/}'\F'j]? ENSICS

W\

VIAFORENSICS

viaforensics.com

Android forensics

boot process, security,
system, rooting, dumping,
analysis, etc.

Android and mobile forensics

Any interaction with the smartphone will change the
device in some way

— Use judgment, explain modifications and choices made

Further complicating Android forensics is the sheer variety
of devices, Android versions, and applications

— The permutations of devices and Android versions alone
are in the thousands and each device plus platform has
unique characteristics

While a logical analysis of every Android phone is
achievable, the vast combinations make the full physical
acquisition of every Android device likely unachievable

— Even a minor difference in the Android version may require
extensive testing and validation

However the open source aspect of Android greatly
assists in the fundamental understanding a forensic
analyst requires, making Android an ideal platform to work
on

At least 5 MF of SoC .
“samens .~ Android hardware platforms

- Qualcomm

_ Miodia Tek TI OMAP5430 SoC

- Intel (x86)

- nVidia

Foem R e ER

3x USE 2.0 USB HS
host target
L OMAP5430 (ULPTLL/HSIC)
MIPI LLIf Companion
ARM ARM
Cortex-M4 Cortex-M4

UniPort®-M device
POWERVR™ IVA-HD
SGX544-MPx video
: SP 3

MIPI CSI-3
3D graphics ccelerator B Camera control

3% MIPI CSI-2 +
CPI
T2D Image signal P -—T—ap
graphics processor

* TWL6040

USB/HSIC
UART/SPI

FC/SPI

mg 32 kHz Crystal
L3 Network-on-chip interconnect

Timers, Int Controller, Mailboxes,
System DMA
Boot/Secure ROM, L3 RAM

M-Shield™ system security technology: SHA-1/SHA-2/MDS5,
DES/3DES, RNG, AES, PKA, secure WDT, keys, crypto DMA

Multi-pipe
display sub-system
(DSS)

Audio processor

SLIMbus®

microphone

MIP DSI
MIP1 DI
MIPI DBI-B/DP

HOMI 1.4a

Debug & trace
cJTAG/STP/PTM UART | GPID Keypad @
Emulator | Trace =1 GFI0 Touch
ﬂﬂﬂl'!'!l:‘r - yP SCreen
ag

48 controller

TPD125015

+

IrDA

ROM and bootloaders

* Android devices, like any other computer, have a fairly standard
boot process which allows the device to load the needed
firmware, OS, and user data into memory to support full
operation

* Although the boot process itself is well defined, the firmware
and ROM varies by manufacturer and by device

* OMAP35x Technical Reference Manual (Rev. X), page 3399 ->
— http://www.ti.com/product/omap3530

Figure 25-1. Initialization Process

Preinitialization Power/clock/reset Boot ROM Boot loader (OS

ramp sequence (OS independent) independent) —p OS/application

init-020

The first two steps in the initialization process are hardware-oriented; however, they require understanding
of the process of configuring those system interface pins (balls on the device) that have software-
configurable functionality. This configuration is an essential part of chip configuration and is application-

dependent. This chapter refers to those pins and the associated configuration registers that are vital for
correct device initialization.

Android boot process 1

Power on and boot ROM code execution

* Mobile platforms and embedded systems has some differences compared to Desktop
systems in how they initially start up.

* At power on the CPU will be in a state where no initializations have been done. Internal
clocks are not set up and the only memory available is the internal RAM.

* When power supplies are stable the execution will start with the Boot ROM code. This is
aCsmaI)I piece of code that is hardwired in the CPU ASIC (Application Specific Integrated
ircuit).
A Physical

The Boot ROM code will detect the A | Boot ROM memory

boot media using a system register
that maps to some physical balls on Bl e
the ASIC. This is to determine where

to find the first stage of the bootloader. g, Boot ROM

® B media Internal Rarn

Once the boot media sequence is (NAND)
established the Boot ROM will try to

load the first stage bootloader to

internal RAM.

* Once the bootloader is in place the
Boot ROM code will perform a jump
and execution continues in the
bootloader.

Android boot process 2

The bootloader

* The bootloader is a special program separate from the Linux kernel that is used to set up
initial memories and load the kernel to RAM. On desktop systems the bootloaders are
programs like GRUB. In embedded Linux uBoot is often the bootloader of choice. Device
manufacturers often use their own proprietary bootloaders.

A. The first bootloader stage will detect and set up external RAM.

B. Once external RAM is available and the system is ready the to run something more significant the
first stage will load the main bootloader and place it in external RAM.

