
Android forensics

boot process, security,
system, rooting, dumping,

analysis, etc.

YAFFS2 (Yet Another Flash File System) 1

• Developed by Aleph One Ltd, (Charles Manning)
– http://www.yaffs.net/how-yaffs-works-internals

• YAFFS2 was built specifically for the growing NAND flash
devices and has a number of important features that address
the stringent needs of this medium

• YAFFS2 is a
– log-structured file system (which protects data even through unexpected

power outages)
– provides built in wear-leveling and error correction
– capable of handling bad blocks
– is fast and has a small footprint in RAM

• YAFFS2 address the memory in blocks (128 kB) through the
MTD subsystem and each block contains a set number of
pages (chunks in YAFFS doc with the size of 2 kB)

• All data structures stored in YAFFS2 are referred to as Objects
and can be files, directories, symbolic links, and hard links

• Each chunk (page) either stores a yaffs_ObjectHeader (object
metadata) or data (tnode tree, extents etc.) for the object

YAFFS tree nodes
• Each file has a Tnode tree to provide the mapping from file position to

actual NAND chunk address
• The Tnode tree is made up of Tnodes (tree nodes) arranged in levels,

each of which holds either
– At levels greater than 0,

a Tnode has 8 pointers to
other Tnodes in the next
level down.

– At level 0, a Tnode has
16 NAND chunk Ids which
identify the chunk's
location in RAM.

– Tnodes typically make
up the bulk of the
YAFFS' RAM usage.

YAFFS2 (Yet Another Flash File System) 2

• The yaffs_ObjectHeader tracks various information including the
Object type, the parent object, a checksum of the name to speed up
searching, the object name, permissions and ownership, MAC
information, and the size of the object if it is a file

• In the 64-byte OOB/spare area, YAFFS2 not only stores critical
information about the chunk but also shares the area with the MTD
subsystem. The critical YAFFS2 tags are as follows:
– 1 byte: block state (0xFF if block is good, any other value for a bad block)
– 4 bytes: 32-bit chunk ID (0 indicates that chunk is storing a

yaffs_ObjectHeader, else data)
– 4 bytes: 32-bit Object ID (similar to traditional Unix inode)
– 2 bytes: number of data blocks in this chunk (all but final chunk will be

fully allocated)
– 4 bytes: sequence number for this block
– 3 bytes: ECC for tags (in Android, handled by MTD)
– 12 bytes: ECC for data (in Android, handled by MTD)

• Find detailed information about the YAFFS2 file system by examining
the /proc/yaffs file

Process and RAM dumps
• Recently, solutions for examining Android memory have emerged
• Android provides a mechanism for dumping an application’s memory

to a file by sending the app a special signal (SIGUSR1)
– To send the signal, you need an app’s PID, which you can find with the ps

command:

– We must be root (su) and set # chmod 777 to /data/misc
– Then we can dump the process memory with: # kill -10 1
– If all went well we may find a file named something like:

heap-dump-tm1296350817-pid1.hprof
– When we have pulled the file to our computer we can run strings and

perform other analysis methods on this file
• It is also possible to dump the whole RAM with a tool named LIME
• However it needs a kernel mode driver to be installed which

immediately begins to dump the memory
– # insmod /sdcard/lime.ko "path=/sdcard/dump.lime format=lime"
– https://code.google.com/p/lime-forensics/

D:\>adb shell ps | less
USER PID PPID VSIZE RSS WCHAN PC NAME
root 1 0 696 500 c02ae25a 0805a406 S /init
...

Android forensic techniques 1
• Earlier discussed methods for handling mobile phones applies
• Powered off devices

– Boot into recovery mode and check for ADB connectivity (device may
have a custom recovery with root access)

– This may give us data access without booting up the system fully
• Pass codes / screen locks

– Face unlock, draw pattern, numeric PIN or alpha
numeric password (voice code may also exist)

• The draw pattern is located in
/data/system/gesture.key
– Interpreted as a matrix (3x3, 6x6 and 9x9) with

(0,0) in upper left corner of screen
– The numbers (3 to ? digits) forms a SHA-1 hash

• Password or PIN have 4 – 16 characters
– Stored as a salted hash in /data/system/password.key

• Projektarbete av Rickard Andersson
– https://github.com/rickard2/Android-Lock-Screen

[server]\embedded_forensics\Android-tools\
Android Forensics Study of Password and Pattern Lock Protection

Android forensic techniques 2
• Powered on devices that are locked

– Try # adb devices to check if USB debugging is enabled, and if so
with root access (# adb shell su)

– Smudge attack – look for smudge patterns on the touch screen
– Screen lock bypass app – install an app from Googple Play which

send a special intent to the system which disable the lock screen
– Use the Gmail user/pass (if you know it) when you have

consumed all the lock screen attempts and reset the pass code
• Powered on devices which are open

– Several methods are possible and care must be taken
– Enable USB debugging and root the device?

