
Steven Feuerstein,
Bill Pribyl & Chip Dawes

Oracle
PL/SQL
Language
Pocket
Reference
A GUIDE TO ORACLE'S PL/SQL
LANGUAGE FUNDAMENTALS

5th Edition

Covers Oracle Database 12c

www.it-ebooks.info

http://www.it-ebooks.info/

ISBN: 978-1-491-92000-8

US $15.99 CAN $18.99

Be more productive with the Oracle PL/SQL language. The fifth edition of this
popular pocket reference puts the syntax of specific PL/SQL language ele-
ments right at your fingertips, including features added in Oracle Database 12c.

Whether you’re a developer or database administrator, when you need
answers quickly, the Oracle PL/SQL Language Pocket Reference will save
you hours of frustration with concise summaries of:

 ■ Fundamental language elements, such as block structure,
datatypes, and declarations

 ■ Statements for program control, cursor management, and
exception handling

 ■ Records, procedures, functions, triggers, and packages

 ■ Execution of PL/SQL functions in SQL

 ■ Compilation options, object-oriented features, collections,
and Java integration

Steven Feuerstein one of the world’s leading experts on the Oracle
PL/SQL language, is also the author of Oracle PL/SQL Best Practices
(O’Reilly).

Bill Pribyl, coauthor of the bestselling Oracle PL/SQL Programming, is
also a teacher and software consultant.

Chip Dawes, a consultant with PwC’s Health Industry Advisory services,
has worked with Oracle Database versions 5 through 12.

oreilly.com, Twitter: @oreillymedia

Oracle PL/SQL Language
Pocket Reference

OR ACLE/DATABA SES

www.it-ebooks.info

http://www.it-ebooks.info/

Steven Feuerstein, Bill Pribyl, and Chip Dawes

Oracle PL/SQL Language
Pocket Reference

FIFTH EDITION

www.it-ebooks.info

http://www.it-ebooks.info/

978-1-491-92000-8

[LSI]

Oracle PL/SQL Language Pocket Reference
by Steven Feuerstein, Bill Pribyl, and Chip Dawes

Copyright © 2015 Steven Feuerstein, Bill Pribyl, Chip Dawes. All rights
reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebasto‐
pol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promo‐
tional use. Online editions are also available for most titles (http://safaribook‐
sonline.com). For more information, contact our corporate/institutional sales
department: 800-998-9938 or corporate@oreilly.com.

Editor: Tim McGovern
Production Editor: Shiny Kalapurakkel
Copyeditor: Amanda Kersey
Proofreader: Kim Cofer
Indexer: Lucie Haskins
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Rebecca Demarest

September 2015: Fifth Edition

Revision History for the Fifth Edition
2015-09-04: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491920008 for release
details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Oracle
PL/SQL Language Pocket Reference, the cover image, and related trade dress
are trademarks of O’Reilly Media, Inc.

While the publisher and the authors have used good faith efforts to ensure
that the information and instructions contained in this work are accurate, the
publisher and the authors disclaim all responsibility for errors or omissions,
including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained
in this work is at your own risk. If any code samples or other technology this
work contains or describes is subject to open source licenses or the intellec‐
tual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.it-ebooks.info

http://safaribooksonline.com
http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491920008
http://www.it-ebooks.info/

Table of Contents

Introduction 1
PL/SQL Language Fundamentals 2
Variables and Program Data 12
Conditional and Sequential Control 24
Loops 30
Database Interaction 35
Cursors in PL/SQL 40
Exception Handling 54
Records in PL/SQL 62
Collections in PL/SQL 66
Built-in Functions and Packages 84
Stored Procedures and Functions 105
Triggers 120
Packages 129
Calling PL/SQL Functions in SQL 134
Object-Oriented Features 137
Compilation 152
Java Language Integration 164
Index 169

iii

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Oracle PL/SQL Language
Pocket Reference

Introduction
The Oracle PL/SQL Language Pocket Reference is a quick refer‐
ence guide to the PL/SQL programming language, which pro‐
vides procedural extensions to the SQL relational database lan‐
guage.

The purpose of this pocket reference is to help PL/SQL users
find the syntax of specific language elements. It is not a self-
contained user guide; basic knowledge of the PL/SQL program‐
ming language is assumed. For more information, see the fol‐
lowing O’Reilly books:

• Oracle PL/SQL Programming, Sixth Edition, by Steven
Feuerstein with Bill Pribyl

• Oracle PL/SQL Best Practices, Second Edition, by Steven
Feuerstein

• Oracle Essentials, Fifth Edition, by Rick Greenwald, Rob‐
ert Stackowiak, and Jonathan Stern

Wherever a package, program, or function is supported only
for a particular version of the Oracle database (e.g., Oracle
Database 12c), we indicate this in the text.

1

www.it-ebooks.info

http://shop.oreilly.com/product/0636920036913.do
http://shop.oreilly.com/product/0636920024859.do
http://shop.oreilly.com/product/9780596514105.do
http://shop.oreilly.com/product/0636920027737.do
http://www.it-ebooks.info/

Acknowledgments
We are grateful to all those who helped in the preparation of
this book. In particular, thanks to Patrick Barel, Indu Janar‐
danan, and Prachi Sharma for their technical reviews (though
all mistakes and omissions remain the responsibility of the
authors). Bryn Llewellyn gave us thorough and thoroughly
helpful feedback on previous editions. Thanks as well to first-
edition reviewers Eric J. Givler and Stephen Nelson and to
second- and third-edition reviewer Jonathan Gennick. In addi‐
tion, we appreciate all the good work by the O’Reilly crew,
especially editor Tim McGovern, in editing and producing this
book.

Conventions
UPPERCASE indicates PL/SQL keywords, as well as certain
identifiers used by Oracle Corporation as built-in function and
package names.

Italic indicates filenames and directories, as well as the first use
of a term.

Constant width is used for code examples, literals, and identifi‐
ers.

Constant width bold indicates user input in examples showing
an interaction.

[] enclose optional items in syntax descriptions.

{} enclose a list of items in syntax descriptions; you must
choose one item from the list.

| separates bracketed list items in syntax descriptions.

PL/SQL Language Fundamentals
This section summarizes the fundamental components of the
PL/SQL language: characters, identifiers, literals, delimiters,

2 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

use of comments and pragmas, and construction of statements
and blocks.

PL/SQL Character Set
The PL/SQL language is constructed from letters, digits, sym‐
bols, and whitespace, as defined in the following table:

Type Characters

Letters A–Z, a–z

Digits 0—9

Symbols ~!@#$%*()_−+=|:;"'< >,^.?/

Whitespace Space, tab, newline, carriage return

Characters are grouped together into four lexical units: identifi‐
ers, literals, delimiters, and comments.

Identifiers
Identifiers are names for PL/SQL objects, such as constants,
variables, exceptions, procedures, cursors, and reserved words.
Identifiers have the following characteristics:

• Can be up to 30 characters in length
• Cannot include whitespace (space, tab, carriage return)
• Must start with a letter
• Can include a dollar sign ($), an underscore (_), and a

pound sign (#)
• Are not case-sensitive

Using PL/SQL’s reserved words as identifiers in your programs
is not a good idea and can result in compilation or runtime
errors that are difficult to troubleshoot.

PL/SQL Language Fundamentals | 3

www.it-ebooks.info

http://www.it-ebooks.info/

TIP

Earlier editions of this book included a list of reserved
words. However, Oracle Database 12c has more than 2,080
reserved words as listed in the V$RESERVED_WORDS
data dictionary view. Although you can in fact use many of
these words as your own identifiers without any com‐
plaints from the compiler, doing so can be confusing. We
suggest you write PL/SQL using an editor that highlights
reserved words automatically and avoid using them to
name your own variables or subprograms.

If you enclose an identifier within double quotes, all but the
first of these rules are ignored. For example, the following dec‐
laration is valid (although not exactly sensible):

DECLARE
 "1 ^abc" VARCHAR2(100);
BEGIN
 IF "1 ^abc" IS NULL THEN ...
END;

Boolean, Numeric, and String Literals
Literals are specific values not represented by identifiers. For
example, TRUE, 3.14159, 6.63E-34, 'Moby Dick', and NULL are all
literals of type Boolean, number, or string. There are no com‐
plex datatype literals because their values are internal represen‐
tations; complex types receive values through direct assignment
or via constructors. Unlike the rest of PL/SQL, literals are case-
sensitive. To embed single quotes within a string literal, place
two single quotes next to each other.

You can define your own quoting mechanism for string literals
in both your SQL and PL/SQL statements. Use the characters
q' (q followed by a straight single quote) to designate the
programmer-defined delimiter for your string literal. Termi‐
nate the literal string with the programmer-defined delimiter
followed by a trailing single quote—for example, q'!my

4 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

string!'. NCHAR and NVARCHAR delimiters are preceded
by the letters nq, as in nq'^nchar string^'. This technique can
simplify your code when consecutive single quotes appear
within a string, such as the literals in a SQL statement. If you
define your delimiter with one of the four bracketing charac‐
ters ([{<, you must use the righthand version of the bracket‐
ing character as the closing delimiter. For example, q'[must be
closed with]'.

See the following table for examples:

Literal Actual value

'That''s Entertainment!' That’s Entertainment!

q'#That's Entertainment!#' That’s Entertainment!

'"The Raven"' “The Raven”

'TZ=''CDT6CST''' TZ='CDT6CST’

q'$TZ='CDT6CST'$' TZ='CDT6CST’

q'[TZ='CDT6CST']' TZ='CDT6CST’

'''' '

'''hello world''' ‘hello world’

q'!'hello world'!' ‘hello world’

'''''' ''

q'['']' ''

nq'<Price='£'>' Price='£'

nq'-WHERE name LIKE 'ñ'-' WHERE name LIKE 'ñ'

Numeric Literals
Oracle may improve runtime performance if you make explicit
the datatype of numeric literals. You can do so by including or
excluding a decimal point or by using a trailing f or d, as
shown in the following table:

PL/SQL Language Fundamentals | 5

www.it-ebooks.info

http://www.it-ebooks.info/

Literal Datatype

3.14159 NUMBER

42 INTEGER

0.0 NUMBER

3.14159f BINARY_FLOAT

3.14159d BINARY_DOUBLE

You can also use the named constants:

BINARY_FLOAT_NAN (not a number)
BINARY_FLOAT_INFINITY

BINARY_FLOAT_MAX_NORMAL

BINARY_FLOAT_MIN_NORMAL

BINARY_FLOAT_MAX_SUBNORMAL

BINARY_FLOAT_MIN_SUBNORMAL

as well as the BINARY_DOUBLE versions of these constants.

Datetime Interval Literals
The datetime interval datatypes represent a chronological
interval expressed in terms of either years and months or days,
hours, minutes, seconds, and fractional seconds. Literals of
these datatypes require the keyword INTERVAL followed by
the literal and format string(s). The interval must go from a
larger field to a smaller one, so YEAR TO MONTH is valid, but
MONTH TO YEAR is not. See the following table for exam‐
ples:

Literal Actual value

INTERVAL '1–3' YEAR TO MONTH 1 year and 3 months later

INTERVAL '125–11' YEAR(3)

TO MONTH

125 years and 11 months later

INTERVAL '-18' MONTH 18 months earlier

INTERVAL '-48' HOUR 48 hours earlier

6 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Literal Actual value

INTERVAL '7 23:15' DAY TO

MINUTE

7 days, 23 hours, 15 minutes later

INTERVAL '1 12:30:10.2' DAY

TO SECOND

1 day, 12 hours, 30 minutes, 10.2
seconds later

INTERVAL '12:30:10.2' HOUR

TO SECOND

12 hours, 30 minutes, 10.2 seconds
later

Delimiters
Delimiters are symbols with special meaning, such as :=

(assignment operator), || (concatenation operator), and ;
(statement delimiter). The following table lists the PL/SQL
delimiters:

Delimiter Description

; Terminator (for statements and declarations)

+ Addition operator

− Subtraction operator

* Multiplication operator

/ Division operator

** Exponentiation operator

|| Concatenation operator

:= Assignment operator

= Equality operator

<> and != Inequality operators

^= and ˜= Inequality operators

< Less-than operator

<= Less-than-or-equal-tooperator

> Greater-than operator

PL/SQL Language Fundamentals | 7

www.it-ebooks.info

http://www.it-ebooks.info/

Delimiter Description

>= Greater-than-or-equal-to operator

(and) Expression or list delimiters

<< and >> Label delimiters

, Item separator

' Literal delimiter

q' and ' Programmer-defined string literal delimiter

nq' and ' Programmer-defined NCHAR string literal delimiter

" Quoted literal delimiter

: Host variable indicator

% Attribute indicator

. Component indicator (as in record.field or package.element)

@ Remote database indicator (database link)

=> Association operator (named notation)

.. Range operator (used in the FOR loop)

-- Single-line comment indicator

/* and */ Multiline comment delimiters

Comments
Comments are sections of code that exist to aid readability. The
compiler ignores them.

A single-line comment begins with a double hyphen (--) and
terminates at the end-of-line (newline). The compiler ignores
all characters between the -- and the newline.

A multiline comment begins with slash asterisk (/*) and ends
with asterisk slash (*/). The /* */ comment delimiters also can
be used for a single-line comment. The following block demon‐
strates both kinds of comments:

8 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

DECLARE
 -- Two dashes comment out remainder of line.
 /* Everything is a comment until the compiler
 encounters the following symbol */

You cannot embed multiline comments within a multiline
comment, so be careful during development if you comment
out portions of code that include comments. The following
code demonstrates this issue:

DECLARE
 /* Everything is a comment until the compiler
 /* This comment inside another WON'T work!*/
 encounters the following symbol. */

 /* Everything is a comment until the compiler
 -- This comment inside another WILL work!
 encounters the following symbol. */

Pragmas
The PRAGMA keyword is used to give instructions to the com‐
piler. There are six types of pragmas in PL/SQL:

AUTONOMOUS_TRANSACTION
Tells the compiler that the function, procedure, top-level
anonymous PL/SQL block, object method, or database
trigger executes in its own transaction space. See “Data‐
base Interaction” on page 35 for more information on this
pragma.

EXCEPTION_INIT
Tells the compiler to associate the specified error number
with an identifier that has been declared an EXCEPTION
in your current program or an accessible package. See
“Exception Handling” on page 54 for more information
on this pragma.

INLINE
Tells the compiler whether calls to a subprogram should
be replaced with a copy of the subprogram. See “Optimiz‐

PL/SQL Language Fundamentals | 9

www.it-ebooks.info

http://www.it-ebooks.info/

ing Compiler” on page 161 for more information on inline
optimization.

RESTRICT_REFERENCES
This pragma is deprecated; use DETERMINISTIC and
PARALLEL_ENABLE instead.

SERIALLY_REUSABLE
Tells the runtime engine that package data should not per‐
sist between references. This is used to reduce per-user
memory requirements when the package data is needed
only for the duration of the call and not for the duration of
the session. See “Packages” on page 129 for more informa‐
tion on this pragma.

UDF (Oracle Database 12c and higher)
Tells the compiler that you intend for your user-defined
function to be invoked primarily from SQL rather than
PL/SQL. This allows Oracle to optimize for performance
inside SQL (at the possible expense of its performance in
PL/SQL).

Statements
A PL/SQL program is composed of one or more logical state‐
ments. A statement is terminated by a semicolon delimiter. The
physical end-of-line marker in a PL/SQL program is ignored by
the compiler, except to terminate a single-line comment (initi‐
ated by the -- symbol).

Block Structure
Each PL/SQL program is a block consisting of a standard set of
elements, identified by keywords (see Figure 1). The block
determines the scope of declared elements and how exceptions
are handled and propagated. A block can be anonymous or
named. Named blocks include functions, procedures, packages,
and triggers.

10 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Figure 1. The PL/SQL block structure

Here is an example of an anonymous block:

DECLARE
 today DATE DEFAULT SYSDATE;
BEGIN
 -- Display the date.
 DBMS_OUTPUT.PUT_LINE ('Today is ' || today);
END;

Here is a named block that performs the same action:

CREATE OR REPLACE PROCEDURE show_the_date
IS
 today DATE DEFAULT SYSDATE;
BEGIN
 -- Display the date.
 DBMS_OUTPUT.PUT_LINE ('Today is ' || today);
END show_the_date;

PL/SQL Language Fundamentals | 11

www.it-ebooks.info

http://www.it-ebooks.info/

The following table summarizes the sections of a PL/SQL
block:

Section Description

Header Required for named blocks. Specifies the way the program is called
by other PL/SQL blocks. Anonymous blocks do not have a header.
They start with the DECLARE keyword if there is a declaration
section, or with the BEGIN keyword if there are no declarations.

Declaration Optional; declares variables, cursors, types, and local programs that
are used in the block’s execution and exception sections.

Execution Contains statements that are executed when the block is run;
optional in package specifications and type specifications.

Exception Optional; describes error-handling behavior for exceptions raised in
the executable section.

Variables and Program Data
PL/SQL programs normally are used to manipulate database
information. You commonly do this by declaring variables and
data structures in your programs, and then working with that
PL/SQL-specific data.

A variable is a named instantiation of a data structure declared
in a PL/SQL block (either locally or in a package). Unless you
declare a variable as a CONSTANT, its value can be changed at
any time in your program.

The following table summarizes the different types of program
data:

Type Description

Scalar Variables made up of a single value, such as a number, date, or
Boolean.

Composite Variables made up of multiple values, such as a record, collection, or
instance of a user-defined object type. See the sections “Records in
PL/SQL” on page 62, “Collections in PL/SQL” on page 66, and “Object-
Oriented Features” on page 137.

12 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Type Description

Reference Logical pointers to values or cursors.

LOB Variables containing large object (LOB) locators.

Scalar Datatypes
Scalar datatypes divide into four families: number, character,
datetime, and Boolean. Subtypes further define a base datatype
by restricting the values or size of the base datatype.

Numeric datatypes
Numeric datatypes represent real numbers, integers, and
floating-point numbers. They are stored as NUMBER,
PLS_INTEGER, and IEEE floating-point storage types.

Decimal numeric datatypes store fixed and floating-point num‐
bers of just about any size. They include the subtypes NUM‐
BER, DEC, DECIMAL, NUMERIC, FLOAT, REAL, and DOU‐
BLE PRECISION. The maximum precision of a variable with
type NUMBER is 38 digits, which yields a range of values from
1.0E-129 through 9.999E125.

Variables of type NUMBER can be declared with precision and
scale, as follows:

NUMBER(precision, scale)

where precision is the number of digits, and scale is the number
of digits to the right (positive scale) or left (negative scale) of
the decimal point at which rounding occurs. Legal values for
scale range from −84 to 127. The following table shows exam‐
ples of precision and scale:

Declaration Assigned value Stored value

NUMBER 6.02 6.02

NUMBER(4) 8675 8675

NUMBER(4) 8675309 Error

Variables and Program Data | 13

www.it-ebooks.info

http://www.it-ebooks.info/

Declaration Assigned value Stored value

NUMBER(12,5) 3.14159265 3.14159

NUMBER(12,−5) 8675309 8700000

Oracle provides a variety of datatypes to store whole numbers:
BINARY_INTEGER, INTEGER, INT, SMALLINT, NATURAL,
NATURALN, POSITIVE, POSITIVEN, SIGNTYPE, and
PLS_INTEGER.

Binary integer datatypes store signed integers in the range of
−231 + 1 to 231 − 1. The subtypes include NATURAL (0 through
231 − 1) and POSITIVE (1 through 231 − 1) together with the
NOT NULL variations NATURALN and POSITIVEN. SIGN‐
TYPE is restricted to three values (−1, 0, 1). PLS_INTEGER is
an unconstrained subtype (alias) of BINARY_INTEGER.

SIMPLE_INTEGER has the same range as BINARY_INTEGER
except that it does not allow for null values and does not raise
an exception if an overflow occurs. For example, 2147483647 +
1 = −2147483648 (note the negative value!). SIMPLE_INTE‐
GER datatypes can result in significantly faster execution
speeds when the PL/SQL code is compiled to native machine
code.

IEEE 754–compliant floating-point numbers are available in
both SQL and PL/SQL. These subtypes are the single-precision
BINARY_FLOAT and the double-precision BINARY_DOU‐
BLE. Because these datatypes require less memory and use
native machine arithmetic, they perform much better for scien‐
tific or engineering applications that are computer-intensive or
that require comparison to infinity or not a number (NaN).
These two datatypes have binary precision instead of the deci‐
mal precision used in the NUMBER family. So, if you are devel‐
oping financial applications that are concerned with rounding
errors or require decimal precision, you probably should not
use these floating-point datatypes.

The following table lists the PL/SQL numeric datatypes with
ANSI and IBM compatibility. In this table:

14 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

• precision is the precision for the subtype.
• scale is the scale of the subtype.
• binary is the binary precision of the subtype.

PL/SQL datatype Compatibility Oracle database datatype

DEC(precision,scale) ANSI NUMBER(precision,scale)

DECIMAL(precision,scale) IBM NUMBER(precision,scale)

DOUBLE PRECISION ANSI NUMBER

FLOAT(binary) ANSI, IBM NUMBER

INT ANSI NUMBER(38)

INTEGER ANSI, IBM NUMBER(38)

NUMERIC(precision,scale) ANSI NUMBER(precision,scale)

REAL ANSI NUMBER

SMALLINT ANSI, IBM NUMBER(38)

BINARY_FLOAT IEEE 754 BINARY_FLOAT

BINARY_ DOUBLE IEEE 754 BINARY_ DOUBLE

Character datatypes
Character datatypes store alphanumeric text and are manipu‐
lated by character functions. As with the numeric family, there
are several subtypes in the character family, shown in the fol‐
lowing table:

Family Description

CHAR Fixed-length alphanumeric strings. Valid sizes are 1 to 32,767 bytes.

VARCHAR2 Variable-length alphanumeric strings. Valid sizes are 1 to 32,767
bytes.

Variables and Program Data | 15

www.it-ebooks.info

http://www.it-ebooks.info/

Family Description

LONG Variable-length alphanumeric strings. Valid sizes are 1 to 32,760
bytes. LONG is included primarily for backward compatibility; instead
use VARCHAR2(32767), CLOB, BLOB, or NCLOB for large character
strings.

RAW Variable-length binary strings. Valid sizes are 1 to 32,767 bytes
(which is larger than the database limit of 2,000). RAW data does not
undergo character set conversion when selected from a remote
database.

LONG RAW Variable-length binary strings. Valid sizes are 1 to 32,760 bytes. LONG
RAW is included primarily for backward compatibility; BLOB and
BFILE are the preferred datatypes for large binary data.

ROWID Fixed-length binary data. Every row in a database has a physical
address or ROWID. A ROWID has four parts in base 64:
OOOOOOFFFBBBBBBRRR
where:

• OOOOOO is the object number.

• FFFF is the absolute or relative file number.

• BBBBBB is the block number within the file.

• RRR is the row number within the block.

UROWID Universal ROWID. Variable-length hexadecimal string depicting a
logical, physical, or non-Oracle row identifier. Valid sizes are up to
4,000 bytes.

Unicode character datatypes
The standard WE8MSWIN1252 or WE8ISO8859P2 character
set does not support some languages, such as Chinese and
Greek. To support multiple languages, the database allows two
character sets—the database character set and a Unicode charac‐
ter set, sometimes called the national character set (NLS).

The two NLS datatypes, NCHAR and NVARCHAR2, are used
to represent data in the Unicode character set. NCHAR values

16 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

are fixed-length character data; the maximum length is 32,767
bytes. NVARCHAR2 values are variable-length character data;
the maximum length also is 32,767 bytes.

Datetime datatypes
The datetime datatypes are DATE, TIMESTAMP, TIMESTAMP
WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME
ZONE. There are also two interval datatypes, INTERVAL
YEAR TO MONTH and INTERVAL DAY TO SECOND.

DATE values are fixed-length, date-plus-time values. The
DATE datatype can store dates from January 1, 4712 BC to
December 31, 9999 AD. Each DATE includes the century, year,
month, day, hour, minute, and second. Subsecond granularity
is not supported via the DATE datatype; use one of the TIME‐
STAMP datatypes instead. The time portion of a DATE defaults
to midnight (12:00:00 a.m.) if it is not included explicitly.

TIMESTAMP values store date and time to subsecond granu‐
larity. The subsecond precision (the number of digits to the
right of the decimal) either defaults to 6 or is set to 0 through 9
digits by declaration, as in:

DECLARE
 mytime_declared TIMESTAMP(9); -- max precision
 mytime_default TIMESTAMP; -- default 6
digits precision
 mytime_to_seconds TIMESTAMP(0); -- no fractional
seconds

TIMESTAMP WITH TIME ZONE values store date and time
values like a TIMESTAMP but also store the hourly offset from
Coordinated Universal Time (UTC, which is essentially equiva‐
lent to Greenwich Mean Time). As with TIMESTAMP, the sub‐
second precision is 0 to 9 digits, either declared or inherited
from the default 6 digits of precision:

DECLARE
 mytime_declared TIMESTAMP(9) WITH TIME ZONE;
 mytime_default TIMESTAMP WITH TIME ZONE;

Variables and Program Data | 17

www.it-ebooks.info

http://www.it-ebooks.info/

TIMESTAMP WITH LOCAL TIME ZONE values store date
and time values together with the UTC offset, like a TIME‐
STAMP WITH TIME ZONE. The principal difference between
these timestamp datatypes occurs when values are saved to or
retrieved from a database table. TIMESTAMP WITH LOCAL
TIME ZONE values are converted to the database time zone
and saved without an offset. The values retrieved from the
database table are converted from the database time zone to the
session’s time zone.

The offset from UTC for both TIMESTAMP WITH TIME
ZONE and TIMESTAMP WITH LOCAL TIME ZONE can be
hours and minutes or a time zone region (found in the V
$TIMEZONE_NAMES data dictionary view) with the optional
daylight savings time name (also found in V$TIME‐
ZONE_NAMES). For example:

ALTER SESSION SET NLS_TIMESTAMP_TZ_FORMAT=
 'DD-Mon-YYYY HH24:MI:SS.FF TZR';

DECLARE
 my_tswtz TIMESTAMP(4) WITH TIME ZONE;
BEGIN
 my_tswtz := '31-MAR-2016 07:32:45.1234 US/
Pacific';

INTERVAL YEAR TO MONTH values store a period of time
in years and months:

DECLARE
 myy2m INTERVAL YEAR TO MONTH;
BEGIN
 myy2m := INTERVAL '1–6' YEAR TO MONTH; --
interval of 18 months

INTERVAL DAY TO SECOND values store a period of time in
days, hours, minutes, seconds, and fractional seconds:

DECLARE
 myd2s INTERVAL DAY TO SECOND;
BEGIN
 myd2s := INTERVAL '2 10:32:15.678' DAY TO SECOND;

18 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

BOOLEAN datatype
The BOOLEAN datatype can store one of three values: TRUE,
FALSE, or NULL. BOOLEAN variables usually are used in log‐
ical control structures such as IF . . . THEN or LOOP state‐
ments.

The following truth tables show the results of logical AND, OR,
and NOT operations with PL/SQL’s three-value Boolean model:

AND TRUE FALSE NULL

TRUE TRUE FALSE NULL

FALSE FALSE FALSE FALSE

NULL NULL FALSE NULL

OR TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE NULL

NULL TRUE NULL NULL

NOT (TRUE) NOT (FALSE) NOT (NULL)

FALSE TRUE NULL

LOB Datatypes
PL/SQL supports a number of large object (LOB) datatypes,
which can store objects up to 8 terabytes in size, or even up to
128 TB, depending on database block size. Unlike the scalar
datatypes, variables declared for LOBs use locators, or pointers
to the actual data. LOBs are manipulated in PL/SQL using the
built-in package DBMS_LOB. The LOB datatypes are:

BFILE
File locators pointing to read-only large binary objects in
operating system files. With BFILEs, the large objects are
outside the database, and the maximum size is system-
dependent.

Variables and Program Data | 19

www.it-ebooks.info

http://www.it-ebooks.info/

BLOB
LOB locators that point to large binary objects inside the
database.

CLOB
LOB locators that point to large character (alphanumeric)
objects inside the database.

NCLOB
LOB locators that point to large Unicode character objects
inside the database.

Implicit Datatype Conversions
Whenever PL/SQL detects that a datatype conversion is neces‐
sary, it attempts to change the values as required to perform the
operation. Not all values in each datatype can be converted to
another datatype. For example, an attempt to convert
BINARY_FLOAT_NAN to a number datatype will raise an
INVALID NUMBER exception.

NULLs in PL/SQL
PL/SQL represents unknown or inapplicable values as NULL
values. Because a NULL is unknown, a NULL is never equal or
not equal to anything (including another NULL value). In
addition, most functions and operators return a NULL when
passed a NULL argument. You cannot check for equality or
inequality to NULL; therefore, you must use the IS NULL or IS
NOT NULL syntax to check for NULL values.

Here is an example of the IS NULL syntax used to check the
value of a variable:

BEGIN
 /* Correct usage */
 IF myvar IS NULL THEN ...

 /* Dangerous! Always evaluates to NULL */
 IF myvar = NULL THEN ...

20 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

There are several ways in SQL and PL/SQL to substitute a non-
null value for a null variable or expression. NVL is commonly
used:

NVL (exprn1, exprn2)

With NVL, Oracle will always evaluate both arguments, even if
exprn1 is not null. A potentially more efficient function is
COALESCE:

COALESCE(exprn1, exprn2 [, exprn3, ...])

COALESCE has two distinct characteristics: first, it accepts
more than two arguments; second, it uses short-circuit evalua‐
tion, meaning it stops looking for a non-null value when it
finds one (and, therefore, does not evaluate every expression in
the list, which NVL does).

Declaring Variables
Before you can use a variable, you must first declare it in the
declaration section of your PL/SQL block or in a package as a
global. When you declare a variable, PL/SQL allocates memory
for the variable’s value and names the storage location so that
the value can be retrieved and changed. The syntax for a vari‐
able declaration is:

variable_name [CONSTANT] datatype [NOT NULL]
 [{ := | DEFAULT } initial_value];

Constrained declarations
A programmer may constrain certain datatypes at declaration
so that variables have a size, scale, or precision that is less than
the maximum allowed. Some examples:

total_sales NUMBER(15,2); -- Constrained
emp_id VARCHAR2(9); -- Constrained
company_number NUMBER; -- Unconstrained
book_title VARCHAR2; -- Not valid

Variables and Program Data | 21

www.it-ebooks.info

http://www.it-ebooks.info/

1 There is one exception to this rule: associative arrays are not null when
declared, and there is no way to make them null. However, when
declared, associative arrays have no elements, a state unsurprisingly
known as “empty.”

Constrained declarations can require less memory than uncon‐
strained declarations. Not all datatypes can be declared uncon‐
strained; VARCHAR2 is a notable exception.

Constants
The CONSTANT keyword in a declaration requires an initial
value and does not allow that value to be changed in the pro‐
gram. For example:

min_order_qty NUMBER(1) CONSTANT := 5;

Default values
The PL/SQL runtime engine assigns a default value of NULL to
each variable you explicitly declare.1 If you want to initialize a
variable to a value other than NULL, you can do so in the dec‐
laration with either the assignment operator (:=) or the
DEFAULT keyword:

counter BINARY_INTEGER := 0;
priority VARCHAR2(8) DEFAULT 'LOW';

A NOT NULL constraint can be appended to the variable’s
datatype declaration to indicate that NULL is not a valid value.
If you add the NOT NULL constraint, you must explicitly
assign an initial value for that variable.

Anchored Declarations
Use the %TYPE attribute to anchor the datatype of a scalar
variable to either another variable or to a column in a database
table or view. Use %ROWTYPE to anchor a record’s declara‐
tion to a cursor or table (see “Records in PL/SQL” on page 62
for more details on the %ROWTYPE attribute).

