting Services Integration and Custom Programming

588

 The Report Wizard walks you through creating a data source, selecting an existing data source, saving
the connection information to the configuration file, choosing the database objects you wish to report on,
and then creating a report based on those objects.

 The Reports Application project is a great starting point, but the MicrosoftReportViewer control can
also be added to any custom application. In Visual Studio 2008, the control is automatically made
available under a grouping in the toolbox called Reporting , as shown in Figure 15 - 21 .

Figure 15-20

c15.indd 588c15.indd 588 11/13/08 4:55:54 PM11/13/08 4:55:54 PM

Chapter 15: Integrating Reports into Custom Applications

589

 The MicrosoftReportViewer control is by far the most flexible and, in most cases, the easiest
technique for adding a report to your .NET application user interface. Two separate but very similar
controls are available — for .NET Windows Forms and ASP.NET Web Forms applications. All the user
interface attributes you have seen in the Report Manager and Designer Preview tab can be managed
using properties of the control and can be set at design time in the Properties window, or at run
time using program code.

 The MicrosoftReportViewer controls are client - side controls that do not need a SQL Server instance to
be used. The only dependency of the controls is the .NET Framework 3.5.

 The source data used by the controls can come from any data source, not just SQL Server. The
 MicrosoftReportViewer controls themselves have no knowledge of where the data comes from. Your
application brings in the data from whichever source you choose and makes it available to the
 MicrosoftReportViewer controls in the form of ADO.NET DataTables or custom business objects.
The MicrosoftReportViewer controls don ’ t even know how to connect to databases or execute
queries. By requiring the host application to supply the data, you can use the MicrosoftReportViewer
controls with any data source, including relational, non - relational, and non - database data sources.

 Two different report execution scenarios are supported in both types of the MicrosoftReportViewer
control. The first is where standard, Report Server reports are deployed and executed on the Report
Server and then viewed in the control as you would expect. The other is using the
 MicrosoftReportViewer control as a mini - report - hosting engine that allows reports to execute in your
application without needing a connection to the Report Server. This requires a version of the report

Figure 15-21

c15.indd 589c15.indd 589 11/13/08 4:55:54 PM11/13/08 4:55:54 PM

Part VI: Reporting Services Integration and Custom Programming

590

definition file that ’ s been retrofitted for client - side execution. The file is an RDLC file, with C standing
for client - side processing.

 Both RDL and RDLC formats have the same XML schema, but RDLC files allow some elements to
contain empty values. RDLC also ignores the < Query > element of the RDL schema. The < Query > tag
will only be included in the XML file if the report began its life as an RDL file and was then converted to
an RDLC. RDLC files also contain information that the MicrosoftReportViewer control uses to
generate data - binding code. You can create an RDLC report by converting an RDL report into RDLC,
using the Report Creation Wizard, using Visual Studio 2008, or generating the RDLC programmatically.

 Embedding a Server - Side Report in a
Windows Application

 The following exercise will take you through the steps to view a server - side report in a Windows Forms
application using the MicrosoftReportViewer control. The properties and methods of the Web
Forms version of the control are nearly identical, making your code transportable between Windows and
Web application projects. You will start with just viewing a report in your custom application and then
move on to working with the reports parameters in your code.

 As you know, the report rendering interface can generate several toolbar options and parameter
prompts. You can either use these default UI elements or replace them with your own. When you start
working with the report parameters, you will hide the default prompts and force the user to enter the
parameters through your custom application. This provides you with great control over how the user
interacts with the report and which parameter values are allowed.

 The example uses the Employee Sales Summary report used throughout the chapter. First, you will add
a form to your Visual Studio 2008 Windows Application project. Drag and drop the
 MicrosoftReportViewer control onto the form. Resize and anchor it to meet your needs.

 The first thing to notice about the MicrosoftReportViewer control is the dropdown Context menu
used to configure the most important aspects of the control. The dropdown allows you to choose a
specific report or to choose a report from a Report Server. You can also set the Report Server URL and the
report path, as well as kick off the Report Wizard to design a new report and dock the report in the
current container. Set the Report Server property to the local report server and then set the report path to
the Employee Sales Summary 2008 report, as shown in Figure 15 - 22 .

Figure 15-22

 The ReportPath property is the report location in the Report Server hierarchy. In this case, we ’ ve
selected a report on the local machine to display in the MicrosoftReportViewer control. The location of
the Report Server is set using the ReportServerUrl property. The ReportPath and ReportServerUrl
properties can also be accessed under the ServerReport grouping in the Properties pane.

c15.indd 590c15.indd 590 11/13/08 4:55:55 PM11/13/08 4:55:55 PM

Chapter 15: Integrating Reports into Custom Applications

591

 Since you ’ re going to use the Report Server for processing, set the ProcessingMode property to Remote .
That will use the Report Server to retrieve source data that will be used in the report. In Remote mode,
the MicrosoftReportViewer controls display reports that are hosted on a SQL Server 2008 Report
Server. The source data for those reports can come from any appropriate data source, not just SQL Server.
This behavior is normal report processing behavior.

 You are now ready to run the custom application and view the report in a Windows Form, as shown in
Figure 15 - 23 .

Figure 15-23

 You have seen a very simple example of running a report in a custom application; however, you might
also want to add functionality to control the parameters that the users see and select.

 With everything except the parameters set using the Properties window, the only necessary code sets the
parameters and executes the report.

 Parameters are managed as an array of ReportParameter objects. Since the report has three
required parameters, the array is declared with a maximum element index of two to provide
three elements. Each of the elements is populated by passing the parameter name and value to each of
the three ReportParameter constructors.

c15.indd 591c15.indd 591 11/13/08 4:55:55 PM11/13/08 4:55:55 PM

Part VI: Reporting Services Integration and Custom Programming

592

 In order to use the ReportParameter object, you need to either add the following using / imports
statement to your code or instantiate the object using the full Microsoft.Reporting.WinForms
namespace. Adding the using / imports statement provides for much cleaner and easier - to - read code,
so add the following statements to your application:

 C #
using Microsoft.Reporting.WinForms;

 VB
Imports Microsoft.Reporting.WinForms

 The report parameters are populated by passing the array to the SetParameters method of the
 ServerReport object.

 Finally, the MicrosoftReportViewer ’ s RefreshReport method causes report execution to begin.

 The following is the complete code for the button ’ s click event:

 C #
private void button1_Click(object sender, EventArgs e)
{
 string reportServerURL = @”http://localhost/reportserver”;
 string reportPath = @”/AdventureWorks Sample Reports/Employee Sales Summary”;
 Employee selectedEmp = (Employee)cboEmployee.SelectedItem;

 ReportParameter[] Param = new ReportParameter[3];
 Param[0] = new ReportParameter(“ReportMonth”,
 cboReportMonth.SelectedItem.ToString());
 Param[1] = new ReportParameter(“ReportYear”, cboReportYear.SelectedItem
.ToString());
 Param[2] = new ReportParameter(“EmpID”, selectedEmp.ID);

 reportViewer1.ProcessingMode = ProcessingMode.Remote;
 reportViewer1.ServerReport.ReportServerUrl = new Uri(reportServerURL);
 reportViewer1.ServerReport.ReportPath = reportPath;
 reportViewer1.ServerReport.SetParameters(Param);
 reportViewer1.ShowParameterPrompts = false;
 reportViewer1.ShowPromptAreaButton = false;
 reportViewer1.RefreshReport();
}

 VB
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As _
 System.EventArgs) Handles Button1.Click

 Dim reportServerURL As String = “http://LocalHost/ReportServer”
 Dim reportPath As String = _

c15.indd 592c15.indd 592 11/13/08 4:55:55 PM11/13/08 4:55:55 PM

Chapter 15: Integrating Reports into Custom Applications

593

 “/AdventureWorks Sample Reports/Employee Sales Summary”
 Dim selectedEmp As Employee = CType(cboEmployee.SelectedItem, Employee)

 Dim Param(2) As ReportParameter
 Param(0) = New ReportParameter(“ReportMonth”, _
 cboReportMonth.SelectedItem.ToString())
 Param(1) = New ReportParameter(“ReportYear”, _
 cboReportYear.SelectedItem.ToString())
 Param(2) = New ReportParameter(“EmpID”, selectedEmp.ID)

 With Me.ReportViewer1
 .ProcessingMode = ProcessingMode.Remote
 With .ServerReport
 .ReportServerUrl = New Uri(reportServerURL)
 .ReportPath = reportPath
 .SetParameters(Param)
 End With

 .ShowParameterPrompts = False
 .ShowPromptAreaButton = False
 .RefreshReport()
 End With

End Sub

 Figure 15 - 24 shows the result. The report is displayed in the MicrosoftReportViewer control
embedded on the form. The standard report parameter bar and prompts are not displayed in the top of
the viewer since they were suppressed using the related MicrosoftReportViewer properties.

Figure 15-24

c15.indd 593c15.indd 593 11/13/08 4:55:56 PM11/13/08 4:55:56 PM

Part VI: Reporting Services Integration and Custom Programming

594

 The MicrosoftReportViewer controls provide an easy - to - implement way of embedding reports in
your custom web and Windows applications. Unfortunately, you still have to code the rest of the
application in order to provide users with an all - around solution. There ’ s an in - between option, where
reports can be made available to users without going through the Report Manager application.
That in - between option is SharePoint, which is discussed in Chapter 16 .

 Summary
 In this chapter, we saw three ways to render reports from Reporting Services. The first part of the chapter
focused on rendering reports via URL requests. The second part looked at rendering reports
programmatically through the Reporting Services Web services. In the last part, you used the
 MicrosoftReportViewer control to easily embed reports in a Windows Forms application.

 URL rendering gives you a quick way to add Reporting Services reports to your own applications. You
can add Reporting Services reports to custom portals or create your own custom report links in other
applications.

 Rendering reports directly through an ASP.NET application can be very helpful. It allows developers to
create their own interface for items such as parameters. A key point to remember is that Report Manager
uses the same Reporting Services Web services that we used in the examples in this chapter. Therefore,
anything that you can do from the Report Manager can also be done through your own code. This adds
an incredible amount of flexibility for developers of custom applications.

 This chapter has shown you how to:

 Use simple URL query strings to access reports.

 Programmatically work with the Reporting Service and Report Execution Service APIs.

 Embed reports into custom Windows and web applications.

 Work with the MicrosoftReportViewer control in Visual Studio 2008.

 Because the Reporting Services APIs are implemented as Web services, you can call them from various
types of applications, including .NET Windows applications, ASP.NET web applications, and .NET
console applications. You can even use these Web services from Visual Basic 6.0, VBA applications using
Microsoft ’ s SOAP library, or essentially any application that can send a properly formatted request to the
Report Server. This flexibility allows for the creation of a number of applications, including those that
use custom security or pass parameter information stored in other application databases.

❑

❑

❑

❑

c15.indd 594c15.indd 594 11/13/08 4:55:56 PM11/13/08 4:55:56 PM

 Integrating Repor ts
with ShareP oint

 This chapter explores the integration of SQL Server 2008 Reporting Services with the SharePoint
technologies. In recent years, SharePoint has become a web portal centerpiece for collaboration
and information sharing. As a result, Microsoft has tightly integrated their reporting solution with
the SharePoint technologies.

 Integration of SQL Server 2008 Reporting Services and SharePoint allows for a user to navigate to
their intranet portal and have instant access to company information as well as personalized
business reports and key performance indicators (KPIs). The reports can be embedded directly into
web portal pages for seamless integration for the user.

 SQL Server 2008 Reporting Services can be installed in either Native mode or SharePoint
Integrated mode. In Native mode, a user would interact with Reporting Services using two web
parts (Report Explorer and Report Viewer). In Integrated mode, SharePoint takes over all the
duties of the Report Manager as well as adds SharePoint document management values such as a
consistent and user - friendly experience, versioning, security trimming, alerts, enterprise search, and,
when properly configured, the meeting of regulatory compliance requirements, to just name a few.

 This chapter covers:

 A brief overview of the SharePoint technologies, including Windows SharePoint Services,
Microsoft Office SharePoint Server, and SharePoint web parts

 SharePoint integration with SQL Server Reporting Services in Native mode

 SharePoint integration with SQL Server Reporting Services in Integrated mode

 SharePoint integration architecture

 A comparison between Native and Integrated mode

❑

❑

❑

❑

❑

c16.indd 595c16.indd 595 11/13/08 4:57:05 PM11/13/08 4:57:05 PM

Part VI: Reporting Services Integration and Custom Programming

596

 For the examples in this chapter, it is assumed that you already have a lab environment that consists of
MOSS 2007 with Service Pack (SP) 1 installed. If you are using WSS 3.0, the examples should be
nearly identical until later in the chapter, where we take advantage of the Report Center template that is
part of MOSS Enterprise Edition. It is also assumed that the SharePoint lab environment is installed
using the Stand - Alone option on a single Windows Server computer, which will act as both the
SharePoint Web front end, application server, and Report Server. Some knowledge of SharePoint is also
assumed.

 In order to install WSS or MOSS on a Windows Server 2008 computer, you will need to make sure the
installation includes SP1. Windows Server 2008 will not allow WSS or MOSS to be installed and then
upgraded to SP1 after the installation. A trial version of WSS or MOSS that includes SP1 can be
downloaded from the following locations:

 WSS 3.0 with SP1 included: http://technet.microsoft.com/en - us/windowsserver/
sharepoint/default.aspx

 MOSS 2007 with SP1 included: www.microsoft.com/sharepoint/trynow.mspx

 The examples that follow also make use of the sample reports that run against the AdventureWorks2008
database. As of this writing, there is a v2005 schema of the AdventureWorks sample database and a
v2008 version of the sample database. Both of these versions are designed to run within SQL Server
2008. There are sample reports that work with the v2005 schema and sample reports that work with the
v2008 schema. Microsoft has recently updated and moved the MSI installs of the sample database and
reports to the CodePlex site. The most recent versions can be downloaded from the following locations:

 Sample Database — www.codeplex.com/MSFTDBProdSamples

 Sample Reports — www.codeplex.com/MSFTRSProdSamples

 Links to all SQL Server samples can be accessed by going to the main sample site, at
http://codeplex.com/SqlServerSamples .

 In a real - world situation, several servers would be used to host the SharePoint and SQL Server
environments. What I have seen as a standard production enterprise - level implementation is a
SharePoint farm that is made up of four Web front - end servers and two application servers, a SQL
Server fail - safe cluster, and a dedicated SQL Server Reporting Services server. For simplicity ’ s sake and
to make the examples in this chapter easier to follow for the home user, we will put everything on one
Windows Server machine.

 The ShareP oint T echnologies
 The SharePoint technologies are made up of Windows SharePoint Services (WSS) and Microsoft Office
SharePoint Server (MOSS). WSS is a framework built on the .NET framework and is included with
Windows Server 2003 and 2008. MOSS, on the other hand, is a finished product built on top of the WSS
framework and thus requires its own licensing. Figure 16 - 1 shows how WSS is built on .NET and ASP
.NET, and MOSS is built on WSS.

c16.indd 596c16.indd 596 11/13/08 4:57:06 PM11/13/08 4:57:06 PM

Chapter 16: Integrating Reports with SharePoint

597

 SharePoint sites are web - based applications that provide a single point of entry for information across an
enterprise. Better yet, sites can be created without any programming. Windows SharePoint sites can be
created by anyone with sufficient permissions. The functionality is made available through Windows
SharePoint Services. Multiple SharePoint sites can be aggregated into portals through the use of MOSS.

 Windows SharePoint Services (WSS)
 The Windows SharePoint Services (WSS) framework is included with Windows Server 2003 and 2008
and provides a simple portal solution with minimal overhead. Because WSS is a framework and not a
finished solution, further customization is generally required in order to meet the needs of a specific
business. The WSS framework is built on the .NET framework and thus provides endless customization
options for .NET developers.

 Microsoft Office SharePoint Server (MOSS)
 Microsoft Office SharePoint Server (MOSS) 2007 is a finished Microsoft product that was built on the
WSS framework. Microsoft used the WSS framework to develop a robust, out - of - the - box solution that
will fit the needs of many businesses yet is fully customizable. One of the key features that MOSS adds is
a template called Report Center that is specialized to meet many of the needs of a Business Intelligence
solution. The Report Center application template will be explored in greater depth below in this chapter.
MOSS requires its own licensing separate from Windows Server. MOSS is released in two versions:
Standard Edition and Enterprise Edition.

MOSS 2007

WSS 3.0

ASP.NET

Web Server (IIS).NET Framework

Operating System (Server 2003/2008)

Computer Hardware (Dell, HP, IBM)

Figure 16-1

c16.indd 597c16.indd 597 11/13/08 4:57:06 PM11/13/08 4:57:06 PM

Part VI: Reporting Services Integration and Custom Programming

598

 The information in the following table is from the Microsoft SharePoint web site and lists the
functionality provided, out - of - the - box, by the three versions of SharePoint:

 Capabilities WSS 3.0
 MOSS 2007 Standard
Edition

 MOSS 2007 Enterprise
Edition

 Collaboration X X X

 Portals X X

 Enterprise Search X X

 Enterprise Content Management X X

 Business Process and Forms X

 Business Intelligence X

 SharePoint Web Parts
 A fundamental SharePoint concept is the web part . Web parts can be thought of as modular elements
containing functionality that is added to the user interface. Typically, web parts display specific
information and can be moved around the web page. For example, SharePoint comes with web parts
that can display images and list files. They have a consistent format, with a customizable title bar and a
web - part dropdown menu available in the upper - right corner.

 Traditionally, Reporting Services included two SharePoint web parts — the Report Explorer, for
navigating through the Report Server content, and the Report Viewer, for viewing rendered reports.
Beginning with the release of Service Pack 2 for SQL Server 2005 Reporting Services, a new way of
running Reporting Services with SharePoint was born. The new method installed Reporting Services in a
mode called SharePoint Integrated mode . This mode has been refined and upgraded with the release of SQL
Server 2008 Reporting Services. Integrated mode introduces additional web parts as well as a new way of
thinking about managing reports. The Integrated mode will be explored in detail below in this chapter.

 Native Mode
 In order to interact with Reporting Services in Native mode, you need to install the SQL Server
Reporting Services web parts on each server in the SharePoint environment.

 Installation
 Chapter 3 discussed in detail the installation of SQL Server 2008 Reporting Services in Native mode. The
web parts installation file, RSWebParts.cab, was installed on the Reporting Server when Reporting
Services was installed. By default, it is located at:

C:\Program Files\Microsoft SQL Server\100\Tools\Reporting Services\SharePoint

c16.indd 598c16.indd 598 11/13/08 4:57:07 PM11/13/08 4:57:07 PM

Chapter 16: Integrating Reports with SharePoint

599

 If you are not integrating with a SharePoint environment on the same server where you have installed
SQL Server 2008 Reporting Services, you will need to copy this installation file from the Reporting
Services computer to the SharePoint computer. Once the file is on the SharePoint server, it will need to be
installed. Install the web parts by navigating to the BIN directory of the SharePoint installation and
executing the following command from a command prompt:

C:\ > cd “C:\Program Files\Common Files\Microsoft Shared\web server extensions\12\BIN”

C:\Program Files\Common Files\Microsoft Shared\web server extensions\12\BIN >
stsadm.exe -o addwppack -filename “C:\RSWebParts.cab” -globalinstall

Operation completed successfully.

C:\Program Files\Common Files\Microsoft Shared\web server extensions\12\BIN >

 Make sure that you are on the computer running SharePoint. In this example, the RSWebParts.cab file
has been copied to the root C:\ directory.

 After installing the web parts on the SharePoint server, you can use them by adding them to any site in
the farm just as you would any other web part, as shown in Figure 16 - 2 .

Figure 16-2

c16.indd 599c16.indd 599 11/13/08 4:57:07 PM11/13/08 4:57:07 PM

Part VI: Reporting Services Integration and Custom Programming

600

 Report Viewer
 The Report Viewer web part is used to display reports in the SharePoint environment. You can interact with
reports as you would in Report Manager, using links within the report and DHTML functionality for
collapsing report sections. For drill - down reports, the target report displays in the same Report Viewer
web part. Drill - through reports, however, are rendered in a new browser window. Depending on the
layout of the report and the size of the web part on the page, only a portion of the report may be visible.
You ’ ll need to use the scroll bars to view the rest of the report. As with standard web parts, you can
change the size of the Report Viewer on the page in the Tool pane. The Tool pane is a configuration window
that lets you set property values for web parts displayed on the SharePoint page, as shown in Figure 16 - 3 .

Figure 16-3

 You can use the Report Viewer web part in Connected or Stand - Alone mode. In Connected mode, clicking
a link in the Report Explorer web part renders the report in the Report Viewer. The Report Explorer web
part will be covered in the next section. With the Report Viewer in Stand - Alone mode, it doesn ’ t have the
Report Explorer pointing it to a report for rendering. You ’ ll have to provide the path to the report manually.
The report path is set using the Tool pane. This might not seem very user - friendly, but it has a purpose.

 Once the report path has been set, the Report Viewer can then display the report without user - initiated
input or action. This functionality allows for report developers to develop key performance indicator
(KPI) dashboard pages. The reports contained in these dashboard pages could run on a schedule and
automatically update. Executives could have these dashboards on their Start page so that whenever they
open up Internet Explorer, they are presented with the current metrics for their organization without
having to interact with the report.

 Another use I have seen for the Report Viewer is in manufacturing. Developers will develop a very
specific report for a particular group. Monitors will then be placed in key areas, and the workers can
simply look up onto the monitor to see key information for their specific tasks.

c16.indd 600c16.indd 600 11/13/08 4:57:12 PM11/13/08 4:57:12 PM

Chapter 16: Integrating Reports with SharePoint

601

 The Report Viewer web part will show up under the Miscellaneous category when you go to add the
web part to a SharePoint page. Simply select the Report Viewer web part to add it to the page.

 Once you have added the Report Viewer web part to a page, you can configure it by clicking on the
Modify Shared Web Part item under the web part dropdown menu (the small arrow in the upper - right
corner of the web part). This will bring up the Tool pane described above (refer to Figure 16 - 3).

 Report parameters are displayed at the top of the web part content area. This parameters section
expands to display the report parameters, with the standard Report Manager toolbar below it. Using the
toolbar, reports can be exported to an XML file with report data, a comma - separated values (CSV) file, an
Acrobat PDF file, a MIME HyperText Markup Language (MHTML) web archive, a Microsoft Excel file, a
TIFF image, or to a Microsoft Word document, as shown in Figure 16 - 4 .

Figure 16-4

 Report Explorer
 The Report Explorer web part provides a miniature version of the Report Manager web application. The
Report Explorer web part allows a user to navigate the content in the Report Server hierarchy. Clicking a
report link in the Report Explorer displays the report. There are two ways the report can be displayed:
in Linked mode or in Stand - Alone mode. When linked to a Report Viewer web part, the report renders in
that web part. When in Stand - Alone mode, the report is rendered in a new browser window. Which mode
you choose typically depends on how much screen real estate you have available. Connected mode
simply means that data is passed between the two web parts.

c16.indd 601c16.indd 601 11/13/08 4:57:17 PM11/13/08 4:57:17 PM

Part VI: Reporting Services Integration and Custom Programming

602

 Like Report Manager, the Report Explorer web part has a Details view. When in this view, you can
create or edit a subscription to a report. If no icons are showing up, you likely have not configured the
e - mail settings in the Reporting Services configuration utility. Once e - mail settings are configured,
an e - mail icon will show up in the subscriptions column for reports for which you have subscription access.

 The Report Explorer web part also provides bread - crumb - trail navigation and columns that can be
sorted. In the Report Explorer, however, only folders, reports, and resources are displayed. You don ’ t
have access to data sources from the Report Explorer.

 Once you have added the Report Explorer web part to a page, you can configure it by clicking on the
Modify Shared Web Part item under the Web Part dropdown menu (the small down arrow in the
upper - right corner of the web part). Figure 16 - 5 shows the Configuration window for the Report Explorer.

Figure 16-5

 You can also launch Report Builder 1.0 from within the Report Explorer web part, as shown in
Figure 16 - 6 . The Report Builder 1.0 is a click - once application that is downloaded to your computer from
the host computer. The Report Builder 1.0 is covered in detail in Chapter 12 .

Figure 16-6

c16.indd 602c16.indd 602 11/13/08 4:57:18 PM11/13/08 4:57:18 PM

Chapter 16: Integrating Reports with SharePoint

603

 Integrated Mode
 Configuring Report Services in SharePoint Integrated mode creates a tightly coupled technology that
provides for an extremely user - friendly and seamless user experience. In order to achieve Integrated
mode in SQL Server 2005 SP2 Reporting Services, the Reporting Services instance had to first be installed
in Native mode and then converted to Integrated mode. The installation of SQL Server 2008
Reporting Services has made great improvements in this area. The Installation Wizard now allows
for Reporting Services to be installed directly into Integrated mode. The new Reporting Services
Configuration utility also provides the functionality to create a new Reporting Services instance in
Integrated mode from within the utility itself. We explore this functionality in the following sections.

 Installation/Configuration
 Chapter 3 walked through a detailed explanation of the Reporting Services installation process.
Figure 16 - 7 shows the Reporting Services Configuration screen of the Installation Wizard that allows for
SharePoint Integrated mode to be selected.

Figure 16-7

 The Reporting Services Configuration utility has changed extensively in SQL Server 2008 Reporting
Services. In SQL Server 2005 SP2 Reporting Services, there were checkmarks that showed if specific
components had been configured. These are gone in SQL Server 2008 Reporting Services, and the entire
interface is replaced with a very straightforward Configuration screen, as shown in Figure 16 - 8 .

c16.indd 603c16.indd 603 11/13/08 4:57:20 PM11/13/08 4:57:20 PM

Part VI: Reporting Services Integration and Custom Programming

604

Figure 16-8

 If the Reporting Services instance was installed in Native mode, you can create a new database in
Integrated mode by performing the following steps:

 1. Open the SQL Server 2008 Reporting Services Configuration utility.

 2. Click on the Database navigational tab on the left - hand side of the screen. The Database screen
gives information about the current database, such as the instance name and ID, edition,
version, database name, the mode the reporting database is currently running in (Native or
Integrated), and the current status. The other configuration tabs are covered in detail in
Chapter 14 , “ Report Server Administration. ”

 3. Select the Change Database button, as shown in Figure 16 - 9 , to launch the Report Server
Database Configuration Wizard.

c16.indd 604c16.indd 604 11/13/08 4:57:20 PM11/13/08 4:57:20 PM

Chapter 16: Integrating Reports with SharePoint

605

 4. Select the task to “ Create a new report server database ” to create a new Reporting Services
instance that will be configured in Integrated mode, and then click Next.

 5. Type in the name of the database server that will host the Reporting Services instance. If
everything is on the same server, this is probably already filled in for you. You can click on the
Test Connection button to confirm that you have a successful connection to the database server.
Click Next.

 6. Type in the name of the Reporting Services database that you want to create in Integrated mode.
The default is ReportServer ; however, we will call this new database
 ReportServerSharePointIntegrated . Make sure to also choose the option of SharePoint
Integrated Mode, as shown in Figure 16 - 10 , and then click Next.

Figure 16-9

c16.indd 605c16.indd 605 11/13/08 4:57:20 PM11/13/08 4:57:20 PM

Part VI: Reporting Services Integration and Custom Programming

606

 7. Specify the credentials that will be used to connect to the database. If everything is on the same
server, you can leave the default as Service Credentials and then click Next.

 8. A summary screen appears, outlining the choices that have been selected while going through
the Wizard. Review the information and click Next.

 9. The Wizard will now create the ReportServerSharePointIntegrated database in Integrated mode
and give a status of each of the processes as it completes. When the entire process has
completed, you will be presented with the results screen, as shown in Figure 16 - 11 . Click Finish
to exit the Wizard.

Figure 16-10

Figure 16-11

c16.indd 606c16.indd 606 11/13/08 4:57:21 PM11/13/08 4:57:21 PM

Chapter 16: Integrating Reports with SharePoint

607

 The database information from Step 2 is now changed to reflect the new Integrated mode database that
was just created.

 The next piece to the puzzle of integration is the SQL Server 2008 Reporting Services add - in for
SharePoint, which must be installed on all the web front - end servers in the SharePoint farm. In our
example, everything is on the same server, so we will install the add - in on this server.

 The add - in is a web download and provides the necessary features for tight integration between the
Report Server and the SharePoint farm. The SQL Server 2008 Reporting Services add - in for SharePoint
provides the following to the SharePoint farm:

 The Report Viewer web part for viewing Reporting Services reports as well as exporting to other
formats. This Report Viewer web part is different from the Report Viewer web part described in
the Native mode section. This Report Viewer web part is called SQL Server Reporting Services
Report Viewer and is designed to interact with reports in SharePoint Integrated mode.

 A URL proxy endpoint for Reporting Services reports

 SharePoint application pages for:

 Managing reports, data connections, and models

 Creating subscriptions and schedules

 Security

 Content types so that SharePoint understands Reporting Services objects

 At the time of this writing, you can download the SQL Server 2008 Reporting Services add - in for
SharePoint by searching for “ Microsoft SQL Server 2008 Feature Pack ” using your favorite web search
engine. Once at the feature pack download site, look for the rsSharePoint.msi or rsSharePoint_x64.msi
file, depending on if you are running a 64 - bit processor.

 The account used to install the add - in must be a Farm and Site Collection Administrator. When
installing using multiple servers, an Active Directory account should be used that is also a member of
the local machine ’ s Administrators group on every server that it is being installed on. The add - in needs
to be installed on every web front - end server in the farm.

 After installing the add - in, you will need to verify that the Reporting Services Integration Feature is
turned on for the Central Administration web application. You can do this by opening the Central
Administration page and going to Site Actions Site Settings. On the Site Settings page, click the link
under the Site Collection Administration section called Site Collection Features . In the features for the site,
activate the Reporting Server Integration Feature, as shown in Figure 16 - 12 . Once the feature is activated,
you will have a Reporting Services section in the Applications section of Central Administration, as
shown in Figure 16 - 13 .

❑

❑

❑

❏

❏

❏

❑

c16.indd 607c16.indd 607 11/13/08 4:57:21 PM11/13/08 4:57:21 PM

Part VI: Reporting Services Integration and Custom Programming

608

Figure 16-12

Figure 16-13

c16.indd 608c16.indd 608 11/13/08 4:57:21 PM11/13/08 4:57:21 PM

Chapter 16: Integrating Reports with SharePoint

609

 Now that the Reporting Services addition has been added to SharePoint, you are ready to configure the
farm and tell it what SQL Server 2008 Reporting Service instance it should integrate with.

 In the Reporting Services section of the Applications tab in Central Administration, click on the Grant
Database Access link. This screen grants the Report Servers ’ Web and Windows service accounts access
to the SharePoint databases. Since the database is running on the same server, just use the defaults and
click OK. You will then be prompted for a credential that has access to add the necessary accounts to
the database. If you are using a local administrator and everything is on the same box, as in the
examples, make sure to use the format SERVERNAME\administrator . In this example, the server name
is PROSSRS2008 , so the login would be PROSSRS2008\administrator and the password. In a distributed
farm environment, you would need to provide credentials that have access to the SharePoint databases
and can grant the appropriate access. In most situations, this would be the Farm Administrator
account.

 The next link down in the Reporting Services section is the Manage Integration Settings link. The
Integration Settings page has a Report Server Web Service URL and an Authentication Mode, as shown
in Figure 16 - 14 . The Web Service URL should match up with what is configured in the Reporting
Services Configuration utility under the Web Service URL navigational tab (see Figure 16 - 15). This
example uses port 8080 since the default MOSS site was using port 80. The Authentication Mode can be
either Trusted Account or Integrated Windows Authentication. Since everything is on the same server,
we will use Windows Authentication.

 The Trusted Account option sends the connection to the Report Server across the network using a
predefined trusted account. The trusted account impersonates a SharePoint user on the Report Server.
This scenario would be used when using Forms Authentication or when using Integrated Windows
Authentication without Active Directory or without kerberos. In these scenarios, the Report Server has
no knowledge of the users logging into SharePoint, so a predefined Trusted Account has to be set up so
that users will be able to run reports against the Report Server.

Figure 16-14

c16.indd 609c16.indd 609 11/13/08 4:57:23 PM11/13/08 4:57:23 PM

Part VI: Reporting Services Integration and Custom Programming

610

 The final link in the Reporting Services section in Central Admin is the Set Server Defaults. The Set
Server Defaults screen enables you to set the default number of snapshots to keep for the report history,
set the time - out period for report processing, configure logging for report processing, enable Windows
Integrated Authentication, enable ad hoc reporting, and set a custom Report Builder 1.0 URL, as shown
in Figure 16 - 16 . We will keep the defaults but should note an important step. If the Set Server Defaults
screen appears and you can click OK, you know that SharePoint and Reporting Services in Integrated
mode are communicating correctly.

Figure 16-15

c16.indd 610c16.indd 610 11/13/08 4:57:23 PM11/13/08 4:57:23 PM

Chapter 16: Integrating Reports with SharePoint

611

 In real - world situations, the Set Server Defaults link is often used to troubleshoot communication
between SharePoint and the Reporting Services instance. If there is a communication problem, this
screen will not load.

 At this point, the SharePoint farm is fully integrated with SQL Server 2008 Reporting Services, and you
are ready to publish and manage reports.

 Publishing Reports
 Publishing reports to a SharePoint integrated library can be done in several ways. Since a report is just
another document type, like a Word document, it can be uploaded to the report library just like any
other document. The same holds true with data connection types.

 Once the Reporting Services add - in for SharePoint has been installed on either a WSS 3.0 or MOSS 2007
installation, the farm knows about these new content types. You can manually create a Reports and Data
Connections library in any site and publish your reports and data connections to these libraries.

 WSS 3.0 and MOSS 2007 Standard Edition
 Publishing reports in WSS 3.0 and MOSS 2007 Standard Edition is nearly identical. The key difference
between these editions is that MOSS 2007 Standard Edition adds additional functionality to the
SharePoint environment, such as audiences. It is not until MOSS 2007 Enterprise Edition that major
features related to reporting are introduced, namely, the Report Center Enterprise Site template. The
Enterprise features are explored below in this chapter.

Figure 16-16

c16.indd 611c16.indd 611 11/13/08 4:57:24 PM11/13/08 4:57:24 PM

Part VI: Reporting Services Integration and Custom Programming

612

 Reports can be published in WSS 3.0 and MOSS 2007 Standard Edition by manually uploading reports
and setting data connections or by using Visual Studio Business Intelligence Development Studio (BIDS)
to publish reports and data connections directly to SharePoint libraries.

 Once the SharePoint environment has been integrated with SQL Server 2008 Reporting Services, a
number of report content types are made available. The following walks through creating libraries that
use these content types and then publishing the sample reports from within the BIDS environment.

 The reports and data connections can either be published directly to the same library or to separate
libraries dedicated to reports or data connections. In this example, you create a library to hold only
reports and another library to hold only data connections. You will then publish the sample reports and
data connections to these respective libraries.

 Before beginning, make sure that the Report Server Integration Feature is activated for the Site Collection.

 1. You will start with a SharePoint site that was created using the Blank template. The first step is
to create the report - specific SharePoint library. Choose Site Settings Create to enter the
SharePoint Creation screen.

 2. From the Create menu, click on the Document Library link under Libraries to create a new
document library. Clicking on the link brings up the form used to create the library. This library
will be used for reports, so fill in the name Reports and also choose None for Document
Template, as shown in Figure 16 - 17 .

Figure 16-17

c16.indd 612c16.indd 612 11/13/08 4:57:24 PM11/13/08 4:57:24 PM

Chapter 16: Integrating Reports with SharePoint

613

 3. At this point, you have a document library, but it is not associated with the Reporting Services
report content type. To change the content type associated for this library, open the Document
Library Settings by choosing Settings Document Library Settings from within the newly
created document library.

 4. By default, the management of content types is turned off in a document library. Click on the
Advanced Settings link, and then check Yes for “ Allow management of content types ” (see
Figure 16 - 18). Click OK to save the setting.

Figure 16-18

 5. Now that content type management is allowed, a new section called Content Types appears on
the Document Library Settings page. The default content type is Document. Click on this link to
open this content type, and then delete it from the library by clicking on the “ Delete this content
type ” link under the Settings section. Click OK to confirm the deletion.

 6. Next click on “ Add from existing site content types ” under the Content Types section in the
Library Settings page. Click on the dropdown, and choose “ Report Server Content Types ” to
display the content types that were added with the Reporting Services add - in for SharePoint.
There are three content types to choose from: Report Builder 1.0 Report, Report Builder 1.0 Model,
and Report Data Source. For this library, you only want to store reports, so add the Report
Builder 1.0 Report content type, as shown in Figure 16 - 19 , and then click OK.

c16.indd 613c16.indd 613 11/13/08 4:57:25 PM11/13/08 4:57:25 PM

Part VI: Reporting Services Integration and Custom Programming

614

 7. The Content Types section on the Library Settings page should now include the Report
Builder 1.0 Report content type. At this point the library is ready to hold Reporting Services
reports.

 8. Repeat Steps 1 – 7 to create a Data Sources library to store the shared data connections. Name the
new library Data Connections , and choose the content type Report Data Source .

 You now have one library to hold reports and another library to hold data connections on your
blank SharePoint page, as shown in Figure 16 - 20 . You can also have reports and data sources in the
same directory, but functionally it is easier to manage reports and data connections in separate
libraries.

Figure 16-19

c16.indd 614c16.indd 614 11/13/08 4:57:25 PM11/13/08 4:57:25 PM

Chapter 16: Integrating Reports with SharePoint

615

 Now that you have Reports and Data Connections libraries to hold the Reporting Services content, you
can fire up BIDS and open the sample AdventureWorks project.

 The sample project is stored in the following location by default:

C:\Program Files\Microsoft SQL Server\100\Samples\Reporting Services\Report
 Samples\AdventureWorks Sample Reports\AdventureWorks 2008 Sample
 Reports.sln

 Double - click on the solution file to fire up BIDS and load the sample solution, as shown in Figure 16 - 21 .
If you do not have BIDS installed, you can go back and install it from the SQL Server 2008 installation
media.

Figure 16-20

c16.indd 615c16.indd 615 11/13/08 4:57:26 PM11/13/08 4:57:26 PM

Part VI: Reporting Services Integration and Custom Programming

616

 Now that the solution is open, you are ready to publish the reports and data connections contained
within it to the newly created Reports and Data Connections libraries. Right - click on the
AdventureWorks 2008 Sample Reports solution and choose Properties, as shown in Figure 16 - 22 .

Figure 16-21

c16.indd 616c16.indd 616 11/13/08 4:57:26 PM11/13/08 4:57:26 PM

Chapter 16: Integrating Reports with SharePoint

617

 The Properties window is displayed with the TargetDataSourceFolder , TargetReportFolder , and
 TargetServerURL properties. As the name suggests, the TargetDataSourceFolder property
corresponds to the Data Connections library that you created above, and the TargetReportFolder
property corresponds to the Reports library. The TargetServerURL property is the URL of the blank
SharePoint site that contains your libraries. Fill in these fields with values that match your environment.
The format is http://server:port/path/to/SharePointSite/libraryname . If you are using the
default site, you would have something like http://server/libraryname . An example of my
environment is shown below. Note that I created the blank site as a subsite of the Docs library.

