
Android forensics

boot process, security,
system, rooting, dumping,

analysis, etc.

Android and mobile forensics
• Any interaction with the smartphone will change the

device in some way
– Use judgment, explain modifications and choices made

• Further complicating Android forensics is the sheer variety
of devices, Android versions, and applications
– The permutations of devices and Android versions alone

are in the thousands and each device plus platform has
unique characteristics

• While a logical analysis of every Android phone is
achievable, the vast combinations make the full physical
acquisition of every Android device likely unachievable
– Even a minor difference in the Android version may require

extensive testing and validation
• However the open source aspect of Android greatly

assists in the fundamental understanding a forensic
analyst requires, making Android an ideal platform to work
on

At least 5 MF of SoC
- Samsung
- Qualcomm
- MediaTek
- Intel (x86)
- nVidia
- Texas Instruments
- ST-Ericsson

Android hardware platforms

NFC
A-GPS

ROM and bootloaders
• Android devices, like any other computer, have a fairly standard

boot process which allows the device to load the needed
firmware, OS, and user data into memory to support full
operation

• Although the boot process itself is well defined, the firmware
and ROM varies by manufacturer and by device

• OMAP35x Technical Reference Manual (Rev. X), page 3399 ->
– http://www.ti.com/product/omap3530

Android boot process 1
Power on and boot ROM code execution

• A.
The Boot ROM code will detect the
boot media using a system register
that maps to some physical balls on
the ASIC. This is to determine where
to find the first stage of the bootloader.

• B.
Once the boot media sequence is
established the Boot ROM will try to
load the first stage bootloader to
internal RAM.

• Once the bootloader is in place the
Boot ROM code will perform a jump
and execution continues in the
bootloader.

• Mobile platforms and embedded systems has some differences compared to Desktop
systems in how they initially start up.

• At power on the CPU will be in a state where no initializations have been done. Internal
clocks are not set up and the only memory available is the internal RAM.

• When power supplies are stable the execution will start with the Boot ROM code. This is
a small piece of code that is hardwired in the CPU ASIC (Application Specific Integrated
Circuit).

Android boot process 2
The bootloader

• C. The second stage of the bootloader is the first
major program that will run. This may contain
code to set up file systems, additional memory,
network support and other things. On a mobile
phone it may also be responsible for loading
code for the modem CPU and setting up low
level memory protections and security options.

• D. Once the bootloader is done with any special
tasks it will look for a Linux kernel to boot. It will
load this from the boot media (or some other
source depending on system configuration) and
place it in the RAM. It will also place some boot
parameters in memory for the kernel to read
when it starts up.

• E. Once the bootloader is done it will perform a
jump to the Linux kernel, usually some
decompression routine, and the kernel assumes
system responsibility.

• The bootloader is a special program separate from the Linux kernel that is used to set up
initial memories and load the kernel to RAM. On desktop systems the bootloaders are
programs like GRUB. In embedded Linux uBoot is often the bootloader of choice. Device
manufacturers often use their own proprietary bootloaders.

A. The first bootloader stage will detect and set up external RAM.
B. Once external RAM is available and the system is ready the to run something more significant the

first stage will load the main bootloader and place it in external RAM.

Android boot process 3
The Linux kernel

• A.
Once the memory management
units and caches have been
initialized the system will be able
to use virtual memory and launch
user space processes.

• B.
The kernel will look in the root file
system for the init process (found
under /system/core/init in the
Android open source tree) and
launch it as the initial user space
process.

• The Linux kernel starts up in a similar way on Android as on other
systems. It will set up everything that is needed for the system to run.
Initialize interrupt controllers, set up memory protections, caches and
scheduling.

Android boot process 4
The init process

A.
The init process in Android will
look for a file called init.rc. This
is a script that describes the
system services, file system and
other parameters that need to
be set up.

The init.rc script is placed in
/system/core/ rootdir in the
Android open source project.

B.
 The init process will parse the

init script and launch the system
service processes.

• The init process is the “grandmother” of all system processes. Every
other process in the system will be launched from this process or one
of its descendants.

Android boot process 5
Zygote and Dalvik

• The Zygote is launched by the init process and will basically just start
executing and initialize the Dalvik VM (so .dex files can run)
– Zygote also loads up system libraries
– If the Zygote finds out that a new app is starting
– Zygote forks the process, in this way giving all Dalvik VMs

(and apps) access to system libraries

The birth of a Android apk program

fork()
if (child) {
 load the app java class
 run it
}
/* I'm parent */
wait and check if it's okay

Android boot process 6 and 7
The system server

• The system server is the first java component to run in the system. It
will start all the Android services such as telephony manager and
bluetooth etc.

• Start up of each service is currently written directly into the run method
of the system server.

• 7. Boot completed
• Once the System Server is up

and running and the system boot
has completed there is
a standard broadcast action
called:
ACTION_BOOT_COMPLETE

• To start your own service. For
example register an alarm or
otherwise make your application
perform some action after boot
you should register to receive
this broadcast intent.