22 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

The following block shows several variations of anchored dec‐
larations:

DECLARE
 tot_sales NUMBER(20,2);

 -- Anchor to a local variable
 monthly_sales tot_sales%TYPE;

 -- Anchor to a database column
 v_ename employee.last_name%TYPE;

 -- Anchor to a cursor
 CURSOR mycur IS SELECT * FROM employee;
 myrec mycur%ROWTYPE; -

The NOT NULL clause on a variable declaration (but not on a
database column definition) follows the %TYPE anchoring and
requires anchored declarations to have a default in their decla‐
ration. The default value for an anchored declaration can be
different from that for the base declaration:

tot_sales NUMBER(20,2) NOT NULL DEFAULT 0;
monthly_sales tot_sales%TYPE DEFAULT 10;

Programmer-Defined Subtypes
PL/SQL allows you to define unconstrained scalar subtypes,
which you might want to do for greater “self-documentation” of
your code or for future-proofing. An unconstrained subtype
provides an alias to the original underlying datatype; for exam‐
ple:

CREATE OR REPLACE PACKAGE std_types
IS
 -- Declare reusable app-specific type
 SUBTYPE dollar_amt_t IS NUMBER;
END std_types;

CREATE OR REPLACE PROCEDURE process_money
IS

Variables and Program Data | 23

www.it-ebooks.info

http://www.it-ebooks.info/

 -- Use standardized type declared in package
 credit std_types.dollar_amt_t;

A constrained subtype limits or constrains the new datatype to
a subset of the original datatype. For example, POSITIVE is a
constrained subtype of BINARY_INTEGER. The declaration
for POSITIVE in the STANDARD package is:

SUBTYPE POSITIVE IS BINARY_INTEGER RANGE
1..2147483647;

You can define your own constrained subtypes in your pro‐
grams:

PACKAGE std_types
IS
 SUBTYPE currency_t IS NUMBER (15, 2);
END;

Conditional and Sequential Control
PL/SQL includes conditional (IF, CASE) structures as well as
sequential control (GOTO, NULL) constructs.

Conditional Control Statements
There are several varieties of IF-THEN-ELSE and CASE struc‐
tures.

IF-THEN combination

IF condition THEN
 executable statement(s)
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
END IF;

24 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

IF-THEN-ELSE combination

IF condition THEN
 TRUE sequence_of_executable_statement(s)
ELSE
 FALSE (or NULL) sequence_of_statement(s)
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
ELSE
 generate_response('BRONZE');
END IF;

Note that a condition that evaluates to NULL at runtime will
cause control to branch to the ELSE clause.

IF-THEN-ELSIF combination
Oracle’s else-if condition allows testing a second conditional
expression. Note that the second letter “e” is missing in the
ELSIF keyword:

IF condition-1 THEN
 statements-1
ELSIF condition-N THEN
 statements-N
[ELSE
 ELSE statements]
END IF;

For example:

IF caller_type = 'VIP' THEN
 generate_response('GOLD');
ELSIF priority_client THEN
 generate_response('SILVER');
ELSE
 generate_response('BRONZE');
END IF;

Conditional and Sequential Control | 25

www.it-ebooks.info

http://www.it-ebooks.info/

CASE statement
There are two types of CASE statements: simple and searched.

A simple CASE statement is similar to an IF-THEN-ELSIF
structure. The statement has a switch expression immediately
after the keyword CASE. The expression is evaluated and com‐
pared to the value in each WHEN clause. The first WHEN
clause with a matching value is executed, and then control
passes to the next statement following the END CASE. For
example:

CASE region_id
 WHEN 'NE' THEN
 mgr_name := 'MINER';
 WHEN 'SE' THEN
 mgr_name := 'KOOI';
 ELSE
 mgr_name := 'LANE';
END CASE;

If a switch expression evaluates to NULL, the ELSE case is the
only one that can possibly match; WHEN NULL will never
match because the database performs an equality comparison
on the expressions.

Both the CASE statement and the CASE expression (see next
section) should include an ELSE clause that will execute state‐
ments if no WHEN clause evaluates to TRUE, because PL/SQL’s
runtime engine will raise an exception if it finds no matching
expression.

The searched CASE statement does not have a switch; instead,
each WHEN clause has a complete Boolean expression. The
first matching WHEN clause is executed, and control passes to
the next statement following the END CASE; for example:

CASE
 WHEN region_id = 'EAME' THEN
 mgr_name := 'SCHMIDT';
 WHEN division = 'SALES' THEN
 mgr_name := 'KENNEDY';

26 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

 ELSE mgr_name := 'GUPTA';
END CASE;

CASE expression
There are also two types of CASE expressions: simple and
searched. You can use CASE expressions anywhere that expres‐
sions are valid in your SQL or PL/SQL programs.

A simple CASE expression lets you choose an expression to
evaluate based on a scalar value that you provide as input. The
following example shows a simple CASE expression being used
with the built-in DBMS_OUTPUT package to output the value
of a Boolean variable. DBMS_OUTPUT.PUT_LINE is not
overloaded to handle Boolean types, so in this example, the
CASE expression converts the Boolean value in a character
string, which PUT_LINE can then handle:

DECLARE
 boolean_true BOOLEAN := TRUE;
 boolean_false BOOLEAN := FALSE;
 boolean_null BOOLEAN;

 FUNCTION b2vc (flag IN BOOLEAN)
 RETURN VARCHAR2 IS
 BEGIN
 RETURN
 CASE flag
 WHEN TRUE THEN 'True'
 WHEN FALSE THEN 'False'
 ELSE 'Null'
 END;
 END;

BEGIN
 DBMS_OUTPUT.PUT_LINE (b2vc(boolean_true));
 DBMS_OUTPUT.PUT_LINE (b2vc(boolean_false));
 DBMS_OUTPUT.PUT_LINE(b2vc(boolean_null));
END;

Conditional and Sequential Control | 27

www.it-ebooks.info

http://www.it-ebooks.info/

A searched CASE expression evaluates a list of expressions to
find the first one that evaluates to TRUE, and then returns the
results of an associated expression. In the following example, a
searched CASE expression returns the proper bonus value for
any given salary:

DECLARE
 salary NUMBER := 20000;
 employee_id NUMBER := 36325;

 PROCEDURE give_bonus
 (emp_id IN NUMBER, bonus_amt IN NUMBER) IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE(emp_id);
 DBMS_OUTPUT.PUT_LINE(bonus_amt);
 END;

BEGIN
 give_bonus(employee_id,
 CASE
 WHEN salary >= 10000
 AND salary <=20000 THEN 1500
 WHEN salary > 20000
 AND salary <= 40000 THEN 1000
 WHEN salary > 40000 THEN 500
 ELSE 0
 END);
END;

Sequential Control Statements
PL/SQL provides a GOTO statement and a NULL statement to
aid in sequential control operations.

GOTO
Although rarely used, the GOTO statement performs uncondi‐
tional branching to a named label. At least one executable state‐
ment must follow the label (the NULL statement can be this
necessary executable statement). The format of a GOTO state‐
ment is:

28 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

GOTO label_name;

For example:

BEGIN
 GOTO second_output;

 DBMS_OUTPUT.PUT_LINE('Will never execute.');

 <<second_output>>
 DBMS_OUPUT.PUT_LINE('We are here!);
END

There are several scope restrictions on where a GOTO can
branch control. A GOTO:

• Can branch out of an IF statement, LOOP, or subblock.
• Cannot branch into an IF statement, LOOP, or subblock.
• Cannot branch from one section of an IF statement to

another (from the IF-THEN section to the ELSE section
is illegal).

• Cannot branch into or out of a subprogram.
• Cannot branch from the exception section to the exe‐

cutable section of a PL/SQL block.
• Cannot branch from the executable section to the excep‐

tion section of a PL/SQL block, although a RAISE does
this.

NULL
The NULL statement is an executable statement that does
nothing. It is useful when an executable statement must follow
a GOTO label or to aid readability in an IF-THEN-ELSE struc‐
ture. For example:

IF :report.selection = 'DETAIL' THEN
 exec_detail_report;
ELSE

Conditional and Sequential Control | 29

www.it-ebooks.info

http://www.it-ebooks.info/

 NULL;
END IF;

Loops
The LOOP construct allows you to execute a sequence of state‐
ments repeatedly. There are three types of loops: simple (infin‐
ite), FOR, and WHILE.

You can use the EXIT statement to break out of the LOOP and
pass control to the statement following the END LOOP. Use the
CONTINUE statement, described later, to break out of the cur‐
rent loop iteration and pass control to the next loop iteration.

Simple Loop
LOOP
 executable_statement(s)
END LOOP;

The simple loop should contain an EXIT or EXIT WHEN
unless you want it to execute infinitely. Use the simple loop
when you want the body of the loop to execute at least once.
For example:

LOOP
 FETCH company_cur INTO company_rec;
 EXIT WHEN company_cur%ROWCOUNT > 5 OR
 company_cur%NOTFOUND;
 process_company(company_cur);
END LOOP;

Numeric FOR Loop
FOR loop_index IN [REVERSE]
 lowest_number..highest_number
LOOP
 executable_statement(s)
END LOOP;

30 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

The PL/SQL runtime engine automatically declares the loop
index a PLS_INTEGER variable, and you don’t want or need to
declare a variable with that name yourself. The lowest_number
and highest_number ranges can be variables but are evaluated
only once—on initial entry into the loop. The REVERSE key‐
word causes PL/SQL to start with the highest_number and dec‐
rement down to the lowest_number. For example, this code:

BEGIN
 FOR counter IN 1 .. 4
 LOOP
 DBMS_OUTPUT.PUT(counter);
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;

 FOR counter IN REVERSE 1 .. 4
 LOOP
 DBMS_OUTPUT.PUT(counter);
 END LOOP;
 DBMS_OUTPUT.NEW_LINE;
END;

yields the following output:

1234
4321

Cursor FOR Loop
FOR loop_index IN
 {cursor_name | (SELECT statement)}
LOOP
 executable_statement(s)
END LOOP;

The PL/SQL runtime engine implicitly declares the loop index
as a record of cursor_name%ROWTYPE; do not explicitly
declare a variable with that name.

The cursor FOR loop automatically opens the cursor, fetches all
rows identified by the cursor, and then closes the cursor. You

Loops | 31

www.it-ebooks.info

http://www.it-ebooks.info/

can embed the SELECT statement directly in the cursor FOR
loop or use a previously declared cursor; for example:

FOR emp_rec IN emp_cur
LOOP
 IF emp_rec.title = 'Oracle Programmer'
 THEN
 give_raise(emp_rec.emp_id,30)
 END IF;
END LOOP;

The cursor FOR loop is an elegant, declarative construct (you
tell the database to fetch every row in the cursor without speci‐
fying how to do it). Internally, Oracle will attempt to optimize
such a fetch loop by retrieving 100 rows at a time, but you may
still want to explicitly use BULK COLLECT and FORALL. See
“Bulk Binds” on page 79 for information on these statements.

WHILE Loop
WHILE condition
LOOP
 executable_statement(s)
END LOOP;

Use the WHILE loop in cases where you may not want the loop
body to execute even once:

WHILE NOT end_of_analysis
LOOP
 perform_analysis;
 get_next_record;
 IF analysis_cursor%NOTFOUND
 AND next_step IS NULL
 THEN
 end_of_analysis := TRUE;
 END IF;
END LOOP;

32 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

“Repeat Until” Loop Emulation
PL/SQL does not directly support a REPEAT UNTIL construct,
but a modified simple loop can emulate one. The syntax for this
emulated REPEAT UNTIL loop is:

LOOP
 executable_statement(s)
 EXIT WHEN boolean_condition;
END LOOP;

Use such a loop when executing iterations indefinitely before
conditionally terminating the loop.

EXIT Statement
EXIT [WHEN condition];

If you do not include a WHEN clause, EXIT will terminate the
loop unconditionally. Otherwise, the loop terminates only if
the Boolean condition evaluates to TRUE. The EXIT statement
is optional and can appear anywhere in the loop.

CONTINUE Statement
The CONTINUE statement terminates the current iteration of
a loop, passing control to the next iteration. The format of a
CONTINUE statement is:

CONTINUE [label_name][WHEN boolean_expression];

The optional label_name identifies which loop to terminate. If
no label_name is specified, the innermost loop’s current itera‐
tion is terminated.

Like the EXIT statement, the CONTINUE statement is optional
and can appear anywhere in the loop. The CONTINUE state‐
ment can be used to pass control out of a loop, optionally
crossing loop boundaries, but cannot pass control out across a
procedure, function, or method boundary.

The following example uses CONTINUE to branch out of an
inner loop as well an outer loop:

Loops | 33

www.it-ebooks.info

http://www.it-ebooks.info/

DECLARE
 TYPE dow_tab_t IS TABLE OF VARCHAR2(10);
 dow_tab dow_tab_t := dow_tab_t('Sunday'
 ,'Monday','Tuesday','Wednesday','Thursday'
 ,'Friday','Saturday');
BEGIN
 <<day_loop>>
 FOR counter IN 2 .. 6 LOOP
 --Skip Wednesdays
 CONTINUE day_loop
 WHEN dow_tab(counter)='Wednesday';
 DBMS_OUTPUT.PUT_LINE (dow_tab(counter));
 END LOOP;
END;

This yields the following output:

Monday
Tuesday
Thursday
Friday

This example shows how control may be passed from within an
inner loop to the next iteration of an outer loop:

BEGIN
 <<outer_loop>>
 FOR outer_counter IN 1 .. 3 LOOP
 DBMS_OUTPUT.PUT_LINE(outer_counter);
 <<inner_loop>>
 FOR inner_counter IN 10 .. 15 LOOP
 CONTINUE outer_loop
 WHEN outer_counter > 1
 AND inner_counter = 12;
 DBMS_OUTPUT.PUT_LINE('...'||inner_counter);
 END LOOP;
 END LOOP;
END;

This yields the following output:

1
...10

34 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

...11

...12

...13

...14

...15
2
...10
...11
3
...10
...11

Loop Labels
Loops can be optionally labeled to improve readability and exe‐
cution control, as shown in the preceding code. The label must
appear immediately in front of the statement that initiates the
loop.

The following example demonstrates the use of loop labels to
qualify variables within a loop and also to terminate nested and
outer loops:

<<year_loop>>
FOR yearind IN 1 .. 20
LOOP
 <<month_loop>>
 LOOP
 ...
 IF year_loop.yearind > 10
 THEN
 EXIT year_loop;
 END IF;
 END LOOP month_loop;
END LOOP year_loop;

Database Interaction
PL/SQL is tightly integrated with the underlying SQL layer of
the Oracle database. You can execute SQL statements (SELECT,
INSERT, UPDATE, DELETE, MERGE, LOCK TABLE) directly

Database Interaction | 35

www.it-ebooks.info

http://www.it-ebooks.info/

in PL/SQL programs. You also can execute Data Definition
Language (DDL) statements through the use of dynamic SQL.
In addition, you can manage transactions with COMMIT,
ROLLBACK, and other Data Control Language (DCL) state‐
ments.

Sequences in PL/SQL
Sequences are frequently used to generate keys in an Oracle
database. In code that predates Oracle Database 11g, it was cus‐
tomary to select from DUAL to obtain a sequence’s NEXTVAL
or CURRVAL as follows:

/* No longer necessary! */
SELECT my_sequence.NEXTVAL
 INTO my_variable FROM dual;

However, NEXTVAL and CURRVAL are now available any‐
where in your program in which a number expression can
appear. For example:

my_variable := my_sequence.NEXTVAL;

Transaction Management
The Oracle database provides a transaction model based on a
unit of work. A transaction begins with the first change to data
and ends with either a COMMIT or a ROLLBACK. Transac‐
tions can span multiple PL/SQL blocks, or multiple transac‐
tions can be in a single PL/SQL block. The PL/SQL-supported
transaction statements include COMMIT, ROLLBACK, SAVE‐
POINT, SET TRANSACTION, and LOCK TABLE, described
in the following sections.

COMMIT

COMMIT [WORK] [comment_text];

COMMIT makes the database changes permanent and visible
to other database sessions. The WORK keyword is optional and
aids only readability; it is rarely used. The COMMENT text is

36 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

optional and can be up to 50 characters in length. It is germane
only to in-doubt distributed (two-phase commit) transactions.
The database statement COMMIT FORCE, also relevant for
distributed transactions, is not directly supported in PL/SQL,
but can be invoked using the built-in procedure
DBMS_TRANSACTION.COMMIT_FORCE.

ROLLBACK

ROLLBACK [WORK] [TO [SAVEPOINT] savepoint_name];

ROLLBACK undoes the changes made in the current transac‐
tion either to the beginning of the transaction or to a savepoint.
A savepoint is a named processing point in a transaction, cre‐
ated with the SAVEPOINT statement. Rolling back to a save‐
point is a partial rollback of a transaction, wiping out all
changes (and savepoints) that occurred later than the named
savepoint.

SAVEPOINT

SAVEPOINT savepoint_name;

SAVEPOINT establishes a savepoint in the current transaction.
savepoint_name is an undeclared identifier. More than one
savepoint can be established within a transaction. If you reuse a
savepoint name, that savepoint is moved to the later position,
and you will not be able to roll back to the initial savepoint
position.

SET TRANSACTION

SET TRANSACTION READ ONLY;
SET TRANSACTION ISOLATION LEVEL SERIALIZABLE;
SET TRANSACTION USE ROLLBACK SEGMENT rbseg_name;

SET TRANSACTION has three transaction control functions:

READ ONLY
This marks the beginning of a read-only transaction. It
indicates to the Oracle database that a read-consistent
view of the database is to be enforced for the transaction

Database Interaction | 37

www.it-ebooks.info

http://www.it-ebooks.info/

(the default is for the statement). This read-consistent
view means that only changes committed before the trans‐
action begins are visible for the duration of the transac‐
tion. The transaction is ended with either a COMMIT or a
ROLLBACK. Only LOCK TABLE, SELECT, SELECT
INTO, OPEN, FETCH, CLOSE, COMMIT, and ROLL‐
BACK statements are permitted during a read-only trans‐
action. Issuing other statements, such as INSERT or
UPDATE, in a read-only transaction results in an
ORA-1456 error.

ISOLATION LEVEL SERIALIZABLE
Similar to a READ ONLY transaction in that transaction-
level read consistency is enforced rather than the default
statement-level read consistency. Serializable transactions
do allow changes to data, however.

USE ROLLBACK SEGMENT
If your database is using rollback segments for undo man‐
agement, as opposed to Oracle’s recommended automatic
undo management, this statement tells the database to use
the specifically named rollback segment rbseg_name. For
example, if we know that our large rollback segment is
named rbs_large, we can tell the database to use it by
issuing the following statement before our first change to
data:

SET TRANSACTION USE ROLLBACK SEGMENT rbs_large;

LOCK TABLE

LOCK TABLE table_list IN lock_mode MODE [NOWAIT];

This statement bypasses the implicit database row-level locks
by explicitly locking one or more tables in the specified mode.
The table_list is a comma-delimited list of tables. The
lock_mode is one of the following: ROW SHARE, ROW
EXCLUSIVE, SHARE UPDATE, SHARE, SHARE ROW
EXCLUSIVE, or EXCLUSIVE. The NOWAIT keyword specifies
that the Oracle database should not wait for a lock to be

38 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

released. If there is a lock when NOWAIT is specified, the data‐
base raises the exception “ORA-00054: resource busy and
acquire with NOWAIT specified.” The default database locking
behavior is to wait indefinitely.

Autonomous Transactions
Autonomous transactions, often used for recording application
log messages, execute within a block of code as separate trans‐
actions from the outer (main) transaction. Changes can be
committed or rolled back in an autonomous transaction
without committing or rolling back the main transaction.
Changes committed in an autonomous transaction are visible
to the main transaction, even though they occur after the start
of the main transaction. Those changes committed in an
autonomous transaction are visible to other transactions as
well. The database suspends the main transaction while the
autonomous transaction executes:

PROCEDURE main IS
BEGIN
 UPDATE ... -- Main transaction begins here
 DELETE ...
 at_proc; -- Call the autonomous transaction
 SELECT ...
 INSERT ...
 COMMIT; -- Main transaction ends here
END;

PROCEDURE at_proc IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN -- Main transaction suspends here
 SELECT ...
 INSERT ... -- Autonomous transaction begins here
 UPDATE ...
 DELETE ...
 COMMIT;
 /* Always commit or rollback at end of
 autonomous transaction. */
END; -- Main transaction resumes after closing

Database Interaction | 39

www.it-ebooks.info

http://www.it-ebooks.info/

Changes made in the main transaction are not visible to the
autonomous transaction, and if the main transaction holds any
locks that the autonomous transaction waits for, a deadlock
occurs. Using the NOWAIT option on UPDATE statements in
autonomous transactions can help to minimize this kind of
deadlock. Functions and procedures (local program, stand‐
alone, or packaged), database triggers, top-level anonymous
PL/SQL blocks, and object methods can be declared autono‐
mous via the compiler directive PRAGMA AUTONO‐
MOUS_TRANSACTION. In addition, there must be a COM‐
MIT or a ROLLBACK at each exit point in the autonomous
program.

Cursors in PL/SQL
Every SQL statement executed by the Oracle database has a pri‐
vate SQL area that contains information about the SQL state‐
ment and the set of data returned. In PL/SQL, a cursor is a
name assigned to a specific private SQL area for a specific SQL
statement. There can be either static cursors, whose SQL state‐
ment is determined at compile time, or dynamic cursors, whose
SQL statement is determined at runtime.

Static cursors are used only for DML statements (SELECT,
INSERT, UPDATE, DELETE, MERGE, or SELECT FOR
UPDATE). These static cursors may be explicitly declared and
named or may appear inline as implicit cursors.

Dynamic cursors are used for any type of valid SQL statement,
including DDL (CREATE, TRUNCATE, ALTER) and DCL
(GRANT, REVOKE). Dynamic cursors are typically imple‐
mented with the EXECUTE IMMEDIATE statement.

Explicit Cursors
Explicit cursors are SELECT statements that are declared
explicitly in the declaration section of the current block or in a
package specification. Use OPEN, FETCH, and CLOSE in the
execution or exception sections of your programs.

40 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Declaring explicit cursors
To use an explicit cursor, you must first declare it in the decla‐
ration section of a block or package. There are three types of
explicit cursor declarations:

• A cursor without parameters; for example:
CURSOR company_cur IS
 SELECT company_id FROM company;

• A cursor that accepts arguments through a parameter list;
for example:

CURSOR company_cur (id_in IN NUMBER) IS
 SELECT name FROM company
 WHERE company_id = id_in;

• A cursor header that contains a RETURN clause in place
of the SELECT statement; for example:

CURSOR company_cur (id_in IN NUMBER)
 RETURN company%ROWTYPE;

This last example shows that the “header” of a cursor can be
declared separately from its implementation—which will then
be found in the package body, as in:

PACKAGE BODY my_pkg
IS
 CURSOR company_cur (id_in IN NUMBER) IS
 SELECT * FROM company WHERE id = id_in;
END;

See “Packages” on page 129 for more information on package
structure.

Opening explicit cursors
To open a cursor, you can use the following syntax:

OPEN cursor_name [(argument [,argument ...])];

where cursor_name is the name of the cursor as declared in the
declaration section. The arguments are required if the defini‐

Cursors in PL/SQL | 41

www.it-ebooks.info

http://www.it-ebooks.info/

tion of the cursor contains a parameter list, in which case you
may use either positional notation, as above, and/or named
notation:

OPEN cursor_name
 (parameter_name => argument [, ...]);

You must open an explicit cursor before you can fetch rows
from that cursor. When the cursor is opened, the processing
actually includes the parse, bind, open, and execute phases of
SQL statement execution. This OPEN processing includes
determining an execution plan, associating host variables and
cursor parameters with the placeholders in the SQL statement,
determining the result set, and, finally, setting the current row
pointer to the first row in the result set.

When using a cursor FOR loop, the OPEN is implicit in the
FOR statement. If you try to open a cursor that is already open,
PL/SQL will raise an “ORA-06511: PL/SQL: cursor already
open” exception.

Fetching from explicit cursors
The FETCH statement places the contents of the current row
into local variables. To retrieve all rows in a result set, each row
needs to be fetched. The syntax for a FETCH statement is:

FETCH cursor_name INTO
 { record | variable [, variable...] };

where cursor_name is the name of the cursor as declared and
opened.

Closing explicit cursors
After all rows have been fetched, a cursor needs to be closed.
Closing a cursor enables the PL/SQL memory optimization
algorithm to release the associated memory at an appropriate
time. You can close an explicit cursor by specifying a CLOSE
statement as follows:

CLOSE cursor_name;

42 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

where cursor_name is the name of the cursor declared and
opened.

If you declare a cursor in a local anonymous, procedure, or
function block, that cursor will close automatically when the
block terminates. Package-based cursors must be closed explic‐
itly, or they stay open for the duration of your session. Closing
a cursor that is not open raises an INVALID_CURSOR excep‐
tion.

Explicit cursor attributes
There are four attributes associated with cursors: ISOPEN,
FOUND, NOTFOUND, and ROWCOUNT. These attributes
can be accessed with the % delimiter to obtain information
about the state of the cursor. The syntax for a cursor attribute
is:

cursor_name%attribute

where cursor_name is the name of the explicit cursor.

The behaviors of the explicit cursor attributes are described in
the following table:

Attribute Description

%ISOPEN TRUE if cursor is open
FALSE if cursor is not open

%FOUND NULL before the first fetch
TRUE if record was fetched successfully
FALSE if no row was returned
INVALID_CURSOR if cursor isn’t open

%NOTFOUND NULL before the first fetch
FALSE if record was fetched successfully
TRUE if no row was returned
INVALID_CURSOR if cursor isn’t open

%ROWCOUNT The number of rows fetched from the cursor
INVALID_CURSOR if cursor isn’t open

Cursors in PL/SQL | 43

www.it-ebooks.info

http://www.it-ebooks.info/

Frequently, a cursor attribute is checked as part of a loop that
fetches rows from a cursor, as shown here:

DECLARE
 caller_rec caller_pkg.caller_cur%ROWTYPE;
BEGIN
 OPEN caller_pkg.caller_cur;
 LOOP
 FETCH caller_pkg.caller_cur into caller_rec;
 EXIT WHEN caller_pkg.caller_cur%NOTFOUND
 OR
 caller_pkg.caller_cur%ROWCOUNT > 10;

 UPDATE call
 SET caller_id = caller_rec.caller_id
 WHERE call_timestamp < SYSDATE;
 END LOOP;
 CLOSE caller_pkg.caller_cur;
END;

Implicit Cursors
Whenever a SQL statement is directly in the execution or
exception section of a PL/SQL block, you are working with
implicit cursors. SQL statements handled this way include
INSERT, UPDATE, DELETE, MERGE, and SELECT INTO.
Unlike explicit cursors, implicit cursors do not require separate
statements to perform declaration, open, fetch, or close opera‐
tions.

SELECT statements handle the %FOUND and %NOTFOUND
attributes differently from the way that explicit cursors do.
When an implicit SELECT statement does not return any rows,
PL/SQL immediately raises the NO_DATA_FOUND excep‐
tion, and control passes to the exception section. When an
implicit SELECT returns more than one row, PL/SQL immedi‐
ately raises the TOO_MANY_ROWS exception, and control
passes to the exception section.

Implicit cursor attributes are referenced via the SQL cursor. For
example:

44 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 WHERE UID = user_id;

 IF SQL%NOTFOUND THEN
 INSERT INTO activity_log (uid, last_accessed)
 VALUES (user_id, SYSDATE);
 END IF
END;

The following table lists the implicit cursor attributes:

Attributes Description

SQL%ISOPEN Always FALSE because the cursor is opened implicitly and
closed immediately after the statement is executed.

SQL%FOUND NULL before the statement.
TRUE if one or more rows were inserted, merged, updated, or
deleted, or if only one row was selected.
FALSE if no row was selected, merged, updated, inserted, or
deleted.

SQL
%NOTFOUND

NULL before the statement.
TRUE if no row was selected, merged, updated, inserted, or
deleted.
FALSE if one or more rows were inserted, merged, updated, or
deleted.

SQL
%ROWCOUNT

Number of rows affected by the cursor.

SQL%BULK_
ROWCOUNT

Pseudoassociative array (index-by table) containing the
number of rows affected by the statements executed in bulk
bind operations. See “Bulk Binds” on page 79 for more
information.

Use the RETURNING clause in INSERT, UPDATE, and
DELETE statements to obtain data modified by the associated
DML statement. This clause allows you to avoid an additional
SELECT statement to query the affected row after applying the

Cursors in PL/SQL | 45

www.it-ebooks.info

http://www.it-ebooks.info/

DML statement. Here is an example for the case that your DML
affects exactly one row:

BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 WHERE UID = user_id
 RETURNING last_accessed, cost_center
 INTO timestamp, chargeback_acct;

If your DML affects more than one row, you can use RETURN‐
ING BULK COLLECT to return all rows into collection vari‐
ables. For example:

DECLARE
 TYPE date_array IS TABLE OF DATE;
 TYPE number_array IS TABLE OF NUMBER;
 dates date_array;
 nums number_array;
BEGIN
 UPDATE activity SET last_accessed := SYSDATE
 RETURNING last_accessed, cost_center
 BULK COLLECT INTO dates, nums;

SELECT FOR UPDATE clause
By default, the Oracle database locks rows as they are changed.
To lock all rows in a result set, use the FOR UPDATE clause in
your SELECT statement when you OPEN the cursor, instead of
when you change the data. Using the FOR UPDATE clause
does not require you to actually make changes to the data; it
only locks the rows when opening the cursor. These locks are
released on the next COMMIT or ROLLBACK. As always,
these row locks do not affect other SELECT statements unless
they, too, are FOR UPDATE. The FOR UPDATE clause is
appended to the end of the SELECT statement and has the fol‐
lowing syntax:

SELECT ...
 FROM ...
 FOR UPDATE [OF column_reference] [NOWAIT];

46 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

where column_reference is a comma-delimited list of columns
that appear in the SELECT clause. The optional NOWAIT key‐
word means that if the program cannot obtain the locks imme‐
diately, Oracle will raise an ORA-00054 exception. In the
absence of NOWAIT, the program will wait forever for any
locks to be released.

In the following example, only columns from the inventory
table are referenced FOR UPDATE, so no rows in the
dog_breeds table are locked when hounds_in_stock_cur is
opened:

DECLARE
 CURSOR hounds_in_stock_cur IS
 SELECT i.stock_no, i.breeder, d.size
 FROM dog_breeds d, inventory i
 WHERE d.breed = i.breed
 AND d.class = 'HOUND'
 FOR UPDATE OF i.stock_no, i.breeder;

WHERE CURRENT OF clause
UPDATE and DELETE statements in PL/SQL can use a
WHERE CURRENT OF clause if they reference a cursor
declared FOR UPDATE. This syntax indicates that the
UPDATE or DELETE statement should modify the current row
identified by the FOR UPDATE cursor. The syntax is:

[UPDATE | DELETE] ...
 WHERE CURRENT OF cursor_name;

By using WHERE CURRENT OF, you do not have to repeat
the WHERE clause in the SELECT statement. For example:

DECLARE
 CURSOR account_cur IS
 SELECT acct_no, enter_date FROM accounts
 WHERE enter_date < SYSDATE - 7
 FOR UPDATE;
BEGIN
 FOR account_rec IN wip_cur
 LOOP

Cursors in PL/SQL | 47

www.it-ebooks.info

http://www.it-ebooks.info/

2 Well, most statements, anyway. CREATE OR REPLACE statements
and anonymous blocks do require semicolons.

 INSERT INTO acct_log (acct_no, order_date)
 VALUES (account_rec.acct_no
 , account_rec.enter_date);
 DELETE FROM accounts
 WHERE CURRENT OF account_cur;
 END LOOP;
END;

Native Dynamic SQL
Dynamic SQL is commonly implemented “natively” with the
EXECUTE IMMEDIATE statement together with the OPEN
FOR, FETCH, and CLOSE statements. The EXECUTE IMME‐
DIATE statement is typically used for DDL, single-row
SELECTs, and other DML, while the OPEN FOR, FETCH, and
CLOSE statements support dynamic multirow queries. Here is
the syntax for these statements:

EXECUTE IMMEDIATE sql_statement
 [INTO {variable [,variable ...] |
 record | object}]
 [USING [IN | OUT | IN OUT] bind_argument
 [,[IN | OUT | IN OUT] bind_argument ...]]
 [{RETURNING | RETURN}
 INTO bind_argument[,bind_argument]...];

The sql_statement is passed as an expression in the character
datatype family. Your sql_statement itself can be in a literal
string, VARCHAR2 variable, or even in a CLOB variable if the
statement length is greater than 32,767 bytes. The EXECUTE
IMMEDIATE statement parses and executes the SQL statement
in a single step. The EXECUTE IMMEDIATE statement
requires a terminating semicolon, but the sql_statement must
not have a trailing semicolon.2

48 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Here is an example of executing a DDL statement inside PL/
SQL:

EXECUTE IMMEDIATE 'TRUNCATE TABLE foo';

When designing your programs, keep in mind that executing
DDL will automatically commit any pending transactions.