• If locked out and USB connectivity attempts are un-successful
consider flashing a modified recovery partition
– Enter fastboot/download mode which is a NAND flash update

protocol executed over USB while in bootloader mode
– Most devices ship with bootloader protection enabled, which

prohibits the use of this protocol
– Security S-OFF or S-ON – only signed images can be flashed

Imaging UMS (USB Mass Storage)
• Every Android device to date has either an external Secure

Digital (SD) card or an Embedded MultiMediaCard (eMMC)
• Both use NAND flash, are based on the MMC specification, and

have embedded storage controllers supporting file systems that
are not NAND flash aware

• The recommended approach for imaging UMS devices is via
the UMS interface (USB cable)
– Moving to eMMC storage meant that the mass storage was no

longer removable
– Apps can now run from the SD card and in this scenario, the .apk

files are encrypted if SD card is removed
– Newer devices are using RAM disks (tmpfs) more frequently to

store user data that might be helpful in an investigation. Often,
removing the SD card requires the device to be shut down and
the battery removed, thus losing the ability to recover the
temporal data

• If not possible use a cross compiled forensic version of dd and
a tool as netcat to dump the image over the network or ADB
port forwarding dumping it to local computer

Logical techniques
• Logical techniques works in most scenarios if USB

debugging is enabled and usually provide sufficient data
for the case (much less effort than physical extraction)

• ADB pull with root privileges is simple and effective

• Analyze data saved by users backup programs from
Google play or built into custom recoverys as nandroid
– If file system is YAFFS2 run unyaffs on them. If file system is ext4

nandroid store files in ordinary tar.gz archives
• Most forensic vendors have Android logical capture

solutions
• Using the Content Providers which are a key feature of

the Android platform
– Apps can share their databases with other apps

D:\tmp>adb pull /data adbpull
pull: building file list.
... and then whole data folder is copied to local computer, may
fail in the middle so monitor the pull and make smaller data pulls

Physical techniques
• Falls into two categories

– Hardware based techniques as JTAG, chip-off etc.
– Software based techniques (aside from being easier to execute)

• Often provide direct access to file systems to allow a complete copy of all
logical files (simplifies some analysis) or partitions (raw image)

• Bootloader exploit, instead of doing a firmware update an image is created via
an injected module (common vendor solution, no root needed)

• Provide very little risk of damaging the device or data loss

• To execute the software-based physical techniques, you first
must gain root privileges and then run the acquisition programs
– Temporary root privileges attained by a root exploit, which does not

survive a reboot
• Typically the adb daemon is not running as root in this instance

– Full root access attained through a custom ROM or persistent root
exploit
• Custom ROMs often run the adb daemon as root while most of the persistent

root exploits do not
– Recovery mode root attained by flashing a custom recovery partition or

part of a custom ROM
• Custom ROMs often run the adb daemon as root as do most of the modified

recovery partitions

Gaining root
• Gaining root privileges can be very difficult and frustrating, it

also put changes into the device
• The techniques for root privileges differ not only for each

manufacturer and device but for each version of Android and
Linux kernel in use
– The number of devices and versions result in many variations!
– Newer Android versions has made the process harder

• You must perform and test the process on a similar device
ensuring that no data is lost

• If the device does not already have root privileges, you can
research possible techniques online as XDA-developers
– Time consuming and may contain inaccurate information

• Recovery mode is an operating mode for Android that was
designed to apply updates, format the device, and perform
other maintenance on the devices
– The stock recovery mode on most devices is very basic, only

provides a number of limited functions

Custom recovery
• Custom recovery partitions usually allow root privileges through the

shell (# prompt = root, $ prompt = no) and many other functions
• These new recovery partitions are typically installed by the user when

the device is rooted and provide various functions that simplify the
backup and update process needed from the custom ROMS

• The most popular are ClockworkMod and TWRP
– http://www.clockworkmod.com/
– http://teamw.in/project/twrp2

• Use caution when installing
a custom recovery partition
as the process may contain
kernel and radio updates that
could render the device
unusable if there are
incompatibilities between
the device, kernel, and
radio firmware

• Boot into fastboot/download
mode (if possible) and restore
the recovery

Bootloader and fastboot/download mode
• The bootloader is executed early in the Android boot process and is

responsible for selecting and loading a kernel
• For most devices special NAND flash (for writing) software exists, which

typically is developed by the manufacturer
• This software can interact with the bootloader if support for fastboot/download

mode is enabled
• However, the bootloaders of most devices are shipped from the factory in a

locked state (S-ON), which prevents such updates
fastboot oem unlock – will unlock Nexus phones (but also factory reset/erase)