Google I/O 2014 - The ART runtime
http://www.anandtech.com/show/8231/a-closer-look-at-android-

runtime-art-in-android-l
https://www.youtube.com/watch?v=EBlTzQsUoOw

Android SDK and ADB
• The Android software development kit (SDK) provides developer

tools, documentation and utilities that can assist significantly in the
forensic or security analysis of a device
– The ADB (Android Debug Bridge) is essential to understand
– USB debugging turns on the adbd daemon on device which runs as root

if device is rooted, otherwise as an user with only needed privileges
– http://developer.android.com/tools/help/adb.html#commandsummary

• Forensic analysts and security engineers can learn about Android and
how it operates by leveraging the emulator and examining the
network, file system, and data artifacts

• AVD files
– <users-home/username>/.android
– System-images in SDK folder

• Dalvik VM
– Decompile and reverse engineer

.dex files
• NDK (Native Developer Kit)

– Cross-compiled code – tools etc.

Android OS (architecture)
http://source.android.com/devices/tech/index.html

Android Core OS
http://arstechnica.com/gadgets/2014/11/android-5-0-lollipop-

thoroughly-reviewed/

Android security approach 0?

Android security approach 1
Strong base – The Linux level sandbox
And the developers digital signature

Android security approach 2

Permissions and Community/Peer review
- checked at install time
Real-time permission system
- checked at run-time
- users can revoke
 permissions
 anytime at will
 via app settings

Android security approach 3

• The ”Bouncer” scanning all apps on Google Play
– Using tech from virustotal etc.
– Simulating apps running on device

• Remotely malware removal
– Cleaning users devices from remote
– http://android-developers.blogspot.se/2010/

06/exercising-our-remote-application.html

• Settings > Security > Verify apps
– From Android 4.2 Jelly Bean
– Scan apps which are ”side loaded”
– http://support.google.com/nexus/bin/answer.py?hl=en&answer

=2812636&topic=2812015&ctx=topic
• From Android 4.4 SELinux is in enforcing mode

– http://selinuxproject.org

http://android-developers.blogspot.se/
http://support.google.com/nexus/bin/answer.py?hl=en&answer=2812636&topic=2812015&ctx=topic
http://support.google.com/nexus/bin/answer.py?hl=en&answer=2812636&topic=2812015&ctx=topic

Android security approach 4

• From Android 5 SELinux is in full enforcing mode
– In short, Android is shifting from enforcement on a limited set of

crucial domains (installd, netd, vold and zygote) to everything
(more than 60 domains)

• Default encryption by vold
– New Android 5 devices is encrypted at first boot and cannot be

returned to an unencrypted state
• Howto disable encryption: http://www.xda-

developers.com/android/disable-data-encryption-nexus-6/

– Devices upgraded to Android 5 and then encrypted may be
returned to an unencrypted state by factory data reset

• Dm-verity (full support in Android 5)
– dm-verity is block level integrity check mechanism (prevent

rootkits and other changes to the storage layer)

• Android Security Overview
– https://source.android.com/devices/tech/security/index.html

Android file systems and
data structures

• Android applications primarily store data in two locations, internal and
external storage (emulated or real SD card)

• Internal apps data are found in the following subdirectories

• App data on external storage are usually stored in the
[external_path]/Android/data/<packagename> folder

• SQLite databases are a rich source of forensic data
• Network – log files with time stamps, user name, files etc.
• Linux kernel log file (dmesg) and debug messages via logcat (system

and app messages)
• Dumpsys provides information on services, memory, and other

system details

ADB dumpstate and bugreport

• Dumpstate combines portions of previous debugs with system information
– # adb shell dumpstate

• Bugreport combines logcat, dumpsys, and dumpstate debug output in a single
command, and displays on screen for the purpose of submitting a bug report.

Partitions and file system support
• cat proc/filesystems

– "nodev" means virtual file system that are not
written to any physical device

• df (disk free) and mount command
• cat proc/mtd and cat /proc/partitions

cat /proc/filesystems
nodev sysfs
nodev rootfs
nodev bdev
nodev proc
nodev tmpfs
nodev binfmt_misc
nodev debugfs
nodev sockfs
nodev usbfs
nodev pipefs
nodev anon_inodefs
nodev devpts
 ext3
 ext2
 ext4
nodev ramfs
nodev hugetlbfs
 vfat
 msdos
 iso9660
 fuseblk
nodev fuse
nodev fusectl
 yaffs
 yaffs2
nodev mqueue
nodev selinuxfs

System file systems
• rootfs is where the kernel mounts the root file system (the

top of the directory tree, noted with a forward slash) at
startup

• The devpts file system is used to provide simulated
terminal sessions on an Android device, similar to
connecting to a traditional Unix server

• sysfs is another virtual file system that contains
configuration and control files for the device

• cgroups is used to track and aggregate tasks in the Linux
file system

• The proc file system provides detailed information about
kernel, processes, and configuration parameters in a
structured manner