* C. The second stage of the bootloader is the first Physical
major program that will run. This may contain memory

code to set up file systems, additional memory, -
network support and other things. On a mobile B
0ot code BOOt
D Loader

phone it may also be responsible for loading
code for the modem CPU and setting up low

level memory protections and security options.

Boot

* E. Once the bootloader is done it will perform a

A Boot ROM

* D. Once the bootloader is done with any special media Internal Rarm

tasks it will look for a Linux kernel to boot. It will (NAND)

load this from the boot media (or some other E

source depending on system configuration) and

place it in the RAM. It will also place some boot -

parameters in memory for the kernel to read

when it starts up. - Extemal AN

jump to the Linux kernel, usually some

decompression routine, and the kernel assumes
system responsibility. -

Android boot process 3

The Linux kernel

* The Linux kernel starts up in a similar way on Android as on other

systems. It will set up everything that is needed for the system to run.
Initialize interrupt controllers, set up memory protections, caches and

scheduling.

A.

Once the memory management
units and caches have been
initialized the system will be able
to use virtual memory and launch
user space processes.

B.

The kernel will look in the root file
system for the init process (found
under /system/core/init in the
Android open source tree) and
launch it as the initial user space
process.

Boot
media
(NAND)

A

Physical
memory

Boot ROM

Internal Rarm

Caches
Flhd L)

External B AN

Android boot process 4

The init process

* The init process is the “grandmother” of all system processes. Every
other process in the system will be launched from this process or one

of its descendants.

The init process in Android will
look for a file called init.rc. This
is a script that describes the
system services, file system and
other parameters that need to
be set up.

The init.rc script is placed in
/system/core/ rootdir in the
Android open source project.

The init process will parse the
init script and launch the system
service processes.

Boot
media
(NAND)

File system

Virtual
Memory

Physical
memory

Text

Boot ROM

Internal Rarm

Data

Caches
Pl bl L

External BAM

Android boot process 5

Zygote and Dalvik

* The Zygote is launched by the init process and will basically just start

executing and initialize the Dalvik VM (so .dex files can run)

— Zygote also loads up system libraries

— If the Zygote finds out that a

new app is starting

— Zygote forks the process, in this way giving all Dalvik VMs
(and apps) access to system libraries

The birth of a Android apk program

an egg
not big like a chicken eqqg,

a sperm
looks like a tac:::mle .' very small instead Boot
VEFY, VEry sma ’
” ' \ media File systerm
/ (NAND)
the first cell
of a new person fOFk()
if (child) {

a baby
is much bigger
than a cell!

load the app java class
run it

}
/* I'm parent */
wait and check if it's okay

Zygote

i

Virtual Physical
Memory memory
Text Boot ROk
Internal Ram
Caches
Plhd LI
Data
External RAM

Android boot process 6 and 7

The system server

* The system server is the first java component to run in the system. It
will start all the Android services such as telephony manager and
bluetooth etc.

« Start up of each service is currently written directly into the run method

of the system server.

Virtual Physical

Dalvik Memory memory

* /. Boot completed
* Once the System Server is up
and running and the system boot

has completed there is Boot Text Boot ROM

[nternal Ham

a standard broadcast action media File systern

called: (NAND)

Caches
Bl bt L

ACTION_BOOT_COMPLETE

o
e}
oy

E'

Data

* To start your own service. For
example register an alarm or
otherwise make your application

External RAM

perform some action after boot
you should register to receive
this broadcast intent.

Google I/0 2014 - The ART runtime

http://www.anandtech.com/show/8231/a-closer-look-at-android-
runtime-art-in-android-|
https://www.youtube.com/watch?v=EBITzQsUoOw

The ||fe Of an APK Resources &
Native Code
zip
Source ren Dex File APK PaCkage
install
Resources & . t ”
Dex File Native Code InsSta
_ dexopt » dex2oat dex & native code
quickened dex .' :
>
Odex ELF File =%
File :

[l v vV Wy
[e

JIT

Android SDK and ADB

The Android software development kit (SDK) provides developer
tools, documentation and utilities that can assist significantly in the
forensic or security analysis of a device

— The ADB (Android Debug Bridge) is essential to understand

— USB debugging turns on the adbd daemon on device which runs as root
if device is rooted, otherwise as an user with only needed privileges

— http://developer.android.com/tools/help/adb.html#commandsummary

Forensic analysts and security engineers can learn about Android and
how it operates by leveraging the emulator and examining the
network, file system, and data artifacts