D:\tmp>fastboot
usage: fastboot [<option>] <command>

commands:
 update <filename> reflash device from update.zip
 flashall flash boot + recovery + system
 flash <partition> [<filename>] write a file to a flash partition
 erase <partition> erase a flash partition
 format <partition> format a flash partition
 getvar <variable> display a bootloader variable
 boot <kernel> [<ramdisk>] download and boot kernel
 flash:raw boot <kernel> [<ramdisk>] create bootimage and flash it
 devices list all connected devices
 continue continue with autoboot
 reboot reboot device normally
 reboot-bootloader reboot device into bootloader
 help show this help message

options:
 -w erase userdata and cache (and format
 if supported by partition type)
 -u do not first erase partition before
 formatting
 -s <specific device> specify device serial number
 or path to device port
 -l with "devices", lists device paths
 -p <product> specify product name
 -c <cmdline> override kernel commandline
 -i <vendor id> specify a custom USB vendor id
 -b <base_addr> specify a custom kernel base address. default: 0x10000000
 -n <page size> specify the nand page size. default: 2048
 -S <size>[K|M|G] automatically sparse files greater than
 size. 0 to disable

Bootloader, fastboot and recovery?

• SPL (Secondary Program Loader)
– A piece of bootcode that initiates the startup of the phone, displaying the initial

splashscreen for the device, and loading the initial files from the ROM
– It checks to see if a button combination is pressed on bootup (such as that to enter

recovery mode or the bootloader), and loads the relevant system software
– If no special instruction is given by holding keys, the bootloader loads the normal

system software by initialising the boot process from the boot partition
– Flashing your SPL is risky, as the process failing will probably result in a broken, or

bricked phone, since the SPL is executed very early on in the boot process, and
any error here will prevent access to the recovery or bootloader features

• The bootloader consists of SPL and IPL (Initial Program Loader)
– The IPL or Boot ROM is a firmware that runs on every startup
– Usuallly press pwr+vol-down to enter bootloader

• Fastboot or download mode
– A state from where you can reflash the device via the fastboot command (or other

manufacturer specific utility) in the Android-SDK etc.

• Recovery mode
– The recovery partition is a boot mode for your phone that allows you to wipe or

update (re-program) partitions on your phone, usuallly pwr+vol-up

SPL, RUU and OTA?
• A crafted SPL in conjunction with the IPL can comprise a device's

bootloader
• Aside from bootstrapping (a self-sustaining process that proceeds

without external help) Android, the bootloader also fulfills various
diagnostic functions. One of these functions is the manipulation of
data in the device's internal flash and RAM

• Depending on the SPL installed - as custom executable code
– The user can apply signed or unsigned flash NAND images and do many

other tasks. Note that the SPL is installed and operates independently of
the Android build that runs atop of it

– Replace the stock Android recovery image with a custom one, which adds
many features including “nandroid” backups, the ability to use custom
ROMs, and a greater amount of flexibility and customization of your
Android phone

• A RUU (ROM Upgrade Utility) or factory image is a program or zipped
archive which upgrades/reset your phone from your computer via
fastboot/download mode

• OTA (Over-the-air programming) is an incremental factory image
which do not reset the phone (user data is preserved)

root/recovery - practical LG G2
• root

– A special g2_security (LG dev?) file is pushed to the SD card
– When connecting with ADB the LG phone looks this file up and

enable root via ADB only
– If we want to have root in the ROM we must push the su binary

to /system/xbin/ and chmod it with 06755 (setuid + setgid)
– Users executing it will gain the privileges of the user who owns it
– Then we install superuser.apk - we can grant apps su if requested

• Recovery
adb wait-for-device
adb push g2_security /sdcard/g2_security
adb push recovery.img /sdcard/recovery.img
adb root
adb wait-for-device
adb shell dd if=/sdcard/recovery.img of=/dev/block/platform/msm_sdcc.1/by-name/recovery
echo If show msg like "12374016 bytes transferred in ... sec ...", you have succeeded...
echo Press any key reboot to recovery
pause > nul
adb shell sync
adb shell sync
adb reboot recovery

Loki by Dan Rosenberg (@djrbliss)

• Exploiting Samsung Galaxy S4 (and others) Secure Boot
• Qualcomm use software ”QFuses” with signatures which are

validated at each stage of the boot chain (pbl -> sbl1 -> sbl2 -> sbl3
-> aboot) to implement a trusted boot sequence

• Secure Boot with aboot enforce signature checks on the boot and
recovery (kernel and ramdisk) partitions

