

LiME – Linux Memory Extractor

Instructions v1.2

March 19, 2013

©2012-2013 504ENSICS, LLC
 www.504ENSICS.com

2

Contents
1.0 Introduction .. 3

2.0 Obtaining LiME .. 3

3.0 Compiling LiME ... 4

3.1 Compiling LiME for Linux ... 4

3.2 Cross-Compiling LiME for Android .. 4

4.0 Using LiME .. 6

4.1 Acquisition of Memory over TCP ... 6

4.2 Acquisition of Memory to Disk (SD-Card) .. 7

©2012-2013 504ENSICS, LLC
 www.504ENSICS.com

3

1.0 Introduction

LiME (formerly DMD) is a Loadable Kernel Module (LKM)that allows the acquisition of volatile

memory from Linux and Linux-based devices, such as those powered by Android. The tool

supports acquiring memory either to the file system of the device or over the network. LiME is

unique in that it is the first tool that allows full memory captures from Android devices. It also

minimizes its interaction between user and kernel space processes during acquisition, which

allows it to produce memory dumps that are more forensically sound than those of other tools

designed for Linux memory acquisition.

LiME was first announced at ShmooCon 2012. The video of the presentation can be found

here, and the slides are available for download here.

2.0 Obtaining LiME

To obtain LiME, please see the instructions at: http://code.google.com/p/lime-forensics.

http://www.youtube.com/watch?v=oWkOyphlmM8
http://digitalforensicssolutions.com/Android_Mind_Reading.pdf
http://code.google.com/p/lime-forensics

©2012-2013 504ENSICS, LLC
 www.504ENSICS.com

4

3.0 Compiling LiME

3.1 Compiling LiME for Linux

LiME is a Loadable Kernel Module (LKM). LiME ships with a default Makefile that should be

suitable for compilation on most modern Linux systems.

For detailed instructions on using LKM see the file Documentation/kbuild/modules.txt included

with the Linux source.

3.2 Cross-Compiling LiME for Android

In order to cross-compile LiME for use on an Android device, additional steps are required.

PREREQUISITES

Disclaimer: This list may be incomplete. Please let us know if we've missed anything.

 Install the general android prerequisites found here.

 Download and un(zip|tar) the android NDK found here.

 Download and un(zip|tar) the android SDK found here.

 Download and untar the kernel source for your device. This can usually be found on the

website of your device manufacturer or by a quick Google search.

 Root your device. In order to run custom kernel modules, you must have a rooted

device.

 Plug the device into computer via a USB cable.

SETTING UP THE ENVIORNMENT

In order to simplify the process, we will first set some environment variables. In a terminal,

type the following commands.

$ export SDK_PATH=/path/to/android-sdk-linux/

http://lxr.linux.no/linux/Documentation/kbuild/modules.txt
http://source.android.com/source/download.html
http://developer.android.com/sdk/ndk/index.html
http://developer.android.com/sdk/index.html

©2012-2013 504ENSICS, LLC
 www.504ENSICS.com

5

$ export NDK_PATH=/path/to/android-ndk/

$ export KSRC_PATH=/path/to/kernel-source/

$ export CC_PATH=$NDK_PATH/toolchains/arm-linux-androideabi-

4.4.3/prebuilt/linux-x86/bin/

$ export LIME_SRC=/path/to/lime/src

PREPARING THE KERNEL SOURCE

We must retrieve and copy the kernel config from our device.

$ cd $SDK_PATH/platform-tools

$./adb pull /proc/config.gz

$ gunzip ./config.gz

$ cp config $KSRC_PATH/.config

Next we have to prepare our kernel source for our module.

$ cd $KSRC_PATH

$ make ARCH=arm CROSS_COMPILE=$CC_PATH/arm-eabi- modules_prepare

PREPARING THE MODULE FOR COMPILATION

We need to create a Makefile to cross-compile our kernel module. A sample Makefile for cross-

compiling is shipped with the LiME source. The contents of your Makefile should be similar to

the following:

obj-m := lime.o

lime-objs := main.o tcp.o disk.o

KDIR := /path/to/kernel-source

PWD := $(shell pwd)

CCPATH := /path/to/android-ndk/toolchains/arm-linux-androideabi-

4.4.3/prebuilt/linux-x86/bin/

default:

 $(MAKE) ARCH=arm CROSS_COMPILE=$(CCPATH)/arm-eabi- -C $(KDIR)

M=$(PWD) modules

COMPILING THE MODULE

$ cd $LIME_SRC

$ make

©2012-2013 504ENSICS, LLC
 www.504ENSICS.com

6

4.0 Using LiME

To illustrate the use of LiME, we will now walk through two examples of acquiring memory

from an Android device. We will first discuss the acquisition of memory over a TCP connection,

followed by a discussion of acquiring a memory dump via the device’s SD card. The use of LiME

on other Linux devices is similar; however, the use of the Android debug bridge (adb) is not

needed.