AV D fl I eS avd avd2.2.avd

) avdd 2.2 .avd
— <users-home/username>/.android] adb_usbXqi avdld 3.avd

— System-images in SDK folder @:Et:pb jjjd\
Dalvik VM | androidtool.cfg : 22 | cacheimg
— Decompile and reverse engineer = oaoiindd \ Hadaini) Eemen
.dex files : debug.k;stc.re e : hardware-gemu.ini
NDK (Native Developer Kit) Jemres ey
— Cross-compiled code — tools etc. [repositories.cfg (6] userdata-gemu.img

|| sites-settings.cfg

Android OS (architecture)

http://source.android.com/devices/tech/index.html

APPLICATIONS
Home Dialer SMS/MMS IM Browser Camera Alarm Calculator
0
g Contacts Voice Dial Email Calendar Media Player Albums Clock
m
E APPLICATION FRAMEWDORK
g Activity Manager mggg;: Content Providers S;,;::m Nﬁgﬂ:ggf“
o
: Package Manager Tﬁ:rﬁa:gc;r:_y Resource Manager],t,?:r?;;:; e
©
2 LIBRARIES ANDROID RUNTIME
E Surface Manager Media Framework SQLite b L
OpenGL|ES FreeType WebKit
- SGL SSL Libc -
HAL
CONNECTIVITY
| | Multimedia / Graphi USB CONNECTIVITY
= Tl b BLUETOOTH MODEM + RIL GPS
Wi-Fi
7| e Boot tder LIRS L
m
E Display Driver Camera Driver Bluetooth Driver Shar‘e[c)irl':l’z:ﬁory Binder (IPC) Driver
-
+ =
: : Susge Audio Power
§ USB Driver Keypad Driver WiFi Driver Drivers Management

Android Core OS

http://arstechnica.com/gadgets/2014/11/android-5-0-lollipop-
thoroughly-reviewed/

Android OS

Google Play Services

Google Play Store

Phone Google Settings app Play Store

Calculator Ads Play Services

Clock In-app purchases Google Now Launcher
Downloads Initial setup Keyboard

Contacts Cloud-to-device messaging Camera

Settings Account authentication Text-to-speech engine
Lock screen Account syncing Search/MNow
Mavigation bar Google+ sign-in Calendar

Status bar Google+ sharing APls Chrome

Notification panel Google+ photo syncing Maps

Recent apps Photosphere support Street View

Power menu Drive APls Gmail

Fonts Cast APls Email

Initial setup Maps APls Hangouts

Application framework Play Games APls Google+

Application runtime (ART)
Linux kernel & drivers

Location APls
Security (DRM) APIs

Google+ Photos
Drive/Docs/Sheets/Slides

Hardware support Wearable APIs YouTube
Wallet APls Cloud Print
Fit APIs Keep
Malware scanner Wallet
Remote wipe Play Books
Remote location Play Music

App indexing Play Mavies & TV
App analytics Play Newsstand
Flay Games
WebView
Voice

Android security approach 07?

Android security approach 1

Strong base — The Linux level sandbox
And the developers digital signature

D:stmpradb shell

rootBgeneric_xB6:/ # cd Adatasdata

cd sdatasdata

{uutﬂgeneric_xﬂﬁ:/data/data # 1z —al

s —a

druxr—x—x ul_af uf_a#l 2013-88-29 11:28 com.android.backupconfirm
druxr—x——x uB_alb ub_al6 2013-89-27 14:36 com.android.brouser
druwxr—x—x ub_a33 uB_ai3 2013-18-A3 87:41 com.android.calculator

/ . \ . A

Native Zygote) (Android Appllcatlon
service service ﬁ ﬁ]:[
r Java libraries | Components
o) o) Com
Native libraries MNative libraries Native libraries Native ||brar|es

[C-lib | [C-lib 1 f C-lib ' C-lib
L L J /

< Kernel >

Android security approach 2

Permissions and Community/Peer review
- checked at install time

Real-time permission system 2 G 1a1s
- checked at run-time S o
- users can revoke am ERM@ 11:50AM Noty 2010/09/1 rerroy

pe rm iSSiOnS @ chompSMS Can't live withaut It.

chomp SMS

' : tgaeta 2010/09/19 oy
anytlme at WIII . L |ust needs PIN code for security purposes,
. . This appllcatlon has access to the Absolutely flawless app!
via app settings following: B
Lyubozar 010/0%/ ettt