Next, an example with an UPDATE, which introduces the use
of bind variable placeholders (recognizable because their
names begin with a colon):

DECLARE
 new_sal NUMBER := 75000;
BEGIN
 sql_stmt :=
 'UPDATE emp SET salary = :new_sal
 WHERE emp_id = :empno';

 EXECUTE IMMEDIATE sql_stmt USING new_sal, 123;

At runtime, Oracle will positionally associate the values you
supply in the USING clause with the bind variable placehold‐
ers. You can normally bind values only to variables in the
dynamic PL/SQL block that have a SQL type. Beginning with
Oracle Database 12c, however, you may also bind some PL/
SQL-specific types such as record and collection types.

This bind variable syntax is needed only in the case that you are
using dynamic SQL; when embedding static SQL into your
program, any PL/SQL variables you reference in the statement
automatically become bind variables. So the preceding example
is for illustration purposes; it is the equivalent of the more
straightforward:

DECLARE
 new_sal NUMBER := 75000;
BEGIN
 UPDATE emp SET salary = new_sal
 WHERE emp_id = 123;

Cursors in PL/SQL | 49

www.it-ebooks.info

http://www.it-ebooks.info/

3 Oracle’s reference documentation lists four different dynamic SQL
scenarios, and labels them methods 1 through 4. Methods 1 through 3
are now commonly implemented with native dynamic SQL.

If you have a dynamic query that will return multiple rows, you
can use the OPEN FOR statement with a weakly-typed cursor
variable. The rows are then fetched and the cursor closed:

DECLARE
 TYPE cv_typ IS REF CURSOR;
 cv cv_typ;
 laccount_no NUMBER;
 lbalance NUMBER;
BEGIN
 OPEN cv FOR
 'SELECT account_no, balance
 FROM accounts
 WHERE balance < 500';
 LOOP
 FETCH cv INTO laccount_no, lbalance;
 EXIT WHEN cv%NOTFOUND;
 -- Process the row...
 END LOOP;
 CLOSE cv;
END;

DBMS_SQL
For most dynamic SQL requirements, native dynamic SQL
(NDS), illustrated in the preceding code block, is the easiest
route to implementation and will likely perform the best. But
Oracle’s venerable DBMS_SQL package will be essential in the
scenario where you have to deal with an unpredictable number
of columns in the select-list or an unpredictable number of
bind variables in the WHERE clause. This scenario is known in
Oracle parlance as “method 4.” 3

The DBMS_SQL functions TO_REFCURSOR and TO_CUR‐
SOR_NUMBER allow you to switch back and forth between

50 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

DBMS_SQL and native dynamic SQL, taking advantage of the
best of both dynamic SQL techniques.

Please refer to the Oracle documentation, or to O’Reilly’s Ora‐
cle PL/SQL Programming, for more details on using
DBMS_SQL.

SQL Injection and Bind Variables
SQL injection is a security vulnerability that can occur with
dynamic SQL when unintended (malicious) code is injected
into a program’s dynamic SQL statement. One important
defense against SQL injection is to use bind variables. This
technique is generally recommended, in any case, because SQL
statements usually execute repeatedly, and bind variables
reduce the need for parsing. Declare your dynamic cursor with
placeholders for bind variables and then pass the bind argu‐
ments to the Oracle database at runtime with a USING clause.
The parsed form of the statement will be reused from the
shared pool, improving performance.

Bind variables cannot be used in any arbitrary part of a SQL
statement; you still need to be conscious of SQL injection when
designing programs that use dynamically constructed column
names, WHERE clauses, table names, and the like. To learn
more about securing PL/SQL from injection attacks, read the
white paper entitled “How to write SQL injection proof PL/
SQL,” available on the Oracle Technology Network.

Cursor Variables
A cursor variable is a data structure that points to a cursor
object, which in turn points to the cursor’s result set. You can
use cursor variables to more easily retrieve rows in a result set
from client and server programs. You also can use cursor vari‐
ables to hide minor variations in queries.

The pattern for declaring a REF_CURSOR type and associated
cursor variable is:

Cursors in PL/SQL | 51

www.it-ebooks.info

http://bit.ly/1NPg1mN
http://bit.ly/1NPg1mN
http://www.it-ebooks.info/

DECLARE
 TYPE ref_cursor_type_name IS REF CURSOR
 [RETURN record_type];
 cursor_variable ref_cursor_type_name;

If you do not include a RETURN type, you are declaring a
weakly-typed REF CURSOR; variables of this type can be asso‐
ciated with any query at runtime. If you include the RETURN
type, you’re declaring a strongly-typed REF CURSOR; any cur‐
sor variable declared using that type can only FETCH INTO
data structures that match the specified record type.

The advantage of using a strongly-typed REF CURSOR is that
you get an early (compile-time) warning of any mismatch
between the shape of the SQL statement and the destination
variable. So use a weakly-typed REF CURSOR when you don’t
know the shape in advance.

The following code shows examples of declaration sections for
weakly- and strongly-typed REF CURSORs:

1 DECLARE
2 -- Create type based on company table
3 TYPE company_ct IS REF CURSOR RETURN companies
%ROWTYPE;
4 company_cur company_ct;
5
6 -- And now the weak cursor:
7 TYPE any_ct IS REF CURSOR;
8 generic_curvar any_ct;

For weak cursors, you can use the built-in type SYS_REFCUR‐
SOR as a shortcut; lines 7 and 8 could be replaced with the
more succinct:

generic_curvar SYS_REFCURSOR;

The syntax to OPEN a cursor variable is:

OPEN cursor_name FOR SELECT_statement;

You can FETCH and CLOSE a cursor variable using the same
syntax as for explicit cursors.

52 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

There are several restrictions on cursor variables:

• You cannot declare package-level cursor variables
because they do not have a persistent state. (You can
declare them in packaged procedures and functions,
however.)

• You cannot assign NULLs to a cursor variable nor can
you use comparison operators to test for equality,
inequality, or nullity.

• Neither database columns nor collections can store cur‐
sor variables.

• You cannot use remote procedure calls (RPCs) to pass
cursor variables from one server to another.

Cursor Expressions
A cursor expression provides a way to return a nested cursor
from within a query. The syntax for a cursor expression is:

CURSOR (subquery)

Cursor expressions can reduce the amount of redundant data
returned to a calling program over techniques that involve
joining the tables together. The cursor expression is opened
automatically when the parent row is fetched. Cursor expres‐
sions can be nested as well. These nested cursors are closed
when one of the following occurs:

• The nested cursor is explicitly closed by the program.
• The parent cursor is closed.
• The parent cursor is re-executed.
• An exception is raised during the fetch of the parent row.

An example of a cursor expression follows:

DECLARE
 CURSOR order_cur IS

Cursors in PL/SQL | 53

www.it-ebooks.info

http://www.it-ebooks.info/

 SELECT o.order_date ,o.order_status
 ,CURSOR(SELECT p.translated_name
 ,i.unit_price
 ,i.quantity
 FROM oe.order_items i
 ,oe.prod_descrips p
 WHERE i.product_id = p.product_id
 AND i.order_id = o.order_id)
 FROM oe.orders o
 WHERE order_date BETWEEN TO_DATE('01-Oct-15')
 AND TO_DATE('31-Oct-15');
 odate oe.orders.order_date%TYPE;
 ostatus oe.orders.order_status%TYPE;
 od_cur SYS_REFCURSOR;
 tname oe.prod_descrips.translated_name%TYPE;
 price oe.order_items.unit_price%TYPE;
 qty oe.order_items.quantity%TYPE;
BEGIN
 OPEN order_cur;
 LOOP
 FETCH order_cur INTO odate, ostatus, od_cur;
 EXIT WHEN order_cur%NOTFOUND;
 LOOP
 FETCH od_cur INTO tname, price, qty;
 EXIT WHEN od_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(odate||','||ostatus
 ||','||tname||','||price||','||qty);
 END LOOP;
 END LOOP;
 CLOSE order_cur;
END;

Exception Handling
PL/SQL allows developers to raise and handle errors (excep‐
tions) in a very flexible and powerful way. Each PL/SQL block
can have its own exception section in which exceptions can be
trapped and handled (resolved or passed on to the enclosing
block). When an exception is raised in a PL/SQL block, its exe‐
cution section immediately terminates. Control is passed to the

54 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

exception section. Every exception in PL/SQL has an error
number and error message; some exceptions also have names.

Declaring Exceptions
Some exceptions have been predefined by Oracle in the STAN‐
DARD package or other built-in packages, such as UTL_FILE.
See the following table for some of the most common prede‐
fined exceptions. You also can declare your own exceptions as
follows:

exception_name EXCEPTION;

Error Named exception

ORA-00001 DUP_VAL_ON_INDEX

ORA-00051 TIMEOUT_ON_RESOURCE

ORA-01001 INVALID_CURSOR

ORA-01012 NOT_LOGGED_ON

ORA-01017 LOGIN_DENIED

ORA-01403 NO_DATA_FOUND

ORA-01410 SYS_INVALID_ROWID

ORA-01422 TOO_MANY_ROWS

ORA-01476 ZERO_DIVIDE

ORA-01722 INVALID_NUMBER

ORA-06500 STORAGE_ERROR

ORA-06501 PROGRAM_ERROR

ORA-06502 VALUE_ERROR

ORA-06504 ROWTYPE_MISMATCH

ORA-06511 CURSOR_ALREADY_OPEN

ORA-06530 ACCESS_INTO_NULL

ORA-06531 COLLECTION_IS_NULL

Exception Handling | 55

www.it-ebooks.info

http://www.it-ebooks.info/

Error Named exception

ORA-06532 SUBSCRIPT_OUTSIDE_LIMIT

ORA-06533 SUBSCRIPT_BEYOND_COUNT

ORA-06548 NO_DATA_NEEDED

ORA-06592 CASE_NOT_FOUND

ORA-30625 SELF_IS_NULL

An exception can be declared only once in a block, but nested
blocks can declare an exception with the same name as an
outer block. If this multiple declaration occurs, scope takes
precedence over name when handling the exception. The inner
block’s declaration takes precedence over a global declaration.

When you declare your own exception, you must RAISE it
explicitly. All programmer-declared exceptions have an error
code of 1 and the error message “User-defined exception,”
unless you use the EXCEPTION_INIT pragma.

You can associate an error number with a declared exception
with the PRAGMA EXCEPTION_INIT statement using the
following syntax:

DECLARE
 exception_name EXCEPTION;
 PRAGMA EXCEPTION_INIT
 (exception_name, error_number);

where error_number is a literal value (variable references are
not allowed). This number can be an Oracle error, such as -955
(object exists), or an error in the user-definable range 20000 to
-20999. For example, to execute the dynamic SQL in the vari‐
able sql_stmt, ignoring any ORA-00955 errors, run the follow‐
ing:

DECLARE
 ObjectExists EXCEPTION;
 PRAGMA EXCEPTION_INIT (ObjectExists, -955);
 sql_stmt VARCHAR2(100) :=
 'CREATE TABLE mydual AS SELECT * FROM dual';

56 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

BEGIN
 EXECUTE IMMEDIATE sql_stmt;
 -- Ignore ORA-955 errors (object already exists)
 EXCEPTION
 WHEN ObjectExists THEN NULL;
END;

Raising Exceptions
An exception can be raised in three ways:

• By the PL/SQL runtime engine
• By an explicit RAISE statement in your code
• By a call to the built-in function RAISE_APPLICA‐

TION_ ERROR

The syntax for the RAISE statement is:

RAISE [exception_name];

where exception_name is the name of an exception that you
have declared, or an exception that is declared in the STAN‐
DARD package. If you use the RAISE statement inside an
exception handler, you can omit the exception name to re-raise
the current exception:

EXCEPTION
 WHEN exception_name
 THEN
 ...do_something;
 RAISE;

This syntax is not valid outside the exception section.

The RAISE_APPLICATION_ERROR built-in function has the
following header:

Exception Handling | 57

www.it-ebooks.info

http://www.it-ebooks.info/

RAISE_APPLICATION_ERROR (
 num BINARY_INTEGER,
 msg VARCHAR2,
 keeperrorstack BOOLEAN DEFAULT FALSE);

where num is the error number (an integer between -20999 and
-20000), msg is the associated error message, and keeperrorstack
defines whether your error adds to (TRUE), or replaces
(FALSE), the existing errors on the stack.

Scope
The scope of an exception section is that portion of the code
that is “covered” by the exception section. An exception han‐
dler will handle, or attempt to handle, only those exceptions
that are raised in the executable section of its PL/SQL block.
Exceptions raised in the declaration or exception sections are
passed to the outer block automatically. Any line or set of
PL/SQL code can be placed inside a BEGIN-END to define its
own block and have its own exception section. This allows you
to limit the propagation of an exception.

Propagation
Exceptions raised in a PL/SQL block propagate to an outer
block if they are unhandled or re-raised in the exception sec‐
tion. When an exception occurs, PL/SQL looks for an excep‐
tion handler that checks for the exception (or the WHEN
OTHERS clause) in the current block. If a match is not found,
PL/SQL propagates the exception to the enclosing block or call‐
ing program. This propagation continues until the exception is
handled or propagated out of the outermost block, back to the
calling program. In this case, the exception is “unhandled” and
(1) stops the calling program, and (2) the host environment
usually issues an automatic rollback of any outstanding trans‐
actions in that session.

Once an exception is handled, it will not propagate upward. If
you want to trap an exception, display a meaningful error mes‐

58 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

sage, and have the exception propagate upward as an error, you
must re-raise the exception. The RAISE statement can re-raise
the current exception or raise a new exception, as shown here:

PROCEDURE delete_dept(deptno_in IN NUMBER)
IS
 still_have_employees EXCEPTION;
 PRAGMA EXCEPTION_INIT
 (still_have_employees, −2292);
BEGIN
 DELETE FROM dept
 WHERE deptno = deptno_in;
EXCEPTION
 WHEN still_have_employees
 THEN
 DBMS_OUTPUT.PUT_LINE
 ('Please delete employees in dept first');
 RAISE; --Re-raise the current exception.
END;

WHEN OTHERS clause
Use the WHEN OTHERS clause in the exception handler as a
catch-all to trap any exceptions that are not handled by specific
WHEN clauses in the exception section. If present, this clause
must be the last exception handler in the exception section.
Specify this clause as follows:

EXCEPTION
 WHEN OTHERS
 THEN
 ...

Using WHEN OTHERS THEN NULL is generally considered
poor programming practice; if you must employ a general-
purpose exception handler, it should do something reasonable
(e.g., log the error, alert operators, etc.) to avoid an application
that silently ends with a failure.

Exception Handling | 59

www.it-ebooks.info

http://www.it-ebooks.info/

SQLCODE and DBMS_UTILITY formatters for exception handlers
Inside any WHEN OTHERS section, you can use Oracle’s built-
ins, such as the SQLCODE function, and the various error and
stack formatting tools. The former will enable your program to
branch appropriately, while the latter will allow you to record
the needed information about what went wrong. Prior to Ora‐
cle Database 12.1, you could use the functions in the
DBMS_UTILITY package to return strings containing infor‐
mation about the execution call stack, error stack, and error
backtrace, respectively:

CREATE TABLE err_test
 (widget_name VARCHAR2(100)
 ,widget_count NUMBER
 ,CONSTRAINT no_small_numbers CHECK
 (widget_count > 1000));

BEGIN
 INSERT INTO err_test (widget_name, widget_count)
 VALUES ('Athena',2);
EXCEPTION
 WHEN OTHERS THEN
 IF SQLCODE = −2290
 AND DBMS_UTILITY.FORMAT_ERROR_STACK LIKE
 '%NO_SMALL_NUMBERS%'
 THEN
 DBMS_OUTPUT.PUT_LINE (
 'Widget_count is too small.');
 ELSE
 DBMS_OUTPUT.PUT_LINE(
 'Unhandled exception ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE(
 DBMS_UTILITY.FORMAT_CALL_STACK);
 DBMS_OUTPUT.PUT_LINE(
 DBMS_UTILITY.FORMAT_ERROR_BACKTRACE);
 END IF;
END;

This produces the following output:

60 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Widget_count is too small.

In Oracle Database 12.1, a single package, UTL_CALL_STACK,
provides that same information, plus much more fine-grained
access to the contents of these formatted strings. Here, for
example, is a block that utilizes the UTL_CALL_STACK API to
obtain the fully qualified name of the nested subprogram that
was executed:

FUNCTION call_stack_string RETURN VARCHAR2
IS
 l_subprogram VARCHAR2 (32767);
 l_return VARCHAR2 (32767);
BEGIN
 FOR indx IN REVERSE 2 ..
 utl_call_stack.dynamic_depth
 LOOP
 l_subprogram :=
 utl_call_stack.concatenate_subprogram (
 utl_call_stack.subprogram (indx));
 l_return :=
 l_return || l_subprogram
 || ' ('
 || TO_CHAR
 (utl_call_stack.unit_line (indx))
 || ')';
 END LOOP;
 RETURN l_return;
END;

Please refer to Oracle documentation and O’Reilly’s Oracle
PL/SQL Programming for more details of this package.

There is another built-in function that provides error string
information: SQLERRM. However, Oracle Corporation recom‐
mends that you limit use of this function to the SAVE EXCEP‐
TIONS clause in FORALL statements.

Exceptions and transactions
When an exception is raised in a PL/SQL block, it does not
instantly roll back your current transaction, even if the block

Exception Handling | 61

www.it-ebooks.info

http://www.it-ebooks.info/

issued an INSERT, UPDATE, or DELETE. If your exception
handler catches the exception, you have control over what hap‐
pens; for example, you may want to issue your own ROLL‐
BACK statement.

If your exception goes unhandled (propagates out of the outer‐
most block), however, most host environments, including
SQL*Plus, will then force an automatic, unqualified rollback of
any outstanding changes in your session.

Records in PL/SQL
A PL/SQL record is a data structure composed of multiple
pieces of information called fields. To use a record, you must
first define it and declare a variable of this type. There are three
types of records: table-based, cursor-based, and programmer-
defined.

Declaring Records
Define and declare records either in the declaration section of a
PL/SQL block or globally, via a package specification.

You do not have to explicitly define table-based or cursor-based
records, as they are implicitly defined with the same structure
as a table or a cursor. Variables of these types are declared via
the %ROWTYPE attribute. The record’s fields correspond to
the table’s columns or the columns in the SELECT list.

DECLARE
 comp_rec company%ROWTYPE;

 CURSOR comp_summary_cur IS
 SELECT c.company_id,SUM(s.gross_sales) gross
 FROM company c, sales s
 WHERE c.company_id = s.company_id;

 -- Declare a cursor-based record.
 comp_summary_rec comp_summary_cur%ROWTYPE;

62 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Programmer-defined records must be explicitly defined with
the TYPE statement in the PL/SQL declaration section or in a
package specification. Variables of this type then can be
declared as shown here:

DECLARE
 TYPE name_rectype IS RECORD(
 prefix VARCHAR2(15)
 ,first_name VARCHAR2(30)
 ,middle_name VARCHAR2(30)
 ,sur_name VARCHAR2(30)
 ,suffix VARCHAR2(10));

 TYPE employee_rectype IS RECORD (
 emp_id NUMBER(10) NOT NULL
 ,mgr_id NUMBER(10)
 ,dept_no dept.deptno%TYPE
 ,title VARCHAR2(20)
 ,name name_rectype
 ,hire_date DATE := SYSDATE
 ,fresh_out BOOLEAN);

 -- Declare a variable of this type.
 new_emp_rec employee_rectype;
BEGIN

Referencing a Record’s Fields
Individual fields are referenced via dot notation:

record_name.field_name

For example:

employee.first_name

Individual fields within a record can be read from or written to.
They can appear on either the left or right side of the assign‐
ment operator:

BEGIN
 start_date := new_emp_rec.hire_date + 30;

Records in PL/SQL | 63

www.it-ebooks.info

http://www.it-ebooks.info/

 new_emp_rec.fresh_out := FALSE;
 ...

Assigning Records
An entire record can be assigned to another record of the same
type, but one record cannot be compared to another record via
Boolean operators. This is a valid assignment:

shipto_address_rec := customer_address_rec

But this is not a valid comparison:

IF shipto_addr_rec = cust_addr_rec -- illegal
THEN
 ...
END IF;

The individual fields of the records need to be compared
instead.

Values can be assigned to records or to the fields within a
record in four different ways:

• You can use the assignment operator to assign a value to
a field:

new_emp_rec.hire_date := SYSDATE;

• You can SELECT INTO a whole record or the individual
fields:

SELECT emp_id, dept_id, hire_date
 INTO new_emp_rec
 FROM emp
 WHERE surname = 'LI'

• You can FETCH INTO a whole record or the individual
fields:

FETCH emp_cur INTO new_emp_rec;
FETCH emp_cur
 INTO new_emp_rec.emp_id, new_emp_rec.name;

64 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

• You can assign all the fields of one record variable to
another record variable of the same type:

IF rehire THEN
 new_emp_rec := former_emp_rec;
ENDIF;

This aggregate assignment technique works only for records
declared with the same TYPE statement.

Records and DML
You insert into or update a database table using a %ROWTYPE
record without having to specify each field individually in the
following ways:

• Insert into a database table, using a %ROWTYPE record
and the VALUES keyword:

DECLARE
 emp_rec emp%ROWTYPE;
BEGIN
 emp_rec.empno := employees_seq.NEXTVAL;
 INSERT INTO emp VALUES (emp_rec);
END;

• Update a database table using a %ROWTYPE record and
the SET ROW keywords:

FOR emp_rec IN emp_cur
LOOP
 change_record_values(emp_rec);

 UPDATE emp SET ROW = emp_rec
 WHERE empno = emp_rec.empno;
END LOOP;

These techniques allow you to write more compact code to
interact with a database. If you are using Oracle Database 12c
or higher, this approach also works with dynamic SQL, because
bind variables can now be of a record datatype.

Records in PL/SQL | 65

www.it-ebooks.info

http://www.it-ebooks.info/

Nested Records
Nested records are records contained in fields that are records
themselves. Nesting records is a powerful way to normalize
data structures and hide complexity within PL/SQL programs.
For example:

DECLARE
 -- Define a record.
 TYPE phone_rectype IS RECORD (
 area_code VARCHAR2(3),
 exchange VARCHAR2(3),
 phn_number VARCHAR2(4),
 extension VARCHAR2(4));

 -- Define a record composed of records.
 TYPE contact_rectype IS RECORD (
 day_phone# phone_rectype,
 eve_phone# phone_rectype,
 cell_phone# phone_rectype);

 -- Declare a variable for the nested record.
 auth_rep_info_rec contact_rectype;
BEGIN

Collections in PL/SQL
There are three types of collections in PL/SQL: associative
arrays (formerly known as index-by tables or PL/SQL tables),
nested tables, and VARRAYs:

Associative arrays
Single-dimension, unbounded collections of homogene‐
ous elements available only in PL/SQL, not in the Oracle
database. Associative arrays are initially sparse; they have
nonconsecutive subscripts. You can index by both integer
and string, while nested tables and varrays can only be
indexed by integer.

66 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Nested tables
Single-dimension, unbounded collections of homogene‐
ous elements that can be declared within a PL/SQL block
and also stored in the column of a table. Nested tables ini‐
tially are dense (they have consecutive subscripts), but
they can become sparse through deletions.

VARRAYs
Variable-size arrays. Single-dimension, bounded collec‐
tions of homogeneous elements that can be declared
within a PL/SQL block and also stored in the column of a
table. VARRAYs are never sparse. Unlike nested tables,
their element order is preserved when you store and
retrieve them from the database.

The following table compares these similar collection types:

Characteristic Associative array Nested table VARRAY

Dimensionality Single Single Single

Usable in SQL? Yes, as of Oracle
Database 12c a

Yes Yes

Usable as a
column datatype
in a table?

No Yes; data stored
“out of line” (in a
separate table)

Yes; data typically
stored “inline” (in
the same table)

Uninitialized
state

Empty (cannot be
null); elements are
undefined

Atomically null;
illegal to
reference
elements

Atomically null;
illegal to
reference
elements

Initialization Automatic, when
declared

Via constructor,
fetch, assignment

Via constructor,
fetch, assignment

Collections in PL/SQL | 67

www.it-ebooks.info

http://www.it-ebooks.info/

Characteristic Associative array Nested table VARRAY

In PL/SQL,
elements
referenced by

BINARY_INTEGER
(−2,147,483,647 ..
2,147,483,647) or
character string
(VARCHAR2);
maximum length of
VARCHAR2 is
32,767, minimum
length is 1

Positive integer
between 1 and
2,147,483,647;
elements cannot
be referenced
unless they have
been initialized
via the
constructor or
with the EXTEND
function

Positive integer
between 1 and
2,147,483,647;
elements cannot
be referenced
unless they have
been initialized
via the
constructor or
with the EXTEND
function

Sparse? Yes Initially no; after
deletions, yes

No

Bounded? No Can be extended Yes

Growing the
number of
elements in the
collection

Assign a value to
the element using a
new subscript

Elements are
added via the
constructor or
later via the
EXTEND method

Elements are
added via the
constructor or
later via the
EXTEND method;
however, you
cannot EXTEND
past the upper
bound

Shrinking the
size of the
collection

Automatic TRIM function TRIM function

Can be compared
for equality?

No Yes (in Oracle
Database 10g and
later)

No

68 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Characteristic Associative array Nested table VARRAY

Elements retain
ordinal position
and subscript
when stored and
retrieved from
the database

N/A; can’t be stored
in database

No Yes

a SQL statements embedded in PL/SQL can use associative arrays via the TABLE
operator (Oracle Database 12c and later).

Declaring a Collection
Collections are implemented as TYPEs. As with any
programmer-defined type, you must first define the type; then
you can declare instances of that type. The TYPE definition can
be stored in the database or declared in the PL/SQL program.
Each instance of the TYPE is a collection.

The syntax for declaring an associative array is:

TYPE type_name IS TABLE OF element_type [NOT NULL]
 INDEX BY {BINARY_INTEGER |
VARCHAR2(size_limit)};

The syntax for a nested table is:

[CREATE [OR REPLACE]] TYPE type_name { IS | AS }
TABLE OF
 element_type [NOT NULL];

The syntax for a VARRAY is:

[CREATE [OR REPLACE]] TYPE type_name { IS | AS }
{ VARRAY |
 VARYING ARRAY } (max_elements) OF element_type
 [NOT NULL];

The CREATE keyword defines the statement to be DDL and
indicates that this type will exist in the database. The optional
OR REPLACE keywords are used to rebuild an existing type,
preserving the privileges. type_name is any valid identifier that

Collections in PL/SQL | 69

www.it-ebooks.info

http://www.it-ebooks.info/

will be used later to declare the collection. max_elements is the
maximum size of the VARRAY. element_type is the type of the
collection’s elements. All elements are of a single type, which
can be most scalar datatypes, an object type, or a REF object
type. If the elements are objects, the object type itself cannot
have an attribute that is a collection. Explicitly disallowed col‐
lection datatypes are BOOLEAN, NCHAR, NCLOB,
NVARCHAR2, REF CURSOR, TABLE, and VARRAY.

NOT NULL indicates that a collection of this type cannot have
any null elements. However, the collection can be atomically
null (uninitialized).

Initializing a Collection
Initializing an associative array is not necessary—simply
declaring it also initializes it. Initializing a nested table or a
VARRAY can be done in any of three ways: explicitly with a
constructor, implicitly with a fetch from the database, or
implicitly with a direct assignment of another collection vari‐
able.

The constructor is a built-in function with the same name as
the collection. It constructs the collection from the elements
passed to it. The following example shows how you can create a
nested table of colors and explicitly initialize it to three ele‐
ments with a constructor:

DECLARE
 TYPE colors_tab_t IS TABLE OF VARCHAR2(30);
 colors_tab colors_tab_t :=
 colors_tab_t('RED','GREEN','BLUE');
BEGIN

The next example shows how you can create the nested table of
colors and implicitly initialize it with a fetch from the database:

-- Create nested table in the database.
CREATE TYPE colors_tab_t IS TABLE OF VARCHAR2(32);

-- Create table with nested table type as column.

70 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE TABLE color_models
 (model_type VARCHAR2(12)
 ,colors colors_tab_t)
NESTED TABLE colors STORE AS
 color_model_colors_tab;

-- Add some data to the table.
INSERT INTO color_models
VALUES('RGB',colors_tab_t('RED','GREEN','BLUE'));

INSERT INTO color_models
 VALUES('CYMK'
 ,colors_tab_t('CYAN','YELLOW'
 ,'MAGENTA' 'BLACK'));

-- Initialize collection of colors from table.
DECLARE
 basic_colors colors_tab_t;
BEGIN
 SELECT colors INTO basic_colors
 FROM color_models
 WHERE model_type = 'RGB';
END;

The third example shows how you can implicitly initialize the
table via an assignment from an existing collection:

DECLARE
 basic_colors Color_tab_t := Color_tab_t
 ('RED','GREEN','BLUE');
 my_colors Color_tab_t;
BEGIN
 my_colors := basic_colors;
 my_colors(2) := 'MUSTARD';

Adding and Removing Elements
Elements in an associative array can be added simply by refer‐
encing new subscripts. To add elements to nested tables or
VARRAYs, you must first enlarge the collection with the
EXTEND function, and then you can assign a value to a new

Collections in PL/SQL | 71

www.it-ebooks.info

http://www.it-ebooks.info/

element using one of the methods described in the previous
section.

Use the DELETE function to remove an element in a nested
table regardless of its position. The TRIM function also can be
used to remove elements, but only from the end of a collection.
To avoid unexpected results, do not use both DELETE and
TRIM on the same collection.

Nested Table Functions
Several collection (multiset) functions can be used to manipu‐
late collections. These are summarized in the following table.
Note that COLLECT is valid only in a SQL statement; it cannot
be used, for example, in a PL/SQL assignment.

Function Return
value

Description

= BOOLEAN Compares two nested tables and returns TRUE
if they have the same named type and
cardinality, and if the elements are equal.

<> BOOLEAN Compares two nested tables and returns
FALSE if they differ in named type, cardinality,
or equality of elements.

[NOT] IN () BOOLEAN Returns TRUE [FALSE] if the nested table to
the left of IN exists in the list of nested tables
specified in the parentheses.

CARDINALITY(x) NUMBER Returns the number of elements in VARRAY or
nested table x. Returns NULL if the collection
is atomically NULL (not initialized).

CAST(k AS t) TYPE t Changes the datatype of k to type t; used in
conjunction with COLLECT or MULTISET.