 Property Name Value

 TargetDataSourceFolder http://prossrs2008/Docs/myreports/Data Connections

 TargetReportFolder http://prossrs2008/Docs/myreports/Reports

 TargetServerURL http://prossrs2008/Docs/myreports

 Once the settings are correct, click OK to save the settings. Right - click on the AdventureWorks 2008
Sample Reports project in the Solution Explorer, and click Deploy.

Figure 16-22

c16.indd 617c16.indd 617 11/13/08 4:57:26 PM11/13/08 4:57:26 PM

Part VI: Reporting Services Integration and Custom Programming

618

 You might receive the error “ The underlying connection was closed: An unexpected error occurred on a
send ” as the data connections and reports are attempting to deploy. I received this error depending on
the order that I installed the technology stack. The error is a result of the SecureConnectionLevel
for the Report Server being set to 2, which requires SSL encryption.

 To allow the reports to be deployed without requiring SSL encryption, set the SecureConnectionLevel
setting to 0 in the rsreportserver.config file located at C:\Program Files\Microsoft SQL Server\
MSRS10.MSSQLSERVER\Reporting Services\ReportServer.

 Once the solution has been deployed, you can go back to the Reports folder and see all the reports in the
SharePoint library, as shown in Figure 16 - 23 . You can click on a report to view it. The report now has all
the content management features that SharePoint has to offer.

Figure 16-23

 If for some reason the report is not displayed when you click on it within the SharePoint Reports library,
you will need to check to make sure that it is using the correct data source by clicking the down arrow
next to the report to drop down the SharePoint specific menu and choosing Manage Data Sources. Make
sure that the connection string in the data source that it is using is correct.

 Also, confirm that the AdventureWorks2008 database has been downloaded from the SQL Server
samples CodePlex site and installed on the server. The AventureWorks2008 sample database is
contained in a file called SQL2008.AdventureWorks_OLTP_DB_v2008.x86.msi . Make sure to
include the option to restore the database to the server when installing in order to attach the database to
the SQL Server instance.

c16.indd 618c16.indd 618 11/13/08 4:57:27 PM11/13/08 4:57:27 PM

Chapter 16: Integrating Reports with SharePoint

619

 MOSS 2007 Enterprise Edition
 MOSS 2007 Enterprise Edition adds several Reporting Services integration features. In particular, the
Report Center Enterprise Site Template is added as well as a Library Type for Reports, a Library Type for
Data Connections, and a Content Type called Report .

 The Report Center site template takes the work out of creating Report and Data Connection libraries
manually, as was done in the previous section, by embedding these libraries in the template. Figure 16 - 24
shows a site created using the Report Center template.

Figure 16-24

 In addition to the already created Reports and Data Connections libraries, the Report Center site
template also contains a Report Calendar that can be used to track report updates and schedules and can
be synchronized with the Microsoft Outlook Calendar.

 You can create a Report Center site by selecting the Report Center template from the Enterprise tab when
creating a new SharePoint site, as shown in Figure 16 - 25 .

c16.indd 619c16.indd 619 11/13/08 4:57:28 PM11/13/08 4:57:28 PM

Part VI: Reporting Services Integration and Custom Programming

620

 Publishing reports to the Report Center is very similar to publishing reports to a WSS 3.0 or MOSS 2007
Standard Edition site, although the manual configuration has been taken out of the equation. To publish
reports to the Report Center, you simply need to supply the Reports library, Data Connections library,
and site location to the Properties window of the Visual Studio project. When MOSS Enterprise Edition
is initially installed, a Report Center site is created in the default site. There is no need to pre - create
libraries for these data types, as the Report Center already contains them. These properties can be
accessed by right - clicking on the project name in the Solution Explorer section of Visual Studio and
choosing Properties. The values take the format of http:// < servername > / < site > / < library > . My lab
environment values are shown in the table below as an example. The name of the server running MOSS
Enterprise Edition is prossrs2008 , the name of the default site that contains the libraries is Reports . Within
the Reports site, there is a Data Connections library and a Reports Library.

 Property Name Value

 TargetDataSourceFolder http://prossrs2008/Reports/Data Connections

 TargetReportFolder http://prossrs2008/Reports/ReportsLibrary

 TargetServerURL http://prossrs2008/Reports

 If you do want to create additional libraries, you can simply create a new library and choose either “ Report
Library ” or “ Data Connection Library ” on the SharePoint Create page for the Enterprise Edition site.

 If any of the features are not showing up for a newly created site, make sure that the Office SharePoint Server
Enterprise Site Collection Features and the Report Server Integration Feature are activated. These features
are generally activated for the default web application when the Reporting Services add - in is installed. If a
new web application was created, it will need to be activated in order for the Report Library content type to
appear under Library in the Create screen. These features can be activated by going to Site Actions Site
Setting Modify All Site Settings and then navigating to Site Administration Site Features.

 SharePoint Site Settings
 When Reporting Services is installed in Integrated mode and the Reporting Services add - in is installed
on the SharePoint farm, a new section called Manage Shared Schedules is created in the SharePoint Site
Settings, as shown in Figure 16 - 26 . The new section allows the administrator to manage the shared
schedules of the server. In particular, the administrator can add a new shared schedule, delete a schedule,
pause a schedule, or run a selected schedule.

Figure 16-25

c16.indd 620c16.indd 620 11/13/08 4:57:28 PM11/13/08 4:57:28 PM

Chapter 16: Integrating Reports with SharePoint

621

 Report Models
 In Chapter 11 , you learned about report models. Report models can be generated from within the
SharePoint environment using the following steps:

 1. Create a document library that contains the Report Builder 1.0 Model data type. Adding
Reporting Services content types to SharePoint document libraries was covered above in this
chapter. Once the library contains this content type, select New from the dropdown menu of the
library, and choose Report Model, as shown in Figure 16 - 27 .

Figure 16-26

Figure 16-27

c16.indd 621c16.indd 621 11/13/08 4:57:29 PM11/13/08 4:57:29 PM

Part VI: Reporting Services Integration and Custom Programming

622

 2. The Generate Model screen requires a name for the model and also a link to a data source. For
this example, name the report model AdventureWorksDW2008 Report Model . Next, you need
a data connection to the source for your Report Model. Chapter 11 described building report
models in detail, so just create a simple model based on a data connection to the
AdventureWorksDW2008 database.

 3. Before you can browse to your new data connection, you need to cancel out of the Generate
Model screen and create it. To create the new data connection, start by creating a document
library, or using an existing document library, to hold the data connection item. Make sure that
the document library includes the Report Data Source content type, as described above. Create a
new item in the document library based on the Report Data Source content type, as shown in
Figure 16 - 28 .

Figure 16-28

 4. In the New Data Connection screen, choose Microsoft SQL Server for the Data Source Type, and
then fill in the “ Connection string ” to point to the desired database. In this example, the
connection string points to the AdventureWorksDW2008 database. The completed New Data
Connection screen is shown in Figure 16 - 29 .

Figure 16-29

c16.indd 622c16.indd 622 11/13/08 4:57:31 PM11/13/08 4:57:31 PM

Chapter 16: Integrating Reports with SharePoint

623

 5. Now that you have a data connection, you are ready to go back and create a new model. Refer to
Steps 1 and 2 above, and then browse to the newly created data connection. The complete
configuration should look similar to Figure 16 - 30 .

Figure 16-30

Figure 16-31

Figure 16-32

 6. Click OK to begin generating the model. When the model has been successfully generated, it
will show up as an item in the SharePoint library, as shown in Figure 16 - 31 .

 A report model can be built from many data sources, including Oracle and SAP, among many others, as
shown in the New Data Connection screen in Figure 16 - 32 .

c16.indd 623c16.indd 623 11/13/08 4:57:32 PM11/13/08 4:57:32 PM

Part VI: Reporting Services Integration and Custom Programming

624

 Report Builder 1.0
 In Chapter 12 , you learned about Report Builder 1.0. Report Builder can be launched from within the
SharePoint environment using one of the following four methods:

 From within a library that contains the Report Builder 1.0 Report data type, select New from the
dropdown menu of the library, and choose Report Builder Report, as shown in Figure 16 - 33 .

❑

Figure 16-33

Figure 16-34

 From the context menu of a report, choose “ Edit in Report Builder, ” as shown in Figure 16 - 34 . ❑

 From the context menu of a report model, choose “ Load in Report Builder, ” as shown in
Figure 16 - 35 .

❑

c16.indd 624c16.indd 624 11/13/08 4:57:33 PM11/13/08 4:57:33 PM

Chapter 16: Integrating Reports with SharePoint

625

 After clicking on a report and viewing it in the SharePoint environment, click on the Actions
menu, and then click “ Open with Report Builder, ” as shown in Figure 16 - 36 .

❑

Figure 16-35

Figure 16-36

c16.indd 625c16.indd 625 11/13/08 4:57:36 PM11/13/08 4:57:36 PM

Part VI: Reporting Services Integration and Custom Programming

626

 Report Management
 Chapter 13 described in detail how to manage reports using Report Manager when SQL Server 2008
Reporting Services is installed in Native mode. In Integrated mode, the Report Manager is no longer
available. All report management functionality is performed from within the SharePoint
environment. Every report has a context menu associated with it for management. The menu can be
accessed by hovering over a report until a down arrow appears on the right - hand side of the report
name. When this arrow appears, click on it to reveal the context menu for that report, as shown in
Figure 16 - 37 .

Figure 16-37

 The following tables outline the Reporting Services – specific options contained in the context (dropdown
on right side of item) menu for the Report Builder 1.0 Report, Report Builder Model, and Report Data
Source content types, respectively. If a user does not have access to any particular menu, that menu item
will not show up for that user. SharePoint uses security trimming so that users see only the items for
which they have the appropriate permissions.

 Figure 16 - 38 and the following table describe the Report Builder 1.0 Report menu items.

c16.indd 626c16.indd 626 11/13/08 4:57:37 PM11/13/08 4:57:37 PM

Chapter 16: Integrating Reports with SharePoint

627

 Item Name Description

 Edit in Report Builder 1.0 Opens the report in Report Builder 1 for editing.

 Manage Subscriptions Opens the subscription management screen that allows for adding a
subscription to the report, adding a data - driven subscription to the
report, or deleting the report.

 Manage Data Sources Opens the Data Source Management screen that lists the data
sources for the report and allows for changing the Content Type and
Data Source Link of the data source.

 Manage Parameters Opens a screen that provides management for the parameters
contained within the report.

 Manage Processing Options Opens a screen that provides management for processing the report.
The screen includes Data Refresh Options, Processing Time - Out
Options, History Snapshot Options, and History Snapshot Limits.

 View Report History Displays a history of the report.

 Figure 16 - 39 and the following table describe the Report Builder Model menu items.

Figure 16-38

Figure 16-39

c16.indd 627c16.indd 627 11/13/08 4:57:38 PM11/13/08 4:57:38 PM

Part VI: Reporting Services Integration and Custom Programming

628

 Item Name Description

 Load in Report Builder 1.0 Loads the model into Report Builder 1.0.

 View Dependent Items Opens a screen that lists the reports that depend on this model.

 Manage Data Sources Opens the Data Source Management screen that lists the data
sources for the report and allows for changing the Content Type
and Data Source Link of the data source.

 Manage Clickthrough Reports Opens a screen that allows for the management of Clickthrough
reports. Clickthrough reports contain detailed information and are
accessed by clicking on data items in a main Report Builder 1.0 report.

 Manage Model Item Security Opens a screen that allows for the security management for
specific portions of the model.

 Regenerate Model Regenerates the model from the data source.

 Figure 16 - 40 and the following table describe the Report Data Source menu items.

Figure 16-40

 Item Name Description

 View Dependent Items Provides a list of all items that use this data source.

 Edit Data Source Definition Opens a screen that allows for the management of the data
source. The screen includes sections for setting the Data Source
type, Connection String, Credentials, and Availability of the
Data Source. The Data Source Types include the following:

 Microsoft SQL Server

 OLE DB

Microsoft SQL Server Analysis Services

Oracle

ODBC

XML

SAP NetWeaver BI

 Hyperion Essbase

c16.indd 628c16.indd 628 11/13/08 4:57:38 PM11/13/08 4:57:38 PM

Chapter 16: Integrating Reports with SharePoint

629

 SQL Server Reporting Services Report Viewer for
Integrated Mode

 The previous sections went through publishing and managing reports. Now that the reports are stored,
managed, and can be viewed in a SharePoint library, you might still want to present them on a nice
dashboard or entry site that users will view instead of navigating to the report library.

 The Report Viewer web part can be used in a very similar manner to how it was used when integrated
with Reporting Services in Native mode. The SQL Server Reporting Services Report Viewer web part,
however, is designed to interact with a Reporting Services instance running in Integrated mode. The web
part is listed under the available web parts, as shown in Figure 16 - 41 .

Figure 16-41

 The SQL Server Reporting Services Report Viewer web part can be set up to display a single defined
report or can receive its report information from a web part based on user interaction. The following
example walks through setting up a Reports Library web part that feeds a report to the viewer based on
the report selected.

 1. The first step is to add the SQL Server Reporting Services Report Viewer web part to the
SharePoint page. This example uses the default Report Center page that installs when MOSS is
installed. Click Site Actions Edit Page to place the page in Edit view.

 2. The next step is to add the viewer web part to the left side of the page for viewing the report
that the user selects. Click “ Add a Web Part to the Top Left Zone, ” and select the SQL Server
Reporting Services Report Viewer Web Part.

 3. Now you need a web part from which the user will select the report they wish to view. For this,
you can use the Reports Library web part. Click “ Add a Web Part to the Right Zone, ” and select
the Reports Library Web Part.

 4. Now that both web parts are on the page, you need to configure them. In the top - right corner of
the Report Viewer web part, select Edit Connections Get Report Definition From Reports
Library, as shown in Figure 16 - 42 .

c16.indd 629c16.indd 629 11/13/08 4:57:39 PM11/13/08 4:57:39 PM

Part VI: Reporting Services Integration and Custom Programming

630

Figure 16-42

 5. Finally, click Publish to publish the page back to the content library. Now when a report is
selected in the web part on the right side, the report is displayed in the viewer web part on the
left side, as shown in Figure 16 - 43 . The size of the web parts and formatting on the screen can, of
course, all be formatted to fit with the look and feel of your organization.

Figure 16-43

c16.indd 630c16.indd 630 11/13/08 4:57:39 PM11/13/08 4:57:39 PM

Chapter 16: Integrating Reports with SharePoint

631

 Architecture
 When SQL Server 2008 Reporting Services is installed in Native mode, it runs in its own completely
separate database. It uses an application called Report Manager to manage the database and does not
share any database elements with the SharePoint environment. In this situation, the SharePoint
environment is simply a viewer of the reports. As described previously in the chapter, the Report Viewer
web part and the Report Explorer web part are used to view and explore the Report Server. The
architecture of Reporting Services in Native mode is covered in Chapter 4 .

 When Reporting Services is installed in Integrated mode, the integration is achieved through tightly
coupled data sharing among the Reporting Services databases and the SharePoint databases. In this
configuration, SharePoint becomes the primary mechanism for displaying, managing, and securing not
only reports and models but data sources as well.

 In the simplest form, everything can be installed on one server. To review from the configuration
previously in the chapter, the following components are used in Integrated mode:

 SharePoint (object model)

 SQL Server Engine (hosting SharePoint databases)

 SQL Server Engine (hosting report server databases)

 SharePoint databases

 SQL Server Reporting Services databases

 SQL Server Reporting Services SharePoint add - in

 When installing SharePoint under the Basic configuration, SQL Server 2005 Compact Edition is used.
SharePoint can be installed in an Advanced configuration, in which case the SQL Server 2008 engine
can be used to host its content and configuration databases. We suspect that in a future service pack
Microsoft will use a SQL Server 2008 engine for the Basic installation of SharePoint.

 In a single server instance, all these components are installed on a single computer. The SQL Server
database engine is installed along with SQL Server Reporting Services in Integrated mode, which creates
the Reporting Services database. Next, SharePoint (MOSS 2007 or WSS 3.0) is installed, which creates the
configuration and content databases. Finally, the SharePoint add - in is installed to provide SharePoint
with the Reporting Services features.

 In order to distribute some of the features, the next scenario places the database engine on its own server.
The database engine continues to host the SharePoint configuration and content databases, as well as the
Reporting Services database. In this scenario, the SharePoint instance runs on its own server, and the
database engine runs on its own server.

 The distribution can continue as the needs of the organization become larger and larger. In a very large
organization, there are generally multiple servers that host various pieces of the SharePoint and
Reporting Services scenario. A common approach is to distribute SharePoint among application servers
and web front - end servers. There is generally a large, fail - safe SQL Server cluster that is used to host the
multiple configuration and content databases of the SharePoint farm. There is also a computer that hosts
the Reporting Services instance.

❑

❑

❑

❑

❑

❑

c16.indd 631c16.indd 631 11/13/08 4:57:40 PM11/13/08 4:57:40 PM

Part VI: Reporting Services Integration and Custom Programming

632

 Each of these scenarios breaks apart the pieces in order to gain stability and performance. In every
scenario, however, the underlying architecture remains the same. The SharePoint database takes control
of the Reporting Services objects. The objects are stored in the SharePoint databases but are synced with
the Reporting Services database in order to improve report rendering performance.

 One of the key benefits of SharePoint is that it provides users with a single access point to store all of their
business documents. A SharePoint site could be set up for the executive leadership team that includes all
documents they require on a daily basis. With Reporting Services in SharePoint Integrated mode, reports
are also stored in these same document libraries and are easily accessed and managed. One of the main
benefits of the reports being stored in the SharePoint libraries is that end - users only have to go to their
specific SharePoint sites to obtain all their business documents, including their reports. The modern
information workers world has become increasingly chaotic, in the digital sense, and Microsoft has
achieved great strides in consolidating this chaos into a single point of reference with the SharePoint site.

 Native Mode ver sus Integrated Mode
 Determining the best type of integration depends on many variables surrounding the SharePoint farm
and level of integration that is desired between the farm and the Reporting Services instance. The
content from the following table comes mostly from SQL Server 2008 Books Online (BOL), but it is
important enough to include similar content here as well:

 Native Mode Integrated Mode

 Integration Report Explorer and Report
Viewer web parts provide
access to the Report Server and
the ability to view reports, but
all management is done on the
Report Server using the
standard Report Manager
application.

 Viewing and managing reports are
integrated into the existing web portal
environment. A standard SharePoint
library is used to store and manage all
reports and data connections.

The SharePoint server farm becomes the
main front - end mechanism for Reporting
Services. The actual reporting server
becomes a back - end system.

A single web part is used to display
reports and is easily integrated with other
web parts and customized to fit the
overall page design.

The free Reporting Services SharePoint
add - in provides Reporting Services –
 specific application pages to the
SharePoint farm.

 Content Content is stored exclusively
on the Report Server.

 Content is stored in a SharePoint library
on the farm. Content also exists on the
Report Server but only for performance
reasons. All content is managed through
the SharePoint portal.

c16.indd 632c16.indd 632 11/13/08 4:57:40 PM11/13/08 4:57:40 PM

Chapter 16: Integrating Reports with SharePoint

633

 Native Mode Integrated Mode

 Security The Report Server controls all
security for content.
Management of security is
performed through Report
Manager.

 SharePoint manages and controls all
security. Security is integrated with the
existing SharePoint farm environment.

 Content
creation

 Content is created using
Report Manager or the
Reporting Services client
tools. Report Builder 1.0 can be
launched from Report
Manager.

 Content is created using the Reporting
Services client tools or directly from
within a SharePoint site and published to
SharePoint libraries. Within a SharePoint
site. a user can generate report models,
launch Report Builder 1.0, and publish
and view the resulting reports.

 Requirements SQL Server 2008

All versions of SQL Server 2005

 SQL Server 2000 SP2

 SQL Server 2008

SQL Server 2005 SP2

 WSS 3.0 or MOSS 2007

WSS 2.0 or SharePoint Portal
Server

 WSS 3.0 or MOSS 2007

 Installation and
configuration

 Copy web parts from report
server to SharePoint servers,
install web parts on SharePoint
servers, add web parts to
SharePoint sites, and configure
web parts.

 Download and install the SQL Server
Reporting Services SharePoint add - in on
SharePoint servers, configure Reporting
Services, configure SharePoint farm in
Central Admin.

 Limitations Must maintain separate
security policies. Security in
SharePoint is completely
separate from security on the
Reporting Services server
(Report Manager).

 Requires separate Reporting
Services tools for managing
the reporting environment
on the Reporting Services
server.

 Does not include all the
content - management features
that SharePoint has to offer.

 Linked reports and the Report Manager
application are not supported.

 No support for programmatic batch
operations or job management.

c16.indd 633c16.indd 633 11/13/08 4:57:41 PM11/13/08 4:57:41 PM

Part VI: Reporting Services Integration and Custom Programming

634

 Although there are some circumstances in which a client has chosen to use Native mode integration, we
have increasingly seen most environments take advantage of the tight integration that Integrated mode
provides. As an Enterprise Content Management (ECM) system, SharePoint is quickly becoming
unmatched with its ease of use and close integration with the Microsoft Office suite. For organizations
that are already running a SharePoint environment, there are very few reasons not to take advantage of
the SharePoint ECM environment, with all of its features, for reporting needs as well. Users are
becoming hyper - connected to the data in their organization, and soon they will just expect to see all of
their personal KPIs on their intranet Start page.

 Summary
 SharePoint is a technology that organizations have come to rely on for their intranet, extranet, and
Internet web sites. Integrating SQL Server 2008 Reporting Services and the SharePoint technologies is a
natural fit and provides a very attractive solution for delivering reports to end - users throughout the
organization.

In this chapter, you looked at the following topics:

 The SharePoint technologies in general, including Windows SharePoint Services and Microsoft
Office SharePoint Server, and SQL Server Engine (hosting SharePoint databases)

 A brief introduction to SharePoint web parts

 SharePoint integration with SQL Server Reporting Services in Native mode, including the
installation and usage of the Report Viewer and Report Explorer web parts

 SharePoint integration with SQL Server Reporting Services in Integrated mode, including
installation and configuration, publishing reports (WSS, MOSS 2007 Standard, and MOSS 2007
Enterprise), report models, Report Builder 1.0, report management, and the SQL Server
Reporting Services Report Viewer for Integrated Mode

 The architecture of SQL Server Reporting Services integration with SharePoint

A comparison of Reporting Services integration with SQL Server in Native mode versus in
Integrated mode

❑

❑

❑

❑

❑

❑

c16.indd 634c16.indd 634 11/13/08 4:57:41 PM11/13/08 4:57:41 PM

 Extending Repor ting
Ser vices

 As you learned in Chapter 2, Reporting Services is a robust and scalable product for enterprise
report processing. In addition, Microsoft has created Reporting Services using a modular
extensible architecture that gives users the ability to customize, extend, and expand the product to
support their enterprise business intelligence (BI) reporting needs. This chapter introduces you to
most of the areas within Reporting Services that allow customization and some of the reasons that
you may wish to extend the product. The basic requirements for implementing each type of
extension are discussed, followed by a detailed example of creating and deploying a data
processing extension.

 In this chapter, you will learn about the extensibility of Reporting Services and the areas that
currently support customization. These include:

 Extensibility options

 Reasons for extending SQL Server Reporting Services

 How to create custom extensions

 How to install custom extensions

 Reporting Services currently supports extending its behavior in the following areas:

 Data Processing Extensions (DPEs) — Custom DPEs enable you to access any type of
data using a consistent programming model. This option is for you if you cannot access
your data using one of the currently supported providers (Analysis Services, Hyperion
Essbase, ODBC, OLE DB, Oracle, Report Model, SAP BI NetWeaver, SQL Server, and
XML). Microsoft has also released a Feature Pack for SQL Server that provides customized
extensions, such as SAP Relational DB and DB2, in addition to the ones built into the
product.

❑

❑

❑

❑

❑

c17.indd 635c17.indd 635 11/13/08 4:58:14 PM11/13/08 4:58:14 PM

636

Part VI: Reporting Services Integration and Custom Programming

 Delivery Extensions — In Chapter 13, “ Content Management, ” we discussed “ subscribing to a
report. ” During this process, one of the required options is the method of delivery. Do you want
the report sent to your cell phone in image format, or perhaps delivered to a file share for your
perusal at a later date? The ability to extend SSRS with delivery extensions allows you to choose.

 Delivery extensions allow you to deliver reports to users or groups of users according to a
schedule. E - mail, network file shares, and SharePoint content are the delivery mechanisms
currently built into the product. Creating a delivery extension is really a two - part process. You
must create the extension itself, as well as a UI tool to manage the extension if you want it to be
usable from the SSRS Report Manager. The difficulty in creating a delivery extension is
primarily a function of the delivery mechanism.

 Rendering Extensions — Rendering extensions control the type of document/media that gets
created when a report is processed. Theoretically, you could have Reporting Services create any
type of media given the ability to extend the product in this area. Microsoft provides the
following rendering extensions out of the box:

 HTML — The HTML extension will generate HTML 3.2 for use with older browsers and
HTML 4.0 for browsers that support the dynamic HTML standard.

 MHTML (Web Archive) — MHTML is another HTML standard that was created to allow
disconnected viewing of HTML documents. All the images in the page are encoded into
the document, which increases its size but allows it to be viewed both online and offline.

 Excel — The Excel extension creates Excel - specific MHTML.

 Image — The Image extension allows you to export reports as images in the EMF, GIF,
JPEG, PNG, TIFF, and WMF formats.

 PDF — This extension allows the generation of reports in the PDF format.

 CSV — Comma Separated Values emit the data fields separated by commas. The first row
of the CSV results contains the Field names for the data.

 Security Extensions — In its first release, Reporting Services only supported Integrated
Windows Security for report access. This was a pretty big problem for some enterprise players.
Most companies have heterogeneous networks with multiple operating systems and products.
In a perfect world, all our networks, applications, and resources would support some form of
 “ single sign - on, ” or at least would allow us to build this ourselves. If Microsoft wanted SQL
Server to be a key part of an Enterprise Business Intelligence platform, it had to play nice with
others. Microsoft fixed this problem in Service Pack 1 for SQL Server 2000 and made it a part of
the RTM version in 2005. The release contained fully documented security extension interfaces
and an example using ASP.NET Forms – based authentication. You may now implement your
custom security model using SSRS.

 Report Processing Extensions (Custom Report Items) — This extension type came with the
2005 release of Reporting Services, and it allowed us to create custom report items that were
processed by the report processing engine. This enables us to extend the RDL standard in order
to include functionality not natively supported by the RDL, such as custom maps, horizontal
lists, and re - pivotable matrices. Developers can also extend current report items to provide
alternative versions that better fit their needs.

❑

❑

❏

❏

❏

❏

❏

❏

❑

❑

c17.indd 636c17.indd 636 11/13/08 4:58:15 PM11/13/08 4:58:15 PM

637

Chapter 17: Extending Reporting Services

 Report definition customization extensions — This is the latest addition to the list of available
extension options supported in the 2008 release. This extension type provides a hook into the
pre - processing of the report definition, and enables you to plug in custom code that can modify
the report definition stream before it gets processed. This is handy, for example, if you need to
modify the layout of the report based on a culture, locale, or user identity that is specified with
the report request. Note that you are not guaranteed where or when in the request pipeline the
customization will occur, but you are guaranteed that it will always happen before the
processing of the report definition takes place. For this extension, a new interface was included
and is required to be implemented:

 IReportDefinitionCustomizationExtension .

 Extension through Interfaces
 Reporting Services uses common interfaces or “ extension points ” to allow expanding the product in a
standard way. Enforcing the requirement that RS extension objects must implement certain interfaces
allows Reporting Services to interact with different object types without knowledge of their specific
implementation. This is a common object - oriented programming technique used to abstract the design
from the implementation.

 For an in - depth study of this topic, look at Chapter 3, “ Creational Patterns ,” of Design Patterns:
Elements of Reusable Object - Oriented Software , by Erich Gamma, Ralph Johnson, Richard Helm,
John M. Vlissides, and Grady Booch (Addison Wesley, 1994).

 What Is an Interface?
 Most C/C++ developers are intimately familiar with interfaces . The entire COM programming model is
based on them. Visual Basic developers have used them as well, but the VB6 programming environment
hides this. Seasoned .NET developers are also familiar with the use of interfaces, as we use them to
interact with the FCL (Framework Class Libraries). In fact, Reporting Services itself is exposed to
developers through a web service interface. In order to provide complete coverage of extending
Reporting Services, a definition and an explanation of interfaces are required.

 So what is an interface? An interface is a predefined code construct that forms a contract between
software components and defines how they communicate. The interface provides an abstraction layer of
its entity to the outside.

 That sounds great, but what does it mean? It simply means that in order to adhere to the contract
defined by an interface, all extension components must contain certain methods, properties, and so on.

 In Reporting Services specifically, it means that every single extension component must contain certain
methods defined by the IExtension interface. Other interface implementations may be required as
well, depending on the type of extension you are trying to create.

❑

c17.indd 637c17.indd 637 11/13/08 4:58:16 PM11/13/08 4:58:16 PM

638

Part VI: Reporting Services Integration and Custom Programming

 Interface Language Differences
 There are differences in the way that VB.NET and C# require interface methods to be declared. C#
supports “ implicit ” interface definitions. If the method names and signatures match those of an interface
implemented by the class, then the class methods are automatically mapped to their associated interface
definitions. We chose System.IDisposable for this example because many of the classes that you will
create are required to implement it.

 C#
public class TestClass : System.IDisposable
{
 //this method is automatically mapped to IDisposable.Dispose
 public void Dispose()
 {
 //write some code to dispose of non-memory resources
 }
}

 VB.NET requires explicit interface implementation. In order to be mapped correctly, VB.NET requires
that you specify that the method is implementing a certain interface. This is done with the Implements
keyword, as follows:

 VB.NET
Public Class TestClass
 Implements IDisposable

 Public Sub Dispose() Implements IDisposable.Dispose
 ‘write some code to dispose of non-memory resources
 End Sub
End Class

 Starting with Visual Studio 2005, improved code refactoring features were introduced to the Integrated
Development Environment (IDE), making this distinction almost unnecessary. Specifically, Visual Studio
2005 included a new feature we refer to as “ Interface AutoComplete. ” When you indicate that a class
should implement a certain interface, Visual Studio can jump in and generate wrapper methods for all
the properties, methods, and so on that are required for that interface (see Figure 17 - 1). This saves a huge
amount of typing and is a great productivity enhancement when creating objects designed to “ plug in ”
to an existing framework.

Figure 17-1

c17.indd 638c17.indd 638 11/13/08 4:58:16 PM11/13/08 4:58:16 PM

639

Chapter 17: Extending Reporting Services

 Microsoft is also attempting to build “ best practices ” into Visual Studio. While the two examples shown
above are technically correct in that they implement IDisposable , they do not implement the
 IDisposable design pattern shown in the .NET Framework SDK. When we allow Visual Studio 2005 to
do the heavy lifting, it creates a more feature - complete implementation that includes consideration for
cascading object chains and explicit release of memory and non - memory resources. Visual Studio would
create code similar to the following for IDisposable . We did take liberties with the comments to make
it easier to read.

 VB.NET
Public Class TestDispose
 Implements System.IDisposable

 Private disposed As Boolean = False

 ‘IDisposable
 Private Overloads Sub Dispose(ByVal disposing As Boolean)
 If Not Me.disposed Then
 If disposing Then
 ‘ TODO: put code to dispose managed resources
 End If
 ‘ TODO: put code to free unmanaged resources here
 End If
 Me.disposed = True
 End Sub

 ‘IDisposable Support
 ‘Don’t change
 Public Overloads Sub Dispose() Implements IDisposable.Dispose
 ‘ Don’t change. Put cleanup code
 ‘ in Dispose(ByVal disposing As Boolean) above.
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub

 ‘ Don’t change
 Protected Overrides Sub Finalize()
 Dispose(False)
 MyBase.Finalize()
 End Sub

End Class

 C#
public class TestDispose : System.IDisposable
{
 private bool disposed = false;

 //IDisposable
 private void Dispose(bool disposing)
 {
 if (! this.disposed)

(continued)

c17.indd 639c17.indd 639 11/13/08 4:58:16 PM11/13/08 4:58:16 PM

640

Part VI: Reporting Services Integration and Custom Programming

 {
 if (disposing)
 {
 // TODO: put code to dispose managed resources
 }
 // TODO: put code to free unmanaged resources here
 }
 this.disposed = true;
 }

 //IDisposable Support
 //Don’t change
 public void IDisposable.Dispose()
 {
 // Don’t change. Put cleanup code
 // in Dispose(ByVal disposing As Boolean) above.
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 // Don’t change
 protected void Finalize()
 {
 Dispose(false);
 base.Finalize();
 }

}

 You will be using this Interface AutoComplete feature for the remainder of this chapter. If you are using
Visual Studio .NET 2003, we encourage you to upgrade to Visual Studio 2005 or Visual Studio 2008,
because extensions for Reporting Services 2008 must be compiled using the .NET Framework version
2.0, which is not available from VS 2003. The generated code for IDisposable is suitable for
demonstration purposes, so we won ’ t repeat this code for each object but simply indicate that it is
required.

 Data Processing Extensions — A Detailed Look
 Reporting Services allows you to access data from traditional data sources such as relational databases
using the existing .NET data providers. The following providers are supplied as part of the .NET
Framework supplied by Microsoft:

 ODBC

 OLE DB

 Oracle

 SqlClient

❑

❑

❑

❑

(continued)

c17.indd 640c17.indd 640 11/13/08 4:58:17 PM11/13/08 4:58:17 PM

641

Chapter 17: Extending Reporting Services

 DPEs are components that allow you to access data for use within Reporting Services. If that implies a
 “ .NET data provider ” to you, then congratulations are in order. These two types of data access objects
are very similar and are based on a common set of interface definitions. If you have already built a
custom .NET data provider, you may use that provider with Reporting Services with no modification.
However, you also can extend your existing provider to provide additional functionality.

 To begin, we need to discuss the similarities and differences between a standard .NET data provider and
a Reporting Services DPE. Let ’ s start with some architectural information about data providers in
general and then dive into the details of creating a custom DPE. The .NET Framework has a data access
object model that is very similar to that used in traditional COM - based ADO. The ADO.NET object
model is displayed in Figure 17 - 2 .

SelectCommand

InsertCommand

UpdateCommand

DeleteCommand

DataAdapter

Transaction

Connection

Parameters

Command

DataReader

(Write)

Data Store

(Read)

(Read Only)

Figure 17-2

 Prior to Service Pack 1 of SSRS on SQL Server 2000, Reporting Services data providers were essentially
the same as the ADO.NET data providers, except for the fact that Microsoft had implemented wrapper
classes around the .NET providers in order for them to meet the Reporting Services extension interface
requirements. The Reporting Services requirements were a subset of the data provider requirements. The
programming paradigm was the same as well.

 With Service Pack 1 came the ability to customize and extend the security model of Reporting Services.
This required adding a few things to the object model.

 The basic steps for working with a data source are:

 1. Make a connection to a data source.

 2. Issue a command to manipulate data.

 3. Retrieve the results of your query.

 These actions map directly to the objects above, although a DataAdapter implementation is not needed
because Reporting Services only reads the data.

c17.indd 641c17.indd 641 11/13/08 4:58:17 PM11/13/08 4:58:17 PM

642

Part VI: Reporting Services Integration and Custom Programming

 Table 17 - 1 summarizes the objects that are normally created in a DPE and provides a description of the
object responsibilities.

Table 17-1

Object Description

Connection Establishes a connection to a specific data source.

Command Executes a command against a data source. Exposes a Parameters collection and
can execute within the scope of a transaction.

DataReader Provides access to data using a forward-only, Read Only stream.

DataAdapter Responsible for retrieving data and for resolving updates with the data source.
This object is not required for a DPE because SSRS only needs to read the data in
order to create reports.

 Each of these objects contains implementation - specific code needed to create a connection, issue
commands, or read and update data. Microsoft has enforced a consistent data access mechanism by
basing these objects on a set of standard interfaces. Figure 17 - 3 shows the interfaces that may be
implemented when creating a DPE, although not all of them are required.

Figure 17-3

 You may build a minimalist DataExtension by implementing the required interfaces shown in
Table 17 - 2 and add additional behavior by implementing the optional interfaces as shown in Table 17 - 3 .

c17.indd 642c17.indd 642 11/13/08 4:58:18 PM11/13/08 4:58:18 PM

643

Chapter 17: Extending Reporting Services

 Creating a Custom Data Processing
Extension

 Creating a full - blown data provider is no trivial task. The goal of this walk - through is to familiarize you
with the .NET data access mechanism, as well as help you create and install a custom Reporting Services
DPE. Our implementation is simplified in that it does not support transactions or the use of parameters,
and many of the methods are empty unless code is explicitly required. All the images shown were
created using the Visual Studio 2008 IDE. The code snippets are given in both C# and VB unless there is a
reason to do otherwise.

 The Scenario
 The first release of Reporting Services (with SQL Server 2000) lacked support for consuming existing
ADO.NET DataSet objects. After the release of Service Pack 1, the Books Online documentation
contained an example extension that used some of the dataset ’ s intrinsic properties to allow you to query

Table 17-2

Required Interfaces Description

IDbConnection Unique session with a data source

IDbCommand Represents query command methods to be executed against a
data source

IDataParameter Methods to support passing parameters to a Command object

IDataParameterCollection Collection of parameters

IDataReader Methods used to read a forward-only, Read Only data stream

IExtension Reporting Services–specific interface that supports localization
and is implemented by all SSRS extensions

Table 17-3

Optional Interfaces Description

IDataReaderExtension Used to provide Resultset-specific aggregation information

IDbCommandAnalysis Analysis Services–specific extension

IDbConnectionExtension Unique session with a data source

IDbTransaction Local transaction (nondistributed)

IDbTransactionExtension Reporting Services–specific interface that supports localization and
is implemented by all SSRS extensions

c17.indd 643c17.indd 643 11/13/08 4:58:18 PM11/13/08 4:58:18 PM

644

Part VI: Reporting Services Integration and Custom Programming

a DataSet object and limit the resulting rows based on certain criteria. The only problem was that you
were unable to do complex filtering or limit the columns returned by a query.

 In SQL Server 2005, Reporting Services gained a new DPE — the XML data extension. This enabled
reports to retrieve data from XML content, which could be located in a file, hosted on a web or file server,
or, even better, from web services. This new extension provided a XPATH - like syntax for the command
text, giving it greater flexibility for searching through data within the XML as well as supporting
schemata and namespaces.

 Interestingly enough, many companies have data stores that never really talk to each other directly, and
remain isolated. These companies usually have requirements to query those data sources and create
reports that join all that data together. SSRS 2008 does not provide an explicit mechanism to federate
data across multiple servers, besides SQL Server ’ s Linked Server features. If linked servers just are not
an option for you, then you are left to come up with a creative solution for the situation.

 The XML data extension may be useful in this scenario. You can set up a web service that does the dirty
work of joining data from multiple tables in memory using ADO.NET. Then all that SSRS needs to
provide to the web method is a collection of command texts to be executed, such as SQL statements or
stored procedure names, and the relationship details, such as key columns and types of join. Once the
web service has executed the commands and joined the data tables in memory, it returns the XML
dataset ready for SSRS to consume.

 In our example, we ’ ll provide a similar, but more simplistic extension that will show the fundamental
pieces required to implement the Reporting Services Interfaces and consume data from an XML data set
file. The ADO.NET DataSet type contains a method that allows it to read in the data from XML and
build the internal data table that Reporting Services will consume.