A Network communication

It's great to have it on my mohile

aaaaa

A Phone calls 2010/09/19 o

Why is it allowed to share the files which
are not in the Public folder? [can see my
private files on the web, Isn'tit a kind of

A System tools
prevent phone {rox security hole?

| romn
A Y?.ur.rmes'.?f‘.ges ME or MM Pjer 2010/00/19 Crirtrindy

IMS, receive SMS 1 <3 Dropbox

A services that cost you money

Ivan 2010/09/19 Criririry
Really great and useful app!

oK Cancel

Wane Chon Wiat 10080 el

Android security approach 3

* The "Bouncer” scanning all apps on Google Play

— Using tech from virustotal etc.
— Simulating apps running on device

* Remotely malware removal

— Cleaning users devices from remote

— 2010/
06/exercising-our-remote-application.html

* Settings > Security > Verify apps
— From Android 4.2 Jelly Bean
— Scan apps which are "side loaded”

* From Android 4.4 SELinux is in enforcing mode

— http://selinuxproject.org

@ Verify apps?

Allow Google to check all apps installed
to this device for harmful behavior?

To learn more, go to Settings > Security.

Disagree Agree

http://android-developers.blogspot.se/
http://support.google.com/nexus/bin/answer.py?hl=en&answer=2812636&topic=2812015&ctx=topic
http://support.google.com/nexus/bin/answer.py?hl=en&answer=2812636&topic=2812015&ctx=topic

Android security approach 4

* From Android 5 SELinux is in full enforcing mode

— In short, Android is shifting from enforcement on a limited set of
crucial domains (installd, netd, vold and zygote) to everything
(more than 60 domains)

* Default encryption by vold

— New Android 5 devices is encrypted at first boot and cannot be
returned to an unencrypted state

* Howto disable encryption: http://www.xda-
developers.com/android/disable-data-encryption-nexus-6/

— Devices upgraded to Android 5 and then encrypted may be
returned to an unencrypted state by factory data reset

* Dme-verity (full support in Android 5)

— dme-verity is block level integrity check mechanism (prevent
rootkits and other changes to the storage layer)

* Android Security Overview
— https://source.android.com/devices/tech/security/index.html

Android file systems and
data structures

* Android applications primarily store data in two locations, internal and
external storage (emulated or real SD card)

* Internal apps data are found in the followina subdirectories

Table 4.1| Common /data/data/<packageName>|Subdirectories

shared_prefs Directory Storing Shared Preferences in XML Format

lib Custom library files an application requires

files Files the developer saves to internal storage

cache Files cached by the application, often cache files from the web
browser or other apps that use the WebKit engine

databases SQLite databases and journal files

* App data on external storage are usually stored in the
[external _path]/Android/data/<packagename> folder

 SQLite databases are a rich source of forensic data
* Network — log files with time stamps, user name, files etc.

* Linux kernel log file (dmesg) and debug messages via logcat (system
and app messages)

* Dumpsys provides information on services, memory, and other
system details

ADB dumpstate and bugreport

* Dumpstate combines portions of previous debugs with system information
— # adb shell dumpstate

* Bugreport combines logcat, dumpsys, and dumpstate debug output in a single
command, and displays on screen for the purpose of submitting a bug report.

Table 4.3 Dumpstate Sections

Section

Stack traces

Device info

System

Memory info

Cpu info

Procrank

Virtual memory stats
Vmalloc info

Slab info

Zoneinfo

System log

Event log

Radio log

Network interfaces
Network routes

Arp cache

Dump Wi-Fi firmware log

System properties
Kemel log

Kemel wakelocks
Kernel cpufreq

File or Command

N/A

N/A

N/A

/proc/meminfo
top-n1-d1-m30 -t
(procrank)

/proc/vmstat
/proc/vmallocinfo
/proc/slabinfo
/proc/zoneinfo

logecat -v time -d *:v

logcat -b events -v time -d *:v
logcat -b radio -v time -d ":v
netcfg

/proc/net/route
/proc/net/arp

su root dhdutil -i ethO upload /data/local/tmp/
wlan_crash.dump

N/A
dmesg
/proc/wakelocks

/sys/devices/system/cpu/cpul/cpufreq/stats/
time_in_state

Table 4.3 Dumpstate Sections (Continued)