• Aboot is a open source project named lk ("Little Kernel") with a major
flaw
– It first loads the recovery into memory and calculate a SHA1 signature
– Then aboot decrypt its own signature hash for the recovery partition with

a public key matching it against the SHA1 hash signature – the
check_sig() function from step above

• It is possible to make aboot read a specially crafted boot image that
specifies a ramdisk load address equal to the address of the
check_sig() function in aboot physical memory

• When aboot reads the supposed ramdisk from eMMC flash, it actually
overwrites the check_sig() function with shellcode, and then invokes it

• The shellcode patches everything together and return zero – success!
– http://blog.azimuthsecurity.com/2013/05/exploiting-samsung-galaxy-s4-

secure-boot.html

ViaForensics AFPhysical
method with nanddump

• The overall process for AFPhysical in free chapter 6 of Android
Forensics and Mobile Security, page 278 →

• Acquire root privileges on the target Android device
– Replace existing recovery partition

• Identify NAND flash partitions which need to be imaged
• Upload forensic binaries to the target Android device

– We may need to cross-compile nanddump from the MTD-utils
package since we need ARM architecture binaries

– Adb push needed binaries to /dev/local or other tmpfs
• Acquire physical image of NAND flash partitions

– Use adb port forward to create a network between the pc and
Android device over USB. We need to do this since we are running
from recovery (WiFi does not work)

– Or place a SD card into the device, mount, and save locally
• Remove forensic binaries if any were stored on nonvolatile

storage

ViaForensics AFPhysical
method - further notes

• Remote mirroring using netcat and dd over Wi-Fi
– D:\tmp> netcat -l -p 12345 > mtd6.ext4.dd
– root@android:/ # dd if=/dev/block/mtdblock6 | netcat ip-number 12345

• It is possible to dump with cat as well
– cat /dev/block/mmcblk0p2 > /sdcard/data.dd

• There is no point of using hashes before we have written the
dump to computers disk - we deal with NAND!

• Nanddump grabs everything including OOB/spare area
– We need too ”clean” the image from OOB if we want to carve
– We do not ”clean” the image if the image is to be mounted (in Linux)

• If the images are NOT in extX format we do an adb pull as well
– We need to mount the partitions in read only mode if we are running from

a custom recovery
• Netcat cross-compile for Android with NDK tool chain

– http://codeseekah.com/2012/08/07/port-forwarding-an-android-local-port/

BusyBox
• BusyBox is a single multicall binary that

packages the functionality of most
widely used standard Unix tools
– http://www.busybox.net/

• Persistent or temporary install?
• Partitions may need to be remounted

read-write
• Put the binary in /data/local for example

– # chmod 755 busybox
– # mount -o remount, rw /system
– and install to some path with
– # ./busybox – install -s /[path] where

PATH=/sbin:/system/sbin:/system/bin:/s
ystem/xbin

• Or copy the file to tmpfs and create
symbolic links for the few commands
you actually need

• Cross-compiled Android versions of
BusyBox exists

BusyBox binary highlights
chown, chgrp: change permission ownership.
awk, sed: languages to both process &
transform text
grep: a text search utility
du: shows disk usage
vi: a shell based text editor
pidof: return the pid of a running process
less: text reader with back and forward nav
tail: trail the end of a file for activity
gunzip, gzip, tar, bzip2: archival compression
software
clear: clear screen
crontab, crond: task scheduling
diff: compare files
httpd: a light webserver
telnet: basic TCP remote login
xargs: use the output of a command as the
args for another
su: masquerade as another system user
wget: retrieves content from a web server
which: identifies the location of an executable
nc: netcat
dd: disk dumper

Android application
and forensic analysis

• Most of the techniques
used in traditional
forensic investigations are
applicable in Android
forensics analysis
– If image is a YAFFS2

image the work can be
very complicated

• Timline analysis is slow
unless special software is
used
– log2timeline

• Also consider that
different file systems
metadata have different
time resolution and on top
of that can delay updates
to the file system

Android application
and forensic analysis

• File carving
– Filesystem is fragmented so special carvers are needed as smart

carver from Digital Assembly: http://digital-assembly.com/
• Strings

– Remember to scan for Unicode strings (Android is Unicode)
– Check SQLite databases for deleted records (special tools)

• SQLite databases
– View in different SQLite db viewers or with sqlite tool
– SQL As Understood By SQLite: http://www.sqlite.org/lang.html

• Hex editor
– Deeper analysis

• Time conversions
– Unix Epoch time – with script or ...

• Android directory structure is
important to understand!

http://www.digital-detective.co.uk/

Android
directory
structure

There are far more
directories and files
to explore but the
this overview provides
a good starting point

With 4.4 there is also a
/system/priv-app for
Googles privileged apps
- Some system apps are
more system than others!