 Creating and Setting up the Project
 Let ’ s start by creating our project. Launch Visual Studio 2005, and create the project by choosing File
New Project. Change the name of the Project to DataSetDataExtension . Use the Class Library template
with the language of your choice. After your project is created, you need to set up your environment to
help you work. The Visual Basic IDE tends to hide some things from you, so you are going to make some
changes to help our C# brethren follow along. The first thing you want to do is show all your references.
The default behavior of VB.NET is to hide them. Choose Project Show All Files from the menu. The
Explorer tab should now show you all your project references.

 Next, you need to add the references to the required Reporting Services DLL file. The
Microsoft.ReportingServices.DataProcessing namespace is needed to implement the DPE
interfaces, and the Microsoft.ReportingServices.Interfaces namespace is needed
to implement the IExtension interface. Both of these namespaces are defined in the same file,
 Microsoft.ReportingServices.Interfaces.dll .

 The location of extensions and their dependencies is a subdirectory below the installation directory of
SQL Server itself. We will refer to the SQL Server installation path as < InstallPath > . The directory for
the SSRS extensions DLL that you need is the following:

 < lt;InstallPath > \MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin

c17.indd 644c17.indd 644 11/13/08 4:58:18 PM11/13/08 4:58:18 PM

645

Chapter 17: Extending Reporting Services

 On my machine, this directory is C:\Program Files\Microsoft SQL Server\
MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin.

 Choose Project Add Reference from the menu. Select the Browse tab, find the appropriate directory,
and add the reference. Your Solution Explorer window should now look something like that shown in
Figure 17 - 4 .

Figure 17-4

 The name of the project assembly should be changed to reflect your custom namespace for the project.
Choose Project Properties from the menu. At this point, you can either choose to fill in the root
namespace for your components or put it in your code. The example code contains the namespaces
directly. This was another way to avoid IDE problems, as shown in Figure 17 - 5 .

Figure 17-5

 Most of the classes created for this project have common requirements. Most of them have empty default
constructors, and all of them require the use of some common namespaces. The code below is a skeleton
of how each class should look after you create it. Replace the ClassName with the name of the class you
are working on. This will allow you to concentrate only on the differences between the objects that will
be created in your data extension project.

c17.indd 645c17.indd 645 11/13/08 4:58:19 PM11/13/08 4:58:19 PM

646

Part VI: Reporting Services Integration and Custom Programming

 In this example, you will be working with DataSet objects that are defined in the System.Data
namespace. To support the SSRS interface requirements, you should include the Microsoft
.ReportingServices.DataProcessing namespace at the top of your classes. This is the namespace
where the interface IExtension is defined. Because the common data interfaces are defined in both
ADO.NET and SSRS namespaces, you should fully qualify one of them to avoid name collisions. For the
sake of saving keystrokes, we will fully qualify System.Data objects types instead of the SSRS one,
when we use it. This namespace, however, is not needed in the DataSetParameter or
 DataSetParameterCollection classes.

 C#
using System;
using Microsoft.ReportingServices.DataProcessing;
using System.Data;

namespace Wrox.ReportingServices.DataSetDataExtension
{
 public class DataSetClassName
 {
 }
}

 VB.NET
Imports System
Imports Microsoft.ReportingServices.DataProcessing
Imports System.Data

Namespace Wrox.ReportingServices.DataSetDataExtension
 Public Class DataSetClassName

 End Class
End Namespace

 You can also use namespace aliases to avoid name collisions between types in the
ADO.NET and SSRS namespaces. The following snippet shows how you can alias
the Microsoft.ReportingServices.DataProcessing namespace to a shorter name:

 C#
using RSDataProc = Microsoft.ReportingServices.DataProcessing;

 VB
Imports RSDataProc = Microsoft.ReportingServices.DataProcessing;

c17.indd 646c17.indd 646 11/13/08 4:58:19 PM11/13/08 4:58:19 PM

647

Chapter 17: Extending Reporting Services

 Creating the DataSetConnection Object
 The DataSetConnection object is responsible for connecting to the data source and providing a
mechanism for accessing both the DPE - specific Transaction and Command objects. These
responsibilities are enforced through the IDbConnection interface. The DataSetConnection object is
the extension entry point and will be the first object in the extension that will deal with Reporting
Services, and, as such, it also is required to implement the IExtension interface, as discussed above.

 Because the DataSetConnection object is usually responsible for connecting to an unmanaged
resource, it is required to implement IDisposable . The aggregate interface for all these others is
 IDbConnectionExtension , which is what you will implement. Figure 17 - 6 shows a diagram created
with the Visual Studio class designer. Having the class designer within Visual Studio makes it easier both
to implement and understand the relationships between objects in a complex system.

Figure 17-6

 To add the DataSetConnection class to the project, choose Project Add Class from the menu. Change
the name of the class to DataSetConnection . Open the file and indicate that the class should implement the
 IDbConnectionExtension interface, as discussed above. Visual Studio will jump in and create all the
wrapper methods for you. Because you will be doing file I/O and using regular expressions to parse
your ConnectionString property, you need to add those namespaces to this class.

 C#
using System;

using System.IO;
using System.Text.RegularExpressions;

using Microsoft.ReportingServices.DataProcessing;

c17.indd 647c17.indd 647 11/13/08 4:58:19 PM11/13/08 4:58:19 PM

648

Part VI: Reporting Services Integration and Custom Programming

 VB.NET
Imports System

Imports System.IO
Imports System.Text.RegularExpressions

Imports Microsoft.ReportingServices.DataProcessing

 Variable Declarations
 In order to maintain state for your connection object, you need to declare some member variables.
The m_connectionString variable will hold the connection string that will be used to connect to the
data source. The m_localizedName variable should hold a localized name of the current extension used
to list the extension as a data source option in the user interface of tools such as Visual Studio Report
Designer or SQL Management Studio. The m_fileName variable will hold the path to the DataSet object
persisted (serialized) as XML.

 C#
 private string m_userName;
 private string m_password;
 private bool m_integrated;
 private string m_impersonate;
 private string m_connectionString = String.Empty;
 private string m_localizedName = “DataSet Data Source”;
 private string m_fileName;

 internal System.Data.DataSet dataSet;

 VB.NET
 Private m_impersonate As String
 Private m_integrated As Boolean
 Private m_password As String
 Private m_userName As String
 Private m_connectionString As String = String.Empty
 Private m_localizedName As String = “DataSet Data Source”
 Private m_fileName As String

 Friend dataSet As System.Data.DataSet = Nothing

 Constructors
 The DataSetConnection object has an empty default constructor, as well as an overloaded constructor
that allows the developer to create the object and initialize the connection string in one line of code.

 C#
public DataSetConnection(string connectionString)
{
 this.m_connectionString = connectionString;
}

c17.indd 648c17.indd 648 11/13/08 4:58:20 PM11/13/08 4:58:20 PM

649

Chapter 17: Extending Reporting Services

 VB.NET
Public Sub New(ByVal connectionString As String)
 Me.m_connectionString = connectionString
End Sub

 Implementing IDbConnectionExtension
 IDbConnectionExtension adds support for extending the SSRS security model, which is used to
authenticate and authorize the connection to the data source. The interface definition is shown below.
Notice the unusual use of WriteOnly properties.

 C#
public interface IDbConnectionExtension : IDbConnection, IDisposable, IExtension
{
 // Properties
 string Impersonate { set; }
 bool IntegratedSecurity {get; set; }

 string Password { set; }
 string UserName { set; }
}

 VB.NET
Public Interface IDbConnectionExtension
 Implements IDbConnection, IDisposable, IExtension

 ‘ Properties
 WriteOnly Property Impersonate As String
 Property IntegratedSecurity As Boolean
 WriteOnly Property Password As String
 WriteOnly Property UserName As String
End Interface

 Impersonate Property
 Windows supports the idea of impersonation. This is the idea that a process of execution can “ assume ”
the identity of a set of assigned security credentials. The Impersonate property allows the assignment
of a string representing the user account whose security context the process should run under.

 C#
public string Impersonate
{
 set { m_impersonate = value; }
}

c17.indd 649c17.indd 649 11/13/08 4:58:20 PM11/13/08 4:58:20 PM

650

Part VI: Reporting Services Integration and Custom Programming

 VB.NET
Public WriteOnly Property Impersonate() As String
 Implements IDbConnectionExtension.Impersonate
 Set(ByVal value As String)
 m_impersonate = value
 End Set
End Property

 IntegratedSecurity Property
 The IntegratedSecurity property indicates whether or not you want the extension to run using
Windows security for both authentication (identifying the user) and authorization (denying/granting a
user permission to perform certain actions).

 C#
public bool IntegratedSecurity
 {
 get{ return m_integrated;}
 set {m_integrated = value;}
 }

 VB.NET
Public Property IntegratedSecurity() As Boolean
 Implements IDbConnectionExtension.IntegratedSecurity
 Get
 Return m_integrated
 End Get
 Set(ByVal value As Boolean)
 m_integrated = value
 End Set
End Property

 UserName and Password Properties
 The UserName and Password properties are used during the Reporting Services authentication process.
The UserName/Password pair is authenticated against either the Windows credential store or some
custom store you provide. Next, a principal object that implements IPrincipal is created and assigned
to the current thread of execution. That object contains the user ’ s identity and role membership
information and is used to authorize user access to system resources (the data source). Good security
practice dictates that this information be available for the shortest time possible — thus the use of Write
Only properties.

 C#
public string Password
{
 set { m_password = value; }
}

public string UserName
{
 set { m_userName = value; }
}

c17.indd 650c17.indd 650 11/13/08 4:58:21 PM11/13/08 4:58:21 PM

651

Chapter 17: Extending Reporting Services

 VB.NET
Public WriteOnly Property Password() As String
 Implements IDbConnectionExtension.Password
 Set(ByVal value As String)
 m_password = value
 End Set
End Property

Public WriteOnly Property UserName() As String
 Implements IDbConnectionExtension.UserName
 Set(ByVal value As String)
 m_userName = value
 End Set
End Property

 Implementing IDbConnection
 The IDbConnection interface is the standard mechanism that data providers use to control the use
of the DataSetConnection object. These properties and methods help you make changes to the
connection settings, open and close the connection, and associate the connection with a valid transaction.
Your connection object does not support transactions because of its Read Only nature and because, in
this DPE example, you are working against a filesystem, which is not a resource manager. Below is the
definition of the IDbConnection interface.

 C#
public interface IDbConnection : IDisposable, IExtension
{
 IDbTransaction BeginTransaction();
 IDbCommand CreateCommand();
 void Open();
 void Close();
 string ConnectionString { get; set; }
 int ConnectionTimeout { get; }
}

 VB.NET
Public Interface IDbConnection
 Inherits IDisposable, IExtension
 Function BeginTransaction() As IDbTransaction
 Function CreateCommand() As IDbCommand
 Sub Open()
 Sub Close()
 Property ConnectionString() As String
 Property ConnectionTimeout() As Integer
End Interface

c17.indd 651c17.indd 651 11/13/08 4:58:21 PM11/13/08 4:58:21 PM

652

Part VI: Reporting Services Integration and Custom Programming

 BeginTransaction Method
 The BeginTransaction method is primarily responsible for initiating a new transaction and returning a
reference to a valid, implementation - specific Transaction object. The filesystem, which is our data
store, does not support transactions, but this method is required by the interface. You need to ensure that
the developer who will use your object in code is aware of that fact. This is done by throwing a
 NotSupportedException .

 C#
public IDbTransaction BeginTransaction()
{
 // this example does not support transactions
 throw new NotSupportedException(“Transactions not supported”);
}

 VB.NET
Public Function BeginTransaction() As IDbTransaction _
 Implements IDbConnection.BeginTransaction
 ‘ example does not support transactions
 Throw New NotSupportedException(“Transactions not supported”)
End Function

 CreateCommand Method
 The CreateCommand function is responsible for creating and returning a reference to a valid
implementation - specific Command object. The method uses an overloaded constructor of your custom
 Command object in order to pass that object a reference to the current connection.

 C#
public IDbCommand CreateCommand()
{
 // Return a new instance of the implementation-specific command object
 return new DataSetCommand(this);
}

 VB.NET
Public Function CreateCommand() As IDbCommand _
 Implements IDbConnection.CreateCommand
 ‘ Return a new instance of the implementation specific command object
 Return New DataSetCommand(Me)
End Function

 Open Method
 In a full data provider implementation, the Open method is used to make a data source – specific
connection. This sample implementation will use the Open method to create an instance of a generic
dataset object from ADO.NET and fill it from the XML file provided in our ConnectionString
property.

c17.indd 652c17.indd 652 11/13/08 4:58:21 PM11/13/08 4:58:21 PM

653

Chapter 17: Extending Reporting Services

 C#
public void Open()
{
 this.dataSet = new System.Data.DataSet();
 this.dataSet.ReadXml(this.m_fileName);
}

 VB.NET
Public Sub Open() Implements IDbConnection.Open
 Me.dataSet = New System.Data.DataSet
 Me.dataSet.ReadXml(Me.m_fileName)
End Sub

 Close Method
 The Close method is used to close your data source – specific connection. You are going to use the Close
method to release the DataSet object that you have in memory.

 C#
public void Close()
{
 this.dataSet = null;
}

 VB.NET
Public Sub Close() Implements IDbConnection.Close
 Me.dataSet = Nothing
End Sub

 ConnectionString Property
 The ConnectionString property allows you to set the connection string through code. The property
uses a private variable to store the current connection string, which is used to provide the information
needed to connect to the data source. Most developers are familiar with this property because of its
frequent use in both traditional ADO and ADO.NET. In this DPE example, the ConnectionString
property is used to indicate the XML data set file that you are going to parse for data. The user of your
DPE should input the path to the file they wish to parse into the connection string textbox of the Report
Designer ’ s Dataset dialog or the shared data source ’ s Properties page. You will be storing the connection
string value in the private member variable m_connectionString .

 C#
public string ConnectionString
{
 get {return m_connectionString;}
 set {m_connectionString = value;}
}

c17.indd 653c17.indd 653 11/13/08 4:58:21 PM11/13/08 4:58:21 PM

654

Part VI: Reporting Services Integration and Custom Programming

 VB.NET
Public Property ConnectionString() As String _
 Implements IDbConnection.ConnectionString
 Get
 Return m_connectionString
 End Get
 Set(ByVal Value As String)
 m_connectionString = Value
 End Set
End Property

 You want to enforce that the value passed into the ConnectionString property meets your criteria for
supplying the information needed to connect to the data source. You want to enforce that the string is in
the format:

FileName=c:\FileName.xml

 The easiest way to validate the string format is to use regular expressions. You need to modify the Set
accessor to reflect this change. First, you are going to execute the static/shared Match method of the
 Regex class.

 You are passing in an expression that basically says “ Parse the connection string and make matches on
character arrays that are preceded by FileName= and are not composed of beginning - of - line characters
or semicolons. ”

 All that is left is to test to see if the filename is valid, and, if so, assign it to your private filename variable.
Your code should resemble that below:

 C#
set
{
 this.m_connectionString = value;

 Match m = Regex.Match(value, “FileName=([^;]+)”, RegexOptions.IgnoreCase);
 if (!m.Success)
 {
 string msg = “\”FileName= < filename > \” must be present in the connection “ +
 “string and point to a valid DataSet xml file”;
 throw (new ArgumentException(msg, “ConnectionString”));
 }

 string filename = m.Groups[1].Captures[0].ToString();
 if (!File.Exists(filename))
 {
 string msg = “Incorrect file name, or file does not exist”;
 throw (new ArgumentException(msg, “ConnectionString”));
 }

 this.m_fileName = filename;
}

c17.indd 654c17.indd 654 11/13/08 4:58:22 PM11/13/08 4:58:22 PM

655

Chapter 17: Extending Reporting Services

 VB.NET
Set(ByVal Value As String)
 Me.m_connectionString = Value

 Dim m As Match = Regex.Match(Value, “FileName=([^;]+)”,
 RegexOptions.IgnoreCase)
 If Not m.Success Then
 Dim msg As String = “’FileName= < filename > ’ must be present string “ & _
 “and point to a valid DataSet xml file”
 Throw (New ArgumentException(msg, “ConnectionString”))
 End If
 If Not File.Exists(m.Groups(1).Captures(0).ToString) Then
 Throw (New ArgumentException(“Incorrect FileName”, “ConnectionString”))
 End If
 Me.m_fileName = m.Groups(1).Captures(0).ToString

End Set

 ConnectionTimeout Property
 The ConnectionTimeout property allows you to set the time - out property of the connection. This is
used to control how long the interval for connecting to the source should be before an error is thrown.
Your example class does not actually use this value, but it is implemented for consistency and because of
interface requirements. Returning a value of 0 indicates that there is an infinite time - out period.

 C#
public int ConnectionTimeout
{
 get
 {
 // Returns the connection time-out value.
 // Zero indicates an indefinite time-out period.
 return 0;
 }
}

 VB.NET
Public ReadOnly Property ConnectionTimeout() As Integer _
 Implements IDbConnection.ConnectionTimeout
 Get ‘ Returns the connection time-out value.
 ‘ Zero indicates an indefinite time-out period.
 Return 0
 End Get
End Property

 Creating the DataSetParameter Class
 The DataSetParameter class is not needed until the command class is created, but because of that
dependency you do need to create it. The parameter object is used to send parameters to the command
object that can be used in executing commands against the data source. Despite the fact that this class is

c17.indd 655c17.indd 655 11/13/08 4:58:22 PM11/13/08 4:58:22 PM

656

Part VI: Reporting Services Integration and Custom Programming

not used to perform any work, the interface requirements of the command class force you to create it. This
class also has interface requirements; it is required to support the IDataParameter interface defined in
the Reporting Services DPE assembly.

 To add the DataSetParameter class to the project, choose Project Add Class from the menu, and
change the name to DataSetParameter .

 Declarations
 The following declarations are used internally to hold both the value and the name of the parameter. The
name is stored in a string variable called m_parameterName . Because the value variable might contain
any type of value, the m_parameterValue is declared as an Object type.

 C#
String m_parameterName = string.Empty;
Object m_parameterValue;

 VB.NET
Dim m_parameterName As String
Dim m_parameterValue As Object

 Implementing IDataParameter
 The IDataParameter interface enforces that your custom parameter class allow a programmer to get
and set the name and value of the current parameter.

 C#
public interface IDataParameter
 {
 string ParameterName { get; set; }
 object Value { get; set; }
 }

 VB.NET
Public Interface IDataParameter
 Property ParameterName() As String
 Property Value() As Object
End Interface

 Modify the class code to force the DataSetParameter class to implement IDataParameter using the
Interface AutoComplete technique discussed at the beginning of the chapter. Your code should resemble
the following. The wrappers for all of your interface methods should have been created automatically
and surrounded by region tags. Below is what your parameter class definition should look like.

 C#
namespace Wrox.ReportingServices.DataSetDataExtension
{

 public class DataSetDataParameter : IDataParameter

 {

c17.indd 656c17.indd 656 11/13/08 4:58:22 PM11/13/08 4:58:22 PM

657

Chapter 17: Extending Reporting Services

 VB.NET
Namespace Wrox.ReportingServices.DataSetExtension
 Public Class DataSetParameter

 Implements IDataParameter

 ParameterName Property
 The ParameterName property is used to store the name of the parameter in a string variable called
m_parameterName . This field is typically used to map to parameters in stored procedures but is unused
in this implementation.

 C#
public string ParameterName
 {
 get { return m_parameterName; }
 set { m_parameterName = value; }
 }

 VB.NET
Public Property ParameterName() As String _
 Implements IDataParameter.ParameterName
 Get
 Return m_parameterName
 End Get
 Set(ByVal Value As String)
 m_parameterName = value
 End Set
End Property

 Value Property
 The Value property is similar to the name created above in that it is not actually used in this
example. The value is stored in an object variable called m_value .

 C#
public object Value
 {
 get { return m_value; }
 set { m_value = value; }
 }

 VB.NET
Public Property Value() As Object _
 Implements IDataParameter.Value
 Get
 Return m_value
 End Get
 Set(ByVal Value As Object)
 m_value = Value
 End Set
End Property

c17.indd 657c17.indd 657 11/13/08 4:58:23 PM11/13/08 4:58:23 PM

658

Part VI: Reporting Services Integration and Custom Programming

 Creating the DataSetParameterCollection Class
 The DataSetParameterCollection class is simply a collection of parameter objects. Although you
could have created a custom collection class that implements all the required methods, an easier route
exists. The IDataParameterCollection interface is basically a subset of the IList < T > interface that is
used to define other generic collections in the .NET Framework. By using an object already available,
you reduce the required coding effort considerably. In our example, T will be the type IDataParameter ,
which will be implemented by our custom DataSetParameter class.

 To add the DataSetParameterCollection class to the project, choose Project Add Class from the
menu. Change the name of the class to DataSetParameterCollection .

 There is no need to create custom constructors or member variables for use in your collection class. This
is because you can use the internal variables and constructors that exist inside the List < T > base class
that this class inherits from. The properties that you create will be mapped directly to properties and
methods that exist in the List < T > class.

 Namespaces
 The DataSetParameterCollection class uses the standard namespaces discussed above. There
is an additional namespace that is needed because of the use of List < T > . You must add the
System.Collections.Generic namespace and a private variable for our internal collection.

 C#
using System;
using Microsoft.ReportingServices.DataProcessing;

using System.Collections.Generic;

 VB.NET
Imports System
Imports Microsoft.ReportingServices.DataProcessing

Imports System.Collections.Generic

 Implementing IDataParameterCollection
 We have created the DataSetParameterCollection class by using an object wrapper around an
 IList < T > generic collection. Generics are a feature available in .NET 2.0 and later versions, so our
example will not compile or run within earlier versions of the .NET Framework run time. The
 IDataParameterCollection interface defines a custom Add method as well as provides methods to
access the members of this collection through the IEnumerable interface. The List < T > base class
implements this interface. Your class will use the internal List < IDataParameter > class properties and
methods to service its needs.

 C#
public interface IDataParameterCollection : IEnumerable
 {
 int Add(IDataParameter parameter);
 }

c17.indd 658c17.indd 658 11/13/08 4:58:23 PM11/13/08 4:58:23 PM

659

Chapter 17: Extending Reporting Services

 VB.NET
Public Interface IDataParameterCollection
 Inherits IEnumerable
 Function Add(ByVal parameter As IDataParameter) As Integer
End Interface

 The modified code in C# is:

namespace Wrox.ReportingServices.DataSetDataExtension
{

 public class DataSetDataParameterCollection : IDataParameterCollection

 {

 List < IDataParameter > paramList;

 The modified code in VB.NET is:

Namespace Wrox.ReportingServices.DataSetDataExtension

 Public Class DataSetDataParameterCollection

 Implements IDataParameterCollection

 Private paramList As List(Of IDataParameter)

 Since most of the functionality of the DataSetDataParameterCollection class exists through the
 paramList reference, all that needs to be done is to create the wrapper Add method required by
the IDataParameter interface. This method is used by the internal collection to add parameters to an
instance of the collection object.

 C#
public int Add(IDataParameter parameter)
{
 paramList.Add(parameter);
 return paramList.IndexOf(parameter);
}

 VB.NET
Public Overloads Function Add(ByVal parameter As IDataParameter) As Integer _
 Implements IDataParameterCollection.Add

 paramList.Add(parameter)
 Return paramList.IndexOf(parameter)

End Function

c17.indd 659c17.indd 659 11/13/08 4:58:23 PM11/13/08 4:58:23 PM

660

Part VI: Reporting Services Integration and Custom Programming

 Creating the DataSetCommand Class
 The command object is responsible for sending commands to the data source. This is enforced by
making the object implement the IDbCommand interface, which supplies a standard mechanism for
passing in commands to be executed against the data source as well as parameters that might be needed
in the process of executing these commands. It also defines a property that allows the developer to
associate the command with a Transaction object. Your implementation is simplified in that it does not
support transactions or parameters.

 In your implementation, this class is where the majority of the work is done. You need to process the
command text to know what data the user wants. You must validate that this text conforms to your
requirements, and then you need to create the internal data reference that will supply the data for
the data reader object to process. You are going to be using some of the built - in behaviors of the
System.Data.DataSet class to satisfy your needs.

 To add the DataSetCommand class to the project, choose Project Add Class from the menu. Change the
name of the class to DataSetCommand . Use the Interface AutoComplete feature to have Visual Studio
create the wrappers for the methods that you will implement. Most of the functionality that exists in this
extension will live in this class.

 Variable Declarations
 As most of our work is done in this class, it makes sense that most of our code is also in it. First, you
need to create variables to hold your property data. This class is actually going to be a wrapper around
some of the built - in DataSet functionality, so you will need reference variables for the data - set objects as
well as other variables used for text parsing and the like. In order not to be repetitive, we ’ ll discuss the
variables in more depth where they are used.

 C#
//member variables
 int m_commandTimeOut = 0;
 string m_commandText = string.Empty;
 DataSetConnection m_connection;
 DataSetParameterCollection m_parameters;

//dataset variables
 string tableName = string.Empty;
 System.Data.DataSet dataSet = null;
 internal System.Data.DataView dataView = null;

//regex variables
 MatchCollection kwc = null;
 Match fieldMatch = null;

//regex used for getting keywords
 Regex keywordSplit = new Regex(@”(Select|From|Where| Order[\s] +By)”,
 RegexOptions.IgnoreCase | RegexOptions.Multiline
 | RegexOptions.IgnorePatternWhitespace | RegexOptions.Compiled);

// regex used for spliting out fields
 Regex fieldSplit = new Regex(@”([^ ,\s]+)”,

c17.indd 660c17.indd 660 11/13/08 4:58:24 PM11/13/08 4:58:24 PM

661

Chapter 17: Extending Reporting Services

 RegexOptions.IgnoreCase | RegexOptions.Multiline
 | RegexOptions.Compiled | RegexOptions.IgnorePatternWhitespace);

//internal constants
 const int SELECT_POSITION = 0;
 const int FROM_POSITION = 1;
 const string TEMPTABLE_NAME = “TempTable”;

//these variables can change
 int keyWordCount = 0;
 int wherePosition = 2;
 int orderPosition = 3;

 bool filtering = false;
 bool sorting = false;
 bool useDefaultTable = false;

 VB.NET
 ‘property variables
 Private m_cmdTimeOut As Integer = 0
 Private m_commandText As String = String.Empty
 Private m_connection As DataSetConnection
 Private m_parameters As DataSetParameterCollection = Nothing

‘dataset variables
 Private tableName As String = String.Empty
 Private dataSet As FCLData.DataSet
 Friend dataView As FCLData.DataView

‘regex variables
 Private kwc As MatchCollection
 Private fieldMatch As Match
 Private tableMatch As Match
 Private keywordSplit As Regex = New Regex(“(Select|From|Where| Order[\s] +By)”,_
 RegexOptions.IgnoreCase Or RegexOptions.Multiline Or _
 RegexOptions.IgnorePatternWhitespace Or RegexOptions.Compiled)
 Private fieldSplit As Regex = New Regex(“([^ ,\s]+)”, RegexOptions.IgnoreCase Or _
 RegexOptions.Multiline Or RegexOptions.Compiled Or _
 RegexOptions.IgnorePatternWhitespace)

‘Constants
 Private tempTableName As String = “TempTable”
 Private selectPosition As Integer = 0
 Private fromPosition As Integer = 1
 Private wherePosition As Integer = 2
 Private orderPosition As Integer = 3

‘internal variables

 Private keyWordCount As Integer = 0
 Private filtering As Boolean = False
 Private sorting As Boolean = False
 Private useDefaultTable As Boolean = False

c17.indd 661c17.indd 661 11/13/08 4:58:24 PM11/13/08 4:58:24 PM

662

Part VI: Reporting Services Integration and Custom Programming

 Constructors
 You want the users of your processing extension to be forced to create the Command object either through
the CreateCommand method of the IDbConnection interface or by passing in a valid
 DataSetConnection object as a parameter. The purpose of this is to ensure that you have access to the
underlying DataSet object created and parsed in the connection process. This can be done by deleting or
not providing an empty default constructor. This prevents the developer from creating the
 DataSetCommand object without the correct initialization. In the constructor, you want to get a reference
to the DataSet that you opened from the filesystem in your connection object.

 C#
internal DataSetCommand(DataSetConnection conn)
{
 this.m_connection = conn;
 this.dataSet = this.m_connection.dataSet;
 this.m_parameters = new DataSetParameterCollection();
}

 VB.NET
Friend Sub New(ByVal conn As DataSetConnection)

 Me.m_connection = conn
 Me.dataSet = Me.m_connection.dataSet
 Me.m_parameters = New DataSetParameterCollection
End Sub

 Implementing IDbCommand
 The required interface for all Command objects is called IDbCommand . It consists of methods that allow the
developer to pass commands and parameters to the Command object. The most interesting method in our
implementation is the CommandText method, where you will parse the command string provided by the
user and return the appropriate data.

 C#
public interface IDbCommand : IDisposable
{
 void Cancel();
 IDataReader ExecuteReader(CommandBehavior behavior);
 string CommandText { get; set; }
 int CommandTimeout { get; set; }
 CommandType CommandType { get; set; }
 IDataParameter CreateParameter();
 IDataParameterCollection Parameters { get; }
 IDbTransaction Transaction { get; set; }
}

c17.indd 662c17.indd 662 11/13/08 4:58:24 PM11/13/08 4:58:24 PM

663

Chapter 17: Extending Reporting Services

 VB.NET
Public Interface IDbCommand
 Inherits IDisposable
 Sub Cancel()
 Function ExecuteReader(ByVal behavior As CommandBehavior) As IDataReader
 Property CommandText() As String
 Property CommandTimeout() As Integer
 Property CommandType() As CommandType
 Function CreateParameter() As IDataParameter
 Property Parameters() As IDataParameterCollection
 Property Transaction() As IDbTransaction
End Interface

 Now that you have created the method wrappers and created all the variables that you need to work,
you can begin implementing your IDbCommand methods.

 Cancel Method
 The Cancel method is typically used to cancel a method that has been queued. Most implementations of
data providers are multithreaded and support the issue of multiple commands against the data store.
You have only created this method to support the IDbCommand interface requirements and should
inform the developer of your lack of support by throwing a NotSupportedException .

 C#
public void Cancel()
{
 // not supported
 throw new NotSupportedException();
}

 VB.NET
Public Sub Cancel() _
 Implements IDbCommand.Cancel
 ‘not supported
 Throw New NotSupportedException
End Sub

 ExecuteReader Method
 The ExecuteReader method returns an extension - specific reader object to the caller so that it can loop
through and read the data. The DataSetCommand object creates an instance of your custom reader object
by executing this method. A reference to your custom data reader is then returned. Your implementation
actually builds a temporary table with a schema built based on the query issued by the user. You don ’ t
want to fill this temporary table unless the user actually requests the data, so you are checking to see if it
is a schema - only command. You are also checking to see if the users indicated that they want all the
fields available from the data source. If that is the case, you use a view of the default DataTable , which
already contains all the data.

c17.indd 663c17.indd 663 11/13/08 4:58:25 PM11/13/08 4:58:25 PM

664

Part VI: Reporting Services Integration and Custom Programming

 C#
public IDataReader ExecuteReader (CommandBehavior behavior)
{
 if(!(behavior == CommandBehavior.SchemaOnly) & & !useDefaultTable)
 {
 FillView();
 }
 return (IDataReader) new DataSetDataReader(this);
 }

 VB.NET
Public Function ExecuteReader(ByVal behavior As CommandBehavior) As IDataReader _
 Implements IDbCommand.ExecuteReader
 If Not (behavior = CommandBehavior.SchemaOnly) AndAlso Not useDefaultTable Then
 FillView()
 End If
 Return CType(New DataSetDataReader(Me), IDataReader)
End Function

 CommandText Property
 Reporting Services does not manually create a separate Command object. It uses the CreateCommand
method of the IDBConnection interface to return an implementation - specific Command object. We will
be using the CommandText property to help us build the data schema that we will return, as well as
filling our data source for use of Reporting Services. This method has been broken down into methods
reflecting the actual work being done and to facilitate this discussion. Notice the ValidateCommandText
method. This method is the entry point for your text - parsing and table - building process.

 C#
public string CommandText
 {
 get
 {
 return this.m_commandText;
 }
 set
 {
 ValidateCommandText(value);
 this.m_commandText = value;
 }
}

 VB.NET
Public Property CommandText() As String Implements IDbCommand.CommandText
 Get
 Return (Me.m_commandText)
 End Get
 Set(ByVal value As String)
 ValidateCommandText(value)
 Me.m_commandText = value
 End Set
End Property

c17.indd 664c17.indd 664 11/13/08 4:58:25 PM11/13/08 4:58:25 PM

665

Chapter 17: Extending Reporting Services

 The ValidateCommandText method is used to parse the command text to ensure that it meets the
requirements for the extension. The first step is to apply the keywordSplit regular expression that was
defined in the member variable section. The regular expression is (Select|From|Where| Order[\s]
+By) , which could be translated into English as: “ Match the keywords Select , From , Where , and Order ,
where each is followed by the word By , but allow spaces and non - visible characters between them. ”
After you have parsed the statement, you can make some basic assumptions based on the number of
matches. At a minimum, you require that the user tell you the Field names and the table name that he or
she wants to pull the information from. This means that you must have a Select keyword, followed by
a Field List, and a From keyword, followed by a table name, and thus the minimum keyword count is 2.
If you have a keyword count greater than 2, you know that the user has either given you a filtering
criteria such as Where userID = 3 or a sort criteria such as Order by lastname ASC . You can find
out which by checking the value in the third position. If that value is a Where clause, then you can
assume that the user wants filtering. If it is not, assume that sorting is the order of the day. If the count
is 4, you know that both filtering and sorting are needed.

 C#
private void ValidateCommandText(string cmdText)
{
 kwc = keywordSplit.Matches(cmdText);
 keyWordCount = kwc.Count;
 switch (keyWordCount)
 {
 case 4:
 sorting = true;
 filtering = true;
 break;
 case 3:
 if (kwc[keyWordCount - 1].ToString().ToUpper() == “WHERE”)
 filtering = true;
 else
 {
 sorting = true;
 orderPosition = 2;
 }
 break;
 case 2:
 break;
 default:
 string msg = “Command Text should start with ‘select < fields > “ +
 “from < tablename > ’”;
 throw new ArgumentException(msg);
 }

 ValidateTableName(cmdText);
 ValidateFieldNames(cmdText);

 if (filtering)

(continued)

c17.indd 665c17.indd 665 11/13/08 4:58:25 PM11/13/08 4:58:25 PM

666

Part VI: Reporting Services Integration and Custom Programming

 {
 ValidateFiltering(cmdText);
 }

 if (sorting)
 {
 ValidateSorting(cmdText);
 }
}

 VB.NET
Private Sub ValidateCommandText(ByVal cmdText As String)
 kwc = keywordSplit.Matches(cmdText)
 keyWordCount = kwc.Count
 Select Case keyWordCount
 Case 4
 sorting = True
 filtering = True
 ‘ break
 Case 3
 If kwc(keyWordCount - 1).ToString.ToUpper = “WHERE” Then
 filtering = True
 Else
 sorting = True
 End If
 Case Else
 Dim msg As String = “Command Text should start with ‘select “ & _
 “ < fields > from < tablename > ’”
 Throw (New ArgumentException(msg))
 End Select
 ValidateTableName(cmdText)
 ValidateFieldNames(cmdText)

 If filtering Then
 ValidateFiltering(cmdText)
 End If

 If sorting Then
 ValidateSorting(cmdText)
 End If
End Sub

 The next step in the process is validating that the table name and the Field names provided by the user
are valid. You have created methods specifically for this purpose. Shown below is the
 ValidateTableName method. In the member declaration section, constant values were created,
indicating the assumed positions of the keywords within the command text. The table name must
immediately follow the From keyword. You then use the position of that keyword to locate the table
name. Next, you check to see if your internal DataSet contains this table. If so, the table name is valid;
otherwise, it is invalid.

(continued)

c17.indd 666c17.indd 666 11/13/08 4:58:25 PM11/13/08 4:58:25 PM

667

Chapter 17: Extending Reporting Services

 C#
private void ValidateTableName(string cmdText)
{
 //Get tablename
 //get 1st match starting at end of from
 fieldMatch = fieldSplit.Match(cmdText,
 (kwc[fromPosition].Index) + kwc[fromPosition].Length + 1);
 if(fieldMatch.Success)
 {
 if(this.dataSet.Tables.Contains(fieldMatch.Value))
 {
 this.tableName = fieldMatch.Value;
 }
 else
 {
 throw new ArgumentException(“Invalid Table Name”);
 }
 }
}

 VB.NET
Private Sub ValidateTableName(ByVal cmdText As String)
 fieldMatch = fieldSplit.Match(cmdText, _
 (kwc(fromPosition).Index) + kwc(fromPosition).Length + 1)
 If fieldMatch.Success Then
 If Me.dataSet.Tables.Contains(fieldMatch.Value) Then
 Me.tableName = fieldMatch.Value
 Else
 Throw New ArgumentException(“Invalid Table Name”)
 End If
 End If
End Sub

 The next step is to validate the Field names. You also want users to be able to use the * character to
indicate that they want all the fields without having to list them individually. This is standard SQL
syntax. You need to parse all the text between the Select statement and the From statement. This is
done using the constant values created above to signify character position and a regular expression to
pull out exactly what you are interested in.

 The fieldSplit regular expression looks like ([^ ,\s]+) , which, in English, reads: “ Match all
character groups that do not contain spaces, commas, and non - visible white space and have spaces at the
end. ” If the first field is an asterisk, you know that the user wants all fields. This means that you do not
have to build a temporary table to reflect the schema and that you can use the table she requested in the
 From portion of the text. If the first field is not an asterisk, you must build a temporary table reflecting
the schema of the data that you will return. To avoid problems with a user changing the fields, and the
temp table previously existing, you will simply test for its existence each time and remove it if you must.