COLLECT NESTED
TABLE

Used in conjunction with CAST to map a
column to a collection.

MULTISET NESTED
TABLE

Used in conjunction with CAST to map a
subquery to a collection.

72 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Function Return
value

Description

x MULTISET EXCEPT
[DISTINCT] y

NESTED
TABLE

Performs a MINUS set operation on nested
tables x and y, returning a nested table whose
elements are in x, but not in y. The returned
nested table, x, and y must all be of the same
type. The DISTINCT keyword forces the
elimination of duplicates from the returned
nested table.

x MULTISET
INTERSECT
[DISTINCT] y

NESTED
TABLE

Performs an INTERSECT set operation on
nested tables x and y, returning a nested table
whose elements are in both x and y. The
returned nested table, x, and y must all be of
the same type. The DISTINCT keyword forces
the elimination of duplicates from the
returned nested table.

x MULTISET UNION
[DISTINCT] y

NESTED
TABLE

Performs a UNION set operation on nested
tables x and y, returning a nested table whose
elements include all those in x as well as
those in y. The returned nested table, x, and y
must all be of the same type. The DISTINCT
keyword forces the elimination of duplicates
from the returned nested table.

SET(x) NESTED
TABLE

Returns nested table x without duplicate
elements.

x IS [NOT] A SET BOOLEAN Returns TRUE [FALSE] if the nested table x is
composed of unique elements.

x IS [NOT] EMPTY BOOLEAN Returns TRUE [FALSE] if the nested table x is
empty.

e [NOT] MEMBER
[OF] x

BOOLEAN Returns TRUE [FALSE] if an expression e is a
member of the nested table x.

y [NOT]
SUBMULTISET [OF]
x

BOOLEAN Returns TRUE [FALSE] if the nested table y
contains only elements that are also in the
nested table x.

Collections in PL/SQL | 73

www.it-ebooks.info

http://www.it-ebooks.info/

The CAST function works together with the COLLECT and
MULTISET functions. MULTISET operates on a subquery.
COLLECT operates on a column in a SQL statement:

CREATE TYPE email_list_t AS TABLE OF VARCHAR2(64);

-- COLLECT operates on a column
SELECT CAST(COLLECT(cust_email) AS email_list_t)
 FROM oe.customers;

-- which is equivalent to
SELECT CAST(
 MULTISET(
 SELECT cust_email
 FROM oe.customers)
 AS email_list_t)
FROM dual;

The following provides examples of the other nested table
functions, operators, and expressions:

DECLARE
 TYPE nested_type IS TABLE OF NUMBER;
 nt1 nested_type := nested_type(1,2,3);
 nt2 nested_type := nested_type(3,2,1);
 nt3 nested_type := nested_type(2,3,1,3);
 nt4 nested_type := nested_type(1,2,4);
 answer nested_type;
BEGIN
 /* (1,2,3,1,2,4) */
 answer := nt1 MULTISET UNION nt4;
 /* (1,2,3,2,3,1,3) */
 answer := nt1 MULTISET UNION nt3;
 /* (1,2,3) */
 answer := nt1 MULTISET UNION DISTINCT nt3;
 /* (3,2,1) */
 answer := nt2 MULTISET INTERSECT nt3;
 /* (3,2,1) */
 answer := nt2 MULTISET INTERSECT DISTINCT nt3;
 /* (3) */
 answer := nt3 MULTISET EXCEPT nt2;

74 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

 /* () */
 answer := nt3 MULTISET EXCEPT DISTINCT nt2;
 /* (2,3,1) */
 answer := SET(nt3);
 IF (nt1 IS A SET) AND (nt3 IS NOT A SET) THEN
 DBMS_OUTPUT.PUT_LINE(
 'nt1 has unique elements,
 but nt3 does not');
 END IF;
 IF (nt3 MULTISET EXCEPT DISTINCT nt2)
 IS EMPTY THEN
 DBMS_OUTPUT.PUT_LINE('empty set');
 END IF;
 IF 3 MEMBER OF (nt3 MULTISET EXCEPT nt2) THEN
 DBMS_OUTPUT.PUT_LINE('3 in answer set');
 END IF;
 IF nt1 SUBMULTISET nt3 THEN
 DBMS_OUTPUT.PUT_LINE('nt1 subset of nt3');
 END IF;
 IF SET(nt3) IN (nt1,nt2,nt3) THEN
 DBMS_OUTPUT.PUT_LINE (
 'expression in list of nested tables');
 END IF;
END;

Collection Methods
Several built-in functions (methods) are defined for all collec‐
tions. These methods are called with dot notation:

collection_name.method_name[(parameters)]

The methods are listed in the following table:

Collections in PL/SQL | 75

www.it-ebooks.info

http://www.it-ebooks.info/

Collection
method

Description

COUNT A function. Returns the current number of elements in the
collection. If a collection is atomically NULL, this method raises an
exception. Consider the CARDINALITY() function instead.

DELETE [(i [,
j])]

A procedure. Removes element i or elements i through j from a
nested table or associative array. When called with no parameters,
removes all elements in the collection. Reduces the COUNT if the
element is not already DELETEd. Does not apply to VARRAYs.

EXISTS (i) A function. Returns TRUE or FALSE to indicate whether element i
exists. If the collection is an uninitialized nested table or VARRAY,
returns FALSE.

EXTEND [(n [,
i])]

A procedure. Appends n elements to a nested table or VARRAY,
initializing them to the value of element i. Both i and n are
optional, and n defaults to 1.

FIRST A function. Returns the lowest index in use. Returns NULL when
applied to empty initialized collections.

LAST A function. Returns the greatest index in use. Returns NULL when
applied to empty initialized collections.

LIMIT A function. Returns the maximum number of allowed elements in
a VARRAY. Returns NULL for associative arrays and nested tables.

PRIOR (i) A function. Returns the index immediately before element i.
Returns NULL if i is less than or equal to FIRST.

NEXT (i) A function. Returns the index immediately after element i. Returns
NULL if i is greater than or equal to LAST.

TRIM [(n)] A procedure. Removes n elements at the end of the collection with
the largest index. n is optional and defaults to 1. If n is NULL, TRIM
does nothing. Associative arrays cannot be TRIMmed.

The EXISTS function returns a BOOLEAN, and all other func‐
tions and procedures return BINARY_INTEGER except for
collections indexed by VARCHAR2, which can return charac‐
ter strings. All parameters are of the BINARY_INTEGER type.

76 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Only EXISTS can be used on uninitialized nested tables or
VARRAYs. Other methods applied to these atomically null col‐
lections will raise the COLLECTION_IS_NULL exception.

DELETE and TRIM both remove elements from a nested table,
but TRIM also removes the placeholder, while DELETE does
not. This behavior may be confusing because TRIM can
remove previously DELETEd elements.

Here are examples of some collection methods in use with an
associative array:

DECLARE
 TYPE population_type IS
 TABLE OF NUMBER INDEX BY VARCHAR2(64);
 continent_population population_type;
 howmany NUMBER;
 continent_name VARCHAR2(64);
BEGIN
 continent_population('Australia') := 30000000;
 -- Create new entry
 continent_population('Antarctica') := 1000;
 -- Replace old value
 continent_population('Antarctica') := 1001;
 continent_name := continent_population.FIRST;
 DBMS_OUTPUT.PUT_LINE (continent_name);
 DBMS_OUTPUT.PUT_LINE (
 continent_population(continent_name));
 continent_name := continent_population.LAST;
 DBMS_OUTPUT.PUT_LINE (continent_name);
 DBMS_OUTPUT.PUT_LINE
 (continent_population(continent_name));
END;

This example produces the following output:

Antarctica
1001
Australia
30000000

Collections in PL/SQL | 77

www.it-ebooks.info

http://www.it-ebooks.info/

Here are examples of some collection methods in use with a
nested table:

DECLARE
 TYPE colors_tab_t IS TABLE OF VARCHAR2(30);
 my_list colors_tab_t :=
 colors_tab_t('RED','GREEN','BLUE');
 element BINARY_INTEGER;
BEGIN
 DBMS_OUTPUT.PUT_LINE('my_list has '
 ||my_list.COUNT||' elements');
 my_list.DELETE(2); -- delete element two
 DBMS_OUTPUT.PUT_LINE('my_list has '
 ||my_list.COUNT||' elements');

 FOR element IN my_list.FIRST..my_list.LAST
 LOOP
 IF my_list.EXISTS(element)
 THEN
 DBMS_OUTPUT.PUT_LINE(my_list(element)
 || ' Prior= '||my_list.PRIOR(element)
 || ' Next= ' ||my_list.NEXT(element));
 ELSE
 DBMS_OUTPUT.PUT_LINE('Element '|| element
 ||' deleted. Prior=
 '||my_list.PRIOR(element)
 || ' Next= '||my_list.NEXT(element));
 END IF;
 END LOOP;
END;

This example produces the following output:

my_list has 3 elements
my_list has 2 elements
RED Prior= Next= 3
Element 2 deleted. Prior= 1 Next= 3
BLUE Prior= 1 Next=

78 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Collections and Privileges
As with other TYPEs in the database, you need the EXECUTE
privilege on that TYPE to use a collection type created by
another schema (user account) in the database. You can use
synonyms for user-defined TYPE names.

Nested Collections
Nested collections are collections contained in members that
are collections themselves. Nesting collections is a powerful
way to implement object-oriented programming constructs
within PL/SQL programs. For example:

CREATE TYPE books IS TABLE OF VARCHAR2(64);
CREATE TYPE our_books IS TABLE OF books;

Bulk Binds
You can use collections to improve the performance of SQL
operations executed iteratively by using bulk binds. Bulk binds
reduce the number of context switches between the PL/SQL
engine and the SQL engine. Two PL/SQL language constructs
implement bulk binds: FORALL and BULK COLLECT INTO.

The syntax for the FORALL statement is:

FORALL bulk_index IN [lower_bound..upper_bound
 | INDICES OF collection_variable[BETWEEN
lower_bound AND upper_bound]
 | VALUES OF collection_variable]
 [SAVE EXCEPTIONS]
 sql_statement;

bulk_index can be used only in the sql_statement and only as a
collection index (subscript). When PL/SQL processes this state‐
ment, the whole collection—instead of each individual collec‐
tion element—is sent to the database server for processing. To
delete all the accounts in the collection named inactives from
the table ledger, do this:

Collections in PL/SQL | 79

www.it-ebooks.info

http://www.it-ebooks.info/

FORALL i IN inactives.FIRST..inactives.LAST
 DELETE FROM ledger WHERE acct_no = inactives(i);

If nonconsecutive index values result from deletions, you will
need to use the INDICES OF syntax to skip over the deleted
elements:

FORALL i IN INDICES OF inactives
 DELETE FROM ledger WHERE acct_no = inactives(i);

If you are interested in the values of a sparse collection of inte‐
gers instead of the indices, you will need to use the VALUES
OF syntax:

FORALL i IN VALUES OF inactives_list
 DELETE FROM ledger WHERE acct_no = inactives(i);

The INDICES OF and VALUES OF keywords allow you to
specify a subset of rows in a driving collection that will be used
in the FORALL statement. To match the row numbers in the
data collection with the row numbers in the driving collection,
use the INDICES OF clause. To match the row numbers in the
data collection with the values found in the defined rows of the
driving collection, use the VALUES OF clause.

The default is for the database to stop after the first exception
encountered. Specify SAVE EXCEPTIONS to indicate that pro‐
cessing should continue after encountering exceptions. The
cursor attribute %BULK_EXCEPTIONS stores a collection of
records containing the errors. These records have two fields,
EXCEPTION_INDEX and EXCEPTION_CODE, which con‐
tain the FORALL iteration (during which the exception was
raised) as well as the SQLCODE for the exception. If no excep‐
tions are raised, the SQL%BULK_EXCEPTIONS.COUNT
method returns 0. For example:

DECLARE
 TYPE NameList IS TABLE OF VARCHAR2(32);
 name_tab NameList := NameList(
 'Dawes','Feuerstein','Gennick'
 ,'Pribyl','Beresniewicz','Dawes','Dye');
 error_count NUMBER;

80 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

 bulk_errors EXCEPTION;
 PRAGMA exception_init(bulk_errors, -24381);
BEGIN
 FORALL indx IN name_tab.FIRST..name_tab.LAST
 SAVE EXCEPTIONS
 INSERT INTO authors (name) VALUES
 (name_tab(indx));
EXCEPTION
 WHEN OTHERS
 THEN
 error_count := SQL%BULK_EXCEPTIONS.COUNT;
 DBMS_OUTPUT.PUT_LINE
 ('Number of errors is ' || error_count);
 FOR indx IN 1..error_count
 LOOP
 DBMS_OUTPUT.PUT_LINE('Error ' || indx ||
 ' occurred during iteration ' ||
 SQL%BULK_EXCEPTIONS(indx).ERROR_INDEX);
 DBMS_OUTPUT.PUT_LINE('Error is ' ||
 SQLERRM (
 -SQL%BULK_EXCEPTIONS(indx).
 ERROR_CODE));
 END LOOP;
END;

Number of errors is 2
Error 1 occurred during iteration 5
Error is ORA-00001: unique constraint (.) violated
Error 2 occurred during iteration 7
Error is ORA-00001: unique constraint (.) violated

Moving along to the second bulk approach, BULK COLLECT
INTO:

BULK COLLECT INTO collection_name_list;

where collection_name_list is a comma-delimited list of collec‐
tions, one for each column in the SELECT.

The BULK COLLECT INTO clause can be used in SELECT
INTO, FETCH INTO, or RETURNING INTO statements. For
example:

Collections in PL/SQL | 81

www.it-ebooks.info

http://www.it-ebooks.info/

DECLARE
 TYPE name_tab IS TABLE OF vendors.name%TYPE;
 TYPE term_tab IS TABLE OF vendors.terms%TYPE;
 v_names name_tab;
 v_terms term_tab;
BEGIN
 SELECT name, terms
 BULK COLLECT INTO v_names, v_terms
 FROM vendors
 WHERE terms < 30;
 ...
END;

If you use Oracle Database 12c or later, you can use SQL’s
FETCH FIRST clause to get top-N results; the preceding
SELECT statement could become:

 SELECT name, terms
 BULK COLLECT INTO v_names, v_terms
 FROM vendors
 ORDER BY terms, name
 FETCH FIRST 50 ROWS ONLY;

And, if your application needs to “paginate” the results, com‐
bine FETCH FIRST with the OFFSET clause:

PROCEDURE fetch_search_results
 (p_page# IN INTEGER DEFAULT 1)
IS
 c_lines CONSTANT INTEGER := 50;
 v_offset INTEGER := c_lines * (p_page# - 1);
BEGIN
 SELECT name, terms
 BULK COLLECT INTO v_names, v_terms
 FROM vendors
 ORDER BY terms, name
 OFFSET v_offset ROWS
 FETCH NEXT c_lines ROWS ONLY;
...

82 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

The next example deletes products in an input list of categories,
and the SQL RETURNING clause returns a list of deleted
products:

FUNCTION cascade_category_delete (
 categorylist clist_t) RETURN prodlist_t
IS
 prodlist prodlist_t;
BEGIN
 FORALL aprod IN categorylist.FIRST ..
 categorylist.LAST
 DELETE FROM product
 WHERE product_id IN categorylist(aprod)
 RETURNING product_id
 BULK COLLECT INTO prodlist;
 RETURN prodlist;
END;

You can use the SQL%BULK_ROWCOUNT cursor attribute
for bulk bind operations. It is like an associative array contain‐
ing the number of rows affected by the executions of the bulk
bound statements. The nth element of SQL%BULK_ROW‐
COUNT contains the number of rows affected by the nth exe‐
cution of the SQL statement. For example:

FORALL i IN inactives.FIRST..inactives.LAST
 DELETE FROM ledger WHERE acct_no = inactives(i);

FOR counter IN inactives.FIRST..inactives.LAST
LOOP
 IF SQL%BULK_ROWCOUNT(counter) = 0
 THEN
 DBMS_OUTPUT.PUT_LINE(
 'No rows deleted for '|| counter);
 END IF;
END LOOP;

You cannot pass SQL%BULK_ROWCOUNT as a parameter to
another program or use an aggregate assignment to another
collection. The value of %ROWCOUNT is the sum of all
%BULK_ROWCOUNT elements. Attributes %FOUND and

Collections in PL/SQL | 83

www.it-ebooks.info

http://www.it-ebooks.info/

%NOTFOUND reflect only the last execution of the SQL state‐
ment.

Built-in Functions and Packages
Oracle Corporation supplies many built-in functions and pack‐
ages. The following sections describe some of the more com‐
monly used built-ins.

Built-in Functions
The Oracle database provides dozens of built-in functions.
Although most of these functions are available to both SQL and
PL/SQL, there are some notable exceptions. The DECODE
function, for example, is not available to PL/SQL except within
SQL statements included in your PL/SQL programs. The Ora‐
cle Database SQL Reference contains implementation details for
the many functions of PL/SQL with the package STANDARD.
You can view this package specification within the file
stdspec.sql located in the ORACLE_HOME/rdbms/admin direc‐
tory on the database server.

Conversion functions

Built-in function Description

ASCIISTR(string) Converts string in any character set to the
ASCII version of string in the database
character set.

CAST(expression AS datatype) Converts expression to type datatype. (Use as
a powerful substitute for TO_DATE.)

CHARTOROWID(string) Converts string to a ROWID datatype.

CONVERT(string,
destination_character_set,
source_character_set)

Converts string from the source character set
to the destination character set. (The default
source character set is the database
character set.)

84 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

FROM_TZ(timestamp_value,
time_zone)

Adds time zone information to a TIMESTAMP
value (converting it to a TIMESTAMP WITH
TIME ZONE value).

HEXTORAW(string) Converts string containing hexadecimal
characters to its raw equivalent.

MULTISET Maps a database table to a collection.

NUMTODSINTERVAL(n,
interval_unit)

Converts numeric expression n to an
INTERVAL DAY TO SECOND literal;
interval_unit can be DAY, HOUR, MINUTE, or
SECOND.

NUMTOYMINTERVAL(n,
interval_unit)

Converts numeric expression n to an
INTERVAL YEAR TO MONTH literal;
interval_unit can be YEAR or MONTH.

RAWTOHEX(raw) Converts raw value to its hexadecimal
equivalent.

REFTOHEX(ref) Converts ref expression into a string
containing its hexadecimal equivalent.

ROWIDTOCHAR(rowid) Converts rowid to a VARCHAR2(18) string
equivalent.

ROWIDTONCHAR(rowid) Converts rowid to an NVARCHAR2(18) string
equivalent.

TABLE Maps a collection to a database table
(inverse of MULTISET).

TO_BINARY_FLOAT(expression
[,fmt])

Converts number or string expression to a
BINARY_FLOAT; optionally use format model
fmt.

TO_BINARY_DOUBLE(expression
[,fmt])

Converts number or string expression to a
BINARY_DOUBLE; optionally use format
model fmt.

Built-in Functions and Packages | 85

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

TO_CHAR, TO_NCHAR(expression
[,fmt])

Converts expression to a string (VARCHAR2 or
NVARCHAR2, respectively); optionally use
format model fmt.

TO_CLOB, TO_NCLOB(c) Converts c from a VARCHAR2, NVARCHAR2,
or NCLOB value to a CLOB (or NCLOB).

TO_DATE(expression [,fmt]) Converts string expression to a DATE
datatype; optionally use format model fmt.

TO_DSINTERVAL(string) Converts character string of a CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 datatype
to an INTERVAL DAY TO SECOND type.

TO_LOB(c) Converts c from a LONG or LONG RAW to a
LOB.

TO_MULTI_BYTE(string) Where possible, converts single-byte
characters in the input string to their
multibyte equivalents.

TO_NUMBER(expression [,fmt]) Converts string or numeric (such as a
BINARY_FLOAT) expression to a NUMBER;
optionally use format model fmt.

TO_RAW(b) Converts b from a BLOB to a RAW.

TO_SINGLE_BYTE(string) Converts multibyte characters in string to
their corresponding single-byte characters.

TO_TIMESTAMP(expression [,fmt]) Converts string expression to a value of type
TIMESTAMP; optionally use format model
fmt.

TO_TIMESTAMP_TZ(expression
[,fmt])

Converts string expression to a value of type
TIMESTAMP WITH TIMEZONE; optionally use
format model fmt.

TO_YMINTERVAL(string) Converts character string of a CHAR,
VARCHAR2, NCHAR, or NVARCHAR2 datatype
to an INTERVAL YEAR TO MONTH type.

86 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

TRANSLATE ... USING(string USING
CHAR_CS)

Converts string between the database
character set and the national character set.
Used for ANSI compatibility; mimics
TO_CHAR or TO_NCHAR functionality.

UNISTR(string) Translates string containing Unicode
encoding values (e.g., x00e5) to a Unicode
string literal in the database Unicode
character set.

String functions

Built-in function Description

ASCII(string) Returns the numeric code in the
database character set representing the
first character in string.

ASCIISTR(string) Takes a string in any character set and
converts it into a string of ASCII
characters. Any non-ASCII characters
are represented using \XXXX Unicode
notation.

CHR(code_location) Inverse of ASCII function; returns a
VARCHAR2 character of length 1 that
corresponds to the location in the
collating sequence provided as a
parameter. A variation of CHR is useful
when working with national character
set data.

CHR(code_location USING NCHAR_CS) Returns an NVARCHAR2 character from
the national character set.

COMPOSE(string) Takes a Unicode string as input and
returns that string in its fully
normalized form.

CONCAT(string1, string2) Appends string2 to the end of string1.

Built-in Functions and Packages | 87

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

CONVERT(string, target_char_set [,
source_char_set])

Converts a string from one character set
to another. Default source is the
database character set.

DECOMPOSE(string [CANONICAL]) Takes a Unicode string as input and
returns that string with any
precomposed characters decomposed
into their separate elements.
CANONICAL optionally gives a result
that may be reversed using COMPOSE.

GREATEST(string1, string2, ...) Takes one or more strings as input and
returns the string that would come last
(i.e., sorts highest) if the inputs were
sorted in ascending order. Compare to
LEAST.

INITCAP(string) Reformats the case of the string
argument, setting the first letter of
each word to uppercase and the
remainder of the letters to lowercase. A
word is a set of characters separated by
a space or nonalphanumeric character
(such as # or _). For example,
INITCAP('this is lower') gives ‘This Is
Lower’.

INSTR(string1, string2 [[,
start_position], nth])

Returns the position at which string2 is
found within string1; otherwise,
returns 0. start_position defines the
starting position and defaults to 1 if not
present. With a negative start_position,
searching begins at the end of string1
and works backward. nth defines the
ordinal occurrence (1st, 2nd, 3rd, etc.)
of string2 in string1, and defaults to 1 if
not present.

88 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

LEAST(string1, string2, ...) Takes one or more strings as input and
returns the string that would come first
(i.e., the least) if the inputs were sorted
in ascending order. Compare to
GREATEST.

LENGTH(string) Returns the number of characters in a
string. The variations LENGTHB,
LENGTHC, LENGTH2, and LENGTH4
return the number of bytes, the
number of Unicode characters, the
number of USC2 code points, and the
number of USC4 code points,
respectively. LENGTH returns NULL
when passed a NULL, and zero when
passed a zero length (but non-NULL)
CLOB.

LOWER(string) Converts all letters in the specified
string to lowercase (the inverse of
UPPER).

LPAD(string, padded_length
[,pad_string])

Returns the value from string, but
padded on the left with enough
pad_string characters to make the
result padded_length characters long.
pad_string defaults to a space if not
present.

LTRIM(string [,trim_string]) Removes, or trims, any characters
found in trim_string from the leading
edge of string. trim_string defaults to a
space if not present. (See also TRIM
[ISO standard] and RTRIM.)

Built-in Functions and Packages | 89

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

NCHR(code_location) Returns an NVARCHAR2 character
(length 1) that corresponds to the
location in the national character set
collating sequence specified by
code_location. (Provides the same
functionality as the CHR function’s
USING NCHAR_CS clause.)

NLS_INITCAP(string) Returns a version of string (which
should be of type NVARCHAR2 or
NCHAR), setting the first letter of each
word to uppercase and the remainder
to lowercase. The return value is a
VARCHAR2. A word is a set of characters
separated by a space or
nonalphanumeric character.

NLS_INITCAP(string,
‘NLS_SORT=sort_sequence_name')

You may specify a linguistic sorting
sequence that affects the definition of
“first letter,” as in the preceding built-
in function. For sort_sequence_name,
specify a linguistic sort name as
described in the Oracle Database
Globalization Support Guide.

NLS_LOWER(string) and
NLS_LOWER(string,
‘NLS_SORT=sort_sequence_name')

Lowercases a string in accordance with
language-specific rules. (See
NLS_INITCAP for how NLS_SORT can
affect the results.)

NLS_UPPER(string) and
NLS_UPPER(string,
‘NLS_SORT=sort_sequence_name')

Uppercases a string in accordance with
language-specific rules. (See
NLS_INITCAP for how NLS_SORT can
affect the results.)

90 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

NLSSORT(string) and NLSSORT(string,
‘NLS_SORT=sort_sequence_name')

Returns a string of bytes that can be
used to sort a string value in
accordance with language-specific
rules. The string returned is of the RAW
datatype.

REGEXP_INSTR, REGEXP_LIKE,
REGEXP_REPLACE, REGEXP_SUBSTR

See “Built-in Regular Expression
Functions” on page 99 for descriptions.

REPLACE(string, match_string,
replace_string)

Returns a string in which all
occurrences of match_string in string
are replaced by replace_string. Use
REPLACE to search for a pattern of
characters and then change all
instances of that pattern in a single
function call.

RPAD(string,
padded_length[,pad_string])

Returns string padded on the right with
enough pad_string occurrences to
make the result padded_length
characters long. pad_string defaults to
a space.

RTRIM(string [,trim_string]) Removes, or trims, any trim_string
characters from the right, or trailing
edge, of string. (See also TRIM [ISO
standard] and LTRIM.) trim_string
defaults to a space.

SOUNDEX(string) Returns a string that is the “phonetic
representation” of string (via algorithm
defined by Donald E. Knuth).

Built-in Functions and Packages | 91

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

SUBSTR(string, start, [length]) Returns a substring from string,
beginning with the character at
position start and going for length
characters. If start is negative, the
beginning position is counted from the
end of the string rather than the
beginning. length defaults to the
remainder of string.

TO_CHAR(national_character_data) Converts data in the national character
set to its equivalent representation in
the database character set. (See also
TO_NCHAR.) You can also use TO_CHAR
to convert date and time values, as well
as numbers, into strings.

TO_MULTI_BYTE(string) Translates single-byte characters to
their multibyte equivalents (the inverse
of TO_SINGLE_BYTE).

TO_NCHAR(database_character_data) Converts data in the database character
set to its equivalent representation in
the national character set. (See also
TO_CHAR and TRANSLATE...USING.)

TO_SINGLE_BYTE(string) Translates multibyte characters to their
single-byte equivalents (the inverse of
TO_MULTI_BYTE).

TRANSLATE (string, search_set,
replace_set)

Replaces every instance in string of a
character from search_set with the
corresponding character from
replace_set.

92 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

TRANSLATE(text USING CHAR_CS) and
TRANSLATE(text USING NCHAR_CS)

Translates character data to either the
database character set (CHAR_CS) or
the national character set (NCHAR_CS).
The output datatype will be either
VARCHAR2 or NVARCHAR2, depending
on whether you are converting to the
database or the national character set,
respectively.

TRIM ([[LEADING | TRAILING | BOTH]
trim_character FROM] string)

Returns a version of string that omits
any leading and trailing spaces. The
optional keywords LEADING FROM,
TRAILING FROM, and BOTH FROM cause
the trimming of only leading, trailing,
or both (the default) leading and
trailing trim_characters. trim_character
defaults to a space.

UNISTR(string) Returns string converted into Unicode
(the inverse of ASCISTR). You can
represent nonprintable characters in
the input string using \XXXX Unicode
notation.

UPPER(string) Returns a version of string with all
letters made uppercase.

Numeric functions

Built-in function Description

ABS(n) Returns the absolute value of n.

ACOS(n) Returns the arc cosine of n, where n must be between π and
1. The returned value is between 0 and π.

ASIN(n) Returns the arc sine, where n must be between −1 and 1.
The returned value is between −π/2 and π /2.

Built-in Functions and Packages | 93

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

ATAN(n) Returns the arc tangent, where the number n must be
between −infinity and infinity. The returned value is
between −π/2 and π/2.

ATAN2(n, m) Returns the arc tangent of n/m, where the numbers n and
m must be between −infinity and infinity. The returned
value is between −π and π. The result of ATAN2(n,m) is
defined to be identical to ATAN(n/m).

BIN_TO_NUM(b1,
b2,...bn)

Converts the bit vector represented by b1 through bn into a
number. Each of b1 through bn must evaluate to either 0 or
1.

BITAND(n, m) Performs a logical AND between n and m.

CEIL(n) Returns the smallest integer greater than or equal to n.

COS(n) Returns the cosine of the angle n, which must be expressed
in radians.

COSH(n) Returns the hyperbolic cosine of n. If n is a real number, and
i is the imaginary square root of −1, then the relationship
between COS and COSH can be expressed as follows: COS (i
* n) = COSH (n).

EXP(n) Returns the value e raised to the nth power, where n is the
input argument. The number e (approximately equal to
2.71828) is the base of the system of natural logarithms.

FLOOR(n) Returns the largest integer that is less than or equal to n.

GREATEST(n1,
n2,...n3)

Returns the highest ordinal element from a list of input
numbers.

LEAST(n1, n2,...n3) Returns the lowest ordinal element from a list of input
numbers.

LN(n) Returns the natural logarithm of n. The argument n must
be greater than or equal to 0.

LOG(b, n) Returns the base b logarithm of n. The argument n must be
greater than or equal to 0. The base b must be greater than
1.

94 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

MOD(n, m) Returns the remainder of n divided by m. The remainder is
computed using a formula equivalent to n−
(m*FLOOR(n/m)) when n and m are both positive or both
negative, and n−(m*CEIL(n/m)) when the signs of n and m
differ.

NANVL(n, m) Returns m if n is NaN (not a number); otherwise, returns n.
The value returned will be in the type of the argument with
the highest numeric precedence: BINARY_DOUBLE,
BINARY_FLOAT, or NUMBER, in that order.

POWER(n, m) Raises n to the power m. If n is negative, then m must be an
integer.

REMAINDER(n, m) Returns the remainder of n divided by m. The remainder is
defined as follows: n−(m*ROUND(n/m)).

ROUND(n) Returns n rounded to the nearest integer.

ROUND(n, m) Returns n rounded to m decimal places. The value of m can
be less than zero. A negative value for m directs ROUND to
round digits to the left of the decimal point rather than to
the right.

SIGN(n) Returns −1, 0, or +1, depending on whether n is less than
zero, equal to zero, or greater than zero.

SIN(n) Returns the sine of the specified angle, which must be
expressed in radians.

SINH(n) Returns the hyperbolic sine of n. If n is a real number, and i
is the imaginary square root of −1, then the relationship
between SIN and SINH can be expressed as follows: SIN (i *
n) = i * SINH (n).

SQRT(n) Returns the square root n, which must be greater than or
equal to 0.

TAN(n) Returns the tangent of the angle n, which must be
expressed in radians.

Built-in Functions and Packages | 95

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

TANH(n) Returns the hyperbolic tangent of n. If n is a real number,
and i is the imaginary square root of −1, then the
relationship between TAN and TANH can be expressed as
follows: TAN (i * n) = i * TANH (n).

TRUNC(n [, p]) Truncates n to m decimal places. The optional precision p
defaults to 0 and, if negative, truncates (zeros out) p places
to left of the decimal.

Date and time functions

Built-in function Description

ADD_MONTHS(date, n) Adds n months to date, returning a DATE.