Android directory structure 1
Line 1: At the top is the root directory, which creates the structure and mount points for the
other file systems explored previously.
Line 2: As previously discussed, the HTC Incredible created an “/app-cache” directory of type
tmpfs. You can see the browser cache structure. Presumably,over time, other apps may leverage
this directory.
Lines 6-8: Android devices from the start had a dedicated “/cache” directory that originally
appeared to be unused. However, this is certainly not the case and the “/cache” partition should
be imaged for full analysis. Files including Gmail attachment previews, Browser DRM, some
downloads (Market and other), as well as Over The Air (OTA) updates from the wireless carriers
can be found here.
Line 9: The root level “/data” directory has a number of important subdirectories covered next.
Note that some phones (such as the HTC Incredible) have a dedicated partition for the
“/data/data” subdirectory.
Line 10: The “/data/anr” directory contains stack traces (debugging) from the system and is
generally not accessible to the shell user. However, some of the adb debug commands appear to
read this data.
Line 11: The “/data/app” directory contains the .apk files from the Android Market.
Line 12: The “/data/app-private” directory stores protected apps from the Android Market.
Line 13: More recent versions of Android have a secure cloud backup API that developers can
integrate into their apps. The “/data/backup” directory is used to queue and manage these
backups. However, thus far meaningful data has not been recovered from directory.
Line 14: The “/data/btips” (Texas Instrument’s Bluetooth Protocol Stack) directory stores the
log files if the associated app (com.ti.btips) crashes.
Line 15: The “/data/davlik-cache” directory contains the Davlik VM’s cached dex files used to
run apps.
Line 16: The “/data/data directory” contains the application specific data, easily the most
important area to focus on in an investigation.
Lines 17-23: One app was kept in the directory hierarchy for demonstration purposes. The
directory is named according to the package name and often clearly identifies the developer
(Facebook in this case).

Android directory structure 2
Line 24: For HHGTTG fans (famous advice to intergalactic travelers from the classic novelThe
Hitchhiker’s Guide to the Galaxy:DON’T PANIC), there’s a great directory named
“/data/dontpanic,” which is simply a place to store some error log files from the system. Again,
a great benefit of an open system is the ability to examine code. Short of that, we would have
simply had to guess the purpose or perform significant testing.
Line 25: The “/data/local” directory is important as it allows shell (the user account nonrooted
phones run adbd as) read/write access. When an app is installed, it is first copied to
“/data/local.” Also, some forensic techniques rely on this directory to upload important files,
typically binaries.
Line 26: The “/data/lost+found” directory shows up in several places in YAFFS2 file systems.
Again, a quick search (try “grep -R lost+found *.c” from the YAFFS2 source directory we
downloaded) will explain that any files or directories found that do not have a path to the root
directory will be placed in this
Folder.
Lines 27-35: The “/data/misc” directory contains files related to Bluetooth, dhcp, vpn, Wi-Fi,
and more. One important file to point out is “/data/misc/wifi/wpa_supplicant.conf” that contains
a list of Wi-Fi.com networks to which thedevice got connected. If the wireless access point
required a password, it is stored in plain text in the file (have fun pen testers).
Line 36: The “/data/property” directory contains various system properties such as time zone,
country, and language.
Line 37: Beyond the subdirectories you can see /data/system contains several key files. First,
the accounts.db contains a list of accounts that require authentication and provides the name,
type, password (encrypted), and authentication tokens (among other data). There are also two
very important files related to the pass code or PIN for the device. The files are gesture.key
and password.key and
contain an encoded/encrypted hex value for the pass code.
Line 43: When a process crashes, a special tombstone file can be created. The file is ASCII and
thus readable. More information can be found online such as one informative post on
Crazydaks.com (Debugging in Android, n.d.).
Line 44: The “/mnt” directory is where the system mounts various file systems, including the SD
card, the eMMC, and others.