 Next, you check to see whether the Field names exist in your main table by testing to see whether the
column names exist. If they do, the column is valid, and you add a column with this name to your new
temp table. You continue to do this as long as the Field names are valid. If an invalid field is submitted,
you throw an exception to make the user aware of her mistake.

c17.indd 667c17.indd 667 11/13/08 4:58:26 PM11/13/08 4:58:26 PM

668

Part VI: Reporting Services Integration and Custom Programming

 C#
public void ValidateFieldNames(string cmdText)
{
 //get fieldnames
 //get first match starting at the last character of the Select
 // with a length from that position to the from
 fieldMatch = fieldSplit.Match(cmdText,
 (kwc[SELECT_POSITION].Index + kwc[SELECT_POSITION].Length + 1),
 (kwc[FROM_POSITION].Index - (kwc[SELECT_POSITION].Index +
 kwc[SELECT_POSITION].Length + 1)));

 if (fieldMatch.Value == “*”) // all fields, use default view
 {
 this.dataView = this.dataSet.Tables[this.tableName].DefaultView;
 this.useDefaultTable = true;
 }
 else //custom fields : must build table/view
 {
 //don’t use default table
 this.useDefaultTable = false;

 //remove table if exists - add new
 if (this.dataSet.Tables.Contains(TEMPTABLE_NAME))
 {
 this.dataSet.Tables.Remove(TEMPTABLE_NAME);
 }

 System.Data.DataTable table = new System.Data.DataTable(TEMPTABLE_NAME);

 //loop through column matches
 while (fieldMatch.Success)
 {
 if (this.dataSet.Tables[this.tableName]
 .Columns.Contains(fieldMatch.Value))
 {
 System.Data.DataColumn col = this.dataSet.Tables[this.tableName]
 .Columns[fieldMatch.Value];
 table.Columns.Add(
 new System.Data.DataColumn(col.ColumnName, col.DataType));
 fieldMatch = fieldMatch.NextMatch();
 }
 else
 {
 throw new ArgumentException(“Invalid column name”);
 }
 }

 //add temptable to internal dataset and set view to tempView;
 this.dataSet.Tables.Add(table);
 this.dataView = new System.Data.DataView(table);
 }
}

c17.indd 668c17.indd 668 11/13/08 4:58:26 PM11/13/08 4:58:26 PM

669

Chapter 17: Extending Reporting Services

 VB.NET
Private Sub ValidateFieldNames(ByVal cmdText As String)
 fieldMatch = fieldSplit.Match(cmdText, _
(kwc(selectPosition).Index + kwc(selectPosition).Length + 1), _
(kwc(fromPosition).Index - kwc(selectPosition).Index + _kwc(selectPosition)
.Length + 1)))

 If fieldMatch.Value = “*” Then
 Me.dataView = Me.dataSet.Tables(Me.tableName).DefaultView
 Me.useDefaultTable = True
 Else
 Me.useDefaultTable = False
 If Me.dataSet.Tables.Contains(Me.tempTableName) Then
 Me.dataSet.Tables.Remove(Me.tempTableName)
 End If
 Dim table As DataTable = New DataTable(Me.tempTableName)
 While fieldMatch.Success
 If Me.dataSet.Tables(Me.tableName).Columns _
 .Contains(fieldMatch.Value) Then
 Dim col As DataColumn = dataSet.Tables(tableName) _
 .Columns(fieldMatch.Value)
 table.Columns.Add(New DataColumn(col.ColumnName, col.DataType))
 fieldMatch = fieldMatch.NextMatch
 Else
 Throw New ArgumentException(“Invalid column name”)
 End If
 End While
 Me.dataSet.Tables.Add(table)
 Me.dataView = New System.Data.DataView(table)
 End If
End Sub

 Assuming that the table name is valid and all of the requested fields are valid, you will use the temp
table you have built to satisfy data access requirements. The only thing left to do is add the new table to
the existing dataset.

 You have now validated all the parts of your query except the filtering and sorting criteria. In the
 CommandText method, you test whether filtering and sorting are enabled based on your keyword count. If
they are enabled, you execute a method that uses the internal behavior of the DataSet class to do the work.
In the ValidateFiltering() method, you need to parse out the text based on the keyword count. You
either need to grab all of the text after the Where clause, or if an order clause exists, you need to stop there.

 C#
public void ValidateFiltering(string cmdText)
 {
 if(filtering)
 {
 StringBuilder sbFilterText = new StringBuilder();
 int startPos =0;
 int length =0;

 startPos = kwc[wherePosition].Index + kwc[wherePosition].Length + 1;

(continued)

c17.indd 669c17.indd 669 11/13/08 4:58:26 PM11/13/08 4:58:26 PM

670

Part VI: Reporting Services Integration and Custom Programming

 if(keyWordCount == 3) //no “order by” - Search from Where till end
 {
 length = cmdText.Length-startPos;
 }
 else // “order by” exists - search from where position to “order by”
 {
 length = kwc[orderPosition].Index - startPos;
 }

 sbFilterText.Append(cmdText.Substring(startPos,length));
 this.dataView.RowFilter = sbFilterText.ToString();
 }
 }

 VB.NET
Private Sub ValidateFiltering(ByVal cmdText As String)
 If filtering Then
 Dim sbFilterText As StringBuilder = New StringBuilder
 Dim startPos As Integer = 0
 Dim length As Integer = 0
 startPos = (kwc(wherePosition).Index + kwc(wherePosition).Length + 1)
 If keyWordCount = 3 Then
 length = cmdText.Length - startPos
 Else
 length = kwc(orderPosition).Index - startPos
 End If
 sbFilterText.Append(cmdText.Substring(startPos, length))
 Me.dataView.RowFilter = sbFilterText.ToString
 End If
End Sub

 After you parse the text, you will use the DataView.RowFilter property to filter out results. Simply
apply the string that you have extracted to the RowFilter , and the DataView class takes care of the rest.
The same technique is applied to get ordering.

 C#
public void ValidateSorting(string cmdText)
{
 if(sorting)
 {
 StringBuilder sbFilterText = new StringBuilder();
 int startPos =0;
 int length =0;

 //start from end of ‘Order by’ clause
 startPos = kwc[orderPosition].Index + kwc[orderPosition].Length + 1;
 length = cmdText.Length - startPos;

 sbFilterText.Append(cmdText.Substring(startPos,length));
 this.dataView.Sort = sbFilterText.ToString();
 }
}

(continued)

c17.indd 670c17.indd 670 11/13/08 4:58:27 PM11/13/08 4:58:27 PM

671

Chapter 17: Extending Reporting Services

 VB.NET
Private Sub ValidateSorting(ByVal cmdText As String)
 If sorting Then
 Dim sbFilterText As StringBuilder = New StringBuilder
 Dim startPos As Integer = 0
 Dim length As Integer = 0
 startPos = (kwc(orderPosition).Index + kwc(orderPosition).Length + 1)
 length = cmdText.Length - startPos
 sbFilterText.Append(cmdText.Substring(startPos, length))
 Me.dataView.Sort = sbFilterText.ToString
 End If
End Sub

 CommandTimeout Property
 The CommandTimeout property is used to specify how long the Command object should wait for the
results of an executed command before throwing an exception. You are not actually using this value, but
it must be implemented because of interface requirements. Just return a zero value to indicate that time -
 outs are not supported.

 C#
public int CommandTimeout
{
 // Implemented the Property for consistency but it is not used.
 get { return 0; }

}

 VB.NET
Public Property CommandTimeout() As Integer _
 Implements IDbCommand.CommandTimeout
 Get
 Return 0
 End Get
 Set(ByVal Value As Integer)

 End Set
End Property

 CommandType Property
 Most DPEs allow the developer to pass in a command as text, or they can pass in a fully initialized
 Command object for the Execute reader method to examine and use. The DataSetCommand class accepts
only text; any other type will cause your component to throw a NotSupported exception.

c17.indd 671c17.indd 671 11/13/08 4:58:27 PM11/13/08 4:58:27 PM

672

Part VI: Reporting Services Integration and Custom Programming

 C#
public CommandType CommandType
{
 // supports only a text commandType
 get { return CommandType.Text; }
 set { if (value != CommandType.Text) throw new NotSupportedException(); }
}

 VB.NET
Public Property CommandType() As CommandType _
 Implements IDbCommand.CommandType
 Get
 Return CommandType.Text
 End Get
 Set(ByVal Value As CommandType)
 If Value < > CommandType.Text Then
 Throw New NotSupportedException
 End If
 End Set
 End Property

 CreateParameter Method
 The CreateParameter method returns an extension - specific parameter to the Command object. The
method must be supported because of the interface requirements, although it is not actually used.
The DataSetParameter object is a simple class that implements another interface called
 IDataParameter , which allows it to be returned as an object of the interface type.

 C#
public IDataParameter CreateParameter()
{
 //return DataSetDataParameter
 return new DataSetDataParameter();
}

 VB.NET
Public Function CreateParameter() As IDataParameter _
 Implements IDbCommand.CreateParameter
 Return New DataSetDataParameter
End Function

 Parameters Property
 The Parameters property returns a collection that implements the IDataParameterCollection
interface. Your custom collection class is the DataSetParameterCollection and satisfies these
requirements. The Parameters property allows the developer to index into the Parameters collection
to set or get the parameter values.

c17.indd 672c17.indd 672 11/13/08 4:58:27 PM11/13/08 4:58:27 PM

673

Chapter 17: Extending Reporting Services

 C#
public IDataParameterCollection Parameters
{
 get
 {
 return this.m_parameters;
 }
}

 VB.NET
Public ReadOnly Property Parameters() As IDataParameterCollection _
 Implements IDbCommand.Parameters
 Get
 Return Me.m_parameters
 End Get
End Property

 Creating the DataReader Object
 The data reader in our implementation does nothing more than read properties of our internal
 DataView . The behavior of the data reader is enforced by the IDataReader interface, which supplies
methods to indicate the number, names, and types of the fields that will be read. It also allows the object
to actually access the data.

 To add the DataSetDataReader class to the project, choose Project Add Class from the menu. Change
the name of the class to DataSetDataReader . After adding the class, add the custom namespace, and
edit the class definition.

 Declarations
 The members of the DataSetDataReader hold all the information that you will use to build the
properties supported by the DataSetDataReader class. The currentRow variable is used to store the
value of the current row as the data is being read from your data file. The dataView variable holds a
reference to the current view of data from the DataSetCommand that is passed in via the constructor.
And, finally, the dataSetCommand variable will hold a reference to the command that is passed in via
the constructor.

 C#
System.Data.DataView dataView;
DataSetCommand dataSetCommand = null;
int currentRow = -1;

c17.indd 673c17.indd 673 11/13/08 4:58:28 PM11/13/08 4:58:28 PM

674

Part VI: Reporting Services Integration and Custom Programming

 VB.NET
Private dataView As System.Data.DataView = Nothing
Private dataSetCommand As dataSetCommand = Nothing
Private currentRow As Integer = -1

 Implementing IDataReader
 The IDataReader interface enforces consistency in working with data. It provides properties and
methods that allow you to examine the data and its types as well as the Read method that will actually
do the dirty work.

 C#
public interface IDataReader : IDisposable
{
 Type GetFieldType(int fieldIndex);
 string GetName(int fieldIndex);
 int GetOrdinal(string fieldName);
 object GetValue(int fieldIndex);
 bool Read();
 int FieldCount { get; }
}

 VB.NET
Public Interface IDataReader
 Inherits IDisposable
 Function GetFieldType(ByVal fieldIndex As Integer) As Type
 Function GetName(ByVal fieldIndex As Integer) As String
 Function GetOrdinal(ByVal fieldName As String) As Integer
 Function GetValue(ByVal fieldIndex As Integer) As Object
 Function Read() As Boolean
 Property FieldCount() As Integer
End Interface

 You need to modify your class definition to force the custom DataSetDataReader class to support
(implement) the interface requirements.

 C#
namespace Wrox.ReportingServices.DataSetDataExtension
{

 public class DataSetDataReader : IDataReader

 {

 VB.NET
Namespace Wrox.ReportingServices.DataSetDataExtension
 Public Class DataSetDataReader

 Implements IDataReader

c17.indd 674c17.indd 674 11/13/08 4:58:28 PM11/13/08 4:58:28 PM

675

Chapter 17: Extending Reporting Services

 GetFieldType Method
 The GetFieldType method returns the type of data at a particular position within the stream that is
being read. This data is used to allow the developer to store the data being read in the correct data type
upon retrieval from the data reader.

 C#
public Type GetFieldType (int fieldIndex)
{
 Return this.dataView.Table.Columns[fieldIndex].DataType;
}

 VB.NET
Public Function GetFieldType(ByVal fieldIndex As Integer) As Type _
 Implements IDataReader.GetFieldType
 Return Me.dataView.Table.Columns(fieldIndex).DataType
End Function

 GetName Method
 The GetName method allows the developer to retrieve a data field from the DataReader object by
passing in the name of the field to be read.

 C#
public string GetName(int fieldIndex)
{
 return this.dataView.Table.Columns[fieldIndex].ColumnName;
}

 VB.NET
Public Function GetName(ByVal fieldIndex As Integer) As String _
 Implements IDataReader.GetName
 Return Me.dataView.Table.Columns(fieldIndex).ColumnName
End Function

 GetOrdinal Method
 The GetOrdinal method allows the developer to index the data based on its position within the
 DataReader stream.

c17.indd 675c17.indd 675 11/13/08 4:58:28 PM11/13/08 4:58:28 PM

676

Part VI: Reporting Services Integration and Custom Programming

 C#
public int GetOrdinal(string fieldName)
{
 return this.dataView.Table.Columns[fieldName].Ordinal;
}

 VB.NET
Public Function GetOrdinal(ByVal fieldName As String) As Integer _
 Implements IDataReader.GetOrdinal
 Return Me.dataView.Table.Columns(fieldName).Ordinal
End Function

 GetValue Method
 The GetValue method retrieves the actual value from the data stream. All of these methods are typically
used together. The developer pulls the type information from the stream, creates variables of the correct
type to hold this data, and gets the values of the data using the GetValue function.

 C#
public object GetValue(int fieldIndex)
{
 return this.dataView[this.currentRow][fieldIndex];
}

 VB.NET
Public Function GetValue(ByVal fieldIndex As Integer) As Object _
 Implements IDataReader.GetValue
 Return Me.dataView(Me.currentRow)(fieldIndex)
End Function

 Read Method
 The Read method is the workhorse of the DataSetDataReader class. The function loops through the
current DataView . If a line is successfully read, this is indicated to the user of your extension by
incrementing the row count variable currentRow and by returning a Boolean value. As long as true is
returned, data is successfully read. False is returned when the internal view hits the end of the result set.

 C#
public bool Read()
{
 System.Threading.Interlocked.Increment(this.currentRow);
 if (this.currentRow > = this.dataView.Count)
 {
 return false;
 }
 return true;
}

c17.indd 676c17.indd 676 11/13/08 4:58:29 PM11/13/08 4:58:29 PM

677

Chapter 17: Extending Reporting Services

 VB.NET
Public Function Read() As Boolean Implements IDataReader.Read
 System.Threading.Interlocked.Increment(Me.currentRow)
 If Me.currentRow > = Me.dataView.Count Then
 Return False
 End If
 Return True
End Function

 FieldCount Property
 The FieldCount property returns the number of fields or columns available in each row of data that the
 Read method returns.

 C#
public int FieldCount
{
 // Return the count of the number of columns,
 get { return this.dataView.Table.Columns.Count; }
}

 VB.NET
Public ReadOnly Property FieldCount() As Integer Implements IDataReader.FieldCount
 Get
 Return Me.dataView.Table.Columns.Count
 End Get
End Property

 Installing the DataSetDataProcessing Extension
 After creating your custom DPE, you must install it to enable access. The installation process is two
steps:

 1. Install and configure the extension.

 2. Configure extension security.

 This particular extension is used both by the Reporting Server and the Report Designer itself, which
requires us to install it in two locations. It must be installed on the report server and the workstation
used to design the reports (using BIDS/Visual Studio).

c17.indd 677c17.indd 677 11/13/08 4:58:29 PM11/13/08 4:58:29 PM

678

Part VI: Reporting Services Integration and Custom Programming

 Server Installation
 Reporting Services has a standard location where extensions should be installed. This location is a
subdirectory below the installation directory of SQL Server itself. We refer to the SQL Server installation
path as InstallPath . On my machine, this directory is C:\Program Files\Microsoft SQL Server\.

 Depending on the different SQL Server products you have installed on the machine, the subdirectories
under InstallPath may vary. The naming convention for the Reporting Services subdirectory is MSRS10.
MSSQLSERVER, where MSRS10 represents the product and version name (Microsoft Reporting
Services v.10).

 The directory that you will install the extension into is the bin directory of the report server: InstallPath\
MSRS10.MSSQLSERVER\Reporting Services\ReportServer\bin. Copy your custom DPE assembly into
this directory. The extension is now in the correct location, but you need to inform the Report Server of
its presence. This is done by editing the configuration file that Reporting Services uses for its settings.
This file is called RSReportServer.config and is located in the parent directory. Open this file and look for
the < Data > section. Within this section, you should see entries similar to the following:

 < Data >
 < Permissions >
 < PermissionSet class=”System.Security.NamedPermissionSet” version=”1”
 Unrestricted=”true” Name=”FullTrust”
 Description=”Allows full access to all resources”/ >
 < /Permissions >
 < Extension Name=”SQL”
 Type=”Microsoft.ReportingServices.DataExtensions.SqlConnectionWrapper,
 Microsoft.ReportingServices.DataExtensions”/ >
 < Extension Name=”OLEDB”
 Type=”Microsoft.ReportingServices.DataExtensions.OleDbConnectionWrapper,
 Microsoft.ReportingServices.DataExtensions”/ >
 < Extension Name=”ORACLE”
 Type=”Microsoft.ReportingServices.DataExtensions.OracleClient
 ConnectionWrapper,Microsoft.ReportingServices.DataExtensions”/ >
 < Extension Name=”ODBC”
 Type=”Microsoft.ReportingServices.DataExtensions.OdbcConnection
 Wrapper,Microsoft.ReportingServices.DataExtensions”/ >

 < Extension Name=”DATASET”
Type=”Wrox.ReportingServices.DataSetDataExtension.DataSetConnection
,Wrox.ReportingServices.DataSetDataExtension”/ >

 < /Data >

 Add the DataSet entry that you see in the highlighted code snippet. The Name tag is the unique name
you want users to see when they select your extension. The Type element contains the entry point class
for your extension (the first object created and the one that is required to implement the IExtension
interface), followed by the fully qualified name of your extension.

c17.indd 678c17.indd 678 11/13/08 4:58:29 PM11/13/08 4:58:29 PM

679

Chapter 17: Extending Reporting Services

 Save the file. Reporting Services will now recognize your extension, but you must change the Code
Access Security (CAS) policy to give the extension the permissions that it needs to do its job. CAS is a
constraint security model used by the .NET framework to restrict which system resources and operations
that code can access and perform, regardless of the caller.

 Server Security Configuration
 The security policy file is located in the same directory as the server configuration file. Simply locate the
file called rssrvpolicy.config . This file contains the security policy information for SSRS, and an entry
should be made that looks similar to the following (replace “ < INSTALLPATH > ” with the appropriate
installation path of the SQL Server Reporting Services instance on the server):

 < /CodeGroup >

 < CodeGroup class=”UnionCodeGroup”
 version=”1”
 PermissionSetName=”FullTrust”
 Name=”WroxSRS” Description=”Code group for Wrox DataSet data processing extension” >
 < IMembershipCondition class=”UrlMembershipCondition”
 version=”1”

Url=” < INSTALLPATH > \Reporting Services\ReportServer\bin\ DataSetDataExtension.dll” / >
 < /CodeGroup >

 This CodeGroup policy specifies that we grant FullTrust to our assembly to execute its code. As a best
practice, though, you should only grant the permission set required by your code to execute
appropriately, thus reducing the possible attack surface.

 WorkStation Installation
 The next task is installing the extension on your development machine so that you can use it in the
Report Designer within BIDS/Visual Studio. The process for installing the extension into the Report
Designer is much the same as that for the server, with the exception of the filenames and locations. This
is also done by copying the file to a specific directory of your development machine and making an
entry in the configuration file so that the designer is aware of the extension.

 Copy your extension to the C:\Program Files\Microsoft Visual Studio 9.0\Common7\IDE\
PrivateAssemblies directory. All of the files needed for workstation configuration are located here.
The configuration file of the designer is called RSReportDesigner.config. Insert the same information
that you inserted at the server - side extension at the end of the < Data > section in this file.

 < Data
 < Extension Name=”ODBC”
Type=”Microsoft.ReportingServices.DataExtensions.OdbcConnection
 Wrapper, Microsoft.ReportingServices.DataExtensions”/ >

 < Extension Name=”DATASET”
 Type=”Wrox.ReportingServices.DataSetDataExtension.DataSetConnection,
 Wrox.ReportingServices.DataSetDataExtension”/ >

 < /Data >

c17.indd 679c17.indd 679 11/13/08 4:58:29 PM11/13/08 4:58:29 PM

680

Part VI: Reporting Services Integration and Custom Programming

 There is one additional requirement in this file. You must also tell Visual Studio what designer to use
with your extension. We chose not to implement a custom designer class but to use the Generic Query
Designer provided by Microsoft instead. Your query is based on SQL, so this works well. Make an entry
in the < Designer > section that immediately follows the < Data > section.

 < Extension Name=”DATASET”
 Type=”Microsoft.ReportingServices.QueryDesigners.GenericQueryDesigner,
 Microsoft.ReportingServices.QueryDesigners”/ >

 WorkStation Security Configuration
 The next step is to set up the security policy so the extension will run in the designer correctly. The
required file is called rspreviewpolicy.config. Add an entry resembling the following into this file
(replace “ < installPath > ” with your actual installation path of Visual Studio):

 < CodeGroup class=”UnionCodeGroup” version=”1”
 PermissionSetName=”FullTrust”
 Name=”WroxSRS”
 Description=”Code group for my DataSet data processing extension” >
 < IMembershipCondition class=”UrlMembershipCondition”
 version=”1”
 Url=” < installPath > \Common7\IDE\PrivateAssemblies\DataSetDataExtension.dll” / >
 < /CodeGroup >

 Testing the DataSetDataExtension
 In order to test the DataSetDataExtension extension, a report that uses the custom extension must be
created. You must also create a DataSet file to contain your data or use the one provided in the sample
code. The code is generic enough that you can use it against any serialized dataset. The file included in
the example is just a SELECT * FROM DimCustomer run against the AdventureWorksDW2008 database
and persisted from a data set object.

 Add a new project to your existing solution. Create the project by choosing File Add Project New
Project. If the development environment is set up correctly, you will see the Business Intelligence
template folder. Choose the Report Server Project template. Change the name of the project to
 TestReport , and click OK. This will launch the Report Designer with a blank report. Click the link on
the Designer canvas to add a new data source and dataset for the report. The Data Source Properties
page will appear. Leave the default data source name, and click on the Type dropdown box. Your new
 DataSetDataExtension should now be available as DATASET . Using a FileName attribute, enter
the physical path to your serialized dataset into the Connection String textbox. When you are done, the
result should resemble Figure 17 - 7 .

c17.indd 680c17.indd 680 11/13/08 4:58:30 PM11/13/08 4:58:30 PM

681

Chapter 17: Extending Reporting Services

 Next, you need to indicate the credentials that you wish to use. Click on the Credentials menu on the left
side of the Data Source Properties page, which will cause the Credentials window to be displayed.
Instruct the data source to “ Use Windows Authentication (integrated security) ” by selecting the radio
button (see Figure 17 - 8).

Figure 17-7

Figure 17-8

c17.indd 681c17.indd 681 11/13/08 4:58:30 PM11/13/08 4:58:30 PM

682

Part VI: Reporting Services Integration and Custom Programming

 After you have set both the type and connection strings, you are ready to set up the basic data query. The
dataset we used included a table called DimCustomer that we want to query. Enter SELECT * FROM
DimCustomer into the Query window if you are using the sample provided, or some statement that
works on your specific data. The query should resemble the text shown in Figure 17 - 9 .

Figure 17-9

 Finish setting up the data source and dataset by clicking OK. Now you can drag and drop a new Table
item from the toolbox onto the report body. Then select three fields from the dataset, represented in the
Report Data window, and put them into the detail section of the Tablix. The resulting report is shown in
Figure 17 - 10 .

Figure 17-10

c17.indd 682c17.indd 682 11/13/08 4:58:31 PM11/13/08 4:58:31 PM

683

Chapter 17: Extending Reporting Services

 Next, you need to see if our extension actually returns data. Click on the Preview tab. The resulting data
should resemble Figure 17 - 11 .

Figure 17-11

 Now you know that your extension works. You can experiment with the field - limiting/filtering and
field - sorting functionality by right - clicking on the Dataset name in the Report Data window, and
selecting the Edit Query menu item. This brings up the Query Designer, where you can enter more
advanced queries and test the results (see Figure 17 - 12).

Figure 17-12

c17.indd 683c17.indd 683 11/13/08 4:58:31 PM11/13/08 4:58:31 PM

684

Part VI: Reporting Services Integration and Custom Programming

 Another option for testing the custom data extension is to open a new instance of Visual Studio and load
up the extension project. Add a breakpoint on a line of code that you would like to step into, and then
select “ Attach to process ” from the Debug menu.

 In the Attach to Process window, select the process for the Visual Studio instance that has the Report
Designer open to the test report consuming the data extension.

 Finally, click the Attach button, and Visual Studio will attach the project code to the Report Designer.
To step into the breakpoint, just preview the report in the Report Designer, and as soon as Reporting
Services hits the line of code with the breakpoint, you will be taken to the code view and be able to use all
the debugging features of the Visual Studio IDE.

 Summary
 In this chapter, you learned about the extensibility of Reporting Services and the areas that currently
support customization. Specifically, you learned:

 Which extensibility options are available

 Reasons for extending SQL Server Reporting Services

 How to create custom data provider extensions

 How to install custom extensions

 Along with the extensibility options available in SQL Server Reporting Services, you also learned about
some of the business opportunities created. Microsoft has created a flexible, powerful reporting solution
that allows you to modify its behavior by implementing the interfaces required by the particular
extension type. This functionality is sure to create a third - party market for tools, as well as allow
enterprise developers to create custom solutions for the unique needs of their businesses.

 Also discussed were the data access methods used by the .NET Framework and specifically how to
create a custom DPE to work with non - relational data. The example is very simple and does not stand
alone as an application — although it could be easily extended to provide additional functionality such
as support for parameters. The primary purpose of the example is to familiarize you with the
requirements for creating and installing an extension. This type of extension was chosen because it is
used on the server for report processing and on the developer machine for report creation.

❑

❑

❑

❑

c17.indd 684c17.indd 684 11/13/08 4:58:32 PM11/13/08 4:58:32 PM

 RDL Object Model

 The Report Definition Language (RDL) is a schema - defined XML specification for how a report file
should be structured. In order for Reporting Services to interact with the structure of a report, it
needs to understand the RDL schema so that it knows which elements represent which pieces of
functionality within the report. Although a simple parsing of the XML document, using the XML
Document Object Model (DOM) and an XML querying language such as XPath, would technically
enable you to extract this information, it would make for very lengthy and cumbersome code to
maintain.

 Instead, Reporting Services provides a representation of the RDL schema in an object - oriented
fashion. What that means is that the RDL schema in Reporting Services was modeled using objects
and properties, all available from a public library, which can be used to examine and manipulate
the RDL document. This piece of functionality is called the RDL Object Model .

 In previous versions of Reporting Services, the object model was not released as a public library
and was only available internally to Reporting Services. This meant that a developer had to
generate his or her own custom object model based on the RDL schema provided.

 You might be asking, “ When would I need to use the RDL Object Model? ” If you have
requirements to generate RDL files on - the - fly or to change any properties of report items,
programmatically, this is a great way to do so. It allows for a very flexible platform that could
enable your application ’ s users to design simple reports and save them, to be later deployed into a
Report Server.

 The new object model library also provides methods to upgrade RDLs from previous versions to
the current 2008 version, as well as from 2000 to 2005 versions.

 Now that we ’ ve defined the RDL Object Model, let ’ s see it in action.

bapp01.indd 685bapp01.indd 685 11/13/08 4:15:17 PM11/13/08 4:15:17 PM

Appendix A: RDL Object Model

686

 Editing Repor t RDL Files
 To get started, you need to add a reference to your Visual Studio project to include the Microsoft
.ReportingServices.RdlObjectModel.dll assembly. This assembly can be found under the install
path of Reporting Services (normally at C:\Program Files\Microsoft SQL Server\MSRS10
.MSSQLSERVER\Reporting Services\ReportServer\bin). This assembly contains all the required
classes to create and manipulate report definitions.

 The namespace Microsoft.ReportingServices.RdlObjectModel contains a public Report class,
which represents an in - memory report definition file. You may choose to create a new Report instance
or load one from an existing RDL file. In order to load from a file, you will use the following lines of
code. To de - serialize an RDL file, you must provide a file path to the RdlSerializer class ’ s
 Deserialize() method. The RdlSerializer class also contains a Serialize() method, which, as the
name suggests, will perform the reverse operation and “ write ” the contents of the Report object to a file.

 VB
Private rdl As Microsoft.ReportingServices.RdlObjectModel.Report

Private Sub LoadReport(ByVal filepath As String)
 Using stream As FileStream = File.OpenRead(filepath)
 Try
 Dim serializer As New
Microsoft.ReportingServices.RdlObjectModel.Serialization.RdlSerializer

 rdl = serializer.Deserialize(stream)
 Console.WriteLine(“Report Loaded”)

 Catch ex As System.Xml.XmlException
 Console.WriteLine(“The file is not in the 2008 RDL schema”)

 End Try
 End Using
End Sub

 C#
private Microsoft.ReportingServices.RdlObjectModel.Report rdl;

private void LoadReport(string filepath)
{
 using (FileStream stream = File.OpenRead(filepath))
 {
 var serializer = new
Microsoft.ReportingServices.RdlObjectModel.Serialization.RdlSerializer();
 try
 {
 rdl = serializer.Deserialize(stream);
 Console.WriteLine(“Report Loaded”);
 }
 catch (System.Xml.XmlException)
 {

bapp01.indd 686bapp01.indd 686 11/13/08 4:15:18 PM11/13/08 4:15:18 PM

Appendix A: RDL Object Model

687

 Console.WriteLine(“The file is not in the 2008 RDL Schema”);
 }
 }
}

 As with many .NET objects, the Report object contains nested types and collections that represent other
types defined within the Microsoft.ReportingServices.RdlObjectModel assembly. For example,
an RDL report contains a Page definition, as well as a Body definition. Each of these definitions is
represented by a type in the model. If you continue to “ drill ” into the Object Model, you will notice that
the Body type contains a nested collection of report items, defined as IList < ReportItem > . This generic
collection of ReportItem gives you access to each item defined within the body of the report, such as a
tablix, chart, or textbox.

 The code sample provided for this Appendix shows how to use Windows Forms controls ’ ability to do
rich binding using a BindingSource bound to a Report object. It makes it very simple to bind textboxes
and other Forms controls to the object ’ s properties and members, and it also takes care of string formats
for things such as units of measure.

 Once the report object is created and instantiated or loaded, you can start manipulating its properties
and content. In the following lines, you will see how you can easily modify the report ’ s author,
language, and description, and then save the report to a file. If you ’ re using rich binding as mentioned in
the previous paragraph, the following lines of code are handled by the data - binding capabilities of the
controls and the BindingSource class, so the developer does not have to do the plumbing required to
get or set the values of these properties.

 VB
Private Sub ModifyReport()

 rdl.Description = “This description was modified with the Rdl Ojbect model”
 rdl.Author = “Thiago Silva”
 rdl.Language = New ReportExpression(“en-US”)

 Me.WriteReportToFile(“C:\RdlObjecModel\New Report.rdl”)

End Sub

Private Sub WriteReportToFile(ByVal filepath As String)
 If String.IsNullOrEmpty(filepath) Then

 Console.WriteLine(“Path Not Specified)
 Return

 End If

 Using fs As New System.IO.FileStream(filepath, FileMode.Create)
 Dim serializer As New Microsoft.ReportingServices.RdlObjectModel.RdlSerializer
 serializer.Serialize(inStream, rdl)

 Console.WriteLine(“Report saved”)
 End Using
End Sub

bapp01.indd 687bapp01.indd 687 11/13/08 4:15:19 PM11/13/08 4:15:19 PM

Appendix A: RDL Object Model

688

 C#
private void ModifyReport()
{
 rdl.Description = “This description was modified with the Rdl Ojbect model”;
 rdl.Author = “Thiago Silva”;
 rdl.Language = new ReportExpression(“en-US”);

 this.WriteReportToFile(@”C:\RdlObjecModel\New Report.rdl”);
}

private void WriteReportToFile(string filepath)
{
 if (string.IsNullOrEmpty(filepath))
 {
 Console.WriteLine(“Path Not Specified);
 return;
 }

 using (FileStream fs = new System.IO.FileStream(filepath, FileMode.Create))
 {
 var serializer = new Microsoft.ReportingServices.RdlObjectModel
.RdlSerializer();
 serializer.Serialize(inStream, rdl);

 Console.WriteLine(“Report saved”);
 }
}

 Upgrading a Repor t from Pre vious RDL
Versions Programmatically

 In addition to allowing a developer to manipulate the Report object, the RdlObjectModel assembly
provides methods for performing conversions from previous RDL schemas to a later one. This is similar
to the “ Report Upgrade ” functionality provided by Visual Studio (or Business Intelligence Development
Studio — BIDS), when opening a RDL file still defined with the previous version of the RDL schema.

 Unlike the Visual Studio report upgrading feature, though, the developer has the power to write a
routine that upgrades several files by iterating within a folder location, without having to manually open
each RDL file in Visual Studio to trigger the upgrade. If you have a project with tens or even hundreds of
report RDL files, this would be a great way to quickly convert your reports to a later version of the RDL
schema.

 There are two “ upgrader ” classes in the assembly: one for upgrading from the 2003 to the 2005 schema,
and another class for upgrading from 2005 to the current (i.e., 2008) schema. Both have overloaded
methods that accept either a Stream or an XmlReader . The upgrader methods for the 2008 schema
actually return the output stream, while the 2005 upgrader methods use a referenced stream parameter
and have a void signature.

bapp01.indd 688bapp01.indd 688 11/13/08 4:15:19 PM11/13/08 4:15:19 PM

Appendix A: RDL Object Model

689

 VB
Private Sub DoUpgrade(ByVal path As String, ByVal newPath As String)
 Using (Stream fs = File.OpenRead(path))

 Using rdlStream As Stream =
Microsoft.ReportingServices.ReportProcessing.RDLUpgrader.UpgradeToCurrent(fs)
 Me.SaveReportToNewFile(rdlStream, newPath)
 End Using
 End Using
End Sub

Private Sub SaveReportToNewFile(ByVal inStream As Stream, ByVal filepath As String)

 Using output As Stream = New FileStream(filepath, FileMode.Create)
 Dim buffer(32 * 1024) As Byte

 Dim read As Integer

 While (read = inStream.Read(buffer, 0, buffer.Length)) > 0
 output.Write(buffer, 0, read)
 End While
 End Using
End Sub

 C#
private void DoUpgrade(string path, string newPath)
{
 using (Stream fs = File.OpenRead(path))
 {
 using (Stream rdlStream =
Microsoft.ReportingServices.ReportProcessing.RDLUpgrader.UpgradeToCurrent(fs))
 {
 this.SaveReportToNewFile(rdlStream, newPath);
 }
 }
}

private void SaveReportToNewFile(Stream inStream, string filepath)
{
 using (Stream output = new FileStream(filepath, FileMode.Create))
 {
 byte[] buffer = new byte[32 * 1024];

 int read;
 while ((read = inStream.Read(buffer, 0, buffer.Length)) > 0)
 {
 output.Write(buffer, 0, read);
 }
 }
}

bapp01.indd 689bapp01.indd 689 11/13/08 4:15:19 PM11/13/08 4:15:19 PM

Appendix A: RDL Object Model

690

 The preceding code sample shows how to upgrade an RDL file by opening a file stream and passing it
to the new RdlUpgrader.UpgradeToCurrent() method. The method returns a new Stream object
containing the 2008 RDL, which you then write to file.

 The classes for upgrading from the 2003 to 2005 RDL schema can be found in the namespace
 Microsoft.ReportingServices.RdlObjectModel2005.Upgrade .

 Currently, the classes and methods within the RDL Object Model library are not documented in the SQL
Server Books Online, as they have not been “ officially blessed ” as public. So, the best way to drill into
the assembly and investigate its public types and members is by using an IL disassembler tool such as
Lutz Roeder ’ s .NET Reflector (http://www.aisto.com/roeder/dotnet). Figure A - 1 illustrates
Reflector disassembling the RDL Object Model assembly, and detailing the Report class and its public
properties and constructors.

Figure A-1

bapp01.indd 690bapp01.indd 690 11/13/08 4:15:20 PM11/13/08 4:15:20 PM

Appendix A: RDL Object Model

691

 Summary
 The public RDL Object Model can be a powerful tool to enable application developers to build and
generate RDL files programmatically, as well as to edit and update existing reports. It allows for great
flexibility when dealing with the Report Definition Language and provides an official, strongly typed
schema from which to generate report files using any flavor of .NET languages.

bapp01.indd 691bapp01.indd 691 11/13/08 4:15:20 PM11/13/08 4:15:20 PM

bapp01.indd 692bapp01.indd 692 11/13/08 4:15:20 PM11/13/08 4:15:20 PM

 T - SQL Command
Syntax Reference

 SQL Server 2008 recognizes up to four parts of object names. Depending on the context of an
expression, some parts may or may not be necessary when referencing an object. When a script
runs on a different server or when you are using a different database, related object names may be
required. Note that both SQL Server 2005 and SQL Server 2008 recognize the schema name in the
third position, whereas SQL Server 2000 and earlier versions recognized the object owner name in
the third position. The following table summarizes valid syntax for referencing database objects:

 Object Reference Use and Context

 object Used in the context of the local database, on the same server.
Object is part of the dbo schema and there are no duplicate
object names.

 schema.object Used in the context of the local database, on the same server.
Duplicate object names that have schema names (and
subsequently, different owners) are permitted. Also uses a
standard convention for clarity.

 database..object Used in the context of the same or different database on the
same server. If you haven ’ t specified the owner or schema,
assumes the dbo schema.

 database.schema.object A three - part name fully describes an object on the same server,
in the same or different database.

 server.database
.schema.object

 A four - part name is valid in the context of a remote server or
the local server, in the local or a different database, and for any
schema.

(continued)

bapp02.indd 693bapp02.indd 693 11/13/08 4:16:07 PM11/13/08 4:16:07 PM

Appendix B: T - SQL Command Syntax Reference

694

 T - SQL Commands, Clauses, and Predicates
 Following are the core components of the T - SQL language. New commands for SQL Server 2008 are
explicitly called out in this section.

 WITH
 Introduced in SQL Server 2005, this method is used to define an alias for the result set returned by a
 SELECT expression.