Section

Vold dump

Secure containers
Processes

Processes and threads
Librank

Binder failed transaction log
Binder transaction log
Binder transactions

Binder stats

Binder process state

File systems and free space
Package settings

Package uid errors

Last kmsg

Last radio log

Last panic console

Last panic threads

Blocked process wait
channels

Backlights
Dumpsys

File or Command

vdc dump

vdc asec list

ps-p

ps-t-p-p

librank
/proc/binder/failed_transaction_log
/proc/binder/transaction_log
/proc/binder/transactions
/proc/binder/stats

sh -¢ cat /proc/binder/proc/™ -p
df

/data/system/packages.xml: 2011-01-26 09:18:02
/data/system/uiderrors.ixt: 2010-11-14 22:52:26

/proc/last_kmsg

parse_radio_log /proc/last_radio_log
/data/dontpanic/apanic_console
/data/dontpanic/apanic_threads
N/A

N/A
dumpsys

Partitions and file system support

* cat proc/filesystems

— "nodev" means virtual file system that are not

written to any physical device

* df (disk free) and mount command
* cat proc/mtd and cat /proc/partitions

Table 4.5 MTD Partitions Size Conversions
Size (hex) Name Size (decimal, bytes) Size (KB) Size (MB)
Oxa0000 misc 655,360 640 0.6
Ox480000 recovery 4,718,582 4608 4.5
Ox300000 boot 3,145,728 3072 3.0
OxfE00000 system 260,046,848 253952 248.0
Oxa0000 local 655,360 640 0.6
Ox2800000 cache 41,843,040 40960 40.0
Ox8500000 datadata 156,237,824 152576 149.0
ahoogRubuntu:~% adb shell cat fproc/mtd
dewv: size grasesize name

mtd0: 000a0000 QOO0Z0000 "“misc™
mtdl: 00480000 Q0020000 "“recovery"
mbdZ: 00300000 Q0020000 "boot®
mtd3: 0f800000 00020000 "system"
mtdd: 000a0000 Q0020000 "local™
mtd5: 02800000 Q0020000 “cache"
mtd6: 09500000 00020000 “datadata"

cat /proc/filesystems

nodev
nodev
nodev
nodev
nodev
nodev
nodev
nodev
nodev
nodev
nodev
nodev

nodev
nodev

nodev

nodev

nodev
nodev

sysfs
rootfs
bdev

proc
tmpfs
binfmt_misc
debugfs
sockfs
usbfs
pipefs
anon_inodefs
devpts
ext3

ext2

ext4
ramfs
hugetlbfs
vfat
msdos
1509660
fuseblk
fuse
fusectl
yaffs
yaffs2
mqueue
selinuxfs

System file systems

rootfs is where the kernel mounts the root file system (the
top of the directory tree, noted with a forward slash) at
startup

The devpts file system is used to provide simulated
terminal sessions on an Android device, similar to
connecting to a traditional Unix server

sysfs is another virtual file system that contains
configuration and control files for the device

cgroups is used to track and aggregate tasks in the Linux
file system

The proc file system provides detailed information about
kernel, processes, and configuration parameters in a
structured manner

tmpfs is a file system that stores all files in virtual memory
backed by RAM and, if present, the swap or cache file for
the device

tmpfs and eMMC

* The tmpfs is often readable by the shell user and forensic
programs can be copied and executed in tmpfs without
modifying the NAND flash or SD card

* The standard installation has four tmpfs mount points

— The Idev directory contains device files that allow the kernel to read and
write to attached devices such as NAND flash, SD card, character
devices, and more

— The Imnt/asec and Imnt/sdcard/.android_secure directories allow apps

to be stored on the SD card instead of /data/data, which provides more
storage

— Japp-cache stores cache files from web browser etc.

* Since 2011 most new devices use a regular block device
(eMMC) instead of raw NAND flash

— YAFFS is single threaded and experience bottlenecks in multi-core
systems

— Ext4 is usually used for: /system, /data and /cache, on some newer
models F2FS from Samsung is used instead

— VFAT in Linux == FAT32 and is usually mounted /mnt/sdcard,
Imnt/emmc, /storage/emulated/, /mnt/emulated, /mnt/secure/asec
(encrypted apk files), but other virtual paths can be mounted as well

Mounted file systems 1

* Running the mount
command returns the
mounted file systems
and their options,
example:

— tmpfs /dev tmpfs
rw,seclabel,nosuid,rel
atime,mode=75500

— The "0 0” entry at end
determines whether
or not the file system
is archived by the
dump command and
the pass number that
determines the order
in which the file
system checker (fsck)
checks the device/
partition for errors at
boot time.