CAST({ expression |
MULTISET(subquery) } AS type)

Converts a value from one datatype or
collection type to another. Use the MULTISET
keyword when casting to a collection type.

CURRENT_DATE Returns the current date and time as a DATE
value in the session time zone.

CURRENT_TIMESTAMP(p) Returns the current date and time as a
TIMESTAMP WITH TIME ZONE value in the
session time zone. The optional precision p
specifies the subsecond number of digits to the
right of the decimal and defaults to 6.

DBTIMEZONE Returns the time zone offset (from UTC) of the
database time zone in the form of a character
string in format [+|-]HH24:MI; for example,
-05:00.

EXTRACT(element FROM
expression)

Returns the value of a specific datetime
element from the datetime expression. The
element can be one of YEAR, MONTH, DAY,
HOUR, MINUTE, SECOND, TIMEZONE_HOUR,
TIMEZONE_MINUTE, TIMEZONE_REGION, or
TIMEZONE_ABBR.

96 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

FROM_TZ(ts, tz) Adds time zone tz to TIMESTAMP ts, converting
it to a TIMESTAMP WITH TIME ZONE.

LAST_DAY(expression) Returns the last day in the month containing
the DATE expression.

LOCALTIMESTAMP(p) Returns the current date and time as a
TIMESTAMP value in the local time zone. The
optional precision p specifies the subsecond
number of digits to the right of the decimal.

MONTHS_BETWEEN(end_date,
start_date)

Calculates the number of months between
start_date and end_date.

NEW_TIME(date,tz1,tz2) Translates the date value from time zone tz1 to
tz2. Included for backward compatibility;
consider using a TIMESTAMP WITH TIMEZONE
datatype instead.

NEXT_DAY(date,dow) Returns the DATE of the first dow weekday that
is later than date.

NUMTODSINTERVAL(n, unit) Converts number n representing unit number
to a value of type INTERVAL DAY TO SECOND.
unit can be one of DAY, HOUR, MINUTE, or
SECOND.

NUMTOYMINTERAL(n, unit) Converts number n representing unit number
to a value of type INTERVAL YEAR TO MONTH.
unit can be one of YEAR or MONTH.

ROUND(date, fmt) Returns date rounded to the optional format
model fmt level of granularity. If fmt is not
specified, date is rounded to the nearest day.

SESSIONTIMEZONE Returns the time zone offset (from UTC) of the
session time zone in the form of a character
string.

SYSDATE Returns the current date and time from the
Oracle database server as a DATE value.

Built-in Functions and Packages | 97

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

SYS_EXTRACT_UTC(dt) Converts the TIMESTAMP WITH TIME ZONE
value dt to a TIMESTAMP having the same date
and time, but normalized to UTC.

SYSTIMESTAMP Returns the current date and time from the
Oracle database server as a TIMESTAMP WITH
TIME ZONE value.

TO_CHAR(dt, fmt) Converts the datetime dt to a string using
optional format model fmt, which defaults to
the session NLS_DATE_FORMAT.

TO_DATE(string, fmt) Converts string to a DATE; optionally use format
model fmt, which defaults to the session
NLS_DATE_FORMAT.

TO_DSINTERVAL(string) Converts the character string representation of
an interval expressed in days, hours, minutes,
and seconds to a value of INTERVAL DAY TO
SECOND.

TO_TIMESTAMP(string, fmt) Converts the character string representation of
a date and time to a value of type TIMESTAMP;
optionally use format model fmt, which
defaults to the session NLS_DATE_FORMAT.

TO_TIMESTAMP_TZ(string, fmt) Converts the character string representation of
a date and time to a value of type TIMESTAMP
WITH TIME ZONE; optionally use format model
fmt, which defaults to the session
NLS_TIMESTAMP_FORMAT.

TO_YMINTERVAL(string) Converts the character string representation of
an interval expressed in years and months to a
value of INTERVAL YEAR TO MONTH.

TRUNC(date,fmt) Truncates the date value to format model fmt
level of granularity. The default granularity is
day.

98 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Built-in function Description

TZ_OFFSET(tz) Returns the time zone offset from UTC for tz,
where tz is a time zone name, a time zone
offset, or the keywords SESSIONTIMEZONE or
DBTIMEZONE.

Built-in Regular Expression Functions
The Oracle database supports the use of regular expressions
via five built-in functions: REGEXP_COUNT,
REGEXP_INSTR, REGEXP_LIKE, REGEXP_REPLACE, and
REGEXP_SUBSTR.

Metacharacters
Regular expressions are found in Unix utilities, such as grep,
sed, and the ex editor; in the Perl scripting language; and in
many other tools. Regular expressions are a powerful and pop‐
ular means of processing text, mainly because they use meta‐
characters to facilitate searching for strings. The metacharacters
supported by the database are shown in the following table:

Pattern
metacharacter

Description

* Asterisk. Matches zero or more occurrences.

+ Plus sign. Matches one or more occurrences.

? Question mark. Matches zero or one occurrence.

^ Caret. Matches beginning of line.

$ Dollar sign. Matches end of line.

. Period. Matches any single character.

\ Backslash. Treats the following metacharacter as a nonspecial
character.

{m} Curly braces. Matches exactly m times.

{m,} Curly braces. Matches at least m times.

Built-in Functions and Packages | 99

www.it-ebooks.info

http://www.it-ebooks.info/

Pattern
metacharacter

Description

{m, n} Curly braces. Matches at least m times, but no more than n
times.

[] Square brackets. Matches any of the characters in the square
brackets.

| Vertical bar. Alternation operator for specifying alternative
matches.

() Parentheses. Grouping expression.

\n Backslash. Backreference expression (\1 through \9). Used in
conjunction with () to identify the nth occurrence of the
backreferenced expression. (REGEXP_ REPLACE allows up to
500 backreferences in replacement_string.)

[::] Character class. Examples are [:digit:] for numeric digits or
[:alnum:] for alphanumeric characters.

[..] Collation element. Encloses multiple characters treated as one
character (e.g., ‘ch’ in Spanish).

[==] Equivalence class. Matches accented and unaccented versions
of a letter.

REGEXP_COUNT
The REGEXP_COUNT function returns a number containing
the tally of the occurences of a regular expression in a specific
column, variable, or text literal. The syntax is:

REGEXP_COUNT (source_string, pattern [,postion
 [,match_modifier]])

where source_string is the character string to be searched, pat‐
tern is the regular expression pattern to search for in the
source_string, and match_modifier is one or more modifiers
that apply to the search (see “Match modifiers” on page 104).
For example:

/* Count #of phone numbers in contact info */
phone_pattern :=

100 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

 '\(?\d{3}\)?[\s.-]?\d{3}[\s-.]?\d{4}';
phone_count :=
 regep_count (contact_clob, phone_pattern);

REGEXP_LIKE
The REGEXP_LIKE function determines whether a specific
column, variable, or text literal contains text matching a regular
expression. It returns Boolean TRUE if the regular expression
is found in the source_string and FALSE if the regular expres‐
sion is not found. The syntax is:

REGEXP_LIKE (source_string, pattern [,match_modi
fier])

where source_string is the character string to be searched, pat‐
tern is the regular expression pattern to search for in
source_string, and match_modifier is one or more modifiers
that apply to the search. For example:

IF REGEXP_LIKE(phone_number,'^\(?212\)?'
THEN
 -- phone number begins with 212
 -- optionally enclosed by parentheses
 apply_nyc_surcharge;
END IF;

REGEXP_INSTR
The REGEXP_INSTR function locates, by character position,
an occurrence of text matching a regular expression pattern. It
returns the beginning or ending position of the regular expres‐
sion within a string. The syntax is:

REGEXP_INSTR (source_string, pattern
[,beginning_position [,occurrence [,return_option
[,match_modifier [,subexp]]]]])

where source_string is a character string to be searched, pattern
is a regular expression pattern to search for in source_string,
beginning_position is the character position at which to begin
the search, occurrence is the ordinal occurrence desired (1 =

Built-in Functions and Packages | 101

www.it-ebooks.info

http://www.it-ebooks.info/

first, 2 = second, etc.), return_option is either 0 for the begin‐
ning position or 1 for the ending position, and match_modifier
is one or more modifiers that apply to the search. You can also
specify subexp; if the pattern uses subexpressions, this parame‐
ter tells the database which subexpression to return the posi‐
tion of from the pattern found in the source string. Subexpres‐
sions are used to parse out the interesting pieces. You define a
subexpression by enclosing it in parentheses. For example:

witty_saying :=
 'Man fears time, but time fears the Pyramids';
-- Display the witty_saying
-- starting w/ 2nd occurence of the word 'time'
DBMS_OUTPUT.PUT_LINE(
 SUBSTR(witty_saying
 ,REGEXP_INSTR(witty_saying,'time',1,2)));

The output is:

time fears the Pyramids

REGEXP_SUBSTR
The REGEXP_SUBSTR function extracts text matching a regu‐
lar expression from a character column, variable, or text literal.
It returns as many matching substrings as it finds (which might
be zero). The syntax is:

REGEXP_SUBSTR (source_string, pattern [,position
[,occurrence [,match_modifier [,subexp]]]])

where source_string is the character string to be searched, pat‐
tern is the regular expression pattern to search for in
source_string, position is the character position at which to
begin the search, occurrence is the ordinal occurrence desired
(1 = first, 2 = second, etc.), and match_modifier is one or more
modifiers that apply to the search. You can also specify subexp;
if the pattern uses subexpressions, this parameter tells the data‐
base which subexpression to return from the pattern found in
the source string. For example:

102 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

-- get the leading number part of the address
-- (up to a whitespace character)
street_num := REGEXP_SUBSTR (
 address_line1,'[[:digit:]]+[:space:]');

In the following example, we parse out the exchange (second
group of three digits) from the first telephone number found in
the variable c_rec.c_clob. The regular expression pattern is
defined as three digits optionally enclosed by parentheses; fol‐
lowed by an optional dot, dash, or whitespace character; fol‐
lowed by three digits; followed by an optional dot, dash, or
whitespace character; followed by four digits. The whole pat‐
tern must match for the substring to be recognized as a match‐
ing pattern (telephone number). We then parse out the inter‐
esting part—the middle three digits—and assign it to the vari‐
able exchange. Here is the example data:

SELECT * FROM contacts WHERE contact_id=26;

CONTACT_ID CONTACT_NAME CONTACT_CLOB
---------- ------------ ------------
26 Elwood Blues Brother of
 "Joliet" Jake
 address:
 1060 W Addison St
 Chicago, IL 60613
 home 773-555-5253
 club 312-555-2468

Next is the subexpression parsing example:

DECLARE
 ptrn VARCHAR2(45);
 exchange VARCHAR2(3);
 CURSOR c_cur IS
 SELECT contact_clob c_clob
 FROM contacts WHERE contact_id=26;
BEGIN
 ptrn :=
 '\(?(\d{3})\)?[\s.-]?(\d{3})[\s.-]?(\d{4})';
 -- Get the second subexpression from the first

Built-in Functions and Packages | 103

www.it-ebooks.info

http://www.it-ebooks.info/

 -- occurrence of the pattern
 FOR c_rec in c_cur LOOP
 exchange :=
 REGEXP_SUBSTR(c_rec.c_clob,ptrn,1,1,'i',2);
 DBMS_OUTPUT.PUT_LINE(
 'exchange='||exchange);
 END LOOP;
END;

This displays:

exchange=555

REGEXP_REPLACE
The REGEXP_REPLACE function replaces a regular expres‐
sion with new text that you specify. Your replacement text may
include back references to values in the regular expression. The
syntax is:

REGEXP_REPLACE (source_string, pattern
[,replacement_string [,position [,occurrence
[,match_modifier]]])

where source_string is the character string to be searched, pat‐
tern is the regular expression pattern to search for in
source_string, replacement_string is the replacement text for
pattern, position is the character position at which to begin the
search, occurrence is the ordinal occurrence desired (0 = all
occurrences, 1 = first, 2 = second, etc.), and match_modifier is
one or more modifiers that apply to the search. For example:

-- Change the domain part of the email addresses
-- Replace all between the @ and the '.com' with
-- the new domain name
REGEXP_REPLACE(email_address
 , '@.*\.com', '@new_domain.com'));

Match modifiers
The match_modifiers available to the regular expression condi‐
tion and functions are shown in the following table:

104 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

match_
modifier

Description

i Uses a case-insensitive search; the default behavior is based on
NLS_SORT.

c Uses a case-sensitive search; the default behavior is based on
NLS_SORT.

n Enables the dot metacharacter to match newlines.

m Treats the source_string as multiple lines for purposes of the
beginning and end-of-line metacharacters ^ and $.

For more details, see the Oracle Regular Expressions Pocket
Reference, by Jonathan Gennick and Peter Linsley
(O’Reilly).

Stored Procedures and Functions
PL/SQL allows you to create a variety of named program units,
or containers, for your code. These include:

Procedure
A program that executes one or more statements.

Function
A program that executes one or more statements and
returns a value.

Trigger
A program that executes in response to database changes.

Package
A container for procedures, functions, and data structures.

Object type
Oracle’s version of an object-oriented class; object types
can contain member procedures and functions.

The following sections describe stored procedures and func‐
tions. Later sections describe triggers, packages, and object
types.

Stored Procedures and Functions | 105

www.it-ebooks.info

http://shop.oreilly.com/product/9780596006013.do
http://shop.oreilly.com/product/9780596006013.do
http://www.it-ebooks.info/

Procedures
Procedures are program units that execute one or more state‐
ments and can receive or return zero or more values through
their parameter lists. The syntax of a procedure is:

CREATE [OR REPLACE] PROCEDURE name
 [(parameter[,parameter])]
 [AUTHID { CURRENT_USER | DEFINER }]
 [ACCESSIBLE BY (program_unit_list)]
{ IS | AS }
 declaration_section
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [name];

where ACCESSIBLE BY is only available for 12.1 and higher.

Inside a PL/SQL executable section, a procedure is called as a
standalone executable statement:

apply_discount(new_company_id, 0.15);

Many execution environments, such as SQL*Plus, also support
ANSI SQL’s CALL syntax:

CALL apply_discount(new_company_id, 0.15);

However, SQL*Plus programmers commonly invoke proce‐
dures with the SQL*Plus EXEC command (short for EXE‐
CUTE):

EXEC apply_discount(new_company_id, 0.15);

or the equivalent anonymous block:

BEGIN
 apply_discount(new_company_id, 0.15);
END;

106 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Functions
Functions are program units that execute zero or more state‐
ments and return a value through the RETURN clause. Func‐
tions also can receive or return zero or more values through
their parameter lists. The syntax of a function is:

CREATE [OR REPLACE] FUNCTION name
 [(parameter [,parameter])]
 RETURN return_datatype
 [AUTHID { CURRENT_USER | DEFINER }]
 [DETERMINISTIC]
 [PARALLEL_ENABLE [partition_clause]]
 [PIPELINED [USING implementation_type]]
 [RESULT_CACHE]
 [ACCESSIBLE BY (program_unit_list)]
 [AGGREGATE USING implementation_type]
{ IS | AS }
 [declaration_section]
BEGIN
 executable_section
[EXCEPTION
 exception_section]
END [name];

where ACCESSIBLE BY is only available for 12.1 and higher.

A function must have at least one RETURN statement in the
execution section. The RETURN clause in the function header
specifies the datatype of the returned value.

See “Compiling Stored PL/SQL Programs” on page 152 for
information on the keywords OR REPLACE, AUTHID,
DETERMINISTIC, PARALLEL_ENABLE, PIPELINED, and
AGGREGATE USING. See “Privileges and Stored PL/SQL” on
page 118 for AUTHID. See “Function Result Cache” on page
116 for RESULT_CACHE.

A function can be called anywhere that an expression of the
same type can be used. You can call a function:

Stored Procedures and Functions | 107

www.it-ebooks.info

http://www.it-ebooks.info/

• In an assignment statement:
sales07 := tot_sales(2007,'C');

• To set a default value:
DECLARE
 sales07 NUMBER DEFAULT tot_sales(2007,'C');
BEGIN

• In a Boolean expression:
IF tot_sales(2007,'C') > 10000
THEN ...

• In a SQL statement (note that there are special rules that
apply to calling a user-defined function inside SQL; see
“Calling PL/SQL Functions in SQL” on page 134):

SELECT first_name, surname
 FROM sellers
WHERE tot_sales(2007,'C') > 1000;

• As an argument in another program unit’s parameter list

Here, for example, max_discount is a programmer-defined
function, and SYSDATE is a built-in function:

apply_discount(company_id, max_discount(SYSDATE));

Parameters
Procedures, functions, and cursors may have a parameter list.
This list contains one or more parameters that allow you to
pass information back and forth between the subprogram and
the calling program. Each parameter is defined by its name,
datatype, mode, and optional default value. The syntax for a
parameter is:

parameter_name [mode] [NOCOPY] datatype[{ := |
DEFAULT } value]

108 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Datatype
The datatype can be any PL/SQL or programmer-defined data‐
type but cannot be constrained by a size (NUMBER is valid,
NUMBER(10) is not valid). The actual size of the parameter is
determined from the calling program:

CREATE OR REPLACE PROCEDURE empid_to_name
 (in_id emp.emp_id%TYPE -- Compiles OK
 ,last_name VARCHAR2 -- Compiles OK
 ,first_name VARCHAR2(10) -- Won't compile
)

The lengths of out_last_name and out_first_name are deter‐
mined by the calling program:

DECLARE
 surname VARCHAR2(10);
 first_name VARCHAR2(10);
BEGIN
 empid_to_name(10, surname, first_name);
END;

Mode
The mode of a parameter specifies whether the parameter can
be read from or written to, as shown in the following table:

Mode Description Parameter usage

IN Read-only The value of the actual parameter can be referenced inside
the program, but the parameter cannot be changed.

IN OUT Read/write The program can both reference (read) and modify (write)
the parameter.

OUT Write The value of any argument passed in is ignored; thereafter,
the program can modify the parameter and read its value,
passing the final value out.

If the mode is not explicitly defined, it defaults to IN.

OUT parameters are not the same as IN OUT parameters.
When running the called program, the runtime engine ignores

Stored Procedures and Functions | 109

www.it-ebooks.info

http://www.it-ebooks.info/

(sets to NULL) any argument value you supply for an OUT
parameter; it preserves the value provided for an IN OUT. If an
exception is raised during execution of a procedure or func‐
tion, assignments made to OUT or IN OUT parameters get rol‐
led back unless the parameter includes the NOCOPY option.

NOCOPY is a request to the compiler to make the parameter a
call by reference instead of a call by value. Normally, PL/SQL
passes IN/OUT parameters by value—a copy of the parameter
is created for the subprogram. When parameter items are large
(as may be the case with CLOBs, objects, and collections), the
copy can eat memory and slow down processing. NOCOPY
asks PL/SQL to pass the parameter by reference, using a
pointer to the single copy of the parameter.

The main disadvantage of NOCOPY is that when an exception
is raised during execution of a program that has modified an
OUT or IN OUT parameter, the changes to the actual parame‐
ters are not “rolled back” because the parameters were passed
by reference instead of being copied. Also, NOCOPY does not
always apply; see Oracle PL/SQL Programming for a list of cases
in which the compiler ignores the NOCOPY request.

Default values
IN parameters can be given default values (usually either the
DEFAULT keyword or the := operator). If an IN parameter has
a default value, you do not need to supply an argument for that
parameter when you call the program unit. It automatically
uses the default value. For example:

CREATE OR REPLACE PROCEDURE hire_employee
 (emp_id IN VARCHAR2
 ,hire_date IN DATE := SYSDATE
 ,company_id IN NUMBER DEFAULT 1
)
IS
 ...

Here are some example calls to the preceding procedure:

110 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

-- Use two default values.
hire_employee(new_empno);
-- Use one default value.
hire_employee(new_empno,'12-Jan-2007');
-- Use nontrailing default value, named notation.
hire_employee(emp_id => new_empno, company_id =>
12);

Parameter-passing notations
Formal parameters are the names that are declared in the
header of a procedure or function. Actual parameters (argu‐
ments) are the values or expressions placed in the parameter list
when a procedure or function is called. In the empid_to_name
example shown earlier in “Datatype” on page 109, the formal
parameters to the procedure are in_id, out_last_name, and
out_first_name. The actual parameters used in the call to this
procedure are 10, surname, and first_name.

PL/SQL lets you use either of two styles for passing arguments
in parameter lists:

Positional notation
The default. Each value in the list of arguments supplied in
the program call is associated with the parameter in the
corresponding position.

Named notation
Explicitly associates the argument value with its parameter
by name (not position). When you use named notation,
you can supply the arguments in any order, and you can
omit IN arguments that have default values.

The call to the empid_to_name procedure is shown here with
both notations:

Stored Procedures and Functions | 111

www.it-ebooks.info

http://www.it-ebooks.info/

BEGIN
 -- Implicit positional notation.
 empid_to_name(10, surname, first_name);

 -- Explicit named notation.
 empid_to_name(in_id => 10
 ,out_last_name => surname
 ,out_first_name => first_name);
END;

You may combine positional and named notation, as long as
positional arguments appear to the left of any named notation
arguments; for example:

empid_to_name (
 10, surname
 , out_first_name => first_name);

As of Oracle Database 11g, you can use both positional and
named notation when calling stored functions inside a SQL
statement.

Local Programs
A local program is a procedure or function that is defined in
the declaration section of a PL/SQL block. The declaration of a
local program must appear at the end of the declaration sec‐
tion, after the declarations of any types, records, cursors, vari‐
ables, and exceptions. A program defined in a declaration sec‐
tion may be referenced only within that block’s execution and
exception sections. It is not defined outside that block.

The following program defines a local procedure and function:

PROCEDURE track_revenue
IS
 l_total NUMBER;

 PROCEDURE calc_total (year_in IN INTEGER) IS
 BEGIN
 calculations here ...
 END;

112 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

 FUNCTION below_minimum (comp_id IN INTEGER)
 RETURN BOOLEAN
 IS
 BEGIN
 ...
 END;
BEGIN
 ...main procedure logic here
END;

Local programs may be overloaded with the same restrictions
as overloaded packaged programs.

Program Overloading
PL/SQL allows you to define two or more programs with the
same name within any declaration section, when declared in a
package specification or body. This is called overloading. If two
or more programs have the same name, they must be different
in some other way so that the compiler can determine which
program should be used.

Here is an example of overloaded programs in a built-in pack‐
age specification:

PACKAGE DBMS_OUTPUT
IS
 PROCEDURE PUT_LINE (a VARCHAR2);
 PROCEDURE PUT_LINE (a NUMBER);
 PROCEDURE PUT_LINE (a DATE);
END;

Each PUT_LINE procedure is identical, except for the datatype
of the parameter. That is enough difference for the compiler.

To overload programs successfully, one or more of the follow‐
ing conditions must be true:

• Parameters must differ by datatype family (number, char‐
acter, datetime, or Boolean).

Stored Procedures and Functions | 113

www.it-ebooks.info

http://www.it-ebooks.info/

• The program type must be different (you can overload a
function and a procedure of the same name and identical
parameter list).

• The numbers of parameters must be different.

In general, you cannot overload programs if:

• Only the datatypes of the functions’ RETURN clauses are
different.

• Parameter datatypes are within the same family (CHAR
and VARCHAR2, NUMBER and INTEGER, etc.).

• Only the modes of the parameters are different (IN ver‐
sus IN OUT, for example).

• The programs are standalone functions or procedures.

You can overload programs whose parameters differ only in
numeric datatypes, as long as they are in different datatype
“families.” The runtime environment will search first for a
matching program with a PLS_INTEGER (or the equivalent
BINARY_INTEGER) parameter; then it will try to match
NUMBER, then, BINARY_FLOAT, and finally BINARY_DOU‐
BLE, in that order. If you want to force the use of the faster
IEEE 754 datatypes, you may need to use the
TO_BINARY_FLOAT or TO_BINARY_DOUBLE functions on
the input argument, or for literals, append with f or d, as dis‐
cussed in “Numeric Literals” on page 5.

Forward Declarations
Programs must be declared before they can be used. PL/SQL
supports mutual recursion, in which program A calls program
B, whereupon program B calls program A. To implement this
mutual recursion, you must use a forward declaration of the
programs. This technique declares a program in advance of the
program definition, thus making it available for other pro‐
grams to use. The forward declaration is the program header
up to the IS/AS keyword:

114 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

PROCEDURE perform_calc(year_in IN NUMBER)
IS
 /* Forward decl for total_cost function. */
 FUNCTION total_cost (year_in IN NUMBER)
 RETURN NUMBER;
 /* net_profit function can use total_cost. */
 FUNCTION net_profit(year_in IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 RETURN total_sales(year_in) -
 total_cost(year_in);
 END;

 /* Implementation of total_cost function */
 FUNCTION total_cost (year_in IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 IF net_profit(year_in) < 0 THEN
 RETURN 0;
 ELSE
 RETURN...;
 END IF;
 END;
BEGIN
 ...
END perform_calc;

Table Functions
Table functions are functions that can be called within the
FROM clause of a query, as if they were relational tables. To act
as a table function, a function must have a header that is SQL-
compatible (no Boolean arguments, for example), and the
function must return a supported collection type: either a nes‐
ted table or VARRAY whose type is declared at the schema
level. As of Oracle Database 12c, a SQL statement embedded in
PL/SQL can use a table function typed as an associative array
that you have declared in a package spec.

Stored Procedures and Functions | 115

www.it-ebooks.info

http://www.it-ebooks.info/

Pipelined table functions are special cases of table functions
that allow you to “pipe” data out of the function back to the
calling query while the function is still executing. Here is a very
simple example of a pipelined table function:

CREATE TYPE num_tab_typ AS TABLE OF NUMBER;
/

CREATE OR REPLACE FUNCTION piped_func(
 factor IN NUMBER)
 RETURN num_tab_typ PIPELINED AS
BEGIN
 FOR counter IN 1..1000
 LOOP
 PIPE ROW (counter*factor);
 END LOOP;
 RETURN;
END piped_func;
/

SELECT COLUMN_VALUE FROM TABLE (piped_func (2))
 WHERE rownum < 5;

COLUMN_VALUE

 2
 4
 6
 8

Function Result Cache
With the PL/SQL function result cache, you can tell the data‐
base to retain the results of your function in a cache, located in
the System Global Area (SGA), and available to all sessions that
invoke the function. The RESULT_CACHE feature is best
suited for functions that are executed relatively often (think
every few seconds or minutes) against data that changes rela‐
tively slowly (think hourly or daily). Oracle will automatically
ensure that the function results are flushed whenever there is

116 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

DML on any table or view used by the function. In a RAC envi‐
ronment, each instance has its own result cache, which may
differ in which items are cached, but common items in differ‐
ent instances will never disagree with each other.

Whenever a result-cached function is called with new parame‐
ters, both the parameters and the return value are saved in the
cache. When the result-cached function is called with cached
parameters, whether from your session or from a different one,
the results are returned from the cache instead of being calcula‐
ted anew. These cached entries can be monitored with the
V$RESULT_CACHE% series of data dictionary views. Tune the
size and usage of the result cache with the
RESULT_CACHE_SIZE and RESULT_CACHE_MODE initial‐
ization parameters and the DBMS_RESULT_CACHE built-in
package.

To enable result caching for your function, it must not be:

• In an anonymous block
• Defined with invoker’s rights
• A pipelined table function
• Defined with any OUT or IN OUT parameters
• Defined with any IN parameters of type BLOB, CLOB,

NCLOB, REF CURSOR, object, or record
• Defined with a RETURN type of BLOB, CLOB, NCLOB,

REF CURSOR, object, or compound datatype (record or
collection) containing any of these unsupported types

• Dependent on session-specific settings or application
contexts

Oracle recommends that result-cached functions not modify
the database state or external state. For example, result-cached
functions should not call DBMS_OUTPUT or UTL_FILE or
send email because these external operations will not execute
consistently between result cache hits and misses. Recursive

Stored Procedures and Functions | 117

www.it-ebooks.info

http://www.it-ebooks.info/

fuctions are good candidates for result caching. The factorial
function is an example:

CREATE OR REPLACE FUNCTION factorial(n NUMBER)
RETURN NUMBER RESULT_CACHE IS
BEGIN
 IF n <= 1 THEN
 RETURN 1;
 ELSE
 RETURN n*factorial(n-1);
 END IF;
END;

For packaged functions, use the keyword RESULT_CACHE in
both the package specification and the package body:

CREATE OR REPLACE PACKAGE bi_sales IS
 FUNCTION avg_sales(cust_id IN NUMBER)
 RETURN NUMBER RESULT_CACHE;
END bi_sales;

CREATE OR REPLACE PACKAGE BODY bi_sales IS
 FUNCTION avg_sales(cust_id IN NUMBER)
 RETURN NUMBER RESULT_CACHE IS
 BEGIN
 ...
 END;
END bi_sales;

Privileges and Stored PL/SQL
An Oracle user who creates a stored program will be able to
execute that program unless nondefault privileges are in place.
For other Oracle users to run the program, they would, at a
minimum, need to be granted EXECUTE permission on it.
This permission can be received via direct grant to the user, or
via a grant to a database role that has been granted to the user.

When a user executes a stored procedure, Oracle has to evalu‐
ate whether the user has permissions on the underlying objects

118 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

(tables, views, procedures, etc.) that the procedure uses inter‐
nally. To make this decision, Oracle supports two different
models for evaluating names and privileges at runtime.

The default model is definer rights, which executes the stored
program with the privileges of the owner of the program. This
model works well in most cases. If the program refers to objects
that the program owner does not also own, the grants on those
must be directly to him—he cannot inherit these privileges
from a role.

The other model, known as invoker rights, causes Oracle to
resolve program identifiers and execute the program, with the
permissions of the user who is running the program. Stored
programs that include the keywords AUTHID CUR‐
RENT_USER will run with invoker rights; anonymous PL/SQL
blocks always execute with invoker rights.

Be aware that Oracle performs additional runtime checks, and
incurs a slight performance overhead, when running an
invoker rights program that uses any database objects.

By default, an invoker rights program can use the full range of
the invoker’s database permissions at runtime, even if those
privileges exceed the programmer’s. In other words, an invoker
rights program “inherits” the privileges of the invoker, and a
programmer could (either intentionally or accidentally) write
code that would perform an operation beyond his or her pay
grade.

To help guard against such misuse, Oracle Database 12c intro‐
duced the INHERIT [ANY] PRIVILEGES feature. An end
user or DBA could prevent such inheritance at the user level by
issuing the following REVOKE statement:

REVOKE INHERIT PRIVILEGE ON invoking_user FROM
PUBLIC;

or:

REVOKE INHERIT PRIVILEGE ON invoking_user FROM
unit_owner;

Stored Procedures and Functions | 119

www.it-ebooks.info

http://www.it-ebooks.info/

Any subsequent privilege escalation attempt by an invoker
rights program that is run by invoking_user will result in a run-
time failure ORA-06598: insufficient INHERIT PRIVILEGES
privilege. Significantly, this failure cannot be trapped as an
exception in the program.

For backward compatibility, Oracle automatically runs GRANT
INHERIT PRIVILEGE ON username TO PUBLIC when a
database user is migrated or created.

Even with EXECUTE privilege and an appropriate runtime
rights model, there is another mechanism that may limit one
program’s ability to invoke another: the ACCESSIBLE BY fea‐
ture. Using this clause in a program specification restricts
which programs can invoke it to those explicitly listed in the
clause. This is a program-level, rather than a user-level, restric‐
tion, so it applies even when the same user owns both the called
program and its calling program.

Triggers
Triggers are programs that execute in response to changes in
table data or certain database events. A predefined set of events
can be “hooked” with a trigger, enabling you to integrate your
own processing with that of the database. A triggering event
fires or executes the trigger.