WITH MyCTE
AS
(SELECT * FROM Product WHERE ListPrice < 1000)

 Optionally, column aliases can be defined in parentheses following the Common Table Expression (CTE)
name:

WITH MyCTE (ID, ProdNumber, ProdName, Price)
AS
(SELECT
 ProductID
 , ProductNumber
 , Name
 , ListPrice
 FROM Product WHERE ListPrice < 1000
)

 SELECT
 To return all columns from a table or view:

SELECT * FROM table_name

❑

 Object Reference Use and Context

 server.database..
object

 The database owner or schema in the third position can be omitted to
use the default dbo schema.

 server..schema.object The database name can be omitted to use the default database on that
server. This is not a typical practice.

 server ... object Omitting the database and owner or schema name causes the default
database and the default dbo schema to be used. This is valid syntax
but not a typical practice.

bapp02.indd 694bapp02.indd 694 11/13/08 4:16:08 PM11/13/08 4:16:08 PM

Appendix B: T - SQL Command Syntax Reference

695

 To return specific columns from a table or view:

SELECT Column1, Column2, Column3 FROM table_name

 Column alias techniques:

SELECT Column1 AS Col1, Column2 AS Col2 FROM table_name
SELECT Column1 Col1, Column2 Col2 FROM table_name
SELECT Col1 = Column1, Col2 = Column2 FROM table_name

 To return literal values:

SELECT ‘Some literal value’
SELECT ‘Some value’ AS Col1, 123 AS Col2

 To return an expression value:

SELECT (1 + 2) * 3

 To return the result of a function call:

SELECT CONVERT(varchar(20), GETDATE(), 101)

 SELECT TOP
 To return a fixed number of rows:

SELECT TOP 10 * FROM table_name ORDER BY Column1
SELECT TOP 10 Column1, Column2 FROM table_name ORDER BY Column2

 To return a fixed number of rows with the ties for last position:

SELECT TOP 10 WITH TIES Column1, Column2 FROM table_name ORDER BY Column2

 To return a percentage of all available rows:

SELECT TOP 25 PERCENT * FROM table_name ORDER BY Column2
SELECT TOP 25 PERCENT Column1, Column2 FROM table_name ORDER BY Column2

 To substitute a variable or expression for a top values number:

DECLARE @TopNumber Int
SET @TopNumber = 15
SELECT TOP @ TopNumber * FROM table_name ORDER BY Column2

 To return top values based on an expression:

SELECT TOP (SELECT a_column_value FROM some_table) * FROM another_table

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp02.indd 695bapp02.indd 695 11/13/08 4:16:09 PM11/13/08 4:16:09 PM

Appendix B: T - SQL Command Syntax Reference

696

 SELECT INTO
To create and populate a table from a result set:

SELECT Column1, Column2 INTO
new_table_name FROM existing_table_or_view_name

 FROM
 Single table query:

SELECT * FROM table_name

 Multi - table join query:

SELECT *
FROM table1.key_column INNER JOIN table2 ON table1.key_column = table2.key_column

 Derived table:

SELECT DerTbl.Column1, DerTbl.Column2
FROM
 (SELECT Column1, Column2 FROM some_table ...) AS DerTbl

 WHERE
 Exact match:

SELECT ... FROM ...
WHERE Column1 = ‘A literal value’

 Not NULL:

SELECT ... FROM ...
WHERE Column1 IS NOT NULL

 Any trailing characters:

SELECT ... FROM ...
WHERE Column1 LIKE ‘ABC%’

 Any leading characters:

SELECT ... FROM ...
WHERE Column1 LIKE ‘%XYZ’

 Any leading or trailing characters:

SELECT ... FROM ...
WHERE Column1 LIKE ‘%MNOP%’

❑

❑

❑

❑

❑

❑

❑

❑

bapp02.indd 696bapp02.indd 696 11/13/08 4:16:09 PM11/13/08 4:16:09 PM

Appendix B: T - SQL Command Syntax Reference

697

 Placeholder wildcard:

SELECT ... FROM ...
WHERE Column1 LIKE ‘_BC_EF’

 Criteria using parentheses to designate order:

SELECT ... FROM ...
WHERE
 (Column1 LIKE ‘ABC%’ AND Column2 LIKE ‘%XYZ’)
 OR
 Column3 = ‘123’

 GROUP BY
 All non - aggregated columns in the SELECT list must be included in the GROUP BY list:

SELECT COUNT(Column1), Column2, Column3
FROM ... WHERE ...
GROUP BY Column2, Column3

 Designating order:

SELECT COUNT(Column1), Column2, Column3
FROM ... WHERE ...
GROUP BY Column2, Column3
ORDER BY Column2 DESC, Column3 ASC

 WITH ROLLUP
 Legacy method to implement a rollup subtotal break:

 Note that ROLLUP and CUBE operators cause SQL Server to return a non - two - dimensional result set
that is not supported by many APIs and client interfaces.

SELECT Column1, Column2, SUM(Column3)
FROM table_name
GROUP BY Column1, Column2
WITH ROLLUP

 This syntax is still supported in SQL Server 2008, but the new BY ROLLUP syntax is preferred.

 BY ROLLUP
 This is a new syntax introduced in SQL Server 2008 for implementing a rollup subtotal break:

SELECT Column1, Column2, SUM(Column3)
FROM table_name
GROUP BY ROLLUP(Column1, Column2)

❑

❑

❑

❑

bapp02.indd 697bapp02.indd 697 11/13/08 4:16:09 PM11/13/08 4:16:09 PM

Appendix B: T - SQL Command Syntax Reference

698

 WITH CUBE
 Legacy method to implement a cube subtotal break:

SELECT Column1, Column2, SUM(Column3)
FROM table_name
GROUP BY Column1, Column2
WITH CUBE

 This syntax is still supported in SQL Server 2008, but the new BY CUBE syntax is preferred.

 BY CUBE
 This is a new syntax introduced in SQL Server 2008 for implementing a cube subtotal break:

SELECT Column1, Column2, SUM(Column3)
FROM table_name
GROUP BY CUBE(Column1, Column2)

 HAVING
 To filter results based on values available after the aggregations and groupings are performed:

SELECT COUNT(Column1), Column2, Column3
FROM ... WHERE ...
GROUP BY Column2, Column3
HAVING COUNT(Column1) > 5

 UNION
 To combine multiple results with the same column count:

SELECT Column1, Column2 FROM table1_name
UNION
SELECT Column1, Column2 FROM table2_name

 To combine literal values and query results:

SELECT -1 AS Column1, ‘A literal value’ AS Column2
UNION
SELECT Column1, Column2 FROM table1_name

 To include non - distinct selection (UNION performs SELECT DISTINCT by default):

SELECT Column1, Column2 FROM table1_name
UNION ALL
SELECT Column1, Column2 FROM table2_name

❑

❑

❑

❑

❑

bapp02.indd 698bapp02.indd 698 11/13/08 4:16:09 PM11/13/08 4:16:09 PM

Appendix B: T - SQL Command Syntax Reference

699

 EXCEPT and INTERSECT
 To select the differences (EXCEPT) or common values (INTERSECT) between two queries:

SELECT * FROM TableA EXCEPT SELECT * FROM TableB
SELECT * FROM TableA INTERSECT SELECT * FROM TableB

 ORDER BY
 To order a result set by one or more column values:

SELECT * FROM table_name ORDER BY Column1
SELECT * FROM table_name ORDER BY Column1 DESC, Column2 ASC

 The default order is ascending. If ordering by more than one column, each column can have a
different order.

 COMPUTE and COMPUTE BY Clauses
 To generate totals that are appended to the end of an aggregate query result set:

SELECT Column1, Column2, Column3
FROM table_name
ORDER BY Column1, Column2
COMPUTE SUM(Column3)

 The COMPUTE and COMPUTE BY clauses are not very useful in applications because the aggregated results
are not in relational form and cannot be used in a dataset.

 As of SQL Server 2008, the CUBE and ROLLUP operators are appended to the COMPUTE BY clause
(see CUBE and ROLLUP).

 FOR Clause
 The FOR clause is used with either the XML or BROWSE option in a SELECT statement. However, the
 BROWSE and XML options are completely unrelated. FOR XML specifies that the result set is returned in
XML format. FOR BROWSE is used when accessing data through the DB - Library so that rows can be
browsed and updated one row at a time in an optimistic locking environment. There are several
requirements when using the FOR BROWSE option. For more information, consult SQL Server Books
Online, under the topic “ Browse Mode. ”

SELECT * FROM table_name FOR XML {XML Option}
SELECT * FROM table_name FOR BROWSE

 OPTION Clause
 The OPTION clause is used in a SELECT statement to provide a query hint that will override the query
optimizer and specify an index or specific join mechanism to be used along with other hint options.

❑

❑

❑

bapp02.indd 699bapp02.indd 699 11/13/08 4:16:10 PM11/13/08 4:16:10 PM

Appendix B: T - SQL Command Syntax Reference

700

 CASE
 To evaluate one or more expressions and return one or more specified values based on the
evaluated expression:

SELECT expression = CASE Column
WHEN value THEN resultant_value
WHEN value2 THEN resultant_value2
...
ELSE alternate_value
END
FROM table
SELECT value =
 CASE
 WHEN column IS NULL THEN value
 WHEN column {expression true} THEN different_value
 WHEN column {expression true} and price {expression true} THEN other_value
 ELSE different_value
 END,
 column2
FROM table

 INSERT
 To add a new row to a table:

INSERT table (column list)
VALUES
(column values)
INSERT table
SELECT columns FROM source expression
INSERT table
EXEC stored_procedure

 The following is new, multi - table INSERT syntax introduced in SQL Server 2008:

INSERT table (column list)
VALUES
(column values),
(column values),
(column values)

 Note that column values are comma - separated and must appear in the same order as in the column list
or in the same order as they are defined in the table.

❑

❑

bapp02.indd 700bapp02.indd 700 11/13/08 4:16:10 PM11/13/08 4:16:10 PM

Appendix B: T - SQL Command Syntax Reference

701

 UPDATE
 To update selected columns in a table:

UPDATE table SET column1 = expression1, column2 = expression2
WHERE filter_expression

 To update a table based on the contents of another table:

UPDATE table SET column1 = expression
FROM table INNER JOIN table2
ON table.column = table2.column
WHERE table.column = table2.column

 DELETE
 To delete selected rows from a table:

DELETE table
WHERE filter_expression

 To delete rows from a table based on the contents of a different table:

DELETE table
FROM table INNER JOIN table2
ON table.column = table2.column
WHERE column = filter_expression

 DECLARE @local_variable
 This creates a named object that temporarily holds a value with the data type defined in the declaration
statement. Local variables have scope only within the calling batch or stored procedure. The value of a
local variable can be set with either a SET or SELECT operation. SELECT is more efficient than SET and
has the advantage of populating multiple variables in a single operation, but the SELECT operation
cannot be confined with any data retrieval operation.

DECLARE @local_variable AS int
SET @local_variable = integer_expression
DECLARE @local_variable1 AS int, @local_variable2 AS varchar(55)
SELECT @local_variable1 = integer_column_expression, @local_variable2 = character_
column_expression FROM table

❑

❑

❑

❑

bapp02.indd 701bapp02.indd 701 11/13/08 4:16:10 PM11/13/08 4:16:10 PM

Appendix B: T - SQL Command Syntax Reference

702

 SET
 The SET operator has many functions, from setting the value of a variable to setting a database or
connection property. The SET operator is divided into the categories listed in the following table:

 Category Alters the Current Session Settings for

 Date and time Handling date and time data

 Locking Handling SQL Server locking

 Miscellaneous Miscellaneous SQL Server functionality

 Query execution Query execution and processing

 SQL - 92 settings Using the SQL - 92 default settings

 Statistics Displaying statistics information

 Transactions Handling SQL Server transactions

 LIKE
 LIKE is a pattern - matching operator for comparing strings or partial strings.

 To compare a string value where the compared string is anywhere in the string:

SELECT * FROM table WHERE column1 LIKE ‘%string%’

 To compare a string value where the compared string is at the beginning of the string:

SELECT * FROM table WHERE column1 LIKE ‘string%’

 To compare a string value where the compared string is at the end of the string:

SELECT * FROM table WHERE column1 LIKE ‘%string’

 To compare a string value where a specific character or character range is in the string:

SELECT * FROM table WHERE column1 LIKE ‘[a-c]’
SELECT * FROM table WHERE column1 LIKE ‘[B-H]olden’

 To compare a string value where a specific character or character range is not in the string:

SELECT * FROM table WHERE column1 LIKE ‘[M^c]%’ -Begins with M but not Mc

❑

❑

❑

❑

❑

bapp02.indd 702bapp02.indd 702 11/13/08 4:16:10 PM11/13/08 4:16:10 PM

Appendix B: T - SQL Command Syntax Reference

703

 ALTER TABLE
 To alter the structure of a table by adding or removing table objects such as columns, constraints,
and partitions, or by enabling and disabling triggers:

ALTER TABLE table_name ADD new_column int NULL;
ALTER TABLE table_name ADD CONSTRAINT new_check CHECK (check expression) ;
ALTER TABLE table_name DROP COLUMN existing_column;
ALTER TABLE table_name ENABLE TRIGGER trigger_name;
ALTER TABLE table_name DISABLE TRIGGER trigger_name;

 PIVOT Operator
 To cause a normalized columnar set to be transformed and restructured with repeating column
values according to a predefined column list specification:

SELECT Column3, [Col2_List_Val1], [Col2_List_Val2], [Col2_List_Val3]... FROM
 (
 SELECT
 Column1 -- Value to aggregate as measure value in pivot cells
 , Column2 -- Value for column headers as column list
 , Column3 -- Value for row headers
 FROM source_table_name
) AS Source
PIVOT
 (
 Sum(Column1) FOR MeasureValue
 IN ([Col2_List_Val1], [Col2_List_Val2], [Col2_List_Val3]...)
) AS pvt

 UNPIVOT Operator
 To cause a pivoted result set to be transformed into a normalized, columnar table structure:

SELECT
 Column3, Column2, Column1 -- columns same as pivot source above
FROM
 (
 SELECT
 Column1
 , [Col2_List_Val1], [Col2_List_Val2], [Col2_List_Val3]... FROM
 FROM pivot_source_table_name
) AS pvt
UNPIVOT
 (
 Column1 FOR MeasuresValue
 IN ([Col2_List_Val1], [Col2_List_Val2], [Col2_List_Val3]...)
)
 AS unpvt

❑

❑

❑

bapp02.indd 703bapp02.indd 703 11/13/08 4:16:11 PM11/13/08 4:16:11 PM

Appendix B: T - SQL Command Syntax Reference

704

 CREATE DATABASE
 To create a database and all associated files:

CREATE DATABASE new_database
ON (
 NAME = ‘logical_name’,
 FILENAME = ‘physical_file_location’,
 SIZE = initial_size_in_MB,
 MAXSIZE = max_size_in_MB, --If no MAXSIZE specified unlimited growth is assumed
 FILEGROWTH = percentage_OR_space_in_MB)
LOG ON
(NAME = ‘logical_log_name’,
 FILENAME = ‘physical_file_location’,
 SIZE = initial_size_in_MB,
 MAXSIZE = max_size_in_MB, --If no MAXSIZE specified unlimited growth is assumed
 FILEGROWTH = percentage_OR_space_in_MB)
COLLATE database_collation

 CREATE DEFAULT
 To create a database - wide default value that can then be bound to columns in any table to
provide a default value:

CREATE DEFAULT default_name AS default_value
--bind the default to a table column
sp_bindefault default_name, ‘table.column’

 CREATE PROCEDURE
 To create a new stored procedure:

CREATE PROCEDURE proc_name @variable variable_data_type ...n
AS
...procedure code

 or

CREATE PROC proc_name @variable variable_data_type ...n
AS
...procedure code

 CREATE RULE
 To create a database - wide rule, much like a check constraint, that can then be bound to
individual columns in tables throughout the database:

CREATE RULE rule_name AS rule_expression
--bind the rule to a table column
sp_bindrule rule_name, ‘table.column’

❑

❑

❑

❑

bapp02.indd 704bapp02.indd 704 11/13/08 4:16:11 PM11/13/08 4:16:11 PM

Appendix B: T - SQL Command Syntax Reference

705

 CREATE TABLE
 To create a new table:

CREATE TABLE table_name (
Column1 data_type nullability column_option,
Column2 data_type nullability column_option,
Column3 data_type nullability column_option,
--Column_option = Collation, IDENTITY, KEY...

 To create a new, partitioned table:

CREATE TABLE partitioned_table_name (Column1 int, Column2 char(10))
Column1 data_type nullability column_option,
Column2 data_type nullability column_option,
Column3 data_type nullability column_option
ON partition_scheme_name (column)

 CREATE TRIGGER
 To create a new trigger on a table that fires after a DML event:

CREATE TRIGGER trigger_name
ON table_name FOR dml_action -INSERT, UPDATE or DELETE
AS
...trigger_code

 To create a new trigger on a table that fires instead of a DML event:

CREATE TRIGGER trigger_name
ON view_or_table_name INSTEAD OF dml_action -INSERT, UPDATE or DELETE
AS
...trigger_code

 CREATE VIEW
 To create a new view:

CREATE VIEW view_name
AS
...Select Statement

 CREATE SCHEMA
 To create a new database schema with the option of specifying a non - dbo owner with the
 AUTHORIZATION clause:

CREATE SCHEMA schema_name AUTHORIZATION user_name

❑

❑

❑

❑

❑

❑

bapp02.indd 705bapp02.indd 705 11/13/08 4:16:11 PM11/13/08 4:16:11 PM

Appendix B: T - SQL Command Syntax Reference

706

 CREATE PARTITION FUNCTION
 To create a partition function to use when physically partitioning tables and indexes:

CREATE PARTITION FUNCTION partition_function_name (input_parameter_type)
AS RANGE LEFT --or RIGHT
FOR VALUES (value1, value2, value3, ...n)

 CREATE PARTITION SCHEME
 To create a partition scheme to use when physically partitioning tables and indexes:

CREATE PARTITION SCHEME partition_scheme_name
AS PARTITION partition_function_name
TO (filegroup1, filegroup2, filegroup3, ...n)

 Script Comment Con ventions
 In - line comment:

SELECT ProductID, Name AS ProductName -- Comment text

 Single - line comment:

/* Comment text */

 or

-- Comment text

 Comment block:

/***
 spProductUpdateByCategory
 Created by Paul Turley, 5-21-08
 nospam@sqlreportservices.com
 Updates product price info for a category
 Revisions:
 3-24-09 - Fixed bug that formatted C:
 drive if wrong type was passed in.
**/

 Reser ved W ords
 Chapter 13 gave some recommendations and guidance about the naming of objects in SQL Server. One
of the recommendations was that reserved words should not be used as names of objects. Reserved
words typically are easy to see in SQL Server Management Studio, which changes the color of reserved

❑

❑

❑

❑

❑

bapp02.indd 706bapp02.indd 706 11/13/08 4:16:11 PM11/13/08 4:16:11 PM

Appendix B: T - SQL Command Syntax Reference

707

words to blue. If the object names are delimited with double quotes or square brackets, which they often
are if you are using a graphical tool to create queries, then they may not show up as being color - coded.

 The following keywords have significant meaning within T - SQL and should be avoided in object names
and expressions. If any of these words must be used in a SQL expression, they must be contained within
square brackets [].

 ADD

 ALL

 ALTER

 AND

 ANY

 AS

 ASC

 AUTHORIZATION

 BACKUP

 BEGIN

 BETWEEN

 BREAK

 BROWSE

 BULK

 BY

 CASCADE

 CASE

 CHECK

 CHECKPOINT

 CLOSE

 CLUSTERED

 COALESCE

 COLLATE

 COLUMN

 COMMIT

 COMPUTE

 CONSTRAINT

 CONTAINS

 CONTAINSTABLE

 CONTINUE

 CONVERT

 CREATE

 CROSS

 CURRENT

 CURRENT_DATE

 CURRENT_TIME

 CURRENT_TIMESTAMP

 CURRENT_USER

 CURSOR

 DATABASE

 DBCC

 DEALLOCATE

 DECLARE

 DEFAULT

 DELETE

 DENY

 DESC

 DISK

 DISTINCT

 DISTRIBUTED

 DOUBLE

 DROP

 DUMMY

 DUMP

 ELSE

 END

 ERRLVL

 ESCAPE

 EXCEPT

 EXEC

 EXECUTE

 EXISTS

 EXIT

 FETCH

 FILE

 FILLFACTOR

 FOR

 FOREIGN

 FREETEXT

 FREETEXTTABLE

 FROM

 FULL

 FUNCTION

 GOTO

 GRANT

 GROUP

 HAVING

 HOLDLOCK

 IDENTITY

 IDENTITY_INSERT

 IDENTITYCOL

(continued)

bapp02.indd 707bapp02.indd 707 11/13/08 4:16:11 PM11/13/08 4:16:11 PM

Appendix B: T - SQL Command Syntax Reference

708

 IF

 IN

 INDEX

 INNER

 INSERT

 INTERSECT

 INTO

 IS

 JOIN

 KEY

 KILL

 LEFT

 LIKE

 LINENO

 LOAD

 NATIONAL

 NOCHECK

 NONCLUSTERED

 NOT

 NULL

 NULLIF

 OF

 OFF

 OFFSETS

 ON

 OPEN

 OPENDATASOURCE

 OPENQUERY

 OPENROWSET

 OPENXML

 OPTION

 OR

 ORDER

 OUTER

 OVER

 PERCENT

 PIVOT

 PLAN

 PRECISION

 PRIMARY

 PRINT

 PROC

 PROCEDURE

 PUBLIC

 RAISERROR

 READ

 READTEXT

 RECONFIGURE

 REFERENCES

 REPLICATION

 RESTORE

 RESTRICT

 RETURN

 REVOKE

 RIGHT

 ROLLBACK

 ROWCOUNT

 ROWGUIDCOL

 RULE

 SAVE

 SCHEMA

 SELECT

 SESSION_USER

 SET

 SETUSER

 SHUTDOWN

 SOME

 STATISTICS

 SYSTEM_USER

 TABLE

 TEXTSIZE

 THEN

 TO

 TOP

 TRAN

 TRANSACTION

 TRIGGER

 TRUNCATE

 TSEQUAL

 UNION

 UNIQUE

 UNPIVOT

 UPDATE

 UPDATETEXT

 USE

 USER

 VALUES

 VARYING

 VIEW

 WAITFOR

 WHEN

 WHERE

 WHILE

 WITH

 WRITETEXT

bapp02.indd 708bapp02.indd 708 11/13/08 4:16:12 PM11/13/08 4:16:12 PM

Appendix B: T - SQL Command Syntax Reference

709

 ODBC Reserved Words
 Although the ODBC keywords in the following table are not strictly prohibited, as a best practice to
prevent driver inconsistencies they should be avoided:

 ABSOLUTE

 ACTION

 ADA

 ADD

 ALL

 ALLOCATE

 ALTER

 AND

 ANY

 ARE

 AS

 ASC

 ASSERTION

 AT

 AUTHORIZATION

 AVG

 BEGIN

 BETWEEN

 BIT

 BIT_LENGTH

 BOTH

 BY

 CASCADE

 CASCADED

 CASE

 CAST

 CATALOG

 CHAR

 CHAR_LENGTH

 CHARACTER

 CHARACTER_LENGTH

 CHECK

 CLOSE

 COALESCE

 COLLATE

 COLLATION

 COLUMN

 COMMIT

 CONNECT

 CONNECTION

 CONSTRAINT

 CONSTRAINTS

 CONTINUE

 CONVERT

 CORRESPONDING

 COUNT

 CREATE

 CROSS

 CURRENT

 CURRENT_DATE

 CURRENT_TIME

 CURRENT_TIMESTAMP

 CURRENT_USER

 CURSOR

 DATE

 DAY

 DEALLOCATE

 DEC

 DECIMAL

 DECLARE

 DEFAULT

 DEFERRABLE

 DEFERRED

 DELETE

 DESC

 DESCRIBE

 DESCRIPTOR

 DIAGNOSTICS

 DISCONNECT

 DISTINCT

 DOMAIN

 DOUBLE

 DROP

 ELSE

 END

 END - EXEC

 ESCAPE

 EXCEPT

 EXCEPTION

 EXEC

 EXECUTE

(continued)

bapp02.indd 709bapp02.indd 709 11/13/08 4:16:12 PM11/13/08 4:16:12 PM

Appendix B: T - SQL Command Syntax Reference

710

 EXISTS

 EXTERNAL

 EXTRACT

 FALSE

 FETCH

 FIRST

 FLOAT

 FOR

 FOREIGN

 FORTRAN

 FOUND

 FROM

 FULL

 GET

 GLOBAL

 GO

 GOTO

 GRANT

 GROUP

 HAVING

 HOUR

 IDENTITY

 IMMEDIATE

 IN

 INCLUDE

 INDEX

 INDICATOR

 INITIALLY

 INNER

 INPUT

 INSENSITIVE

 INSERT

 INT

 INTEGER

 INTERSECT

 INTERVAL

 INTO

 IS

 ISOLATION

 JOIN

 KEY

 LANGUAGE

 LAST

 LEADING

 LEFT

 LEVEL

 LIKE

 LOCAL

 LOWER

 MATCH

 MAX

 MIN

 MINUTE

 MODULE

 MONTH

 NAMES

 NATIONAL

 NATURAL

 NCHAR

 NEXT

 NO

 NONE

 NOT

 NULL

 NULLIF

 NUMERIC

 OCTET_LENGTH

 OF

 ON

 ONLY

 OPEN

 OPTION

 OR

 ORDER

 OUTER

 OUTPUT

 OVERLAPS

 PAD

 PARTIAL

 PASCAL

 POSITION

 PRECISION

 PREPARE

 PRESERVE

bapp02.indd 710bapp02.indd 710 11/13/08 4:16:12 PM11/13/08 4:16:12 PM

Appendix B: T - SQL Command Syntax Reference

711

 PRIMARY

 PRIOR

 PRIVILEGES

 PROCEDURE

 PUBLIC

 READ

 REAL

 REFERENCES

 RELATIVE

 RESTRICT

 REVOKE

 RIGHT

 ROLLBACK

 ROWS

 SCHEMA

 SCROLL

 SECOND

 SECTION

 SELECT

 SESSION

 SESSION_USER

 SET

 SIZE

 SMALLINT

 SOME

 SPACE

 SQL

 SQLCA

 SQLCODE

 SQLERROR

 SQLSTATE

 SQLWARNING

 SUBSTRING

 SUM

 SYSTEM_USER

 TABLE

 TEMPORARY

 THEN

 TIME

 TIMESTAMP

 TIMEZONE_HOUR

 TIMEZONE_MINUTE

 TO

 TRAILING

 TRANSACTION

 TRANSLATE

 TRANSLATION

 TRIM

 TRUE

 UNION

 UNIQUE

 UNKNOWN

 UPDATE

 UPPER

 USAGE

 USER

 USING

 VALUE

 VALUES

 VARCHAR

 VARYING

 VIEW

 WHEN

 WHENEVER

 WHERE

 WITH

 WORK

 WRITE

 YEAR

 ZONE

bapp02.indd 711bapp02.indd 711 11/13/08 4:16:13 PM11/13/08 4:16:13 PM

Appendix B: T - SQL Command Syntax Reference

712

 Future Reserved Words
 The following table contains keywords that may be reserved in future editions of SQL Server:

 ABSOLUTE

 ACTION

 ADMIN

 AFTER

 AGGREGATE

 ALIAS

 ALLOCATE

 ARE

 ARRAY

 ASSERTION

 AT

 BEFORE

 BINARY

 BIT

 BLOB

 BOOLEAN

 BOTH

 BREADTH

 CALL

 CASCADED

 CAST

 CATALOG

 CHAR

 CHARACTER

 CLASS

 CLOB

 COLLATION

 COMPLETION

 CONNECT

 CONNECTION

 CONSTRAINTS

 CONSTRUCTOR

 CORRESPONDING

 CUBE

 CURRENT_PATH

 CURRENT_ROLE

 CYCLE

 DATA

 DATE

 DAY

 DEC

 DECIMAL

 DEFERRABLE

 DEFERRED

 DEPTH

 DEREF

 DESCRIBE

 DESCRIPTOR

 DESTROY

 DESTRUCTOR

 DETERMINISTIC

 DICTIONARY

 DIAGNOSTICS

 DISCONNECT

 DOMAIN

 DYNAMIC

 EACH

 END - EXEC

 EQUALS

 EVERY

 EXCEPTION

 EXTERNAL

 FALSE

 FIRST

 FLOAT

 FOUND

 FREE

 GENERAL

 GET

 GLOBAL

 GO

 GROUPING

 HOST

 HOUR

 IGNORE

 IMMEDIATE

 INDICATOR

 INITIALIZE

 INITIALLY

 INOUT

 INPUT

bapp02.indd 712bapp02.indd 712 11/13/08 4:16:13 PM11/13/08 4:16:13 PM

Appendix B: T - SQL Command Syntax Reference

713

 INT

 INTEGER

 INTERVAL

 ISOLATION

 ITERATE

 LANGUAGE

 LARGE

 LAST

 LATERAL

 LEADING

 LESS

 LEVEL

 LIMIT

 LOCAL

 LOCALTIME

 LOCALTIMESTAMP

 LOCATOR

 MAP

 MATCH

 MINUTE

 MODIFIES

 MODIFY

 MODULE

 MONTH

 NAMES

 NATURAL

 NCHAR

 NCLOB

 NEW

 NEXT

 NO

 NONE

 NUMERIC

 OBJECT

 OLD

 ONLY

 OPERATION

 ORDINALITY

 OUT

 OUTPUT

 PAD

 PARAMETER

 PARAMETERS

 PARTIAL

 PATH

 POSTFIX

 PREFIX

 PREORDER

 PREPARE

 PRESERVE

 PRIOR

 PRIVILEGES

 READS

 REAL

 RECURSIVE

 REF

 REFERENCING

 RELATIVE

 RESULT

 RETURNS

 ROLE

 ROLLUP

 ROUTINE

 ROW

 ROWS

 SAVEPOINT

 SCROLL

 SCOPE

 SEARCH

 SECOND

 SECTION

 SEQUENCE

 SESSION

 SETS

 SIZE

 SMALLINT

 SPACE

 SPECIFIC

 SPECIFICTYPE

 SQL

 SQLEXCEPTION

 SQLSTATE

 SQLWARNING

 START

 STATE

 STATEMENT

 STATIC

(continued)

bapp02.indd 713bapp02.indd 713 11/13/08 4:16:13 PM11/13/08 4:16:13 PM

Appendix B: T - SQL Command Syntax Reference

714

 STRUCTURE

 TEMPORARY

 TERMINATE

 THAN

 TIME

 TIMESTAMP

 TIMEZONE_HOUR

 TIMEZONE_MINUTE

 TRAILING

 TRANSLATION

 TREAT

 TRUE

 UNDER

 UNKNOWN

 UNNEST

 USAGE

 USING

 VALUE

 VARCHAR

 VARIABLE

 WHENEVER

 WITHOUT

 WORK

 WRITE

 YEAR

 ZONE

bapp02.indd 714bapp02.indd 714 11/13/08 4:16:14 PM11/13/08 4:16:14 PM

 T - SQL Sy stem V ariables
and Functions

 Variables and functions are often used interchangeably. SQL Server Books Online documents
some variables as though they were functions. However, it ’ s important to note that variables are
used in expressions to obtain a value, whereas functions process specific business logic and may
return a value. Many functions accept input arguments.

 This Appendix, specific for SQL Server 2008, is not meant to be a comprehensive reference, but to
provide a convenient guide to many functions and variables. For complete details and samples
of usage, consult Books Online.

 System Global V ariables
 The system - supplied global variables are organized into the following categories:

 Configuration

 Cursor

 System

 System Statistics

❑

❑

❑

❑

bapp03.indd 715bapp03.indd 715 11/13/08 4:16:52 PM11/13/08 4:16:52 PM

Appendix C: T - SQL System Variables and Functions

716

 Configuration

 Variable Return Type Description

 @@DATEFIRST tinyint The system setting for the first day of the week:
1 = Monday
 2 = Tuesday
3 = Wednesday
 4 = Thursday
 5 = Friday
6 = Saturday
 7 = Sunday
The U.S. default is 7.

 @@DBTS varbinary The last assigned unique TimeStamp value

 @@LANGID smallint The current language ID for the server:
0 = US English
1 = German
2 = French . . .
and so on.

 @@LANGUAGE nvarchar The current language string for the server. Returns the
language name in the native language form (us_english,
Deutsch, Fran ç ais, Dansk, Espa ñ ol, Italiano, etc.).

 @@LOCK_TIMEOUT int Lock time - out setting for the current session in
milliseconds (ms)

 @@MAX_CONNECTIONS int The maximum concurrent connections setting for the
server

 @@MAX_PRECISION tinyint The maximum precision setting for decimal and
 numeric types. The default is 38 significant digits (total
to the left and right of the decimal point).

 @@MICROSOFTVERSION int An internal tracking number used by product
development and support groups at Microsoft

 @@NESTLEVEL int The current number of nested stored procedure or
trigger calls. This may be used to limit cascading and/
or recursive calls prior to reaching the system limit of 32
recursive calls.

bapp03.indd 716bapp03.indd 716 11/13/08 4:16:53 PM11/13/08 4:16:53 PM

Appendix C: T - SQL System Variables and Functions

717

 Variable Return Type Description

 @@OPTIONS int The set of query - processing options for the current user
session. Multiple options are combined mathematically
using bitwise addition (i.e., If SELECT @@OPTIONS &
(512 + 8192) > 0 ...).
Any combination of option values can be added to
determine whether all these options are enabled.

Option values:
1 = DISABLE_DEF_CNST_CHK
2 = IMPLICIT_TRANSACTIONS
4 = CURSOR_CLOSE_ON_COMMIT
8 = ANSI_WARNINGS
16 = ANSI_PADDING
32 = ANSI_NULLS
64 = ARITHABORT
128 = ARITHIGNORE
256 = QUOTED_IDENTIFIER
512 = NOCOUNT
1024 = ANSI_NULL_DFLT_ON
2048 = ANSI_NULL_DFLT_OFF
4096 = CONCAT_NULL_YIELDS_NULL
8192 = NUMERIC_ROUNDABORT
16384 = XACT_ABORT

 @@REMSERVER nvarchar Name of the remote server if executing remote
procedures

 @@SERVERNAME nvarchar Name of the current server

 @@SERVICENAME nvarchar Name of the Windows service for the current SQL Server
instance

 @@SPID int The process/session ID assigned to the current user ’ s
connection

 @@TEXTSIZE int The current value of the TEXTSIZE option for a query
returning data from a text , ntext , or image type. The
default setting is 4,096 (4 KB).

 @@VERSION nvarchar A text string with detailed information about the current
version of SQL Server. This includes the major version,
build number, service pack, and copyright information.

bapp03.indd 717bapp03.indd 717 11/13/08 4:16:54 PM11/13/08 4:16:54 PM

Appendix C: T - SQL System Variables and Functions

718

 Cursor

 Variable Return Type Description

 @@CURSOR_ROWS int The row count for the currently open cursor. Used for explicit
cursor processing following an OPEN command. If an
asynchronous cursor is opened, the row count will not be
known, and this variable returns – 1 .

 @@FETCH_STATUS int Used as a flag to indicate whether the open cursor has
navigated past the last row (EOF).

Status values include:
0 = Normal fetch operation
 – 1 = Fetch past last row or unsuccessful
– 2 = Fetched row has been removed.

 System

 Variable Return Type Description

 @@ERROR int Value of the most recent error within the current user session.
Error numbers (from the sysmessages table) are used to
determine the status of an error condition.

 @@IDENTITY numeric Value of the most recently generated identity value. This is
typically the result of an identity column insert.

 @@ROWCOUNT int Number of rows affected by, or returned by, the last operation

 @@TRANCOUNT int Number of currently active transactions. Used to determine the
number of nested transactions. The maximum number of nested
transactions is 11.

 System Statistical

 Variable Return Type Description

 @@CONNECTIONS int The total connects that have been opened or attempted since
the SQL Server service was last started

 @@CPU_BUSY int The total time in milliseconds that the server has not been
idle since the SQL Server service was last started

 @@IDLE int The total time in milliseconds that the server has been idle
since the SQL Server service was last started

bapp03.indd 718bapp03.indd 718 11/13/08 4:16:54 PM11/13/08 4:16:54 PM

Appendix C: T - SQL System Variables and Functions

719

 Variable Return Type Description

 @@IO_BUSY int The total time in milliseconds that the server has performed
physical disk I/O operations since the SQL Server service
was last started

 @@PACK_RECEIVED int The total number of network packets received by the server
since the SQL Server service was last started

 @@PACK_SENT int The total number of network packets sent by the server since
the SQL Server service was last started

 @@PACKET_ERRORS int The total number of network packet errors that have
occurred since the SQL Server service was last started

 @@TIMETICKS int The number of milliseconds per CPU tick. Each tick takes
1/32 of a second.

 @@TOTAL_ERRORS int The total number of disk Read/Write errors that have
occurred, while performing physical disk I/O, since the SQL
Server service was last started

 @@TOTAL_READ int The total number of physical disk reads that have occurred
since the SQL Server service was last started

 @@TOTAL_WRITE int The total number of physical disk writes that have occurred
since the SQL Server service was last started

 System Functions
 The system functions are organized into the following categories:

 Aggregation

 Checksum

 Conversion

 Cursor

 Date and Time

 Image/text

 Mathematical

 Metadata

 Ranking

 Security

 System

 System Statistics

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp03.indd 719bapp03.indd 719 11/13/08 4:16:54 PM11/13/08 4:16:54 PM

Appendix C: T - SQL System Variables and Functions

720

 Aggregation

 Function Return Type Description

 AVG() (numeric — depends on
input)

 Calculates the arithmetic average for a range of
column values. Internally, this function counts rows
and calculates the sum for all non - null values in the
column and then divides the sum by the count.
Returns the same numeric data type as the column.

 COUNT() int Counts all non - null values for a column. The row
count is returned using COUNT(*) regardless of null
values.

 COUNT_BIG() bigint Same as COUNT() but returns a bigint type rather
than an int type.

 GROUPING() int Used in conjunction with ROLLUP and CUBE
operations in a GROUP BY query. This function
returns 0 to indicate that it is on a detail row and 1
to indicate a summary row.

 MAX() (numeric or date —
 depends on input)

 Returns the largest value in a range of column
values.

 MIN() (numeric or date —
 depends on input)

 Returns the smallest value in a range of column
values.

 STDEV() float Calculates the standard deviation for a range of
non - null column values.

 STDEVP() float Calculates the standard deviation over a population
for a range of non - null column values.

 SUM() (numeric — depends on
input)

 Calculates the arithmetic sum for a range of non -
 null column values. If all values are NULL , returns
 NULL .

 VAR() float Calculates the statistical variance for a range of non -
 null column values. If all values are NULL , returns
 NULL .

 VARP() float Calculates the statistical variance over a population
for a range of non - null column values. If all values
are NULL , returns NULL .

bapp03.indd 720bapp03.indd 720 11/13/08 4:16:55 PM11/13/08 4:16:55 PM

Appendix C: T - SQL System Variables and Functions

721

 Checksum

 Function Return Type Description

 CHECKSUM() int Calculates a checksum value for a row or range of column
values. This function accepts a single column name, a
comma - delimited list of columns, or * to use the entire
row. Accepts columns of all types except text , ntext ,
 image , cursor , and sql_variant . The returned value
itself is meaningless but will consistently yield the same
result for a column or row unless a value changes. String
comparisons are case - insensitive.

 BINARY_CHECKSUM() int Calculates a checksum value for a row or range of column
values. This function accepts a single column name, a
comma - delimited list of columns, or * to use the entire
row. Accepts columns of all types except text , ntext ,
 image , cursor , and sql_variant . The returned value
itself is meaningless but will consistently yield the same
result for a column or row unless a value changes. String
comparisons are case - sensitive.

 CHECKSUM_AGG() int Calculates a single checksum value for a range of int
type column values. When applied to the result of the
 CHECKSUM() or BINARY_CHECKSUM() functions, returns a
scalar (single value) checksum value for the entire range
of values. Can be used to detect value changes over a
table or range of column values.

 Conversion

 Function Return Type Description

 CAST() Returns a specified type Converts a value to a specified data type. CAST(the_
value AS the_type)

 CONVERT() Returns a specified type Converts (and optionally formats) a value to a specified
data type. Formatting can be applied to numeric and
 date types. CONVERT(the_type, the_value) or
CONVERT(the_type, the_value, format_number)

bapp03.indd 721bapp03.indd 721 11/13/08 4:16:55 PM11/13/08 4:16:55 PM

Appendix C: T - SQL System Variables and Functions

722

 Cryptographic

 Function Return Type Description

 AsymKey_ID() int Returns the ID of an asymmetric key.

 Cert_ID int Returns the ID of a certificate.

 CertProperty() sql_variant Returns the value of a specified certificate
property.

 DecryptByAsmKey() varbinary Decrypts data with an asymmetric key.

 DecryptByCert() varbinary Decrypts data with the private key of a
certificate.

 DecryptByKey() varbinary Decrypts data by using a symmetric key.

 DecryptByKeyAutoCert() varbinary Decrypts by using a symmetric key that is
automatically decrypted with a certificate.

 DecryptByPassPrase() varbinary Decrypts data that was encrypted with a
passphrase.

 EncryptByAsmKey() varbinary Encrypts data with an asymmetric key.

 EncryptByCert() varbinary Encrypts data with the public key of a
certificate.