4.1 LiME Parameters
Starting in version 1.1, LiME now supports multiple output formats, including a custom lime

format which integrates with Volatility’s new lime address space. This means that additional

parameters are needed when installing the LiME kernel module.

NOTE: There is a bug in the insmod utility on some Android devices. Multiple kernel module

parameters must be wrapped in quotation marks, otherwise only the first parameter will be

parsed. See sections 4.2 and 4.3 for examples.

LiME Parameters

• path
– Either a filename to write on the local system (SD Card) or tcp:<port>

• format
– raw

• Simply concatenates all System RAM ranges
– padded

• Pads all non-System RAM ranges with 0s, starting from physical address 0
– lime

• Each range is prepended with a fixed-sized header which contains
address space information

• Volatility address space developed to support this format
• dio (optional)

– 1 to enable Direct IO attempt (default), 0 to disable

4.2 Acquisition of Memory over TCP

The first step of the process is to copy the kernel module to the device’s SD card using the

Android Debug Bridge (adb), which supports a number of interactions with an Android device

tethered via USB. We then use adb to setup a port-forwarding tunnel from a TCP port on the

device to a TCP port on the local host. The use of adb for network transfer eliminates the need

©2012-2013 504ENSICS, LLC
 www.504ENSICS.com

7

to modify the networking configuration on the device or introduce a wireless peer—all network

data is transferred via USB. For the example below, we have chosen TCP port 4444. We then

obtain a root shell on the device by using adb and su. To accomplish this, we run the following

commands with the phone plugged into our computer and debugging enabled on the device.

$ adb push lime.ko /sdcard/lime.ko

$ adb forward tcp:4444 tcp:4444

$ adb shell

$ su

Memory acquisition over the TCP tunnel is then a two-part process. First, the target device

must listen on a specified TCP port and then we must connect to the device from the host

computer. When the socket is connected, the kernel module will automatically send the

acquired RAM image to the host device.

In the adb root shell, we install our kernel module using the insmod command. To instruct the

module to dump memory via TCP, we set the path parameter to “tcp”, followed by a colon and

then the port number that adb is forwarding. On our host computer, we connect to this port

with netcat and redirect output to a file. We also select the “lime” formatting option. When

the acquisition process is complete, LiME will terminate the TCP connection.

The following command loads the kernel module via adb on the target Android device:

insmod /sdcard/lime.ko “path=tcp:4444 format=lime”

On the host, the following command captures the memory dump via TCP port 444 to the file

“ram.lime”:

$ nc localhost 4444 > ram.lime

4.3 Acquisition of Memory to Disk (SD-Card)

In some cases, such as when the investigator wants to make sure no network buffers are

overwritten, disk-based acquisition may be preferred to network acquisition. To accommodate

this situation, LiME provides the option to write memory images to the device’s file system. On

Android, the logical place to write is the device’s SD card.

Since the SD card could potentially contain other relevant evidence to the case, the investigator

may wish to image the SD card first in order to save unallocated space. Unfortunately, some

©2012-2013 504ENSICS, LLC
 www.504ENSICS.com

8

Android phones, such as the HTC EVO 4G and the Droid series, place the removable SD card to

be either under or obstructed by the phone’s battery, making it impossible to remove the SD

card without powering off the phone (these phones will power down if the battery is removed,

even if they are plugged into a power source!). For this reason, the investigator needs to first

image the SD card, and then subsequently write the memory image to it. While this process

violates the typical “order of volatility” rule of thumb in forensic acquisition, namely, obtaining

the most volatile information first, it is necessary to properly preserve all evidence.

Fortunately, imaging the SD card on an Android device that will be subjected to live forensic

analysis (including memory dumping) does not require removal of the SD card. Tethering the

device to a Linux machine, for example, and activating USB Storage exposes a /dev/sd? device

that can be imaged using traditional means (e.g., using dd on the Linux box). Activating USB

Storage mode unmounts the SD card on the Android device, so a forensically valid image can be

obtained.

With USB Storage mode deactivated, we copy the LiME kernel module to the device using the

same steps described in the last section. When installing the module using insmod, we set the

path parameter to /sdcard/ram.lime to specify the file in which to write the memory dump.

We also select the “lime” format option:

insmod /sdcard/lime.ko “path=/sdcard/ram.lime format=lime”

Once the acquisition process is complete, we can power down the phone, remove the SD card

from the phone, and transfer the memory dump to the examination machine. If the phone

cannot be powered down, adb can also be used to transfer the memory dump to the

investigator's machine.

5.0 LiME Memory Range Header Version 1 Specification

typedef struct {
 unsigned int magic; // Always 0x4C694D45 (LiME)
 unsigned int version; // Header version number
 unsigned long long s_addr; // Starting address of physical RAM range
 unsigned long long e_addr; // Ending address of physical RAM range
 unsigned char reserved[8]; // Currently all zeros
} __attribute__ ((__packed__)) lime_mem_range_header;