There are three types of triggering events:

DML events
Fire when an INSERT, UPDATE, or DELETE statement
executes

DDL events
Fire when a CREATE, ALTER, or DROP statement exe‐
cutes

Database events
Fire when one of the predefined database-level events
occurs

120 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Complete lists of these events are included in later sections.

Creating Triggers
The syntax for creating a trigger on a DML event is:

CREATE [OR REPLACE] TRIGGER trigger_name
{ BEFORE | AFTER | INSTEAD OF | FOR } trigger_event
 ON {table_or_view_reference |
 NESTED TABLE nested_table_column OF view}
 [REFERENCING [OLD AS old] [NEW AS new]
 [PARENT AS parent]]
[FOR EACH ROW]
[FOLLOWS other_trigger] [DISABLE]
[COMPOUND TRIGGER]
[WHEN trigger_condition]
trigger_body;

The syntax for creating a trigger on a DDL or database event is:

CREATE [OR REPLACE] TRIGGER trigger_name
{ BEFORE | AFTER } trigger_event
 ON [DATABASE | schema]
 [FOLLOWS other_trigger][DISABLE]
[WHEN trigger_condition]
trigger_body;

Trigger events are listed in the following table:

Trigger event Description

INSERT Fires whenever a row is added to the table_
or_view_reference.

UPDATE Fires whenever an UPDATE changes the
table_or_view_reference. UPDATE triggers can additionally
specify an OF clause to restrict firing to updates of certain
columns.

DELETE Fires whenever a row is deleted from the
table_or_view_reference. Does not fire on a TRUNCATE of
the table.

Triggers | 121

www.it-ebooks.info

http://www.it-ebooks.info/

Trigger event Description

ALTER Fires whenever an ALTER statement changes a database
object. In this context, objects are things such as tables or
packages (found in ALL_OBJECTS). Can apply to a single
schema or the entire database.

ANALYZE Fires whenever the database collects or deletes statistics or
validates the structure of a database object.

ASSOCIATE
STATISTICS

Fires whenever the database associates a statistic type
with a database object.

AUDIT Fires whenever the database records an audit operation.

COMMENT Fires whenever a comment on a database object is
modified.

CREATE Fires whenever a database object is created. Does not fire
on CREATE CONTROLFILE statements.

DB_ROLE_CHANGE In a Data Guard configuration, fires whenever a role
change from primary to standby or standby to primary
occurs. Only AFTER DB_ROLE_CHANGE triggers on the
DATABASE are allowed.

DDL Fires whenever one of the following events occurs: ALTER,
ANALYZE, ASSOCIATE STATISTICS, AUDIT, COMMENT,
CREATE, DISASSOCIATE, DROP, GRANT, NOAUDIT, RENAME,
REVOKE, or TRUNCATE.

DISASSOCIATE
STATISTICS

Fires whenever the database disassociates a statistic type
from a database object.

DROP Fires whenever a DROP statement removes an object from
the database. In this context, objects are things such as
tables or packages (found in ALL_OBJECTS). Can apply to a
single schema or the entire database.

GRANT Fires whenever a system, role, or object privilege is
assigned.

NOAUDIT Fires whenever the database processes a NOAUDIT
statement to stop auditing database operations.

122 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Trigger event Description

RENAME Fires whenever a RENAME statement changes a database
object name.

REVOKE Fires whenever a system, role, or object privilege is
rescinded.

TRUNCATE Fires whenever a TRUNCATE statement is processed to
purge a table or cluster.

SERVERERROR Fires whenever a server error message is logged. Only
AFTER triggers are allowed in this context.

LOGON Fires whenever a session is created (a user connects to the
database). Only AFTER triggers are allowed in this context.

LOGOFF Fires whenever a session is terminated (a user disconnects
from the database). Only BEFORE triggers are allowed in
this context.

STARTUP Fires when the database is opened. Only AFTER triggers are
allowed in this context.

SHUTDOWN Fires when the database is closed. Only BEFORE triggers are
allowed in this context.

SUSPEND Fires whenever a server error causes a transaction to be
suspended.

Triggers can fire BEFORE or AFTER the triggering event.
AFTER DML triggers are slightly more efficient than BEFORE
triggers.

The REFERENCING clause is allowed only for the data events
INSERT, UPDATE, and DELETE. It lets you give a nondefault
name to the old and new pseudorecords. These pseudo-records
give the program visibility to the pre- and postchange values in
row-level triggers. These records are defined like %ROWTYPE
records, except that columns of type LONG or LONG RAW
cannot be referenced. They are prefixed with a colon in the
trigger body and referenced with dot notation. Unlike other
records, these fields can only be assigned individually—aggre‐
gate assignment is not allowed. All old fields are NULL within

Triggers | 123

www.it-ebooks.info

http://www.it-ebooks.info/

INSERT triggers, and all new fields are NULL within DELETE
triggers. Parent fields are valid only in triggers on nested tables
and refer to the current row in the parent table.

FOR EACH ROW defines the trigger to be a row-level trigger.
Row-level triggers fire once for each row affected. The default
is a statement-level trigger, which fires only once for each trig‐
gering statement.

If you have multiple triggers on the same event, you can use the
FOLLOWS keyword to define the order in which they fire.

If you specify the DISABLE keyword, the database creates the
trigger in a disabled state. You can then issue ALTER TRIG‐
GER ENABLE or ALTER TABLE ENABLE ALL TRIGGERS to
enable the trigger. Creating a trigger in a disabled state allows
you to verify that it will compile and helps you avoid
“ORA-04098: trigger NAME is invalid and failed re-validation”
errors.

The WHEN trigger_condition specifies the conditions that must
be met for the trigger to fire. Stored functions and object meth‐
ods are not allowed in the trigger condition.

The trigger body is a standard PL/SQL block. For example:

CREATE OR REPLACE TRIGGER add_tstamp
 BEFORE INSERT ON emp
 REFERENCING NEW as new_row
 FOR EACH ROW
 FOLLOWS audit_emp
 BEGIN
 -- Automatically timestamp the entry.
 SELECT CURRENT_TIMESTAMP
 INTO :new_row.entry_timestamp
 FROM dual;
END add_tstamp;

Triggers are enabled by default on creation and can be disabled
(so that they do not fire) with an ALTER statement, issued with
the following syntax:

124 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

ALTER TRIGGER trigger_name { ENABLE | DISABLE };

ALTER TABLE table_name { ENABLE | DISABLE } ALL
TRIGGERS;

Trigger Predicates
When using a single trigger for multiple events, use the trigger
predicates INSERTING, UPDATING, and DELETING in the
trigger condition to identify the triggering event, as shown in
this example:

CREATE OR REPLACE TRIGGER emp_log_t
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
DECLARE
 dmltype CHAR(1);
BEGIN
 IF INSERTING THEN
 dmltype := 'I';
 INSERT INTO emp_log (emp_no, who, operation)
 VALUES (:new.empno, USER, dmltype);
 ELSIF UPDATING THEN
 dmltype := 'U';
 INSERT INTO emp_log (emp_no, who, operation)
 VALUES (:new.empno, USER, dmltype);
 END IF;
END;

DML Events
The DML events include INSERT, UPDATE, and DELETE
statements on a table. An INSTEAD OF trigger is associated
with a view and fires in lieu of DML to that view. Triggers on
these events can be statement-level triggers (table only) or row-
level triggers, and can fire BEFORE or AFTER the triggering
event. BEFORE triggers can modify the data in affected rows,
but perform an additional logical read. AFTER triggers do not
perform this additional logical read and therefore perform
slightly better, but are not able to change the :new values.

Triggers | 125

www.it-ebooks.info

http://www.it-ebooks.info/

AFTER triggers are thus better suited for data-validation func‐
tionality. Triggers cannot be created on SYS-owned objects.
The order in which these triggers fire, if present, is as follows:

1. BEFORE statement-level trigger
2. BEFORE row-level trigger for each row affected by state‐

ment
3. The triggering statement
4. AFTER row-level trigger for each row affected by state‐

ment
5. AFTER statement-level trigger

Compound DML Triggers
Compound triggers allow you to combine up to four DML trig‐
gering events into a single coordinated program. These com‐
pound triggers let you share common elements (subprograms
and state data) among the different triggering events; for exam‐
ple, you can use bulk binds in your DML trigger and achieve
significantly better performance when several rows are affected
by a statement.

A compound trigger has as many as four sections: a BEFORE
STATEMENT section, a BEFORE EACH ROW section, an
AFTER EACH ROW section, and an AFTER STATEMENT
section. The FOR and COMPOUND TRIGGER keywords tell
the database that the trigger is a compound trigger. In the com‐
pound trigger’s declaration section, you declare the structures
that are to be shared by all sections. These structures include
the collections needed for bulk binds, variables, local programs,
etc. This trigger data is created when the trigger fires and is
automatically destroyed (cleaned up) when the triggering state‐
ment completes.

Here is an example of using a compound trigger to record audit
information on changes to the salary column in the employee
table. The example shows how this is done with the old FOR

126 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

EACH ROW technique as well as the newer, more efficient
bulk binds:

-- First row-by-row way
CREATE OR REPLACE TRIGGER old_trg
 AFTER UPDATE OF salary ON employees
 FOR EACH ROW
BEGIN
 INSERT INTO employee_audit
 VALUES (:new.employee_id
 ,:old.salary
 ,:new.salary ,SYSTIMESTAMP);
END old_trg;

/* This next trigger is created disabled and
 must be enabled for use
 Here is the bulk bind approach: */
CREATE OR REPLACE TRIGGER new_trg
 FOR UPDATE OF salary ON employees DISABLE
 COMPOUND TRIGGER
 -- General declarations here
 TYPE emp_aud_t IS TABLE OF
 employee_audit%ROWTYPE
 INDEX BY BINARY_INTEGER;
 emps emp_aud_t;
 cntr PLS_INTEGER := 0;
 batch_size CONSTANT PLS_INTEGER := 100;

 -- local procedure
 PROCEDURE bulk_flush IS
 BEGIN
 FORALL idx IN 1..emps.count
 INSERT INTO employee_audit
 VALUES emps(idx);
 emps.delete;
 cntr := 0;
 END ;

 -- Each section is defined like this:
 AFTER EACH ROW IS
 BEGIN

Triggers | 127

www.it-ebooks.info

http://www.it-ebooks.info/

 cntr := cntr+1;
 emps(cntr).employee_id := :new.employee_id;
 emps(cntr).old_salary := :old.salary;
 emps(cntr).new_salary := :new.salary;
 emps(cntr).change_ts := systimestamp;
 IF cntr >= batch_size THEN
 bulk_flush;
 END IF;
 END AFTER EACH ROW;

 -- Final flush in after statement section
 AFTER STATEMENT IS
 BEGIN
 bulk_flush;
 END AFTER STATEMENT;
END new_trg;

DDL Events
The DDL events are ALTER, ANALYZE, ASSOCIATE STA‐
TISTICS, AUDIT, COMMENT, CREATE, DISASSOCIATE,
DROP, GRANT, NOAUDIT, RENAME, REVOKE, and TRUN‐
CATE. These triggers fire whenever the respective DDL state‐
ment is executed. DDL triggers can apply to either a single
schema or the entire database.

Database Events
The database events are SERVERERROR, LOGON, LOGOFF,
STARTUP, SHUTDOWN, and SUSPEND. Only BEFORE trig‐
gers are allowed for LOGOFF and SHUTDOWN events. Only
AFTER triggers are allowed for LOGON, STARTUP, and
SERVERERROR events. A SHUTDOWN trigger will fire on a
SHUTDOWN NORMAL and a SHUTDOWN IMMEDIATE,
but not on a SHUTDOWN ABORT.

128 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Packages
A package is a collection of PL/SQL elements that are grouped
together. There are several benefits to using packages, includ‐
ing information hiding, object-oriented design, top-down
design, object persistence across transactions, and improved
performance.

Elements that can be placed in a package include procedures,
functions, constants, variables, cursors, exception names, and
TYPE statements (for associative arrays, records, REF CUR‐
SORs, etc.).

Package Structure
A package can have two parts: the specification and the body.
The package specification is required and lists all the objects
that are “publicly” available (i.e., may be referenced from out‐
side the package) for use in applications. It also provides all the
information a developer needs to use objects in the package;
essentially, it is the package’s API.

The package body contains all the code needed to implement
procedures, functions, and cursors listed in the specification, as
well as any private objects (accessible only to other elements
defined in that package) and an optional initialization section.

If a package specification does not contain any procedures or
functions, and no private code is needed, that package does not
need to have a package body.

The syntax for the package specification is:

CREATE [OR REPLACE] PACKAGE package_name
 [AUTHID { CURRENT_USER | DEFINER }]
 [ACCESSIBLE BY (program_unit_list)]
{ IS | AS }
 [definitions of public TYPEs
 ,declarations of public variables, types, and
objects
 ,declarations of exceptions

Packages | 129

www.it-ebooks.info

http://www.it-ebooks.info/

 ,pragmas
 ,declarations of cursors, procedures, and
 functions
 ,headers of procedures and functions]
END [package_name];

The syntax for the package body is:

CREATE [OR REPLACE] PACKAGE BODY package_name
 { IS | AS }
 [definitions of private TYPEs
 ,declarations of private variables, types, and
objects
 ,full definitions of cursors
 ,full definitions of procedures and functions]
[BEGIN
 executable_statements
[EXCEPTION
 exception_handlers]]
END [package_name];

Specify the optional OR REPLACE to rebuild an existing pack‐
age, preserving any EXECUTE privileges previously granted to
other accounts. The declarations in the specifications cannot be
repeated in the body. Both the execution section and the excep‐
tion section are optional in a package body. If the execution
section is present, it is called the initialization section and exe‐
cutes only once—the first time any package element is refer‐
enced during a session.

You must compile the package specification before the body
specification. When you grant EXECUTE authority on a pack‐
age to another schema or to PUBLIC, you are giving access
only to the specification; the body remains hidden.

Here’s an example of a package:

CREATE OR REPLACE PACKAGE time_pkg
AS
 FUNCTION GetTimestamp RETURN DATE;
 PROCEDURE ResetTimestamp(
 new_time DATE DEFAULT SYSDATE);

130 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

END time_pkg;

 -- StartTimeStamp is package-level data.
CREATE OR REPLACE PACKAGE BODY time_pkg
AS

 StartTimeStamp DATE := SYSDATE;

 FUNCTION GetTimestamp RETURN DATE IS
 BEGIN
 RETURN StartTimeStamp;
 END GetTimestamp;

 PROCEDURE ResetTimestamp(
 new_time DATE DEFAULT SYSDATE)
 IS
 BEGIN
 StartTimeStamp := new_time;
 END ResetTimestamp;

END time_pkg;

Referencing Package Elements
The elements declared in the specification are referenced from
the calling application via dot notation:

package_name.package_element

For example, the built-in package DBMS_OUTPUT has a pro‐
cedure PUT_LINE, so a call to this package would look like
this:

DBMS_OUTPUT.PUT_LINE('This is parameter data');

Package Data
Data structures declared within a package specification or
body, but outside any procedure or function in the package, are
package data. The default lifetime of package data is your entire

Packages | 131

www.it-ebooks.info

http://www.it-ebooks.info/

session, spanning transaction boundaries and acting as globals
for your programs.

Keep the following guidelines in mind as you work with pack‐
age data:

• The state of your package variables is not affected by
COMMITs and ROLLBACKs.

• A cursor declared in a package has global scope. It
remains OPEN until you close it explicitly or until your
session ends.

• A good practice is to hide your data structures in the
package body and provide “get and set” programs to read
and write that data. This technique can help protect your
data.

SERIALLY_REUSABLE Pragma
If you need package data to exist only during a call to the pack‐
aged functions or procedures and not between calls of the cur‐
rent session, you can potentially save runtime memory by using
the pragma SERIALLY_REUSABLE. After each call, PL/SQL
closes the cursors and releases the memory used in the pack‐
age. This technique is applicable only to large user communi‐
ties executing the same routine. Normally, the database server’s
memory requirements grow linearly with the number of users;
with SERIALLY_REUSABLE, this growth can be less than lin‐
ear because work areas for package states are kept in a pool in
the database’s SGA and are shared among all users. This
pragma must appear in both the specification and the body, as
shown here:

CREATE OR REPLACE PACKAGE my_pkg IS
 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE gig_em;
END my_pkg;

CREATE OR REPLACE PACKAGE BODY my_pkg IS

132 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

 PRAGMA SERIALLY_REUSABLE;
 PROCEDURE gig_em IS
 ...
END my_pkg;

Package Initialization
The first time a user references a package element, the entire
package is loaded into the SGA of the database instance to
which the user is connected. That code is then shared by all ses‐
sions that have EXECUTE authority on the package.

Any package data is then instantiated into the session’s User
Global Area (UGA), a private area in either the SGA or the
Process Global Area (PGA). If the package body contains an
initialization section, that code will be executed. The initializa‐
tion section is optional and appears at the end of the package
body, beginning with a BEGIN statement and ending with the
EXCEPTION section (if present) or the END of the package.

The following package initialization section runs a query to
transfer the user’s minimum balance into a global package vari‐
able. Programs can then reference the packaged variable (via
the function) to retrieve the balance, rather than execute the
query repeatedly:

CREATE OR REPLACE PACKAGE usrinfo
IS
 FUNCTION minbal RETURN VARCHAR2;
END usrinfo;

CREATE OR REPLACE PACKAGE BODY usrinfo
IS
 g_minbal NUMBER; -- Package-level data
 FUNCTION minbal RETURN VARCHAR2
 IS
 BEGIN
 RETURN g_minbal;
 END;
BEGIN -- Initialization section
 SELECT minimum_balance

Packages | 133

www.it-ebooks.info

http://www.it-ebooks.info/

 INTO g_minbal
 FROM user_configuration
 WHERE username = USER;
EXCEPTION
 WHEN NO_DATA_FOUND
 THEN g_minbal := NULL;
END usrinfo;

Calling PL/SQL Functions in SQL
Stored functions can be called from SQL statements in a man‐
ner similar to built-in functions, such as DECODE, NVL, or
RTRIM. This is a powerful technique for incorporating busi‐
ness rules into SQL in a simple and elegant way, but there are
several caveats and restrictions.

The most notable caveat is that stored functions executed from
SQL are not by default guaranteed to return results from the
database that are read-consistent with respect to the parent
SQL statement. Unless the SQL statement and any stored func‐
tions in that statement are in the same read-consistent transac‐
tion (even if they are read-only), each execution of the stored
function may look at a different time-consistent set of data. To
avoid this potential problem, you have two choices:

1. Restrict the stored function to perform only computations
that do not involve using data from database tables.

2. Ensure read consistency programmatically by issuing the
SET TRANSACTION READ ONLY or SET TRANSAC‐
TION ISOLATION LEVEL SERIALIZABLE statement
before executing your SQL statement containing the
stored function. A COMMIT or ROLLBACK then needs
to follow the SQL statement to end this read-consistent
transaction.

Calling a Function
The syntax for calling a stored function from SQL is the same
as that used to reference it from PL/SQL:

134 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

[schema_name.][pkg_name.]func_name[@db_link]
[parm_list]

schema_name is optional and refers to the user/owner of the
function or package. pkg_name is optional and refers to the
package containing the called function. func_name is required
and is the function name. db_link is optional and refers to the
database link name to the remote database containing the func‐
tion. parm_list is optional, as are the parameters passed to the
function.

The following are example calls to the GetTimestamp function
in the time_pkg example seen earlier in “Package Structure” on
page 129:

-- Capture system events.
INSERT INTO v_sys_event
 (timestamp, event, qty_waits)
 SELECT time_pkg.GetTimestamp, event, total_waits
 FROM v$system_event

-- Capture system statistics.
INSERT INTO v_sys_stat (timestamp, stat#, value)
 SELECT time_pkg.GetTimestamp, statistic#, value
 FROM v$sysstat;

There are several requirements for calling stored functions in
SQL:

• All parameters must be IN; no IN OUT or OUT parame‐
ters are allowed.

• The datatypes of the function’s parameters and RETURN
must be compatible with RDBMS datatypes. You cannot
have arguments or RETURN types, such as BOOLEAN,
programmer-defined record, and associative array.

• The function must be a schema-level object in the data‐
base or defined in the specification of a package.

Calling PL/SQL Functions in SQL | 135

www.it-ebooks.info

http://www.it-ebooks.info/

Improving Performance of Calling PL/SQL Functions
from SQL
Oracle Database 12c introduced the UDF pragma, which sig‐
nals to the compiler that you would like your subprogram to be
optimized for invocation from SQL statements. The GetTimes
tamp function mentioned previously would become:

...
 FUNCTION GetTimestamp RETURN DATE IS
 PRAGMA UDF;
 BEGIN
 RETURN StartTimeStamp;
 END GetTimestamp;
...

After compiling with this pragma, Oracle’s runtime engine may
be able to reduce the overhead associated with context switch‐
ing, resulting in better performance. However, performance
when called from inside PL/SQL is likely to be worse.

Another feature added in Oracle Database 12c is the ability to
declare a function inside the WITH clause of a SELECT state‐
ment. If the UDF pragma is not helpful, you could explore this
feature as a possible performance optimization. An example:

WITH
 FUNCTION betwnstr (str IN VARCHAR2,
 p1 IN INTEGER, p2 IN INTEGER)
 RETURN VARCHAR2
 IS
 BEGIN
 RETURN SUBSTR(str, p1, p2 - p1 +1);
 END;
SELECT betwnstr(last_name, 3, 5)
 FROM employees;

Column Name Versus Function Name Precedence
If your function has the same name as a table column in your
SELECT statement, and the function has no parameter, the col‐

136 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

umn takes precedence over the function. To force the Oracle
database to resolve the name to your function, prepend the
schema name to it:

CREATE TABLE emp(new_sal NUMBER ...);
CREATE FUNCTION new_sal RETURN NUMBER IS ...;

-- Resolves to column
SELECT new_sal FROM emp;
-- Resolves to function
SELECT scott.new_sal FROM emp;

Object-Oriented Features
In the Oracle database, an object type combines attributes (data
structures) and methods (functions and procedures) into a sin‐
gle programming construct. The object type construct allows
programmers to define their own reusable datatypes for use in
PL/SQL programs and table and column definitions. An object
type must be created in a database before it can be used in a
PL/SQL program.

An instance of an object type is an object in the same way that a
variable is an instance of a scalar type. As with scalars, objects
are either persistent (stored in the database) or transient (stored
only in PL/SQL variables). Objects can be stored in a database
as a row in a table (a row object) or as a column in a table. A
table of row objects can be created with syntax such as this:

CREATE TABLE table_name OF object_type;

When stored in such a table, the object (row) has a system-
generated object identifier (OID) that is unique throughout the
database.

Object Types
An object type has two parts: a specification and a body. The
specification is required and contains the attributes and
method specifications. The syntax for creating the object type
specification is:

Object-Oriented Features | 137

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE [OR REPLACE] TYPE obj_type_name
 [AUTHID { CURRENT_USER | DEFINER }]
 [ACCESSIBLE BY (program_unit_list)]
{ { IS | AS } OBJECT | UNDER parent_type_name }
(
 attribute_name datatype,...,
 [[[NOT] OVERRIDING] [[NOT] FINAL] [[NOT]
 INSTANTIABLE]
 method_spec,...,
]
)
[[NOT] FINAL]
[[NOT] INSTANTIABLE];

where method_spec is one of the following:

MEMBER { PROCEDURE | FUNCTION } program_spec

or:

STATIC { PROCEDURE | FUNCTION } program_spec

or:

{ ORDER | MAP } MEMBER FUNCTION comparison_func
tion_spec

or:

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION
 RETURNING SELF AS RESULT constructor_func
tion_spec

Attribute specifications must appear before method specifica‐
tions. Object attributes, like table columns, are defined with a
name and a datatype. The name can be any legal identifier, and
the datatype can be almost any datatype known to SQL other
than LONG, LONG RAW, ROWID, and UROWID. Attributes
can be declared using other programmer-defined object types
or collection types, but not of the special types ANYTYPE,
ANYDATA, or ANYDATASET. Attributes cannot be of data‐
types unique to PL/SQL, such as BOOLEAN.

138 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Method headers appear in the object type specification in a
comma-delimited list. Unlike in a package specification, com‐
mas (not semicolons) terminate the object type program speci‐
fications. To support object comparisons and sorting, the type
optionally can include one comparison method—either
ORDER or MAP. Member methods can be overloaded in object
types following the same rules as function and procedure over‐
loading in packages.

Method “specs” that appear earlier in the syntax actually can be
call specs for Java classes in the database or for external proce‐
dures written in C.

The syntax for creating the object type body is:

CREATE [OR REPLACE] TYPE BODY obj_type_name
{ IS | AS }
 method_implementation;
 [method_implementation ...]
;

Where method_implementation is one of:

MEMBER { PROCEDURE | FUNCTION } function_body

or:

STATIC { PROCEDURE | FUNCTION } function_body

or:

{ ORDER | MAP } MEMBER FUNCTION
 comparison_function_body

or:

[FINAL] [INSTANTIABLE] CONSTRUCTOR FUNCTION
 RETURNING SELF AS RESULT
 constructor_function_body

Again, the program bodies can be call specs to Java or C pro‐
grams.

Object-Oriented Features | 139

www.it-ebooks.info

http://www.it-ebooks.info/

Type Inheritance
You can define subtypes of object types following a single-
inheritance model. The database does not have a master root-
level object; instead, each type is “standalone” unless declared
otherwise.

The UNDER keyword specifies that the type exists as a subtype
in a hierarchy. When you are using UNDER, the parent type
must be marked NOT FINAL. By default, types are FINAL,
meaning that you cannot declare a subtype of that type.

A subtype contains all the attributes and methods of its parent
(supertype) and may contain additional attributes and meth‐
ods. Methods can override corresponding methods from the
parent. Changes to the supertype—such as the addition of
attributes or methods—are reflected in the subtypes automati‐
cally.

By default, object types are INSTANTIABLE—that is, an invok‐
ing program may create an object of that type. The phrase NOT
INSTANTIABLE indicates that you don’t want any objects of
the type, in which case the database will not create a construc‐
tor for it. This variation generally makes sense only with types
that will serve as parents of other types.

Methods
There are four kinds of methods: member, static, constructor,
and comparison.

Member methods
A member method is a procedure or function designated with
the keyword MEMBER. Calling programs may invoke such a
method only on objects that have been instantiated.

140 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Static methods
A static method has no access to a current (SELF) object. Such
a method is declared using the keyword STATIC and can be
invoked at any time using type.method syntax.

Constructor methods
Even if you don’t declare any methods, every instantiable object
has a default constructor method that allows a calling program
to create new objects of that type. This built-in method:

• Has the same name as the object type.
• Is a function that returns an object of that type.
• Accepts attributes in named or positional notation.
• Must be called with a value (or NULL) for every attribute

—there is no DEFAULT clause for object attributes.
• Cannot be modified.

You can replace this default constructor with your own using
the CONSTRUCTOR FUNCTION syntax. This method must
have the same name as the object type, but there are no restric‐
tions on its parameter list. The RETURN clause of the con‐
structor’s header must be RETURN SELF AS RESULT. The
database supports overloading of programmer-defined con‐
structors. All nonstatic methods have the implied parameter
SELF, which refers to the current instance of the object. The
default mode for the SELF parameter is IN for functions and
IN OUT for procedures. A programmer can alter the mode by
explicitly including SELF in the formal parameter list. An
example of a programmer-defined default constructor follows:

CREATE OR REPLACE TYPE book_t AS OBJECT (
 isbn VARCHAR2(13),
 pages INTEGER,

 CONSTRUCTOR FUNCTION book_t
 (id IN INTEGER DEFAULT NULL

Object-Oriented Features | 141

www.it-ebooks.info

http://www.it-ebooks.info/

 ,title IN VARCHAR2 DEFAULT NULL
 ,isbn IN VARCHAR2 DEFAULT NULL
 ,pages IN INTEGER DEFAULT NULL
)
 RETURN SELF AS RESULT,

 OVERRIDING MEMBER FUNCTION ck_digit_okay
 RETURN BOOLEAN,

 OVERRIDING MEMBER FUNCTION print
 RETURN VARCHAR2
);

Comparison methods
The comparison methods, ORDER and MAP, establish ordinal
positions of objects for comparisons such as “<” or “between”
and for sorting (ORDER BY, GROUP BY, DISTINCT). The
database invokes a comparison method automatically when‐
ever it needs to perform such an operation.

MAP and ORDER methods are actually special types of mem‐
ber methods—that is, they execute only in the context of an
existing object. An ORDER function accepts two parameters:
SELF and another object of the same type. It must return an
INTEGER value as explained in the following table:

Return value Object comparison

Any negative integer
(commonly −1)

SELF < second object

0 SELF = second object

Any positive integer
(commonly 1)

SELF > second object

NULL Undefined comparison: attributes needed for
the comparison are NULL

For example, the Senate ranks majority party members higher
than nonmajority party members and within the majority (or

142 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

nonmajority) by years of service. Here is an example ORDER
function incorporating these rules:

CREATE TYPE senator_t AS OBJECT
(
 majority INTEGER,
 yrs_service NUMBER,

 ORDER MEMBER FUNCTION ranking (
 other IN senator_t)
 RETURN INTEGER
);

CREATE OR REPLACE TYPE BODY senator_t
AS
 ORDER MEMBER FUNCTION ranking (
 other IN senator_t)
 RETURN INTEGER
 IS
 BEGIN
 IF SELF.majority = 'Y' AND
 other.majority.istrue = 'Y'
 THEN
 RETURN SIGN(
 SELF.yrs_service -
 other.yrs_service);
 ELSIF SELF.majority = 'Y' AND
 other.majority ='N'
 THEN
 RETURN 1;
 ELSIF SELF.majority = 'N' AND
 other.majority.istrue = 'Y'
 THEN
 RETURN −1;
 ELSIF SELF.majority = 'N' AND
 other.majority.istrue = 'N'
 THEN
 RETURN SIGN(
 SELF.yrs_service -
 other.yrs_service);
 END IF;

Object-Oriented Features | 143

www.it-ebooks.info

http://www.it-ebooks.info/

 END ranking;
END;

A MAP function accepts no parameters and returns a scalar
datatype such as DATE, NUMBER, or VARCHAR2 for which
the database already knows a collating sequence. The MAP
function translates, or maps, each object into this scalar data‐
type space.

If no ORDER or MAP function exists for an object type, then
SQL, but not PL/SQL, supports only limited equality compari‐
sons of objects. Objects are equal if they are of the same object
type and if each attribute is equal.

Use MAP if possible when frequently sorting or comparing a
large number of objects, as in a SQL statement; an internal
optimization reduces the number of function calls. With
ORDER, the function must run once for every comparison.

Methods in Subtypes
When defining methods in a subtype, you have two options:
you can inherit a supertype’s method, or you can override a
supertype’s method by defining your own subtype method of
the same name and parameter list. If you choose to inherit, you
do not need to write any code in the subtype.

To override a supertype, you must use the OVERRIDING key‐
word in the header of the program, as shown here:

CREATE TYPE food_t AS OBJECT (
 name VARCHAR2(100),
 food_group VARCHAR2 (100),
 MEMBER FUNCTION price RETURN NUMBER
)
NOT FINAL;

CREATE TYPE dessert_t UNDER food_t (
 contains_chocolate CHAR(1),
 OVERRIDING MEMBER FUNCTION price RETURN NUMBER
);

144 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

This example also shows that if you want to allow a method to
be overridden, you must specify that this method be NOT
FINAL. By default, methods are FINAL and cannot be overrid‐
den.