 EncryptByKey() varbinary Encrypts a string of text using a unique
identifier key .

 EncryptByPassPhrase() varbinary Encrypts a string of text using a passphrase .

 Key_GUID() uniqueidentifier Returns the global unique identifier of a
named encryption key.

 Key_ID() int Returns the integer ID of a named
symmetric key.

 SignByAsymKey() varbinary Applies a digital signature generated by an
asymmetrical key to a block of plaintext.

 SignByCert() varbinary Applies a digital signature generated by a
certificate key to a block of plaintext.

 VerifySignedByAsmKey() int Verifies that text signed by an asymmetrical
key has not been altered.

 VerifySignedByCert() int Verifies that text signed by a certificate has
not been altered.

bapp03.indd 722bapp03.indd 722 11/13/08 4:16:56 PM11/13/08 4:16:56 PM

Appendix C: T - SQL System Variables and Functions

723

 Cursor

 Function Return Type Description

 CURSOR_STATUS() smallint Returns the status of a previously opened cursor.
 1 = Open and populated
0 = Contains no records
– 1 = Closed
– 2 = No cursor or deallocated
– 3 = Doesn ’ t exist

 Date and Time

 Function Return Type Description

 CURRENT_TIMESTAMP() datetime Returns the current date and time and
is synonymous with the GETDATE()
function. It exists for ANSI - SQL
compliance.

 DATEADD() datetime or smalldatetime
(depending on input type)

 Returns a date value (datetime or
 smalldatetime) from a date value
added by X number of date interval
units. Units may be Year , Quarter ,
 Month , DayOfYear , Day , Hour ,
 Minute , Second , or Millisecond .

 DATEDIFF() int Returns an integer representing the
difference between two date values
(datetime or smalldatetime) in
specified date interval units. Units
may be Year , Quarter , Month ,
 DayOfYear , Day , Hour , Minute ,
 Second , or Millisecond .

 DATENAME() nvarchar Similar to DATEPART() . Returns a
character string representing the
specified datepart for a date value.
The datepart parameter is the same
as the DATEDIFF() interval and
includes Year , Quarter , Month ,
 DayOfYear , Day , Hour , Minute ,
 Second , or Millisecond .

(continued)

bapp03.indd 723bapp03.indd 723 11/13/08 4:16:56 PM11/13/08 4:16:56 PM

Appendix C: T - SQL System Variables and Functions

724

 Function Return Type Description

 DATEPART() int Similar to DATENAME() . However, it
returns the integer value representing
the specified datepart for a date
value. The datepart parameter is the
same as the DATEDIFF() interval and
includes Year , Quarter , Month ,
 DayOfYear , Day , Hour , Minute ,
 Second , or Millisecond .

 DAY() int Returns the day date part for a date as
an integer.

 GETDATE() datetime Returns the current date and time
value.

 GETUTCDATE() datetime Returns the current date and time
value, for the Universal Time Zone
(UTC), based on the server ’ s time
zone settings. UTC is the same as
Greenwich Mean Time (GMT).

 ISDATE() int Returns a flag to indicate whether a
specified value is, or is capable of
being converted to, a date value.

 MONTH() int Returns the month part for a date as
an integer.

 SWITCHOFFSET datetimeoffset (Date) Returns and/or modifies the UTC
offset for a time zone.

 SYSDATETIME datetime Returns the current database system
time stamp.

 SYSDATETIMEOFFSET datetimeoffset (Date) Returns the current database time
offset.

 SYSUTCDATETIME datetime2 Returns the current database system
UTC time stamp .

 TODATETIMEOFFSET datetimeoffset Modifies the time zone offset for a
date and time .

 YEAR() int Returns the year part for a date as an
integer.

bapp03.indd 724bapp03.indd 724 11/13/08 4:16:57 PM11/13/08 4:16:57 PM

Appendix C: T - SQL System Variables and Functions

725

 Image/Text

 Function Return Type Description

 PATINDEX() bigint or int
 (depending on
input type)

 Returns the character index (first position) for a character string
pattern occurring within another character string. Similar to
 CHARINDEX() but supports wildcards. Returns bigint for
 varchar(max) and nvarchar(max) type strings; otherwise,
returns int .

 TEXTPTR() varbinary Returns a varbinary text pointer handle to be used with the
 READTEXT() , WRITETEXT() , and UPDATETEXT() functions.
Used for performing special operations on text , ntext , and
 image type column data.

 TEXTVALID() int Verifies a varbinary text pointer value, obtained from the
 TEXTPTR() function.

 Error Handling

 Function Return Type Description

 ERROR_LINE int Returns the line number of the last error when called in a
 CATCH block.

 ERROR_MESSAGE nvarchar Returns the full error text for the last error when called in a
 CATCH block.

 ERROR_NUMBER int Returns the system - or user - defined error number for the last
error when called in a CATCH block.

 ERROR_PROCEDURE nvarchar Returns the name of the stored procedure or function that
raised the last error when called in a CATCH block.

 ERROR_SEVERITY int Returns the system - or user - defined severity value for the
last error when called in a CATCH block.

 ERROR_STATE int Returns the state number for the last error when called in a
 CATCH block.

 XACT_STATE() smallint Tests the commitability of the current transaction within a
 CATCH block. Returns - 1 if the transaction is uncommittable.

bapp03.indd 725bapp03.indd 725 11/13/08 4:16:57 PM11/13/08 4:16:57 PM

Appendix C: T - SQL System Variables and Functions

726

 Mathematical

 Function Return Type Description

 ABS() (numeric — same type as input) Returns the absolute value for a numeric value.

 ACOS() float Computes the arccosine (an angle) in radians.

 ASIN() float Computes the arcsine (an angle) in radians.

 ATAN() float Computes the arctangent (an angle) in radians.

 ATN2() float Computes the arctangent of two values in radians.

 CEILING() (numeric — same type as input) Returns the smallest integer value that is greater
than or equal to a number.

 COS() float Computes the cosine of an angle in radians.

 COT() float Computes the cotangent of an angle in radians.

 DEGREES() (numeric — same type as input) Converts an angle from radians to degrees.

 EXP() float Returns the natural logarithm raised to a specified
exponent. The result is in exponential form.

 FLOOR() (numeric — same type as input) Returns the largest integer value that is less than
or equal to a number.

 LOG() float Calculates the natural logarithm of a number
using base - 2 (binary) numbering.

 LOG10() float Calculates the natural logarithm of a number
using base - 10 numbering.

 PI() float Returns the value for PI.

 POWER() float Raises a value to a specified exponent as
 FLOAT(the_value, the_exponent) .

 RADIANS() (numeric — same type as input) Converts an angle from degrees to radians.

 RAND() float Returns a fractional number based on a
randomizing algorithm. Accepts an optional seed
value.

 ROUND() (numeric — same type as input) Rounds a fractional value to a specified precision.

 SIGN() float Returns – 1 or 1 depending on whether a single
argument value is negative or positive.

 SIN() float Computes the sine of an angle in radians.

 SQRT() float Returns the square root of a value.

 SQUARE() float Returns the square (n 2) of a value.

 TAN() float Computes the tangent of an angle in radians.

bapp03.indd 726bapp03.indd 726 11/13/08 4:16:58 PM11/13/08 4:16:58 PM

Appendix C: T - SQL System Variables and Functions

727

 Metadata

 Function Return Type Description

 ASSEMBLYPROPERTY() sql_variant Returns descriptive information about a
specified assembly property.

 COL_LENGTH() int Returns the length of a column from the
column name.

 COL_NAME() sysname
(nvarchar)

 Returns the name of a column from the
object ID.

 COLUMNPROPERTY() int Returns a flag to indicate the state of a column
property.

 DATABASEPROPERTY() int This function is maintained for backward
compatibility with older SWL Server versions.
Returns a flag to indicate the state of a
database property.

 DATABASEPROPERTYEX() sqlvariant Returns a numeric flag or string to indicate
the state of a database property.

 DB_ID() smallint Returns the database ID from the database
name.

 DB_NAME() nvarchar Returns the database name from the database ID.

 FILE_ID() smallint Returns the file ID from the filename.

 FILEGROUP_ID() int Returns the ID for a file group name.

 FILEGROUP_NAME() nvarchar(128) Returns the file group name for a file group ID.

 FILEGROUPPROPERTY() int Returns a specified file group property value
for a file group name and property name.

 FILEPROPERTY() int Returns a specified file property value for a
filename and property name.

 FILE_NAME() nvarchar Returns the filename from the file ID.

 fn_listextendedproperty() table Returns a table object populated with
extended property names and their settings.

 FULLTEXTCATALOGPROPERTY() int Returns a flag to indicate the state of a
full - text catalog property.

 FULLTEXTSERVICEPROPERTY() int Returns a flag to indicate the state of a
full - text service property.

 INDEX_COL() nvarchar Returns the name of a column contained in a
specified index, by table, index, and column ID.

(continued)

bapp03.indd 727bapp03.indd 727 11/13/08 4:16:58 PM11/13/08 4:16:58 PM

Appendix C: T - SQL System Variables and Functions

728

 Function Return Type Description

 INDEXKEY_PROPERTY() int Returns a flag to indicate the state of an index
key property.

 INDEXPROPERTY() int Returns a flag indicating the state of an index
property.

 OBJECT_ID() int Returns an object ID from the object name.

 OBJECT_NAME() nchar Returns an object name from the object ID.

 OBJECTPROPERTY() int Returns property information from several
different types of objects. It is advisable to use
a function designed to query specific object
types, if possible. Returns a flag indicating the
state of an object property.

 OBJECTPROPERTYEX() sql_variant Similar to OBJECTPROPERTY() but returns
descriptive property values.

 SCHEMA_ID() int Returns the schema ID for a schema name.

 SCHEMA_NAME() sysname
(nvarchar)

 Returns the schema name for a schema ID.

 SQL_VARIANT_PROPERTY() sql_variant Returns the base data type and other
information about a sql_variant value.

 TYPE_ID() int Returns the ID for a specified data type name.

 TYPE_NAME() sysname Returns the data type name of a specified
type ID.

 TYPEPROPERTY() int Returns information about data type properties.

 Ranking

 Function Return Type Description

 DENSE_RANK() bigint Returns a running incremental value based on an ORDER BY
clause passed into the function. Doesn ’ t preserve the ordinal
position of the row in the list if there are ties.

 NTILE(n) bigint Returns an evenly distributed ranking value, dividing the result
into a finite number of ranked groups.

 RANK() bigint Returns a running incremental value based on an ORDER BY
clause passed into the function. Preserves the ordinal position of
the row in the list with duplicate values for ties followed by
subsequent skips.

 ROW_NUMBER() bigint Returns a running incremental value based on an ORDER BY
clause passed into the function.

bapp03.indd 728bapp03.indd 728 11/13/08 4:16:59 PM11/13/08 4:16:59 PM

Appendix C: T - SQL System Variables and Functions

729

 Rowset

 Function Return Type Description

 CONTAINSTABLE() table Returns a table object that can be used in a join operation.
Each row in this table contains a Key column value, which is
the primary key value for qualifying rows of the queried
table. This key value is useful for joining the resulting table
object back to the physical table to obtain column values.
Two arguments are passed: the name of the indexed table
and a search string containing words to be matched.

 FREETEXTTABLE() table Similar to CONTAINSTABLE() , but the search condition can
match inexact phrasing rather than exact words.

 OPENDATASOURCE() table Used to open an ad hoc connection to a remote OLE DB data
source and return a table reference to a database object.
Arguments include the name of a registered OLE DB
provider, a connection string and the four - part name of a
database object.

 OPENQUERY() table Used to reference an existing linked server and return the
results of a query. Arguments include the name of the linked
server and a query string.

 OPENROWSET() table Used to connect to a remote OLE DB data source and return
the results of a query. Arguments include the name of a
registered OLE DB provider, a connection string, and a query
string.

 OPENXML() table Transforms an XML document string into a rowset table. The
table structure conforms to the standard “ edge ” table format.
The sp_xml_preparedocument system stored procedure
must be called first to obtain a document handle ID, which is
then passed to this function, along with the document text.

 Security

 Function Return Type Description

 fn_trace_geteventinfo() table Returns a table type populated with event
information for a specified trace ID.

 fn_trace_getfilterinfo() table Returns a table type populated with information
about filters applied to a trace, for a specified
trace ID.

 fn_trace_getinfo() table Returns a table type populated with trace
information for a specified trace ID.

(continued)

bapp03.indd 729bapp03.indd 729 11/13/08 4:16:59 PM11/13/08 4:16:59 PM

Appendix C: T - SQL System Variables and Functions

730

 Function Return Type Description

 fn_trace_gettable() table Returns a table type populated with file
information for a specified trace ID.

 HAS_DBACCESS() int Returns a flag indicating whether the current user
has access to a specified database.

 IS_MEMBER() int Returns a flag indicating whether the current user is
a member of a Windows group or SQL Server role.

 IS_SRVROLEMEMBER() int Returns a flag indicating whether the current user
is a member of a database server role.

 ORIGINAL_LOGIN() sysname
(varchar)

 Returns the first user or login name for the first
system login in the current session context.

 SUSER_SID() varbinary Returns the security ID for a specified username.

 SUSER_SNAME() nvarchar Returns the username for a specified security ID.

 USER_ID() int Returns a username for a specified user ID.

 fn_trace_geteventinfo() table Returns a table type populated with event
information for a specified trace ID.

 String Manipulation

 Function Return Type Description

 ASCII() int Returns the numeric ASCII character value for a
standard character.

 CHAR() char Returns the ASCII character for a numeric ASCII
character value.

 CHARINDEX() int Similar to PATINDEX() , returns the index (character
position) of the first occurrence of a character string
within another character string.

 DIFFERENCE() int Returns the numeric difference between two character
strings based on the consensus Soundex values.

 LEFT() varchar or nvarchar Returns the left - most X characters from a character
string.

 LEN() int Returns the length of a character string.

 LOWER() varchar or nvarchar Converts a character string to all lowercase characters.

 LTRIM() varchar or nvarchar Removes leading spaces from the left side of a
character string.

bapp03.indd 730bapp03.indd 730 11/13/08 4:17:00 PM11/13/08 4:17:00 PM

Appendix C: T - SQL System Variables and Functions

731

 Function Return Type Description

 NCHAR() nchar Like the CHAR() function, returns the Unicode
character for a numeric character value.

 PATINDEX() int or bigint Returns the index (first character position) for the first
occurrence of characters matching a specified pattern
within another character string. Wildcard characters
may be used.

 QUOTENAME() nvarchar Returns a character string with square brackets around
the input value. Used with SQL Server object names so
they can be passed into an expression.

 REPLACE() varchar or nvarchar Returns a character string with all occurrences of one
character or substring replaced with another character
or substring.

 REPLICATE() varchar or nvarchar Returns a character string consisting of a specified
number of repeated characters.

 REVERSE() varchar or nvarchar Returns a character string with all characters in reverse
order.

 RIGHT() varchar or nvarchar Returns a specific number of characters from the right -
 most side of a character string.

 RTRIM() varchar or nvarchar Removes trailing spaces from the right side of a
character string.

 SOUNDEX() varchar Returns a four - character alphanumeric string
representing the approximate phonetic value of a word,
based on the U.S. Census Soundex algorithm.

 SPACE() char Returns a character string consisting of a specified
number of spaces.

 STR() char Returns a character string value that represents a
converted numeric data type. Three arguments include
the value, the overall length, and the number of
decimal positions.

 STUFF() (character or binary
types — depending on
input)

 Returns a character string with one string placed into
another string at a given position and for a specified
length.

 SUBSTRING() (character or binary
types — depending on
input)

 Returns a portion of a character string from a specified
position and for a specified length.

 UNICODE() int Returns the numeric Unicode character value for a
specified character.

 UPPER() varchar or nvarchar Converts a character string to all uppercase characters.

bapp03.indd 731bapp03.indd 731 11/13/08 4:17:00 PM11/13/08 4:17:00 PM

Appendix C: T - SQL System Variables and Functions

732

 System

 Function Return Type Description

 APP_NAME() nvarchar Each session is associated with an application
name, passed to the database server by explicit
program code or by the driver or data provider.

 COALESCE() (same type as input) Returns the first non - null value from a comma -
 delimited list of expressions.

 COLLATIONPROPERTY() sql_variant Returns the value of a specific property for a
specified collation. Properties include
 CodePage , LCID , and ComparisonStyle .

 COLUMNS_UPDATED varbinary Used only within an Insert or Update trigger.
Returns a bitmap of modified column flags
for the current table. Bytes are left - to - right with
the bits in each byte ordered right - to - left,
representing the state (0 = unmodified,
1 = modified) of each column.

 CURRENT_USER() sysname (varchar) Returns the name of the current user and is
synonymous with the USER_NAME() function.

 DATALENGTH() int Returns the number of bytes used to store or
handle a value. For ANSI string types, this will
return the same value as the LEN() function,
but for other data types, the value may be
different.

 fn_Get_SQL() table Returns a table type populated with the full
text of a query based on a process handle. This
value is stored in the sysprocesses table
referencing an SPID. This function was
introduced with SQL Server 2000 SP3.

 fn_HelpCollations() table Returns a table type populated with a list of
collations supported by the current version
of SQL Server.

 fn_ServerSharedDrives() table Returns a table type populated with a list of
drives shared by the server.

 fn_VirtualFileStats() table Returns a table type populated with I/O
statistics for database files, including log files.

 FORMATMESSAGE() nvarchar Returns an error message from the sysmessages
table for a specified message number and
comma - delimited list of parameters.

 GETANSINULL() int Returns the nullability setting for the database,
according to the ANSI_NULL_DFLT_ON and
 ANSI_NULL_DFLT_OFF database settings.

bapp03.indd 732bapp03.indd 732 11/13/08 4:17:01 PM11/13/08 4:17:01 PM

Appendix C: T - SQL System Variables and Functions

733

 Function Return Type Description

 HOST_ID() char Returns the workstation ID for the current
session.

 HOST_NAME() nchar Returns the workstation name for the current
session.

 IDENT_CURRENT() sql_variant Returns the last identity value generated for a
specified table regardless of the session and
scope.

 IDENT_INCR() numeric Returns the increment value specified in the
creation of the last identity column.

 IDENT_SEED() numeric Returns the seed value specified in the creation
of the last identity column.

 IDENTITY() (same as input) Used in a SELECT ... INTO statement to
insert an explicitly generated identity value
into a column.

 ISNULL() (same as input) Determines whether a specified value is null
and then returns a provided replacement value.

 ISNUMERIC() int Returns a flag to indicate whether a specified
value is, or is capable of being converted to, a
numeric value.

 NEWID() uniqueidentifier Returns a newly generated
 uniqueidentifier type value. This is a
128 - bit integer, globally unique value, usually
expressed as an alphanumeric hexadecimal
representation (such as 89DE6247 - C2E2 - 42DB -
 8CE8 - A787E505D7EA). This type is often used
for primary key values in replicated and
semiconnected systems.

 NULLIF() (same as input) Returns a NULL value when two specified
arguments have equivalent values.

 PARSENAME() nchar Returns a specific part of a four - part object name.

 ROWCOUNT_BIG() bigint Like the @@ROWCOUNT variable, returns the
number of rows either returned by or modified
by the last statement. Returns a bigint type.

 SCOPE_IDENTITY() sql_variant Like the @@IDENTITY variable, returns the last
Identity value generated but is limited to the
current session and scope (stored procedure,
batch, or module).

(continued)

bapp03.indd 733bapp03.indd 733 11/13/08 4:17:01 PM11/13/08 4:17:01 PM

Appendix C: T - SQL System Variables and Functions

734

 Function Return Type Description

 SERVERPROPERTY() sql_variant Returns a flag indicating the state of a server
property. Properties include Collation ,
 Edition , Engine Edition , InstanceName ,
 IsClustered , IsFullTextInstalled ,
 IsIntegratedSecurityOnly ,
 IsSingleUser , IsSyncWithBackup ,
 LicenseType , MachineName , NumLicenses ,
 ProcessID , ProductLevel ,
 ProductVersion , and ServerName .

 SESSION_USER nchar Returns the current username. The function is
called without parentheses.

 SESSIONPROPERTY() sql_variant Returns a flag indicating the state of a session
property. Properties include ANSI_NULLS ,
 ANSI_PADDING , ANSI_WARNINGS ,
 ARITHABORT , CONCAT_NULL_YIELDS_NULL ,
 NUMERIC_ROUNDABORT , and QUOTED_
IDENTIFIER .

 STATS_DATE() datetime Returns the date that statistics for a specified
index were last updated.

 SYSTEM_USER nvarchar Returns the current username. The function is
called without parentheses.

 USER_NAME() nvarchar Returns the username for a specified user ID.

 System Statistical

 Function Return Type Description

 sys.dm_io_virtual_file_
stats()

 table Returns a table type populated with I/O
statistics for database files, including log files.

 sys.dm_db_index_
operational_stats()

 table Returns current I/O, locking, latching, and
access method activity for each table or index in
the database.

 sys.dm_db_index_physical_
stats()

 table Returns size and fragmentation information for
the data and indexes of a specified table or view.

 sys.dm_db_index_usage_
stats()

 rowset Returns counts of different types of index
operations and the time each type of operation
was last performed.

 sys.dm_db_missing_index_
columns()

 table Returns information about database table
columns that are missing an index.

bapp03.indd 734bapp03.indd 734 11/13/08 4:17:02 PM11/13/08 4:17:02 PM

 MDX Reference

 This Appendix provides information on those aspects of the SQL Server 2008 implementation of
the Multidimensional Expressions (MDX) language relevant to Reporting Services authors. The
material provided here is intended to provide a quick reference and not to be fully instructional.
Nor is it intended to provide an overview of SQL Server Analysis Services. For a complete
reference on these topics, please refer to Professional Microsoft SQL Server 2008 Analysis Services with
MDX (Wrox).

 Object Identifier s
 All objects within Analysis Services — cubes, cube dimensions, attributes hierarchies, user -
 hierarchies, hierarchy levels, members, and so on — are referenced through an object identifier.
An object identifier is a value containing between 1 and 100 characters. The first character of the
object identifier must be a letter or an underscore. Subsequent characters can be letters, decimal
numbers, or underscores. Object identifiers cannot contain spaces or special characters and cannot
be a reserved keyword, as identified in the next section of this Appendix. Identifiers adhering to
these rules are known as regular identifiers .

 An object identifier violating one or more of these rules is known as a delimited identifier .
A delimited identifier must be encapsulated by square brackets — known as the object ’ s
delimiters — in order for the identifier to be correctly interpreted. Although required for delimited
identifiers, square brackets can also be used with regular identifiers.

bapp04.indd 735bapp04.indd 735 11/13/08 4:17:54 PM11/13/08 4:17:54 PM

Appendix D: MDX Reference

736

 Reser ved K eywords
 The following table provides a complete listing of reserved keywords within SQL Server 2008 Analysis
Services MDX:

 ABSOLUTE

 ACTIONPARAMETERSET

 ADDCALCULATEDMEMBERS

 AFTER

 AGGREGATE

 ALL

 ALLMEMBERS

 ANCESTOR

 ANCESTORS

 AND

 AS

 ASC

 ASCENDANTS

 AVERAGE

 AXIS

 BASC

 BDESC

 BEFORE

 BEFORE_AND_AFTER

 BOTTOMCOUNT

 BOTTOMPERCENT

 BOTTOMSUM

 BY

 CACHE

 CALCULATE

 CALCULATION

 CALCULATIONCURRENTPASS

 CALCULATIONPASSVALUE

 CALCULATIONS

 CALL

 CELL

 CELLFORMULASETLIST

 CHAPTERS

 CHILDREN

 CLEAR

 CLOSINGPERIOD

 COALESCEEMPTY

 COLUMN

 COLUMNS

 CORRELATION

 COUNT

 COUSIN

 COVARIANCE

 COVARIANCEN

 CREATE

 CREATEPROPERTYSET

 CREATEVIRTUALDIMENSION

 CROSSJOIN

 CUBE

 CURRENT

 CURRENTCUBE

 CURRENTMEMBER

 DEFAULTMEMBER

 DEFAULT_MEMBER

 DESC

 DESCENDANTS

 DESCRIPTION

 DIMENSION

 DIMENSIONS

 DISTINCT

 DISTINCTCOUNT

 DRILLDOWNLEVEL

 DRILLDOWNLEVELBOTTOM

 DRILLDOWNLEVELTOP

 DRILLDOWNMEMBER

 DRILLDOWNMEMBERBOTTOM

 DRILLDOWNMEMBERTOP

 DRILLUPLEVEL

 DRILLUPMEMBER

 DROP

 EMPTY

 END

 ERROR

 EXCEPT

 EXCLUDEEMPTY

 EXTRACT

 FALSE

 FILTER

 FIRSTCHILD

 FIRSTSIBLING

 FOR

bapp04.indd 736bapp04.indd 736 11/13/08 4:17:55 PM11/13/08 4:17:55 PM

Appendix D: MDX Reference

737

 FREEZE

 FROM

 GENERATE

 GLOBAL

 GROUP

 GROUPING

 HEAD

 HIDDEN

 HIERARCHIZE

 HIERARCHY

 IGNORE

 IIF

 INCLUDEEMPTY

 INDEX

 INTERSECT

 IS

 ISANCESTOR

 ISEMPTY

 ISGENERATION

 ISLEAF

 ISSIBLING

 ITEM

 LAG

 LASTCHILD

 LASTPERIODS

 LASTSIBLING

 LEAD

 LEAVES

 LEVEL

 LEVELS

 LINKMEMBER

 LINREGINTERCEPT

 LINREGPOINT

 LINREGR2

 LINREGSLOPE

 LINREGVARIANCE

 LOOKUPCUBE

 MAX

 MEASURE

 MEDIAN

 MEMBER

 MEMBERS

 MEMBERTOSTR

 MIN

 MTD

 NAME

 NAMETOSET

 NEST

 NEXTMEMBER

 NON

 NONEMPTYCROSSJOIN

 NOT_RELATED_TO_FACTS

 NO_ALLOCATION

 NO_PROPERTIES

 NULL

 ON

 OPENINGPERIOD

 OR

 PAGES

 PARALLELPERIOD

 PARENT

 PASS

 PERIODSTODATE

 POST

 PREDICT

 PREVMEMBER

 PROPERTIES

 PROPERTY

 QTD

 RANK

 RECURSIVE

 RELATIVE

 ROLLUPCHILDREN

 ROOT

 ROWS

 SCOPE

 SECTIONS

 SELECT

 SELF

 SELF_AND_AFTER

 SELF_AND_BEFORE

 SELF_BEFORE_AFTER

 SESSION

 SET

 SETTOARRAY

 SETTOSTR

 SORT

 STDDEV

 STDDEVP

 STDEV

(continued)

bapp04.indd 737bapp04.indd 737 11/13/08 4:17:55 PM11/13/08 4:17:55 PM

Appendix D: MDX Reference

738

 STDEVP

 STORAGE

 STRIPCALCULATEDMEMBERS

 STRTOMEMBER

 STRTOSET

 STRTOTUPLE

 STRTOVAL

 STRTOVALUE

 SUBSET

 SUM

 TAIL

 THIS

 TOGGLEDRILLSTATE

 TOPCOUNT

 TOPPERCENT

 TOPSUM

 TOTALS

 TREE

 TRUE

 TUPLETOSTR

 TYPE

 UNION

 UNIQUE

 UNIQUENAME

 UPDATE

 USE

 USERNAME

 USE_EQUAL_ALLOCATION

 USE_WEIGHTED_ALLOCATION

 USE_WEIGHTED_INCREMENT

 VALIDMEASURE

 VALUE

 VAR

 VARIANCE

 VARIANCEP

 VARP

 VISUAL

 VISUALTOTALS

 WHERE

 WITH

 WTD

 XOR

 YTD

 Member References
 A member is a value within a hierarchy. A member is partially referenced by the dimension, hierarchy,
and level to which it belongs. Each of these components must adhere to the rules for object identifiers, as
described above. Each part of the reference is separated from the others by a period.

 The member ’ s key or name value serves as the final part of the member reference. Member names and
keys must adhere to the rules for object identifiers. Member keys may be multi - part with each part
preceded by the ampersand (&) character.

 The following are a few examples of member references in the forms described. Note the use of square
brackets for both regular and delimited identifiers. This is done to standardize the form of the reference.

 [Date].[Calendar].[Month].[January 2004]
[Date].[Calendar].[Month]. & [2004]. & [01]

 Alternatively, you can reference a member according to its lineage within a hierarchy. In this form, a
member reference is provided for a member on a higher level in a hierarchy. To this reference are
appended the period - delimited keys or names of descendants forming the lineage of the initial member
reference to the member of interest. The final name or key is the member of interest.

bapp04.indd 738bapp04.indd 738 11/13/08 4:17:55 PM11/13/08 4:17:55 PM

Appendix D: MDX Reference

739

 The following presents the members in the previous example in this form. Note that the
 [Date].[Calendar] hierarchy consists of an (All) level followed by [Calendar Year] , [Calendar
Semester] , [Calendar Quarter].[Month] levels. (The hierarchy contains a [Date] level below this,
but that is not of interest in these examples.)

 [Date].[Calendar].[Calendar Year].[CY 2004].[H1 CY 2004].[Q1 CY 2004].[January 2004]
[Date].[Calendar].[Calendar Year]. & [2004]. & [2004] & [1]. & [2004] & [1]. & [2004] & [1]

 If unambiguous, the [Dimension].[Hierarchy].[Level] part of a member reference can be
abbreviated to any one of the following forms:

[Dimension].[Hierarchy]
[Dimension].[Level]
[Hierarchy].[Level]
[Dimension]

 The entire [Dimension].[Hierarchy].[Level] part of the reference can also be omitted. The
following examples illustrate these abbreviated forms:

[Date].[Calendar].[January 2004]
[Date].[Month].[January 2004]
[Date].[January 2004]
[Month].[January 2004]
[January 2004]

 Care should be taken when using abbreviated member references. If a reference could represent more
than one member within a cube, Analysis Services returns the first one encountered. Although data is
returned, you might not receive the data expected.

 Sets
 Sets represent zero, one, or more members from an attribute or user hierarchy. Sets may be defined
through the use of MDX functions, the assembly of members in a comma - delimited list, or a named set.

 Within MDX statements, sets are encapsulated by curly braces. The curly braces are optional if the set is
not defined as a comma - delimited list of more than one member reference.

 The following are examples of valid single - member sets. These sets are equivalent to each other.

{[Date].[Calendar].[Month].[January 2004]}
[Date].[Calendar].[Month].[January 2004]

 The following are examples of valid multi - member sets. The last two of these make use of the Children
MDX function. All three sets are equivalent to each other.

{[Date].[Calendar].[Month].[January 2004], [Date].[Calendar].[Month].[February
2004], [Date].[Calendar].[Month].[March 2004]}
{[Date].[Calendar].[Q1 CY 2004].Children}
[Date].[Calendar].[Q1 CY 2004].Children

bapp04.indd 739bapp04.indd 739 11/13/08 4:17:55 PM11/13/08 4:17:55 PM

Appendix D: MDX Reference

740

 Sets may be combined to form multi - part sets through a cross - join operation. This is done by first
defining basic sets and then combining these sets using the CrossJoin MDX function. You can use the
asterisk character (*) as a short hand notation for the CrossJoin function. The following illustrates
the construction of identical multi - part sets using these cross - join methods:

CrossJoin({[Date].[Calendar].[Q1 CY 2004].Children},
{[Product].[Categories].[Categories].Members})
{[Date].[Calendar].[Q1 CY 2004].Children} *
{[Product].[Categories].[Categories].Members}

 Multi - part sets can also be constructed through a delimited list of tuples, as illustrated in the following
example:

{([Date].[Calendar].[Month].[January 2004],[Product].[Category].[Bikes]),
([Date].[Calendar].[Month].[February 2004],[Product].[Category].[Components]),
([Date].[Calendar].[Month].[March 2004],[Product].[Category].[Accessories])}

 Tuples
 All points within a cube are identified by a coordinate value. The full coordinate value for any point
identifies a member from each attribute hierarchy within the cube. This coordinate is known as the full
tuple (or complete tuple) for that point. Partial tuples specify a member value for one or more attributes
within the coordinate system. Any attributes not explicitly identified within a partial tuple are supplied
by Analysis Services using the following rules:

 If the implicitly referenced dimension has a default member, the default member is added to
the tuple.

 If the implicitly referenced dimension has no default member, the (All) member of the default
hierarchy is used.

 If the implicitly referenced dimension has no default member, and the default hierarchy has no
(All) member, the first member of the top - most level of the default hierarchy is used.

 Tuples are encapsulated by parentheses. Parentheses are optional if only a single member reference is
used. The following are valid tuple references:

([Date].[Calendar].[Month].[January 2004])
[Date].[Calendar].[Month].[January 2004]
([Date].[Calendar].[Month].[January 2004], [Date].[Date].[Date].[January 1, 2004])
([Date].[Calendar].[Month].[January 2004], [Date].[Date].[Date].[January 1, 2004],
[Product].[Category].[Category].[Bikes])

 The SELECT Statement
 The MDX SELECT statement is used to retrieve data from a cube. The statement specifies sets of members
along a number of axes. The intersection of members along these axes, coupled with members identified
in the statement ’ s optional WHERE clause, form a collection of tuples that identify points within a
specified cube or subcube as described in the FROM clause. The values associated with these points,

❑

❑

❑

bapp04.indd 740bapp04.indd 740 11/13/08 4:17:56 PM11/13/08 4:17:56 PM

Appendix D: MDX Reference

741

referred to as cells , are returned as a cellset . Although variations from what is described here exist, this is
the basic form of the MDX SELECT statement. The following example illustrates this form:

SELECT
 {[Measures].[Sales Amount], [Measures].[Tax Amount]} ON COLUMNS,
 {[Date].[Calendar].[Q1 CY 2004].Children} ON ROWS
FROM [Adventure Works]
WHERE ([Product].[Category].[Category].[Bikes])

 In addition to the axis definitions and WHERE and FROM clauses, the MDX SELECT statement supports a
 WITH clause that can be used to specify query - scoped calculated members and named sets. Reporting
Services also provides support for parameters within the MDX SELECT statement, although these are not
formally part of the statement.

 Axis Definitions
 The MDX SELECT statement supports the identification of between 0 and 128 axes. Each axis is identified
by the formal name of AXIS(n), where n is the numeric identifier of the axis, the first of which is 0. The
axis name can be shortened to be just the number of the axis, and no axis can be skipped. The first five
axes, the most frequently used, also support aliases, as identified in the following table:

 Formal Name Shortened Name Alias

 AXIS(0) 0 COLUMNS

 AXIS(1) 1 ROWS

 AXIS(2) 2 PAGES

 AXIS(3) 3 SECTIONS

 AXIS(4) 4 CHAPTERS

 Along each axis, a set is defined. The set may be singular or composed of multiple sets cross - joined to
form a multi - part set. The set may also be the empty set specified by an open and then close curly
brace, {}. No hierarchy may be used to supply members in sets along more than one axis.

 Within the context of Reporting Services, the MDX SELECT statement defining the cells set to be returned
to the report supports up to two axes. Typically, the COLUMNS axis is used to specify members of the
Measures dimension, and cross - joined sets are not supported on this axis. These constraints are due to
Reporting Services ’ limitations in converting cell sets into the data table structure it uses internally.

 The WHERE Clause
 The MDX SELECT statement supports an optional WHERE clause. The WHERE clause, also known as the
 slicer , is used to specify members not otherwise specified within the axis definitions. The members
specified in the WHERE clause are incorporated into all tuples defining the cellset to be returned by the
 SELECT statement.

bapp04.indd 741bapp04.indd 741 11/13/08 4:17:56 PM11/13/08 4:17:56 PM

Appendix D: MDX Reference

742

 The WHERE clause typically consists of a single, partial tuple. The members identified within this tuple
are from hierarchies not specified along the axis definitions.

 Alternatively, the WHERE clause can be composed of a singular or multi - part set. The members of the
various hierarchies are aggregated so that the WHERE clause continues to function as a tuple. This is not a
common use of the WHERE clause.

 The FROM Clause
 The FROM clause defines the context within which the query is resolved. The context can be defined as
a cube or as a nested MDX SELECT statement, also known as a query - scoped subcube , which limits the
cube space within which a query is resolved.

 The following rules govern the affect of query - scoped subcubes on cube space:

 If you include the (All) member of a hierarchy, you include every member of that hierarchy.

 If you include any member, you include that member ’ s ascendants and descendants.

 If you include every member from a level, you include all members from the hierarchy.
Members from other hierarchies will be excluded if those members do not exist with members
from the level (e.g., an unbalanced hierarchy such as a city that does not contain customers).

 A subcube will always contain every (All) member from the cube.

 The WITH Clause
 The WITH clause is used within an MDX SELECT statement to define query - scoped calculated members
and named sets. The WITH clause allows for the construction of one or more calculated members or
named sets within a given query, and calculated members and named sets may reference each other.
The order of the declaration of calculated members and named sets within a query is unimportant.

 A calculated member is an expression providing instruction for the derivation of a member within a
hierarchy. The basic form of a named member is as follows:

WITH MEMBER [Dimension].[Hierarchy].[Level].[Member] as
 < expression >

 where < expression> is a valid MDX expression resolving to a single member or value. The expression
defining the calculated member can be followed by a comma and the FORMAT keyword. The FORMAT
keyword can be assigned one of the following named formats:

 Currency

 Percent

 Short Date

 Short Time

 Standard

❑

❑

❑

❑

❑

❑

❑

❑

❑

bapp04.indd 742bapp04.indd 742 11/13/08 4:17:56 PM11/13/08 4:17:56 PM

Appendix D: MDX Reference

743

 Alternatively, the FORMAT keyword can be assigned an expression identifying a format. See the Analysis
Services Books Online article “ FORMAT_STRING Contents ” for a complete listing of the rules for
defining these expressions.

 A named set is an expression evaluating to a set of members, stored or calculated. The basic form of a
named set is as follows:

WITH SET [Set] as
 <expression >

 where < expression > is a valid MDX expression resolving to a single- or multi - part set.

 When more than one calculated member or named set is defined for a query, the WITH keyword precedes
the first calculated member or named set only.

 The following example illustrates a SELECT statement using the WITH clause:

WITH
 MEMBER [Measures].[Tax Percent] as
 ([Measures].[Tax Amount])/([Measures].[Sales Amount])
 ,FORMAT=”Percent”
 SET [Periods Of Interest] as
 {[Date].[Calendar].[Q1 CY 2004].Children}
SELECT
 {
 [Measures].[Sales Amount],
 [Measures].[Tax Amount],
 [Measures].[Tax Percent]
 } ON COLUMNS,
 {[Periods of Interest]} ON ROWS
FROM [Adventure Works]
WHERE ([Product].[Category].[Category].[Bikes])

 Parameters
 The MDX SELECT statement provides support for parameters. However, Reporting Services is not
capable of exploiting this syntax. Instead, it provides an alternate, substitution - based mechanism for
incorporating parameters.

 Reporting Services parameters within MDX SELECT statements are identified by variables preceded
by the “ at ” character (@). At execution, the Reporting Services variable is replaced with a string
representing the variable ’ s value. This string is encapsulated by double quotes and is therefore
interpreted as a string by Analysis Services. To convert the string value to a member, tuple, or set
reference, the SELECT statement uses the STRTOMEMBER , STRTOTUPLE , or STRTOSET MDX function,
respectively.