Android directory structure 3
Line 45: The “/mnt/asec” directory contains the unencrypted apps that are stored on the SD card.
When Android introduced the ability to store apps on the SD card, they encrypted the contents
for security reasons. However, when the system is up and running and unencrypted access to the
files is necessary, they are decrypted and mounted in “/mnt/asec.”
Line 46: The “/mnt/emmc” contains the FAT32 file system that resides on the NAND flash for some
devices. Lines 47 through 55 are several examples of eMMC subdirectories.
Line 51: The “/mnt/emmc/DCIM directory,” album thumbnails are stored here.
Line 52: The “/mnt/emmc/DCIM/100MEDIA” directory contains any pictures or videos taken by the
HTC Incredible.
Line 53: The “/mnt/emmc/LOST.DIR” directories are found on FAT32 partitions and may contain
files or fragments that the file system lost track of (similar to YAFFS2 lost+found directory).
This directory should be examined.
Line 56: If a physical SD card is present, it is mounted at “/mnt/sdcard.”
Line 66: As with the eMMC, the “/mnt/sdcard/dcim” directory would store pictures and videos from
the device. On the HTC Incredible, they are stored in “/mnt/emmc/DCIM,” so they are not present
on the physical SD card.
Lines 67-68: The “/mnt/sdcard/download” and “/mnt/sdcard/Downloads” directories contain files
downloaded by the browser, e-mail clients, and others.
Line 72: As mentioned previously, the “/mnt/sdcard/secure/asec” directory is encrypted and is
where apps that reside on the SD card (instead of the NAND flash) store data.
Line 75: The “/system/app” directory contains .apk app files for apps that are provided with the
system. This includes apps bundled by Google/Android, the manufacturer (HTC in this case), and
the wireless carrier (Verizon in this case). In the case of the HTC Incredible, the directory
contains a significant 152 .apk files. It’s important to know this location in case app analysis
is required for a case(which means you need access to the apk file).
Lines 76 and 117: The “/system/bin” and “/system/xbin” directories contain the Android binary
files used on the system. Forensic analysts and security engineers (and most definitely Android
researchers) can find many useful and undocumented commands by experimenting with files in these
directories.
Lines 77-80: The “/system/customize” directories contain carrier-specific customizations for the
phone, notably UI.
Line 81: The “/system/etc” directory is where Android stores the typical Linux/Unix
configuration (/etc) directory. It contains numerous configuration files worthy of examination -
too many to discuss in this book - but can vary from device to device.

SQLite - .db files
• An increasing number of programs are employing SQLite to store

data that can be of relevance in an investigation
– Android, Apple products, Tizen (Maemo/MeeGo), Symbian, etc.

• Forensic practitioners who become familiar with SQLite and learn
how to interpret these files will be in a better position to obtain the
most usable information from available digital evidence
– SQLite databases can be examined using a command line tool like

sqlite3.exe (http://www.sqlite.org/) or with a GUI tools like SQLite
Database Browser, SQLite Spy etc.

– Dates are in Unix string format and can be converted using Perl etc.
– $ perl -e "print scalar(gmtime(1247848584))"
– Fri Jul 17 16:36:24 2009 Seconds since 1970

SQLite and deleted records

• SQLite database do not delete data until overwritten or the
database is Vacuumed
– Open .db in a hex editor and verify

• Epilog - a tool that can do undelete on records in a .db file
– http://www.ccl-forensics.com

• Gary Kessler SQLite Parser
– http://www.garykessler.net/software/

• Ff3hr can recover deleted history records from Firefox 3
– Described in Murilo Tito Pereira’s article “Forensic analysis of the

Firefox 3 internet history and recovery of deleted SQLite records”
– http://sourceforge.net/projects/ff3hr/

• Finding and Reverse Engineering Deleted SMS Messages
– http://az4n6.blogspot.se/2013/02/finding-and-reverse-engineering-

deleted_1865.html
• [server]\embedded_forensics\docs\common_documents\SQLite

– Examensrapport av Sebastian Zankl - python script

Location dump (exempel)
• Android versioner före 4.0 lagrar de 50 senaste

mobilmasterna (cell-id) och 200 senaste Wi-Fi access
punkterna i två binära filer
– cache.cell och cache.wifi filerna finns i

”/data/data/com.google.android.location/files/” mappen
• En parser i Python för filerna finns här

– https://github.com/packetlss/android-locdump
• Båda har ett liknande format där key endera är cell-id (MCC,

MNC, LAC, sektor) för en mobilmast eller en AP MAC-adress
key accuracy conf. latitude longitude time
• Output cache.cell
240:5:23:1510154 1677 75 60.492045 15.407134 01/31/11

09:05:22 W. Europe Standard Time
• Output cache.wifi
00:27:0d:0a:34:02 71 92 60.487707 15.408977 02/08/11

10:41:06 W. Europe Standard Time

Locationhistory via Gmail account
• If activated the phone collects location continuously
• https://maps.google.se/locationhistory

Location hour by hour

Google Data Liberation Front

• Google Takeout
– Since device may be encrypted
– Export data from various

supported services
– https://www.google.com/settings/takeout

Gmail history metadata

Deodex vs. Odex and protected apps

• ODEx stands for Optimized Dalvik Executable
– In any stock Android ROM, you will find some .odex files in

addition to .apk files, for example Phone.apk as well as
Phone.odex, ie. the app is divided in two files (.apk and .odex)

– The odex file will contain some parts of the app in compressed
form that will be preloaded

– The purpose of the .odex file is to save space and also to speed
up the boot process

• What is Deodex?
– It’s the process to take all the packages out from .odex file and

reassemble them all together in a classes.dex file
– A deodexed app is open to customizations as theming etc.