You also can define a method to be NOT INSTANTIABLE,
which means that you specify only the header of the method,
but you do not need to provide an implementation in the
OBJECT TYPE body for that method. For example:

CREATE TYPE food_t AS OBJECT (
 name VARCHAR2(100),
 food_group VARCHAR2 (100),
 NOT INSTANTIABLE MEMBER
 FUNCTION price RETURN NUMBER
)
NOT FINAL
NOT INSTANTIABLE;

The consequences of a NOT INSTANTIABLE method are as
follows:

• The entire object type must be defined as NOT INSTAN‐
TIABLE, which means that you cannot instantiate an
instance from this type. You can use it only as a supertype
in an object type hierarchy.

• Any subtype of food_t must provide an implementation
of the price function or in turn also be defined as a NOT
INSTANTIABLE object type.

The database supports dynamic method dispatch, also known as
dynamic polymorphism, to determine which overridden
method to invoke at runtime. That is, it will choose the method
in the most specific subtype associated with the currently
instantiated object. However, it is also possible to directly
invoke a parent type’s method. For example, you can invoke the
food_t version of a dessert’s price method using the following
syntax:

Object-Oriented Features | 145

www.it-ebooks.info

http://www.it-ebooks.info/

DECLARE
 my_dessert dessert_t := dessert_t (
 'tres leches', 'sugar', 'N');
BEGIN
 DBMS_OUTPUT.PUT_LINE(
 (my_dessert AS food_t).price);
END;

This is also possible inside the implementation sections of sub‐
type methods using SELF:

(SELF AS parent_type).method_invocation;

Manipulating Objects in PL/SQL and SQL
Variables declared as objects begin their life atomically null,
meaning that the expression:

object IS NULL

evaluates to TRUE. Attempting to assign values to the
attributes of an atomically null object will return an ACCESS_
INTO_NULL exception. Instead, you must initialize the object,
in one of these ways:

• Use either the default constructor method or a user-
defined constructor

• Assign to it the value of an existing object
• Use SELECT INTO or FETCH INTO

Here is an example using each initialization technique:

DECLARE
 project_boiler_plate project_t;
 build_web_site project_t;

 -- Initialize via constructor.
 new_web_mgr proj_mgr_t :=
 proj_mgr_t('Ruth', 'Home Office');

 -- Initialize via user-defined constructor

146 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

 -- that provides defaults
 new_web_mgr proj_mgr_t := NEW proj_mgr_t();

 CURSOR template_cur IS
 SELECT VALUE(proj)
 FROM projects
 WHERE project_type = 'TEMPLATE'
 AND sub_type = 'WEB SITE';
 BEGIN
 OPEN template_cur;
 -- Initialize via FETCH INTO.
 FETCH template_cur INTO project_boiler_plate;

 -- Initialize via assignment.
 build_web_site := project_boiler_plate;
 ...

After an object is initialized, it can be stored in the database,
and you can then locate and use that object with the REF,
VALUE, and DEREF operators.

Upcasting and Downcasting
The Oracle database supports implicit upcasting (widening) of
a subtype and provides the TREAT operator to downcast (nar‐
row) a supertype. TREAT also can explicitly upcast a subtype.

The following example returns to the food-dessert hierarchy to
demonstrate upcasting and downcasting:

CREATE TYPE food_t AS OBJECT (
 name VARCHAR2(100),
 food_group VARCHAR2 (100)
)
NOT FINAL;

CREATE TYPE dessert_t UNDER food_t (
 contains_chocolate CHAR(1)
);

DECLARE

Object-Oriented Features | 147

www.it-ebooks.info

http://www.it-ebooks.info/

 marzipan dessert_t :=
 NEW dessert_t('marzipan', 'sweets', 'N');
 ice_cream_sundae dessert_t;
 tasty_treat food_t;
BEGIN
 /* An implied upcast */
 tasty_treat := marzipan;

 /* An explicit downcast */
 ice_cream_sundae :=
 TREAT(tasty_treat AS dessert_t);
END;

The syntax of TREAT is:

TREAT (object_instance AS [REF] type)

where object_instance is a value that is of a particular supertype
in an object hierarchy, and type is the name of the subtype (or
supertype) in the same hierarchy. The TREAT expression won’t
compile if you attempt to cast a type to another from a different
type hierarchy. If you supply an object from the correct type
hierarchy, TREAT will return either the casted object or NULL
—but not an error.

You also can use dot notation to obtain access to the casted
object’s attributes and methods:

TREAT (object_instance AS type).{ attribute |
method(args...) }]

SQL also supports TREAT and implied upcasting.

REF operator
REF, short for REFerence, designates a datatype modifier or an
operator to retrieve a logical pointer to an object. This pointer
encapsulates the OID and can simplify navigation among
related database objects. The syntax for a REF operator is:

REF(table_alias_name)

For example:

148 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

SELECT REF(p) FROM pets p WHERE ...

A PL/SQL variable can hold a reference to a particular object
type:

DECLARE
 petref REF Pet_t;
BEGIN
 SELECT REF(p) INTO petref FROM pets p WHERE ...

Through deletions, REFs can reference a nonexistent object,
called a dangling REF, resulting in a state that can be detected
with the IS DANGLING predicate. For example:

UPDATE pets
 SET owner_ref = NULL
 WHERE owner_ref IS DANGLING;

The built-in package UTL_REF provides programmatic access
to stored objects via their REF.

VALUE operator
Use the VALUE operator to retrieve a row object as a single
object rather than as multiple columns. The syntax for the
VALUE operator is:

VALUE(table_alias_name)

For example:

SELECT VALUE(p) FROM pets p WHERE ...

DEREF operator
Use the DEREF operator to retrieve the value of an object for
which you have a REF. The syntax for DEREF is:

DEREF(table_alias_name)

For example:

DECLARE
 person_ref REF person_t;
 author person_t;

Object-Oriented Features | 149

www.it-ebooks.info

http://www.it-ebooks.info/

BEGIN
 -- Get the ref.
 SELECT REF(p) INTO person_ref
 FROM persons WHERE p.last_name ='Pribyl';

 -- Dereference the pointer back to the value.
 SELECT DEREF(person_ref) INTO author FROM dual;

In addition, the database uses an OID internally as a unique
identifier for each object. As with a ROWID, you don’t typically
use an OID directly. The following table shows ways of refer‐
encing persistent objects:

Scheme Description Applications

OID An opaque, globally unique
handle, produced when the
object is stored in the database
as a table (row) object.

The persistent object’s handle; it is
what REFs point to. Your program
never uses it directly.

VALUE An operator. In SQL, it acts on an
object in an object table and
returns the object’s contents.
Different from the VALUES
keyword found in some INSERT
statements.

Used when fetching a table (row)
object into a variable, or when you
need to refer to an object table as
an object instead of a list of
columns.

REF A pointer to an object. May be
used within a SQL statement as
an operator or in a declaration as
a type modifier.

Allows quasi-normalizing of object-
relational databases and joining of
object tables using dot navigation.
In PL/SQL, REFs serve as input/
output variables.

DEREF Reverse pointer lookup for REFs. Used for retrieving the contents of
an object when all you know is its
REF.

Changing Object Types
You can add methods, but not attributes, to an object type
stored in the database using the ALTER TYPE statement. There

150 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

are several forms of this statement, with many options, some of
which are in the following code block. Check Oracle documen‐
tation for the most up-to-date syntax diagrams:

ALTER TYPE typename
 { ADD | MODIFY | DROP } ATTRIBUTE attribute_spec
 { INVALIDATE | CASCADE
 { [NOT] INCLUDING TABLE DATA |
 CONVERT TO SUBSTITUTABLE }
 [FORCE] };

ALTER TYPE typename
 [NOT] { INSTANTIABLE | FINAL }
 { INVALIDATE | CASCADE
 { [NOT] INCLUDING TABLE DATA |
 CONVERT TO SUBSTITUTABLE }
 [FORCE] };

ALTER TYPE typename
 COMPILE [DEBUG] [SPECIFICATION | BODY]
 [REUSE SETTINGS];

Because altering the structure of a type can have quite a few
repercussions for database objects, the database requires that
you either INVALIDATE the dependent objects or CASCADE
the change.

When making a change from FINAL to NOT FINAL and cas‐
cading the change, you can cause existing table objects to be
either NOT SUBSTITUTABLE (the default) or SUBSTITUTA‐
BLE. The following is an example of adding an attribute:

ALTER TYPE catalog_item_t
 ADD ATTRIBUTE publication_date VARCHAR2(400)
 CASCADE INCLUDING TABLE DATA;

The next example shows adding a method:

ALTER TYPE catalog_item_t
 ADD MEMBER PROCEDURE save,
 CASCADE;

Object-Oriented Features | 151

www.it-ebooks.info

http://www.it-ebooks.info/

After adding a method to a spec, you would use CREATE OR
REPLACE TYPE BODY to implement it in the body (include
all the other methods as well).

There are a variety of restrictions on modifying types; for
example, you cannot change a type from INSTANTIABLE to
NOT INSTANTIABLE if you have created tables that depend
on the type.

The syntax for dropping an object type is:

DROP TYPE typename [FORCE];

You can drop only an object type that has not been imple‐
mented in a table (or you can drop the tables first). The
FORCE option will drop object types even if they have depen‐
dencies, but FORCE will irreversibly invalidate any dependent
objects such as tables. FORCE does not do a DROP CASCADE.

If you are dropping a type whose parent type has table depend‐
ents, this form of the statement:

DROP TYPE subtype_name VALIDATE;

will “validate” the safety of dropping the subtype before per‐
forming it. That is, the database will perform the drop only if
there are no objects of the subtype in any substitutable columns
of the parent type.

Compilation
PL/SQL compilation is an area that has seen several improve‐
ments in recent database versions. These capabilities include
conditional compilation, informational warnings, optimization,
and compilation to native code.

Compiling Stored PL/SQL Programs
The following keywords are available when creating stored pro‐
grams:

152 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

OR REPLACE
Used with CREATE to rebuild an existing program unit,
preserving privileges granted on it to users and roles.

AUTHID
Defines whether the program will execute with the privi‐
leges of, and resolve names like, the object owner
(DEFINER), or as the user executing the function (CUR‐
RENT_USER). The default AUTHID is DEFINER. See
“Privileges and Stored PL/SQL” on page 118 for additional
information.

ACCESSIBLE BY (program unit list)
(Oracle Database 12c and later.) Restricts execution of the
program to a white list of other programs. Useful when
you want to hide some utility programs behind your stable
API.

DETERMINISTIC
Required for function-based indexes. A function is
DETERMINISTIC if it always returns the same value
when called with the same parameters. Deterministic
functions do not meaningfully reference package variables
or the database. The built-in INITCAP is deterministic,
but SYSDATE is not.

PARALLEL_ENABLE...
Informs the optimizer that a function is safe for parallel
execution. Can improve runtime performance of pipelined
table functions that are called in a parallel SQL query.

PIPELINED
Used with table functions. Specifies that the results of this
table function should be returned iteratively via the PIPE
ROW statement. A pipelined function can start to return
data as it is generated instead of all at once after process‐
ing is complete.

Compilation | 153

www.it-ebooks.info

http://www.it-ebooks.info/

AGGREGATE USING
Required for aggregate functions. Tells the database that
the function evaluates a group of rows and returns a single
result. For example, the built-in function AVG is an aggre‐
gate function.

The following compiler settings are established at program cre‐
ation time based on the database or session configuration and
can be changed or retained during recompilation. The database
stores these compiler settings on a program-by-program basis,
so you can recompile your program later using the REUSE
SETTINGS option. If you do not reuse the stored settings, or if
you explicitly define one or more settings, your current session
settings are used:

PLSQL_CCFLAGS
Contains a comma-delimited list of name:value pairs con‐
trolling conditional compilation. See “Conditional Compi‐
lation” on page 155 for more information.

PLSQL_CODE_TYPE
Controls whether interpreted or native code is created
during compilation. Valid values are INTERPRETED or
NATIVE. See “Performing Native Compilation of PL/SQL”
on page 163 for more information.

PLSQL_DEBUG
Controls whether or not the program will be instrumented
for debugging during compilation. Valid values are TRUE
or FALSE. When compiled for debugging, a program will
always be INTERPRETED and never NATIVE.

PLSQL_OPTIMIZE_LEVEL
Controls the level of optimization employed by the com‐
piler. Valid values are 0, 1, 2, or 3. See “Optimizing Com‐
piler” on page 161 for more information.

154 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

PLSQL_WARNINGS
Controls the level of warnings that the compiler will
report. See “Compiler Warnings” on page 158 for more
information.

NLS_LENGTH_SEMANTICS
Controls whether VARCHAR2 and CHAR datatypes are
defined with BYTE (default) or CHAR semantics.
NVARCHAR2, NCHAR, CLOB, and NCLOB datatypes
are always defined with CHAR semantics.

To recompile the procedure my_proc, explicitly setting the opti‐
mization level to 3, run the following:

ALTER PROCEDURE my_proc COMPILE PLSQL_OPTIMIZE_
LEVEL = 3;

Then to recompile it later with the saved settings, run the fol‐
lowing:

ALTER PROCEDURE my_proc COMPILE REUSE SETTINGS;

To view all of the stored compiler settings for your programs,
query the view USER_PLSQL_OBJECT_SETTINGS.

Conditional Compilation
Conditional compilation allows your programs to decide at
compile time which blocks of code will be implemented. You
can conditionally include code in the compiled program based
on the database version, environment, or other configurable
settings. There are three types of compiler directives available
for you to use:

Selection directives
Use the $IF directive to evaluate an expression and deter‐
mine which code should be included. For example:

Compilation | 155

www.it-ebooks.info

http://www.it-ebooks.info/

DECLARE
 emp_rec employees%ROWTYPE;
BEGIN
$IF DBMS_DB_VERSION.VER_LE_10_2 $THEN
 -- Legacy code
 SELECT employees_seq.NEXTVAL
 INTO emp_rec.employee_id FROM dual;
$ELSE
 -- Oracle Database 11g and higher
 emp_rec.employee_id := employees_seq.NEXTVAL;
$END
 INSERT INTO emp VALUES (emp_rec);
END;

Inquiry directives
Use the $$identifier directive to refer to conditional com‐
pilation flags (PLSQL_CCFLAGS). These inquiry direc‐
tives can be referenced in an $IF directive or independ‐
ently. For example:

ALTER SESSION SET PLSQL_CCFLAGS =
 'pl_debug:false, pl_trace_level:2';

CREATE OR REPLACE PROCEDURE extract_client_data
AS
BEGIN
$IF $$pl_debug OR $$pl_trace_level >= 2 $THEN
 DBMS_SUPPORT.START_TRACE
 (waits=>TRUE, binds=>TRUE);
$ELSIF $$pl_trace_level >= 1 $THEN
 DBMS_SUPPORT.START_TRACE
 (waits=>TRUE, binds=>FALSE);
$END
 NULL; -- code goes here
END extract_client_data;

Error directives
Use the $ERROR directive to force compilation errors if
your prerequisite conditions are not met. For example, I
want to make sure no one compiles a compute-intensive
program with a level below 2:

156 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

CREATE OR REPLACE PROCEDURE compute_intensive IS
BEGIN
$IF $$plsql_optimize_level < 2
$THEN
 $ERROR 'Must use full optimization!' $END
$END
 NULL;
END;

The settings that are available for use in these directives
include:

Compiler settings
PLSCOPE_SETTINGS, PLSQL_CCFLAGS,
PLSQL_DEBUG, PLSQL_WARNINGS, PLSQL_OPTI‐
MIZE_LEVEL, PLSQL_CODE_TYPE, and
NLS_LENGTH_SEMANTICS.

PLSQL_LINE (PLS_INTEGER literal)
The line number within the program or can be explicitly
defined with the PLSQL_CCFLAGS parameter.

PLSQL_UNIT (VARCHAR2 literal)
The name of the program being compiled. For anonymous
blocks, it is null. PLSQL_UNIT can also be explicitly
defined with the PLSQL_CCFLAGS parameter.

Static expressions defined in package specifications
These expressions cannot change when a package is
recompiled.

The PL/SQL compiler reads and interprets these directives,
generating the code to be implemented. To identify what has
actually been deployed in the compiled program, use the
DBMS_PREPROCESSOR package, as in the following exam‐
ple:

-- Compile with conditional compilation statements
CREATE OR REPLACE PROCEDURE my_cc_proc IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('DB Version is:'
 ||DBMS_DB_VERSION.VERSION||'r'

Compilation | 157

www.it-ebooks.info

http://www.it-ebooks.info/

 ||DBMS_DB_VERSION.RELEASE);
$IF DBMS_DB_VERSION.VER_LE_11 $THEN
 DBMS_OUTPUT.PUT_LINE('Version 11 code here');
$ELSIF DBMS_DB_VERSION.VER_LE_12 $THEN
 DBMS_OUTPUT.PUT_LINE('Version 12 code here');
$END
END;
/

-- Display the deployed code
BEGIN
 DBMS_PREPROCESSOR.PRINT_POST_PROCESSED_SOURCE
 ('PROCEDURE', USER, 'MY_CC_PROC');
END;

This displays the following text (note that whitespace is
preserved--and intentionally displayed here--to ensure line
numbers at runtime correspond to original source code):

PROCEDURE my_cc_proc IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('DB Version is:'
 ||DBMS_DB_VERSION.VERSION||'r'
 ||DBMS_DB_VERSION.RELEASE);
 DBMS_OUTPUT.PUT_LINE('Version 12 code here');

END;

Compiler Warnings
Compile-time warnings can help make your programs more
robust. These warnings highlight potential problems that are
not severe enough to raise an exception, but may result in run‐
time errors or poor performance. You can configure the com‐
piler to reject as an error any of these warnings. Warnings
result in the program compiling to a VALID status, but errors
result in an INVALID status.

To enable these warnings, you need to set the database initiali‐
zation parameter PLSQL_WARNINGS. This parameter can be
set globally in the SPFILE initialization file, in your session via

158 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

the ALTER SESSION statement, or with the built-in package
DBMS_WARNING.

The PLSQL_WARNINGS parameter is a comma-delimited list
of values, each of which has the syntax:

[ENABLE | DISABLE | ERROR] : [ALL | SEVERE |
INFORMATIONAL
| PERFORMANCE | warning_number]

For example, to enable all warnings in your session, execute:

ALTER SESSION SET plsql_warnings = 'enable:all';

If you want to configure warning message number 06009
(“OTHERS handler does not end in RAISE or RAISE_APPLI‐
CATION_ERROR”) as an error and enable all warnings in the
performance category except warning number 07202 (“Param‐
eter may benefit from use of the NOCOPY compiler hint”),
execute:

ALTER SESSION SET plsql_warnings =
 'error:06009'
 ,'enable:performance'
 ,'disable:07203';

To see what your current setting is, you can execute:

DBMS_OUTPUT.PUT_LINE
 (DBMS_WARNING.get_warning_setting_string());

Some examples of warnings follow (edited for space reasons):

SQL>ALTER SESSION SET plsql_warnings ='ENABLE:ALL';
Session altered.

SQL>CREATE OR REPLACE PROCEDURE bad_practice IS
 2 test_string VARCHAR2(32);
 3 BEGIN
 4 test_string := 'My demo program';
 5 EXCEPTION
 6 WHEN OTHERS THEN NULL;
 7 END;
 8 /

Compilation | 159

www.it-ebooks.info

http://www.it-ebooks.info/

Warning: Procedure created with compilation errors.

SQL>SHOW ERRORS
 LINE/COL ERROR
 ---- --
 4/1 PLW-07206: analysis suggests that the
 assignment to 'TEST_STRING' may be
 unnecessary

 6/6 PLS-06009: procedure "BAD_PRACTICE"
 OTHERS handler does not
 end in RAISE or RAISE_APPLICATION_ERROR

SQL> CREATE OR REPLACE PACKAGE create_policy IS
2 PROCEDURE proc_dec_page (dec_page IN OUT CLOB);
3 END create_policy;
4
/

SP2-0808: Package created with compilation warnings

SQL> SHOW ERRORS
Errors for PACKAGE CREATE_POLICY:

LINE/COL ERROR
---- --
2/32 PLW-07203: parameter 'DEC_PAGE' may benefit
 from use of the NOCOPY compiler hint

SQL> CREATE OR REPLACE PACKAGE BODY create_policy
IS
2 PROCEDURE process_dec_page (
3 dec_page IN OUT NOCOPY CLOB) IS
4 BEGIN
5 default_dec(dec_page);
6 END process_dec_page;
7 END create_policy;
8 /
SP2-0810: Package Body created with compilation
warnings

160 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

SQL> SHOW ERRORS
Errors for PACKAGE BODY CREATE_POLICY:

LINE/COL ERROR
--- ---
3/6 PLW-05000: mismatch in NOCOPY qualification
 between specification and body

SQL> CREATE OR REPLACE PROCEDURE dead_code IS
2 x NUMBER := 10;
3 BEGIN
4 IF x = 10 THEN
5 x := 20;
6 ELSE
7 x := 100; -- dead code
8 END IF;
9 END dead_code;
10 /
SP2-0804: Procedure created with compilation
warnings

SQL> SHOW ERRORS
Errors for PROCEDURE DEAD_CODE:

LINE/COL ERROR
---- --------------------------------------
7/7 PLW-06002: Unreachable code

Optimizing Compiler
PL/SQL’s optimizing compiler can improve runtime perfor‐
mance dramatically while imposing only a relatively slight
overhead at compile time. Fortunately, the benefits of optimiza‐
tion apply to both interpreted and natively compiled PL/SQL
because optimizations are applied by analyzing patterns in
source code.

The optimizing compiler is enabled by default. However, you
may want to alter its behavior, by either lowering its aggressive‐

Compilation | 161

www.it-ebooks.info

http://www.it-ebooks.info/

ness or disabling it entirely. For example, if, in the course of
normal operations, your system must perform recompilation of
many lines of code, or if an application generates many lines of
dynamically executed PL/SQL, the overhead of optimization
may be unacceptable. Note, however, that Oracle’s tests show
that the optimizer doubles the runtime performance of compu‐
tationally intensive PL/SQL.

In some cases, the optimizer may even alter program behavior.
One such case might occur in code written for Oracle9i Data‐
base, which depends on the relative timing of initialization sec‐
tions in multiple packages. If your testing demonstrates such a
problem, yet you want to enjoy the performance benefits of the
optimizer, you may want to rewrite the offending code or intro‐
duce an initialization routine that ensures the desired order of
execution.

The Orace database utilizes intra-unit inline optimization. This
optimization technique replaces a call to a subprogram with a
copy of the program, at compile time. The performance
improvement occurs because the subprogram does not have to
be loaded separately at runtime. This technique is especially
useful for short utility helper programs.

To change the optimizer settings, set the initialization parame‐
ter PLSQL_OPTIMIZE_LEVEL, either for your session with an
ALTER SESSION statement or for the database with an ALTER
SYSTEM statement. Valid settings are:

0
No optimization

1
Moderate optimization, such as eliminating superfluous
code or exceptions

2 (default)
Aggressive optimization beyond level 1, including
rearranging source code

162 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

3
Include inline subprogram optimization

You can also modify these settings for the current session; for
example:

ALTER SESSION SET PLSQL_OPTIMIZE_LEVEL = 0;

With optimization level 2, you can control inline optimization
with the INLINE pragma (see “Pragmas” on page 9). The syn‐
tax of the INLINE pragma is:

PRAGMA INLINE (program_name,'YES | NO');

YES requests the compiler to use inline optimization for calls to
program_name, while NO explicitly requests the compiler to
not use inline optimization for such calls. In the following
example, compiled with the default optimization level 2, calls to
the procedure P are requested to be inlined:

CREATE OR REPLACE PACKAGE BODY bi_util IS
 FUNCTION avg_sales(cust_id IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 -- inline calls to program P
 PRAGMA INLINE (P,'YES');
 p('Inside simulation');
 RETURN cust_id; -- simulation only
 END;
END bi_util;

Performing Native Compilation of PL/SQL
You can speed up many of your PL/SQL programs by compil‐
ing them into code native to the hardware rather than using the
default, system-independent compiled form (known as
DIANA). Using native compilation, you will realize the great‐
est performance gains with computer-intensive applications
and the least from programs that contain only declarations,
such as types and package specifications. Note, though, that if
you are working in development mode and need to compile a

Compilation | 163

www.it-ebooks.info

http://www.it-ebooks.info/

program with debug information, the native compilation fea‐
ture is not available. Follow these steps to compile a stored pro‐
gram natively:

ALTER SESSION SET PLSQL_CODE_TYPE = 'NATIVE';

1. Ensure that database (or session-level) parameter
PLSQL_OPTIMIZE_LEVEL is set to 2 or higher.

2. Set the database parameter PLSQL_CODE_TYPE to
NATIVE, or issue a session-level statement:

3. Recompile your stored program.

If you want to recompile all your stored programs natively, fol‐
low the step-by-step procedure in Oracle’s PL/SQL documenta‐
tion (search for “Compiling the Entire Database for PL/SQL
Native or Interprested Compilation”).

Java Language Integration
Java programmers can write server-side classes that invoke SQL
and PL/SQL using standard JDBC or SQLJ calls. PL/SQL pro‐
grammers can call server-side Java methods by writing a
PL/SQL cover or call spec for Java using Oracle database DDL.

Server-side Java in the database may be faster than PL/SQL for
computer-intensive programs, but not as nimble for database
access. PL/SQL is much more efficient for database-intensive
routines because, unlike Java, it doesn’t have to pay the over‐
head for converting SQL datatypes for use inside the stored
program. In my experience, the most common use of Java
stored procedures is to supplement functionality not provided
by Oracle built-ins (for example, to obtain a sorted listing of a
directory in the host filesystem).

Follow these steps to create a Java stored procedure (JSP):

1. Write or otherwise obtain functional Java code. Having
source code is not necessary, though, so you can use class
libraries from third parties. The classes must meet two

164 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

requirements: methods published to SQL and PL/SQL
must be declared static, because PL/SQL has no mecha‐
nism for instantiating nonstatic Java classes; and, the
classes must not issue any GUI calls (for example, to
AWT) at runtime.
If you write your own JSP and it needs to connect to the
database for access to tables or stored procedures, use
standard JDBC and/or SQLJ calls in your code. Many
JDBC and SQLJ reference materials are available to pro‐
vide assistance in calling SQL or PL/SQL from Java, but be
sure to review the product-specific documentation that
ships with your tool.

2. Once you have the Java class in hand, either in source
or .class file format, load it into the database. The databa‐
se’s loadjava command-line utility is a convenient way to
accomplish the load. Refer to the Oracle Java Developer’s
Guide for further assistance with loadjava.

3. Create a call spec for the Java method, specifying the AS
LANGUAGE JAVA clause of the CREATE statement
(described in “Publishing Java to PL/SQL” on page 166).
You may create a function or procedure cover as appropri‐
ate.

4. Grant EXECUTE privileges on the new JSP using GRANT
EXECUTE; PL/SQL routines can now call the JSP as if it
were another PL/SQL module.

Example
Let’s write a simple “Hello, World” JSP that will accept an argu‐
ment:

Java Language Integration | 165

www.it-ebooks.info

http://www.it-ebooks.info/

package oreilly.plsquick.demos;

public class Hello {
 public static String sayIt (String toWhom) {
 return "Hello, " + toWhom + "!";
 }
}

Saved in a file called Hello.java, the source code can be loaded
directly into the database. Doing so will compile the code auto‐
matically. Here is a simple form of the loadjava command:

loadjava -user scott/tiger oreilly/plsquick/demos/
Hello.java

The Hello.java file follows the Java file placement convention
for packages, and thus exists in a subdirectory named oreilly/
plsquick/demos.

We can fire up our favorite SQL interpreter, connect as
SCOTT/TIGER, and create the call spec for the Hello.sayIt()
method:

CREATE FUNCTION hello_there (to_whom IN VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'oreilly.plsquick.demos.Hello.sayIt
 (java.lang.String) return java.lang.String';

Now we can call our function very easily:

BEGIN
 DBMS_OUTPUT.PUT_LINE(hello_there('world'));
END;

And we get the following as the expected output:

Hello, world!

Publishing Java to PL/SQL
To write a call spec, use the AS LANGUAGE JAVA clause in a
CREATE statement. The syntax for this clause is:

166 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

{ IS | AS } LANGUAGE JAVA
 NAME 'method_fullname [(type_fullname,...]
 [RETURN type_fullname]'

method_fullname is the package-qualified name of the Java
class and method. It is case-sensitive and uses dots to separate
parts of the package’s full name. type_fullname is the package-
qualified name of the Java datatype. Notice that a literal string,
not a SQL identifier, follows the NAME keyword.

Type mapping follows most JDBC rules regarding the legal
mapping of SQL types to Java types. JDBC extensions exist for
Oracle-specific datatypes. Most datatype mappings are rela‐
tively straightforward, but passing database objects of a user-
defined type is harder than one would think. Oracle provides a
tool named JPublisher that generates the Java required to
encapsulate a database object and its corresponding REF. Refer
to Oracle’s JPublisher documentation for guidelines on usage.

The AS LANGUAGE JAVA clause is the same regardless of
whether you are using Java as a standalone JSP, the implemen‐
tation of a packaged program, or the body of an object type
method. For example, here is the complete syntax for creating
JSPs as PL/SQL-callable functions or procedures:

CREATE [OR REPLACE]
{ PROCEDURE procedure_name [(param[, param]...)]
 | FUNCTION function_name [(param[, param]...)]
 RETURN sql_type
}
[AUTHID {DEFINER | CURRENT_USER}]
[PARALLEL_ENABLE]
[DETERMINISTIC]
{ IS | AS } LANGUAGE JAVA
 NAME 'method_fullname [(type_fullname,...]
 [RETURN type_fullname]'

When using Java as the implementation of a packaged proce‐
dure or function, the database allows you to place the Java call
spec either in the package specification (where the call spec
substitutes for the subprogram specification) or in the package

Java Language Integration | 167

www.it-ebooks.info

http://www.it-ebooks.info/

body (where the call spec substitutes for the subprogram body).
Similarly, when using JSPs in object type methods, the Java call
spec can substitute for either the object type method specifica‐
tion or its body.

Note that Java functions typically map to PL/SQL functions,
but Java functions declared void map to PL/SQL procedures.
Also, you will quickly learn that mistakes in mapping PL/SQL
parameters to Java parameters become evident only at runtime.

Data Dictionary
To learn what Java library units are available in your schema,
look in the USER_OBJECTS data dictionary view where the
object_type is like “JAVA%”. If you see a Java class with INVA‐
LID status, it has not yet been resolved successfully. Note that
the names of the Java source library units need not match the
names of the classes they produce.