 Reporting Services uses the CONSTRAINED keyword with each of these function calls. The CONTSTRAINED
keyword prohibits the use of MDX functions within the string being evaluated. This is used to prevent
injection attacks.

bapp04.indd 743bapp04.indd 743 11/13/08 4:17:56 PM11/13/08 4:17:56 PM

Appendix D: MDX Reference

744

 The following illustrates an MDX statement generated by Reporting Services containing a parameter:

SELECT
 NON EMPTY {[Measures].[Reseller Sales Amount]} ON COLUMNS
FROM (
 SELECT (STRTOSET(@DateCalendarYear, CONSTRAINED)) ON COLUMNS
 FROM [Adventure Works]
)
WHERE (
 IIF(
 STRTOSET(@DateCalendarYear, CONSTRAINED).Count = 1,
 STRTOSET(@DateCalendarYear, CONSTRAINED),
 [Date].[Calendar Year].currentmember
)
)
CELL PROPERTIES VALUE, BACK_COLOR, FORE_COLOR, FORMATTED_VALUE,
 FORMAT_STRING, FONT_NAME, FONT_SIZE, FONT_FLAGS

 MDX Functions and K eywords
 The following tables provide information on the MDX functions and keywords available for use with
Analysis Services through Reporting Services queries. Each table represents a particular category of
function or keyword.

 Keywords

 Keyword Description

 EXISTING Forces a specified set to be evaluated within the current context. By default, sets are
evaluated within the context of the cube that contains the members of the set. The
 EXISTING keyword forces a specified set to be evaluated within the current context
instead.

 NON EMPTY Eliminates any members along the axis for whom only empty cells are returned.

bapp04.indd 744bapp04.indd 744 11/13/08 4:17:57 PM11/13/08 4:17:57 PM

Appendix D: MDX Reference

745

 KPI Functions

 Function Syntax Description

 KPICURRENTTIMEMEMBER KPICURRENTTIMEMEMBER
(« String Expression »)

 Returns the current time
member of the specified Key
Performance Indicator (KPI).

 KPIGOAL KPIGOAL(« String Expression ») Returns the member that
calculates the value for the goal
portion of the specified KPI.

 KPISTATUS KPISTATUS(« String
Expression »)

 Returns a normalized value that
represents the status portion of
the specified KPI.

 KPITREND KPITREND(« String
Expression »)

 Returns the normalized value
that represents the trend portion
of the specified KPI.

 KPIVALUE KPIVALUE(« String
Expression »)

 Returns the member that
calculates the value of the
specified KPI.

 KPIWEIGHT KPIWEIGHT(« String
Expression »)

 Returns the weight of the
specified KPI.

 Metadata Functions

 Function Syntax Description

 AXIS AXIS(« Numeric Expression ») Returns the set of tuples on a
specified axis.

 COUNT « Tuple » .COUNT Returns the number of
dimensions in a tuple.

 DIMENSIONS.COUNT DIMENSIONS.COUNT Returns the number of
hierarchies in a cube, including
the [Measures].[Measures]
hierarchy.

 HIERARCHY « Level » .HIERARCHY Returns the hierarchy that
contains a specified member
or level.

 HIERARCHY « Member » .HIERARCHY Returns the hierarchy that
contains a specified member
or level.

 LEVEL « Member » .LEVEL Returns the level of a member.

(continued)

bapp04.indd 745bapp04.indd 745 11/13/08 4:17:57 PM11/13/08 4:17:57 PM

Appendix D: MDX Reference

746

 Function Syntax Description

 LEVELS « Hierarchy » .LEVELS(« Numeric
Expression »)

 Returns the level whose
position in a dimension or
hierarchy is specified by a
numeric expression or whose
name is specified by a string
expression.

 LEVELS.COUNT « Hierarchy » .LEVELS.COUNT Returns the number of levels in
a hierarchy.

 NAME « Member » .NAME Returns the name of a
dimension, hierarchy, level,
or member.

 NAME « Hierarchy » .NAME Returns the name of a
dimension, hierarchy, level, or
member.

 NAME « Level » .NAME(Level) Returns the name of a
dimension, hierarchy, level, or
member.

 ORDINAL « Level » .ORDINAL Returns the zero - based ordinal
value associated with a level.

 UNIQUENAME « Hierarchy » .UNIQUENAME Returns the unique name of a
specified dimension, hierarchy,
level, or member.

 UNIQUENAME « Member » .UNIQUENAME Returns the unique name of a
specified dimension, hierarchy,
level, or member.

 UNIQUENAME « Level » .UNIQUENAME Returns the unique name of a
specified dimension, hierarchy,
level, or member.

bapp04.indd 746bapp04.indd 746 11/13/08 4:17:57 PM11/13/08 4:17:57 PM

Appendix D: MDX Reference

747

 Navigation Functions

 Function Syntax Description

 ANCESTOR ANCESTOR(« Member » , « Level ») Returns the ancestor of a member at a
specified level or distance.

 ANCESTOR ANCESTOR(« Member » ,
 « Distance »)

 Returns the ancestor of a member at a
specified level or distance.

 ANCESTORS ANCESTORS(« Member » ,
 « Distance »)

 Returns a set of all ancestors of a
member at a specified level or distance.

 ANCESTORS ANCESTORS(« Member » ,
 « Level »)

 Returns a set of all ancestors of a
member at a specified level or distance.

 ASCENDANTS ASCENDANTS(« Member ») Returns the set of the ascendants of a
specified member, including the member
itself.

 CHILDREN « Member » .CHILDREN Returns the children of a specified
member.

 COUSIN COUSIN(« Member1 » ,
 « Member2 »)

 Returns the child member with the same
relative position under a parent member
as the specified child member.

 CURRENT « Set » .CURRENT Returns the current tuple from a set
during iteration.

 CURRENTMEMBER « Hierarchy » .CURRENTMEMBER Returns the current member along a
specified dimension or hierarchy during
iteration.

 CURRENTORDINAL « Set » .CURRENTORDINAL Returns the current iteration number
within a set during iteration.

 DATAMEMBER « Member » .DATAMEMBER Returns the system - generated data
member that is associated with a nonleaf
member of a dimension.

 DEFAULTMEMBER « Hierarchy » .DEFAULTMEMBER Returns the default member of a
dimension or hierarchy.

 FIRSTCHILD « Member » .FIRSTCHILD Returns the first child of a member.

 FIRSTSIBLING « Member » .FIRSTSIBLING Returns the first child of the parent of a
member.

 ISANCESTOR ISANCESTOR(« Member1 » ,
« Member2 »)

 Returns whether a specified member is
an ancestor of another specified member.

 ISGENERATOR ISGENERATION(« Member » ,
 « Numeric Expression »)

 Returns whether a specified member is
in a specified generation.

(continued)

bapp04.indd 747bapp04.indd 747 11/13/08 4:17:57 PM11/13/08 4:17:57 PM

Appendix D: MDX Reference

748

 Function Syntax Description

 ISLEAF ISLEAF(« Member ») Returns whether a specified member is a
leaf member.

 ISSIBLING ISSIBLING(« Member1 » ,
« Member2 »)

 Returns whether a specified member is a
sibling of another specified member.

 LAG « Member » .LAG(« Numeric
Expression »)

 Returns the member that is a specified
number of positions before a specified
member along the member ’ s dimension.

 LASTCHILD « Member » .LASTCHILD Returns the last child of a specified
member.

 LASTSIBLING « Member » .LASTSIBLING Returns the last child of the parent of a
specified member.

 LEAD « Member » .LEAD(« Numeric
Expression »)

 Returns the member that is a specified
number of positions following a
specified member along the member ’ s
dimension.

 LINKMEMBER LINKMEMBER(« Member » ,
 « Hierarchy »)

 Returns the member equivalent to a
specified member in a specified
hierarchy.

 LOOKUPCUBE LOOKUPCUBE(« Cube Name » ,
 « Numeric Expression »)

 Returns the value of an MDX expression
evaluated over another specified cube in
the same database.

 NEXTMEMBER « Member » .NEXTMEMBER Returns the next member in the level
that contains a specified member.

 PARENT « Member » .PARENT Returns the parent of a member.

 PREVMEMBER « Member » .PREVMEMBER Returns the previous member in the
level that contains a specified member.

 PROPERTIES « Member » .PROPERTIES(« String
Expression » [, TYPED])

 Returns a string, or a strongly typed
value, that contains a member property
value.

 SIBLINGS « Member » .SIBLINGS Returns the siblings of a specified
member, including the member itself.

 UNKNOWNMEMBER UNKNOWNMEMBER Returns the unknown member
associated with a level or member.

bapp04.indd 748bapp04.indd 748 11/13/08 4:17:58 PM11/13/08 4:17:58 PM

Appendix D: MDX Reference

749

 Other Functions

 Function Syntax Description

 CALCULATIONCURRENTPASS CALCULATIONCURRENTPASS Returns the current
calculation pass of a cube
for the specified query
context.

 CALCULATIONPASSVALUE CALCULATIONPASSVALUE(« Numeric
Expression » , « Pass Value » [[,
 « Access Flag »], ALL])

 Returns the value of an
MDX expression evaluated
over the specified
calculation pass of a cube.

 CUSTOMDATA CUSTOMDATA Returns the value of the
CustomData property.

 ITEM « Tuple » .ITEM(« Numeric
Expression »)

 Returns a member from a
specified tuple.

 ITEM « Set » .ITEM(« String
Expression » [, « String
Expression » ...] | « Index »)

 Returns a tuple from a set.

 PREDICT PREDICT(« Mining Model Name » ,
 « Numeric Expression »)

 Returns a value of a
numeric expression
evaluated over a data
mining model.

 SETTOARRAY SETTOARRAY(« Set » [,
 « Set » ...][, « Numeric
Expression »])

 Converts one or more sets
to an array for use in a
user - defined function.

bapp04.indd 749bapp04.indd 749 11/13/08 4:17:58 PM11/13/08 4:17:58 PM

Appendix D: MDX Reference

750

 Set Functions

 Function Syntax Description

 ADDCALCULATEDMEMBERS ADDCALCULATEDMEMBERS
(« Set »)

 Returns a set generated by adding
calculated members to a specified set.

 ALLMEMBERS « Level » .ALLMEMBERS Returns a set that contains all
members, including calculated
members, of the specified dimension,
hierarchy, or level.

 ALLMEMBERS « Hierarchy » .ALLMEMBERS Returns a set that contains all
members, including calculated
members, of the specified dimension,
hierarchy, or level.

 BOTTOMNCOUNT BOTTOMCOUNT(« Set » ,
 « Count » [, « Numeric
Expression »])

 Sorts a set in ascending order, and
returns the specified number of
tuples with the lowest values.

 BOTTOMPERCENT BOTTOMPERCENT(« Set » ,
 « Percentage » , « Numeric
Expression »)

 Sorts a set in ascending order, and
returns a set of tuples with the lowest
values whose cumulative total is
equal to or less than a specified
percentage.

 BOTTOMSUM BOTTOMSUM(« Set » ,
 « Value » , « Numeric
Expression »)

 Sorts a set in ascending order, and
returns a set of tuples with the lowest
values whose total is equal to or less
than a specified value.

 CROSSJOIN CROSSJOIN(« Set1 » ,
 « Set2 »)

 Returns the cross - product of one or
more sets.

 DESCENDANTS DESCENDANTS(« Member » [,
 « Level » [,
 « Desc_flags »]])

 Returns the set of descendants of a
member at a specified level or
distance, optionally including or
excluding descendants in other
levels.

 DESCENDANTS DESCENDANTS(« Member » ,
« Distance » [,
« Desc_flags »])

 Returns the set of descendants of a
member at a specified level or
distance, optionally including or
excluding descendants in other
levels.

 DISTINCT DISTINCT(« Set ») Returns a set, removing duplicate
tuples from a specified set.

 EXCEPT EXCEPT(« Set1 » ,
 « Set2 » [, ALL])

 Finds the difference between two
sets, optionally retaining duplicates.

bapp04.indd 750bapp04.indd 750 11/13/08 4:17:58 PM11/13/08 4:17:58 PM

Appendix D: MDX Reference

751

 Function Syntax Description

 EXISTING EXISTING Forces a specified set to be evaluated
within the current context. By
default, sets are evaluated within the
context of the cube that contains the
members of the set. The EXISTING
keyword forces a specified set to be
evaluated within the current context
instead.

 EXISTS EXISTS(« Set1 » , « Set2 ») Returns the set of members of one set
that exist with one or more tuples of
one or more other sets.

 EXTRACT EXTRACT(« Set » ,
 « Dimension » [,
 « Dimension » ...])

 Returns a set of tuples from extracted
dimension elements.

 FILTER FILTER(« Set » , « Search
Condition »)

 Returns the set that results from
filtering a specified set based on a
search condition.

 GENERATE GENERATE(« Set1 » ,
 « Set2 » [, ALL])

 Applies a set to each member of
another set and then joins the
resulting sets by union. Alternatively,
this function returns a concatenated
string created by evaluating a string
expression over a set.

 HEAD HEAD(« Set » [, « Numeric
Expression »])

 Returns the first specified number of
elements in a set, while retaining
duplicates.

 HIERARCHIZE HIERARCHIZE(« Set » [,
POST])

 Orders the members of a set in a
hierarchy.

 INTERSECT INTERSECT(« Set1 » ,
 « Set2 » [, ALL])

 Returns the intersection of two input
sets, optionally retaining duplicates.

 MEASUREGROUPMEASURES MEASUREGROUPMEASURES
(« String Expression »)

 Returns a set of measures that
belongs to the specified measure
group.

 MEMBERS « Hierarchy » .MEMBERS Returns a member specified by a
string expression.

 MEMBERS « Level » .MEMBERS Returns a member specified by a
string expression.

(continued)

bapp04.indd 751bapp04.indd 751 11/13/08 4:17:59 PM11/13/08 4:17:59 PM

Appendix D: MDX Reference

752

 Function Syntax Description

 NONEMPTY NONEMPTY(« Set1 » ,
 « Set2 »)

 Returns the set of tuples that are not
empty from a specified set, based
on the cross - product of the specified
set with a second set.

 NONEMPTYCROSSJOIN NONEMPTYCROSSJOIN(« Set
1 » , « Set2 » [,
 « Set3 » ...][,
 « Crossjoin Count »])

 Returns the cross - product of one or
more sets as a set, excluding empty
tuples and tuples without associated
fact table data.

 ORDER ORDER(« Set » , { « String
Expression » | « Numeric
Expression » }[, ASC |
DESC | BASC | BDESC])

 Arranges members of a specified set,
optionally preserving or breaking the
hierarchy.

 STRIPCALCULATEDMEMBERS STRIPCALCULATEDMEMBERS
(« Set »)

 Returns a set generated by removing
calculated members from a
specified set.

 SUBSET SUBSET(« Set » ,
 « Start » [, « Count »])

 Returns a subset of tuples from a
specified set.

 TAIL TAIL(« Set » [, « Count »]) Returns a subset from the end of
a set.

 TOPCOUNT TOPCOUNT(« Set » ,
 « Count » [, « Numeric
Expression »])

 Sorts a set in descending order and
returns the specified number of
elements with the highest values.

 TOPPERCENT TOPPERCENT(« Set » ,
 « Percentage » , « Numeric
Expression »)

 Sorts a set in descending order and
returns a set of tuples with the
highest values whose cumulative
total is equal to or less than a
specified percentage.

 TOPSUM TOPSUM(« Set » , « Value » ,
 « Numeric Expression »)

 Sorts a set and returns the top - most
elements whose cumulative total is at
least a specified value.

 UNION UNION(« Set1 » , « Set2 » [,
ALL])

 Returns the union of two sets,
optionally retaining duplicates.

 UNORDER UNORDER(« Set ») Removes any enforced ordering from
a specified set.

bapp04.indd 752bapp04.indd 752 11/13/08 4:17:59 PM11/13/08 4:17:59 PM

Appendix D: MDX Reference

753

 Statistical Functions

 Function Syntax Description

 AGGREGATE AGGREGATE(« Set » [,
 « Numeric Expression »])

 Returns a scalar value calculated by
aggregating either measures or an
optionally specified numeric expression
over the tuples of a specified set.

 AVG AVG(« Set » [, « Numeric
Expression »])

 Returns the average value of measures or
the average value of an optional numeric
expression, evaluated over a specified set.

 COALESCEEMPTY COALESCEEMPTY(« Numeric
Expression » [, « Numeric
Expression » ...])

 Coalesces an empty cell value to a number
or string and returns the coalesced value.

 CORRELATION CORRELATION(« Set » ,
 « Numeric Expression » [,
 « Numeric Expression »])

 Returns the correlation coefficient of two
series evaluated over a set.

 COUNT « Set » .COUNT Returns the number of cells in a set.

 COUNT COUNT(« Set » [,
EXCLUDEEMPTY |
INCLUDEEMPTY])

 Returns the number of cells in a set.
The Count(Set) function includes or
excludes empty cells, depending on the
syntax used. If the standard syntax is used,
empty cells can be excluded or included by
using the EXCLUDEEMPTY or
 INCLUDEEMPTY flags, respectively. If the
alternate syntax is used, the function
always includes empty cells.

 COVARIANCE COVARIANCE(« Set » ,
 « Numeric Expression » [,
 « Numeric Expression »])

 Returns the population covariance of two
series evaluated over a set, using the biased
population formula.

 COVARIANCEN COVARIANCEN(« Set » ,
 « Numeric Expression » [,
 « Numeric Expression »])

 Returns the sample covariance of two
series evaluated over a set, using the
unbiased population formula.

 DISTINCTCOUNT DISTINCTCOUNT(« Set ») Returns the number of distinct, nonempty
tuples in a set.

 LINREGINTERCEPT LINREGINTERCEPT(« Set » ,
 « Numeric Expression » [,
 « Numeric Expression »])

 Calculates the linear regression of a set and
returns the value of the intercept in the
regression line, y = ax + b .

 LINREGPOINT LINREGPOINT(« Numeric
Expression » , « Set » ,
 « Numeric Expression » [,
 « Numeric Expression »])

 Calculates the linear regression of a set and
returns the value of y in the regression line,
 y = ax + b .

(continued)

bapp04.indd 753bapp04.indd 753 11/13/08 4:17:59 PM11/13/08 4:17:59 PM

Appendix D: MDX Reference

754

 Function Syntax Description

 LINREGR2 LINREGR2(« Set » , « Numeric
Expression » [, « Numeric
Expression »])

 Calculates the linear regression of a set and
returns the coefficient of determination, R2.

 LINREGSLOPE LINREGSLOPE(« Set » ,
 « Numeric Expression » [,
 « Numeric Expression »])

 Calculates the linear regression of a set,
and returns the value of the slope in the
regression line, y = ax + b .

 LINREGVARIANCE LINREGVARIANCE(« Set » ,
 « Numeric Expression » [,
 « Numeric Expression »])

 Calculates the linear regression of a set,
and returns the variance associated with
the regression line, y = ax + b .

 MAX MAX(« Set » [, « Numeric
Expression »])

 Returns the maximum value of a numeric
expression that is evaluated over a set.

 MEDIAN MEDIAN(« Set » [, « Numeric
Expression »])

 Returns the median value of a numeric
expression that is evaluated over a set.

 MIN MIN(« Set » [, « Numeric
Expression »])

 Returns the minimum value of a numeric
expression that is evaluated over a set.

 RANK RANK(« Tuple » , « Set ») Returns the one - based rank of a specified
tuple in a specified set.

 ROLLUPCHILDREN ROLLUPCHILDREN(« Member » ,
 « String Expression »)

 Returns a value generated by rolling up the
values of the children of a specified
member using the specified unary operator.

 STDDEV STDDEV(« Set » [, « Numeric
Expression »])

 Alias for STDEV

 STDDEVP STDDEVP(« Set » [, « Numeric
Expression »])

 Alias for STDEVP

 STDEV STDEVP(« Set » [, « Numeric
Expression »])

 Returns the sample standard deviation of a
numeric expression evaluated over a set,
using the unbiased population formula.

 STDEVP STDEVP(« Set » [, « Numeric
Expression »])

 Returns the population standard deviation
of a numeric expression evaluated over a
set, using the biased population formula.

 SUM SUM(« Set » [, « Numeric
Expression »])

 Returns the sum of a numeric expression
evaluated over a set.

 VAR VAR(« Set » [, « Numeric
Expression »])

 Returns the sample variance of a numeric
expression evaluated over a set, using the
unbiased population formula.

 VARIANCE VARIANCE(« Set » [, « Numeric
Expression »])

 Alias for VAR

bapp04.indd 754bapp04.indd 754 11/13/08 4:17:59 PM11/13/08 4:17:59 PM

Appendix D: MDX Reference

755

 Function Syntax Description

 VARIANCEP VARIANCEP(« Set » [,
 « Numeric Expression »])

 Alias for VARP

 VARP VARP(« Set » [, « Numeric
Expression »])

 Returns the population variance of a
numeric expression evaluated over a set,
using the biased population formula.

 VISUALTOTALS VISUALTOTALS(« Set » ,
 « Pattern »)

 Returns a set generated by dynamically
totaling child members in a specified set,
optionally using a pattern for the name of
the parent member in the resulting cellset.

 String Functions

 Function Syntax Description

 GENERATE GENERATE(« Set » , « String
Expression » [, « Delimiter »])

 Applies a set to each member of another set
and then joins the resulting sets by union.
Alternatively, this function returns a
concatenated string created by evaluating a
string expression over a set.

 MEMBERTOSTR MEMBERTOSTR(« Member ») Returns an MDX - formatted string that
corresponds to a specified member.

 NAMETOSET NAMETOSET(« Member Name ») Returns a set that contains the member
specified by an MDX - formatted string.

 SETTOSTR SETTOSTR(« Set ») Returns the set specified by an
MDX - formatted string.

 STRTOMEMBER STRTOMEMBER(« String
Expression »)

 Returns the member specified by an
MDX - formatted string.

 STRTOSET STRTOSET(« String
Expression »)

 Returns the set specified by an
MDX - formatted string.

 STRTOTUPLE STRTOTUPLE(« String
Expression »)

 Returns the tuple specified by an
MDX - formatted string.

 STRTOVALUE STRTOVALUE(« String
Expression »)

 Returns the value specified by an
MDX - formatted string.

 TUPLETOSTR TUPLETOSTR(« Tuple ») Returns an MDX - formatted string that
corresponds to specified tuple.

bapp04.indd 755bapp04.indd 755 11/13/08 4:18:00 PM11/13/08 4:18:00 PM

Appendix D: MDX Reference

756

 Time Functions

 Function Syntax Description

 CLOSINGPERIOD CLOSINGPERIOD([« Level » [,
 « Member »]])

 Returns the last sibling among the
descendants of a member at a specified
level.

 LASTPERIODS LASTPERIODS(« Index » [,
 « Member »])

 Returns a set of members up to and
including a specified member.

 MTD MTD([« Member »]) Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by the Year level in
the Time dimension.

 OPENINGPERIOD OPENINGPERIOD([« Level » [,
 « Member »]])

 Returns the first sibling among the
descendants of a specified level, optionally
at a specified member.

 PARALLELPERIOD PARALLELPERIOD([« Level » [,
 « Numeric Expression » [,
 « Member »]]])

 Returns a member from a prior period in
the same relative position as a specified
member.

 PERIODSTODATE PERIODSTODATE([« Level » [,
 « Member »]])

 Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by a specified level
in the Time dimension.

 QTD QTD([« Member »]) Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by the Quarter
level in the Time dimension.

 WTD WTD([« Member »]) Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by the Week level
in the Time dimension.

 YTD YTD([« Member »]) Returns a set of sibling members from the
same level as a given member, starting with
the first sibling and ending with the given
member, as constrained by the Year level in
the Time dimension.

bapp04.indd 756bapp04.indd 756 11/13/08 4:18:00 PM11/13/08 4:18:00 PM

Appendix D: MDX Reference

757

 UI Functions

 Function Syntax Description

 DRILLDOWNLEVEL DRILLDOWNLEVEL(« Set » [,
 « Level »])

 Drills down the members of a set to
one level below the lowest level
represented in the set, or to one level
below an optionally specified level of
a member represented in the set.

 DRILLDOWNLEVEL DRILLDOWNLEVEL(« Set » [, ,
 « Index »])

 Drills down the members of a set to
one level below the lowest level
represented in the set, or to one level
below an optionally specified level of
a member represented in the set.

 DRILLDOWNLEVELBOTTOM DRILLDOWNLEVELBOTTOM
(« Set » , « Count » [,
[« Level »][, « Numeric
Expression »]])

 Drills down the bottom - most
members of a set, at a specified level,
to one level below.

 DRILLDOWNLEVELTOP DRILLDOWNLEVELTOP(« Set » ,
 « Count » [, [« Level »][,
 « Numeric Expression »]])

 Drills down the top - most members
of a set, at a specified level, to one
level below.

 DRILLDOWNMEMBER DRILLDOWNMEMBER(« Set1 » ,
 « Set2 » [, RECURSIVE])

 Drills down the members in
a specified set that are present in a
second specified set. Alternatively, the
function drills down on a set of tuples.

 DRILLDOWNMEMBERBOTTOM DRILLDOWNMEMBERBOTTOM
(« Set1 » , « Set2 » ,
 « Count » [, [« Numeric
Expression »] [,
RECURSIVE]])

 Drills down the members in a
specified set that are present in
a second specified set, limiting the
result set to a specified number of
members. Alternatively, this function
also drills down on a set of tuples.

 DRILLDOWNMEMBERTOP DRILLDOWNMEMBERTOP
(« Set1 » , « Set2 » ,
 « Count » [, [« Numeric
Expression »] [,
RECURSIVE]])

 Drills down the members in
a specified set that are present in a
second specified set, limiting the
result set to a specified number of
members. Alternatively, this function
drills down on a set of tuples.

 DRILLUPLEVEL DRILLUPLEVEL(« Set » [,
 « Level »])

 Drills up the members of a set that
are below a specified level.

 DRILLUPMEMBER DRILLUPMEMBER(« Set1 » ,
 « Set2 »)

 Drills up the members in a specified
set that are present in a second
specified set.

 TOGGLEDRILLSTATE TOGGLEDRILLSTATE(« Set1 » ,
 « Set2 » [, RECURSIVE])

 Toggles the drill state of members.

bapp04.indd 757bapp04.indd 757 11/13/08 4:18:00 PM11/13/08 4:18:00 PM

Appendix D: MDX Reference

758

 Value Functions

 Function Syntax Description

 IIF IIF(« Logical Expression » ,
 « object » , « object »)

 Returns one of two values determined by
a logical test.

 IS IS Performs a logical comparison on two
object expressions.

 ISEMPTY ISEMPTY(« Value Expression ») Returns whether the evaluated expression
is the empty cell value.

 MEMBERVALUE « Member » .MEMBERVALUE Returns the value of a member.

 VALIDMEASURE VALIDMEASURE(« Tuple ») Returns a valid measure in a virtual cube
by forcing inapplicable dimensions to
their top level.

 VALUE « Tuple » .VALUE Returns the value of a measure.

bapp04.indd 758bapp04.indd 758 11/13/08 4:18:01 PM11/13/08 4:18:01 PM

In
de

x

3-D modeling, column char ts, 286
(pound sign) character s, 222
@ symbol, 200

query parameters, 202

A
Access, 24, 219–222

as front-end to SQL database, 219
ODBC driver, 219
queries, parameterized, 221
reports, importing, 174

Access SQL, 188
account management

application database account, 506–507
service account, 504–506
unattended execution account, 507–508

ad hoc distributed queries, 179–180
ad hoc queries, parameters and, 202
ad hoc repor ts, 11–12, 26

report models, 463
Add Item template, 183
Add Totals option, 144
administration, Report Builder, 446–447
Adventure Works Cycles, 58
AGGREGATE function, 338–339
aggregates

functions, 230–231
arguments, 231
AVG(), 231
COUNT(), 231
COUNTDISTINCT(), 231
COUNTROWS(), 231
FIRST(), 231
LAST(), 231
MAX(), 231
MIN(), 231
STDEV(), 231

STDEVP(), 231
SUM(), 231
VAR(), 231
VARP(), 231

matrix reports, 131
totals, 230–231

aggregation functions, 720
aliases, 192
alignment of columns, 435–436
Analysis Ser vices

report models, building from, 414–416
reporting and, 309–311
Reporting Services, 311–312

application database account, 506–507
application databases, backups, 511–513
application domain management, 75
application integration, 15–17, 17–18

portal integration, 19
web applications, 18
Windows application integration, 19–20

applications
functionality, reports and, 8
reports, launching, 15
samples, 58

architecture, scalability, 24
area charts, 284, 288

X-axis, 288
arguments, aggregate functions, 231
Arrange commands, 94
assemblies, custom, 279–281

security, 281–282
AsyncReader parameter , 551
attribute hierarchy, 317
auditing, 28
authentication, 74
authentication types, 74
authoring, third-party authoring tools, 68
authoring phase of repor ting life cycle, 66

Index

bindex.indd 759bindex.indd 759 11/13/08 4:18:37 PM11/13/08 4:18:37 PM

760

authorization, 74
AVG() aggregate function, 231
axes of char ts

Data Axis zone, 294
matrix reports, 131
multiple, 121
secondary, 299–301
Y-axis, 120
Z-axis, 120

AXIS definitions, 741–742
axis groups, SUM() function, 119
Axis Proper ties menu, 296

B
background color, 436–438
BackGroundColor proper ty, textboxes, 239
BackGroundImage proper ty, textboxes, 239
backup, 511
backups

application databases, 511–513
encryption keys, 513–515

bar charts, 124, 284
X-axis, 124
Y-axis, 124

Basic authentication, 74
BI (Business Intelligence) solutions

auditing, 28
Business Objects, 24
Cognos, 24
data update frequency, 28
granularity requirements and, 28
Hyperion, 24
introduction, 23
maturity continuum, 29–30
Panorama, 24
reporting cycle frequency, 28

BIDS (Business Intelligence De velopment
Studio), 10, 13, 104, 177

early incarnation, 92
Report Designer and, 67

BMP files, 113
body, 132
Body object, 109
bold text, 240

bookmarks, navigating to, 263
Books Online, 69
BorderColor proper ty, textboxes, 239
borders, commands, 94
BorderStyle proper ty, textboxes, 239
BorderWidth proper ty, textboxes, 239
browsers, compatibility, 174–175
bubble charts, 284, 290
Business Intelligence De velopment Studio

(BIDS), 10, 13, 39
Business Intelligence Projects, 106
business intelligence repor ting, 180–182
Business Objects, 24
business scorecards, 362–366

C
caching

report execution caching, 79
report session caching, 79
Reporting Services, 470–471

calculated fields, 271–273
calculated values, Data Source vie w, 395
calculations

expressions and, 443–446
textboxes, 111

cascading parameter s, 207–212
category groups, 119
CDATE() function, 276
CDEC() function, 276
cellular phones, 175
Central Administration w eb application, 607
character types, comparisons, 224
Chart layout, Report Builder, 430–433
chart repor ts, 131, 282–283

designing, 162–170
chart-type selection, 167
charting, 33
charts

1st category group label, 291
2nd category group label, 291
area, 284, 288
bar, 124, 284
bubble, 284, 290
category groups, 119

authorization

bindex.indd 760bindex.indd 760 11/13/08 4:18:37 PM11/13/08 4:18:37 PM

761

In
de

x

chart area, 291
clustering and, 121
column, 120–122, 124, 284
data aggregation, 119
data regions, 111
data series, adding, 298–299
designing, 292–304
doughnut, 121, 284, 289
Gantt, 285
legend, 291
line, 284, 288
multiple areas, 302–304
nested groups, 121
pie, 121, 284, 288–290
plot area, 291
point label, 291
polar, 122, 285
radar, 122
range, 285
scatter, 284
secondary axis, 299–301
series

groups, 119
label, 291

shape, 123, 285
stock, 285, 290
title, 291
value marker, 291
visualizations, 34
X axis

major gridline, 291
title, 291

Y axis, 120
major gridline, 291
minor gridline, 291
title, 291

Z axis, 120
checksum functions, 721
CHOOSE() function, 276
CINT() function, 276
clauses

ORDER BY, 192
SELECT, 192
WHERE, 199

client-side applications, shor tcuts and, 7
Clipboard, 94

code
custom, 268
debugging, 282
errors, 282
Visual Basic functions, 109
warnings, 282

code-behind VB functions, 354
Code Editor window , 277–278
CodePlex w eb site, 58
Cognos, 24
color, background, 436–438
Color proper ty, textboxes, 239
column char ts, 120–122, 124, 284,

285–287
3-D modeling, 286
stacked charts, 287–288
X-axis, 120, 285
Y-axis, 285
Z-axis, 120

column groups, matrix, 118
columns

alignment, 435–436
dynamic, 380–382
hiding/showing dynamically,

381–385
width, 435–436

comma-separated values (CSV), 82
command-line installation, 64
command-line utilities, 70
Command parameter, 552

GetDataSourceContents, 552
GetResourceContents, 552
ListChildren, 552
Render, 552
ResetSessionTimeout, 552

comments, conventions, 706
composite repor ts, 238
conditional expressions, 273–274
configuration

e-mail delivery, 531–533
memory management, 528–529
My Reports feature, 535–537
rendering extensions, 533–535
URL reservations, 529–531

configuration files, 76
security, 515

confi guration fi les

bindex.indd 761bindex.indd 761 11/13/08 4:18:37 PM11/13/08 4:18:37 PM

762

configuration variables, 716–717
Connected mode, Report V iewer, 600
Connection Manager screen, 394
Connection Proper ties dialog , 136, 184

Access database connection, 219
Connection string proper ty, 136
connections, 177
constituent repor t items, table values, 141
content management, 67
Contents page, 457, 460

buttons, 458
Detail view, 460

conversion functions, 721
converting reports, 354–355
core processing , 75
corporate repor ting, 24–25
COUNT() aggregate function, 231
COUNTDISTINCT() aggregate function, 231
COUNTROWS() aggregate function, 231
credentials, 462
CRM (customer relationship management), 123
cross-tab repor ts, 131, 425
cryptographic functions, 722
Crystal Repor ts, 4

formulas, 354
grouped data, 354
RDL and, 354

CSTR() function, 276
CSV (comma-separated values), 82
CSV-rendering extension, 82
cubes, OLAP, 27

queries, 188
report actions, 342
slicing, 318, 319–322

cultural considerations, 372
currency type value, 372

formatting, 142
cursor functions, 723
cursor variables, 718
custom assemblies, 279–281

security, 281–282
custom code, 268

reports, 277–279
Visual Basic, 277

custom fields, 271–273

D
dashboard pages, KPI, 600
Dashboard repor ts, 170
dashboard reports, 132
dashboards, 362
data, formatting, 154–155
data aggregation, 119
Data Axis zone, 294
data complexity , report performance and, 35–37
data consumption, 177
data-driven subscriptions, 72
data extensions, 462
data marts, 27, 180, 349
data processing extensions, 79–80, 640–643

DataReader object, 673
declarations, 673–674
FieldCount property, 677
GetFieldType method, 675
GetName method, 675
GetOrdinal method, 675–676
GetValue method, 676
IDataReader, 674
Read method, 676–677

DataSetCommand class, 660
Cancel method, 663
CommandText property, 664–671
CommandTimeout property, 671
CommandType property, 671–672
constructors, 662
CreateParameter method, 672
ExecuteReader method, 663–664
IDbCommand, 662–663
Parameters property, 672–673
variable declarations, 660–661

DataSetConnection object, 647–648
BeginTransaction method, 652
ConnectionString property, 653–655
ConnectionTimeout property, 655
constructors, 648–649
CreateCommand method, 652
IDbConnection, implementing, 651
IDbConnectionExtension, 649
Impersonate property, 649–650
IntegratedSecurity property, 649–650

confi guration variables

bindex.indd 762bindex.indd 762 11/13/08 4:18:37 PM11/13/08 4:18:37 PM

763

In
de

x

Open method, 652–653
Password property, 650–651
UserName property, 650–651
variable declarations, 648

DataSetDataExtension, testing, 680–684
DataSetDataProcessing extension, 677

server installation, 678–679
server security configuration, 679
WorkStation installation, 679–680
WorkStation security, 680

DataSetParameter class, 655–656
declarations, 656
IDataParameter, 656–657
ParameterName property, 657
Value property, 657

DataSetParameterCollection class, 658
IDataParameterCollection, 658–659
namespaces, 658

data region wizards, 100–102
data regions, 111
Data Regions options, 95
data series, adding to char ts, 298–299
data-set quer y, MDX, 315–318
data-set scope, 244
data sets, 182

data sources, 177
defining, creating data source, 187
multiple, 178
query expressions, 177–178

defining, 188
Data Source Proper ties window, 135
Data Source vie ws

building, 395–398
code behind, 402–404
Diagram Organizer, 398
diagrams, 398–399
infinite drill-through, 401
named queries, 401–402
relationships, building, 399–401

Data Source Wizard, 393
data sources, 98–99, 108, 182–187

adding, Solution Explorer, 393
connections, 177
creating

Add Item template, 183

defining a data set, 187
Report Wizard, 183–187

data sets, 177
datasets, 108
embedded, 108
federating, 179–180
file-based, 221
images, 113
linked servers, 179
MDX, 313–315
naming, 135
query languages and, 188
querying, 215
report models, 392–395
as separate files, 108
shared, 98, 108, 183

Data Sources folder , Reporting Ser vices,
545–547

data updates, frequency, 28
data warehouse star schema, 190
data warehouse systems, 27, 180
data warehouses, 349
database objects, datasets, 108
databases

credentials, sending, 550
relational, 27
ReportServer, 84–85

Dataset Proper ties dialog , 204
datasets, 108, 182

data sources, 108
textboxes, 111

date and time functions, 723–724
date parameters, 331–336
DBA (Database Administrator), 391
debugging code, 282
default instances, 62
Define Formula dialog, 445
delimited identifiers, 735
delivery extensions, 83–84, 636
delivery phase of repor ting life cycle, 67
department repor ting, 25
design elements, existing repor ts and, 354
Designer toolbar, lines, 113
designing reports, 13–15
Detail view, 459

Detail view

bindex.indd 763bindex.indd 763 11/13/08 4:18:38 PM11/13/08 4:18:38 PM

764

Developer edition, 40, 60
development cycle of repor t,

lengthening, 350
development phases, multiple repor ting

environments, 351–352
Development Studio, BIDS,

opening, 391
device information settings, 81,

554–555
Diagram Organizer, 398
dialogs

Connection Properties, 136, 184
Dataset Properties, 204
Define Formula, 445
Expression Builder, 269
Filter Data, 438–442
Image Properties, 113
New Table or Matrix, 100–102
Open, 99
Parameter Properties, 203
Properties, 98
Subreport Properties, 255
Tablix Group Properties, 140
Text Box Properties, 142
Value Axis Properties, 296

dirty reads, 348
distributed queries, ad hoc, 179–180
DocMapAreaWidth parameter , 551
document maps, 259
doughnut char ts, 121, 284, 289
DPEs (Data Processing Extensions), 635
drawing lines, 113
drill-down reports, 600

creating, 152–153
drill-through reports, 261–263,

340–341, 600
filtered records, 262

dsp parameter prefix, 550
dsu parameter prefix, 550
Dundas, 80, 430
DW, sample database, 58
dynamic columns, 380–382
dynamic fields, 380–382
dynamic formatting, 155–156
dynamic grouping, 377–380
dynamic repor ting, 16, 31