Table 4.12 Output of Mount Command Overview

Device
Name

rootfs

tmpfs

/dev/block/
mtdblockE

/dev/block/
vold/179:9

Mount
Point

/

/dev

/data/
data

/mnt/
sdcard

File
System
Type

rootfs

tmpfs

yaffs2

viat

Options

ro,relatime

rw,relatime,
mode=755

rw,nosuid,
nodev,relatime

See SD card
numbered list

Notes

This is the ro (read-only)
root file system mount at /

The device directory is
mounted as tmpfs and has
permissions set to 7565
that are read, write, and
execute for root (rwx) and
read/execute for everyone
else

While the /data directory is
an ext3, the /data/data
where app data is stored is
a YAFFS2 file system. It is
mounted to allow read/
write access, does not
allow setuid (which would
allow other users to
execute programs using
the permission of file
owner), does not interpret
any file as a special block
device, and updates the
file access time if older
than the modified time

See SD card
numbered list

Mounted file systems 2

The /mnt/sdcard has many options

— /dev/block/vold/179:0 /storage/sdcard vfat
rw,dirsync,nosuid,nodev,noexec,relatime,uid=1000,gid=1015,fmask=0702,dmask=0702,
allow_utime=0020,codepage=cp437,iocharset=iso8859-
1,shortname=mixed,utf8,errors=remount-ro 0 0

1. rw: mounted to allow read/write

2. dirsync: all updates to directories are done synchronously

3. nosuid: does not allow setuid (which would allow other users to execute programs using the permission of file owner)
4. nodev: does not interpret any file as a special block device

5. noexec: does not let all files execute from the file system
6
7
8
9

. relatime: updates the file access time if older than the modified time
. uid=1000: sets the owner of all files to 1000
. gid=1015: sets the group of all files to 1015
. fmask=0702: sets the umask applied to regular files only (set permissions
- - - rWXr-X, or user=none, group=read/write/execute,other=read/execute)
10. dmask=0702: sets the umask applied to directories only (set permissions
- - - TWXr-X, or user=none, group=read/write/execute,other=read/execute)
11. allow_utime=0020: controls the permission check of mtime/atime.
12. codepage=cp437: sets the codepage for converting to shortname characters on FAT and VFAT file systems.

13. iocharset=is08859-1: character set to use for converting between 8-bit characters and 16-bit Unicode characters.
The default is iso8859-1. Long file names are stored on disk in Unicode format.

14. shortname=mixed: defines the behavior for creation and display of file names that fit into 8.3 characters. If a long
name for a file exists, it will always be the preferred display. Mixed displays the short name as is and stores a long name
when the short name is not all upper case.

15. utf8: converts 16-bit Unicode characters on CD to UTF-8.

16. errors=remount-ro: defines the behavior when an error is encountered; in this case, remounts the file system read-
only.

Partition layout for
EMMC based devices

There is no /proc/mtd on emmc

It may be difficult to connect a partition with a
name (data, system, recovery etc.)

The mount command just gives a by-name
reference for all mounts as

— /dev/block/platform/msm_sdcc.1/by-
name/userdata /data ext4 rw,nosuid,nodev, .

Some units have /proc/emmc or
/proc/dumchar_info populated with this info

Some units have it revealed under the
/sys/devices by the Linux kernel

Sometimes you have to extract the
recovery.fstab file from a recovery image

Read more

— https://github.com/ameer1234567890/OnlineN
android/wiki/How-To-Gather-Information-
About-Partition-Layouts

cat /proc/partitions
0 15388672 mmcblke

179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179
179

=

14
15
16
17
18
19
20
21
22
23
24
25

65536
512
512

2048
512

22528

22528
780
780
780
512
512
512

2048
512
512
512
512

16384

16384

860160
573440
13798400
512

495

mmcblkeopl
mmcblkOp2
mmcb1lkOp3
mmcblkop4
mmcb1lkOp5
mmcb1kOp6
mmcblkep7
mmcb1lkop8
mmcblkop9
mmcblkoplo
mmcblkoOpll
mmcblkoOpl2
mmcblkopl3
mmcblkepl4d
mmcblkOpl5
mmcb1lkOpl6
mmcblkeOpl7
mmcblkopl8
mmcblkOpl9
mmcb1lkOp20
mmcblkOp21
mmcblkOp22
mmcb1lkOp23
mmcblkep24
mmcb1lkOp25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