• Inspect the protected and encrypted apps in
/mnt/asec/<package name>/
– Just copy the pkg.apk file out of the directory
– Run it where you like (unencrypted next time?)

From Android >= 2.3
• The default filesystem for Gingerbread is ext4, it is also used

in Googles datacenter. Thats what I would call scaleable!!
• Beginning with FTK Imager 3.0 support is included for VxFS,

exFAT, and Ext4 file systems
• Beginning with FTK 3.2 FTK enhanced its file system support

to include DMG / Ext4 / ExFAT / VxFS /MSVHD / AFF
(Advanced Forensic Format) / Blackberry IPD

• The problem with YAFFS is that it is single-threaded and
would likely have been a bottleneck on dual-core systems
– Concurrency is important on Android devices that use multi-core

processors
• Applications that use the platform’s high-level storage

abstractions will generally not have to worry about the
transition

• Developers who are accessing the filesystem directly will have
to be mindful about Ext4's buffering behavior and make sure
that the data is actually reaching persistent storage in a timely
manner so that it won’t be lost in the event of a system failure.

Ext4 and Btrfs
T'so says that there isn't much need for concern. Google and the
handset makers will catch platform-level filesystem reliability issues,
ensuring that the high-level storage APIs are safe. He also believes
that the significant amount of product QA conducted by the vendors will
reduce the risk of random crashes. Short of users yanking out the
battery, he says, it's unlikely that Android devices will routinely run into
the kind of system failure that causes data loss for applications that
don't properly use fsync.

T'so also addressed the question of why Google would pass on
Oracle's Btrfs, which is expected to eventually displace Ext4 in the
future. Btrfs simply isn't mature enough yet for use in production.
Canonical considered using Btrfs as the default filesystem in Ubuntu
10.10, but postponed adoption after similarly deciding that it needed
more time in the oven. Nokia and Intel have adopted Btrfs for MeeGo,
though it's unclear if they will stick with that decision when MeeGo
ships on actual consumer devices. It's clear that Ext4 still has an
important role to play while the issues in Btrfs are being ironed out.

Android dev. blog
If you just use SharedPreferences or SQLite, you can relax, because we’ve made sure
they Do The Right Thing about buffering.
To start with, for raw data consider using one of the synchronous modes of
java.io.RandomAccessFile, which take care of calling fsync() for you in the appropriate
way. If you can’t, you’ll want Java code that looks something like this.
 public static boolean sync(FileOutputStream stream) {
 try {
 if (stream != null) {
 stream.getFD().sync();
 }
 return true;
 } catch (IOException e) {
 }
 return false;
In some applications, you might even want to check the return status of the close() call.

Now of course, there are two sides to this story. When you call fsync() and force the data
onto storage, that can be slow; worse, unpredictably slow. So be sure to call it when you
need it, but be careful not to call it carelessly.

http://android-developers.blogspot.com/2010/12/saving-data-safely.html

Other tools riding on ADB
• Android Commander, QtADB, Droid Explorer etc.

Partitions SGT 1
p1wifi_20110128_r10_00.pit (4 KB) (see PIT-info dumped below)

GT-P1010-CSC-SERKB3/
 cache.rfs (10.9 MB) (see content listing below)
 movinand.mst (51MB) (can be extracted with MoviTool, based on Volker1's
method)

P1010XWKB5-REV03-ALL-low-CL913814/
 boot.bin (256 KB)
 cache.rfs (672 KB)
 normalboot.img (4.3 MB)
 param.lfs (612 KB)
 recovery.img (4.3 MB)
 Sbl.bin (1.2 MB)
 system.rfs (331 MB)
 userdata.rfs (1.2 MB)

Contents of PIT file: p1wifi_20110128_r10_00.pit

file magic = 0x12349876 (expected value)
Unknown data: 0 0 0 0 0
Number of partitions = 13 (usual value)

Partition #1
 Usual content: boot.bin, the primary boot loader (low-level hardware
initialization)
 partition entry type: 0 0 (normal partition)
 ID = 0; flags = 0; unknown: 0
 size = 1 blocks of 256 * 512 bytes = 131072 B = 128 kB = 0 MB
 unknown string: [........]
 partition name = [IBL+PBL.........................]
 file name = [boot.bin..]

Partition #2
 Usual content: partition information table (PIT)
 partition entry type: 0 0 (normal partition)
 ID = 0x1; flags = 0; unknown: 0
 size = 1 blocks of 256 * 512 bytes = 131072 B = 128 kB = 0 MB
 unknown string: [........]
 partition name = [PIT.............................]
 file name = [p1wifi.pit..]