• tmpfs is a file system that stores all files in virtual memory
backed by RAM and, if present, the swap or cache file for
the device

tmpfs and eMMC
• The tmpfs is often readable by the shell user and forensic

programs can be copied and executed in tmpfs without
modifying the NAND flash or SD card

• The standard installation has four tmpfs mount points
– The /dev directory contains device files that allow the kernel to read and

write to attached devices such as NAND flash, SD card, character
devices, and more

– The /mnt/asec and /mnt/sdcard/.android_secure directories allow apps
to be stored on the SD card instead of /data/data, which provides more
storage

– /app-cache stores cache files from web browser etc.
• Since 2011 most new devices use a regular block device

(eMMC) instead of raw NAND flash
– YAFFS is single threaded and experience bottlenecks in multi-core

systems
– Ext4 is usually used for: /system, /data and /cache, on some newer

models F2FS from Samsung is used instead
– VFAT in Linux == FAT32 and is usually mounted /mnt/sdcard,

/mnt/emmc, /storage/emulated/, /mnt/emulated, /mnt/secure/asec
(encrypted apk files), but other virtual paths can be mounted as well

Mounted file systems 1
• Running the mount

command returns the
mounted file systems
and their options,
example:
– tmpfs /dev tmpfs

rw,seclabel,nosuid,rel
atime,mode=755 0 0

– The ”0 0” entry at end
determines whether
or not the file system
is archived by the
dump command and
the pass number that
determines the order
in which the file
system checker (fsck)
checks the device/
partition for errors at
boot time.

Mounted file systems 2
• The /mnt/sdcard has many options

– /dev/block/vold/179:0 /storage/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-
1,shortname=mixed,utf8,errors=remount-ro 0 0

1. rw: mounted to allow read/write

2. dirsync: all updates to directories are done synchronously

3. nosuid: does not allow setuid (which would allow other users to execute programs using the permission of file owner)

4. nodev: does not interpret any file as a special block device

5. noexec: does not let all files execute from the file system

6. relatime: updates the file access time if older than the modified time

7. uid=1000: sets the owner of all files to 1000

8. gid=1015: sets the group of all files to 1015

9. fmask=0702: sets the umask applied to regular files only (set permissions

- - - rwxr-x, or user=none, group=read/write/execute,other=read/execute)

10. dmask=0702: sets the umask applied to directories only (set permissions

- - - rwxr-x, or user=none, group=read/write/execute,other=read/execute)

11. allow_utime=0020: controls the permission check of mtime/atime.

12. codepage=cp437: sets the codepage for converting to shortname characters on FAT and VFAT file systems.

13. iocharset=iso8859-1: character set to use for converting between 8-bit characters and 16-bit Unicode characters.
The default is iso8859-1. Long file names are stored on disk in Unicode format.

14. shortname=mixed: defines the behavior for creation and display of file names that fit into 8.3 characters. If a long
name for a file exists, it will always be the preferred display. Mixed displays the short name as is and stores a long name
when the short name is not all upper case.

15. utf8: converts 16-bit Unicode characters on CD to UTF-8.

16. errors=remount-ro: defines the behavior when an error is encountered; in this case, remounts the file system read-
only.

Partition layout for
EMMC based devices

• There is no /proc/mtd on emmc
• It may be difficult to connect a partition with a

name (data, system, recovery etc.)
• The mount command just gives a by-name

reference for all mounts as
– /dev/block/platform/msm_sdcc.1/by-

name/userdata /data ext4 rw,nosuid,nodev, ...
• Some units have /proc/emmc or

/proc/dumchar_info populated with this info
• Some units have it revealed under the

/sys/devices by the Linux kernel
• Sometimes you have to extract the

recovery.fstab file from a recovery image
• Read more

– https://github.com/ameer1234567890/OnlineN
android/wiki/How-To-Gather-Information-
About-Partition-Layouts

cat /proc/partitions
179 0 15388672 mmcblk0
179 1 65536 mmcblk0p1
179 2 512 mmcblk0p2
179 3 512 mmcblk0p3
179 4 2048 mmcblk0p4
179 5 512 mmcblk0p5
179 6 22528 mmcblk0p6
179 7 22528 mmcblk0p7
179 8 780 mmcblk0p8
179 9 780 mmcblk0p9
179 10 780 mmcblk0p10
179 11 512 mmcblk0p11
179 12 512 mmcblk0p12
179 13 512 mmcblk0p13
179 14 2048 mmcblk0p14
179 15 512 mmcblk0p15
179 16 512 mmcblk0p16
179 17 512 mmcblk0p17
179 18 512 mmcblk0p18
179 19 16384 mmcblk0p19
179 20 16384 mmcblk0p20
179 21 860160 mmcblk0p21
179 22 573440 mmcblk0p22
179 23 13798400 mmcblk0p23
179 24 512 mmcblk0p24
179 25 495 mmcblk0p25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