E
e-mail delivery, 531–533
Edit icon, 460
editions of SQL Ser ver, 60

features, 61
embedded data sources, 108
embedded formatting, 240–243
embedded images, 114
embedded reports, 15
embedding images, 113
encoding images as text, 114
encryption keys

backups, 513–515
recovery, 513–515

end-to-end reporting solution, 348–349
end-user authors, authoring and, 66
endpoint parameters, 551
enterprise deployment, Reporting Ser vices,

59–64
Enterprise edition, 60
Enterprise Evaluation edition, 40, 60
environments, multiple, 351–352
equality, testing for , numeric types and, 224
error handling functions, 725
errors in code, 282
ETL (Extract, Transform, and Load), 347
ETL package, 29
event logs, Windows applications, 517
Excel, 24, 130, 222–223
Excel-rendering extension, 83
Excel Ser vices, 24
executive dashboards, 362
Explorer window, Report Builder, 421
Express with Advanced Ser vices edition, 60
Expression Builder, 269
Expression Builder dialog , 269
Expression Editor , 443, 445
expressions, 268

calculations, 443–446
CDATE() function, 276
CDEC() function, 276
CHOOSE() function, 276
CINT() function, 276
conditional, 273–274
CSTR() function, 276

Developer edition

bindex.indd 764bindex.indd 764 11/13/08 4:18:38 PM11/13/08 4:18:38 PM

765

In
de

x

FORMAT() function, 276
INSTR() function, 276
ISNOTHING() function, 276
LEFT() function, 276
MID() function, 276
RIGHT() function, 276
SWITCH() function, 275
textboxes, 111
Visual Basic, 222

Expressions window , 217
extensions, 78

samples, 58
external resource lookup, .NET

and, 373

F
federating data, subreports, 253–259
federating data sources, 179–180
field drop zones, groups and, 138
field values, converting when used in

expressions, 224
fields

calculated, 271–273
custom, 271–273
dynamic, 380–382
headers/footers, 229

file-based data sources, 221
files, configuration files, 76
files only installation, 63
Filter Data dialog , 438–442
filtered records, drill-through

reports, 262
filtering, 197–199

empty data rows and, 438
multiple criterion, 357–359
queries, 199
query parameters and, 202–214
report parameters and, 215–218

FIRST() aggregate function, 231
folders

creating, 458
deleting, 460
hierarchy, 457
Home folder, 457

List view, 457
moving, 460
multiple, 353
report models, new, 465
Reporting Services, 543–545

Font proper ty, textboxes, 239
fonts, 436–438

commands, 94
foreign keys, Data Source vie w, 395
format

considerations, 174, 176
limits, 174, 176
previewing, 102

FORMAT() function, 276
Format parameter, 552

Control format, 553
Data formats, 553
Print formats, 553
Web formats, 553

formatting
data, 154–155
dynamic, 155–156
embedded, 240–243
numeric, 102
table values, 141–145
text

MarkupType property, 242
range, 240

functions
AGGREGATE, 338–339
aggregate, 230–231, 720

arguments, 231
AVG(), 231
COUNT(), 231
COUNTDISTINCT(), 231
COUNTROWS(), 231
FIRST(), 231
LAST(), 231
MAX(), 231
MIN(), 231
STDEV(), 231
STDEVP(), 231
SUM(), 231
VAR(), 231
VARP(), 231

CDATE() function, 276

functions

bindex.indd 765bindex.indd 765 11/13/08 4:18:38 PM11/13/08 4:18:38 PM

766

functions (continued)
CDEC() function, 276
checksum, 721
CHOOSE() function, 276
CINT() function, 276
conversion, 721
cryptographic, 722
CSTR() function, 276
cursor, 723
date and time, 723–724
error handling, 725
FORMAT() function, 276
IIF(), 274–276
image/text, 725
INSTR() function, 276
ISNOTHING() function, 276
LEFT() function, 276
LEVEL(), 231
mathematical, 726
MDX, 747–748

KPI functions, 745
metadata, 745–746
set functions, 750–752
statistical, 753–755
string, 755
time, 756
UI, 757
value, 758

metadata, 727–728
MID() function, 276
nested, 275
OPENDATASOURCE, 180
OPENROWSET, 180
ranking, 728
RIGHT() function, 276
ROWNUMBER(), 231
rowset, 729
RUNNINGVALUE(), 231
security, 729–730
string manipulation, 730–731
SUM(), 119, 337
SWITCH(), 275
system, 732–734
system statistical, 734

future reserved words, 712–714

G
Gantt char ts, 285
gauge reports, 132

designing, 170–172
external images and, 360–361

gauges, 34, 124–125
linear, 127
markers, 125
pointers, 125
radial gauges, 126
ranges, 126
scales, 125

GIF files, 113
global variables

configuration, 716–717
cursor, 718
system, 718
system statistical, 718–719

globals, 270
Go to URL option, 263
granularity, 28
Graphical Quer y Designer, 177
group expressions, 140
grouped data, Cr ystal Repor ts, 354
groups, 138

axis, SUM() function, 119
category groups, 119
chart axes, 121
column groups, 118
dynamic grouping, 377–380
field drop zones, 138
modifying, 140
row groups, 117–118
series groups, 119
sorting in, 146–147

H
HeaderArea parameter, 551
headers/footers, 95, 109

adding, 150
configuring, 228–230
enabling, 230

functions (continued)

bindex.indd 766bindex.indd 766 11/13/08 4:18:38 PM11/13/08 4:18:38 PM

767

In
de

x

headers/footers’, fields in, 229
Help link, 454
hierarchy, queries and, 264
historical repor ting, 28
history, creating manually, 473
Home folder, 454, 457
Home link, 454
Home tab (Repor t Builder 2.0), 94–95

Alignment commands, 94
Arrange commands, 94
Border commands, 94
Clipboard group, 94
Font commands, 94
Preview option, 95

HTML (HyperT ext Mar kup Language), 18
formatting, embedded, 241–243

HTML rendering extension, 82
HTML V iewer, 70
HTTP Listener , 73–74
HTTP.SYS, 73–74
Hyperion, 24
Hyperion Essbase, 80

I
IDE (integrated de velopment

environment), 104
IIF() function, 274–276
Image Proper ties dialog , 113
image-rendering extension, 82
image/text functions, 725
images

data sources, 113
embedded, 114
embedding, 113
encoding as text, 114
gauge reports and, 360–361
as link, 261
linking, 113
report definition file, 114

importing, Access repor ts, 174
in-line expressions, 354
indents, 240
indicators, 363

infinite drill-through, 401
inheritance, 491
Insert tab (Repor t Builder 2.0), 95

Data Regions options, 95
Header & Footer options, 95
Reports Items options, 95
Subreports options, 95

installation
command-line, 64
files only, 63
media, 40
options, 63–64
Reporting Services, samples, 58–59
sample databases, 58–59
set-up application, 40
stand-alone, 39

Installation page, 41
instance names, 62
instances

default, 62
multiple, 62

INSTR() function, 276
Integrated mode

installation, 603–611
Native mode comparison, 632–634
Report Viewer, 629–630

integrating repor ts, 110
Integration Settings page, 609
interactive sor ts, 148–150
interfaces, 637

languages, 638–640
intranets, 17
ISNOTHING() function, 276
italic text, 240
item-level security , 483–492

J
JET 4.0 .NET OLE DB, 219

parameter values passed into queries, 221
JET Database Engine, 219
JPE files, 113
JPEG files, 113
justification, 159

justifi cation

bindex.indd 767bindex.indd 767 11/13/08 4:18:39 PM11/13/08 4:18:39 PM

768

K
Kerberos authentication, 74
keywords

MDX, 744
reserved, 736–738

KPI (k ey performance indicator), 315, 362
dashboard pages, 600
functions, MDX, 745

L
languages, 372

interfaces, 638–640
LAST() aggregate function, 231
launching reports, from applications, 15
LEFT() function, 276
left justification, 159
LEVEL() function, 231
libraries, SharePoint, 69
line charts, 284, 288
linear gauges, 127, 172
lines, drawing, 113
linked reports, 468
linked ser vers, 179–180

data sources, 179
linking, images, 113
links, 261–263, 454

image as, 261
textbox as, 261

list repor ts, 131
List view, 457
lists

combining data regions, 244–252
combining report items, 244–252

localization, 371–377
Localizer() class, 376
Lotus 123, 130

M
Manage Integration Settings link, 609
Manage Shared Schedules, 620
management phase of repor ting life cycle, 67

margins, 109
markers, 125
MarkupType proper ty, 242
master/detail repor ts, 114–116

designing, 244
mathematical functions, 726
matrix, column groups, 118
matrix layout, Report Builder, 425–429
matrix repor ts, 131

designing, 156–162
printing, 426
totals, 232–235

MAX() aggregate function, 231
MDB files, 219
MDX-based repor ts, 340
MDX (Multi-Dimensional Expressions), 27, 188

CELL PROPERTIES, 339
CUBE PROPERTIES, 339
data-set query, building, 315–318
data sources, creating, 313–315
DIMENSION PROPERTIES, 339
functions

metadata, 745–746
navigation, 747–748
set functions, 750–752
statistical, 753–755
string, 755
time, 756
UI, 757
value, 758

keywords, 744
KPI functions, 745
member references, 738–739
reserved keywords, 736–738
SELECT statement, 740–741

AXIS definitions, 741
FROM clause, 742
WITH clause, 742–743
parameters, 743–744
WHERE clause, 741–742

sets, 739–740
SQL and, 312
tuples, 740

MDX Quer y Designer, 313
Cube member drop area, 316
Cube metadata pane, 316

Kerberos authentication

bindex.indd 768bindex.indd 768 11/13/08 4:18:39 PM11/13/08 4:18:39 PM

769

In
de

x

Cube selector, 316
Execute query button, 316
generic query window toggle, 316
Graphical MDX builder, 316
metadata pane, 316–317
queries

building, 322–328
modifying, 322–331
parameterized, 318–322

Slicer/Filter pane, 316
measure values, 140
measurement, page layout, 132–133
members, member references, 738–739
memory management, 528–529
metadata functions, 727–728

MDX, 745–746
MHTML (MIME-HTML), 82, 175
Microsoft Integrated De velopment

Environment, Business Intelligence
Projects, 106

Microsoft .NET F ramework 3.5
check for, 40
installation, 40

Microsoft V isual Studio, 10
Crystal Reports, 4

MicrosoftRepor tViewer control, 587–590
MID() function, 276
migrating reports, 110, 354–355
migration, RSScripter, 500–501
MIN() aggregate function, 231
mobile device suppor t, 174, 175
models, samples, 58
modes

Native, 63
SharePoint Integrated, 63

monitoring
execution logs, 520–521
performance counters, 522–527
server management reports, 527–528
set-up logs and, 516
trace logs, 517–520
Windows application event log, 517

MOSS (Microsoft Office ShareP oint Ser ver),
596, 597–598

Report Center, 597
Move button, 460

Move Items page, 460
MSDE (SQL Ser ver 2000 Desktop Database

Engine), 219
MSReportServer_ConfigurationSetting , 77
MSReportServer_Instance, 76
multi-value parameters, 205–207
multicolumn repor ts, 156
multiculturalism, 372
multiple char t areas, 302–304
multiple instances, 62
multiple items, selecting , 94
My Repor ts, 535–537
My Subscriptions link, 454

N
named instances, 62
named queries, Data Source vie ws, 401–402
Native mode, 63

Integrated mode comparison, 632–634
web parts, installation, 598–599

Native mode, Reporting Ser vices, 451
navigating repor ts

to bookmark, 263
document maps, 259
drill-through reports, 261–263
links, 261–263
to URL, 263

navigation functions (MDX), 747–748
Negotiate authentication, 74
nested functions, 275
.NET

differences between data provider and
DPE, 641

external resource lookup, 373–377
.NET data types, 224
.NET Framework, 640–643
New Data Source page, 462
New Subscription button, 473
New Table or Matrix dialog , 100–102
New Table or Matrix wizard, 98
nodes, 63
NTLM authentication, 74
numeric comparisons, 33
numeric formatting, 102

numeric formatting

bindex.indd 769bindex.indd 769 11/13/08 4:18:39 PM11/13/08 4:18:39 PM

770

O
Object Explorer , 189

column names, 191
table names, 191

object identifiers, 735
objects

aliases, 192
Body object, 109

ODBC, 223
reserved words, 709–711

ODBC Data Source Name (DSN), 219
ODS (operational data store), 347
Office Picture Librar y, 113
OfficeWriter, 355
offline viewing, 174, 175
OLAP (On-Line Analytical Processing) system,

25, 26, 27
cubes, 27
data source, reporting from, 37

OLE DB, connecting to Excel, 222
OLTP, sample database, 58
Open dialog, 99
OPENDATASOURCE function, 180
OPENROWSET function, 180
operational data source, reporting from, 37
Oracle, native Oracle Client pro vider, 223
Oracle P/L SQL, 223–224

syntax, 224
Transact-SQL and, 223

Oracle PL/SQL, 188
OracleClient Data Pro vider, 392–393
ORDER BY clause, 192
out-of-the-box repor ts, 10–11

P
padding, 240
page body, Report Manager, 454
page breaks, adding, 151–152
page height/width, 109

headers and, 228
page layout, 132

measurements, 132–133
page orientation, 109

page scale units, 109
page setup, 109
Palm OS, 175
Panorama, 24
parameter bar area, 203
Parameter Proper ties dialog , 203
parameterized queries

Access, 221
MDX, 318–322

parameterized stored procedures, 215
ParameterLanguage parameter, 552
parameters, 199–202. See also report

parameters
ad hoc queries, 202
advanced controls, 382–384
AsyncRender, 551
cascading, 207–212
Command, 552
date parameters, 331–336
DocMapAreaWidth, 551
endpoint, 551
Format, 552
HeaderArea, 551
list

creating, 203–205
query-driven, 204

multi-value, 205–207
ParameterLanguage, 552
passing, 549–555
prefixes

dsp, 550
dsu, 550
rc, 550
rs, 550
rv, 550

report parameters, 212–214, 469
safety precautions, 342
Snapshot, 552
stored procedures and, 202
third-party controls, 382–384
Toolbar, 551
URL syntax, 542–543

PASS (Professional Association for SQL
Server), 309

passing parameter s, 549–555
PDF-rendering extension, 83

Object Explorer

bindex.indd 770bindex.indd 770 11/13/08 4:18:40 PM11/13/08 4:18:40 PM

771

In
de

x

performance
data complexity and, 35–37
performance counters, 522–527

performance requirements, 28
PerformancePoint, 24
permissions, service account, 505
personal reporting, 25
perspectives, report models, 421
pie charts, 121, 284, 288–290
pivot repor ts, 131, 425
PNG files, 113
Pocket PC, 175
pointers, 125
polar charts, 122, 285
portals, 19
pound sign (#) character s, 222
previewing, format, 102
primary keys, Data Source vie w, 395
printing, matrix repor ts, 426
processors, 77

Report Processor, 78
report execution caching, 79
report session caching, 79
snapshots, 79

ProClarity, 24
product updates, 57
properties, text boxes, 141
Professional SQL Server Reporting Services, 4
programmatic rendering, 557

security, 558
server-side parameters and, 558–559
Web

ASP.NET 2.0, 579–580
Integrated Windows Authentication, 578–579
Report Execution Web service, 580
response object, 580–587
web.config file, 579

Windows
application interface, 559
rendering reports to files, 570–578
rendering reports to filesystem

summary, 578
report parameters, 568–570
retrieving report information, 565–568
Web services, 560–565

projects, multiple, 353

properties
Connection string, 136
data sources, 98–99
defining, 140
Server Name, 136
Tablix and, 116
textboxes, 239
Visibility, 152

Properties dialog , 98
Properties pane, 98

auto-hide, 112
lines, 113
pinning, 112
setting properties, 112
viewing properties, 112

publishing reports, 611
MOSS 2007 Enterprise Edition,

619–620
MOSS 2007 Standard Edition, 611–619
WSS 3.0, 611–620

pull method of repor t deliver y, 67
push method of repor t deliver y, 67

Q
queries

Access, parameterized, 221
building

MDX, 322–328
without MDX Query Designer, 328–331

cubes, 188
data sources, 215
datasets, 108
filtering, 199
hierarchy and, 264
modifying, MDX, 322–331
named, Data Source views, 401–402
parameterized, MDX, 318–322
results, caching on server, 215
sorting in, 146
in string expressions, 221–222
T-SQL, designing, 189–197

Query Designer, 137
query-driven parameter lists, 204
query expressions, 177–178

query expressions

bindex.indd 771bindex.indd 771 11/13/08 4:18:40 PM11/13/08 4:18:40 PM

772

query languages
data sources, 188
datasets, 108

query parameters
@ symbol, 202
filtering and, 202–214
naming convention standards, 202

R
radar charts, 122
radial gauges, 126, 172
range charts, 285
ranges, 126
ranking functions, 728
rc parameter prefix, 550
RDCE (Repor t Definition Customization

Extensions), 372
RDL files, 109

editing, 686–688
upgrading reports programmatically, 688–690

RDL Object Model, 685
RDL (Repor t Definition Language), 68, 109,

466, 685
Crystal Reports and, 354
XML, 108

recovery, 511
application databases, 511–512
encryption keys, 513–515

rectangles, 113
recursive relationships, 263–268
references, 109

member references, 738–739
regions, rectangles, 113
relational data, 182
relational databases, 27

T-SQL queries, 180
relationships

infinite drill-through, 401
roles, 401

rendering, programmatic, 557
rendering extensions, 81, 533–535, 636

CSV, 636
CSV-rendering extension, 82
device information settings, 81

Excel, 83, 636
HTML, 82, 636

MIME-HTML, 82
Image, 636
image-rendering extension, 82
MHTML, 636
PDF, 83, 636
Word, 83
XML, 82

Rendering Object Model (R OM), 81
report, development cycle, lengthening, 350
Report Builder, 11–12, 68

accessing, 420
administration, 446–447
button, 420
Chart layout, 430–433
early incarnation, 92
Explorer window, 421
future of, 447
launch, 421
matrix layout, 425–429
Report Explorer and, 602
report model

perspectives, 421
selecting, 421

SharePoint, 624
smart client technology, 420
table layout, 422–425

Report Builder 1.0, 624–625
Report Builder 2.0, 12–13, 68, 92

availability, 92
Home tab, 94–95
Insert tab, 95
Office ribbons, 93
Office tabs, 93
report design, 99–103
Run tab, 96–97
View tab, 96

Report Data pane, 207
report definition customization extensions, 637
report definition file, images, 114
Report Designer, 67–68, 132–133

Design tab, 68
Preview tab, 68

report execution caching , 79
Report Explorer, 601–602

query languages

bindex.indd 772bindex.indd 772 11/13/08 4:18:40 PM11/13/08 4:18:40 PM

773

In
de

x

Report Builder and, 602
report items, 80
report management, 626–628
Report Manager, 25, 68–69, 631

accessing, 452
Execution Properties tab, 470
History Properties page, 471–473
New Subscription button, 473
page body, 454
report models, creating, 463
searches, 454
shared data sources, creation, 461
snapshots, 471
View page, 467
Web interface, 420
web service and, 75

Report Model Project template, 392
Report Model Wizard, 404–408
report models, 391, 463

Analysis Services databases, 414–416
data source, 392–395
deploying, 413–414
General Properties page, 466
new, folder, 465
overview, 419
perspectives, 421
Report Model Wizard, 404–408
Reporting Services, 408–413
selecting from Report Builder, 421
SharePoint and, 621–623

report parameters, 555–557
filtering and, 215–218

report processing extensions, 636
Report Processor , 78

report execution caching, 79
report session caching, 79
snapshots, 79

report ser ver, 20–21
Report Ser ver, sending commands to, 550
report session caching , 79
report specifications, 350–351
report templates, creating , 235–238
report types, 30–34
Report V iewer

Connected mode, 600
Integrated mode, 629–630

Stand-Alone mode, 600
Tool pane, 600

Report V iewer control, 70–71
Report V iewer web part, 600–601
Report V iews group, 96
Report Wizard, 99, 177

data sources, creating, 183–187
launching, 183

reporting
existing data sources, 348
transactional sources, 348

reporting environments, multiple,
351–352

reporting life cycle, 451
authoring, 66
delivery, 67
management, 67

reporting projects, 346
solution scope, 347
success factors for, 346–347

Reporting Ser vices, 24
Analysis Services, 311–312
caching, 470–471
components, 39
Data Sources folder, 545–547
enterprise deployment, 59–64
folders, accessing, 543–545
history, 91–92
innovations, 4–5
installation, stand-alone, 39
installation media, 40
introduction, 3
limitations, 356–357
Native mode, 451
objects, accessing, 543–549
report models, 408–413
reports, accessing, 548–549
resources, 548
roles, new, 489–490
samples, installing, 58–59
scripts, 494–500
service account, 504–506
set-up application, 40
SharePoint Integrated mode, 451
URL parameters, 549–555
users of, 5–7

Reporting Services

bindex.indd 773bindex.indd 773 11/13/08 4:18:41 PM11/13/08 4:18:41 PM

774

Reporting Ser vices Configuration Manager , 69
Reporting Ser vices Web ser vice, 71–72

subscriptions, 72
Reporting Ser vices Windows ser vice, 72–73
reporting specialists, authoring and, 66
reporting tools, 24
ReportingServicesSer vice.config , 76
reports

Access, importing, 174
ad hoc, 11–12
application functionality and, 8
chart, 131

designing, 162–170
color, background, 436–438
columns

alignment, 435–436
width, 435–436

combining, 33
composite, creating, 238
converting, 354–355
converting from other formats and products,

173–176
cross-tab, 131
custom code, 277–279
dashboard, 132
data sources, 26–28
definition, XML files, 108
deploying, 353
designers, 91
designing, 13–15
drill-through, 340–341
dynamic, 16, 31
embedded, 15, 548–549
Execution Properties tab, 470
fonts, 436–438
gauge, 132

designing, 170–172
history, creating manually, 473
integration, 110
launching, from applications, 15
linked, 468
list, 131
master/detail reports, 114–116

designing, 244
matrix reports, 131

designing, 156–162

MDX-based, 340
migrating, 354–355
migration, 110
multicolumn, 156
navigating

document maps, 259–261
drill-through reports, 261–263
links, 261–263

out-of-the-box, 10–11
parameters, 212–214, 469
pivot, 131
publishing, 611

MOSS 2007 Enterprise Edition, 619–620
MOSS 2007 Standard Edition, 611–619
WSS 3.0, 611–620

recipes, multiple criterion filtering, 357–359
Reporting Services, accessing, 548–549
samples, 58
separate web browser window, 263
server-based, 11
snapshots, 471
subreports, 114–116
tabular, 130
text

adding, 434–435
fonts, 436–438
titles, 434

titles, 434
user-designed, 11–12
user interaction, 16

Reports Items options, 95
ReportServer database, 84–85

backups, 511
ReportServerTempDB, 86
ReportVIewer, 15
ReportViewer control, 382
reserved keywords, 736–738
reserved words, 706–708

future, 712–714
ODBC, 709–711

resources, 480
Reporting Services, 548

result sets, drill-through repor ts, 262
results

queries, caching on server, 215
subreports, 115

Reporting Services Confi guration Manager

bindex.indd 774bindex.indd 774 11/13/08 4:18:41 PM11/13/08 4:18:41 PM

775

In
de

x

ribbon, numeric formatting, 102
RIGHT() function, 276
roles, 401
ROM (Rendering Object Model), 81
row groups, 117–118
ROWNUMBER() function, 231
rows, hiding/showing dynamically , 381–385
rowset functions, 729
RPC (Remote Procedure Call), WMI and, 77
rs object, 494
rs parameter prefix, 550
RS utility, 492–494
Rsconfig.exe, 70
Rs.exe, 70
RSExecutionLog , 520
Rskeymgmt.exe, 70
RSMgrPolicy.config, 76
RSReportServer.config, 76
RSScripter, 500–501
RSSrvPolicy.config, 76
Run tab (Repor t Builder 2.0), 96
RUNNINGVALUE() function, 231
rv parameter prefix, 550

S
sample data, 349
SAP NetW eaver BI, 80
scalable architecture, 24
scale-out topolog y, 63
scales, 125
scatter char ts, 284
schedules, sharing, 480–482
Scheduling and Deliver y Processor , 83
scope, data-set, 244
scripts

comment conventions, 706
Reporting Services, 494–500
RSScripter, 500–501
samples, 58

searches, Report Manager, 454
secondary axis, adding, 299–301
security, 503–504

account management, 504
application database account, 506–507

service account, 504–506
unattended execution account, 507–508

configuration files, 515
custom assemblies, 281–282
functions, 729–730
inheritance and, 491
item-level, 483–492
programmatic rendering and, 558
surface area management, 510
system-level roles, 508–510

security extensions, 74, 636
security subla yer, 74–75
SELECT clause, 192
SELECT statement

AXIS definitions, 741
FROM clause, 742
WITH clause, 742–743
parameters, 743–744
WHERE clause, 741–742

selecting multiple items, 94
self-service repor ting, 26
series groups, 119
server administration, security,

503–510
server-based repor ts, 11
server management repor ts, 527–528
Server Name proper ty, 136
server repor ts, 99

enabling, 99
server-side applications, web browsers and, 7
server-side repor ts, embedding in Windows

applications, 590–594
servers

linked, 179–180
scalable architecture, 24

service account, 504–506
service management, 75–76
set functions (MDX), 750–752
set-up application, Reporting Ser vices, 40
set-up logs, 516
sets, 739–740
setup suppor t rules, 42
shape char ts, 123, 285
shared data sources, 98, 108, 183

creation, 461
General Properties page, 464

shared data sources

bindex.indd 775bindex.indd 775 11/13/08 4:18:41 PM11/13/08 4:18:41 PM

776

shared schedules, 480–482
SharePoint, 19, 24, 596

libraries, 69
list data, 366–371
MOSS (Microsoft Office SharePoint Server),

597–598
Report Builder, 624
report models, 621–623
rv prefix and, 550
web parts, 598
WSS (Windows SharePoint Services), 597

SharePoint Integrated mode, 63
SharePoint Integrated mode, Reporting

Services, 451
SharePoint Site Settings, 620–621
shortcuts, client-side applications, 7
Show Details button, 459
Simple OLEDB, 223
Site Collection F eatures, 607
Site Settings link, 454
slicing cubes, 319–322
smartphones, 175
Snapshot parameter, 552
snapshots, 79, 471

history, 557
When Run value, 473

SOAP (Simple Object Application Protocol), 15
Solution Explorer, data sources, adding, 393
sorting, 443

interactive sorts, 148–150
sp_addlinkedserver stored procedure, 179
sparklines, 384–386
SQL Ser ver Analysis Ser vices, 27
SQL Ser ver Configuration Manager, 69
SQL Ser ver Database Engine, 39
SQL Ser ver Installation Center , 40
SQL Ser ver Integration Ser vices, 29
SQL Ser ver Management Studio, 69
SQL Ser ver Profiler, 257
SQL Ser ver Setup Wizard, 41–57
SQL (Str uctured Quer y Language), 182

MDX and, 312
SqlClient Data Pro vider, 392–393
SSIS (SQL Ser ver Integration Ser vices), 520

Connection Managers, 520
stacked char ts, 287–288

stand-alone installation, 39
Stand-Alone mode, Report V iewer, 600
Standard edition, 60
standard subscriptions, 72
static columns, Tablix and, 116
static rows, Tablix and, 116
statistical functions (MDX), 753–755
STDEV() aggregate function, 231
STDEVP() aggregate function, 231
stock char ts, 285, 290
stored procedures, 214–215

parameterized, 215
parameters and, 202
sp_addlinkedserver, 179

string concatenation, 224
string expressions, queries in, 221–222
string functions (MDX), 755
string manipulation functions, 730–731
Subreport Proper ties dialog , 255
subreports, 95, 114–116

description, 252
federating data, 253–259
linking to main report, 253
resizing, 255
results, large, 115
uses, 253

subscriptions
data-driven, 72
delivery, 474–475
standard, 72

Subscriptions page, 473
subtotals, 154
SUM() aggregate function, 231
SUM() function, 119, 337
surface area management, 510
SWITCH() function, 275, 276
SyBase Adaptive Ser ver, 224
symmetric k ey, 513
syntax

Oracle PL/SQL, 224
URLs, 542–543

system functions, 732–734
system requirements, 61
system statistical functions, 734
system statistical variables, 718–719
system variables, 718

shared schedules

bindex.indd 776bindex.indd 776 11/13/08 4:18:42 PM11/13/08 4:18:42 PM

777

In
de

x

T
T-SQL

ALTER TABLE, 703
BY CUBE, 698
BY ROLLUP, 697
CASE, 700
COMPUTE BY clause, 699
COMPUTE clause, 699
CREATE DATABASE, 704
CREATE DEFAULT, 704
CREATE PARTITION FUNCTION, 706
CREATE PARTITION SCHEME, 706
CREATE PROCEDURE, 704
CREATE RULE, 704
CREATE SCHEMA, 705
CREATE TABLE, 705
CREATE TRIGGER, 705
CREATE VIEW, 705
DECLARE@local_variable, 701
DELETE, 701
EXCEPT, 699
FOR clause, 699
FROM, 696
GROUP BY, 697
HAVING, 698
INSERT, 700
INTERSECT, 699
LIKE, 702
object reference, 693–694
OPTION clause, 699
Oracle P/L SQL and, 223
ORDER BY, 699
PIVOT operator, 703
queries, 180

designing, 189–197
WITH, 694
WITH CUBE, 698
WITH ROLLUP, 697
SELECT, 694
SELECT INTO, 696
SELECT TOP, 695
SET, 702
UNION, 698
UNPIVOT operator, 703
UPDATE, 701

WHERE, 696
tables

placing in report body, 135
row groups, 117–118
sorting, 146

in groups, 146–147
in query, 146

totals, 232–235
values, formatting, 141–145

Tablix, 111, 116
columns, static, 116
group definitions, 140
rows, static, 116

Tablix Group Proper ties dialog , 140
Tablix Proper ties dialog , page breaks, 151
tabs, Report Manager, 454
tabular reports, 130
targets, 362
TCP por ts, URL reser vations, 530
templates, creating , 235–238
Teradata, 80
test data, 349
text

bold, 240
formatting, MarkupType property, 242
italic, 240
ranges, formatting, 240
reports, adding to, 434–435

Text Box Proper ties dialog , 142
textboxes, 111–112

borders, properties, 239
HTML tags, 242
as link, 261
properties, 141, 239
report navigation and, 261–262

third-party authoring tools, 68
TIFF (T agged Image F ile Format), 82
time functions (MDX), 756
Tool pane, 600
Toolbar parameter, 551
topology, 62

scale-out, 63
totals, 154, 232–235

aggregate, 230–231
trace logs, 517–520
traces, embedded repor ts, subreports and, 257

traces, embedded reports, subreports and

bindex.indd 777bindex.indd 777 11/13/08 4:18:42 PM11/13/08 4:18:42 PM

778

transactional sources, 348
TSQL (T ransact SQL), queries, 36
tuples, 740
Type icon, 460

U
UI functions (MDX), 757
unattended execution account,

507–508
uncommitted reads, 348
URL reser vations, 529–531
URLs (Unifor m Resource Locator)

navigating to, 263
passing report information, 555–557
Report Manager, 452
report parameters, 555–557
syntax, 542–543
web requests, 15

user-designed repor ts, 11–12
user hierarchy, 317
user interaction, 16
utility windows, V isual Studio, 106–107

V
validation, 477
Value Axis Proper ties dialog , 296
value functions (MDX), 758
values, formatting, 141–145
VAR() aggregate function, 231
variables, 109

global, 716–719
variance, calculating , 363–366
VARP() aggregate function, 231
View page, 460
View tab (Repor t Builder 2.0), 96
Visibility proper ty, 152
VisiCalc, 130
Visual Basic

code-behind functions, 354
custom code, 277
expressions, 222

functions, 109
in-line expressions, 354

Visual Studio 2008
New Project dialog, 105
project creation, 105
start page, 105
utility windows, 106–107

Visual Studio .NET IDE, 104
visualization requirements, 29
visualizations, 34
VRML (V irtual Reality Modeling Language),

commands, 113

W
warnings in code, 282
web archive, 175
web browsers, 7
Web edition, 60
web parts, 598–602
web ser vice, Report Manager and, 75
web sites, CodePlex, 58
WHERE clause, 199, 741–742
Windows application e vent log , 517
Windows Forms projects, textboxes, 111
Windows Installer 4.5

check for, 40
installation, 40

Windows Mobile, 175
Windows Ser ver Internet Information

Services, 17
wizards

data region, 100–102
Data Source Wizard, 393
New Table or Matrix, 98
Report, 99
Report Model Wizard, 404–408
SQL Server Setup, 41–57

WMI (Windows Management Instr umentation),
76–77

RPCs and, 77
Word-rendering extension, 83
Workgroup edition, 60
WSS (Windows ShareP oint Ser vices), 597

transactional sources

bindex.indd 778bindex.indd 778 11/13/08 4:18:42 PM11/13/08 4:18:42 PM

779

In
de

x

X
X-axis

area charts, 288
column charts, 120, 285

X-axis of char ts, bar char ts, 124
X-PNG files, 113
XML

RDL (Report Definition Language), 68
report definitions, 108

XML-rendering extension, 82

Y
Y-axis of char ts, 120

bar charts, 124
column charts, 285

Z
Z-axis of char ts, 120

Z-axis of charts

bindex.indd 779bindex.indd 779 11/13/08 4:18:42 PM11/13/08 4:18:42 PM

Now you can access more than 200 complete Wrox books
online, wherever you happen to be! Every diagram, description,
screen capture, and code sample is available with your
subscription to the Wrox Reference Librar y. For answers when
and where you need them, go to wrox.books24x7.com and
subscribe today!

badvert.indd 780badvert.indd 780 11/13/08 4:14:36 PM11/13/08 4:14:36 PM

 Enhance Your Knowledge
Advance Your Career

Professional Mic rosoft SQL Ser ver 2008
Integration Services
978-0-470-24795-2
This book shows developers how to master the 2008 release of SSIS,
covering topics including data warehousing with SSIS, new methods of
managing the SSIS platform, and improved techniques for ETL operations.

Professional SQL Ser ver 2008 Reporting Services
978-0-470-24201-8
This book teaches solutions architects, designers, and developers how
to use Microsoft’s reporting platform to create reporting and business
intelligence solutions.

Professional Mic rosoft SQL Ser ver
Analysis Services 2008 with MDX
978-0-470-24798-3
Professional Microsoft SQL Server Analysis Services 2008 with MDX
shows readers how to build data warehouses and multidimensional
databases, query databases, and use Analysis Services and other
components of SQL Server to provide end-to-end solutions.

Professional Microsoft SQL Ser ver 2008 Programming
978-0-470-25702-9
This updated new edition of Wrox’s best-selling SQL Server book has been
expanded to include coverage of SQL Server 2008’s new datatypes, new
indexing structures, manageability features, and advanced time-zone
handling.

Professional Mic rosoft SQL Server 2008 A dministration
978-0-470-24796-9
A how-to guide for experienced database administrators, this book is
loaded with unique tips, tricks, and workarounds for handling the most
difficult SQL Server administration issues. The authors discuss data
capture, performance studio, Query Governor, and new techniques for
monitoring and policy management.

Professional

SQL Se rver® 2008 Reporting Se rvices
Microsoft®

Beginning Microsoft SQL Se rver 2008 P rogramming
978-0-470-25701-2
This comprehensive introduction to SQL Server covers the fundamentals and moves on to discuss how to create and change
tables, manage keys, write scripts, work with stored procedures, and much more.

Beginning T-SQL with Mic rosoft SQ L Server 2005 and 2008
978-0-470-25703-6
Beginning T-SQL with Microsoft SQL Server 2005 and 2008 provides a comprehensive introduction to the T-SQL programming
language, with concrete examples showing how T-SQL works with both SQL Server 2005 and SQL Server 2008.

Beginning Database De sign Solutions
978-0-470-38549-4
Beginning Database Design Solutions introduces IT professionals—both DBAs and database developers—to database design.
It explains what databases are, their goals, and why proper design is necessary to achieve those goals. It tells how to decide
what should be in a database to meet the application’s requirements. It tells how to structure the database so it gives good
performance while minimizing the chance for error.

Get more out of
WROX.com

Programmer to Programmer™

Interact
Take an active role online by participating in
our P2P forums

Wrox Online Library
Hundreds of our books are available online
through Books24x7.com

Wrox Blox
Download short informational pieces and
code to keep you up to date and out of
trouble!

Chapters on Demand
Purchase individual book chapters in pdf
format

Join the Community
Sign up for our free monthly newsletter at
newsletter.wrox.com

Browse
Ready for more Wrox? We have books and
e-books available on .NET, SQL Server, Java,
XML, Visual Basic, C#/ C++, and much more!

Contact Us.
We always like to get feedback from our readers. Have a book idea?
Need community support? Let us know by e-mailing wrox-partnerwithus@wrox.com

spine=1.63"

Professional

SQL Se rver® 2008 Reporting Se rvices

www.wrox.com

$49.99 USA
$54.99 CAN

Wrox Professional guides are planned and written by working programmers to meet the real-world needs of programmers,
developers, and IT professionals. Focused and relevant, they address the issues technology professionals face every day. They
provide examples, practical solutions, and expert education in new technologies, all designed to help programmers do a better job.

Recommended
Computer Book

Categories

Database Management

Microsoft SQL Server

ISBN: 978-0-470-24201-8

SQL Server Reporting Services makes reporting faster and easier than ever.
This hands-on guide will show you how to harness the full power of Reporting
Services to create reporting and business intelligence solutions that meet
your company’s needs. It walks you step-by-step through the fundamentals of
designing the most effective reports by following careful planning considerations.

The authors progress from beginning to advanced report design and filtering
techniques, showing you the conditions where reports could be more efficient.
They also explore holistic business intelligence solutions, comprehensive OLAP/
Analysis Services reporting, and complete production-deployment scenarios.

You’ll learn how to write custom expressions and program functions to meet
specific reporting needs. This will help you design, build, and deploy reports
with capabilities far greater than any other reporting tools you may have used
in the past. The techniques covered in the book will also enable you to take
reporting further than you have before and provide your users with real
business intelligence.

What you will learn from this book
● Using reports to visualize important business-decision metrics
● Building the presentation layer for an enterprise business intelligence

solution
● Reporting from OLAP cubes and relational database systems
● Enabling information workers to easily create their own self-service reports
● Real-world report design patterns and recipes
● Designing and deploying reports for enterprise portals and dashboards,

including SharePoint technologies
● Advanced object-oriented programming techniques for extending and adding

functionality to Reporting Services

 Enhance Your Knowledge
Advance Your Career

Who this b ook is f or
This book is for report designers, developers, administrators, and business professionals interested in learning the advanced
functionality, reporting, server administration, and security issues of SQL Server 2008 Reporting Services.

SQ
L Se

rver
® 20

08
R

eporting Se
rvices

Turley, Silva,
Smith, Withee

Hitachi Consulting

Professional

spine=1.63"

Updates, source code, and Wrox technical support at www.wrox.com

Professional

SQL Ser ver ® 2008
Reporting Ser vices

Microsoft®

M
icrosoft

®

Microsoft®

Paul Turley, Thiago Silva, Bryan C. Smith, Ken Withee
Hitachi Consulting
Forewords by:
Jason Carlson, Product Unit Manager, SQL Server Reporting Services, Microsoft Corporation
Thierry D’hers, Group Program Manager, SQL Server Reporting Services, Microsoft Corporation

Wrox Programmer to Programmer TMWrox Programmer to Programmer TM