168 | Oracle PL/SQL Language Pocket Reference

www.it-ebooks.info

http://www.it-ebooks.info/

Index

Symbols
!= (inequality) operator, 7
" (double quotes), 4, 8
(pound sign), 3
$ (dollar sign)

in identifiers, 3
metacharacter, 99

% (attribute indicator), 8, 43
' (single quote), 4, 8
() (parentheses)

as delimiters, 5, 8
metacharacter, 100

* (asterisk)
metacharacter, 99
multiplication operator, 7

** (exponentiation) operator, 7
+ (plus sign)

addittion operator, 7
metacharacter, 99

, (comma), 8
- (subtraction) operator, 7
-- (single-line comment indica‐

tor), 8
. (period)

in collection methods, 75
component indicator, 8
in Java names, 167

metacharacter, 99
referencing record fields, 63
in TREAT expressions, 148
in triggers, 123

.. (range) operator, 8
/ (division) operator, 7
/* and */, for multiline comments,

8
: (host variable indicator), 8
:= (assignment) operator, 7, 22,

64
; (semicolon), statements and, 7,

48
< (less-than) operator, 7
<= (less-than-or-equal-to) opera‐

tor, 7
<> (angle brackets)

as delimiters, 5, 8
inequality operator, 7
nested table functions and, 72

= (equals sign)
comparing nested tables, 72
equality operator, 7

=> (association) operator, 8
> (greater-than) operator, 7
>= (greater-than-or-equal-to)

operator, 8

169

www.it-ebooks.info

http://www.it-ebooks.info/

? (question mark), metacharacter,
99

@ (remote database indicator), 8
[..] (collation element), metachar‐

acter, 100
[::] (character class), metachar‐

acter, 100
[==] (equivalence class), meta‐

character, 100
[] (square brackets)

as delimiters, 5
metacharacter, 100

\ (backslash), metacharacter, 99,
100

^ (caret), metacharacter, 99
^= (inequality) operator, 7
_ (underscore), 3
{} (curly braces)

as delimiters, 5
metacharacter, 99

|| (concatenation) operator, 7
~= (inequality) operator, 7
~| (vertical bar), metacharacter,

100

A
ABS built-in function, 93
ACCESSIBLE BY keyword, 153
ACCESS_ INTO_NULL excep‐

tion, 146
ACOS built-in function, 93
actual parameters, 111
addition (+) operator, 7
ADD_MONTHS built-in func‐

tion, 96
AFTER triggers, 123, 126
aggregate assignment technique ,

65, 123
AGGREGATE USING keyword,

154
ALTER SESSION statement, 158
ALTER trigger event, 122, 128
ALTER TYPE statement, 150

ANALYZE trigger event, 122, 128
anchored declarations, 22
AND operation and Boolean

datatype, 19
angle brackets <>

as delimiters, 5, 8
inequality operator, 7
nested table functions and, 72

anonymous blocks, 10
arguments, passing in parameter

lists, 110
AS LANGUAGE JAVA clause,

165, 167
ASCII built-in function, 87
ASCIISTR built-in function, 84,

87
ASIN built-in function, 93
assigning records, 64
assignment (:=) operator, 7, 22,

64
ASSOCIATE STATISTICS trigger

event, 122, 128
association (=>) operator, 8
associative arrays

about, 66
adding/removing elements,

71
collection methods used with,

77
comparing collection types,

67
declaring, 69
INDEX BY BINARY_INTE‐

GER, 66
INDEX BY VARCHAR2, 66
initializing, 70

asterisk (*)
metacharacter, 99
multiplication operator, 7

ATAN built-in function, 94
ATAN2 built-in function, 94
atomically null collections

170 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

COLLECTION_IS_NULL
exception, 77

nested tables, 67
VARRYs, 67

atomically null objects, 146
attribute indicator (%), 8, 43
attributes

explicit cursors, 43
implicit cursors, 45
object type specifications, 137

AUDIT trigger event, 122, 128
AUTHID CURRENT_USER key‐

word, 119
AUTHID keyword, 153
AUTONOMOUS_TRANSAC‐

TION pragma, 9, 39

B
backslash (\), metacharacter, 99,

100
BEFORE triggers, 123, 126
BFILE datatype, 19
BINARY_DOUBLE datatype, 6,

14
BINARY_FLOAT datatype, 6, 14
BINARY_INTEGER datatype, 14
bind variables, 51, 65
BIN_TO_NUM built-in function,

94
BITAND built-in function, 94
BLOB datatype, 20
block structure (PL/SQL pro‐

grams), 10-12
BOOLEAN datatype, 19
Boolean literals, 4
bracketing characters, 5
built-in functions, 70, 84-105
bulk binds and collections, 79-84
BULK COLLECT INTO clause ,

81
BULK COLLECT statement, 32
%BULK_EXCEPTIONS attribute,

80

C
cache, function result, 116-118
CALL syntax (ANSI SQL), 106
CARDINALITY function, 72
caret (^), metacharacter, 99
CASCADE keyword, 151
CASE expression, 27
case sensitivity for identifiers, 3
CASE statement, 26
CAST built-in function, 84, 96
CAST function, 72
CEIL built-in function, 94
CHAR datatype, 15
character datatypes, 15-17
character set (PL/SQL), 3, 16
CHARTOROWID built-in func‐

tion, 84
CHR built-in function, 87
CLOB datatype, 20
closing

cursor variables, 52
explicit cursors, 42

COALESCE function, 21
COLLECT function, 72
collections (PL/SQL)

adding/removing elements,
71

bulk binds and, 79-84
declaring, 69
disallowed datatypes, 70
initializing, 70-71
methods for, 75
nested collections, 79
nested table functions, 72-74
privileges and, 79
types of, 66-69

COLLECTION_IS_NULL excep‐
tion, 77

column/function name prece‐
dence, 136

comma (,), 8
COMMENT trigger event, 122,

128

Index | 171

www.it-ebooks.info

http://www.it-ebooks.info/

comments (PL/SQL)
about, 8
multiline indicator, 8
single-line indicator, 8

COMMIT FORCE statement, 37
COMMIT statement, 36, 134
comparison methods for object

types, 142-144
compilation

about, 152
compiler warnings, 158-161
conditional, 155-158
native, 163
optimizing compiler, 161-163
pragmas and, 9
settings, 154, 157

COMPOSE built-in function, 87
composite datatype, 12
compound triggers, 126
CONCAT built-in function, 87
concatenation (||) operator, 7
conditional compilation, 155-158
conditional control statements,

24-28
CONSTANT keyword, 22
constants, numeric literals, 6
constrained declarations, 21
constrained subtypes, 24
CONSTRUCTOR FUNCTION

syntax, 141
constructor methods, 141
constructors, 70
CONTINUE statement, 33-35
control statements

BOOLEAN datatype and, 19
conditional, 24-28
sequential, 28-29

conversion functions, 84
CONVERT built-in function, 84,

88
Coordinated Universal Time

(UTC), 17
COS built-in function, 94

COSH built-in function, 94
COUNT function, 76
CREATE keyword , 69
CREATE OR REPLACE TYPE

BODY statement, 152
CREATE trigger event, 122, 128
curly braces {}

as delimiters, 5
metacharacter, 99

CURRENT_DATE built-in func‐
tion, 96

CURRENT_TIMESTAMP built-
in function, 96

cursor expressions, 53
cursor FOR loop, 31, 42
cursor variables, 51
cursors (PL/SQL)

about, 40
dynamic, 40
explicit, 40
implicit, 44-47
static, 40

D
d BINARY_DOUBLE literal suf‐

fix, 5
dangling REFs and IS DAN‐

GLING predicate, 149
Data Control Language (DCL), 36
Data Definition Language (DDL)

dynamic cursors and, 40
events and triggers, 120, 121,

128
executing statements, 36

data dictionary views
USER_OBJECTS, 168
V$RESERVED_WORDS, 4
V$RESULT_CACHE, 117
V$TIMEZONE_NAMES, 18

database character set, 16
database events and triggers, 120,

121, 128
database interaction, 35-40

172 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

datatypes
datetime interval, 6
disallowed for collections, 70
implicit conversions, 20
LOB, 19
mapping, 167
numeric literals, 5
of parameters, 109
program data and, 12-20

date and time functions, 96-99
DATE datatype, 17
datetime datatypes, 17-18
datetime interval literals, 6
DBMS_LOB package, 19
DBMS_OUTPUT package, 27,

117, 131
DBMS_PREPROCESSOR pack‐

age, 157
DBMS_RESULT_CACHE pack‐

age, 117
DBMS_SQL package, 50

TO_CURSOR_NUMBER
function, 50

TO_REFCURSOR function,
50

DBMS_TRANSACTION.COM‐
MIT_FORCE procedure, 37

DBMS_UTILITY package, 60-61
DBMS_WARNING package, 159
DBTIMEZONE built-in function,

96
DB_ROLE_CHANGE trigger

event, 122
DCL (Data Control Language), 36
DDL (Data Definition Language)

dynamic cursors and, 40
events and triggers, 120, 121,

128
executing statements, 36

DDL trigger event, 122
DEC datatype, 13
DECIMAL datatype, 13
decimal numeric datatypes, 13

declarations
anchored, 22
collections, 69
constraining datatypes, 21
exceptions, 55
explicit cursors, 41
forward, 114
local programs, 112
records, 62
variables, 21-23

DECODE function, 84
DECOMPOSE built-in function,

88
DEFAULT keyword, 22
default values

functions setting, 108
for parameters, 110
for variables, 22

definer rights, 119
DELETE function, 72
DELETE procedure, 76
DELETE trigger event, 121
DELETING trigger predicate, 125
delimiters (PL/SQL), 7
DEREF operator, 149
DETERMINISTIC keyword, 153
DETERMINISTIC pragma, 10
DISABLE keyword, 124
DISASSOCIATE STATISTICS

trigger event, 122, 128
DISTINCT keyword , 73
division (/) operator, 7
DML events and triggers, 120,

121, 125-128
DML, records and, 65
dollar sign ($)

in identifiers, 3
metacharacter, 99

dot notation (see entries under
period (.))

DOUBLE PRECISION datatype,
13

double quotes ("), 4

Index | 173

www.it-ebooks.info

http://www.it-ebooks.info/

downcasting supertypes, 147-150
DROP trigger event, 122, 128
dynamic cursors, 40
dynamic method dispatch

(dynamic polymorphism),
145

dynamic SQL, 48-50

E
equals sign (=)

comparing nested tables, 72
equality operator, 7

exception handling
about, 54
built-in list of exceptions, 55
bulk binds and collections, 80
declaring exceptions, 55
propagating exceptions, 58
raising exceptions, 57
scope of, 58

EXCEPTION_CODE field, 80
EXCEPTION_INDEX field, 80
EXCEPTION_INIT pragma, 9, 56
EXEC command (SQL *Plus), 106
EXECUTE IMMEDIATE state‐

ment, 48
EXECUTE privileges

for collections, 79
for JSPs, 165
for packages, 130, 133
for programs, 118

EXISTS function, 76
EXIT statement, 30, 33
EXIT WHEN statement, 30
EXP built-in function, 94
explicit cursors

about, 40
attributes of, 43
closing, 42
declaring, 41
fetching from, 42
opening, 41

exponentiation (**) operator, 7

EXTEND function, 68, 71
EXTEND procedure, 76
EXTRACT built-in function, 96

F
f BINARY_FLOAT literal suffix, 5
FALSE value, 19
FETCH FIRST clause, 82
FETCH INTO statement

assigning records, 64
BULK COLLECT INTO

clause and, 81
manipulating objects, 146

FETCH statement, 38, 42, 52
fields of records

about, 62
DML and, 65
referencing, 63

FINAL keyword, 138, 140, 145,
151

FIRST function, 76
FLOAT datatype, 13
FLOOR built-in function, 94
FOLLOWS keyword, 124
FOR EACH ROW statement, 124
FOR loops, 31-32, 42
FORALL statement, 32, 79-81
FORCE option, 152
formal parameters, 111
forward declarations, 114
%FOUND attribute, 43, 83
FROM_TZ built-in function, 85,

97
function result cache, 116-118
functions

about, 105, 107
built-in, 70, 84-105
column/function name prece‐

dence, 136
conversion functions, 84
date and time funcitons,

96-99

174 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

improving performance of,
136

nested table functions, 72-74
numeric functions, 93-96
regular expression, 99-104
RETURN clause in, 107
stored functions, 134-137
string functions, 87
table functions, 115

G
Gennick, Jonathan, 105
GOTO statement, 28
GRANT EXECUTE statement,

165
GRANT INHERIT PRIVILEGE

statement, 120
GRANT trigger event, 122, 128
greater-than (>) operator, 7
greater-than-or-equal-to (>=)

operator, 8
GREATEST built-in function, 88,

94
Greenwich Mean Time, 17

H
HEXTODRAW built-in function,

85
host variable indicator (:), 8

I
identifiers (PL/SQL), 3
IEEE floating-point storage types,

13, 14, 114
IF-THEN-ELSE statements, 24
implicit cursors, 44-47
implicit datatype conversions, 20
IN function, 72
IN OUT parameters, 109
IN parameters, 109, 135
INDEX BY BINARY_INTEGER

associative array, 66

INDEX BY VARCHAR2 associa‐
tive array, 66

INDICES OF keyword, 80
inequality operators, 7
INHERIT PRIVILEGES feature,

119
INITCAP built-in function, 88
initializing

objects, 146
packages, 133

initializing collections, 70-71
INLINE pragma, 9, 163
INSERT trigger event, 121
INSERTING trigger predicate,

125
INSTANTIABLE keyword, 138,

140, 152
INSTR built-in function, 88
INT datatype, 14
INTEGER datatype, 6, 14
INTERSECT set operation, 73
INTERVAL DAY TO MINUTE

datatype, 7
INTERVAL DAY TO SECOND

datatype, 7, 18
INTERVAL HOUR datatype, 6
INTERVAL HOUR TO SECOND

datatype, 7
INTERVAL keyword, 6
INTERVAL MONTH datatype, 6
INTERVAL YEAR TO MONTH

datatype, 6, 18
intra-unit inline optimization,

162
INVALID NUMBER exception,

20
INVALIDATE keyword, 151
INVALID_CURSOR exception,

43
invoker rights model, 119
IS A SET function, 73
IS EMPTY function, 73
IS NOT A SET function, 73

Index | 175

www.it-ebooks.info

http://www.it-ebooks.info/

IS NOT EMPTY function, 73
IS NULL/IS NOT NULL syntax,

20
ISOLATION LEVEL SERIALIZ‐

ABLE transaction control
function, 38, 134

%ISOPEN attribute, 43

J
Java language

call specs for , 139, 164, 164,
165, 167

data dictionary views, 168
object types and, 139, 168
publishing Java to PL/SQL,

166
writing simple JSP, 165

Java stored procedures (JSPs),
164-166

JPublisher tool, 167
JSPs (Java stored procedures),

164-166

K
keywords

datetime interval datatypes, 6
DISABLE, 124
pragmas, 9
RESULT_CACHE, 118

L
labels for loops, 35
language fundamentals (PL/SQL),

3-12
large object (LOB) datatypes, 19
LAST function, 76
LAST_DAY built-in function, 97
LEAST built-in function, 89, 94
LENGTH built-in function, 89
less-than (<) operator, 7
less-than-or-equal-to (<=) opera‐

tor, 7

LIMIT function, 76
Linsley, Peter, 105
lists, delimiters for, 8
literals (PL/SQL), 4-7
LN built-in function, 94
loadjava command-line utility,

165
LOB (large object) datatypes, 19
local programs, 112
LOCALTIMESTAMP built-in

function, 97
LOCK TABLE statement, 38
locking rows in result sets, 46
LOG built-in function, 94
LOGOFF trigger event, 123, 128
LOGON trigger event, 123, 128
LONG datatype, 16, 123
LONG RAW datatype, 16, 123
loops

about, 30-33
CONTINUE statement, 33-35
EXIT statement, 33
labels for, 35

LOWER built-in function, 89
LPAD built-in function, 89
LTRIM built-in function, 89

M
MAP method, 139, 144
mapping datatypes, 167
match modifiers for regular

expressions, 104
MEMBER keyword, 140
MEMBER OF function, 73
metacharacters supported by

Oracle, 99
methods

collection, 75
comparison, 142
constructor, 141
in subtypes, 144-146
types of, 140-144

MINUS set operation, 73

176 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

MOD built-in function, 95
modes of parameters, 109
MONTHS_BETWEEN built-in

function, 97
multiplication (*) operator, 7
MULTISET built-in function, 85
MULTISET EXCEPT function, 73
MULTISET function, 72
MULTISET INTERSECT func‐

tion, 73
MULTISET UNION function, 73
mutual recursion, 114

N
NAME keyword, 167
named blocks, 10
named notation, 8, 42, 111
named program units, 105
NANY built-in function, 95
national character set (NLS), 16
native dynamic SQL (NDS),

48-50
NATURAL datatype, 14
NATURALN datatype, 14
NCHAR datatype, 16
NCHAR delimiter, 5, 8
NCHR built-in function, 90
NCLOB datatype, 20
NDS (native dynamic SQL),

48-50
nested collections, 79
nested cursors, 53
nested tables

about, 67
adding/removing elements,

71
collection methods and, 78
comparing collection types,

67
declaring, 69
functions for, 72-74
initializing, 70

NEW_TIME built-in function, 97

NEXT function, 76
NEXT_DAY built-in function, 97
NLS (national character set), 16
NLSSORT built-in function, 91
NLS_INITCAP built-in function,

90
NLS_LENGTH_SEMANTICS

setting, 155
NLS_LOWER built-in function,

90
NLS_UPPER built-in function, 90
NOAUDIT trigger event, 122, 128
NOCOPY option, 110
NOT A MEMBER OF function,

73
NOT FINAL keyword, 140, 145,

151
NOT IN function, 72
NOT INSTANTIABLE keyword,

140, 145, 152
NOT NULL constraint, 22, 70
NOT operation and Boolean

datatype, 19
NOT SUBMULTISET OF func‐

tion, 73
NOT SUBSTITUTABLE key‐

word, 151
%NOTFOUND attribute, 43, 84
NOWAIT keyword

LOCK TABLE statement and,
38

SELECT FOR UPDATE
clause and, 47

UPDATE statement, 40
NO_DATA_FOUND exception,

44
nq' programmer-defined delim‐

iter, 5, 8
NULL statement, 29
NULLs in PL/SQL

about, 20
atomically null collections, 67,

77

Index | 177

www.it-ebooks.info

http://www.it-ebooks.info/

atomically null objects, 146
BOOLEAN datatype and, 19

NUMBER datatype, 6, 13
NUMERIC datatype, 13
numeric datatypes, 13-15
numeric FOR loop, 31
numeric functions, 93-96
numeric literals, 5
NUMTODSINTERVAL built-in

function, 85, 97
NUMTOYMINTERVAL built-in

function, 85, 97
NVARCHAR delimiter, 5
NVARCHAR2 datatype, 16
NVL function, 21

O
object identifiers (OIDs)

about, 137
encapsulated by REF opera‐

tor, 148
referencing persistent objects

using, 150
object types

about, 105, 137
changing, 150-152
comparison methods for,

142-144
initializing objects, 146
manipulating, 146
syntax for creating body, 139
syntax for creating specifica‐

tion, 137-139
object-oriented features

about, 137
changing object types,

150-152
manipulating objects, 146
methods and, 140-144
methods in subtypes, 144-146
object types and, 137
type inheritance, 140

upcasting and downcasting,
147-150

OFFSET clause, 82
OIDs (object identifiers)

about, 137
encapsulated by REF opera‐

tor, 148
referencing persistent objects

using, 150
OPEN FOR statement , 50
operators (see delimiters (PL/

SQL))
optimizing compiler, 161-163
OR operation and Boolean data‐

type, 19
OR REPLACE keyword

creating stored programs, 153
rebuilding existing collection

types, 69
rebuilding existing packages,

130
ORA-00054 exception, 39, 47
ORA-04098 exception, 124
ORA-06511 exception, 42
ORA-1456 error, 38
ORA-nnnnn (list of built-in

exceptions), 55
Oracle PL/SQL Programming,

110
Oracle Regular Expressions

Pocket Reference, 105
ORDER method, 139, 144
OUT parameters, 109
overloading

member methods, 139
programmer-defined con‐

structors, 141
programs, 113

OVERRIDING keyword, 144

P
package body

about, 129

178 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

placing Java call specs in, 167
syntax for, 130

package data, 131
package specification

about, 129
placing Java call specs in, 167
syntax for, 129

packaged functions, calling, 132
packages

about, 105, 129
initializing, 133
referencing elements of, 131
structure of, 129-130

PARALLEL_ENABLE keyword,
153

PARALLEL_ENABLE pragma, 10
parameters

about, 108
datatypes of, 109
default values for, 110
modes of, 109
passing arguments, 110
program overloading, 113

parentheses ()
as delimiters, 5, 8
metacharacter, 100

passing parameters by reference,
110

period (.)
in collection methods, 75
component indicator, 8
in Java names, 167
metacharacter, 99
in TREAT expressions, 148
in triggers, 123

persistent objects, 137, 150
PGA (Process Global Area), 133
PIPELINED keyword, 153
PLSQL_CCFLAGS setting, 154
PLSQL_CODE_TYPE setting,

154, 164
PLSQL_DEBUG setting, 154

PLSQL_OPTIMIZE_LEVEL set‐
ting, 154, 162

PLSQL_WARNINGS setting, 155,
159

PLS_INTEGER datatype, 13, 14
plus sign (+)

addition operator, 7
metacharacter, 99

positional notation, 42, 111
POSITIVEN datatype, 14
POSITVE datatype, 14
pound sign (#), 3
POWER built-in function, 95
PRAGMA keyword, 9
precedence, column/function

name, 136
predicates, trigger, 125
PRIOR function, 76
privileges and stored PL/SQL,

118-120
procedures (PL/SQL), 105, 106
Process Global Area (PGA), 133
program data, types of, 12-19
program overloading, 113
propagating exceptions, 58
publishing Java to PL/SQL, 166
PUT_LINE procedure , 113

Q
q' programmer-defined delimiter,

4, 8
queries, multirow, 48
question mark (?), metacharacter,

99

R
RAISE statement, 57
RAISE_APPLICATION_ ERROR

function, 57
raising exceptions, 57
range (..) operator, 8
RAW datatype, 16

Index | 179

www.it-ebooks.info

http://www.it-ebooks.info/

RAWTOHEX built-in function,
85

READ ONLY transaction control
function, 37, 134

REAL datatype, 13
records (PL/SQL)

about, 62
assigning, 64
declaring, 62
DML and, 65
nested, 66
referencing fields of, 63

recursion, mutual, 114
REF object type, 70
REF operator, 148
reference datatype, 13
referencing

fields of records, 63
package elements, 131
persistent objects, 150

REFERENCING clause , 123
REFTOHEX built-in function, 85
REF_CURSOR type , 51
REGEXP_COUNT function, 100
REGEXP_INSTR function, 91,

101
REGEXP_LIKE function, 91, 101
REGEXP_REPLACE function, 91,

91, 104
REGEXP_SUBSTR function , 102
regular expressions, 99-105
REMAINDER built-in function,

95
remote database indicator (@), 8
RENAME trigger event, 123, 128
REPEAT UNTIL loop emulation,

33
REPLACE built-in function, 91
reserved words, 3
RESTRICT_REFERENCES

pragma, 10
RESULT_CACHE feature,

116-118

RETURN clause in functions, 107
RETURNING clause, 45, 83
REUSE SETTINGS option, 154
REVERSE keyword , 31
REVOKE statement, 119
REVOKE trigger event, 123, 128
ROLLBACK statement

about, 37
exceptions and transactions,

62
executing stored functions,

134
ROUND built-in function, 95, 97
row objects, retrieving, 149
row-level triggers, 124
%ROWCOUNT attribute, 43, 83
ROWDTOCHAR built-in func‐

tion, 85
ROWDTONCHAR built-in func‐

tion, 85
ROWID datatype, 16
%ROWTYPE attribute

anchoring declarations, 22
declaring records, 62
DML and, 65

RPAD built-in function, 91
RTRIM built-in function, 91

S
SAVE EXCEPTIONS keyword, 80
SAVEPOINT statement, 37
scalar datatypes, 13-19, 22-24
scope of exceptions, 58
searched CASE expression , 28
searched CASE statement, 26
SELECT FOR UPDATE clause, 46
SELECT INTO statement

assigning records, 64
BULK COLLECT INTO

clause and, 81
manipulating objects, 146

SELECT statement
cursor FOR loop and, 32

180 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

explicit cursors and, 40
implicit cursors and, 44
read-only transactions and,

38
static cursors and, 40
WHERE clause and, 47
WITH clause, 136

SELF parameter, 141
semicolon (;), statements and, 7,

48
sequences (PL/SQL), 36
sequential control statements,

28-29
SERIALLY_REUSABLE pragma,

10, 132
SERVERERROR trigger event,

123, 128
SESSIONTIMEZONE built-in

function, 97
SET function, 73
SET ROW keyword, 65
SET TRANSACTION statement,

37
SGA (System Global Area), 116,

133
SHUTDOWN trigger event, 123,

128
SIGN built-in function, 95
SIGNTYPE datatype, 14
simple CASE expression, 27
SIMPLE_INTEGER datatype, 14
SIN built-in function, 95
single quote ('), 4, 8
SINH built-in function, 95
SMALLINT datatype, 14
SOUNDEX built-in function, 91
SQL injection, 51
SQL%BULK_EXCEP‐

TIONS.COUNT method, 80
SQL%BULK_ROWCOUNT

attribute, 45, 83
SQL%FOUND attribute, 45
SQL%ISOPEN attribute, 45

SQL%NOTFOUND attribute, 45
SQL%ROWCOUNT attribute, 45
SQLCODE function, 60-61, 80
SQLERRM function, 61
SQRT built-in function, 95
square brackets []

as delimiters, 5
metacharacter, 100

STARTUP trigger event, 123, 128
statements (PL/SQL)

about, 10
bind variables and, 51
control, 19, 24-29
delimiters for, 7
loops and, 30-35

static cursors, 40
STATIC keyword, 141
stored functions

calling from SQL statements,
134

requirements for calling in
SQL, 134

syntax for calling from SQL,
134

stored programs
compiling, 152
compiling natively, 163

string functions, 87
string literals, 4, 8
SUBMULTISET OF function, 73
SUBSTITUTABLE keyword, 151
SUBSTR built-in function, 92
subtraction (-) operator, 7
subtypes (object), 140, 144-146,

147-150
subtypes (scalar), 13-16, 23
supertypes

downcasting, 147-150
overriding, 144

SUSPEND trigger event, 123, 128
SYSDATE built-in function, 97
System Global Area (SGA), 116,

133

Index | 181

www.it-ebooks.info

http://www.it-ebooks.info/

SYSTIMESTAMP built-in func‐
tion, 98

SYS_EXTRACT_UTC built-in
function, 98

SYS_REFCURSOR type, 52

T
TABLE built-in function, 85
table functions, 115
TAN built-in function, 95
TANH built-in function, 96
terminator (;), 7
time functions (see date and time

functions)
TIMESTAMP datatype, 17
TIMESTAMP WITH LOCAL

TIME ZONE datatype, 18
TIMESTAMP WITH TIME

ZONE datatype, 17
TOO_MANY_ROWS exception,

44
TO_BINARY_DOUBLE built-in

function, 85
TO_BINARY_FLOAT built-in

function, 85
TO_CHAR/TO_NCHAR built-in

functions, 86, 92, 98
TO_CLOB/TO_NCLOB built-in

functions, 86
TO_DATE built-in function, 86,

98
TO_DSINTERVAL built-in func‐

tion, 86, 98
TO_LOB built-in function, 86
TO_MULTI_BYTE built-in func‐

tion, 86, 92
TO_NUMBER built-in function,

86
TO_RAW built-in function, 86
TO_SINGLE_BYTE built-in

function, 86, 92
TO_TIMESTAMP built-in func‐

tion, 86, 98

TO_TIMESTAMP_TZ built-in
function, 86, 98

TO_YMINTERVAL built-in func‐
tion, 86, 98

transaction management
about, 36-40
autonomous transactions, 9,

39
exceptions and, 61

transient objects, 137
TRANSLATE built-in function,

92
TRANSLATE_USING built-in

function, 87, 93
TREAT operator, 147
triggers

about, 105, 120
compound, 126
creating, 121-124
disabling/enabling, 124
predicates, 125
row-level, 124

TRIM function, 68, 72, 93
TRIM procedure, 76
TRUE value, 19
TRUNC built-in function, 96, 98
TRUNCATE trigger event, 123,

128
truth tables, 19
%TYPE attribute, 22
TYPE statement, 63, 69
TZ_OFFSET built-in function, 99

U
UDF pragma, 10, 136
UGA (User Global Area), 133
unconstrained subtypes, 23
underscore (_), 3
Unicode character datatypes, 16
UNION set operation, 73
UNISTR built-in function, 87, 93
upcasting subtypes, 147-150
UPDATE statement, 40

182 | Index

www.it-ebooks.info

http://www.it-ebooks.info/

UPDATE trigger event, 121
UPDATING trigger predicate,

125
UPPER built-in function, 93
UROWID datatype, 16
USE ROLLBACK SEGMENT

transaction control function,
38

User Global Area (UGA), 133
USER_OBJECTS data dictionary

view, 168
UTC (Coordinated Universal

Time), 17
UTL_CALL_STACK package, 61
UTL_FILE package, 55, 117
UTL_REF package, 149

V
V$RESERVED_WORDS data

dictionary view, 4
V$RESULT_CACHE data dictio‐

nary views, 117
V$TIMEZONE_NAMES data

dictionary view, 18
VALUE operator, 149
VALUES OF keyword, 80
VARCHAR2 datatype, 15, 22

variables
about, 12
assigning fields to, 65
bind variables , 51, 65
cursor variables, 51
declaring, 21-23
default values of, 22
manipulating, 146
program data and, 12

VARRAYs
about, 67
adding/removing elements,

71
comparing collection types,

67
declaring, 69
initializing, 70

W
WHEN clause, 26
WHEN OTHERS clause, 59
WHERE CURRENT OF clause,

47
WHILE loop, 32
whitespace, 3, 158
WITH clause, 136
WORK keyword, 36

Index | 183

www.it-ebooks.info

http://www.it-ebooks.info/

	Copyright
	Table of Contents
	Oracle PL/SQL Language Pocket Reference
	Introduction
	Acknowledgments
	Conventions

	PL/SQL Language Fundamentals
	PL/SQL Character Set
	Identifiers
	Boolean, Numeric, and String Literals
	Numeric Literals
	Datetime Interval Literals
	Delimiters
	Comments
	Pragmas
	Statements
	Block Structure

	Variables and Program Data
	Scalar Datatypes
	LOB Datatypes
	Implicit Datatype Conversions
	NULLs in PL/SQL
	Declaring Variables
	Anchored Declarations
	Programmer-Defined Subtypes

	Conditional and Sequential Control
	Conditional Control Statements
	Sequential Control Statements

	Loops
	Simple Loop
	Numeric FOR Loop
	Cursor FOR Loop
	WHILE Loop
	“Repeat Until” Loop Emulation
	EXIT Statement
	CONTINUE Statement
	Loop Labels

	Database Interaction
	Sequences in PL/SQL
	Transaction Management
	Autonomous Transactions

	Cursors in PL/SQL
	Explicit Cursors
	Implicit Cursors
	Native Dynamic SQL
	DBMS_SQL
	SQL Injection and Bind Variables
	Cursor Variables
	Cursor Expressions

	Exception Handling
	Declaring Exceptions
	Raising Exceptions
	Scope
	Propagation

	Records in PL/SQL
	Declaring Records
	Referencing a Record’s Fields
	Assigning Records
	Records and DML
	Nested Records

	Collections in PL/SQL
	Declaring a Collection
	Initializing a Collection
	Adding and Removing Elements
	Nested Table Functions
	Collection Methods
	Collections and Privileges
	Nested Collections
	Bulk Binds

	Built-in Functions and Packages
	Built-in Functions
	Built-in Regular Expression Functions

	Stored Procedures and Functions
	Procedures
	Functions
	Parameters
	Local Programs
	Program Overloading
	Forward Declarations
	Table Functions
	Function Result Cache
	Privileges and Stored PL/SQL

	Triggers
	Creating Triggers
	Trigger Predicates
	DML Events
	Compound DML Triggers
	DDL Events
	Database Events

	Packages
	Package Structure
	Referencing Package Elements
	Package Data
	SERIALLY_REUSABLE Pragma
	Package Initialization

	Calling PL/SQL Functions in SQL
	Calling a Function
	Improving Performance of Calling PL/SQL Functions from SQL
	Column Name Versus Function Name Precedence

	Object-Oriented Features
	Object Types
	Type Inheritance
	Methods
	Methods in Subtypes
	Manipulating Objects in PL/SQL and SQL
	Upcasting and Downcasting
	Changing Object Types

	Compilation
	Compiling Stored PL/SQL Programs
	Conditional Compilation
	Compiler Warnings
	Optimizing Compiler
	Performing Native Compilation of PL/SQL

	Java Language Integration
	Example
	Publishing Java to PL/SQL
	Data Dictionary

	Index