Partition #3
 Usual content: efs.rfs
 partition entry type: 0 0 (normal partition)
 ID = 0x14; flags = 0x2 (rfs file system); unknown: 0
 size = 40 blocks of 256 * 512 bytes = 5242880 B = 5120 kB = 5 MB
 unknown string: [........]
 partition name = [EFS.............................]
 file name = [efs.rfs...]

Partition #4
 Usual content: Sbl.bin, the secondary boot loader (loads linux kernel)
 partition entry type: 0 0 (normal partition)
 ID = 0x3; flags = 0; unknown: 0
 size = 5 blocks of 256 * 512 bytes = 655360 B = 640 kB = 0 MB
 unknown string: [........]
 partition name = [SBL.............................]
 file name = [sbl.bin...]

Partition #5
 Usual content: backup of secondary boot loader
 partition entry type: 0 0 (normal partition)
 ID = 0x4; flags = 0; unknown: 0
 size = 5 blocks of 256 * 512 bytes = 655360 B = 640 kB = 0 MB
 unknown string: [........]
 partition name = [SBL2............................]
 file name = [sbl.bin...]

Partitions SGT 2
Partition #6
 Usual content: param.lfs /mnt/.lfs j4fs
 partition entry type: 0 0 (normal partition)
 ID = 0x15; flags = 0x2 (rfs file system); unknown: 0
 size = 20 blocks of 256 * 512 bytes = 2621440 B = 2560 kB = 2 MB
 unknown string: [........]
 partition name = [PARAM...........................]
 file name = [param.lfs...]

Partition #7
 Usual content: zImage, the linux kernel
 partition entry type: 0 0 (normal partition)
 ID = 0x5; flags = 0; unknown: 0
 size = 30 blocks of 256 * 512 bytes = 3932160 B = 3840 kB = 3 MB
 unknown string: [........]
 partition name = [NORMALBOOT......................]
 file name = [normalboot.img..]

Partition #8
 Usual content: recovery.bin, the backup copy of zImage/initramfs
 partition entry type: 0 0 (normal partition)
 ID = 0x8; flags = 0; unknown: 0
 size = 30 blocks of 256 * 512 bytes = 3932160 B = 3840 kB = 3 MB
 unknown string: [........]
 partition name = [RECOVERY........................]
 file name = [recovery.img..]

Partition #9
 Usual content: factoryfs.rfs
 partition entry type: 0 0 (normal partition)
 ID = 0x16; flags = 0x2 (rfs file system); unknown: 0
 size = 1430 blocks of 256 * 512 bytes = 187432960 B = 183040 kB = 178 MB
 unknown string: [........]
 partition name = [SYSTEM..........................]
 file name = [system.rfs..]

Partition #10
 Usual content: dbdata.rfs
 partition entry type: 0 0 (normal partition)
 ID = 0x17; flags = 0x2 (rfs file system); unknown: 0
 size = 302 blocks of 256 * 512 bytes = 39583744 B = 38656 kB = 37 MB
 unknown string: [........]
 partition name = [USERDATA........................]
 file name = [userdata.rfs..]

Partition #11
 Usual content: cache.rfs
 partition entry type: 0 0 (normal partition)
 ID = 0x18; flags = 0x2 (rfs file system); unknown: 0
 size = 140 blocks of 256 * 512 bytes = 18350080 B = 17920 kB = 17 MB
 unknown string: [........]
 partition name = [CACHE...........................]
 file name = [cache.rfs...]

Partition #12
 Usual content: modem.bin
 partition entry type: 0 2 (unknown value)
 ID = 0x3; flags = 0x1; unknown: 0
 size = 0 blocks of 0 * 512 bytes = 0 B = 0 kB = 0 MB
 unknown string: [........]
 partition name = [HIDDEN.D........................]
 file name = [hidden.rfs.t..]

Partition #13
 Usual content: Unknown
 partition entry type: 0 2 (unknown value)
 ID = 0; flags = 0x1; unknown: 0
 size = 0 blocks of 0 * 512 bytes = 0 B = 0 kB = 0 MB
 unknown string: [........]
 partition name = [MOVINAND........................]
 file name = [movinand.mst..]

Resources
• TWRP custom recovery for the Android emulator

– http://teamw.in/project/twrp2/169
• viaForensics

– https://viaforensics.com/
• Android Forensics

– http://simson.net/ref/2011/2011-07-12%20Android%20Forensics.pdf
• opensecuritytraining.info

– http://opensecuritytraining.info/
• The Android boot process from power on

– http://www.androidenea.com/2009/06/android-boot-process-from-power-
on.html

• Android Forensic Capability andEvaluation of Extraction Tools
– http://www.academia.edu/1632597/Android_Forensic_Capability_and_Ev

aluation_of_Extraction_Tools

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

